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Titre: Méthodes Formelles pour les Langages de Programmation Quantiques
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des catégories

Résumé: Le modèle Qram est un modèle de cal-
cul quantique pratique composé d’un ordinateur
classique et un processus quantique qui com-
muniquent entre eux. Le programme est exé-
cuté sur l’ordinateur classique. Il envoie les in-
structions correspondant aux opérateurs quan-
tiques sur le co-processeur, et reçoit le résultat
de l’observation de l’état quantique. Ce mod-
èle est considéré comme un modèle standard
et plusieurs langages de programmation ont été
conçus en basant sur ce modèle.

Alors que les programmes dans ce mod-
èle sont capables de réaliser tout calcul quan-
tique grâce à l’usage de la mémoire quantique,
il est difficile de les analyser sans l’aide d’un
autre ordinateur quantique. Ce problème sus-
cite le besoin pour des méthodes formelles pour
les langages programmations quantiques : les
outils formels pour raisonner sur l’optimisation
du code, pour l’analyser des ressources, et
pour spécifier et prouver les propriétés des pro-
grammes quantiques.

La sémantique catégorique fait partie de
ces méthodes qui fait le lien entre les opéra-
teurs quantiques et les programmes et intro-
duit le système logique qui peut décrire les pro-
priétés sur l’état quantique dans le système de
types. Bien que plusieurs travaux proposent
des sémantiques catégoriques pour les langages

de description de circuits quantiques, aucun
ne supporte l’usage du résultat d’une mesure
au sein du processeur classique (le ”levage dy-
namique”).

Dans cette thèse, nous formalisons le
levage dynamique qui transfère le résul-
tat d’observations sur l’état quantique à
l’information classique dans un langage de pro-
grammation de description de circuit quan-
tique. En suivant l’approche du langage
Proto-Quipper, nous définissons un langage
typé de description de circuit quantique où
l’information quantique levée est incorporée
dans la structure ramifiée. Ensuite, le levage
dynamique est formalisé dans le cadre de la sé-
mantique opérationnelle et la sémantique caté-
gorique.

Notre sémantique catégorique est basée sur
le modèle de Francisco Rios et Peter Selinger
pour le langage programmation Proto-Quipper-
M. Pourtant, pour formaliser le levage dy-
namique, nous construisons une catégorie de
Kleisli en capturant la mesure quantique comme
un effet de bord sur une catégorie concrète pour
le circuit avec la mesure quantique. Nous prou-
vons le théorème de correction de la sémantique
catégorique par rapport à la sémantique opéra-
tionnelle.



Title: Formal Methods for Quantum Programming Languages

Keywords: Quantum programming, Formal Methods, Programming languages, Category theory

Abstract: The quantum random-access ma-
chine (QRAM) model is a practical model of
quantum computation composed of a classical
computer and a quantum processor communi-
cating with each other. The program is exe-
cuted on the classical computer. It can send
instructions corresponding to quantum opera-
tions and receive measurement outcomes from
the quantum co-processor. This model is ex-
pected to be the model of quantum computation
in the near future, and a group of quantum pro-
gramming languages has been developed based
on it.

While the program in the model has the
ability to simulate any quantum circuit with the
help of a quantum processor, analyzing the pro-
gram becomes difficult without relying on an-
other quantum computer. This problem calls
for the development of formal methods for quan-
tum programming languages: formal tools to
develop and reason on code optimization, ana-
lyze resources, and specify and prove the prop-
erties of quantum programs.

One of these tools is categorical semantics,
which links the actions of quantum operators
to the meaning of quantum programs and em-
beds logical systems on quantum states to the

type system of the language. Although categor-
ical semantics for quantum programming lan-
guages is an established field, dynamic lifting
—the ability to use the result of a measurement
in the classical host— has so far only been con-
sidered in the context of denotational seman-
tics based on operator algebras: a circuit in the
model is not a syntactic object that can be ma-
nipulated.

In this thesis, we formalize dynamic lifting
in a quantum circuit-description language which
allows programs to transfer the result of mea-
suring quantum data into classical data. Fol-
lowing the Proto-Quipper approach, we define a
typed circuit-description language called Proto-
Quipper-L, where the lifted data is encoded in
the branching structure. Dynamic lifting is then
formalized within the operational and categori-
cal semantics.

Our categorical semantics is based on the
model from Rios&Selinger for Proto-Quipper-
M. However, to formalize dynamic lifting, we
construct, on top of a concrete category of cir-
cuits with measurements, a Kleisli category,
capturing the measurement as a side effect. We
show the soundness of this semantics with re-
gard to the operational semantics.
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1 - Introduction
Quantum computation is interesting The development of quantum mechan-
ics (which was done by physicists like Max Planck, Niels Bohr, Albert Einstein,
Werner Heisenberg, Erwin Schrödinger, et al.) [29] and the formalization of
computation and logic (done by logicians and mathematicians like Alan Tur-
ing, Kurt Gödel, Bertrand Russell, Alfred North Whitehead, Alonzo Church,
Gottlob Frege, David Hilbert, et al.) have created distinct research fields that
have been very successful beginning from the period from late nineteenth cen-
tury to the first half of the twentieth century. Although the results of each
of the two fields had influences on the other field–e.g., the discovery of the
transistor due to the understanding of solid-state electronics based on quan-
tum mechanics [15] and the computational physics, which utilizes the high-
performance computer and optimization methods to solve complex physical
systems [37]–it was not until the late 1970s or 1980s that the central ideas
of quantum mechanics, which are superposition of states and time evolution
of states, have begun to be considered as an ingredient in the study of the
model of computation [31, 19]. Conversely, it is also possible to consider the
profound implication of logic in the theory of physics–like using topos theory
in the formalization of quantum physics in [30]–but let us not delve into this
subject since it is out of the scope of the thesis.

The introduction of these new quantum features as a resource of compu-
tation gave birth to interesting algorithms ranging from Deutsch-Jozsa algo-
rithm [20] for the discrimination of different modes of input to Shor’s algo-
rithm [66] for the factorization of large natural numbers. Moreover, the BB84
protocol [8], a secure quantum key distribution protocol, is another example of
the advantages of using quantum resources. In these algorithms and protocols,
new data types are introduced, which are called qubit, and the operations in
process or functions are defined over qubits.

While quantum algorithms theoretically bring extraordinary advantages
compared to conventional algorithms for specific problems, there have been
doubts about whether these algorithms are realizable, i.e., whether we can
make a practical quantum computer [49]. Even though there are multiple
blueprints on the construction of quantum-based computers on different ma-
terials ranging from photons to trapped ions, each scheme has difficulties that
makes it hard to build a universal quantum computer with many qubits. An
example of such difficulties is the balance between the decoherence–which
means the collapse of the quantum state induced by the interaction between
the system and the environment–and the applicability of quantum operator–
which requires an interaction between the system and the environment. This
seemingly paradoxical requirement, i.e., to reduce decoherence while maintain-
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ing the applicability of quantum operators, has been a good reason for many
people to be skeptical about the development of real and practical quantum
computers.

However, the situation has been changing recently with the development
of quantum chips with more than fifty qubits by Google [5] and IBM [54]. In
2019, in its publication of the Sycamore processor, Google claimed the advent
of quantum supremacy, which means the existence of a quantum process that
the high-performance classical computer cannot simulate in a feasible time.
Google and other companies plan to increase the number of qubits with the
help of their scalable methods of construction of qubits.

Yet, it is worth noting that each qubit and quantum operation may not
be perfect, meaning there can be errors. The fidelity of qubits and quantum
operations may differ over the different realizations of qubits. Nevertheless,
different error-correcting methods have been developed, starting with Shor’s
error-correction code [67], which would help us build reliable quantum com-
puters even based on imperfect qubits and quantum operations.

With these recent successes, quantum computation or quantum informat-
ics is gaining more interest worldwide while improving rapidly. Although we
cannot say decisively yet that, for example, we will implement Shor’s algorithm
in a real quantum computer, it seems that we can afford the assumption that
we will have a real and practical quantum computer someday. Given this,
what we can do with a quantum computer becomes our next question.

What we can do with quantum computer A straightforward approach to
answer the question is by showing problems that can be solved more effi-
ciently by quantum computers than by classical computers. There are several
examples of quantum algorithms: the list includes the quantum walks, the
finding hidden-subgroup problem, quantum machine learning, graph isomor-
phism, …These algorithms are classified by methods from which they obtain
the quantum advantage over classical computation. Such methods include
Quantum Fourier Transform (QFT), Phase Estimation (PE), and Quantum
Walk (QW). However, in general, it is challenging to find a quantum algorithm
that brings an advantage compared to classical computer since there are many
problems that seem to be hard, but we do not know yet if there is a classical
algorithm that efficiently solves the problem.

A more systematic approach to answering this question is formalizing
quantum computation and classical computation and finding the difference
between these models and its implications for algorithmic problems. A good
example of the difference between the models of classical and quantum compu-
tation is contextuality. Intuitively, the contextuality of the quantum system
is generated by the existence of non-commutative quantum operators and im-
plies a contradiction together with the assumption of the existence of a global
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state which maps a probability distribution to each operator. Let us elabo-
rate on this contradiction since it is helpful to keep in mind the contextuality
when discussing models of quantum and classical computation, and it is one
of the primary sources of the weirdness of quantum logic that we would like
to distinguish from classical logic in the future.

Let us assume that we have two parts of the system called A and B. Each
part is equipped with two operators–p1A and p2A for A and p1B and p2B for B.
Furthermore, we assume that each operator creates two possible outcomes 0

and 1. Now, we consider a state as a probability distribution over the possible
outcomes of each operator. Since A and B are separated, we can apply one
operator for each part simultaneously. For example, when the operators p1A
and p1B are applied to A and B simultaneously, we obtain one among (0, 0),
(0, 1), (1, 0), and (1, 1) as outcome where the first and the second element of
the pair represent the outcome of p1A and p1B, respectively. And a state is a
probability distribution over the four outcomes.

Each of the following two tables shows possible states defined for each pair
of operators applied simultaneously to the parts A and B.
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Both tables are obtained from actual quantum states. The left one is obtained
from the state 1√

2
(|00〉+ |11〉) and the right is from the state 1√

3
(|00〉+ |01〉+

|10〉), where the operators p1A and p1B are the measurement over |0〉 and |1〉
basis while the operators p2A and p2B are the measurement over |+〉 and |−〉
basis.

The global state is then represented by a probability distribution over
all 16 possible outcomes for each operator. This global state is supposed to
generate the given table for each state by marginalization. However, it can be
shown that there is no such global state for the table on the right while there
exists a global state for the table on the left.

This example gives us a hint why we need a different model for quan-
tum computation. Firstly, from the logical point of view (which is classically
equivalent to the computational perspective), it is not straightforward to de-
fine quantum logic. For example, when we consider a quantum operator as
a logical statement, the conventional model theoretical interpretation based
on the valuation of logical sentences does not work since there may not be
a global state. Secondly, from the computational perspective, contextuality
shows that classical states are strictly included in quantum states. It can be
considered resources that one can utilize to design algorithms that are impos-
sible in classical computation. In addition, there is the limitation of quantum
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computation, as well, in that not every table of the partial state is realizable
as a quantum state.

Once we have formal models of classical and quantum computation, we
can study their relationship. In one direction, we may try to find an embed-
ding of classical functions into quantum functions, which would allow us to
see the advantages of quantum computation as the extra parts in the model of
quantum computation which has no counterpart in the model of classical com-
putation. In the other direction, it is equally possible to think of a variant of
the model of classical computation where the quantum function is introduced
as the constant or black box. Given the equivalence between the model of clas-
sical computation and logic (by Curry-Howard isomorphism), this extension
corresponds to the logic where the quantum function is specified in classical
logic. This direction provides us with a way to verify quantum functions in
classical logic.

This thesis partially concerns this question of the relationship between the
models of classical and quantum computation: its initial goal was to build a
toolchain of verifications of quantum programs, which can be viewed in line
with the implication mentioned above on the verification of quantum pro-
grams. In particular, our approach to this goal relies on studying the seman-
tics of programming languages and type systems of quantum computation.
Remembering that λ-calculus was shown to formalize classical computation,
namely, by Church-Turing thesis, we can hope that quantum programming
languages (or quantum type systems) will formalize quantum computation
where the execution of the quantum computation is represented as reduction,
or equivalence, of terms. Combining these programming languages (or type
systems) with classical logic where the quantum function is introduced as con-
stant, we could obtain a toolchain for implementing and verifying quantum
algorithms.

In this context, we would like to focus on the formalization of program-
ming languages for quantum computation as the first step toward the formal
verification of quantum algorithms. In particular, for practical reasons, we
consider programming languages for a certain scenario where a classical com-
puter controls a quantum processor. This scenario corresponds to the QRAM
model of quantum computation, and it is considered to be the model of quan-
tum computation for the near future, the so-called Noisy Intermediate-Scale
Quantum (NISQ) era.

Current issues: how to write (to program) quantum algorithms, what is the
meaning (the semantics) of quantum programs So far, we have introduced
the subjects of this thesis in a broad context, relating them to the general
questions coming from computer science and logic. Now, let us delve into the
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more precise subjects of the thesis–which are quantum programming languages
and their categorical semantics.

Intuitively, a programming language explains how to represent computa-
tion, and its semantics represents the computation as a mathematical object.
It has been studied for many years where one may consider Church’s λ-calculus
as the first programming language whose semantics is given as complete lat-
tices and Scott domains. It has grown into a big field as there are numerous
programming languages for different purposes ranging from circuit description
languages to probabilistic and statistic programming languages and program-
ming languages for concurrent systems. Furthermore, it takes an important
role in applications like software verification and testing, program synthesis,
and type inference. In order to do that, the programming language is equipped
with type systems and various semantics from which desired properties of a
program can be represented and derived. Relying on a relationship between
logic and type system, a program can be considered a proof and finding a
proof of certain property becomes synthesizing a program.

These methodologies regarding the questions revolving around program-
ming languages and formal semantics are called formal methods. Therefore,
formal methods are the tools that we use to obtain practical results from the
abstract definition of computation. In particular, in this thesis, we would like
to use formal methods to decode and analyze quantum computation.

Programming language for quantum computation In quantum computa-
tion, one considers a special kind of memory where data is encoded into the
state of objects governed by the laws of quantum mechanics. The basic unit for
quantum data is the quantum bit, or qubit, and in general, a quantum mem-
ory is understood as consisting of individually addressable qubits. The state of
a quantum memory can be represented by a unit vector in a complex Hilbert
space. Elementary operations on qubits consist of unitary operations on the
state space, called quantum gates, and measurements, which are probabilistic
operations returning a classical boolean.

The usual model for quantum computation is the notion of quantum cir-
cuits. Quantum circuits are made of quantum gates and wires. A wire rep-
resents a qubit, and each gate, attached to one or several wires, is a unitary
operation acting on the corresponding qubits. In this model, a computation
consists of allocating a quantum register, applying a circuit (i.e., the list of
gates, in order), followed by the measurement of the register to get a classical
piece of information.

Quantum
co-processorClassical host

Gates + measurements

Feedbacks:
result from measurement

Figure 1.1: QRAM model

On the contrary, in the QRAM model,
quantum computation is performed un-
der the control of a classical host [34].
The classical host will emit a stream of
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interleaved (pieces of) quantum circuits
and measurements to the quantum co-
processor. The quantum co-processor exe-
cutes the instructions while returning the
results of measurements on the fly to the
classical host. This interaction between the host and the co-processor is illus-
trated in Figure 1.1. In this model, the computation is not a fixed linear list
of quantum gates: the quantum gates emitted to the quantum co-processor
depend on the result of intermediate measurements.

Various quantum programming languages, from quantum λ-calculus to
Quipper and QWire, are based on this QRAM model. While quantum λ-
calculus strictly follows the diagram of the QRAM model, Quipper and QWire
provide circuit-level operations (like the reverse and control operators for the
construction of quantum circuits and print and gate-count operators for the
analysis of quantum circuits) which are applied to buffered quantum opera-
tions (consisting of gates and measurements). The features of classical pro-
gramming language like high-order abstractions, branching statements, re-
cursion, inductive data types, and dependent types have been studied and
formalized in this context. These features provide a powerful and expressive
way to represent quantum computation. However, it would be worth men-
tioning that there are features of quantum computation that do not have a
classical counterpart, like quantum switch and indefinite causal order, which
imply that functions, or sequences of functions, can form a superposed func-
tion, or an ensemble of functions. Finding and formalizing new features of
quantum computation in programming languages constitutes an exciting part
of the research of quantum programming languages.

Formal methods for quantum programming languages One of the moti-
vations of formal methods is the verification of programs. As programs and
systems that we deal with in real-world applications are very complicated, it
is not straightforward anymore to decide whether the program is safe. By ap-
plying formal methods, a program, or some properties of the program, can be
verified by the programming language’s formal semantics and type systems.
The same scenario applies to quantum programs. In particular, we need formal
methods for quantum programs since it is not easy to get intuition on what
the program does from a quantum program (imagine a sequence of unitary
gates and measurements).

Formal methods for verification of programs are, in general, divided into
two regimes which are static and dynamic analyses. Firstly, static analysis
of a program means that the analysis is done without the execution of a
program. It consists of, for example, a type system, abstract interpretation,
and all analyses based on the semantics of programs. Next, dynamic analysis
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constitutes the analysis of the program, which requires execution like testing.
In practice, it is for now considered that running a program on a quantum
processor requires more resources compared to a classical computer and that
debugging a quantum programming is tricky because there is no way to inspect
the quantum state directly, while the measurement causes the collapse of the
quantum state. Therefore, formal methods applied to quantum programming
language tend to be static analysis.

In particular, type theory has been commonly used in studying quantum
programming languages to eliminate erroneous programs. In the context of
quantum programming languages, the quantum data like qubit is considered
not duplicable nor erasable, reflecting an implication of quantum mechanics.
This property of quantum data is summarised by linearity which originated
from linear logic.

In fact, type theory has a close relationship with logic, where the type
represents the logical sentence, and the type inference rules correspond to
the inference rules in the logic. Note that, in this context, a type system is a
theory in certain logic whose universe of the model is the state of the program.
As concrete examples, dependent type theory is related to intuitionistic first-
order logic and simply-typed λ-calculus maps to intuitionistic propositional
logic. Consequently, the analysis of the expressivity of a theory in logic can be
applied to investigate the definability of properties in a type system. Therefore,
one can conceive diverse type theories with different assumptions and different
languages, which form different theories within the corresponding logic. To
find out how to represent quantum properties and find a theory for reasoning
about them would be an interesting question in the research of formal methods
for quantum programming languages.

Indeed, there is a tradeoff between the expressivity of logic and the com-
putational hardness of proving sentences in the logic. On the one hand, there
can be a very expressive type theory where we can describe various properties
in quantum computation. Considering that the type represents the program’s
state, this property may include any set in the powerset of the quantum states.
As one can imagine, it is not trivial to prove a sentence in the logic, which is
to find a program that transforms any state in the input type into some state
in the output type. On the other hand, there can be a type theory where the
expressivity is limited. For example, in a type system which has only qubits
and their composition as quantum data type, type system is not expressive
enough to distinguish two different quantum processes which take the same
number of input and output qubits. However, this simplicity may allow us to
automate the type checking process (finding typing derivations).

Therefore, it is left as a choice to select a proper type theory (the logic)
and define the type constants and type inference rules (the language and the
axioms in theory), depending on the purpose. In addition, this also falls into
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the realm of abstract interpretation, where one finds abstract properties of
states preserved through the computation.

Another example of formal methods is the formal semantics of program-
ming language, which concerns the problem of finding the mathematical struc-
ture (or model) which characterizes programs represented by the programming
language. If a type system describes the properties of program states, the se-
mantics of programming languages attempts to characterize the meaning of
each program (by finding a mathematical model which precisely represents the
meaning of the program). There are two approaches to the problem, which
are called operational and denotational semantics.

Firstly, operational semantics interprets each program as a sequence of the
evaluation of the program. It can be considered as an abstract machine (like
a Turing machine), where the program corresponds to machine instructions,
which act on the program state (or a tape). Therefore, the configuration of the
operational semantics is defined as a pair of the partially evaluated program
and the program state. The execution of a part of the program is called
reduction. Operational semantics gives intuitive formalization of classical and
quantum computation.

However, the sequence of configurations from the operational semantics
is hard to analyze. In particular, given that the sequence can be infinitely
long, the equality of two programs is not decidable (by the reduction from the
Halting problem). It is similar to the fact that although we describe the laws
of physics by Newton’s theory (which predicts the position and momentum
of each particle in the system after an infinitesimal period), it is, in general,
difficult to determine the exact position and momentum of particles after a
long period.

Denotational semantics is another way to interpret the program, repre-
senting the program as a mathematical object preserved over the reduction
derived by operational semantics. As the denotational semantics does not
change throughout the execution, one can compare two programs by looking
at the interpretation of any programs in the execution, including the initial
programs. It is similar to the representation of particles as a path over time
in Lagrangian mechanics, where each point of the path creates the same path.
Denotational semantics is often related to categorical semantics, where the
interpretation of a program is defined in a categorical notion called morphism.

In addition, note that for denotational semantics to be meaningful, one
needs to make sure that the interpretation is equal for all programs in the re-
duction sequence defined by a given operational semantics. In general, a good
denotational semantics requires that the interpretation is the same for all ob-
servationally equivalent programs (i.e., they can be replaceable in any context,
in the sense that the whole program reduces to the same value). Moreover,
another valuable property of denotational semantics is that the interpretation
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distinguishes programs that are not observationally equivalent. Given these
properties, denotational semantics gives a denotation of the program (or an
equation theory of programs), which characterizes the meaning of the pro-
gram given by the operational semantics. Continuing the analogy between
the semantics of programming languages and the mechanics, these properties
of denotational semantics could be considered analogous to the principle of
stationary action in Lagrangian mechanics in that the principle provides cri-
teria for selecting a particular path that minimizes the action among all paths
given the initial and final states.

In summary, when the formal semantics is defined, the program is mapped
to a mathematical object, and programs can be analyzed based on this inter-
pretation.

Why are we interested in finding categorical semantics of programming
languages? Category theory is often used as a denotational semantics of pro-
gramming languages. However, it is hard to see how this abstract formalization
helps us solve any practical problem, for example, verification of a program
over some given specification and representation of specification. Therefore,
we can ask why we are interested in categorical semantics and what it brings
to us. In this paragraph, we would like to discuss what we can wish to do with
the categorical semantics of programming languages.

The most straightforward reason to use category theory would be that it is
a universal language that formally describes various objects in different fields,
from mathematics and computer science to physics. Categorical theory can
be firstly considered an abstract classification of different types of functions.
Many things are functions; for example, time-dependent physical states like
position and momentum are real or complex functions over time. Moreover,
the valuation of the logical sentence is a Boolean function while, more gen-
erally, any logical formula is a function from the composition of types of all
variables appearing in the formula to the type of the formula.

As a concrete example, quantum mechanics is formalized as the category
of C∗-algebras–an object is a C∗-algebra, which refers to the Hilbert space
of bounded operators; and a morphism is a ∗-homomorphism between C∗-
algebras, which refers to the quantum process. Then, the quantum state
can be represented as a function over these bounded operators whose values
represent probabilities. In this representation, a state should correspond to
a ∗-homomorphism from the C∗-algebra of operators to the C∗-algebra of
probabilities whose meaning is applying the operator. Furthermore, as alluded
to in the example of contextuality, a state of a system can also be considered a
collection of probability distributions over possible outcomes assigned to each
set of compatible operators. In this way, one can represent the collections of
compatible operators by defining a category of the compatible operators of

25



C∗-algebras.
Another benefit of category theory is that it describes abstract objects. In

fact, in the previous example of the category of C∗-algebras, the morphism is
defined by the language of set theory, and it is not entirely category theory.
The category defined by using the set-theoretic notion is called the concrete
category. As we will discuss in detail, the simply-typed λ-calculus corresponds
to a cartesian closed category which is an abstract definition of the category.
Therefore, any concrete category that satisfies the requirements of the carte-
sian closed category can model the simply-typed λ-calculus. As a result, the
abstract category lets us link seemingly different objects and, in some cases,
use intuition on one object while studying the other object.

An example is the notion of symmetric monoidal category, which is a cat-
egory with a symmetric and associative bifunctor, called tensor product, that
has a unit. It can be interpreted as both a diagrammatic language and a cate-
gory of vector spaces. A diagram consists of wires–the objects of a symmetric
monoidal category–and boxes–the morphisms of the category. Then, the com-
position of morphisms gives a new diagram which is obtained by merging two
diagrams that are given by the morphisms, while the bifunctor induces the
juxtaposition of two diagrams. Next, in the category of vector spaces–whose
objects refer to all vector spaces over a specific field and morphisms refer to all
linear maps–the tensor product forms the tensor product of vector spaces and
linear maps. Given this relationship, we can actually make a diagram of linear
maps over vector spaces depending on how it is constructed in the category.

To sum up, from what we have discussed above, what we can expect to do
with category theory is that we can find an abstract model of a programming
language using the expressive language of category theory. Then, we can find
different concrete categories that satisfy the abstract definition of the model.
One of these concrete categories should be the model of quantum mechanics,
which implies that each program in the programming language corresponds
to a physical process and that any physical process can be represented as a
program in the language.

Problem - mixing measurement and unitaries Now, let us introduce the spe-
cific features of quantum programming language that we want to formalize.
Although quantum circuits and QRAM models are equivalent in expressive
power, practical quantum computation is more likely to be based on the
QRAM model. For this reason, many programming languages and their se-
mantics are based on QRAM model [63, 47, 28, 77, 81, 72, 69]. An interesting
implication of this model is that the quantum circuit construction in the clas-
sical host can be dependent on the result of measurement: there is a transfer of
information from the quantum co-processor to the classical host. This feature
is implemented, for example, in Quipper [28, 4] and QWire [47, 52]. Following

26



Quipper’s convention, we call this transfer dynamic lifting.
The classical control over the circuit construction imposed by dynamic

lifting has not been explicitly formalized in the semantics of the circuit con-
struction languages using it. To illustrate this problem, let us look at the
program in Eq. (1.1). The program measures the qubit vc and obtains the
updated state of the qubit together with the resulting boolean b. Based on
b, it then either allocates a new qubit initialized by true, then frees the qubit
vc, or simply returns vc1. Despite this simple structure, the program does not
correspond to a circuit because of the classical control.

exp ::= let 〈b, vc〉 = meas(vc) in if b then 〈init(tt), free(vc)〉 else 〈vc, ∗〉
(1.1)

In QWire, the operational semantics performs the normalization for compo-
sition and unbox operations, but the classical control by dynamic lifting is
hidden in the host term within the unbox. In Quipper, the operational se-
mantics is encoded in Haskell’s monadic type system and capture a notion of
the dynamic circuit that includes measurements. However, this semantics has
never been fully formalized.

Besides the operational semantics, programming languages for quantum
circuits have been formalized using denotational semantics based on density
matrices [47] and categorical semantics based on symmetric monoidal cate-
gories [61, 55, 38, 55, 24], or on the category of C∗-algebras [70, 53]. However,
these examples of formalizations do not solve the problem in that they either
ignore the structure of the circuit or keep the term with dynamic lift abstract.
In particular, in [55, 24], the authors construct an expressive categorical model
for the family of circuits (or parameterized circuit) and linear dependent type
theory, respectively. However, they do not provide the semantics of dynamic
lifting explicitly.

Outline of the work - add dynamic lifting in formalized quantum programming
languages Our goal in this thesis is to find a model and to formalize the
semantics for interleaved quantum circuits and dynamic lifting. The problem
rests on how to analyze the structure of the computation without requiring
the quantum co-processor to settle the values of measurements. We solve the
problem by making circuits not only lists but trees branching over the result of
measurements: we call such objects quantum channels. Hence, the semantics
of dynamic lifting can be formalized by the generation of multiple control
flows in the classical computation, each of which is interpreted as a quantum
channel.

1The program actually returns a pair consisting of a qubit and the unit term ∗ so
that it is well-typed. We assume that the return type of free is the unit.
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In this thesis, we propose both a small-step operational semantics and a
categorical semantics for a typed language extending quantum lambda cal-
culus [63] with circuit construction operators (box and unbox) and circuit
constants. The formalization extends the one of Proto-Quipper [56]: circuits
are generalized to quantum channels enabling the formalization of dynamic
lifting semantics. A quantum computation that only consists of unitary gates
deterministically reduces to only one possible value. On the other hand, a
quantum computation using dynamic lifting might reduce to different values
depending on the results of the measurements. To support this, the language is
extended with a notion of branching terms, representing the non-determinism
of computations. We prove a type safety theorem that ensures that a well-
typed term does not get stuck and that types are preserved over reduction.

Next, we propose a candidate for a sound categorical model for the lan-
guage. The model is based on the co-product completion of a symmetric
monoidal closed category which is introduced in [55]. This category is used
initially to separate parameters (which is known at circuit generation stage)
and the (high-order) states (which require the execution of the circuit), where
the states can be parameterized by parameters but not vice versa. However,
one can notice that the same model could be used to formalize branching terms
and quantum channels: use the path of a term in a branching term as a pa-
rameter and the term itself as a state, and, similarly, the path in the quantum
channel as a parameter and the quantum state as state. Moreover, the non-
deterministic computation which creates a branching term can be modeled by
a strong monad over the category as shown in [44, 76].

We realize this idea of categorical semantics by defining a concrete category
of diagrams M , which is a symmetric monoidal closed category with a product.
Then, we obtain the co-product completion M of the category. On top of it,
we define a strong monad over M which maps a circuit family parameterized
by a set to another circuit family parameterized by the multi-set of the set.
Based on this structure, we provide the interpretation of the type system into
the Kleisli category of the monad and show weak soundness of the semantics.

Specifically, the weak soundness theorem states that the interpretation is
preserved over some reduction of typing derivation, based on the operational
semantics. However, as some typing judgments admit more than one typing
derivation, it does not imply that the interpretation is preserved over the oper-
ational semantics. Consequently, we can only say that any typing derivations
that reduce to the same typing derivation are denotationally equal. Neverthe-
less, together with the fact that the operational semantics reduces any term
into a value and that there is a unique typing derivation for some basic types,
we can conclude that, for those basic types, all type judgments have the same
interpretation and the interpretation is sound.
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Outline of the thesis In this thesis, we introduce dynamic lifting into the
Proto-Quipper language from Neil Ross’s Ph.D. thesis [56]. Dynamic lifting
allows a program to transfer quantum data, qubit, into classical data, boolean.
However, this process introduces non-determinism without the simulation of
quantum circuits. To formalize dynamic lifting:

• first, the language is extended with branching terms, which represent
the non-determinism of states of computation;

• second, quantum circuits are extended to quantum channels, which are
trees of quantum circuits where each measurement creates a branch;

• third, the operation of dynamic lifting is encoded as a quantum channel
constant, called meas, which creates a branching term for each boolean
value from a given a qubit.

We define the type systems and the operational semantics of the language and
show safety properties of the type system.

Next, we introduce categorical semantics for the proposed language, which
is based on the co-product completion of a monoidal closed category from
Francisco Rios and Peter Selinger’s paper [55]:

• first, we define a concrete category of diagrams, M , and show that it is
a symmetric monoidal closed category with a product;

• next, we define the co-product completion of M , which is called M as
in [55].

On top of M , we define a symmetric monoidal strong monad (F : M →
M,µ, η, t) which models non-deterministic computations. Then, type deriva-
tions are interpreted as morphisms of the Kleisli category given by the monad
F . Finally, we show a weak version of the soundness of the interpretation and
the uniqueness of the typing derivation for basic types.
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2 - Background

2.1 . Quantum Computation

This section provides a quick recap of what is needed about quantum
computation for this thesis. Although quantum computation is inspired by
physics, we rely on the mathematical formalism presented and used by Peter
Selinger in [59]. A complete introduction to quantum computation can be
found in, for example, [45].

2.1.1 . Quantum state
The state of a qubit is defined as the set of normalized vectors in a (finite

dimensional) vector space over complex number. When we equip the vector
space with a basis, for example, the computational basis, the state can be
represented as normalized vector q = α |0〉+β |1〉, meaning that |α|2+|β|2 = 1,
where {|0〉 , |1〉} is the orthonormal basis called computational basis.

The joint state-space of two systems is the tensor product of the two-state
spaces. If {|i〉A}i is a basis for the state-space of the system A and {|j〉B}j is
a basis for the state-space of system B, then the {|ij〉AB}i,j is a basis for the
state-space of joint system A⊗B.

For instance, the state of two qubits is in general

α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 (2.1)

with
∑
|αij |2 = 1.

Note that there are states that are not separable, i.e., entangled states,
which means that a state cannot be represented as a tensor product of vectors
from separated state spaces. For example, the state 1√

2
(|00〉+ |11〉) cannot be

written as |ϕ〉 ⊗ |ψ〉 of two qubits |ϕ〉 and |ψ〉.

2.1.2 . Quantum operators
Next, we introduce quantum operations over the quantum states. There

are three kinds of operation–initialization, unitary maps, and measurements.

Initialization
First, an initialization is a unit vector in qubit and we can define a linear map
from the one-dimensional vector space, or scalar, to the subspace created by
the unit vector in qubit that preserves the norm. In particular, we give an
instance of initialization for each element in the computational basis of qubit
(|0〉 and |1〉), namely,

init|0〉 = |0〉 and init|1〉 = |1〉 .
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Unitary maps
A unitary map is a linear map over a state space of a particular dimension
that preserves normalized vectors. A unitary map can be represented in the
following form.

U ::=
∑
i,j∈B

ui,j |j〉 〈i|

where B = {|0〉 , . . . , |n〉} represent the basis of the state space. It describes
the meaning of the unitary map in terms of change of basis, where each element
in the basis is mapped to a linear combination of the basis. Then, the new
basis needs to be orthonormal.

Equivalently, one can represent a unitary map as a matrix.

U =

u0,0 · · · u0,n
... . . . ...

un,0 · · · un,n


Then, the unitary condition can be represented in the linear algebraic equation
UU∗ = I = U∗U , where U∗ is the complex conjugate of U .

Although any unitary maps are allowed in quantum computation, we often
restrict ourselves to a universal set of unitary maps since any unitary map can
be approximated, up to an arbitrarily small error, as a composition of unitary
maps from the universal set. An example of a universal set is:

N =

(
0 1
1 0

)
, H =

1√
2

(
1 1
1 −1

)
, V =

(
1 0
0 i

)
, W =

(
1 0

0
√
i

)
,

Nc =

(
I 0
0 N

)
, Hc =

1√
2

(
I 0
0 H

)
, Vc =

(
I 0
0 V

)
, Wc =

(
I 0
0 W

)
,

X =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


where the first four maps are unitary maps over one qubit, and the rest are
unitary maps over two qubits.

Measurement
For this thesis, we allow measurement over the computational basis on each
qubit. Measurement is basically an observation of a quantum state that col-
lapses the quantum state at the same time. Firstly, the observation of quan-
tum state provides information on quantum state represented by classical data
like Boolean value. Even if we measure the same quantum state, we may ob-
tain different values, which forms a probability distribution characterized by
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the quantum state. Secondly, the collapse of the quantum state can be consid-
ered a projection of the vector onto a subspace that depends on the observation
value.

Formally, measurement on a qubit, meas = ([|0〉], [|1〉]), is defined as a
family of projection spaces, [|0〉] and [|1〉], indexed by observation value, 0

and 1. When we apply measurement on a quantum state represented as q =

α |0〉+ β |1〉, then we will observe 0 with the state in the projection space |0〉
with probability |α|2 and observe 1 with the state in the projection space |1〉
with probability |β|2. Note that the state is normalized after the measurement.

Next, over the quantum state of multiple qubits indexed by a set I,
measurement measi over the qubit i ∈ I is defined as a family of projec-
tion spaces, joint state-spaces of qubits except for i where the state-space of
qubit i is either the subspace |0〉 or |1〉, indexed by observation value, 0 and
1. When we apply measurement measi on a quantum state represented as
q =

∑
ā∈{0,1}I αa |a〉, then we will observe 0 with the state in the projection

space [|a ∈ A0〉], where A0 is the subset of {0, 1}I whose i-th element is 0,
with probability

∑
a∈A0

|αa|2; and observe 1 with the state in the projection
space [|a ∈ A1〉], where A1 is the subset of {0, 1}I whose i-th element is 1,
with probability

∑
a∈A1

|αa|2. For example, when we measure the quantum
state in Eq. (2.1) on the first qubit, we will observe the value 0 with the state

1
|α00|2+|α01|2 (α00 |00〉 + α01 |01〉) with probability |α00|2 + |α01|2; and observe
the value 1 with the state 1

|α10|2+|α11|2 (α10 |10〉 + α11 |11〉) with probability
|α10|2 + |α11|2. Measurements on different qubits are commutative; which
means that we will observe the same value with the same state with the same
probability for both cases–where we measure the qubit i and then measure the
qubit j and where we measure the qubit i after that we measure the qubit j.

Although we can consider measurement as a projection operator whose
projection space is chosen probabilistically, one can also consider measurement
from a global point of view, i.e., measurement creates a probability distribution
of quantum states. It leads us to generalize the quantum state, in which case
our definition of the quantum state is called a pure state, and the probability
distribution of quantum states is called a mixed state.

2.1.3 . Properties of quantum computation
Superposition and entanglement of states are properties of the quantum

computation that distinguish it from the classical computation. Superposition
describes that the quantum state is the linear combination of the computa-
tional basis corresponding to the classical state. Moreover, by applying unitary
maps, one can transform one quantum state into another while classical com-
putation (e.g., lambda-calculus) corresponds to permutation unitary maps. It
seems that quantum computation gives a considerable advantage over classical
computation.

33



However, there are some restrictions in quantum computation based on
the transformation of the quantum state. First of all, quantum operators still
need to be local; otherwise, it would mean that information can be transferred
faster than light. In other words, although the quantum operator includes all
unitary maps over the quantum state, each unitary map should be constructed
by applying unitary maps over the quantum state of a finite number of qubits.
It does limit the advantage of quantum computation, particularly when we
only allow unitary maps over one qubit, in which case, all states are separable
(we cannot create an entangled state), and separable state can be efficiently
encoded in classical computation. In effect, entanglement in a quantum state
is considered a real quantum resource that classical computation cannot have,
and many quantum algorithms use entanglement to get a quantum advantage.

Secondly, although quantum states are much larger than the classical
states and unitary maps serve as a powerful tool for computation, there
is a problem with obtaining (classical) information from quantum states.
There are several tasks that quantum mechanics prohibits. For example, no-
cloning [80] theorem states that a quantum state cannot be duplicated. This
theorem is a concrete example that distinguishes quantum computation from
the classical computation. Many programming languages for quantum com-
putation, including the one discussed in this thesis, need a particular typing
system that excludes programs that violate this property.

2.1.4 . Models of quantum computation
Quantum circuit
A Quantum circuit is a model of quantum computation which consists of wires
representing qubits and boxes for unitary maps. Therefore, the quantum cir-
cuit can be thought of as a big unitary map, and a quantum circuit is obtained
by composing quantum circuits horizontally and vertically. Sometimes, it is
assumed that each qubit is measured after the application of the circuit.

Quantum channel
Although pure quantum computation can be represented as a quantum circuit,
the model of quantum computation on which we rely in this thesis is going
to be the quantum co-processor model—aka QRAM model—[35]. In this
model, the classical host accesses the quantum state through the quantum
co-processor by sending quantum operators and receiving the quantum co-
processor’s response for each measurement. We call a sequence of quantum
operations mixing unitary maps and measurements a quantum channel.

2.2 . Example: Quantum teleportation

Quantum teleportation is an exemplary quantum protocol [45] where quan-
tum information is transferred through classical data and entangled qubits. In
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the protocol, which is illustrated in Figure 2.1, we assume that each of two
remote parts, called A and B, share one qubit of a Bell pair: let us call the
qubit that A takes y and the qubit that B takes q. The part A, given a qubit,
x of any state, measures the qubits x and y then transfers the classical mea-
surement results to B. The part B then applies different unitary operations
on q depending on classical data from the part A. The resulting state of q and
the unknown state of x can be shown to be the same.

Figure 2.1: Quantum teleporta-
tion

Quantum teleportation has been a
recurring example to several works on
quantum protocols [1] and quantum pro-
gramming languages [46] because it re-
quires both quantum and classical data.
For example, in our example, the part A
receives two qubits and returns two clas-
sical bits, while the part B returns one
qubit when given two classical bits and
one qubit. Quantum teleportation will be a driving example in this paper,
and we will show how the protocol can be expressed in Proto-Quipper-L and
interpreted into a graphical language.

2.3 . Lambda-calculus

Lambda-calculus [7] is a versatile model of higher-order programming lan-
guages, where functions are first-order terms that can be returned or passed
along as arguments. The syntax of lambda calculus is defined in Eq. 2.2.

(syntax of λ-calculus) t, t1, t2 ::= x | λx.t | t1(t2) (2.2)

where x refers to variable, λx.t is the abstraction of the λ-term t, and t1(t2)

refers to the application of the term t1 to t2. Note that the formalism of
lambda-calculus can easily be extended with pairing, injections, and match-
ing, side-effects: probabilistic or non-deterministic behavior, inputs/outputs,
global state, etc. An example of λ-term is Church numerals and arithmetic
operations (e.g., +) over the Church numerals, which allows us to represent
arithmetic expressions in lambda-calculus. First, we define Church numerals
to represent natural number as in Eq. 2.3.

n ::= λf.λx.fn(x) (2.3)
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According to the definition, we can derive some instance examples of the terms
of natural numbers as follows.

0 = λf.λx.x

1 = λf.λx.f(x)

2 = λf.λx.f(f(x))

...

Then, we can define successor function S and addition + as follows.

S = λn.λf.λx.f((n(f))(x))

+ = λn1.λn2.λf.λx.(n1(f))((n2(f))(x))
(2.4)

In order to see that these operations are indeed the operations that we
expect, we need to be able to execute the lambda terms. In specific, what we
want to show is that

S(n) = S(λf.λx.fn(x))

?
= λf.λx.fn+1(x)

= n+ 1

+(n1, n2) = (+(λf.λx.fn1(x)))(λf.λx.fn2(x))

?
= λf.λx.fn1+n2(x)

= n1 + n2

(2.5)

The equation with question marks needs to be shown by the equivalence rela-
tion over the terms.

Lambda-calculus comes with an equivalence theory which consists of α-
equivalence and β-equivalence. The α-equivalence states that terms with dif-
ferent bounded variable are equivalent, i.e. (λx.t = λy.t[y/x]) where t[y/x]
means the term obtained by renaming the variable x by y in term t. The
β-reduction states that the application of an abstracted term to a term is
equivalent to the substitution of the variable by the second term in the first
abstracted term, i.e. ((λx.t1)(t2) = t1[t2/x]). These rules are contextual,
meaning that we can substitute a term with an equivalent term in a larger
term.

With the help of the equation theory, we can derive the equation with
question marks in Eq. 2.5 as follows:

S(λf.λx.fn(x)) = (λn.λf.λx.f((n(f))(x)))(λf.λx.fn(x))

= λf.λx.f(((λf.λx.fn(x))(f))(x))

= λf.λx.f((λx.fn(x))(x))

= λf.λx.f(fn(x))

= λf.λx.fn+1(x)
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and

(+(λf.λx.fn1(x)))(λf.λx.fn2(x))

=((λn1.λn2.λf.λx.(n1(f))((n2(f))(x)))(λf.λx.f
n1(x)))(λf.λx.fn2(x))

=(λn2.λf.λx.((λf.λx.f
n1(x))(f))((n2(f))(x)))(λf.λx.f

n2(x))

=λf.λx.((λf.λx.fn1(x))(f))(((λf.λx.fn2(x))(f))(x))

=λf.λx.((λf.λx.fn1(x))(f))((λx.fn2(x))(x))

=λf.λx.((λf.λx.fn1(x))(f))(fn2(x))

=λf.λx.(λx.fn1(x))(fn2(x))

=λf.λx.(fn1(fn2(x)))

=λf.λx.(fn1+n2(x))

Note that there are choices that we have made in this example, i.e., there are
multiple subterms to apply the β-reduction rule. These choices comes from
the facts that the term with application t1t2 creates two subterms t1 and t2
each of which may reduces to some other terms t′1 and t′2 and that if t1 is
an abstraction, then we can apply β-reduction rule at anytime. It leads us
to two standard reduction strategies: call-by-name, which first applies the β-
reduction rule before reducing the subterm t2; and call-by-value [48], which
reduces the subterm t2 first.

Although the confluence property of lambda-calculus guarantees that each
term reduces to the same term in the end regardless of choice if the evaluation
terminates, different reduction strategies can produce different evaluation re-
sults in some extensions of lambda-calculus. For example, with side-effects,
the behavior of a term might depend on the choice of reduction strategy.

Now, let us give an example of lambda calculus where different reduction
strategies make different evaluations. In specific, consider the term

(λx.〈x, x〉)(a+ b)

where 〈M,N〉 stands for pairing and + stands for non-deterministic choice. In
a call-by-value strategy this term reduces to 〈a, a〉+〈b, b〉 while in call-by-name
it yields 〈a, a〉+ 〈a, b〉+ 〈b, a〉+ 〈b, b〉.

If some programming languages such as Haskell [33] follow a call-by-name
strategy (technically, call-by-need), other languages [21, 3] choose call-by-value
for its arguably more natural behavior for the programmer.

2.4 . Curry-Howard

Lambda-terms can be typed [6], and this forms the basis for the Curry-
Howard isomorphism [17, 18, 32], driving a correspondence between program-
ming languages and logical systems. In this context, a programming language
is defined in two layers: a language of programs (or terms) and a type system,
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which consists in the definition of types and type derivation rules. Similarly, a
logic, in sequent calculus style, is defined by the definition of a sequent, which
consists of sentences, and derivation rules. The isomorphism is then based
on a map between types and sequents and a map between type derivations
and proofs. Furthermore, once we interpret a type derivation as a proof of a
sequent, then the proof normalization, which is based on the equivalence of
proofs gives a notion of computation of the derivation.

As an example, let us consider the simply typed λ-calculus with conjunc-
tion ∧ and disjunction ∨, defined below in Definition 2.4.1.

Definition 2.4.1. Terms and types of simply typed lambda calculus with con-
junction and disjunction are defined as follows.

(term) t, t1, t2 ::= v | cT | λx : A.t | t1t2 | 〈t1, t2〉 | p1(t) | p2(t) |
i1(t) | i2(t) | match(x = t).(t1, t2)

(type) A,A1, A2 ::= ⊥ | T | A1 → A2 | A1 ∧A2 | A1 ∨A2

where T a base type.

In the term language, we let v be variable and cT be constant of type T .
Moreover, one can construct an abstract term λx : A.t, which represents a
term t depending on a variable x of type A, and an application t1t2, which
means application of t1 to t2. Furthermore, a pair 〈t1, t2〉 and the projections
p1(t) and p2(t) can be constructed from any terms t1, t2, and t. Similarly, the
injections i1(t) and i2(t) and the match statement match(x = t)(t1, t2) (whose
meaning is the substitution either t1[t′/x] or t2[t′/x] depending on t which is
either i1(t′) or i2(t′)) from any terms t1, t2, and t.

For the type language, type can be a constant ⊥ or T , and one can con-
struct function type A1 → A2 and conjuction and disjunction types A1 ∧ A2

and A1 ∨A2.
Next, the type judgment has the form Γ ` t : A where Γ consists of a set of

pairs of a variable and a type, and t and A are a term and a type. Then, the
type derivation rules for simply typed λ-calculus are given in Definition 2.4.2.

Definition 2.4.2. The type derivation rules for simply typed λ-calculus are as
follows.

Γ, x : A ` x : A

Γ ` t : ⊥
Γ ` t : A Γ ` cT : T

Γ, x : A ` t : B
Γ ` λx : A.t : B

Γ ` t1 : A→ B Γ ` t2 : A
Γ ` t1t2 : B

Γ ` t1 : A Γ ` t2 : B
Γ ` 〈t1, t2〉 : A ∧B

Γ ` t : A ∧B
Γ ` p1(t) : A

Γ ` t : A ∧B
Γ ` p2(t) : B
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Γ ` t : A
Γ ` i1(t) : A ∨B

Γ ` t : B
Γ ` i2(t) : A ∨B

Γ ` t : A1 ∨A2 Γ, (x : A1) ` t1 : B Γ, (x : A2) ` t2 : B
Γ `match(x = t).(t1, t2) : B

On the other hand, intuitionistic propositional logic is defined as in Defi-
nition 2.4.3.

Definition 2.4.3. Inference rules of intuitionistic propositional logic in sequent
calculus form are presented below.

Γ, A ` A
Γ ` ⊥
Γ ` A Γ ` T

Γ, A ` B
Γ ` A→ B

Γ ` A→ B Γ ` A
Γ ` B

Γ ` A Γ ` B
Γ ` A ∧B

Γ ` A ∧B
Γ ` A

Γ ` A ∧B
Γ ` B

Γ ` A
Γ ` A ∨B

Γ ` B
Γ ` A ∨B

Γ ` A1 ∨A2 Γ, A1 ` B Γ, A2 ` B
Γ ` B

By considering a type as a proposition, we can see that the type derivation
rules give the derivation of the sequent in the intuitionistic propositional logic
and see that the term represents the proof, i.e., the typing derivation.

2.5 . Categorical semantics of Lambda-calculi

Category theory is a formalism well-suited to describe structures, and it
has successfully served as a backbone for the semantics of programming lan-
guages [71, 2].

Among multiple definitions of a category, one can define a category as
a directed (multi) graph whose nodes are called objects and edges are called
morphisms and which is subject to several conditions. First of all, all objects
and morphisms have names–we use capital letters A,B, . . . to denote the ob-
jects and small letters f, g, . . . to denote the morphisms. Then, a category has
a morphism named idA : A → A (or identity morphism) from A to itself, for
each object A. Moreover, for any two morphisms f : A → B from the object
A to B and g : B → C from B to C, there exists a morphism g ◦ f : A→ C.
Then, category satisfies the following axioms:

f ◦ idA = f = idB ◦ f (2.6)

h ◦ (g ◦ f) = (h ◦ g) ◦ f (2.7)
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for any objects A, B, C, and D, and morphisms f : A → B, g : B → C,
and h : C → D. The first axiom states that the composition of a morphism
with the morphism id, i.e., identity morphism, is the morphism itself and the
second axiom states that the composition of morphisms is associative.

When interpreting a language in a category, a type A is mapped to an
object JAK and a typing judgement x1 : A1, . . . , xn : An `M : B to a morphismJA1K× . . .×JAnK→ JBK, assuming that the category has product × structure.
The interpretation of each typing rule informs us how to construct a morphism
from the morphisms constructed from the typing derivation of subterms in
the category from the semantics. Therefore, when we consider a category as
a graph, the interpretation process transforms a typing derivation into a path
in the graph of the category.

A question, then, arises when we try to interpret the language–how to
encode different typing rules in terms of categories or categorical structure. In
order to do that, we assume that the category exhibits particular structures–
to name a few, the cartesian closed category or the monoidal closed struc-
ture. These structures provide us with objects and morphisms in the cate-
gory, named in particular ways. These structures are defined using categorical
constructions like cartesian category, functors, natural transformations, and
adjointness, which will be summarized in this section.

These constructions are defined for any category, and their conditions are
set as axioms for the model that interprets the language. However, sometimes,
categorical semantics are defined over some other mathematical structure like
Sets, in which case, the category is called concrete, and the axioms of the
categorical construction should be derived for the underlying mathematical
structure. In this case, the categorical semantics serves as an intermediate
layer in the interpretation process from the language and the type system to
the mathematical structure.

2.5.1 . Categorical notions and constructions
Now, let us introduce some categorical notions and constructions that

appear in the interpretation of lambda-calculus.

Commuting diagram
To say that two morphisms are equal, we often use the notion of a commuting
diagram. When we say that a diagram commutes, all morphisms of the paths
from an object to another object in the diagram are equal.

Functor
A functor F : C → D from a category C to a category D is a map which
sends each object A in C to the object F (A) in D and which sends each
morphism f : A → B in C to morphism F (f) : F (A) → F (B) in D which
preserves the identity morphism (F (idA) = idF (A) for any morphism A) and
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the composition of morphisms (F (g ◦ f) = F (g) ◦ F (f) for any objects A, B,
and C and morphisms f : A→ B and g : B → C).

Natural transformations
A natural transformation α : F → G from a functor F : C → D to a functor
G : C → D maps each object A in C to a morphism α(A) : F (A)→ G(A) in D
which satisfies the naturality condition, which is, for any morphism f : A→ B

in C, the following diagram commutes:

F (A) G(A)

F (B) G(B)

F (f)

α(A)

G(f)

α(B)

In other words, it means that α(B) ◦ F (f) = G(f) ◦ α(A). The composi-
tion of natural transformations is defined by the composition of morphisms of
category D at each object in C.

Functor category
Given two categories C and D, all functors from C to D and all natural transfor-
mations between the functors form a cateogry called functor category, DC . In
specific, each functor C → D forms an object and each natural transformation
from functor F to G forms a morphism. The identity is given by the identity
natural transformation, which maps each object in C to identity morphism in
category D. The composition of natural transformations is the composition of
two morphisms.

Product of categories
Given two categories C and D, the product of these categories is the category
C × D with an object (A,B) for each object A in C and object B in D and
a morphism (f, g) : (A,B) → (A′, B′) for each morphism f : A → A′ in
C and morphism g : B → B′ in D. This category can be shown to satisfy
the axioms of the category with the identity morphism defined by the pair of
identity morphisms of C and D and the composition of morphisms defined by
the compositions of morphisms in the same categories.

Adjointness of functors
Definition 2.5.1 (Definition of adjointness (Lambek J. and Scott P.J.)). An ad-
jointness between two categories C andD is defined as quadruple (F,G, η, ϵ)

where F : C → D and G : D → C are functors and η : 1C → (G ◦ F ) and
ϵ : (F ◦G)→ 1D are natural transformations betwen the functors such that

(Gϵ) ◦ (ηG) = 1G and (ϵF ) ◦ (Fη) = 1F (2.8)
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which means that the following diagrams commute:

G(B) (G ◦ F ◦G(B))

G(B)
idG(B)

η(G(B))

G(ϵ(B))

F (A)

(F ◦G ◦ F )(A) F (A)

idF (A)
F (η(A))

ϵ(F (A))

We say that G is the right adjoint to F and that F is the left adjoint of G, and
the natural transformations η and ϵ are called the two adjunctions.

A more intuitive explanation of adjointness can be found in Theorem 2.5.1
which says that when categories C and D are locally small categories, the ad-
jointness (F,G, η, ϵ) can be considered as an isomorphism between the mor-
phisms from A to G(B) in C and the morphisms from F (A) to B in D for each
objects A in C and B in D.

Theorem 2.5.1 (Proposition 3.4. from Introduction to Higher Order Categor-
ical Logic (Lambek J. and Scott P.J.)). An adjointness (F,G, η, ϵ) between locally
small categories (i.e. categories whosemorphisms between any two objects form a
set) C andD gives rise to and is determined by a natural isomorphism between the
functors HomD(F (−),−),HomC(−, G(−)) : Cop × D → Set, from the product
of the oposite category of C obtained by reversing the direction of each morphism
and the category D to the category of sets Set.

Adjointness is widely used to formalize various notions in category theory,
for example, terminal object, which is the object T to which there is a unique
morphism from each object A to T . Not every category has the terminal
object, and the existence of the terminal object in category C corresponds to
the existence of the right adjoint of the functor F : C → I from the category C
to the category I which has one object T with unique morphism idT . Intuitive
reasoning for it is that for a locally small category C, the right adjoint G of the
functor F defines the terminal object G(T ) in C where there is an isomorphism
between the morphisms from any object A in C to G(T ) and the morphisms
from F (A) = T to T , which is to say that there is a unique morphism from A

to G(T ) for each object A in C.

Limit
Definition 2.5.2 (Definition of limit (Lambek J. and Scott P.J.)). For a given (in-
dex) category I and a functor F : I → C (called an I-diagram), a limit of
F is given by a terminal object in the category of all pairs (A, t) with object
A in C and a natural transformation t : K(A) → F between the functor
K(A) : I → C (which is a functor with constant valueA) and the given functor
F .
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An example of the limit is the product in a category in which case the
index category I is discrete, meaning that there are no morphisms in I except
the identity morphisms. Product of a family of objects {Ai} in C is an object
A called product with a family of morphisms {pi : A→ Ai} called projections.
Moreover, product satisfies a universal property, which is that for any object B
and family of morphisms {qi : B → Ai}, there is a unique morphism h : B → A

such that qi = pi ◦ h for each i. The object A is represented as
∏
Ai and the

unique morphism h is denoted as 〈qi〉 : B →
∏
Ai.

In terms of limit, the product of a family of objects {Ai} is the limit
of index category I and functor F : I → C given by the discrete category
with objects {i} and the functor F which maps object i in I to the object
Ai in C. The limit consists of an object A which is product and a natural
transformation t : K(A) → F which defines the projection pi : A → Ai for
each element i in I. Moreover, the universal property means that the limit
(A, t) is the terminal object in the category of all pairs (A, t).

In addition, when the family of objects is empty, the product becomes
the terminal object, to which there is a unique morphism from each object.
We call this object unit and denote as 1; and denote the unique morphism as
OA : A→ 1.

Monad
Definition 2.5.3 (Definition of triple (Lambek J. and Scott P.J.)). A triple, or a
monad, (T, η, µ) on a category C consists of a functor T : C → C and natural
transformations η : 1C → T and µ : T 2 → T satisfying the equations

µ ◦ Tη = 1T = µ ◦ ηT, µ ◦ µT = µ ◦ Tµ.

In other words, the following diagrams commute:

TA T 2A

T 2A TA

T (η(A))

µ(T (A))
idTA

µ(A)

µ(A)

T 3A T 2A

T 2A TA

T (µ(A))

µ(T (A)) µ(A)

µ(A)

for any objectA in C. These equations are called the unity laws and associative
law respectively.

Monads are used in the formal definition of computationl models and each
monad produces the Kleisli category which is defined as in Definition 2.5.4.

Definition 2.5.4 (Definition of Kleisli category (Definition 2.3 in [42])). Given a
monad (T, η, µ) over C, the Kleisli category CT , is the category s.t. :

• the objects of CT are those of C

• the set CT (A,B) of morphisms from A to B in CT is C(A, TB)
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• the identity on A in CT is A ηA−→ TA

• the composition of f ∈ CT (A,B) and g ∈ CT (B,C) in CT is

A
f−→ TB

T (g)−−−→ T 2C
µ(C)−−−→ TC

2.5.2 . Higher-order
Programming languages like (simply typed) lambda-calculus allow us to

define high-order functions, which refers to the functions over functions that
again can be high-order functions, and to apply these functions to other terms.
For example, in lambda-calculus, we can define a function by the abstraction
of a term that takes variables, i.e., polynomial. The functions defined by ab-
straction can be applied to a term whose meaning is to substitute all variables
in the polynomial by the given term.

Returning to categorical semantics, all terms are mapped to a morphism
between the objects of their types in a categorical model. The abstraction
necessitates a way to designate a morphism of function constructed from the
morphism which denotes the polynomial, and the application requires being
able to name a morphism that represents the substitution of the variables (or
the replacement of the part for variable in the morphism) in the polynomial
by a morphism mapped to the term.

However, before we ask these questions, we need to know if we can say
that a polynomial is a morphism. A polynomial is a term dependent on an
indefinite term called x. In categorical semantics, a polynomial is a family of
morphisms indexed by morphism x. The problem is that we do not know how
to represent a family of morphisms as a morphism in the same category. The
functional completeness [36] in categorical model states that every polynomial
ϕ(x) : A→ C in variable x : A→ B is uniquely represented as A x−→ B

f−→ C,
where f is a morphism that does not depend on x.

Therefore, suppose that we let the abstraction of polynomial ϕ(x) : A→ C

(which is a morphism A
x−→ B

f−→ C) to be the morphism f : B → C and the
application f(y) to be simply the composition A

y−→ B
f−→ C. Then, we can

see that substitution of variable x in the polynomial ϕ(x) is the substitution
of the morphism x by y. To sum up, the functional completeness gives us a
representation of polynomial ϕ(x) : A → C, which is a family of morphisms
indexed by the morphism x : A → B as the abstraction of the polynomial
which is a morphism from B to C.

Still, we need to transform this morphism of the abstraction from B to C
into a term which is a morphism from some object 1 (unit of product) to CB
an object (internal hom) connected to the type B → C. Or, in more general
case where there is more than one varaibles in the polynomial, the morphism
of the polynomial is represented as Γ× A idΓ×x−−−−→ Γ× B f−→ C and we need to
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transform the morphism f : Γ × B → C into a morphism from Γ to CB. It
can be done by the adjointness structure in the cartesian closed category, and
the object B → C is called internal hom or exponential object of B and C.

A standard structure for modeling higher-order programming languages is
the structure of a cartesian-closed category (CCC) [36]. A CCC is a category
C with a binary product (− × −) and its unit 1, and internal hom (−)(−)

where there is an adjointness between the functors (− × B), (−)B : C →
C. The adjointness implies that there is an isomorphism between the sets
HomC(Γ, A × B) and HomC(Γ, A → B) morphism when the category C is a
locally small category.

Type derivation rules in simply typed lambda-calculus can be obtained
from the structure of CCC.

• From the definition of category:

idA : A→ A

g ◦ f : A→ C, for any f : A→ B and g : B → C

• From the product in category:

Oa : A→ 1

p1 : A×B → A

p2 : A×B → B

〈f, g〉 : C → A×B, for any morphisms f : C → A and g : C → B

p1 ◦ h : C → A, for any morphism h : C → A×B
p2 ◦ h : C → A, for any morphism h : C → A×B

The first morphism corresponds to the introduction rule of truth value
T ; the second and the third morphisms represent the axiom rule; and
the rest correspond to the introduction and the elimination rules of ∧,
in the intuitionistic propositional logic.

• From the adjointness ((−×B), (−)B, η, ϵ):

ϵ(A) : (AB)×B → A

ev(h1, h2) : C
〈h1,h2〉−−−−→ (AB)×B ϵ(A)−−→ A, for any h1 : C → AB and h2 : C → B

h∗ : C
η(C)−−−→ (C ×B)B

((−)B)(h)−−−−−−→ AB, for any h : C ×B → A

The first morphism corresponds to the morphism called evaluation,
which appears in the second morphism for the elimination rule of →;
while the third morphism corresponds to the introduction rule of →.
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On top of the structure of CCC, we can add coproduct structure to obtain
the inference rules for ∨ and ⊥ in Definition 2.4.3.

Given that the morphism represents the proof, the commuting diagrams
between morphisms create an equivalence relation among proofs. Any CCC
gives the following equalities between morphisms.

• From the definition of category:

idB ◦ f = f = f ◦ idA
h ◦ (g ◦ f) = (h ◦ g) ◦ f

for any morphisms f : A→ B, g : B → C, and h : C → D.

• From the product in category:

f = OA, for all f : A→ 1

p1〈f, g〉 = f

p2〈f, g〉 = g

〈p1h, p2h〉 = h

for any morphisms f : C → A, g : C → B, and h : C → A×B.

• From the cartesian closed category:

ϵ(A)〈h∗p1, p2〉 = h

(ϵ(A)〈kp1, p2〉)∗ = k

for any h : C×B → A and k : C → AB. Note that the left hand side in
the first equation refers to the evaluation ev(h∗p1, p2) : C×B → A where
the first argument h∗p1 represents the abstraction of the morphism h.
Therefore, the first equation corresponds to the β-reduction in lambda-
calculus applied to the abstraction h∗ and the variable of type B. In
other word, if is the cut-elimination in sequent calculus (meaning that
the cut-rule, i.e., C,B ` A and B ` B imply C,B ` A, is reduced to the
proof of the sequent C,B ` A, where the right branch (proof) is just an
axiom rule, as shown below).

C,B ` h : A

C ` h∗ : AB

C,B ` h∗p1 : AB
B ` idB : B

C,B ` p2 : B
C,B ` ev(h∗p1, p2) : B

= C,B ` h : A

Note that we put the name of the morphism corresponding to the proof
between the turnstile symbol ` and the colon :. Also, note that the
logic is sensitive to the change of context, which is controlled by the
projection operators.
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Similarly, we can show the second equation as follows. The second
equation corresponds to the η-expansion which says that the term h

with variable of type B is equal to the application of the abstraction h∗
applied to the variable of type B.

C ` k : AB

C,B ` kp1 : AB
B ` idB : B

C,B ` p2 : B
C,B ` ev(kp1, p2) : A
C ` (ev(kp1, p2))∗ : AB

= C ` k : AB

Lastly, any CCC satisfies the functional completeness property as shown
in Lemma 2.5.2 from [36].

Lemma2.5.2 (Functional completeness (Proposition 6.1. from Introduction to
HigherOrder Categorical Logic (Lambek J. and Scott P.J.))). For every polynomial
ϕ(x) : B → C in an indeterminate x : 1→ A over a cartesian or cartesian closed
category C, there is a unique arrow f : A×B → C in C such that f〈xOB, idB〉 =
ϕ(x).

2.5.3 . Side-effects
The models described above are not enough when considering programs

with side effects. Now, computation does mean not only the reduction of
a program but also the transformation of the environment: let us call the
mixture of the environment and the program as configuration.

A concrete example of side-effect is the quantum state. Based on the
QRAM model of quantum computation [35], computation in the classical host
does not only reduce the program but also modifies the quantum state through
the quantum co-processor. In this case, the configuration would be represented
by some structure that contains the program and the quantum state. However,
we need to know how to formally define such a structure and, in particular,
what structures the structure requires to have to build a consistent model of
computation.

This question of categorical models of computation is studied by Eugenio
Moggi [42, 43, 44]. In categorical semantics, he defines the model of computa-
tion with side-effects by the Kleisli category induced by a monad (T, η, µ) with
tensorial strength on a category C of the categorical model of the computation,
for example, CCC for the simply-typed lambda-calculus. Roughly speaking,
the functor T : C → C refers to the configuration space; in specific, the object
T (A) designates the configuration space on the object A and the morphism
T (f) defines a computation over the configuration space on the corresponding
objects; the natural transformation η : 1C → T , called unit, allows us to de-
fine a particular configuration on each object; and the natural transformation
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µ : T 2 → T , called multiplication, states that the configuration of a configu-
ration is a configuration and it allows us to compose programs. Moreover, the
tensorial strength extends the notion of configuration to the general context
represented by the product. Then, the Kleisli category induced by the monad
over the category C gives the model of computation where the construction of
morphism is defined inductively for the program.

Formally, Definition 2.5.5, Definition 2.5.6, and Definition 2.5.7 defines
the categorical model for simply typed lambda-calculus with side-effects. As-
suming that the product in CCC has required properties, like symmetry and
associativity, the simply-typed lambda-calculus with side-effects can be inter-
preted in the Kleisli category generated by the λc model over CCC.

Definition 2.5.5 (Definition of computational model (Definition 2.1 in [42])).
A computational model is a monad (T, η, µ) over category C which satisfies
equalizing requirement : ηA : A → TA is an equalizer of ηTA and T (ηA). In

other word, for any f : B → TA such that B f−→ TA
ηTA−−→ T 2A = B

f−→
TA

T (ηA)−−−−→ T 2A, there exists a unique m : B → A such that f = B
m−→ A

ηA−→
TA.

Definition 2.5.6 (Definition of computational cartesian model (Definition 3.2
in [42])). Let C be a category with finite products equipped with the following
natural isomorphisms:

(1×A) r−→ A, (A×B)× C α−→ A× (B × C), (A×B)
σ−→ (B ×A)

Then, a computational cartesianmodel over C is a computationalmodel (T, η, µ)
over C together with a tensorial strength tA,B : (A × TB) → T (A × B) of T ,
which is a natural transformation satisfying the following diagrams:

1× TA T (1×A)

TA

t1,A

rTA TrA

(A×B)× TC T ((A×B)× C)

A× (B × TC) A× T (B × C) T (A× (B × C))

αA,B,TC

tA×B,C

T (αA,B,C)

idA×tB,C tA,B×C

A×B A×B

A× TB T (A×B)

A× T 2B T (A× TB) T 2(A×B)

idA⊗η(B)

idA×B

η(A×B)

tA,B

idB×µ(B)

tA′ ,TB T (tA,B)

µ(A×B)
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Definition 2.5.7 (Definition of λc-model over C (Definition 3.5 in [42])). Let
C be a category with finite products. A λc-model over C is a computational
cartesian model (T, η, µ, t) over C together with a family of universal arrows
evalTA,B : (BA

T × A) → TB in C s.t. for any f : (C × A) → TB, there exists
a unique h : C → BA

T (denoted by ΛTA,B,C(f)) making the following diagram
commute.

BA
T ×A TB

C ×A

evalTA,B

h×idA f

Finally, to make a formal model of computation with side-effects, it only
remains to define the side-effects in terms of the computational model in Def-
inition 2.5.5. Some examples of computational models are non-deterministic
computation and computations with side-effects:

• non-deterministic computation (over the category Set):
The functor T (−) is the powerset functor which sends an object A to its
powerset P(A) and a morphism f : A → B to the function from P(A)
to P(B) which maps each subset of A to the image f(A) of A. Next,
the unit η(A) maps each element a ∈ A to the singleton set {a} and the
multiplication µ(A) is the set-theoretic union.

• computation with side-effects:
The monad is given by: the functor T (−) = (− × S)S which maps an
object A to the object (A × S)S whose intuitive meaning is a function
dependent on the memory S that returns a value and updates the mem-
ory; the unit η(A) is the map a 7→ (λs : S.〈a, s〉); and the multiplication
µ(A) is the map f 7→ (λs : S.eval(fs)).

For the example of quantum computation introduced before, a quantum
state in the quantum co-processor can be represented as a complex function
over the computational basis. Therefore, in terms of monads, quantum com-
putation can be modeled by the computation with side-effects or by the dis-
tribution monad.

2.5.4 . Properties of categorical semantics
Categorical semantics allows us to consider a term in terms of a math-

ematical object instead of the possibly infinite sequence of reductions of the
term or all possible effects of the term in any context. However, what it means
to have a categorical semantics depends on the properties that the semantics
satisfies. This section introduces four properties of categorical semantics that
state the relationship between the models in the categorical semantics and the
equivalence classes of terms.
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Equivalence of terms
The notion of equivalence of terms can vary across the context, but there is
an exemplary notion of equivalence, namely, observational equivalence. First,
the equivalence is based on an operational semantics which consists of a set
of reduction rules over configurations. Two terms are equivalent whenever
they both diverge or reduce to the same value. However, when a term has
side-effects, a term may have different behaviors depending on the context. In
this case, the equivalence of two terms means that the terms are equivalent in
any context; in other words, we can substitute one term with the other in any
context.

More concretely, for example, we can define the context C[−] (at the level
of term) and C[−] (at the level of configurations) over some language L, as
shown in Eq. (2.9).

C[−] ::= [−] | λx.C[−] | M(C[−]) | (C[−])M | 〈C[−],M〉 | 〈M,C[−]〉
| let 〈x, y〉 = C[−] in M | let 〈x, y〉 =M in C[−]
| if C[−] then Ma else Mb

| if M then C[−] else Mb | if M then Ma else C[−]
C[−] ::= (Q,C[−])

(2.9)
for any term M , Ma, and Mb in the language L and any context Q ∈ C[−]
which means state. Then, observational equivalence of two terms are defined
in Definition 2.5.8.

Definition 2.5.8. Two termM1 andM2 are observationally equivalent if, for
any configuration context C[−], either there exists a configuration Ct such that

C[M1] −→∗ Ct and C[M2] −→∗ Ct

or both configurations diverge.

Properties of categorical semantics
Next, we introduce the following properties of categorical semantics.

• Soundness
On the basis, soundness means that the denotation of the term is pre-
served by the equivalence of terms. On the one hand, when the compu-
tation is pure function, we can define the equivalence of terms by the
reduction rules from operational semantics, i.e., two terms are equiva-
lent whenever they reduce to the same value or both diverge. On the
other hand, when the computation has side-effects, we can define an
equivalence on terms as the observational equivalence. Regardless of
the definition of an equivalence class, we call this property of categori-
cal semantics soundness defined as in Definition 2.5.9 which depends on
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the notion of equivalence. Note that J−K refers to the morphism in the
categorical model constructed according to the interpretation rules for
each typing derivation.

Definition 2.5.9. For any typing context Γ and state Q and type A, if
two termsM1 andM2 are equivalent under the context Γ ` (Q,−) : A,
then Jτ1 | Γ ` (Q,M1) : AK = Jτ2 | Γ ` (Q,M2) : AK
for any typing derivation τ1 of Γ ` (Q,M1) : A and τ2 of Γ ` (Q,M2) : A.

• Full completeness

After showing the soundness property of categorical semantics, we may
want to prove that this model precisely represents the meaning of terms.
To explain, it reduces to showing the one-to-one correspondence be-
tween all possible denotations in the model and all equivalence classes
of terms. Again the equivalence class can be defined by either the
reduction rules or observational equivalence. Showing this one-to-one
correspondence corresponds to showing full completeness of the cate-
gorical model depending on the choice of the notion of equivalence of
terms. This property can be defined as in Definition 2.5.10.

Definition 2.5.10. Two termsM1 andM2 are equivalent under the con-
text Γ ` (Q,−) : A if and only if

Jτ1 | Γ ` (Q,M1) : AK = Jτ2 | Γ ` (Q,M2) : AK
for any typing derivation τ1 of Γ ` (Q,M1) : A and τ2 of Γ ` (Q,M2) : A.

Moreover, for each modelM in the semantics, there exists a typing
derivation τ of !∆ ` M : A whose denotation Jτ | Γ ` (Q,M) : AK is
M.

• Full abstraction

There are some cases where we do not need the full completeness of
categorical semantics, although we want to show that it represents the
precise meaning of terms. It corresponds to the full abstraction (Defini-
tion 2.5.11) where there can be models in the semantics which are not
a denotation of any term. Still, full abstraction requires the semantics
to be capable of representing the precise meaning of the term, which
means that there is a one-to-one correspondence between a subset of all
models and all equivalence classes of terms, i.e., an injection from the
equivalence classes of terms to the models.
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Definition 2.5.11. Two termsM1 andM2 are equivalent under the con-
text Γ ` (Q,−) : A if and only if

Jτ1 | Γ ` (Q,M1) : AK = Jτ2 | Γ ` (Q,M2) : AK
for any typing derivation τ1 of Γ ` (Q,M1) : A and τ2 of Γ ` (Q,M2) : A.

• Adequacy

Another relaxation of the property of categorical semantics from full
abstraction is adequacy. Adequacy requires that the equality of the
denotations of two terms implies their equivalence. Note that it does
not imply that all terms in an equivalence class are mapped to the same
model in the semantics, and, hence, it does not imply the soundness
property. In effect, adequacy is the converse of the soundness theorem,
and together with soundness, adequacy implies full abstraction. Still,
adequacy is a beneficial property of categorical semantics, which allows
us to show the equality of terms by comparing the semantics without
reducing or executing the terms. Adequacy property can be represented
as in Definition 2.5.12.

Definition 2.5.12. For any two terms M1 and M2; any typing context
Γ; any state Q; any type A; and typing derivations τ1 and τ2 of the type
judgements Γ ` (Q,M1) : A and Γ ` (Q,M2) : A: if

Jτ1 | Γ `: (Q,M1) : AK = Jτ2 | Γ ` (Q,M2) : AK
then, the termsM1 andM2 are equivalent.

2.6 . Linear logic

Linear logic, introduced by Girard [25], is a logical system where one con-
siders a proof as a resource. Linear logic is a resource-sensitive system that
incorporates both intuitionistic and classical logic. There are multiple vari-
ants [73, 26, 22] of linear logic, which contains different sets of connectives,
units, implications, exponentials, and quantifiers.

For the sake of quantum programming languages, we only introduce an
intuitionistic propositional fragment of linear logic that contains–⊗ (multi-
plicative conjunctive connective), I (multiplicative conjunctive unit), ⊸ (lin-
ear implication), ! (exponential), and variables. Simply, the language can be
represented as a propositional logic (I, !,⊗,⊸) with one constant I, one unary
connective ! and two binary connectives ⊗ and ⊸. Formally, the language of
the logic is defined inductively as in Definition 2.6.1.
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Definition 2.6.1. Language of intuitionistic, multiplicative propositional linear
logic with exponential is defined as follows.

S, S1, S2 ::= I | v | S1 ⊗ S2 | S1 ⊸ S2 | !S

where v refers to variables.

The unit I of the tensor can be considered as linear true and tautologies,
which are properties logically derived from true, are the properties that follow
from I. The multiplicative conjunction S1 ⊗ S2 represents a juxtaposition of
propositions whose derivation is also a juxtaposition of the derivations of the
two propositions. The linear arrow S1 ⊸ S2 is another connective represent-
ing a juxtaposition of propositions whose derivation requires the derivation
of S2 given the derivation of S1. Lastly, exponential !S represents a proposi-
tion whose derivation is treated classically, meaning it can be duplicated and
erased.

The logic comes with inference rules which conform to the explanation
given above. We introduce the inference rules in the form of sequent calculus
as usual. A sequent has the form A1, . . . , An ` B which consists of a set of
propositions Ai, for 1 ≤ i ≤ n, and a proposition B. A sequent is read as one
can construct a proof for proposition B given proofs of propositions (Ai)1≤i≤n.
How we construct such a proof is described by a set of inference rules, as
in definition 2.6.2, which forms a derivation tree whose nodes correspond to
sequents and root is the conclusion.

Definition 2.6.2. The following set of inference rules corresponds to the intu-
itionistic, multiplicative propositional linear logic. Each inference rule is read
as: given the derivation of the sequents above the horizontal line, we can
construct a derivation of the sequent under the line.

A ` A
(HYP)

` I
(II)

∆1 ` I ∆2 ` A
∆1,∆2 ` A

(IE)

∆1 ` A1 ∆2 ` A2

∆1,∆2 ` A1 ⊗A2
(⊗I)

∆1 ` A1 ⊗A2 ∆2, A1, A2 ` A
∆1,∆2 ` A

(⊗E)

∆, A ` B
∆ ` A⊸ B

(⊸I)
∆1 ` A⊸ B ∆2 ` A

∆1,∆2 ` B
(⊸E)

∆ ` A ∀A ∈ ∆.(∃A′.(A =!A′))

∆ `!A
(!I)

∆1 `!A A,∆2 ` B
∆1,∆2 ` B

(!E)

∆,` A
∆, !B `!A

(!W )
∆, !B, !B ` A
∆, !B `!A

(!C)

Note that the symbols∆,∆1 and∆2 refer to the set of propositions.
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2.7 . Semantics of linear logic

Linear logic appears in the type systems of various quantum programming
languages, including quantum lambda-calculus and quantum circuit languages
like QWire and Quipper. In particular, quantum data is typed with a linear
quantum type, called a qubit, and with the tensor product of the quantum
types, while classical data has a non-linear type which can be utilized any
number of times in the term and type. Consequently, the denotational se-
mantics of a quantum programming language and its type system rely on the
semantics of linear logic. This section summarizes the categorical semantics
of the intuitionistic propositional and multiplicative part of linear logic with
exponential.

Our presentation relies on the presentation from the thesis of Benoît Val-
iron [76] (Chapter 2.7 for the monoidal category and Chapter 5.6 for the
semantics of linear logic). We, first, introduce symmetric monoidal cate-
gories as categorical semantics of the multiplicative fragment of intuitionistic
linear logic. Next, we define categorical structures–commutative comonoid,
comonad, and its coalgebra, monoidal functor and natural transformation,
and monoidal comonad–which are used to define linear and non-linear cate-
gories [14, 13, 10, 9, 11]. When discussing the categorical semantics of linear
logic, we maintain our strategy of interpreting types as objects and the infer-
ence rules as constructions of morphisms in the category.

In the previous section, we have introduced linear logic where the expo-
nential represents non-linear types. We can divide the logic into the purely
linear part–all types are linear–and the classical part–types can contain ex-
ponential constructors. To explain, in purely linear logic, all propositions in
the context are used precisely once in the type derivation since each leaf of
the typing derivation will be either (HYP) or (II) and each occurrence of a
proposition in the conclusion appears in exactly one leaf. In terms of categor-
ical semantics, the purely linear part of linear logic corresponds to symmetric
monoidal closed categories.

A (symmetric) monoidal category is a category with an operator of com-
position (⊗) of objects, which is (symmetric), associative, and has a unit (Def-
inition 2.7.1). Moreover, when there is an exponential object (−)(−) and an
adjunction between the functor (−⊗ B) and (−)B, it is called a (symmetric)
monoidal closed category, where the adjunction provides the interpretation of
abstraction and application of linear function type constructors ⊸.

Definition 2.7.1 (Monoidal category and symmetric monoidal category (Defi-
nition 2.7.1. and Definition 2.7.2. from [76])). Amonoidal category C is a tuple
(C,⊗, I, α, λ, ρ)where C is a category,⊗ : C ×C → C is a functor, I is an object
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of C and α, λ, ρ are three natural isomorphisms:

αA,B,C : A⊗ (B ⊗ C)→ (A⊗B)⊗ C
λA : I ⊗A→ A

ρA : A⊗ I → A

such that the diagrams

A⊗ (B ⊗ (C ⊗D)) (A⊗B)⊗ (C ⊗D)

A⊗ ((B ⊗ C)⊗D) (A⊗ (B ⊗ C))⊗D ((A⊗B)⊗ C)⊗D

id⊗α

α

α

α α⊗id

A⊗ (I ⊗ C) (A⊗ I)⊗ C

A⊗ C

id⊗λ

α

ρ⊗id

I ⊗ I

I

λρ

commute. We call the category strict monoidal when αA,B,C , λA and ρA are
identity morphisms. A monoidal category is said to be symmetric when it is
equipped with a natural isomorphism σA,B : A ⊗ B → B ⊗ A such that the
diagrams

A⊗B B ⊗A

σA,B

σB,A

B ⊗ I I ⊗B

B

σB,I

ρB λB

A⊗ (B ⊗ C) (A⊗B)⊗ C C ⊗ (A⊗B)

A⊗ (C ⊗B) (A⊗ C)⊗B (C ⊗A)⊗B

α

id⊗σ

σ

α

α σ⊗id

commute.

There are various contexts where symmetric monoidal categories can help
to capture the structure of the subject of interest. We take two possible
perspectives on the structure of symmetric monoidal category as examples.
On the one hand, each object of this category may be considered a space
of vectors and each morphism may be considered as linear maps as in the
category of finite dimensional vector spaces. On the other hand, morphisms
in a (symmetric) monoidal category can be viewed as diagrams where an object
is represented as a wire, and a morphism creates a box from wires to wires [61]–
note that the composition of objects is represented as the juxtaposition of wires
in the diagram. The diagrammatic representation gives us a clear intuition of
why a symmetric monoidal category models the purely linear part of linear
logic since each wire appears precisely once in the corresponding diagram.
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On top of the purely linear part, there is a non-linear part of the logic. First
of all, to interpret non-linear types in category theory, we need objects with
an extra structure for duplication and deletion (commutative comonoid 2.7.2
subject to different coherence conditions). Subcategories obtained by taking
these particular objects fomr the original category and all morphisms between
them form cartesian closed categories corresponding to intuitionistic logic.

Secondly, for the inference rules for introduction and elimination of ! (!I
and !E), we need to be able to lift a linear object to a non-linear object and
force a non-linear object to a linear object. In categorical semantics, it is done
by a comonad 2.7.3. This comonad and the comonoid structure form the basis
of Bierman’s linear categories [14, 13] which is formally defined below.

Definition 2.7.2 (Commutative comonoid (Definition 2.7.3. from [76])). In a
symmetric monoidal category C, a commutative comonoid object is an object
A of C equipped with two arrows ♢A : A→ I and4A : A→ A⊗ A such that
the following diagrams commute:

A

A⊗A A⊗A

A⊗ (A⊗A) (A⊗A)⊗A

4A

4A

A⊗4A 4A⊗A

α

A⊗ I A⊗A I ⊗A

A A A

ρA

A⊗♢A ♢A⊗A

λA

A

A⊗A A⊗A

4A 4A

σA,A

A morphism f : (A,♢A,4A)→ (B,♢B,4B) of commutative comonoids is an
arrow f : A→ B in C such that the following diagrams commute.

A B

A⊗A B ⊗B

4A

f

4B

f⊗f

A B

I

♢A

f

♢B

Definition 2.7.3 (Definition of comonad (Definition 2.6.1. from [76])). A comonad
in a category C is a tuple (L, ϵ, δ) where L : C → C is a functor and ϵ : L→ 1C
and δ : L → L2 are natural transformations which render commutative the
diagrams

LA L2A

L2A L3A

δA

δA LδA

δLA

LA

LA L2A LA

idLA idLA
δA

ϵLA LϵA
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Definition 2.7.4 (Definition ofL-coalgebra (Definition 2.6.3. from [76])). Given
a comonad (L, δ, ϵ) on a category C, an L-coalgebra is a pair (A, hA : A→ LA)

where A is an object and hA is a morphism of C such that both commute.

A LA

LA L2A

hA

hA

δA

LhA

A LA

A

idA

hA

ϵA

A morphism f : (A, hA)→ (B, hB) of L-coalgebras is a morphism f : A→ B

of C which renders commutative the diagram

A B

LA LB

hA

f

hB

Lf

Definition 2.7.5 (Lax (symmetric) monoidal functor (Definition 2.8.1. from
[76])). A (lax) monoidal functor F between two monoidal categories (C,⊗, I)
and (D,⊗′, I ′) consists of a functor F : C → D together with two natural
transformations

dFA,B : FA⊗′ FB → F (A⊗B), dFI : I ′ → F (I),

called coherence maps, with the following coherence equations:

(FA⊗′ FB)⊗′ FC FA⊗′ (FB ⊗′ FC)

F (A⊗B)⊗′ FC FA⊗′ F (B ⊗ C)

F ((A⊗B)⊗ C) F (A⊗ (B ⊗ C))

dFA,B⊗′FC

α

FA⊗′dFB,C

dFA⊗B,C dFA,B⊗C

Fα

FA⊗′ I ′ FA⊗′ F (I)

FA F (A⊗ I)

ρ

FA⊗′d

dF
A,I′

Fρ

I ′ ⊗′ FB F (I)⊗′ FB

FB F (I ⊗B)

λ

d⊗′FB

dF
I′,B

Fλ

If the categories are symmetric, the functor is said to be lax symmetricmonoidal
if the following diagram also commutes:

FA⊗′ FB FB ⊗′ FA

F (A⊗B) F (B ⊗A)

dFA,B

σ

dFB,A

Fσ
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Definition 2.7.6 (Monoidal natural transformation (Definition 2.8.4. from [76])).
If (F, d) and (F ′, d′) are two symmetric monoidal functors from (C,⊗, I) to
(D,⊗′, I ′), we say that a natural transformationn : (F, d)→ (F ′, d′) ismonoidal
if the following diagrams commute:

FA⊗′ FB F ′A⊗′ F ′B

F (A⊗B) F ′(A⊗B)

dA,B

nA⊗′nB

d′A,B

nA⊗B

I ′

F (I) F ′(I)

dI d′I

nI

Definition 2.7.7 ((Symmetric)monoidal comonad (Definition 2.8.6. from [76])).
Let (C,⊗, I)be a (symmetric)monoidal category. A (symmetric)monoidal comonad
on C is a comonad (L, δ, ϵ):

• equippedwith two natural transformations dA,B : LA⊗LB → L(A⊗B)

and dI : L(I)→ I making (L, d) a lax (symmetric) monoidal functor,

• such that δ and ϵ are monoidal natural transformations, i.e. such that
the following diagrams commute:

LA⊗ LB L(A⊗B)

A⊗B

ϵA⊗ϵB

dA,B

ϵA⊗B

I L(I)

I

idI

dI

ϵI

LA⊗ LB L(A⊗B)

L2A⊗ L2B L(LA⊗ LB) L2(A⊗B)

δA⊗δB

dA,B

δA⊗B

dLA,LB LdA,B

I L(I)

L(I) L2(I)

dI

dI

δI

LdI

Definition 2.7.8 (Bierman’s linear category (Definition 5.6.1. and Definition
5.6.2. from [76])). Let (C,⊗, I, α, λ, ρ, σ) be a symmetric monoidal category.
Let (L, δ, ϵ, dL, dLI ) be a monoidal comonad. We say that L is a linear exponen-
tial comonad provided that

1. eachobject in C of the formLA is equippedwith a commutative comonoid
(LA,4A,♢A) where4A : LA→ LA⊗ LA and ♢A : LA→ I .

2. 4A and ♢A are monoidal natural transformations, i.e., the following
diagrams commute.

LA⊗ LB (LA⊗ LA)⊗ (LB ⊗ LB)

(LA⊗ LB)⊗ (LA⊗ LB)

L(A⊗B) L(A⊗B)⊗ L(A⊗B)

dLA,B

4A⊗4B

sw

dLA,B⊗dLA,B

4A⊗B
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I I ⊗ I

L(I) L(I)⊗ L(I)

dLI

λ−1
I

dLI ⊗d
L
I

4I

LA⊗ LB I ⊗ I

L(A⊗B) I

dLA,B

♢A⊗♢B

λI

♢A⊗B

I I

L(I)

dLI

id

♢I

where sw is the natural transformation α; (α−1⊗ id); ((id⊗σ)⊗ id); (α⊗
id);α−1.

3. The maps

4A : (LA, δA)→ (LA⊗ LA, (δA ⊗ δA); dA),
♢A : (LA, δA)→ (I, dLI )

are L-coalgebra morphisms, i.e., the following diagrams commute.

LA LA⊗ LA

L2A⊗ L2A

L2A L(LA⊗ LA)

δA

4A

δA⊗δA

dLLA,LA

L4A

LA I

L2A L(I)

δA

♢A

dLI

L♢A

4. Everymap δA is a comonoidmorphism (LA,♢A,4A)→ (L2A,♢LA,4LA),
i.e. the following diagrams commute.

LA L2A

LA⊗ LA L2A⊗ L2A

4A

δA

4LA

δA⊗δA

LA L2A

I

♢A

δA

♢LA

A linear category is a symmetric monoidal category (C,⊗, I) with finite
product (×, 1), together with a linear exponential comonad L.

Benton’s linear-non-linear categories [10, 9, 11] in Definition 2.7.9 for-
mulate the above categories in terms of adjunction [76]. In particular, the
comonad and the comonoid structure of Bierman’s linear category arise from
the symmetric monoidal adjunction between the symmetric monoidal closed
category and the cartesian category. The adjunction provides a comonad
(!, ϵ :! =⇒ IdL, δ :! =⇒!!) with the functor ! := F ◦ G : C −→ C and the
natural transformations: ϵ, the counit of the adjunction, and δ, defined by
δ(A) := F (ηG(A)) where η : IdC =⇒ F ◦G is the unit of the adjunction.
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Definition 2.7.9 (Benton’s linear-non-linear category (Definition 5.6.3. from
[76])). A linear/non-linear category consists of

• a symmetric monoidal closed category with finite coproducts (L,⊗, I);

• a category (C,×, 1) with finite products;

• a symmetric monoidal adjunction

C L

F

G

a
2.8 . Lambda-Calculi with Linear Type

Linear lambda-calculus is a programming language that reflects the purely
linear part of linear logic. The types consist of the language (propositions) of
the intuitionistic propositional linear logic without exponential !. The types
also include constants types. The terms represent the type inference rules
and the derivation trees. Linear lambda-calculus is used for quantum lambda
calculus, where all variables, classical or quantum, are used precisely once.
An example of quantum lambda-calculus with linear type is shown in Def-
inition 2.8.1 which is taken from the thesis of Benoît Valiron [76] (Chapter
7).

Definition 2.8.1 (Linear quantum lambda calculus (Definition 7.1.1. from [76])).

(Type) A,B ::= bit | qubit | A⊸ B | 1 | A⊗B
(Term)M,N,P ::= xA | MN | λxA.M | 〈M,N〉 | let 〈xA, yB〉 =M in N

| ifM then N else P | 0 | 1 | new | meas | U
| let ∗ =M in N | ∗ | ΩA

x
A1
1 ,...,xAn

n

where Ω is a non-terminating term and let ∗ = M in N is used to match 0-
tuples.

The quantum related constant added to types is qubit for qubit and con-
stants added to terms are new for initialization, meas for measurement, and
U for unitary maps. The term constants have the following types:

meas : qubit ⊸ bit, new : bit ⊸ qubit, U : qubit⊗n ⊸ qubit⊗n

for some integer n depending on the unitary map U .

The operational semantics is defined over the quantum closure which is
triple [Q,L,M ] where Q and L represent the quantum state (a normalized
vector in ⊗ni=1C2) and a bijective function from the variables of the term M
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to {0, . . . , n − 1} for some n ≥ 0. The quantum state Q and the bijection L

represent the quantum memory accessed through the quantum co-processor.
The quantum related terms (new, meas, and U) only modify the quantum
memory.

For the denotational semantics, an instance of the model of the purely lin-
ear logic (symmetric monoidal closed category) called CPM (Definition 2.8.5)
is used for a fully abstract model. This category has a product ⊗ and a coprod-
uct ⊕, and the function type A⊸ B is interpreted as the product JAK⊗ JBK,
which induces the adjunction given by the associativity of the product.

Definition 2.8.2 (Positive maps from [46]). A matrix A ∈ Cn×n is positive if
v∗Av > 0 for all v ∈ Cn.

Definition 2.8.3 (Löwner partial order from [46]). Given A,B ∈ Cn×n, we
write A v B iff B −A is positive and it is called Löwner partial order.

Definition 2.8.4 (Completely positivemaps from [46]). A linearmapF : Cn×n →
Cm×m is called positive if A w 0 implies F (A) w 0, and completely positive if
F ⊗ idk is positive for all k, where idk is the identity function on Ck×k.

Definition 2.8.5 (Category of completely positivemaps (CPM) (Definition 4.3.1.
from [76])). The category CPM is defined as follows:

• The objects are finite tuples of positive integers, σ = n1, . . . , nk,

• the morphisms σ → τ are completely positive maps Vσ → Vτ where
Vn1,...,nk

is the Hilbert space (i.e. vector space with norm)Cn1×n1×· · ·×
Cnk×nk .

2.9 . Approaches to Quantum Lambda-Calculi

2.9.1 . Quantum Lambda-Calculi
The quantum lambda-calculus [62, 74, 65, 75] aims at providing a high-

order lambda-calculus that is capable of representing the classical control flow
introduced by measurements and, at the same time, which distinguishes the
classical and the quantum data, where the quantum data is treated linearly
because of no-cloning theorem. In other words, in addition to the lambda-
calculus with linear types from the previous section, it necessitates bringing
classical data types into the type system. It can be done by introducing the
exponential constructor ! of the linear logic, which comes with dereliction and
promotion inference rules. An example of quantum lambda calculus can be
found in Definition 2.9.1. In this definition, the type !(A⊸ B) can be thought
of as a subtype of A⊸ B which consists of duplicable terms of type A⊸ B,
meaning that any term any term of type !(A ⊸ B) is also a term of type
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A⊸ B. Although it only allows the exponential type of function types, each
type A can be simulated by the function type 1 ⊸ A which, in turn, gives us
the exponential type !(1 ⊸ A). From the definition, type bit can be defined
as the coproduct 1⊕ 1 while the terms of type bit are defined as tt = inr skip
and ff = inl skip.

Definition 2.9.1 (Quantum lambda-calculus (from [46])).

(Type) A,B ::= qubit | A⊸ B | !(A⊸ B) | 1 | A⊗B | A⊕B | Al

(Term)M,N,P ::= x | λxA.M | MN | skip | M ;N | M ⊗N
| let xA ⊗ yB =M in N | inlM | inrM
| match P with (xA :M | yB : N) | splitA

| letrec fA⊸B x =M in N | meas | new | U

The definition contains several new types (the type constant 1, the co-
product type A ⊕ B, and the finite list Al of type A) and new terms (skip
for the type 1 and the concatenation of terms N ;M , inlM and inrM for the
introduction inference rules for ⊕, match P with (xA : M | yB : N) for the
elimination rule of ⊕, splitA for the list Al, and letrec fA⊸B x = M in N

for recursion). Equipped with these new features, the language becomes more
expressive in that more computations can be represented in the language. In
particular, with the help of the finite list and the recursion, one can now
represent programs that may not terminate, as shown in Example 2.9.1. Its
intended meaning is that, given a qubit q, toss a coin until the head comes
out while appending one qubit entangled to the original qubit q at each toss.

Example 2.9.1 (Cointoss example from [46]).

letrec fqubit⊸qubitl q =

if cointoss then (q :: nil)

else (let xqubit ⊗ yqubit = (entangle q) in x :: fy)

in (λqqubit.fq)

where nil = inl skip; cointoss = meas(H(new(tt))); entangle = λxqubit.Nc(x ⊗
(new(ff))); and ifP thenM elseN andM :: N are abbreviations formatchP with(x1 :
N | y1 :M) and inr (M ⊗N), respectively.

Similar to the linear quantum lambda-calculus, the operational meaning
of the term can be understood based on the QRAM model of computation
as computation with side-effects that update the quantum state through the
quantum co-process while the control flow of execution depends on the prob-
abilistic outcome of the measurements. Hence, the operational semantics can
be given to quantum lambda calculus as an abstract machine over the triple,
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called quantum closure, [Q,L,M ], where Q represents the quantum state, L
is the bijection between the free variables in M and the index of the qubits in
the quantum state, and M is a term. Reduction rules over the quantum clo-
sure raise an equation theory of the quantum closure, although the sequence
of reductions now has the possibility of having an infinite length. Moreover,
the reduction rules are probabilistic. Multiple reduction rules can be applied
to the same quantum closure where one reduction rule is taken according to a
probability distribution. In Example 2.9.1, each time a coin is tossed, there are
two possibilities of the outcome, and the term may reduce to any finite-length
list of qubits.

The denotational semantics of quantum lambda-calculus relies on linear
logic’s categorical semantics. The function type ⊸, the exponential type !,
the type constant 1, and the tensor product (− ⊗ −) are derived from the
monoidal closed category with the comonoid structure of the category.

However, to model new features of the language, we need extra structures
in the category. Firstly, the category needs a bifunctor (− ⊕ −) for the co-
product type ⊕ of the language. Moreover, the list type Al of type A implies
that the category is required to interpret infinite sum. Secondly, regarding
the recursion, we need to find a morphism representing the possibly infinite
reduction sequence (i.e., an infinite sequence of morphisms). One way of doing
it is to let the set of morphisms between any two objects be a complete partial
order where the supremum of the sequence of morphisms (of the reduction of
recursion) is picked for the denotation of the recursion.

In [46], the authors (Michele Pagani, Peter Selinger, and Benoît Valiron)
provide a concrete categorical semantics of the quantum lambda-calculus in
Definition 2.9.1 by extending the CPM category in Definition 2.8.5. In order
to model the exponential, which is not sensitive to the order, the categorical
model is based on the permutation groups and the completely positive maps,
which are invariable under the permutation (Definition 2.9.3). Then, each
hom-set of CPMs is extended by D-completion (Definition 2.9.5) so that each
indexed family of morphisms has a sum defined by least upper bound (category
CPMs in Definition 2.9.6). Finally, the category CPMs⊕ is the completion of
the category CPMs in the manner of the completion of CPM category, so that
the objects represent mixed states (Definition 2.9.7).

In specific, the letrec constructor is interpreted by using the fixed point
operator Y as follows:

• let ϕ be a morphism in the set CPMs⊕(!C ⊗ !A, !A),

• define the morphism ϕn ∈ CPMs⊕ as:

ϕ0 := !C
w;!0−−→ !A

ϕn+1 := !C
c−→ !C ⊗ !C

id⊗ϕn−−−−→ !C ⊗ !A
ϕ−→ !A
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where w : !C → 1, !0 : 1 → !A, and c : !C → !C ⊗ !C come from the
comonoid structure.

• Y (ϕ) is defined as the least upper bound of the set {ϕn} which is directed
complete.

Definition 2.9.2 (Permutation groups from [46]). Let Sn be the symmetric
group of degree n, i.e., the group of permutations of n = {0, . . . , n − 1}. Any
permutation g ∈ Sn gives rise to amatrix Pg ∈ Cn×n, defined by Pg(ei) = eg(i),
where ei is the ith standard basis vector.

An action of g on Cn×n is defined by g ◦M := PgMP−1
g . Moreover, for a

subgroup G ⊆ Sn, we define

G ◦M :=
1

#G

∑
g∈G

g ◦M

where #G is the number of elements of G.

Definition 2.9.3 (Category CPMs from [46]). The category CPMs is the cate-
gory defined with the following data:

• objects are the subgroups G ⊆ Sn of the groups of permutations Sn,
and

• a morphism from G ⊆ Sn to H ⊆ Sm is a completely positive map
f : Cn×n → Cm×m which is invariant under the actions of the two sub-
groups G andH , i.e.,H ◦ f ◦G = f .

Definition 2.9.4 (Scott-closedness from [46]). Given any partially ordered set
(poset) P , a subset S ⊆ P is Scott-closed if it is down-closed and for every
directed I ⊆ S, if the least upper bound ∨I exists in P , then ∨I ∈ S.

Definition 2.9.5 (D-completion from [46]). Let Γ(P ) be the set of Scott-closed
subsets of P , which forms a dcpo (directed-complete partial order) under the
subset ordering, i.e., any subset which is non-empty and such that every pair
of elements has an upper bound in the subset (directed subsets) has a supre-
mum. The D-completion c(P ) is defined to be the smallest sub-dcpo of Γ(P )
containing all sets of the form ↓ x = {y : y ≤ x}.

Definition 2.9.6 (Category CPMs from [46]). The category CPMs is the cat-
egory which has the same objects as CPMs and whose homset is obtained
by taking the D-completion of the homeset of CPMs, i.e. CPMs(G,H) :=

c(CPMs(G,H)) for any objects G andH . Note that the partial order of CPMs
is given by the Löwner order A v B from Definition 2.8.3.

Definition 2.9.7 (Category CPMs⊕ from [46]). The category CPMs⊕ is defined
with the following data:
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• objects are given by indexed families A = {(dAa , GA
a)}a∈|A| where the

index set |A| is called the web of A and, for every a ∈ |A|, dAa is a pos-
itive integer, and GA

a a subgroup of permutations of degree dAa , called
respectively the dimension and the permutation group of Aa; and

• morphisms from A to B are matrices ϕ indexed by |A| × |B| and such
that ϕa,b ∈ CPMs(GA

a , G
B
b ).

To summarize, in terms of syntax, a quantum lambda-calculus is a lambda-
calculus (e.g., Definition 2.4.1) extended with constant terms for quantum
operators–initialization, unitary maps, and measurement–and exponential con-
structors. Similarly, the type system of quantum lambda-calculus is an ex-
tension of linear logic with quantum types. It capitalizes on linear logic to
account for the non-duplicability of quantum data. In other words, a well-
typed terms under a given context can be physically realized without violat-
ing the no-cloning theorem. However, quantum lambda-calculi are limited in
their expressivity: they do not allow the manipulation of quantum circuits
as first-class objects, limiting their use for representing non-trivial quantum
algorithms.

2.9.2 . Quantum Circuit Description Language
A later trend of quantum programming languages aims at answering this

problem, offering the possibility to manipulate and reason on quantum circuits
as first-class objects. In general, a circuit constant has a type of Circ(A,B)

where A and B refer to the pattern type of the input and output of the
circuit. A circuit constant is internally defined as a composition of unitary
maps and initializations and measurements of qubits, while its internal struc-
ture is hidden from the programmer. In other words, the circuit is encapsu-
lated inside some circuit constant or boxed object constructed from classical
computation with circuit constants. In specific, a circuit constant has type
Circ(A,B) with appropriate pattern types A and B, and the box operator
has type (A ⊸ B) ⊸ Circ(A,B) which is a function from the function type
(A⊸ B) to the type of circuit constant Circ(A,B).

A programming language may also provide circuit-level operators over the
circuit objects, which include unbox, run, gate-count, control, and reverse
operators. These operators help programmers code practical quantum algo-
rithms by hiding the concrete interpretation of the operators. Moreover, useful
operators can be added to the language by need later. Among the circuit-level
operators, the unbox operator is utilized to send the circuit object to the
quantum co-processor by linking the input of the circuit to the correspond-
ing variables in the given pattern. For this reason, the unbox operator is
sometimes called apply. Contrary to the box, the unbox operator has type
(Circ(A,B)⊗A) ⊸ B ∼ Circ(A,B) ⊸ (A⊸ B) by Currying.
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Concretely, the internal definition of a circuit constant consists of a quan-
tum circuit with linking functions of the input or output pattern required
for the unbox operator. A quantum circuit can be represented as a diagram
of boxes and wires, the sequential composition of quantum operators, or a
completely positive map, depending on the context. Then, the pattern repre-
sents the collection of wires which reflects the structure of the composition so
that one can bind two patterns constructively. The Pattern type is then the
composition of the type of each wire in the pattern with the same structure.
Next, in this section, we present two examples of quantum circuit description
languages–QWIRE and Quipper.

QWIRE [47, 50, 51] is an embedded language that describes the quantum
circuit and interacts with the host language into which it is embedded. The
language consists of the circuit description part and the host language part.
The circuit description part answers the question of how to represent a quan-
tum circuit while the host language is extended from an existing language. In
the language, a quantum circuit is created by composing gates and measure-
ments (lift), unboxing a boxed circuit, or concatenating two quantum circuits.
It also explains how to normalize quantum circuits. In QWIRE, the lift con-
structor from the circuit description part implies the dynamic lifting, allowing
the host language to use the values as a resource obtained by measuring a
quantum state.

The host language is extended with two operators box and run. First, the
box operator transforms a circuit into the boxed circuit, which is a first-class
object of type Circ(W1,W2) where W1 and W2 represent the input and output
wire types, respectively. Next, the run operator refers to the simulation of a
circuit, which brings probabilistic side-effects of computation. The language
does not specify the implementation of the run operator, which means that it
can be either interaction with quantum co-processor or classical simulation.
For the classical simulation, the operational meaning of the quantum circuit
is formally defined by denotational semantics. Accordingly, the operational
semantics of the host language is extended with the probabilistic reduction
step of the run operator.

In an implementation QWIRE over the proof assistant Coq, the host lan-
guage is equipped with all features provided by the internal logic of COQ
(Calculus of Inductive Construction). In particular, the reduction of the term
is given by the simplification provided by Coq. Moreover, each term has a
type given by the internal logic, which is an extension of a dependent type
system. An example of what we can do with the dependent type system of
Coq is to define a dependent circuit or parameterized circuit. It is essential to
obtain a scalable quantum programming language since quantum algorithms
are defined over an arbitrary size of the input (number of qubits). Further-
more, the functional meaning of the program in the host language of QWIRE
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can be specified by using the dependent type system (or internal logic) of Coq.
In this way, any quantum algorithm written in QWIRE can be specified by a
type judgement and verified by a type derivation.

Quipper [28, 27, 68] is another quantum circuit description language that
is scalable and expressive and which is used to implement various realistic
quantum algorithms ranging from Binary Welded Tree (BWT) to Quantum
Linear Systems (QLS). As introduced before, Quipper is an embedded lan-
guage whose implementation is embedded in Haskell. Quipper consists of a
language for circuit description, a procedural description of an extension of the
quantum circuit with ancillas. It asserts circuit operators, run and box oper-
ators, and quantum data types. The type of circuits (or boxed subcircuits) is
implemented as a monad in Haskell, which comes with unit and multiplication
functions. Then, we can define the box operator as a function from the func-
tion type to the circuit type or the computation type because the computation
of the program outputs a circuit.

An important programming paradigm of Quipper is to have two phases of
computation: circuit generation and circuit execution. In the circuit genera-
tion phase, the program is transformed into a quantum circuit while consuming
parameters which include input-size, error-thresholds, etc. Circuit execution
may occur in an actual quantum processor or a classical computer by simu-
lating the circuit generated from the circuit generation phase. In the circuit
execution phase, the simulation transforms the input state into the output
state.

Consequently, in Quipper, there are two different notions of resource–
parameter and state. Although there is no difference between the parameter
and the state appearing in the program, their types may differ. As an exam-
ple, the Boolean parameter has type Bool while the Boolean state has type
Bit and the qubit state has type Qubit. In this context, dynamic lifting is
a function from Bit to Bool. Based on the two-phase paradigm of Quipper,
dynamic lifting is an expensive operation since the circuit generation phase is
suspended until the sub-circuit is executed.

Moreover, parameter and state have different properties; the parameter
is classical data, while the state can be quantum (or wire in the circuit dia-
gram). In other words, the parameter is a non-linear resource while the state
is a linear resource. Unfortunately, Haskell does not provide linear types in
nature, implying that the Haskell type checker cannot distinguish physically
non-realizable programs. This limit has led to the study of ProtoQuipper, a
formal language designed for quantum circuit description.

ProtoQuipper [56] is a formalization of a part of Quipper based on an
extension of primitive quantum lambda-calculus without general coproduct
types and recursion by adding circuit type (Circ(T,U)) and circuit operators
(rev, unbox, and boxT ) as shown in Definition 2.9.8. As quantum lambda-
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calculi, it capitalizes on linear logic to forbid the duplication of quantum data,
and both quantum bits and quantum circuits are considered first-order objects.

The first ProtoQuipper from Neil Ross’s thesis comes with a sound opera-
tional semantics over the closure, which is the pairs (C, a) where C refers to a
circuit and a refers to a term. The definition of closure is different from that
of quantum lambda-calculus since the operational semantics of ProtoQuipper
focuses on the circuit generation phase of the computation of the Quipper
program.

Definition 2.9.8 (Definition 8.2.1. and 8.2.2. from [56]). Types and terms of
ProtoQuipper are defined as follows:

(types) A,B ::= qubit | 1 | bool | A⊗B | A⊸ B | !A | Circ(T, U)

(terms) a, b, c ::= x | q | (t, C, a) | True | False | 〈a, b〉 | ∗ | ab | λx.a
| rev | unbox | boxT | if a then b else c | let ∗ = a in b

| let 〈x, y〉 = a in b

where (t, C, a) refers to the circuit constant; and rev, unbox, and boxT refer to
circuit operators.

Later, several extensions of ProtoQuipper have been proposed, which for-
malize different features of programming languages like recursion and depen-
dent type systems. Concerning this thesis, we study the dynamic lifting in
quantum circuit description language and formalize it in a language extended
from ProtoQuipper. Moreover, the categorical semantics of different versions
of Quipper have been studied. We also study the categorical semantics of the
language, which we define to formalize dynamic lifting.

2.10 . Categorical models of quantum computation

2.10.1 . Completely positive maps
Completely positive maps, which we have introduced in Section 2.8 have

been utilized as the semantics of quantum circuit description languages as
well. To summarize the semantics briefly, a square matrix A ∈ Cn×n is called
hermitian if A = A∗. A positive, or positive semidefinite, matrix is a hermitian
matrix such that u∗Au ≥ 0 for all u ∈ Cn. A density matrix is a positive matrix
formed in a particular way. It represents the state of a system following a
sequence of quantum operations (unitary maps and measurements).

More specifically, we have introduced the quantum state in Section 2.1.1
as a normalized vector q called pure state in the vector space of the quantum
state. Then, the density matrix of the quantum state q is defined as qq∗.
In addition, measurement creates a probability distribution of states which is
called mixed state. A mixed state is given as a family of pairs of a pure state
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qi and its probability pi where 1 ≤ i ≤ k, and then the density matrix for the
given mixed state is defined as p1q1q∗1 + . . .+ pkqkq

∗
k.

Operations over the density matrix are defined for both unitary maps and
measurements. A unitary map U maps a density matrix (pure and mixed
states) A to a density matrix UAU∗. For the measurement, the resulting
density matrix is the sum of each density matrix corresponding to the mea-
surement state. In specific, for a given density matrix

∑
1≤i≤k piqiq

∗
i , let us

assume that the measurement applied to the pure state qi results in the state
q1i with probability p1i and in the state q2i with probability p2i . Then, the re-
sulting density matrix by the measurement is the sum of all resulting states
of measurement at the pure state, which is

∑
1≤i≤k pi(p

1
i q

1
i (q

1
i )

∗ + p2i q
2
i (q

2
i )

∗).
These quantum operators are interpreted as superoperators (Definition 2.10.1),

which are linear maps from a list of square matrices to a list of square ma-
trices that preserve the positive elements even if the maps are extended with
identity maps by tensor product (i.e., completely positivity) and satisfies the
trace condition. Moreover, the superoperator preserves Löwner partial order
(Definition 2.8.3) and the upper bounds of increasing sequences. This forms
the category of quantum computation, and its CPO-enrichment can be used
to model recursion [59].

Definition 2.10.1 (Completely positive operator, superoperator (from [59])).
Let F : Vσ → Vσ′ , where σ = n1, . . . , ns and σ′ = m1, . . . ,mt are lists of
natural numbers (i.e., signatures), be a linear function from the vector space
Vσ = Cn1×n1 × . . .×Cns×ns to the vector space Vσ′ = Cm1×m1 × . . .×Cmt×mt .
Note that elements of Vσ are tuples of matrices A = (A1 ∈ Cn1×n1 , . . . , As ∈
Cns×ns). Then, we say thatF is positive ifF (A) is positive for all positiveA ∈ Vσ
meaning that each element Ai of A is mositive. We say that F is completely
positive if idτ ⊗ F : Vτ⊗σ → Vτ⊗σ′ is positive for all signatures τ = o1, . . . , ou,
where τ ⊗ σ = o1n1, . . . , o1ns, . . . , oun1, . . . , ouns and idτ ⊗ F is defined on
basis elements by (id⊗F )(A⊗B) = id(A)⊗F (B). Finally, F is called a super-
operator if it is completely positive and satisfies the following trace condition:
tr(F (A)) ≤ tr(A), for all positive A ∈ Vσ , where tr(A) =

∑
i tr(Ai).

The fact that a quantum state can be represented as a positive matrix
called a density matrix explains why we are interested in positive matrices
and the positive linear maps, which preserve positive matrices. Completely
positive maps form the canonical semantics of quantum computation [45].
Selinger has shown in 2004 [57] that one can formalize it as a semantics for
first-order languages, and later exploration showed that completely positive
maps could be used to build semantics of quantum lambda-calculus [58, 64].

One of the limitations of completely positive maps and positive matrices
is the finite-dimensionality of the model: this makes it impossible to represent
duplicable data or inductive datatypes. Several extensions have been devised,
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either based on suitable algebraic extensions such as C∗ or von Neumann
algebras [79, 78], or using categorical constructs [46, 40, 41].

2.10.2 . Semantics of quantum channels
The meaning of quantum channels may vary across different research do-

mains like quantum information theory and quantum operator theory. This
thesis follows the definition of quantum operator theory and defines the quan-
tum channel as an algebraic structure. An operator algebra consists of a sig-
nature for the algebra and an equation theory over the operators. A quantum
channel is then defined by an equivalence class of operators.

In order to define a practical operator algebra of quantum channels, one
needs to know what it represents, namely, in quantum computation. Based
on the formalism of Dirac and Von Neumann, quantum mechanics can be
explained in C∗-algebras. In this formalism, observables of a quantum system
form self-adjoint operators on a Hilbert space, i.e., a Banach space equipped
with an inner product that is consistent with the norm. The observables of n-
dimensional Hilbert space for any natural number n form a C∗-algebra. One
can then define a state as a function from the self-adjoint elements of the
C∗-algebra to reals in [0, 1].

In this context, quantum computation corresponds to the maps between
C∗-algebras that preserve positive elements (positive), hence, the self-adjoint
elements since self-adjoint elements are positive. Moreover, the map needs
to preserve the unit element (unital) and needs to be able to be extended
with other disconnected parts of the system (completely positive). This forms
a category of C∗-algebras with unital completely positive maps, CstarCPU ,
whose objects are the C∗-algebras over different Hilbert spaces, and morphisms
are the unital completely positive maps between these algebras.

For quantum computation with measurement, one needs to be able to
represent observables that depend on the measurement results. In category
theory, coproduct, or direct sum, represents this non-determined set of observ-
ables. Coproduct in C∗-algebras is defined as a juxtaposition of the observ-
ables corresponding to different measurement results. Now, quantum com-
putation with measurement, assuming that there has been no measurement
made before, becomes completely positive and unital maps from a C∗-algebra
to a coproduct of C∗-algebras. In general, quantum computation beginning
with measurements made before can be represented as the juxtaposition of
such maps for each C∗-algebra from the initial stage.

A quantum channel in an operator algebra is usually represented by an
operator parameterized by the input variables. Intuitively, these operators
represent the observables in the C∗-algebra of the corresponding quantum
system. As an example of an operator algebra, in [70], Sam Staton defines the
algebraic structure of quantum computation as in Definition 2.10.2.
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Definition 2.10.2 (Algebraic structure of quantum computation (Definition 3
from [70])). There are three accessor functions new for the initialization of
qubit,meas for the measurement, and applyU for the application of unitary
map U defined as follows:

new : (0 | 1), meas : (1 | 0, 0) and applyU : (n | n)

where o : (τ | σ) means that the operator o takes input τ = n1, . . . , ns and
output σ = m1, . . . ,mt that represents the list of quantum states of ni-qubits
and mj-qubits, respectively, and U is a unitary operator over 2n dimension
state space.

Each quantum operator is defined by composition of the accessor func-
tions in the following manner:

t ::=


new(a.t),

meas(a, t, u),
applyU (a1 . . . an, b1 . . . bn.t)

where new(a.t) refers to the creation of a new qubit awhich passes the qubit
to the operator t; meas(a, t, u) refers to the meausrement of the qubit a
which continues to either t or u depending on the measurement outcome;
and applyU (a1 . . . an, b1 . . . bn.t) refers to the application of unitary map U to
the qubits a1 . . . an and passes these qubits to the operator t after binding the
qubits to the names b1 . . . bn.

There are three types of operator, each of which is parameterized by spe-
cific numbers of qubits: firstly, new is an operator that creates a qubit and
passes it through the rest of the operator while not taking any input; secondly,
meas takes the name of one qubit as input, which is measured and disappears,
and passes through different parts of the rest of the operator depending on
the measurement result; and, lastly, applyU applies a unitary operator U to
the n qubits designated by names in the input and passes the new names of
these qubits through the rest of the operator.

Furthermore, Sam Staton defines unitary operator as shown in Defini-
tion 2.10.3.

Definition 2.10.3 (Construction of the unitary operator from [70]).

U ::= . . . | U1 ⊗ U2 : (n1 + n2 | n1 + n2) | D(U1, . . . , Uk) : (n | n)

where . . . means a choice of an unitary operator set; ni refers to the size of
Ui; U1⊗U2 means the tensor product of the two unitary operators U1 and U2;
and D(U1, . . . , Uk) refers to the block diagonal matrix created by the unitary
operators Ui of size ni such that n is the size of the new operator such that
2n =

∑
i≤k 2

ni . Note that the last constructor of diagonal matrix is defined
only for unitary operators such that there exists n that satisfies the given con-
dition on the size.
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To summarize, the unitary operator set is the closure of the chosen uni-
tary operator set over the tensor product; the group product of the unitary
operators of the same dimension; and the block diagonal composition needs
to be complete concerning finite-dimensional unitary operators. For instance,
the following unitary operators form a complete set of unitary operators over
the compositions explained above.{

id0 =
(
1
)
, X =

(
0 1
1 0

)
, Zθ =

(
1 0
0 eiθ

)
, H =

1√
2

(
1 1
1 −1

)}
where id0 : (0 | 0) and X,Zθ,H : (1 | 1)

The algebraic operator theory comes with axioms that equate the operators
based on syntactic pattern matching. In the paper [70], Sam Staton proposes
an algebraic theory which consists of the axioms in Definition 2.10.4.

Definition 2.10.4 (Algebraic theory of quantum computation (Sam Staton)).
An algebraic theory of quantum computation is defined by the following equa-
tions over the operators from Definition 2.10.2.

1. applyX(a, a.measure(a, x, y)) = measure(a, y, x)
whereX is from the unitary operator set

2.
measure(a,applyU (

−→
b ,
−→
b .x(
−→
b )),applyV (

−→
b ,
−→
b .y(
−→
b )))

= applyD(U,V )(a ::
−→
b , (a ::

−→
b ).measure(a, x(

−→
b ), y(

−→
b )))

3. applyU (
−→a ,−→a .discardn(−→a , x)) = discardn(−→a , x)wherediscardn(−→a , x)

refers to the operator which discards the qubits −→a and continues the
operator x which is defined inductively as follows:

discard0(−, t) = t

discardn+1((a ::
−→
b ), t) = measure(a,discardn(

−→
b , t),discardn(

−→
b , t))

4. new(a.measure(a, x, y)) = x

5.
new(a.applyD(U,V )((a ::

−→
b ), (a ::

−→
b ).x(a ::

−→
b )))

= applyU (
−→
b ,
−→
b .new(a.x(a ::

−→
b )))

6. applyswap((a :: b), (a :: b).x(a :: b)) = x(b :: a) where

swap = D(id0, X, id0) =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


7. applyI(

−→a ,−→a .x(−→a )) = x(−→a )
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8. applyUV = applyU (
−→a ,−→a .applyV (

−→a ,−→a .x(−→a )))

9.
applyU⊗V ((

−→a ++
−→
b ), (−→a ++

−→
b ).x(−→a ++

−→
b ))

= applyU (
−→a ,−→a .applyV (

−→
b ,
−→
b .x(−→a ++

−→
b )))

where−→a ++
−→
b refers

to the list of qubits obtained by concatenation of the lists of qubits −→a
and
−→
b .

Indeed, the operators of the theory need more information about the
variables. Each term of the theory is constructed by the operator (Defini-
tion 2.10.2) with a sequence of quantum variables ∆ of type qubit and a
sequence of second-order variables Γ of functions from qubits to qubits. Fol-
lowing the notation of Sam Staton [70], each term is represented by Γ | ∆ ` t
where t is an operator from Definition 2.10.2. For the first-order theory, Γ

will be empty. Since ∆ is represented as a sequence, each permutation on
the sequence of variables ∆ creates a different term, although their intended
meaning should be the same. In models of algebraic theories (like the cate-
gory of sets and functions Set and the category of C∗-algebras), the effect of
permutation is normally represented by the cartesian product structure of the
category of bijection and the category of operators.

In his paper [70], Sam Staton shows that the algebraic theory of quantum
computation proposed in the paper is fully complete for the model of quantum
computation (the category CstarCPU introduced earlier). In particular, each
operator can be interpreted as a linear map (i.e., matrix) between C∗-algebras
based on the interpretation rules in Definition 2.10.5. Each operator term
∅ | ∆ ` t is interpreted by a matrix of size 2|∆| × 2|∆|. Note that each inter-
pretation is paired with an action of permutation over the variables ∆. The
action of permutation is interpreted by the multiple applications of the swap
operator (where each swap operator changes the order of two adjacent vari-
ables), following the interpretation of the unitary operator in Definition 2.10.5.

Definition 2.10.5 (Interpretation of operators). The following rules interpret
each operator.

Jnew(a.x(a))K = a1,1 where Jx(a)K = (a1,1 a1,2
a2,1 a2,2

)
Jmeas(a, x, y)K = (JxK 0

0 JyK
)

r
applyU (

−→a ,
−→
b .x(
−→
b ))

z
= LUM∗ r

x(
−→
b )

z LUM
Next, the unitary operator is interpreted based on the following rules to-

gether with the conventional matrix definition of the constant unitary opera-
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tors like id0,X , Zθ, andH .

LU1 ⊗ U2M =
LU1M1,1LU2M . . . LU1M1,nLU2M

...
. . .

...LU1Mn,1LU2M . . . LU1Mn,nLU2M


LD(U1, . . . , Uk)M =
LU1M 0 0

0
. . . 0

0 0 LUkM


where the LU1M is a matrix of size n× n in the tensor product case.

Given this, the full completeness of the algebraic theory of quantum com-
putation means that: first, any morphism in the model of quantum compu-
tation, which is a unital completely positive map, can be represented as an
operator, where the interpretation of the operator is the original linear map in
the category; and, secondly, the equality of two operators is derivable within
the algebraic theory in Definition 2.10.4 whenever the two operators have the
same interpretation as unital completely positive maps.

The operator algebra provides a good language of quantum channels which
is fully complete. However, the language only allows variables up to first-
order functions (i.e., operator) in the program. Hence, it does not support,
for example, general recursion, which relies on the high-order abstraction. In
order to obtain a high-order language of quantum channels, we instead begin
from ProtoQuipper, which is based on quantum lambda-calculus, and adjust
the categorical model of ProtoQuipper to get a model of quantum channels
instead of quantum circuits.

2.10.3 . Models of circuit-description languages
ProtoQuipper-M by Rios and Selinger [55]
In this paragraph, we summarize the categorical model of the quantum circuit
description language ProtoQuipper-M by Francisco Rios and Peter Selinger [55].
A circuit description language allows programmers to construct circuits using
circuit-level operators. At the same time any circuit can be simulated ac-
cording to the intended meaning of each operator that constructs the circuit.
Consequently, a program needs to deal with two stages of computation. A
program generates a circuit from the first level of computation, and the cir-
cuit generates a state in the second computation. In a circuit description
language, the computation is one-directional, meaning that the computation
of the circuit does not affect the circuit generation.

An essential feature of a scalable circuit description language is the ca-
pability to represent not only a single circuit but also a family of circuits, or
a parameterized circuit. This feature enables programmers to express more
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complex structures in the language while introducing complexity to a pro-
gram’s semantics. For instance, a family of circuits can be parameterized by
another family of circuits. The semantics of the language should be able to
interpret compositions or executions of such families of circuits.

In [55], the authors show that the functor category C2op (whose objects are
functors and morphisms are natural transformations) from 2op (which is the
category with two objects 0 and 1, and a single non-identity morphism 1 −→ 0)
to some category C can interpret parameters and states, as well as parameter-
ized circuits in the object. Here, parameters are the values known at circuit
generation time, and states are the values known at circuit execution time.
Therefore, states cannot influence parameters, but parameters can influence
states. This structure encoded in the functor category C2op comes from the
unique non-identity morphism of the category 2op.

Specifically, a cartesian model [55] of parameters and states Set2op is the
functor category from the category 2op to the category of sets and functions
Set defined with the following data:

• objects: functors from the category 2op to the category Set represented
as (A0, A1, a) where A0 and A1 are the sets corresponding to the two
objects of 2op and a is the corresponding morphism from A1 to A0,

• morphisms: natural transformations f : A −→ B between the functors
A = (A0, A1, a) and B = (B0, B1, b) from 2op to Set such that b ◦ f0 =

f1 ◦ a, i.e. b(f0(x)) = f1(a(x)) for all x ∈ A1.

An object of the category is equivalently represented as (A0, (Ax)x∈A0)

where each Ax is the subset of A1 such that a(x′) = x for all x′ ∈ Ax [55]. Then,
the pair (x, s) is called a generalized element of the object A = (A0, (Ax)x∈A0)

if x is in A0 and s is in Ax. Now, we can consider x, and s, of a generalized
element of the object as the parameter, and the state, respectively.

Then, we can define particular types of objects in the category Set2op called
parameter objects and state (or simple) objects. A parameter object is defined
by the form (A,A, id), an example of which is bool = ({0, 1}, {0, 1}, id), or
equivalently, represented as the set of generalized elements bool = {(0, 0), (1, 1)}.
Next, a state object is of the form ({∗}, A, a). For example, bit = ({∗}, {0, 1}, ({0 7→
∗, 1 7→ ∗})), or equivalently, bit = {(∗, 0), (∗, 1)}.

The category Set2
op is cartesian closed, which means that there is an

isomorphism between the hom set Hom(X,ZY ) and the hom set Hom(X ×
Y, Z) for any objects X, Y , and Z. Therefore, we can interpret the simply-
typed lambda calculus in it: where the exponential objects interpret functions,
e.g. Jinit : bool −→ bitK = bitbool.

The cartesian model of parameters and states Set2op allows duplication of
states since there exist morphisms A −→ A × A for any object A. However,
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states generated by quantum circuit description languages should not be dupli-
cated to conform with the no-cloning theorem of quantum physics. Therefore,
the authors define another categorical model of parameters and states denoted
by M in the following way:

1. define a symmetric monoidal category M to interpret the quantum
states and quantum circuits.

2. define a symmetric closed, product-complete, monoidal category M

where M embeds into M . The monoidal closed structure of M allows
us to interpret high-order functions in M .

3. define a category M for parameterized circuits with:

• objects: pairs A = (X, (Ax)x∈X), where X is a set and (Ax)x∈X is
an X-indexed family of objects of M and the element Ax is called
the fiber of A over x.

• morphisms: f : (X, (Ax)x∈X) −→ (Y, (By)y∈Y ) is a pair (f0, (fx)x∈X),
where f0 : X −→ Y is a function and each fx : Ax −→ Bf0(x) is a
morphism of M .

The category M contains (by an inclusion) the symmetric monoidal cat-
egory M , which models general circuits, an example of which is quantum
circuits. This category has nice properties to interpret classical computa-
tion; for instance, it has an initial object and coproduct and is symmetric
monoidal closed. Moreover, it has an inclusion functor p : Set −→ M and its
adjoint ♭ : M −→ Set, which forms a categorical model of linear logic with
exponential ! = p ◦ ♭ and which gives an interpretation of box and unbox
operators. Specifically, the circuit type Circ(T,U) for quantum type T and
U is interpreted as p(M(JT K , JUK)) and box : !(T ⊸ U) ⊸ Circ(T, U) and
unbox : Circ(T, U) ⊸ !(T ⊸ U) operators are defined using the following
isomorphism which yields morphisms box : !(JT K ⊸ JUK) → p(M(JT K , JUK))
and unbox : p(M(JT K , JUK))→ !(T ⊸ U).

♭(JT K ⊸ JUK) ∼=M(I, JT K ⊸ JUK) ∼=M(JT K , JUK) ∼=M(JT K , JUK)
In summary, the categorical semantics formalizes a fragment of Quipper re-
garding the circuit construction and provides a formalized language called
Proto-Quipper-M.

Finally, the question we ask in this thesis is if we can build a similar cat-
egorical semantics for the circuits extended with measurement and dynamic
lifting, called quantum channels. This implies that the measurement of a quan-
tum state produces parameters that can be used to construct other quantum
channels. It must break the assumption of the one-directional computation
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from the circuit generation to the circuit execution. However, the idea that
we follow in this thesis is to think of a quantum channel as a tree of quantum
circuits, where the tree structure is a classical parameter, which can be repre-
sented as the set of paths closed under a prefix. From this idea, we interpret
a quantum channel as a parameterized circuit and try to find if it gives a
categorical semantics.

Lindenhovius, Mislove, and Zamdzhiev’s mixed linear-non-linear model [38, 39]
Although the categorical model M of Francisco Rios and Peter Selinger from
the previous paragraph models several inductive types like natural numbers
or lists, we cannot interpret any inductive types without the further assump-
tion that the category has any colimit. In other words, not all functors of
the categorical model have an initial algebra. In this section, we introduce
the categorical semantics of mixed linear/non-linear type systems with induc-
tive types and recursion of Bert Lindenhovius, Michael Mislove, and Vladimir
Zamdzhiev from [39, 39].

Linear and non-linear fixpoint calculus (LNL-FPC) is a language that is
similar to the quantum lambda-calculus without recursion. Mixed LNL-FPC
is the same language where we do not have separate context for linear variables
and non-linear variables but one type of context that mixes linear and non-
linear variables. This language is extended with different types for variable
types X, the fixpoint µX.A, and additional terms for folding and unfolding
the type µX.A.

First of all, these new types are used to define inductive types like the
natural numbers Nat = µX.(I + X), where I = !(0 ⊸ 0) and 0 = µY.Y ;
and lists List(A) = µX.(I + A ⊗X) for any type A. For example, a natural
number is an infinite sum µX.(I +X) = I + (I + (I + . . .)) and, in order to
obtain the equation, the fixpoint type is unfolded by the following equation of
substitution:

µX.(I +X) = I + µX.(I +X).

More generally, the unfolding of type µX.A is given by A[µX.A/X] and we call
the type µX.A the folding of type A[µX.A/X]. Formally, the fold and unfold
constructors correspond to typing derivations which are shown in Eq. 2.10.

Θ;Γ ` m : A[µX.A/X] Θ, X ` A
Θ;Γ ` foldµX.A(m) : µX.A

Θ;Γ ` m : µX.A

Θ;Γ ` unfold(m) : A[µX.A/X]
(2.10)

where Θ and Γ refer to typing context and term context respectively; and
Θ;X ` A is a type context relation. The type context describes the valid
constructions of type µX.A.

An essential consequence of inductive types is term-level recursion. For the
case of a classical type system, recursion can be defined in FPC as rec xA.m =
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αxm(fold(αxm)) where αxm = (λyµX.(X→A).((λxA.m)((unfold(y))y))). The type
relation Θ;Γ ` rec xA.m : A is derived from Θ;Γ, x : A ` m : A as follows:

...
Θ;Γ ` αxm : (µX.(X → A))→ A

...
Θ;Γ ` αxm : (µX.(X → A))→ A

Θ;Γ ` fold(αxm) : µX.(X → A)

Θ; Γ ` αxm(fold(αxm)) : A

where Θ;Γ ` αxm : (µX.(X → A))→ A is derived as follows:

Θ; Γ, y : (µX.(X → A)) ⊢ y : µX.(X → A)

Θ; Γ, y : (µX.(X → A)) ⊢ unfold(y) : (µX.(X → A)) → A Θ; Γ, y : (µX.(X → A)) ⊢ y : (µX.(X → A))

Θ; Γ, y : (µX.(X → A)) ⊢ (unfold(y))y : A

and
Θ; Γ, x : A ⊢ m : A

Θ; Γ, y : (µX.(X → A)), x : A ⊢ m : A

Θ; Γ, y : (µX.(X → A)) ⊢ λx
A
.m : A → A

...
Θ; Γ, y : (µX.(X → A)) ⊢ (unfold(y))y : A

Θ; Γ, y : (µX.(X → A)) ⊢ (λx
A
.m)((unfold(y))y) : A

Θ; Γ ⊢ λy
µX.(X→A)

.((λx
A
.m)((unfold(y))y)) : (µX.(X → A)) → A

Moreover, the reduction of the term rec xA.m to the term m[(rec xA.m)/x] is
derived from the operational semantics as follows: given that unfold(fold(t)) −→∗

t,
αxm(fold(αxm)) −→∗ m[(unfold(fold(αxm)))(fold(αxm))/x]

αxm(fold(αxm)) −→∗ m[(αxm)(fold(αxm))/x]
αxm(fold(αxm)) −→∗ m[(rec xA.m)/x]

rec xA.m −→∗ m[(rec xA.m)/x]

where αxm(t) −→∗ m[(unfold(t))t/x] is obtained as follows:

(λyµX.(X→A).((λxA.m)((unfold(y))y)))(t) −→ (λxA.m)((unfold(t))t)
αxm(t) −→ (λxA.m)((unfold(t))t)

and
(λxA.m)((unfold(t))t) −→ m[(unfold(t))t/x]

Similarly, in the context of mixed linear and non-linear fixpoint calculus,
recursion is defined as Definition 2.10.6 in [39].hehe As a result, the categorical
semantics of recursion follows from the categorical model of the LNL-FPC and
the inductive types.

Definition 2.10.6 (Definition of recursion (Theorem 2.3.1. and Theorem 3.0.1.
from [39])). Recursion term rec z!A.m is defined as (unfold forceαzm)αzmwhere

αzm = lift fold λx!µX.(!X⊸A).(λz!A.m)(lift (unfold force x)x)
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where lift x and force x are terms for the introduction and the elimination
typing derivation for exponential !. The typing rule

Θ;Φ, z : !A ` m : A

Θ;Φ ` rec z!A.m : A

is derivable in LNL-FPCwhereΦ is non-linear andX 6∈ Θ andx 6∈ Φ. Moreover,
the evaluation rule

m[lift rec z!A.m/z] −→∗ v

rec z!A.m −→∗ v

is derivable with LNL-FPC.

For the categorical semantics of fixpoint calculus, the inductive type is
denoted by using the colimit of ω-diagram to a category C. Intuitively, ω-
diagram represents the fixpoint of the infinite sequence of the substitution in
the inductive type while the colimit internalizes the infinite sequence repre-
sented by a ω-diagram as an object of C. As an example, the natural number
Nat = µX.(I +X) creates the following sequence:

Nat→ (I + Nat)→ (I + (I + Nat))→ . . .

In other words, the denotation of Nat can equally be the denotation of any
term in the sequence, which can be considered infinite coproduct or, more
specifically, colimit of ω-diagram when we want to include the equality of
types in the sequence.

Then, the categorical semantics of LNL-FPC, called CPO-LNL model
(Definition 2.10.7 from [39]), are obtained from Benton’s linear category with
the category CPO (a category of complete partial orders (CPO) and Scott-
continuous functions) and a CPO-category L (an enriched category whose
homsets have the CPO structure and the composition of morphisms is a Scott
continuous function that preserves all suprema of increasing chains of mor-
phisms).
Definition 2.10.7 (A CPO-LNL model (Definition 5.3.1. from [39])). A CPO-LNL
model is given by the following data:

• A CPO-symmetric monoidal closed category (L,⊗,⊸, I) such that:

– L has an e-initial object 0 and all ω-colimits over embeddings;

– L has finite CPO-coproducts, where (− + −) : L × L → L is the
coproduct functor.

• A CPO-symmetric monoidal adjunction:

CPO L

F

G

a
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ProtoQuipper-D by Fu, Kishida, and Selinger [24, 23]
The dependent type system is another feature of programming language stud-
ied in the paper on linear dependent type theory by Peng Fu, Kohei Kishida,
and Peter Selinger. The paper introduces dependent type theory in the linear
and non-linear settings of the ProtoQuipper’s type system. The difficulty in
defining dependent type on linear types is that the linear type can appear
more than once in the typing judgment. They solve this problem by inter-
preting dependent types as types that depend on the shape of types which is
a classical abstraction of the type. Categorical semantics of linear dependent
type system is obtained as a generalization of the categorical semantics of
ProtoQuipper-M [55] and is based on the state-parameter fibration.

Dependent type theory is an expressive type theory whose types corre-
spond to formulae of first-order logic. Many properties can be represented
as a first-order theory, like the reflexivity, symmetry, and transitivity of an
equivalence relation can be represented as a first-order formula. The expres-
sivity of first-order logic comes from the universal and existential quantifier,
whose intended meanings are for all and there exists, respectively. The first-
order universal and existential quantifiers translate into dependent product
type (

∏
x:X A[x]) and dependent sum type (

∑
x:X A[x]) in the dependent type

theory. Intended meanings of these dependent types are a function that trans-
forms a proof x of type X into a proof of type A[x] and the product which is
equipped with two projections that give a proof of type X and a proof of type
A[x]. In addition, it might be worth mentioning that the dependent product
type

∏
x:X A[x] may look similar to the fixpoint type µX.A but its meaning is

more similar to the meaning of a function than a fixpoint over the substitution
of X by µX.A in A.

Categorical model of dependent type theory is defined by locally cartesian
closed category (LCCC), i.e. a category C whose slice categories C/X for
object X ∈ Obj(C) are all cartesian closed. In an LCCC C, each type A in
the type theory is interpreted as an object in a slice category C/X where X
represents the types of the dependent variables in A.

Dependent products and sum types are interpreted in LCCC with the help
of a left and a right adjoints of a functor f∗ : C/Y → C/X called change of base
defined for each morphism f : X → Y . The right adjoint is called dependent
product functor

∏
f : C/X → C/Y and the left adjoint is called dependent

sum functor
∑

f : C/X → C/Y . Assuming that the slice categories are small,
the adjunction implies the following isomorphisms between the hom sets.

(C/X)(f∗(a), b) ∼= (C/Y )(a,
∏
f

(b)), (C/X)(b, f∗(a)) ∼= (C/Y )(
∑
f

(b), a)

(2.11)
for any a : A→ Y and b : B → X which are objects of the slice categories.

To illustrate what it means, let us compare these isomorphisms with the
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logical rules of quantifiers in first-order logic. Given the interpretation rules:
which interpret the dependent product type

∏
x:X B[x] as the object

∏
f b

in C/Y and the dependent sum type
∑

x:X B[x] as the object
∑

f b in C/Y
where the types X and B[x] are interpreted as f : X → Y and b : B → X,
respectively, the following intuitive equivalence relations between statements
(where each proof of the statement on one side can be transformed into a proof
of the statement on the other side) can be obtained from the isomorphism
between the homeset in Eq. (2.11):

A[f(x)] ` B[x] ⇐⇒ A[y] `
∏
x:X[y]

B[x], B[x] ` A[f(x)] ⇐⇒
∑
x:X[y]

B[x] ` A[y]

where the entailment ` represents the morphism in the slice category and
f(x) is a type corresponding to the morphism f : X → Y . In the case
when f(x) = y, this relation could be related to the logical rules for ∀ and ∃
quantifiers, which are represented as follows:

A[y] `x,y B[x] iff A[y] `y ∀x:X[y]B[x], B[x] `x,y A[y] iff ∃x:X[y]B[x] `y A[y]

Continuing the explanation of the interpretation, a type judgment of a
term Γ ` M : A is interpreted as a morphism in a slice category C/X where
X refers to the interpretation of the type of dependent variables. Recall that
a morphism f ′ : fA → fB in a slice category C/X is a morphism f : A → B

from the original category which satisfies the following commute diagram,
which represents a program which is modeled by the category C (assuming
that C is a model of computation).

A B

X
fA

f ′=f

fB

Now, in the model of quantum computation, a program is represented as a
morphism between the objects in a monoidal category which correspond to the
context and output type. Therefore, to introduce dependent types, one needs
to construct a monoidal category whose slice categories have the structures
mentioned above (i.e., the exponential and product types, which are adjoint
and the left and the right adjunctions for each base change functor). However,
the linear dependent type would require a new intuitive comprehension of the
type system, which is not clear how we can do it. For example, as illustrated
in [24], let f be an element of the dependent type

∏
a:AB[a] where A is a

linear type. Then, the application f(a) : B[a] of f to a variable a : A contains
two a in the term and in the type.

Instead, the linear dependent type theory in [24] restricts the dependent
types to the types dependent on classical data or set. As shown in the
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ProtoQuipper-M, a program is represented as a family of morphisms in a
monoidal closed category indexed by a set in the category of sets (in other
words, function from a set to morphisms in the monoidal closed category).
Furthermore, in its categorical semantics from Benton’s linear category, the
cartesian closed category (duplicable types) can be considered part of the
monoidal closed category (linear types), which has a commutative comonoid
structure. Therefore, to define a categorical semantics of dependent type the-
ory with linear and non-linear types, one needs Benton’s linear category (let it
be an adjunction (C,L, F,G) between the cartesian closed category C and the
monoidal closed category L) where the slice category in L over the classical
objects F (X) for X ∈ Obj(C) is monoidal closed and has the left and the right
adjunction of the base change functors.
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3 - Type system and operational semantics of Proto-
Quipper-L

In programming language for quantum computation, one needs to ensure
that quantum data is not duplicated or deleted according to the no-cloning
theorem. This has led to introducing linear types for quantum data in several
quantum programming languages like quantum λ-calculus . Moreover, for
quantum circuit description languages like Quipper, QWire, and Qbricks–
which were introduced to allow circuit-level operations like print, reverse, and
gate-count–it is necessary to assign types to quantum circuits. These new
ingredients necessitate new type constants and type derivation rules in the
type system. Furthermore, the meaning of these new operators regarding
circuits can be formalized within the operational semantics, which is composed
of configurations and reduction rules over the configuration.

The standard way of introducing linear type, like qubit, is based on lin-
ear logic. In the multiplicative part of linear logic, each proposition, which
corresponds to type, is treated linearly. Then, the type qubit is introduced
as a constant to the logic, implying that the quantum data is not duplicated
nor erased within a well-typed term. However, there is still the necessity of
classical data types like bit in the programming languages, which allows us to
represent classical computation. For example, as in the teleportation example
from the previous chapter, the part B applies different unitary operators de-
pending on the classical bit. For this reason, the type system for a quantum
programming language is usually incorporated with the exponential modality
! of linear logic, whose interpretation is a label for the duplicable types.

Moreover, in this context, we are allowed to introduce constant types for
quantum circuits Circ(A,B) the same way we add constants for propositions
in the propositional logic. As in various versions of Proto-Quipper , the type
of quantum circuits is dependent on the input and output forms of the circuit.
It means that we introduce a new type of quantum circuit for each input and
output form. Various operators regarding quantum circuits can then be de-
fined as typed terms. For example, box and unbox operators are two essential
operators for the construction of circuits in Quipper: box encapsulates a func-
tion that transforms quantum resource and makes it into a circuit object while
unbox transforms a circuit object into a function which transmits the circuit
object to the co-processor and links it with the input wires. box and unbox
operators are, thus, terms of linear function type from a linear function over
quantum data (A ⊸ B) to a quantum circuit type (Circ(A,B)) and linear
function type from a quantum circuit type (Circ(A,B)) to a linear function
(A⊸ B), respectively.
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Although the language and type system provides some information on
terms, they do not give the exact meaning. For instance, the transmission
of the circuit object by unbox operator appears neither in the term nor in its
type. One way of formalizing its meaning is by giving an operational semantics
which explains how the term reduces and changes the state of an abstract
machine. In quantum circuit description languages like Quipper, these states
are defined by a pair of the circuit object transmitted to the co-processor and
a term. Depending on the term, the abstract machine transforms the program
states according to the reduction rules. From the logical perspective given by
the Curry-Howard isomorphism, a term represents a type derivation. Hence,
in this sense, reducing a term in the operational semantics indeed means the
normalization of the type derivation.

Several versions of Proto-Quipper and QWire have formal semantics for
quantum circuit description language based on type systems and operational
semantics, in a sense described above. However, they do not consider the
non-deterministic computation from the interaction between the classical host
and the quantum co-processor. For example, the classical data generated by
measurement in the co-processor can be delivered to the host in terms of
dynamic lifting, and different circuit descriptions can be delivered to the co-
processor by the host depending on the measurement result. In this chapter,
we explain how we extend the language and type system of Proto-Quipper to
formalize dynamic lifting, or measurement, by giving operational semantics.
In terms of the description of a quantum process, measurement is just an
algebraic notion, and we define the notion of the quantum channel, which is
extended from the quantum circuit with measurement, as algebraic structure
. In order to formulate dynamic lifting, or transmission of measurement to
the co-processor by unbox, inside a term, one needs to be able to represent a
branching term whose structure corresponds to the abstract structure of the
quantum channel.

3.1 . Syntax of the language

As explained above, we need a language capable of representing a non-
deterministic computation introduced by dynamic lifting. A branching term
represents a non-deterministic computation tree, where each leaf is a non-
deterministic computation represented by a branching term. In terms of logic,
branching terms corresponds to a collection of proofs where each proof rep-
resents the derivation of the sequent for the type judgment. The shape of a
branching term has a close relationship with the shape of a quantum channel:
on the one hand, unbox operator applied on a quantum channel which includes
measurement, will create a branching term depending on input wires; and, on
the other hand, each quantum channel constant contains a branching term
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which has the same shape as the quantum channel object.
In particular, each quantum channel constant consists of input wires, a

quantum channel object, and a term of the language whose shape matches
the shape of the quantum channel object. A quantum channel object is an
instance of an algebraic structure of a quantum channel. This algebraic struc-
ture provides a way to represent quantum channels in terms of parameterized
operators . From the logical viewpoint, all quantum channel objects of the
same input and output types are syntactically distinctive proofs, although
they form equivalence classes over the equality based on the model of quan-
tum computation like C∗-algebra or an algebraic theory on operators. .

3.1.1 . Algebraic structure of quantum channel
In this section, we define the algebraic structure of the quantum chan-

nel with several operations related to it and the quantum channel constant,
which will serve as the term for the programming language in the following.
Before doing so, let us introduce the notion of quantum data as pattern and
pattern type. A quantum channel can be considered as a diagram consisting
of boxes, which represent quantum gates (unitary gates, free and initializa-
tion, and measurement, and wires), which connect the boxes . The wire in a
diagram represents a quantum state space (analogous to C∗-algebra), which
is represented by an ensemble of qubits called the pattern of the qubit. The
notion of the pattern (in Definition 3.1.1) describes the way how data of a
particular type is composed and controlled. Note that the definition depends
on the thing that the pattern is composed of.

Definition 3.1.1 (Pattern of something).

(Pattern) p, pa, pb ::= ∗ | w | 〈pa, pb〉

wherew refers to the something that particular pattern depends on and 〈pa, pb〉
represents a pair consisting of patterns pa and pb. For example, for the pat-
tern of wire, w in the definition should be a wire.

There is a type of qubit in a programming language, and quantum data
is represented as a variable of type qubit. We assume that there is an infinite
denumerable set of variables, or names for wire, as W = w,w1, w2, . . .. Then,
the pattern of the qubit is represented as a pattern of variables of type qubit
within the language. To formulate it formally, we first define a particular
instance of pattern for quantum types as in Definition 3.1.2. Then, from the
relation of the pattern type and the pattern of variable in Definition 3.1.3, the
pattern qubit p can be characterized by p ⊨ P derivable by definition for some
pattern type P .

Definition 3.1.2 (Type of pattern).

(PType) P, Pa, Pb ::= I | qubit | Pa ⊗ Pb
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Definition 3.1.3 (Pattern type relation of the patter of variable ⊨).

∗ ⊨ I w ⊨ qubit
pa ⊨ Pa pb ⊨ Pb
〈pa, pb〉 ⊨ Pa ⊗ Pb

Next, we define the algebraic structure of the quantum channel. Similar
to the signature of quantum computation in the paper of Sam Staton [70], we
define an algebraic structure of quantum channel as in Definition 3.1.4. Each
quantum channel object has the form among ϵ(V ), an empty quantum channel
with qubits in V ; U(V ) Q, application of a unitary operator U over the qubits
V , passed through the rest of the quantum channel Q; init b v Q, allocation
of a qubit of name v initialized by the boolean value b, passed through the
quantum channelQ; meas v Q1 Q2, measurement of the qubit v passed through
the quantum channel either Q1 or Q2 depending on the measurement result;
and free v Q, deallocation of a qubit v, passed through the quantum channel
Q. Note that the qubit v is not discarded in the measurement case, and to
discard a qubit, one needs to free the qubit explicitly.

Definition 3.1.4 (Algebraic structure of quantum computation).

(Quantum channel)

Q,Q1, Q2 ::= ϵ(V ) | U(
−→
V ) Q | init b v Q | meas v Q1 Q2 | free v Q

where v, b, V and
−→
V respectively refer to variables, booleans, finite sets of

variables, and a list of variables (whose element is unique in the list). A list
whose element is unique is sometimes considered a set in the sequel.

Although Definition 3.1.4 represents all quantum channels that we need
(which will become more apparent when we compare quantum channel and
the operator algebra from Sam Staton), the definition, without any condi-
tions on variables, generates erroneous quantum channel objects. For exam-
ple, H[v1] ϵ(∅) is not a good quantum channel since the qubit v1, to which
the Hadamard gate H is applied, is disappeared in the output. To avoid mal-
formed quantum channels in general, we define valid quantum channels based
on the state of the quantum channel. The state of a quantum channel is defined
as a ternary relation on a quantum channel object, a set of variables, and a
branching set of variables whose derivation rules are found in Definition 3.1.5.
Here, a branching set of variables means a pattern of variables.

Definition 3.1.5 (State of quantum channel).

st(ϵ(V ), V, V )

−→
VU ⊆ V st(Q, V, c)

st(U(
−→
VU ) Q, V, c)

v 6∈ V st(Q, V ∪ {v}, c)
st(init b v Q, V, c)

v ∈ V st(Q1, V, ca) st(Q2, V, cb)

st(meas v Q1 Q2, V, [ca, cb])

v ∈ V st(Q, V \ {v}, c)
st(free v Q, V, c)
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We say that a quantum channel Q is valid (i.e. valid(Q)) if st(Q,Vi, co) is
derivable for some set of variables Vi and some pattern of the set of variables co.
Furthermore, given the derivation of st(Q,Vi, co), we call the set of variables
Vi the input of Q (i.e. in(Q)) and the pattern of the set of variables co the
output of Q (i.e. out(Q)). In addition, we let all(Q) be the set of all variables
that appear in the quantum channel object Q.

The state of a quantum channel is a partial function that maps a valid
quantum channel object to the pair (in(Q), out(Q)), in other words, there
is a unique derivation of state for the valid quantum channel. Every empty
quantum channel object ϵ(V ) is valid and mapped to the pair (V, V ). The
application of unitary operation −→VU , assuming that Q is mapped to the pair
(V, c), is mapped to the pair (V, c) whenever the variables to which it is applied
the unitary operation is a subset of the input V . Similarly, assuming that Q is
mapped to the pair (V ∪{v}, c), the allocation of a qubit init b v Q is mapped
to (V, c) whenever the new variable v does not already exist in the input V .
A disallocation free v Q is mapped to the pair (V, c) whenever the variable to
be disallocated v does exist in the input V and Q is mapped to (V \ {v}, c).
Lastly, the measurement meas v Q1 Q2 is mapped to the pair (V, [ca, cb]) where
Q1 and Q2 are mapped to (V, ca) and (V, cb), respectively, and the measured
qubit v is in the input V .

On top of the validity of quantum channel objects, we would like to describe
a relation between quantum channel objects since some quantum channels have
the same structure. In specific, two quantum channel objects have the same
structure if they become syntactically exact after removing all variables in
both of them. However, two quantum channels with the same structure can
primarily be different by applying the operators to different variables or sets
of variables. We give a precise meaning of equality of two quantum channels
up to a bijection between the input variables of the quantum channels in
Definition 3.1.6. Note that the equivalence of quantum channels implies that
they have the same size, or cardinality, as the input variables.

Definition 3.1.6 (Equality of the quantum channel, ∼f ). Two quantum chan-
nel objects Q1 and Q2 are equal up to a bijection function f whenever Q1 ∼f
Q2 can be derived by the following rules.

ϵ(f(V )) ∼f ϵ(V )

Q1 ∼f Q2

U(f(
−→
V )) Q1 ∼f U(

−→
V ) Q2

Q1 ∼f∪{v2 7→v1} Q2 (v1,−), (−, v2) 6∈ f
init b v1 Q1 ∼f init b v2 Q2

Q1 ∼f\{v 7→f(v)} Q2

free f(v) Q1 ∼f free v Q2

Q1 ∼f Q3 Q2 ∼f Q4

meas f(v) Q1 Q2 ∼f meas v Q3 Q4
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where f in the relation Q1 ∼f Q2 refers to a bijective function from the input
of Q1 to the input of Q2. In particular, we say that quantum channel objects
Q1 and Q2 are equal whenever Q1 ∼id Q2.

Two empty quantum channel objects are equal up to a bijection f when-
ever the variables of one of them are obtained by applying f to the variables
of the other. For the unitary operator application, the list of variables ap-
plied to the unitary operator in one of the quantum channel objects needs to
be the point-wise application of the bijection to the variables applied to the
same unitary operation in the other quantum channel object. Next, for the
allocation of a new qubit, each quantum channel object can name the new
qubit by a variable that does not appear in the input of the remaining part,
while the remaining parts of both quantum channel objects must be equal up
to a bijection extended with the pair of the variables for the new qubit. For
the deallocation of a qubit, the discarded qubit must be the same up to the
bijection, and the remaining parts of both quantum channel objects must be
equal up to the bijection reduced by the pair of the variables of the discarded
qubit. Finally, for the measurement, the measured qubit needs to be equal up
to the bijection, and both remaining parts in the corresponding position from
both quantum channel objects must be equal up to the bijection.

One can notice that the equality over a bijection is based on the equiv-
alence over the renaming of new qubits in the operation of a qubit alloca-
tion. A concrete example of equal quantum channels is given by variable
renaming operation in Definition 3.1.7. The renaming operation applies a
renaming function σ, a bijection over the set of all variables, to each vari-
able in a quantum channel object. Note that not all pairs of equal quan-
tum channel objects can be represented as a pair of a quantum channel ob-
ject and a renaming operation applied to it since the same variable can be
used for two qubit allocations seperated by a disallocation of the qubit (e.g.
init tt v (free v (init tt v ϵ({v}))) ∼ init tt v (free v (init tt u ϵ({u})))).
However, conversely, lemma 3.1.2 shows that the quantum channel object ob-
tained by renaming is equal to the original quantum channel object up to the
renaming function over the input variables.

Definition 3.1.7 (Renaming variables in quantum channel object). Given a
renaming function σ, which is a bijection over the set of all variables, we define
the renaming of quantum channel as follows:

σ(ϵ(W )) = ϵ(σ(W ))

σ(U(
−→
V ) Q) = U(σ(

−→
V )) σ(Q)

σ(init b v Q) = init b σ(v) σ(Q)

σ(free v Q) = free σ(v) σ(Q)

σ(meas v Q1 Q2) = meas σ(v) σ(Q1) σ(Q2).
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Lemma3.1.1. The followings hold: for any quantum channel objectQ and any re-
naming functionσ, st(Q,V, co) iff st(σ(Q), σ(V ), σ(co)) and, hence, out(σ(Q))i =

σ(out(Q)i) since σ(co)i = σ((co)i).

Proof. It can be shown by the induction on Q.
IfQ = ϵ(V ), then st(ϵ(V ), V, V ) and st(ϵ(σ(V )), σ(V ), σ(V )) are theunique

states related the quantum channel objects ϵ(V ) and ϵ(σ(V )). Therefore, we
can derive that st(ϵ(V ), V, V ) iff st(ϵ(σ(V )), σ(V ), σ(V )).

If Q = U(
−→
VU ) Q

′, then by induction hypothesis, we have that st(Q′, V, co)

iff st(σ(Q′), σ(V ), σ(co)) for any set V and any tree of sets co. Moreover,−→
VU ⊆ V iff σ(

−→
VU ) ⊆ σ(V ) since σ is a bijection. Therefore, we can derive

that st(U(
−→
VU ) Q

′, V, co) iff st(U(σ(
−→
VU )) σ(Q

′), σ(V ), σ(co)).
IfQ = init b v Q′, then by induction hypothesis, we have that st(Q′, V ′, co)

iff st(σ(Q′), σ(V ′), σ(co)) for any set V ′ and any tree of sets co. Note that v ∈
V ′ iff σ(v) ∈ σ(V ′) and v 6∈ V iff σ(v) 6∈ σ(V ) for any set V . Therefore, we can
conclude that st(init b v Q′, V ′ \ {v}, co) iff st(init b σ(v) σ(Q′), σ(V ′), σ(co))

either v ∈ V ′ or not.
IfQ = meas v Q1Q2, thenby induction hypotheses, wehave that st(Q1, V, ca)

iff st(σ(Q1), σ(V ), σ(ca)) and that st(Q2, V, cb) iff st(σ(Q2), σ(V ), σ(cb)). More-
over, we have that v ∈ V iff σ(v) ∈ σ(V ) and that σ([ca, cb]) = [σ(ca), σ(cb)].
Therefore, we can derive that st(meas v Q1 Q2, V, [ca, cb]) iff
st(meas σ(v) σ(Q1) σ(Q2), σ(V ), σ([ca, cb])).

If Q = free v Q′, then by induction hypothesis, we have that st(Q′, V ′, co)

iff st(σ(Q′), σ(V ′), σ(co)). Since σ is a bijection, we hvae that v ∈ V iff σ(v) ∈
σ(V ) for any set V . Therefore, we can derive that st(free v Q′, V ′ ∪ {v}, co) iff
st(free σ(v) σ(Q′), σ(V ′ ∪ {v}), σ(co)) since σ(V ′ ∪ {v}) = σ(V ′)∪ {σ(v)}.

Lemma 3.1.2. For any renaming function σ and a valid quantum channel object
Q, σ(Q) ∼σ|in(Q) Q.

Proof. Since Q is a valid quantum channel object, st(Q,V, co) is derivable for
some V and co. We use the induction on the derivation of st(Q,V, co).

IfQ = ϵ(V ), then it follows that σ(Q) = ϵ(σ(V )) and, hence, σ(Q) ∼σ|V Q.
If Q = U(

−→
VU ) Q

′, then σ(Q) = U(σ(
−→
VU )) σ(Q

′). By induction hypothesis,
we have that σ(Q′) ∼σ|V Q′. Therefore, we can derive that σ(Q) ∼σ|V Q.

If Q = init b v Q′, then σ(Q) = init b σ(v) σ(Q′). By induction hypothesis,
we have that σ(Q′) ∼σ|(V ∪{v}) Q

′ and v 6∈ V . Therefore, we can derive that
σ(Q) ∼σ|V Q.

If Q = meas v Q1 Q2, then σ(Q) = meas σ(v) σ(Q1) σ(Q2). By induction
hypotheses, we have that σ(Q1) ∼σ|V Q1 and that σ(Q2) ∼σ|V Q2. Therefore,
we can derive that σ(Q) ∼σ|V Q.

If Q = free v Q′, then σ(Q) = free σ(v) σ(Q′). By induction hypothesis,
we hvae that σ(Q′) ∼σ|(V \{v}) Q

′ and v ∈ V . Therefore, we can derive that
σ(Q) ∼σ|V Q.
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Comparison of quantum channel with the algebraic structure of quantum com-
putation by Sam Staton
The quantum channel in Definition 3.1.4 has a nice relationship with the first-
order algebraic structure of quantum computation by Sam Staton [70]. Specif-
ically, there are translation functions from one to the other in both directions.
First, there is a map from the quantum channel object to the algebraic struc-
ture in Definition 2.10.2. Definition 3.1.8 shows how to transform a quantum
channel object into an operator from the algebraic structure.

Definition 3.1.8 (Transformation rules from the quantum channel to the op-
erator algebra of Sam Staton).

tϵ(V ) = .

tU(V ) Q = applyU (
−→
V ,
−→
V .tQ)

tinit tt v Q = new(v.tQ)

tinit ff v Q = new(v.(applyX(v, v.tQ)))
tmeas v Q1 Q2 = meas(v, (new(v.tQ1)), (new(v.(applyX(v.tQ2)))))

tfree v Q = meas(v,Q,Q)

where tQ, for Q being a quantum channel object, represents the operator
transformed from Q.

It is straightforward to check that the transformation rules applied to a
valid quantum channel Q satisfy that ∅ | in(Q) ` tQ . Next, for the other
direction, the following transformation rules in Definition 3.1.9 generate a
quantum channel object from an operator from Definition 2.10.2.

Definition 3.1.9 (Transformation rules from the operator algebra of Sam Sta-
ton to the quantum channel).

Q∅ | ∆ ` . = ϵ(∆)

Q∅ | ∆,a1,...,an ` applyU (−→a ,
−→
b .t)

= U(a) σ(Q∅ | ∆,b1,...,bn `t, b, a)

Q∅ | ∆ ` new(a.t) = init tt a Q∅ | ∆,a ` t

Q∅ | ∆,a ` meas(a,t,u) = meas a (free a Q∅ | ∆ ` t) (free a Q∅ | ∆ ` u)

where a and b are lists of qubit names of size n; σ(Qt, b, a) refers to the quan-
tum channel obtained from Qt by substituting the qubit names in b by the
qubit names a in the corresponding position in the vector; andQt represents
the quantum channel for the operators t.

It is straightforward to check that for the operator term ∅ | ∆ ` t, we
can derive st(Q∅ | ∆`t,∆, co) for some tree of sets co. Note that the quan-
tum channel object in the transformation rule of apply contains a renaming
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operator which turns the variables in b to the variables in a since renaming
variables after the application is not allowed in the quantum channel. This
implies that different terms in the operator algebra may be transformed into
the same quantum channel.

Based on the translation, the equation theory proposed by Sam Sta-
ton 2.10.4 can be translated into an equation theory of quantum channel
objects (Definition 3.1.10) based on the above translation.

Definition 3.1.10 (Algebraic theory of quantum channels). The axioms in Def-
inition 2.10.4 is translated into the following list of equations.

1. X(a)(meas a (free a Q1) (free a Q2)) = meas a (free a Q2) (free a Q1)

2.
meas a (free a (U(X) Q1)) (free a (V (X) Q2))

= D(U, V )(a :: X) (meas a (free a Q1) (free a Q2))

3. U(X) freen X Q = freen X Q

4. init tt a (meas a (free a Q1) (free a Q2)) = Q1

5. init tt a (D(U, V )(a :: X) Q) = U(X) (init tt a Q)

6. swap(a :: b) Q = σ(Q, a :: b, b :: a)

7. I(V ) Q = Q

8. (UV )(X) Q = U(X) V (X) Q

9. (U ⊗ V )(X ++Y ) Q = U(X) V (Y ) Q

Extension operation of quantum channel
We now introduce the extension operation of the quantum channel object. It
introduces new variables to the input and output of a quantum channel object
(in Definition 3.1.11). Extend operation is used in the operational semantics
of the language in Section 3.3. Specifically, it provides a way to define the
covariant composition of multiple terms in the structural reduction rules.

Based on the relationship with the operator algebra of Sam Staton, each
quantum channel object is a morphism in the category of C∗-algebras. This
category is equipped with two binary operators ⊗, which is a tensor prod-
uct of the spaces of two C∗-algebras, and +, which is the coproduct repre-
senting the non-deterministic choice of operators. In terms of category the-
ory, each operator forms a bifunctor over the category of C∗-algebras. In
this setting, extend operation corresponds to the bi-functoriality of ⊗ where
extend(Q,V ) = Q⊗ idV : in(Q)⊗ V → out(Q)⊗ V which satisfies:

• preservation of identity extend(ϵ(V0), V ) = ϵ(V0 ∪ V ) (where ϵ(V ) is
interpreted as the identity morphism over the C∗-algebra of dimension
2|V |); and
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• preservation of composition extend(f◦g, V ) = extend(f, V )◦extend(g, V ).

Note that the output of a quantum channel object could be a coproduct of
multiple C∗-algebras, which implies that the composition of quantum channel
objects may require a coproduct of quantum channel objects. Although, in
full generality, the extend operator should also be defined over the coproduct
of quantum channel objects, we define the extend operator for only quantum
channel objects without coproduct in its input as in Definition 3.1.11.

Moreover, one can notice that the Definition 3.1.11 assumes the distribu-
tivity of ⊗ over + meaning that (

∑
iAi) ⊗ B =

∑
i(Ai ⊗ B). To explain

why, the output of an extended quantum channel object extend(f, V ), for
F : V0 →

∑
co, has the form of (

∑
co) ⊗ V while by the definition of extend

creates a quantum channel with output of the form
∑

i((co)i⊗V ) which is the
sum of the tensor product of each space of co and V . In fact, once we have
this structure of a quantum channel object, we can intuitively explain why we
may assume such equality of quantum spaces.

Continuing the comparison with the operator algebra, a quantum chan-
nel object can be considered a 3-dimension object whose axes correspond to
the Hilbert space with operator ⊗, the non-deterministic choice from the co-
product + and the sequence of the operators generated by the composition of
operators. In particular, the two operators ⊗ and + create a 2-dimensional
quantum space that represents the form of input and output of a quantum
channel object. In this setting, there can be various ways to define a quantum
space depending on the arrangement of the operators in the composition. The
distributivity gives a way to equate all these different ways of representing the
same space.

Definition 3.1.11 (Addition of unused wires). We define a function extend
taking a quantum channel and a set of wire names that adds them as unused
wires to the quantum channel.

extend(ϵ(V ), Vt) = ϵ(V ∪ Vt)

extend(U(
−→
VU ) Q1, Vt) = U(

−→
VU ) extend(Q1, Vt)

extend(init b v Q1, Vt) = init b v extend(Q1, Vt)

extend(free v Q1, Vt) = free v extend(Q1, Vt)

extend(meas v Q1 Q2, Vt) = meas v (extend(Q1, Vt)) (extend(Q2, Vt))

Lemma 3.1.3. The following holds: for any quantum channel object Q and any
sets of variablesW1 andW2, extend(Q,W1∪W2) = extend(extend(Q,W1),W2).

Proof. By easy structural induction on Q.

Lemma3.1.4. Provided thatall(Q)∩W = ∅, ifQ is valid then so is extend(Q,W ).
In particular, in this case, st(Q,V, co) if and only if st(extend(Q,W ), V ∪W, co ∪
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W ), where (co ∪ W ) refers to the tree of variables whose leaf is the union of
the leaf of co and W , and all(extend(Q,W )) = all(Q) ∪W and shape(Q) =

shape(extend(Q,W )).

Proof. First of all, note that the extned operation does not change the shape
so it is straightforward that shape(Q) = shape(extend(Q,W )). For other
propositions, we use the proof by induction on Q.

• Q = ϵ(V ):

First, we have that extend(ϵ(V ),W ) = ϵ(V ∪W ). It follows that st(ϵ(V ∪
W ), V ∪W,V ∪W ) and st(ϵ(V ), V, V ). Moreover, all(ϵ(V ))∪W = V ∪
W = all(ϵ(V ∪W )).

• Q = U(V⃗U ) Q
′:

By definition extend(U(
−→
VU ) Q

′,W ) = U(
−→
VU ) extend(Q′,W ).

Note that all(Q) ∩W = ∅ implies that all(Q′) ∩W = ∅. Therefore, by
induction hypothesis, st(Q′, V, co) iff st(extend(Q′,W ), V ∪W, co ∪W )

where c′o and all(extend(Q′,W )) = all(Q′) ∪W .

Moreover, since all(Q) ∩W = ∅,
−→
VU ⊆ V iff

−→
VU ⊆ V ∪W . Therefore,

we can obtain that st(Q,V, co) iff st(extend(Q,W ), V ∪W, co ∪W ).

In addition, sinceall(Q) = all(Q′) andall(extend(Q,W )) = all(extend(Q′,W )),
by inductionhypothesis, we canderive thatall(extend(Q,W )) = all(Q)∪
W .

• Q = init b w Q′:

By definition, extend(init b w Q′,W ) = init b w extend(Q′,W ).

Note that all(Q) ∩W = ∅ implies that all(Q′) ∩W = ∅ since all(Q′) ⊆
all(Q). Therefore, by induction hypothesis, we have that st(Q′, V ′, co)

iff st(extend(Q′,W ), V ′∪W, co∪W ) andall(extend(Q′,W )) = all(Q′)∪
W .

Moreover, since all(Q)∩W = ∅, it follows that w 6∈ V ′ iff w 6∈ (V ′ ∪W ).
Therefore, it follows that st(Q,V ′ \ {w}, co) iff st(extend(Q,W ), (V ′ \
{w}) ∪W, co). Note that (V ′ \ {w}) ∪W = V ′ ∪W \ {w}.

In addition, since all(Q) = all(Q′) ∪ {w} and all(extend(Q,W )) =

all(extend(Q′,W )) ∪ {w}, by induction hypothesis, we can derive that
all(extend(Q,W )) = all(Q) ∪W .

• Q = free w Q′:

By definition, extend(free w Q′) = free w extend(Q′,W ).

Note that all(Q) ∩W = ∅ implies that all(Q′) ∩W = ∅ since all(Q′) ⊆
all(Q). Therefore, by induction hypothesis, we have that st(Q′, V ′, co)
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iff st(extend(Q′,W ), V ′∪W, co∪W ) andall(extend(Q′,W )) = all(Q′)∪
W .

Moreover, since all(Q)∩W = ∅, it follows that w ∈ V ′ iff w ∈ (V ′ ∪W ).
Therefore, it follows that st(Q,V ′ ∪ {w}, co) iff st(extend(Q,W ), (V ′ ∪
{w}) ∪W, co).

In addition, since all(Q) = all(Q′) ∪ {w} and all(extend(Q,W )) =

all(extend(Q′,W )) ∪ {w}, by induction hypothesis, we can derive that
all(extend(Q,W )) = all(Q) ∪W .

• Q = meas w Q1 Q2:

By definition,

extend(meas w Q1 Q2,W ) = meas w extend(Q1,W ) extend(Q2,W ).

Note that all(Q) ∩W = ∅ implies that all(Q1) ∩W = all(Q2) ∩W =

∅ since all(Q1),all(Q2) ⊆ all(Q). Therefore, by induction hypothesis,
we have that st(Q1, V1, ca) iff st(extend(Q1,W ), V1 ∪W, ca ∪W ) (and,
similarly, that st(Q2, V2, cb) iff st(extend(Q2,W ), V2 ∪W, cb ∪W )) and
all(extend(Q1,W )) = all(Q1)∪W and all(extend(Q2,W )) = all(Q2)∪
W .

Moreover, since all(Q) ∩W = ∅, it follows that w ∈ V1 iff w ∈ (V1 ∪W )

and that w ∈ V2 iff w ∈ (V2 ∪W ). Similarly, we can derive that V1 =

V2 = V iff V1 ∪W = V2 ∪W = V ∪W , for some V . Therefore, it follows
that st(Q,V, [ca, cb]) iff st(extend(Q,W ), V ∪W, [ca, cb]∪W ). Note that
[ca, cb] ∪W = [ca ∪W, cb ∪W ].

In addition, since all(Q) = all(Q1) ∪ all(Q2) ∪ {w} and

all(extend(Q,W )) = all(extend(Q1,W ))∪ all(extend(Q2,W ))∪ {w}

by inductionhypotheses, we canderive thatall(extend(Q,W )) = all(Q)∪
W .

Quantum channel constant
Next, we define the quantum channel constant by padding the quantum chan-
nel object with a pattern, which is the tree of variables, and the term, which
is defined in the following subsection (Section 3.1.2). The quantum channel
constant is defined in Definition 3.1.12 as the smallest set of triple (p,Q,m)

closed under the construction rule in the definition. The definition can be
summarized as follows: first, the quantum channel object Q should be valid;
second, the support of pattern p (meaning the set of variables appearing in
p) should be equal to in(Q); and, third, the tree shapes of out(Q) and the
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term m should match and, in each branch of the tree, all variables output of
Q should appear at the same branch of the term as a free variable.

The third condition is a necessary condition for the linearity of the quan-
tum variables while it does not limit the term from using the variables several
times. The linearity of quantum variables in the term will be provided by the
type system presented in Section 3.2. Moreover, the condition allows that the
term contains variables (i.e., classical variables) that are not present in the
output of the quantum channel object.

Definition 3.1.12 (Quantum channel constant). A quantum channel constant
is defined as the triple of a pattern, a quantum channel object, and a term
derived from the following construction rules.

supp(p) ⊆ FV(M)

qcc(p, ϵ(supp(p)), M)

valid(Q′) supp(p′) = in(Q′) qcc(p, Q, m)

qcc(p′, Q′, m)

valid(meas v Q1 Q2) supp(p′) = in(meas v Q1 Q2) qcc(p, Q1, ma) qcc(p, Q2, mb)

qcc(p, meas v Q1 Q2, [ma,mb])

where Q′ is either U(V ) Q, init b v Q, or free v Q and supp(p) refers to the
support of pattern p. The definition of terms (i.e. M , m, ma, andmb) is given
below.

We consider quantumchannel constantsmodulo alpha-renaming: in (p,Q,m),
the pattern p is a binding, as are the init operations insideQ. Moreover, we ig-
nore the predicate symbol qcc of a derivable quantum channel constant and
represent it as just (−,−,−) unless it is necessary. Therefore, when we write
(p,Q,m) in the rest of the paper, we mean: “The quantum channel constant
with (p,Q,m) as a representative element”.

In quantum circuit description languages like QWire and Quipper, quan-
tum circuit constants are first-class objects of type Circ(−,−) on the side of
the classical host. In the case of a quantum circuit, the patterns in the quan-
tum circuit constant give parameters for the Circ type constructor. Similarly,
we let QChan(−,−) be the type for the quantum channel constants. More-
over, similar to the quantum circuit constant, the quantum channel constant
is that the quantum channel constant includes a term. This imposes extra
structures on quantum channel constants–quantum channel constants can be
evaluated to an equivalent quantum channel constant whose term is a value.
However, in contrast to the quantum circuit constant, the term in a quantum
channel constant can have any type, meaning that type of quantum channel
QChan(A,B) can take any type B while A needs to be a pattern type of qubit.

Toward the quantum channel operators–box and unbox
Lastly, we introduce quantum channel operators for the construction of quan-
tum channel objects and the lifting–box and unbox–which will be formally
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defined later in the thesis. Box operator translates a program into a corre-
sponding quantum channel constant. This operation is based on the inter-
pretation of the program as a quantum channel, where the program creates a
quantum channel while being evaluated. In specific, all functions from a pat-
tern of the qubit to any type have a corresponding quantum channel constant.
The type system guarantees that the box operator is applied to functions that
satisfy the constraint.

Then, unbox operator is to buffer a quantum channel constant to the
channel from the classical host to the quantum co-processor. Remembering
that a quantum channel constant consists of a pattern of the qubit, quantum
channel object, and a term, unbox operator evaluates the term for a given
instance of the pattern while extending the quantum channel object.

In fact, box and unbox can be considered as maps between the terms
and quantum channel constants. However, since the definitions of quantum
channel constant and term depend on each other, one needs to distinguish
the depth of quantum channel constant (i.e., qcd), which is defined formally
in Section 3.2. In this case, the box operator takes a term of the quantum
channel depth n and outputs a quantum channel constant of depth n+1 while
unbox takes a quantum channel constant of depth n + 1 and outputs a term
of depth n.

A natural question is whether the box and the unbox operators are inverses.
Given that unbox has a side effect that pushes quantum channel objects to
quantum co-processor, the box and the unbox operators are not inverse to each
other except for the case where unbox has nothing to push. However, when
we model the side effect in semantics, we may show that these two operators
are inverse over the equivalence of the semantics .

3.1.2 . Definition of the language
Now, we define the syntax of the language Proto-Quipper-L, which is about

how to construct the term in the language. Compared to the previous Proto-
Quipper languages, there are two main differences in Proto-Quipper-L.

Firstly, as mentioned in the previous section, the quantum channel con-
stant will serve as a constant term like the constant terms ∗, tt and ff that
does not depend on anything. However, since a quantum channel constant
includes a term inside, it can also be considered as encapsulating a term in-
side a constant. Thus, it is similar to the abstraction in λ-calculus while it
requires special constant operators boxP and unbox for the abstraction and
application. We specify this relationship in more detail in the type systems in
Section 3.2.

Secondly, since the quantum channel has a non-trivial control flow, the
terms at the leaf of each branch of the control flow can have different forms,
although they share the same type (provided that the term is well-typed).
To incorporate this branching structure in the quantum channel constant, we
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extend the language with the branching constructor ([−,−]). A term of the
form [M,N ] represents a computation that has probabilistically branched, and
that is performing either M or N . Note that the corresponding probability is
not kept in the term, however.

This new structure is related to the if-then-else statement, and the if-then-
else statements, the branching term, and the quantum channel constant rely
on the same coproduct structure in the categorical model (Section 4). Now,
the formal definition of the terms is given in Definition 3.1.13

Definition 3.1.13 (Syntax of Proto-Quipper-L).

(Term)

M,Ma,Mb ::= x | ∗ | tt | ff | (p,Q,m) | λx.M | MaMb | 〈Ma,Mb〉 |
let 〈x, y〉 =Ma inMb | ifM thenMa elseMb |
boxP | unbox

(Branching term)

m,ma,mb ::= M | [ma,mb]

The constant ∗ stands for the unit term, while tt and ff stand for the
booleans true and false. The term (p,Q,m) represents the quantum channel
constant–p is a structured set of input wires of the quantum channel Q, m is
now a pattern of the term with the same structure with Q. The rest of the
constructors of the language are standard: abstraction, application, pair, let,
and conditional statements; and the quantum channel operators: boxP and
unbox. The index P in boxP stands for a pattern-type: by abuse of notation,
we omit it when not needed. Finally, branching terms are constructed using
terms and the branching constructor.

The terms are defined as the equivalence classes over the α-equivalence
meaning that two terms are equal if one is obtained by renaming closed vari-
ables of the other. To explain it, a variable in a term is free when it is not
bounded, or, more concretely, a set of free variables of a term can be defined
inductively as in Definition 3.1.14. Then the closed variables in a term are
defined as all variables which are no free variables.
Definition 3.1.14 (Free variables in terms). Free variables of a term are de-
fined inductively as follows.

FV(x) = {x} FV(∗) = FV(tt) = FV(ff) = FV(boxP ) = FV(unbox) = ∅

FV(let 〈x, y〉 =Ma inMb) = FV(Ma) ∪ (FV(Mb) \ {x, y}) FV(λx.M) = FV(M) \ {x}

FV(MaMb) = FV(〈Ma,Mb〉) = FV(Ma) ∪ FV(Mb) FV([ma,mb]) = FV(ma) ∪ FV(mb)

FV(ifM thenMa elseMb) = FV(M) ∪ FV(Ma) ∪ FV(Mb) FV((p,Q,m)) = ∪i(FV(mi) \ out(Q)i)

Next, given a renaming function σ and a term m, σ(m) renames all vari-
ables in m by σ (Definition 3.1.15).
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Definition 3.1.15 (Renaming variables in term).

σ(x) = σ(x) σ(∗) = ∗ σ(tt) = tt σ(ff) = ff σ(unbox) = unbox σ(boxP ) = boxP

σ(let 〈x, y〉 =Ma inMb) = let 〈σ(x), σ(y)〉 = σ(Ma) in σ(Mb) σ(λx.M) = λ(σ(x)).(σ(M))

σ(MaMb) = σ(Ma)σ(Mb) σ(〈Ma,Mb〉) = 〈σ(Ma), σ(Mb)〉 σ([ma,mb]) = [σ(ma), σ(mb)]

σ(ifM thenMa elseMb) = if σ(M) then σ(Ma) else σ(Mb) σ((p,Q,m)) = (σ(p), σ(Q), σ(m))

where σ(Q) is defined in Definition 3.1.7.

Lemma 3.1.5. The following holds: σ(FV(ui)) = FV(σ(u)i).

Next, we define value as a subset of terms in Definition 3.1.16. Values
are the terms that do not induce computation in the sense that there is not
any further reduction of the values in operational semantics (Lemma 3.4.6 in
Section 3.3). Moreover, in terms of categorical semantics, each morphism in
the Kleisli category corresponding to a value satisfies the property that it can
be decomposed by a morphism in the original category and the unit of the
Kleisli category (Lemme 5.3.1 in Section 5).

Definition 3.1.16 (Values of Proto-Quipper-L).

(Value) V, Va, Vb ::= x | ∗ | tt | ff | λx.M | 〈Va, Vb〉 |
(p,Q, v) | boxP | unbox | unbox(V )

(Branching value) v, va, vb ::= V | [va, vb]

The value consists of the variables, unit term, true and false boolean values,
quantum channel constants (whos term is value), abstraction, pair of values,
and quantum channel operators. Moreover, for non-trivial structures, values
are defined constructively as the branching term of two values. We prove that
the value corresponds to the term, which does not reduce by the operational
semantics in the progress lemma.

The following lemma states that the value is preserved under the substi-
tution of variables by values.

Lemma 3.1.6. If v and V ′ are values, then v[V ′/x] is a value.

Proof. Proof by induction on v.

• v = x: since V ′ is a value, v[V ′/x] = V ′ is a value.

• v = y: v[V ′/x] = v is a value.

• v = ∗, tt,ff,box,unbox: v[V ′/x] = v is value.

• v = λx.M : v[V ′/x] = v is value.

• v = λy.M : v[V ′/x] = λy.M [V ′/x] is a value.
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• v = 〈Va, Vb〉: v[V ′/x] = 〈Va[V ′/x], Vb[V
′/x]〉 is a value since Va[V ′/x]

and Vb[V ′/x] are value by induction hypothesis.

• v = (p,Q, va): First, we let (p,Q, va)[V ′/x] = (p,Q, vb). In each branch
i, there are two case for substitution:

– if x ∈ out(Q)i, then (vb)i = (va)i[V
′/x] = (va)i, and

– if x 6∈ out(Q)i, then (vb)i = (va)i[V
′/x] is value by induction hy-

pothesis.

Therefore, vb and (p,Q, vb) are values.

• v = unbox(V ): It follows from the induction hypothesis that V [V ′/x] is
value. Therefore, v[V ′/x] = unbox(V [V ′/x]) is value.

• v = [va, vb]: By induction hypothesis, va[V ′/x] and vb[V ′/x] are values.
Therefore, v[V ′/x] = [va[V

′/x], vb[V
′/x]] is value.

Since we have a formal language, we can now represent quantum programs
that generate quantum channels. Note that the constants for unitary gates,
the new qubit allocation operator, and the measurement from the quantum
lambda calculus [63] are missing in our syntax. As in the case of Proto-
Quipper, they can be defined with the unbox operator and quantum channel
constants. For instance, we can construct a measurement operation inputting
a qubit and outputting a boolean (and the measured wire), graphically repre-
sented as follows:

meas ::= unbox

q, q

q

q

,
〈tt, q〉

〈ff, q〉

 . (3.1)

The tuple consists of a singleton wire name q, the quantum channel object
(meas q ϵ{q} ϵ{q}), and the branching term [〈tt, q〉, 〈ff, q〉]. Note that the
measurement operator we wrote here returns both a qubit and a boolean: we
could discard the qubit using a quantum channel constructor “free”. Similarly,
we also build the macros init(b) and free(x) which respectively allocates a new
qubit in state b and frees a qubit x

init(b) ::= unbox
(
∗, ∗ init b x x , x

)
free ::= unbox

(
q, q free q ∗ , ∗

)
.

(3.2)

On top of it, we define the following unitary operators. Note that the
unitary operator in the quantum channel object can be defined similarly to
the operator algebra of Sam Staton [70] as explained in Section 3.1.1.
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X(q) ::= unbox
(
q, q X[q] q , q

)
H(q) ::= unbox

(
q, q H[q] q , q

)
Z(q) ::= unbox

(
q, q Z[q] q , q

)
CNOT(q1, q2) ::= unbox

(
〈q1, q2〉, 〈q1, q2〉 CNOT[q1, q2] 〈q1, q2〉 , 〈q1, q2〉

)
(3.3)

Note that a variation of measurement that returns a Boolean instead of a
pair of a Boolean and a qubit (e.g., measurement in Sam Staton’s algebraic
language [70]) can be obtained by applying free to the qubit which has been
measured. We define a quantum channel for this variation in Equation (3.4).

measf ::= unbox

q, q
free q

free q

∗

∗

q

q

,
tt

ff

 . (3.4)

With these operators, we can define programs for non-trivial quantum
channels as shown in the following examples (Example 3.1.1 and Example 3.1.2).
Those two examples will be reappearing to illustrate the type system, opera-
tional semantics, and categorical semantics.

Example 3.1.1. The term exp in Example 1.1 can be now represented as a term
in the language.

let 〈b, vc〉 = meas(vc) in if b then 〈init(tt), free(vc)〉 else 〈vc, ∗〉

where the circuit constants meas, init and free are defined in the Equation 3.1 and
Equation 3.2.

Example 3.1.2. In this example, we show how to represent the quantum tele-
portation (which is introduced in background) in the language with the quantum
channel operators in Equation 3.1, Equation 3.2, Equation 3.3, and Equation 3.4.
It consists of three parts–one that creates a bell state (Bell) and the two processes
for Alice (A) and Bob (B).

First, the preparation of bell state is a function defined as follows:

(Bell) ::= CNOT〈H(init(tt)), init(tt)〉

Second, the processes for Alice and Bob is defined as follows:

(A) ::= λy.λx.(let 〈x, y〉 = CNOT(x, y) in 〈measf (H(x)),measf (y)〉)
(B) ::= λq.λxy.(let 〈x, y〉 = xy in Uxy)
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where
(Uxy) ::= if x then (if y thenX(Z(q)) else Z(q))

else (if y thenX(q) else q)

Then, teleportation is defined as the following term:

(tel) ::= let 〈y, q〉 = Bell in 〈A(y), B(q)〉.

3.2 . Type system

Type systems are used to decide well-formed terms in a quantum program-
ming language, for example, the terms satisfying the no-cloning property of
quantum mechanics. Since quantum data (i.e., wires) are linear, meaning that
a wire is used exactly once, while classical data, including boxed circuits, are
non-linear, previous works [56, 55, 47, 53] use linear/non-linear type systems
to encompass both quantum and classical data types. For the same reason,
we define a linear/non-linear type system for Proto-Quipper-L.

The type system is defined the same way as the other linear/non-linear
type systems for quantum programming language. On top of it, for the quan-
tum channel constant, we define the type QChan(P,A) which is parameterized
by a pattern type P and a type A. Next, we extend typing judgment for the
branching term while allowing each term in the branching term to take the
same type.

Now, let us begin to introduce the type system by giving the definition
type in Definition 3.2.1. Types for the language consist in constant types I,
bool, qubit; the type of quantum channels QChan(P,A) with input of type P
and output of type A; the function type Aa ⊸ Ab; the type for pairs Aa⊗Ab;
and the classical type !A. The bang constructor !A indicates its instances are
duplicable and deletable.

Definition 3.2.1 (Definition of type).

(Type) A,Aa, Ab ::= I | bool | qubit | QChan(P,A)
| Aa ⊸ Ab | Aa ⊗Ab | !A

where P refers to the type of patterns, that is, first-order types constructed
from constant types and tensors.

Although quantum channels are first-class data, they can contain any term
inside. Since a term includes quantum channels, a term can have a finite depth
of the quantum channel, what we call the nesting depth of the QChan, which
is defined in Definition 3.2.2. Then, all types can be indexed by the nesting
depth of the QChan and this index is used in the induction on the type.
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Definition 3.2.2 (Nesting QChan depth of type).

qcd(I) = qcd(bool) = qcd(qubit) = 0

qcd(Aa) = x qcd(Ab) = y

qcd(Aa ⊸ Ab | Aa ⊗Ab) = max(x, y)

qcd(A) = x

qcd(QChan(P,A)) = x+ 1

where x and y are integers andmax(x, y) takes the max of the two.

Next, since a term can contain unbounded variables, type judgment re-
quires typing context that assigns types to the variables. Conventional typing
context is a list of pairs that correspond variables to type. However, since
the branching term can contain different unbounded variables, the typing
context also needs to be branching. The typing context for branching and
non-branching terms is formally defined in Definition 3.2.3.

Definition 3.2.3 (Typing context and branching typing context).

(Non-branching typing context) Γ,Γa,Γb ::= (xl : Al)l∈L

(Branching typing context) γ, γa, γb ::= Γ | γa × γb

where (xl : Al)l∈L represents the list of pairs (xl : Al) indexed by L and
the product γa × γb represents the typing context for the branching term. All
variables appearing in each non-branching typing context are assumed to be
distinct. Also, note that each list is not ordered in the typing context.

We let the composition Γa,Γb of typing contexts Γa and Γb by comma ,
refer to the disjoint union of typing contexts. Then, the non-branching typing
context is equally represented as the composition of the pairs of a variable
and a type by comma , as follows:

Γ = (xl1 : Al1), . . . , (xlk : Alk).

For convenience, we divide typing context into two parts: one consists of
strictly linear data, whose types do not start with !, and the other contains
exponential data, whose types start with !. In the sequel, we let Q and !∆ refer
to strictly linear context and exponential context, respectively. Moreover, we
consider a non-branching typing context Γ a disjoint union of strictly linear
typing context Q and exponential typing context !∆, represented as Γ = !∆, Q.
Also, for simplicity, we let TCQ(X) refer to (xi : qubit)xi∈X , meaning the
quantum context of variables X.

Next, we define a relation called type judgment over the typing context,
term, and type, as in Definition 3.2.4.

Definition 3.2.4 (Type judgement).

(Type judgement) Γ `M : A

(Branching type judgement) γ ` m : A
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A type judgment is true if, and only if, it is derivable from the type in-
ference rules. For the quantum channel constants to be valid, it needs to be
checked that the quantum channel is well defined and each term in the branch-
ing term has the same type under the proper context. For this reason, we
define a relation called vBind over the exponential type context, the output of
the quantum channel, branching terms, and type as in Definition 3.2.5. Intu-
itively, vBind implies that, first, the output of quantum channel and branching
term share the same shape; second, for each branch, the output of quantum
channel should be treated as linear variables; and, third, the term in each
branch admits the given type within the context consists of the exponential
context and the qubits from the output of the quantum channel.

Definition 3.2.5 (Validity of binding, vBind).

Q ∩ FV(!∆) = ∅ !∆, TCQ(Q) `M : A

vBind(!∆, Q,M,A)
(vBindnb)

vBind(!∆, ca,ma, A) vBind(!∆, cb,mb, A)

vBind(!∆, [ca, cb], [ma,mb], A)
(vBindb)

where FV(!∆) refer to the set of free variables inM and the names of variables
in the context !∆.

Next, the typing derivation rules are defined below in Definition 3.2.6.

Definition 3.2.6 (Type derivation rules).

!∆, (x : A) ` x : A
(var)

!∆, Q `M : !A

!∆, Q `M : A
(d)

!∆ ` V : A V is value
!∆ ` V : !A

(p)

(I)
!∆ ` ∗ : I

(tt)
!∆ ` tt : bool

(ff)
!∆ ` ff : bool

!∆, Q, (x : Aa) `M : Ab
(⊸I)

!∆, Q ` λx.M : Aa ⊸ Ab

!∆, Qa `Ma : Aa ⊸ Ab !∆, Qb `Mb : Aa
(⊸E)

!∆, Qa, Qb `MaMb : Ab

!∆, Qa `Ma : Aa !∆, Qb `Mb : Ab
(⊗I)

!∆, Qa, Qb ` 〈Ma,Mb〉 : Aa ⊗Ab

!∆, Qa `Ma : Aa ⊗Ab !∆, Qb, (x : Aa), (y : Ab) `Mb : A
(⊗E)

!∆, Qa, Qb ` let 〈x, y〉 =Ma inMb : A

!∆, Qa `M : bool !∆, Qb `Ma : A !∆, Qb `Mb : A
(if)

!∆, Qa, Qb ` ifM thenMa elseMb : A

(box)
!∆ ` boxP : !(P ⊸ A) ⊸ !QChan(P,A)

(unbox)
!∆ ` unbox : QChan(P,A) ⊸ (P ⊸ A)

γa ` ma : A γb ` mb : A
(b)

γa × γb ` [ma,mb] : A

p ⊨ P vBind(!∆,out(Q),m,A)
(QChanI)

!∆ ` (p,Q,m) : !QChan(P,A)
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The typing rules ensure that all terms constituting a branching term share
the same type, and the quantum channel constants have types built with the
constructor of type QChan. For instance, the term meas in Eq. (3.1) is typed
as !∆ ` meas : qubit ⊸ bool⊗ qubit as in Example 3.2.1. Similarly, the term
init(b), and free, in Eq. (3.2) has type I ⊸ qubit, and qubit ⊸ I, respectively.

Example 3.2.1 (Typing derivation of quantum channel constants). The quan-
tum channel constants in Eq. 3.1 and Eq. 3.2 admit the following typing derivations.

(unbox)
!∆ ` unbox : Am ⊸ Bm

πm
(d)

!∆ `

q, q

q

q

,
〈tt, q〉

〈ff, q〉

 : Am

(⊸E)
!∆ ` meas : Bm

where Am = QChan(qubit, bool⊗ qubit) and Bm = qubit ⊸ bool⊗ qubit and
πm represents the following type derivation.

πm =
p ⊨ qubit

!∆ ∩ {(q|q)} = ∅ !∆, (q|q) : qubit ` 〈tt, (q|q)〉 : bool⊗ qubit
(vBindnb)

vBind(!∆, {(q|q)}, 〈tt, (q|q)〉, bool⊗ qubit)
(vBindb)

vBind(!∆, [{q}, {q}], [〈tt, q〉, 〈ff, q〉], bool⊗ qubit)
(QChanI)

!∆ `

q, q

q

q

,
〈tt, q〉

〈ff, q〉

 : !Am

assuming that x and y is not contained in the exponential typing context !∆. Note
that the (A | B) represents the two sides of the typing rule (vBindb): A refers to
the variables for the left vBind relation and B refers to the variables for the right.

Similarly, we can derive the following type judgements:

!∆ `init(b) : I ⊸ qubit
!∆ `free : qubit ⊸ I

!∆ `measf : qubit ⊸ bool

and
!∆, q : qubit `X(q) : qubit ⊸ qubit
!∆, q : qubit `H(q) : qubit ⊸ qubit
!∆, q : qubit `Z(q) : qubit ⊸ qubit
!∆, q : qubit `CNOT(q1, q2) : qubit⊗ qubit ⊸ qubit⊗ qubit

Note that those type judgments are not unique type judgments for the
terms. As an example, we can also obtain the type judgement !∆ ` free :

qubit ⊸ !I from the fact that !∆ ` ∗ : !I can be derived from !∆ ` ∗ : I by
the promotion rule (p).
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Remembering that term represents a proof of the sequent corresponding
to the type judgment in terms of logic, the constants–qubit and QChan(-,-
)–can be considered as propositional constants whose proofs are represented
by variables and by quantum channel constants, respectively. Also, note that
there are types of quantum channels of different input and output shapes, i.e.,
types of input and output.

As mentioned in Section 3.1.2, the encapsulation is similar to the ab-
straction. In particular, the type derivation for unbox(p, ϵ(supp(p)),M) in
Lemma 3.2.1 is similar to the typing rule ⊸I for λp.M . However, the premises
of the type derivation takes supp(p) : qubit in its typing context, which de-
struct the structure of the pattern p while the rule ⊸I for abstraction keeps
the structure of the input.

Lemma 3.2.1. Unbox can be thought of as an encapsulation of a term in a quan-
tum channel constant. For somepattern p of typeP such that supp(p) = {p1, . . . , pk},
we can obtain the following type derivation.

!∆, (supp(p) : qubit) `M : A

!∆ ` unbox(p, ϵ(supp(p)),M) : P ⊸ A

Proof.

!∆ ` unbox : AM ⊸ BM
(unbox)

...
!∆ ` (p, ϵ(supp(p)),M) : AM

!∆ ` unbox(p, ϵ(supp(p)),M) : P ⊸ A
(⊸E)

and

p ⊨ P
!∆, (supp(p) : qubit) `M : A

(vBindnb)
vBind(!∆, supp(p),M,A)

(QChanI)
!∆ ` (p, ϵ(supp(p)),M) :!QChan(P,A)

(d)
!∆ ` (p, ϵ(supp(p)),M) : AM

where AM = QChan(P,A) and BM = P ⊸ A for some PType P .

Then, by letting λ ∗ .M refers to unbox(∗, ϵ(∅),M) as in Equation 3.5,
we can obtain the type derivation for the abstraction of a term M with no
variable, as in Corollary 3.2.1.1.

λ ∗ .M = unbox(∗, ϵ(∅),M) (3.5)

It allows us to define the teleportation example as a function as in Exam-
ple 3.2.2.
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Corollary 3.2.1.1. Then, by Lemma 3.2.1, by letting p = ∗, we obtain the following
type derivation.

!∆ `M : A

!∆ ` λ ∗ .M : I ⊸ A

Moreover, note that the typing rule (unbox) in our type system implies
that the typing rule (unbox′) in Eq. (3.6).

!∆ ` unbox : !QChan(P,A) ⊸ !(P ⊸ A)
(unbox′) (3.6)

Indeed, we can obtain the typing derivation (unbox′), by defining a varia-
tion of unbox as in Eq. (3.7), as in Lemma 3.2.2.

unboxdup ::= λx.unbox(x) (3.7)

Lemma 3.2.2. Given that there is no quantum variables in the context, the dupli-
cable unbox operator unboxdup admits the type !QChan(P,A) ⊸ !(P ⊸ A).

Proof. The typing derivation for !∆ ` unboxdup : !QChan(P,A) ⊸ !(P ⊸ A)

is shown below. Note that unbox(x) is a value since variable x is a value.

...

!∆, (x : !QChan(P,A)) ` unbox(x) : P ⊸ A unbox(x) is value
(p)

!∆, (x : !QChan(P,A)) ` unbox(x) : !(P ⊸ A)
(⊸I)

!∆ ` λx.unbox(x) : !QChan(P,A) ⊸ !(P ⊸ A)

and

(unbox)
!∆, (x : !QChan(P,A)) ` unbox : QChan(P,A) ⊸ (P ⊸ A)

(var)
!∆, (x : !QChan(P,A)) ` x : !QChan(P,A)

(d)
!∆, (x : !QChan(P,A)) ` x : QChan(P,A)

(⊸E)
!∆, (x : !QChan(P,A)) ` unbox(x) : P ⊸ A

Example 3.2.2. Teleportation from Example 3.1.2 can be defined as a function
as follows:

(tel’) ::= λ ∗ .(let 〈y, q〉 = Bell in 〈A(y), B(q)〉).

Now, we show some examples of type derivation for the examples of term
originated from Example 3.1.2 and Example 3.1.2.
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Example 3.2.3. Now, we show how the interpretation works on a typing deriva-
tion for the program exp in Eq. (1.1). We first show the typing derivation, then
present the final result of the interpretation in the explicit form of tuple.

For the program exp, let’s consider the following typing derivation:

...
vc : qubit ` meas(vc) : bool⊗ qubit

...
b : bool, vc : qubit ` T : qubit⊗ I

vc : qubit ` exp : qubit⊗ I
where T = if b then 〈init(tt), free(vc)〉 else 〈vc, ∗〉.

` unbox : !Am ⊸ !(qubit ⊸ (bool⊗ qubit))

...
` circm : !Am

` meas : !(qubit ⊸ (bool⊗ qubit))

` meas : qubit ⊸ bool⊗ qubit vc : qubit ` vc : qubit

vc : qubit ` meas(vc) : bool⊗ qubit

where
Am = QChan(qubit, bool⊗ qubit)

circm = (x,meas x ϵ{x} ϵ{x}, [〈tt, x〉, 〈ff, x〉]).

x ⊨ qubit

∅ = ∅

` tt : bool x : qubit ` x : qubit

x : qubit ` 〈tt, x〉 : bool⊗ qubit

vBind(∅, {x}, 〈tt, x〉, bool⊗ qubit)

∅ = ∅

` ff : bool x : qubit ` x : qubit

x : qubit ` 〈ff, x〉 : bool⊗ qubit

vBind(∅, {x}, 〈ff, x〉, bool⊗ qubit)

vBind(∅, [{x}, {x}], [〈tt, x〉, 〈ff, x〉], bool⊗ qubit)

` (x,meas x ϵ{x} ϵ{x}, [〈tt, x〉, 〈ff, x〉]) : !Am

b : bool ` b : bool

...

` init(tt) : qubit

...

vc : qubit ` free(vc) : I

vc : qubit ` 〈init(tt), free(vc)〉 : qubit⊗ I

vc : qubit ` vc : qubit ` ∗ : I

vc : qubit ` 〈vc, ∗〉 : qubit⊗ I

b : bool, vc : qubit ` if b then 〈init(tt), free(vc)〉 else 〈vc, ∗〉 : qubit⊗ I

` unbox : !QChan(I,qubit) ⊸ !(I ⊸ qubit)

∗ ⊨ I
∅ = ∅ x : qubit ` x : qubit

vBind(∅, {x}, x, qubit)

` (∗, init b x ϵ{x}, x) : !QChan(I,qubit)

` unbox(∗, init b x ϵ{x}, x) : !(I ⊸ qubit)

` unbox(∗, init b x ϵ{x}, x) : I ⊸ qubit ` ∗ : I

` init(tt) : qubit

107



` unbox : !Af ⊸ !(qubit ⊸ I)

x ⊨ qubit

∅ = ∅ ` ∗ : I
vBind(∅, ∅, ∗, I)

` (x, free x ϵ(∅), ∗) : !Af

` free : !(qubit ⊸ I)

` free : qubit ⊸ I vc : qubit ` vc : qubit

vc : qubit ` free(vc) : I

where Af = QChan(qubit, I).

Example 3.2.4. Next, for the teleportation, let’s define the term as follows:

Bell := CNOT〈H(init(tt)), init(tt)〉
A := λy.λx.(let 〈x, y〉 = CNOT〈x, y〉 in 〈measf (H(x)),measf (y)〉)
B := λq.λxy.(let 〈x, y〉 = xy in UXY )

UXY := if x then (if y then X(Z(q)) else Z(q)) else (if y then X(q) else q)
tel := let 〈y, q〉 = Bell(∗) in 〈A(y), B(q)〉
tel’ := λ ∗ .(let 〈y, q〉 = Bell in 〈A(y), B(q)〉).

where we used the elementary gates (CNOT, H, X and Z), initialization (init) and
measurement (meas) defined intuitively by the application of unbox to quantum
channel constants. Note that the measurement with subscript f (measf ) returns
only a boolean while basic measurement meas returns a pair of a boolean and a
qubit.

We sometimes use abbreviationQQwhich refers to qubit⊗qubit, BQ to bool⊗
qubit, and BB to bool⊗ bool for space.

Now, we can derive the following typing derivations:

y : bool ` y : bool

...
` X : qubit ⊸ qubit q : qubit ` q : qubit

q : qubit ` X(q) : qubit q : qubit ` q : qubit

y : bool, q : qubit ` if y then X(q) else q : qubit

y : bool ` y : bool

...
` X : qubit ⊸ qubit

...

q : qubit ` Z(q) : qubit

q : qubit ` X(Z(q)) : qubit

...

q : qubit ` Z(q) : qubit

y : bool, q : qubit ` if y then X(Z(q)) else Z(q) : qubit
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where
...

` Z : qubit ⊸ qubit q : qubit ` q : qubit

q : qubit ` Z(q) : qubit

x : bool ` x : bool

...
y : bool, q : qubit ` CTRL1 : qubit

...
y : bool, q : qubit ` CTRL2 : qubit

x : qubit, y : qubit, q : qubit ` UXY : qubit

where CTRL1 = if y then X(Z(q)) else Z(q) and CTRL2 = if y then X(q) else q.

xy : bool⊗ bool ` xy : bool⊗ bool

...
q : qubit, x : bool, y : bool ` UXY : qubit

xy : bool⊗ bool, q : qubit ` let 〈x, y〉 = xy in UXY : qubit

q : qubit ` λxy.(let 〈x, y〉 = xy in UXY ) : bool⊗ bool ⊸ qubit

` B : qubit ⊸ (bool⊗ bool ⊸ qubit)

...

y : qubit, x : qubit ` CNOT〈x, y〉 : QQ

...

y : qubit, x : qubit ` 〈measf (H(x)),measf (y)〉 : BB

y : qubit, x : qubit ` let 〈x, y〉 = CNOT〈x, y〉 in 〈measf (H(x)),measf (y)〉 : bool⊗ bool

y : qubit ` λx.(let 〈x, y〉 = CNOT〈x, y〉 in 〈measf (H(x)),measf (y)〉) : qubit ⊸ (bool⊗ bool)

` A : qubit ⊸ (qubit ⊸ bool⊗ bool)

...
` measf : qubit ⊸ bool

...
` H : qubit ⊸ qubit x : qubit ` x : qubit

x : qubit ` H(x) : qubit

x : qubit ` measf (H(x)) : bool

...
` measf : qubit ⊸ bool y : qubit ` y : qubit

y : qubit ` measf (y) : bool

y : qubit, x : qubit ` 〈measf (H(x)),measf (y)〉 : bool⊗ bool

...
` CNOT : QQ ⊸ QQ

...
` H : qubit ⊸ qubit

...

` init(tt) : qubit

` H(init(tt)) : qubit

...

` init(tt) : qubit

` 〈H(init(tt)), init(tt)〉 : qubit⊗ qubit

` Bell : qubit⊗ qubit
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...
` Bell : QQ

...

y : qubit ` A(y) : qubit ⊸ (bool⊗ bool)

...

q : qubit ` B(q) : (bool⊗ bool) ⊸ qubit

y : qubit, q : qubit ` 〈A(y),B(q)〉 : (qubit ⊸ (bool⊗ bool))⊗ ((bool⊗ bool) ⊸ qubit)

` tel : (qubit ⊸ (bool⊗ bool))⊗ (bool⊗ bool ⊸ qubit)

And for the variation of teleportation term of Example 3.2.2.

...
` tel : (qubit ⊸ (bool⊗ bool))⊗ (bool⊗ bool ⊸ qubit)

` tel’ : I ⊸ (qubit ⊸ (bool⊗ bool))⊗ (bool⊗ bool ⊸ qubit)

In addition, the type system has the following properties. First of all,
Lemma 3.2.3 states that: first, for a valid type judgement !∆, Q ` M : A, all
free variables of the term M appears in the context !∆, Q and linear variable
in Q appears as free variable in M ; and, second, if a quantum channel constant
(p,Q,m) is well binded, i.e. vBind(!∆, out(Q),m,A) is derivable, then the free
variable of the quantum channel constant appears in the exponential context
!∆.

Lemma 3.2.3. The following two statements hold:

• If (!∆, Q `M : A), then (FV(Q) ⊆ FV(M) ⊆ (FV(!∆) ∪ FV(Q))).

• If vBind(!∆, out(Q),m,A), then (FV((p,Q,m)) ⊆ FV(!∆))

As a consequence, (FV(Q) = FV(M) \ FV(!∆)).

Proof. We prove these two properties by induction on the level of QChan.
Base case: When the level of QChan of m is −1, both properties are true

since there is no suchm with level of QChan −1.
Induction step: Assume that the properties hold for all termm with level

of QChan i less than or equal to i. We show the two properties for any term
m with QChan lavel i+ 1 as follows.

1. If (!∆, Q `M : A), then (FV(Q) ⊆ FV(M) ⊆ (FV(!∆) ∪ FV(Q))).

Induction on type derivation.

• (!∆, (x : A) ` x : A)

We have that either (Q = (x : A)) or (Q = ∅) and (M = x), hence
(FV(Q) ⊆ FV(M) = {x}). Therefore, it follows that (FV(Q) ⊆
FV(M) ⊆ (FV(!∆) ∪ FV(Q))).
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• (!∆ ` V : !A) when (!∆ ` V : A) and V is a value.
The goal directly follows from induction hypothesis.

• (!∆, Q `M : A) when (!∆, Q `M : !A)

The goal directly follows from induction hypothesis.

• (!∆ ` ∗ : I), (!∆ ` tt : bool), or (!∆ ` ff : bool) or the rules for
(box) and (unbox)
We have that (Q = ∅) and (M = ∗ (, tt, or ff)), hence (FV(Q) =

FV(M) = ∅). Therefore, it follows that (FV(Q) ⊆ FV(M) ⊆ (FV(!∆)∪
FV(Q))).

• (!∆, Qa, Qb ` ifM thenM1 elseM2 : A) where (!∆, Qa ` M :

bool), (!∆, Qb `M1 : A), and (!∆, Qb `M2 : A)

From induction hypotheses, we obtain that (FV(Qa) ⊆ FV(M) ⊆
(FV(!∆)∪FV(Qa))), (FV(Qb) ⊆ FV(M1) ⊆ (FV(!∆)∪FV(Qb))), and
(FV(Qb) ⊆ FV(M2) ⊆ (FV(!∆) ∪ FV(Qb))).
Therefore, we can derive that (FV(Qa, Qb) = FV(Qa) ∪ FV(Qb) ⊆
FV(M)∪FV(M1)∪FV(M1) = FV(ifM thenM1 elseM1) ⊆ (FV(!∆)∪
FV(Qa) ∪ FV(Qb)) = (FV(!∆) ∪ FV(Qa, Qb))).

• (!∆, Q ` λx.M : Aa ⊸ Ab) where (!∆, Q, (x : Aa) `M : Ab)

There are two cases to prove depending on Aa. First, let us as-
sume that Aa is linear. Then, from induction hypothesis, we have
that (FV(Q)∪{x} ⊆ FV(M) ⊆ (FV(!∆)∪FV(Q)∪{x})). Therefore,
it follows that (FV(Q) ⊆ FV(M) \ {x} = FV(λx.M) ⊆ (FV(!∆) ∪
FV(Q))) since (x 6∈ FV(!∆) ∪ FV(Q)).
Next, let us assume thatAa is non-linear. Then, induction hypoth-
esis gives that (FV(Q) ⊆ FV(M) ⊆ (FV(!∆)∪FV(Q)∪{x})). More-
over, we have that (x 6∈ FV(Q)). Therefore, we can derive that
FV(Q) = (FV(Q) \ {x} ⊆ FV(M) \ {x} = FV(λx.M) ⊆ (FV(!∆) ∪
FV(Q))) since (x 6∈ FV(!∆) ∪ FV(Q)).

• (!∆, Qa, Qb ` let 〈x, y〉 = Ma inMb : A) where (!∆, Qa ` Ma :

A1 ⊗A2) and (!∆, Qb, (x : A1), (y : A2) `Mb : A)

From inductionhypothesis, we canobtain that (FV(Qa) ⊆ FV(Ma) ⊆
(FV(!∆)∪FV(Qa))) and (FV(Qb)∪V ⊆ FV(Mb)∪(FV(!∆)∪FV(Qb)∪
V )) where (V ⊆ {x, y}) depending on the linearity of x and y. It
also follows that (FV(Qb) ⊆ (FV(Mb)\{x, y})∪ (FV(!∆)∪FV(Qb)))
since (FV(Qb) ∩ {x, y} = ∅) and (FV(!∆) ∩ {x, y} = ∅).
Therefore, we can derive that (FV(Qa, Qb) = FV(Qa) ∪ FV(Qb) ⊆
FV(Ma)∪(FV(Mb)\{x, y}) = FV(let 〈x, y〉 =Ma inMb) ⊆ (FV(!∆)∪
FV(Qa) ∪ FV(Qb)) = (FV(!∆) ∪ FV(Qa, Qb))).

• (!∆, Qa, Qb ` MaMb : Ab) where (!∆, Qa ` Ma : Aa ⊸ Ab) and
(!∆, Qb `Mb : Aa)
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From induction hypotheses, we have that (FV(Qa) ⊆ FV(Ma) ⊆
(FV(!∆) ∪ FV(Qa))) and that (FV(Qb) ⊆ FV(Mb) ⊆ (FV(!∆) ∪
FV(Qb))).
Therefore, we can derive that (FV(Qa, Qb) = FV(Qa) ∪ FV(Qb) ⊆
FV(Ma) ∪ FV(Mb) = FV(MaMb) ⊆ (FV(!∆) ∪ FV(Qa) ∪ FV(Qb)) =
(FV(!∆) ∪ FV(Qa, Qb))).

• (!∆, Qa, Qb ` 〈Ma,Mb〉 : Aa⊗Ab) where (!∆, Qa `Ma : Aa) and
(!∆, Qb `Mb : Ab)

The same as the previous case.

• (!∆ ` (p,Q,m) : !QChan(P,A))where (p ⊨ P ), and (vBind(!∆,out(Q),m,A))

Since the QChan level ofm is strictly less than the QChan level of
(p,Q,m), we can apply the induction hypothesis, which says that
(FV((p,Q,m)) ⊆ FV(!∆) if (vBind(!∆, out(Q),m,A)).
Therefore, from thehypothesis, (vBind(!∆,out(Q),m,A)), we can
conclude that (FV((p,Q,m)) ⊆ FV(!∆).

• (γa × γb ` [ma,mb] : A) where (γa ` ma : A) and (γb ` mb : A)

Since the lemma concerns with the classical term, this case is ir-
relevant.

2. If (vBind(!∆, out(Q),m,A)), then (FV((p,Q,m)) ⊆ FV(!∆))

We prove it by induction on Q.

• (Q = ϵ(V ))

First, we have that (out(Q) = V ) andm =M .
Therefore, we know that the condition (vBind(!∆, out(Q),m,A))

must be derived by using vBindnb, which implies that (out(Q) ∩
FV(!∆) = ∅) and (!∆, TCQ(V ) `M : A).
Then applying the hypothesis, which says that if (!∆, TCQ(V ) `
M : A) then (V ⊆ FV(M) ⊆ (FV(!∆) ∪ V )), we can obtain that
((FV(M) \ V ) ⊆ ((FV(!∆) ∪ V ) \ V ) = FV(!∆)).

• (Q = U(V ) Q′, init b v Q′, or free v Q′)

In this case, we know that (out(Q) = out(Q′)), hence

(vBind(!∆,out(Q),m,A) = vBind(!∆,out(Q′),m,A)).

However, we canderive that (FV((p,Q′,m)) = ∪i(FV(mi)\out(Q′)i) =

∪i(FV(mi) \ out(Q)i) = FV((p,Q,m))).
Then, by the induction hypothesis, we have that (FV((p,Q′,m)) ⊆
FV(!∆)).
Therefore, we can conclude that (FV((p,Q,m)) ⊆ FV(!∆)).
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• Q = meas v Q1 Q2

We know that the hypothesis (vBind(!∆, out(Q),m,A)) is de-
rived by the rule vBindb, which implies that

– m = [ma,mb],

– (out(Q) = [out(Q1),out(Q2)]),

– (vBind(!∆, ca,ma, A)), and

– (vBind(!∆, cb,mb, A)).

By inductionhypothesis, weobtain that (FV((p,Q1,ma)) ⊆ FV(!∆))

and (FV((p,Q2,mb)) ⊆ FV(!∆)).

Therefore, since (FV((p,Q,m)) = FV((p,Q1,ma))∪FV((p,Q2,mb))) ⊆
FV(!∆).

Secondly, Lemma 3.2.4 states that if a value has an exponential type, then
it does not contain any linear free variables.

Lemma 3.2.4. Suppose that (!∆, Q ` V : !A). Then Q is empty.

Proof. We proceed by induction on the derivation of !∆, Q ` V : !A. The
relevant cases are:

• If V is a variable, it is trivially true.

• If (!∆, Q ` V : !A) is derived from (d): then by the induction hypothesis,
Q is empty.

• Cases of (p) and (QChan) are trivial

All other cases are irrelevant: We, therefore, have Q empty.

Next, the substitution lemma (Lemma 3.2.5) states that the type of a term
is preserved when we substitute a variable in the typed term with another term
with the type of the variable.

Lemma 3.2.5. Consider a branching term m. Then the two following properties
hold:

• If m = M , (!∆, Qa, (x : Aa) ` M : Ab) and (!∆, Qb ` V : Aa), then
(!∆, Qa, Qb `M [V /x] : Ab).

• If vBind((!∆, x : !A′), c, b,m,A) and !∆ ` V : !A′ is a value then
vBind(!∆, c, b,m[V /x], A).
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Proof. Induction on the QChan level ofm.
Base case: QChan level is -1 : trivial since there is no suchm.
Induction case: Suppose that it is true for all m with QChan level n − 1,

and pickm with QChan level n.

1. Let us prove the first bullet: assume thatm =M is non-branching, that
(!∆, Qa, (x : Aa) ` M : Ab) and that (!∆, Qb ` V : Aa). We want to
show that (!∆, Qa, Qb `M [V /x] : Ab).

Induction on typing derivation of (!∆, Qa, (x : Aa) `M : Ab).

• (!∆, (x : A) ` x : A)

First, it can be derived that: either (M = x), (Qa = ∅), and (Aa =

Ab); or (M = y), Qa = (y : Ab), and Aa is non-linear type.

For the first case, since (M = x), we obtain that (M [V /x] =

V ). Therefore, the hypothesis, (!∆, Qb ` V : Aa), implies that
(!∆, Qa, Qb `M [V /x] : Ab).

For the second case, since Aa is linear, from Lemma 3.2.4, we
know that (Qb = ∅). Therefore, !∆, (y : Ab) ` y : Ab can be
obtained by type rule (var), and, hence, !∆, Qa, Qb `M [V /x] : Ab
as well.

• (!∆′, Q `M : A) where (!∆′, Q `M : !A)

First, it can be derived that ((!∆, Qa, (x : Aa)) = (!∆′, Q)) and
(Ab = A).

By induction hypothesis, we obtain that (!∆, Qa, Qb ` M [V /x] :

!A).

Then, by applying the typing rule, we can conclude that (!∆, Qa, Qb `
M [V /x] : A).

• (!∆′ ` V ′ : !A) where (!∆′ ` V ′ : A) and V ′ is a value

First, we have that (!∆′ = !∆, Qa, (x : Aa)), (M = V ′), and (!A =

Ab).

We can deduce that Qa is empty and that Aa is of the form !A′
a.

Thereforewe have !∆, Qb ` V :!A′
a. From Lemma3.2.4we deduce

that Qb is empty.

Then, by induction hypothesis, we obtain that (!∆ ` V ′[V /x] : A).

From Lemma 3.1.6, the term V ′[V /x] is a value: we can apply (p)
and get (!∆ ` V ′[V /x] :!A).

• Case (I): the termM is ∗, Qa is empty, and Aa is of the form !A′
a.

From Lemma 3.2.4, We conclude that Qb is empty. Therefore,
since ∗[V /x] = ∗, the result is true.
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• For all the other constant cases: tt, ff, box, unbox, the argument is
similar.

• (p,Q,m): the derivation starts with (QChanI), and we have Qa
empty,Aa of the form !A′

a,Ab of the form !QChan(P,A) and p ⊨ P .
We also have that

vBind((!∆, x :!A′
a),out(Q),m,A)

From Lemma 3.2.4, Qb is empty. We therefore want to show that

!∆ ` (p,Q,m)[V /x] : !QChan(P,A).

We have (p,Q,m)[V /x] = (p,Q,m[V /x]).

We already know that p ⊨ P . To be able to use (QChanI) we only
need to make sure that

vBind(!∆,out(Q),m[V /x], A).

Sincem has a QChan level strictly smaller than the one ofM , we
can invoke the induction hypothesis to conclude.

• (⊸I). The term M is λy.M ′ (where we can wlog assume that
x 6= y and that y 6∈ |Qb|), Ab is the form A ⊸ A′, and !∆, Qa, x :

Aa, y : A ` M ′ : A′. By induction hypothesis !∆, Qa, Qb, y : A `
M ′[V /x] : A′, and we can conclude with rule (⊸).

• (⊸E). The termM is of the formM1M2 and Qa = Q1, Q2. There
are three cases for x : Aa:

– Either Aa is of the form !A′
a.

Then !∆, x :!A′
a, Q1 ` M1 : A ⊸ Ab and !∆, x :!A′

a, Q2 ` M2 :

A for some type A. One can apply the induction hypothesis
on both typing judgements and get !∆, Q1 `M1[V /x] : A⊸
Ab and !∆, Q2 ` M2[V /x] : A. Applying Rule (⊸E) gives the
required result.

– Or Aa is linear and x only appear inM1.
Then !∆, x :!A′

a, Q1 ` M1 : A ⊸ Ab and !∆, Q2 ` M2 : A.
One can apply the induction hypothesis on both typing judge-
ments and get !∆, Q1 `M1 : A⊸ Ab and !∆, Q2 `M2[V /x] :

A. Applying Rule (⊸E) gives the required result.

– Or Aa is linear and x only appear inM2. This is similar to the
previous case.

• The cases 〈Ma,Mb〉, let 〈x, y〉 =Ma inMb and ifM thenMa elseMb

are completely similar.
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2. Nowweprove the secondbullet of the lemma: Assume that vBind((!∆, x :

!A′), c,m,A) and !∆ ` V : !A′ is a value then vBind(!∆, c,m[V /x], a).
We proceed by structural induction onm.

• Eitherm =M is non-branching. Then vBind((!∆, x : !A′), c,m,A)

is derived from Rule (vBindnb): we know that

– c ∩ FV(!∆, x : !A′) = ∅
– !∆, x : !A′, TCQ(c) `M : A

We can derive that vBind(!∆, c,m[V /x], a) provided that (using
again Rule (vBindnb)):

– c∩ FV(!∆) = ∅: we already know since c∩ FV(!∆, x : !A′) = ∅
– !∆, TCQ(c) `M [V /x] : A.

From the inductionhypothesis applied on (!∆, x : !A′, TCQ(c) `
M : A) and (!∆ ` V : !A′), we derive that (!∆, TCQ(c) `
M [V /x] : A).

• Orm = [ma,mb]. Then c = [ca, cb]. The property

vBind((!∆, x : !A′), [ca, cb], [ma,mb], A)

is derived from Rule (vBindb): we know that

vBind((!∆, x : !A′), ca,ma, A), vBind((!∆, x : !A′), cb,mb, A).

We can apply induction hypothesis on both formulas and then
conclude with Rule (vBindb) sincem[V /x] = [ma[V /x],mb[V /x]].

This closes the proof of the substitution lemma.

3.3 . Operational Semantics

The operational semantics of the language is formalized by the abstract
machine with the transition function over the states, called configuration. The
functional behaviors of the operators and constructors of the term are encoded
in the reduction rules. The computational model we have in mind for the
language is the QRAM model.

In the quantum lambda-calculus, the corresponding operational semantics
is designed with the use of an abstract machine of the form (ϕ,L,M) where
ϕ is the state of the QRAM, M is the term under consideration, and L is a
function binding the free variables ofM to the qubits in ϕ. In the case of Proto-
Quipper, another abstract machine is considered. Indeed, the computational
model is not based on the QRAM but specialized in circuit construction: the
operational semantics is modeling a form of I/O side-effect: gates are emitted
and buffered in a circuit.
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In our language, we have both access to a QRAM and the capability to
manipulate generalized circuits in the form of quantum channels. We then
define two operational semantics to capture the two possible behavior of the
language: one semantics is designed for buffering and manipulating quantum
channels, while the other one is for running the quantum channel in the global
environment.

3.3.1 . Circuit-buffering operational semantics
Configuration
Following the formalization of the operational semantics in Proto-Quipper [56],
the circuit-buffering abstract machine operates on the quantum channel while
reducing the term. Naturally, the configuration is represented by a pair (Q,m)

consisting of a quantum channel Q and a branching term m. The two branch-
ing structures are supposed to match. Note that we do not need a binding
function that maps each wire in the output of Q to the free variables in m

since we identify the space of wire names for quantum channel objects and
variable names for the term.

However, since we introduce the classical context, the configuration of the
circuit-buffering operational semantics can have free classical variables. Hence,
the free variables of term M are not necessarily connected to the output wires
of the buffered circuit. On the other hand, all the wires from the output of the
circuit need to appear once in the term. These conditions of configuration is
formalized in Definition 3.3.1. For convenience, let us divide the free variables
of the term in a circuit-buffering configuration into two parts: quantum vari-
ables, which are the output wires of the quantum channel object, and classical
variables, which are not quantum variables.

This definition of valid circuit-buffering configuration is similar to the def-
inition of valid quantum channel constant. One can notice that a circuit-
buffering configuration corresponds to a quantum channel constant without
the input wires. Actually, each valid circuit-buffering configuration can be
obtained from valid quantum channel constants of different patterns of input
wires, as stated in Lemma 3.3.1.

Definition 3.3.1 (Notion of valid circuit-buffering configuration). A circuit-buffering
configuration is a pair (Q,m). Let us define a binary relation vc on Q and m
stating that they share the same tree-structure:

V ⊆ FV(M)

vc(ϵ(V ), M)

valid(Q′) vc(Q, m)

vc(Q′, m)

valid(meas w Q1 Q2) vc(Q1, ma) vc(Q2, mb)

vc(meas w Q1 Q2, [ma,mb])

where Q′ refers to U(V ) Q, init b v Q, and free v Q. We ignore the name of
the relation vc for valid circuit-buffering configuration unless it is necessary.
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Lemma3.3.1. Provided (p,Q,m) is a quantum channel constant, (Q,m) is valid.

Graphical representation of the circuit-buffering configuration We use a graph-
ical representation for the circuit-buffering configuration. A green box repre-
sents a quantum channel whose leaves are linked to square-boxed terms. The
edges represent bundles of wires, which can contain multiple wires and be
empty. For instance, the circuit-buffering configuration (meas q ϵ({q}) ϵ({q}), [〈tt, q〉, 〈ff, q〉])
is represented with the diagram in Figure 3.1.

〈tt, q〉

〈ff, q〉

q

Figure 3.1: Graphical representation of the circuit-buffering configura-
tion (meas q ϵ({q}) ϵ({q}), [〈tt, q〉, 〈ff, q〉])

Equivalence over configurations We define the equality of circuit-buffering
configuration based on the renaming of closed variables of the term (note that
the term is already defined as the equivalence classes over the α-equivalence)
and the renaming of wire names in the quantum channel object. The equiva-
lence requires that the quantum channel objects and the terms in two config-
urations be equivalent over the same renaming function.

In order to define the equality of the configuration, we first define an aux-
iliary equivalence relation depending on a binding function (a bijection) for
input wires. As defined in Definition 3.3.2, the auxiliary equivalence means
that two circuit-buffering configurations are equivalent over the renaming op-
eration. In the definition, we use the renaming operator rename(m,V, f) ap-
plied to a term m given a renaming function f and a set of variable V as the
term obtained by renaming of variables in V in m by the renaming function
f restricted to the set of variable V .

Definition 3.3.2 (Equivalence of the circuit-buffering configuration over re-
naming operation over f , ∼f ). In order to define the equivalence relation of
the circuit-buffering configuration, we first define the auxiliary equivalence
relation ∼f of it, which depends on wire name renaming, which is defined
inductively as follows.

ϵ(Va) ∼f ϵ(Vb) Ma ∼ rename(Mb, Vb, f) Mb ∼ rename(Ma, Va, f
−1)

((ϵ(Va), Ma) ∼f (ϵ(Vb), Mb)

where f is a bijection from Vb to Va and rename(m,V, f) means the term
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obtained by renaming the variables V inm by f .

(Q′
1, ma) ∼f (Q′

2, mb)

((U(f(V )) Q′
1, ma) ∼f (U(V ) Q′

2, mb)

(Q′
1, ma) ∼f∪{v2 7→v1} (Q

′
2, mb)

(init b v1 Q′
1, ma) ∼f (init b v2 Q′

2, mb)

(Q′
1, ma) ∼f\{v 7→f(v)} (Q

′
2, mb)

(free f(v) Q1, ma) ∼f (free v Q2, mb)

(Q1, ma) ∼f (Q3, mc) (Q2, mb) ∼f (Q4, md)

(meas f(v) Q1 Q2, [ma,mb]) ∼f (meas v Q3 Q4, [mc,md])

Then, we define the equivalence of circuit-buffering configuration ∼ as the
subset of the auxiliary equivalence relation where the renaming function is
identity function ∼id.

We can check that if (Q1,ma) ∼f (Q2,mb), then in(Q1) = f(in(Q2)). The
subscript f is ignored when it is an identity function which is the case for
the equivalence relation. Therefore, it follows that if (Q1,ma) ∼ (Q2,mb),
then in(Q1) = in(Q2) since they are equivalent over the identity. Moreover, it
can be checked that the equivalence relation of configuration over the identity
function is reflexive, symmetric, and transitive.

Although the equivalence relation of circuit-buffering configuration implies
that input wires of the quantum channel objects Q1 and Q2 in the equivalent
configuration are equal, they can have different output wires since the defini-
tion allows for renaming auxiliary qubits created inside the quantum channel
objects. Also, note that we do not allow the renaming of free classical vari-
ables in the term in the auxiliary equivalence relation. Therefore, one can
consider the equivalence relation is an extension of α-equivalence of the term
to the circuit-buffering configuration where the auxiliary wires created in the
quantum channel object are considered as closed variables.

Reduction rules
The reduction rules are defined as a transition function over the configura-
tion of the abstract machine for circuit-buffering. We let the right arrow −→
refer to the reduction over the configuration of the abstract machine. This
relation, defined over the equivalence class of the circuit-buffering configura-
tions by Definition 3.3.2, depicts the operational semantics of the execution of
each term construction, which interacts with the quantum channel object in
context.

The reduction rules are composed of different sets of rules (Definitions 3.3.4
− 3.3.8) which are called–reduction rules for classical computation and cir-
cuit operators; and structural reduction rules for quantum channel constants,
empty quantum channel and non-empty quantum channel. The reduction
rules for the terms with structural construction rules with an empty quantum
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channel (Definition 3.3.7) require the extend operation on the quantum chan-
nel object (Definition 3.1.11) to represent the composition of a configuration
and another configuration with a non-branching term. Moreover, the same set
of rules requires for the composition of terms an extended notion of the term
to represent the composition of a branching term and a non-branching term.

Definition 3.3.3 (Extending the term notation). Let us extend the notations
for term constructs in the following way.

M [ma,mb] := [Mma,Mmb]

[ma,mb]M := [maM,mbM ]

〈M, [ma,mb]〉 := [〈M,ma〉, 〈M,mb〉]
〈[ma,mb],M〉 := [〈ma,M〉, 〈mb,M〉]

if [ma,mb] thenM elseN := [ifma thenM elseN, ifmb thenM elseN ]

let 〈x, y〉 = [ma,mb] inN := [let 〈x, y〉 = ma inN, let 〈x, y〉 = mb inN ]

Next, the reduction rules are defined the same, except that the composed
terms in structural reduction rules for the empty quantum channel can have
common free variables (classical).

Rules (a.x) always hold (b ranges over {tt,ff}). In Rules (b.1), p is a
pattern of same shape as P made from dynamically allocated fresh variables.
In Rule (b.2), p and V have the same shape, and σ is a substitution map-
ping p to V . Provided that (Q,m) −→ (Q′,m′), we have (ϵ(∅), (p,Q,m)) −→
(ϵ(∅), (p,Q′,m′)). Provided that we have that (ϵ(WM ), M) −→ (Q, m), that
all(Q) ∩ WN = ∅ and that all(Q) ∩ WV = ∅, the class of rules (c) apply.
There, C[−] ranges over [−]N , V [−], 〈[−], N〉, 〈V, [0]〉, if [−]thenMa elseMb

and let 〈x, y〉 = [−] inN . We use syntactic sugar for combining terms and
branching terms, as in C[m]. It corresponds to the term constructor applied to
each leaf ofm, for instance: form = [[N1, N2], N3], C[m] := [[C[N1], C[N2]], C[N3]].
In Rules (d.x), Q stands for meas w Q1 Q2 and Q′ for meas w Q3 Q4. These
rules apply whenever (Q1, ma) −→ (Q3, mc) and (Q2, mb) −→ (Q4, md). In
(d.3), G ranges over U(W ), init b w and free w.

Definition 3.3.4 (Reduction rules for classical computation). Reduction rules
for classical computation show the reduction of the function application, let
binding, and the conditional statements. Note that structural reduction rules
for classical computation can be found in the paragraph for structural rules
for empty quantum channel.

(ϵ(W ), (λx.M)V ) −→ (ϵ(W ), M [V /x])

(ϵ(W ), let 〈x, y〉 = 〈V, U〉 inM) −→ (ϵ(W ), M [V /x, U/y])
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(ϵ(W ), if tt thenMa elseMb) −→ (ϵ(W ), Ma)

(ϵ(W ), if ff thenMa elseMb) −→ (ϵ(W ), Mb)

Definition 3.3.5 (Reduction rules for circuit operations). Reduction rules for
circuit operations show the semantics of the application box and unbox op-
erators. We let new(W, P ) be a new pattern of type P such that the support
has no common element with W and bind(p, V ) be the binding function from
supp(p) to FV(V ) where V is a bundle of variables.

p = new(P ) Wp = supp(p)
(ϵ(∅), boxP V ) −→ (ϵ(∅), (p, ϵ(Wp), V p))

where new operator creates during the computation free variables, meaning
that the free variables do not appear in both classical and quantum contexts.
The term new(P ) is a pattern of same shape as P , made out of these new
variables.

shape(p) = shape(V ) σ = bind(p, V )

(ϵ(FV(V )), (unbox(p, Q, u))V ) −→ (σ(Q), σ(u))

Lemma 3.3.2. Provided that P is a pattern-type and p = new(P ), we have
TCQ(FV(p)) ` p : P

Definition 3.3.6 (Structural reduction rule for quantum channel constant).
Structural rules for quantum channel constant allows us to reduce the term
inside a quantum channel constant.

(Q, m) −→ (Q′, m′)

(ϵ(∅), (p,Q,m)) −→ (ϵ(∅), (p,Q′,m′))

Definition 3.3.7 (Structural reduction rules for empty quantumchannel). Struc-
tural rules for empty quantum channel show the reduction of term which re-
lies on the reduction of structural constructors of the language (i.e. function
application, pair, let, and if constructors). Since the term can reduces to a
branching term, the structural rules for empty quantum channel needs to
be extended to branching terms which consists of terms sharing the same
structure. The resulting branching term can be defined by using tcps defined
above.

(ϵ(WM ), M) −→ (Q, m) all(Q) ∩WN = ∅
(ϵ(WM ∪WN ), MN) −→ (extend(Q,WN ), mN)

(ϵ(WM ), M) −→ (Q, m) all(Q) ∩WN = ∅
(ϵ(W ∪WN ), NM) −→ (extend(Q,WN ), Nm)

(ϵ(WM ), M) −→ (Q, m) all(Q) ∩WN = ∅
(ϵ(WM ∪WN ), 〈M,N〉) −→ (extend(Q,WN ), 〈m,N〉)

121



(ϵ(WM ), M) −→ (Q, m) all(Q) ∩WN = ∅
(ϵ(WM ∪WN ), 〈N,M〉) −→ (extend(Q,WN ), 〈N,m〉)

(ϵ(WM ), M) −→ (Q, m) all(Q) ∩WN = ∅
(ϵ(WM ∪WN ), ifM thenMa elseMb)) −→ (extend(Q,WN ), ifm thenMa elseMb)

(ϵ(WM ), M) −→ (Q, m) all(Q) ∩WN = ∅
(ϵ(WM ), let 〈x, y〉 =M in N) −→ (extend(Q,WN ), let 〈x, y〉 = m in N)

Definition 3.3.8 (Structural reduction rules for non-empty quantum channel).
Reduction can take place in each branch of a branching term. The structural
rules for non-empty quantum channel let us find the reducible term within
the branching term. There can be different reduction strategies regarding the
measurement. The proposed rules show an example of strategy where all re-
ducible terms of the branching term reduces in one step. This set of structural
rules allows us to focus on reductions over empty quantum channels.

(Q1, ma) −→ (Q3, mc) (Q2, mb) −→ (Q4, md)

((meas w Q1 Q2), [ma,mb]) −→ ((meas w Q3 Q4), [mc,md])

(Q1, ma) −→ (Q3, mc)

((meas w Q1 Q2), [ma, v]) −→ ((meas w Q3 Q2), [mc, v])

(Q2, mb) −→ (Q4, md)

((meas w Q1 Q2), [v,mb]) −→ ((meas w Q1 Q4), [v,md])

(Q1, ma) −→ (Q2, mb)

(Q′
1, ma) −→ (Q′

2, mb)

where Q′ is any one from U(W ) Q, init b w Q, or free w Q.

As discussed before, proof normalization in linear logic is related to the
reduction rules. In the proof normalization, type derivation is contracted by
some rules like cut-elimination. In this context, there is no notion of the
quantum channel object in the circuit-buffering configuration. However, in
order to formalize the operational semantics of a program, we have introduced
the quantum channel object to represent the context, i.e., the communication
between the classical host and the quantum co-processor. The reduction rules
are, therefore, obtained by adjusting the proof normalization rules and by
adding some additional reduction rules for the quantum channel operators.

Regarding the reduction, we show the following lemma. Intuitively, the
lemma states that free classical variables and dangling quantum variables are
preserved over the equivalence of circuit-buffering configuration.
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Examples
To illustrate the operational semantics and its reduction rules for circuit-
buffering operational semantics, let us take the examples from the previous
section–the non-trivial branching term with measurement (Example 3.1.1) and
the quantum teleportation (Example 3.1.2).

Example 3.3.1. Let us explain how the tree expands as the computation pro-
gresses for the term in Example 3.1.1. Figure 3.2 summarizes the reduction of the
example. In the first line, the measurement in the term is reduced by the structural
rule for let and the reduction rule for measurement creating a branching term.
Then, each term at a leaf of the tree is reduced into the left-most configuration of
the second line. Note how classical computation can happen inside the leaves. The
second line of the figure shows the application of initialization and free operation.
In particular, note how the tree expands as the computation progresses.

let 〈b, vc〉 = meas(vc) in T
vc −→ meas vc

let 〈b, vc〉 = 〈tt, vc〉 in T

let 〈b, vc〉 = 〈ff, vc〉 in T

vc

vc

vc

−→∗

meas vc

〈init(tt), free(vc)〉

〈vc, ∗〉

vc

vc

vc

−→∗

meas vc

init true vd free vc 〈vd, ∗〉

〈vc, ∗〉vc

v c

vc, vd vd

vc

Figure 3.2: Reduction of the term of Example 3.1.1

Now, let us explain how we derive the reduction in the second line of Figure 3.2
from the reduction rules in Definitions 3.3.4 − 3.3.8.

First, we show that ((ϵ{}, init(tt)) −→ ((init true x ϵ{x}, x) as follows.

shape(∗) = shape(∗) σ = bind(∗, ∗)

init(tt) −→ ∗ init true x xx ∼ ∗ init true vd vd
vd

where we let

init(tt) = unbox
(
∗, ∗ init true x x , x

)
(∗).
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Then we can show the following reduction:

init(tt) −→ ∗ init true vd vd
vd all(init true vd ϵ{vd}) ∩ {vc} = ∅

〈init(tt), free(vc)〉vc −→ init true vd 〈vd, free(vc)〉
vc vc, vd

meas vc

〈init(tt), free(vc)〉

〈vc, ∗〉

vc

vc

vc

−→
meas vc

init true vd 〈vd, free(vc)〉

〈vc, ∗〉vc

v c

vc, vd

vc

Next, we show the last reduction step of the example as follows.

shape(x) = shape(vc) σ = bind(x, vc)

free(vc)
vc −→ free vc ∗vc

Recall that
free = unbox

(
x, free x ∗x , ∗

)
.

Then we can show the following reduction:

free(vc)
vc −→ free vc ∗vc all(free vc ϵ{}) ∩ {vd} = ∅

〈vd, free(vc)〉
vc, vd −→ free vc 〈vd, ∗〉

vc, vd vd

init true vd 〈vd, free(vc)〉
vc vc, vd −→ init true vd free vc 〈vd, ∗〉

vc vc, vd vd

meas vc

init true vd 〈vd, free(vc)〉

〈vc, ∗〉vc

v c

vc, vd

vc
−→

meas vc

init true vd free vc 〈vd, ∗〉

〈vc, ∗〉vc

v c

vc, vd vd

vc

3.3.2 . QRAM-based operational semantics
In the quantum simulation, the quantum co-processor simulates the phys-

ical system according to the quantum circuit generated by the classical host
and returns the value to the host when it measures the state. To formalize the
simulation, we define an abstract machine that maintains the current state of
the quantum state according to the quantum channel object transmitted by
the unbox operator. Each trace of the quantum channel object is combined
with a non-branching term. The machine simulates and reduces the quantum
channel object by using the algebraic structure, Q-coproc.
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The state of the abstract machine
The state of the abstract machine consists of the quantum state and the
buffered quantum channel object. The state of the buffer requires all infor-
mation from the state of the circuit-buffering abstract machine, namely, the
quantum channel object and the term.

Definition 3.3.9. The state of the quantum abstract machine is the triple of
the quantum state, the quantum channel object, and the term represented
as [Q,C,M ].

The reduction rules
Next, we define probabilistic reduction rules for the quantum simulation. The
quantum co-processor simulates the quantum state consuming the quantum
channel object. The reduction creates mixed states, which are the probability
distributions of pure states. Specifically, the probabilities are given by the
operator of the algebraic structure, Q-coproc.

Definition 3.3.10. The probabilistic reduction rules for the quantum abstract
machine, p

=⇒, is defined as follows. The reduction S1
p
=⇒ S2 can be read S1

reduces to S2 with probability p.

(U,w1, C
′) = pop(C) Q′ = Unitaryn(U(w1), w1, Q)

[Q,C,M ]
1
=⇒ [Q′, C ′,M ]

(init, b0, w, C ′) = pop(C) Q′ = Init(b0, w,Q)

[Q,C,M ]
1
=⇒ [Q′, C ′,M ]

(meas, w, C1, C2) = pop(C) (Q1, p1, Q2, p2) = Meas(Q,w) M = [M1,M2]

[Q,C,M ]
p1
=⇒ [Q1, C1,M1]

(meas, w, C1, C2) = pop(C) (Q1, p1, Q2, p2) = Meas(Q,w) M = [M1,M2]

[Q,C,M ]
p2
=⇒ [Q2, C2,M2]

(free, w, C ′) = pop(C) (Q1, p1, Q2, p2) = Free(w,Q)

[Q,C,M ]
p1
=⇒ [Q1, C

′,M ]
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(free, w, C ′) = pop(C) (Q1, p1, Q2, p2) = Free(w,Q)

[Q,C,M ]
p1
=⇒ [Q2, C

′,M ]

[ϵ(w1),M ] −→∗ [C ′,M ′]

[Q, ϵ(w1),M ]
1
=⇒ [Q,C ′,M ′]

3.4 . Type Safety Theorem

In this section, we prove the following type safety theorem.

Theorem 3.4.1. Both reductions feature subject-reduction and progress.

3.4.1 . Type safety for circuit-buffering
We extend the type relation to the configuration of the circuit-buffering

operational semantics.

Definition 3.4.1 (Extended typing relation for circuit-buffering operational se-
mantics).

(Q,m) valid ∀i leaf · !∆, TCQ(out(Q)i) ` mi : A

!∆ ` (Q,m) : A

Lemma 3.4.2. Now, we show the following two propositions which say the type
judgement preserves:

• if ∅ ` (Q, u) : A and ran(σ) ∩ all(Q) = ∅, then ∅ ` (σ(Q), σ(u)) : A and
Define the renaming of quantum channel and term, and just check quickly
if it holds

Proof. First,` (Q, u) : A implies that (Q, u) is valid and that∀i leaf·TCQ(out(Q)i) `
ui : A. We show that (σ(Q), σ(u)) is valid and that ∀i leaf · TCQ(out(σ(Q))i) `
σ(u)i : A, and hence ` (σ(Q), σ(u)) : A. First, notice that ` (Q, u) : A implies
that TCQ(out(Q)i) ` ui : A at each leaf i, which implies that FV(ui) ⊆ out(Q)i
by lemma 3.2.3. Now, we prove the two premises of the goal as follows:

• If (Q, u) is valid and ran(σ) ∩ all(Q) = ∅ then (σ(Q), σ(u)) is valid.

First of all, renaming does not change the shape of the quantum chan-
nel Q and the term u. Therefore, it suffices to show that σ(Q) is valid
and for all leaf i, out(σ(Q))i ⊆ FV(σ(u)i). More precisely,
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– st(Q,V, c) then st(σ(Q), σ(V ), σ(c)), and

– for each leaf i, if out(Q)i ⊆ FV(ui), then out(σ(Q))i ⊆ FV(σ(ui)).

The second follows from that out(σ(Q))i = σ(out(Q)i) ⊆ σ(FV(ui)) =
FV(σ(ui)). We prove the first by induction on Q.

– Q = ϵ(W ): We can derive that σ(ϵ(W )) = ϵ(σ(W )) and
st(ϵ(σ(W )), σ(W ), σ(W )) where st(ϵ(W ),W,W ).

– Q = U(W ) Q′: First, note that σ(U(W ) Q′) = U(σ(W )) σ(Q).
Then, from the hypothesis, st(U(W ) Q′, V, c) we can derive that
W ⊆ V and st(Q′, V, c). By applying the induction hypothesis,
we obtain that st(σ(Q′), σ(V ), σ(c)). Since σ(W ) ⊆ σ(V ) follows
fromW ⊆ V , we can derive that st(U(σ(W )) σ(Q′), σ(V ), σ(c)).

– Q = init b w Q′: First, note that σ(init b w Q′) = init b σ(w) σ(Q′).
Then, from the hypothesis, st(init b w Q′, V, c) we can derive that
w 6∈ V and st(Q′, V ∪ {w}, c). By applying the induction hypoth-
esis, we obtain that st(σ(Q′), σ(V ) ∪ {σ(w)}, σ(c)). Since σ(w) 6∈
σ(V ) follows fromw 6∈ V and thatσ is a bijectivemapwith ran(σ)∩
all(Q) = ∅, we can derive that st(init b σ(w) σ(Q′), σ(V ), σ(c)).

– Q = free w Q′: First, note that σ(free w Q′) = free σ(w) σ(Q′).
Then, from the hypothesis, st(free w Q′, V, c) we can derive that
w ∈ V and st(Q′, V \ {w}, c). By applying the induction hypothe-
sis, we obtain that st(σ(Q′), σ(V ) \ {σ(w)}, σ(c)) (note that σ(V \
{w}) = σ(V ) \ {σ(w)} since σ is a bijective map with ran(σ) ∩
all(Q) = ∅). Since σ(w) ∈ σ(V ) follows fromw ∈ V , we can derive
that st(free σ(w) σ(Q′), σ(V ), σ(c)).

– Q = measwQ1Q2: First, note thatσ(measwQ1Q2) = measσ(w)σ(Q1)σ(Q2).
Then, from the hypothesis, st(meas w Q1 Q2, V, [ca, cb]) we can
derive that w ∈ V , st(Q1, V, ca) and st(Q2, V, cb). By applying the
induction hypothesis, we obtain that st(σ(Q1), σ(V ), σ(ca)) and
st(σ(Q2), σ(V ), σ(cb)). Since σ(w) ∈ σ(V ) follows from v ∈ V , we
can derive that

st(meas σ(w) σ(Q1) σ(Q2), σ(V ), [σ(ca), σ(cb)]).

• If ∀i leaf · TCQ(out(Q)i) ` ui : A and ran(σ) ∩ all(Q) = ∅ then ∀i leaf ·
TCQ(out(σ(Q))i) ` σ(u)i : A.

First, since σ(u)i = σ(ui), out(σ(Q))i = σ(out(Q)i), and FV(σ(ui)) =

σ(FV(ui)), it suffices to show that TCQ(σ(out(Q)i) ` σ(ui) : A for each
leaf i.

Moreover, from TCQ(out(Q)i) ` ui : A, it follows that FV(ui) = out(Q)i
and, hence, σ(out(Q)i) = σ(FV(ui)).

127



Therefore, it reduces to show that TCQ(σ(FV(ui))) ` σ(ui) : A for each
leaf i. Given that TCQ(FV(ui)) ` ui : A, it is natural to accept that
TCQ(σ(FV(ui))) ` σ(ui) : A is derived from the same type derivation
from the one for TCQ(FV(ui)) ` ui : A.

In fact, the type judgment of the abstract state is equivalent to the vBind
which was already introduced.

Lemma3.4.3. If shape(Q) = shape(u), then vBind(ϵ, out(Q), u, A) ⇐⇒ ∀ i leaf·
TCQ(out(Q)i) ` ui : A.

Proof. by induction on u as follows:

• u = M : (=⇒) We know that vBind(∅,out(Q), u, A) is derived by using
the rule vBindnb, which implies that ∅, TCQ(out(Q)) ` u : A. (⇐=) Since
∅ ∩ out(Q) = ∅ and TCQ(out(Q)) ` M : A, it follows by vBindnb that
vBind(∅,out(Q),M,A).

• u = [ua, ub]: (=⇒) In this case, we know that vBind(∅,out(Q), u, A) is de-
rived by vBindb rules and out(Q) = [c1, c2]. From the induction hypoth-
esis for ua and ub, since the rule vBindb implies that vBind(∅, c1, ua, A)
and vBind(∅, c2, ub, A), we obtain the goal. (⇐=) From the hypothesis,
we can derive that ∀i leaf·TCQ(c1) ` ua : A and ∀i leaf·TCQ(c2) ` ub : A.
Thenby induction hypothesis, we canderive that vBind(∅, c1, ua, A) and
vBind(∅, c2, ub, A), and hence vBind(∅,out(Q), u, A).

Note that the circuit-buffering reduction is terminating.

Lemma 3.4.4 (Termination). Given a well-typed configuration ` (Q,m) : A, any
reduction sequence starting with (Q,m) is terminating.

Subject reduction lemma
We prove the subject reduction lemma for circuit-buffering operational seman-
tics as follows.

Lemma 3.4.5. If (Q1,m1) −→ (Q2,m2) and (` (Q1,m1) : A), then (` (Q2,m2) :

A).

Proof. Induction on the reduction relation.
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Reduction rules for classical computation

• (ϵ(W ), (λx.M)V ) −→ (ϵ(W ), M [V /x])

From the hypothesis ` (ϵ(W ), (λx.M)V ) : A, we derive that

TCQ(W ) ` (λx.M)V : A.

Note that
TCQ(W ) = Qa ∪Qb,

disjoint union, with

Qa = TCQ(FV((λx.M)) ∩W ) and Qb = TCQ(FV(V ) ∩W ).

Inverting the typing rule (⊸E) and (⊸I), it canbededuced that (Qa, (x :

At) `M : A) and (Qb ` V : At) as follows.

Qa, (x : At) `M : A

Qa ` λx.M : At ⊸ A Qb ` V : At

Qa, Qb ` (λx.M)V : A

Hence, with Lemma 3.2.5 we infer that

Qa, Qb `M [V /x] : A.

To conclude, we only to remark that (ϵ(W ),M [V /x]) is valid.

• (ϵ(W ), let 〈x, y〉 = 〈V, U〉 inM) −→ (ϵ(W ), M [V /x, U/y])

From the hypothesis ` (ϵ(W ), let 〈x, y〉 = 〈V, U〉 inM), we derive that

TCQ(W ) ` let 〈x, y〉 = 〈V, U〉 inM : A

Note that
TCQ(W ) = Qa ∪Qb,

where Qa and Qb are disjoint with

Qa = TCQ(FV(〈V, U〉)∩W ) = TCQ(FV(〈V, U〉)∩W ) and Qb = TCQ((FV(M)\{x, y})∩W ).

Inverting the typing rule (⊗E) and (⊗I), it can be deduced that Qa1 `
V : Aa, Qa2 ` U : Ab, and Qb, (x : Aa), (y : Ab) `M : A as follows.

Qa1 ` V : Aa Qa2 ` U : Ab

Qa ` 〈V, U〉 : Aa ⊗Ab Qb, (x : Aa), (y : Ab) `M : A

Qa, Qb ` let 〈x, y〉 = 〈V, U〉 inM : A

Hence, with Lemma 3.2.5 we infer that

Qa1 , Qb `M [V /x] : A, Qa2 , Qb `M [U/y] : A, andQa, Qb `M [V /x, U/y].

To conclude, we remark that (ϵ(W ),M [V /x, U/y]) is valid.
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• (ϵ(W ), if tt thenMa elseMb) −→ (ϵ(W ), Ma)

From the hypothesis ` (ϵ(W ), if tt thenMa elseMb) : A, we derive that

TCQ(W ) ` if tt thenMa elseMb : A

Note that
TCQ(W ) = Qa ∪Qb

with disjoint union of

Qa = TCQ(FV(Ma) ∩W ) and Qb = TCQ(FV(Mb) ∩W ).

Inverting the typing rule (if), it can be deduced that Qa ` Ma : A and
Qb `Mb : A as follows.

` tt : bool Qa `Ma : A Qb `Mb : A

Qa, Qb ` if tt thenMa elseMb : A

Hence, we can conclude that

` (ϵ(W ),Ma) : A

since (ϵ(W ),Ma) is valid.

• (ϵ(W ), if ff thenMa elseMb) −→ (ϵ(W ), Mb)

Similar to the previous case.

Reduction rules for circuit operation

• (ϵ(∅), boxV ) −→ (ϵ(∅), (p, ϵ(Wp), V p))

where p = new(P ) andWp = supp(p).

From the hypothesis (` (ϵ(W ), boxV ) : At), it can be deduced that
At = !QChan(P,A) and that

TCQ(∅) ` boxV : !QChan(P,A). (3.8)

By unfolding the available typing rules and simplifying, we can derive
that

` V : !(P ⊸ A). (3.9)

From Lemma 3.3.2, since p = new(P ), it follows that p ⊨ P and that
(TCQ(Wp) ` p : P ).

TCQ(Wp) = TCQ(FV(V p) ∩Wp).
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Consequently, we can conclude that (` (ϵ(∅), (p, ϵ(Wp), V p)) : !QChan(P,A))
since

p ⊨ P
Wp ∩ ∅ = ∅

` V : !(P ⊸ A)

` V : P ⊸ A TCQ(Wp) ` p : P
TCQ(Wp) ` V p : A

vBind(∅,Wp, V p,A)

` (p, ϵ(Wp), V p) : !QChan(P,A)

and since (ϵ(∅), (p, ϵ(Wp), V p)) is trivially a valid configuration.

• (ϵ(FV(V )), (unbox(p, Q, u))V ) −→ (σ(Q), σ(u)) where shape(p) =

shape(V ) and σ = bind(p, V ).

From the hypothesis

` (ϵ(FV(V )), (unbox(p, Q, u))V ) : A

it can be deduced that (` (p, Q, u) : QChan(P,A)), and (` V : P ) as
follows.

` unbox : QChan(P,A) ⊸ (P ⊸ A)
p ⊨ P vBind(∅,out(Q), u, A)

` (p,Q, u) : !QChan(P,A)
` (p,Q, u) : QChan(P,A)
` unbox(p,Q, u) : P ⊸ A TCQ(FV(V )) ` V : P

TCQ(FV(V )) ` (unbox(p, Q, u))V : A

From vBind(∅,out(Q), u, A) and Lemma3.4.3, we canderive that∀ i leaf·
TCQ(out(Q)i) ` ui : A. And, actually, vBind(∅,out(Q), u, A) implies
that shape(Q) = shape(u).

Therefore, we obtain ∅ ` (Q, u) : A. (Note that the validity of quantum
channel constant (p,Q, u) implies that Q is valid.)

Now, from Lemma 3.4.2, we have the following proposition:

– if ∅ ` (Q, u) : A and ran(σ)∩all(Q) = ∅, then ∅ ` (σ(Q), σ(u)) : A

Then, we conclude that

∅ ` (σ(Q), σ(u)) : A

since
ran(σ) ∩ all(Q) = FV(V ) ∩ all(Q) = ∅ ∩ all(Q) = ∅
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Structural reduction rule for quantum channel constant

• (ϵ(∅), (p,Q,m)) −→ (ϵ(∅), (p,Q′,m′))

where (Q, m) −→ (Q′, m′).

By the induction hypothesis, we have, for any typeAa that (` (Q′, m′) :

Aa) if (` (Q, m) : Aa).

From the hypothesis (` (ϵ(∅), (p,Q,m)) : At), it follows that At =

!QChan(P,A) and ` (p,Q,m) : At. Moreover, from the typing rule
QChanI , we derive that p ⊨ P and vBind(∅,out(Q),m,A). Thus, ac-
cording to Lemma 3.4.3, we can derive that TCQ(out(Q)i) ` mi : A for
each leaf i.

Then, since (Q,m) and (Q′,m′) are valid (from (p,Q,m) and (p,Q′,m′)

and the lemma 3.3.1), it follows that ∀i leaf · TCQ(out(Q)i) ` mi : A

implies that ` (Q,m) : A.

Then, from the induction hypothesis, we get that ` (Q′,m′) : A, which
implies that (Q′,m′) is valid and that for all leaf i, TCQ(out(Q′)i) ` m′

i :

A. Again by the same lemma (Lemma3.4.3), weobtain that vBind(∅,out(Q′),m′, A).
Finally, applying theQChanI rule, we conclude that` (p,Q′,m′) : !QChan(P,A).

Therefore, since (Q′,m′) is valid, wederive ∅ ` (ϵ(∅), (p,Q′,m′)) : !QChan(P,A)
from TCQ(∅) ` (p,Q′,m′) : !QChan(P,A).

Structural reduction rules for empty quantum channel

• (ϵ(WM ∪WN ), NM) −→ (extend(Q,WN ), Nm)

where (ϵ(WM ),M) −→ (Q,m) and all(Q) ∩WN = ∅.

From the hypothesis, ` (ϵ(WM ∪WN ), NM) : A, we derive that

TCQ(WM ∪WN ) ` NM : A.

From Lemma 3.2.3, we get thatWM ∪WN = FV(NM). Then, we let that
WM = FV(M) \ ∅ andWN = FV(N) \ ∅.

Inverting the typing rule (⊸E ), it can be deduced that (Qa ` N : At ⊸
A) and (Qb `M : At) as follows

Qa ` N : At ⊸ A Qb `M : At

Qa, Qb ` NM : A,

Note that TCQ(WM ∪ WN ) is a disjoint union of Qa = TCQ(WN ) and
Qb = TCQ(WM ).

We show the following two proposition:
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– ∀i leaf · TCQ(out(Q)i) ` mi : At

Note that (Qb ` M : At) implies that (` (ϵ(WM ),M) : At). Then,
by the induction hypothesis, we obtain that (` (Q,m) : At). It
follows that ∀i leaf · TCQ(out(Q)i) ` mi : At.

– ∀i leaf · TCQ(out(Q)i ∪WN ) ` Nmi : At ⊸ A where out(Q)i ∪
WN = out(extend(Q,WN ))i by Lemma 3.1.4
From Qa ` N : At ⊸ A and TCQ(out(Q)i) ` mi : At, we can
derive that TCQ(out(Q)i), Qa ` Nmi : A by applying the typing
rule (⊸E ) since out(Q)i ∩WN ⊆ all(Q) ∩WN = ∅.

Finally, since extend(Q,WN ) is valid (by Lemma 3.1.4) and
∀i leaf · TCQ(out(extend(Q,WN ))i) ` Nmi : At ⊸ A, we can conclude
that ` (extend(Q,WN ), Nm).

• Other structural rules for empty quantum channel

– (ϵ(WM ∪WN ),MN) −→ (extend(Q,WN ),mN),

– (ϵ(WM ∪WN ), 〈M,N〉) −→ (extend(Q,WN ), 〈m,N〉),

– (ϵ(WM ∪WN ), 〈N,M〉) −→ (extend(Q,WN ), 〈N,m〉),

–
(ϵ(WM ∪WN ), ifM thenMa elseMb) −→

(extend(Q,WN ), ifm thenMa elseMb),

–
(ϵ(WM ∪WN ), let 〈x, y〉 =M in N) −→

(extend(Q,WN ), let 〈x, y〉 = m in N),

where (ϵ(WM ),M) −→ (Q,m) and all(Q) ∩WN = ∅, can be shown sim-
ilarly.

Structural reduction rules for non-empty quantum channel

• ((meas w Q1 Q2), [ma,mb]) −→ ((meas w Q3 Q4), [mc,md])

where (Q1, ma) −→ (Q3, mc) and (Q2, mb) −→ (Q4, md).

From the hypothesis (` ((meas w Q1 Q2), [ma,mb]) : A), it follows that
(` (Q1,ma) : A) and (` (Q2,mb) : A).

Then, by the induction hypothesis, we obtain (` (Q3, mc) : A) and
(` (Q4, md) : A).

Therefore, we can conclude that (` ((meas w Q3 Q4), [mc,md]) : A).

• ((meas w Q1 Q2), [ma, v]) −→ ((meas w Q3 Q2), [mc, v])

where (Q1, ma) −→ (Q3, mc).

Similar to the previous case.
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• ((meas w Q1 Q2), [v,mb]) −→ ((meas w Q1 Q4, [v,md])

where (Q2, mb) −→ (Q4, md).

Similar to the previous case.

• (Q′
1, ma) −→ (Q′

2, mb)

where (Q1, ma) −→ (Q2, mb).

Note that Q′
1 can be either U(W ) Q1, init b0 w Q1, and free w Q1. Each

case can be proved similarly to the previous case using induction hy-
pothesis.

Progress lemma
The progress lemma states that all well-typed terms in a state either reduce to
another term or is a value. It consists of, first, showing it for the non-branching
term whose type does not contain QChan, and second,

Lemma 3.4.6. Progress lemma consists of the following three propositions:

• if ` (ϵ(W ),M) : A, then either there exists (Q,m) such that (ϵ(W ),M) −→
(Q,m) orM is a value, and

• if (` (Q1,m1) : A), then either there exists (Q2,m2) such that (Q1,m1) −→
(Q2,m2) orm1 is a value

• if valid(Q,m) and vBind(∅, out(Q),m,A) then eitherm is a value or (Q,m)

reduces,

Proof. We prove the two propositions by induction on the level of QChan of
m,M andm1.

For the basis case: the QChan level ofm1 is−1. The propositions are true
since there is no term with the QChan level −1.

For the induction step: the proof follows.

1. if` (ϵ(W ),M) : A, then either there exists (Q,m) such that (ϵ(W ),M) −→
(Q,m) orM is a value

Note that ` (ϵ(W ),M) : A is equivalent to that TCQ(W ) ` M : A.
Therefore, it suffices to show that if TCQ(W ) ` M : A, then either
there exists (Q,m) such that (ϵ(W ),M) −→ (Q,m) orM is a value. Note
that W = FV(M) \ ∅. We prove it by induction on the type derivation
TCQ(W ) `M : A.

• (x : A ` x : A), (` ∗ : I), (` tt : bool), (` ff : bool), (` box : !(P ⊸
A) ⊸ !QChan(P,A)), and ` unbox : QChan(P,A) ⊸ (P ⊸ A)

In these cases, it can be checked thatM is value and the configu-
ration (ϵ(W ),M) does not reduce.
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• (TCQ(W ) `M : A) where (`M : !A)

Directly follows from the induction hypothesis.

• (` V : !A) where (` V : A) and V is a value
Directly follows from the induction hypothesis.

• (Q ` λx.M : Aa ⊸ Ab) where (Q, (x : Aa) `M : Ab).
λx.M is a value and there is no reduction rule applicable for the
term.

• (Qa, Qb ` MaMb : Ab) where (Qa ` Ma : Aa ⊸ Ab) and (Qb `
Mb : Aa).
We show the goal by case analysis onMa andMb.
Ma is a value: Again we do case analysis onMb.

– Mb is a value: It follows from Γa ` Ma : Aa ⊸ Ab thatMa is
either λx.M , box, or unbox.
Ma = λx.M : First, λx.MMb is not a value. Moreover, (ϵ(W ), (λx.M)Mb)

reduces to (ϵ(W ),M [Mb/x]) as follows.

(ϵ(W ), (λx.M)Mb) −→ (ϵ(W ),M [Mb/x])

Ma = box: First, boxMb is not a value. Reduction rules for
box reduces the configuration sinceMb is a value.
Ma = unbox: In this case, unboxMb is a value sinceMb is a
value. Moreover, it can be checked that there is not rule to
reduce unboxMb.

– Mb is not a value: First of all,MaMb is not a value. Next, by in-
duction hypothesis, (ϵ(WM ),Mb) −→ (Q,mb) for some Q and
mb. (Note thatQb = TCQ(WM ).) Based on the equality of the
configuration, we can assume that all(Q)∩WN = ∅, i.e. there
exists some σ such that (Q,mb) ∼ (σ(Q), σ(mb)). Since the
reduction is defined over the equivalence class of the config-
uration, we can say that (ϵ(WM ),Mb) −→ (σ(Q), σ(mb)) Then,
we can obtain (ϵ(W ),MaMb) −→ (extend(σ(Q),WN ),Mamb).

Ma is not a value: Similarly, MaMb is not a value and by induc-
tion hypothesis, (ϵ(W ),Ma) −→ (Q,ma) ∼ (σ(Q), σ(ma)) where
all(σ(Q)) ∩WN = ∅. Therefore, we can obtain (ϵ(W ),MaMb) −→
(extend(σ(Q),WN ), σ(ma)Mb).

• (Qa, Qb ` 〈Ma,Mb〉 : Aa ⊗ Ab) where (Qa ` Ma : Aa) and (Qb `
Mb : Ab).
We do the case analysis onMa andMb.
BothMa andMb are values: It follows that 〈Ma,Mb〉 is a value.
Moreover, a proof by contradiction shows that there is no appli-
cable reduction rule for the configuration, (ϵ(W ), 〈Ma,Mb〉).
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Ma or Mb is not a value: In this case, 〈Ma,Mb〉 is not a value.
We can also find a reduction for (ϵ(W ), 〈Ma,Mb〉) by applying the
structural rules for pair.

• (Qa, Qb ` let 〈x, y〉 = Ma inMb : A) where (Qa ` Ma : Aa ⊗ Ab)
and (Qb, (x : Aa), (y : Ab) `Mb : A).

Since (let 〈x, y〉 = Ma inMb) is not a value, we show that we can
finda reduction for the configuration (ϵ(W ), let 〈x, y〉 =Ma inMb).
We show it by case analysis onMa.

Ma is a value: It follows thatMa = 〈V, U〉 for some values V and
U . (Note that Ma cannot be a variable since Qa and Qb is list of
qubits.) Then (ϵ(W ), let 〈x, y〉 = 〈V, U〉 inM) −→ (ϵ(W ), M [V /x, U/y]).

Ma is not a value:

By induction hypothesis, the configuration (ϵ(WM ),Ma) reduces
to some configuration (Q,ma) ∼ (σ(Q), σ(ma)) where WM =

FV(Ma) \ ∅ and all(σ(Q)) ∩ (W \WM ) = ∅. Then by applying the
structural reduction rule for let, we obtain that (ϵ(W ), let 〈x, y〉 =
Ma inMb) −→ (extend(σ(Q),WN ), let 〈x, y〉 = σ(ma) inMb).

• (Qa, Qb ` if M then Ma else Mb : A) where (Qa ` M : bool),
(Qb `Ma : A), and (Qb `Mb : A).

It canbe shown similarly to the previous case that (ifM thenMa elseMb)

is not a value and the configuration (ϵ(W ), ifM thenMa elseMb :

A) reduces to another configuration by case analysis onM .

M is a value: It follows thatM is tt or ff. (Note thatM cannot be
a variable since Qa and Qb is list of qubits which does not include
boolean.) Then (ϵ(W ), if M then Ma else Mb) reduces to either
(ϵ(W ), Ma) or (ϵ(W ), Mb) depending onM .

M is not a value:

By induction hypothesis, the configuration (ϵ(WM ),M) reduces to
some configuration (Q,m) ∼ (σ(Q), σ(M))whereWM = FV(M)\
∅ and all(σ(Q)) ∩ (W \ WM ) = ∅. Then by applying the struc-
tural rule for if, we obtain that (ϵ(W ), ifM thenMa elseMb) −→
(extend(σ(Q), (W \WN )), if σ(m) thenMa elseMb).

• (` (p,Q,m) : !QChan(P,A))where (p ⊨ P ) and (vBind(∅,out(Q),m,A)).

m is a value: It follows that the quantumchannel constant (p,Q,m)

is a value. Hence, it suffices to show that there is no reduction
rule to applicable to the configuration (ϵ(∅), (p,Q,m)). In fact,
the only reduction rule regarding quantum channel constants re-
quires that the configuration (Q,m) reduces. However, it contra-
dicts the induction hypothesis.
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m is not a value: Notice that quantumchannel level ofQChan(P,A)
is strictly greater thanA. Therefore, we use the induction hypoth-
esis on the third proposition: if valid(Q,m) and vBind(∅,out(Q),m,A)

then eitherm is a value or (Q,m) reduces (note that valid(Q,m)

follows from Lemma 3.3.1 for (p,Q,m)). Sincem is not a value, it
follows that (Q,m) reduces to, say, (Q′,m′). Therefore, by ap-
plying the reduction rule on quantum channel, we obtain that
(ϵ(∅), (p,Q,m)) −→ (ϵ(∅), (p,Q′,m′)).

• (γa × γb ` [ma,mb] : A) where (γa ` ma : A) and (γb ` mb : A).
Since (γa × γb) is a branching typing context and [ma,mb] is a
branching term, it contradicts the hypothesis.

2. if (` (Q1,m1) : A), then either there exists (Q2,m2) such that (Q1,m1) −→
(Q2,m2) orm1 is a value

Note that ` (Q1,m1) : A implies that (Q1,m1) is valid. So let us prove it
by induction on the validity of the circuit-buffering configuration (Q1,m1).

• (ϵ(W ),M)

This case is shown by the previous proposition.

• (U(W ) Q,m) where (Q,m)

By induction hypothesis, we know that either there exists (Q′,m′)

such that (Q,m) −→ (Q′,m′) orm is a value.
Suppose there exists some (Q′,m′) such that (Q,m) −→ (Q′,m′).
Thenby the reduction, weobtain that (U(W )Q,m) −→ (U(W )Q′,m′).
Also, we know thatm is not a value in this case.
Otherwise, we cannot apply the reduction rule for the circuit, and
it follows thatm is value.

• (init b w Q,m) and (free w Q,m), where (Q,m)

Shown similarly to the previous case.

• (meas w Qa Qb, [ma,mb]) where (Qa,ma) and (Qb,mb)

Bothma andmb are values: It follows that [ma,mb] is a value.
Suppose that (meas w Qa Qb, [ma,mb]) reduces to another con-
figuration. Then by the operational semantics, we can deduce
that either (Qa,ma) or (Qb,mb), or both, reduces to another state.
However, by the induction hypothesis, none of them is reducible.
Eitherma ormb is a value: It follows that [ma,mb] is not a value.
Since either (Qa,ma) or (Qb,mb) is reducible, the configuration
(meas w Qa Qb, [ma,mb]) is reducible.
Neither ma nor mb is a value: It follows that [ma,mb] is not a
value and similarly to the previous case, we can find a reduction
for the configuration (meas w Qa Qb, [ma,mb]).
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3. if valid(Q,m) and vBind(∅,out(Q),m,A) then either m is a value or
(Q,m) reduces

First, weprove that valid(Q,m) and vBind(∅,out(Q),m,A) implies that
` (Q,m) : A. Then the goal follows from the second proposition: if
(` (Q,m) : A) then either there exists (Q2,m2) such that (Q,m) −→
(Q2,m2) orm is a value.

We prove by induction on Q.

• Q = ϵ(W )

From valid(ϵ(W ),m), we know thatm =M anon-branching term.
Then, vBind(∅,out(ϵ(W )),m,A) implies that TCQ(W ) ` M : A.
Therefore, we can obtain ` (ϵ(W ),M) : A since we know that
(Q,m) is valid.

• Q = U(W ) Q′, (init b w Q,m), and (free w Q,m)

From the induction hypothesis, since valid(Q′,m) (which is ob-
tained from valid(Q,m)) and out(Q) = out(Q′), we can obtain
that ` (Q′,m) : A. It implies ∀i leaf · TCQ(out(Q′)i) ` mi : A,
hence ` (Q,m) : A.

• Q = meas w Qa Qb

First of all, we can obtain that valid(Qa,ma) and valid(Qb,mb)

(from valid(Q,m)) wherem = [ma,mb].
Moreover, vBind(∅, [out(Qa),out(Qb)], [ma,mb], A) implies
vBind(∅,out(Qa),ma, A) and vBind(∅,out(Qb),mb, A). Therefore,
from the induction hypothesis, we obtain that ` (Qa,ma) : A and
` (Qb,mb) : A. These again imply that ∀i leaf · TCQ(out(Qa)i) `
mai : A and ∀i leaf · TCQ(out(Qb)i) ` mbi : A. Hence, we can
conclude ∀i leaf · TCQ(out(Q)) ` mi : A, and ` (Q,m) : A.

3.4.2 . Type safety for QRAM
We extend the type relation to the configuration of the QRAM-based op-

erational semantics.

Definition 3.4.2 (Extended typing relation for QRAM-based operational se-
mantics).

!∆ ` (Q,m) : A

!∆ ` (ϕ,L,Q,m) : A

Subject reduction lemma
Lemma3.4.7. If (` (ϕ1, L1, Q1,ma) : A) and (ϕ1, L1, Q1,ma)

p
=⇒ (ϕ2, L2, Q2,mb),

then (` (ϕ2, L2, Q2,mb) : A).
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Proof. From the hypothesis (` (ϕ1, L1, Q1,ma) : A), we can derive that (`
(Q1,ma) : A) as follows.

` (Q1,ma) : A

` (ϕ1, L1, Q1,ma) : A

Weproveby induction on theQRAM-based reduction relation, (ϕ1, L1, Q1,ma)
p
=⇒

(ϕ2, L2, Q2,mb).

• (ϕ1, L1, Q1,m)
1
=⇒ (ϕ2, L2, Q2,m), where (Q1 = U(W )Q2) and (ϕ2, L2) =

Unitary(U,W, ϕ1, L1).

It suffices to show that (` (Q2,m) : A) since

` (Q2,m) : A

` (ϕ2, L2, Q2,m) : A

However, it follows from the fact that (` (Q1,ma) : A) by definition as
follows

` (Q2,m) : A

` (U(W ) Q2,ma) : A

• (ϕ1, L1, Q1,m)
1
=⇒ (ϕ2, L2, Q2,m), where (Q1 = init b0wQ2) and (ϕ2, L2) =

Init(b0, w, ϕ1, L1).

Similar to the previous case.

• (ϕ1, L1, Q1, [mt,mf ])
px
=⇒ (ϕx, Lx, Qx,mx), where

(Q1 = meas w Qt Qf ) and (ϕt, Lt, pt, ϕf , Lf , pf ) = Meas(w, ϕ1, L1).

Similar to the previous case.

• (ϕ1, L1, Q1,m)
px
=⇒ (ϕx, Lx, Q,m), where (Q1 = freewQ) and (ϕt, Lt, pt, ϕf , Lf , pf ) =

Free(w, ϕ1, L1).

Similar to the previous case.

• (ϕ,L, ϵ(W ),M)
1
=⇒ (ϕ,L,Q,m), where (ϵ(W ),M) −→∗ (Q,m).

It suffices to show that (Q,m) : A since

` (Q,m) : A

` (ϕ,L,Q,m) : A

However, by lemma 3.4.5, we can derive that (` (Q,m) : A) as follows.

` (ϵ(W ),M) : A (ϵ(W ),M) −→∗ (Q,m)

` (Q,m) : A
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Progress lemma
Lemma3.4.8. If (!∆ ` (ϕ1, L1, Q1,ma) : A), then either there exists (ϕ2, L2, Q2,mb)

such that (ϕ1, L1, Q1,ma)
p
=⇒ (ϕ2, L2, Q2,mb), or (Q1 = ϵ(W )) andma is a value.

Proof. We prove by case analysis on Q1.
If Q1 = ϵ(W ):
It follows from (` (ϕ,L, ϵ(W ),M) : A) that (` (ϵ(W ),M) : A). Then, by

lemma 3.4.6, it follows that eitherM is a value or there is some (Qt,mt) such
that (ϵ(W ),M) −→ (Qt,mt). IfM is not a value, it follows that (ϕ,L, ϵ(W ),M)

p
=⇒

(ϕ,L,Qt,mt) as follows.

(ϵ(W ),M) −→ (Qt,mt)

(ϕ,L, ϵ(W ),M)
1
=⇒ (ϕ,L,Qt,mt)

IfM is a value, then (ϵ(W ),M) is not reducible, hence, we cannot apply the
reduction rule to the configuration (ϕ,L, ϵ(W ),M).

Otherwise:
We can find for each case (where Q1 is one of (U(W ) Q), (init b w Q),

(freew Q), and (measw Q1 Q2)) the configuration (ϕ1, L1, Q1,ma) reduces to
some other configuration.
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4 - Categorical Model
Categorical semantics of programming languages and type systems is based

on the interpretation of each typing rule in typing derivation, which maps
type to object and typing judgment to a morphism of a certain category.
For example, categorical semantics of simply-typed λ-calculus is based on the
cartesian closed category, which is a category with a terminal object, a product,
and an exponential. In the semantics, a typing context is interpreted as a
product of the type assigned to each variable, and a type judgment is mapped
to a morphism from the object of the typing context to the object of the type
assigned to the term.

Concerning quantum programming language, one needs to distinguish clas-
sical variables from quantum variables since quantum data (qubits) cannot be
duplicated or erased while classical data (bits or functions) can be used as
many times as wanted. The difference is usually handled by an indicator
called bang !, which indicates that the type is classical, as in the linear logic.
Note that one can safely regard a classical type as a linear type, which corre-
sponds to the dereliction of linear logic, whereas one can promote a type only
if the type does not contain quantum data.

On the side of categorical semantics, Benton’s linear/non-linear model
is used to interpret the typing rules for dereliction and promotion. Briefly,
the model consists of a symmetric monoidal adjunction between a cartesian
closed category C and a symmetric monoidal closed category L, which models
the non-linear and linear type systems, respectively. The adjunction gives
a comonad (!, ϵ, δ) where ! is a functor L → L, ϵ : ! → id is the counit,
and δ :! →!! is the comultiplication. The model allows us to interpret the
dereliction rule as applying the counit and the promotion rule by using the
comultiplication.

Once a symmetric monoidal closed category from the linear/non-linear
model is introduced to the model, one can interpret the circuit type Circ(A,B)

as the internal hom (⊸) of the object corresponding to the type A and B.
Moreover, the monoidal adjunction enables us to define the box and unbox cir-
cuit operators. Therefore, the linear/non-linear model can be used for the cat-
egorical semantics of quantum circuit description languages. However, since
both A and B are objects in the symmetric monoidal closed category, they need
to be a linear type. In particular, it is not clear how to interpret a non-trivial
quantum channel with measurement, whose type would be QChan(qubit, bit)
where bit represents the binary classical control flow which can be distin-
guished from the Boolean type since bit-type term needs a simulation (which
is probabilistic computation) on quantum co-processor to obtain a Boolean
value.
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To model the classical control flow in the quantum channel, one needs
a particular symmetric monoidal closed category with extra properties, like
the coproduct completion of a symmetric monoidal closed category in [55]
or fibration of a symmetric monoidal closed category over a locally cartesian
closed category as the model of the linear dependent type theory in [24]. The
coproduct completion construction in the first model is an example of the
state-parameter fibration from the latter. In this example, the objects repre-
sent functions from the classical types to quantum types, which lets us define
the family of quantum circuits or the parameterized quantum circuits. There-
fore, more general types like bit = I + I (defined by using the coproduct)
can be defined in the completion of the monoidal category. In addition, since
the category is again symmetric monoidal closed, one can define the quan-
tum channel type QChan(A,B) as the internal hom or a parameter object
corresponding to the homset Hom(A,B). Therefore, in their model, one can
interpret higher-order circuit-description languages, and several extensions of
the semantics [24, 38] have been discussed. However, none of them were ex-
plicitly shown to capture dynamic lifting: the possibility to change behavior
depending on the result of a measurement.

Our model for the language and dynamic lifting relies on this coproduct
completion model in [55]. As we can consider a classical control flow as a
tree, which can be represented as a set of the prefix, the configuration of the
quantum channel and the term can be interpreted as a family of parameterized
circuits, where each leaf corresponds to a parameterized circuit. Based on
Moggi’s interpretation of side effect [44], we define a monad (F, µ, η) to model
the non-deterministic computational effect of the creation of branches: the
unit µ interprets the program without branching effect and the multiplication
η transforms a family of parameterized circuits into a parameterized circuit.
Then the type judgment is interpreted as a morphism in the Kleisli category,
and the quantum channel type QChan(A,B) is interpreted as the parameter
object from the homset Hom(A,B) in the Kleisli category.

Moreover, our model is based on a concrete category of diagrams which
allows us to interpret quantum programs written in the language into a col-
lection of diagrams. Diagrams are used in many places to represent different
logic (proof net for linear logic) and models of computation (like the quan-
tum circuit for quantum computation). A good example is ZX-calculus which
has been shown to be able to represent all quantum processes. Moreover, the
complete equivalence theory of ZX-calculus allows us to reason the equality
between two quantum processes. In line with those diagrams, our diagram
represents the quantum process with measurement and comes with an equiva-
lence theory of diagrams, which is necessary to construct the entire categorical
model. However, the equivalence theory that we propose is not complete, and
it remains as future works to find a complete equivalence theory and to charac-
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terize the necessary structures of the diagram for our categorical construction
to work.

To summarize what we are going to introduce in this chapter, we propose a
concrete, symmetric monoidal category M such that applying Rios&Selinger’s
construction gives us access to an interpretation of dynamic lifting. The model
we propose follows Moggi’s categorical interpretation of side effect [44] and
models the action of measurement using a (strong) monad. Our semantics is
therefore based on:

• A category of diagrams, serving as graph-like abstractions of quantum
channels. This category is compact-closed and features products: it
matches the requirements of the base category M in Selinger&Rios’
work which interprets higher-order circuits. This category is discussed
in Section 4.1.

• The categoryM , extendingM with the same procedure as Rios&Selinger.
This category is the category of values, following Moggi’s computational
interpretation. It is presented in Section 4.2.

• A strong monad on M that we denote with F . This monad encapsu-
lates computations involving measurements: a general term of Proto-
Quipper-L is therefore interpreted inside the Kleisli category MF : This
is the main novelty compared to other models of Proto-Quipper-like lan-
guages [55, 24, 38], and the critical reason for the possibility to interpret
dynamic lifting.

4.1 . Category of quantum channels (i.e., diagrams)

In this section, we aim to build a category of quantum channels. We first
define a graph-based language: we call the corresponding terms diagrams to
distinguish them from the terms of the quantum channel of Section 3.1.1.
Diagrams are directed graphs composed of several types of nodes and edges
labeled with marks. We then build the category M out of these terms.

4.1.1 . Diagram
Marks
Formally, we define marks as in Definition 4.1.1.

Definition 4.1.1. Mark has the following grammar

(Mark) M ::= I | q | M ⊗M | ⊞i∈XMi | M⊥

where X ranges over the class of sets. Marks are subject to the equivalence
relation defined as the following rules:
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• ⊞i∈I ⊞j∈J M(i,j) = ⊞j∈J ⊞i∈I M(i,j)

• (M1 ⊗M2)
⊥ =M⊥

1 ⊗M⊥
2

• (⊞i∈IMi)
⊥ = ⊞i∈I(M

⊥
i )

• (M⊥)⊥ =M

• ⊞l∈L ⊞x∈lM(l,x) = ⊞x∈l1++···++lnM(l,x), where L = [l1, . . . , ln]

• ⊞x∈XI = I

Note that ⊞i∈∅Mi acts as a unit for ⊞: we denote it with I . If A = [A1 . . . An]

is a list of marks, we use the notation A⊗ for A1 ⊗ · · · ⊗ An. We also use a
binary notation for⊞when the indexed set contains 2 elements: ⊞x∈{a,b}Ax =

Aa ⊞Ab.

Diagrams
A diagram is a (possibly infinite) directed graph with edges indexed with marks
and built from elementary nodes and boxes. A diagram is not necessarily a
connected graph. By graphical convention, all edges are flowing upward: a
diagram is therefore acyclic.

Elementary nodes make the basic building blocks of diagrams: they are
shown in Figure 4.1a. As we work with directed graphs, each edge connected
to a node is either an input or an output for that node. There are several
kinds of elementary nodes: the structural nodes for capturing the compact
closed structure: ∪ , ∩ , ⊗ , I and the swap-node (also written σ ); the
structural nodes for handling the product: ⊞ for the diagonal map and π for
the projection; the structural nodes for pointing inputs in and outputs out

of diagrams; the nodes specifically for quantum: |b〉 and 〈b| , with b ranging
over booleans, where the former stands for initialization and the latter for
projection onto the corresponding basis, tr for representing tracing (also useful
for products), G1 for unary unitary gates and G2 for binary gates. As a graph,
names over elementary nodes do not have meaning, but equivalence relations
over the diagram, which will be presented later, may distinguish nodes with
different names.

Note that the nodes allow more expressivity than what we need: for in-
stance, tr and 〈b| are indistinguishable. We nonetheless keep them in order
to draw attention to the correspondence with quantum computation and an
obvious mapping to completely positive maps. For legibility, we do not draw
in and out nodes unless necessary.

Presented in Figure 4.1b, a box-node is built from a family of diagrams.
It envelopes a family of general diagrams indexed by a set I inside a box.
They should all share the same input and output marks except for one pair of
input/output (represented on the left of the box-node). As a node, box-node
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out ⊗ ⊗A
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A⊗B

BA

tr

A

〈b|

q |b〉

q

�X

�x∈XA

A

πx

Ax

�x∈XAx

∩

A A⊥

∩

A A⊥

A

A

B

B

I

I

G1

q

q

G2

q ⊗ q

q ⊗ q

(a) Elementary nodes

fx

~B

~C

Ax

A′
x

fx

~B

~C

Ax

A′
x

�x∈X

�x∈XAx

�x∈XA′
x

~C

~B

 

∀x ∈ X

(b) Box node

Figure 4.1: Diagram nodes

has the same input and output marks as its contained diagrams except that
the left-most marks: these are the ⊞ of all left-most marks of the family. We
represent the juxtaposition of edges as a double arrow. This node is the last
piece needed for representing products.

Diagrams are inductively constructed by horizontal and vertical composi-
tions of diagrams which is shown in Figure 4.2.

Figure 4.2: Horizontal and vertical composition of diagrams

Equivalence relation on diagrams
We define an equivalence relation on diagrams. The equivalence is given with
local rules that can be extended to larger diagrams coherently: subgraphs
can be rewritten inside a larger graph (which is a graph constructed by the
structural rules of horizontal and vertical compositions and the box node con-
structor applied to subgraphs). These rules precisely capture what is needed
for the categorical semantics to work. For instance, we include all of the rules
for compact closed categories [61]. We also, for instance, need the fact that
the π -node acts as a projection over box-nodes. The complete list is shown
in Figure 4.3.

4.1.2 . Category of diagrams and its product
We define the category of diagrams from the definition of diagrams and

show that this category is symmetric monoidal closed and is endowed with a
product.
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Figure 4.3: Equivalence relation of diagrams

Category of diagrams M
Based on the definition of diagrams, we define the category of diagrams M
with the following data:

• objects are lists of marks [A1, . . . , An] and

• morphisms [A1, . . . , An]→ [B1, . . . , Bm] are diagrams with in -nodes of
marks Ai and out -nodes of marks Bi, modulo the equivalence relation
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defined on diagrams.

We use the notation A⃗ for the list of the Ai’s. An identity morphism is a
diagram consisting of a bunch of simple edges connecting in and out nodes.
Composition is defined by vertical composition of diagrams which consists in
identifying out and in nodes of diagrams. Then we can show that the category
satisfies associativity and unit law, hence M is indeed a category .

The category M is symmetric monoidal where we let the unit I = []

be the empty list, and let monoidal structure be given with the bi-functor
⊗ :M ×M →M defined as follows :

• for object A⃗ = [A1, . . . , An] and B⃗ = [B1, . . . , Bm],
A⃗⊗ B⃗ = [A1, . . . , An, B1, . . . , Bm], and

• for morphisms f : A⃗ → B⃗ and g : C⃗ → D⃗, f ⊗ g : (A⃗ ⊗ C⃗) → (B⃗ ⊗ D⃗)

is the juxtaposition (horizontal composition) of diagrams f and g.

Lemma 4.1.1. The tensor product ⊗ is a functor from the cartesian category
M ×M toM . Moreover, (−⊗ B⃗) is a functor fromM toM which is defined as
follows:

• for object A⃗ : (−⊗ B⃗)(A⃗) = A⃗⊗ B⃗; and

• for morhpism f : A⃗→ A⃗′ : (−⊗ B⃗)(f) = f ⊗ idB⃗ .

Proof. The tensor product is a functor since it preserves the identity and com-
position:

• idA⃗ ⊗ idB⃗ = idA⃗⊗B⃗ for A⃗, B⃗ ∈ Obj(M)

• (f ′ ◦ f) ⊗ (g′ ◦ g) = (f ′ ⊗ g′) ◦ (f ⊗ g) for the morphisms f and g, and
f ′ and g′

Next, we can show that (−⊗ B⃗) is a functor by showing that it preserves
the identity and composition as follows:

• (−⊗ B⃗)(idA⃗) = id(−⊗B⃗)(A⃗) = idA⃗⊗B⃗ ;

• (− ⊗ B⃗)(g ◦ f) = (g ◦ f) ⊗ idB⃗ = (g ⊗ idB⃗) ◦ (f ⊗ idB⃗) = (− ⊗ B⃗)(g) ◦
(−⊗ B⃗)(f)

As for the standard graphical representation of symmetric monoidal struc-
ture [61], the associativity, unit laws, and symmetry of the tensor product fol-
low from their graphical conventions. In specific, associativity, unit law, and
symmetry of the tensor product, are defined with the following natural trans-
formations, which is morphism in M assigned to each object in M , M ×M ,
and M ×M ×M :
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• αA⃗,B⃗,C⃗ : (A⃗⊗ B⃗)⊗ C⃗ id−→M A⃗⊗ (B⃗ ⊗ C⃗)

• lA⃗ : I ⊗ A⃗ id−→M A⃗ and rA⃗ : A⃗⊗ I id−→M A⃗

Note that lA⃗ and rA⃗ relies on the fact that ⊗ -node is equaivalent to id
according to the equivalence theory of diagrams (Figure 4.3).

• σA⃗,B⃗ : A⃗ ⊗ B⃗ −→M B⃗ ⊗ A⃗ is defined by using σ -node as shown in
Figure 4.4.

Figure 4.4: Definition of σA⃗,B⃗

Note that the naturality of the natural transformations αA⃗,B⃗,C⃗ , lA⃗, and
rA⃗ follows straightforwardly from the fact that they are identity morphism
while the naturality of the symmetry σA⃗,B⃗ in Eq. (4.1) can be shown from the
equation theory of diagram as shown in Figure 4.5.

A⃗⊗ B⃗ B⃗ ⊗ A⃗

A⃗′ ⊗ B⃗′ B⃗′ ⊗ A⃗′

f⊗g

σ
A⃗,B⃗

g⊗f
σ
A⃗′,B⃗′

(4.1)

Figure 4.5: Proof of the naturality of symmetry of diagrams

Lemma 4.1.2 (Symmetric monoidal category M ). The category of diagrams
with tensor product (M,⊗, I, α, l, r, σ) as defined above is a symmetric monoidal
category.

Proof. It remains to show the coherence conditions.
Since the associativity α is identity the pentagon identity in Eq.(4.2) can be

shown straightforwardly.

148



(A⃗⊗ B⃗)⊗ (C⃗ ⊗ D⃗)

((A⃗⊗ B⃗)⊗ C⃗)⊗ D⃗

(A⃗⊗ (B⃗ ⊗ C⃗))⊗ D⃗ A⃗⊗ ((B⃗ ⊗ C⃗)⊗ D⃗)

A⃗⊗ (B⃗ ⊗ (C⃗ ⊗ D⃗))

α
A⃗⊗B⃗,C⃗,D⃗

α
A⃗,B⃗,C⃗⊗D⃗

α
A⃗,B⃗,C⃗

⊗id
D⃗

α
A⃗,B⃗⊗C⃗,D⃗

id
A⃗
⊗α

B⃗,C⃗,D⃗

(4.2)

Next, the hexagon identity in Eq. (4.3), follows from the equivalence of
diagram shown in Figure 4.6.

(A⃗⊗ B⃗)⊗ C⃗ A⃗⊗ (B⃗ ⊗ C⃗) (B⃗ ⊗ C⃗)⊗ A⃗

(B⃗ ⊗ A⃗)⊗ C⃗) B⃗ ⊗ (A⃗⊗ C⃗) B⃗ ⊗ (C⃗ ⊗ A⃗)

σ⊗id

α σ

α

α id⊗σ

(4.3)

Figure 4.6: Proof of the coherence condition of associativity of the
monoidal structure ofM

The following two commute diagrams in Eq.(4.4), which are proven in Fig-
ure 4.7, correspond to the involutiveness of the symmetry and the triangle
identity, respectively.

A⃗⊗ B⃗

B⃗ ⊗ A⃗ A⃗⊗ B⃗

σ
id

σ

I ⊗ A⃗ A⃗⊗ I

A⃗

l

σ

r
(4.4)

Internal hom in M

The operation on marks (−)⊥ lifts to a contravariant functor, giving a compact-
closed structure to M . It then admits an internal hom: A⃗⊸ B⃗ can be defined
as A⃗⊥ ⊸ B⃗ where A⃗⊥ refers to the list of the duals of marks of A⃗. Specifically,
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Figure 4.7: Proof of coherence conditions for the monoidal structure
ofM

by letting A⃗ = [A1, . . . , An] and B⃗ = [B1, . . . , Bm], explicit representation of
the internal hom can be obtained as in Eq. (4.5).

A⃗⊸ B⃗ = [A1, . . . , An] ⊸ [B1, . . . , Bm]

= [A⊥
1 , . . . , A

⊥
n , B1, . . . , Bm]

= [A⊥
1 , . . . , A

⊥
n ]⊗ [B1, . . . , Bm]

= A⃗⊥ ⊗ B⃗

(4.5)

This definition of internal hom relies on the interpretation of (−)⊥ as the
reversed edge. For example, a morphism from [q] to [q] in the category M is a
diagram with one incoming edge of mark q and one outgoing edge of mark q.
This diagram is equivalently represented as two outgoing edges of marks q⊥
and q. Actually, this equivalence is what we need to show that M is closed,
namely, to show the isomorphism Hom(A⃗, B⃗ ⊸ C⃗) ∼= Hom(A⃗⊗ B⃗, C⃗).

We now show this formally. First, note that (− ⊗ B⃗) is a functor from
Lemma 4.1.1. We can show that the functor has a right adjoint, ((−⊗B⃗), (B⃗ ⊸
−), η, ϵ) where the functor (B⃗ ⊸ −) comes from the internal hom defined as
follows:

• for object A⃗ : (B⃗ ⊸ −)(A⃗) = B⃗⊥ ⊗ A⃗;

• for morhpism f : A⃗→ A⃗′ : (B⃗ ⊸ −)(f) = idB⃗⊥ ⊗ f .

Again, note that we can show that (B⃗ ⊸ −) is a functor.
Next, we define the natural transformations η : 1M → (B⃗ ⊸ −) ◦ (−⊗ B⃗)

and ϵ : (− ⊗ B⃗) ◦ (B⃗ ⊸ −) → 1M . To begin with, let us examine the two
compositions of functors (B⃗ ⊸ −) ◦ (−⊗ B⃗) and (−⊗ B⃗) ◦ (B⃗ ⊸ −):

• (B⃗ ⊸ −) ◦ (−⊗ B⃗):

– for object A⃗ : (B⃗ ⊸ −) ◦ (−⊗ B⃗)(A⃗) = B⃗⊥ ⊗ (A⃗⊗ B⃗);

– for morphism f : A⃗→ A⃗′ : (B⃗ ⊸ −) ◦ (−⊗ B⃗)(f) = idB⃗⊥ ⊗ (f ⊗
idB⃗).

• (−⊗ B⃗) ◦ (B⃗ ⊸ −):

150



– for object A⃗ : (−⊗ B⃗) ◦ (B⃗ ⊸ −)(A⃗) = (B⃗⊥ ⊗ A⃗)⊗ B⃗;

– for morphism f : A⃗→ A⃗′ : (−⊗ B⃗) ◦ (B⃗ ⊸ −)(f) = (idB⃗⊥ ⊗ f)⊗
idB⃗.

We then define the natural transformations η and ϵ as in Table 4.1.

η ϵ

for object A⃗, η(A⃗) : A⃗→ (B⃗ ⊸ (A⃗⊗ B⃗)) for object A⃗, ϵ(A⃗) : ((B⃗ ⊸ A⃗)⊗ B⃗)→ A⃗

The naturality: The naturality:

A⃗ B⃗ ⊸ (A⃗⊗ B⃗)

A⃗′ B⃗ ⊸ (A⃗′ ⊗ B⃗)

f

η(A⃗)

(B⃗⊸−)◦(−⊗B⃗)(f)

η(A⃗′)

(B⃗ ⊸ A⃗)⊗ B⃗ A⃗

(B⃗ ⊸ A⃗′)⊗ B⃗ A⃗′

(−⊗B⃗)◦(B⃗⊸−)(f)

ϵ(A⃗)

f

ϵ(A⃗′)

Table 4.1: Natural transformations η and ϵ for the internal hom inM

Then we can show that ((−⊗B⃗), (B⃗ ⊸ −), η, ϵ) is an adjunction as follows:
((B⃗ ⊸ −)ϵ) ◦ (η(B⃗ ⊸ −)) = id(B⃗⊸−) (ϵ(−⊗ B⃗)) ◦ ((−⊗ B⃗)η) = id(−⊗B⃗)

As a corollary, we can show the isomorphism Hom(A⃗, B⃗ ⊸ C⃗) ∼= Hom(A⃗⊗
B⃗, C⃗) in Lemma 4.1.3.

Lemma 4.1.3. For any object A⃗, B⃗, C⃗ ∈ Obj(M), Hom(A⃗, B⃗ ⊸ C⃗) ∼= Hom(A⃗⊗
B⃗, C⃗).

Proof. We define the following injections −→f : Hom(A⃗, B⃗ ⊸ C⃗)→ Hom(A⃗⊗
B⃗, C⃗) and←−g: Hom(A⃗⊗ B⃗, C⃗)→ Hom(A⃗, B⃗ ⊸ C⃗) and show

• that −→←−g= g, for any g ∈ Hom(A⃗⊗ B⃗, C⃗) and
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• that←−−→f
= f , for any f ∈ Hom(A⃗, B⃗ ⊸ C⃗).

First, we define the injections as in Eq. (4.6) which are represented ex-
plicitely as diagram in Figure 4.8.

−→f = A⃗⊗ B⃗ (B⃗ ⊸ C⃗)⊗ B⃗ C⃗
(−⊗B⃗)(f) ϵ(C⃗)

←−g = A⃗ B⃗ ⊸ (C⃗ ⊗ B⃗) B⃗ ⊸ C⃗
η(A⃗) (B⃗⊸−)(g)

(4.6)

Figure 4.8: Representation of the isomorphisms as diagrams

Finally, the equality for the isomorphism can be shown as in Figure 4.9.

Figure 4.9: Proof of the isomorphism

Product in M

The category M has products defined as follows. Thanks to the π -nodes and
the corresponding diagram equivalence rules, product in the category M can
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be defined for any family of objects {A⃗x | x ∈ X} indexed by a set X by using
⊞ for mark as in Eq. (4.7).

×x∈XA⃗x ::= ⊞x∈X A⃗x = [⊞x∈XA⃗x
⊗
] (4.7)

Moreover, the family of projections πx : (×x∈XA⃗x) → A⃗x is given by the π-
node as shown in Figure 4.10a. Finally, for any family of maps {fx : C⃗ →
A⃗x}x∈X , the morphisms 〈fx〉 : C⃗ → (×x∈XA⃗x) is the diagram presented in
Figure 4.10b. As an abuse of notation, we use one ⊗ for tensoring several
wires at once.

(a) Projection πi inM

fx
�

�x∈X ~C⊗

�x∈X ~Ax
⊗

~C⊗

~Ax
⊗

�X

~C⊗

x ∈ X

⊗

~C

(b) Pull back 〈fi〉 of family {fi} inM

Figure 4.10: Product inM

To show formally that the category M has a product, we need to show
that (×x∈XA⃗x, (πx)x∈X) is the pull back of the diagram of the tree with root
and X leaves, i.e. for any C⃗ ∈ Obj(M) and family of morphisms {fx : C⃗ →
A⃗x | x ∈ X}, there is a unique morphism 〈fx〉 : C⃗ → (×x∈XA⃗x) such that
fx = πx ◦ 〈fx〉, for all x ∈ X. It then reduces to show the existence and
the uniqueness of such morphism. By letting the pull back to be 〈fx〉, the
existence reduces to show that the morphism satisfies the following condition:
for all x ∈ X, fx = πx ◦ 〈fx〉. Therefore, we can show the existence by using
the equivalence theory of diagrams, as shown in Figure 4.11a.

Next, for the uniqueness (Eq. (4.8)), we use the fact that the following
two propositions from Eq. 4.8 and Eq. 4.9 are equivalent given that h = 〈fx〉
satisfies that fx = πx ◦ h for all x ∈ X by the exixtence proof .

There is unique morphism h : C⃗ → (×x∈XA⃗x) such that fx = πx ◦ h for all x ∈ X.
(4.8)

For all h : C⃗ → (×x∈XA⃗x), 〈πx ◦ h〉 = h. (4.9)

The proof of Eq. 4.9 can then be found in Figure 4.11b.

Note that the universality in Eq. (4.9) of the product implies that for any
f : C → ×i∈IAi,

C⃗ ×x∈XA⃗x
f

= C⃗ ×x∈XA⃗x
〈πx◦f〉 (4.10)
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(a) Proof of existence (b) Proof of uniqueness

Figure 4.11: Proof of the proposition that (×x∈XA⃗x, (πx)x∈X) is pull back

where×x∈XA⃗x = [⊞x∈XA
⊗
x ]. We can obtain the following corollary in Lemma 4.1.4

by letting C⃗ = I.

Lemma 4.1.4. For any f : I −→M [⊞i∈IA
⊗
i ], it is represented as:

Examples of morphisms in M

We show in Figure 4.12 two interesting morphisms in the category M . Note
that morphisms in M are equivalence classes of diagrams. First, the morphism
n : [q]→ [I ⊞ I] in Figure 4.12a corresponds to the measure. In each branch,
we perform a projection, and we keep in the output the information of where
we were. Note that the semantics does not state what is doing 〈tt|: what is
essential is to (1) “remove” the q-wire, and (2) keep it as information if we are
on the “true” or the “false” part.

Next, the morphism i in Figure 4.12b corresponds to qubit creation: it
takes a boolean I ⊞ I, initializes a qubit depending on its state, and “forgets”
the boolean.

As the last example, we can build the injections I → I ⊞ I in a similar
way to n: first, a ⊞ -node, followed by a box-node where we trace out the
component we do not need .

Based on these examples, we can interpret each quantum channel object
from Section 3.1.1 as a morphism in M as shown in Definition 4.1.2.

Definition 4.1.2 (Intepreting QCAlg terms). Let us use the notation q⊗n to
represent a list [q, ...q] of size n. A QCAlg-term Q can be interpreted as aM -
morphism JQK : A → B, where A = q⊗in(Q) and B of tree-shape of the form
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(a) Diagram for measurement (b) Diagram for qubit initialization

Figure 4.12: Examples of morphisms inM

⊞x∈X(q
⊗nx), following the tree-shape of out(Q) . The M -morphism JQK is

then defined by induction, using the idea presented above: initialization and
unitary gates are simply composed, and the branches of a meas operation
are encapsulated inside box-nodes.

4.1.3 . Compact closed category of diagrams
Finally, we show that we can make a compact closed category out of the

category of diagrams M . Recall that a compact closed category is a symmetric
monoidal category where each object A⃗ has its dual object A⃗⊥ together with
a unit ηA : I → A⃗⊥ ⊗ A⃗ and a counit ϵA : A⃗ ⊗ A⃗⊥ → I maps which satisfies
the following conditions [60]:

lA⃗ ◦ (ϵA⃗ ⊗ idA⃗) ◦ α
−1

A⃗,A⃗⊥,A⃗
◦ (idA⃗ ⊗ ηA⃗) ◦ r

−1

A⃗
= idA⃗ (4.11)

rA⃗⊥ ◦ (idA⃗⊥ ⊗ ϵA⃗) ◦ αA⃗⊥,A⃗,A⃗⊥ ◦ (ηA⃗ ⊗ idA⃗⊥) ◦ l−1

A⃗⊥ = idA⃗⊥ (4.12)

Concretely, we define the dual as in Definition 4.1.3.

Definition 4.1.3 (Dual in the compact closed category of diagrams).

A⊥ = [A1, . . . , An]
⊥ = [A⊥

1 , . . . , A
⊥
n ].

To show that it is a dual, we define the morphims ηA : I → A⊥ ⊗ A and
ϵA : A⊗A⊥ → I as in Definition 4.1.4.

(a) Unit map (b) Counit map

Figure 4.13: Unit and counit maps in the compact closed category of
diagram

Definition 4.1.4 (Unit and counit maps in the compact closed category).

155



Then, the triangle identities from Eq. (4.11) and Eq. (4.12) can be shown
as in Table 4.2. Note that the equations are simplified by using the fact that
lA⃗ = idA⃗ = rA⃗.

A⃗⊗ I A⃗⊗ (A⃗⊥ ⊗ A⃗)

I ⊗ A⃗ (A⃗⊗ A⃗⊥)⊗ A⃗

id⊗η
A⃗

α−1

ϵ
A⃗
⊗id

I ⊗ A⃗⊥ (A⃗⊥ ⊗ A⃗)⊗ A⃗⊥

A⃗⊥ ⊗ I A⃗⊥ ⊗ (A⃗⊗ A⃗⊥)

η
A⃗
⊗id

α

id⊗η
A⃗

Table 4.2: Proof of the triangle identities for compact closed structure

4.2 . Rios and Selinger completion

Coproduct completion allows us to define families of circuits [55, 24]. The
categorical structure clearly separates what is purely quantum and what is
parameter to the computation, and we have parametric families of quantum
channels.

Formally, this is done using the coproduct completion M of M . In this
completion, an object corresponds to a pair (X, (Ax)x∈X) where X is a set
and Ax is an object of M for each x ∈ X: this should be understood as a
parametric families of objects of M . A morphism from (X, (Ax)) to (Y, (By))

corresponds to a pair (f0, (fx)x∈X) where f0 : X → Y is a set function and
fx : Ax → Bf0(x) is a morphism in M for each x ∈ X. Intuitively, to each
choice of parameter x we have a M -morphisms Ax → Af0(x).

Composition is defined with (g0, (gy)) ◦ (f0, (fx)) = (g0 ◦ f0, (gf0(x) ◦ fx))
where (g0, (gy)) : (Y, (By)) → (Z, (Cx)) and (f0, (fx)) : (X, (Ax)) → (Y, (By))

are morphisms in M , while the identity is idA = (idX , (idAx)) for an object
A = (X, (Ax)).

According to Rios&Selinger [55], the category M is symmetric monoidal
closed and features products and coproducts. In particular, the monoidal
unit is ({∅}, (I)) (where ∅ stands for the only representative of the singleton-
set), and when A = (X, (Ax)) and B = (Y, (By)), the tensor on objects is
A ⊗ B = (X × Y, (Ax ⊗ By)(x,y)) and the internal hom is A ⊸ B = (X →
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Y, (Cf )f∈X→Y ) (X → Y is the set of all set-functions from X to Y and Cf
refers to the product ⊞x∈X(Ax ⊸ Bf(x)) of internal homs in M). Note that
the product is defined by ⊞ in the case of the category of diagrams. Also,
note that compared to [55], we can capitalize on the concrete structure of
the category for the proofs involving the coproduct completion. For instance,
associativity is trivial in our category M .

Finally, in order to model the type operator “!”, Rios&Selinger rely on
Benton’s linear/non-linear model [12], based on an adjunction between a sym-
metric monoidal closed category and a cartesian closed category. In our case,
as in [55] the adjunction is built between the SMCC M and the cartesian
closed category Set. The two functors of the adjunction are p : Set→M , de-
fined on objects as p(X) = (X, (I)X), and b :M → Set, defined on objects as
b(X, (Ax)) =

∑
x∈XM(I, Ax) where M(I, Ax) is the set of morphisms between

the objects I and Ax of the category M and
∑

x∈XM(I, Ax) is the disjoint
union of all such sets over X. From the adjunction, one can then construct a
comonad “!” defined as ! = p ◦ b (see the appendix for more details).
Remark. InM there are two classes of interesting objects. The parameters are
objects of the form (X, (I)x∈X): the family consists of trivial objects ofM , and
the only information is given by…the parameter. The state object is the dual:
the parameter is trivial, and the family is of size 1 with only one object ofM . It
is then of the form ({∅}, (A)). One therefore has two booleans: a parameter
boolean bp = ({tt, ff}, (I){tt,ff}, and the state boolean bs = ({∅}, (I ⊞ I)) living
inM .

4.2.1 . Definition of coproduct completion
Coproduct completion in Definition 4.2.1 allows us to define a family of

circuits [55, 24].

Definition 4.2.1 (Coproduct completion of a symmetric monoidal closed cat-
egory). The coproduct completion of a symmetric monoidal category M is
defined with the following data.

• objects correspond to a pair (X, (Ax)x∈X) where X is a set and Ax is
an object ofM for each x ∈ X ;

• morphisms from (X, (Ax)) to (Y, (By)) correspond to apair (f0, (fx)x∈X)
where f0 : X → Y is a set function and fx : Ax → Bf0(x) is a morphism
inM for each x ∈ X .

We call the coproduct completion ofM asM following the convention in [55].
The composition and identity morphism are defined as follows:

• composition : (g0, (gy))◦(f0, (fx)) = (g0◦f0, (gf0(x)◦fx))where (g0, (gy)) :
(Y, (By)) → (Z, (Cx)) and (f0, (fx)) : (X, (Ax)) → (Y, (By)) are mor-
phisms inM ;
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• identity : idA = (idX , (idAx)) for an object A = (X, (Ax)).

Next, we show that the above construction in Definition 4.2.1 produces
a category. It suffices to check associativity and unit laws to ensure that M
forms a valid category. The following proofs show associativity and unit laws
in M .

• associativity law : suppose (X, (Ax))
f−→ (Y, (By))

g−→ (Z, (Cz))
h−→

(W, (Dw)), then
h ◦ (g ◦ f) = h ◦ (g0 ◦ f0, (gf0(x) ◦ fx))

= (h0 ◦ g0 ◦ f0, (h(g0◦f0)(x) ◦ gf0(x) ◦ fx))
= (h0 ◦ g0, (hg0(x) ◦ gx)) ◦ f
= (h ◦ g) ◦ f

from the associativity of the category Set and M .

• unit law : for a morphism f : A −→ B where A = (X, (Ax)) and B =

(Y, (By)),
f ◦ idA = (f0 ◦ idX , (fx ◦ idAx))

f = (f0, (fx))

idB ◦ f = (idY ◦ f0, (idBf0(x)
◦ fx))

where f0 ◦ idX = f0 = idY ◦ f0 follows from the unit law of Set and
fx ◦ idAx = fx = idBf0(x)

◦ fx follows from the unit law of M for each
x ∈ X.

4.2.2 . Symmetric monoidal category M from coproduct completion
According to Rios and Selinger, unit (I), tensor product (⊗), and internal

hom (⊸) for the symmetric monoidal closed structure of M is defined as in
Definition 4.2.2.

Definition 4.2.2. The category M obtained by coproduct completion of a
symmetric monoidal closed category M is symmetric monoidal closed with
the following structure:

• I = ({∅}, (I));

• A⊗B = (X×Y, (Ax⊗By)(x,y))whereA = (X, (Ax)) andB = (Y, (By));

• A ⊸ B = (X → Y, (Cf )f∈X→Y ) where X → Y is the set of func-
tions from X to Y and Cf refers to the product of internal homs inM ,
Πx∈X(Ax ⊸ Bf(x)), for each function f : X → Y . Note that the prod-
uct is defined by ⊞ in the case of the category of diagrams, hence, we
explicitly write the internal hom as follows:

(X, (Ax)) ⊸ (Y, (By)) = (X → Y, (⊞x∈X(Ax ⊸ Bf(x)))f∈X→Y )

where Ax ⊸ Bf(x) is the internal hom inM .
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On top of it, we capitalize on the concrete structure of the category to
simplify the proofs involving the coproduct completion. To explain it, let us
look in detail at the symmetric monoidal closed structure of M .

Symmetric monoidal structure
First, we focus on the symmetric monoidal structure of M . The structure
comes with natural transformations αA,B,C : (A⊗ B) ⊗ C −→

M
A⊗ (B ⊗ C),

lA : I ⊗ A −→
M
A, rA : A⊗ I −→

M
A, and σA,B : A⊗ B −→

M
B ⊗ A which are

defined as in Eq. (4.13).

αA,B,C ::= ({((x, y), z) 7→ (x, (y, z))}, (αAx,By ,Cz)((x,y),z))

= ({((x, y), z) 7→ (x, (y, z))}, (id(Ax⊗By)⊗Cz
)

lA ::= ({(∅, x) 7→ x}, (lAx))

= ({(∅, x) 7→ x}, (idAx))

rA ::= ({(x, ∅) 7→ x}, (rAx))

= ({(x, ∅) 7→ x}, (idAx))

σA,B ::= ({(x, y) 7→ (y, x)}, (σAx,By))

(4.13)

Note that, for simplicity, we identify αA,B,C , lA, and rA be identity mor-
phism in M . It means that we equate the set {((x, y), z)} and {(x, (y, z))};
{(∅, x)} and {x}; and {(x, ∅)} and {x}. Moreover, we let αAx,Bx,Cx , lAx , and
rAx be identity morphisms in the category of diagrams M . As consequence,
all coherence conditions for the symmetric monoidal structure become triv-
ial except the coherence conditions related to symmetry shown in Eq. (4.14),
Eq. (4.2.2), and Eq. (4.16).

(A⊗B)⊗ C A⊗ (B ⊗ C) (B ⊗ C)⊗A

(B ⊗A)⊗ C B ⊗ (A⊗ C) B ⊗ (C ⊗A)

σ⊗id

α σ

α

α id⊗σ

(4.14)

A⊗B

B ⊗A A⊗B

σ
id

σ

(4.15)

I ⊗A A⊗ I

A

l

σ

r
(4.16)

These properties can be shown for the definition of M as follows:
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• Eq. (4.14) follows from the coherence rule of SMCC M .

(A⊗B)⊗ C α−→ A⊗ (B ⊗ C) σ−→ (B ⊗ C)⊗A α−→ B ⊗ (C ⊗A)
=({((x, y), z) 7→ (y, (z, x)}, (αBy ,Cz ,Ax ◦ σAx,By⊗Cz ◦ αAx,By ,Cz))

=({((x, y), z) 7→ (y, (z, x))}, ((idBy ⊗ σAx,Cz) ◦ αBy ,Ax,Cz ◦ (σAx,By ⊗ idCz)))

=(A⊗B)⊗ C σ⊗id−−−→ (B ⊗A)⊗ C α−→ B ⊗ (A⊗ C) id⊗σ−−−→ B ⊗ (C ⊗A)

• Eq. (4.2.2) can be shown as follows.

A⊗B σ−→ B ⊗A σ−→ A⊗B = ({(x, y) 7→ (x, y)}, (σBy ,Ax ◦ σAx,By))

= ({(x, y) 7→ (x, y)}, (idAx⊗By))

= A⊗B id−→ A⊗B

• Eq. (4.16) follows from the coherence conditions in M .

I ⊗A σ−→ A⊗ I r−→ A = ({(∅, x) 7→ x}, (rAx ◦ σI,Ax))

= ({(∅, x) 7→ x}, (lAx))

= I ⊗A l−→ A

Internal hom in M

Although Definition 4.2.2 gives us the definition of internal hom, we need to
prove that our concrete category admits the symmetric monoidal closed struc-
ture. It can be shown by the following concrete definition of the adjunction
((−⊗B), (B ⊸ −), η : 1

M
→ (B ⊸) ◦ (−⊗B), ϵ : (−⊗B) ◦ (B ⊸ −)→ 1M )

for the internal hom in M .
To begin with, we define the functors (−⊗B) and (B ⊸ −) as in Table 4.3.

Next, we define the natural trasnformations η and ϵ as in Table 4.4.

Lemma 4.2.1. The definition above admits that ((− ⊗ B), (B ⊸ −), η, ϵ) is an
adjunction, i.e. the following conditions are proved:

((B ⊸ −)ϵ) ◦ (η(B ⊸ −)) = idB⊸−

(ϵ(−⊗B)) ◦ ((−⊗B)η) = id−⊗B

which are represented in the following commute diagrams: for any object A,

B ⊸ A

B ⊸ ((B ⊸ A)⊗B) B ⊸ A

η(B⊸A)
idB⊸A

(B⊸−)(ϵ(A))

A⊗B

(B ⊸ (A⊗B))⊗B A⊗B

(−⊗B)(η(A))
idA⊗B

ϵ(A⊗B)

Intuitively, we consider the morphism ϵ(A) : (B ⊸ A)⊗B −→
M
A as the evalua-

tion and give the name evalB,A to the morphism.
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functor (−⊗B) :M →M functor (B ⊸ −) :M →M

for object A = (X, (Ax)),

(−⊗B)(A) = (X × Y, (Ax ⊗By)(x,y))

for object A = (X, (Ax)),

(B ⊸ −)(A) =
(Y → X, ([⊞y∈Y (By ⊸ Af(y))

⊗])f∈Y→X)

for morphism f = (f0, (fx)) : A −→M
A′,

(−⊗B)(f) =

({(x, y) 7→(f0(x), y)}, (fx,⊗idBy)(x,y))

for morphism f = (f0, (fx)) : A −→M
A′,

(B ⊸ −)(f) = ({p 7→ f0 ◦ p | p : Y → X},

( )p∈Y→X)

The following axioms follow from the defini-
tion.

(−⊗B)(idA) = idA⊗B

(−⊗B)(g ◦ f) = (−⊗B)(g) ◦ (−⊗B)(f)

The following axioms follow from the defini-
tion.

(B ⊸ −)(idA) = idB⊸A

(B ⊸ −)(g ◦ f) = (B ⊸ −)(g) ◦ (B ⊸ −)(f)

Table 4.3: Definition of functors (−⊗ B) and (B ⊸ −) inM

4.2.3 . Finite coproduct in M

Another essential property of M is the finite coproduct. Explicitly, for any
A,B ∈ Obj(M), there exists an object A+B, i.e. coproduct of A and B, and
morphisms

i1 : A→ A+B, and i2 : B → A+B

such that for any object C and morphisms f : A → C and g : B → C, there
exists unique (f, g) : A+B → C which satisfies that

f = (f, g) ◦ i1, and g = (f, g) ◦ i2.

In the coproduct completion, the coproduct is defined as following bifunctor
+ :M ×M →M :

• for an object (A,B) ∈ Obj(M ×M): A+B = (X + Y, (Ax) :: (By));

• for a morphism (f : A→ A′, g : B → B′) ∈ Hom
M×M ((A,B), (A′, B′)):

f+g = ({(0, x) 7→ (0, f0(x)), (1, y) 7→ (1, g0(y))}, (fx)X :: (gy)Y ) : A+B → A′+B′
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η : 1
M
→ (B ⊸ −) ◦ (−⊗B) ϵ : (−⊗B) ◦ (B ⊸ −)→ 1

M
For an object A = (X, (Ax)), For an object A = (X, (Ax)),

[ampersandreplacement = &]η(A)& := ({x 7→ {y 7→ (x, y)}}, (η(A)x))
& : A→ B ⊸ (A⊗B),

[ampersandreplacement = &]ϵ(A)& := ({(f, y) 7→ f(y)}, (ϵ(A)(f,y)))
& : (B ⊸ A)⊗B → A,

where η(A)x : Ax → [⊞y∈Y (By ⊸
(Ax⊗By))⊗] refers to the following di-
agram:

where ϵ(A)(f,y) : [⊞y∈Y (By ⊸
Af(y))

⊗] → Af(y) represents the fol-
lowing diagram:

where where

It can be shown that η satisfies the fol-
lowing naturality condition:

It can be shown that ϵ satisfies the fol-
lowing naturality condition:

A B ⊸ (A⊗B)

A′ B ⊸ (A′ ⊗B)

f

η(A)

(B⊸−)◦(−⊗B)(f)

η(A′)

(B ⊸ A)⊗B A

(B ⊸ A′)⊗B A′

(−⊗B)◦(B⊸−)(f)

ϵ(A)

f

ϵ(A′)

Table 4.4: Natural transformations η and ϵ inM

This bifunctor satisfies the following preservation properties as expected for
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the functor:

• identity:
for (idA, idB) ∈ Hom

M×M ((A,B), (A,B)),

idA + idB = ({(0, x) 7→ (0, x), (1, y) 7→ (1, y)}, (idAx)X :: (idBy)Y )

= (idX+Y , (idAx)X :: (idBy)Y )

= idA+B

• composition:
for (f1, f2) ∈ Hom

M×M ((A,B), (A′, B′)) and (g1, g2) ∈ Hom
M×M ((A′, B′), (A′′, B′′)),

(g1 + g2) ◦ (f1 + f2) =({(0, x′) 7→ (0, g1(x
′)), (1, y′) 7→ (1, g2(y

′))}, (g1x′ )X′ :: (g2y′ )Y ′)

◦ ({(0, x) 7→ (0, f1(x)), (1, y) 7→ (1, f2(y))}, (f1x)X :: (f2y)Y )

=({(0, x) 7→ (0, g1(f1(x))), (1, y) 7→ (1, g2(f2(y)))},
(g1f1(x) ◦ f1x)X :: (g2f2(y) ◦ f2y)Y )

=(g1 ◦ f1) + (g2 ◦ f2)

It is equipped with the following natural transformations i1 and i2:

• i1(A,B) = ({x 7→ (0, x)}, (idAx)) : A → A + B which satisfies the
following naturality diagram:

A A+B

A′ A′ +B′

f

i1(A,B)

f+g

i1(A′,B′)

where
(f + g) ◦ i1(A,B) = ({x 7→ (0, f0(x))}, (fx)X)

= i1(A
′, B′) ◦ f

• i2(A,B) = ({y 7→ (1, y)}, (idBy)) : B → A + B which is subject to the
following naturality diagram:

B A+B

B′ A′ +B′

g

i2(A,B)

f+g

i2(A′,B′)

where
(f + g) ◦ i2(A,B) = ({y 7→ (1, g0(y))}, (gy)Y )

= i2(A
′, B′) ◦ g
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Given the definition, we can show the universality of the coproduct. For
any morphisms f : A→ C and g : B → C, let (f, g) = ({(0, x) 7→ f0(x), (1, y) 7→
g0(y)}, (fx)(0,x) :: (gy)(1,y)) : A+B → C. Then, we can check that

(f, g) ◦ i1 = ({x 7→ (0, x) 7→ f0(x)}, (fx ◦ idAx)X) = f

(f, g) ◦ i2 = ({y 7→ (1, y) 7→ g0(y)}, (gy ◦ idBy)Y ) = g

Moreover, there is unique morphism (f, g) = A + B → C which satisfies
above conditions. Suppose that a morphism h : A + B → C satisfies that
f = h ◦ i1 and g = h ◦ i2. Without loss of generality, let h = ({(0, x) 7→
p(x), (1, y) 7→ q(y)}, (hx)(0,x) :: (hy)(1,y)). Then since f = h ◦ i1, p(x) = f(x)

and hx = fx; and since g = h ◦ i2, q(y) = g(y) and hy = gy.

Lastly, Lemma 4.2.2 shows that we can decompose morphisms by the uni-
versality.

Lemma 4.2.2. For (f1, f2) ∈ Hom
M×M ((A1, A2), (B1, B2)) and

(g1, g2) ∈ Hom
M×M ((B1, B2), (C,C)), the following equation holds:

(g1 ◦ f1, g2 ◦ f2) = (g1, g2) ◦ (f1 + f2).

Proof. Proof is in Figure 4.14

Figure 4.14: Proof of the commutativity of the coproduct and the com-
position

4.2.4 . Distributivity of ⊗ over +

There is a natural transformation ⋆ : (− + −) ⊗ C → (−⊗ C) + (−⊗ C)
for each object C ∈ Obj(M) defined as follows:

⋆(A,B) = ({((0, x), z) 7→ (0, (x, z)), ((1, y), z) 7→ (1, (y, z))},
(idAx⊗Cz)((0,x),z) :: (idBy⊗Cz)((1,y),z))

: (A+B)⊗ C −→
M

(A⊗ C) + (B ⊗ C).
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It satisfies the naturality in Eq. (4.17) which can be shown as in Figure 4.15.

(A+B)⊗ C A⊗ C +B ⊗ C

(A′ +B′)⊗ C ′ A′ ⊗ C ′ +B′ ⊗ C ′

(f+g)⊗h

⋆

f⊗h+g⊗h

⋆

(4.17)

Figure 4.15: Proof of naturality of the distributivity of ⊗ over +

We define left distributivity ⋆′ : A ⊗ (− + −) → (A ⊗ −) + (A ⊗ −) as
follows:

⋆′(B,C) = A⊗(B+C)
σ−→
M

(B+C)⊗A ⋆−→
M
B⊗A+C⊗A σ+σ−−−→

M
A⊗B+A⊗C.

Lemma 4.2.3. For any morphism f : A ⊗ B → C , the following diagram com-
mutes:

(A+A)⊗B A⊗B

A⊗B +A⊗B

C + C C

(id,id)⊗id

⋆

f

f+f

(id,id)

Proof. Proof is shown in Figure 4.16

Figure 4.16: Proof of commutativity for the distributivity of ⊗ over +
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As an example, we can define true and false values as embeddings ftt :

I → I + I and fff : I → I + I as in Eq. (4.18), and use it as a switch as in
Eq (4.19) for a control. Lemma 4.2.4 shows that the switch works as intended.

ftt ::= ({∅ 7→ tt}, (idI))
fff ::= ({∅ 7→ ff}, (idI))

(4.18)

where tt and ff are abbreviations for (0, ∅) and (1, ∅) respectively.

switchf,g(b) ::= A
l−1
A−−→ I⊗A fb⊗idA−−−−→ (I+I)⊗A ⋆−→ I⊗A+I⊗A lA+lA−−−−→ A+A

(f,g)−−−→ B

(4.19)
for any morphisms f, g : A→ B and a boolean b ∈ {tt,ff}. Note that lA refers
to the natural transformation from the monoidal structure of M , which we let
be equal to the identity morphism of A.

Lemma 4.2.4. The following two diagrams commute: for any morphisms f, g :

A→ B,

(A = I ⊗A) B

(I + I)⊗A (I ⊗A+ I ⊗A = A+A)

f

ftt⊗idA

⋆

(f ,g)

(A = I ⊗A) B

(I + I)⊗A (I ⊗A+ I ⊗A = A+A)

g

fff⊗idA

⋆

(f ,g)

Proof. Let’s let f = (f0, (fx)) and g = (g0, (gx))

(f, g) ◦ ⋆ ◦ (ftt ⊗ idA) =({(∅, x) 7→ (tt, x) 7→ (0, (∅, x)) 7→ f0(x)}, (fx)) = f

(f, g) ◦ ⋆ ◦ (fff ⊗ idA) =({(∅, x) 7→ (ff, x) 7→ (1, (∅, x)) 7→ g0(x)}, (gx)) = g

4.3 . Benton’s linear/non-linear category

Benton’s linear/non-linear model [12] has been used in several models of
quantum programming languges [76, 55, 24]. The model is based on the ad-
junction between a symmetric monoidal closed category and a cartesian closed
category.

The adjunction gives us a comonad which is called !-comonad and lets us
interpret the quantum circuit types and the circuit operators–box and un-
box. In this section, we introduce the definition of the comonad based on the
concrete category M .

4.3.1 . !-Comonad
Following the cases of [55, 24], we define an adjunction from the functors

p : Set → M and b : M → Set between the symmetric monoidal closed
category M and the cartesian closed category Set as shown in Figure 4.17.
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Figure 4.17: Adjunction for !-comonad

Definition of functors p and b

We begin with the functors between the category Set and M .

• functor p : Set→M

– for object X : p(X) = (X, (I)X); and
– for morphism f : X → Y : p(f) = (f, (idI)X) : (X, (I)X) −→M

(Y, (I)Y ).

It can be seen that

p(g◦f) = (g◦f, (idI)X) = p(g)◦p(f), and p(idX) = (idX , (idI)X) = idp(x).

• functor b :M → Set

– for objectA = (X, (Ax)) : b(A) =
∑

x∈XM(I, Ax) whereM(I, Ax)

is the set of morphisms between the objects I and Ax of the cate-
gory M and

∑
x∈XM(I, Ax) is the disjoint union of all such sets

over X; and
– for morphism f = (f0, (fx)) : (X, (Ax)) −→M

(Y, (By)) :

b(f) = {(x, p : I −→M Ax) 7→ (f0(x), fx◦p)} :
∑
x∈X

M(I, Ax)→
∑
y∈Y

M(I,By).

Again, it can be seen that

– b((g0, (gy))◦(f0, (fx))) = {(x, f : I −→M Ax) 7→ ((g0◦f0)(x), ff0(x)◦
fx ◦ f} = b(g0, (gy)) ◦ b(f0, (fx)) and

– b(idX , (idI)X) = {(x, f : I −→M I) 7→ (x, f)} = idb(X,(Ax)).

Symmetric monoidal structure of M and Set

As shown in Section 4.2, the category M is a symmetric monoidal closed
category. Moreover, we can show that the category Set is also a symmetric
monoidal category with the following structure (Set,×, {∅}, α, l, r, σ) where ×
is the cartesian product, {∅} is a singleton set of ∅ and the natural transfor-
mations are defined as below:

• α(X,Y, Z) = {((x, y), z) 7→ (x, (y, z))} : (X × Y )× Z → X × (Y × Z)
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• l(X) = {(∅, x) 7→ x} : {∅} ×X → X

• r(X) = {(x, ∅) 7→ x} : X × {∅} → X

• σ(X,Y ) = {(x, y) 7→ (y, x)} : X × Y → Y ×X

where the commute diagrams for naturality can be shown. Also, it can be
shown that the structure satisfies the coherence conditions for the symmetric
monoidal categories.

Monoidal functors (p,m) and (b, n)

In this setting, following the Benton’s paper [12], we define the monoidal
functors (p,m) and (b, n) as below . The monoidal functors mean that the
functor preserves the symmetric monoidal structures of the two symmetric
monoidal categories. We can show that the functors p and b are monoidal
functors with the following definition of natural transformations m and n:

• (p : Set→M,m) :

– mI = (id{∅}, (idI)) : ({∅}, (I)) −→M
({∅}, (I))

– mX,Y = id(X×Y,(I)X×Y ) : (X, (I)X)⊗ (Y, (I)Y )→ (X×Y, (I)X×Y ),
where (X, (I)X)⊗ (Y, (I)Y ) = (X × Y, (I)X×Y )

It can be shown that the following diagram of naturality commutes:

(X, (I)X)⊗ (Y, (I)Y ) (X × Y, (I)X×Y )

(X ′, (I)X′)⊗ (Y ′, (I)Y ′) (X ′ × Y ′, (I)X′×Y ′)

p(f)⊗p(g)

mX,Y

p(f×g)
mX′,Y ′

• (b :M → Set, n) :

– nI = {(∅ 7→ idI)} : {∅} →M(I, I)

– nA,B = {((x, fx), (y, gy)) 7→ ((x, y), fx ⊗ gy)} :
∑

x∈XM(I, Ax) ×∑
y∈Y M(I,By)→

∑
(x,y)∈X×Y M(I, Ax ⊗By)

It can be shown that the following diagram of naturality commutes:∑
x∈XM(I, Ax)×

∑
y∈Y M(I,By)

∑
(x,y)∈X×Y M(I, Ax ⊗By)

∑
x′∈X′ M(I, A′

x′)×
∑

y′∈Y ′ M(I,B′
y′)

∑
(x′,y′)∈X′×Y ′ M(I, A′

x ⊗B′
y)

b(f)⊗b(g)

nA,B

b(f⊗g)
nA′,B′

There are coherence conditions monoidal functors [12]. They can be shown
according to our definitions.
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Natrual transformations η : 1Set → b ◦ p and ϵ : p ◦ b→ 1
M

Next, we define the natural transformations η : 1Set → b ◦p and ϵ : p ◦ b→ 1
M

for the adjunction (p, b, η, ϵ).

• η : 1Set → b ◦ p
We define it for a set X,

η(X) = {x 7→ (x, idI)} : X → (b ◦ p)(X).

It satisfies the following commute diagram of naturality:

X (b ◦ p)(X)

Y (b ◦ p)(Y )

f

η(X)

(b◦p)(f)
η(Y )

• ϵ : p ◦ b→ 1
M

We define, for an object A = (X, (Ax)) ∈ Obj(M),

ϵ(A) = ({(x, px) 7→ x | (x, px) ∈
∑
x∈X

M(I, Ax)}, (px)(x,px)) : (p◦b)(f) −→M
A.

We can show that the following commute diagram holds:

(p ◦ b)(A) A

(p ◦ b)(A′) A′

(p◦b)(f)

ϵ(A)

f

ϵ(A′)

Moreover, we can show that η and ϵ are monoidal natural transformations by
showing the following coherence conditions:

• η : 1Set → (b ◦ p)

X × Y X × Y

(b ◦ p)(X)× (b ◦ p)(Y ) (b ◦ p)(X × Y )

η(X)×η(Y )

id

η(X×Y )

b(m(X,Y ))◦n(p(X),p(Y ))

{∅} (b ◦ p)({∅})

{∅}

η({∅})

id
b(mI)◦nI

• ϵ : (p ◦ b)→ 1
M

(p ◦ b)(A)⊗ (p ◦ b)(B) (p ◦ b)(A⊗B)

A⊗B A⊗B

ϵ(A)⊗ϵ(B)

p(n(A,B))◦m(b(A),b(B))

ϵ(A⊗B)

id

(p ◦ b)(I) I

I

ϵ(I)

p(nI)◦mI

id
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Finally, we can show that (p, b, η, ϵ) is an adjunction by showing the following
coherence conditions:

• (b ◦ ϵ) ◦ (η ◦ b) = idb(−)

For any object A in M , b(ϵ(A)) ◦ η(b(A)) = idb(A).

• (ϵ ◦ p) ◦ (p ◦ η) = idp(−)

For any set X, ϵ(p(X)) ◦ p(η(X)) = idp(X).

4.3.2 . Symmetric monoidal comonad (!, ϵ : ! → 1
M
, δ : ! → !!) with

πA,B and πI

From [12], a comonad (! = p ◦ b, ϵ : ! → 1
M
, δ : ! → !!) can be obtained

from the natural transformation ϵ and δ = p ◦ η ◦ b. The !-comonad comes
with the following properties of comonad:

!A !!A !A

!A

ϵ(!A) !(ϵ(A))

δ(A)
id id

!!!A !!A

!!A !A

!(δ(A))

δ(!A)

δ(A)

δ(A)

Lemma 4.3.1. There are natural transformations (ϵ◦! and δ) between ! and !!, i.e.
for any objectA ∈ Obj(M), there are morphisms ϵ(!A) :!!A −→!A and δ(A) :!A −→
!!A which satisfy the following conditions:

(ϵ◦!) ◦ δ = id!
δ ◦ (ϵ◦!) 6= id!!.

Proof. Proof is shown in Figure 4.18.

Figure 4.18: Proof of the lemma on the natural transformation be-
tween ! and !!

Next, the natural transformation πA,B and a morphism πI are defined as
follows:
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• πI = ({∅ 7→ (∅, idI)}, (idI)) : I → !I

• π(A,B) = ({((x,mx : I → Ax), (y,my : I → By)) 7→ ((x, y),mx ⊗
my)}, (idI)) : (!A) ⊗ (!B) −→ !(A ⊗ B) where the following diagram
commutes :

!A⊗!B !(A⊗B)

!A′⊗!B′ !(A′ ⊗B′)

π(A,B)

(!f)⊗(!g) !(f⊗g)
π(A′,B′)

Additionally, we can show the following commute diagrams for monoidal
comonad :

!A⊗ !B !(A⊗B)

A⊗B

ϵ⊗ϵ

π(A,B)

ϵ

I !I

I

idI

πI

ϵ

!A⊗ !B !(A⊗B)

!!A⊗ !!B !(!A⊗ !B) !!(A⊗B)

π(A,B)

δ⊗δ δ

π(!A,!B) !π(A,B)

I !I

!I !!I

πI

πI δI

!πI

4.4 . Lifting Monad

According to Rios&Selinger, the category M together with the structure
sketched in Section 4.2 and the Benton’s linear/non-linear category described
in Section 4.3 forms a model of Proto-Quipper-M. We shall now see how our
concrete construction can also support dynamic lifting, therefore forming a
model of Proto-Quipper-L.

The main problem consists in lifting a branching sitting inside a quantum
channel —i.e., inside the category M— to turn it into a coproduct on which
one can act upon in the classical world, represented by the category M . For
instance, as in Remark 4.2, we need to lift a state-boolean into a parameter-
boolean. Our strategy consists in defining a strong monad (F, µ, η, t) to cap-
ture the action of retrieving such a branching: a term featuring measurement
(and dynamic lifting) is therefore represented within the Kleisli category MF ,
following Moggi’s [44] view on side-effects.

The functor F :M →M is defined as follows. For an objectA = (X, (Ax)),
we define F (A) = (mset(X), ([⊞x∈lA

⊗
x ])l∈mset(X)), where mset(X) is the set

of multisets of X, while for a morphism f = (f0, (fx)) : A → B we set
F (f) = (g0 : mset(X) → mset(Y ), gl : [⊞x∈lA

⊗
x ] → [⊞y∈g0(l)B

⊗
y ]), where

g0 = {[x0, . . . , xn] 7→ [f0(x0), . . . , f0(xn)]} and where gl is defined as shown on
the right.
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Example 4.4.1. The lifting of the state boolean bs of Remark 4.2 to the parameter
boolean bp is then aM -map lb : bs → F (bp), whereF (bp) is (mset{tt, ff}, (⊞x∈lI)l).
The map lb is defined as (lb0, (lbx)x∈{∅}) where lb0 : {∅} → mset{tt, ff} sends
∅ to [tt, ff ], and where lb∅ : I ⊞ I → I ⊞ I is simply defined as the identity. In
the other direction, theM -map bp → bs consists of the constant set-function on ∅
together with the injections I → I ⊞ I discussed in Section 4.1.

4.4.1 . Definition of Branching computation monad (F, µ, η, t)

Our categorical model is equipped a strong monad (F, µ, η, t), which is a
monad (F, µ, η) with a tensorial strength t. The strong monad models the
computation that creates a non-deterministic branch. The monad provides us
a Kleisli category MF where the computation is interpreted as a morphism
[44].

We begin with the definition of a functor F :M →M in Definition 4.4.1.

Definition 4.4.1 (Functor F for the branching computation monad). Functor
is defined over the categoryM as follows.

• for objectA = (X, (Ax)): F (A) = (mset(X), ([⊞x∈lA
⊗
x ])l∈mset(X)), where

mset(X) is the set of multisets ofX ;

• for morphism f = (f0, (fx)) : A→ B:

F (f) = (g0 : mset(X)→ mset(Y ), gl : [⊞x∈lA
⊗
x ]→ [⊞y∈g0(l)B

⊗
y ]),

where

g0 = {[x0, . . . , xn] 7→ [f0(x0), . . . , f0(xn)]} and

The functor F preserves the identity morphism and the composition of
morphisms:

F (idA) = idF (A), and F (g ◦ f) = F (g) ◦ F (f).

Next, the unit η and the multiplication µ of the monad are defined as in
Definition 4.4.2.

Definition 4.4.2 (Unit and multiplication of branching monad). Unit η and
multiplication µ are defined as natural transformations as follows.

172



• η : 1
M
→ F

For an object A ∈ Obj(M), η(A) = ({x 7→ [x]}, (⊗ : Ax → A⊗
x )X) :

A −→
M
F (A). The following commute diagram for the naturality can be

shown:

A F (A)

A′ F (A′)

f

η(A)

F (f)

η(A′)

• µ : F 2 → F

For an object A ∈ Obj(M),

µ(A) =({[l1, . . . , ln] 7→ l1 ++ . . .++ln}, (id⊞l∈L⊞x∈lA
⊗
x
)

:⊞l∈L [⊞x∈lA
⊗
x ]→ ⊞x∈l1++...++lnA

⊗
x ) = F 2(A) −→

M
F (A),

where

The commute diagram of the naturality can be shown:

F 2(A) F (A)

F 2(A′) F (A′)

F 2(f)

µ(A)

F (f)

µ(A′)

Lemma 4.4.1. Given the definition above, (F, µ, η) is a monad, i.e. the following
diagrams commute:

F 3(A) F 2(A)

F 2(A) F (A)

F (µ(A))

µ(F (A))

µ(A)

µ(A)

and
F (A) F 2(A) F (A)

F (A)
id

η(F (A))

µ(A)

F (η(A))

id

Proof. The commute diagrams can be shown as in Figure 4.19.

In addition, Lemma 4.4.2 states a commute relation over the coproduct in
M and the natural transformation µ.
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Figure 4.19: Proof of the coherence conditions for branching monad

Lemma 4.4.2. The following diagram commutes:

F (F 2Z + F 2Z) F 3Z F 2Z

F (FZ + FZ) F 2Z FZ

F (id,id)

F (µ+µ)

µ

µ

F (id,id) µ

Proof. The proof is shown in Figure 4.20.

Figure 4.20: Proof of commutativity between coproduct and branching
monad

Next, we define the tensorial strength as in Definition 4.4.3 which makes
the branching monad a strong monad [44, 76].

Definition 4.4.3 (Tensorial strength tof branchingmonad). Tensorial strength
is the natural transformation t defined as follows.
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• For any objects A,B ∈ Obj(M),

tA,B =({([x1, . . . , xn], y) 7→ [(x1, y), . . . , (xn, y)]}, ( ))

:F (A)⊗B −→
M
F (A⊗B).

The natural transformation satisfies the following commute diagram:

F (A)⊗B F (A⊗B)

F (A′)⊗B′ F (A′ ⊗B′)

F (f)⊗g

tA,B

F (f⊗g)
tA′ ,B′

The naturality of tensorial strenth t can be shown as follows. For f =

(f0, (fx)x) : A→ A′ and g = (g0, (gy)y) : B → B′,

F (f ⊗ g) ◦ tA,B =

({([x1, . . . , xn], y) 7→ [(f0(x1), g0(y)), . . . , (f0(xn), g0(y))]}, ( ))

tA′,B′ ◦ (F (f)⊗ g) =

({([x1, . . . , xn], y) 7→ [(f0(x1), g0(y)), . . . , (f0(xn), g0(y))]}, ( ))

where F (f ⊗ g) ◦ tA,B = tA′,B′ ◦ (F (f)⊗ g) follows from Figure 4.21.

Moreover, Lemma 4.4.3 shows that Definition 4.4.3 satisfies the conditions
for tensorial strengths.
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Figure 4.21: Proof of the naturality of the tensorial strength of branch-
ing monad

Lemma 4.4.3. Tensorial strength t satisfies the following commute diagrams.

F (A)⊗ I F (A⊗ I)

F (A)

rF (A)

tA,idI

F (rA) ,

A⊗B A⊗B

F (A)⊗B F (A⊗B)

F 2(A)⊗B F (F (A)⊗B) F 2(A⊗B)

η(A)⊗idB

idA⊗B

η(A⊗B)

tA,B

µ(A)⊗idB
tA′ ,B′ F (tA,B)

µ(A⊗B)

,

F (A)⊗ (B ⊗ C) F (A⊗ (B ⊗ C))

(F (A)⊗B)⊗ C F (A⊗B)⊗ C F ((A⊗B)⊗ C)

α−1
F (A),B,C

tA,B⊗C

F (α−1
A,B,C)

tA,B⊗idC tA⊗B,C

Proof. The proof of each commute diagram can be found in Figure 4.22.

For convenience, we define another tensorial strength ψ : F (−)⊗ F (−)→
F (−⊗−) form the tensorial strength t as in Eq.(4.20) .

ψA,B =

F (A)⊗ F (B) F (A⊗ F (B)) F (F (B)⊗A)

F (A⊗B) F (F (A⊗B)) F (F (B ⊗A))

tA,F (B) F (σ)

F (tB,A)

µ F 2(σ)

(4.20)

Lemma 4.4.4. The ψA,B is equivalently represented as the following morphism
inM .

ψA,B =
F (A)⊗ F (B)

tA,F (B)−−−−→ F (A⊗ F (B))
F (σ)−−−→ F (F (B)⊗A)

F (t)−−→ F (F (B ⊗A)) µ−→ F (B ⊗A) F (σ)−−−→ F (A⊗B)

Then, we show the following properties of tensorial strength in Lemma 4.4.5.
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(a) Commute diagram 1 (b) Commute diagram 2

(c) Commute diagram 3

Figure 4.22: Proof of the commute diagrams for the tensorial strength
of monad

Lemma 4.4.5. The following diagrams commute:

A⊗B

F (A)⊗ F (B) F (A⊗B)

η⊗η
η

ψ

and
F 2(A)⊗ F (B) F (A)⊗ F (B)

F (F (A)⊗B) F 2(A⊗B) F (A⊗B)

ψ

µ⊗idF (B)

ψ

F (t) µ

Proof. Proofs of the commute diagrams are shown in Figure 4.23

4.4.2 . Kleisli category MF of the monad F
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(a) Commute diagram 1 (b) Commute diagram 2

Figure 4.23: Proof of the properties of tensorial strength ψ

The strong monad (F, µ, η, t) gives us the Kleisli category MF whose object
is the object of the category M and the homset Hom(A,B) of which is the
homset Hom(A,F (B)) in M . As the type system is interpreted in the category
of the Kleisli category of some computation monad in [44], we interpret our
type system in the category MF .

4.4.3 . Natural isomorphism between !F and F !

Lastly, we define the following natural transformation ϕ between the func-
tors ! ◦ F and F ◦ !.

Definition 4.4.4. For object A in M , ϕ(A) = ({(l, fl : I → [⊞x∈lA
⊗
x ]) 7→

[(x1, fx1), . . . , (xn, fxn)]}, (idI)) : !F (A)→M
F !(A) where

Note that the naturality of ϕ can be shown .
The inverse of the morphism ϕ(A) can be explicitly shown by the following.

ϕ−1(A) = ({[(x1, fx1), . . . , (xn, fxn)] 7→ (l, fl)}, (idI)).

Lemma 4.4.6. The following diagrams commute:

!A !A

!F (A) F !(A)

id

!(η(A)) η(!A)

ϕ(A)

!F (A) F !(A)

F (A)
ϵ(F (A))

ϕ(A)

F (ϵ(A))
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(a) Proof of the left property (b) Proof of the right property

Figure 4.24: Proof of the properties of natural transformation ϕ be-
tween the branching monad and the !-comonad

Proof. Proofs of the commute diagrams are shown in Figure 4.24 where the
following notation is used in the proof of the right diagram.

4.5 . Interpretation of the language

In this section, we introduce an interpretation of the language Proto-
Quipper-L and its type system introduced in Chapter 3 within the Kleisli
category MF . It consists of the interpretation of each type, the interpretation
of typing context, and the interpretation of typing derivation, each of which
assigns objects or morphisms in the categorical model to each part of the type
system. As customary, types are mapped to objects while typing derivations
are mapped to morphisms. For the notation, we let J−K represent the categor-
ical counterparts for each component of the type system. The interpretationJAK of a type A is directly built against the categorical structure. In specific,
types are interpreted as object in the Kleisli category MF as follows:
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JIK = ({∅}, (I))JqubitK = ({∅}, ([q]))JAa ⊗BbK = JAaK⊗ JAbKJQChan(P,B)K = p(MF (JP K , JAK))

JboolK = ({tt,ff}, (I, I))JAa ⊸ AbK = JAaK ⊸MF
JAbKJ!AK = ! JAK = (p ◦ b) JAK

where JAaK ⊸
MF

JAbK means the internal hom JAaK ⊸
M
F JAbK in the cat-

egory M and p and b refer to the functors between the category M and the
category Set from Benton’s linear/non-linear category in Section 4.3.

For quantum channels, we follow Rios&Selinger’s strategy by definingJQChan(P,B)K = p(MF (JP K , JAK)). In our situation, the set MF (A,B) is
isomorphic to M(A,B) when A and B are state objects: in this situation,
QChan-types indeed correspond to morphisms of the category M , i.e., quan-
tum channels. This fact allows us to interpret the box and unbox constants.
The constant quantum channel constant is then just an encapsulation over
Definition 4.1.2.

Finally, a typed configuration !∆ ` (Q,m) : A is interpreted as the com-
position of Q (i.e., we first “compute” Q) followed by the interpretation of
M .

For the typing context, we do not consider the name of variables but the
types. However, to represent the types in the typing context, we need some
order of the type assignments. Here, we assume that there is a linear order of
the variable names and use this order to interpret the typing context.

In particular, typing context is constructed in two ways. First, conven-
tional typing context is a list of the typing assignments (x : A) for variable x
and a type A. We interpret it as the tensor product of the objects assigned to
each type in the order of the ordering we gave to the variables. In specific, for
a typing context Γ = x1 : A1, . . . , xk : Ak, assuming the variables are ordered
according to the index,

JΓK = JA1K⊗ . . .⊗ JAkK .
Next, the branching typing context is interpreted as the coproduct of the
objects assigned to the smaller branching typing contexts, namely:

Jγ1, γ2K = Jγ1K + Jγ2K .
Given the interpretation of type and typing context, we interpret the typ-

ing derivation as a morphism in MF . Specific morphism corresponding to each
typing derivation is constructed inductively over the typing rules by using the
structures in the category.
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In order to formally define the construction for each typing rule, let us first
introduce how the parts of the language like circuit operators and function
applications are going to be interpreted. Then, the interpretation for each
typing rule can be defined concretely.

Example 4.5.1. The example of non-trivial branching term in Example 1.1 has for
interpretation a morphism ({∅}, (q)) → (mset{(∅, ∅)}, (q)l) defined as (f0, (f∅))
where f0(∅) = [(∅, ∅), (∅, ∅)] and f∅ is defined as the diagram shown in Figure 4.25.
The bottom box-node represents the measurement (I⊞I being the result) and the
upper one the test. The top result is a ⊞-superposition of 2 copies of q ⊗ I , as
expected: these stand for the two “classical” possibilities.

|tt〉

〈tt| 〈ff |

|ff〉

tt ff

�{tt,ff}

q � q

init tt free

⊗
q I

q

⊗

I I

tr

I

I � I q

I q

(q ⊗ I)� (q ⊗ I)

q

Figure 4.25: Diagram for the categorical interpretation of the non-trivial
branching term in Example 1.1

4.5.1 . Interpretation of quantum channel types and the circuit oper-
ators, Box and Unbox

The adjunction between the category M and the category Set in Figure
4.17 provides an interpretation of the quantum channel types and the box
and unbox operators. As in [55], we interpret the quantum channel types
QChan(A,B) as an object p(MF (A,B)) = (MF (A,B), (I)) in MF , which is
the Kleisli category of the lifting monad F over M . Note that the object is
a parameter object as in [55], which means that the object has the form of
(X, (I)X) for some set X. Therefore, we can consider the quantum channel
type QChan(A,B) as a parameter of a set of diagrams from A to B. It makes
sense when A and B are state objects which consist of objects in the category
of diagrams M . However, since the output type B can be any type (while the
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input type A is still limited to the state object), we generalize the isomorphism
used in [55] between the object of quantum channel type p(MF (A,B)) and the
internal hom MF (A,B). Let us explain how we generalize the isomorphism.

When we define the quantum channel types QChan(A,B) as a parameter
object, box and unbox can be interpreted based on an isomorphism between
the set b(A ⊸

M
B) and the homset M(A,B). In specific, we can define an

isomorphism as follows. First, note that

b(A⊸
M
B) = b(X → Y, (⊞x∈X(Ax ⊸ Bf(x)))f∈X→Y )

=
∑

f∈X→Y

M(I,⊞x∈X(Ax ⊸ Bf(x)))

= {(f, df ) | f : X → Y and df : I −→ [⊞x∈X(Ax ⊸ Bf(x))
⊗]}

and that M(A,B) = {(f0 : X → Y, (fx : Ax → Bf0(x))X)}. Therefore,
it reduces to find an isomorphism between the diagram df and the family of
diagram (fx)x∈X . However, from the lemma 4.1.4, we know that the morphism
df from I to [⊞x∈X(Ax ⊸ Bf(x))

⊗] is equal to a box node of the family of
diagram (πx ◦ df : I → Ax)x∈X which allow us to define the isomorphism as
follows:

• iso−→ : b(A⊸
M
B)→M(A,B):

Given (f, df ) ∈ b(A ⊸
M
B), where df = , iso−→(f, df ) =

(f, ).

• iso←− :M(A,B)→ b(A⊸
M
B):

Given (f0, (fx)X) ∈M(A,B), iso←−(f0, (fx)X) = (f0, ).

Lemma 4.5.1. The maps iso−→ and iso←− are isomorphism. In specific, the fol-

182



lowing diagrams commute:

b(A⊸
M
B) M(A,B)

b(A⊸
M
B)

id

iso−→

iso←− and

M(A,B)

b(A⊸
M
B) M(A,B)

iso←−
id

iso−→

Proof. The proof of the one-to-one correspondence of given isomorphisms is
in Figure 4.26.

(a) Proof of the first commute dia-
gram

(b) Proof of the second commute
diagram

Figure 4.26: Proof of the isomorphism between b(A ⊸
M

B) and

M(A,B)

Given the isomorphism, we can define the morphisms for box and unbox
as morphisms in M as follows:

unbox = p(M(A,F (B))
p(iso−→)−−−−−→ (p ◦ b)(A⊸

M
F (B))

ϵ(A⊸
M
F (B))

−−−−−−−−−→ (A⊸
M
F (B))

box = (p ◦ b)(A⊸
M
F (B))

p(iso←−)−−−−−→ p(M(A,F (B)))
p(η(M(A,F (B))))−−−−−−−−−−−→ (p ◦ b ◦ p)(M(A,F (B))).
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Lemma 4.5.2. The following diagram commutes:

p(M(A,F (B)) (p ◦ b ◦ p)(M(A,F (B))

A⊸
M
F (B) !(A⊸

M
F (B))

unbox

ϵ

box

ϵ

Proof. Proof of the lemma can be found in Figure 4.27.

Figure 4.27: Proof of the commute diagram on box and unbox

As consequence, it follows that unbox ◦ ϵ ◦ box = ϵ.

The isomorphism between the sets b(A ⊸
M
B) and M(A,B) is a slight

generalization of the isomorphism in [55] in that A and B are need to be state
objects, i.e. the object of the form ({∅}, (A∅)), in their case. Note that when
A = ({∅}, (A∅)) and B = ({∅}, (B∅)) are state objects, the set b(A ⊸

M
B) is

equal to M(I, A∅ ⊸ B∅) as follows:

A⊸
M
B = (X → Y, (⊞x∈X(Ax ⊸ Bf(x)))f :X→Y )

b(A⊸
M
B) =

∑
f∈X→Y

M(I,⊞x∈X(Ax ⊸ Bf(x)))

=M(I, A∅ ⊸ B∅).

since X = {∅} and there is unique map from {∅} to {∅} which is the iden-
tity function. Then, we can obtain the following isomorphisms without the
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necessity of the lemma 4.1.4 on the normal form of diagrams:

b(A⊸
M
B) ∼=M(I, A∅ ⊸ B∅) ∼=M(A∅, B∅)

4.5.2 . Interpretation of the quantum channel constants

A quantum channel constant (p,Q,m) consists of a pattern p, a quantum
channel Q, and a branching term m. A well typed quantum channel constant
of type !QChan(P,A) needs to satisfy that p ⊨ P and vBind(!∆, out(Q),m,A),
where !∆ is a typing context. In this subsection, we introduce how to interpret
a quantum channel and the relations vBind.

First of all, we define a natural transformations called bif and merge for
the measurement as in Table 4.5.

bif(A) : A −→
MF

A+A merge(A,B) : F (A) + F (B) −→
MF

A+B

For an object A = (X, (Ax)), we let For objects A,B, we let

bif(X, (Ax)) =
({x 7→ [(0, x), (1, x)]}, (fx : Ax → A⊗

x ⊞A⊗
x ))

where fx = .

merge(A,B) = ({
(0, [x1, . . . , xk]) 7→ [(0, x1), . . . , (0, xk)],

(1, [y1, . . . , yn]) 7→ [(1, y1), . . . , (1, yn)]},
(id[⊞x∈lA

⊗
x ])l:mset(X) ++(id[⊞y∈lB

⊗
y ])l:mset(Y ))

It satisfies the following commute diagram for
naturality:

It satisfies the following commute diagram for
naturality:

A F (A+A)

B F (B +B)

f

bif(A)

F (f+f)

bif(B)

F (A) + F (B) F (A+B)

F (A′) + F (B′) F (A′ +B′)

F (f)+F (g)

merge(A,B)

F (f+g)

merge(A′,B′)

Table 4.5: Definition of bif and merge

We show the properties related to bif and merge in Lemma 4.5.3.

Lemma 4.5.3. The following diagrams commute:
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A⊗B F (A⊗B +A⊗B)

F (A+A)⊗B F ((A+A)⊗B)

bifA⊗B

bifA⊗id

t

F (⋆)

(FA+ FB)⊗ C F (A+B)⊗ C

FA⊗ C + FB ⊗ C F ((A+B)⊗ C)

F (A⊗ C) + F (B ⊗ C) F (A⊗ C +B ⊗ C)

merge⊗id

⋆ t

t+t F (⋆)

merge

F 2A+ F 2B F (FA+ FB)

FA+ FB F 2(A+B)

F (A+B)

merge

µ+µ F (merge)

merge
µ

FA+ FA F (A+A)

FA

merge

(id(FA),id(FA))
F (idA,idB)

And the following equation holds.

merge(A,B) = (F (i1(A,B)), F (i2(A,B)))

Proof. The commute diagrams can be shown as in Figure 4.28.
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(a) Proof of the first commute diagram (b) Proof of the second commute diagram

(c) Proof of the third commute diagram (d) Proof of the fourth commute diagram

(e) Proof of merge(A,B) = (F (i1(A,B)), F (i2(A,B)))

Figure 4.28: Proof of the properties of bif and merge

A quantum channel Q is interpreted as a morphism in the Kleisli category
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Jin(Q)K −→
MF

Jout(Q)K, where the set of interpretation of the variables in(Q)

and of the pattern of variables out(Q) is defined as in Eq. (4.21).

Jin(Q)K = ({∅}, ([q]⊗|in(Q)|))

Jout(Q)K = {({∅}, ([q]⊗|V |)) if out(Q) is a set VJo1K + Jo2K if out(Q) = [o1, o2]

(4.21)

We assume that there is a linear ordering for the wire names of the quan-
tum channel and that the i-th q in the list corresponds to the i-th variable of
the set of variables, according to the order for the wire names.

Then the interpretation of the quantum channel is defined inductively as
in Eq. (4.22).

Jϵ(V )K =η({∅}, ([q]⊗|V |))r
U(V⃗1) Q

z
= JQK ◦ r

U(V⃗1)
z0

Jfree v QK = JQK ◦ Jfree(V )K0Jinit b v QK = JQK ◦ Jinit(b, v)K0
Jmeas v Q1 Q2K = Jin(meas v Q1 Q2)K bif−→ F (Jin(meas v Q1 Q2)K

+ Jin(meas v Q1 Q2)K)
F (JQ1K◦Jmeas(v,0)K0
+JQ2K◦Jmeas(v,1)K0)−−−−−−−−−−−−−→ F (F Jout(Q1)K + F Jout(Q2)K)
F (merge)−−−−−−→ F 2(Jout(Q1)K + Jout(Q2)K)
µ−→ F (Jout(Q1)K + Jout(Q2)K)

(4.22)

where

In order to interpret quantum channel constants in the type system, we
need to be able to construct a morphism for the vBind relation. However, since
each leaf of the branching structure depends on the typing derivation of a non-
branching term, the interpretation is parameterized by these typing deriva-
tions. Formally, we represent the interpretation of vBind as J(τi)i:leaf | vBind(!∆, c,m,A)K
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where (τi)i:leaf denotes to the family of the typing derivation of the typing
judgement at each leaf i. It is defined inductively as follows:

• for (vBindnb):

Q ∩ FV(!∆) = ∅
...

!∆, TCQ(Q) `M : A
(τ)

vBind(!∆, Q,M,A)
(vBindnb)

We let the interpretation of the non-branching case Jτ | vBind(!∆, Q,M,A)K :J!∆K ⊗ JqubitK⊗|Q| −→
MF

JAK to be the interpretation of the typing
derivation of Jτ | !∆, TCQ(Q) `M : AK as in Eq (4.23).

Jτ | vBind(!∆, Q,M,A)K ::= Jτ | !∆, (Q : qubit) `M : AK (4.23)

Note that Lemma 3.2.3 implies from !∆, TCQ(Q) `M : A that FV(Q) ⊆
FV(M).

• for (vBindb):

vBind(!∆, ca,ma, A) vBind(!∆, cb,mb, A)

vBind(!∆, [ca, cb], [ma,mb], A)
(vBindb)

We let

J(τi) + +(τj) | vBind(!∆, [ca, cb], [ma,mb], A)K ::= fbind (4.24)

where

fbind = J!∆K⊗ (JCaK + JCbK) ⋆′−→
M

J!∆K⊗ JCaK + J!∆K⊗ JCbK (f1,f2)−−−−→
MF

JAK
: J!∆K⊗ J[Ca, Cb]K = J!∆K⊗ (JCaK + JCbK) −→MF

JAK
and

f1 = J(τi) | vBind(!∆, ca,ma, A)K : J!∆K⊗ JCaK −→MF
JAK

f2 = J(τj) | vBind(!∆, cb,mb, A)K : J!∆K⊗ JCaK −→MF
JAK

inferrule Note that ⋆′ refers to the left distributivity defined in Subsec-
tion 4.2.4.

4.5.3 . Interpretation of typing rules
In order to define the interpretation of typing derivation, we need an extra

structure regarding the duplicable type (!A), which is a parameter object in
the categorical semantics–J!AK = (p ◦ b) JAK. This extra structure consists of
the deletion and the duplication of duplicable data, which are formalized as
natural transformations over the functors from the subcategory of parameter
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delSet dupSet
For a setX , we let

delSet(X) ::= {x 7→ ∅ | x ∈ X}, (idI)X)
:X −→Set {∅}

For a setX , we let

dupSet(X) ::= {x 7→ (x, x) | x ∈ X}
:X −→Set X ×X

naturality condition: naturality condition:
for any function f : X → Y ,

X {∅}

Y {∅}

f

delSet(X)

id{∅}
delSet(Y )

for any function f : X → Y ,

X X ×X

Y Y × Y

f

dupSet(X)

f×f
dupSet(Y )

Table 4.6: Definition of delSet and dupSet in category Set

objects. In other word, these natural transformation can be defined as the
image of the functor p : Set → M from Benton’s linear/non-linear category
in Subsection 4.3.1 applied to the natrual transformations dupSet and delSet
which are defined in Table 4.6. We then define the following two natural
transformations del and dup as in Table 4.7.

We show useful properties on del and dup in Lemma 4.5.4 which are used
in the proof of soundness of the categorical semantics.
Lemma 4.5.4. Let us let A = (X, (I)X), B = (Y, (I)Y ) and C = (Z, (I)Z) be
any parameter objects in the categoryM and let f : X → Y and h : X → Z be
any set functions fromX to Y and fromX to Z , respectively. Moreover, let cp be
the set function defined in Eq. (4.25) and let g : A⊗A⊗B → C be any morphism
inM from A⊗A⊗B → C .

cp ::= {(x,mx) 7→ (x,mx ⊗mx)} :
∑
x∈X

M(I, I)→
∑
x∈X

M(I, I)⊗M(I, I),

(4.25)
Then, the following diagrams commute,

A A⊗A

B B ⊗B

p(f)

dup

p(f)⊗p(f)
dup

A A⊗A

A⊗A A⊗A⊗A

dup

dup

id⊗dup
dup⊗id

!A !A⊗ !A

!A !(A⊗A)

p(cp)

dup

π

!dup

A⊗B A⊗B ⊗A⊗B

A⊗A⊗B ⊗B

dup⊗dup

dup

id⊗σ⊗id
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del dup
For a parameter object A = (X, (I)X),
we let

del(A) ::= ({x 7→ ∅}, (idI)X)
= p(delSet(X))

: A −→
M
I

where

p({∅}) = ({∅}, (I)) = I

For a parameter object A = (X, (I)X),
we let

dup(A) ::= ({x 7→ (x, x)}, (idI)X)
= p(dupSet(X))

: A −→
M
A⊗A

where

p(X ×X) =(X ×X, (I)X×X)

=(X ×X, (I ⊗ I)X×X)

=A⊗A

Naturality condition: Naturality condition:
for parameter objects A and B and
morphism f inM ,

A I

B I

f

del(A)

idI
del(B)

for parameter objects A and B and
morphism f inM ,

A A⊗A

B B ⊗B

f

dup(A)

f⊗f
dup(B)

Table 4.7: Definition of del and dup

b(A) b(A)⊗ b(A)

b(A) b(A⊗A)

cp

dupSet(b(A))

n(A,A)

b(dup(A))

p(X) p(X)⊗ p(X)

p(X ⊗X)

p(dupSet)(X)

dup(p(X))

m(X ,X)

A⊗B A⊗A⊗B

A⊗A⊗B C

dup⊗id

σ⊗id g

g

A C

B I

p(f)

p(h)

del

del

A

A⊗A A

dup id

del⊗id

Proof. We prove the diagrams from top to bottom and from left to right.
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• First diagram follows from the naturality of dupSet. Explicitly, it can be
shown that

(p(f)⊗ p(f)) ◦ dup =({x 7→ (x, x) 7→ (f(x), f(x))}, (idI)X)
dup ◦ p(f) =({x 7→ f(x) 7→ (f(x), f(x))}, (idI)X)

• Second diagram can be shown by the following equations:

(id⊗ dup) ◦ dup =({x 7→ (x, x) 7→ (x, (x, x))}, (idI))
=({x 7→ (x, x) 7→ ((x, x), x)}, (idI))
=(dup⊗ id) ◦ dup

Note that the second equality is given by the fact that we let associativity
inM to be identity (Subsection 4.2.2).

• To show the third diagram, let us recall that

!A =(
∑
x∈X

M(I, I), (I))

!(A⊗A) =(
∑

(x,x′)∈X×X

M(I, I ⊗ I), (I))

and that

π(A,B) =({((x,mx : I →M Ax), (y,my : I →M By)) 7→ ((x, y),mx ⊗my)}, (idI))
:(!A)⊗ (!B)→

M
!(A⊗B)

However, since A is a parameter object, it follows that

π(A,A) =({((x,mx : I →bM I), (y,my : I →M I)) 7→ ((x, y),mx ⊗my)}, (idI))
:(!A)⊗ (!A)→

M
!(A⊗A)

Then, the commute diagram can be shown explicitly by

π ◦ dup = ({(x,mx) 7→ ((x,mx), (x,mx)) 7→ ((x, x),mx ⊗mx}, (idI))

and

!(dup) ◦ p(cp) = ({(x,mx) 7→ (x,mx ⊗mx) 7→ ((x, x),mx ⊗mx)}, (idI))

where
!(dup) =({(x,mx) 7→ ((x, x),mx)}, (idI))
b(dup) ={(x,mx) 7→ ((x, x),mx)}

Note that mx ⊗ mx is a morphism from I to I since I ⊗ I = I . It is
necessary to be able to apply !(dup) to p(cp)(!A).
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• Fourth diagram is shown explicitly as follows

(idA ⊗ σ ⊗ idB) ◦ (dup(A)⊗ dup(B))

= ({(x, y) 7→ ((x, x), (y, y)) 7→ (x, y, x, y)}, (σI,I : I →M I))

= ({(x, y) 7→ ((x, y), (x, y))}, (σI,I : I →M I))

= ({(x, y) 7→ ((x, y), (x, y))}, (idI))
= dup(A⊗B)

where the second equation follows from the fact that the associativity
is identity and the third equation follows from the fact that σI,I = idI
from the equation theory of diagrams in Figure 4.3. Note that we are
using the fact that the associativity is identity again in order to be able
to apply (idA ⊗ σ ⊗ idB) to (dup(A)⊗ dup(B)).

• Fifth diagram is shown as follows:

n(A,A) ◦ dupSet(b(A)) ={(x,mx) 7→ ((x,mx), (x,mx)) 7→ ((x, x),mx ⊗mx)}
b(dup(A)) ◦ cp ={(x,mx) 7→ (x,mx ⊗mx) 7→ ((x, x),mx ⊗mx)}

where the definition of n is from the monoidal functor (b, n) from the
Benton’s linear/non-linear category in Subsection 4.3.1.

• Sixth diagram is shown as follows:

m(X,X) ◦ dup(p(X)) =({x 7→ (x, x) 7→ (x, x)}, (idI))
p(dupSet(X)) =({x 7→ (x, x)}, (idI))

where the definition ofm is from the monoidal functor (p,m) from the
Benton’s linear/non-linear category in Subsection 4.3.1.

• Seventh diagram is shown as follows:

g ◦ (dup⊗ idB) =({(x, y) 7→ ((x, x), y) 7→ g0((x, x), y)}, (gx,x,y)(x,y)∈X×Y )

g ◦ (σA,A ⊗ idB) ◦ (dup⊗ idB) =({(x, y) 7→ ((x, x), y) 7→ ((x, x), y) 7→ g0((x, x), y)},
(gx,x,y ◦ (σI,I ⊗ idBy))(x,y)∈X×Y )

=({(x, y) 7→ ((x, x), y) 7→ ((x, x), y) 7→ g0((x, x), y)},
(gx,x,y)(x,y)∈X×Y )

where we let g = (g0, (gx1,x2,y)X,X,Y ).

• Eighth diagram is shown as follows:

del ◦ p(f) =({x 7→ f(x) 7→ ∅}, (idI))
del ◦ p(h) =({x 7→ h(x) 7→ ∅}, (idI))
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• Ninth diagram is shown as follows:

(del⊗ idA) ◦ dup =({x 7→ (x, x) 7→ (∅, x)}, (idI))
=({x 7→ x}, (idI))

where the second equation follows from the fact that we let the natural
transformation l from the monoidal structure of M to be identity at
each object, i.e., l(A) = idA : I ⊗A→

M
A.

With the help of the extra structure on the duplicable data types defined
above, we can finally define the interpretation of each typing rule as follows.
To clarify the fact that the interpretation depends on the type derivation, let
us denote the interpretation of type derivation π of typing derivation !∆, Q `
m : A as Jπ | !∆, Q ` m : AK, where π represents the tree structure of typing
derivation. We show useful properties on del and dup in Lemma 4.5.4 which
are used in the proof of soundness of the categorical semantics.

•
!∆, (x : A) ` x : A

(var):

J(var) | !∆, (x : A) ` x : AK
= J!∆K⊗ JAK del⊗id−−−−→

M
JIK⊗ JAK lJAK−−→

M
JAK η(JAK)−−−−→

M
F JAK

where η(JAK) is the unit of the lifting monad F . Note that JIK = I is
the unit object from the symmetric monoidal structure of M .

Explicitly, the interpretation of the typing derivation is represented as
follows:

J(var) | !∆, (x : A) ` x : AK = ({(c, x) 7→ (∅, x) 7→ x 7→ [x]}, ( )(c,x))

where we let J!∆K = (C, (I)c∈C) and JAK = (X, (Ax)x∈X).

•
!∆, Q `M : !A

!∆, Q `M : A
(d):

J(d); τ | !∆, Q `M : AK
= J!∆K⊗ JQK Jτ |!∆, Q`M :!AK−−−−−−−−−−→

M
F (! JAK) F (ϵ(JAK))−−−−−−→

M
F JAK

where ϵ(JAK) is the counit of !-comonad.
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Explicitly, the interpretation of the typing derivation is represented as
follows:

J(d); τ | !∆, Q `M : AK
= ({(c, q) 7→ [(x1,m1), . . . , (xk,mk)] 7→ [x1, . . . , xk]}, ( )(c,q))

where we let J!∆K = (C, (I)c∈C) and JQK = (Q, (Qq)q∈Q) and

Jτ | !∆, Q `M : !AK = ({(c, q) 7→ [(x1,m1), . . . , (xk,mk)]}, ( )(c,q))

•
!∆ ` V : A V is value

!∆ ` V : !A
(p):

J(p); τ | !∆ ` V : !AK
=

(J!∆K = ! JA1K⊗ · · · ⊗ ! JAkK) δ⊗k

−−→
M

!! JA1K⊗ · · · ⊗ !! JAkK
πk−1

−−−→
M

(!(! JA1K⊗ · · · ⊗ ! JAkK) = ! J!∆K) !g−→
M

!F JAK ϕ−→
M
F ! JAK

where δ refers to the comultiplication of !-comonad and δ⊗k = δ JA1K⊗
· · ·⊗δ JAkK, π : !(−)⊗ !(−)→

M
!(−⊗−) is the strength of the monoidal

comonad (!) and πk−1 represents application of π k − 1 times, g =Jτ | !∆ ` V : AK, and ϕ is the natural isomorphism between !F and F !

from Subsection 4.4.3. In addition, πk−1 can be formally defined as
follows:

πk−1 =



I
πI−→

M
!I if k = 0

!! JA1K id−→
M

!! JA1K if k = 1!! JA1K⊗ (!! JA2K · · · !! JAkK) id⊗πk−2

−−−−−→
M

!! JA1K⊗ !(! JA2K . . . ! JAkK) π−→ !(! JA1K · · · ! JAkK)
 otherwise

(4.26)
Note that if k = 0, then !∆ = I and that the tensor product is associa-
tive.

Explicitly, the interpretation of the typing derivation is represented as
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follows:J(p); τ | !∆ ` V : !AK =

I
πI−→

M
!I

!g−→
M

!F JAK ϕ−→
M
F ! JAK

=


∅ 7→ (∅, idI) 7→ ([x1, . . . , xl], g∅)

7→ [(x1, ), . . . , (xl, )]

 , (idI){∅}

 , if !∆ = ∅

 J!∆K δ⊗−→
M

!! JA1K⊗ · · · ⊗ !! JAkK
π∗
−→

M
! J!∆K !g−→

M
!F JAK ϕ−→

M
F ! JAK



=





((x1, A1), . . . , (xk, Ak))

7→ (((x1, A1), idI), . . . , ((xk, Ak), idI))
7→ (((x1, A1), . . . , (xk, Ak)), idI)

7→ ([x1, . . . , xl], )c)

7→ [(x1, ), . . . , (xl, )]


, (idI)C



, if !∆ 6= ∅

where we let J!∆K = (C, (I)c∈C), JAiK = (Xi, (Ai,xi)xi∈Xi), ! JAiK =

(
∑

xi∈Xi
M(I, Ai,xi), (I)), and

Jτ | !∆ ` V : AK = (g, (gc)c) = ({c 7→ [x1, . . . , xl]}, ( )c)

•
!∆ ` ∗ : I

(I):

J(I) | !∆ ` ∗ : IK = J!∆K del−−→
M

JIK η(JIK)−−−→
M
F JIK

where η(JIK) is the unit of the lifting monad F .
Explicitly, the interpretation of the typing derivation is represented as
follows:

J(I) | !∆ ` ∗ : IK = ({c 7→ ∅ 7→ [∅] | c ∈ C}, (idI)C)

where we let J!∆K = (C, (I)C).

•
!∆ ` tt : bool

(tt):

J(tt) | !∆ ` tt : boolK = J!∆K del−−→
M

JIK ftt−→
M

JboolK η(JboolK)−−−−−→
M
F JboolK

where ftt = ({∅ 7→ tt}, (idI)) and tt = (0, ∅) are defined in Eq. (4.18),
and η(JboolK) is the unit of the lifting monad F .
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Explicitly, the interpretation of the typing derivation is represented as
follows:

J(tt) | !∆ ` tt : boolK = ({c 7→ ∅ 7→ tt 7→ [tt] | c ∈ C}, (idI)C)

where we let J!∆K = (C, (I)C).

•
!∆ ` ff : bool

(ff):

J(ff) | !∆ ` ff : boolK = J!∆K del−−→
M

JIK fff−→
M

JboolK η(JboolK)−−−−−→
M
F JboolK

where fff = ({∅ 7→ ff}, (idI)) and ff = (1, ∅) are defined in Eq. (4.18),
and η(JboolK) is the unit of the lifting monad F .
Explicitly, the interpretation of the typing derivation is represented as
follows:

J(ff) | !∆ ` ff : boolK = ({c 7→ ∅ 7→ ff 7→ [ff] | c ∈ C}, (idI)C)

where we let J!∆K = (C, (I)C).

•
!∆, Q, (x : Aa) `M : Ab

!∆, Q ` λx.M : Aa ⊸ Ab
(⊸I):

J(⊸I); τ | !∆, Q ` λx.M : Aa ⊸ AbK =
J!∆K⊗ JQK ηJAaK(J!∆K⊗JQK)

−−−−−−−−−−→
M

JAaK ⊸ (J!∆K⊗ JQK⊗ JAaK)
(JAaK⊸−)(f)−−−−−−−−→

M
JAaK ⊸ F JAbK η(JAa⊸AbK)−−−−−−−−→ F JAa ⊸ AbK

where ηJAaK(J!∆K⊗ JQK) refers to the natural transformation η : 1
M
→

(JAaK ⊸ −) ◦ (− ⊗ JAaK) and (JAaK ⊸ −) the functor from Subsec-
tion 4.2.2 on the internal hom ofM , f = Jτ | !∆, Q, (x : Aa) `M : AbK :J!∆K⊗JQK⊗JAaK −→M

F JAbK, and η(JAa ⊸ AbK) is the unit of the lifting
monad F .
Explicitly, the interpretation of the typing derivation is represented as
follows:

J(⊸I); τ | !∆, Q ` λx.M : Aa ⊸ AbK =


(c, q) 7→{xa 7→ ((c, q), xa)}

7→{xa 7→ f0((c, q), xa)}
7→[{xa 7→ f0((c, q), xa)}]

 ,


=


(c,q)∈C×Q
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where we let J!∆K = (C, (I)C), JQK = (Q, (Qq)q∈Q), and f = (f0, (f(c,q,xa))).
Note that ((J!∆K⊗ JQK)⊗ JAaK) = J!∆K⊗ (JQK⊗ JAaK) is derived from
the fact that the associativity α is identity morphism.

•
!∆, Qa `Ma : Aa ⊸ Ab !∆, Qb `Mb : Aa

!∆, Qa, Qb `MaMb : Ab
(⊸E):

J(⊸E); (τ1, τ2) | !∆, Qa, Qb `MaMb : AbK =
J!∆K⊗ JQaK⊗ JQbK dup⊗idJQaK⊗JQbK−−−−−−−−−−−→

M
J!∆K⊗ J!∆K⊗ JQaK⊗ JQbK

idJ!∆K⊗σ⊗idJQbK−−−−−−−−−−→
M

J!∆K⊗ JQaK⊗ J!∆K⊗ JQbK f⊗g−−→
M
F JAa ⊸ AbK⊗ F JAaK

ψJAa⊸AbK,JAaK
−−−−−−−−−→

M
(F (JAa ⊸ AbK⊗ JAaK) = F ((JAaK ⊸MF

JAbK)⊗ JAaK))
F (evalJAaK,FJAbK)−−−−−−−−−−−→

M
F 2 JAbK µ−→

M
F JAbK

where σ is the commutativity natural transformation of M ,
f = Jτ1 | !∆, Qa `Ma : Aa ⊸ AbK : J!∆K ⊗ JQaK →M

F JAa ⊸ AbK
and g = Jτ2 | !∆, Qb `Mb : AaK : J!∆K ⊗ JQbK →M

F JAaK, ψA,B :

FA ⊗ FB →
M

F (A ⊗ B) is the tensorial strength of the branching
computation monad F (Subsection 4.4.1), JAa ⊸ AbK = JAaK ⊸

MFJAbK by definition, evalB,A = ϵ(A) : (B ⊸ A) ⊗ B −→
M

A refers to
the evaluation defined in Subsection 4.2.2, and µ : F 2 → F is the
multiplication of branching monad from Subsection 4.4.1.
Explicitly, the interpretation of the typing derivation is represented as
follows:

J(⊸E); (τ1, τ2) | !∆, Qa, Qb `MaMb : AbK =



(c, qa, qb)

7→ (c, c, qa, qb)

7→ (c, qa, c, qb)

7→ ([h1, . . . , hk], [x
a
1, . . . , x

a
l ])

7→ [(h1, x
a
1), . . . , (h1, x

a
l ), . . . , (hk, x

a
1), . . . , (hk, x

a
l )]

7→ [h1(x
a
1), . . . , h1(x

a
l ), . . . , hk(x

a
1), . . . , hk(x

a
l )]

7→ h1(x
a
1) + + . . .++hk(x

a
l )


,




(c,qa,qb)


where we let J!∆K = (C, (I)C), JQaK = (Qa, (Qaqa)qa∈Qa), JQbK = (Qb, (Qb

qb
)qb∈Qb),

and
f =({(c, qa) 7→ [h1, . . . , hk]}, (fc,qa)(c,qa)∈C×Qa)

g =({(c, qb) 7→ [xa1, . . . , x
a
l ]}, (gc,qb)(c,qb)∈C×Qb)
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•
!∆, Qa `Ma : Aa !∆, Qb `Mb : Ab

!∆, Qa, Qb ` 〈Ma,Mb〉 : Aa ⊗Ab
(⊗I):

J(⊗I); (τa, τb) | !∆, Qa, Qb ` 〈Ma,Mb〉 : Aa ⊗AbK =
J!∆K⊗ JQaK⊗ JQbK dup⊗idJQaK⊗JQbK−−−−−−−−−−−→

M
J!∆K⊗ J!∆K⊗ JQaK⊗ JQbK

idJ!∆K⊗σ⊗idJQbK−−−−−−−−−−→
M

J!∆K⊗ JQaK⊗ J!∆K⊗ JQbK f⊗g−−→
M
F JAaK⊗ F JAbK

ψJAaK,JAbK−−−−−−−→
M

(F (JAaK⊗ JAaK) = F JAa ⊗AbK)

where σ is the commutativity natural transformation of M ,
f = Jτa | !∆, Qa `Ma : AaK : J!∆K⊗ JQaK→M

F JAaK and
g = Jτb | !∆, Qb `Mb : AbK : J!∆K ⊗ JQbK →M

F JAbK, ψA,B : FA ⊗
FB →

M
F (A ⊗ B) is the tensorial strength of the branching compu-

tation monad F (Subsection 4.4.1), and JAa ⊗AbK = JAaK ⊗ JAbK by
definition.

Explicitly, the interpretation of the typing derivation is represented as
follows:

J(⊗I); (τa, τb) | !∆, Qa, Qb ` 〈Ma,Mb〉 : Aa ⊗AbK =



(c, qa, qb)

7→ (c, c, qa, qb)

7→ (c, qa, c, qb)

7→ ([xa1, . . . , x
a
k], [x

b
1, . . . , x

b
l ])

7→

[
(xa1, x

b
1), . . . , (x

a
1, x

b
l ), . . . ,

(xak, x
b
1), . . . , (x

a
k, x

b
l )

]


,




(c,qa,qb)



where we let J!∆K = (C, (I)C), JQaK = (Qa, (Qaqa)qa∈Qa), JQbK = (Qb, (Qb
qb
)qb∈Qb),

and

f =({(c, qa) 7→ [xa1, . . . , x
a
k]}, (fc,qa)(c,qa)∈C×Qa)

g =({(c, qb) 7→ [xb1, . . . , x
b
l ]}, (gc,qb)(c,qb)∈C×Qb)
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•
!∆, Qa `Ma : Aa ⊗Ab !∆, Qb, (x : Aa), (y : Ab) `Mb : A

!∆, Qa, Qb ` let 〈x, y〉 =Ma in Mb : A
(⊗E):

J(⊗E); (τ1, τ2) | !∆, Qa, Qb ` let 〈x, y〉 =Ma in Mb : AK =
J!∆K⊗ JQaK⊗ JQbK dup⊗idJQaK⊗JQbK−−−−−−−−−−−→

M
J!∆K⊗ J!∆K⊗ JQaK⊗ JQbK

idJ!∆K⊗σ⊗idJQbK−−−−−−−−−−→
M

J!∆K⊗ JQaK⊗ J!∆K⊗ JQbK
f⊗idJ!∆K⊗JQbK−−−−−−−−−→

M
F JAa ⊗AbK⊗ J!∆K⊗ JQbK

tJAa⊗AbK,J!∆K⊗JQbK−−−−−−−−−−−−→
M
F (JAaK⊗ JAbK⊗ J!∆K⊗ JQbK)

F (σ)−−−→
M
F (J!∆K⊗ JQbK⊗ JAaK⊗ JAbK) F (g)−−−→

M
F (F JAK) µ−→

M
F JAK

where σ is the commutativity natural transformation of M ,
f = Jτ1 | !∆, Qa `Ma : Aa ⊗AbK : J!∆K⊗JQaK→M

F JAa ⊗AbK, tA,B :

FA⊗B →
M
F (A⊗B) is the tensorial strength of the branching com-

putation monad F from Subsection 4.4.1, JAa ⊗AbK = JAaK ⊗ JAbK by
definition, g = Jτ2 | !∆, Qb, (x : A1), (y : A2) `Mb : AK : J!∆K⊗JQbK⊗JAaK⊗ JAbK→M

F JAK, and µ : F 2 → F is the multiplication of branch-
ing monad from Subsection 4.4.1.

Explicitly, the interpretation of the typing derivation is represented as
follows:

J(⊗E); (τ1, τ2) | !∆, Qa, Qb ` let 〈x, y〉 =Ma in Mb : AK =



(c, qa, qb)

7→ (c, c, qa, qb)

7→ (c, qa, c, qb)

7→ ([(xa1, x
b
1), . . . , (x

a
k, x

b
k)], c, q

b)

7→ [(xa1, x
b
1, c, q

b), . . . , (xak, x
b
k, c, q

b)]

7→ [(c, qb, xa1, x
b
1), . . . , (c, q

b, xak, x
b
k)]

7→

[
[x11, . . . , x

1
l1 ], . . . ,

[xk1, . . . , x
k
lk ]

]
7→ [x11, . . . , x

1
l1 , . . . , x

k
1, . . . , x

k
lk ]



,




(c,qa,qb)


where we let J!∆K = (C, (I)C), JQaK = (Qa, (Qaqa)qa∈Qa), JQbK = (Qb, (Qb

qb
)qb∈Qb),JAaK = (Xa, (Aaxa)xa∈Xa), JAbK = (Xb, (Ab

xb
)xb∈Xb), and

f =({(c, qa) 7→ [(xa1, x
b
1), . . . , (x

a
k, x

b
k)]}, (fc,qa)(c,qa)∈C×Qa)

g =({(c, qb, xa, xb) 7→ [x1, . . . , xl]}, (gc,qb,xa,xb)(c,qb,xa,xb)∈C×Qb×Xa×Xb)
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•
!∆, Qa `M : bool !∆, Qb `Ma : A !∆, Qb `Mb : A

!∆, Qa, Qb ` if M then Ma else Mb : A
(if):

J(if); (τM , τa, τb) | !∆, Qa, Qb ` if M then Ma else Mb : AK =
J!∆K⊗ JQaK⊗ JQbK dup⊗idJQaK⊗JQbK−−−−−−−−−−−→

M
J!∆K⊗ J!∆K⊗ JQaK⊗ JQbK

idJ!∆K⊗σ⊗idJQbK−−−−−−−−−−→
M

J!∆K⊗ JQaK⊗ J!∆K⊗ JQbK
f⊗idJ!∆K⊗JQbK−−−−−−−−−→

M
F JboolK⊗ J!∆K⊗ JQbK

tJboolK,J!∆K⊗JQbK−−−−−−−−−−→
M

(F (JboolK⊗ J!∆K⊗ JQbK) = F ((JIK + JIK)⊗ J!∆K⊗ JQbK))
F (⋆)−−−→

M
F ((J!∆K⊗ JQbK) + (J!∆K⊗ JQbK))

F (ga,gb)−−−−−→
M
F (F JAK) µ−→

M
F JAK

where σ is the commutativity natural transformation of M ;
f = JτM | !∆, Qa `M : boolK : J!∆K⊗ JQaK→M

F JboolK; tA,B : FA⊗
B →

M
F (A⊗B) is the tensorial strength of the branching computation

monad F from Subsection 4.4.1; JboolK = ({tt,ff}, (I, I)) = JIK + JIK;
⋆(A,B) : (A+B)⊗C → (A⊗C)+(B⊗C) is the natural transformation
for distributivity of ⊗ over + from Subsection 4.2.4; JIK⊗ J!∆K⊗ JQbK =J!∆K⊗ JQbK is derived from the fact that we let the natural transforma-
tion lA from the monoidal structure of M to be the identity morphism
for each object A; ga = Jτa | !∆, Qb `Ma : AK : J!∆K⊗ JQbK→M

F JAK,
gb = Jτb | !∆, Qb `Mb : AK : J!∆K ⊗ JQbK →M

F JAK, and (ga, gb) :

(J!∆K ⊗ JQbK) + (J!∆K ⊗ JQbK) →M
F JAK is defined from the coprod-

uct of M in Subsection 4.2.3; and µ : F 2 → F is the multiplication of
branching monad from Subsection 4.4.1.
Explicitly, the interpretation of the typing derivation is represented as
follows:J(if); (τM , τa, τb) | !∆, Qa, Qb ` if M then Ma else Mb : AK =



(c, qa, qb)

7→ (c, c, qa, qb)

7→ (c, qa, c, qb)

7→ ([b1, . . . , bk], c, q
b)

7→ [(b1, c, q
b), . . . , (bk, c, q

b)]

7→ [(011, (∅, c, qb)), . . . , (01k, (∅, c, qb))]
7→ [(011, (c, qb)), . . . , (01k, (c, qb))]
7→ [g011(c, q

b), . . . , g01k(c, q
b)]

7→ g011(c, q
b) + + . . .++g01k(c, q

b)



,




(c,qa,qb)
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where we let J!∆K = (C, (I)C), JQaK = (Qa, (Qaqa)qa∈Qa), JQbK = (Qb, (Qb
qb
)qb∈Qb),

bi = (01i, ∅) ∈ {tt,ff}, and

f =({(c, qa) 7→ [b1, . . . , bk]}, (fc,qa)(c,qa)∈C×Qa)

ga = J!∆, Qb `Ma : AK = (g0, (g0,c,qb)(c,qb)∈C×Qb)

gb = J!∆, Qb `Mb : AK = (g1, (g1,c,qb)(c,qb)∈C×Qb)

•
!∆ ` boxP : !(P ⊸ A) ⊸ !QChan(P,A)

(box):

J(box) | !∆ ` boxP : !(P ⊸ A) ⊸ !QChan(P,A)K =
J!∆K del−−→

M
I

η!JP⊸AK(I)−−−−−−−→
M

! JP ⊸ AK ⊸ (I ⊗ ! JP ⊸ AK)
(!JP⊸AK⊸−)(η◦box)−−−−−−−−−−−−−→

M
! JP ⊸ AK ⊸ F (! JQChan(P,A)K)

η−→
M
F J!(P ⊸ A) ⊸ !QChan(P,A)K

where η!JP⊸AK(I) refers to the natural transformation η : 1
M
→ (! JP ⊸ AK ⊸

−) ◦ (− ⊗ ! JP ⊸ AK) and (! JP ⊸ AK ⊸ −) refers to the functor from
Subsection 4.2.2; I ⊗ ! JP ⊸ AK = ! JP ⊸ AK is derived from the fact
that we let the natural transformation lA : I ⊗ A → A from the
monoidal structure of M to be identity; η ◦ box is the composition of
the morphism box : (!(JAK ⊸

M
F JBK) = (p ◦ b)(JAK ⊸

M
F JBK))→

M

(! JQChan(A,B)K = (p◦b◦p)(M(JAK , F JBK))) defined in Subsection 4.5.1
and the unit η(A) : A → F (A) is the unit of the lifting monad F ;
! JP ⊸ AK ⊸ F (! JQChan(P,A)K) = J!(P ⊸ A) ⊸ !QChan(P,A)K; and
the second η also refers to the unit of the lifting monad F .

Explicitly, the interpretation of the typing derivation is represented as
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follows:

J(box) | !∆ ` boxP : !(P ⊸ A) ⊸ !QChan(P,A)K =



c 7→ ∅
7→ {(f,mf ) 7→ (∅, (f,mf ))}

7→



(f,mf ) 7→ (∅, (f,mf )) 7→ (f,mf )

7→ [((f, ( )p∈P ), idI)]



7→





(f,mf ) 7→ (∅, (f,mf )) 7→ (f,mf )

7→ [((f, ( )p∈P ), idI)]







,




(c)


where we let J!∆K = (C, (I)C), JQaK = (Qa, (Qaqa)qa∈Qa), JQbK = (Qb, (Qb

qb
)qb∈Qb),

bi = (01i, ∅) ∈ {tt,ff}. Moreover, note that we represent the interpre-
taion of each type explicaitly as follows.

JP K =(P, (Pp)p∈P )JAK =(X, (Ax)x∈X)JP ⊸ AK =(P → mset(X), (⊞p∈PP
⊥
p ⊗ (⊞x∈f(p))A⊗

x
))f :P→mset(X))

! JP ⊸ AK =(
∑

f :P→mset(X)

M(I,⊞p∈PP
⊥
p ⊗ (⊞x∈f(p)A

⊗
x )), (I))

=(!Ap, (I))

! JP ⊸ AK ⊸ (I ⊗ ! JP ⊸ AK) =(!Ap → {∅} × !Ap, (⊞x:!Ap(I ⊸ (I ⊗ I))⊗)f :!Ap→{∅}×!Ap)

by letting

!Ap =
∑

f :P→mset(X)

M(I,⊞p∈PP
⊥
p ⊗ (⊞x∈f(p)A

⊗
x ))

and

(f : P → mset(X),mf : I −→M ⊞p∈PP
⊥
p ⊗ (⊞x∈f(p)A

⊗
x )) : !A

p
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•
!∆ ` unbox : QChan(P,A) ⊸ (P ⊸ A)

(unbox):

J(unbox) | !∆ ` unbox : QChan(P,A) ⊸ (P ⊸ A)K =
J!∆K del−−→

M
I

ηJQChan(P,A)K(I)−−−−−−−−−−→
M

JQChan(P,A)K ⊸ (I ⊗ JQChan(P,A)K)
(JQChan(P,A)K⊸−)(η◦unbox)−−−−−−−−−−−−−−−−−−−→

M
JQChan(P,A)K ⊸ F JP ⊸ AK

η−→
M
F JQChan(P,A) ⊸ (P ⊸ A)K

where ηJQChan(P,A)K(I) refers to the natural transformation η : 1
M
→

(JQChan(P,A)K ⊸ −) ◦ (− ⊗ JQChan(P,A)K) and (JQChan(P,A)K ⊸
−) refers to the functor from Subsection 4.2.2; I ⊗ JQChan(P,A)K =JQChan(P,A)K is derived from the fact that we let the natural transfor-
mation lA : I⊗A→ A from the monoidal structure of M to be identity;
η◦unbox is the composition of the morphism unbox : (JQChan(A,B)K =
p(M(JAK , F JBK)))→

M
((JAK ⊸

M
F JBK) = (JAK ⊸

M
F JBK)) defined

in Subsection 4.5.1 and the unit η(A) : A→ F (A) is the unit of the lift-
ing monad F ; JQChan(P,A)K ⊸ F JP ⊸ AK = JQChan(P,A) ⊸ (P ⊸ A)K;
and the second η also refers to the unit of the lifting monad F .

Explicitly, the interpretation of the typing derivation is represented as
follows:

J(unbox) | !∆ ` unbox : QChan(P,A) ⊸ (P ⊸ A)K =


c 7→ ∅
7→ {f 7→ (∅, f)}
7→ [{f 7→ [f0]}]

 ,




(c)



where we let JQChan(P,A)K = p(M(JP K , F JAK)), f = (f0, (fp)p∈P ) ∈
M(JP K , F JAK), and

JP K =(P, (Pp)p∈P )JAK =(X, (Ax)x∈X)
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•
p ⊨ P vBind(!∆, out(Q),m,A)

!∆ ` (p,Q,m) : !QChan(P,A)
(QChanI):

J(QChanI); (τi)i:leaf | !∆ ` (p,Q,m) : !QChan(P,A)K =
(J!∆K = ! JA1K⊗ · · · ⊗ ! JAkK) δ⊗k

−−→
M

!! JA1K⊗ · · · ⊗ !! JAkK
πk−1

−−−→
M

(!(! JA1K⊗ · · · ⊗ ! JAkK) = ! J!∆K) !(ηJP KJ!∆K)
−−−−−−−→

M
!(JP K ⊸

M
(J!∆K⊗ JP K))

!(JP K⊸−)(h)−−−−−−−−→
M

!(JP K ⊸
M
F JAK) η◦box−−−→

M
F (! JQChan(P,A)K)

where δ refers to the comultiplication of !-comonad and δ⊗k = δ JA1K⊗
· · ·⊗δ JAkK; π : !(−)⊗ !(−)→

M
!(−⊗−) is the strength of the monoidal

comonad (!) and πk−1 represents application of π, k−1 times, as defined
in Eq. 4.26; ηJP K J!∆K refers to the natural transformation η : 1

M
→

(JP K ⊸ −) ◦ (− ⊗ JP K) and (JP K ⊸ −) refers to the functor from
Subsection 4.2.2; and η ◦ box is the composition of the morphism box :

(!(JAK ⊸
M
F JBK) = (p ◦ b)(JAK ⊸

M
F JBK))→

M
(! JQChan(A,B)K =

(p ◦ b ◦ p)(M(JAK , F JBK))) defined in Subsection 4.5.1 and the unit
η(A) : A→ F (A) is the unit of the lifting monad F .

Moreover, the morphism h : J!∆K⊗ JP K −→
M
F JAK is defined as follows:

h =
J!∆K⊗ JP K id⊗q−−−→

M
J!∆K⊗ F Jout(Q)K t′−→

M
F (J!∆K⊗ Jout(Q)K)

F (f)−−−→
M
F 2 JAK µ−→

M
F JAK

where t′A,B = A⊗FB σ−→
M
FB ⊗A

tB,A−−−→ F (B ⊗A) F (σ)−−−→
M
F (A⊗B) :

A⊗FB →
M
F (A⊗B) is defined by using the tensorial strength tB,A of

the branching computation monad F from Subsection 4.4.1; µ : F 2 → F

is the multiplication of branching monad from Subsection 4.4.1; and the
morphisms q and f are defined as follows:

q = JP K matching the wires in P to in(Q)−−−−−−−−−−−−−−−−−−−−→
M

Jin(Q)K JQK−−→
M
F Jout(Q)K

f = J(τi)i:leaf | vBind(!∆, out(Q),m,A)K : J!∆K⊗ Jout(Q)K→
M
F JAK

To obtain the explicit form of the interpretation of this typing deriva-
tion, we first find the explicit representation of the morphism h. First,
we let J!∆K = (C, (I)C), JP K = (P, (Pp)p∈P ), Jin(Q)K = ({∅}, (I∅){∅})
where I∅ does not refer to the unit I but the tensor product of |in(Q)|-
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qubits, Jout(Q)K = (O, (Oo)o∈O), JQK = ({∅ 7→ [o1, . . . , ol]}, (Q∅)), and

f = J(τi)i:leaf | vBind(!∆, out(Q),m,A)K
= ({(c, o) 7→ [x1, . . . , xk(c,o) ]}, (fc,o : I ⊗Oo →M ⊞i=1..k(c,o)A

⊗
xi)(c,o))

q = ({p 7→ ∅ 7→ [o1, . . . , ol]}, ( )p∈P )

Note that perm refers to the map from the variables in P to the variables
in in(Q) given by p ⊨ P .

Then, we can represent the morphism h as follows.

h =




(c, p) 7→ (c, [o1, . . . , ol])

7→ [(c, o1), . . . , (c, ol)]

7→ [[x11, . . . , x
1
k1 ], . . . , [x

l
1, . . . , x

l
kl ]]

7→ [x11, . . . , x
1
k1 , . . . , x

l
1, . . . , x

l
kl ]

 ,




(c,p)∈C×P


where we let ki = k(c,oi) for convenience.

Next, it follows from h that we can represent the morhpism (JP K ⊸
−)(h) as follows.

(JP K ⊸ −)(h) =

{
fp = {p′ 7→ (c, p)}
7→ {p′ 7→ [x11, . . . , x

1
k1 , . . . , x

l
1, . . . , x

l
kl ]}

}
,




fp∈P→C×P



Finally, we can represent the interpretation for each case for !∆ = ∅ and
!∆ 6= ∅.
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– !∆ = ∅:

J(QChanI); (τi)i:leaf | !∆ ` (p,Q,m) : !QChan(P,A)K
= I

πI−→
M

!I
!(ηJP K(I))−−−−−−→

M
!(JP K ⊸ (I ⊗ JP K))

!(JP K⊸−)(h)−−−−−−−−→
M

!(JP K ⊸ F JAK) η◦box−−−→ F JQChan(P,A)K

=





∅ 7→ (∅, idI)

7→ ({p 7→ (∅, p)}, )

7→ ({p 7→ [x11, . . . , x
1
k1 , . . . , x

l
1, . . . , x

l
kl ]}, )

7→ [(({p 7→ [x11, . . . , x
1
k1 , . . . , x

l
1, . . . , x

l
kl ]}, ( )p∈P ), idI)]



, (idI){∅}



where l is the number of branches in out(Q) and ki refers to the
k(∅,oi) where oi ∈ O is from the denotation Jout(Q)K = (O, (Oo)o∈O).
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– !∆ 6= ∅:

J(QChanI); (τi)i:leaf | !∆ ` (p,Q,m) : !QChan(P,A)K
= ! JA1K⊗ · · · ⊗ ! JAkK δ⊗−→

M
!! JA1K⊗ · · · ⊗ !! JAkK π∗

−→
M

! J!∆K
!(ηJ!∆K)−−−−−→

M
!(JP K ⊸ (J!∆K⊗ JP K)) !(JP K⊸−)(h)−−−−−−−−→ !(JP K ⊸ F JAK) η◦box−−−→ F JQChan(P,A)K

=





c = ((x1,m1), . . . , (xk,mk)) 7→ (((x1,m1), idI), . . . , ((xk,mk), idI))
7→ (((x1,m1), . . . , (xk,mk)), idI)

7→ ({p 7→ (((x1,m1), . . . , (xk,mk)), p)}, )

7→ ({p 7→ [x11, . . . , x
1
k1 , . . . , x

l
1, . . . , x

l
kl ]}, )

7→ [(({p 7→ [x11, . . . , x
1
k1 , . . . , x

l
1, . . . , x

l
kl ]}, ( )p∈P ), idI)]



, (idI)c∈C



where we let !∆ = !A1, . . . , !Ak, J!∆K = (C, (I)C), JAiK = (Xi, (Ai
xi
)xi∈Xi),

(xi,mi) ∈
∑

xi∈Xi M(I, Ai
xi
), JP K = (P, (Pp)p∈P ), JAK = (X, (Ax)x∈X),

l is the number of branches in out(Q), and ki refers to the k(c,oi)
where oi ∈ O is from the denotation Jout(Q)K = (O, (Oo)o∈O).
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•
γa ` ma : A γb ` mb : A

γa × γb ` [ma,mb] : A
(b):

J(b); (τa, τb) | γa × γb ` [ma,mb] : AK = (Jγa × γbK = JγaK+JγbK) (f1,f2)−−−−→
M
F JAK

where f1 = Jτa | γa ` ma : AK : JγaK→M
F JAK, f2 = Jτb | γb ` mb : AK :JγbK→M

F JAK, and (f1, f2) : JγaK+ JγbK→M
F JAK is defined from the

coproduct of M in Subsection 4.2.3.
Explicitly, the interpretation of the typing derivation is represented as
follows: J(b); (τa, τb) | γa × γb ` [ma,mb] : AK

=

({
(0, γa) 7→ f10 (γa)

(1, γb) 7→ f20 (γb)

}
, (f1γa)(0,γa) :: (f

2
γb
)(1,γb)

)
where we let JγaK = (Γa, (Γ

a
γa)γa∈Γa), JγbK = (Γb, (Γ

b
γb
)γb∈Γb

), JAK =

(X, (Ax)x∈X) and

f1 = (f10 : Γa → mset(X), (f1γa : Γaγa → ⊞x∈f10 (γa)A
⊗
x )γa∈Γa)

f2 = (f20 : Γb → mset(X), (f2γb : Γ
b
γb
→ ⊞x∈f20 (γb)A

⊗
x )γb∈Γb

)

4.5.4 . Interpretation of the extended typing relation
As each program has a side-effect, which buffers the quantum channel,

to represent the program’s precise meaning, we need to consider both the
context and program. This was the reason why we defined the extended typing
relation for circuit-buffering semantics in Definition 3.4.1. Now, we define the
categorical interpretation of this extended typing relation.

Recall that a extended typing relation !∆ ` (Q,m) : A consists of a classi-
cal typing context !∆, a configuration (Q,m), and a type A. A derivation of the
extended typing relation !∆ ` (Q,m) : A implies that (Q,m) is valid and that
∀i leaf · !∆,TCQ(out(Q)i) ` mi : A, which implies that !∆,TCQ(out(Q)i) `
mi : A for each leaf i of the quantum channel Q, whose type derivations are
denoted as τi. Therefore, from the denotations of each type judgement at the
leaves, we can obtain a morphism fvb = J(τi)i:leaf | vBind(!∆, out(Q),m,A)K :J!∆K⊗ Jout(Q)K −→

MF
JAK constructed by the vBindnb and vBindb rules.

Then, we define the interpretation of the extended typing relation as
Eq (4.27).J(τi)i:leaf | !∆ ` (Q,m) : AK

=
J!∆K⊗ Jin(Q)K (J!∆K⊗−)(JQK)−−−−−−−−−→

M
J!∆K⊗ F Jout(Q)K

t′−→
M
F (J!∆K⊗ Jout(Q)K) F (fvb)−−−−→

M
F 2 JAK µ−→

M
F JAK

(4.27)

where JQK : Jin(Q)K −→
MF

Jout(Q)K is the interpretation of the quantum
channel Q and fvb = J(τi)i:leaf | vBind(!∆, out(Q),m,A)K.
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4.5.5 . Examples–non-trivial quantum channel and teleportation
Now, we show how the interpretation works on a typing derivation for

the programs exp in Example 3.1.1 and tel in Example 3.1.2. In each case,
we first take the typing derivation which are shown in Example 3.2.3 and
Example 3.2.4, then present the interpretation of the typing derivation.

Example 4.5.2. For the program exp, let’s consider the typing derivation that we
have shown in Example 3.2.3. It is represented in Figure 4.29. where we let

Figure 4.29: Type derivation τexp from Example 3.2.3

exp = let 〈b, vc〉 = meas(vc) in T

T = if b then 〈init(tt), free(vc)〉 else 〈vc, ∗〉
Am = QChan(qubit, bool⊗ qubit)
Bm = qubit ⊸ bool⊗ qubit

circm =

x, x

x

x

,
〈tt, x〉

〈ff, x〉



Af = QChan(qubit, I)
Bf = qubit ⊸ I

circf =
(
x, x free x ∗ , ∗

)
free(vc) = unbox(circf )(vc)

AI = QChan(I,qubit)
BI = I ⊸ qubit

circI =
(
∗, ∗ init b x x , x

)
init(tt) = unbox(circI)(∗)

Then, from the definition of extended typing judgement, we can obtain the
following derivation:

(ϵ(vc), exp) valid
...

vc : qubit ` exp : qubit⊗ I
(τexp)

` (ϵ(vc), exp) : qubit⊗ I

According to the type derivation and interpretation of the extended typing
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judgement and the typing derivation rules, we are going to show thatq
τexp |` (ϵ(vc), exp) : qubit⊗ I

y
=


∅ 7→ [∅]
7→ [(∅, ∅)]
7→ [[(∅), (∅)]]
7→ [(∅, ∅), (∅, ∅)]

 ,


=


∅


For simplicity, we ignore, in this example, the typing derivation for the interpreta-
tion of each type judgement which is supposed to be the part of the typing deriva-
tion τexp.

1. Interpretations of some preliminary typing derivations:

J` ∗ : IK = ({∅ 7→ [∅]}, (idI){∅}) (4.28)J` tt : boolK = ({∅ 7→ [tt]}, (idI){∅}) (4.29)J` ff : boolK = ({∅ 7→ [ff]}, (idI){∅}) (4.30)Jx : qubit ` x : qubitK = ({∅ 7→ [∅]}, (id[q])) (4.31)Jvc : qubit ` vc : qubitK = ({∅ 7→ [∅]}, (id[q])) (4.32)Jb : bool ` b : boolK = ({(∅, x) 7→ [x] | x ∈ {tt,ff}}, (idI){∅}×{tt,ff}) (4.33)

Jvc : qubit ` 〈vc, ∗〉 : qubit⊗ IK = ({∅ 7→ [(∅, ∅)]},
( )

{∅}

)
(4.34)

Jx : qubit ` 〈tt, x〉 : bool⊗ qubitK = ({(∅, ∅) 7→ [(tt, ∅)]},
( )

{(∅,∅)}

)

Jx : qubit ` 〈ff, x〉 : bool⊗ qubitK = ({(∅, ∅) 7→ [(ff, ∅)]},
( )

{(∅,∅)}

) (4.35)

JvBind(∅, ∅, ∗, I)K = J` ∗ : IK (4.36)JvBind(∅, {x}, x, qubit)K = Jx : qubit ` x : qubitK (4.37)JvBind(∅, {x}, 〈tt, x〉, bool⊗ qubit)K = Jx : qubit ` 〈tt, x〉 : bool⊗ qubitKJvBind(∅, {x}, 〈ff, x〉, bool⊗ qubit)K = Jx : qubit ` 〈ff, x〉 : bool⊗ qubitK (4.38)

JvBind(∅, [{x}, {x}], [〈tt, x〉, 〈ff, x〉], bool⊗ qubit)K =({
(∅, (0, ∅)) 7→ (0, (∅, ∅)) 7→ [(ff, ∅)]
(∅, (1, ∅)) 7→ (1, (∅, ∅)) 7→ [(ff, ∅)]

}
,

( )
{(∅,(0,∅))}

::

( )
{(∅,(1,∅))}

)
(4.39)
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2. Interpretation of the typing derivation of ` meas(vc) : bool⊗ qubit

Jmeas x ϵ({x}) ϵ({x})K =
{∅ 7→ [(0, ∅), (1, ∅)]},




{∅}

 (4.40)

J` circm : !AmK =


∅ 7→






{
∅ 7→

[
(tt, ∅),
(ff, ∅)

]}
,

 =


{∅}

 , idI






, (idI){∅}


(4.41)

J` circm : AmK =

∅ 7→



{
∅ 7→

[
(tt, ∅),
(ff, ∅)

]}
,




{∅}



 , (idI){∅}

 (4.42)

J` unbox : Am ⊸ BmK =
{
∅ 7→

[{
(f0, (f∅)) 7→ [f0]

|(f0, (f∅)) ∈MF (JqubitK , Jbool⊗ qubitK)
}]}

,




{∅}

 (4.43)

J` meas : BmK =

{∅ 7→ [{∅ 7→ [(tt, ∅), (ff, ∅)]}]},




{∅}


(4.44)

J` meas(vc) : bool⊗ qubitK =
{∅ 7→ [(tt, ∅), (ff, ∅)]},




{∅}

 (4.45)
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3. Interpretation of the typing derivation of ` init(tt) : qubit:

Jinit tt x ϵ({x}) ϵ({x})K = ({∅ 7→ [(0, ∅), (1, ∅)]},
( )

{∅}

)
(4.46)

J` circI : !AIK =∅ 7→
{∅ 7→ [∅]} ,

(
=

)
{∅}

 , idI

 , (idI){∅}

 (4.47)

J` circI : AIK = ({∅ 7→ [(
{∅ 7→ [∅]} ,

( )
{∅}

)]}
, (idI){∅}

)
(4.48)

J` unbox : AI ⊸ BIK =
{
∅ 7→

[{
(f0, (f∅)) 7→ [f0]

|(f0, (f∅)) ∈MF (I, JqubitK)
}]}

,




{∅}

 (4.49)

J` unbox(circI) : BIK =
{∅ 7→ [{∅ 7→ [∅]}]},

 =


{∅}

 (4.50)

J` init(tt) : qubitK =
{∅ 7→ [∅]},

 =


{∅}

 (4.51)
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4. Interpretation of the typing derivation of ` free(vc) : I

Jfree x ϵ(∅)K = ({∅ 7→ [∅]},
( )

{∅}

)
(4.52)

J` circf : !Af K =
∅ 7→



{∅ 7→ [∅]} ,

 =


{∅}

 , idI



 , (idI){∅}

 (4.53)

J` circf : Af K = ({∅ 7→ [(
{∅ 7→ [∅]} ,

( )
{∅}

)]}
, (idI){∅}

)
(4.54)

J` unbox : Af ⊸ Bf K =
{
∅ 7→

[{
(f0, (f∅)) 7→ [f0]

|(f0, (f∅)) ∈MF (JqubitK , I)
}]}

,




{∅}


(4.55)

J` free : Bf K =


{∅ 7→ [{∅ 7→ [∅]}]},


=


{∅}


(4.56)

J` free(vc) : IK =
{∅ 7→ [∅]},

 =


{∅}

 (4.57)
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5. Interpretation of the typing derivation of b : bool, vc : qubit ` T : qubit⊗I

We are going to interprete the typing derivation in Figure 4.30 using the
interpretation of the type derivation π4 of init(tt) and the type derivation π5
free(vc) which was shown before.

Figure 4.30: Typing derivation of the part T

Jvc : qubit ` 〈init(tt), free(vc)〉 : qubit⊗ IK =
{∅ 7→ [(∅, ∅)]},

 
{∅}

 (4.58)

Jb : bool, vc : qubit ` T : qubit⊗ IK ={(∅, tt, ∅) 7→ [(∅, ∅)]
(∅,ff, ∅) 7→ [(∅, ∅)]

}
,

 
{(∅,tt,∅)}

::

( )
{(∅,ff,∅)}

 (4.59)

6. Interpretation of the typing derivation of vc : qubit ` exp : qubit⊗ I

From the interpretation of T in Eq. (4.59) andmeas(vc) in Eq. (4.45), we can
obtain the interpretation of exp.

Jvc : qubit ` exp : qubit⊗ IK =
{∅ 7→ [(∅, ∅), (∅, ∅)]},


=


{∅}


(4.60)

7. Interpretation of the extended typing derivation of ` (ϵ(vc), exp) : qubit⊗I

Jϵ(vc)K = ({∅ 7→ [∅]}, (id[q]){∅}) (4.61)

JvBind(∅, {vc}, exp,qubit⊗ I)K = Jvc : qubit ` exp : qubit⊗ IK (4.62)
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J` (ϵ(vc), exp) : qubit⊗ IK =


∅ 7→ [∅] 7→ [(∅, ∅)]
7→ [[(∅, ∅), (∅, ∅)]]
7→ [(∅, ∅), (∅, ∅)]

 ,



=


{∅}


(4.63)

Example 4.5.3. Next, for the teleportation, we rely on the typing derivation that
has been shown in Example 3.2.4. Let’s denote the typing derivation as τtel. We are
going to show that the interpretation of this typing derivation results in Eq. (4.93).
Note that we omit in this example the typing derivations in the interpretation sym-
bols which correspond to the sub-trees of the typing derivation τtel.

Jτtel |` tel : (qubit ⊸ bool⊗ bool)⊗ (bool⊗ bool ⊸ qubit)K =

∅ 7→


{
∅ 7→

[
(tt, tt), (tt,ff),
(ff, tt), (ff,ff)

]}
,{

(bx, by) 7→ [∅]
| bx, by ∈ {tt,ff}

}


 ,




{∅}



(4.64)

Now, we show how to obtain the interpretation as follows.

1. Interpretation of the typing derivation of elementary quantum channel con-
stants

J` H : qubit ⊸ qubitK =
{∅ 7→ [{∅ 7→ [∅]}]},

 
{∅}

 (4.65)
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Jx : qubit ` H(x) : qubitK = ({∅ 7→ [∅]},
( )

{∅}

)
(4.66)

J` H(init(tt)) : qubitK = ({∅ 7→ [∅]},
( )

{∅}

)
(4.67)

J` 〈H(init(tt)), init(tt)〉 : qubit⊗ qubitK ={∅ 7→ [(∅, ∅)]},

( )
{∅}

 (4.68)

J` X : qubit ⊸ qubitK =
{∅ 7→ [{∅ 7→ [∅]}]},

 
{∅}

 (4.69)

Jq : qubit ` X(q) : qubitK = ({∅ 7→ [∅]},
( )

{∅}

)
(4.70)

J` Z : qubit ⊸ qubitK =
{∅ 7→ [{∅ 7→ [∅]}]},




{∅}


(4.71)

Jq : qubit ` Z(q) : qubitK = ({∅ 7→ [∅]},
( )

{∅}

)
(4.72)

Jq : qubit ` X(Z(q)) : qubitK =
{∅ 7→ [∅]},

(
=

)
{∅}


(4.73)

J` CNOT : qubit⊗ qubit ⊸ qubit⊗ qubitK ={∅ 7→ [{(∅, ∅) 7→ [(∅, ∅)]}]},




{(∅,∅)}

 (4.74)

Jy : qubit, x : qubit ` CNOT(x, y) : qubit⊗ qubitK ={(∅, ∅) 7→ [(∅, ∅)]},

( )
{∅}

 (4.75)
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J` measf : BmK =

{∅ 7→ [{∅ 7→ [tt,ff]}]},




{∅}


(4.76)

Jy : qubit ` measf (y) : boolK =
{∅ 7→ [tt,ff]},




{∅}


(4.77)

Jx : qubit ` measf (H(x)) : boolK =
{∅ 7→ [tt,ff]},




{∅}


(4.78)
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2. Interpretation of the typing derivation of ` A : qubit ⊸ (qubit ⊸ bool ⊗
bool)where A = λy.λx.(let 〈x, y〉 = CNOT〈x, y〉 in 〈meas(H(x)),meas(y)〉)

Jx : qubit, y : qubit ` 〈meas(H(x)),meas(y)〉 : bool⊗ boolK =
{(∅, ∅) 7→ [(tt, tt), (tt,ff), (ff, tt), (ff,ff)]} ,




{(∅,∅)}


(4.79)

uvy : qubit, x : qubit ` CNOT〈x, y〉 : QQ y : qubit, x : qubit ` 〈meas(H(x)),meas(y)〉 : BB
y : qubit, x : qubit ` let 〈x, y〉 = CNOT〈x, y〉 in 〈meas(H(x)),meas(y)〉 : bool⊗ bool

}~ =
{(∅, ∅) 7→ [(tt, tt), (tt,ff), (ff, tt), (ff,ff)]} ,




{(∅,∅)}


(4.80)

uv y : qubit, x : qubit ` let 〈x, y〉 = CNOT〈x, y〉 in 〈meas(H(x)),meas(y)〉 : bool⊗ bool
y : qubit ` λx.(let 〈x, y〉 = CNOT〈x, y〉 in 〈meas(H(x)),meas(y)〉) : qubit ⊸ (bool⊗ bool)

}~ =
{∅ 7→ [{∅ 7→ [(tt, tt), (tt,ff), (ff, tt), (ff,ff)]}]} ,




{∅}


(4.81)
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uvy : qubit ` λx.(let 〈x, y〉 = CNOT〈x, y〉 in 〈meas(H(x)),meas(y)〉) : qubit ⊸ (bool⊗ bool)
` A : qubit ⊸ (qubit ⊸ bool⊗ bool)

}~ =

{∅ 7→ [{∅ 7→ [{∅ 7→ [(tt, tt), (tt,ff), (ff, tt), (ff,ff)]}]}]} ,




{∅}


(4.82)

3. Interpretation of the typing derivation of ` B : qubit ⊸ (bool ⊗ bool ⊸
qubit) where B = λq.λxy.(let 〈x, y〉 = xy in UXY )

uvy : bool ` y : bool q : qubit ` X(q) : qubit q : qubit ` q : qubit
y : bool, q : qubit ` if y then X(q) else q : qubit

}~ =(
{(b, ∅) 7→ [∅]} ,

( )
{(tt,∅)}

::
( )

{(ff,∅)}

) (4.83)

uvy : bool ` y : bool q : qubit ` X(Z(q)) : qubit q : qubit ` Z(q) : qubit
y : bool, q : qubit ` if y then X(Z(q)) else Z(q) : qubit

}~ ={(b, ∅) 7→ [∅]} ,

( )
{(tt,∅)}

::
( )

{(ff,∅)}

 (4.84)

uvx : bool ` x : bool y : bool, q : qubit ` CTRL1 : qubit y : bool, q : qubit ` CTRL2 : qubit
x : qubit, y : qubit, q : qubit ` UXY : qubit

}~ ={(∅, bx, by) 7→ [∅]} ,

( )
{(∅,tt,tt)}

::
( )

{(∅,tt,ff)}
::

( )
{(∅,ff,tt)}

::
( )

{(∅,ff,ff)}


(4.85)

whereUXY = ifx then (if y then X(Z(q)) else Z(q)) else (if y then X(q) else q),
CTRL1 = if y then X(Z(q)) else Z(q), and CTRL2 = if y then X(q) else q.
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uvxy : bool⊗ bool ` xy : bool⊗ bool q : qubit, x : bool, y : bool ` UXY : qubit
xy : bool⊗ bool, q : qubit ` let 〈x, y〉 = xy in UXY : qubit

}~ ={((bx, by), ∅) 7→ [∅]} ,

( )
{((tt,tt),∅)}

::
( )

{((tt,ff),∅)}
::

( )
{((ff,tt),∅)}

::
( )

{((ff,ff),∅)}


(4.86)

uv xy : bool⊗ bool, q : qubit ` let 〈x, y〉 = xy in UXY : qubit
q : qubit ` λxy.(let 〈x, y〉 = xy in UXY ) : bool⊗ bool ⊸ qubit

}~ ={∅ 7→ [{(bx, by) 7→ [∅]}]} ,




{∅}


(4.87)

uvq : qubit ` λxy.(let 〈x, y〉 = xy in UXY ) : bool⊗ bool ⊸ qubit
` B : qubit ⊸ (bool⊗ bool ⊸ qubit)

}~ ={∅ 7→ [{∅ 7→ [{(bx, by) 7→ [∅]}]}]} ,




{∅}


(4.88)

4. Interpretation of the typing derivation of ` Bell : I ⊸ qubit⊗ qubit where
Bell = CNOT〈H(init(tt)), init(tt)〉.uv` CNOT : QQ ⊸ QQ ` 〈H(init(tt)), init(tt)〉 : qubit⊗ qubit

` Bell : qubit⊗ qubit

}~ ={∅ 7→ [(∅, ∅)]} ,




{∅}


(4.89)

where QQ refers to qubit⊗ qubit.
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5. Interpretation of the typing derivation of y : qubit, q : qubit ` 〈A(y), B(q)〉 :
(qubit ⊸ bool⊗ bool)⊗ (bool⊗ bool ⊸ qubit)uv` A : qubit ⊸ (qubit ⊸ bool⊗ bool) y : qubit ` y : qubit

y : qubit ` A(y) : qubit ⊸ (bool⊗ bool)

}~ =

{
∅ 7→

[{
∅ 7→

[
(tt, tt), (tt,ff),
(ff, tt), (ff,ff)

]}]}
,




{∅}



(4.90)

uv` B : qubit ⊸ (bool⊗ bool ⊸ qubit) q : qubit ` q : qubit
q : qubit ` B(q) : (bool⊗ bool) ⊸ qubit

}~ =
{
∅ 7→

[{
(bx, by) 7→ [∅]
| bx, by ∈ {tt,ff}

}]}
,




{∅}


(4.91)

uv y : qubit ` A(y) : qubit ⊸ (bool⊗ bool) q : qubit ` B(q) : (bool⊗ bool) ⊸ qubit
y : qubit, q : qubit ` 〈A(y),B(q)〉 : (qubit ⊸ (bool⊗ bool))⊗ ((bool⊗ bool) ⊸ qubit)

}~ =

∅ 7→


{
∅ 7→

[
(tt, tt), (tt,ff),
(ff, tt), (ff,ff)

]}
,{

(bx, by) 7→ [∅]
| bx, by ∈ {tt,ff}

}


 ,




{(∅,∅)}


(4.92)
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6. Interpretation of the typing derivation of ` tel : (qubit ⊸ bool ⊗ bool) ⊗
(bool⊗ bool ⊸ qubit)

uwwwwwwv
` Bell : QQ

y : qubit, q : qubit ` 〈A(y),B(q)〉 : (qubit ⊸ (bool⊗ bool))⊗ (bool⊗ bool ⊸ qubit)
` tel : (qubit ⊸ (bool⊗ bool))⊗ (bool⊗ bool ⊸ qubit)

}������~ =



∅ 7→


{
∅ 7→

[
(tt, tt), (tt,ff),
(ff, tt), (ff,ff)

]}
,{

(bx, by) 7→ [∅]
| bx, by ∈ {tt,ff}

}


 ,




{∅}


(4.93)

where tel = let 〈y, q〉 = Bell(∗) in 〈A(y), B(q)〉.

223





5 - Soundness
In this chapter, we discuss the soundness of the categorical semantics de-

scribed in Chapter 4 over the circuit-buffering operational semantics of the
quantum channel description language Proto-Quipper-L described in Chap-
ter 3. The soundness of a denotational semantics states that: if two programs
M1 and M2 of the same type are observationally equivalent, then the denota-
tions of M1 and M2 are the same. In this thesis, the observational equivalence
of terms is defined by the operational semantics, which describes the reduc-
tion of the configuration, and we assume that each term does not contain any
classical variable; hence it is a closed term regarding the classical variables.

Our proof is based on the preservation theorem of categorical semantics
over the operational semantics. From the theorem, we can prove that if two
terms reduce to the value with the same denotation, then all the two terms and
the value have the same denotation. Therefore, it suffices to show that when
two terms are observationally equivalent (i.e., they reduce to the same value
since circuit-buffering operational semantics is terminating by Lemma 3.4.4),
then the value must have the same denotation. This leads us to define the
basic type, which assures that each value of the type has a unique denotation.

To sum up, our goal in this chapter is to show that if two closed programs
M1 and M2 of the same basic type reduce to the same value, they have the
same denotation.

In the following sections: we, firstly, prove several lemmas; secondly, we
define the basic type more formally; and, finally, we provide the proof of the
preservation theorem and the soundness theorem of the categorical semantics.

5.1 . Preliminary lemmas

In this section, we provide proofs of lemmas which are required in the
following definition of basic types and the proof of soundness theorem of the
categorical semantics.

Lemma 5.1.1. For J!∆K = J!A1K⊗ . . .⊗ J!AkK, the following diagram commutes:

J!∆K !! JA1K⊗ . . .⊗ !! JAkK
J!∆K ! J!∆K

δ⊗k

id πk−1

ϵJ!∆K
where J!∆K = ! JA1K⊗ . . .⊗ ! JAkK.
Proof. Proof by induction on k.
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When !∆ = ∅, we can show that δ⊗0 = idI and ϵ(I)◦πI = ({∅ 7→ (∅, idI) 7→
∅}, (idI)) = idI . Otherwise, it can be shown as follows.

Lemma 5.1.2. The following equiation hold:uwwwv
τ

!∆ ` V : A
V is value

!∆ ` V : !A

!∆ ` V : A
(d)

(p) | !∆ ` V : A

}���~ = Jτ | !∆ ` V : AK
Proof. First, note that

uwwwv
τ

!∆ ` V : A
V is value

!∆ ` V : !A

!∆ ` V : A
(d)

(p) | !∆ ` V : A

}���~ =
J!∆K δ⊗k

−−→
M

!! JA1K⊗ . . .⊗ !! JAkK πk−1

−−−→
M

! J!∆K
Jτ |!∆`V :AK−−−−−−−→

M
!F JAK ϕ−→ F ! JAK F (ϵJAK)−−−−−→

M
F JAK

where J!∆K = ! JA1K⊗. . .⊗! JAkK. With help of Lemma 4.4.6 and Lemma 5.1.1,
we can get the proof in Figure 5.1.

5.2 . Basic type

Basic type is a subset of the type (Definition 3.2.1) such that each value of
this type has unique and distinct denotation. Note that we are only considering
values which do not contain free variables. For example, we can show that the
unit type I is basic type since, firstly, there is only two possible values of this
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Figure 5.1: Proof of Lemma 5.1.2

type that are variable x and ∗; secondly, there is only one value ∗ which does
not contain any free variable; and, thirdly, the value ∗ admits the following
forms of typing derivation which has empty context:

(I)
!∆ ` ∗ : I

(π∗)
!∆ ` ∗ : I

where π∗ represent any type derivation with given premise and conclusion
which is composed of promotion (p) and dereliction (d) typing rules. Formally,
π∗ can be represented as in Eq. (5.1).

π∗ = α∗
(I) |

α∗
(π2∗)α∗
(π1∗)α∗

|

α∗ ∗ is value
(p)

!∆ ` ∗ : !I
(!π∗)

!∆ ` ∗ : !I
(d)

α∗

(5.1)

where α∗ = !∆ ` ∗ : I and !πI and !π∗ are the type derivation obtained by the
same sequence of (p) and (d) type derivation rules but with the types makred
by a bang ! operator.

Then, we can show by induction that Jπ∗K is identity function which maps
a morphism to itself since the sequence of rule (p)− (d) can be removed while
not changing the denotation as shown in Lemma 5.1.2.

Similarly,

Lemma 5.2.1. For all typing derivations of !∆ ` ∗ : I , their denotation in the
categorical semantics is J(I) | !∆ ` ∗ : IK.
Proof. Proof by induction on the size of type derivation. Before, we proceed,
there are only three type rules–(d), (p), and (I)–that are applicable to the term
∗.
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• basis case where the size of the proof is one: the only type rule which
does not contain a premise is (I) rulewhose interpretation is J(I) | !∆ ` ∗ : IK.

• induction step: it is straightforward to see that, for any typing derivation
τ of the type judgement !∆ ` ∗ : I whose size is greater than one,
there is a application of typing rules (d) followed by (p). Moreover by
Lemma 5.1.2, the interpretation of τ is equal to the typing derivation τ ′

obtained from τ by subtracting the sequence of (d) and (p) rules. Since
the size of τ ′ is smaller, we can apply the induction hypothesis to obtain
that Jτ | !∆ ` ∗ : IK = q

(τ ′ | !∆ ` ∗ : I
y
= J(I) | !∆ ` ∗ : IK

Lemma 5.2.2. For all typing derivations of

!∆ ` unbox : QChan(P,A) ⊸ (P ⊸ A),

their denotation in the categorical semantics is

J(unbox) | !∆ ` unbox : QChan(P,A) ⊸ (P ⊸ A)K .
Proof. From the fact that there are only three typing rules–(unbox), (d), and
(p)–which are applicable to the term unbox, we can prove the lemma by a
proof by induction similar to Lemma 5.2.1.

Remark. We can show that I is a basic type but there can bemore basic types.
For basic type A, there is a denotation of type judgement ` V : A for each
value V , which does not depend on the typing derivation, and the denotation
is distinctive over different values.

5.3 . Soundness theorem of the categorical semantics

In this section, we discuss the soundness theorem of the categorical se-
mantics of the quantum channel description language Proto-Quipper-L. When
typed terms admit a unique typing derivation this entails a unique denotation
for typed terms. In our situation, due to the promotion and dereliction rules
typing derivations are not necessarily unique: we therefore adjust the state-
ments of the lemmas and theorems accordingly. However, in the case of values
of basic types, thanks to Remark 5.2 and the type safety properties, the deno-
tation of closed terms of basic types is independent from the choice of typing
derivation: this gives the soundness lemma as corollary 5.3.5.1.

First, the value decomposition lemma states that the interpretation of a
typing derivation of regarding a value can be decomposed to two parts with a
morphism in the category M and the unit of the computation monad.
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Lemma 5.3.1. For a value V and a typing derivation τ of the type judgement
!∆, Q ` V : A, if f = Jτ | !∆, Q ` V : AK then there exists f0 : J!∆K ⊗ JQK −→

MJAK such that f = η ◦ f0.
Moreover, for branching term, if f = Jτ | γ ` v : AK then there exists f0 :JγK −→
M

JAK such that f = η ◦ f0.

Proof. Proof by induction on the typing derivation.

•
!∆, (x : A) ` x : A

(var):

Note that J(var) | !∆, (x : A) ` x : AK = J!∆K⊗JAK del⊗id−−−−→
M

JIK⊗JAK l−→
MJAK ηJAK−−−→

M
F JAK. Then we let f0 = J!∆K⊗ JAK del⊗id−−−−→

M
JIK⊗ JAK l−→

MJAK so that we can derive J(var) | !∆, (x : A) ` x : AK = η ◦ f0.
Similarly, the cases for the following typing rules can be shown straight-
forwardly from the definition.

!∆ ` ∗ : I
(I)

!∆ ` tt : bool
(tt)

!∆ ` ff : bool
(ff)

!∆, Q, (x : Aa) `M : Ab

!∆, Q ` λx.M : Aa ⊸ Ab
(⊸I)

!∆ ` boxP : !(P ⊸ A) ⊸ !QChan(P,A)
(box)

!∆ ` unbox : QChan(P,A) ⊸ (P ⊸ A)
(unbox)

p ⊨ P vBind(!∆,out(Q),m,A)

!∆ ` (p,Q,m) : !QChan(P,A)
(QChanI)

•
!∆, Q `M : !A

!∆, Q `M : A
(d):

Note that J(d); τ | !∆, Q `M : AK = J!∆K⊗JQK J!∆, Q`M :!AK−−−−−−−−−→
M
F (! JAK) F (ϵJAK)−−−−−→

M
F JAK. Then, by inductionhypothesis, wehave that Jτ | !∆, Q `M : !AK =J!∆K ⊗ JQK f0−→

M
! JAK η−→

M
F (! JAK). Therefore, from the following

commute diagram, we can conclude that J(d); τ | !∆, Q `M : AK =

η ◦ ϵ JAK ◦ f0.

•
!∆ ` V : A V is value

!∆ ` V : !A
(p):

Note that J(p); τ | !∆ ` V : !AK = J!∆K δ⊗k

−−→
M

!! JA1K⊗. . .⊗!! JAkK πk−1

−−−→
M
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! J!∆K !g−→
M

!F JAK ϕ−→
M

F ! JAK, where J!∆K = ! JA1K ⊗ . . . ⊗ ! JAkK
and g = Jτ | !∆ ` V : AK. Then, by induction hypothesis, we have that

g = J!∆K g0−→
M

JAK η−→
M
F JAK. Therefore, from the following commute

diagram, we can conclude that J(p); τ | !∆ ` V : !AK = η(! JAK) ◦ !g0 ◦
πk−1 ◦ δ⊗k.

•
!∆, Qa `Ma : Aa ⊸ Ab !∆, Qb `Mb : Aa

!∆, Qa, Qb `MaMb : Ab
(⊸E):

Since the termMaMb has to be a value, it follows thatMaMb = unbox(V )

for some V and, hence, that Aa = QChan(P,A) and Ab = (P ⊸ A).
Moreover, according to the term, the typing derivation should have the
form

Next, by definition

h = J(⊸E); (τ1, τ2) | !∆, Qb `MaMb : AbK =
J!∆K⊗ JQbK dup⊗idJQbK−−−−−−−→

M
J!∆K⊗ J!∆K⊗ JQbK f⊗g−−→

M
F JAa ⊸ AbK⊗ F JAaK

ψJAa⊸AbK,JAaK
−−−−−−−−−→

M
(F (JAa ⊸ AbK⊗ JAaK) = F ((JAaK ⊸MF

JAbK)⊗ JAaK))
F (evalJAaK,FJAbK)−−−−−−−−−−−→

M
F 2 JAbK µ−→

M
F JAbK

where f = Jτ1 | !∆ ` unbox : Aa ⊸ AbK and g = Jτ2 | !∆, Qb ` V : AaK.
Then, by using Lemma 5.2.2, we have that

f =
J!∆K del−−→

M
I

ηJAaK(I)−−−−−→
M

JAaK ⊸ (I ⊗ JAaK) (JAaK⊸−)(η◦unbox)−−−−−−−−−−−−−→
M

JAaK ⊸ F JAbK
η−→
M
F JAa ⊸ AbK

= J!∆K f00−−→
M

JAaK ⊸ JAbK f01=(JAaK⊸−)(η)−−−−−−−−−−−→
M

JAaK ⊸ F JAbK η−→
M
F JAa ⊸ AbK

Moreover, by induction hypothesis, we obtain that g = J!∆K⊗JQbK g0−→
MJAaK η−→

M
F JAaK. Then, we canobtain thath = J!∆K⊗JQbK dup⊗idJQbK−−−−−−−→

MJ!∆K ⊗ J!∆K ⊗ JQbK f00⊗g0−−−−→
M

(JAaK ⊸ JAbK) ⊗ JAaK evalJAaK,JAbK−−−−−−−−→
M
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JAbK η−→
M
F JAbK as follows.

•
!∆, Qa `Ma : Aa !∆, Qb `Mb : Ab

!∆, Qa, Qb ` 〈Ma,Mb〉 : Aa ⊗Ab
(⊗I):

By definition, we have the following denotation of the typing rule:

h = J(⊗I); (τa, τb) | !∆, Qa, Qb ` 〈Ma,Mb〉 : Aa ⊗AbK =
J!∆K⊗ JQaK⊗ JQbK dup⊗idJQaK⊗JQbK−−−−−−−−−−−→

M
J!∆K⊗ J!∆K⊗ JQaK⊗ JQbK

idJ!∆K⊗σ⊗idJQbK−−−−−−−−−−→
M

J!∆K⊗ JQaK⊗ J!∆K⊗ JQbK f⊗g−−→
M
F JAaK⊗ F JAbK

ψJAaK,JAbK−−−−−−−→
M

(F (JAaK⊗ JAaK) = F JAa ⊗AbK)
where f = Jτa | !∆, Qa `Ma : AaK and g = Jτb | !∆, Qb `Mb : AbK. Then,
by induction hypothesis, we let f = J!∆K⊗ JQaK f0−→

M
JAaK η−→

M
F JAaK

and g = J!∆K ⊗ JQbK g0−→
M

JAbK η−→
M

F JAbK. Then, we can obtain

that h = J!∆K ⊗ JQaK ⊗ JQbK dup⊗idJQaK⊗JQbK−−−−−−−−−−−→
M

J!∆K ⊗ J!∆K ⊗ JQaK ⊗
JQbK idJ!∆K⊗σ⊗idJQbK−−−−−−−−−−→

M
J!∆K⊗JQaK⊗J!∆K⊗JQbK f0⊗g0−−−−→

M
JAaK⊗JAbK η−→

M
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F (JAaK⊗ JAbK) from the following commute diagram.

•
!∆, Qa `Ma : Aa ⊗Ab !∆, Qb, (x : Aa), (y : Ab) `Mb : A

!∆, Qa, Qb ` let 〈x, y〉 =Ma inMb : A
(⊗E):

This case is irrelevant since let 〈x, y〉 =Ma inMb is not a value.

•
!∆, Qa `M : bool !∆, Qb `Ma : A !∆, Qb `Mb : A

!∆, Qa, Qb ` ifM thenMa elseMb : A
(if):

This case is irrelevant since ifM thenMa elseMb is not a value.

•
γa ` ma : A γb ` mb : A

γa × γb ` [ma,mb] : A
(b):

The fact that [ma,mb] is value implies that both ma and mb are values.
Then, by inductionhypothesis, we can represent that f = Jτa | γa ` ma : AK =JγaK f0−→

M
JAK η−→

M
F JAK and g = Jτb | γb ` mb : AK = JγbK g0−→

MJAK η−→
M
F JAK.

Moreover, by definition, wehave that J(b); (τa, τb) | γa × γb ` [ma,mb] : AK
is equal to JγaK+JγbK (f,g)−−−→

M
F JAK. However, we can show that (f, g) =

JγaK + JγbK (f0,g0)−−−−→
M

JAK η−→
M
F JAK from the uniqueness of the morh-

pism (f, g) such that f = (f, g) ◦ i1 and g = (f, g) ◦ i2 since (f, g) =
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η ◦ (f0, g0) satisfies the condition in the following diagram.

Moreover, Lemma 5.3.2 shows that, when the type of a value is non-linear,
we can factorize the morphism created by any type derivation of the term.

Lemma 5.3.2. For any non-branching value V and type derivation τ of the type
derivation ` V :!nB where n ≥ 1 and B is a linear type, then

Jτ |` V :!nBK = I
f (n,f0)

−−−−→
M
!nB

η−→
M
F (!nB)

for some f0 : b(I) −→Set b JBK, where
f (n,f

0) =


I

πI−→
M
!I

p(f0)−−−→
M
! JBK , if n = 1

I
πI−→

M
!I

!f (n−1,f0)

−−−−−−→
M
!n JBK , otherwise

Proof. Proof by induction on the derivation of ` V : !nB.

•
!∆, Q `M : !A

!∆, Q `M : A
(d) where !∆, Q = ∅,M is a value, and A = !nB:

By induction hypothesis, we have thatq
τ |`M : !n+1B

y
= I

f (n+1,f0)

−−−−−−→
M
!n+1 JBK η−→

M
F (!n+1 JBK)

= I
πI−→

M
!I

!f (n,f0)

−−−−−→
M
!n+1 JBK η−→

M
F (!n+1 JBK)

Then: J(d); τ |`M : !nBK = I
Jτ |`M :!n+1BK
−−−−−−−−−→

M
F (!n+1 JBK) F (ϵJ!nJBKK)−−−−−−−→

M
F (!n JBK) by definition and we can obtain the commute diagram re-
quired as follows.
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•
!∆ ` V : A V is value

!∆ ` V : !A
(p) where !∆ = ∅:

We do case analysis:

– if A is a linear type, then by Lemma 5.3.1, we have that

Jτ |` V : AK = I
g0−→

M
JAK η−→

M
F JAK

and that J(p); τ |` V : !AK = I
πI−→

M
!I

!Jτ |`V :AK−−−−−−→
M

!F JAK ϕ−→
M

F ! JAK by definition. Then, we can obtain the required commute
diagram as follows.

– if A = !nB, for n ≥ 1 and a linear type B, then by induction hy-
pothesis, we have that

Jτ |` V : !nBK = I
f(n,f0)−−−−→

M
J!nBK η−→

M
F J!nBK

for some f0. Then, by definition and the commute diagram shown
right above, we can show thatq

(p); τ |` V : !n+1B
y

= I
πI−→

M
!I

!f(n,f0)−−−−−→
M

! J!nBK !η−→
M

!F J!nBK ϕ−→
M
F ! J!nBK

= I
πI−→

M
!I

!f(n,f0)−−−−−→
M

! J!nBK η−→
M
F ! J!nBK

= I
f(n+1,f0)−−−−−−→

M

q
!n+1B

y η−→
M
F

q
!n+1B

y
•
p ⊨ P vBind(!∆,out(Q),m,A)

!∆ ` (p,Q,m) : !QChan(P,A)
(QChanI) where !∆ = ∅:

By definition,

J(QChanI); (τi)i:leaf |` (p,Q,m) : !QChan(P,A)K =
I

πI−→
M

!I
!(ηJP K(I))−−−−−−→

M
!(JP K ⊸

M
(I ⊗ JP K)) !(JP K⊸−)(h)−−−−−−−−→

M

!(JP K ⊸
M
F JAK) box−−→

M
! JQChan(P,A)K η−→

M
F (! JQChan(P,A)K)

for certainmorphismhwhose constructiondepends on the typing deriva-
tions (τi)i:leaf.
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Moreover, since

box = (p ◦ b)(JP K ⊸
M
F JAK) p(iso←−)−−−−−→ p(M(JP K , F JAK))

p(η(M(JP K,F JAK)))−−−−−−−−−−−−→ (p ◦ b ◦ p)(M(JP K , F JAK))
= p(η(M(JP K , F JAK)) ◦ iso←−)

we can obtain the required form

J(QChanI); (τi)i:leaf |` (p,Q,m) : !QChan(P,A)K
= I

πI−→
M

!I
p(f0)−−−→

M
! JQChan(P,A)K η−→

M
F ! JQChan(P,A)K

by letting f0 = η(M(JP K , F JAK))◦ iso←−◦ b((JP K ⊸ −)(h))◦ b(ηJP K(I)).

Remark. Note that f (n,f0) = p(. . .) for any n ≥ 1 and any set function f0 since
πI = ({∅ 7→ (∅, idI)}, (idI)) = p({∅ 7→ (∅, idI)}).

Regarding the denotation of non-linear value, we can show the following
Lemma 5.3.3 which basically represents the naturality property of the inverse
of counit (we may call it pseudo unit) from the !-comonad.

Lemma 5.3.3. The following diagram commutes:

I ⊗ I I ⊗ ! JB′K
I ! JB′K
!I ! JBK

l

id⊗g0

l

πI

g0

δ

!g0

where g0 = f (n,g
0
0).

Proof. Proof by case analysis on n.

• n = 1: By definition, we have that g0 = I
πI−→

M
!I

p(g00)−−−→
M

! JB′K.
Then we can show the following commute diagram:

I !I ! JB′K
!I !!I !! JB′K
πI

πI

p(η(b(I)))

p(g00)

δ

!πI !p(g00)
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Then we can obtain the right part of the commute diagram by using the
fact that δ = p ◦ η ◦ b and the naturality of η : 1Set → (b ◦ p):

b(I) b JB′K
(b ◦ p ◦ b)(I) (b ◦ p ◦ b) JB′K

g00

η(b(I)) η(bJB′K)
(b◦p)(g00)

Moreover, the left part of the commute diagram can be shown by using
the fact that I = p({∅}), πI = p(η({∅})), and the naturality of η : 1Set →
(b ◦ p):

{∅} (b ◦ p)({∅})

(b ◦ p)({∅}) (b ◦ p ◦ b ◦ b)({∅})

η({∅})

η({∅}) η((b◦p)({∅}))
(b◦p)(η({∅}))

=⇒
p({∅}) (p ◦ b ◦ p)({∅})

(p ◦ b ◦ p)({∅}) (p ◦ b ◦ p ◦ b ◦ b)({∅})

p(η({∅}))

p(η({∅})) p(η((b◦p)({∅})))
(p◦b◦p)(η({∅}))

• n > 1: By definition we have that g0 = I
πI−→

M
!I

!f (n−1,g00)

−−−−−−→
M

! JB′K.
Then we can show the following commute diagram:

I !I ! JB′K
!I !!I !! JB′K
πI

πI

δ(I)

!f (n−1,g00)

δJB′K
!πI !!f (n−1,g00)

The left part of the commute diagram can be shown as the previous
case and the right part follows from the naturality of δ = p ◦ η ◦ b.

Next, the substitution lemma (Lemma 5.3.4) provides the interpretation
of the substitution in a term. It consists of two parts: one for the typing judge-
ment and the other for the vBind. Intuitively, for the typing judgement, the
lemma says that the substitution of a variable in a term by value corresponds
to the composition of the morphisms for the value and the term.

Lemma 5.3.4. The following holds,

• for typing judgement:
Given a typing derivation τf for the type judgement Q1, (x : B) ` M : A

and the interpretation f = Jτf | Q1, (x : B) `M : AK and a typing deriva-
tion τg for the type judgement Q2 ` V : B and the interpretation g =
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Jτg | Q2 ` V : BK, there exists a type derivation τvb of Q1, Q2 ` M [V /x] :

A whose denotation fvb = Jτvb | Q1, Q2 `M [V /x] : AK satisfies the fol-
lowing commute diagram in the categoryM :

JQ1K⊗ JQ2K JQ1K⊗ JBK
F JAK∃fvb

id⊗g0

f

where g = η ◦ g0 by the value decomposition lemma.

• for vBind:
Given any derivation τg of the judgement vBind((x : !A′), c,m[V /x], A)

and any typing derivation τv of the typing judgement ` V : !A′ for a value
V , there exists a derivation τvb of vBind(∅, c,m[V /x], A) whose denotation
fvb = Jτvb | vBind(∅, c,m[V /x], A)K satisfies the following commute dia-
gram: JcK = JcK⊗ I JcK⊗ ! JA′K

F JAK J!A′K⊗ JcK∃fvb

id⊗v0

σ

g

where g = Jτg | vBind((x : !A′), c,m,A)K and Jτv |` V : !A′K = η ◦ v0.

Proof. The proof consists of two parts.

Typing judgement part Proof by induction on the type derivation τf of
Q1, (x : B) `M : A.

•
!∆, (x : A) ` x : A

(var):

First, note that f = J(var) | !∆, (x : A) ` x : AK = J!∆K ⊗ JAK del⊗id−−−−→
M

I ⊗ JAK l−→
M

JAK η−→
M
F JAK and g = J!∆K⊗ JQ2K g0−→

M
JAK η−→

M
F JAK

by Lemma 5.3.1 where !∆ = ∅ and Q1 = ∅.
There are two cases, either (M = x) and, hence,M [V /x] = V or (M =

y), hence,M [V /x] = M . If the substitution happens, i.e. M [V /x] = V ,
we can show that the same type derivation τg from g gives us the wit-
ness, the morphism g = Jτg | !∆, Q2 ` V : AK, of the desired commute
diagram as follows.
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Otherwise, (M = y) and, hence, to be able to apply (var) rule to prove
the typing judgement Q1, (x : B) ` M : A, the type (y : A) should
appear in the context Q1 and (x : B) belongs to the non-linear context
!∆, which is supposed to be empty. Therefore, this case is absurde.

•
!∆, Q `M : !A

!∆, Q `M : A
(d):

Since the typing derivation τf is obtained by applying (d)-rule, we know
that the type judgement Q1, (x : B) ` M : A has the form !∆, Q ` M :

A. Therefore, we let the context !∆, Q be Q1, (x : B).

By definition, we have that

f = J(d); τf | !∆, Q `M : AK = J!∆K⊗JQK f0−→
M
F (! JAK) F (ϵJAK)−−−−−→

M
F JAK ,

where

f0 = Jτf | !∆, Q `M : !AK and g = Jτg | Q2 ` V : BK = JQ2K g0−→
M

JBK η−→
M
F JBK

by Lemma 5.3.1. Then, we can derive the commute diagram as follows.

where we have the followings:

1. by induction hypothesis, there exists some derivation τvb such
that

Jτvb | Q1, Q2 `M [V /x] : !AK =
JQ1K⊗ JQ2K id⊗g0−−−→

M

q
!∆′y⊗ JQ1K⊗ JBK f0−→

M
F (! JAK)

2. from the type derivation

Q1, Q2 `M [V /x] : !A

Q1, Q2 `M [V /x] : A
(d)

we get

J(d); τvbKQ1, Q2 `M [V /x] : A =

JQ1K⊗ JQ2K Jτvb|Q1, Q2`M [V /x]:!AK−−−−−−−−−−−−−−−→
M
F (! JAK) F (ϵJAK)−−−−−→

M
F JAK
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•
!∆ ` V : A V is value

!∆ ` V : !A
(p):

Since the typing derivation τf is obtained by applying (p)-rule, we know
that the type judgement Q1, (x : B) ` M : A has the form !∆ ` V : !A,
which implies that Q1 = ∅ and B = !B′ for some B′. Moreover, we
know that the termM is a value V .

Then, by definition,

f = J(p); τf | (x : B) ` V : !AK = q
!B′y δ−→

M
!!

q
B′y !(f0)−−−→

M
!F JAK ϕ−→

M
F ! JAK

and g = Jτg | Q2 ` V ′ : BK = JQ2K g0−→
M

JBK η−→
M
F JBK where f0 =Jτf | (x : B) ` V : AK and g0 = f (n,g

0
0) by Lemma 5.3.2 since V ′ is value.

Moreover, note that, by Lemma 3.2.4, we know that Q2 = ∅ since the
type B = !B′ in the type judgement Q2 ` V ′ : B is non-linear.

Now we have the followings:

1. By induction hypothesis, we know that there exists some typing
derivation τvb of the type judgement ` V [V ′/x] : A whose deno-
tation satisfies the following equality:q

τvb |` V [V ′/x] : A
y
= I

g0−→
M

JBK f0−→
M
F JAK

2. From Lemma 3.1.6, we know that V [V ′/x] is value. Therefore, we
have the following type derivation:

` V [V ′/x] : A V [V ′/x] is value
` V [V ′/x] : !A

(p)

whose denotation is given by:q
(p); τvb |` V [V ′/x] : !A

y
=I

πI−→
M

!I
!Jτvb|`V [V ′/x]:AK−−−−−−−−−−−→ !F JAK ϕ−→

M
F ! JAK

=I
πI−→

M
!I

!g0−−→ ! JBK !f0−−→ !F JAK ϕ−→
M
F ! JAK

from the induction hypothesis.

Then, it suffices to show that our typing derivation (p); τvb satisfies the
desired commute diagram as follows.
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where the commute diagram in the middle follows from Lemma 5.3.3.

•
!∆ ` ∗ : I

(I):

This is the case where the typing derivation τf of the type judgement
Q1, (x : B) ` M : A is derived by applying (I)-rule. Therefore, we let
!∆ = Q1, (x : B), which implies that Q1 = ∅ and B = !B′ for some B′,
andM = ∗.
Moreover, by definition, wehave that f = J(I) | (x : B) ` ∗ : IK = J!B′K del−−→

M

I
η−→
M
F JIK, and, by Lemma 5.3.1, g = Jτg | Q2 ` V : BK = JQ2K g0−→

M

! JBK η−→
M
F (! JBK) where we know that Q2 = ∅ by Lemma 3.2.4 since

B = !B′ is non-linear. Also, since B is non-linear, by Lemma 5.3.2, we
know that g0 = f (n,g

0
0) for some n and morphism g00 , which implies that

g0 = p(. . .).

Then, we have that ∗[V /x] = ∗ and that J(I) |` ∗[V /x] : IK = J!B′K del−−→
MJIK η−→

M
F JIK. Therefore, by letting τvb = (I), the desired commute

diagram as follows.

where the commute diagram in the middle follows from Lemma 4.5.4
since J!∆′K = I is a parameter object and the morphisms dup and g0

are morphisms of parameter objects of the form p(. . .).

•
!∆, Q, (y : Aa) `M ′ : Ab

!∆, Q ` λy.M ′ : Aa ⊸ Ab
(⊸I):

Suppose that the typing derivation of the type judgementQ1, (x : B) `
M : A is (⊸I); τf . Then, we know that !∆, Q = Q′

1, (x : B) and M by
λy.M ′.

By definition, we have that f = J(⊸I); τf | !∆, Q ` λy.M ′ : Aa ⊸ AbK is
equal to

J!∆, QK ηJAaK(J!∆,QK)
−−−−−−−−−→

M
JAaK ⊸ (J!∆, QK⊗ JAaK) (JAaK⊸−)(f0)−−−−−−−−−→

MJAaK ⊸ F JAbK η−→
M
F JAa ⊸ AbK ,

where f0 = Jτf | !∆, Q, (y : Aa) `M ′ : AbK. By Lemma 5.3.1, we have
that

g = Jτg | Q2 ` V : BK = JQ2K g0−→
M

JBK η−→
M
F JBK .

Next, we have the following facts:
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1. By induction hypothesis, we know that there is a typing derivation
τvb for the type judgement Q′

1, (y : Aa), Q2 ` M ′[V /x] : Ab which
is: q

τvb | Q′
1, (y : Aa), Q2 `M ′[V /x] : Ab

y
=q

Q′
1

y
⊗ JAaK⊗ JQ2K id⊗g0−−−→

M

q
Q′

1

y
⊗ JAaK⊗ JBK id⊗σ−−−→

Mq
Q′

1

y
⊗ JBK⊗ JAaK f0−→

M
F JAbK

2. The fact that λy.M ′[V /x] = (λy.M ′)[V /x] and the interpretation
of the typing rule:

Q′
1, Q2, (y : Aa) `M ′[V /x] : Ab

Q′
1, Q2 ` λy.M ′[V /x] : Aa ⊸ Ab

(⊸I)

q
(⊸I); τvb | Q′

1, Q2 ` λy.M ′[V /x] : Aa ⊸ Ab
y
=q

Q′
1, Q2

y ηAa (JQ′
1,Q2K)

−−−−−−−−−→
M

JAaK ⊸ (
q
Q′

1, Q2

y
⊗ JAaK) (JAaK⊸−)(f00)−−−−−−−−−−→

MJAaK ⊸ F JAbK η−→
M
F JAa ⊸ AbK

where f00 = (id⊗ σ); Jτvb | Q′
1, (y : Aa), Q2 `M ′[V /x] : AbK.

Therefore, we can show that the typing derivation (⊸I); τvb proves the
desired commute diagram as follows:

Then, it suffices to show the following commute diagram as follows:
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•
!∆, Qa `Ma : Aa ⊸ Ab !∆, Qb `Mb : Aa

!∆, Qa, Qb `MaMb : Ab
(⊸E):

Suppose that the typing derivation of the type judgementQ1, (x : B) `
M : A is (⊸E); (τ1, τ2). Then, we know that !∆, Qa, Qb = Q′

1, (x : B).

By definition, wehave that f ′ = J(⊸E); (τ1, τ2) | !∆, Qa, Qb `MaMb : AbK =J!∆K⊗JQaK⊗JQbK dup⊗id−−−−→
M

J!∆K⊗J!∆K⊗JQaK⊗JQbK id⊗σ⊗id−−−−−→
M

J!∆K⊗JQaK⊗J!∆K⊗JQbK h1⊗h2−−−−→
M
F JAa ⊸ AbK⊗F JAaK ψ−→

M
F (JAa ⊸ AbK⊗

JAaK) F (evalJAaK,FJAbK)−−−−−−−−−−−→
M
F 2 JAbK µ−→

M
F JAbK where

h1 = Jτ1 | !∆, Qa `Ma : Aa ⊸ AbK and h2 = Jτ2 | !∆, Qb `Mb : AaK.
For convenience, we define the morphism f = f ′ ◦σf : JQ′

1K⊗ JBK −→
M

F JAbK which changes the order of the variables in the context.

By Lemma 5.3.1, we have that g = Jτg | Q2 ` V : BK = JQ2K g0−→
MJBK η−→

M
F JBK.

The goal is then to show that there exists a typing derivation τ ′vb of the
type judgement Q′

1, Q2 `MaMb[V /x] : Ab which satisfies thatJτ ′vb | Q′
1, Q2 `MaMb[V /x] : AbK = JQ′

1K⊗JQ2K id⊗g0−−−→
M

JQ′
1K⊗JBK f−→

M
F JAbK.
To prove that, we analyze the following three cases:

– (x : B) ∈ !∆, which means that B = !B′, !∆ = (x : !B′), and
Q′

1 = Qa, Qb:

Note that Q2 = ∅ is deducible from g = Jτg | Q2 ` V : BK by
Lemma 3.2.4 since B = !B′ is non-linear.

1. Induction hypotheses: there are typing derivations τavb for the
type judgement Qa ` Ma[V /x] : Aa ⊸ Ab and τ bvb for Qb `
Mb[V /x] : Aa such that

ha = Jτavb | Qa `Ma[V /x] : Aa ⊸ AbK
= JQaK id⊗g0−−−→

M
JQaK⊗ !

q
B′y σ−→

M
!
q
B′y⊗ JQaK h1−→

M
F JAa ⊸ AbK

hb =
r
τ bvb | Qb `Mb[V /x] : Aa

z
= JQbK id⊗g0−−−→

M
JQbK⊗ !∆B′ σ−→

M
!
q
B′y⊗ JQbK h2−→

M
F JAaK

2. We have the following typing derivation:

Qa `Ma[V /x] : Aa ⊸ Ab Qb `Mb[V /x] : Aa

Q′
1 ` (MaMb)[V /x] : Ab

(⊸E)
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whose denotation is given byr
(⊸E); (τ

a
vb, τ

b
vb) | Q1 ` (MaMb)[V /x] : Ab

z
=

JQaK⊗ JQbK ha⊗hb−−−−→
M
F JAa ⊸ AbK⊗ F JAaK ψ−→

M

F (JAa ⊸ AbK⊗ JAaK) ϵJAaK(F JAbK)−−−−−−−−→
M
F 2 JAbK µ−→

M
F JAbK

Given these facts, we can derive the goal from following diagram.

– (x : B) ∈ Qa, which means that !∆ = ∅, Qa = Q′
a, (x : B), and

Q′
1 = Q′

a ⊗Qb:
In this case, Mb[V /x] = Mb since FV(Mb) ⊆ FV(!∆) ∪ FV(Qb) by
Lemma 3.2.3.

1. Induction hypothesis: there exists a typing derivation τavb for
the type judgement Q′

a, Q2 `Ma[V /x] : Aa ⊸ Ab such thatq
τavb | Q′

a, Q2 `Ma[V /x] : Aa ⊸ Ab
y

=
q
Q′
a

y
⊗ JQ2K id⊗g0−−−→

M

q
Q′
a

y
⊗ JBK h1−→

M
F JAa ⊸ AbK

2. We have the following typing derivation:

Q′
a, Q2 `Ma[V /x] : Aa ⊸ Ab Qb `Mb : Aa

Q′
a, Q2, Qb `MaMb[V /x] : Ab

(⊸E)
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whose denotation isq
(⊸E); (τ

a
vb, τ2) | Q′

a, Qb, Q2 ` (MaMb)[V /x] : Ab
y

=
q
(⊸E); (τ

a
vb, τ2) | Q′

a, Q2, Qb ` (MaMb)[V /x] : Ab
y
◦ σs

=
q
Q′
a

y
⊗ JQbK⊗ JQ2K id⊗σ−−−→

M

q
Q′
a

y
⊗ JQ2K⊗ JQbK

ha⊗h2−−−−→
M
F JAa ⊸ AbK⊗ F JAaK ψ−→

M
F (JAa ⊸ AbK⊗ JAaK)

F (ϵJAaK(F JAbK))−−−−−−−−−−→
M
F 2 JAbK µ−→

M
F JAbK

From these facts, the goal can be derived from the following dia-
gram.

– (x : B) ∈ Qb, which means that !∆ = ∅, Qb = Q′
b, (x : B), and

Q′
1 = Qa, Q

′
b:

In this case, Ma[V /x] = Ma since FV(Ma) ⊆ FV(!∆) ∪ FV(Qa) by
Lemma 3.2.3.

1. Induction hypothesis: there exists a typing derivation τ bvb for
the type judgement Q′

b, Q2 `Mb[V /x] : Aa such that

r
τ bvb | Q′

b, Q2 `Mb[V /x] : Aa

z
=

q
Q′
b

y
⊗ JQ2K id⊗g0−−−→

M

q
Q′
b

y
⊗ JBK h2−→

M
F JAaK

2. We have the following typing derivation:

Qa `Ma : Aa ⊸ Ab Q′
b, Q2 `Mb[V /x] : Aa

Qa, Q
′
b, Q2 ` (MaMb)[V /x] : Ab

(⊸E)
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whose denotation isr
(⊸E); (τ1, τ

b
vb) | Qa, Q′

b, Q2 ` (MaMb)[V /x] : Ab

z
= JQaK⊗ q

Q′
b

y
⊗ JQ2K h1⊗hb−−−−→

M
F JAa ⊸ AbK⊗ F JAaK

ψ−→
M
F (JAa ⊸ AbK⊗ JAaK) F (ϵJAaK(F JAbK))−−−−−−−−−−→

M
F 2 JAbK µ−→

M
F JAbK

From these facts, the goal can be derived from the following dia-
gram.

•
!∆, Qa `Ma : Aa !∆, Qb `Mb : Ab

!∆, Qa, Qb ` 〈Ma,Mb〉 : Aa ⊗Ab
(⊗I):

Suppose that the typing derivation of Q1, (x : B) ` M : A is obtained
by applying (⊗I)-rule. Then, we know that !∆, Qa, Qb = Q1, (x : B) and
M = 〈Ma,Mb〉.

By definition, we have that

f ′ = J(⊗I); (τ1, τ2) | !∆, Qa, Qb ` 〈Ma,Mb〉 : Aa ⊗AbK
= J!∆K⊗ JQaK⊗ JQbK dup⊗id−−−−→

M
J!∆K⊗ J!∆K⊗ JQaK⊗ JQbK

id⊗σ⊗id−−−−−→
M

J!∆K⊗ JQaK J!∆K⊗ JQbK h1⊗h2−−−−→
M

F JAaK⊗ F JAbK ψ−→
M
F (JAaK⊗ JAbK)

where h1 = Jτ1 | !∆, Qa `Ma : AaK and h2 = Jτ2 | !∆, Qb `Mb : AbK.
For convenience, we define the morphism f = f ′ ◦ σf : JQ′

aK ⊗ JQ′
bK ⊗JBK −→

M
F JAa ⊗AbK which changes the order of the variables in the

context.

By Lemma 5.3.1, we have that g = Jτg | Q2 ` V : BK = JQ2K g0−→
MJBK η−→

M
F JBK.
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The goal is then to show that there exists a typing derivation τ ′vb of the
type judgement Q′

1, Q2 ` 〈Ma,Mb〉[V /x] : Aa ⊗Ab which satisfies that

q
τ ′vb | Q′

1, Q2 ` 〈Ma,Mb〉[V /x] : Aa ⊗Ab
y
=q

Q′
1

y
⊗ JQ2K id⊗g0−−−→

M

q
Q′

1

y
⊗ JBK f−→

M
F JAa ⊗AbK .

To prove that, we analyze the following three cases:

– (x : B) ∈ !∆, which means that B = !B′, !∆ = (x : !B′), and
Q′

1 = Qa, Qb:

Note that Q2 = ∅ is deducible from g = Jτg | Q2 ` V : BK by
Lemma 3.2.4 since B = !B′ is non-linear.

1. Induction hypotheses: there are typing derivations τavb for
the type judgement Qa ` Ma[V /x] : Aa and τ bvb for Qb `
Mb[V /x] : Ab such that

ha = Jτavb | Qa `Ma[V /x] : AaK
= JQaK id⊗g0−−−→

M
JQaK⊗ !

q
B′y σ−→

M
!
q
B′y⊗ JQaK h1−→

M
F JAaK

hb =
r
τ bvb | Qb `Mb[V /x] : Ab

z
= JQbK id⊗g0−−−→

M
JQbK⊗ !∆B′ σ−→

M
!
q
B′y⊗ JQbK h2−→

M
F JAbK

2. We have the following typing derivation:

Qa `Ma[V /x] : Aa Qb `Mb[V /x] : Ab

Qa, Qb ` 〈Ma,Mb〉[V /x] : Aa ⊗Ab
(⊗I)

whose denotation is given byr
(⊗I); (τavb, τ bvb) | Qa, Qb ` 〈Ma,Mb〉[V /x] : Aa ⊗Ab

z
=

JQaK⊗ JQbK ha⊗hb−−−−→
M
F JAaK⊗ F JAbK ψ−→

M
F (JAaK⊗ JAbK)

Given these facts, we can derive the goal from following diagram.
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where the commutativity in the middle is shown as follows:

– (x : B) ∈ Qa, which means that !∆ = ∅, Qa = Q′
a, (x : B), and

Q′
1 = Q′

a ⊗Qb:

In this case, Mb[V /x] = Mb since FV(Mb) ⊆ FV(!∆) ∪ FV(Qb) by
Lemma 3.2.3.

1. Induction hypothesis: there exists a typing derivation τavb for
the type judgement Q′

a, Q2 `Ma[V /x] : Aa such that

ha =
q
τavb | Q′

a, Q2 `Ma[V /x] : Aa
y

=
q
Q′
a

y
⊗ JQ2K id⊗g0−−−→

M

q
Q′
a

y
⊗ JBK h1−→

M
F JAaK

2. We have the following typing derivation:

Q′
a, Q2 `Ma[V /x] : Aa Qb `Mb : Ab

Q′
a, Q2, Qb ` 〈Ma,Mb〉[V /x] : Aa ⊗Ab

(⊗I)

whose denotation is

hs =
q
(⊗I); (τavb, τ2) | Q′

a, Q2, Qb ` 〈Ma,Mb〉[V /x] : Aa ⊗Ab
y

=
q
Q′
a

y
⊗ JQ2K⊗ JQbK ha⊗h2−−−−→

M
F JAaK⊗ F JAbK ψ−→

M
F (JAa ⊗AbK)

From these facts, the goal can be derived from the following dia-
gram.
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where the commutativity in the center is proven in the following.

– (x : B) ∈ Qb, which means that !∆ = ∅, Qb = Q′
b, (x : B), and

Q′
1 = Qa, Q

′
b:

In this case, Ma[V /x] = Ma since FV(Ma) ⊆ FV(!∆) ∪ FV(Qa) by
Lemma 3.2.3.

1. Induction hypothesis: there exists a typing derivation τ bvb for
the type judgement Q′

b, Q2 `Mb[V /x] : Ab such that

r
τ bvb | Q′

b, Q2 `Mb[V /x] : Ab

z
=

q
Q′
b

y
⊗ JQ2K id⊗g0−−−→

M

q
Q′
b

y
⊗ JBK h2−→

M
F JAbK

2. We have the following typing derivation:

Qa `Ma : Aa Q′
b, Q2 `Mb[V /x] : Ab

Qa, Q
′
b, Q2 ` 〈Ma,Mb〉[V /x] : Aa ⊗Ab

(⊗I)

whose denotation is

hs =
r
(⊗I); (τ1, τ bvb) | Qa, Q′

b, Q2 ` 〈MaMb〉[V /x] : Aa ⊗Ab
z

= JQaK⊗ q
Q′
b

y
⊗ JQ2K h1⊗hb−−−−→

M
F JAaK⊗ F JAbK ψ−→

M
F JAa ⊗AbK

From these facts, the goal can be derived from the following dia-
gram.
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where the commutativity in the middle can be shown as follows.

•
!∆, Qa `Ma : Aa ⊗Ab !∆, Qb, (x

′ : Aa), (y : Ab) `Mb : A

!∆, Qa, Qb ` let 〈x′, y〉 =Ma inMb : A
(⊗E):

Suppose that the typing derivation of Q1, (x : B) ` M : A is obtained
by applying (⊗E)-rule. Then, we know that !∆, Qa, Qb = Q1, (x : B) and
M = let 〈x′, y〉 =Ma inMb.

By definition, we have that

f ′ =
q
(⊗E); (τ1, τ2) | !∆, Qa, Qb ` let 〈x′, y〉 =Ma inMb : A

y
= J!∆K⊗ JQaK⊗ JQbK dup⊗id−−−−→

M
J!∆K⊗ J!∆K⊗ JQaK⊗ JQbK

id⊗σ⊗id−−−−−→
M

J!∆K⊗ JQaK J!∆K⊗ JQbK h1⊗id−−−→
M

F JAa ⊗AbK⊗ J!∆K⊗ JQbK t−→
M
F (JAaK⊗ JAbK⊗ J!∆K⊗ JQbK)

F (σ)−−−→
M
F (J!∆K⊗ JQbK⊗ JAaK⊗ JAbK) F (h2)−−−→

M
F 2 JAK µ−→

M
F JAK

where h1 = Jτ1 | !∆, Qa `Ma : Aa ⊗AbK and
h2 = Jτ2 | !∆, Qb, (x′ : Aa), (y : Ab) `Mb : AK.
For convenience, we define the morphism f = f ′ ◦ σf : JQ′

aK ⊗ JQ′
bK ⊗JBK −→

M
F JAK which changes the order of the variables in the context.

By Lemma 5.3.1, we have that g = Jτg | Q2 ` V : BK = JQ2K g0−→
MJBK η−→

M
F JBK.

The goal is then to show that there exists a typing derivation τ ′vb of the
type judgement Q′

1, Q2 ` (let 〈x′, y〉 =Ma inMb)[V /x] : A which satis-
fies that q

τ ′vb | Q′
1, Q2 ` (let 〈x′, y〉 =Ma inMb)[V /x] : A

y
=

q
Q′

1

y
⊗ JQ2K id⊗g0−−−→

M

q
Q′

1

y
⊗ JBK f−→

M
F JAK .

To prove that, we analyze the following three cases:

– (x : B) ∈ !∆, which means that B = !B′, !∆ = (x : !B′), and
Q′

1 = Qa, Qb:
Note that Q2 = ∅ is deducible from g = Jτg | Q2 ` V : BK by
Lemma 3.2.4 since B = !B′ is non-linear.
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1. Induction hypotheses: there are typing derivations τavb for the
type judgement Qa ` Ma[V /x] : Aa ⊗ Ab and τ bvb for Qb, (x′ :
Aa), (y : Ab) `Mb[V /x] : A such that

ha = Jτavb | Qa `Ma[V /x] : Aa ⊗AbK
= JQaK id⊗g0−−−→

M
JQaK⊗ !

q
B′y σ−→

M
!
q
B′y⊗ JQaK h1−→

M
F JAa ⊗AbK

hb =
r
τ bvb | Qb, (x′ : Aa), (y : Ab) `Mb[V /x] : Ab

z
= JQbK⊗ JAaK⊗ JAbK id⊗g0−−−→

M
JQbK⊗ JAaK⊗ JAbK⊗ !∆B′

σ−→
M

!
q
B′y⊗ JQbK⊗ JAaK⊗ JAbK h2−→

M
F JAK

2. We know that

(let 〈x′, y〉 =Ma inMb)[V /x] = (let 〈x′, y〉 =Ma[V /x] inMb[V /x])

and we have the following typing derivation:

Qa `Ma[V /x] : Aa ⊗Ab Qb, (x
′ : Aa), (y : Ab) `Mb[V /x] : A

(⊗E)
Qa, Qb ` (let 〈x′, y〉 =Ma inMb)[V /x] : A

whose denotation is given by

hs =
r
(⊗E); (τavb, τ bvb) | Qa, Qb ` (let 〈x′, y〉 =Ma inMb)[V /x] : A

z
= JQaK⊗ JQbK ha⊗id−−−−→

M
F JAa ⊗AbK⊗ JQbK

t−→
M
F (JAa ⊗AbK⊗ JQbK) F (σ)−−−→

M
F (JQbK⊗ JAaK⊗ JAbK)

F (hb)−−−→
M
F 2 JAK µ−→

M
F JAK

Given these facts, we can derive the goal from following diagram.
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where the commutativity in the middle is shown as follows:

– (x : B) ∈ Qa, which means that !∆ = ∅, Qa = Q′
a, (x : B), and

Q′
1 = Q′

a ⊗Qb:
In this case,Mb[V /x] =Mb since

FV(Mb) ⊆ FV(!∆) ∪ FV(Qb) ∪ {x′, y}

by Lemma 3.2.3.

1. Induction hypothesis: there exists a typing derivation τavb for
the type judgement Q′

a, Q2 `Ma[V /x] : Aa ⊗Ab such that

ha =
q
τavb | Q′

a, Q2 `Ma[V /x] : Aa ⊗Ab
y

=
q
Q′
a

y
⊗ JQ2K id⊗g0−−−→

M

q
Q′
a

y
⊗ JBK h1−→

M
F JAa ⊗AbK

2. We have the following typing derivation:

Q′
a, Q2 `Ma[V /x] : Aa ⊗Ab Qb, (x

′ : Aa), (y : Ab) `Mb : A
(⊗E)

Q′
a, Q2, Qb ` (let 〈x′, y〉 =Ma inMb)[V /x] : A

whose denotation is

hs =
q
(⊗E); (τavb, τ2) | Q′

a, Q2, Qb ` (let 〈x′, y〉 =Ma inMb)[V /x] : A
y

=
q
Q′
a

y
⊗ JQ2K⊗ JQbK ha⊗id−−−−→

M
JAa ⊗AbK⊗ JQbK

t−→
M
F (JAa ⊗AbK⊗ JQbK) F (σ)−−−→

M
F (JQbK⊗ JAaK⊗ JAbK)

F (h2)−−−→
M
F 2 JAK µ−→

M
F JAK
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From these facts, the goal can be derived from the following dia-
gram.

where the commutativity in the center is proven in the following.

– (x : B) ∈ Qb, which means that !∆ = ∅, Qb = Q′
b, (x : B), and

Q′
1 = Qa, Q

′
b:

In this case, Ma[V /x] = Ma since FV(Ma) ⊆ FV(!∆) ∪ FV(Qa) by
Lemma 3.2.3.

1. Induction hypothesis: there exists a typing derivation τ bvb for
the type judgement Q′

b, (x
′ : Aa), (y : Ab), Q2 ` Mb[V /x] : A

such that

hb =
r
τ bvb | Q′

b, (x
′ : Aa), (y : Ab), Q2 `Mb[V /x] : A

z
=

q
Q′
b

y
⊗ JAaK⊗ JAbK⊗ JQ2K id⊗g0−−−→

Mq
Q′
b

y
⊗ JAaK⊗ JAbK⊗ JBK h2−→

M
F JAK

2. We have the following typing derivation:

Qa `Ma : Aa ⊗Ab Q′
b, Q2, (x

′ : Aa), (y : Ab) `Mb[V /x] : A
(⊗E)

Qa, Q
′
b, Q2 ` (let 〈x′, y〉 =Ma inMb)[V /x] : A

whose denotation is

hs =
r
(⊗E); (τ1, τ bvb) | Qa, Q′

b, Q2 ` (let 〈x′, y〉 =Ma inMb)[V /x] : A
z

= JQaK⊗ q
Q′
b

y
⊗ JQ2K h1⊗id−−−→

M
F JAa ⊗AbK⊗ q

Q′
b

y
⊗ JQ2K

t−→
M
F (JAa ⊗AbK⊗ q

Q′
b

y
⊗ JQ2K) F (σ)−−−→

M
F (

q
Q′
b

y
⊗ JQ2K⊗ JAaK⊗ JAbK)

F (σhb )−−−−→
M
F (

q
Q′
b

y
⊗ JAaK⊗ JAbK⊗ JQ2K) F (hb)−−−→

M
F 2 JAK µ−→

M
F JAK
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From these facts, the goal can be derived from the following dia-
gram.

where the commutativity in the middle can be shown as follows.

•
!∆ ` tt : bool

(tt):

In this case, the typing derivation τf of the type judgementQ1, (x : B) `
M : A is obtained by applying (tt)-rule. We let !∆ = Q1, (x : B), which
implies that Q1 = ∅ and B = !B′ for some B′.

Then, by definition, J(tt) | (x : !B′) ` tt : boolK = J!∆K del−−→
M

JIK η◦ftt−−−→.
Moreover, by Lemma 5.3.1, we have that g = Jτg | !∆′, Q2 ` V : BK =J!∆′K⊗ JQ2K g0−→

M
! JBK η−→

M
F (! JB′K). Also, by Lemma 3.2.4, we know

that Q2 = ∅ since B = !B′ is non-linear. In addition, since B is non-
linear, by Lemma 5.3.2, we know that g0 = f (n,g

0
0) for some n and mor-

phism g00 , which implies that g0 = p(. . .).

Next, we know that tt[V /x] = tt and, therefore, we can obtain for the
typing derivation τvb = (tt), the interpretation Jτvb |` tt : boolK = J!∆′K⊗
! JBK del−−→

M
JIK η◦ftt−−−→

M
F JboolK. Then, it suffices to show the following
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diagram commutes.

where the commute diagram in the middle follows from Lemma 4.5.4
since J!∆′K = I is a parameter object and the morphisms dup and g0

are morphisms of parameter objects of the form p(. . .).

•
!∆ ` ff : bool

(ff):

Similar to the (tt) case.

•
!∆, Qa `M : bool !∆, Qb `Ma : A !∆, Qb `Mb : A

!∆, Qa, Qb ` ifM thenMa elseMb : A
(if):

Suppose that the typing derivation of Q1, (x : B) ` M : A is obtained
by applying (if)-rule. Then, we know that !∆, Qa, Qb = Q1, (x : B) and
M = ifM thenMa elseMb.

By definition, we have that

f ′ = J(if); (τ0, τ1, τ2) | !∆, Qa, Qb ` ifM thenMa elseMb : AK
= J!∆K⊗ JQaK⊗ JQbK dup⊗id−−−−→

M
J!∆K⊗ J!∆K⊗ JQaK⊗ JQbK

id⊗σ⊗id−−−−−→
M

J!∆K⊗ JQaK J!∆K⊗ JQbK h⊗id−−−→
M
F JboolK⊗ J!∆K⊗ JQbK

t−→
M
F (JboolK⊗ J!∆K⊗ JQbK) F (⋆)−−−→

M
F (J!∆K⊗ JQbK) + F (J!∆K + JQbK)

F (h1,h2)−−−−−→
M
F 2 JAK µ−→

M
F JAK

where h = Jτ0 | !∆, Qa `M : boolK, h1 = Jτ1 | !∆, Qa `Ma : AK, and
h2 = Jτ2 | !∆, Qa `Mb : AK.
For convenience, we define the morphism f = f ′ ◦ σf : JQ′

aK ⊗ JQ′
bK ⊗JBK −→

M
F JAK which changes the order of the variables in the context.

By Lemma 5.3.1, we have that g = Jτg | Q2 ` V : BK = JQ2K g0−→
MJBK η−→

M
F JBK.

The goal is then to show that there exists a typing derivation τ ′vb of the
type judgement Q′

1, Q2 ` (ifM thenMa elseMb)[V /x] : A which sat-
isfies that q

τ ′vb | Q′
1, Q2 ` (ifM thenMa elseMb)[V /x] : A

y
=

q
Q′

1

y
⊗ JQ2K id⊗g0−−−→

M

q
Q′

1

y
⊗ JBK f−→

M
F JAK .

To prove that, we analyze the following three cases:
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– (x : B) ∈ !∆, which means that B = !B′, !∆ = (x : !B′), and
Q′

1 = Qa, Qb:
Note that Q2 = ∅ is deducible from g = Jτg | Q2 ` V : BK by
Lemma 3.2.4 since B = !B′ is non-linear.

1. Induction hypotheses: there are typing derivations τ0vb for the
type judgement Qa ` M [V /x] : bool, τavb for Qb ` Ma[V /x] :

A, and τ bvb for Qb `Mb[V /x] : A such that

hm =
q
τ0vb | Qa `M [V /x] : bool

y
= JQaK id⊗g0−−−→

M
JQaK⊗ !

q
B′y σ−→

M
!
q
B′y⊗ JQaK h−→

M
F JboolK

ha = Jτavb | Qb `Ma[V /x] : AK
= JQbK id⊗g0−−−→

M
JQbK⊗ !

q
B′y σ−→

M
!
q
B′y⊗ JQbK h1−→

M
F JAK

hb =
r
τ bvb | Qb `Mb[V /x] : A

z
= JQbK id⊗g0−−−→

M
JQbK⊗ !

q
B′y σ−→

M
!
q
B′y⊗ JQbK h2−→

M
F JAK

2. We know that

(ifM thenMa elseMb)[V /x] = (ifM [V /x] thenMa[V /x]elseMb[V /x])

and we have the following typing derivation:

Qa `M [V /x] : bool Qb `Ma[V /x] : A Qb `Mb[V /x] : A
(if)

Qa, Qb ` (ifM thenMa elseMb)[V /x] : A

whose denotation is given by

hs =
r
(if); (τ0vb, τ

a
vb, τ

b
vb) | Qa, Qb ` (ifM thenMa elseMb)[V /x] : A

z
= JQaK⊗ JQbK hm⊗id−−−−→

M
F JboolK⊗ JQbK

t−→
M
F (JboolK⊗ JQbK) F (⋆)−−−→

M
F (JQbK + JQbK)

F (ha,hb)−−−−−→
M
F 2 JAK µ−→

M
F JAK

Given these facts, we can derive the goal from following diagram.
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where the commutativity in the middle is shown as follows:

Note that we obtain that (ha, hb) = (h1, h1) ◦ (h0 + h0), where
h0 = g0 ⊗ id, from Lemma 4.2.2.

– (x : B) ∈ Qa, which means that !∆ = ∅, Qa = Q′
a, (x : B), and

Q′
1 = Q′

a ⊗Qb:
In this case, we haveMa[V /x] =Ma andMb[V /x] =Mb since x 6∈
FV(!∆, Qb) and FV(Ma), FV(Mb) ⊆ (FV(!∆)∪FV(Qb))by Lemma3.2.3.

1. Induction hypothesis: there exists a typing derivation τmvb for
the type judgement Q′

a, Q2 `M [V /x] : bool such that

hm =
q
τmvb | Q′

a, Q2 `M [V /x] : bool
y

=
q
Q′
a

y
⊗ JQ2K id⊗g0−−−→

M

q
Q′
a

y
⊗ JBK h−→

M
F JboolK

2. We have the following typing derivation:

Q′
a, Q2 `M [V /x] : bool Qb `Ma : A Qb `Mb : A

(if)
Q′
a, Q2, Qb ` (ifM thenMa elseMb)[V /x] : A

whose denotation is

hs =
q
(if); (τmvb , τ1, τ2) | Q′

a, Q2, Qb ` (ifM thenMa elseMb)[V /x] : A
y

=
q
Q′
a

y
⊗ JQ2K⊗ JQbK hm⊗id−−−−→

M
JboolK⊗ JQbK

t−→
M
F (JboolK⊗ JQbK) F (⋆)−−−→

M
F (JQbK + JQbK)

F (h1,h2)−−−−−→
M
F 2 JAK µ−→

M
F JAK
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From these facts, the goal can be derived from the following dia-
gram.

where the commutativity in the center is proven in the following.

– (x : B) ∈ Qb, which means that !∆ = ∅, Qb = Q′
b, (x : B), and

Q′
1 = Qa, Q

′
b:

In this case, M [V /x] = M since FV(M) ⊆ FV(!∆) ∪ FV(Qa) by
Lemma 3.2.3.

1. Induction hypothesis: there exists a typing derivation τavb for
the type judgementQ′

b, Q2 `Ma[V /x] : A and τ bvb forQ
′
b, Q2 `

Mb[V /x] : A such that

ha =
q
τavb | Q′

b, Q2 `Ma[V /x] : A
y

=
q
Q′
b

y
⊗ JQ2K id⊗g0−−−→

M

q
Q′
b

y JBK h1−→
M
F JAK

hb =
r
τ bvb | Q′

b, Q2 `Mb[V /x] : A
z

=
q
Q′
b

y
⊗ JQ2K id⊗g0−−−→

M

q
Q′
b

y
⊗ JBK h2−→

M
F JAK

2. We have the following typing derivation:

Qa `M : bool
Q′
b, Q2 `Ma[V /x] : A Q′

b, Q2 `Mb[V /x] : A

Qa, Q
′
b, Q2 ` (ifM thenMa elseMb)[V /x] : A

(if)
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whose denotation is

hs =
r
(if); (τ0, τavb, τ

b
vb) | Qa, Q′

b, Q2 ` (ifM thenMa elseMb)[V /x] : A
z

= JQaK⊗ q
Q′
b

y
⊗ JQ2K h⊗id−−−→

M
F JboolK⊗ q

Q′
b

y
⊗ JQ2K

t−→
M
F (JboolK⊗ q

Q′
b

y
⊗ JQ2K) F (⋆)−−−→

M
F (

q
Q′
b

y
⊗ JQ2K + q

Q′
b

y
⊗ JQ2K)

F (ha,hb)−−−−−→
M
F 2 JAK µ−→

M
F JAK

From these facts, the goal can be derived from the following dia-
gram.

where the commutativity in the middle follows from the fact that
(ha, hb) = (h1, h2) ◦ (id⊗ g0 + id⊗ g0) derived from Lemma 4.2.2
as follows.

•
!∆ ` boxP : !(P ⊸ A) ⊸ !QChan(P,A)

(box):

In this case, we assume that the typing derivation τf is (box). It follows
that Q1 = ∅ and B = !B′, for some B′, from !∆ = Q1, (x : B).

By definition, we have that

f = J(box) | !∆ ` boxP : !(P ⊸ A) ⊸ !QChan(P,A)K
= J!∆K del−−→

M
I

η!JP⊸AK(I)−−−−−−−→
M

! JP ⊸ AK ⊸ (I ⊗ ! JP ⊸ AK)
(!JP⊸AK⊸−)(η◦box)−−−−−−−−−−−−−→

M
! JP ⊸ AK ⊸ F (! JQChan(P,A)K)

η−→
M
F J!(P ⊸ A) ⊸ !QChan(P,A)K .
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By Lemma 5.3.1, we have that g = Jτg | Q2 ` V : BK = JQ2K g0−→
MJBK η−→

M
F JBK. Note that Q2 = ∅ by Lemma 3.2.4 since B = !B′ is

non-linear. Also, since B is non-linear, by Lemma 5.3.2, we know that
g0 = f (n,g

0
0) for somen andmorphism g00 , which implies that g0 = p(. . .).

Next, since boxP [V /x] = boxP , we have the following derivation:

` boxP [V /x] : !(P ⊸ A) ⊸ !QChan(P,A)
(box)

whose denotation is

hs = J(box) |` boxP [V /x] : !(P ⊸ A) ⊸ !QChan(P,A)K
= I

del−−→
M
I

η!JP⊸AK(I)−−−−−−−→
M

! JP ⊸ AK ⊸ (I ⊗ ! JP ⊸ AK)
(!JP⊸AK⊸−)(η◦box)−−−−−−−−−−−−−→

M
! JP ⊸ AK ⊸ F (! JQChan(P,A)K)

η−→
M
F J!(P ⊸ A) ⊸ !QChan(P,A)K

Then, we can show the goal as follows.

where the dots represent the morphism

I
η!JP⊸AK(I)−−−−−−−→

M
! JP ⊸ AK ⊸ (I ⊗ ! JP ⊸ AK)

(!JP⊸AK⊸−)(η◦box)−−−−−−−−−−−−−→
M

! JP ⊸ AK ⊸ F (! JQChan(P,A)K)
η−→
M
F J!(P ⊸ A) ⊸ !QChan(P,A)K

•
!∆ ` unbox : QChan(P,A) ⊸ (P ⊸ A)

(unbox):

In this case, we assume that the typing derivation τf is (unbox). Note
that Q2 = ∅ by Lemma 3.2.4 since B = !B′ is non-linear. It follows that
Q1 = ∅ and B = !B′, for some B′, from !∆ = Q1, (x : B).

By definition, we have that

f = J(unbox) | !∆ ` unbox : QChan(P,A) ⊸ (P ⊸ A)K
= J!∆K del−−→

M
I

ηJQChan(P,A)K(I)−−−−−−−−−→
M

JQChan(P,A)K ⊸ (I ⊗ JQChan(P,A)K)
(JQChan(P,A)K⊸−)(η◦unbox)−−−−−−−−−−−−−−−−−−→

M
JQChan(P,A)K ⊸ F JP ⊸ AK

η−→
M
F JQChan(P,A) ⊸ (P ⊸ A)K .
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By Lemma 5.3.1, we have that g = Jτg | Q2 ` V : BK = JQ2K g0−→
MJBK η−→

M
F JBK. Also, since B is non-linear, by Lemma 5.3.2, we know

that g0 = f (n,g
0
0) for some n and morphism g00 , which implies that g0 =

p(. . .).

Next, since unbox[V /x] = unbox, we have the following derivation:

` unbox[V /x] : QChan(P,A) ⊸ (P ⊸ A)
(unbox)

whose denotation is

hs = J(unbox) |` unbox[V /x] : QChan(P,A) ⊸ (P ⊸ A)K
= I

del−−→
M
I

ηJQChan(P,A)K(I)−−−−−−−−−→
M

JQChan(P,A)K ⊸ (I ⊗ JQChan(P,A)K)
(JQChan(P,A)K⊸−)(η◦unbox)−−−−−−−−−−−−−−−−−−→

M
JQChan(P,A)K ⊸ F JP ⊸ AK

η−→
M
F JQChan(P,A) ⊸ (P ⊸ A)K

Then, we can show the goal as follows.

where the dots represent the morphism

I
ηJQChan(P,A)K(I)−−−−−−−−−→

M
JQChan(P,A)K ⊸ (I ⊗ JQChan(P,A)K)

(JQChan(P,A)K⊸−)(η◦unbox)−−−−−−−−−−−−−−−−−−→
M

JQChan(P,A)K ⊸ F JP ⊸ AK
η−→
M
F JQChan(P,A) ⊸ (P ⊸ A)K

•
γa ` ma : A γb ` mb : A

γa × γb ` [ma,mb] : A
(b):

This case does not match the type judgement !∆, Q2, (x : B) `M : A.

•
p ⊨ P vBind(!∆,out(Q),m,A)

!∆ ` (p,Q,m) : !QChan(P,A)
(QChanI):

Suppose that the typing derivation ofQ1, (x : B) `M : A is obtained by
applying (QChanI)-rule. Then, we know that !∆ = Q1, (x : B) implies
that Q1 = ∅ and B = !B′ for some B′.
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By definition, we have that

f =
q
(QChanI); (τi)i:leaf | (x : !B′) ` (p,Q,m) : !QChan(P,A)

y

=

q
!B′y δ−→

M
!!

q
B′y !(ηJP KJ!B′K)
−−−−−−−→

M
!(JP K ⊸

M
(
q
!B′y⊗ JP K))

!(JP K⊸−)(id⊗q)−−−−−−−−−−→
M

!(JP K ⊸
M

(
q
!B′y⊗ F Jout(Q)K))

!(JP K⊸−)(t′)−−−−−−−−→
M

!(JP K ⊸
M
F (

q
!B′y⊗ Jout(Q)K))

!(JP K⊸−)(µ◦F (h))−−−−−−−−−−−−→
M

!(JP K ⊸
M
F JAK) η◦box−−−→

M
F (! JQChan(P,A)K)

where
h =

q
(τi)i:leaf | vBind(!B′,out(Q),m,A)

y
and

q = JpK −→
M

Jin(Q)K JQK−−→
M
F Jout(Q)K .

By Lemma 5.3.1, we have that g = Jτg | Q2 ` V : BK = JQ2K g0−→
MJBK η−→

M
F JBK. Note that Q2 = ∅ by Lemma 3.2.4 since B = !B′ is

non-linear. Also, since B is non-linear, by Lemma 5.3.2, we know that
g0 = f (n,g

0
0) for somen andmorphism g00 , which implies that g0 = p(. . .).

Moreover, we also know the followings:

1. induction hypothesis:
Since (p,Q,m)[V /x] = (p,Q,m[V /x]), vBind((x : !B′),out(Q),m,A),
and ` V : !B′, by the induction hypothesis, we know that there
exists a typing derivation τvb of vBind(∅,out(Q),m[V /x], A) such
that

h′ = Jτvb | vBind(∅,out(Q),m[V /x], A)K
= Jout(Q)K⊗ I id⊗g0−−−→

M
Jout(Q)K⊗ q

!B′y σ−→
Mq

!B′y⊗ Jout(Q)K h−→
M
F JAK

2. typing derivation:

p ⊨ P vBind(∅,out(Q),m[V /x], A)

!∆ ` (p,Q,m)[V /x] : !QChan(P,A)
(QChanI)

whose denotation is
hs = J(QChanI); (τvb) |` (p,Q,m)[V /x] : !QChan(P,A)K

=

I
πI−→

M
!I

!(ηJP K(I))−−−−−−→
M

!(JP K ⊸
M

(I ⊗ JP K))
!(JP K⊸−)(id⊗q)−−−−−−−−−−→

M
!(JP K ⊸

M
(I ⊗ F Jout(Q)K))

!(JP K⊸−)(t′)−−−−−−−−→
M

!(JP K ⊸
M
F (I ⊗ Jout(Q)K))

!(JP K⊸−)(µ◦F (h′))−−−−−−−−−−−−→
M

!(JP K ⊸
M
F JAK) η◦box−−−→

M
F (! JQChan(P,A)K)
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The goal is then to show that the denotation hs of the type derivation

(QChanI); (τvb) is equivalent to I
g0−→

M
! JB′K f−→

M
. It can be shown as

follows.

where the commutativity in the middle can be shown as follows.

Note that the following commutativity follows from Lemma 5.3.3.

vBind part Proof by induction on the type derivation τg of the judgement
vBind((x : !A′), c,m[V /x], A)

•
Q ∩ FV(!∆) = ∅ !∆, TCQ(Q) `M : A

vBind(!∆, Q,M,A)
(vBindnb):
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In this case, we know that !∆ = (x : !A′), c = Q,m =M , and that

h =
q
τg | vBind((x : !A′), c,m[V /x], A)

y
=

q
τg | (x : !A′), TCQ(Q) `M : A

y
.

By Lemma 5.3.1, we have that g = Jτv |` V : !A′K = I
g0−→

M
J!A′K η−→

M
F J!A′K.
Then, we have the following:

1. Induction hypothesis:
By the typing derivation part of the substitution lemma, we know
that there exists a typing derivation τvb of the type judgement
TCQ(Q) `M [V /x] : A such that

ha = Jτvb | TCQ(Q) `M [V /x] : AK
= JTCQ(Q)K id⊗g0−−−→

M
JTCQ(Q)K⊗ !

q
A′y h−→

M
F JAK .

2. Derivation rule:

Q ∩ FV(∅) = ∅ TCQ(Q) `M [V /x] : A

vBind(∅, Q,M [V /x], A)
(vBindnb)

whose denotation is

hs = Jτvb | vBind(∅, Q,M [V /x], A)K = JqubitK⊗|Q| ha−→
M
F JAK

Finally, we show the following goal

which follows from the following.
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•
vBind(!∆, ca,ma, A) vBind(!∆, cb,mb, A)

vBind(!∆, [ca, cb], [ma,mb], A)
(vBindb):

In this case, we have that !∆ = (x : !A′), c = [ca, cb], andm = [ma,mb].
By definition, Jτi ++τj | vBind((x : !A′), [ca, cb], [ma,mb], A)K = J!A′K⊗
(JcaK+ JcbK) ⋆′−→

M
J!A′K⊗ JcaK+ J!A′K⊗ JcbK (h1,h2)−−−−→

M
F JAK, where h1 =Jτi | vBind((x : !A′), ca,ma, A)K andh2 = Jτj | vBind((x : !A′), cb,mb, A)K.

By Lemma 5.3.1, we have that g = Jτv |` V : !A′K = I
g0−→

M
J!A′K η−→

M
F J!A′K.
Then, we have the following:

1. Induction hypothesis:

There exists a typing derivation τ ivb of the judgement
vBind(∅, ca,ma[V /x], A) and τ jvb of the judgement
vBind(∅, cb,mb[V /x], A) which satisfies the following equalities:

ha =
q
τ ivb | vBind(∅, ca,ma[V /x], A)

y
= JcaK id⊗g0−−−→

M
JcaK⊗ q

!A′y σ−→
M

q
!A′y⊗ JcaK h1−→

M
F JAK

hb =
r
τ jvb | vBind(∅, cb,mb[V /x], A)

z
= JcbK id⊗g0−−−→

M
JcbK⊗ q

!A′y σ−→
M

q
!A′y⊗ JcbK h2−→

M
F JAK

2. Derivation rule: since [ma,mb][V /x] = [ma[V /x],mb[V /x]], from
the following derivation rule

vBind(∅, ca,ma[V /x], A) vBind(∅, cb,mb[V /x], A)

vBind(∅, [ca, cb], [ma,mb][V /x], A)
(vBindb)

we can obtain its denotation.r
τ ivb ++τ jvb | vBind(∅, [ca, cb], [ma,mb][V /x], A)

z
= JcaK + JcbK ⋆′−→

M
JcaK + JcbK (ha,hb)−−−−→ F JAK

Finally, we show the following goal
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which follows from the followings:

and

where (ha, hb) = (h1, h2) ◦ (σ + σ) ◦ (id⊗ g0 + id⊗ g0) is derived from
Lemma 4.2.2.

Finally, we show the preservation of categorical semantics over the reduc-
tion of typing derivations by the circuit-buffering operational semantics. In
general, preservation of categorical semantics states that the categorical inter-
pretation of the typing derivation is preserved over the reduction. However, in
our type system, a term can have more than one type judgement and there can
be multiple type derivations for each type judgement. Therefore, our preser-
vation theorem states that for a type judgement and a typing derivation, there
exists certain typing judgement of the reduced type judgement which has the
same interpretation of the original typing derivation.

Theorem5.3.5 (Preservation). For any two configurations (Q1,m1) and (Q2,m2)

such that (Q1,m1) −→ (Q2,m2), if ` (Q1,m1) : A, then for any typing derivation
π1 of ` (Q1,m1) : A, there exists a typing derivation π2 of ` (Q2,m2) : A such
that Jπ1K = Jπ2K.
Proof. Proof can be found in Appendix A.
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In fact, the preservation theorem allows us to prove the soundness theorem
of the categorical semantics when we only consider the typing derivations of
basic types. The soundness theorem states that: for all typing derivations of
two terms of the same basic type, if they reduces to the same value, then the
denotations of the typing derivations are equal. The proof follows from the
definition of basic type, the termination property of the operational semantics,
and the preservation theorem.

Corollary 5.3.5.1 (Soundness). For any typing derivation τ1 and τ2 of the re-
spective type judgements ` (Q1,M1) : A and ` (Q2,M2) : A for a basic type A,
if there is some (Q,V ) such that (Q1,M1) →∗ (Q,V ) and (Q2,M2) →∗ (Q,V ),
then Jτ1 |` (Q1,M1) : AK = Jτ2 |` (Q2,M2) : AK .
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6 - Conclusion and Discussion
In this thesis, we formalize the semantics of a programming language

for quantum channel construction based on the QRAM model of quantum
computation. We defined the algebraic structure of quantum computation
(Definition 3.1.4) and compared it with the algebraic structure of quantum
computation by Sam Staton in [70]. Then, we formally defined the language
Proto-Quipper-L. The language is an extension of lambda-calculus: we include
quantum channel constants and box and unbox operators, like in other cir-
cuit description languages. Then the language is again extended by branching
terms to reflect the quantum channel’s algebraic structure and formalize the
operational semantics of quantum channel operators, i.e., box and unbox. In
the language, quantum operators like qubit initialization, unitary maps, and
measurements are defined as constant terms by the quantum channel opera-
tors applied to predefined quantum channel constants. Lastly, the branching
term appears when the branching structure of the quantum channel, which is
introduced by measurement, is lifted to the classical computation by unboxing.

Next, to avoid programs that violate the no-cloning theorem of quantum
states, we defined a linear and non-linear type system capable of representing
both linear and non-linear variables in the term. To accord with the structure
of the branching term, typing context and type judgment are extended with
the branching structure. However, the type system assures that each term in
the leaf of the branching structure has the same type. Typing derivation is
defined by following the intuitionistic multiplicative part of linear logic.

Furthermore, we defined two operational semantics: circuit-buffering and
QRAM-based operational semantics. On the one hand, circuit-buffering se-
mantics formalizes the interaction between the classical host and the quantum
co-processor. The classical host buffers quantum operators to the quantum
channel object and sends it to the quantum co-processor. The quantum co-
processor creates a branching structure in the computation. In particular, the
branching side-effect of measurement is formalized in two folds: first, by adding
a measurement operator to the quantum object in the buffer, and second, by
creating a branching structure in the term. On the other hand, QRAM-based
operational semantics simulates the quantum operators on the quantum state
and reduces the branching structure into a mixed state of the quantum state.
Both of the operational semantics are shown to be type-safe–which means
that the reduction of a well-typed term preserves the type (subject reduction
lemma), and each well-typed term reduces to a value in finite steps (progress
lemma and termination lemma).

Next, in Chapter 4, we presented the categorical semantics of Proto-
Quipper-L. The categorical model is built based on Benton’s linear and non-
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linear category, Rios and Selinger’s coproduct completion, and Moggi’s compu-
tational model with the non-deterministic monad. The categorical semantics
allows us to interpret each typing derivation of the Proto-Quipper-L program
in terms of a morphism of the categorical model. Furthermore, we showed
a concrete model of the language (i.e., the category of the diagrams), which
means that the axioms induced by the aforementioned categorical model are
satisfied by the concrete model. Consequently, we obtain an interpretation
of the well-typed term of the language into a family of circuits indexed by
set. We then showed that our categorical model reflects the meaning of the
program given by the circuit-buffering operational semantics by showing that
the interpretation of a well-typed term is preserved over the reduction and by
proving the soundness theorem over the basic type as a corollary.

The argument that we used to prove the soundness theorem (restricted to
basic types) relies on the notion of basic type and the preservation theorem.
The soundness theorem states that if two configurations (of two terms in the
same context) reduce to the same configuration of value, then the denotations
of the configurations are equivalent. For simplicity, we weakened the theorem
in this thesis by restricting the two configurations by the two terms in the
empty context. Given that all reduction terminates, the preservation theorem
implies that each denotation of each configuration of a value of basic type
(note that there can be multiple denotations) represents a subset of configu-
rations that reduce to the configuration of the same value–i.e., the subset of
configuration whose denotation is equal the given denotation of the configu-
ration of the value. Given these, proving the soundness theorem is equivalent
to showing that all denotations of each configuration of value of basic type
are the same. This was when we introduced the notion of basic type, which is
precisely the type that satisfies the necessary condition to prove the soundness
theorem.

Moreover, the uniqueness of each denotation of any configuration of basic
type implies adequacy. Similar to the soundness, the adequacy (which is the
converse of the soundness) corresponds to the proof that each denotation of
the configuration of value is unique, meaning that the equivalence of the deno-
tations of configurations implies the observational equivalence. Therefore, the
uniqueness of the denotation of each configuration of the value of basic type
implies adequacy. Hence, we can obtain the full-abstraction theorem for the
configurations of the terms of basic type from the soundness and the adequacy
theorems.

In addition, given that the interpretation in the semantics depends on the
type derivation of well-typed terms, the possibility of different typing deriva-
tions of the same term arises the possibility of different denotations for the
same configuration. Therefore, it would simplify the proofs when we distin-
guish the terms with different typing derivations by introducing new term
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constructors for promotion and dereliction and marking type for each variable
in the term. In this case, the term precisely represents the typing derivation,
and the interpretation of a well-typed configuration is a function–meaning that
there is one denotation for each configuration. In this case, it should be no-
ticed that we may need to expand the observational equivalence to include the
pair of terms that only differ by the consequent applications of a promotion
and a dereliction.

Otherwise, for convenience, we may keep all well-typed values with new
constructors as value and do not add any additional reduction rules to elim-
inate unnecessary promotions and derelictions. Then, the arguments on the
properties of categorical semantics introduced above can be rewritten:

• The preservation theorem states that all configuration that reduces to
the same configuration of value has the same denotation, which we call
the set of configuration named by the configuration of value;

• The equivalence class of configuration over the observational equivalence
is represented by the configurations of value;

• To show the soundness theorem, it suffices to show that the configura-
tions of value with the same meaning (or the original value without new
constructors) have the same denotation; and

• To show the adequacy theorem, we only need to prove that the denota-
tions of the configurations of different values are not equivalent.

In the future, we would like to extend the expressivity of the language
and the type system by introducing inductive types and dependent types in
the type system. Categorical semantics of these features have already been
studied in various works [38, 39, 24, 23]. These works provide abstract categor-
ical structures required to introduce such features of programming language
in the categorical semantics. Therefore, one approach to extending our pro-
gramming language is to equip the categorical model with such a structure.
The consistency of the model could be verified by finding a concrete category
that satisfies the required conditions. One candidate would be the coproduct
completion of the category of diagrams that we defined in this thesis.

Another candidate would be the category of presheaf over the category
M , the categorical model of our language. The presheaf category, in this case,
would be the category of functors from M to the category Set. Remembering
that a quantum state can be represented as a function from the self-adjoint
operators to the real interval [0, 1] and the fact the morphism in the categor-
ical model M of the language corresponds to the family of diagrams each of
which represents a quantum operator. Therefore, we can say that the presheaf
category SetM contains the quantum states.
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Furthermore, Moggi explains in his paper [42] that we can lift the com-
putational model (monad) over a category C into a computational model over
the presheaf over C. Since the presheaf category is topos, it has an inter-
nal language (or dependent type system). Applying it to the category M ,
the presheaf category will generate a high-order intuitionistic logic on (quan-
tum) states. In this context, the programming language of quantum channel
construction equipped with equation theory (given by the equality of denota-
tion) might be transformed into the programming language of quantum states
equipped with high-order logic (whose type system can represent any formula
in the logic).

This approach looks nice since it could solve the problem of inductive type
and recursion. The type system can define an inductive type like a natural
number and the primitive recursion as the induction principle from the level
of logic. Moreover, we could define some properties of quantum states by
introducing an additional set of typing derivation rules corresponding to a
first-order theory that defines the property. However, it is not clear if this
approach since it is not yet clear what exactly is the lifted monad over the
presheaf. Nevertheless, it would be nice to check this approach properly since
it might give a computational meaning to the topos of quantum states.
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A - Proof of the Preservation Theorem
This contains the proof of Theorem 5.3.5.

The proof is done by induction on the derivation of the reduction. To ease
legibility, each case of the induction is presented in its own section.
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A.6 . Congruence: quantum channel
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A.7 . Congruence: on the right of application

331



332



333



334



335



336



337



338



339



340



341



342



343



344



345



346



347



348



349



350



351



352



353



354



355



A.8 . Congruence: on the left of application
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A.9 . Congruence: on the left of a pair
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A.10 . Congruence: on the right of a pair
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A.11 . Congruence: if-then-else
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A.12 . Congruence: let-construct
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A.13 . Congruence: branching, case 1
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A.14 . Congruence: branching, case 2
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A.15 . Congruence: branching, case 3
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A.16 . Congruence: circuit reduction
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B - Synthèse de la thèse

B.1 . Contexte

Avec ses succès récents en développement des ordinateurs quantiques, la
recherche en informatique quantique a gagné l’intérêt de celles et ceux qui veu-
lent utiliser la puissance de ce nouveau modèle de calcul basé sur la mécanique
quantique. Pourtant, il est difficile de concevoir des algorithmes quantiques
et de vérifier qu’ils fonctionnent de la manière souhaitée à cause de la diffi-
culté du raisonnement sur ces algorithmes qui souvent nécessitent l’analyse de
propriétés sur l’état quantique. L’état quantique est formalisé par un vecteur
dans un espace de Hilbert de taille exponentielle par rapport au nombre de
qubits. La recherche en langage de programmation pour l’ordinateur quan-
tique cherche à résoudre le problème de la description sur les algorithmes
quantiques et leurs propriétés pour nous aider à raisonner sur les algorithmes
quantiques de manière logique, basé sur le modèle formel du calcul quantique.

Le modèle Qram est un modèle de calcul quantique pratique composé d’un
ordinateur classique et un processus quantique qui communiquent entre eux.
Le programme est exécuté sur l’ordinateur classique. Il envoie les instructions
correspondant aux opérateurs quantiques sur le co-processeur, et reçoit le ré-
sultat de l’observation de l’état quantique. Ce modèle est considéré comme
un modèle standard et plusieurs langages de programmation ont été conçus
en basant sur ce modèle.

B.2 . Le Problème

Alors que les programmes dans ce modèle sont capables de réaliser tout
calcul quantique grâce à l’usage de la mémoire quantique, il est difficile de
les analyser sans l’aide d’un autre ordinateur quantique. Ce problème sus-
cite le besoin pour des méthodes formelles pour les langages programmations
quantiques : les outils formels pour raisonner sur l’optimisation du code, pour
l’analyser des ressources, et pour spécifier et prouver les propriétés des pro-
grammes quantiques.

La sémantique catégorique fait partie de ces méthodes qui fait le lien entre
les opérateurs quantiques et les programmes et introduit le système logique
qui peut décrire les propriétés sur l’état quantique dans le système de types.
Bien que plusieurs travaux proposent des sémantiques catégoriques pour les
langages de description de circuits quantiques, aucun ne supporte l’usage du
résultat d’une mesure au sein du processeur classique (le ”levage dynamique”).

B.3 . Solution Proposée
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Dans cette thèse, nous formalisons le levage dynamique qui transfère le
résultat d’observations sur l’état quantique à l’information classique dans un
langage de programmation de description de circuit quantique. En suivant
l’approche du langage Proto-Quipper, nous définissons un langage typé de
description de circuit quantique où l’information quantique levée est incorporée
dans la structure ramifiée. Ensuite, le levage dynamique est formalisé dans le
cadre de la sémantique opérationnelle et la sémantique catégorique.

Notre sémantique catégorique est basée sur le modèle de Francisco Rios
et Peter Selinger pour le langage programmation Proto-Quipper-M. Pourtant,
pour formaliser le levage dynamique, nous construisons une catégorie de Kleisli
en capturant la mesure quantique comme un effet de bord sur une catégorie
concrète pour le circuit avec la mesure quantique. Nous prouvons le théorème
de correction de la sémantique catégorique par rapport à la sémantique opéra-
tionnelle.

B.4 . Discussion et Ouverture

Le langage que nous avons proposé nous aide à décrire les programmes
basés sur le modèle Qram. Les circuits quantiques sont construits par le calcul
classique et transféré au coprocesseur en utilisant des opérateurs comme box
et unbox. Ensuite, la mesure crée un ensemble du calculs qui dependant du
résultat de la mesure. Le système de types s’assure que tous les programmes
typés peuvent être réalisés physiquement puisqu’ils ne violent pas le no-cloning
théorème.

Dans notre système de types, la validité du programme est définie par le
jugement de type. Les types peuvent être considérés comme les ensembles
de programmes valides qui satisfont certaines propriétés qui correspondent
au type. Pourtant, on pourrait essayer de définir et vérifier les propriétés
fonctionnelles de programmes en utilisant le système de types.

Dans ce but, il est nécessaire d’enrichir l’exprimabilité du système du type.
Pour le faire, il y a trois traits de types qui seraient utiles. Premièrement, les
types qui désignent les sous-ensembles ou les sous-espaces de l’espace quan-
tique nous aideront à dénoter la fonction précise du programme. Deuxième-
ment, on pourrait définir les programmes paramétrés avec les types dépen-
dants. Troisièmement, la relation d’égalité de programmes est nécessaire pour
définir la théorie des états quantiques. Il reste pour la recherche en avenir à
formaliser le système de types consistent qui satisfit les requirements.
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