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1- Chapter 1: General Introduction

1.1 Climate change and its implications on trans-
port and energy sectors

Since the first publication of the Intergovernmental Panel on Climate Change
(IPCC) report in 1992 (IPCC, 1992), this organization has become one, if not the
most, important scientific research group. Its latest report published to date
(IPCC, 2022) informs us through its 3 working groups of the causes of global
warming, its risks as well as possible solutions to mitigate it. The key message
is that global warming is caused by anthropogenic greenhouse gases emissions
and appears to be a threat to our civilization in the next years and decades.

A major challenge in the coming years is therefore to limit those anthropogenic
emissions of greenhouse gases, mainly carbon dioxide (CO,), as well as methane,
nitrogen oxydes and others, which have skyrocketed since the second half of the
19th century, as illustrated in Figure 1.1.
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Figure 1.1: Evolution of carbon emissions and global temperature average from
1880 to 2020 (temperature data from NOAA (2022), and carbon emission data from
Ritchie et al. (2020))

Thus, many research efforts attempt to propose or evaluate more domain-
or object-specific solutions to reduce carbon emissions, and this work is located
within this context, at the intersection of the transportation and electricity gener-
ation sectors.



We illustrate in Figure 1.2 the distribution of carbon emissions by sector, for
France and the European Union (EU). It appears that in France, transport and
electricity generation account for respectively 30% and 5% of the total national
emissions. In the EU, these numbers reach 32% for electricity generation (whose
decarbonization is less advanced than in France, see section 1.3.1) and 29% for the
transport sector.

There are different ways to account for carbon emissions: direct emissions on
the territory, emissions from life cycle analysis (LCA), carbon balance by evaluating
imports and exports (Matthews et al., 2008). In this manuscript, the "emissions"
expressed will be, unless otherwise stated, direct emissions on the territory, also
known as "Scope 1 emissions”, which are yet the most commonly used carbon
accounting methodology in public and accessible data and less sensitive to struc-
tural assumptions. However, LCA seems much more accurate in taking into ac-
count the total carbon impact of consumption.

Evolution of greenhouse gas emission per sector in France EU total in 2018

.
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Figure 1.2: Evolution of carbon emissions per sector in France since 1990, com-
pared to the EU total emission per sector (data from SDES (2021))

The following of this introductory Chapter is divided as follows: first, the
prospects for decarbonization of transport are described, with a focus on vehicle
electrification, then the evolution of electricity generation mixes is explained, be-
fore detailing the interaction between those two sectors, and finally the research
questions and the structure of this thesis are presented.



1.2 Evolutionsin the field of transport to reduce fos-
sil fuel propulsion

1.2.1 A brief historical context of transport in France

The transport sector has developed strongly during the 2oth century, with the ad-
vent of oil extraction. Indeed, until the 18th century, the majority of trips were
made by foot or horse (and bikes from mid 19th century), with a large proportion
of individuals never travelling more than a few kilometers away from their homes.
Merger (1987) reviews the main historical literature about transport development
in France. First, the road and rail networks began to be built in the second half
of the 18th century, until a larger development spread over the whole territory
in the first part of the 2oth century, before finally a more massive plan of road
renovation and construction in the 1970s. The advent of petroleum allowed the
development of much faster, more efficient, and less expensive modes of trans-
port. At first, individual vehicles were reserved for the wealthy, but their use grew
steadily during the 2oth century. Although electric propulsion for road vehicles
has existed since the middle of the 19th century (Burton, 2013), it proved to be
uncompetitive throughout the 2oth century, compared to thermal vehicles.

The transport sector is often divided into two large blocks: passenger trans-
port and freight transport. First, regarding passenger transport, in 1990, 77% of
French households owned a car, of which 26% owned two or more (INSEE, 2020).
These figures have increased in the last 30 years to reach respectively 84% and
36% of households in 2020. Moreover, INSEE (2020) estimates that only 2.7% of
French people do not own a car due to lack of financial means (against 6.8% in
the EU). The survey INSEE (2017) also allows the comparison of household expen-
ditures by sector and over time. This survey informs us that the average share
of expenditure devoted to transport in France has remained stable between 2004
and 2019, at around 15% of total expenditures. That is, even though the price of
oil has been on a (chaotic) upward trend since 1990, the thermal car has remained
affordable for most French households, as expenditures have yet increased cor-
respondingly.

This increase in the ownership and use of individual vehicles appears to be
similar for most developing countries, while very few countries have begun a tran-
sition towards a reduction in distances traveled (IEA, 2019).

Second, the transport of goods has also continuously grown, in parallel with
globalization. In France, goods transport totals 362 Gt.km/year within the terri-
tory, 89% by road trucks, and only 9% of rail freight and 2% of waterway transport
(SDES, 2021).

When focusing on the transport sector evolution in the last 30 years, the total
final consumption in France was on a rising trend up to 2000 and then remained
stable up to 2019 (SDES, 2019a). The associated carbon emissions of the transport
sector are illustrated in Figure 1.3, which shows that emissions followed the same



trend as consumption, while slightly decreasing in the last 15 years'. Significantly
less carbon was emitted in 2020 and 2021, but the transport sector in those years
was affected by the Covid-19 pandemic (Le Quéré et al., 2020), which makes those
2 years not representative of a strong shift towards decarbonization of the trans-
port sector. Figure 1.3 also illustrates the targeted path of France’s SNBC (2019),
which defines its baseline trajectory in order to reach net-zero carbon emissions
in 2050. As studied by many in the literature, this trajectory requires breaking the
trend observed in the last 30 years, both at the French and European level, either
by technological shift (Rottoli et al., 2021), lifestyle changes (Costa et al., 2021) or a
combination of policies (Haasz et al., 2018).
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Figure 1.3: Evolution of the transport sector carbon emissions in France since 1990,
and target path towards net-zero emission in 2050 (data from Citepa (2022))

To summarize this subsection, mobility in France in the last century has be-
come widespread in the population, carbon intensive and multimodal even if a
large majority of passenger transport is ensured by personal cars, and a majority
of freight transport by trucks.

1.2.2 The potential for electrification of all major means of
transport

When we divide the analysis made in the previous section per transport mode,
it appears that individual vehicles, especially cars (which account for 97% of
motorised distances travelled in individual vehicles, with less than 3% of two-
wheeler use), stand for the largest share (80.5%) of distances travelled annually
by passegers inside France (Arafer, 2019). The evolution since 1990 of those dis-
tances travelled per vehicle type is illustrated in Figure 1.4. Total annual distances

"Most transport related data in this section, and more generally in the Chapter range up to
1990, which is the starting date of nearly all historical data easily available for France. For more
detailed historical study of the transport sector in France (from 1960 and even before), see the
work of Bigo (2020).



travelled have never noticeably decreased from a year to another in the last 30
years if we leave aside the year 2020 when distances travelled were significantly
reduced because of Covid-19 lockdown. It is to be noted that other transport
modes known as active mobility including cycling and electric scooters stand for
less than 1% of distances travelled in 2019, so they are not included in Figure 1.4.
As a result, individual vehicles account for the major part of the decarbonization
effort to be made.

750

500

2501

Annual distance travelled in France (G passengers.km)

1990 2000 2010
Years

. Diomestic air transport . Road public transport Rail public transport . Individual vehicles

Figure 1.4: Evolution of the distances travelled per vehicle type in France (data
from Arafer (2019))

The decarbonization of the transport sector relies on the five elements of the
equation introduced by Kaya (1990), adapted for the transport sector by Bigo
(2020) (among others). These five elements are total transport demand, modal
shift, occupancy rate, energy efficiency and carbon intensity of energy. In this
work, we study in more depth the energy efficiency and carbon intensity param-
eters, although all five are advisable to reduce the impact of the transport sector
on climate change.

Regarding carbon intensity of energy for mobility purposes, electric vehicles
(EVs) are currently seen as an opportunity to reduce greenhouse gases and other
local polluting emissions of the transport sector, as an alternative to thermal ve-
hicles relying on carbon intensive fuels. Recent events have also spotlighted the
uncertainty surrounding the future of fossil fuel prices and strengthened resolve
to press ahead with reducing oil dependency. Many governments are conse-
quently incentivizing EV use, and some have even planned to ban the sale or



use of combustion-engine vehicles in the mid-term, by 2025 in Norway, by 2030
in Germany, the UK and the Netherlands, and by 2035 in France and at the EU
level, for instance (Conway et al., 2021). Additionally other policy decisions such as
bonus/penalty system depending on vehicle carbon emissions, taxes on carbon
intensive fuels, urban toll systems (such as in London and Stockholm) or free park-
ing and accesses to bus lanes for low-emission vehicles can serve to incentivize EV
development. Furthermore, battery costs are expected to decrease in the coming
decades?, so EV total cost of ownership (TCO) are expected to match thermal ve-
hicle's in the coming years. Therefore, the share of EVs in the transport sector is
forecasted to surge in the next few years. The International Energy Agency’s (IEA)
EV30@30 scenario forecasts that half of all vehicle sales in Europe could be EVs by
2030 (IEA, 2019). This yearly issue by the IEA has become one of the key document
assessing EV development perspectives.

Different types of EV propulsion and power storage are being developed, in-
cluding: battery electric vehicles (BEVs) that exclusively use an electrochemical
battery (with a capacity typically ranging from 20 kWh to 100 kWh for individual
cars) to power an electric motor; plug-in hybrid electric vehicles (PHEVs) that have
both an on-board electrical motor with electrochemical battery-pack storage and
a combustion engine with a petrol tank; and fuel-cell electric vehicles (FCEVs) that
carry an on-board hydrogen tank combined with fuel cells to power an on-board
electrical motor. Other hybrid vehicles that cannot be plugged-in to charge their
battery and whose only energy source is petrol, biogas or liquefied petroleum gas
are outside of the scope of this work, as they do not interact with the power grid.

In addition to carbon emissions, other negative externalities related to the
transportation sector are to be noted: nitrogen oxides (NOx) emissions, that cause
respiratory diseases (César et al., 2015), particulate matter from road and brakes
wear (Abu-Allaban et al., 2003) and noise (with its impacts on sleep and other
health issues) (Bugliarello et al., 2014).

Electric vehicles contribute to the reduction of at least NOx and noise, particu-
late matter impact depending on vehicle mass and whereas eco-driving is consid-
ered or not. We observe either less brake wear thanks to regenerative breaking
(Paredes et al., 2013) or higher wear because of heavier vehicles (Oroumiyeh &
Zhu, 2021).

In the following subsections, we detail the electrification potential and rele-
vance of studying the transport modes that make up the sector.

Personal vehicles

To begin with, passenger cars are by far the most studied mode of transport in the
academic literature on electric vehicles. Indeed, many scenarios predict a massive
development in the next few years, between 40% and 78% of sales in Europe in

2However, recent events showed some unexpected rise in the price of lithium (Cai, 2022) linked
to geopolitical events and a rising lithium demand (or potentially other resources) can threaten
the veracity of this anticipated cost reduction



2030 in scenarios from IEA (2021b), up to 50% of the vehicle fleet electrified in
France in 2035 according to RTE (2019) or around 50% of BEV and PHEV in the
USA in the “SAFE"” scenario, in 2030 (Conway et al., 2021). This is mainly due to
the fact that some sources anticipate that total cost of ownership (TCO) of light
electric vehicles will equal those of thermal vehicles in the next few years, due
to the reduction in battery costs (Goldie-Scot & BloombergNEF, 2019; IEA, 2021b),
along bans on thermal vehicle sales. Development is already well advanced in
some parts of the world, notably Norway, which is the leading country with a 56%
market share of BEVs in 2020 (IEA, 2021b).

The IEA currently identifies 5 main barriers to its development: insufficient
charging infrastructure, not enough electric car models, too high purchase cost
compared to thermal vehicles, long charging time, uncertain/undeveloped policy
landscape. The scientific literature agrees with these observations, even if cost
and environmental benefits appear to be the parameters with the most influence
on purchase decision (Vassileva & Campillo, 2017).

Regarding charging infrastructure, the EU recommends 1 public charger for ev-
ery 10 EVs, and France is yet a bit below this target, at 1 charger for 13 EVs, counting
plug-in hybrids (AVERE, 2021). On the other hand, the need for charging stations
seems to be conditioned by the type and density of the territory. For example, in
Norway, the country with the strongest development, the infrastructure is only 1
public charger for about 30 EVs (IEA, 2021b), but there is no lack of charging sta-
tions, given the high proportion of individual housing: more than 80% of EVs are
charged at home in Norway (Figenbaum & Nordbakke, 2019).

Different battery technologies are being developed, which makes it non-trivial
to assess the demand for raw materials (Junne et al., 2020), but the IEA seems to
indicate that a massive worldwide development is possible (IEA, 2021b). The same
observation apply to the environmental impact of EV batteries that depends on
the battery technology.

In the literature, the environmental benefits of EVs compared to thermal ve-
hicles is no longer really debated in decarbonized electricity generation systems,
even when calculating LCA emissions (Cihat Onat et al., 2020; Lucas et al., 2012;
Ma et al., 2012; Mendoza Beltran et al., 2018; Wolfram et al., 2021). However, the
ratio between BEV and thermal vehicle emissions differ according to the selected
assumptions (vehicle life span, producer country, battery recycling rate, vehicle
size, eco-driving, etc.). For instance, some studies indicate 4 times lower life cyle
emissions for BEVs under favorable conditions at the 2050 time-horizon (Mendoza
Beltran et al., 2018), while others conclude that in worst case scenarios and when
accounting marginal emissions for electricity generation and large individual ve-
hicles, BEVs generate 20% more emissions than thermal vehicles (Ma et al., 2012).
Xu et al. (2020) estimates that implementing EVs reduces carbon emissions by be-
tween 36 and 47% at the European level depending on smart charging adoption.
In the case of high carbon electricity generation mixes (around 400 gCO,eq/kWh),
electric propulsion is not always considered useful to mitigate climate change,
even if it contributes to the reduction of local pollution in cities.



Finally, a point is raised by ADEME (2021) and IEA (2021a), relating to vehi-
cle mass that has lately been increasing in Europe, especially via the surge of
sport utility vehicles (SUVs), going against decarbonization of the transport sec-
tor. Heavier vehicles induce more consumption of resources to build and power
the vehicle. Governments have introduced taxes (bonus-malus) to encourage
weight reduction in vehicles, but a downward trend has not yet begun (ADEME,
2021).

Light duty vehicles are a specific vehicle type that could be classified inside
"personal vehicles", that also show a great electrification potential but are not the
main focus of this work.

Heavy mobility

In this section, we discuss three modes of transport grouped under the term heavy
mobility: buses, trucks and trains. Contrary to individual vehicles, where electric
propulsion (or even plug-in hybrids) seems to be the most suitable technology,
several motorization and smart charging modes are emerging for this transport
segment.

According to the IEA, the prospects for electrification of buses are almost as
high as for light vehicles in terms of percentage of the fleet, at around 50% of
electric bus sales in Europe in 2030 (IEA, 2021b). Indeed, bus trip characteristics
are quite suited to electrification, with rather limited daily distances driven (150km
max) at low speed, large time windows without travelling parked at the depot at
night, as well as a use generally rather in urban areas, where low emission zones
are potentially set up. However, there is still uncertainty about the development of
battery charging technologies, between plug-in charging in the evening at the de-
pot, or recharging during the day or during the journey, by catenaries, fast charg-
ers at the terminal or induction charging (Bi et al., 2017). The work of this thesis will
not focus on buses, but there is potential of demand flexibility for electric buses,
depending on the assumptions presented here: charging location and power.

The case of trucks for freight transport is relatively different from buses, in the
sense that some of them are used for very long distance trips (> sookm), so that
the need for a long driving range appears to be greater than for buses. Thus, sev-
eral technologies seem to be adapted to several truck segments: BEVs for local
deliveries, PHEVs for medium and for longer distances, FCEVs (powered by hy-
drogen), EVs with catenary or in-road inductive charging or biofuels (Pl6tz et al.,
2021; Sen et al., 2017). The charging power of electric trucks is currently experi-
mented up to 1 MW (Mishra et al., 2022), which is 300 times larger rated power
than a residential individual EV charger. In any case, given the operational con-
straints of trucks (need for fast charging, to be synchronized with truck loading
and driver breaks), it is expected that trucks will not have as strong a potential
for electric demand flexibility as light vehicles. Thus, this thesis will not focus on
this segment, although the study of electric trucks demand could be relevant for
some aspects related to the electrical system (especially the impact on the grid
and charging infrastructure sizing, in case of very high charging power).
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Finally, trains and electric tramways will be excluded from the analysis con-
ducted in this thesis, because of their non-flexible electricity demand for the ma-
jority of the rail transport already connected to the electrical network, and which
is already taken into account in the consumption forecasts, based on historical
data.

Two wheelers

Motorcycles and motor scooters are a specific case in the field of transport. In-
deed, their use varies widely from country to country, depending on the GDP per
capita and the density of the transport network. There is a large share of two-
wheelers in India and a large potential for electrification (Patil et al., 2021), for in-
stance, but relatively little in Western European countries, less than 3% of vehicle
distances travelled in France (Arafer, 2019). Although this transportation mode
seems to be one of the easiest to electrify, because the technology already exists
and two wheelers are not usually used for very long trips, we will not consider
them in our analysis, given the low consumption expected for two wheelers in
France.

The same is true for electric bikes, variants of motorcycles, in regard to their
prospective energy demand, with consumption under 0.02 kWh/km, which is
more than ten times lower that an electric car (Fishman & Cherry, 2016).

Micro mobilities

In recent years, new mobility modes called "micromobilities" have emerged in
major European cities. Most of them can actually be classified as BEVs: electric
scooters, hoverboards, single wheel scooters, etc. Although their surge has been
intense in the previous years (Abduljabbar et al., 2021), especially in the largest
European cities (Paris, London, Berlin), their large diffusion remain uncertain as
they are mostly adapted to dense areas. Additionally, these transportation modes
are very efficient per distance travelled, less than 0.05 kWh/km according to Wang
et al. (2021) , as compared with other individual transport modes. As a result, one
should keep in mind their potential development, but they are not included in our
scope of work due to their low projected electricity demand.

Other

In regards to aviation, even if the industry communicates on a strong develop-
ment of hydrogen aircraft (EU Publication Office, 2020), and that Solar-Impulse
demonstrators of electric aircraft have taken place, the development by 2040 of
electric alternatives for the transport of passengers and goods by aircraft seems
too uncertain.

For maritime transport, the electrification of ships seems to be closer than air-
crafts to being techno ready, with a more extensive academic literature (Bigerna
et al.,, 2019; Sharma & Syal, 2021; Villa et al., 2019). However, there appears to be a



strong lack of data, poorly defined public objectives for electrification of maritime
transport, and the likelihood that some electric ships will be off-grid and powered
mainly by solar PV panels.

Thus, airplanes and ships are outside the scope of analysis of this thesis.

1.2.3 The recent evolution of individual vehicle use in France

In France, as in many other countries (further detailed in section 2.2), the govern-
ment department in charge of transport carries out a national travel survey about
every ten years. There are two main outcomes of national travel surveys that are
of interest for this work: the use of each means of transport by the population,
and the distribution of trip data (especially distances, speeds and departure times)
that help us model EV demand (as described in Chapter 3). The last two mobility
data sets for France were published in 2008 and 2019 (SDES, 2008, 2019b).

First, when we compare the evolution of modal shares (which is defined as
the share of trips made with each transport means, which differs from the share
of distances travelled, illustrated in Figure 1.4), these studies show relatively little
evolution between 2008 and 2019. Thus, the average French modal share of indi-
vidual cars was reduced by 2% (from 64.8% to 62.8%), balanced by approximately
a 1% rise of both public transport (to 9.1%) and walking (to 23.7%), according to
SDES (2020). On its side, cycling remained stable at 2.7% of trips between 2008
and 2019. However, beyond those national averages, we observe large geograph-
ical differences in those modal share data, as individual vehicles’ modal share is
now reported at 33.3% in the Paris area (in a sharp downward trend), compared
to 79.5% in rural areas and 73.2% in small cities, where the trend is stable.

Regarding the distribution of individual trip data inside the two most recent
French national travel surveys, each study provides a list of trips, with among oth-
ers information on the respondent code (anonymized), the origin and destination
location (home / work / other), the type of day (week-day, Saturday or Sunday), the
transport mode used, the zone of residency of the respondent (urban, rural and
county), and most importantly, the departure time, arrival time and distance of
the trip. The 2008 travel survey provides around 132,000 individual trips, but only
45,000 are included in the 2019 data set. In this section, we analyze and compare
these studies according to the following methodology.

First, we selected trips made with a personal motorized vehicle only, and got
rid of incomplete data and aberrant data (travel speeds above 150 km/h or below
5 km/h, trip length below 0.5 km). We also divided the analysis between “local
mobility” and “long-distance trips”, the definition provided by SDES (2008) of these
categories being: if and only if a trip goes beyond 8o km away from home as the
crow flies, then it is classified as a “long-distance” trip.

Second, for each respondent code, we recompiled the list of trips made
through the day, in order to get the total distance driven per day, a list of de-
parture and arrival times of each trip.
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Third, we affected those daily travel data to our 3 categories: working day or
week-end, urban or rural, commuting to work trip or other trip purpose.

Finally, when we compare the two most key data regarding individual trip data,
between the 2008 and the 2019 study, as illustrated in Figure 1.5, we identify that
there has not been a strong evolution of individual trip patterns in the last 12 years
(similar distribution of daily distances driven and arrival times, considering mar-
gins of error). These national survey data are further analyzed in annex 1.A. We
can try to explain this low difference between those two studies as there was lit-
tle evolution in urban planning and working habits in that period in most of the
territory, which means that individual trips stayed relatively similar3.

Figure 1.5 shows that the peak times of vehicle arriving back at home is the
17:00-19:00 in the evening, with a smaller peak at mid-day.
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Figure 1.5: Comparison of individual trip distances and arrival time distribution for
the 2008 and 2019 French national surveys

As a result of this travel data analysis, both 2008 and 2019 travel surveys can be
used quite indifferently for assessing current trip patterns in individual vehicles.
For the rest of this thesis, we use data from the 2008 survey to generate EV con-
nection and demand data, which was accessible from the beginning of our work
and has a larger respondent pool.

If provided detailed prospective scenario on how individual trips could evolve
(e.g. decreasing the share of trips below 20km in urban areas linked to a rise of

3The previous 2019 French national travel survey was conducted just before the Covid-19 pan-
demic, which may induce a shift towards more home-working or other societal changes, which
could modify this analysis, to be confirmed in the next few years.
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public transport or decrease the share of trips for the “commuting to work” pur-
pose in a scenario with more home-working), one could easily modify such his-
torical travel data set in order to generate a prospective travel data set, as further
detailed in section 3.2.2. However, current French national scenarios on transport
evolution were found too unclear for this purpose.

1.3 A changing European power generation system

1.3.1 From a thermal electricity generation system to a decar-
bonized one

Similar to the transportation sector, electricity generation was massively devel-
oped during the 2oth century in Western Europe, which led to an increase in
energy consumption and living standards during this period. The first main re-
sources used for electricity generation were the same as for mobility in that period
(coal, gas and oil), as well as nuclear power in some countries from the 1960s/1970s
onwards, notably in the USA, Western Europe, the USSR and Japan. Large hydro
power plants, based on turbines in rivers with high water flow, have also been
built in suitable territories (mountainous territories or territories with high water
resources, such as Canada, Brazil and the Scandinavian countries). Electricity mix
for the World, Europe and France in 1990 are illustrated in Figure 1.6.

Since 1990/2000, the decrease in the cost of renewable energy generation, es-
pecially solar photovoltaic (PV) and wind power, as well as environmental issues
(climate, local particle pollution, and related to past nuclear accidents - Chernobyl
and Fukushima) have led public authorities to push for the development of re-
newables as well as for private actors to invest in them. As a result, the share of
renewable generation in the electricity mix reached 38% in the EU in 2020. On a
global scale, electricity generation is still dominated by fossil fuels, notably coal
(36%) and gas (23%) (Ritchie et al., 2022).

Moreover, the international ambitions to further decarbonize the electricity
generation sector lead to the elaboration of scenarios as presented in Figure 1.6,
with around two thirds of renewable generation by 2050. The potential for devel-
opment of hydro generation is identified as rather limited compared to other re-
newable sources, as a result, the share of hydro-generated electricity is expected
to decrease (both worldwide, in EU and in France), due to the increasing projected
electricity demand. In addition, many research studies now indicate the possibil-
ity of reaching 100% renewable electricity mixes by 2050, which would further re-
duce the flexibility provided by electricity generation (Bussar et al., 2016; RTE, 2021;
Zappa et al., 2019). The data sources in the following graph are only selected for
illustration purposes and are not used as base case scenarios in the following of
this work.
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Figure 1.6: Electricity generation mix evolution (share of generated electricity) at
three different scales: World, EU and France. Data for 1990 and 2020 from Ritchie
etal. (2022), data for World average in 2050 from the Stated Policies scenario of IEA
(2021c), data for EU average in 2050 from the EU reference scenario of European
Commission (2020) and data for France in 2050 from the N1 scenario of RTE (2021)

1.3.2 The development of demand-side flexibility

Heggarty et al. (2020) defines flexibility and assesses who provides flexibility in
France on three different scales: daily, weekly and annual. Thermal sources ac-
count for a large share of the flexibility provided to current power systems.

As described in the previous section, a significant share of thermal sources are
expected to be replaced by renewable sources over the next 30 years, which im-
plies that new solutions need to be developed to compensate this loss of flexibil-
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ity. Among these solutions, most prospective electricity scenarios (IEA, 2021¢; RTE,
2021) advise a growth of interconnectors between electric zones, the development
of stationary storage (hydro, batteries, compressed air, etc.), sector coupling (es-
pecially with gas and hydrogen) and finally a rise in demand-side flexibility, which
is the focus of this section, and more broadly this thesis.

When studying the literature on the topic of demand-side flexibility (or de-
mand response), it appears that several main sectors seem to be well suited:
the industrial sector, the residential sector, the commercial sector (Golmohamadi,
2022; Heffron et al., 2020; Kohlhepp et al., 2019; Li & Pye, 2018; Soder et al., 2018),
as well as the transportation sector (sometimes included in the residential sector
for electric cars). It is to be noted that demand-side flexibility is already slightly
developed in France in 2021, especially through industrial load management and
time-of-use tariffs for the residential sector (from late 2oth century in France).

Multiple residential appliances have a potential for flexibility (heating, domes-
tic hot water, dishwashers, washing machines, charging of small battery-powered
electronic devices), but on the prospective horizon, EVs which present a signif-
icant part of the potential for demand flexibility can be easily mobilized, along
with hydrogen electrolyzers (National Grid, 2021; RTE, 2021).

Additionnaly, it appears that EV load flexibility is more suited to providing short
term (especially daily) than annual flexibility (Heggarty et al., 2020), as opposed to
H2 electrolyzers. Helisto et al. (2018) also indicates, by comparing the benefits of
demand-side flexibilities, that EVs are most useful on a daily basis, to facilitate the
integration of solar generation. Other studies support this PV-EV complementarity
(Hoarau & Perez, 2018; Schuller et al., 2015).

In order to manage demand-side flexibility, for the case of EVs, several smart
charging modes are developed: tariff-based control modes (already developed
for the other main flexible uses) can be used, as well as other dynamic modes,
based on real-time communication, either unidirectional or bidirectional (vehicle-
to-grid), which will be presented in more detail in Chapter 4, focused on EV smart
charging.

Another simpler lever to limit residential peak consumption is to allocate a
share of capacity-based tariffs instead of 100% energy based tariffs, which facili-
tates EV integration for power systems (Freitas Gomes et al., 2021).

In the following section, the main areas of interaction between EV flexibility
and power systems will be detailed.

1.4 The interaction between transport and electric-
ity systems
After identifying the potential for EV demand flexibility, five main areas of study
for this flexibility are identified (Golmohamadi, 2022; Thompson & Perez, 2019):
+ Generation capacity and transport network expansion: the challenge is

to size the power system at the right level (minimize cost and keep sufficient
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quality of supply), while taking into account consumption and its flexibility
in the future. The integration of flexible consumption trajectories in these
models is the most macro subject of study for EV demand.

+ Optimal dispatch: charging EVs at the least costly time windows (minimiz-
ing the use of carbon-based generation), for a given power system. This is
the main focus of this thesis, presented in Chapter 4. Another approach to
deal with this aspect is from a "valley-filling" point of view to limit the elec-
trical system sizing.

* Network flows, at the distribution and transmission level: manage or pre-
vent grid congestion, in order to minimize overloads on the network lines
and transformers. Voltage support is a related topic to network studies.

* Intraday markets: study the offers that can be proposed by the aggrega-
tion of vehicles on the day-ahead and intraday markets. The purpose of
this subject is mainly to adapt the production and consumption plans a few
hours ahead of real time to compensate for weather forecasting, unfore-
seen events, etc.

+ Frequency regulation, either frequency containment reserve (FCR) or auto-
matic frequency restoration reserve (aFRR): keeping enough flexibility assets
connected to manage the frequency in real time.

The compatibility of the different EV smart charging modes (time-of-use, uni-
directional smart charging and V2G) with these power system issues are further
detailed in section 2.3.1, and the main models and methods used to address them
in section 4.2.1.

After the identification of these five interaction topics, it should be noted that
the relevant time horizons of study differ between these topics. Indeed, some
of them (frequency regulation, network flows on specific locations) are relevant
as soon as the EVs are lightly developed. Others, such as network impact on the
majority of areas and optimal dispatch, are more long-term research questions,
when EVs become predominant on the vehicle market. This thesis, whose mobility
analysis will be made on the French case, aims to study the 2040 time horizon, a
few years after the planned end of sales of thermal vehicles.

1.5 Scope of work and research questions

As identified in this Chapter, our work studies the demand side flexibility of electric
vehicles, at the intersection of the electricity and transport sectors, with a focus
on the 2040 time-horizon, an important milestone of transport electrification. The
scope of this thesis is mainly the electrification of light vehicles in France and its
interaction with the European electrical system dispatch.

We try to complement the existing literature on the topic (further detailed in
Chapter 2) by providing a methodology to integrate EV demand data (computed
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from a mobility model and a travel survey dataset) inside a modeling of the Euro-
pean electricity system. This analysis enables the study of the impact of various EV
charging scenarios on the electricity generation costs and carbon emissions. The
competition between EV demand flexibility and other flexibility means (station-
nary batteries, industrial load management, pumped hydro storage, hydrogen,
etc.) is also taken into account in this modeling framework. Additionally, the influ-
ence of electricity-generation scenarios (such as gas prices) on EV flexibility value
can be studied.

The research objectives of this thesis can be summarized in these research
questions :

How to model the prospective integration into the power system of a large EV dif-
fusion at the national scale?

How to compare the main EV smart charging modes, and which parameters have
the largest impacts on this demand-side flexibility potential?

1.6 Thesis structure

Following this introductory Chapter, in order to address these two research ques-
tions, we adopt a 3-Chapter structure, with the results and methods of each Chap-
ter directly feeding into the next, as illustrated in Figure 1.7.

Chapter 2 presents the literature review conducted on the topic of vehicle
trips modeling, for different research objectives related to EV integration into the
electric system. It appears that several classes of models emerge, each adapted
to a specific research question. Secondly, the objective functions related to the EV
smart charging (either to limit the local power demand, to minimize the charging
cost or to maximize the self-consumed energy share) are described. Most of the
studies focus on a precise modeling of either the electrical system or the trans-
portation sector. This approach is justified in the short term, given the current
limited market share of EVs. On the other hand, for prospective studies, we rec-
ommend sequential modeling the transportation system and then the electric sys-
tem. Finally, this Chapter ends with recommendations for modeling approaches
for the research topics identified by the literature review, and in particular for the
topic that will be addressed in the rest of this thesis.

Chapter 3 describes the method used to generate EV uncontrolled demand
and connection data at the national level from a transportation survey dataset,
building on the observations in the previous Chapter. We also identify points
where these datasets are not sufficient to ensure accurate modeling (the very local
aspect as well as long-distance trips). The solutions to adapt these tools in order
to study the connection of several types of vehicles, for various time horizons and
charging infrastructures are also detailed. In a second step, our methodology is
applied to a case study on EV demand in France by 2040, for an ambitious EV de-
velopment scenario. We identify the parameters that have the most influence on
EV demand data (energy needed and connection to the grid patterns), and pave
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the way to the study of the smart charging of these EVs, thanks to the multitude
of output data generated.

Chapter 4 completes the methodology of this thesis by integrating the previ-
ous results into a simulation model of the electrical system with the optimal dis-
patch point of view (while modeling the exchanges between European countries),
which enables the study and comparison of all the smart charging modes that
are currently being developed (uncontrolled charge, time-of-use tariffs, dynamic
smart charging and V2H/V2G). We also show how to aggregate millions of EVs into
a single modeling object, with associated limitations and proposals to overcome
them. Finally, a case study following the results provided in Chapter 3 allows us to
draw some first conclusions on the comparison of these smart charging modes,
with respect to the challenges of the electric system in 2040 that these modes
will be able to answer. The identification of the main parameters that influence
the flexibility of EVs is also performed. Finally, we conclude by indicating the main
barriers to be removed to develop the demand-side flexibility provided by electric
vehicles, while having proven and enabled our ability to measure the associated

economic and environmental gains.
2]

Literature review on
EV demand and
smart charging

modelling

Electricity generation
and transmission data
~., non-EV demand data

EV flexibility usage
) - Electrical system
é EV flexibility data ‘@ operational data
Scenario 1 (BEVs that Scenario 1

Mobility related
hypotheses and —m|
data

Mobility modelling
EV connection

patterns

-y

connect daily)

Scenario 2 (BEVs that

| connect when needed)

Scenario 3 (BEVs with
smaller batteries)

Scenario 4 (PHEVs)

(..)

- Literature

. Data set

S ¥ - Model

° - Scope of study of chapter/section X

Elecfrical system

_|—> Unit commitment and
dispatch model

(Uncontrolled charge)

Scenario 2

| (Time-of-use tariffs)

Scenario 3 (V2G)

Scenario 4
(higher gas prices)

(...)

h 4

Digcussion on EV
flexibility for the
electricity system

Figure 1.7: Global framework of our methodology to study EV grid integration

17







Bibliography

Abduljabbar, R. L., Liyanage, S., & Dia, H. (2021). The role of micro-mobility in
shaping sustainable cities: A systematic literature review. Transportation
research part D: transport and environment, 92,102734. https://doi.org/https:
//doi.org/10.1016/j.trd.2021.102734

Abu-Allaban, M., Gillies, J. A., Gertler, A. W., Clayton, R., & Proffitt, D. (2003). Tailpipe,
resuspended road dust, and brake-wear emission factors from on-road ve-
hicles. Atmospheric environment, 37(37), 5283-5293. https://doi.org/https:
//doi.org/10.1016/j.atmosenv.2003.05.005

ADEME. (2021). Evolution du marché, caractéristiques environnementales et tech-
niques. véhicules particuliers neufs vendus en france. https://librairie.
ademe.fr/mobilite-et-transport/771-plus-de-vehicules-electriques-trop-
de-suv.html

Arafer. (2019). Bilan de la circulation, dgac, enquéte annuelle sur les transports
collectifs urbains (cerema, cgdd, dgitm, gart, utp), ensemble des opéra-
teurs ferroviaires, ile-de-france mobilités-omnil, utp. https://www.notre-
environnement.gouv.fr/rapport-sur-I-etat-de-I-environnement/themes-
ree/enjeux-de-societe/ modes- de-vie-des- menages/mobilite/article/
evolution-du-mode-de-deplacements-des-menages

AVERE. (2021). Barometres de la recharge - 49 914 points de recharge ouverts au
public en france au 31 octobre 2021.

Bi, Z., De Kleine, R., & Keoleian, G. A. (2017). Integrated life cycle assessment and
life cycle cost model for comparing plug-in versus wireless charging for an
electric bus system. Journal of Industrial Ecology, 21(2), 344-355. https://doi.
org/https://doi.org/10.1111/jiec.12419

Bigerna, S., Micheli, S., & Polinori, P. (2019). Willingness to pay for electric boats
in a protected area in italy: A sustainable tourism perspective. Journal of
Cleaner Production, 224, 603-613. https://doi.org/https://doi.org/10.1016/j.
jclepro.2019.03.266

Bigo, A. (2020). Les transports face au défi de la transition énergétique. Explo-
rations entre passé et avenir, technologie et sobriété, accélération et ralen-
tissement. PhD dissertation, 341. https://tel.archives - ouvertes. fr/ tel -
03082127

Bugliarello, G., Alexandre, A., & Barnes, J. (2014). The impact of noise pollution: A
socio-technological introduction. Elsevier.

Burton, N. (2013). History of electric cars. Crowood.

Bussar, C., Stocker, P., Cai, Z., Moraes Jr., L., Magnor, D., Wiernes, P., van Bracht,
N., Moser, A., & Sauer, D. U. (2016). Large-scale integration of renewable
energies and impact on storage demand in a european renewable power
system of 2050—sensitivity study. Journal of Energy Storage, 6, 1-10. https:
//doi.org/https://doi.org/10.1016/j.est.2016.02.004

19


https://doi.org/https://doi.org/10.1016/j.trd.2021.102734
https://doi.org/https://doi.org/10.1016/j.trd.2021.102734
https://doi.org/https://doi.org/10.1016/j.atmosenv.2003.05.005
https://doi.org/https://doi.org/10.1016/j.atmosenv.2003.05.005
https://librairie.ademe.fr/mobilite-et-transport/771-plus-de-vehicules-electriques-trop-de-suv.html
https://librairie.ademe.fr/mobilite-et-transport/771-plus-de-vehicules-electriques-trop-de-suv.html
https://librairie.ademe.fr/mobilite-et-transport/771-plus-de-vehicules-electriques-trop-de-suv.html
https://www.notre-environnement.gouv.fr/rapport-sur-l-etat-de-l-environnement/themes-ree/enjeux-de-societe/modes-de-vie-des-menages/mobilite/article/evolution-du-mode-de-deplacements-des-menages
https://www.notre-environnement.gouv.fr/rapport-sur-l-etat-de-l-environnement/themes-ree/enjeux-de-societe/modes-de-vie-des-menages/mobilite/article/evolution-du-mode-de-deplacements-des-menages
https://www.notre-environnement.gouv.fr/rapport-sur-l-etat-de-l-environnement/themes-ree/enjeux-de-societe/modes-de-vie-des-menages/mobilite/article/evolution-du-mode-de-deplacements-des-menages
https://www.notre-environnement.gouv.fr/rapport-sur-l-etat-de-l-environnement/themes-ree/enjeux-de-societe/modes-de-vie-des-menages/mobilite/article/evolution-du-mode-de-deplacements-des-menages
https://doi.org/https://doi.org/10.1111/jiec.12419
https://doi.org/https://doi.org/10.1111/jiec.12419
https://doi.org/https://doi.org/10.1016/j.jclepro.2019.03.266
https://doi.org/https://doi.org/10.1016/j.jclepro.2019.03.266
https://tel.archives-ouvertes.fr/tel-03082127
https://tel.archives-ouvertes.fr/tel-03082127
https://doi.org/https://doi.org/10.1016/j.est.2016.02.004
https://doi.org/https://doi.org/10.1016/j.est.2016.02.004

Cai, J. (2022). The development of new energy industry under the implementation
of china's environmental protection policy-the forecast of lithium ion and
sodium ion battery industry. 2022 7th International Conference on Financial
Innovation and Economic Development (ICFIED 2022), 1616-1619. https://doi.
0rg/10.1088/1742-6596/1347/1/012087

César, A., Carvalho Jr, J., & Nascimento, L. (2015). Association between nox expo-
sure and deaths caused by respiratory diseases in a medium-sized brazil-
ian city. Brazilian Journal of Medical and Biological Research, 48, 1130-1135.
https://doi.org/10.1590/1414-431X20154396

Cihat Onat, N., Aboushaqgrah, N. N., Kucukvar, M., Tarlochan, F., & Magid Hamouda,
A. (2020). From sustainability assessment to sustainability management for
policy development: The case for electric vehicles. Energy Conversion and
Management, 216, 112937. https://doi.org/https://doi.org/10.1016/].
enconman.2020.112937

Citepa. (2022). Inventaire des émissions de polluants atmosphériques et de gaz
a effet de serre en France Format Secten. https://www.citepa.org/wp-
content/uploads/Citepa_Rapport-Secten-2022_Transports_v1.1.pdf

Conway, G., Joshi, A., Leach, F., Garcia, A., & Senecal, P. K. (2021). A review of cur-
rent and future powertrain technologies and trends in 2020. Transportation
Engineering, 5, 100080. https://doi.org/https://doi.org/10.1016/j.treng.2021.
100080

Costa, L., Moreau, V., Thurm, B., Yu, W., Clora, F., Baudry, G., Warmuth, H., Hezel, B.,
Seydewitz, T., Rankovi¢, A., Kelly, G., & Kropp, J. P. (2021). The decarbonisa-
tion of Europe powered by lifestyle changes. Environmental Research Letters,
16(4), 044057. https://doi.org/10.1088/1748-9326/abe89g0

EU Publication Office. (2020). Hydrogen-powered aviation : A fact-based study of
hydrogen technology, economics, and climate impact by 2050, fuel cells
and hydrogen 2 joint undertaking. https://data.europa.eu/doi/10.2843/
471510

European Commission. (2020). Eu reference scenario 2020, last accessed online
in june 2022. https://energy.ec.europa.eu/data-and-analysis/energy-
modelling/eu-reference-scenario-2020_en

Figenbaum, E., & Nordbakke, S. (2019). Battery electric vehicle user experiences in
norway’'s maturing market. https://trid.trb.org/view/1659499

Fishman, E., & Cherry, C. (2016). E-bikes in the mainstream: Reviewing a decade of
research. Transport Reviews, 36(1), 72-91. https://doi.org/10.1080/01441647.
2015.1069907

Freitas Gomes, I.S., Perez, Y., & Suomalainen, E. (2021). Rate design with distributed
energy resources and electric vehicles: A californian case study. Energy Eco-
nomics, 102, 105501. https://doi.org/https://doi.org/10.1016/j.eneco.2021.
105501

Goldie-Scot, L., & BloombergNEF. (2019). A behind the scenes take on lithium-ion
battery prices. https://about.bnef.com/blog/behind-scenes-take-lithium-
ion-battery-prices/

20


https://doi.org/10.1088/1742-6596/1347/1/012087
https://doi.org/10.1088/1742-6596/1347/1/012087
https://doi.org/10.1590/1414-431X20154396
https://doi.org/https://doi.org/10.1016/j.enconman.2020.112937
https://doi.org/https://doi.org/10.1016/j.enconman.2020.112937
https://www.citepa.org/wp-content/uploads/Citepa_Rapport-Secten-2022_Transports_v1.1.pdf
https://www.citepa.org/wp-content/uploads/Citepa_Rapport-Secten-2022_Transports_v1.1.pdf
https://doi.org/https://doi.org/10.1016/j.treng.2021.100080
https://doi.org/https://doi.org/10.1016/j.treng.2021.100080
https://doi.org/10.1088/1748-9326/abe890
https://data.europa.eu/doi/10.2843/471510
https://data.europa.eu/doi/10.2843/471510
https://energy.ec.europa.eu/data-and-analysis/energy-modelling/eu-reference-scenario-2020_en
https://energy.ec.europa.eu/data-and-analysis/energy-modelling/eu-reference-scenario-2020_en
https://trid.trb.org/view/1659499
https://doi.org/10.1080/01441647.2015.1069907
https://doi.org/10.1080/01441647.2015.1069907
https://doi.org/https://doi.org/10.1016/j.eneco.2021.105501
https://doi.org/https://doi.org/10.1016/j.eneco.2021.105501
https://about.bnef.com/blog/behind-scenes-take-lithium-ion-battery-prices/
https://about.bnef.com/blog/behind-scenes-take-lithium-ion-battery-prices/

Golmohamadi, H. (2022). Demand-Side Flexibility in Power Systems: A Survey of
Residential, Industrial, Commercial, and Agricultural Sectors. Sustainability,
14(13), 7916. https://doi.org/10.3390/5uU14137916

Haasz, T., Gbmez Vilchez, J. J., Kunze, R., Deane, P., Fraboulet, D., Fahl, U., & Mul-
holland, E. (2018). Perspectives on decarbonizing the transport sector in the
EU-28. Energy Strategy Reviews, 20, 124-132. https://doi.org/10.1016/j.esr.2017.
12.007

Heffron, R., Kérner, M.-F., Wagner, J., Weibelzahl, M., & Fridgen, G. (2020). Indus-
trial demand-side flexibility: A key element of a just energy transition and
industrial development. Applied Energy, 269, 115026. https://doi.org/https:
//doi.org/10.1016/j.apenergy.2020.115026

Heggarty, T., Bourmaud, J.-Y., Girard, R., & Kariniotakis, G. (2020). Quantifying
power system flexibility provision. Applied Energy, 279, 115852. https://doi.
org/10.1016/j.apenergy.2020.115852

Helistd, N., Kiviluoma, J., & Holttinen, H. (2018). Long-term impact of variable gen-
eration and demand side flexibility on thermal power generation. /ET Re-
newable Power Generation, 12(6), 718-726. https://doi.org/10.1049/iet-
rpg.2017.0107

Hoarau, Q., & Perez, Y. (2018). Interactions between electric mobility and photo-
voltaic generation: A review. Renewable and Sustainable Energy Reviews, 94,
510-522, https://doi.org/10.1016/j.rser.2018.06.039

IEA. (2019). Global EV Outlook 2019: Scaling-up the transition to electric mobility. OECD.
https://doi.org/10.1787/35fb6obd-en

IEA. (2021a). Fuel consumption of cars and vans. https://www.iea.org/reports/fuel-
consumption-of-cars-and-vans

IEA. (2021b). Global EV Outlook 2021. https://www.iea.org/reports/global-ev-
outlook-2021

IEA. (2021c). World energy outlook 2018, 661.

INSEE. (2017). Tableaux de I'économie francaise, budget des ménages, 1. https:
//www.insee.fr/fr/statistiques/4764315

INSEE. (2020). Tableaux de I'économie francaise, equipements des ménages.
https://www. insee. fr/fr/statistiques/ 4277714 ? sommaire = 4318291 #
documentation

IPCC. (1992). Climate change: The 1990 and 1992 IPCC assessments, IPCC first assess-
ment report overview and policymaker summaries and 1992 IPPC supplement
(IPCC & WMO, Eds.).

IPCC. (2022). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contri-
bution of Working Group Il to the Sixth Assessment Report of the Intergov-
ernmental Panel on Climate Change. https://www.ipcc.ch/report/ar6/wg2/

Junne, T., Wulff, N., Breyer, C., & Naegler, T. (2020). Critical materials in global low-
carbon energy scenarios: The case for neodymium, dysprosium, lithium,
and cobalt. Energy, 211, 118532. https://doi.org/https://doi.org/10.1016/].
energy.2020.118532

21


https://doi.org/10.3390/su14137916
https://doi.org/10.1016/j.esr.2017.12.007
https://doi.org/10.1016/j.esr.2017.12.007
https://doi.org/https://doi.org/10.1016/j.apenergy.2020.115026
https://doi.org/https://doi.org/10.1016/j.apenergy.2020.115026
https://doi.org/10.1016/j.apenergy.2020.115852
https://doi.org/10.1016/j.apenergy.2020.115852
https://doi.org/10.1049/iet-rpg.2017.0107
https://doi.org/10.1049/iet-rpg.2017.0107
https://doi.org/10.1016/j.rser.2018.06.039
https://doi.org/10.1787/35fb60bd-en
https://www.iea.org/reports/fuel-consumption-of-cars-and-vans
https://www.iea.org/reports/fuel-consumption-of-cars-and-vans
https://www.iea.org/reports/global-ev-outlook-2021
https://www.iea.org/reports/global-ev-outlook-2021
https://www.insee.fr/fr/statistiques/4764315
https://www.insee.fr/fr/statistiques/4764315
https://www.insee.fr/fr/statistiques/4277714?sommaire=4318291#documentation
https://www.insee.fr/fr/statistiques/4277714?sommaire=4318291#documentation
https://www.ipcc.ch/report/ar6/wg2/
https://doi.org/https://doi.org/10.1016/j.energy.2020.118532
https://doi.org/https://doi.org/10.1016/j.energy.2020.118532

Kaya, Y. (1990). Impact of carbon dioxide emission control on gnp growth : In-
terpretation of proposed scenarios. IPCC Energy and Industry Subgroup, Re-
sponse Strategies Working Group.

Kohlhepp, P., Harb, H., Wolisz, H., Waczowicz, S., Muller, D., & Hagenmeyer, V.
(2019). Large-scale grid integration of residential thermal energy storages
as demand-side flexibility resource: A review of international field studies.
Renewable and Sustainable Energy Reviews, 101, 527-547. https://doi.org/10.
1016/j.rser.2018.09.045

Le Quéré, C., Jackson, R. B., Jones, M. W., Smith, A. ]. P., Abernethy, S., Andrew,
R. M., De-Gol, A. J., Willis, D. R., Shan, Y., Canadell, J. G., Friedlingstein, P.,
Creutzig, F., & Peters, G. P. (2020). Temporary reduction in daily global CO,
emissions during the COVID-19 forced confinement. Nature Climate Change,
10(7), 647-653. https://doi.org/10.1038/541558-020-0797-X

Li, P.-H., & Pye, S. (2018). Assessing the benefits of demand-side flexibility in resi-
dential and transport sectors from an integrated energy systems perspec-
tive. Applied Energy, 228, 965-979. https://doi.org/10.1016/j.apenergy.2018.
06.153

Lucas, A., Alexandra Silva, C., & Costa Neto, R. (2012). Life cycle analysis of energy
supply infrastructure for conventional and electric vehicles. Energy Policy,
41, 537-547. https://doi.org/10.1016/j.enpol.2011.11.015

Ma, H., Balthasar, F., Tait, N., Riera-Palou, X., & Harrison, A. (2012). A new compar-
ison between the life cycle greenhouse gas emissions of battery electric
vehicles and internal combustion vehicles. Energy Policy, 44, 160-173. https:
//doi.org/10.1016/j.enpol.2012.01.034

Matthews, H. S., Hendrickson, C. T., & Weber, C. L. (2008). The importance of car-
bon footprint estimation boundaries [PMID: 18767634]. Environmental Sci-
ence & Technology, 42(16), 5839-5842. https://doi.org/10.1021/€s703112W

Mendoza Beltran, A., Cox, B., Mutel, C., Vuuren, D. P., Font Vivanco, D., Deetman,
S., Edelenbosch, O. Y., Guinée, J., & Tukker, A. (2018). When the Background
Matters: Using Scenarios from Integrated Assessment Models in Prospec-
tive Life Cycle Assessment. Journal of Industrial Ecology. https://doi.org/10.
111/jiec.12825

Merger, M. (1987). Transport history in france: A bibliographical review. The Journal
of Transport History, 8(2),179-201. https://doi.org/10.1177/002252668700800205

Mishra, P., Miller, E., Santhanagopalan, S., Bennion, K., & Meintz, A. (2022). A frame-
work to analyze the requirements of a multiport megawatt-level charging
station for heavy-duty electric vehicles. Energies, 15(10). https://doi.org/10.
3390/en15103788

National Grid. (2021). Future energy scenarios.

NOAA, N. (2022). Climate at a glance: Global time series, last accessed june 2022
from. https://www.ncei.noaa.gov/cag/

Oroumiyeh, F., & Zhu, Y. (2021). Brake and tire particles measured from on-road
vehicles: Effects of vehicle mass and braking intensity. Atmospheric Environ-
ment: X, 12,100121. https://doi.org/https://doi.org/10.1016/j.aea0a.2021.100121

22


https://doi.org/10.1016/j.rser.2018.09.045
https://doi.org/10.1016/j.rser.2018.09.045
https://doi.org/10.1038/s41558-020-0797-x
https://doi.org/10.1016/j.apenergy.2018.06.153
https://doi.org/10.1016/j.apenergy.2018.06.153
https://doi.org/10.1016/j.enpol.2011.11.015
https://doi.org/10.1016/j.enpol.2012.01.034
https://doi.org/10.1016/j.enpol.2012.01.034
https://doi.org/10.1021/es703112w
https://doi.org/10.1111/jiec.12825
https://doi.org/10.1111/jiec.12825
https://doi.org/10.1177/002252668700800205
https://doi.org/10.3390/en15103788
https://doi.org/10.3390/en15103788
https://www.ncei.noaa.gov/cag/
https://doi.org/https://doi.org/10.1016/j.aeaoa.2021.100121

Paredes, M., Pomilio, J. A., & Santos, A. A. (2013). Combined regenerative and me-
chanical braking in electric vehicle. 2013 Brazilian Power Electronics Confer-
ence, 935-941. https://doi.org/10.1109/COBEP.2013.6785227

Patil, M., Majumdar, B. B., Sahu, P. K., & Truong, L. T. (2021). Evaluation of prospec-
tive users’' choice decision toward electric two-wheelers using a stated pref-
erence survey: An indian perspective. Sustainability, 13(6), 3035. https://doi.
org/https://doi.org/10.3390/su13063035

Plotz, P., Wachsmuth, J., Gnann, T., Neuner, F.,, Speth, D., & Link, S. (2021). Net-zero-
carbon transport in europe until 2050.

Ritchie, H., Roser, M., & Rosado, P. (2020). CO, and greenhouse gas emissions. Our
World in Data. https://ourworldindata.org/co2-and-other-greenhouse-gas-
emissions

Ritchie, H., Roser, M., & Rosado, P. (2022). Energy, electricity mix. https://ourworldindata.
org/electricity-mix

Rottoli, M., Dirnaichner, A., Pietzcker, R., Schreyer, F., & Luderer, G. (2021). Alterna-
tive electrification pathways for light-duty vehicles in the european trans-
port sector. Transportation Research Part D: Transport and Environment, 99,
103005. https://doi.org/https://doi.org/10.1016/j.trd.2021.103005

RTE. (2019). Integration of electric vehicles into the power system in France.

RTE. (2021). Energy pathways to 2050.

Schuller, A., Flath, C. M., & Gottwalt, S. (2015). Quantifying load flexibility of elec-
tric vehicles for renewable energy integration. Applied Energy, 151, 335-344.
https://doi.org/10.1016/j.apenergy.2015.04.004

SDES. (2008). Enquéte nationale transports et déplacements (entd) 2008. https:
//www.statistiques.developpement-durable.gouv.fr/enquete-nationale-
transports-et-deplacements-entd-2008

SDES. (2019a). Bilan énergétique de la France pour 2019.

SDES. (2019b). Enquéte sur la mobilité des personnes 2018-2019. https://www.
statistiques.developpement-durable.gouv.fr/enquete-sur-la- mobilite-
des-personnes-2018-2019

SDES. (2020). Comment les francais se déplacent-ils en 2019 ? résultats de 'enquéte
mobilité des personnes.

SDES. (2021). Chiffres clés du climat, France, Europe et Monde. https://www.
statistiques.developpement-durable.gouv.fr/edition-numerique/chiffres-
cles-du-climat/

Sen, B., Ercan, T., & Tatari, O. (2017). Does a battery-electric truck make a dif-
ference? - life cycle emissions, costs, and externality analysis of alterna-
tive fuel-powered class 8 heavy-duty trucks in the united states. Journal of
Cleaner Production, 141, 110-121. https://doi.org/https://doi.org/10.1016/].
jclepro.2016.09.046

Sharma, K., & Syal, P. (2021). A review on solar powered boat design. International
Research Journal on Advanced Science Hub, 3(Special Issue gS), 1-10. https:
//doi.org/10.47392/irjash.2021.241

23


https://doi.org/10.1109/COBEP.2013.6785227
https://doi.org/https://doi.org/10.3390/su13063035
https://doi.org/https://doi.org/10.3390/su13063035
https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions
https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions
https://ourworldindata.org/electricity-mix
https://ourworldindata.org/electricity-mix
https://doi.org/https://doi.org/10.1016/j.trd.2021.103005
https://doi.org/10.1016/j.apenergy.2015.04.004
https://www.statistiques.developpement-durable.gouv.fr/enquete-nationale-transports-et-deplacements-entd-2008
https://www.statistiques.developpement-durable.gouv.fr/enquete-nationale-transports-et-deplacements-entd-2008
https://www.statistiques.developpement-durable.gouv.fr/enquete-nationale-transports-et-deplacements-entd-2008
https://www.statistiques.developpement-durable.gouv.fr/enquete-sur-la-mobilite-des-personnes-2018-2019
https://www.statistiques.developpement-durable.gouv.fr/enquete-sur-la-mobilite-des-personnes-2018-2019
https://www.statistiques.developpement-durable.gouv.fr/enquete-sur-la-mobilite-des-personnes-2018-2019
https://www.statistiques.developpement-durable.gouv.fr/edition-numerique/chiffres-cles-du-climat/
https://www.statistiques.developpement-durable.gouv.fr/edition-numerique/chiffres-cles-du-climat/
https://www.statistiques.developpement-durable.gouv.fr/edition-numerique/chiffres-cles-du-climat/
https://doi.org/https://doi.org/10.1016/j.jclepro.2016.09.046
https://doi.org/https://doi.org/10.1016/j.jclepro.2016.09.046
https://doi.org/10.47392/irjash.2021.241
https://doi.org/10.47392/irjash.2021.241

SNBC, D. (2019). Synthese du scénario de référence de la stratégie francaise pour
I'énergie et le climat - SNBC, 47.

Séder, L., Lund, P. D., Koduvere, H., Bolkesjg, T. F., Rossebg, G. H., Rosenlund-
Soysal, E., Skytte, K., Katz, J., & Blumberga, D. (2018). A review of demand
side flexibility potential in Northern Europe. Renewable and Sustainable En-
ergy Reviews, 91, 654-664. https://doi.org/10.1016/j.rser.2018.03.104

Thompson, A. W., & Perez, Y. (2019). Vehicle-to-Everything (V2X) energy services,
value streams, and regulatory policy implications. Energy Policy, 111136.
https://doi.org/10.1016/j.enpol.2019.111136

Vassileva, 1., & Campillo, J. (2017). Adoption barriers for electric vehicles: Experi-
ences from early adopters in Sweden. Energy, 120, 632-641. https://doi.org/
10.1016/j.energy.2016.11.119

Villa, D., Montoya, A., & Ciro, J. M. (2019). The electric boat charging problem. Pro-
duction, 29. https://doi.org/10.1590/0103-6513.20190067

Wang, Y., Wu, J., Chen, K., & Liu, P. (2021). Are shared electric scooters energy ef-
ficient? Communications in Transportation Research, 1, 100022. https://doi.
org/https://doi.org/10.1016/j.commtr.2021.100022

Wolfram, P., Tu, Q., Heeren, N., Pauliuk, S., & Hertwich, E. G. (2021). Material effi-
ciency and climate change mitigation of passenger vehicles. Journal of In-
dustrial Ecology, 25(2), 494-510. https://doi.org/https://doi.org/10.1111/jiec.
13067

Xu, L., Yilmaz, H. U., Wang, Z., Poganietz, W.-R., & Jochem, P. (2020). Greenhouse
gas emissions of electric vehicles in Europe considering different charging
strategies. Transportation Research Part D: Transport and Environment, 87,
102534. https://doi.org/https://doi.org/10.1016/j.trd.2020.102534

Zappa, W.,Junginger, M., &van den Broek, M. (2019). Is a 100% renewable European
power system feasible by 2050? Applied Energy, 233-234, 1027-1050. https:
//doi.org/10.1016/j.apenergy.2018.08.109

24


https://doi.org/10.1016/j.rser.2018.03.104
https://doi.org/10.1016/j.enpol.2019.111136
https://doi.org/10.1016/j.energy.2016.11.119
https://doi.org/10.1016/j.energy.2016.11.119
https://doi.org/10.1590/0103-6513.20190067
https://doi.org/https://doi.org/10.1016/j.commtr.2021.100022
https://doi.org/https://doi.org/10.1016/j.commtr.2021.100022
https://doi.org/https://doi.org/10.1111/jiec.13067
https://doi.org/https://doi.org/10.1111/jiec.13067
https://doi.org/https://doi.org/10.1016/j.trd.2020.102534
https://doi.org/10.1016/j.apenergy.2018.08.109
https://doi.org/10.1016/j.apenergy.2018.08.109

1.A Additional travel survey analysis results

To complement the analysis made in section 1.2.3, similar data on the analysis of
three trip categories are illustrated here.

First, Figures 1.8 and 1.9 show the discrepancy between the mobility habits of
urban and rural dwellers. Even if, as for average national data, the differences
between the two data sets is really small (nearly always inside the 95% confidence
interval), it appears that rural dwellers drive significantly longer distances, and get
back at home slightly earlier than in urban areas.

Then, Figure 1.10 highlight how much mobility behaviors differ in the week-
ends, with obviously much less people commute to work on these days, which
means that fewer French people finish their last trip of the day at peak return time
(17:00-19:00), with more arrival times earlier (11:00-13:00) and later (22:00-02:00)
than on week days. Additionally, distances driven on weekends are very similar
to those driven on week days (Figure 1.5), although less French people use their
car on weekends for local mobility trips.
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Figure 1.8: Comparison of individual trip distances and arrival time distribution for
the 2008 and 2019 French national surveys (filtered, only trips on working days, in
urban areas are illustrated)
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Figure 1.9: Comparison of individual trip distances and arrival time distribution for
the 2008 and 2019 French national surveys (filtered, only trips on working days, in
rural areas are illustrated)
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Figure 1.10: Comparison of individual trip distances and arrival time distribution
for the 2008 and 2019 French national surveys (filtered, only trips on week-ends

are illustrated)
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2 - Chapter 2: Review of electric vehicle uncontrolled
demand and smart charging modeling

Summary

Electric vehicles (EVs) offer an opportunity to move towards greenhouse gas emission re-
duction targets by decarbonizing the transport sector, while also reducing local air pol-
lution. However, uncontrolled and simultaneous charging of a significant number of EVs
could pose a challenge to power grids and generation-load adequacy. Studying these im-
pacts requires a predictive model of EV fleet recharging. Here we review techniques for
EV charging pattern modeling and the types of studies they are used for. This Chapter
also introduces the wide range of parameters (vehicle types, charging points, plug-in be-
havior, etc.) that modeling studies can factor in, and the EV smart charging simulation
approaches available. We conclude by proposing a framework for future research on EV
load prediction models.

2.1 Introduction

Electric mobility with low-carbon electricity generation is one of the most promis-
ing solutions for reducing (on the carbon intensity of energy lever) local air pollu-
tion (especially nitrogen oxides) and the carbon footprint of transport, which ac-
counted for a quarter of the world’s total carbon emissions in 2017. Passenger cars
and light-duty vehicles, which are the main focus of this thesis, are responsible
for more than half of total transport carbon emissions (IEA, 2021). Governments
around the world are incentivizing the adoption of electric mobility to help meet
greenhouse gas emission reduction targets. Therefore, more and more drivers
consider switching from an internal combustion engine vehicle (ICEV) to an elec-
tric vehicle (EV), either a plug-in hybrid EV (PHEV) or fully electric battery EV (BEV).
As a result, the share of EVs in fleets is widely expected to grow over the coming
decades.

EV batteries are currently mostly recharged at charging points by connecting
the vehicle to a power system (the power grid, a generating system, or another
storage system) when the vehicle is parked. Dynamic wireless charging is also
being developed, but this technology is not predicted to be a significant share of
installed chargers in the short to mid term, as this technology appears to be more
costly and less energy efficient than traditional charging stations (IEA, 2019). A ma-
jor field of the scientific literature on EVs hence concerns the interactions between
their charging behavior and the power system, both in terms of its operation and
investment planning.

The development of electric mobility could pose challenges to power systems if
most EV charging is uncontrolled at electricity peak demand. Increasing peak load
may require investments in power networks to strengthen the grid and in gener-
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ation sources to match peak demand. However, EVs also provide an opportunity
to bring flexibility to power systems through smart-charging, vehicle-to-grid (V2G)
and similar technologies (see the seminal work of Kempton and Tomi¢, 2005). This
additional flexibility can support the adequacy of power networks as they inte-
grate an increasing share of intermittent renewable energy sources (mainly wind
farms and photovoltaic panels) into electricity generation systems (Richardson,
2013).

To address interactions between different phenomena, many models have
been created to simulate the connections of electric vehicles to the grid to ob-
tain the resulting load curve for a given fleet of vehicles. This multiplication of ap-
proaches can simultaneously bring confusion and complexity if a proper roadmap
is not provided. This Chapter aims to identify which load modeling approach is
best suited for the studies needed by transmission system operators (TSO), distri-
bution system operators (DSO) and other industrial actors on the impacts of EVs
on their current and future power network.

The Chapter is structured as follow: First, we describe which data is commonly
used for simulating EV user charging behavior and to what extent the diversity of
a fleet's vehicles is taken into account (battery capacity, consumption, etc.), the
multiple plugging and charging behaviors of EV owners, and the range of power
and charging station locations available. Second, we introduce a wide range of
EV charging models along with the type of studies they have been designed for.
After highlighting the strengths and weaknesses of each model, we analyze which
are the relevant modeling aspects to incorporate in case studies on EVs and which
gapsintheliterature need to be addressed to do this efficiently. Finally, we discuss
the various methods for generating smart charging (unidirectional or with V2G)
load curves, based on mobility needs.

2.2 Mobility data and model approaches for BEV

Battery electric vehicles (BEVs) are currently developing at a high pace in several
areas of the world including China, Japan, the USA, Northern Europe and Western
Europe (IEA, 2021), which have focused most of the published research on elec-
tric mobility and its impact on power networks. Most of these countries have an
organization, often funded by the government, which surveys the patterns of car
usage and other means of transport every few years. Examples include the US Na-
tional Household Travel Survey (U.S. Department of Transportation, 2017), the UK
National Travel Survey (UK Statistics Authority, 2018) and the French Enquéte Na-
tionale transports et déplacements (SDES, 2008)". In addition, city councils some-
times conduct their own local surveys in order to advise urban planning policy
(Bowman & Ben-Akiva, 2001; Galus et al., 2012; Mehta et al., 2018; Shahidinejad et
al., 2012).

'A more recent mobility study has been carried out in France in 2018/2019 (SDES, 2019), but as
stated in Chapter 1, this work will use the 2008 French national travel survey
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Pasaoglu et al. (2013) tackled fairly specific data usage to compare EV load curve
projections based on travel data for Italy, Poland, France, Germany, Spain and the
UK in a study commissioned by the European Commission Joint Research Center
that stratifies data by country and by day of the week. The result highlights differ-
ences between zones and days studied, with for instance lower energy consump-
tion on weekends than on weekdays and higher peak power demand in Germany
than in the other countries studied.

Once the travel data has been selected, BEV mobility modeling is divided into
three steps. First, the key parameters and assumptions on the fleet of EVs and
driver behaviors must be set. Second, a mobility algorithm calculates the charg-
ing demand for ‘uncontrolled charging’ of those vehicles. In addition, a smart-
charging algorithm can then be used to compute the load curve for the corre-
sponding fleet of EVs under different charging schemes: time-of-use tariff charg-
ing, unidirectional smart charging or V2G. This framework for electric mobility
modeling is synthesized in Figure 2.1.

Electric vehicle Charging behavior

Smart charging
travel data hypotheses
Venhicle travel and i demand curves
connection algorithm
Time of use tariff
statistical ncontrolled deman
Connection time ranges 9ng unidirectionnal

of vehicles to the grid

Markov chain

EV parameters (battery
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Figure 2.1: Electric mobility modeling framework

Among what is called in the literature mobility modeling, we will focus in this
Chapter on models that generate EV load curves and connection to the grid data,
based on individual vehicle usage.

This section starts by introducing travel data usage in mobility modeling. We
then outline the scope of published mobility models in subsection 2.2.1 and go on
to discuss the main algorithm approaches in subsection 2.2.2.

2.2.1 Scope and data

Travel survey data usage

Some models use raw data from travel surveys as inputs, whereas others need
the data to be processed in the form of histograms, probability distributions or
transition matrixes. Machine learning techniques can also be used to generate
mobility data.

It appears that the distribution of departure times for the first trip of the day
of EV users commuting to work is close to a Gaussian distribution (Borne et al.,
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2018; Codani et al., 2015) whereas daily distances driven follow a log-normal distri-
bution (Borne et al., 2018; Dominguez-Navarro et al., 2019) or also approximately a
Gaussian distribution (Codani et al., 2015; Jarvis & Moses, 2019; Mehta et al., 2018;
Yang et al., 2018). The arrival of BEVs at a charging station could also be modeled
with a Poisson distribution (Dominguez-Navarro et al., 2019; Jarvis & Moses, 2019).
Tamor et al. (2013) suggest a more complex distribution for daily distances driven
(a weighted sum of exponential and normal distributions), which better fitted the
vehicle trip dataset studied. PI6tz et al. (2017) compared the distributions com-
puted for four different datasets and found that the best distribution (between
lognormal, Weibull and gamma) differs from one dataset to another.

Other studies create histograms from travel surveys as input data to their
model (Bowman & Ben-Akiva, 2001; Darabi & Ferdowsi, 2011; Pasaoglu et al., 2013;
Tan & Wang, 2014).

Another simulation method uses machine learning techniques on travel sur-
vey data in order to compute parameters of equations that model mobility (Arias
& Bae, 2016; Rolink & Rehtanz, 2013). Apart from the support vector machines
used by Arias and Bae (2016), Amara-Ouali et al. (2021) review the EV modeling
approaches from a different perspective (matching EV models and datasets), and
identify that random forests and artificial neural networks as other machine learn-
ing techniques that can be useful for EV load models. However, these machine
learning models are less transparent and mainly relevant in the short term, with
limited evolution of mobility behaviors. A further limitation of machine learn-
ing techniques comes from the need to determine whether the model should be
trained to predict the power demand very accurately at peak demand or whether
all simulation time-steps are equally critical in terms of accuracy.

From vehicle data to EV data

A common assumption made in most models in the literature is that EV owners
would reproduce the same driving behavior as if they had an ICEV. This means that
the data collected by travel surveys on a population mostly composed of ICEVs is
selected as the input to model electric mobility. Even though total cost of own-
ership (TCO) considerations may lead the drivers that drive their car the most to
switch to an electric one earlier (BEV in most cases, PHEV if they significantly use
their car for long trips; Hagman et al., 2016), most vehicle usage data available
today are surveys on ICEV drivers.

It seems difficult to prospectively quantify how much electric car usage will
differ from today's ICEV usage patterns. Some authors investigate the research
question of individual vehicle usage evolution when switching to an EV.

First, Palmer et al. (2018) reviews TCO comparisons between EVs, PHEVs and
ICEVs inseveral areas of the world, and models EV adoption in Japan, the UK, Texas
and California, each with different annual mileages, fuel prices and EV subsidies.
This publication shows that for every region studied and sensitivity analysis on
those results, the running cost of EVs is lower per km compared to ICEVs of the
same vehicle class. Indeed, once an EV replaces an ICEV, there may be a ‘rebound
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effect’ that increases the distance traveled per day. On the other hand, in some
urban areas, the transition towards more public transport and shared mobility
may lower the usage of personal vehicles.

Second, a few pilot projects led by car manufacturers on EVs involve data ac-
quisition on real-life daily usage by a set of volunteer electric car owners. Ashtari
et al. (2012) used the location of a set of 76 ICEVs which they described as “a statis-
tical population best representing the drivers” of the area studied. Neaimeh et al.
(2017) used data collected on two demonstrator projects (The EV Project and RCN)
amounting to a total of 84 private electric cars (all of them based in the UK) moni-
tored for the study. It emerged that males (90% of the volunteers), the 30-50 age
range and high-income individuals were greatly over-represented in the study.
Black and Nicholas (2018) describe another pilot project, held in a military base in
California, where 29 EVs provide frequency regulation services to the Independent
system operator through V2G.

Golob and Gould (1998) showed the bias that can occur when gathering EV trial
data, with some users potentially changing their behavior during the trial period.
However, these real-world data could be relevant for modeling EV user behavior
when ICEV owners switch to an EV. They also point out that survey answers given
sometimes differ from what respondents do.

A limited set of early adopters may not be significant enough to quantify the
differential between EV and ICEV vehicle owners regarding daily distances driven,
time of plug-in and EV owner localization (urban, suburban or rural), but it could
give insight into how EV drivers will behave in terms of connection to the grid and
charging patterns (Schauble et al., 2017).

Furthermore, the limited range of most EVs implies that, unlike with ICEVs,
long-distance trips (of a few hundred kilometers) must be completed with one
or several mid-trip charging sessions, potentially at fast-charge stations. On the
other hand, after short commuting trips, EVs will tend to be charged at home or at
public low or medium power charging points. As a result, given that the charging
approach for EVs differs from local commuting to long-distance trips, these trip
categories could be distinguished to properly model EV charging patterns.

Main modeling parameters

When it comes to modeling a fleet of plug-in EVs, there are choices and assump-
tions to make on what to simulate from the diversity of vehicles, EV-user plug-in
behavior, charging station nominal power, availability, and location. Moreover,
EV consumption is temperature-sensitive (higher power consumption in a low-
temperature environment due to electric heating and slightly higher consumption
in a high-temperature environment due to air conditioning; Yuksel and Michalek,
2015), and mobility needs differ between a working weekday and a weekend day,
and between periods of the year, so the time range of the simulation has to be
selected accordingly.
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Types of vehicles modeled In 2020, the IEA identified a cumulative total of more
than 360 EV, plug-in hybrid electric vehicle (PHEV) and BEV models available on the
market (IEA, 2021), constituting a wide range of battery capacity, consumption and
maximum rated power for grid connection. However, most studies select only
one of these vehicle types and consider the EV fleet to be composed of copies of
that car model. Other studies do not even take into account battery capacity and
consider that each EV has a large enough battery to cover all its trips each day and
charges the energy consumed during that day before the first trip of the following
day (Alonso et al., 2014; Bowman & Ben-Akiva, 2001; Galus et al., 2012; Mullan et al.,
2011).

A more diverse EV fleet can be found in Chiche et al. (2017), Mehta et al. (2018),
Pasaoglu et al. (2013), Soares et al. (2011), and Weiller (2011). Taking into account
a wider range of vehicle types (PHEVs and BEVs with different battery capacities)
induces longer simulation times and more complex input data, but may prove
relevant to investigating how much the results of studies on smart charging and
V2G are sensitive to the composition of the fleet.

In order to evaluate the impact of the electric mobility sector on power sys-
tems, it seems necessary to study the charging behavior of all types of EVs simul-
taneously (PHEVs, city BEVs, sedan BEVs and luxury BEVs). The charging of a large
number of low-capacity PHEVs may affect the value for the electrical system of
smart charging large BEVs. Larger batteries (typically more than 50 kWh) mean
higher smart charging and V2G potential, but also users that may not connect
their vehicle to the power grid every day. Small batteries (less than 30 kWh) may
imply daily charging and therefore synchronization of peak power demand.

Charging and connection behaviors modeled Most studies on V2G consider
that each vehicle is connected when parked at a place where a charging point is
available. However, the trajectory of growth in battery capacity and vehicle au-
tonomy implies that many drivers will not need to recharge their EVs every day
to meet their mobility needs. As a result, studies on the charging of EVs (Alonso
et al., 2014; Bowman & Ben-Akiva, 2001; Darabi & Ferdowsi, 2011; Grahn et al., 2013;
Jarvis & Moses, 2019; Lojowska et al., 2012; Rolink & Rehtanz, 2013; Shahidinejad et
al., 2012; Yang et al., 2018) also simulate drivers that only connect every few days,
when their battery charge drops below a given threshold.

Regarding smart charging, even if the optimal load pattern on a week of sim-
ulation may sometimes mean postponing EV charges to the following day, most
studies consider that when a driver connects their vehicle to the grid, they want, if
possible, to start their next trip with a fully-charged (or >90%-charged) battery (see
for instance Dallinger et al., 2011; Hodge et al., 2011). This constraint, considering
EV owners' charging-pattern behaviors, may reduce the benefit of smart charging
if the simulation time range is long enough.

Charging points modeled Currently, along the development of EVs in the
world, charging points are being built in various environments. According to
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IEA (2019) and Spédttle et al. (2018), the European Commission recommends one
public charging point for every 10 EVs in the fleet. France, for instance, follows this
recommendation, as there was 25,000 installed public charging points for around
250,000 BEVs and PHEVs in early 2019%. Among those public chargers, more than
75% are installed in public locations (i.e. public car parks and city-centers) with
the rest in industrial or shopping-center car parks. Each charger has a maximum
rated power at which the EV can recharge. The maximum rated power of most
public chargers is between 7 kW and 40 kW, but highway service stations are cur-
rently being equipped with fast chargers up to 350 kW (Dominguez-Navarro et al.,
2019). If equipped with a private parking spot and a power socket, EVs can also
be recharged at home at between 3 kW and 7 kW (in France, rated powers may
differ from a country to another) depending on socket type. It is to be noted that
not every EV battery can be charged at a fast charger (especially small batteries).

Some EV load models focus on only one type of charging point, and many of
them only take into account residential charging, a key assumption being that
every EV user has access to a charging point at home on a private parking spot
and never recharges their vehicle elsewhere (Alonso et al., 2014; Codani et al., 2015;
Dallinger et al., 2011; Grahn et al., 2013; Mullan et al., 2011; Soares et al., 2011; Tan &
Wang, 2014). Results from most of these studies show charging occurring mainly
at night, while the vehicle is parked at home. This kind of assumption is suited to
studying the aggregation of EVs for smart charging (including V2B and V2G) or the
integration of EVs in smart grids or distribution grid systems. Other studies aim
to evaluate the grid integration of public charging stations (Dominguez-Navarro
et al., 2019; lacobucci et al., 2018) where EVs can charge throughout the day.

On the other hand, some models are capable of simulating EV users who can
recharge their vehicle at different locations and possibly at different power levels
(Chiche et al., 2017; Druitt & Fruh, 2012; Steen et al., 2012; Weiller, 2011). Nonethe-
less, these models require assumptions to decide where and when an EV will be
charged when a charger is available at various locations (home, work and public
chargers for instance). In order to go into further details about EV modeling from
a charging infrastructure operator point of view, see the literature review work of
Metais et al. (2022).

Temporal range of simulations

Most BEVs sold today have a battery capacity between 40 kWh (i.e. Nissan Leaf)
and 100 kWh (i.e. Tesla model X), which means an autonomy of a few hundred
kilometers. Moreover, car manufacturers are conceiving electric cars with larger
and larger driving ranges, as range anxiety (along with price and the need for
charging points) is identified as one of the main barriers to further development
of electric mobility (Vassileva & Campillo, 2017).

2However, one should keep in mind that this 1 charge for 10 EV recommendation is arbitrary,
and the ideal EV/charger ratio depends on the density, share of individual housing and other pa-
rameters.
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The driving range of the average EV meets the mobility needs of an average
driver for a period of a few days, which means that not every electric car needs
to be recharged every day. However, much of the scientific literature studies the
behavior of electric car drivers using 24h-long simulations. Even though mobility
needs differ for working days and weekends (Druitt & Fruh, 2012; Pasaoglu et al.,
2013; Soares et al., 2011), many papers aggregate working days and weekend travel
survey data (Alonso et al., 2014; Darabi & Ferdowsi, 2011; Lojowska et al., 2012; Tan
& Wang, 2014).

Soares et al. (2011) reports that 24% of EV drivers surveyed plug their vehicle
into the grid “when convenient and the driver has time", and 23% charge “only
when needed”. As a result, a part of the fleet is not recharged with the same
probability every day and is recharged more frequently on weekend days than on
working days. A more complete and accurate temporal model of mobility needs
can be gained using longer simulation time periods and distinguishing between
working days and weekend, as attempted by Pasaoglu et al. (2013).

Once the input data (freshly created or from a national travel survey) has been
gathered and the scope of simulation (in terms of types of vehicles, charging pat-
terns, charging points, size of fleet, etc.) has been defined, the algorithm part of
the model processes the input data in order to compute the temporal mobility
needs. The section below reviews the options for algorithm architecture.

2.2.2 Algorithm structure approaches

Several simulation methodologies can be found in the literature. Daina et al. (2017)
classified these models into three main types: activity-based modeling (ABM), di-
rect use of observed activity-travel schedules (DUOATS) and Markov chain models
(MCM). In fact, the type of model often reflects the field of research the model is
used in. This section presents the model classes and the studies they are mainly
used for, and the qualities and specificities of each model class are highlighted.

Monte Carlo statistical models

Monte Carlo statistical models (MCSM), correspondind to DUOATS introduced
previously, rely on travel-survey data in the form of probabilistic distributions or
histograms. The relevant data for such models are statistics on distances driven
and departure times. After assumptions have been made about the size of the EV
fleet and which vehicles, charging points and charging locations to model, MCSM
independently simulate each vehicle in the fleet.

For a given vehicle, a distance and a departure time are randomly generated
from the corresponding distributions (Monte-Carlo simulation). Based on these
parameters, the algorithm derives the temporal period when the vehicle is con-
nected to the grid. In most studies, all these parameters are generated indepen-
dently from each other. Moreover, MCSM models are scalable: if a large enough
fleet of EVs (in terms of diversity in the input data) is simulated, then the demand
data of a significant EV fleet of another size can be computed proportionally.
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Macro-MCSM models for fleet aggregation studies The MCSM approach is
commonly used for EV aggregation studies when only the total power demand for
the charge of an EV fleet is required. Some papers working under assumptions
introduced previously study the impacts of an aggregated fleet of EVs on power
grids. Codani et al. (2015) applied the MCSM approach and averages for 100 Monte
Carlo simulations of 100 vehicles, and Borne et al. (2018) simulated a fleet of 3000
vehicles in order to assess the potential of EV usage for frequency regulation.

Wu (2018) designed a slightly different approach. Instead of randomly generat-
ing travel data, their algorithm uses five pre-built mobility patterns. One of these
patterns is selected for each vehicle, and then an uncertainty value is generated
from normal distributions for the departure time, arrival time and daily mileages
in order to account for the randomness of EV connection to the grid. Dallinger et
al. (2011) modeled a fleet composed of PHEVs and BEVs. To ensure their algorithm
simulated PHEV and BEV behaviors similarly, they modified the daily distances
histogram of PHEV so that it only generates the distances driven in electric mode.

Some other models of the literature do not change the histogram for PHEV and
apply a coefficient of distances driven in full electric mode. The MCSM approach
was used on different EV fleet sizes: by Steen et al. (2012) to set fleet size according
to the distribution grid typology, and by Mehta et al. (2018) in a sensitivity study
to determine the maximum fleet size connectable to an industrial car park, given
network limitations.

Localized MCSM models for DSO and smart grid studies MCSM models are
also well suited to studying the integration of EVs in smart grids. In addition to
randomly generating (from histograms or distributions) departure times, arrival
times and daily mileages, some models also generate the localization of the park-
ing spot of every vehicle modeled, so that local curves can be derived.

Neaimeh et al. (2017), for instance, randomly selected EV owner connection
points in a distribution network based on data on the residential topology of the
area. Similarly, Jarvis and Moses (2019) applied the same methodology for multiple
EV fleet sizes across the area studied. Jiang et al. (2014) assigned each transformer
a number of EVs proportional to the population connected to that transformer,
and then randomly selected in-area households possessing those EVs.

Apart from methodologies to generate the location of EV owners, research has
also studied EV diffusion in the population based on socio-economic parameters
(Gnann et al., 2018; Ramos-Real et al., 2018). It has been shown that market dif-
fusion trends differ from region to region and that income level, environmental
concerns and charging infrastructure available are key parameters driving willing-
ness to change to an EV.

Travel distance-departure time correlation MCSM models Some models try
to go beyond the approaches presented above, by keeping the correlation be-
tween travel data in the survey results instead of randomly selecting all the pa-
rameters of the trips of a given car (daily mileage, departure time, arrival time,
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localization, consumption) independently.

For instance, Grahn et al. (2013), Hodge et al. (2011), Jiang et al. (2014), Mullan
et al. (2011), and Wu (2018) focused on correlating EV arrival times and the times
plugged into the grid with local residential electricity consumption, which gives
a more realistic study of distribution grid electricity flows along the EV develop-
ment trajectory. Uncontrolled EV charging was found to induce higher peak loads
on power grids than in simulations with independent arrival times and residential
consumption. On the other hand, Ashtari et al. (2012), Lojowska et al. (2012), and
Tan and Wang (2014) studied the correlation between distances driven and trip
departure/arrival times of travels. The section below outlines the rationale and
methodologies for taking this correlation into account in electric mobility model-
ing.

According to a study on data from the French national travel survey (SDES,
2019), distances driven (in France) over a whole day are negatively correlated to
first departure time of the day and also positively correlated with arrival time at
home (Figure 2.2). Lojowska et al. (2012) reached the same conclusions using data
from the Dutch National travel survey. Ashtari et al. (2012) also found (using US
National travel survey data) that the daily distances driven by EV users leaving
early in the morning (6pm-7pm) are higher than those of the whole dataset.
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Figure 2.2: Daily mileage/departure and arrival time correlation. Data from (Min-
istere de la Transition Ecologique et Solidaire, 2008)

The methodology used in Ashtari et al. (2012) is based on pre-processing the
travel survey data in order to generate additional conditional histograms to serve
as input data to their algorithm. Instead of a global daily mileage histogram for
each trip, they processed many daily mileage histograms with each one corre-
sponding to a range of departure times. They also populated the algorithm with
more arrival time histograms with each one corresponding to a departure time,
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daily mileage range.

Tan and Wang (2014) applied a different method to generate travel parameters
for a given vehicle. To begin with, departure and arrival times from the residential
parking spot of vehicles were considered as “two independent events”. Departure
times and arrival times were each divided into 5 classes from “very early” to “very
late”, and daily mileages were divided into 5 classes from “small” to “large”. From
the input data, a 5X5X5 Matrix is then built that contains the conditional probabil-
ity that a daily mileage belongs to the distances class d, given that the departure
time belongs to the dep class and the arrival time belongs to the arr class.

The main advantage of this approach compared to Ashtari et al. (2012) is that
the algorithm is more efficient when based on a smaller input travel data volume,
but it does require much more data processing beforehand.

Lojowska et al. (2012) investigated the dependency between daily mileages,
departure times and arrival times. They applied a more mathematical approach
based on copula theory (applied to the energy sector, as described in Papaefthymiou
and Kurowicka, 2009) that computes a correlation matrix between the variables
studied. As they found a significant correlation between the travel data of two
consecutive home-to-home trips on the same day, they separated the input data
into two groups: daily single home-to-home trip and double home-to-home trips.
For each group, they generated a normal copula multivariate distribution func-
tion, and the simulations followed the principles of MCSM, where departure time,
arrival time and distance traveled are generated from the corresponding multi-
variate distribution function.

Specific MCSM models Liu and Etemadi (2018) follow a different approach for
modeling EV charging demand. Based on travel survey data, a driving profile vec-
tor was derived for each respondent, composed of the distance driven on each
time-step of the day. A k-means clustering algorithm is then used on those vec-
tors to generate a limited set of mobility profiles (selected as the centroid of each
cluster). To model charging behavior, instead of a stochastic process of randomly
generating travel data from each EV, the charging algorithm processes the data of
the mobility vector clusters. This approach implicitly accounts for the correlation
between daily mileages, departure times and arrival times, and it is also computa-
tionally significantly faster than most mobility models introduced in this Chapter
(as only a limited set of representative mobility profiles are processed).

Markov Chain models

Markov chain models (MCM), as introduced by Soares et al. (2011), follow a dif-
ferent approach. Instead of relying on random selections of daily mileages and
departure times for each vehicle, the input data takes the form of transition prob-
abilities. This methodology models vehicles using “states”. For each vehicle, atime
vector composed of the state of the vehicle is computed. Soares et al. (2011) intro-
duced the following states: in movement; parked in a residential area; parked in
an industrial area; parked in commercial area.

37



The simulation of the charge of an EV fleet follows a single rule after initial-
ization of the states of every vehicle for the first time step of the simulation time
range: the state of a vehicle at a given time step t is derived from the conditional
transition probabilities of time step t, given the state of the vehicle at time step t-1
(principles of a Markov chain).

Rolink and Rehtanz (2013) designed a mobility model that follows the same
principles but with a semi-Markov process approach that includes sojourntimesin
addition to state-to-state transition probabilities in the algorithm input data. Their
model tends to address two limits of the Soares et al. (2011) model: the coherence
between all trips in a day for a given vehicle, and the distribution of the duration
of a vehicle being parked at given areas.

Grahn et al. (2013) also built a MCM, but in addition to state of the vehicle,
they also studied the state of the EV owner and they added residential patterns.
They decompose the state “parked at home” into several possible states: “sleep-
ing”, “cooking”, “washing”, “TV", and so on. Hence, the total residential curve can
be derived for every individual studied, including EV charge but also powering
other appliances. This model needs much more input data than previous models,
including residential data which is out of the core scope of study of most other
works on electric mobility.

In the literature, the Markov chain approach is mainly used for generating un-
controlled EV demand profiles that are separated according to charging point type
(residential, commercial, work). Even if MCM model well the randomness of the
behavior of EV owners and give additional information on localization of the vehi-
cle (currently driving, at home, at work, parked at another location), they seem to
be less common in the literature than Monte Carlo statistical models. This might
be linked to their longer computation times (one random generation of state for
each time-step of every vehicle) and the data processing needed before use, which
might make them less suited for prospective or sensitivity studies.

Agent-based models

EV charging patterns can also be generated from agent-based or activity-based
models (ABM). Agent-based models aim to model the whole transport sector,
which means multiple means of transport with their modal shares considered,
and road traffic is modeled so that car speed is slowed by traffic congestion. As
described by Bowman and Ben-Akiva (2001), ABM consists in deriving trip demand
from activity demand instead of taking trip demand data as an input of the model.
This class of models, which are more complex than the approaches introduced in
the section above, entails much longer computation times and a geographically
limited area of study (typically a single urban area). In addition to travel data, the
topology of the transport network needs to be added to produce a localized sim-
ulation. Additional data on agents' activities, household locations and means of
transport available are also necessary.

ABMs give more realistic results in terms of temporal coherence of agents’
travel patterns, and they can inform urban planning studies on the impacts of
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transport infrastructure development (modal shift from personal vehicles to pub-
lic transport) on the transport sector and more accurately model how new mo-
bilities, such as shared autonomous vehicles, will affect mobility behaviors, and
impact power systems (lacobucci et al., 2018). ABMs in the transport sector lit-
erature include MATSIim (Balmer et al., 2006) and TRANSIMS (Hodge et al., 2011),
which are open-source programs for implementing agent-based use cases. Other
authors have developed their own ABM (Bowman & Ben-Akiva, 2001; lacobucci et

al., 2018).
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approach | required
. Borne
Macro Good accuracy for | Provides average EV _
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Table 2.1: EV modeling algorithm approaches comparison
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Huang et al. (2012) and Igbal et al. (2021) describe the four-step model, a subcat-
egory of ABMs, also used for other transport modeling studies than EV develop-
ment. In this approach, each trip computation is divided into the following steps:
first, generating the purpose and the distance of the trip; second, generating the
departure and target geographic locations; third, selecting the transport mode
suitable for the trip; and fourth, computing the optimal path.

Beheshti and Sukthankar (2012) showed that ABMs (with additional survey
data) are more accurate than MCMs for forecasting the occupancy of parking lots
in a small study area. However, when the data is limited to ‘realistic’ data instead
of extensive survey data, ABMs do not provide significantly better results than
other modeling approaches.

At a larger scale, i.e. a country or a zone with tens of millions of inhabitants,
ABM are quickly limited in terms of number of vehicles and size of the transport
infrastructure network that can be modelled.

The model types presented in this section are summarised, along with their
strenghs and weaknesses in Table 2.1 and in Figure 2.3.

Computation speed

per vehicle
In
A Creasfng " )
ACCurg, Patigy
Macro Monte 4
Carlo statistical

models
Markov Chain Spatialized Monte

models Carlo statistical

models
Agent—based
models
MNeed for extensive

travel data

Figure 2.3: Comparison of mobility modeling approaches (in terms of computation
speed and need for data

2.3 Fitting BEV transport models into power system
operator charge models

So far, we have only discussed modeling approaches that consider EV charging to
be solely determined by traveling habits. However, such charging strategies, re-
ferred to as "uncontrolled charging", can impact power systems. Smart charging
approaches have also been developed, not only to reduce the strain of EV charg-
ing on power system planning and operation, but also for EV charging to provide
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value for the power system. Here we describe the motivations for optimizing EV
charge loads, outline the charging approaches to be considered, and present the
optimization methods found in the literature.

2.3.1 Charging approaches

The literature reports several ways that smart charging BEVs can deliver several
services to power systems (Thompson & Perez, 2019):

+ Grid congestions. EV charging could congest distribution and transmis-
sion grids and overload power converters, especially at peak demand times.
Shifting the load of EVs towards a time when the network is less constrained
is an efficient solution to limit grid congestion and reduce the need for in-
vestments to reinforce the power grid. To incentivize EV owners to do so,
low charging tariffs at night seems to be the easiest option to implement
(Alonso et al., 2014; Gonzalez Venegas et al., 2019; Hodge et al., 2011; Steen et
al., 2012). Moreover, considering the development of decentralized solar PV
generation, EV charging at midday could help solve grid congestion linked
to peak solar PV generation.

* Frequency regulation. Network frequency needs to be kept close enough
to its nominal value to avoid power grid crashes. To do so, frequency reg-
ulations systems, with their related markets, have been designed in most
countries. EVs seem to be better geared to participating in frequency con-
tainment reserve (FCR) markets when they are aggregated into large enough
fleets (Borne et al., 2018; Codani et al., 2015). Indeed, power related services,
such as FCR, do not require the vehicle batteries to provide much of their en-
ergy stored. As a result, the depth of discharge of the vehicles providing FCR
is limited, and so is the cycling degradation of the vehicle battery (Thompson
& Perez, 2019).

+ Voltage regulation. Power networks also have to deal with voltage drops,
especially at peak load, and voltage rises, especially at peak generation, in
distribution grids. However, few studies have focused on EV contribution to
address this problem (Yong et al., 2015).

* Supply and demand adequacy. Controlling EV charging load is also seen
as a way to provide demand-side management to balance power systems
(Druitt & Fruh, 2012; Liu & Etemadi, 2018; Pantos, 2012). Shifting EV charging
times could help correlate charging sessions with the lowest hourly electric-
ity prices possible, and thus reduce charging cost for EV owners.

+ Distributed energy resources (DER) coupling/local consumption. Along
with promoting EVs, governmental incentivization also promotes the devel-
opment of photovoltaic panels in order to reduce the carbon footprint of
the energy sector. As a result, a share of EV owners might also become
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“prosumers” with solar panels on the rooftop of their house. The synergy
between photovoltaic generation and EV recharging is described in Clastres
et al. (2021) and Hoarau and Perez (2018). Smart bidirectional charging could
then be used to enable these users to maximize the share of their locally-
generated power used to power their house and their vehicle, storing energy
at midday in the battery of their EV and discharging it back into their house
at peak demand in the evening (Dominguez-Navarro et al., 2019; Eid et al.,
2016; Wu, 2018).

Several charging approaches have been studied and developed in an effort
to address the key power system challenges. From the most basic to the most
complex, the approaches to be considered when building a mobility model are:

* Uncontrolled charging, the base case for most studies, in which the EVs
recharge to full state of charge, at maximum power, as soon as they are
connected to a charging point.

+ Time-of-use (TOU) tariff charging. TOU tariffs consist in applying lower
electricity tariffs in off-peak periods, which is the simplest way to incentivize
EV owners to delay the charge of their vehicle so that no additional power is
taken from the power system at peak time. In order to avoid simultaneous
demand increase from all TOU tariff users, a low tariff hours signal is sent
with a different time offset to different user groups. Two key advantages of
TOU tariff schemes over other smart charging approaches is that they need
less infrastructure and are more easily accepted. In fact, they only require
an electrical device that receive time-of-use on/off signals or a smart meter,
which are are currently being rolled out in most developed countries.

* Smart unidirectional charging. Smarter charging patterns other than TOU
charging have been studied (Galus et al., 2012; Liu & Etemadi, 2018; Weiller,
2011; Yang et al., 2018). They belong to the same group as TOU charging
as they rely on delaying the charge of the EV towards periods when mar-
ket prices are lower or when the generation mix is less carbon intensive.
However, they require a communication device between an EV charging ag-
gregator agent and the electricity meter, charging point or EV. The EV owner
should provide the information of the expected departure time of their next
trip to ensure that their vehicle will be sufficiently charged. The aggregator
can then manage the charging constraints of every vehicle in their fleet to
minimize fleet charging costs and even provide other flexibility services in
the electricity markets (Hodge et al., 2011; Liu & Etemadi, 2018).

« Smart bidirectional charging. V2G, as introduced by Kempton and Tomi¢
(2005), is considered the EV charging approach that maximizes the flexibil-
ity provided to power system by electric vehicles. It works in much the same
way as smart unidirectional charging, except that the charger used is bidi-
rectional (and thus, more costly than unidirectional charging points). As a
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result, the vehicle can discharge its battery to enable more flexibility to the
grid, for instance by flattening the residual load curve (Alonso et al., 2014),
generating electricity when prices are high, for balancing its power systems
(Druitt & Frah, 2012; Pantos, 2012) or providing frequency regulation services
(Borne et al., 2018; Codani et al., 2015; Tan & Wang, 2014). Another charg-
ing approach that uses bidirectional chargers is vehicle-to-home (V2H) or
vehicle-to-building (V2B), where the bidirectional charger is used to provide
electricity to the building. Depending on the tariff structure selected, pow-
ering the building with the EV battery when electricity market prices are too
high can reduce overall electricity expenses. When coupled with solar pan-
els, V2H/V2B can also maximize the share of local energy consumed by the

building.
Time-of-use Smart
. unidirectio- | V2H/V2B V2G
tariff
nal
Grid congestion | X X X
Frequency
. X
regulation
Voltagg X X
regulation
Supply and
demand X X X X
adequacy
Local' DER X X
coupling

Table 2.2: Charging approaches suitable for flexibility provision

2.3.2 Optimization problem formulation

Modeling how smart charging will be implemented starts by setting an optimiza-
tion problem, and often additional data needs to be added. Some studies focus
on optimizing the whole system, while others focus on individual actors that aim
to minimize their costs. The following sections describe the optimization objec-
tives and problem formulations found in the literature.

In most approaches, all EVs are aggregated as one virtual battery in the opti-
mization problem, while the required state of charge, connection time and discon-
nection time take the form of constraints in the optimization algorithm. However,
Pantos (2012) split the EVs in their simulation into several fleets with similar mobil-
ity behaviors. As a result, mobility constraints are more precisely considered, and
it becomes possible to identify which mobility behavior group has the greatest
value in the electricity markets.
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Power grid sizing optimization

A share of the models studied focus on minimizing the impact of EV recharging on
grid reinforcement costs. These studies do not take electricity market data into ac-
count but instead add the EV load generated from their mobility model to residual
consumption (consumption minus local renewable generation) of the area stud-
ied. This makes it possible to study the impacts of EV charging on the sizing of
distribution grids and converters (Hodge et al., 2011; Mehta et al., 2018; Wu, 2018)
and to implement smart-charging techniques to minimize these impacts (Alonso
et al., 2014; Mullan et al., 2011). V2G could even be used as a peak-shaving solution
(Alonso et al., 2014; Galus et al., 2012; Tan & Wang, 2014). He et al. (2013) described
a methodology for coupled optimization of transportation and power networks
in a static time framework. Further progress hinges on gathering enough data
to extend this methodology to several-day simulations and using more diverse
electricity generation mixes with intermittent energy sources.

Price-based optimization

Many studies focus on valuating smart charging approaches from the consumer
point of view or the whole power system point of view. In theory, aggregators at-
tempting to minimize the charging cost of their fleet from the spot market would
need a price forecasting model. However, most smart charging modeling stud-
ies have used either historical annual average spot market price data (Borne et
al., 2018; Codani et al., 2015; Pantos, 2012) or historical data on selected days
(Dominguez-Navarro et al., 2019). The main limitation of selecting historical mar-
ket data to evaluate savings through smart EV charging is that EVs are implicitly
considered price-takers on the market. This is a reasonable assumption for study-
ing the introduction of a few EVs. Nevertheless, for prospective studies where EV
charge becomes a significant share of total consumption, the impact of EVs on
prices (as well as on gas supplies in the current context) might not be negligible.

To go beyond using historical data for EV charging studies, Dallinger et al. (2011)
and Druitt and Fruh (2012) used a market model (production cost model) that sim-
ulates which power generating units will be producing electricity during the sim-
ulation (including ramping constraints, minimum power and minimum up-time
constraints of some of the generators). These production-cost model simulations
found that larger EV fleets participating in electricity markets implies lower smart-
charging revenues.

Specific optimizations

A few other models mention other optimization algorithms than those described
in the previous subsections. Steen et al. (2012) showed that price-optimal and
network-optimal load curves differ strongly from each other and from the uncon-
trolled load curve. As a result, a gap to address in the literature is simultaneous
network and price optimization, potentially with network limitations as a hard
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constraint and price minimization as a soft constraint in the optimization algo-
rithm. As stated in this section, many services to power systems can be provided
by electric vehicles, through different charging approaches. Here we outline the
key smart-charging modeling approaches and establish the link between meth-
ods used and studies performed. The following section focuses on guidelines for
using charging methodologies.

Peak-shaving

easier to implement than
a network simulation

might differ from the
global optimum

Smart
cha.rgl.ng . Strenghs Weaknesses References
optimization
point of view
. Need data and | Hodge et al,
Evaluate the impacts of EV eed .g €
.. | modeling of the | 2019; Mehta
Network-based | charge on the power grid . .
: electricity  network | et al., 2018; Wu,
reinforcement needs :
considered 2018
Minimize reinforcement | The local optimum | Alonso et al.,
costs of transformers, | of EV smart charging | 2014; Galus

et al., 2012; Tan
and Wang, 2014

Historical
market price

Strong analysis of
EV charging costs
as  price-taker,  easily

accessible market data

Not suited
for long-term
prospective studies

Borne et
2018;
2012

al.,
Pantos,

Production
cost model
integration

Enables the  analysis
of EV  diffusion in
various generation mix
evolution scenarios,

evaluate the effects of
EV  smart-charging on
prices

Necessary to gather
software and data
for power system
modeling

Dallinger et al.,,
2011; Druitt and
Frih, 2012

Table 2.3: Optimization approaches for EV smart charging

2.4 Model use cases

We have reviewed the scientific literature on mobility modeling approaches and
methodologies. Next, we turn to identify the approaches best suited to the studies
of EVs. First, we describe the modeling approaches recommended for large-scale
studies of EVs (TSOs and big aggregated EV fleets). Second, we focus on more local
studies from a smart grid or distribution system operator perspective. Third, we
give the recommended modeling approaches for other specific study topics found
in the literature. The recommended model characteristics for each study topic
presented are summarized in Table 2.4.
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2.4.1 Mobility model requirements for transmission system
planning issues

Transmission System Operators (TSO) manage electricity transmission systems
and are in most countries responsible for the generation-load adequacy. TSOs
conduct prospective research to guide the development of their network and the
power generation mix, and the impact of EVs on their systems are being studied
(RTE, 2019). Rious et al. (2011) showed that forecasting connection of energy re-
sources to the grid helps to reduce the investment needed to adapt the power
network, by adopting a proactive behavior, given the investment dynamics to
upgrade the power grid. For long-term studies, TSOs may need to evaluate the
sensitivity of optimal investment strategies to the size of the EV fleet, the evo-
lution of battery capacities, and the share of EVs adopting smart-charging tech-
nologies (RTE, 2019). The method required of a TSO study thus becomes an EV
charging model that considers a mix of vehicles, charging strategies, rated power
and charging locations. On top of that, studies on power flows need to derive lo-
cal load curves from the global load curve. This TSO-scale geographical approach
is not well covered in the electric mobility modeling literature.

Recommended approaches for transmission system mobility modeling

When a national travel survey is available, it is often the best data source avail-
able for trip characteristics (departure times, distances driven) at a national scale.
Data from demonstrator projects could also be added. If possible, departure
time-arrival time and daily mileage correlations should be considered for greater
accuracy. As seen above, modeling the whole electric mobility ecosystem of the
zone studied is advised, and thus study as many vehicle types, battery capacities,
charging points, connection behaviors and mobility profiles as possible. More-
over, they should aim to distinguish between local trips and long-range trips. For
those reasons and given the scale of the study zone and the size of the fleet to be
modeled, Monte Carlo statistical modeling emerges as the best suited modeling
approach for TSOs.

Simulations can also be run on an annual time range to capture the temperature-
related sensitivity of EV consumption and annual patterns of local trips (between
working days, weekends and holidays) and differentiate long-distance trips ac-
cording to annual travel activities (economic and touristic). Departure times/daily
mileage correlations can be studied to achieve more accurate results. Finally,
for some specific network studies, more local load curves are necessary, either
via a top-down approach, which means building a distribution key to downscale
the national load curve, a bottom-up approach, based on dividing input data into
several specific zonal subsets, or a combination of bottom-up and top-down ap-
proaches. One of the gaps that TSO studies need to address is the integration of
electric mobility in a realistic and complete model for the entire electrical system.
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Recommended approaches for other aggregated fleet modeling studies

As stated earlier, much of the scientific literature focuses on estimating the value
of EV aggregation on electricity markets. Like TSO models, aggregation studies
need good temporal accuracy, which implies that an ideal model for EV aggrega-
tion studies would use Monte Carlo statistical modeling on data from a national
travel survey, potentially considering departure time/daily mileage correlation.
Longer simulation time periods than daily simulations and precise market data
are also advised. However, for this type of study, it is often reasonable to run a
case study on local mobility with a single charging point location (residential) and
a single maximum rated power of charging points, working to the assumptions of
systematic connection of EVs to the grid.

Furthermore, historical price data is an appropriate input to price-based opti-
mization for smart-charging algorithms when studying the short-term impacts of
EVs on power systems. However, a more complex market simulation tool is rec-
ommended for prospective long-term studies (with high shares of EVs) in order to
account for the impacts of EVs on electricity prices3. Additionally, another issue
to address in EV fleet aggregation studies is aggregator behavior in an uncertain
future and in competition with other aggregators. Both these topics require addi-
tional game theory or uncertain market models, which we have not covered here.

2.4.2 Model use case: A smartgrid/distribution system per-
spective

Recommended approaches for a EV / other DER coupling adequacy study

The flexibility tied to EV charging is often seen as a way to maximize the share
of locally-generated electricity used in a given community. The requirements of
a mobility model to study this kind of setting depend on the target zone. For in-
stance, when studying a residential neighborhood, it may only be necessary to
compute residential charging (at a single rated power) for local mobility trips. In-
deed, EV owners in an area with a high usage of other DER (especially photovoltaic
panels and stationary batteries) are incentivized to connect and charge their vehi-
cle as much as possible on chargers within the area, in order to get the most out
of their DER equipment. Moreover, the study should also account for the corre-
lation between solar panel ownership and electric car usage, if such data is avail-
able. Consequently, either agent-based or Monte-Carlo modeling seems to be
suited for these studies, each with their strengths and weaknesses, as identified
in section 2.2. Ultimately, the optimization algorithm aims to highlight local-scale
synergy between EVs and other DERs (photovoltaic panels, other distributed gen-
eration systems). In case the neighborhood where a smart-grid is implemented

3We can expect that load shifting from peak demand times to time periods when marginal
generation technology is less costly will result in lower prices at peak times, and lower overall
operating cost of the electric system than uncontrolled charging (RTE, 2019)
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is fully residential, most EVs might not be connected during peak solar produc-
tion around mid day, so stationary batteries might be necessary to complement
PV generation.

Recommended approaches for network and power flow analysis

Studying flows on the power grid implies a computation of total consumption,
which means that EV demand has to be added to electricity consumption by other
electrical appliances. Moreover, a load curve must be derived for each household
inthe area studied, as an input to the distribution grid power flow algorithm. Here,
ABM is the most suitable way to generate mobility behavior with good spatial ac-
curacy and in a city-scale system. EV connection time ranges could also be derived
from the residual residential consumption data, which can be done by correlat-
ing the surge in residential consumption with EV arrival times (Grahn et al., 2013).
Multiple charging behaviors and smart charging modes could also be applied. Fi-
nally, in the EV smart charging algorithm, power flows on the grid must be the
major constraint, but price data could be added as a secondary soft constraint to
model how aggregators would manage the charging of their fleets.

2.4.3 Model use case: Other specific perspectives

Other types of case studies on electric mobility require specific mobility model-
ing. Studies on the development of autonomous cars in cities (lacobucci et al.,
2018) or public charging networks require a specific focus on the spatial position
of recharge needs and the maximum power demand. This makes ABM the most
suitable approach, as it thoroughly accounts for spatial accuracy and coordina-
tion of the vehicles of the fleet in order to match mobility needs. Furthermore, it
may be advisable to model diverse charging power, as vehicles may be recharged
quickly if their next trip is urgent but slower if their next trip is not for a few hours.
Finally, week-long simulation with specific data for each day is recommended in
order to capture the specificities of each day of the week in terms of peak travel
demand time and intensity.

The methodologies for locational optimization of public charging infrastruc-
ture, which is not the core topic of this document, are reviewed in Shen et al.
(2019).

Studies on sizing highway fast chargers require a specific dataset (either long
distance travel survey or highway traffic data) in order to evaluate mid-trip charg-
ing needs for long-distance EV travel. Here we recommend MCSM with a spatial
derivation of the global results from highway traffic data.

Additionally, from a policy maker perspective, studies on incentivizing either
public EV charging network, or higher battery capacities require mobility modeling
of the usage of public charging points, either globally with MCSM or spatially (at
the scale of a conurbation) with ABM.

Finally, some studies address EV charging demand at specificindustrial or com-
mercial car parks, possibly in interaction with DERs. For these studies, the focus
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should be on implementing the right constraints for the optimization algorithm
in terms of time spent in the car park, based on the travel data available. Correla-
tion between distances driven (and thus energy needed) and arrival times could
be studied for further accuracy. Multiple EV types (BEVs, PHEVs), battery capaci-
ties and charging behaviors should also be studied in order to model the diversity
of EVs potentially recharging in the car park studied.

2.5 Conclusion

This Chapter reviewed the approaches employed in the EV charging literature re-
garding input data, assumptions, mobility modeling and load management mod-
eling. The electric mobility literature has amply studied and documented local
models focusing on a small area with high spatial accuracy and global models
producing aggregated results with good temporal accuracy. However, there are
still gaps that leave room for improvement in terms of EV modeling. 4

First, a common limitation of many EV studies is the lack of reliable data on
EV trips and charging behaviors. Most of the data currently used comes from na-
tional travel surveys, which in fact consist mainly of ICEV data. EV behavior could
differ from ICEV usage. This lack of data may soon be filled via increased collabo-
ration between car manufacturers, transport infrastructure companies, telecom
companies, other industry players, and academics. More feedback data on EV
usage would also help on this topic. Moreover, pilot project data on real-life EV
usage might not be representative of a large EV diffusion in the mid to long term,
because of the behavior difference between early adopters and mainstream cus-
tomers. Prospective studies on sustainable mobility should also try to take into
account the transition towards a more sustainable mobility (more teleworking,
car sharing and modal shift towards active travel modes and public transport).

Second, there is a need to develop mobility models on longer simulation time
ranges that 24 hours. Indeed, weekly simulations would enable to better model
the users that only occasionally connect their vehicle to the grid. Even longer simu-
lations, on a whole year for instance, could serve to model the impact of tempera-
ture on EV electricity consumption and account for the variability of long-distance
traffic during the year and different patterns of local mobility demands between
working days, weekends and holidays, if enough data is available.

Third, even if spatial modeling is well studied at a distribution system level, a
modeling scale that seems to be lacking in the literature is the national operator
scale, with a national load curve divided into regional/smaller zone load curves. A
top-down approach based on socio-economic data and/or additional local travel
data could be a solution to address this gap. If enough travel survey data is avail-
able, then a bottom-up approach may prove valuable.

Fourth, studies on EV load management valuation would benefit from being
integrated into global power system simulations to overcome a common assump-

4The main findings of this Chapter, have been accepted for publiction in REI, n°178, 2022
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tion in the literature that EV are price-takers on electricity markets. This point
seems especially relevant for prospective long-term studies, in which EV stand to
represent a significant share of the vehicle fleet.

Lastly, a final area where we believe that improvement is needed is the devel-
opment of a global model of electric mobility considering as many vehicle charac-
teristics, driver behaviors, smart charging approaches, charging point rated power
and locations as possible. There is also a need to distinguish between local mobil-
ity and long-distance trips, due to their inherent constraints (such as the need for
mid-trip fast-charging in the case of long-distance trips). An ambitious mobility
model like this could ultimately aim to include other vehicles than plug-in elec-
tric ones, such as hydrogen or biofuel vehicles, and other mobility segments than
personal cars, such as public transport or goods transport, or even disruptive new
forms of mobility, in order to study how these vehicle types can share the charg-
ing infrastructure and capture the whole mobility sector to assess its interactions
with the energy sector.
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3 - Chapter 3: Electric vehicle prospective demand
modeling

Summary

In order to help decarbonize the transport sector, electric vehicles (EVs) are expected to
develop in the following years, and the integration of a large number of them could chal-
lenge electricity systems. This Chapter aims to develop a methodology to study the de-
mand and connection times of EVs according to several connection behaviors of EV owners
(referred to as systematic, when necessary and when convenient). Our model also gen-
erates parameters to be used as constraints to model EV smart charging. Subsequently,
this framework is applied to a case study of high penetration of electric vehicles in Europe
at the 2040 time horizon. Results show how much EV parameters and connection to the
grid behaviors impacts the shape of EV demand curves and availability for EV demand
flexibility.

3.1 Introduction

As discussed in the previous Chapters, the prospective integration of a large fleet
of EVs between now and 2050 can be seen as both a challenge and an opportu-
nity for power systems, and thus warrants further research. On one hand, simul-
taneous uncontrolled charging of many EVs around times of peak demand could
overload the grid and reduce its capacity to match supply to total demand, or even
create local grid congestion. On the other hand, EVs can also be seen as a source
of demand-side flexibility that could be offered on various electricity markets and
help further decarbonize the electricity generation system in addition to the trans-
port system (Dallinger et al., 2013; Druitt & Fruh, 2012; Pasaoglu et al., 2013; RTE,
2019).

EV charges could interact with several aspects of the electricity sector (Thomp-
son & Perez, 2019): hourly dispatch and supply-demand adequacy (Druitt & Fruh,
2012; Liu et al., 2014, Pantos, 2012), grid flows (at distribution scale as well as at the
national scale in settings where there is non-uniform geographical distribution of
EV usage and renewable energy sources) and sizing of transformers (Alonso et al.,
2014, Gonzalez Venegas et al., 2019; Hodge et al., 2011), intra-day balancing mar-
kets, coupling with other distributed energy resources (Dominguez-Navarro et al.,
2019; Eid et al., 2016; Hoarau & Perez, 2018), and frequency regulation (Borne et al.,
2018; Codani et al., 2015). Our literature review on these research topics highlights
that the topics of hourly dispatch and grid flows are mostly tackled at local scale
(focusing on a small smart grid, or the distribution grid) and that the topics of
short-term markets and grid frequency are usually studied in the current system
but rarely to a prospective horizon (2030 and beyond). This Chapter focuses on
providing a methodology to study EV patterns based on travel survey data and is
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structured as follows. First, we introduce the steps of our methodology in section
3.2, before illustrating the model with prospective EV demand results for France
at the 2040 time-horizon in section 3.3, then concluding and identifying the uses
of our model in section 3.4.

3.2 Electric vehicle pattern modeling

This section presents the methodology selected for generating uncontrolled
charge data for a large EV fleet, and the diversity of data and parameters that
need to be compiled and collated in order to run the model and generate EV
recharge data for multiples scenarios.

3.2.1 Selection of the EV demand modeling approach

Many mobility models have been developed over the past few years to study the
development of EVs and their interaction with the transport infrastructure and
the electricity supply sector, at local scale or at national scale. Daina et al. (2017)
classifies these models into four main categories (‘Summary travel statistics mod-
els’, ‘Direct use of activity travels schedules’, ‘Activity-based models’ and ‘Markov
chain models’), which have been reviewed in the previous Chapter in regards to
our research objectives.

In order to study the impacts of a large fleet of EVs on electricity supply-demand
adequacy at national scale, results from across a whole year and at a time-
resolution similar to the electricity markets studied (typically, an hourly time-
resolution) are required. It also has to be possible to study various EV develop-
ment and daily usage scenarios. Finally, the results need to be aggregated per
class (vehicle type, charger location, connection behavior and so on). The spatial
accuracy of results at local scale is a further priority.

For these reasons, we selected a methodology based on ‘Direct use of activ-
ity travels schedules’ but with the addition of generating random schedules from
travel survey data. This provides a more representative picture of vehicle usage
while enabling the study of different electric mobility growth scenarios.

Our methodology has a similar spirit to the one recently proposed by Gaete-
Morales et al. (2021), which was designed to take in to account more precisely
the physical characteristics of the vehicles (mass, electric motor, ancillary equip-
ment). Due to our specific wish to address EV integration into electric dispatch
simulation tools, our proposed model has less detailed representation of vehi-
cles’ physics, and a stronger focus on grid availability (demand per time window,
total connected capacity per charging point type, etc.).

3.2.2 Building input data from travel survey analysis

Our model is built using data from the French 2008 National travel survey (SDES,
2008). In this dataset, 20,178 French households were surveyed and provided full
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information on all their trips over a short time period (one or two days). For each
trip, data available includes departure time, arrival time, distance travelled, means
of transport, day of travel, purpose of journey (for instance, to get to work, go to a
commercial area, pick somebody up). Additionally, notable information about the
respondent’s profile are also given, i.e. type of home area (city center, suburbs,
rural area) and socio-professional category (student, employed, unemployed, re-
tired). Although illustrated in this work based on French datasets, our method can
be applied to other areas if such travel data is available.

For this study, we filtered the trip data in order to eliminate incomplete data
and outliers and kept only trips with personal vehicles. The remaining data was
then divided between “local mobility” (less than 8o kilometers away from home)
and “long-distance trips”. According to this definition, mobility usages with daily
distances driven longer than 8o kilometers but in a single area (such as taxis, local
delivery services and other professional activities involving personal vehicles) are
included in the scope of what is described here as 'local mobility'.

In-depth analysis of figures from the 2008 survey revealed several character-
istics of local mobility: on average, rural drivers drive longer distances, at higher
speeds, leave home in the morning and get back home in the afternoon signifi-
cantly earlier than those in city centers and suburbs.

In addition, we also noted a difference in trip purposes and distances driven
between employees and other socio-professional categories, with most trips by
employees done in the morning to get to work and in late afternoon to get back
home, whereas student, unemployed and/or retired drivers to trips for various
purposes that were spread much more through the day. Similar results are found
by Schuller et al. (2015) using data from the German national travel survey. Finally,
we found a distinction between trip data for weekdays versus Saturdays and Sun-
days, with fewer drivers commuting and shorter distances travelled on weekends
compared to weekdays.

As a result of this analysis, we separated the travel data by type of residential
area (urban, suburban, or rural), socio-professional category (employed or other)
and by type of day (weekdays versus weekend day). This enabled us to study
of the impacts of different EV adoption and charging infrastructure development
scenarios based on these data inputs.

Beyond the direct use of a travel survey dataset

The observations in this section are based on the French travel survey dataset,
whose results can be slightly modified in load curves generated from our model
(e.g. to modify the total distance driven per year or the share of long distance trips
driven with EVs). However, itis also possible to study the effect of major changesin
the nature of trips made, whether in the number of trips per vehicle, the distance
traveled per trip, or a change in trip schedules. These changes may come from
policy incentives, such as increasing teleworking and different urban planning,
or the rise of car sharing and autonomous vehicles, among other changes. We
identify three main methods for accounting for such changes in traveling habits.
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First, if the changes are radical, it is possible to simply redefine the trips one
wishes to model entirely. This approach seems very arbitrary, and should there-
fore be limited to sensitivity analysis applications.

Second, it is possible to modify an existing mobility survey in order to tran-
scribe proposals for governmental measures, often formulated in a clear and sim-
ple way (e.g. reduce the speed by 20km/h on freeways or reduce the distance
travelled by private car by 10%). This approach has the advantage of being rather
easy to implement, and sticking to the proposed measures.

Third, a more comprehensive and complex approach is to use a more de-
tailed travel model to generate a new travel dataset. Activity-based models that
take into account transportation network (as presented by Axhausen and Garling
(1992), for example) can be used to study the effect of changes in urban planning.
Modal choice modeling through logit models can also serve to study such mobility
changes, without necessarily modeling the road network (see for example Boehm
et al. (2021) for the case of freight transport).

In this manuscript, we have not applied such methods, given the very little
change in the total distance travelled by private vehicle proposed by the SNBC
(2019) in France (-2% between 2015 and 2050), which does not alter the results
relative to our research questions.

3.2.3 Overview of the EV model developed

The approach adopted for this study is based on 5 consecutive steps, which are
detailed in the following subsections: first, generation of the parameters of each
EV; second, generation of the trip schedules of these EVs for the simulated time-
range; third, computation of the evolution of each vehicle’s location and consump-
tion throughout the simulation; fourth, simulation of the connection of EVs to the
grid and the subsequent uncontrolled electricity demand; and fifth, aggregation
of the results for every simulated EV into groups of results. This methodological
framework is depicted in Figure 3.1.

As vehicle and trip parameters are randomly generated, a large number of EVs
need to be simulated (at least 10,000 vehicles) in order to achieve robust statistical
significance, following the principles of Monte-Carlo simulation.

The following sections present the analysis of travel survey data to generate
trip input data for the model, and the 5 steps in our methodology.

3.2.4 Generation of vehicle parameters

The first step in our EV charge modeling approach is to generate the technical pa-
rameters of the EVs in the simulation. For each vehicle, we used input data and
assumptions to randomly generate their type (BEV, PHEV, FCEV), battery capacity,
charging behavior (detailed in section 3.2.7), residential area, socio-professional
category, and charging points available (only at home, only at work, only at public
charging stations, or a combination of these). The distributions of the previously-
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Figure 3.1: Global framework of the proposed methodology

described parameters serve as inputs to this vehicle generation process to en-
sure that the vehicle fleet generated is statistically representative of the estimated
national fleet. All these parameters are not generated independently from each
other, as PHEVs for instance tend to have a shorter electric drive range than BEVs,
and most charging points at a workplace are only available to employees. Pl6tz et
al. (2018) show empirically how much annual distances driven differ from a PHEV
model to another, but in this work, we consider that PHEV battery capacity is not
correlated to the distances driven with the vehicle.

3.2.5 Trip schedule generation

Once the vehicle parameters are set, the second step consists in generating the
travel schedule of the vehicles throughout the simulation. For each vehicle and
for every day of the simulation (typically 365 days), we randomly draw from travel
data a set of trip parameters corresponding to type of day, type of home area
and socio-professional category of the EV owner. The trip departure times and
distances of these trips are drawn together as a set of trips from travel survey
data in order to take into account the correlation between these parameters. A
percentage of the vehicles are not used every day, in line with data from the travel
survey data, so there is a probability of no trips assigned in addition to travel-
survey trips.

One way to generate a greater diversity of travel patterns is to add white noise
to the travel survey data (for instance +10% on distances and £30 min on departure
times), but this was found to have negligible effect on EV demand results with the
data used here, as the number of respondents is high enough for good statistical
representativeness. However, as not enough data is available on the weekly driv-
ing patterns of EV drivers, the days of travel are drawn independently for every
given EV (keeping the structure of week composed of 5 working days, Saturdays
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and Sundays, drawing trips accordingly). This approximation does not appear to
have a significant impact on charging results aggregated at national scale.

3.2.6 Vehicle consumption and location modeling

The third step of our methodology is to compute the evolution of EV battery dis-
charge for mobility use and location for each vehicle, at a time-step length cho-
sen as an input of the model. Depending on the study (hourly electricity markets,
short-term markets), the time-step could range from one hour to a few minutes.
The values for EV consumption and location are derived directly from the travel
schedules and consumption of the vehicles (see equation 3.1). EV consumption
varies as function of several factors, including driving speed, outdoor tempera-
ture and use of ancillary equipment (lora & Tribioli, 2019; Yuksel & Michalek, 2015).
To simplify, we only take into account the impacts of temperature and driving
speed in the model.

Consumptione, »(t) = distancedriven., , (t)xconsumption,e .ty (temperature(t), speede, »(t))

(3.1)

where:

Consumption., ,(t) is the consumption on the road of EV n at time step t (kW)

distancedriven,, ,(t) is the distance driven by EV n at time step t (km)

consumptionerim is the energy consumption per km (kW/km)

temperature(t) is the temperature at time step t (national average) (°C)

speed,, »(t) is the average driving speed of EV n at time step t (km/h)

After the location and consumption of vehicles has been computed, step four
involves modeling EV owner behavior in terms of connection to the grid. As stated
above, our model is able to study several vehicle types interacting with the elec-
tricity system, namely BEVs, PHEVs and FCEVs.

For BEVs, we consider total driving range by not assigning local daily mobil-
ity distances longer than their drive range (indeed, EV users that drive very long
daily distances will not buy an EV with lower driving range than these distances).
As a result, the vehicle battery is sufficient to cover their travel schedule in the
simulation.

If the vehicle is a PHEV, we assume here that its usage in terms of mobility
patterns will be similar to a combustion-engine vehicle. We also consider that
PHEV owners maximize the share of their distances driven in electric mode, even
though ex-post analysis of 100,000 PHEVs from Pl6tz et al. (2020) suggested that
PHEVs are not currently used this way. However, this assumption is justified here
by assuming that in the long-term, PHEV users will be incentivized to minimize
their combustion-engine usage in an effort to cut their transport-related carbon
footprint. Additionaly, when studying the electrical system, this assumption is the
PHEV usage that maximizes total EV demand, which is what the electrical system
needs to accommodate.
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Finally, FCEVs are modelled is much the same way as PHEVs but without the
possibility to plug into the power grid, which means that in our simulation we only
compute their total hydrogen demand.

3.2.7 Grid connection and uncontrolled charge modeling

Several papers (Enedis, 2020; Gonzalez Venegas et al., 2019; Soares et al., 2011) have
shown the diversity of EV owner behaviors: some connect their vehicle daily, while
others only connect it when the state of charge is low. This is largely dictated by
access to a charging point, with a share of EV owners possessing a charging point
at home while others rely on the public charging infrastructure. As a result, we
introduced three connection-to-grid behaviors, summed up in Figure 3.2.

Systematic
connection

The vehicle has
accessto a
charging point

v

The vehicle is
connected and gets
fully charged

Connection when
needed

The vehicle has
accesstoa
charging point

Is the state of
charge below the
threshold ?

v

Yes

Is the state of charge
high enough to get to
the next charging
point ?

h

Connection when
convenient

The vehicle has
accessto a
charging point

Is there a time step of a
Saturday/Sunday before
the next planned trip ?

Y

Yes

Is the state of charge
high enough to get to
the next charging
point ?

h 4

connacted and gets

The vehicle is not
connected to the
charging point

The vehicle is

fully charged

connected and gets

The vehicle is not
connected to the
charging point

The vehicle is

fully charged

Figure 3.2: Flowchart of the three connection-to-the-grid behaviors studied

First, the systematic connection behavior, in which the vehicle is connected
every time it is parked, and a charging point is available.
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Second, the connection when needed behavior, defined as follows: the EV
owner only connects their vehicle to the grid if a charging point is available and its
state of charge is below a threshold SOC,,, defined either as a distance that the
vehicle can drive before the battery is depleted (typically sokm) or a percentage
of its remaining battery charge (typically 30%).

Furthermore, every time the vehicle gets to a charging point, it also connects
if the remaining state of charge is not enough to drive in electric mode until the
next charging point on its route schedule. This condition ensures that BEVs can
match their trip schedule and that PHEVs can maximize their electricity-powered
distances.

Third, the connection when convenient behavior, in which EVs are only con-
nected to the grid on weekends (randomly drawn between Friday evening, Satur-
day or Sunday), as the behavioral studies cited above show that a significant share
of EV owners report connecting their vehicle once a week and when convenient.
Similarly to ‘connection when needed’, we ensure that EVs are also plugged into
the grid if they cannot reach the next charging point in electric mode.

3.2.8 Long-distance trips

In the analysis of travel survey data, we separated local mobility data from long-
distance trips, described in the French travel survey (SDES, 2008) as trips further
than 8o km from home. Long-distance trips thus differ from other shorter trips
by their inherent characteristics. A long-distance trip may exceed the drive range
of some BEVs and most PHEVs in electric mode. However, fast chargers are de-
veloping along main road corridors in order to facilitate EV development (Funke
et al., 2019; Neaimeh et al., 2017).

Thus, in our model, BEVs are able to connect and charge in the middle of a long-
distance trip. The three charging behaviors introduced in the previous part share
the same behavior during a long-distance trip: if the state of charge of the battery
drops below a threshold SOCpin ong distance (typically 15 + 5%), then the BEV stops
and recharges to SOCpay long distance: SOCrin,long distance CONsiders both the availability
of fast chargers (as an assumption as no spatial modelling and geographic location
of chargers are considered here) and the behavior of drivers that anticipate the
mid-trip charge to avoid fully depleting their battery. SOCmax ong distance Stands for
the point when the charging speed of the battery decreases, approximately 90%,
as measured by Mies et al. (2018).

We consider that due to the high cost and waiting time of highway fast-
chargers, PHEVs will not recharge their electric battery during a long-distance
trip.

The share of long-distance trips among all trips, i.e. 20% of distances travelled
in the French national travel survey data, implies that the amount of long-distance
trips each day within the EV charging model may not be large enough to yield
good statistical significance of this specific trip category, especially in mid-trip fast-
charging results and the distribution of trips through the year. To overcome this
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limitation, we can either substantially increase the number of vehicles in the sim-
ulation (at a cost of much longer computational times) or, as a preferred solution,
generate mid-trip charging patterns of EVs at fast-chargers (in which every vehi-
cle is assigned to long-distance trips) in another simulation before incorporating
these results into the earlier simulations.

3.3 Case study: EV uncontrolled demand and con-
nection to the grid data in France at the year-
2040 time horizon

3.3.1 Data and assumptions

For our case study, we selected a prospective analysis of the integration EVs in the
European electricity system in 2040. This time horizon corresponds to a turning
point for the transportation sector, as several European countries and cities have
planned to ban the sales of new thermal vehicles by then. Our focus will be made
on the vehicle demand in France, based on the travel data sets of the French travel
surveys.

Vehicle parameters

Based on the most ambitions EV development scenarios from RTE (2019) and SNBC
(2019), the selected parameters for the vehicles in our case study are gathered in
Table 3.1. EV represent around two thirds of all personal vehicles in France by this
time horizon. The battery capacities are expected to increase in the coming years,
in order to overcome the EV development barrier of drivable range.

Number of thermal vehicles in France | 12.1 Million
Number of electric vehicles in France | 24.4 Million

BEV share in the vehicle stock 85%
PHEV share in the vehicle stock 15%
FCEV share in the vehicle stock 0%

Battery capacity of BEVs (mean value) | 78 kWh
Standard deviation of BEV battery

' 16 kWh
capacity
Battery capacity of PHEVs (mean 15.6 kWh
value)
Standfard deviation of PHEV battery 3 kWh
capacity

Table 3.1: Vehicle parameters in the selected scenario, at the 2040 time horizon,
data adapted from RTE (2019)
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Charging infrastructure available

Regarding the charging stations available, we selected results from RTE (2019) at
the 2040 time horizon. The power repartition and availability of those charging
points are detailed in Tables 3.2 and 3.3. This repartition implies that, in this study,
a greatshare of EVdemand occurs at or around the household location, compared
to the recharge at work and at other places. We also consider that every EV is able
to be charged at every charging point (no incompatibilities accross EV brands as
observed nowadays). The charging infrastructure on highways is not limited in
our case study, in order to compute an upper bound of EV demand on higways,
even if some chargers may not be used every day of the year and thus not be
profitable (which is a topic out of or scope of analysis).

3.7kW | 74 kW | 22 kW 50 kW 130 kW | 350 kW
g:‘fﬁg‘ﬁfﬂ:ts ator 30% 70 % 0% 0% 0% 0%
\(/:vrc‘)fig'”g points —at | g, 60% | 26% | 7% 0% 0%
oo Mon e s o
Eihg‘;rv%'a”yi points on | g 0% 0% 17% 47% | 36%

Table 3.2: Charging power breakdown per location, data adapted from RTE (2019)

Others
Emplovees Professional (students,
ploy vehicle unemployed,
retired)
Only at home 49% 35% 88%
Only at work 15% 53% 0%
Only. at public % 0% 0%
locations
At home and at work | 22% 0% 0%
At ho.me and at public 4% 4% 12%
locations
At Wgrk and at public 4% 4% 0%
locations
Both at home, at
work and at public | 5% 4% 0%
locations

Table 3.3: Availability of charging points and usage per EV owner profile, data
adapted from RTE (2019)
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3.3.2 Prospective EV demand curves

In this section are presented the results of uncontrolled EV charge, from the model
described in section 3.2. All those results are based on data from the French Na-
tional travel survey (SDES, 2008).

According to this travel survey, and considering that electric mobility diffusion
is faster for vehicle users that drive the longer distances per year (as shown by
Plotz et al. (2020) for PHEVs), we estimate that the average BEV is driven on av-
erage 13,908 kilometers per year (11,241 km from local trips and 2,667 from long
distance trips), while the average PHEV is driven on average 14,970 kilometers per
year (11,241 km from local trips and 3,729 from long distance trips). From the travel
survey data, and our assumptions on EV consumption as a function of tempera-
ture, the computed average consumption for local trips is 0,141 kWh/km, while,
due to higher speeds on long distance trips, the computed average consumption
for those is 0,234 kWh/km. On average, the total yearly energy demand per BEV
reaches 2.21 MWh, while total yearly demand per PHEV reaches 2.46 MWh. Sec-
ondly, the share of PHEV energy consumption in thermal mode from our results is
only 10.5%, as PHEVs are assumed to maximize their usage of electricity for their
trips, compared to around 63% from current empirical data, worldwide (Pl6tz et
al., 2020), especially because of company cars. This share of distances driven in
thermal mode could evolve, because of new regulations and increasing fossil fuel
prices. As a result, the total electricity demand from the 24.4 Million electric ve-
hicles reaches 53.9 TWh in 2040, which represents around 12% of current total
electricity consumption in France.

EV demand per area

In Figure 3.3, we compare the power demand from EVs at different areas that
have been selected from the travel survey. During working days, uncontrolled
peak demand occurs later in the evening in the major cities, than in other urban
areas, and even more than in rural areas. However, vehicle users from rural areas
travel greater distances per day during the week and a higher speed, so the weekly
consumption per EV is 28% higher in rural than urban areas (35 kWh per week
on average for major cities dwellers, 37.4 kWh for other urban dwellers and 48.1
kWh for rural dwellers). This result implies that, for a given amount of EVs in the
fleet, the diffusion in the society of those vehicles has a notable effect on the
total electricity demand of the transport sector. For the rest of our case study, we
assume that the spatial distribution of EVs among areas (rural, urban and major
cities) in 2040 is similar to the current distribution of all individual vehicles.
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Figure 3.3: Uncontrolled EV demand for different residence location of EV owner,
every vehicle follows the systematic connection behavior

Demand per charging point location

Thenin Figure 3.4, we show the results in terms of charging location. During work-
ing days, charging at work occurs mainly in morning and early afternoon hours
(from around 08:00am to o1:00pm), while charging at home is more spread dur-
ing the day, with a peak from 07:00pm to 10:00pm). Public charging is spread out
more evenly throughout the day, even though it only stands for a small share of
EV charge. During Saturdays and Sundays, the total and peak energy demand are
lower than on working days, under "systematic" and "connection when needed"
behaviors, as less vehicles are driving on these days. Moreover, the share of vehi-
cle owners going to work on weekends is rather low compared to working days,
and so is the demand from chargers at work.
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Demand for the charging behaviors studied

Finally, we compare charging behavior of EV owners, as described in section 3.2.7,
namely the systematic connection, connection when necessary and connection
when convenient behaviors. We selected 50% and 5% as two variations for the
state of charge limit of the connection when necessary behavior. The 50% state
of charge variation stands for EV owners that anticipate the charge of their vehi-
cles, while the 5% state of charge variation means that the vehicle are connected
as little as possible to match their mobility needs. In addition, we can note that
the connection behavior in which EV users charge their vehicle when the state of
charge gets below 50% should provide results similar to a last minute connection
behavior, but with EVs with smaller batteries.

Fast chargers could also emerge in urban areas as an option for EV charge of
vehicle owners that do not own a private parking spot. Funke et al. (2019) show
that the development of a fast charging infrastructure could turn out less costly
for the society than an increase in battery capacity, in order to overcome the driv-
ing range barrier for EV development. Indeed, we also simulated a connection
when necessary behavior in which EVs are connected to fast chargers (130 kW)
when their state of charge is not sufficient for the trips of the following day, which
replicates the refueling of thermal vehicles.

Figure 3.5 illustrates the share of BEVs connected to the grid per behavior stud-
ied. We identify that at night, around 90% of BEVs in "systematic" connection

75



mode have access to a charging point in our scenario. Moreover, only around 5%
of BEVs in connection "when needed" (with the connection threshold at the state
of charge of 5% of battery capacity) are connected each day, which means that
on average, with 76 kWh batteries, BEVs need to connect less than once a week.
Additionally, we identify that EV users in the connection when convenient mode
connect mainly on Friday evening, and throughout the weekend. As a result, if a
significant share of EV users tend to connect on weekends, peak demand of 2.5
kW per EV are to be expected on Fridays and Saturdays in the evenings.

100%

75% 1 |

50% 1

Share of BEVs connected to the grid

0%

Monday Tuesday Wednesday  Thursday Friday Saturday Sunday Monday
= Systematic connection Connection when needed (5% S0C)
Connection when needed (50% SOC) — Connection when convenient

Figure 3.5: Evolution of the share of BEVs connected to the grid during the week

We also compare BEV and PHEV connection behaviors in Figures 3.6 and 3.7.
First, for BEVs, it appears that the shape of the demand curve differs a lot from a
connection behavior to another. For the "systematic" connection and the connec-
tion "when needed" with fast chargers, most vehicles are fully charged in less than
an hour, which means that demand of a large share of BEVs is synchronized right
after peak trip times (around 08:00am, at mid-day and mostly between o5:00pm
and 09:0o0pm, when most vehicles are driven back home). The connection behav-
ior using fast chargers is, as expected, the behavior with the highest peak demand
(0.85 kW per vehicle, at 07:00pm), but notably, the shape of the load curve and
peak demand appear to be quite similar to systematic connection of BEVs at much
lesser charging powers. The demand of the connection "when needed" behavior
at regular charging power (3.7 kW or 7.4 kW) is much more spread through the
night, as the full charge of vehicles takes several hours for BEVs with large bat-
teries. On the other hand, for PHEVs, we see little difference between charging
behaviors in Figure 3.7, with most vehicles finishing their charge before 11:00pm
in the evening, because of smaller batteries. This result shows that as PHEVs are
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assumed to maximize the share of their distance travelled in electric mode, they
are being connected nearly every day in this model. Even if an averaged week
day is illustrated in Figures 3.6 and 3.7, no significant differences are observed
between each working day. The main difference being the lower consumption on
weekends, as illustrated in the previous Figures 3.3 and 3.4.

On average, in order to match their mobility needs, EVs need to be connected
35 minutes per day. Figure 3.8 illustrates for each behavior studied the amount of
time that EVs spend connected to the grid while not charging. It appears that EVs
connected to a charging point on a "systematic" basis spend 25 more time than
needed connected to the grid (these vehicles being "not connected" a share of the
time, when they are driven or away from an accessible charging point). As a result,
these vehicles offer a great window of opportunity for smart charging by delaying
the beginning of their charging session. However, other connection patterns only
show limited potential for the delay of the charge of batteries, as connecting an
EV only "when needed" means that the vehicle stays connected 2 or 3 times more
than necessary on average. Were these vehicles smartly charged, we could avoid
charging them during peak load, but we could not shift the whole charging session
during the lowest electricity price hour as the process takes several hours. The
only exception to that statement being the connection when convenient behavior
on week-ends, in which the window for delaying the charge of the vehicle appears
similar to the systematic connection behavior.
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Figure 3.6: BEV demand curve on the average week day, for various connection
behaviors
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The case of long distance trips

There is still some uncertainty on how EVs will be used for long distance trips. On
the one hand, Jakobsson et al. (2016) show that EVs are more suited to households
that own at least two cars, which would not use their EV for long distance trips.
On the other hand, in the medium term, scenarios with widespread EV adoption
(around two thirds of all individual vehicles in our scenario) imply that a significant
share of households would only have access to an EV for their long distance car
journeys.

In order to incorporate these observations in our case study, we assumed that
PHEVs are used as much as thermal vehicles but never charge their battery mid-
trip, BEVs below 50 kWh are not used for long distance trips, and 50% of BEVs
above 50kWh are used for long distance trips, given that 35% of households own
several vehicles in france, as indicated by INSEE (2017b).

Additionally, the major parameter to study EV long distance related demand
is proper data about the repartition of those long distance trips during the year,
which national travel surveys are usually not built to provide. As a result, we es-
timated the amount of long distance trips each day from another study, which
relates the share of people away from their home each day (INSEE, 2017a). Re-
sults on the long distance related EV demand through the year can be found in
Figure 3.9. We highlight that long distance trips are concentrated in peaks at the
weekly (more trips on weekends) and annual scale, as found in PI6tz et al. (2017).
The highest peak demand days are found at Summer holidays and around Christ-
mas, with smaller peaks in Spring.
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Daily total long distance demand (GVvh)
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Figure 3.9: EV long distance demand through the year (from July 1st to June 31st
for better readability of the Christmas peak)
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3.4 Discussion and conclusion

EVs are set to develop in the following years, and could possibly reach a large
market share of the transport sector by 2050. In this Chapter, we reviewed the
estimated demand curves and availability at charging stations of one of the most
ambitious EV development scenario in France, to the extent of 53.9 TWh in 2040,
for the charge of 24.4 Million electric vehicles, which is around 8% of total pro-
jected electricity demand in France by that time.

In order to analyze the effects of EV diffusion on power systems, we propose
in this Chapter a methodology to generate travel patterns and EV connection
and demand data from travel survey data and assumptions on EV characteristics.
This methodology enables the study of a large diversity of vehicles (BEVs, PHEVs,
FCEVs, from different segments), vehicle ownership (rather employees commut-
ing to work, company-owned or other), vehicle usage (local mobility and long dis-
tance trips), charging stations available (at various locations and rated power) and
connection behaviors (systematic or less frequent).

Ideally, the results presented here would be validated by empirical data, de-
rived from real world EV demand measurements. Unfortunately, no such open
source high quality individual EV charging data is currently available. And even
even if such data were available, there might not be representative on EV usage
at the 2040 time horizon. However, the load curves obtained through our model
do not seem too dissimilar from the results of other studies of the literature ref-
erenced in this Chapter.

Our case study highlights that the profile of EV adopters among the population
(urban or rural dwellers; employees or other socio-economic classes) has an im-
pacton EVdemand times and total energy consumption. EV demand is 28% higher
in rural areas (compared to urban), and employees trips are more homogeneous
than others, which implies higher uncontrolled peak demand at 18:00-19:00 if EVs
are mainly used for commuting to work.

The low usage rate of public chargers also questions the profitability of such
chargers without public funding.

Finally, our analysis suggest that the connection behavior of EV users, from
daily connection to connection only when necessary is a key factor of smart charg-
ing potential and peak demand mitigation. Incentivizing EV owners that are willing
to provide flexibility to connect their vehicle as much as possible would be neces-
sary for maximizing the flexibility provided.

This analysis only enables the study of uncontrolled vehicles and relies on the
methodology presented on the next Chapter to study the smart charging modes
of EVs, using the connection to the grid data computed in this Chapter.
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3.A Summary of EV model input and output data
and program parameters

In this appendix are listed the input parameters of the mobility model, along with
their source:

* Inside the model, definition of macro parameters

- Number of vehicle modelled in a Monte-Carlo simulation

- Number of Monte-Carlo simulations (in order to parallelize the simula-
tion)

- Time step of simulation (typically hourly or 30 minutes)

+ Macro data on EV parameters, sourced from the scenario of EV diffusion
selected

- Number of every vehicle type in the fleet (BEV, PHEV, FCEV)

- Battery capacity of every vehicle type (average and standard deviation),
in kWh

- Repartition of connection behaviors inside the population, per vehicle
type (between "systematic" connection, "when needed" or "when con-
venient")

- Consumption per km of the vehicles studied, depending on driving
speed and outside temperature

- For long distance trips, the minimum battery capacity of vehicles suited
for such trips, an the battery level threshold when BEV stop mid-trip and
resume their trip (typically 20% and 80% respectively), which models the
availability of charging points.

+ Macro data on charging infrastructure, sourced from the scenario of EV
charging infrastructure diffusion selected

- Availability of charging points (as a percentage of vehicles that have
access to a charging point) per location (at home, at work and public
charging points

- Maximum charging power, in kW, per charging point location
- Charging efficiency, the ratio between electricity withdrawn from the
grid and stored inside batteries
 Trip data, sourced from our analysis of travel surveys

- Setof trips for local mobility, per day (working day, Saturday or Sunday),
per zone (rural, urban or largest cities) and per trip purpose (going to
work, other purposes, either 2 or 4 trips per day). For each set, the list
of daily distances, departure times and arrival times of each trip
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- Set of trips for long distance, per trip purpose (holiday, work or visiting
someone). For each set, the list of daily distances, departure times and
arrival times of each trip

- Description of the daily purposes of daily mobility (e.g. for the purpose
"commuting to work, 2 trips", first trip from home to work and second
return trip towards home).

- Distribution of trip purposes per day type, zone and EV owner profile
(employee, others)

- Distribution of EV owner profiles per zone
+ Calendar data

- Share of vehicles driving local mobility and long distance trips each day
of the year, based of our analysis of travel survey for the distribution
of local mobility trips, and from our analysis of trip survey and highway
traffic data for the distribution of long distance trips

- Average temperature in France at the hourly time scale, based on data
from Météo France, for various weather year

- Share of vehicles driving long distance trips among long-distance trip
purposes (holiday, work or visiting someone), as described in the
French travel survey

Following this inputs, we list here the outputs of the model:

« Summary of the simulation, total annual EV electricity demand from the
grid, gas consumption (PHEVs), H2 consumption (FCEVs), total distance
driven in local mobility and long distance trips.

* For each time step t:

- Distance driven on the roads, detailed by travel segment (local mobility
and long distance trips)

- Total charging point power, battery capacity and number of all EVs that
are available and connected to a charging point (those that were al-
ready connected before t and those that connects at t), detailed per
connection to the grid behavior, vehicle type, charging point location
(home, work, public) and zone (urban or rural)

- Total charging point power, battery capacity and number of EVs that
connect at time step t, similarly detailed

- Total charging point power, battery capacity and number of EVs that
disconnect at time step ¢, similarly detailed

- Uncontrolled EV demand, detailed by connection to the grid behavior,
vehicle type, charging point location, zone and charging point power
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- Average EV state of charge, detailed by connection behavior, vehicle

type and zone

* For specific simulations:

- Maximum EV charge per time window selected (e.g. between 14:00 and
17:00), by constraining EVs to charge preferably in this time window)

- Statistically representative results on long distance mid-trip demand,
within simulations focused on long distance trips.

The program is built in the programming language R, and generates EV de-
mand data for a whole year at the hourly time step, modelling 50 0oo EVs (for sta-
tistical representativeness) in around 4 hours. Figure 3.10 illustrate the flowchart
of the EV connection modelling methodology.
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Figure 3.10: More detailed flowchart of EV demand generation methodology de-

scribed through this Chapter

3.B Additional results

In this appendix, we illustrate additional results to those provided in section 3.3.
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First, the maximum share of electricity demand that can be withdrawn is sev-
eral time windows is shown in Figures 3.12 and 3.13, computed in specific EV de-
mand modelling, by constraining EV to charge at maximum during the time win-
dow. The process added inside our EV model to compute maximum charging
inside a given time window is explained in Figure 3.11.

Time window tw
selected

EV gets to a charging station
at time £1 and plan to
disconnect at time {2

to charge at 100%
if starting at
w?

\Wait until the beginnig
of tw to start charging

Charge until {100%30C minus what could
be charged during rw) and then wait for
tw to finish fully charge

Start charging
(not possible to
charge in 1w)

Start charging

Figure 3.11: Flowchart of methodology used inside step 4 of our EV model in order
to compute maximum charging in a given time window

The maximum demand for each 2-hour windows for the two main connection
behaviors studied in this Chapter follow the same trend as the share of EVs con-
nected through the day (Figure 3.12). It is to be noted that for the "systematic"
connection behavior, the low energy demand per day per vehicle enables total EV
charge to be concentrated at up to 60% during 2-hour time windows (at night).

As expected, maximum EV charging in time windows is not cumulative (e.g. the
maximum share of energy charged between 13:00-17:00 is lower than the sum of
the 13:00-15:00 and 15:00-17:00 maximum demand), as illustrated in Figure 3.13 for
"systematic" connection. With our connection behavior assumptions and charg-
ing points available, up to 84% of the charge can be made in the evening and night,
compared to up to 43% in the mid-day time window (11:00-17:00), at peak solar PV
generation.

Then, the distribution of long distance trip demand on an averaged day is il-
lustrated in Figure 3.14. Around 33% of long distance related EV charging is done
mid-trip, at fast charging stations in our scenario. Long distance peak power de-
mand happens slightly later than short distance trips, at around 21:00-23:00 as
most of EVs are at or close to their destination by then, and most of them not fully
charged yet.
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Figure 3.12: lllustration of maximum share of daily EV demand per time window
throughout the day, the x-axis data being the time steps of our model, in such a
way that 1h-2h means the time window between 1:00 and 3:00
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Figure 3.13: lllustration of maximum share of daily EV demand for different time
window lengths, for the "systematic" connection behavior
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Figure 3.14: Repartition of long distance demand between mid-trip fast charging
and charging at trip destination (stacked graph)

3.C Downscaling national results at the regional
scale

This appendix addresses the issue of the possibility of using EV demand data, gen-
erated in this Chapter, at a smaller scale than average national data. This analysis
makes it possible to estimate load curves by region or by city, depending on the
scale of the transport grid to be studied. For more local load curves (at the elec-
tricity distribution level), other approaches, such as activity-based (as presented
in Chapter 2) are more relevant.

A combination of top-down and bottom-up approaches will be presented here.
First, the bottom-up approach relies on the fact that we divide travel data by area
(rural, urban and largest cities) in our travel survey analysis, and thus in our model
results, which allows us to obtain average data per vehicle for each of these types
of areas. Second, the top-down part of our method is based on a downscaling of
these results to the appropriate level.

With respect to the data used in this analysis, we can on the one hand obtain
the distribution by department of past EV sales, which is a good indicator of the
current location of EVs. On the other hand, we have the distribution of all indi-
vidual vehicles currently by municipality, by multiplying the share of vehicles per
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household and the number of households per municipality. * From this data, we
have a proxy of two EVs distributions:

* The current distribution of EVs by municipality in France. Within this, we can
see that the wealthier departments are those with the most EVs. In 2019,
5.4% of individual vehicle sales were EVs in Paris and 4.4% in Bouches-du-
Rhoéne, compared to less than 2% in the most rural French departments.
This can be explained by several factors: areas with high EV development
are usually higherincome areas, with shorter and slower vehicle trips (better
suited to EVs) and where low emission zones are set during pollution peaks.

* The theoretical distribution of uniform EV diffusion within the population
(similar to vehicle ownership if there is no major change in urban planning).

To estimate the distribution key between these two temporal horizons (2020
for the first and 100% electrification for the latter), the following model can be used
as a first approach: weighting current distribution key by (1-electrification rate) and
uniform distribution key by the electrification rate.

To improve this estimate of the prospective distribution of EVs within the pop-
ulation, we recommend a model of the individual vehicle fleet, particularly within
income deciles, and taking into account the second-hand market model.

3.0 Heavy mobility demand modeling

Additionally to individual vehicles that are the core topic of this Chapter, the mobil-
ity model built enables the study of electric demand of other electric vehicles. As
described in the introduction, the demand of electric scooters and electric bikes
is not expected to reach a significant amount of total consumption, so a precise
modeling of those vehicles does not seem relevant. However, electric or plug-
in hybrids trucks and buses could reach a large share of respectively freight and
passenger transport. As a consequence, the adaptation of our model and data to
study the electrification of those transport means is described in this appendix.

3.D.1 Buses

To begin with, buses can be classified as "local mobility" defined in this Chapter, as
they do not usually drive long distances during a day. As identified in section 1.2.2,
several smart charging modes could emerge for electric buses: plug-in charging
at the depot, mid-trip charging (catenary or induction) or fast chargers at the ter-
minal. Charging only at the depot requires larger battery capacities than the other
solutions.

'For France, these data can be found in the studies Données sur les immatriculations des
véhicules, Couples-Familles-Ménages en 2017 and taux de motorisation des ménages of INSEE
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On the one hand, modeling electric buses that charge at the depot each night
could rely on the same methodology as individual vehicles that perform local mo-
bility trips and are charged at home. This charging location enables electric buses
demand side flexibility, provided the charging powers are high enough.

On the other hand, mid-trip charging could be approximately modeled as an
electric consumption (from the electricity grid) close to the consumption of the
vehicle on the roads.

Finally, a major limitation to the study of electric buses grid integration is the
lack of public open-source data about bus trip characteristics (distribution of bus
trip lengths and return times to the depot). Indeed, most travel survey focus on
the trips of individuals rather than the trips of vehicles, which is not a problem
for personal vehicles, as these data match, but it is not the case for public trans-
portation, as individuals hop on and off the vehicles. One solution could be using
timetables of bus routes (public and easily accessible) in order to estimate dis-
tances and trip times of buses, although timetables do not indicate which buses
are used through the day or if they go back to the depot at mid-day.

The same observation applies to other transport segments close to public
buses described in this Chapter, such as school buses and coaches that make
city-to-city trips.

3.D.2 Trucks

First, when it comes to trucks, it is even harder to get reliable trip data, as neither
travel surveys displaying trip data (as individual vehicles) or public timetables (as
buses) were found. A large majority of trucks belong to private operators, which
might be less willing than others to collaborate with academics by sharing their
datasets.

Trucks can be classified in several groups: rigid trucks, semi-trailer trucks and
smaller trucks for local delivery. The study of each of them requires analysis on
which trips are to be made, and what are the characteristics of the electric trucks
(heavier vehicles, which implies larger consumption, for long distance semi-trailer
trucks for instance).

Similarly to buses, several smart charging modes could emerge for electric
trucks: plug-in charging at the depot, mid-tip fast charging (during driver breaks),
or even dynamic charging while driving (some electric road trials were launched
recently).

For mid-trip fast charging, similar modeling as for long distance trips of individ-
ual vehicles could be applied, while night charging at the depot for local delivery
trucks requires similar methodology as what is defined as local mobility in this
Chapter.
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4 - Chapter 4: Electric vehicle flexibility from national
hourly supply-demand adequacy

Summary

Electric vehicles (EVs) are expected to grow massively in the coming years, and grid inte-
gration of a large number of them could challenge electricity-system infrastructure. This
Chapter proposes a methodology to study the technical and economic impacts of mass
EV charging on power systems, based on EV connection and charging needs generated
through the methodology of the previous Chapter (which allows to generate uncontrolled
demand). This framework is applied to a case study at hourly resolution of high penetra-
tion of electric vehicles and renewable energy sources in Europe at the 2040 time-horizon,
in line with the ‘National Trends Scenario’ grid mix under the pan-EU ENTSO-E Ten-Year
Network Development Plan. Results show that the European electricity system can ac-
commodate large EV growth and that widespread adoption of smart charging in France
can significantly reduce operational electricity system costs by up to 1.1 G€ and reduce car-
bon emissions by up to 3.2 MtCO, per year. We also compare multiple EV smart charging
modes of vehicles in France, and identify which parameters have the largest impact on
EV flexibility, including gas prices, smart charging adoption, weekly flexibility, and mid-day
charging.

4.1 Introduction

This Chapteris focused on the interaction between EV charge and the hourly oper-
ation of the rest of the power system (generating units, storage, interconnection).
This field of study does not usually consider electricity transmission grid conges-
tions inside a price zone, but the neighboring countries have to be modelled in
order to model flexibility from cross-border exchanges. Some authors have stud-
ied the impact of EV charging on such similar scopes. Wulff et al. (2020) modelled
EV flexibility, smart charging and vehicle-to-grid (V2G) for the German power sys-
tem by linking an existing transport model and a power system model (REMIx),
and they showed that EV load shifting reduces renewable curtailments as a func-
tion of charging power and EV behavior. Wolinetz et al. (2018) also applied a similar
methodology to study the optimal investment path towards 2050 for different EV
flexibility scenarios and found that developing smart charging reduces the need
to invest in flexible generation capacities. Liu et al. (2014) analyzed a scenario of
full electrification of personal vehicles and its impact on the spot market in Nordic
countries, while Robinius et al. (2017) followed a similar methodology for the case
of FCEVs to estimate the hydrogen supply infrastructure that would be needed to
accommodate high FCEV development.

In this work, we attempt to complement the extant literature on this topic by
providing a methodology and case study on EV adoption at national scale and to
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a prospective horizon. The main contributions of this Chapter are a methodol-
ogy adapted for other power-system software and sensitivity studies on two of
the main factors shaping the integration of a large share of EVs: the connection
behavior of EV owners, and the diffusion of multiple smart charging techniques.
Socio-economic surveys currently observe multiple connection behaviors of EV
owners (Enedis, 2020; Soares et al., 2011), ranging from connecting the vehicle as
much as possible to charging it only when necessary, on a weekly basis or even
less frequently. Moreover, as driving range is one of the main barriers to EV devel-
opment (along with strong charging-station system coverage) (Funke et al., 2019),
car manufacturers are currently working on extending the autonomy of EV bat-
teries, which could make EV connections to the grid less frequent in the years to
come. The second main factor affecting the flexibility offered by EVs studied in this
work is the adoption of smart charging. In case of high social acceptance of smart
charging (unidirectional or bidirectional), EVs could provide a significant source
of demand-side flexibility and thus decrease EV charging costs compared to un-
controlled charging of these vehicles. We identify a wide range of smart charging
approaches that can be modelled, providing either daily or weekly demand flexi-
bility.

This Chapter is structured as follows. First, we introduce in section 4.2 the
methodology developed to study the integration of EVs in supply-demand ade-
quacy models along with the smart charging modes that our model enables the
study of, with a focus on time-of-use charging in subsection 4.2.4. Second, we
present and discuss the results of a case study on the integration of EVs into the
European power system to the 2040 time-horizon in section 4.3, while providing
insights on which parameters have the biggest impact on EV flexibilty provision.
Third, those results are further discussed in sections 4.4, before concluding the
Chapter in section 4.5.

4.2 Electricvehicle smart charging modelingin power
system adequacy models

4.2.1 Power system model selection

As mentioned in the introduction section, different dimensions of the electrical
system interact with EV charging, which means that EV smart charging can be
controlled from multiple perspectives. Large EV market penetration implies that
individual EV consumption could reach a significant share (up to 15%) of total elec-
tricity consumption in the mid-term. Therefore, considering EVs as price-takers in
prospective studies (which means using electricity market data exogenous to EV
charge) is a major approximation. To go beyond this price-taker hypothesis, EV
demand data has to be integrated in a power system modeling framework. Be-
low we describe the approaches found in the literature, depending on the scope
of study.

94



First, studying the optimal year-by-year investment into new generation and
flexibility capacities can be studied with capacity expansion models (see Foley et
al. (2010) for a review of such models). The advantage of this type of model is to
evaluate the dynamics of technology diffusion, but at the cost of lower accuracy
on intraday flexibility (often studying a set of time slices). In this field, Borozan
et al. (2021) and Wolinetz et al. (2018) study how much the optimal investment in
new capacities differ whether EVs are smartly charged or not.

Second, generation and transmission system operation models (often called
‘unit commitment and dispatch’ models) are built to study load-generation ade-
quacy or large systems (spanning several countries or regions) while consider-
ing the transmission capacities between them for given electricity generation ca-
pacities, flexibility assets, and base demand data. These models can be used to
study how valuable flexibility of EV charge is for electricity supply and demand at
national scale and its impacts on carbon emissions and electricity prices. These
models become more and more useful for studying EV flexibility in scenarios with
higher wind and solar generation capacities, as ‘valley filling’ becomes further
from the less costly and less CO,-emitting solution for EV charge.

The third option is to study the electrical system with a sharper description
of the physical aspects of electricity transmission and distribution networks, with
or without the DC power flow simplification and possibly including voltage con-
straints or dynamics. This comes at the cost of limiting the area of study (a country
or a smaller region) and the length of the period studied, as compared to gener-
ation system operation models. Most studies of the interaction between EVs and
distribution grids rely on this modeling approach, especially when scoped at the
local scale (Fischer et al., 2019; Green et al., 2011; Jarvis & Moses, 2019; Mehta et al.,
2019) while very few have studied the impact of EVs on transmission grids (Slednev
et al., 2021).

In this work, we chose to study EV flexibility from the second perspective (‘unit
commitment and dispatch’), as it has been identified as one of the main research
gaps for mid-term studies (Arvesen et al., 2021; Schill & Gerbaulet, 2015). Among
the unit commitment and dispatch models available (e.g. PLEXOS, UPLAN, EMPS),
we selected AntaresSimulator (“AntaresSimulator,” 2022), which is an open-source
model in which a base study of the European electricity system in 2040 had already
been built and was readily accessible. However, the EV aggregation methodol-
ogy and formulation of optimization constraints described in the following sec-
tion could be adapted for other software. AntaresSimulator aims to minimize the
total operational cost of a given electricity generation and consumption system
while ensuring supply can adequately match demand adequacy, from a ‘perfect
foresight' perspective, under the optimization function below:

min» Y P.yx MC.y+ 67, x G+ 0, %G, (4.1)

t z

where t is the time step, hourly in our case study, z is the price zone, and for
each in zone z and time ¢, P, , is the electricity generation, M C, ,is the marginal
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generation cost, G7, is the unsupplied energy ("loss of load"), 6, is the cost of un-
supplied energy, G, is the renewable energy curtailment, and ¢, , is the cost of en-
ergy curtailment. The full formulation of the optimization problem can be found
in Doquet et al. (2011) and on the software webpage (“AntaresSimulator,” 2022). It
simulates the electrical system for a whole year at hour-by-hour resolution and
computes an hourly electricity marginal generation cost at the intersection of the
supply and demand curves, while also modeling the constraints of thermal power
plants (ramping constraints, start-up costs and minimum up-time), the variability
in solar PV and wind generation via a set of weather data, and the optimization of
hydro storage plant generation through the year. On the other hand, some sim-
plifications are made, due to the hourly time step, on the dynamics of the power
system. The European power network is also approximated at the national scale,
with capacities between price zones, but congestions insides a price zone are not
modelled here.

The zones considered in this work are 37 price zones of Western and Central
Europe, with some countries corresponding to a single price zone (e.g. France,
Spain, Germany and Belgium) while others are split into several price zones (e.g.
Italy and Norway). The area selected is identified in Figure 4.1 and gathers most
of the synchronous grid of Continental Europe, as well as the UK, Ireland, Scandi-

navia and the Baltics.
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A key asset of AntaresSimulator for modeling EV flexibility is that it enables the
addition of custom sets of constraints to model several EV smart charging modes,
as described in the following sections. The data processed through AntaresSimu-
lator in our methodology is described in Figure 4.2.

From the mobility
modelling
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Figure 4.2: Inputs and outputs of our electrical system modeling process

4.2.2 EV aggregation for EV flexibility modeling

In order to integrate widespread adoption of EVs into a power system model, it is
necessary to aggregate the vehicles into a limited number of equivalent objects,
as power-system models cannot independently model the several million EVs that
are expected to be on the roads in Western Europe in the mid-term (2030 to 2040).
In order to do so, Ried et al. (2020) and Wulff et al. (2020) reviewed some of the
following approaches that are being used in the EV literature.

On the one hand, a significant share of the EV literature aims to precisely ag-
gregate the charge of a limited number of EVs at the local scale. Some studies
consider independently every charging events, which is not scalable. Wu and
Sioshansi (2017) introduce an operational heuristic for the optimal placement of
multiple EVs charge at a charging station level, modeling well the constraints of
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multiple EV flexibility. However, electricity prices are exogenous from the opti-
mization, which implies that this approach is not suited for our case study. The
same observation is made on the methodology from Wang et al. (2021), in which
the rolling window approach concentrates on the stochastic EV connection and
demand, but cannot be easily coupled to power system modeling.

Second, some studies model EV flexibility by computing the maximum SOC
curve (EVs that charge as soon as possible) and the minimum SOC curve (EVs that
charge as late as possible, in order to leave with a battery fully charged) for each
vehicle. The charging algorithm then select the optimal aggregated charging pro-
file constrained between the total minimum and maximum SOC curves (Cai et
al., 2018). In a similar fashion, Barot and Taylor (2017) proposed a more complex
and exact mathematical consideration of EV flexibility boundaries that employs
Minkowski sums to aggregate the charging constraints of a multiple EVs. Unfor-
tunately, this approach is not applicable to our study of millions of EVs in a power
system model.

Ultimately, the best approach identified for the problem studied here is to
model EV fleets as an equivalent battery, while adding constraints to the opti-
mization problem so that the mobility needs of EVs, and the evolution of their
connection, on-road consumption and recharge needs are modelled. This choice
was advocated by Ried et al. (2020). The methodology and limits of our EV aggre-
gation solution are presented in the subsection 4.2.3.

The aggregation of EVs as proposed in this Chapter was made possible by the
fact that we had modelled EV connection and demand beforehand. This method-
ology might not be easily applicable based on only average values of EV departure
times and daily energy demand.

4.2.3 Modeling EV smart charging inside a power system sim-
ulation tool

It has long been known in the battery literature that lithium-ion batteries lose
some of their charging power is when their state of charge is close to 100% (Pel-
letier et al., 2017). However, in this work, as we are studying aggregated EVs at
the hourly time-scale, EV battery charge is approximated as linear in time at its
constant rated power.

The focus of this case study is to study the impacts of EV charges in France on
the European power system. As a result, in the modeling implemented for this
study, all EV-related parameters are geared to the French zone. The methodology
can be scaled up to pan-European level with a set of equations for multiple zones if
EV input data is generated similarly for the other zones. In addition, the following
EV equation and parameters only relate to EVs that accept charge management.
Other ‘uncontrolled’ EVs, whose charging is modelled using the methodology de-
scribed in Chapter 3, are added to the non-flexible demand. The charge of flexible
EVs, referred to as "smart charging", is determined by AntaresSimulator: it is con-
sidered as one of the many decision variables of the operational cost minimisation

98



problem.

In the specific case of modeling EV smart charging inside our model, the major
output decision variable of our methodology is EV demand on the power net-
work at each time-step CFV/, while the other decision variable required to ensure
that EVs are sufficiently charged is the energy stored in EVs connected to the grid,
named ESfon (in kWh), is equivalent to state-of-charge (in percentage) multiplied
by the battery capacity (in kWh).

The relation between these two variables is found by using two different equa-
tions to write the evolution of the state of charge of every vehicle in the simulation.
First, the evolution of EV aggregated charge level can be split between connected
and disconnected vehicles,

AESHMEY — BSAEY _ ESAUEY — AESP™ 4 AES™, Wt (4-2)

where AESHEV is the variation between two consecutive time steps of the
stored energy stored across all EVs, AES{" is the variation in stored energy
stored in EVs connected to the grid at time t, and AES;" is the variation in stored
energy in EVs that are not plugged in. Then, as we consider that during our
simulation, the number of EVs is constant,

AESHMPY = CFY — DFY vt (4.3)

where DEV the electricity consumption of vehicles on the road. As a result,
when fitting equation 4.3 into equation 4.2,

AESe™ = CFV — (DFY + AES!"™), it (4.4)

which is the main equation that links £S®" and CFV, while the third term
(DEV + AE Sy ) reflects the variation on stored energy in the connected vehicles
induced by the disconnection of fully charged EVs and the connection of some
EVs at the end of their trips. This last term is exogenous to EV charging strategies
and is therefore computed prior to the simulation by our EV trip and connection
module (see section 3.2.6).

CEV, the EV demand on the power network, can be negative in settings that
use grid injection from vehicles that allow V2G,

CFV =y« CWEY —1/n x CIFY (4.5)

where 1, is the efficiency of electricity conversion for grid withdrawal, n; the ef-
ficiency of electricity conversion for grid injection, CWEV the electricity withdrawn
from the grid, and CIF" the energy injected into the grid.

The additional constraints for EV flexibility are defined as follows:

Capas™ x SOC™" < ES®" < Capa™, vt (4.6)

CPY < P sVt (4.7)
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> CFY = Ctotyey, Vday (4.8)

tin day
Z CtEV < Cmaatguv,Vtw (4.9)
tin tw
CIPYV < PV s 7 it (4.10)
Z CIFV < Clmaa:fa‘;,‘v’day (4.11)
tin day

Equation 4.6 ensures that that the energy level stays between the maximum
total capacity of connected EVs, Capa®”, and a minimum state of charge SOC™"
that reflect a ‘safety-buffer’ state-of-charge that needs to be kept in EV batteries in
the event of unexpected mobility needs (aggregated for all EVs). Typical selectable
SOC™™ values range from 20% to 40% depending on average battery capacity.
Equation 4.7 limits the power that can be withdrawn from the grid at any time-
step below the total charging power of connected EVs, Pf°", computed by the
mobility model, times the time step selected 7.

In most studies on EV smart charging, each charging session is constrained to
reach a 100% state-of-charge before the vehicle leaves. To do so, when aggregat-
ing a large pool of vehicles, equation 4.8 forces the optimization to withdraw, each
day, as much energy as in the case of an uncontrolled charge scenario Ctot .
Note that in order to match an EV connection pattern in which a significant share
of charging time windows are spread over the night (typically 18:00 to 07:30), the
“day” can preferably be selected from 08:00 to 08:00 in equation 4.8. Heggarty
et al. (2020) showed that flexibility is a multi-timescale topic that can be classified
into three sections: annual, weekly, and daily flexibility. Under equation 4.8, EVs
are limited to daily flexibility only. However, as battery capacities are tending to
expand, a significant share of EVs might soon be able to be used for daily com-
mutes for nearly a week before the need to be fully charged again. As a result,
equation 4.8 can be disabled to study the potential of weekly EV flexibility.

One of the major limits to aggregation identified when modeling EV charge
with only the previous constraints is that on some days, all the daily smart charg-
ing demand could be satisfied in a limited number of time-steps, especially at
midday which correlates with peak solar PV generation. However, looking at the
individual EV patterns that were generated by our mobility model, some EVs are
only connected at night (e.g. between 18:00 and 07:30) while others are connected
at work during the day (e.g. between 08:00 and 17:00). As a result, some of the
smart charging load curves initially computed (without this constraint) showed all
the electricity withdrawn by EVs between 10:00 and 15:00, which is highly unreal-
istic (way over the share of EVs connected in this time window, which is one of
the limit of aggregating EVs into a single object in the model). To overcome this
issue, equation 4.9 was added to our optimization problem. For various selected
time-windows tw, we limit EV charge to the maximum possible energy withdrawal
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from the grid in that time window CmaxZY, which is computed from our mobility
model as the share of energy withdrawn in that time-window when individual EVs
try to maximize it. The specific time-windows selected and typical values for their
maximum energy demand are described in section 4.3.1.

Finally, equations 4.10 and 4.11 are added to study V2G: Eq. 4.10 ensures that
energy injected by those vehicles to the grid CIF"V is bounded by the total con-
nected power of EVs allowing V2G P™"2“, while Eq. 4.11 limits each day's amount
of energy injected back to the grid below C'Imax}). This constraint is set based
on the user acceptance of additional cycling of EV batteries for grid flexibility (typ-
ically 1 additional cycle per month, 1 additional cycle per week, or no limit on grid
injection). For instance, if we allow 1 additional cycle per week, the maximum total
energy injected each week is the sum of battery capacities of V2G-able EVs, which
is distributed among the days of the week in proportion to the number of vehicles
that get connected.

To summarize the EV smart charging modes enabled by our model, Table 4.1
indicates the set of equations to be enabled for each case.

' Unidirectio- | Unidirectio- VoG
Constraint | nal smart | nal smart | V2G (daily) (weekly)
(daily) (weekly)

4.6 X X X X

4.7 X X X X

4.8 X X

4.9 X X X X

4.10 X X

4.1 X X

Table 4.1: Constraints activated according to charging mode selected
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Variable Description Unit Source
. Optimized
CtEV Ngt EV consumption from the KWh inside Antares-
grid .
Simulator
con . Mobility model
Capa Total EV capacity connected kWh (chap 3)
CmazPV M.aX|mum EV demand in time KWh Mobility model
w window tw (chap 3)
Energy to be charged in day for Mobility model
Ct0lday daily flexibility kwh (chap 3)
Optimized
CIFV EV injected power to the grid kWh inside Antares-
Simulator
CImaxEY Maximum energy injected each KWh Assumption
day | day by V2G P
. Optimized
CWEY E\( withdrawn power from the KWh inside Antares-
grid .
Simulator
Optimized
ESAEV Total energy stored in all EVs kWh inside Antares-
Simulator
. Optimized
ESeon Total energy stored in connected KWh inside Antares.
EVs .
Simulator
. Optimized
Bgune Total energy stored in uncon- KWh inside Antares.
nected EVs .
Simulator
EV Energy consumption of EVs on Mobility model
D, kWh
the road (chap 3)
0 E\{ injection efficiency (to the Assumption
grid)
EV withdrawal efficiency (from Assumbtion
Tho the grid) P
peen Total EV power connected kw Mobility - model
(chap 3)
PemV26 | VaG-able EV power connected | kW Mobility model
(chap 3)
SOCmin Mlnlmum staFe-of-charge to be % Assumption
kept in batteries
T Time step of the simulation hour Selected

Table 4.2: Parameters of the EV charging module inside electricity production cost

model
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4.2.4 Time-of-use charging

In addition to the smart charging modes described in the previous section, EV
load can also be controlled through static tariff signals, in which a smart meter
charges the battery during predefined low-price periods. Electricity unit commit-
ment and dispatch models do not directly compute such EV charging patterns,
but the results of smart charging simulations are useful for understanding the
optimal periods for EV charge.

Various time-of-use charging profiles can be found in the literature. On one
hand, when considering a limited number of EVs or a basic approach for large
EV fleets, some studies introduce a time-of-use charging mode by delaying the
start of all EV charging sessions by one or a few time-steps, after peak demand
(Arvesen et al., 2021; Liu et al., 2014; Xydas et al., 2016), which does not induce
a second peak as long as EV time-of-use demand equals a few percents of total
consumption. On the other hand, aggregating a large number of EVs with differ-
ent time signals spread through several locations or contracts makes it possible
to create an “improved” time-of-use load curve (RTE, 2019). In the same spirit, Li
et al. (2016) assesses how to create more optimal time-of-use tariffs at the local
scale by creating clusters of consumers to study the best low price windows. One
way to build this kind of time-of-use demand curve is to compute the daily aver-
ages (possibly split between weekdays and weekends, and between seasons) of
a smart charging demand curve, as computed with the methodology described
above. The “improved” time-of-use curve would then be generated by applying
the daily pattern to the total energy consumption of each day from the input data,
in order to better consider solar generation than the "basic" approach. Those two
approaches for building time-of-use tariff EV demand curves are illustrated in Fig-

ure 4.3.
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Figure 4.3: lllustration of the generation of Time-of-use profiles

4.3 Case study: electric vehicles and generation-
load adequacy in Europe in 2040

4.3.1 Data and assumptions

European electricity generation and transmission system scenario

For this case study we selected the same prospective analysis of the integration
EVsin 2040 as studied in the case study of Chapter 3. In addition to the transporta-
tion system, the whole electricity generation mix in Europe is also expected to shift
towards decarbonization over the coming decades, with a growing share of elec-
tricity generated from renewable sources. Here we selected the National Trends
Scenario from the 2020 ENTSO-E Ten years network development plan (TYNDP), at
the 2040 time-horizon, as electricity generation mix data for this study (ENTSO-E,
2020a). In this scenario, renewable electricity generation reaches 73% of gener-
ated electricity (42% wind, 15% solar and 16% hydro) in the European countries
studied (zone illustrated in Figure 4.1). The investment paths for electricity gener-
ation and transmission to 2050 for this scenario are described for each country in
additional files on the ENTSO-E website (ENTSO-E, 2020b). In this scenario, France,
forinstance, is set to grow electricity generation from renewables from 21% to 65%
between 2018 and 2040, while nuclear will decrease from 72% to 34% and other
thermal sources from 7% to 1% (see Table 4.3).
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2018 (Historical | 2040 (National

Technology data) Trends Scenario)
Wind 5.1% 39.3%

Solar 1.9% 12.5%

Hydro 12.5% 12.7%

Other renewables | 1.6% 0.8%

Nuclear 71.7% 34%

Gas 5.7% 0.7%

Other thermal 1.5% 0%

Table 4.3: Evolution in share of electricity generated by technologies in France
between 2018 and 2040 (National Trends scenario)

Electric vehicle development in France in 2040

Regarding EV developement scenarios, as we rely on the EV modeling methodol-
ogy described in the previous Chapter, the assumptions on EV parameters chosen
for our case study are similar to those in section 3.3.1.

Additionally, our mobility models can also serve to compute maximum energy
consumption in various time windows, to be used in constraint 4.9 of our EV flexi-
bility aggregation methodology. Based on most common mobility patterns found
in the results of Chapter 3, two time-windows were arbitrarily selected in which EV
charging is limited (below a value computed with the model described in Chapter
3): the mid-day time window (10:00 - 15:00), which matches peak solar generation,
and the night-time window (17:00 - 08:00) in which EVs connected at home are usu-
ally charged. Maximum share of EV charge in these windows was 57% of demand
in the mid-day time-window as "systematic" connection (resp. 40% as connection
"when needed") and 81% of demand in the night-time window (resp. 73%).

4.3.2 EV smart charging results

For all results presented in the following sections, only the flexibility of EVs located
in France is modelled. The load and flexibility of EVs in other countries are kept
similar in all of the results presented here as the way they were modelled in the
initial simulation (uncontrolled load, plus an equivalent battery, to take into ac-
count demand side flexibility). However, adding flexibility to the electricity system
in one country also reduces operational costs and carbon emissions in neighbor-
ing countries. There are many indicators than can serve to analyze EV demand
flexibility, including the annual operational cost in France or in Europe, carbon
emissions, France's electricity trade balance, renewable energy curtailment (es-
pecially solar and wind), gas and oil-based electricity generation, the loss of load
probability and amount of unsupplied energy. In our case study, as all these indi-
cators follow the same trends, we mainly present the total European operational
cost and carbon emissions, which are the most relevant for our analysis of the
impacts of EV charge on the european electrical system.
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In this work, we aggregated every EV of the simulation inside only one object of
the proposed methodology, including PHEV (due to the low share of vehicles be-
ing PHEVSs in our case study). However, one could separate EVs into several such
clusters with their set of equations and input data, especially to distinguish be-
tween PHEVs, private BEVs and company BEVs in order to compute the flexibility
potential of these vehicle types separately.

The methodology relies on climate data of 35 representative weather years,
which helps taking into account the variability of these results according to yearly
weather conditions. Results presented in this Chapter are averaged other those
35 weather year data.

These analyses allow us to estimate the value of EV flexibility for the power sys-
tem but not to directly deduce the benefit for users, which depends on fixed costs
in the electricity bill, taxes, and a potential share of the smart charging revenue
for a third-party actor (i.e. aggregator).

Connection behaviors

To begin with the analysis of the results, we study the diffusion of EV smart charg-
ing (daily flexibility) by 20% increments, for two connection behaviors introduced
in section 3.2.7: "systematic" connection and connection "when needed". 20%
increments were selected to illustrate the effects of smart charging diffusion as
we do not expect strong discontinuities within these increments. As identified
earlier and illustrated in Figure 4.4, occasional charging is preferable for uncon-
trolled EVs, as the charging sessions are less synchronized. However, the higher
the number of vehicles that adopt unidirectional smart charging, the more prefer-
able it becomes that EV owners connect their vehicle systematically. Smart charg-
ing 24.4 million EVs in France reduces annual carbon emissions in Europe for elec-
tricity generation by 2.4 MtCO, (0.6%) in the connection "when needed" scenario,
and by 3.2 MtCO, (0.9%) in the "systematic" connection scenario.
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Figure 4.4: Impact of EV smart charging (unidirectional and at daily scale) adoption
on pan-European electricity generation operational costs and emissions

Daily or weekly flexibility

As identified in section 4.2.3, EVs are often studied as flexibility providers at the
daily scale, though increasing BEV battery capacities imply that their charge can
be delayed by a few days without any drawbacks on the mobility needs side. In
this section, we compare three scenarios to evaluate EV flexibility potential at the
daily and weekly time-scales. The first scenario is the uncontrolled charge of EVs
that connect every time they get to a charging point. In the second scenario, every
EV adopts smart charging, at the daily scale (i.e. the battery is always fully charged
when the vehicle leaves). In the third scenario, every EV is in weekly smart charg-
ing mode (i.e. the battery is always kept at least at 30% SOC, but not necessarily
charged every day).

For the analysis in Figure 4.5, a specific week has been selected (late-October
of a given weather year), which includes two days with medium renewable gener-
ation followed by three days with high wind production, and then at the end of the
week low renewable generation, followed again by two days with high wind pro-
duction. With uncontrolled charging, a large share of EV demand is synchronous
with peak demand and comes after solar generation times, which means that
thermal power plants and imports are required to match demand at peak times.
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Figure 4.5: French electricity hourly demand and generation per technology for a
selected week in October, for the no flexibility, daily flexibility and weekly flexibility
scenarios

Second, the scenario with daily EV flexibility shows that with smart charging,
EVs are charged as much as possible in peak times that coincide with solar gen-
eration, and thus less electricity is imported or generated with gas power plants.
Lastly, in the weekly flexibility scenario, EVs avoid charging in times that coincide
with low renewable (especially wind) energy production, which further reduces
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imports, gas generation and renewable spillage compared to other scenarios. The
gains for daily and weekly flexibility of EV charging are not similar for every week
in the year, as longer periods of low-renewable generation do not allow weekly
flexibility to reduce emissions and cost as much as in the time period selected for
Figure 4.5.

In practice, such a weekly EV demand optimization could turn out less efficient,
due to imperfect forecasting of supply and demand.

Time-of-use charging

In this section, we compare three time-of-use charging approaches. First, a basic
control signal, where the charging of each vehicle connecting at peak demand
(18:00-21:00) is postponed by three hours. Second, an improved tariff profile at
the daily level, calculated from an average smart charging profile over 4 types of
day: summer weekday, summer weekend, winter weekday, and winter weekend.
Finally, improving tariff profiles at the weekly level, where the profile is averaged
for 7-day long load curve results of a smart charging (weekly flexibility) simulation.

Simple controls through time-of-use tariffs can reduce the operating cost
of the system compared to an uncontrolled scenario. Flexibility is substantially
greater if a more optimal tariff profile is used. On the other hand, the weekly-built
tariffs do not bring significant gain in the profile construction, since weekly flexibil-
ity is mainly useful for dynamically adapting to days where renewable generation
is low.

68.1

68.0

67.5

67.0

Annual electricity generation cost (G€)

66.5

Uncontrolled Basic™ time- Daily improved Weekly improved
charge of-use tariff time-of-use time-of-use
tariff tariff
Time-of-use tariff variants

Figure 4.6: Comparison of time-of-use strategies on annual European electricity
generation cost (for EV flexibility in France only, and every EV in systematic con-
nection behavior)
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Vehicle-to-grid

Different degrees of V2G adoption were also simulated, for two mains options:
with a limit of one additional battery cycle per week, or without any injection limit
(in relation to the constraint 4.11 of our methodology). In our simulations, PHEVs
are not available for V2G, due to their limited battery capacity. In both cases, but
especially in the scenario with no injection limit, the more V2G is developed, the
lower the marginal gain of adding V2G flexibility to the electric system (Figure 4.7,
where V2G is compared with daily smart charging). The additional gains of adding
V2G is nearly decreasing at every 5% increment in our simulation. This result also
implies that in a electrical system with a lack of flexibility, V2G could be 3 to 4 times
more profitable for the user than in a system with sufficient flexibility.

In practice, bidirectional charging is currently growing mainly for frequency
regulation markets (Borne et al., 2018), but we identify here a potential on energy
markets in a scenario with high adoption of renewables, where the injection of
the energy stored in the battery (either to power the house via V2H, or directly on
the grid) has economic and environmental benefits.

G B00
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EV diffusion gap

V2G constraint . Limited injection (1 cycleiweek) D Unlimited injection

Figure 4.7: Incremental effect of V2G adoption (EV flexibility in France, operational
cost variation at the European scale), all remaining EVs in unidirectional smart
charging

Comparison of those strategies

Once all smart charging modes have been described and analyzed, we graphed
Figure 4.8 to compare them. It appears that all control modes significantly reduce
the total operational cost of the European power system by 0.4% to 1.8%. The
gains with time-of-use tariff charging are clearly increased by using an improved
tariff signals than a basic 2 hours shift. Finally, for the most efficient solutions
(dynamic smart charging and V2G), weekly flexibility adds a significant gain in a
scenario with a high share of solar and wind generation, which increases the need
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for such flexibility.
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Figure 4.8: Annual European electricity generation operational costs for each
charging strategy (for EV flexibility in France only, and every EV in systematic con-
nection behavior)

Finally, the distribution of hourly electricity generation costs (sorted in ascend-
ing order) for the main smart charging modes studied in this Chapter are pre-
sented in Figure 4.9. The distribution for improved time-of-use tariff and dynamic
smart charging are very close and overlapping in this graph. This graph illus-
trates as well that our simulation optimizes the electricity generation system as
a whole, and does not model explicitly a given market (day-ahead for instance),
which means that it is not possible to observe and study negatives prices here.
However, negative prices may appear under some circumstances, when taking
into account competition between actors and negative price bidding to keep a
power plant running.

Here we highlight the impacts of smart charging modes on marginal genera-
tion costs, showing that increasing demand-side flexibility has two effects: it re-
duces the frequency of negative or near-zero marginal costs (when all consump-
tion is covered by renewables excluding hydro storage) and decreases the occur-
rence of very high marginal costs, as EVs withdraw less electricity (or even inject
electricity into the grid) during peak demand when they are smartly-charged. We
also add for comparison purposes the distribution of generation costs without EV
demand (and the same generation capacities), which is not realistic, butillustrates
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the approximation of studying large EV diffusion from historical market data (with-
out EVs).

This graph is generated in the base case scenario on thermal units marginal
generation costs (see next subsection), which means that we can expect much
higher peak prices in scenarios with much higher gas and oil prices.
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Figure 4.9: Price duration curves (distribution of electricity system marginal gen-
eration costs)

Impact of fuel prices on value of smart charging

All the results shown above were output from the initial electricity generation data
from the 2020 TYNDP. In this input dataset and as often predicted in 2019, the av-
erage European marginal cost of electricity generation via gas power plants (in-
cluding a mix of combined cycle and open cycle gas turbines, some with carbon
capture and storage) for prospective studies is around 90€/MWh. Recent events
show that gas can reach significantly higher prices for various reasons, including
carbon tax increases, pandemics, and geopolitical conflicts.

Therefore, we evaluated the sensitivity of EV flexibility under several costs of
electricity generation from gas power plants. This initial assumption of go€/MWh
cost of generated electricity from gas power plants corresponds to approximately
30€/MWh on the gas spot market (depending on efficiency of the plant and carbon
taxes). Recently, gas prices skyrocketed from below 20 €/MWh in 2020 to over 100
€/MWh in Western Europe in early 2022 (Kuik et al., 2022). Hence, we compared
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here EV smart charging results with up to 150 €/MWh gas market price (equiva-
lent to around 315 €/ MWh marginal cost of electricity generated from gas power
plants).

Results in Figure 4.10 show that both the total European electricity generation
OPEX and the gain from smart charging 24 million EVs are highly dependent on
gas prices. This finding implies that absolute values for generation cost reduction
and EV owner flexibility revenue when studying EV flexibility are to be taken with
caution, under the set of assumptions used to compute them. The value of smart
charging EVs increase along fossil fuel prices (as smart charging helps decreas-
ing their use). However, the relative ranking of EV charging flexibility modes, and
other indicators such as carbon emissions and renewable energy spillage, are less
sensitive to fuel price.
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charging mode . Uncontrolled D Dynamic smart charging

Figure 4.10: Impact of marginal costs for gas power plants on EV smart charging
benefits for the European electricity system. For comparison purposes, 100% EVs
in uncontrolled charging mode (blue) and dynamic smart charging (orange)

Others

In the appendix 4.A, we illustrate some other sensitivity studies, especially on bat-
tery capacity, charging point power, other demand-side flexibility means, lower
frequency of mid-day connection. These parameters have lesser impact on EV
demand-side flexibility than what is presented in this section 4.3. The results for
other indicators than costs and emissions at the European level are shown, as
well as the results per weather year.
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4.4 Discussion

EVs can be smartly charged via various different strategies that respond to several
challenges the electrical system is set to face with growing market penetration of
renewable energy sources. In this Chapter, we focused on optimal hourly opera-
tion of the European power system (generating units, storage, interconnection).
The smart charging modes suited to each flexibility challenge, as well as the addi-
tional equipment required, are summarized in Table 4.4.

In France, in 2021, only 37% of EV owners had already adopted smart charging
options, and among them more than 75% are in basic delayed charging (Enedis,
2020), so the potential for further developing EV flexibility is still huge.

To simplify the analysis, we studied extreme cases with 100% EVs in one smart
charging mode, but in practice these options will coexist, depending on how far
EV owners accept each charging mode. It would be instructive to simulate these
different modes in competition to see how they interact with each other. This
kind a simulation would also serve to compare the benefits of each solution by
considering the total cost of infrastructure (charging stations and communication
devices) and the cost of additional battery degradation from V2G. Moreover, we
carried out our study in a given electricity generation system, but the scaling of
flexibility solutions and the investment in generation capacities may depend on
political choices surrounding demand-side flexibility development (including EVs).

Nevertheless, the methodology for calculating the availability of vehicles at
charging stations and the constraint on EV charging requires setting arbitrary
values for the minimum SOC to be maintained, and the limits of V2G injection.
This parameters would be refined or confirmed once more feedback on EV smart
charging is available. Additionnaly, the mode of EV aggregation into a single object
is also an approximation, but no perfect method has been found in the literature,
and we tried here to improve the existing literature by adding limitation on energy
withdrawn in several time windows, computed from our mobility model.

Finally, the analysis of the results in this work is done solely from the point of
view of the electrical system. The issue of how to incentivize EV users to adopt
smart charging behaviors is not addressed, while some authors highlight that
market rules are not currently ready to maximize EV flexibility (Borne et al., 2018;
Codani et al., 2015). It is important to point out that though the "systematic con-
nection" behavior is highly beneficial for the power system, the cost difference
perceived by the consumer may be too small to incentivize such a behavior.
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Electrical  sys- Uncontrol- | Time-of- Dynamic Dynamic
tem hourly e | sSmart smart : V2G

. led EV | use tariff . . V2G (daily)
dispatch  chal- charein charein charging charging (weekly)
lenges in 2040 giNg gINg (daily) (weekly)
Avoiding a
larger peak No Yes Yes Yes Yes Yes
demand
(18:00-20:00)
el

: 8N | No on tariff | Yes Yes Yes Yes
with peak solar

. structure
production
Adapt dynam-
ically to daily Yes Yes
variations in re- NG NG Ves Ves (added (added
newable gener- value of | value of
ation (especially V2G) V2G)
wind)
Adapt to weekly
variations in re-
newable gener- | No No No Yes Partially Yes
ation (especially
wind)
Most suited ANy, An Systematic Systematic
. prefer- Y, Preferably Y Preferably Y
connection preferably > | connec- > | connec-
. ably when | systematic | . systematic | .
behavior ) systematic tion only tion only
convenient

Additional Smart Smart
charging and Smart- Smart Smart commu- commu-
communica- None meter communi- | communi- | nication nication
tion equipment cation cation and V2G| and V2G
required charger charger

Table 4.4: Main challenges for the electricity system hourly supply-demand adequacy and appro-
priate EV smart charging modes

4.5 Conclusion

To analyze the impacts of EV smart charging adoption on power systems, we pro-
pose a two-step methodology. Firstly, EV connection and demand data for various
connection behaviors and EV development scenarios are generated from a mo-
bility model based on travel survey data (see Chapter 3). Secondly, these datasets
are integrated into a power system supply-demand adequacy model to estimate
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the value of EV smart charging for the European electrical system and compare
a large number of smart charging strategies. For prospective studies on EV flex-
ibility, we strongly advocate co-modeling the transport sector with the electricity
sector to go further than most previous work in the literature.

The cost and carbon emissions reduction of the unidirectional smart charg-
ing of 24 Million EVs in France (compared to uncontrolled charge) is estimated at
around 1.1 G€ and 3.2 MtCO,-eq annually, under our initial assumptions. IEA (2019)
reviews life-cycle analysis comparisons between EVs and thermal vehicles. On av-
erage, in alow carbon electricity generation power system, life cycle (over 10 years)
total emissions of an EV (400 km range) are estimated at around 14 tCO,-eq, com-
pared to 34 tCO,-eq for a thermal vehicle. Thus, each EV reduces emissions by
around 2 tCO,-eq per year, compared to the same distances being travelled with
a thermal vehicle. As a result, in our scenario with 24 Million EVs in France, we
can expect a 48 GtCO,-eq yearly reduction of emissions of EV compared to ther-
mal vehicles, additionally to the 3.2 MtCO,-eq reduction of electricity generation
emissions from smart charging. We can conclude from this analysis, that 6.5% of
the carbon emissions reduction of a smartly charged EV is linked to the electric-
ity generation sector in our scenario, with an electricity generation sector already
low-carbon. Higher shares of carbon reduction linked to the electricity generation
sector are forecasted for areas in the world with high carbon intensive electricity
generation.

We identified in this Chapter three major recommendations to get the maxi-
mum value from EV demand flexibility. First, tariff-based, dynamic smart and V2G
charging modes should be developed, depending on user acceptance of these
technologies. Second, it seems important to incentivize mid-day charging, espe-
cially with charging stations at the workplace for daily commuters or at home for
prosumers, to better synchronize charging with peak solar production. Lastly, EV
flexibility is maximized by encouraging systematic connection, to enlarge the ac-
cessible charging window and even allow EV charging to be postponed to following
days (weekly flexibility).

For prospective studies that premise large EV adoption, we advise using
electricity-system models, as increasing demand-side flexibility influences market
prices, hence making the price-taker assumption a dangerous one, with signifi-
cant impact on results. The benefits of converting an EV to smart charging are
not linear, especially with V2G that may meet flexibility needs even with limited
adoption. The value of smart charging is also highly dependent on parameters
that are exogenous from the transport sector, such as gas prices and carbon
tax. Additionally, the competition with other prospective demand-side flexibil-
ity sources, especially hydrogen electrolyzers and industrial load management is
worth studying.

To go further with the analysis of EV flexibility, this work may be comple-
mented by studying other potential EV flexibility-electricity system interactions
than hourly supply-demand disptach, such as network congestion (at the trans-
mission and distribution level), frequency regulation, and intra-day energy mar-
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kets studied with imperfect forecasts. These topics may not be conflicting with
each others in terms of EV flexibility (e.g. for prosumers, charging EV at peak solar
production reduces both electricity generation costs and grid congestion). Fur-
thermore, our study focuses only on personal vehicles, whereas other means of
mobility are also expected to ‘go electric’, such as two-wheelers, trucks, and buses,
which could bring additional electricity flexibility potential from the transport sec-
tor, as well as fuel-cell vehicles powered by electrolyzer-produced hydrogen. Fi-
nally, further work based on these results, such as complementary evaluations
on other countries, other mobility solutions and other electricity generation sce-
narios should help design solutions to incentivize and further develop EV demand
flexibility.

"The main findings of this Chapter, along with a short summary of Chapter 3 have been pub-
lished in Lauvergne et al. (2022)
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4.A Additional results and sensitivity studies

In this appendix are gathered additional results that complements the analysis of
EV smart charging carried out in this Chapter.

Figure 4.11 illustrates the various indicators that can be chosen to compare
smart charging scenarios in our case study, for the results of Figure 4.4. An ad-
ditional result shown here is that EV smart charging in France has an impact on
generation costs and carbon emissions in other European countries, which justify
the choice of mostly illustrating results at the European scale in this Chapter.

Then in Figures 4.12 and 4.13, the 6 main smart charging modes compared in
this Chapter are illutrated under another format: each dot corresponding to a
time-step of our model (hourly), in graphs showing the correlation between EV
demand and marginal generation cost (4.12) and average carbon emissions (4.13).
It appears that for scenarios with 100% smart charging or V2G, EV demand is close
to o at all time steps when marginal costs and emissions are the highest. Time-of-
use tariffs achieve at reducing the frequency of simultaneously high EV demand
and generation marginal cost, as on average our improved time-of-use profile
matches the optimal charging times, but not as much as dynamic smart charging
modes.

Figure 4.14 compares the flexibility value of EV smart charging with the station-
ary batteries installed in France for grid flexibility in our scenario (6 GW maximum
power and 12 GWh total capacity in our scenario). These battery are mainly used
for daily flexibility and a little bit for weekly flexibility. It appears that the diffusion
of smart charging from 20% to 40% EVs (which means 4.9 Million EVs in our sce-
nario) produces slightly more flexibility than the initial stationary batteries of our
scenario in this sensibility study.

Next, in Figure 4.15, we illustrate that the flexibility of other neighboring coun-
tries (which has not been modified in other sensitivity analysis on EV demand flex-
ibility in France) also has a large impact on total European costs and thus on the
value EVs can generate by proving demand-side flexibility. Ideally, the flexibility of
EV demand should be modelled for each country in such simulation, but analyzing
mobility patterns in each country is very time-consuming compared to its limited
added value when studying sensibilities on EV smart charging in France.

Figures 4.16 and 4.17 show what are the impacts of reducing the average bat-
tery capacity and charging point rated power (respectively). First, for the battery
capacity, we observe very little impact when every vehicle is charged at 100% at
every charging session (daily flexibility), for the two charging behaviors illustrated.
However, when EVs accept weekly flexibility, lower battery capacities reduce the
gains from delaying EV demand, as EV need to be charge more frequently. Sec-
ondly, when every charging point maximum power is reduced to those of a stan-
dard residential slow charger (3.7 kW), the gains of EV smart charging are slightly
reduced for every scenario illustrated here, as less EV demand can be concen-
trated at time steps when marginal costs are the lowest. It is to be noted that for
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weekly flexibility, reducing charging power appears less damageable than reduc-
ing battery capacities.

In Figure 4.18, the initial results of EV smart charging are compared with cases
with lower mid-day connection, which illustrates that the more EVs are available
at the mid-dat window (10:00-15:00), the more EVs can be charged at peak solar
production, when generation costs are often the lower in our scenario with 12.5%
of solar among electricity generation in France (and 15% across Europe).

Finally, Figure 4.19 shows the difference between the 35 climate data years
used for this case study (all results shown previously were averaged over these
35 years). We illustrate here, than results on Annual French carbon emissions
and electricity exports differ greatly from a weather year to another. However, as
expected, the charging modes compared are always in the same order, and EV
flexibility greatly helps reducing electricity generation costs and emissions even
in the most favorable weather year in our case study.
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5 - General Conclusion

In this dissertation, we presented a methodological framework to study in a
prospective horizon the different possibilities for electric vehicles to provide flexi-
bility for the electrical systems, and illustrated them with case studies for the 2040
horizon, for the flexibility of French vehicles within the European electrical system.

This conclusive Chapter is composed of two parts. First, the main findings of
this thesis are summarized. Then, the final section proposes several emerging
research questions related to our work.

5.1 Summary of contributions

The first introductory Chapter of this dissertation describes the decarboniza-
tion perspectives of the transport and electricity generation sectors in the world
and more particularly in Europe, in line with the Paris climate agreements and
the EU Fit for 55 package. Electric vehicles appear as one of the main solutions to
decarbonize the transport sector and reduce its related local pollution, on several
means of transportation (individual cars, two-wheelers and heavy mobility), along
with hydrogen and bio-fuels, by reducing the carbon intensity of energy. Urban-
ism change towards shorter distances to be travelled and modal shift towards
public transport and soft mobility are solutions acting on other levers. Battery
electric vehicles are especially efficient to reduce climate impacts of transport in
areas where electricity generation is already low-carbon. On the other hand, the
electrical system transition towards more renewable sources in the generation
mix induce a decrease of the flexibility provided by generation units, which opens
a potential value for expanding demand-side flexibility. Additionally, individual
cars are likely to account for a significant share of the electricity demand-side flex-
ibility related to mobility in the medium term (up to 2040).

It has already been proven that power grids can accommodate the expected
EV diffusion in the short term (up to 2025) in most regions of the world, with low
impacts on electricity markets, however, a major question still open is the impact
of a broad EV development in the medium and long term.

Finally, we have listed the areas of interaction between electric mobility and
the electric system, before selecting the core topic studied in the following Chap-
ters.

Chapter 2 aims to compare modeling approaches for studying the integration
of electric vehicles into different aspects of the power system. We show that al-
though many studies in the literature focus mainly on the study of one of these
two elements, a joint modeling of transportation and electrical system seems to
be the most appropriate for prospective studies related to EV charging. We then
observe that the various EV charging modeling approaches are adapted to dif-
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ferent aspects of the electrical system, in particular activity-based models for very
local studies, and aggregated statistical models based on mobility surveys for elec-
tricity dispatch studies without taking into account network issues.

Moreover, the evaluation of EV smart charging strategies is often based on
historical data, assuming a price-taker hypothesis for EVs, which is relevant in the
short term, but must be overcome for medium and long term prospective studies.
For this purpose, several approaches and optimization objects can be found in the
literature, which we have detailed.

We conclude the Chapter by proposing recommended approaches to address
the different research questions mentioned in the introductory Chapter, and par-
ticularly the one studied in the following sections of this manuscript, for which a
macro mobility model based on Monte-Carlo simulation of a travel survey dataset
in order to generate averaged national charging patterns seems the most suited.

Chapter 3 presents the method chosen and developed for the generation of
electric vehicle connection data from transport surveys. First, the main inputs
and outputs of the model are described, as well as the 5 steps that compose the
algorithm: generating the parameters of the vehicles, assigning trips to each ve-
hicle, calculating the evolution of the consumption and location of these vehicles,
deducing their connection times to the network (depending on the connection
behavior). The vehicles' data are finally aggregated to generate a statistically rep-
resentative charging profile for several socio-professional categories (commuters
/ retired, rural / urban) and trips (local mobility / long distance travels) that can
be identified in our input data, in order to study multiple EV diffusion among the
population scenarios.

This model is illustrated primarily to generate charging data from individual
BEVs, but is also able of providing consumption data for PHEVs, FCEVs and other
mobility segments, as long as similar data and assumptions are provided.

Beyond the uncontrolled electricity demand from the grid, our model also
computes the evolution of the battery capacity and charging power connected to
the grid, as well as the hourly amount of vehicles that disconnect (with their bat-
tery fully charged) and connect to the a charging point. All these data are needed
to feed the EV smart charging module presented in Chapter 4.

Next, we illustrate for a case study at the 2040 time-horizon using the French
national travel survey that the connection and demand of EVs depend on several
assumptions, including the area of EV diffusion (longer distances and earlier ar-
rival times are found in rural areas, compared with urban areas), the parameters
of the charging infrastructure as well as the vehicle types (i.e. large BEVs, small
BEVs, PHEVs), which the study of provides more accurate data than the use of
a single averaged profile. The EV connection data generated shows that a sig-
nificant share of uncontrolled EV demand is synchronous with electrical system
peak demand (18:00-20:00), and two other smaller EV demand peaks are found,
at the arrival at work (08:00-09:00) and at mid-day. Finally, as expected, the pa-
rameter that seems most key to the availability of vehicles for smart charging is
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the frequency of connection to the grid , with a much wider window for optimal
charging times in case of daily connection.

Chapter 4 concludes the methodological sequence presented in this thesis by
modeling the multiple possibilities of EV smart charging, within AntaresSimulator,
an economic dispatch model, which allows the study of the optimal EV charging
periods (according to the charging constraints used to model the various smart
charging approaches) that minimize the annual operational system costs.

Six main variants of EV smart charging are compared, ranking in the following
ascending order for the reduction of cost and operational emissions of the elec-
trical system: basic time-of-use tariffs, improved time-of-use tariffs, daily dynamic
smart charging, weekly dynamic smart charging, V2G (daily) and V2G (weekly). Ad-
ditionally, we perform several sensitivity analyses on these smart charging modes,
including increasing gas prices, which has the largest impact on EV flexibility value
among other sensitivity analyses. V2G is (as expected) the charging mode that re-
duces the most the electricity system emissions and generation costs. However,
the more EVs are available for providing bidirectional flexibility, the less reduction
of emissions and costs per EV are observed (as demand-side flexibility is more
beneficial when the system lacks flexibility).

We observe different marginal production cost distributions according to the
smart charging modes, which validates the initial hypothesis that EVs cannot be
considered price-takers when their diffusion implies that their demand exceed a
few percent of total electricity demand.

We then conclude this section by advising to develop these various smart
charging modes concurrently (according to their acceptance by each consumer),
while taking care to incentivize a frequent connection behavior, as well as to study
in more detail the weekly flexibility of the recharge (when EVs are not fully charged
at each charging session), enabled by the increasing volume of the battery capac-
ity and relevant in a system with a high penetration of solar and wind production
(that increase the need for weekly flexibility).

After highlighting the potential of EV demand-side flexibility and the major pa-
rameters that have an effect on its value for the hourly dispatch of the European
electricity system, we summarise them in Figure 5.1, along with the current devel-
opment of EV demand flexibility in France. Even if EV diffusion in still in its infancy,
it appears clearly that more work is needed to incentivize demand-side flexibility,
as 63% of EV charging is yet uncontrolled in France. A major challenge appears
to be that some barriers for EV development (especially the reduction of charging
times, even for local mobility) may be in contradiction with smart charging diffu-
sion.
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Figure 5.1: Main parameters that have an impact on EV flexibility and its current
development status in France?.

5.2 Further work

The work conducted in this thesis raises a large number of additional research
topics, either directly related or ancillary to our joint transport-electricity system
analysis methodology, and in a variety of research areas (economics, electricity
network science, business models, consumer incentivization, and environmental
analysis).

Studying the other aspects of electricity system flexibility

In the introduction, we identified 5 main areas of EV-electrical system interaction
(generation and network investment, hourly optimal dispatch, grid congestion,

2See Enedis (2020) in the Bibliography of Chapter 4 for more information about the current
development of EV flexibility in France
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short term markets and grid frequency) and this thesis focused on a single aspect,
optimal economic dispatch of electricity generation, which seemed relevant in the
medium term and a research gap in the academic literature for the French system.

A question directly underlying this work is the comparison of the interest of EV
smart charging relative to these 5 aspects. Such work has already been carried
out on historical data, but it also seems relevant to study these interactions on a
prospective horizon, and by integrating EVs in power system models to go beyond
the price-taker hypothesis. In addition to comparing the benefits of EVs in each
case, it is also interesting to study if the EV demand-side flexibility required for
these aspects are contradictory or cumulative. For instance, we encourage study-
ing, under European zonal markets, whether synchronizing EV consumption with
solar/wind generation at the national level to minimize generation costs will in-
duce network congestion, given that the consumption and production sites are
not always at the same location.

Please note that such an analysis seems very complicated to carry out. Indeed,
it is important to use a scenario/data set that it will be possible to study on all the
aspects mentioned above, including prospective network data, at the national and
continental scale, and data for several markets, as well as the related modeling
tools.

Finally, even if this kind of study were to be completed, one should keep in
mind that these comparisons remain very specific to a spatio-temporal frame-
work. For example, itis expected that for very congested grids, as in some regions
of the US, the value of EV flexibility for grid flows will be higher than in France,
where the distribution and transport grids are already sized for high electric de-
mand.

Additionally to studying other flexibility objectives, one could also study the
competition between EV demand and other demand-side flexibility sources,
mainly electrolyzers, industrial and other flexible residential appliances, in or-
der to identify which flexibility sources are the most adapted to each aspect
mentionned here (hourly dispatch, grid congestion, frequency regulation, etc.).

Incentives to EV smart charging

The work of this thesis was conducted from the central point of view of the elec-
tricity system. This choice is relevant to study long-term "optimal" EV flexibility, but
requires additional studies on how to incentivize EV users to accept smart charg-
ing in order to achieve the cost and emission reduction of electricity generation
modeled throughout this dissertation.

Onthe one hand, arelevant topic of tariff design emerges, for instance through
‘'willingness to accept’ studies (to be compared with the result of analyses such as
those conducted in this thesis, battery degradation costs and to the cost of addi-
tional infrastructure required for smart charging, such as bidirectional chargers
and communication systems). On the other hand, incentivizing demand-side flex-
ibility could go beyond economic issues, either by notifying EV owners how much
carbon emissions the smart charging of their EVs has saved, or by constraining
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EVs to be charged off peak at specific locations, such as at work, where vehicles
usually stay parked much longer than average charging time.

An underlying question is also the allocation of EV flexibility income between
the different actors involved in EV flexibility: the EV owner, electric system op-
erators, the state (through potential taxes), the charging point operator, the car
manufacturer and the aggregator (for dynamic smart charging). This distribution
has been studied from a game theory point of view for the case of frequency
regulation with V2G. However, for EV optimal charging times that minimizes elec-
tricity generation cost, the equation is slightly more complex, with smart charging
modes that involve different actors (e.g., time-of-use charging does not require
aggregators or data from the car manufacturer), and charging points that belong
to either a private operator, a public operator or the EV owner (with different tech-
nical requirements).

Integration EV modeling into environmental studies

In this thesis, beyond the purely economic aspect, we have also proposed a
methodology to estimate the benefits of EV charging flexibility for the reduction
of electric generation carbon emissions. Thus, in environmental studies, based on
life-cycle analysis, comparing the relevance of thermal, battery electric, hydrogen
and hybrid vehicles (usually based on averaged electricity generation emissions
data, without taking into account any smart charging), it could turn out interesting
to add to the comparison smartly charged EVs, based on results described in this
thesis.

In addition, other issues such as the use of second-life EV batteries for the
electric system require a similar analysis methodology to estimate their environ-
mental gain.

Mobility in a changing world

Finally, to open up the spectrum of analysis, the methodology proposed in this
thesis also invites to be declined for a large number of prospective scenarios, re-
lated to the evolution of the transport and electricity generation sectors in our
changing world, in the spirit of fast reduction of fossil fuel consumption.

Among others, we can mention the effect of a reduction in the mass of indi-
vidual vehicles, the evolution of urban planning and behaviors inducing a modal
shift towards public transport and soft mobility (which could reduce the distances
traveled in individual vehicles as well as the travel speeds), a rise of carpooling, a
strong growth of public EV fast chargers rather than slow chargers at home, the
development of innovative mobility solutions such as autonomous vehicles and
mobility as a service, the electrification of other means of transport (especially
trucks and buses), a stronger decentralization of electricity production, or other
innovations to be discovered and societal changes that are yet to happen.
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A - The impact of EV smart charging on the grid

In this appendix, we propose an analysis of the impact on the transmission
grid of some EV load curves computed during this manuscript (in Chapter 3 and
4). In the literature review of this thesis, this topic has been identified as a gap in
the academic literature.

For this purpose, the imaGrid software, developed by RTE, is used, as well
as data from a 2035 scenario, based on France's Programmation Pluriannuelle de
I'Energie (PPE), for the development of the transmission network and generation
sourcesin France. Astudy area composed of 5 departments in the North of France
(departments n° 59, 60, 62, 76 and 80) was selected, where an easily accessible
study was available. This area has three main characteristics: high renewable
generation (especially wind) in rural areas, and nuclear reactors in the North of
the area, along with a strong electricity transmission grid around these nuclear
plants, while the major cities are located North and East of the zone.

Our methodology is based on the Load Flow analysis of this study area (at
hourly intervals), which allows us to calculate the flows on the 404 lines (of the
transmission grid only, above 63 kV) and the load of the 8o transformers in the
area, for several generation and consumption scenarios in the area. For example,
Figure A.1 shows the power flow on a selected line, compared to the capacity of
the line (which depends on the temperature and therefore on the season). We
observe that this line is congested on several time steps, one of which is identified.
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Figure A.1: Annual evolution of the power flow on a selected line (between nodes
ANSER and ZBERG)

Thus, we can extract indicators on the network load, such as the number of
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time steps where the network is congested, or the average overload power (com-
pared to the line capacity).

For our comparison here, the previously calculated load curves are reused.
Since our simulations are for 2040 and with different electricity mix and weather
data, we cannot adapt the load curves of dynamic smart charging modes (smart
unidirectional and V2G). By 2035, on the scenario trajectory, 50% of EVs are elec-
trified in France, so the consumption data are weighted accordingly.

Thus, we will compare 6 scenarios: adding uncontrolled and time-of-use load
curves to the base case, for 3 different EV diffusion scenarios: homogeneous dif-
fusion in the population, urban diffusion (EVs homogeneously distributed among
urban areas dwellers) and rural diffusion (every vehicle is an EV in rural areas,
where are located 26% of the vehicles in the area, and the remaining EVs are ho-
mogeneously affected within urban areas).

The results obtained, presented in Figures A.2 and A.3 show that EV diffusion is
a parameter with a strong impact on network congestion, with a more constrained
network when EVs are added in urban areas. On the other hand, the time-of-use
control presented seems to slightly increase network constraints.
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Figure A.2: Time step of the year with at least one overloaded line in the zone of
study (Load Flow simulation)
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Figure A.3: Average overload power of overloaded lines in the zone of study (Load
Flow simulation)

These first results need to be confirmed with studies on other areas, and using
data calculated for the same time horizon and the same electricity mix data.

To go further in this analysis, simulating the network in Optimal Power Flow
(OPF)will allow to estimate the cost to compensate the congestion on the network,
which allows to compare the economic interest of smart charging EVs for network
purposes and the reduction of electric generation costs computed in Chapter 4.
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B - Résumé en francgais

Cette these vise a étudier l'interaction entre les véhicules électriques (VE) et les
systemes électriques. Pour ce faire, un plan en quatre chapitres est utilisé, dont
les principaux messages sont présentés dans la suite de ce résumé en langue
francaise.

Chapitre 1: Introduction générale

Ce chapitre est composé de cinq parties qui permettent d’introduire et cadrer
le sujet de cette these.

Tout d’'abord, le chapitre commence par un rappel des travaux du GIEC, ainsi
gu'une mise en contexte des deux secteurs étudiés dans cette these, le transport
et la production d'électricité, au sein des émissions de carbone francaises et eu-
ropéennes.

Ensuite, I'historique de I'évolution des pratiques de mobilité en France est
présenté, ainsi que les perspectives de réduction des émissions du secteur. La
mobilité électrique apparait comme une des principales solutions pour agir sur
le levier de l'intensité carbone de I'énergie de propulsion des véhicules. Les per-
spectives d’électrification des différents modes de transport sont abordées, et ce
sont les véhicules individuels qui ont le potentiel le plus élevé (en consommation
totale) ainsi que les bus et camions dans une moindre mesure.

Egalement dans une perspective de décarbonation, la production électrique
dans le Monde (ainsi qu’en UE et en France) est en tendance d’évolution vers des
mix comportant plus d'énergies renouvelables (en particulier solaire PV et éolien),
en remplacement de centrales fossiles carbonées. Historiquement, ces derniéres
étaient responsables d'une grande part de la flexibilité des systémes électriques
pour assurer I'équilibre offre-demande, ce qui implique de développer d'autres
solutions de flexibilité, notamment la flexibilité de la consommation.

Ainsi, les véhicules électriques (VEs) constituent une part du potentiel de flexi-
bilité de consommation a horizon prospectif. Plusieurs domaines d'interaction en-
tre les VEs et le systéme électriques sont identifiés, pour répondre aux problémes
de flexibilité du systeme électrique a différentes échéances temporelles et sur
divers aspects (optimisation du l'utilisation de moyens de production, fréquence
du réseau, flux sur le réseau). Ainsi, divers modes de pilotage de la recharge de
ces VEs se développent, qui sont étudiés dans la suite des travaux.

Enfin, le cadrage du sujet de cette these sur les véhicules individuels élec-
triques, ainsi que le sujet du dispatch électrique européen a horizon prospectif
2040 est proposé, afin de répondre aux deux questions de recherche :

Comment modeéliser l'intégration prospective aux systémes électriques une diffu-
sion massive de véhicules électriques ?

Comment comparer les principaux modes de pilotage de la consommation des VEs,
et quels parametres impactent le plus le potentiel de flexibilité de consommation ?
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Chapitre 2 : Revue de littérature des modéles de charge na-
turelle et de pilotage des véhicules électriques

Dans ce chapitre, nous effectuons une revue de la littérature académique des
modeles permettant de générer des données de connexion et de consommation
des VEs, ainsi que des modeéles relatifs a leur pilotage.

Différentes catégories de modeles sont identifiées, avec en général un sujet de
recherche adapté qui leur est associé. Nous présentons aussi les optimisations
présentes dans la littérature relatives au pilotage des VEs : minimiser le co(t de
recharge, limiter I'appel de puissance local ou les congestions sur le réseau, max-
imiser la part d’énergie renouvelable autoconsommée ...

La plupart des articles comparés se focalisent soit sur le transport, soit sur le
systeme électrique, avec une modélisation approximative de l'autre aspect. En
particulier, beaucoup d‘articles utilisent des données de marché électrique his-
toriques, et considerent les VEs comme des price-takers. Cette approche est per-
tinente a court terme, tant que les VEs constituent une part négligeable de la con-
sommation électrique totale. Cependant, pour des études prospectives a moyen
et long terme, il semble important de modéliser séquentiellement les secteurs du
transport et de la production électrique afin de dépasser cette approximation.

Finalement, nous concluons ce chapitre en identifiant 'approche de modélisa-
tion la plus pertinente au vu de la littérature pour chacun des principaux sujets
de recherche relatifs a I'intégration des VEs dans les systémes électriques.

Chapitre 3 : Modéle prospectif de demande des véhicules
électriques

A la suite de la revue de littérature effectuée dans le chapitre 2, 'approche la
plus adaptée au sujet de recherche de cette these a été identifiée puis développée.
Ainsi, le modele utilisé pour générer les données de connexion et de consomma-
tion des VEs est décrit dans ce chapitre.

Les données d'entrée sont composées de deux élements. Dans un premier
temps, la liste des hypothéses devant étre sélectionnées est indiquée. Ensuite, les
données individuelles de déplacement proviennent le plus souvent dans la littéra-
ture d'enquéte transport, menées a la maille locale ou nationale. Pour ces travaux,
nous avons traité les enquétes mobilités 2008 et 2019 en France (qui ne different
que peu sur l'utilisation des véhicules individuels). Les déplacements sont notam-
ment séparés selon plusieurs parametres qui influent sur les données de mo-
bilité (distances et horaires des déplacements), tels que la zone de résidence du
possesseur (rural, urbain ou métropole) et la catégorie socio-professionnelle (VE
utilisé pour se rendre au travail ou pour autres motifs). Une séparation est égale-
ment réalisée entre les trajets de mobilité locale et les trajets longue distance, qui
nécessitent parfois une recharge haute puissance en cours de trajet.

Les étapes de modélisation sont ensuite présentées: génération des parametres
des véhicules, génération des plannings de déplacement, calcul des consomma-
tions liées aux déplacements et de 'emplacement des VEs, calcul de la demande

142



électrique des VEs, puis agrégation des résultats par catégories (type de véhicule,
lieu de recharge, zone ...).

Notre modele est basé sur des simulations Monte-Carlo, qui consistent en la
génération d’'un trés grand nombre de tirages aléatoires sur les données d’entrée,
afin d’obtenir des profils moyens statistiquement représentatifs.

Le modéle proposé posséde l'avantage de pouvoir prendre en compte une
large diversité de scénarios de diffusion des VEs, de leur infrastructure de recharge,
ainsi que des comportements des usagers (se connecter systématiquement,
quand l'état de charge de la batterie est faible ou en week-end). De plus, méme si
la thése se focalise sur les véhicules individuels électriques et hybrides recharge-
ables, une adaptation du modele pour traiter les autres vecteurs énergétiques
(hydrogene et biocarburants) ainsi que les bus et camions est présentée.

Pour finaliser ce chapitre, le modele est appliqué sur un cas d'étude de dif-
fusion massive de véhicules électriques en France a horizon 2040, avec environ
deux tiers de la flotte électrifiée. Les courbes de charge et de disponibilité aux
bornes liées a plusieurs variantes sont illustrées.

Chapitre 4 : Flexibilité de la consommation des véhicules
électriques pour le dispatch du systéme électrique

A partir des données de connexion et des besoins énergétiques des VEs
générés grace au modele présenté dans le chapitre 3, ce chapitre vise a inté-
grer les VEs a des simulations du dispatch du systéeme électrique européen (en
prenant en compte les moyens de production dans chaque pays ainsi que les
capacités d'échange entre zones de prix électriques).

Les millions de VEs potentiellement pilotés sont regroupés au sein d’'un ob-
jet électrique équivalent au sein de notre modele. Les contraintes utilisées pour
modéliser cette agrégation et le pilotage de la recharge de ces VEs sont décrites
est justifiées dans ce chapitre. Ces derniéres permettent d'étudier un grand nom-
bre de modes de pilotage qui émergent : pilotage a partir de signaux tarifaires
(basiques ou améliorés), pilotage dynamique unidirectionnel (smart charging) ou
pilotage dynamique bidirectionnel (vehicle-to-grid, V2G).

Nous comparons ensuite ces modes de pilotage selon le gain économique et
d’émissions de carbone qu'ils apportent au dispatch des moyens de production
électriques, basé sur un cas d’étude a horizon 2040 dans un systeme électrique a
forte pénétration des moyens de production renouvelables. Dans notre scénario
de référence, le pilotage dynamique unidirectionnel de la charge des 24 Millions
de VEs réduit le colt de production d'électricité d'environ 1 G€ annuels, ainsi que
les émissions associées de 2.4 MtCO,-eq.

Les parametres qui influent le plus sur la valeur de la flexibilité de la charge
des VEs sont le prix des combustibles (en particulier le gaz), la diffusion des modes
de pilotage (dans l'ordre croissant de valeur : signaux tarifaires, smart charging et
V2G), ainsi que la possibilité de procurer de la flexibilité hebdomadaire en per-
mettant le report de la charge d'un ou quelques jours. A horizon 2040 a fort
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développement du solaire PV, il apparait que le milieu de journée est un des mo-
ments de la journée ou les colts de production électrique sont les plus bas, donc
la connexion d’'une part des VEs en milieu de journée est également souhaitable
pour réduire les colts et émissions du systeme électrique.

Conclusion générale

Pour conclure ce manuscrit, les principaux messages de la thése sont re-
groupés.

Il apparait que le pilotage de la recharge est peu développé en France en 2021,
de l'ordre de 37% des usagers. Ainsi, les travaux menés dans cette thése appellent
a développer davantage la flexibilité de consommation des VEs dans les années a
venir, par les différents modes de pilotage identifiés, selon I'acceptabilité par les
usagers, au vu des gains estimés a horizon 204o0.

Enfin, des sujets de recherche émergents connexes a ce travail de thése sont
évoqués, notamment sur (1) I'étude de la flexibilité de la recharge des VEs pour
d’'autres aspects du systeme électrique que le dispatch optimal, (2) les incitations
des usagers au pilotage de larecharge, (3) I'étude environnementale de lI'intérét du
pilotage des VEs et (4) le besoin de déclinaison du cadre d'analyse construit dans
cette these pour d'autres scénarios de la mobilité dans notre monde en évolution
vers la neutralité carbone.
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and illustrated on various scenarios of the electric
mobility development by 2040. This methodology
allows the comparison of the foremost EV smart
charging modes, as well as the identification of
the parameters that most influence the value of
this demand-side flexibility: the price of fossil fuels
and the level of diffusion of the various EV smart
charging modes.
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