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1 - Chapter 1: General Introduction

1.1 Climate change and its implications on trans-
port and energy sectors

Since the first publication of the Intergovernmental Panel on Climate Change(IPCC) report in 1992 (IPCC, 1992), this organization has become one, if not themost, important scientific research group. Its latest report published to date(IPCC, 2022) informs us through its 3 working groups of the causes of globalwarming, its risks as well as possible solutions to mitigate it. The key messageis that global warming is caused by anthropogenic greenhouse gases emissionsand appears to be a threat to our civilization in the next years and decades.Amajor challenge in the coming years is therefore to limit those anthropogenicemissions of greenhouse gases, mainly carbon dioxide (CO2), as well as methane,nitrogen oxydes and others, which have skyrocketed since the second half of the19th century, as illustrated in Figure 1.1.

Figure 1.1: Evolution of carbon emissions and global temperature average from1880 to 2020 (temperature data fromNOAA (2022), and carbon emission data fromRitchie et al. (2020))
Thus, many research efforts attempt to propose or evaluate more domain-or object-specific solutions to reduce carbon emissions, and this work is locatedwithin this context, at the intersection of the transportation and electricity gener-ation sectors.
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We illustrate in Figure 1.2 the distribution of carbon emissions by sector, forFrance and the European Union (EU). It appears that in France, transport andelectricity generation account for respectively 30% and 5% of the total nationalemissions. In the EU, these numbers reach 32% for electricity generation (whosedecarbonization is less advanced than in France, see section 1.3.1) and 29% for thetransport sector.There are different ways to account for carbon emissions: direct emissions onthe territory, emissions from life cycle analysis (LCA), carbon balance by evaluatingimports and exports (Matthews et al., 2008). In this manuscript, the "emissions"expressed will be, unless otherwise stated, direct emissions on the territory, alsoknown as "Scope 1 emissions", which are yet the most commonly used carbonaccounting methodology in public and accessible data and less sensitive to struc-tural assumptions. However, LCA seems much more accurate in taking into ac-count the total carbon impact of consumption.

Figure 1.2: Evolution of carbon emissions per sector in France since 1990, com-pared to the EU total emission per sector (data from SDES (2021))
The following of this introductory Chapter is divided as follows: first, theprospects for decarbonization of transport are described, with a focus on vehicleelectrification, then the evolution of electricity generation mixes is explained, be-fore detailing the interaction between those two sectors, and finally the researchquestions and the structure of this thesis are presented.
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1.2 Evolutions in thefield of transport to reduce fos-
sil fuel propulsion

1.2.1 A brief historical context of transport in France
The transport sector has developed strongly during the 20th century, with the ad-vent of oil extraction. Indeed, until the 18th century, the majority of trips weremade by foot or horse (and bikes from mid 19th century), with a large proportionof individuals never travellingmore than a few kilometers away from their homes.Merger (1987) reviews the main historical literature about transport developmentin France. First, the road and rail networks began to be built in the second halfof the 18th century, until a larger development spread over the whole territoryin the first part of the 20th century, before finally a more massive plan of roadrenovation and construction in the 1970s. The advent of petroleum allowed thedevelopment of much faster, more efficient, and less expensive modes of trans-port. At first, individual vehicles were reserved for the wealthy, but their use grewsteadily during the 20th century. Although electric propulsion for road vehicleshas existed since the middle of the 19th century (Burton, 2013), it proved to beuncompetitive throughout the 20th century, compared to thermal vehicles.The transport sector is often divided into two large blocks: passenger trans-port and freight transport. First, regarding passenger transport, in 1990, 77% ofFrench households owned a car, of which 26% owned two or more (INSEE, 2020).These figures have increased in the last 30 years to reach respectively 84% and36% of households in 2020. Moreover, INSEE (2020) estimates that only 2.7% ofFrench people do not own a car due to lack of financial means (against 6.8% inthe EU). The survey INSEE (2017) also allows the comparison of household expen-ditures by sector and over time. This survey informs us that the average shareof expenditure devoted to transport in France has remained stable between 2004and 2019, at around 15% of total expenditures. That is, even though the price ofoil has been on a (chaotic) upward trend since 1990, the thermal car has remainedaffordable for most French households, as expenditures have yet increased cor-respondingly.This increase in the ownership and use of individual vehicles appears to besimilar formost developing countries, while very few countries have begun a tran-sition towards a reduction in distances traveled (IEA, 2019).Second, the transport of goods has also continuously grown, in parallel withglobalization. In France, goods transport totals 362 Gt.km/year within the terri-tory, 89% by road trucks, and only 9% of rail freight and 2% of waterway transport(SDES, 2021).When focusing on the transport sector evolution in the last 30 years, the totalfinal consumption in France was on a rising trend up to 2000 and then remainedstable up to 2019 (SDES, 2019a). The associated carbon emissions of the transportsector are illustrated in Figure 1.3, which shows that emissions followed the same
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trend as consumption, while slightly decreasing in the last 15 years1. Significantlyless carbon was emitted in 2020 and 2021, but the transport sector in those yearswas affected by the Covid-19 pandemic (Le Quéré et al., 2020), which makes those2 years not representative of a strong shift towards decarbonization of the trans-port sector. Figure 1.3 also illustrates the targeted path of France’s SNBC (2019),which defines its baseline trajectory in order to reach net-zero carbon emissionsin 2050. As studied by many in the literature, this trajectory requires breaking thetrend observed in the last 30 years, both at the French and European level, eitherby technological shift (Rottoli et al., 2021), lifestyle changes (Costa et al., 2021) or acombination of policies (Haasz et al., 2018).

Figure 1.3: Evolution of the transport sector carbon emissions in France since 1990,and target path towards net-zero emission in 2050 (data from Citepa (2022))
To summarize this subsection, mobility in France in the last century has be-come widespread in the population, carbon intensive and multimodal even if alarge majority of passenger transport is ensured by personal cars, and a majorityof freight transport by trucks.

1.2.2 The potential for electrification of all major means of
transport

When we divide the analysis made in the previous section per transport mode,it appears that individual vehicles, especially cars (which account for 97% ofmotorised distances travelled in individual vehicles, with less than 3% of two-wheeler use), stand for the largest share (80.5%) of distances travelled annuallyby passegers inside France (Arafer, 2019). The evolution since 1990 of those dis-tances travelled per vehicle type is illustrated in Figure 1.4. Total annual distances
1Most transport related data in this section, and more generally in the Chapter range up to1990, which is the starting date of nearly all historical data easily available for France. For moredetailed historical study of the transport sector in France (from 1960 and even before), see thework of Bigo (2020).
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travelled have never noticeably decreased from a year to another in the last 30years if we leave aside the year 2020 when distances travelled were significantlyreduced because of Covid-19 lockdown. It is to be noted that other transportmodes known as active mobility including cycling and electric scooters stand forless than 1% of distances travelled in 2019, so they are not included in Figure 1.4.As a result, individual vehicles account for the major part of the decarbonizationeffort to be made.

Figure 1.4: Evolution of the distances travelled per vehicle type in France (datafrom Arafer (2019))
The decarbonization of the transport sector relies on the five elements of theequation introduced by Kaya (1990), adapted for the transport sector by Bigo(2020) (among others). These five elements are total transport demand, modalshift, occupancy rate, energy efficiency and carbon intensity of energy. In thiswork, we study in more depth the energy efficiency and carbon intensity param-eters, although all five are advisable to reduce the impact of the transport sectoron climate change.Regarding carbon intensity of energy for mobility purposes, electric vehicles(EVs) are currently seen as an opportunity to reduce greenhouse gases and otherlocal polluting emissions of the transport sector, as an alternative to thermal ve-hicles relying on carbon intensive fuels. Recent events have also spotlighted theuncertainty surrounding the future of fossil fuel prices and strengthened resolveto press ahead with reducing oil dependency. Many governments are conse-quently incentivizing EV use, and some have even planned to ban the sale or
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use of combustion-engine vehicles in the mid-term, by 2025 in Norway, by 2030in Germany, the UK and the Netherlands, and by 2035 in France and at the EUlevel, for instance (Conway et al., 2021). Additionally other policy decisions such asbonus/penalty system depending on vehicle carbon emissions, taxes on carbonintensive fuels, urban toll systems (such as in London and Stockholm) or free park-ing and accesses to bus lanes for low-emission vehicles can serve to incentivize EVdevelopment. Furthermore, battery costs are expected to decrease in the comingdecades2, so EV total cost of ownership (TCO) are expected to match thermal ve-hicle’s in the coming years. Therefore, the share of EVs in the transport sector isforecasted to surge in the next few years. The International Energy Agency’s (IEA)EV30@30 scenario forecasts that half of all vehicle sales in Europe could be EVs by2030 (IEA, 2019). This yearly issue by the IEA has become one of the key documentassessing EV development perspectives.Different types of EV propulsion and power storage are being developed, in-cluding: battery electric vehicles (BEVs) that exclusively use an electrochemicalbattery (with a capacity typically ranging from 20 kWh to 100 kWh for individualcars) to power an electric motor; plug-in hybrid electric vehicles (PHEVs) that haveboth an on-board electrical motor with electrochemical battery-pack storage anda combustion engine with a petrol tank; and fuel-cell electric vehicles (FCEVs) thatcarry an on-board hydrogen tank combined with fuel cells to power an on-boardelectrical motor. Other hybrid vehicles that cannot be plugged-in to charge theirbattery and whose only energy source is petrol, biogas or liquefied petroleum gasare outside of the scope of this work, as they do not interact with the power grid.In addition to carbon emissions, other negative externalities related to thetransportation sector are to benoted: nitrogenoxides (NOx) emissions, that causerespiratory diseases (César et al., 2015), particulate matter from road and brakeswear (Abu-Allaban et al., 2003) and noise (with its impacts on sleep and otherhealth issues) (Bugliarello et al., 2014).Electric vehicles contribute to the reduction of at least NOx and noise, particu-late matter impact depending on vehicle mass and whereas eco-driving is consid-ered or not. We observe either less brake wear thanks to regenerative breaking(Paredes et al., 2013) or higher wear because of heavier vehicles (Oroumiyeh &Zhu, 2021).In the following subsections, we detail the electrification potential and rele-vance of studying the transport modes that make up the sector.
Personal vehicles

To begin with, passenger cars are by far themost studiedmode of transport in theacademic literature on electric vehicles. Indeed, many scenarios predict amassivedevelopment in the next few years, between 40% and 78% of sales in Europe in
2However, recent events showed some unexpected rise in the price of lithium (Cai, 2022) linkedto geopolitical events and a rising lithium demand (or potentially other resources) can threatenthe veracity of this anticipated cost reduction
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2030 in scenarios from IEA (2021b), up to 50% of the vehicle fleet electrified inFrance in 2035 according to RTE (2019) or around 50% of BEV and PHEV in theUSA in the “SAFE” scenario, in 2030 (Conway et al., 2021). This is mainly due tothe fact that some sources anticipate that total cost of ownership (TCO) of lightelectric vehicles will equal those of thermal vehicles in the next few years, dueto the reduction in battery costs (Goldie-Scot & BloombergNEF, 2019; IEA, 2021b),along bans on thermal vehicle sales. Development is already well advanced insome parts of the world, notably Norway, which is the leading country with a 56%market share of BEVs in 2020 (IEA, 2021b).The IEA currently identifies 5 main barriers to its development: insufficientcharging infrastructure, not enough electric car models, too high purchase costcompared to thermal vehicles, long charging time, uncertain/undeveloped policylandscape. The scientific literature agrees with these observations, even if costand environmental benefits appear to be the parameters with the most influenceon purchase decision (Vassileva & Campillo, 2017).Regarding charging infrastructure, the EU recommends 1 public charger for ev-ery 10 EVs, and France is yet a bit below this target, at 1 charger for 13 EVs, countingplug-in hybrids (AVERE, 2021). On the other hand, the need for charging stationsseems to be conditioned by the type and density of the territory. For example, inNorway, the country with the strongest development, the infrastructure is only 1public charger for about 30 EVs (IEA, 2021b), but there is no lack of charging sta-tions, given the high proportion of individual housing: more than 80% of EVs arecharged at home in Norway (Figenbaum & Nordbakke, 2019).
Different battery technologies are being developed, which makes it non-trivialto assess the demand for raw materials (Junne et al., 2020), but the IEA seems toindicate that a massive worldwide development is possible (IEA, 2021b). The sameobservation apply to the environmental impact of EV batteries that depends onthe battery technology.In the literature, the environmental benefits of EVs compared to thermal ve-hicles is no longer really debated in decarbonized electricity generation systems,even when calculating LCA emissions (Cihat Onat et al., 2020; Lucas et al., 2012;Ma et al., 2012; Mendoza Beltran et al., 2018; Wolfram et al., 2021). However, theratio between BEV and thermal vehicle emissions differ according to the selectedassumptions (vehicle life span, producer country, battery recycling rate, vehiclesize, eco-driving, etc.). For instance, some studies indicate 4 times lower life cyleemissions for BEVs under favorable conditions at the 2050 time-horizon (MendozaBeltran et al., 2018), while others conclude that in worst case scenarios and whenaccounting marginal emissions for electricity generation and large individual ve-hicles, BEVs generate 20% more emissions than thermal vehicles (Ma et al., 2012).Xu et al. (2020) estimates that implementing EVs reduces carbon emissions by be-tween 36 and 47% at the European level depending on smart charging adoption.In the case of high carbon electricity generation mixes (around 400 gCO2eq/kWh),electric propulsion is not always considered useful to mitigate climate change,even if it contributes to the reduction of local pollution in cities.
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Finally, a point is raised by ADEME (2021) and IEA (2021a), relating to vehi-cle mass that has lately been increasing in Europe, especially via the surge ofsport utility vehicles (SUVs), going against decarbonization of the transport sec-tor. Heavier vehicles induce more consumption of resources to build and powerthe vehicle. Governments have introduced taxes (bonus-malus) to encourageweight reduction in vehicles, but a downward trend has not yet begun (ADEME,2021).Light duty vehicles are a specific vehicle type that could be classified inside"personal vehicles", that also show a great electrification potential but are not themain focus of this work.
Heavy mobility

In this section, we discuss threemodes of transport grouped under the term heavy
mobility: buses, trucks and trains. Contrary to individual vehicles, where electricpropulsion (or even plug-in hybrids) seems to be the most suitable technology,several motorization and smart charging modes are emerging for this transportsegment.According to the IEA, the prospects for electrification of buses are almost ashigh as for light vehicles in terms of percentage of the fleet, at around 50% ofelectric bus sales in Europe in 2030 (IEA, 2021b). Indeed, bus trip characteristicsare quite suited to electrification, with rather limited daily distances driven (150kmmax) at low speed, large time windows without travelling parked at the depot atnight, as well as a use generally rather in urban areas, where low emission zonesare potentially set up. However, there is still uncertainty about the development ofbattery charging technologies, between plug-in charging in the evening at the de-pot, or recharging during the day or during the journey, by catenaries, fast charg-ers at the terminal or induction charging (Bi et al., 2017). Thework of this thesis willnot focus on buses, but there is potential of demand flexibility for electric buses,depending on the assumptions presented here: charging location and power.The case of trucks for freight transport is relatively different from buses, in thesense that some of them are used for very long distance trips (> 500km), so thatthe need for a long driving range appears to be greater than for buses. Thus, sev-eral technologies seem to be adapted to several truck segments: BEVs for localdeliveries, PHEVs for medium and for longer distances, FCEVs (powered by hy-drogen), EVs with catenary or in-road inductive charging or biofuels (Plötz et al.,2021; Sen et al., 2017). The charging power of electric trucks is currently experi-mented up to 1 MW (Mishra et al., 2022), which is 300 times larger rated powerthan a residential individual EV charger. In any case, given the operational con-straints of trucks (need for fast charging, to be synchronized with truck loadingand driver breaks), it is expected that trucks will not have as strong a potentialfor electric demand flexibility as light vehicles. Thus, this thesis will not focus onthis segment, although the study of electric trucks demand could be relevant forsome aspects related to the electrical system (especially the impact on the gridand charging infrastructure sizing, in case of very high charging power).
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Finally, trains and electric tramways will be excluded from the analysis con-ducted in this thesis, because of their non-flexible electricity demand for the ma-jority of the rail transport already connected to the electrical network, and whichis already taken into account in the consumption forecasts, based on historicaldata.
Two wheelers

Motorcycles and motor scooters are a specific case in the field of transport. In-deed, their use varies widely from country to country, depending on the GDP percapita and the density of the transport network. There is a large share of two-wheelers in India and a large potential for electrification (Patil et al., 2021), for in-stance, but relatively little in Western European countries, less than 3% of vehicledistances travelled in France (Arafer, 2019). Although this transportation modeseems to be one of the easiest to electrify, because the technology already existsand two wheelers are not usually used for very long trips, we will not considerthem in our analysis, given the low consumption expected for two wheelers inFrance.The same is true for electric bikes, variants of motorcycles, in regard to theirprospective energy demand, with consumption under 0.02 kWh/km, which ismore than ten times lower that an electric car (Fishman & Cherry, 2016).
Micro mobilities

In recent years, new mobility modes called "micromobilities" have emerged inmajor European cities. Most of them can actually be classified as BEVs: electricscooters, hoverboards, single wheel scooters, etc. Although their surge has beenintense in the previous years (Abduljabbar et al., 2021), especially in the largestEuropean cities (Paris, London, Berlin), their large diffusion remain uncertain asthey aremostly adapted to dense areas. Additionally, these transportationmodesare very efficient per distance travelled, less than 0.05 kWh/km according toWanget al. (2021) , as compared with other individual transport modes. As a result, oneshould keep inmind their potential development, but they are not included in ourscope of work due to their low projected electricity demand.
Other

In regards to aviation, even if the industry communicates on a strong develop-ment of hydrogen aircraft (EU Publication Office, 2020), and that Solar-Impulsedemonstrators of electric aircraft have taken place, the development by 2040 ofelectric alternatives for the transport of passengers and goods by aircraft seemstoo uncertain.For maritime transport, the electrification of ships seems to be closer than air-crafts to being techno ready, with a more extensive academic literature (Bigernaet al., 2019; Sharma & Syal, 2021; Villa et al., 2019). However, there appears to be a
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strong lack of data, poorly defined public objectives for electrification of maritimetransport, and the likelihood that some electric ships will be off-grid and poweredmainly by solar PV panels.Thus, airplanes and ships are outside the scope of analysis of this thesis.
1.2.3 The recent evolution of individual vehicle use in France
In France, as in many other countries (further detailed in section 2.2), the govern-ment department in charge of transport carries out a national travel survey aboutevery ten years. There are two main outcomes of national travel surveys that areof interest for this work: the use of each means of transport by the population,and the distribution of trip data (especially distances, speeds anddeparture times)that help us model EV demand (as described in Chapter 3). The last two mobilitydata sets for France were published in 2008 and 2019 (SDES, 2008, 2019b).First, when we compare the evolution of modal shares (which is defined asthe share of tripsmade with each transport means, which differs from the shareof distances travelled, illustrated in Figure 1.4), these studies show relatively littleevolution between 2008 and 2019. Thus, the average French modal share of indi-vidual cars was reduced by 2% (from 64.8% to 62.8%), balanced by approximatelya 1% rise of both public transport (to 9.1%) and walking (to 23.7%), according toSDES (2020). On its side, cycling remained stable at 2.7% of trips between 2008and 2019. However, beyond those national averages, we observe large geograph-ical differences in those modal share data, as individual vehicles’ modal share isnow reported at 33.3% in the Paris area (in a sharp downward trend), comparedto 79.5% in rural areas and 73.2% in small cities, where the trend is stable.

Regarding the distribution of individual trip data inside the two most recentFrench national travel surveys, each study provides a list of trips, with among oth-ers information on the respondent code (anonymized), the origin and destinationlocation (home / work / other), the type of day (week-day, Saturday or Sunday), thetransport mode used, the zone of residency of the respondent (urban, rural andcounty), and most importantly, the departure time, arrival time and distance ofthe trip. The 2008 travel survey provides around 132,000 individual trips, but only45,000 are included in the 2019 data set. In this section, we analyze and comparethese studies according to the following methodology.First, we selected trips made with a personal motorized vehicle only, and gotrid of incomplete data and aberrant data (travel speeds above 150 km/h or below5 km/h, trip length below 0.5 km). We also divided the analysis between “localmobility” and “long-distance trips”, the definition provided by SDES (2008) of thesecategories being: if and only if a trip goes beyond 80 km away from home as thecrow flies, then it is classified as a “long-distance” trip.Second, for each respondent code, we recompiled the list of trips madethrough the day, in order to get the total distance driven per day, a list of de-parture and arrival times of each trip.
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Third, we affected those daily travel data to our 3 categories: working day orweek-end, urban or rural, commuting to work trip or other trip purpose.Finally, whenwe compare the twomost key data regarding individual trip data,between the 2008 and the 2019 study, as illustrated in Figure 1.5, we identify thatthere has not been a strong evolution of individual trip patterns in the last 12 years(similar distribution of daily distances driven and arrival times, considering mar-gins of error). These national survey data are further analyzed in annex 1.A. Wecan try to explain this low difference between those two studies as there was lit-tle evolution in urban planning and working habits in that period in most of theterritory, which means that individual trips stayed relatively similar3.Figure 1.5 shows that the peak times of vehicle arriving back at home is the17:00-19:00 in the evening, with a smaller peak at mid-day.

Figure 1.5: Comparison of individual trip distances and arrival time distribution forthe 2008 and 2019 French national surveys
As a result of this travel data analysis, both 2008 and 2019 travel surveys can beused quite indifferently for assessing current trip patterns in individual vehicles.For the rest of this thesis, we use data from the 2008 survey to generate EV con-nection and demand data, which was accessible from the beginning of our workand has a larger respondent pool.If provided detailed prospective scenario on how individual trips could evolve(e.g. decreasing the share of trips below 20km in urban areas linked to a rise of

3The previous 2019 French national travel survey was conducted just before the Covid-19 pan-demic, which may induce a shift towards more home-working or other societal changes, whichcould modify this analysis, to be confirmed in the next few years.
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public transport or decrease the share of trips for the “commuting to work” pur-pose in a scenario with more home-working), one could easily modify such his-torical travel data set in order to generate a prospective travel data set, as furtherdetailed in section 3.2.2. However, current French national scenarios on transportevolution were found too unclear for this purpose.

1.3 A changing European power generation system

1.3.1 From a thermal electricity generation system to a decar-
bonized one

Similar to the transportation sector, electricity generation was massively devel-oped during the 20th century in Western Europe, which led to an increase inenergy consumption and living standards during this period. The first main re-sources used for electricity generationwere the same as formobility in that period(coal, gas and oil), aswell as nuclear power in some countries from the 1960s/1970sonwards, notably in the USA, Western Europe, the USSR and Japan. Large hydropower plants, based on turbines in rivers with high water flow, have also beenbuilt in suitable territories (mountainous territories or territories with high waterresources, such as Canada, Brazil and the Scandinavian countries). Electricity mixfor the World, Europe and France in 1990 are illustrated in Figure 1.6.Since 1990/2000, the decrease in the cost of renewable energy generation, es-pecially solar photovoltaic (PV) and wind power, as well as environmental issues(climate, local particle pollution, and related to past nuclear accidents - Chernobyland Fukushima) have led public authorities to push for the development of re-newables as well as for private actors to invest in them. As a result, the share ofrenewable generation in the electricity mix reached 38% in the EU in 2020. On aglobal scale, electricity generation is still dominated by fossil fuels, notably coal(36%) and gas (23%) (Ritchie et al., 2022).Moreover, the international ambitions to further decarbonize the electricitygeneration sector lead to the elaboration of scenarios as presented in Figure 1.6,with around two thirds of renewable generation by 2050. The potential for devel-opment of hydro generation is identified as rather limited compared to other re-newable sources, as a result, the share of hydro-generated electricity is expectedto decrease (both worldwide, in EU and in France), due to the increasing projectedelectricity demand. In addition, many research studies now indicate the possibil-ity of reaching 100% renewable electricity mixes by 2050, which would further re-duce the flexibility provided by electricity generation (Bussar et al., 2016; RTE, 2021;Zappa et al., 2019). The data sources in the following graph are only selected forillustration purposes and are not used as base case scenarios in the following ofthis work.
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Figure 1.6: Electricity generation mix evolution (share of generated electricity) atthree different scales: World, EU and France. Data for 1990 and 2020 from Ritchieet al. (2022), data forWorld average in 2050 from the Stated Policies scenario of IEA(2021c), data for EU average in 2050 from the EU reference scenario of EuropeanCommission (2020) and data for France in 2050 from the N1 scenario of RTE (2021)
1.3.2 The development of demand-side flexibility
Heggarty et al. (2020) defines flexibility and assesses who provides flexibility inFrance on three different scales: daily, weekly and annual. Thermal sources ac-count for a large share of the flexibility provided to current power systems.As described in the previous section, a significant share of thermal sources areexpected to be replaced by renewable sources over the next 30 years, which im-plies that new solutions need to be developed to compensate this loss of flexibil-
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ity. Among these solutions, most prospective electricity scenarios (IEA, 2021c; RTE,2021) advise a growth of interconnectors between electric zones, the developmentof stationary storage (hydro, batteries, compressed air, etc.), sector coupling (es-pecially with gas and hydrogen) and finally a rise in demand-side flexibility, whichis the focus of this section, and more broadly this thesis.When studying the literature on the topic of demand-side flexibility (or de-mand response), it appears that several main sectors seem to be well suited:the industrial sector, the residential sector, the commercial sector (Golmohamadi,2022; Heffron et al., 2020; Kohlhepp et al., 2019; Li & Pye, 2018; Söder et al., 2018),as well as the transportation sector (sometimes included in the residential sectorfor electric cars). It is to be noted that demand-side flexibility is already slightlydeveloped in France in 2021, especially through industrial load management andtime-of-use tariffs for the residential sector (from late 20th century in France).Multiple residential appliances have a potential for flexibility (heating, domes-tic hot water, dishwashers, washing machines, charging of small battery-poweredelectronic devices), but on the prospective horizon, EVs which present a signif-icant part of the potential for demand flexibility can be easily mobilized, alongwith hydrogen electrolyzers (National Grid, 2021; RTE, 2021).Additionnaly, it appears that EV load flexibility ismore suited to providing shortterm (especially daily) than annual flexibility (Heggarty et al., 2020), as opposed toH2 electrolyzers. Helistö et al. (2018) also indicates, by comparing the benefits ofdemand-side flexibilities, that EVs are most useful on a daily basis, to facilitate theintegration of solar generation. Other studies support this PV-EV complementarity(Hoarau & Perez, 2018; Schuller et al., 2015).In order to manage demand-side flexibility, for the case of EVs, several smartcharging modes are developed: tariff-based control modes (already developedfor the other main flexible uses) can be used, as well as other dynamic modes,based on real-time communication, either unidirectional or bidirectional (vehicle-to-grid), which will be presented in more detail in Chapter 4, focused on EV smartcharging.Another simpler lever to limit residential peak consumption is to allocate ashare of capacity-based tariffs instead of 100% energy based tariffs, which facili-tates EV integration for power systems (Freitas Gomes et al., 2021).In the following section, the main areas of interaction between EV flexibilityand power systems will be detailed.

1.4 The interaction between transport and electric-
ity systems

After identifying the potential for EV demand flexibility, five main areas of studyfor this flexibility are identified (Golmohamadi, 2022; Thompson & Perez, 2019):
• Generation capacity and transport network expansion: the challenge isto size the power system at the right level (minimize cost and keep sufficient
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quality of supply), while taking into account consumption and its flexibilityin the future. The integration of flexible consumption trajectories in thesemodels is the most macro subject of study for EV demand.
• Optimal dispatch: charging EVs at the least costly time windows (minimiz-ing the use of carbon-based generation), for a given power system. This isthe main focus of this thesis, presented in Chapter 4. Another approach todeal with this aspect is from a "valley-filling" point of view to limit the elec-trical system sizing.
• Network flows, at the distribution and transmission level: manage or pre-vent grid congestion, in order to minimize overloads on the network linesand transformers. Voltage support is a related topic to network studies.
• Intraday markets: study the offers that can be proposed by the aggrega-tion of vehicles on the day-ahead and intraday markets. The purpose ofthis subject is mainly to adapt the production and consumption plans a fewhours ahead of real time to compensate for weather forecasting, unfore-seen events, etc.
• Frequency regulation, either frequency containment reserve (FCR) or auto-matic frequency restoration reserve (aFRR): keeping enough flexibility assetsconnected to manage the frequency in real time.
The compatibility of the different EV smart charging modes (time-of-use, uni-directional smart charging and V2G) with these power system issues are furtherdetailed in section 2.3.1, and themainmodels andmethods used to address themin section 4.2.1.After the identification of these five interaction topics, it should be noted thatthe relevant time horizons of study differ between these topics. Indeed, someof them (frequency regulation, network flows on specific locations) are relevantas soon as the EVs are lightly developed. Others, such as network impact on themajority of areas and optimal dispatch, are more long-term research questions,when EVs becomepredominant on the vehiclemarket. This thesis, whosemobilityanalysis will be made on the French case, aims to study the 2040 time horizon, afew years after the planned end of sales of thermal vehicles.

1.5 Scope of work and research questions
As identified in this Chapter, ourwork studies the demand side flexibility of electricvehicles, at the intersection of the electricity and transport sectors, with a focuson the 2040 time-horizon, an importantmilestone of transport electrification. Thescope of this thesis is mainly the electrification of light vehicles in France and itsinteraction with the European electrical system dispatch.We try to complement the existing literature on the topic (further detailed inChapter 2) by providing a methodology to integrate EV demand data (computed
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from a mobility model and a travel survey dataset) inside a modeling of the Euro-pean electricity system. This analysis enables the study of the impact of various EVcharging scenarios on the electricity generation costs and carbon emissions. Thecompetition between EV demand flexibility and other flexibility means (station-nary batteries, industrial load management, pumped hydro storage, hydrogen,etc.) is also taken into account in this modeling framework. Additionally, the influ-ence of electricity-generation scenarios (such as gas prices) on EV flexibility valuecan be studied.The research objectives of this thesis can be summarized in these researchquestions :
How to model the prospective integration into the power system of a large EV dif-

fusion at the national scale?
How to compare the main EV smart charging modes, and which parameters have

the largest impacts on this demand-side flexibility potential?

1.6 Thesis structure
Following this introductory Chapter, in order to address these two research ques-tions, we adopt a 3-Chapter structure, with the results andmethods of each Chap-ter directly feeding into the next, as illustrated in Figure 1.7.

Chapter 2 presents the literature review conducted on the topic of vehicletrips modeling, for different research objectives related to EV integration into theelectric system. It appears that several classes of models emerge, each adaptedto a specific research question. Secondly, the objective functions related to the EVsmart charging (either to limit the local power demand, to minimize the chargingcost or to maximize the self-consumed energy share) are described. Most of thestudies focus on a precise modeling of either the electrical system or the trans-portation sector. This approach is justified in the short term, given the currentlimited market share of EVs. On the other hand, for prospective studies, we rec-ommend sequentialmodeling the transportation systemand then the electric sys-tem. Finally, this Chapter ends with recommendations for modeling approachesfor the research topics identified by the literature review, and in particular for thetopic that will be addressed in the rest of this thesis.
Chapter 3 describes the method used to generate EV uncontrolled demandand connection data at the national level from a transportation survey dataset,building on the observations in the previous Chapter. We also identify pointswhere these datasets are not sufficient to ensure accuratemodeling (the very localaspect as well as long-distance trips). The solutions to adapt these tools in orderto study the connection of several types of vehicles, for various time horizons andcharging infrastructures are also detailed. In a second step, our methodology isapplied to a case study on EV demand in France by 2040, for an ambitious EV de-velopment scenario. We identify the parameters that have the most influence onEV demand data (energy needed and connection to the grid patterns), and pave
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the way to the study of the smart charging of these EVs, thanks to the multitudeof output data generated.
Chapter 4 completes the methodology of this thesis by integrating the previ-ous results into a simulation model of the electrical system with the optimal dis-patch point of view (while modeling the exchanges between European countries),which enables the study and comparison of all the smart charging modes thatare currently being developed (uncontrolled charge, time-of-use tariffs, dynamicsmart charging and V2H/V2G). We also show how to aggregate millions of EVs intoa single modeling object, with associated limitations and proposals to overcomethem. Finally, a case study following the results provided in Chapter 3 allows us todraw some first conclusions on the comparison of these smart charging modes,with respect to the challenges of the electric system in 2040 that these modeswill be able to answer. The identification of the main parameters that influencethe flexibility of EVs is also performed. Finally, we conclude by indicating the mainbarriers to be removed to develop the demand-side flexibility provided by electricvehicles, while having proven and enabled our ability to measure the associatedeconomic and environmental gains.

Figure 1.7: Global framework of our methodology to study EV grid integration
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1.A Additional travel survey analysis results
To complement the analysis made in section 1.2.3, similar data on the analysis ofthree trip categories are illustrated here.First, Figures 1.8 and 1.9 show the discrepancy between the mobility habits ofurban and rural dwellers. Even if, as for average national data, the differencesbetween the two data sets is really small (nearly always inside the 95% confidenceinterval), it appears that rural dwellers drive significantly longer distances, and getback at home slightly earlier than in urban areas.Then, Figure 1.10 highlight how much mobility behaviors differ in the week-ends, with obviously much less people commute to work on these days, whichmeans that fewer French people finish their last trip of the day at peak return time(17:00-19:00), with more arrival times earlier (11:00-13:00) and later (22:00-02:00)than on week days. Additionally, distances driven on weekends are very similarto those driven on week days (Figure 1.5), although less French people use theircar on weekends for local mobility trips.

Figure 1.8: Comparison of individual trip distances and arrival time distribution forthe 2008 and 2019 French national surveys (filtered, only trips on working days, inurban areas are illustrated)
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Figure 1.9: Comparison of individual trip distances and arrival time distribution forthe 2008 and 2019 French national surveys (filtered, only trips on working days, inrural areas are illustrated)

Figure 1.10: Comparison of individual trip distances and arrival time distributionfor the 2008 and 2019 French national surveys (filtered, only trips on week-endsare illustrated)
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2 - Chapter 2: Review of electric vehicle uncontrolled
demand and smart charging modeling

Summary

Electric vehicles (EVs) offer an opportunity to move towards greenhouse gas emission re-duction targets by decarbonizing the transport sector, while also reducing local air pol-lution. However, uncontrolled and simultaneous charging of a significant number of EVscould pose a challenge to power grids and generation-load adequacy. Studying these im-pacts requires a predictive model of EV fleet recharging. Here we review techniques forEV charging pattern modeling and the types of studies they are used for. This Chapteralso introduces the wide range of parameters (vehicle types, charging points, plug-in be-havior, etc.) that modeling studies can factor in, and the EV smart charging simulationapproaches available. We conclude by proposing a framework for future research on EVload prediction models.
2.1 Introduction
Electric mobility with low-carbon electricity generation is one of the most promis-ing solutions for reducing (on the carbon intensity of energy lever) local air pollu-tion (especially nitrogen oxides) and the carbon footprint of transport, which ac-counted for a quarter of theworld’s total carbon emissions in 2017. Passenger carsand light-duty vehicles, which are the main focus of this thesis, are responsiblefor more than half of total transport carbon emissions (IEA, 2021). Governmentsaround the world are incentivizing the adoption of electric mobility to help meetgreenhouse gas emission reduction targets. Therefore, more and more driversconsider switching from an internal combustion engine vehicle (ICEV) to an elec-tric vehicle (EV), either a plug-in hybrid EV (PHEV) or fully electric battery EV (BEV).As a result, the share of EVs in fleets is widely expected to grow over the comingdecades.EV batteries are currently mostly recharged at charging points by connectingthe vehicle to a power system (the power grid, a generating system, or anotherstorage system) when the vehicle is parked. Dynamic wireless charging is alsobeing developed, but this technology is not predicted to be a significant share ofinstalled chargers in the short to mid term, as this technology appears to bemorecostly and less energy efficient than traditional charging stations (IEA, 2019). Ama-jor field of the scientific literature on EVs hence concerns the interactions betweentheir charging behavior and the power system, both in terms of its operation andinvestment planning.The development of electricmobility could pose challenges to power systems ifmost EV charging is uncontrolled at electricity peak demand. Increasing peak loadmay require investments in power networks to strengthen the grid and in gener-
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ation sources to match peak demand. However, EVs also provide an opportunityto bring flexibility to power systems through smart-charging, vehicle-to-grid (V2G)and similar technologies (see the seminal work of Kempton and Tomić, 2005). Thisadditional flexibility can support the adequacy of power networks as they inte-grate an increasing share of intermittent renewable energy sources (mainly windfarms and photovoltaic panels) into electricity generation systems (Richardson,2013).To address interactions between different phenomena, many models havebeen created to simulate the connections of electric vehicles to the grid to ob-tain the resulting load curve for a given fleet of vehicles. This multiplication of ap-proaches can simultaneously bring confusion and complexity if a proper roadmapis not provided. This Chapter aims to identify which load modeling approach isbest suited for the studies needed by transmission system operators (TSO), distri-bution system operators (DSO) and other industrial actors on the impacts of EVson their current and future power network.The Chapter is structured as follow: First, we describe which data is commonlyused for simulating EV user charging behavior and to what extent the diversity ofa fleet’s vehicles is taken into account (battery capacity, consumption, etc.), themultiple plugging and charging behaviors of EV owners, and the range of powerand charging station locations available. Second, we introduce a wide range ofEV charging models along with the type of studies they have been designed for.After highlighting the strengths and weaknesses of eachmodel, we analyze whichare the relevantmodeling aspects to incorporate in case studies on EVs andwhichgaps in the literature need to be addressed to do this efficiently. Finally, we discussthe various methods for generating smart charging (unidirectional or with V2G)load curves, based on mobility needs.

2.2 Mobility data and model approaches for BEV
Battery electric vehicles (BEVs) are currently developing at a high pace in severalareas of the world including China, Japan, the USA, Northern Europe andWesternEurope (IEA, 2021), which have focused most of the published research on elec-tric mobility and its impact on power networks. Most of these countries have anorganization, often funded by the government, which surveys the patterns of carusage and othermeans of transport every few years. Examples include the USNa-tional Household Travel Survey (U.S. Department of Transportation, 2017), the UKNational Travel Survey (UK Statistics Authority, 2018) and the French Enquête Na-tionale transports et déplacements (SDES, 2008)1. In addition, city councils some-times conduct their own local surveys in order to advise urban planning policy(Bowman & Ben-Akiva, 2001; Galus et al., 2012; Mehta et al., 2018; Shahidinejad etal., 2012).

1A more recent mobility study has been carried out in France in 2018/2019 (SDES, 2019), but asstated in Chapter 1, this work will use the 2008 French national travel survey
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Pasaoglu et al. (2013) tackled fairly specific data usage to compare EV load curveprojections based on travel data for Italy, Poland, France, Germany, Spain and theUK in a study commissioned by the European Commission Joint Research Centerthat stratifies data by country and by day of the week. The result highlights differ-ences between zones and days studied, with for instance lower energy consump-tion on weekends than on weekdays and higher peak power demand in Germanythan in the other countries studied.Once the travel data has been selected, BEV mobility modeling is divided intothree steps. First, the key parameters and assumptions on the fleet of EVs anddriver behaviors must be set. Second, a mobility algorithm calculates the charg-ing demand for ‘uncontrolled charging’ of those vehicles. In addition, a smart-charging algorithm can then be used to compute the load curve for the corre-sponding fleet of EVs under different charging schemes: time-of-use tariff charg-ing, unidirectional smart charging or V2G. This framework for electric mobilitymodeling is synthesized in Figure 2.1.

Figure 2.1: Electric mobility modeling framework
Among what is called in the literature mobility modeling, we will focus in thisChapter on models that generate EV load curves and connection to the grid data,based on individual vehicle usage.This section starts by introducing travel data usage in mobility modeling. Wethen outline the scope of published mobility models in subsection 2.2.1 and go onto discuss the main algorithm approaches in subsection 2.2.2.

2.2.1 Scope and data
Travel survey data usage

Some models use raw data from travel surveys as inputs, whereas others needthe data to be processed in the form of histograms, probability distributions ortransition matrixes. Machine learning techniques can also be used to generatemobility data.It appears that the distribution of departure times for the first trip of the dayof EV users commuting to work is close to a Gaussian distribution (Borne et al.,
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2018; Codani et al., 2015) whereas daily distances driven follow a log-normal distri-bution (Borne et al., 2018; Domínguez-Navarro et al., 2019) or also approximately aGaussian distribution (Codani et al., 2015; Jarvis & Moses, 2019; Mehta et al., 2018;Yang et al., 2018). The arrival of BEVs at a charging station could also be modeledwith a Poisson distribution (Domínguez-Navarro et al., 2019; Jarvis & Moses, 2019).Tamor et al. (2013) suggest a more complex distribution for daily distances driven(a weighted sum of exponential and normal distributions), which better fitted thevehicle trip dataset studied. Plötz et al. (2017) compared the distributions com-puted for four different datasets and found that the best distribution (betweenlognormal, Weibull and gamma) differs from one dataset to another.Other studies create histograms from travel surveys as input data to theirmodel (Bowman & Ben-Akiva, 2001; Darabi & Ferdowsi, 2011; Pasaoglu et al., 2013;Tan & Wang, 2014).Another simulation method uses machine learning techniques on travel sur-vey data in order to compute parameters of equations that model mobility (Arias& Bae, 2016; Rolink & Rehtanz, 2013). Apart from the support vector machinesused by Arias and Bae (2016), Amara-Ouali et al. (2021) review the EV modelingapproaches from a different perspective (matching EV models and datasets), andidentify that random forests and artificial neural networks as othermachine learn-ing techniques that can be useful for EV load models. However, these machinelearning models are less transparent and mainly relevant in the short term, withlimited evolution of mobility behaviors. A further limitation of machine learn-ing techniques comes from the need to determine whether the model should betrained to predict the power demand very accurately at peak demand or whetherall simulation time-steps are equally critical in terms of accuracy.
From vehicle data to EV data

A common assumption made in most models in the literature is that EV ownerswould reproduce the samedriving behavior as if they had an ICEV. Thismeans thatthe data collected by travel surveys on a population mostly composed of ICEVs isselected as the input to model electric mobility. Even though total cost of own-ership (TCO) considerations may lead the drivers that drive their car the most toswitch to an electric one earlier (BEV in most cases, PHEV if they significantly usetheir car for long trips; Hagman et al., 2016), most vehicle usage data availabletoday are surveys on ICEV drivers.It seems difficult to prospectively quantify how much electric car usage willdiffer from today’s ICEV usage patterns. Some authors investigate the researchquestion of individual vehicle usage evolution when switching to an EV.First, Palmer et al. (2018) reviews TCO comparisons between EVs, PHEVs andICEVs in several areas of theworld, andmodels EV adoption in Japan, theUK, Texasand California, each with different annual mileages, fuel prices and EV subsidies.This publication shows that for every region studied and sensitivity analysis onthose results, the running cost of EVs is lower per km compared to ICEVs of thesame vehicle class. Indeed, once an EV replaces an ICEV, there may be a ‘rebound
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effect’ that increases the distance traveled per day. On the other hand, in someurban areas, the transition towards more public transport and shared mobilitymay lower the usage of personal vehicles.Second, a few pilot projects led by car manufacturers on EVs involve data ac-quisition on real-life daily usage by a set of volunteer electric car owners. Ashtariet al. (2012) used the location of a set of 76 ICEVs which they described as “a statis-tical population best representing the drivers” of the area studied. Neaimeh et al.(2017) used data collected on two demonstrator projects (The EV Project and RCN)amounting to a total of 84 private electric cars (all of them based in the UK) moni-tored for the study. It emerged that males (90% of the volunteers), the 30–50 agerange and high-income individuals were greatly over-represented in the study.Black and Nicholas (2018) describe another pilot project, held in a military base inCalifornia, where 29 EVs provide frequency regulation services to the Independentsystem operator through V2G.Golob and Gould (1998) showed the bias that can occur when gathering EV trialdata, with some users potentially changing their behavior during the trial period.However, these real-world data could be relevant for modeling EV user behaviorwhen ICEV owners switch to an EV. They also point out that survey answers givensometimes differ from what respondents do.A limited set of early adopters may not be significant enough to quantify thedifferential between EV and ICEV vehicle owners regarding daily distances driven,time of plug-in and EV owner localization (urban, suburban or rural), but it couldgive insight into how EV drivers will behave in terms of connection to the grid andcharging patterns (Schäuble et al., 2017).Furthermore, the limited range of most EVs implies that, unlike with ICEVs,long-distance trips (of a few hundred kilometers) must be completed with oneor several mid-trip charging sessions, potentially at fast-charge stations. On theother hand, after short commuting trips, EVs will tend to be charged at home or atpublic low or medium power charging points. As a result, given that the chargingapproach for EVs differs from local commuting to long-distance trips, these tripcategories could be distinguished to properly model EV charging patterns.
Main modeling parameters

When it comes to modeling a fleet of plug-in EVs, there are choices and assump-tions to make on what to simulate from the diversity of vehicles, EV-user plug-inbehavior, charging station nominal power, availability, and location. Moreover,EV consumption is temperature-sensitive (higher power consumption in a low-temperature environment due to electric heating and slightly higher consumptionin a high-temperature environment due to air conditioning; Yuksel and Michalek,2015), and mobility needs differ between a working weekday and a weekend day,and between periods of the year, so the time range of the simulation has to beselected accordingly.
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Types of vehiclesmodeled In 2020, the IEA identified a cumulative total ofmorethan 360 EV, plug-in hybrid electric vehicle (PHEV) and BEVmodels available on themarket (IEA, 2021), constituting a wide range of battery capacity, consumption andmaximum rated power for grid connection. However, most studies select onlyone of these vehicle types and consider the EV fleet to be composed of copies ofthat car model. Other studies do not even take into account battery capacity andconsider that each EV has a large enough battery to cover all its trips each day andcharges the energy consumed during that day before the first trip of the followingday (Alonso et al., 2014; Bowman & Ben-Akiva, 2001; Galus et al., 2012; Mullan et al.,2011).A more diverse EV fleet can be found in Chiche et al. (2017), Mehta et al. (2018),Pasaoglu et al. (2013), Soares et al. (2011), and Weiller (2011). Taking into accounta wider range of vehicle types (PHEVs and BEVs with different battery capacities)induces longer simulation times and more complex input data, but may proverelevant to investigating how much the results of studies on smart charging andV2G are sensitive to the composition of the fleet.In order to evaluate the impact of the electric mobility sector on power sys-tems, it seems necessary to study the charging behavior of all types of EVs simul-taneously (PHEVs, city BEVs, sedan BEVs and luxury BEVs). The charging of a largenumber of low-capacity PHEVs may affect the value for the electrical system ofsmart charging large BEVs. Larger batteries (typically more than 50 kWh) meanhigher smart charging and V2G potential, but also users that may not connecttheir vehicle to the power grid every day. Small batteries (less than 30 kWh) mayimply daily charging and therefore synchronization of peak power demand.
Charging and connection behaviors modeled Most studies on V2G considerthat each vehicle is connected when parked at a place where a charging point isavailable. However, the trajectory of growth in battery capacity and vehicle au-tonomy implies that many drivers will not need to recharge their EVs every dayto meet their mobility needs. As a result, studies on the charging of EVs (Alonsoet al., 2014; Bowman & Ben-Akiva, 2001; Darabi & Ferdowsi, 2011; Grahn et al., 2013;Jarvis & Moses, 2019; Lojowska et al., 2012; Rolink & Rehtanz, 2013; Shahidinejad etal., 2012; Yang et al., 2018) also simulate drivers that only connect every few days,when their battery charge drops below a given threshold.Regarding smart charging, even if the optimal load pattern on a week of sim-ulation may sometimes mean postponing EV charges to the following day, moststudies consider that when a driver connects their vehicle to the grid, they want, ifpossible, to start their next trip with a fully-charged (or >90%-charged) battery (seefor instance Dallinger et al., 2011; Hodge et al., 2011). This constraint, consideringEV owners’ charging-pattern behaviors, may reduce the benefit of smart chargingif the simulation time range is long enough.
Charging points modeled Currently, along the development of EVs in theworld, charging points are being built in various environments. According to
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IEA (2019) and Spöttle et al. (2018), the European Commission recommends onepublic charging point for every 10 EVs in the fleet. France, for instance, follows thisrecommendation, as there was 25,000 installed public charging points for around250,000 BEVs and PHEVs in early 20192. Among those public chargers, more than75% are installed in public locations (i.e. public car parks and city-centers) withthe rest in industrial or shopping-center car parks. Each charger has a maximumrated power at which the EV can recharge. The maximum rated power of mostpublic chargers is between 7 kW and 40 kW, but highway service stations are cur-rently being equipped with fast chargers up to 350 kW (Domínguez-Navarro et al.,2019). If equipped with a private parking spot and a power socket, EVs can alsobe recharged at home at between 3 kW and 7 kW (in France, rated powers maydiffer from a country to another) depending on socket type. It is to be noted thatnot every EV battery can be charged at a fast charger (especially small batteries).Some EV load models focus on only one type of charging point, and many ofthem only take into account residential charging, a key assumption being thatevery EV user has access to a charging point at home on a private parking spotand never recharges their vehicle elsewhere (Alonso et al., 2014; Codani et al., 2015;Dallinger et al., 2011; Grahn et al., 2013; Mullan et al., 2011; Soares et al., 2011; Tan &Wang, 2014). Results from most of these studies show charging occurring mainlyat night, while the vehicle is parked at home. This kind of assumption is suited tostudying the aggregation of EVs for smart charging (including V2B and V2G) or theintegration of EVs in smart grids or distribution grid systems. Other studies aimto evaluate the grid integration of public charging stations (Domínguez-Navarroet al., 2019; Iacobucci et al., 2018) where EVs can charge throughout the day.On the other hand, some models are capable of simulating EV users who canrecharge their vehicle at different locations and possibly at different power levels(Chiche et al., 2017; Druitt & Früh, 2012; Steen et al., 2012; Weiller, 2011). Nonethe-less, these models require assumptions to decide where and when an EV will becharged when a charger is available at various locations (home, work and publicchargers for instance). In order to go into further details about EV modeling froma charging infrastructure operator point of view, see the literature review work ofMetais et al. (2022).
Temporal range of simulations

Most BEVs sold today have a battery capacity between 40 kWh (i.e. Nissan Leaf)and 100 kWh (i.e. Tesla model X), which means an autonomy of a few hundredkilometers. Moreover, car manufacturers are conceiving electric cars with largerand larger driving ranges, as range anxiety (along with price and the need forcharging points) is identified as one of the main barriers to further developmentof electric mobility (Vassileva & Campillo, 2017).
2However, one should keep in mind that this 1 charge for 10 EV recommendation is arbitrary,and the ideal EV/charger ratio depends on the density, share of individual housing and other pa-rameters.
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The driving range of the average EV meets the mobility needs of an averagedriver for a period of a few days, which means that not every electric car needsto be recharged every day. However, much of the scientific literature studies thebehavior of electric car drivers using 24h-long simulations. Even though mobilityneeds differ for working days and weekends (Druitt & Früh, 2012; Pasaoglu et al.,2013; Soares et al., 2011), many papers aggregate working days andweekend travelsurvey data (Alonso et al., 2014; Darabi & Ferdowsi, 2011; Lojowska et al., 2012; Tan& Wang, 2014).Soares et al. (2011) reports that 24% of EV drivers surveyed plug their vehicleinto the grid “when convenient and the driver has time", and 23% charge “onlywhen needed”. As a result, a part of the fleet is not recharged with the sameprobability every day and is rechargedmore frequently on weekend days than onworking days. A more complete and accurate temporal model of mobility needscan be gained using longer simulation time periods and distinguishing betweenworking days and weekend, as attempted by Pasaoglu et al. (2013).Once the input data (freshly created or from a national travel survey) has beengathered and the scope of simulation (in terms of types of vehicles, charging pat-terns, charging points, size of fleet, etc.) has been defined, the algorithm part ofthe model processes the input data in order to compute the temporal mobilityneeds. The section below reviews the options for algorithm architecture.
2.2.2 Algorithm structure approaches
Several simulationmethodologies can be found in the literature. Daina et al. (2017)classified these models into three main types: activity-based modeling (ABM), di-rect use of observed activity–travel schedules (DUOATS) andMarkov chainmodels(MCM). In fact, the type of model often reflects the field of research the model isused in. This section presents the model classes and the studies they are mainlyused for, and the qualities and specificities of each model class are highlighted.
Monte Carlo statistical models

Monte Carlo statistical models (MCSM), correspondind to DUOATS introducedpreviously, rely on travel-survey data in the form of probabilistic distributions orhistograms. The relevant data for such models are statistics on distances drivenand departure times. After assumptions have beenmade about the size of the EVfleet and which vehicles, charging points and charging locations to model, MCSMindependently simulate each vehicle in the fleet.For a given vehicle, a distance and a departure time are randomly generatedfrom the corresponding distributions (Monte-Carlo simulation). Based on theseparameters, the algorithm derives the temporal period when the vehicle is con-nected to the grid. In most studies, all these parameters are generated indepen-dently from each other. Moreover, MCSM models are scalable: if a large enoughfleet of EVs (in terms of diversity in the input data) is simulated, then the demanddata of a significant EV fleet of another size can be computed proportionally.
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Macro-MCSM models for fleet aggregation studies The MCSM approach iscommonly used for EV aggregation studies when only the total power demand forthe charge of an EV fleet is required. Some papers working under assumptionsintroduced previously study the impacts of an aggregated fleet of EVs on powergrids. Codani et al. (2015) applied theMCSM approach and averages for 100MonteCarlo simulations of 100 vehicles, and Borne et al. (2018) simulated a fleet of 3000vehicles in order to assess the potential of EV usage for frequency regulation.Wu (2018) designed a slightly different approach. Instead of randomly generat-ing travel data, their algorithm uses five pre-built mobility patterns. One of thesepatterns is selected for each vehicle, and then an uncertainty value is generatedfrom normal distributions for the departure time, arrival time and daily mileagesin order to account for the randomness of EV connection to the grid. Dallinger etal. (2011) modeled a fleet composed of PHEVs and BEVs. To ensure their algorithmsimulated PHEV and BEV behaviors similarly, they modified the daily distanceshistogram of PHEV so that it only generates the distances driven in electric mode.Someothermodels of the literature do not change the histogram for PHEV andapply a coefficient of distances driven in full electric mode. The MCSM approachwas used on different EV fleet sizes: by Steen et al. (2012) to set fleet size accordingto the distribution grid typology, and by Mehta et al. (2018) in a sensitivity studyto determine the maximum fleet size connectable to an industrial car park, givennetwork limitations.
Localized MCSM models for DSO and smart grid studies MCSM models arealso well suited to studying the integration of EVs in smart grids. In addition torandomly generating (from histograms or distributions) departure times, arrivaltimes and daily mileages, somemodels also generate the localization of the park-ing spot of every vehicle modeled, so that local curves can be derived.Neaimeh et al. (2017), for instance, randomly selected EV owner connectionpoints in a distribution network based on data on the residential topology of thearea. Similarly, Jarvis andMoses (2019) applied the samemethodology formultipleEV fleet sizes across the area studied. Jiang et al. (2014) assigned each transformera number of EVs proportional to the population connected to that transformer,and then randomly selected in-area households possessing those EVs.Apart frommethodologies to generate the location of EV owners, research hasalso studied EV diffusion in the population based on socio-economic parameters(Gnann et al., 2018; Ramos-Real et al., 2018). It has been shown that market dif-fusion trends differ from region to region and that income level, environmentalconcerns and charging infrastructure available are key parameters driving willing-ness to change to an EV.
Travel distance-departure time correlation MCSMmodels Some models tryto go beyond the approaches presented above, by keeping the correlation be-tween travel data in the survey results instead of randomly selecting all the pa-rameters of the trips of a given car (daily mileage, departure time, arrival time,

35



localization, consumption) independently.For instance, Grahn et al. (2013), Hodge et al. (2011), Jiang et al. (2014), Mullanet al. (2011), and Wu (2018) focused on correlating EV arrival times and the timesplugged into the grid with local residential electricity consumption, which givesa more realistic study of distribution grid electricity flows along the EV develop-ment trajectory. Uncontrolled EV charging was found to induce higher peak loadson power grids than in simulations with independent arrival times and residentialconsumption. On the other hand, Ashtari et al. (2012), Lojowska et al. (2012), andTan and Wang (2014) studied the correlation between distances driven and tripdeparture/arrival times of travels. The section below outlines the rationale andmethodologies for taking this correlation into account in electric mobility model-ing.According to a study on data from the French national travel survey (SDES,2019), distances driven (in France) over a whole day are negatively correlated tofirst departure time of the day and also positively correlated with arrival time athome (Figure 2.2). Lojowska et al. (2012) reached the same conclusions using datafrom the Dutch National travel survey. Ashtari et al. (2012) also found (using USNational travel survey data) that the daily distances driven by EV users leavingearly in the morning (6pm–7pm) are higher than those of the whole dataset.

Figure 2.2: Daily mileage/departure and arrival time correlation. Data from (Min-istère de la Transition Ecologique et Solidaire, 2008)
The methodology used in Ashtari et al. (2012) is based on pre-processing thetravel survey data in order to generate additional conditional histograms to serveas input data to their algorithm. Instead of a global daily mileage histogram foreach trip, they processed many daily mileage histograms with each one corre-sponding to a range of departure times. They also populated the algorithm withmore arrival time histograms with each one corresponding to a departure time,
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daily mileage range.Tan andWang (2014) applied a differentmethod to generate travel parametersfor a given vehicle. To begin with, departure and arrival times from the residentialparking spot of vehicles were considered as “two independent events”. Departuretimes and arrival times were each divided into 5 classes from “very early” to “verylate”, and daily mileages were divided into 5 classes from “small” to “large”. Fromthe input data, a 5X5X5 Matrix is then built that contains the conditional probabil-ity that a daily mileage belongs to the distances class d, given that the departuretime belongs to the dep class and the arrival time belongs to the arr class.The main advantage of this approach compared to Ashtari et al. (2012) is thatthe algorithm is more efficient when based on a smaller input travel data volume,but it does require much more data processing beforehand.Lojowska et al. (2012) investigated the dependency between daily mileages,departure times and arrival times. They applied a more mathematical approachbasedon copula theory (applied to the energy sector, as described in Papaefthymiouand Kurowicka, 2009) that computes a correlation matrix between the variablesstudied. As they found a significant correlation between the travel data of twoconsecutive home-to-home trips on the same day, they separated the input datainto two groups: daily single home-to-home trip and double home-to-home trips.For each group, they generated a normal copula multivariate distribution func-tion, and the simulations followed the principles of MCSM, where departure time,arrival time and distance traveled are generated from the corresponding multi-variate distribution function.
Specific MCSM models Liu and Etemadi (2018) follow a different approach formodeling EV charging demand. Based on travel survey data, a driving profile vec-tor was derived for each respondent, composed of the distance driven on eachtime-step of the day. A k-means clustering algorithm is then used on those vec-tors to generate a limited set of mobility profiles (selected as the centroid of eachcluster). To model charging behavior, instead of a stochastic process of randomlygenerating travel data from each EV, the charging algorithm processes the data ofthe mobility vector clusters. This approach implicitly accounts for the correlationbetween daily mileages, departure times and arrival times, and it is also computa-tionally significantly faster than most mobility models introduced in this Chapter(as only a limited set of representative mobility profiles are processed).
Markov Chain models

Markov chain models (MCM), as introduced by Soares et al. (2011), follow a dif-ferent approach. Instead of relying on random selections of daily mileages anddeparture times for each vehicle, the input data takes the form of transition prob-abilities. Thismethodologymodels vehicles using “states”. For each vehicle, a timevector composed of the state of the vehicle is computed. Soares et al. (2011) intro-duced the following states: in movement; parked in a residential area; parked inan industrial area; parked in commercial area.
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The simulation of the charge of an EV fleet follows a single rule after initial-ization of the states of every vehicle for the first time step of the simulation timerange: the state of a vehicle at a given time step t is derived from the conditionaltransition probabilities of time step t, given the state of the vehicle at time step t-1(principles of a Markov chain).Rolink and Rehtanz (2013) designed a mobility model that follows the sameprinciples butwith a semi-Markov process approach that includes sojourn times inaddition to state-to-state transition probabilities in the algorithm input data. Theirmodel tends to address two limits of the Soares et al. (2011) model: the coherencebetween all trips in a day for a given vehicle, and the distribution of the durationof a vehicle being parked at given areas.Grahn et al. (2013) also built a MCM, but in addition to state of the vehicle,they also studied the state of the EV owner and they added residential patterns.They decompose the state “parked at home” into several possible states: “sleep-ing”, “cooking”, “washing”, “TV”, and so on. Hence, the total residential curve canbe derived for every individual studied, including EV charge but also poweringother appliances. This model needsmuchmore input data than previous models,including residential data which is out of the core scope of study of most otherworks on electric mobility.In the literature, the Markov chain approach is mainly used for generating un-controlled EV demand profiles that are separated according to charging point type(residential, commercial, work). Even if MCM model well the randomness of thebehavior of EV owners and give additional information on localization of the vehi-cle (currently driving, at home, at work, parked at another location), they seem tobe less common in the literature than Monte Carlo statistical models. This mightbe linked to their longer computation times (one random generation of state foreach time-step of every vehicle) and the data processing neededbefore use, whichmight make them less suited for prospective or sensitivity studies.
Agent-based models

EV charging patterns can also be generated from agent-based or activity-basedmodels (ABM). Agent-based models aim to model the whole transport sector,which means multiple means of transport with their modal shares considered,and road traffic is modeled so that car speed is slowed by traffic congestion. Asdescribed by Bowman and Ben-Akiva (2001), ABM consists in deriving trip demandfrom activity demand instead of taking trip demand data as an input of themodel.This class of models, which are more complex than the approaches introduced inthe section above, entails much longer computation times and a geographicallylimited area of study (typically a single urban area). In addition to travel data, thetopology of the transport network needs to be added to produce a localized sim-ulation. Additional data on agents’ activities, household locations and means oftransport available are also necessary.ABMs give more realistic results in terms of temporal coherence of agents’travel patterns, and they can inform urban planning studies on the impacts of
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transport infrastructure development (modal shift from personal vehicles to pub-lic transport) on the transport sector and more accurately model how new mo-bilities, such as shared autonomous vehicles, will affect mobility behaviors, andimpact power systems (Iacobucci et al., 2018). ABMs in the transport sector lit-erature include MATSim (Balmer et al., 2006) and TRANSIMS (Hodge et al., 2011),which are open-source programs for implementing agent-based use cases. Otherauthors have developed their own ABM (Bowman & Ben-Akiva, 2001; Iacobucci etal., 2018).
Algorithm
structure
approach

Input
data
required

Strengths Weaknesses Reference

MacroMonteCarlostatisticalmodels

Travelsurveydata

Good accuracy foraggregated resultsof a large numberof EVs, easy toimplement

Provides average EVdemand data for a largenumber of EVs that maynot be derived at thelocal level

Borneet al., 2018;Lojowskaet al., 2012;Steen etal., 2012
LocalizedMonteCarlostatisticalmodels

Travelsurveydata, EVchargerlocalization

Good approximationof localized EVdemand at onelocation type withlimited input data

Lesser accuracy onthe localization of EVcharge among multiplecharger locations (athome, at work or publiccharging), compared toagent-based models

Jiang etal., 2014;Neaimehet al., 2017

Markovchainmodels
Travelsurveydata

Enables thecorrelation of EVcharge with otherelectrical appliances,models well therandomness of EVbehavior

Additional travel dataprocessing that doesnot improves resultsaccuracy, compared toMonte Carlo statisticalmodels

Grahnet al., 2013;Rolink andRehtanz,2013;Soareset al., 2011

Agent-basedmodels

Travelsurveydata,Agentactivitydata(Optional :transportnetworktopology)

Best approach forproviding accuracyat the local level,multiple open-sourcesoftware available,enables the study ofthe whole transportsector

Additional inputdata required, largercomputational times,geographically limitedarea of study

Balmer etal., 2006;BowmanandBen-Akiva,2001;Huanget al., 2012

Table 2.1: EV modeling algorithm approaches comparison
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Huang et al. (2012) and Iqbal et al. (2021) describe the four-stepmodel, a subcat-egory of ABMs, also used for other transport modeling studies than EV develop-ment. In this approach, each trip computation is divided into the following steps:first, generating the purpose and the distance of the trip; second, generating thedeparture and target geographic locations; third, selecting the transport modesuitable for the trip; and fourth, computing the optimal path.Beheshti and Sukthankar (2012) showed that ABMs (with additional surveydata) are more accurate than MCMs for forecasting the occupancy of parking lotsin a small study area. However, when the data is limited to ‘realistic’ data insteadof extensive survey data, ABMs do not provide significantly better results thanother modeling approaches.At a larger scale, i.e. a country or a zone with tens of millions of inhabitants,ABM are quickly limited in terms of number of vehicles and size of the transportinfrastructure network that can be modelled.The model types presented in this section are summarised, along with theirstrenghs and weaknesses in Table 2.1 and in Figure 2.3.

Figure 2.3: Comparison ofmobilitymodeling approaches (in terms of computationspeed and need for data

2.3 Fitting BEV transportmodels into power system
operator charge models

So far, we have only discussed modeling approaches that consider EV charging tobe solely determined by traveling habits. However, such charging strategies, re-ferred to as "uncontrolled charging", can impact power systems. Smart chargingapproaches have also been developed, not only to reduce the strain of EV charg-ing on power system planning and operation, but also for EV charging to provide
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value for the power system. Here we describe the motivations for optimizing EVcharge loads, outline the charging approaches to be considered, and present theoptimization methods found in the literature.
2.3.1 Charging approaches
The literature reports several ways that smart charging BEVs can deliver severalservices to power systems (Thompson & Perez, 2019):

• Grid congestions. EV charging could congest distribution and transmis-sion grids and overload power converters, especially at peak demand times.Shifting the load of EVs towards a time when the network is less constrainedis an efficient solution to limit grid congestion and reduce the need for in-vestments to reinforce the power grid. To incentivize EV owners to do so,low charging tariffs at night seems to be the easiest option to implement(Alonso et al., 2014; Gonzalez Venegas et al., 2019; Hodge et al., 2011; Steen etal., 2012). Moreover, considering the development of decentralized solar PVgeneration, EV charging at midday could help solve grid congestion linkedto peak solar PV generation.
• Frequency regulation. Network frequency needs to be kept close enoughto its nominal value to avoid power grid crashes. To do so, frequency reg-ulations systems, with their related markets, have been designed in mostcountries. EVs seem to be better geared to participating in frequency con-tainment reserve (FCR)markets when they are aggregated into large enoughfleets (Borne et al., 2018; Codani et al., 2015). Indeed, power related services,such as FCR, do not require the vehicle batteries to providemuch of their en-ergy stored. As a result, the depth of discharge of the vehicles providing FCRis limited, and so is the cycling degradation of the vehicle battery (Thompson& Perez, 2019).
• Voltage regulation. Power networks also have to deal with voltage drops,especially at peak load, and voltage rises, especially at peak generation, indistribution grids. However, few studies have focused on EV contribution toaddress this problem (Yong et al., 2015).
• Supply and demand adequacy. Controlling EV charging load is also seenas a way to provide demand-side management to balance power systems(Druitt & Früh, 2012; Liu & Etemadi, 2018; Pantos, 2012). Shifting EV chargingtimes could help correlate charging sessions with the lowest hourly electric-ity prices possible, and thus reduce charging cost for EV owners.
• Distributed energy resources (DER) coupling/local consumption. Alongwith promoting EVs, governmental incentivization also promotes the devel-opment of photovoltaic panels in order to reduce the carbon footprint ofthe energy sector. As a result, a share of EV owners might also become
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“prosumers” with solar panels on the rooftop of their house. The synergybetween photovoltaic generation and EV recharging is described in Clastreset al. (2021) and Hoarau and Perez (2018). Smart bidirectional charging couldthen be used to enable these users to maximize the share of their locally-generated power used to power their house and their vehicle, storing energyat midday in the battery of their EV and discharging it back into their houseat peak demand in the evening (Domínguez-Navarro et al., 2019; Eid et al.,2016; Wu, 2018).
Several charging approaches have been studied and developed in an effortto address the key power system challenges. From the most basic to the mostcomplex, the approaches to be considered when building a mobility model are:
• Uncontrolled charging, the base case for most studies, in which the EVsrecharge to full state of charge, at maximum power, as soon as they areconnected to a charging point.
• Time-of-use (TOU) tariff charging. TOU tariffs consist in applying lowerelectricity tariffs in off-peak periods, which is the simplest way to incentivizeEV owners to delay the charge of their vehicle so that no additional power istaken from the power system at peak time. In order to avoid simultaneousdemand increase from all TOU tariff users, a low tariff hours signal is sentwith a different time offset to different user groups. Two key advantages ofTOU tariff schemes over other smart charging approaches is that they needless infrastructure and are more easily accepted. In fact, they only requirean electrical device that receive time-of-use on/off signals or a smart meter,which are are currently being rolled out in most developed countries.
• Smart unidirectional charging. Smarter charging patterns other than TOUcharging have been studied (Galus et al., 2012; Liu & Etemadi, 2018; Weiller,2011; Yang et al., 2018). They belong to the same group as TOU chargingas they rely on delaying the charge of the EV towards periods when mar-ket prices are lower or when the generation mix is less carbon intensive.However, they require a communication device between an EV charging ag-gregator agent and the electricity meter, charging point or EV. The EV ownershould provide the information of the expected departure time of their nexttrip to ensure that their vehicle will be sufficiently charged. The aggregatorcan then manage the charging constraints of every vehicle in their fleet tominimize fleet charging costs and even provide other flexibility services inthe electricity markets (Hodge et al., 2011; Liu & Etemadi, 2018).
• Smart bidirectional charging. V2G, as introduced by Kempton and Tomić(2005), is considered the EV charging approach that maximizes the flexibil-ity provided to power system by electric vehicles. It works in much the sameway as smart unidirectional charging, except that the charger used is bidi-rectional (and thus, more costly than unidirectional charging points). As a
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result, the vehicle can discharge its battery to enable more flexibility to thegrid, for instance by flattening the residual load curve (Alonso et al., 2014),generating electricity when prices are high, for balancing its power systems(Druitt & Früh, 2012; Pantos, 2012) or providing frequency regulation services(Borne et al., 2018; Codani et al., 2015; Tan & Wang, 2014). Another charg-ing approach that uses bidirectional chargers is vehicle-to-home (V2H) orvehicle-to-building (V2B), where the bidirectional charger is used to provideelectricity to the building. Depending on the tariff structure selected, pow-ering the building with the EV battery when electricity market prices are toohigh can reduce overall electricity expenses. When coupled with solar pan-els, V2H/V2B can also maximize the share of local energy consumed by thebuilding.

Time-of-use
tariff

Smart
unidirectio-
nal

V2H/V2B V2G

Grid congestion X X X XFrequencyregulation X X
Voltageregulation X X
Supply anddemandadequacy X X X X
Local DERcoupling X X

Table 2.2: Charging approaches suitable for flexibility provision
2.3.2 Optimization problem formulation
Modeling how smart charging will be implemented starts by setting an optimiza-tion problem, and often additional data needs to be added. Some studies focuson optimizing the whole system, while others focus on individual actors that aimto minimize their costs. The following sections describe the optimization objec-tives and problem formulations found in the literature.In most approaches, all EVs are aggregated as one virtual battery in the opti-mization problem, while the required state of charge, connection time and discon-nection time take the form of constraints in the optimization algorithm. However,Pantos (2012) split the EVs in their simulation into several fleets with similar mobil-ity behaviors. As a result, mobility constraints are more precisely considered, andit becomes possible to identify which mobility behavior group has the greatestvalue in the electricity markets.
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Power grid sizing optimization

A share of themodels studied focus onminimizing the impact of EV recharging ongrid reinforcement costs. These studies do not take electricitymarket data into ac-count but instead add the EV load generated from their mobility model to residualconsumption (consumption minus local renewable generation) of the area stud-ied. This makes it possible to study the impacts of EV charging on the sizing ofdistribution grids and converters (Hodge et al., 2011; Mehta et al., 2018; Wu, 2018)and to implement smart-charging techniques to minimize these impacts (Alonsoet al., 2014; Mullan et al., 2011). V2G could even be used as a peak-shaving solution(Alonso et al., 2014; Galus et al., 2012; Tan & Wang, 2014). He et al. (2013) describeda methodology for coupled optimization of transportation and power networksin a static time framework. Further progress hinges on gathering enough datato extend this methodology to several-day simulations and using more diverseelectricity generation mixes with intermittent energy sources.
Price-based optimization

Many studies focus on valuating smart charging approaches from the consumerpoint of view or the whole power system point of view. In theory, aggregators at-tempting to minimize the charging cost of their fleet from the spot market wouldneed a price forecasting model. However, most smart charging modeling stud-ies have used either historical annual average spot market price data (Borne etal., 2018; Codani et al., 2015; Pantos, 2012) or historical data on selected days(Domínguez-Navarro et al., 2019). The main limitation of selecting historical mar-ket data to evaluate savings through smart EV charging is that EVs are implicitlyconsidered price-takers on themarket. This is a reasonable assumption for study-ing the introduction of a few EVs. Nevertheless, for prospective studies where EVcharge becomes a significant share of total consumption, the impact of EVs onprices (as well as on gas supplies in the current context) might not be negligible.To go beyond using historical data for EV charging studies, Dallinger et al. (2011)and Druitt and Früh (2012) used amarket model (production cost model) that sim-ulates which power generating units will be producing electricity during the sim-ulation (including ramping constraints, minimum power and minimum up-timeconstraints of some of the generators). These production-cost model simulationsfound that larger EV fleets participating in electricity markets implies lower smart-charging revenues.
Specific optimizations

A few other models mention other optimization algorithms than those describedin the previous subsections. Steen et al. (2012) showed that price-optimal andnetwork-optimal load curves differ strongly from each other and from the uncon-trolled load curve. As a result, a gap to address in the literature is simultaneousnetwork and price optimization, potentially with network limitations as a hard
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constraint and price minimization as a soft constraint in the optimization algo-rithm. As stated in this section, many services to power systems can be providedby electric vehicles, through different charging approaches. Here we outline thekey smart-charging modeling approaches and establish the link between meth-ods used and studies performed. The following section focuses on guidelines forusing charging methodologies.
Smart
charging
optimization
point of view

Strenghs Weaknesses References

Network-based Evaluate the impacts of EVcharge on the power gridreinforcement needs
Need data andmodeling of theelectricity networkconsidered

Hodge et al.,2011; Mehtaet al., 2018; Wu,2018
Peak-shaving

Minimize reinforcementcosts of transformers,easier to implement thana network simulation

The local optimumof EV smart chargingmight differ from theglobal optimum

Alonso et al.,2014; Galuset al., 2012; Tanand Wang, 2014
Historicalmarket price

Strong analysis ofEV charging costsas price-taker, easilyaccessible market data
Not suitedfor long-termprospective studies

Borne et al.,2018; Pantos,2012

Productioncost modelintegration

Enables the analysisof EV diffusion invarious generation mixevolution scenarios,evaluate the effects ofEV smart-charging onprices

Necessary to gathersoftware and datafor power systemmodeling
Dallinger et al.,2011; Druitt andFrüh, 2012

Table 2.3: Optimization approaches for EV smart charging

2.4 Model use cases
We have reviewed the scientific literature on mobility modeling approaches andmethodologies. Next, we turn to identify the approaches best suited to the studiesof EVs. First, we describe the modeling approaches recommended for large-scalestudies of EVs (TSOs and big aggregated EV fleets). Second, we focus onmore localstudies from a smart grid or distribution system operator perspective. Third, wegive the recommendedmodeling approaches for other specific study topics foundin the literature. The recommended model characteristics for each study topicpresented are summarized in Table 2.4.
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2.4.1 Mobility model requirements for transmission system
planning issues

Transmission System Operators (TSO) manage electricity transmission systemsand are in most countries responsible for the generation-load adequacy. TSOsconduct prospective research to guide the development of their network and thepower generation mix, and the impact of EVs on their systems are being studied(RTE, 2019). Rious et al. (2011) showed that forecasting connection of energy re-sources to the grid helps to reduce the investment needed to adapt the powernetwork, by adopting a proactive behavior, given the investment dynamics toupgrade the power grid. For long-term studies, TSOs may need to evaluate thesensitivity of optimal investment strategies to the size of the EV fleet, the evo-lution of battery capacities, and the share of EVs adopting smart-charging tech-nologies (RTE, 2019). The method required of a TSO study thus becomes an EVcharging model that considers a mix of vehicles, charging strategies, rated powerand charging locations. On top of that, studies on power flows need to derive lo-cal load curves from the global load curve. This TSO-scale geographical approachis not well covered in the electric mobility modeling literature.
Recommended approaches for transmission systemmobility modeling

When a national travel survey is available, it is often the best data source avail-able for trip characteristics (departure times, distances driven) at a national scale.Data from demonstrator projects could also be added. If possible, departuretime–arrival time and daily mileage correlations should be considered for greateraccuracy. As seen above, modeling the whole electric mobility ecosystem of thezone studied is advised, and thus study as many vehicle types, battery capacities,charging points, connection behaviors and mobility profiles as possible. More-over, they should aim to distinguish between local trips and long-range trips. Forthose reasons and given the scale of the study zone and the size of the fleet to bemodeled, Monte Carlo statistical modeling emerges as the best suited modelingapproach for TSOs.Simulations can also be runonan annual time range to capture the temperature-related sensitivity of EV consumption and annual patterns of local trips (betweenworking days, weekends and holidays) and differentiate long-distance trips ac-cording to annual travel activities (economic and touristic). Departure times/dailymileage correlations can be studied to achieve more accurate results. Finally,for some specific network studies, more local load curves are necessary, eithervia a top-down approach, which means building a distribution key to downscalethe national load curve, a bottom-up approach, based on dividing input data intoseveral specific zonal subsets, or a combination of bottom-up and top-down ap-proaches. One of the gaps that TSO studies need to address is the integration ofelectric mobility in a realistic and complete model for the entire electrical system.
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Recommended approaches for other aggregated fleet modeling studies

As stated earlier, much of the scientific literature focuses on estimating the valueof EV aggregation on electricity markets. Like TSO models, aggregation studiesneed good temporal accuracy, which implies that an ideal model for EV aggrega-tion studies would use Monte Carlo statistical modeling on data from a nationaltravel survey, potentially considering departure time/daily mileage correlation.Longer simulation time periods than daily simulations and precise market dataare also advised. However, for this type of study, it is often reasonable to run acase study on local mobility with a single charging point location (residential) anda single maximum rated power of charging points, working to the assumptions ofsystematic connection of EVs to the grid.Furthermore, historical price data is an appropriate input to price-based opti-mization for smart-charging algorithms when studying the short-term impacts ofEVs on power systems. However, a more complex market simulation tool is rec-ommended for prospective long-term studies (with high shares of EVs) in order toaccount for the impacts of EVs on electricity prices3. Additionally, another issueto address in EV fleet aggregation studies is aggregator behavior in an uncertainfuture and in competition with other aggregators. Both these topics require addi-tional game theory or uncertain market models, which we have not covered here.
2.4.2 Model use case: A smartgrid/distribution system per-

spective
Recommended approaches for a EV / other DER coupling adequacy study

The flexibility tied to EV charging is often seen as a way to maximize the shareof locally-generated electricity used in a given community. The requirements ofa mobility model to study this kind of setting depend on the target zone. For in-stance, when studying a residential neighborhood, it may only be necessary tocompute residential charging (at a single rated power) for local mobility trips. In-deed, EV owners in an area with a high usage of other DER (especially photovoltaicpanels and stationary batteries) are incentivized to connect and charge their vehi-cle as much as possible on chargers within the area, in order to get the most outof their DER equipment. Moreover, the study should also account for the corre-lation between solar panel ownership and electric car usage, if such data is avail-able. Consequently, either agent-based or Monte-Carlo modeling seems to besuited for these studies, each with their strengths and weaknesses, as identifiedin section 2.2. Ultimately, the optimization algorithm aims to highlight local-scalesynergy between EVs and other DERs (photovoltaic panels, other distributed gen-eration systems). In case the neighborhood where a smart-grid is implemented
3We can expect that load shifting from peak demand times to time periods when marginalgeneration technology is less costly will result in lower prices at peak times, and lower overalloperating cost of the electric system than uncontrolled charging (RTE, 2019)
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is fully residential, most EVs might not be connected during peak solar produc-tion around mid day, so stationary batteries might be necessary to complementPV generation.
Recommended approaches for network and power flow analysis

Studying flows on the power grid implies a computation of total consumption,whichmeans that EV demand has to be added to electricity consumption by otherelectrical appliances. Moreover, a load curve must be derived for each householdin the area studied, as an input to the distribution grid power flowalgorithm. Here,ABM is the most suitable way to generate mobility behavior with good spatial ac-curacy and in a city-scale system. EV connection time ranges could also be derivedfrom the residual residential consumption data, which can be done by correlat-ing the surge in residential consumption with EV arrival times (Grahn et al., 2013).Multiple charging behaviors and smart charging modes could also be applied. Fi-nally, in the EV smart charging algorithm, power flows on the grid must be themajor constraint, but price data could be added as a secondary soft constraint tomodel how aggregators would manage the charging of their fleets.
2.4.3 Model use case: Other specific perspectives
Other types of case studies on electric mobility require specific mobility model-ing. Studies on the development of autonomous cars in cities (Iacobucci et al.,2018) or public charging networks require a specific focus on the spatial positionof recharge needs and the maximum power demand. This makes ABM the mostsuitable approach, as it thoroughly accounts for spatial accuracy and coordina-tion of the vehicles of the fleet in order to match mobility needs. Furthermore, itmay be advisable to model diverse charging power, as vehicles may be rechargedquickly if their next trip is urgent but slower if their next trip is not for a few hours.Finally, week-long simulation with specific data for each day is recommended inorder to capture the specificities of each day of the week in terms of peak traveldemand time and intensity.The methodologies for locational optimization of public charging infrastruc-ture, which is not the core topic of this document, are reviewed in Shen et al.(2019).Studies on sizing highway fast chargers require a specific dataset (either longdistance travel survey or highway traffic data) in order to evaluate mid-trip charg-ing needs for long-distance EV travel. Here we recommend MCSM with a spatialderivation of the global results from highway traffic data.Additionally, from a policy maker perspective, studies on incentivizing eitherpublic EV charging network, or higher battery capacities requiremobilitymodelingof the usage of public charging points, either globally with MCSM or spatially (atthe scale of a conurbation) with ABM.Finally, some studies address EV charging demandat specific industrial or com-mercial car parks, possibly in interaction with DERs. For these studies, the focus
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should be on implementing the right constraints for the optimization algorithmin terms of time spent in the car park, based on the travel data available. Correla-tion between distances driven (and thus energy needed) and arrival times couldbe studied for further accuracy. Multiple EV types (BEVs, PHEVs), battery capaci-ties and charging behaviors should also be studied in order to model the diversityof EVs potentially recharging in the car park studied.

2.5 Conclusion
This Chapter reviewed the approaches employed in the EV charging literature re-garding input data, assumptions, mobility modeling and load management mod-eling. The electric mobility literature has amply studied and documented localmodels focusing on a small area with high spatial accuracy and global modelsproducing aggregated results with good temporal accuracy. However, there arestill gaps that leave room for improvement in terms of EV modeling. 4First, a common limitation of many EV studies is the lack of reliable data onEV trips and charging behaviors. Most of the data currently used comes from na-tional travel surveys, which in fact consist mainly of ICEV data. EV behavior coulddiffer from ICEV usage. This lack of data may soon be filled via increased collabo-ration between car manufacturers, transport infrastructure companies, telecomcompanies, other industry players, and academics. More feedback data on EVusage would also help on this topic. Moreover, pilot project data on real-life EVusage might not be representative of a large EV diffusion in the mid to long term,because of the behavior difference between early adopters and mainstream cus-tomers. Prospective studies on sustainable mobility should also try to take intoaccount the transition towards a more sustainable mobility (more teleworking,car sharing and modal shift towards active travel modes and public transport).Second, there is a need to develop mobility models on longer simulation timeranges that 24 hours. Indeed, weekly simulations would enable to better modelthe users that only occasionally connect their vehicle to the grid. Even longer simu-lations, on a whole year for instance, could serve tomodel the impact of tempera-ture on EV electricity consumption and account for the variability of long-distancetraffic during the year and different patterns of local mobility demands betweenworking days, weekends and holidays, if enough data is available.Third, even if spatial modeling is well studied at a distribution system level, amodeling scale that seems to be lacking in the literature is the national operatorscale, with a national load curve divided into regional/smaller zone load curves. Atop-down approach based on socio-economic data and/or additional local traveldata could be a solution to address this gap. If enough travel survey data is avail-able, then a bottom-up approach may prove valuable.Fourth, studies on EV load management valuation would benefit from beingintegrated into global power system simulations to overcome a common assump-

4The main findings of this Chapter, have been accepted for publiction in REI, n°178, 2022
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tion in the literature that EV are price-takers on electricity markets. This pointseems especially relevant for prospective long-term studies, in which EV stand torepresent a significant share of the vehicle fleet.Lastly, a final area where we believe that improvement is needed is the devel-opment of a global model of electric mobility considering as many vehicle charac-teristics, driver behaviors, smart charging approaches, charging point rated powerand locations as possible. There is also a need to distinguish between local mobil-ity and long-distance trips, due to their inherent constraints (such as the need formid-trip fast-charging in the case of long-distance trips). An ambitious mobilitymodel like this could ultimately aim to include other vehicles than plug-in elec-tric ones, such as hydrogen or biofuel vehicles, and other mobility segments thanpersonal cars, such as public transport or goods transport, or even disruptive newforms of mobility, in order to study how these vehicle types can share the charg-ing infrastructure and capture the whole mobility sector to assess its interactionswith the energy sector.
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3 - Chapter 3: Electric vehicle prospective demand
modeling

Summary

In order to help decarbonize the transport sector, electric vehicles (EVs) are expected todevelop in the following years, and the integration of a large number of them could chal-lenge electricity systems. This Chapter aims to develop a methodology to study the de-mandand connection times of EVs according to several connection behaviors of EV owners(referred to as systematic, when necessary and when convenient). Our model also gen-erates parameters to be used as constraints to model EV smart charging. Subsequently,this framework is applied to a case study of high penetration of electric vehicles in Europeat the 2040 time horizon. Results show how much EV parameters and connection to thegrid behaviors impacts the shape of EV demand curves and availability for EV demandflexibility.
3.1 Introduction
As discussed in the previous Chapters, the prospective integration of a large fleetof EVs between now and 2050 can be seen as both a challenge and an opportu-nity for power systems, and thus warrants further research. On one hand, simul-taneous uncontrolled charging of many EVs around times of peak demand couldoverload the grid and reduce its capacity tomatch supply to total demand, or evencreate local grid congestion. On the other hand, EVs can also be seen as a sourceof demand-side flexibility that could be offered on various electricity markets andhelp further decarbonize the electricity generation system in addition to the trans-port system (Dallinger et al., 2013; Druitt & Früh, 2012; Pasaoglu et al., 2013; RTE,2019).EV charges could interact with several aspects of the electricity sector (Thomp-son & Perez, 2019): hourly dispatch and supply–demand adequacy (Druitt & Früh,2012; Liu et al., 2014; Pantos, 2012), grid flows (at distribution scale as well as at thenational scale in settings where there is non-uniform geographical distribution ofEV usage and renewable energy sources) and sizing of transformers (Alonso et al.,2014; Gonzalez Venegas et al., 2019; Hodge et al., 2011), intra-day balancing mar-kets, coupling with other distributed energy resources (Domínguez-Navarro et al.,2019; Eid et al., 2016; Hoarau & Perez, 2018), and frequency regulation (Borne et al.,2018; Codani et al., 2015). Our literature review on these research topics highlightsthat the topics of hourly dispatch and grid flows are mostly tackled at local scale(focusing on a small smart grid, or the distribution grid) and that the topics ofshort-term markets and grid frequency are usually studied in the current systembut rarely to a prospective horizon (2030 and beyond). This Chapter focuses onproviding a methodology to study EV patterns based on travel survey data and is
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structured as follows. First, we introduce the steps of our methodology in section3.2, before illustrating the model with prospective EV demand results for Franceat the 2040 time-horizon in section 3.3, then concluding and identifying the usesof our model in section 3.4.

3.2 Electric vehicle pattern modeling
This section presents the methodology selected for generating uncontrolledcharge data for a large EV fleet, and the diversity of data and parameters thatneed to be compiled and collated in order to run the model and generate EVrecharge data for multiples scenarios.
3.2.1 Selection of the EV demand modeling approach
Many mobility models have been developed over the past few years to study thedevelopment of EVs and their interaction with the transport infrastructure andthe electricity supply sector, at local scale or at national scale. Daina et al. (2017)classifies these models into four main categories (‘Summary travel statistics mod-els’, ‘Direct use of activity travels schedules’, ‘Activity-based models’ and ‘Markovchain models’), which have been reviewed in the previous Chapter in regards toour research objectives.In order to study the impacts of a large fleet of EVs on electricity supply–demandadequacy at national scale, results from across a whole year and at a time-resolution similar to the electricity markets studied (typically, an hourly time-resolution) are required. It also has to be possible to study various EV develop-ment and daily usage scenarios. Finally, the results need to be aggregated perclass (vehicle type, charger location, connection behavior and so on). The spatialaccuracy of results at local scale is a further priority.For these reasons, we selected a methodology based on ‘Direct use of activ-ity travels schedules’ but with the addition of generating random schedules fromtravel survey data. This provides a more representative picture of vehicle usagewhile enabling the study of different electric mobility growth scenarios.Our methodology has a similar spirit to the one recently proposed by Gaete-Morales et al. (2021), which was designed to take in to account more preciselythe physical characteristics of the vehicles (mass, electric motor, ancillary equip-ment). Due to our specific wish to address EV integration into electric dispatchsimulation tools, our proposed model has less detailed representation of vehi-cles’ physics, and a stronger focus on grid availability (demand per time window,total connected capacity per charging point type, etc.).
3.2.2 Building input data from travel survey analysis
Our model is built using data from the French 2008 National travel survey (SDES,2008). In this dataset, 20,178 French households were surveyed and provided full
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information on all their trips over a short time period (one or two days). For eachtrip, data available includes departure time, arrival time, distance travelled,meansof transport, day of travel, purpose of journey (for instance, to get to work, go to acommercial area, pick somebody up). Additionally, notable information about therespondent’s profile are also given, i.e. type of home area (city center, suburbs,rural area) and socio-professional category (student, employed, unemployed, re-tired). Although illustrated in this work based on French datasets, ourmethod canbe applied to other areas if such travel data is available.For this study, we filtered the trip data in order to eliminate incomplete dataand outliers and kept only trips with personal vehicles. The remaining data wasthen divided between “local mobility” (less than 80 kilometers away from home)and “long-distance trips”. According to this definition, mobility usages with dailydistances driven longer than 80 kilometers but in a single area (such as taxis, localdelivery services and other professional activities involving personal vehicles) areincluded in the scope of what is described here as ’local mobility’.In-depth analysis of figures from the 2008 survey revealed several character-istics of local mobility: on average, rural drivers drive longer distances, at higherspeeds, leave home in the morning and get back home in the afternoon signifi-cantly earlier than those in city centers and suburbs.In addition, we also noted a difference in trip purposes and distances drivenbetween employees and other socio-professional categories, with most trips byemployees done in the morning to get to work and in late afternoon to get backhome, whereas student, unemployed and/or retired drivers to trips for variouspurposes that were spreadmuchmore through the day. Similar results are foundby Schuller et al. (2015) using data from the German national travel survey. Finally,we found a distinction between trip data for weekdays versus Saturdays and Sun-days, with fewer drivers commuting and shorter distances travelled on weekendscompared to weekdays.As a result of this analysis, we separated the travel data by type of residentialarea (urban, suburban, or rural), socio-professional category (employed or other)and by type of day (weekdays versus weekend day). This enabled us to studyof the impacts of different EV adoption and charging infrastructure developmentscenarios based on these data inputs.
Beyond the direct use of a travel survey dataset

The observations in this section are based on the French travel survey dataset,whose results can be slightly modified in load curves generated from our model(e.g. tomodify the total distance driven per year or the share of long distance tripsdrivenwith EVs). However, it is also possible to study the effect ofmajor changes inthe nature of trips made, whether in the number of trips per vehicle, the distancetraveled per trip, or a change in trip schedules. These changes may come frompolicy incentives, such as increasing teleworking and different urban planning,or the rise of car sharing and autonomous vehicles, among other changes. Weidentify three main methods for accounting for such changes in traveling habits.
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First, if the changes are radical, it is possible to simply redefine the trips onewishes to model entirely. This approach seems very arbitrary, and should there-fore be limited to sensitivity analysis applications.Second, it is possible to modify an existing mobility survey in order to tran-scribe proposals for governmental measures, often formulated in a clear and sim-ple way (e.g. reduce the speed by 20km/h on freeways or reduce the distancetravelled by private car by 10%). This approach has the advantage of being rathereasy to implement, and sticking to the proposed measures.Third, a more comprehensive and complex approach is to use a more de-tailed travel model to generate a new travel dataset. Activity-based models thattake into account transportation network (as presented by Axhausen and Gärling(1992), for example) can be used to study the effect of changes in urban planning.Modal choicemodeling through logit models can also serve to study suchmobilitychanges, without necessarily modeling the road network (see for example Boehmet al. (2021) for the case of freight transport).In this manuscript, we have not applied such methods, given the very littlechange in the total distance travelled by private vehicle proposed by the SNBC(2019) in France (-2% between 2015 and 2050), which does not alter the resultsrelative to our research questions.
3.2.3 Overview of the EV model developed
The approach adopted for this study is based on 5 consecutive steps, which aredetailed in the following subsections: first, generation of the parameters of eachEV; second, generation of the trip schedules of these EVs for the simulated time-range; third, computation of the evolution of each vehicle’s location and consump-tion throughout the simulation; fourth, simulation of the connection of EVs to thegrid and the subsequent uncontrolled electricity demand; and fifth, aggregationof the results for every simulated EV into groups of results. This methodologicalframework is depicted in Figure 3.1.As vehicle and trip parameters are randomly generated, a large number of EVsneed to be simulated (at least 10,000 vehicles) in order to achieve robust statisticalsignificance, following the principles of Monte-Carlo simulation.The following sections present the analysis of travel survey data to generatetrip input data for the model, and the 5 steps in our methodology.
3.2.4 Generation of vehicle parameters
The first step in our EV charge modeling approach is to generate the technical pa-rameters of the EVs in the simulation. For each vehicle, we used input data andassumptions to randomly generate their type (BEV, PHEV, FCEV), battery capacity,charging behavior (detailed in section 3.2.7), residential area, socio-professionalcategory, and charging points available (only at home, only at work, only at publiccharging stations, or a combination of these). The distributions of the previously-
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Figure 3.1: Global framework of the proposed methodology
described parameters serve as inputs to this vehicle generation process to en-sure that the vehicle fleet generated is statistically representative of the estimatednational fleet. All these parameters are not generated independently from eachother, as PHEVs for instance tend to have a shorter electric drive range than BEVs,and most charging points at a workplace are only available to employees. Plötz etal. (2018) show empirically how much annual distances driven differ from a PHEVmodel to another, but in this work, we consider that PHEV battery capacity is notcorrelated to the distances driven with the vehicle.
3.2.5 Trip schedule generation
Once the vehicle parameters are set, the second step consists in generating thetravel schedule of the vehicles throughout the simulation. For each vehicle andfor every day of the simulation (typically 365 days), we randomly draw from traveldata a set of trip parameters corresponding to type of day, type of home areaand socio-professional category of the EV owner. The trip departure times anddistances of these trips are drawn together as a set of trips from travel surveydata in order to take into account the correlation between these parameters. Apercentage of the vehicles are not used every day, in line with data from the travelsurvey data, so there is a probability of no trips assigned in addition to travel-survey trips.One way to generate a greater diversity of travel patterns is to add white noiseto the travel survey data (for instance ±10%ondistances and ±30min ondeparturetimes), but this was found to have negligible effect on EV demand results with thedata used here, as the number of respondents is high enough for good statisticalrepresentativeness. However, as not enough data is available on the weekly driv-ing patterns of EV drivers, the days of travel are drawn independently for everygiven EV (keeping the structure of week composed of 5 working days, Saturdays

67



and Sundays, drawing trips accordingly). This approximation does not appear tohave a significant impact on charging results aggregated at national scale.
3.2.6 Vehicle consumption and location modeling
The third step of our methodology is to compute the evolution of EV battery dis-charge for mobility use and location for each vehicle, at a time-step length cho-sen as an input of the model. Depending on the study (hourly electricity markets,short-term markets), the time-step could range from one hour to a few minutes.The values for EV consumption and location are derived directly from the travelschedules and consumption of the vehicles (see equation 3.1). EV consumptionvaries as function of several factors, including driving speed, outdoor tempera-ture and use of ancillary equipment (Iora & Tribioli, 2019; Yuksel &Michalek, 2015).To simplify, we only take into account the impacts of temperature and drivingspeed in the model.

Consumptionev,n(t) = distancedrivenev,n(t)∗consumptionperkm(temperature(t), speedev,n(t))(3.1)where:
Consumptionev,n(t) is the consumption on the road of EV n at time step t (kW)
distancedrivenev,n(t) is the distance driven by EV n at time step t (km)
consumptionperkm is the energy consumption per km (kW/km)
temperature(t) is the temperature at time step t (national average) (°C)
speedev,n(t) is the average driving speed of EV n at time step t (km/h)
After the location and consumption of vehicles has been computed, step fourinvolvesmodeling EV owner behavior in terms of connection to the grid. As statedabove, our model is able to study several vehicle types interacting with the elec-tricity system, namely BEVs, PHEVs and FCEVs.For BEVs, we consider total driving range by not assigning local daily mobil-ity distances longer than their drive range (indeed, EV users that drive very longdaily distances will not buy an EV with lower driving range than these distances).As a result, the vehicle battery is sufficient to cover their travel schedule in thesimulation.If the vehicle is a PHEV, we assume here that its usage in terms of mobilitypatterns will be similar to a combustion-engine vehicle. We also consider thatPHEV owners maximize the share of their distances driven in electric mode, eventhough ex-post analysis of 100,000 PHEVs from Plötz et al. (2020) suggested thatPHEVs are not currently used this way. However, this assumption is justified hereby assuming that in the long-term, PHEV users will be incentivized to minimizetheir combustion-engine usage in an effort to cut their transport-related carbonfootprint. Additionaly, when studying the electrical system, this assumption is thePHEV usage that maximizes total EV demand, which is what the electrical systemneeds to accommodate.
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Finally, FCEVs are modelled is much the same way as PHEVs but without thepossibility to plug into the power grid, whichmeans that in our simulation we onlycompute their total hydrogen demand.
3.2.7 Grid connection and uncontrolled charge modeling
Several papers (Enedis, 2020; Gonzalez Venegas et al., 2019; Soares et al., 2011) haveshown the diversity of EV owner behaviors: some connect their vehicle daily, whileothers only connect it when the state of charge is low. This is largely dictated byaccess to a charging point, with a share of EV owners possessing a charging pointat home while others rely on the public charging infrastructure. As a result, weintroduced three connection-to-grid behaviors, summed up in Figure 3.2.

Figure 3.2: Flowchart of the three connection-to-the-grid behaviors studied
First, the systematic connection behavior, in which the vehicle is connectedevery time it is parked, and a charging point is available.
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Second, the connection when needed behavior, defined as follows: the EVowner only connects their vehicle to the grid if a charging point is available and itsstate of charge is below a threshold SOCmin, defined either as a distance that thevehicle can drive before the battery is depleted (typically 50km) or a percentageof its remaining battery charge (typically 30%).Furthermore, every time the vehicle gets to a charging point, it also connectsif the remaining state of charge is not enough to drive in electric mode until thenext charging point on its route schedule. This condition ensures that BEVs canmatch their trip schedule and that PHEVs can maximize their electricity-powereddistances.Third, the connection when convenient behavior, in which EVs are only con-nected to the grid on weekends (randomly drawn between Friday evening, Satur-day or Sunday), as the behavioral studies cited above show that a significant shareof EV owners report connecting their vehicle once a week and when convenient.Similarly to ‘connection when needed’, we ensure that EVs are also plugged intothe grid if they cannot reach the next charging point in electric mode.
3.2.8 Long-distance trips
In the analysis of travel survey data, we separated local mobility data from long-distance trips, described in the French travel survey (SDES, 2008) as trips furtherthan 80 km from home. Long-distance trips thus differ from other shorter tripsby their inherent characteristics. A long-distance trip may exceed the drive rangeof some BEVs and most PHEVs in electric mode. However, fast chargers are de-veloping along main road corridors in order to facilitate EV development (Funkeet al., 2019; Neaimeh et al., 2017).Thus, in ourmodel, BEVs are able to connect and charge in themiddle of a long-distance trip. The three charging behaviors introduced in the previous part sharethe same behavior during a long-distance trip: if the state of charge of the batterydrops below a threshold SOCmin,long distance (typically 15 ± 5%), then the BEV stopsand recharges to SOCmax,long distance. SOCmin,long distance considers both the availabilityof fast chargers (as an assumption as no spatialmodelling and geographic locationof chargers are considered here) and the behavior of drivers that anticipate themid-trip charge to avoid fully depleting their battery. SOCmax,long distance stands forthe point when the charging speed of the battery decreases, approximately 90%,as measured by Mies et al. (2018).We consider that due to the high cost and waiting time of highway fast-chargers, PHEVs will not recharge their electric battery during a long-distancetrip.The share of long-distance trips among all trips, i.e. 20% of distances travelledin the French national travel survey data, implies that the amount of long-distancetrips each day within the EV charging model may not be large enough to yieldgood statistical significance of this specific trip category, especially inmid-trip fast-charging results and the distribution of trips through the year. To overcome this
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limitation, we can either substantially increase the number of vehicles in the sim-ulation (at a cost of much longer computational times) or, as a preferred solution,generate mid-trip charging patterns of EVs at fast-chargers (in which every vehi-cle is assigned to long-distance trips) in another simulation before incorporatingthese results into the earlier simulations.

3.3 Case study: EV uncontrolled demand and con-
nection to the grid data in France at the year-
2040 time horizon

3.3.1 Data and assumptions
For our case study, we selected a prospective analysis of the integration EVs in theEuropean electricity system in 2040. This time horizon corresponds to a turningpoint for the transportation sector, as several European countries and cities haveplanned to ban the sales of new thermal vehicles by then. Our focus will be madeon the vehicle demand in France, based on the travel data sets of the French travelsurveys.
Vehicle parameters

Basedon themost ambitions EVdevelopment scenarios fromRTE (2019) and SNBC(2019), the selected parameters for the vehicles in our case study are gathered inTable 3.1. EV represent around two thirds of all personal vehicles in France by thistime horizon. The battery capacities are expected to increase in the coming years,in order to overcome the EV development barrier of drivable range.
Number of thermal vehicles in France 12.1 MillionNumber of electric vehicles in France 24.4 MillionBEV share in the vehicle stock 85%PHEV share in the vehicle stock 15%FCEV share in the vehicle stock 0%Battery capacity of BEVs (mean value) 78 kWhStandard deviation of BEV batterycapacity 16 kWh
Battery capacity of PHEVs (meanvalue) 15.6 kWh
Standard deviation of PHEV batterycapacity 3 kWh
Table 3.1: Vehicle parameters in the selected scenario, at the 2040 time horizon,data adapted from RTE (2019)
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Charging infrastructure available

Regarding the charging stations available, we selected results from RTE (2019) atthe 2040 time horizon. The power repartition and availability of those chargingpoints are detailed in Tables 3.2 and 3.3. This repartition implies that, in this study,a great share of EVdemandoccurs at or around thehousehold location, comparedto the recharge at work and at other places. We also consider that every EV is ableto be charged at every charging point (no incompatibilities accross EV brands asobserved nowadays). The charging infrastructure on highways is not limited inour case study, in order to compute an upper bound of EV demand on higways,even if some chargers may not be used every day of the year and thus not beprofitable (which is a topic out of or scope of analysis).
3.7 kW 7.4 kW 22 kW 50 kW 130 kW 350 kWCharging points at oraround home 30% 70 % 0% 0% 0% 0%

Charging points atwork 7% 60% 26% 7% 0% 0%
Charging points atpublic locations 0% 27% 13% 53% 7% 0%
Charging points onhighways 0% 0% 0% 17% 47% 36%
Table 3.2: Charging power breakdown per location, data adapted from RTE (2019)

Employees Professionalvehicle
Others(students,unemployed,retired)Only at home 49% 35% 88%Only at work 15% 53% 0%Only at publiclocations 1% 0% 0%

At home and at work 22% 0% 0%At home and at publiclocations 4% 4% 12%
At work and at publiclocations 4% 4% 0%
Both at home, atwork and at publiclocations 5% 4% 0%

Table 3.3: Availability of charging points and usage per EV owner profile, dataadapted from RTE (2019)
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3.3.2 Prospective EV demand curves
In this section are presented the results of uncontrolled EV charge, from themodeldescribed in section 3.2. All those results are based on data from the French Na-tional travel survey (SDES, 2008).According to this travel survey, and considering that electric mobility diffusionis faster for vehicle users that drive the longer distances per year (as shown byPlötz et al. (2020) for PHEVs), we estimate that the average BEV is driven on av-erage 13,908 kilometers per year (11,241 km from local trips and 2,667 from longdistance trips), while the average PHEV is driven on average 14,970 kilometers peryear (11,241 km from local trips and 3,729 from long distance trips). From the travelsurvey data, and our assumptions on EV consumption as a function of tempera-ture, the computed average consumption for local trips is 0,141 kWh/km, while,due to higher speeds on long distance trips, the computed average consumptionfor those is 0,234 kWh/km. On average, the total yearly energy demand per BEVreaches 2.21 MWh, while total yearly demand per PHEV reaches 2.46 MWh. Sec-ondly, the share of PHEV energy consumption in thermalmode from our results isonly 10.5%, as PHEVs are assumed to maximize their usage of electricity for theirtrips, compared to around 63% from current empirical data, worldwide (Plötz etal., 2020), especially because of company cars. This share of distances driven inthermal mode could evolve, because of new regulations and increasing fossil fuelprices. As a result, the total electricity demand from the 24.4 Million electric ve-hicles reaches 53.9 TWh in 2040, which represents around 12% of current totalelectricity consumption in France.
EV demand per area

In Figure 3.3, we compare the power demand from EVs at different areas thathave been selected from the travel survey. During working days, uncontrolledpeak demand occurs later in the evening in the major cities, than in other urbanareas, and evenmore than in rural areas. However, vehicle users from rural areastravel greater distances per day during theweek and a higher speed, so theweeklyconsumption per EV is 28% higher in rural than urban areas (35 kWh per weekon average for major cities dwellers, 37.4 kWh for other urban dwellers and 48.1kWh for rural dwellers). This result implies that, for a given amount of EVs in thefleet, the diffusion in the society of those vehicles has a notable effect on thetotal electricity demand of the transport sector. For the rest of our case study, weassume that the spatial distribution of EVs among areas (rural, urban and majorcities) in 2040 is similar to the current distribution of all individual vehicles.
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Figure 3.3: Uncontrolled EV demand for different residence location of EV owner,every vehicle follows the systematic connection behavior
Demand per charging point location

Then in Figure 3.4, we show the results in terms of charging location. During work-ing days, charging at work occurs mainly in morning and early afternoon hours(from around 08:00am to 01:00pm), while charging at home is more spread dur-ing the day, with a peak from 07:00pm to 10:00pm). Public charging is spread outmore evenly throughout the day, even though it only stands for a small share ofEV charge. During Saturdays and Sundays, the total and peak energy demand arelower than on working days, under "systematic" and "connection when needed"behaviors, as less vehicles are driving on these days. Moreover, the share of vehi-cle owners going to work on weekends is rather low compared to working days,and so is the demand from chargers at work.
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Figure 3.4: Uncontrolled charging demand separated by charging location, witha repartition of 40% "systematic" behavior and 60% "connection when needed"behavior
Demand for the charging behaviors studied

Finally, we compare charging behavior of EV owners, as described in section 3.2.7,namely the systematic connection, connection when necessary and connectionwhen convenient behaviors. We selected 50% and 5% as two variations for thestate of charge limit of the connection when necessary behavior. The 50% stateof charge variation stands for EV owners that anticipate the charge of their vehi-cles, while the 5% state of charge variation means that the vehicle are connectedas little as possible to match their mobility needs. In addition, we can note thatthe connection behavior in which EV users charge their vehicle when the state ofcharge gets below 50% should provide results similar to a last minute connectionbehavior, but with EVs with smaller batteries.Fast chargers could also emerge in urban areas as an option for EV charge ofvehicle owners that do not own a private parking spot. Funke et al. (2019) showthat the development of a fast charging infrastructure could turn out less costlyfor the society than an increase in battery capacity, in order to overcome the driv-ing range barrier for EV development. Indeed, we also simulated a connectionwhen necessary behavior in which EVs are connected to fast chargers (130 kW)when their state of charge is not sufficient for the trips of the following day, whichreplicates the refueling of thermal vehicles.Figure 3.5 illustrates the share of BEVs connected to the grid per behavior stud-ied. We identify that at night, around 90% of BEVs in "systematic" connection
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mode have access to a charging point in our scenario. Moreover, only around 5%of BEVs in connection "when needed" (with the connection threshold at the stateof charge of 5% of battery capacity) are connected each day, which means thaton average, with 76 kWh batteries, BEVs need to connect less than once a week.Additionally, we identify that EV users in the connection when convenient modeconnect mainly on Friday evening, and throughout the weekend. As a result, if asignificant share of EV users tend to connect on weekends, peak demand of 2.5kW per EV are to be expected on Fridays and Saturdays in the evenings.

Figure 3.5: Evolution of the share of BEVs connected to the grid during the week
We also compare BEV and PHEV connection behaviors in Figures 3.6 and 3.7.First, for BEVs, it appears that the shape of the demand curve differs a lot from aconnection behavior to another. For the "systematic" connection and the connec-tion "when needed" with fast chargers, most vehicles are fully charged in less thanan hour, which means that demand of a large share of BEVs is synchronized rightafter peak trip times (around 08:00am, at mid-day and mostly between 05:00pmand 09:00pm, when most vehicles are driven back home). The connection behav-ior using fast chargers is, as expected, the behavior with the highest peak demand(0.85 kW per vehicle, at 07:00pm), but notably, the shape of the load curve andpeak demand appear to be quite similar to systematic connection of BEVs atmuchlesser charging powers. The demand of the connection "when needed" behaviorat regular charging power (3.7 kW or 7.4 kW) is much more spread through thenight, as the full charge of vehicles takes several hours for BEVs with large bat-teries. On the other hand, for PHEVs, we see little difference between chargingbehaviors in Figure 3.7, with most vehicles finishing their charge before 11:00pmin the evening, because of smaller batteries. This result shows that as PHEVs are
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assumed to maximize the share of their distance travelled in electric mode, theyare being connected nearly every day in this model. Even if an averaged weekday is illustrated in Figures 3.6 and 3.7, no significant differences are observedbetween each working day. The main difference being the lower consumption onweekends, as illustrated in the previous Figures 3.3 and 3.4.On average, in order to match their mobility needs, EVs need to be connected35minutes per day. Figure 3.8 illustrates for each behavior studied the amount oftime that EVs spend connected to the grid while not charging. It appears that EVsconnected to a charging point on a "systematic" basis spend 25 more time thanneeded connected to the grid (these vehicles being "not connected" a share of thetime, when they are driven or away from an accessible charging point). As a result,these vehicles offer a great window of opportunity for smart charging by delayingthe beginning of their charging session. However, other connection patterns onlyshow limited potential for the delay of the charge of batteries, as connecting anEV only "when needed" means that the vehicle stays connected 2 or 3 times morethan necessary on average. Were these vehicles smartly charged, we could avoidcharging themduring peak load, but we could not shift thewhole charging sessionduring the lowest electricity price hour as the process takes several hours. Theonly exception to that statement being the connection when convenient behavioron week-ends, in which the window for delaying the charge of the vehicle appearssimilar to the systematic connection behavior.

Figure 3.6: BEV demand curve on the average week day, for various connectionbehaviors
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Figure 3.7: PHEV demand curve on the average week day, for various connectionbehaviors

Figure 3.8: Repartition of time connected to the grid per behavior studied
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The case of long distance trips

There is still some uncertainty on how EVs will be used for long distance trips. Onthe one hand, Jakobsson et al. (2016) show that EVs aremore suited to householdsthat own at least two cars, which would not use their EV for long distance trips.On the other hand, in the medium term, scenarios with widespread EV adoption(around two thirds of all individual vehicles in our scenario) imply that a significantshare of households would only have access to an EV for their long distance carjourneys.In order to incorporate these observations in our case study, we assumed thatPHEVs are used as much as thermal vehicles but never charge their battery mid-trip, BEVs below 50 kWh are not used for long distance trips, and 50% of BEVsabove 50kWh are used for long distance trips, given that 35% of households ownseveral vehicles in france, as indicated by INSEE (2017b).Additionally, the major parameter to study EV long distance related demandis proper data about the repartition of those long distance trips during the year,which national travel surveys are usually not built to provide. As a result, we es-timated the amount of long distance trips each day from another study, whichrelates the share of people away from their home each day (INSEE, 2017a). Re-sults on the long distance related EV demand through the year can be found inFigure 3.9. We highlight that long distance trips are concentrated in peaks at theweekly (more trips on weekends) and annual scale, as found in Plötz et al. (2017).The highest peak demand days are found at Summer holidays and around Christ-mas, with smaller peaks in Spring.

Figure 3.9: EV long distance demand through the year (from July 1st to June 31stfor better readability of the Christmas peak)
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3.4 Discussion and conclusion
EVs are set to develop in the following years, and could possibly reach a largemarket share of the transport sector by 2050. In this Chapter, we reviewed theestimated demand curves and availability at charging stations of one of the mostambitious EV development scenario in France, to the extent of 53.9 TWh in 2040,for the charge of 24.4 Million electric vehicles, which is around 8% of total pro-jected electricity demand in France by that time.In order to analyze the effects of EV diffusion on power systems, we proposein this Chapter a methodology to generate travel patterns and EV connectionand demand data from travel survey data and assumptions on EV characteristics.This methodology enables the study of a large diversity of vehicles (BEVs, PHEVs,FCEVs, from different segments), vehicle ownership (rather employees commut-ing to work, company-owned or other), vehicle usage (local mobility and long dis-tance trips), charging stations available (at various locations and rated power) andconnection behaviors (systematic or less frequent).Ideally, the results presented here would be validated by empirical data, de-rived from real world EV demand measurements. Unfortunately, no such opensource high quality individual EV charging data is currently available. And eveneven if such data were available, there might not be representative on EV usageat the 2040 time horizon. However, the load curves obtained through our modeldo not seem too dissimilar from the results of other studies of the literature ref-erenced in this Chapter.Our case study highlights that the profile of EV adopters among the population(urban or rural dwellers; employees or other socio-economic classes) has an im-pact on EV demand times and total energy consumption. EV demand is 28%higherin rural areas (compared to urban), and employees trips are more homogeneousthan others, which implies higher uncontrolled peak demand at 18:00-19:00 if EVsare mainly used for commuting to work.The low usage rate of public chargers also questions the profitability of suchchargers without public funding.Finally, our analysis suggest that the connection behavior of EV users, fromdaily connection to connection only when necessary is a key factor of smart charg-ing potential and peak demandmitigation. Incentivizing EV owners that are willingto provide flexibility to connect their vehicle as much as possible would be neces-sary for maximizing the flexibility provided.This analysis only enables the study of uncontrolled vehicles and relies on themethodology presented on the next Chapter to study the smart charging modesof EVs, using the connection to the grid data computed in this Chapter.
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3.A Summary of EV model input and output data
and program parameters

In this appendix are listed the input parameters of the mobility model, along withtheir source:
• Inside the model, definition of macro parameters

– Number of vehicle modelled in a Monte-Carlo simulation
– Number of Monte-Carlo simulations (in order to parallelize the simula-tion)
– Time step of simulation (typically hourly or 30 minutes)

• Macro data on EV parameters, sourced from the scenario of EV diffusionselected
– Number of every vehicle type in the fleet (BEV, PHEV, FCEV)
– Battery capacity of every vehicle type (average and standard deviation),in kWh
– Repartition of connection behaviors inside the population, per vehicletype (between "systematic" connection, "when needed" or "when con-venient")
– Consumption per km of the vehicles studied, depending on drivingspeed and outside temperature
– For long distance trips, theminimumbattery capacity of vehicles suitedfor such trips, an the battery level thresholdwhenBEV stopmid-trip andresume their trip (typically 20%and80% respectively), whichmodels theavailability of charging points.

• Macro data on charging infrastructure, sourced from the scenario of EVcharging infrastructure diffusion selected
– Availability of charging points (as a percentage of vehicles that haveaccess to a charging point) per location (at home, at work and publiccharging points
– Maximum charging power, in kW, per charging point location
– Charging efficiency, the ratio between electricity withdrawn from thegrid and stored inside batteries

• Trip data, sourced from our analysis of travel surveys
– Set of trips for localmobility, per day (working day, Saturday or Sunday),per zone (rural, urban or largest cities) and per trip purpose (going towork, other purposes, either 2 or 4 trips per day). For each set, the listof daily distances, departure times and arrival times of each trip
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– Set of trips for long distance, per trip purpose (holiday, work or visitingsomeone). For each set, the list of daily distances, departure times andarrival times of each trip
– Description of the daily purposes of daily mobility (e.g. for the purpose"commuting to work, 2 trips", first trip from home to work and secondreturn trip towards home).
– Distribution of trip purposes per day type, zone and EV owner profile(employee, others)
– Distribution of EV owner profiles per zone

• Calendar data
– Share of vehicles driving local mobility and long distance trips each dayof the year, based of our analysis of travel survey for the distributionof local mobility trips, and from our analysis of trip survey and highwaytraffic data for the distribution of long distance trips
– Average temperature in France at the hourly time scale, based on datafrom Météo France, for various weather year
– Share of vehicles driving long distance trips among long-distance trippurposes (holiday, work or visiting someone), as described in theFrench travel survey

Following this inputs, we list here the outputs of the model:
• Summary of the simulation, total annual EV electricity demand from thegrid, gas consumption (PHEVs), H2 consumption (FCEVs), total distancedriven in local mobility and long distance trips.
• For each time step t:

– Distance driven on the roads, detailed by travel segment (local mobilityand long distance trips)
– Total charging point power, battery capacity and number of all EVs thatare available and connected to a charging point (those that were al-ready connected before t and those that connects at t), detailed perconnection to the grid behavior, vehicle type, charging point location(home, work, public) and zone (urban or rural)
– Total charging point power, battery capacity and number of EVs thatconnect at time step t, similarly detailed
– Total charging point power, battery capacity and number of EVs thatdisconnect at time step t, similarly detailed
– Uncontrolled EV demand, detailed by connection to the grid behavior,vehicle type, charging point location, zone and charging point power
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– Average EV state of charge, detailed by connection behavior, vehicletype and zone
• For specific simulations:

– Maximum EV charge per time window selected (e.g. between 14:00 and17:00), by constraining EVs to charge preferably in this time window)
– Statistically representative results on long distance mid-trip demand,within simulations focused on long distance trips.

The program is built in the programming language R, and generates EV de-mand data for a whole year at the hourly time step, modelling 50 000 EVs (for sta-tistical representativeness) in around 4 hours. Figure 3.10 illustrate the flowchartof the EV connection modelling methodology.

Figure 3.10: More detailed flowchart of EV demand generation methodology de-scribed through this Chapter

3.B Additional results
In this appendix, we illustrate additional results to those provided in section 3.3.
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First, the maximum share of electricity demand that can be withdrawn is sev-eral time windows is shown in Figures 3.12 and 3.13, computed in specific EV de-mand modelling, by constraining EV to charge at maximum during the time win-dow. The process added inside our EV model to compute maximum charginginside a given time window is explained in Figure 3.11.

Figure 3.11: Flowchart of methodology used inside step 4 of our EV model in orderto compute maximum charging in a given time window
The maximum demand for each 2-hour windows for the two main connectionbehaviors studied in this Chapter follow the same trend as the share of EVs con-nected through the day (Figure 3.12). It is to be noted that for the "systematic"connection behavior, the low energy demand per day per vehicle enables total EVcharge to be concentrated at up to 60% during 2-hour time windows (at night).As expected, maximumEV charging in timewindows is not cumulative (e.g. themaximum share of energy charged between 13:00-17:00 is lower than the sum ofthe 13:00-15:00 and 15:00-17:00maximum demand), as illustrated in Figure 3.13 for"systematic" connection. With our connection behavior assumptions and charg-ing points available, up to 84%of the charge can bemade in the evening and night,compared to up to 43% in the mid-day time window (11:00-17:00), at peak solar PVgeneration.Then, the distribution of long distance trip demand on an averaged day is il-lustrated in Figure 3.14. Around 33% of long distance related EV charging is donemid-trip, at fast charging stations in our scenario. Long distance peak power de-mand happens slightly later than short distance trips, at around 21:00-23:00 asmost of EVs are at or close to their destination by then, andmost of them not fullycharged yet.
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Figure 3.12: Illustration of maximum share of daily EV demand per time windowthroughout the day, the x-axis data being the time steps of our model, in such away that 1h-2h means the time window between 1:00 and 3:00

Figure 3.13: Illustration of maximum share of daily EV demand for different timewindow lengths, for the "systematic" connection behavior
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Figure 3.14: Repartition of long distance demand between mid-trip fast chargingand charging at trip destination (stacked graph)

3.C Downscaling national results at the regional
scale

This appendix addresses the issue of the possibility of using EV demand data, gen-erated in this Chapter, at a smaller scale than average national data. This analysismakes it possible to estimate load curves by region or by city, depending on thescale of the transport grid to be studied. For more local load curves (at the elec-tricity distribution level), other approaches, such as activity-based (as presentedin Chapter 2) are more relevant.A combination of top-down andbottom-up approacheswill be presented here.First, the bottom-up approach relies on the fact that we divide travel data by area(rural, urban and largest cities) in our travel survey analysis, and thus in ourmodelresults, which allows us to obtain average data per vehicle for each of these typesof areas. Second, the top-down part of our method is based on a downscaling ofthese results to the appropriate level.With respect to the data used in this analysis, we can on the one hand obtainthe distribution by department of past EV sales, which is a good indicator of thecurrent location of EVs. On the other hand, we have the distribution of all indi-vidual vehicles currently by municipality, by multiplying the share of vehicles per
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household and the number of households per municipality. 1 From this data, wehave a proxy of two EVs distributions:
• The current distribution of EVs by municipality in France. Within this, we cansee that the wealthier departments are those with the most EVs. In 2019,5.4% of individual vehicle sales were EVs in Paris and 4.4% in Bouches-du-Rhône, compared to less than 2% in the most rural French departments.This can be explained by several factors: areas with high EV developmentare usually higher income areas, with shorter and slower vehicle trips (bettersuited to EVs) and where low emission zones are set during pollution peaks.
• The theoretical distribution of uniform EV diffusion within the population(similar to vehicle ownership if there is no major change in urban planning).
To estimate the distribution key between these two temporal horizons (2020for the first and 100%electrification for the latter), the followingmodel can be usedas a first approach: weighting current distribution key by (1-electrification rate) and

uniform distribution key by the electrification rate.To improve this estimate of the prospective distribution of EVs within the pop-ulation, we recommend a model of the individual vehicle fleet, particularly withinincome deciles, and taking into account the second-hand market model.

3.D Heavy mobility demand modeling
Additionally to individual vehicles that are the core topic of this Chapter, themobil-ity model built enables the study of electric demand of other electric vehicles. Asdescribed in the introduction, the demand of electric scooters and electric bikesis not expected to reach a significant amount of total consumption, so a precisemodeling of those vehicles does not seem relevant. However, electric or plug-in hybrids trucks and buses could reach a large share of respectively freight andpassenger transport. As a consequence, the adaptation of our model and data tostudy the electrification of those transport means is described in this appendix.
3.D.1 Buses
To begin with, buses can be classified as "localmobility" defined in this Chapter, asthey do not usually drive long distances during a day. As identified in section 1.2.2,several smart charging modes could emerge for electric buses: plug-in chargingat the depot, mid-trip charging (catenary or induction) or fast chargers at the ter-minal. Charging only at the depot requires larger battery capacities than the othersolutions.

1For France, these data can be found in the studies Données sur les immatriculations des
véhicules, Couples-Familles-Ménages en 2017 and taux de motorisation des ménages of INSEE
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On the one hand, modeling electric buses that charge at the depot each nightcould rely on the samemethodology as individual vehicles that perform local mo-bility trips and are charged at home. This charging location enables electric busesdemand side flexibility, provided the charging powers are high enough.On the other hand, mid-trip charging could be approximately modeled as anelectric consumption (from the electricity grid) close to the consumption of thevehicle on the roads.Finally, a major limitation to the study of electric buses grid integration is thelack of public open-source data about bus trip characteristics (distribution of bustrip lengths and return times to the depot). Indeed, most travel survey focus onthe trips of individuals rather than the trips of vehicles, which is not a problemfor personal vehicles, as these data match, but it is not the case for public trans-portation, as individuals hop on and off the vehicles. One solution could be usingtimetables of bus routes (public and easily accessible) in order to estimate dis-tances and trip times of buses, although timetables do not indicate which busesare used through the day or if they go back to the depot at mid-day.The same observation applies to other transport segments close to publicbuses described in this Chapter, such as school buses and coaches that makecity-to-city trips.
3.D.2 Trucks
First, when it comes to trucks, it is even harder to get reliable trip data, as neithertravel surveys displaying trip data (as individual vehicles) or public timetables (asbuses) were found. A large majority of trucks belong to private operators, whichmight be less willing than others to collaborate with academics by sharing theirdatasets.Trucks can be classified in several groups: rigid trucks, semi-trailer trucks andsmaller trucks for local delivery. The study of each of them requires analysis onwhich trips are to be made, and what are the characteristics of the electric trucks(heavier vehicles, which implies larger consumption, for long distance semi-trailertrucks for instance).Similarly to buses, several smart charging modes could emerge for electrictrucks: plug-in charging at the depot, mid-tip fast charging (during driver breaks),or even dynamic charging while driving (some electric road trials were launchedrecently).Formid-trip fast charging, similarmodeling as for long distance trips of individ-ual vehicles could be applied, while night charging at the depot for local deliverytrucks requires similar methodology as what is defined as local mobility in thisChapter.
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4 - Chapter 4: Electric vehicle flexibility fromnational
hourly supply-demand adequacy

Summary

Electric vehicles (EVs) are expected to grow massively in the coming years, and grid inte-gration of a large number of them could challenge electricity-system infrastructure. ThisChapter proposes a methodology to study the technical and economic impacts of massEV charging on power systems, based on EV connection and charging needs generatedthrough themethodology of the previous Chapter (which allows to generate uncontrolleddemand). This framework is applied to a case study at hourly resolution of high penetra-tion of electric vehicles and renewable energy sources in Europe at the 2040 time-horizon,in line with the ‘National Trends Scenario’ grid mix under the pan-EU ENTSO-E Ten-YearNetwork Development Plan. Results show that the European electricity system can ac-commodate large EV growth and that widespread adoption of smart charging in Francecan significantly reduce operational electricity system costs by up to 1.1 G€ and reduce car-bon emissions by up to 3.2 MtCO2 per year. We also compare multiple EV smart chargingmodes of vehicles in France, and identify which parameters have the largest impact onEV flexibility, including gas prices, smart charging adoption, weekly flexibility, andmid-daycharging.
4.1 Introduction
This Chapter is focused on the interaction between EV charge and the hourly oper-ation of the rest of the power system (generating units, storage, interconnection).This field of study does not usually consider electricity transmission grid conges-tions inside a price zone, but the neighboring countries have to be modelled inorder to model flexibility from cross-border exchanges. Some authors have stud-ied the impact of EV charging on such similar scopes. Wulff et al. (2020) modelledEV flexibility, smart charging and vehicle-to-grid (V2G) for the German power sys-tem by linking an existing transport model and a power system model (REMIx),and they showed that EV load shifting reduces renewable curtailments as a func-tion of charging power and EV behavior. Wolinetz et al. (2018) also applied a similarmethodology to study the optimal investment path towards 2050 for different EVflexibility scenarios and found that developing smart charging reduces the needto invest in flexible generation capacities. Liu et al. (2014) analyzed a scenario offull electrification of personal vehicles and its impact on the spot market in Nordiccountries, while Robinius et al. (2017) followed a similar methodology for the caseof FCEVs to estimate the hydrogen supply infrastructure that would be needed toaccommodate high FCEV development.In this work, we attempt to complement the extant literature on this topic byproviding a methodology and case study on EV adoption at national scale and to
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a prospective horizon. The main contributions of this Chapter are a methodol-ogy adapted for other power-system software and sensitivity studies on two ofthe main factors shaping the integration of a large share of EVs: the connectionbehavior of EV owners, and the diffusion of multiple smart charging techniques.Socio-economic surveys currently observe multiple connection behaviors of EVowners (Enedis, 2020; Soares et al., 2011), ranging from connecting the vehicle asmuch as possible to charging it only when necessary, on a weekly basis or evenless frequently. Moreover, as driving range is one of themain barriers to EV devel-opment (along with strong charging-station system coverage) (Funke et al., 2019),car manufacturers are currently working on extending the autonomy of EV bat-teries, which could make EV connections to the grid less frequent in the years tocome. The secondmain factor affecting the flexibility offered by EVs studied in thiswork is the adoption of smart charging. In case of high social acceptance of smartcharging (unidirectional or bidirectional), EVs could provide a significant sourceof demand-side flexibility and thus decrease EV charging costs compared to un-controlled charging of these vehicles. We identify a wide range of smart chargingapproaches that can be modelled, providing either daily or weekly demand flexi-bility.This Chapter is structured as follows. First, we introduce in section 4.2 themethodology developed to study the integration of EVs in supply–demand ade-quacy models along with the smart charging modes that our model enables thestudy of, with a focus on time-of-use charging in subsection 4.2.4. Second, wepresent and discuss the results of a case study on the integration of EVs into theEuropean power system to the 2040 time-horizon in section 4.3, while providinginsights on which parameters have the biggest impact on EV flexibilty provision.Third, those results are further discussed in sections 4.4, before concluding theChapter in section 4.5.

4.2 Electric vehicle smart chargingmodeling inpower
system adequacy models

4.2.1 Power systemmodel selection
As mentioned in the introduction section, different dimensions of the electricalsystem interact with EV charging, which means that EV smart charging can becontrolled from multiple perspectives. Large EV market penetration implies thatindividual EV consumption could reach a significant share (up to 15%) of total elec-tricity consumption in the mid-term. Therefore, considering EVs as price-takers inprospective studies (which means using electricity market data exogenous to EVcharge) is a major approximation. To go beyond this price-taker hypothesis, EVdemand data has to be integrated in a power system modeling framework. Be-low we describe the approaches found in the literature, depending on the scopeof study.
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First, studying the optimal year-by-year investment into new generation andflexibility capacities can be studied with capacity expansion models (see Foley etal. (2010) for a review of such models). The advantage of this type of model is toevaluate the dynamics of technology diffusion, but at the cost of lower accuracyon intraday flexibility (often studying a set of time slices). In this field, Borozanet al. (2021) and Wolinetz et al. (2018) study how much the optimal investment innew capacities differ whether EVs are smartly charged or not.Second, generation and transmission system operation models (often called‘unit commitment and dispatch’ models) are built to study load-generation ade-quacy or large systems (spanning several countries or regions) while consider-ing the transmission capacities between them for given electricity generation ca-pacities, flexibility assets, and base demand data. These models can be used tostudy how valuable flexibility of EV charge is for electricity supply and demand atnational scale and its impacts on carbon emissions and electricity prices. Thesemodels becomemore andmore useful for studying EV flexibility in scenarios withhigher wind and solar generation capacities, as ‘valley filling’ becomes furtherfrom the less costly and less CO2-emitting solution for EV charge.The third option is to study the electrical system with a sharper descriptionof the physical aspects of electricity transmission and distribution networks, withor without the DC power flow simplification and possibly including voltage con-straints or dynamics. This comes at the cost of limiting the area of study (a countryor a smaller region) and the length of the period studied, as compared to gener-ation system operation models. Most studies of the interaction between EVs anddistribution grids rely on this modeling approach, especially when scoped at thelocal scale (Fischer et al., 2019; Green et al., 2011; Jarvis & Moses, 2019; Mehta et al.,2019) while very few have studied the impact of EVs on transmission grids (Slednevet al., 2021).In this work, we chose to study EV flexibility from the second perspective (‘unitcommitment and dispatch’), as it has been identified as one of the main researchgaps for mid-term studies (Arvesen et al., 2021; Schill & Gerbaulet, 2015). Amongthe unit commitment and dispatch models available (e.g. PLEXOS, UPLAN, EMPS),we selected AntaresSimulator (“AntaresSimulator,” 2022), which is an open-sourcemodel inwhich a base study of the European electricity system in 2040 had alreadybeen built and was readily accessible. However, the EV aggregation methodol-ogy and formulation of optimization constraints described in the following sec-tion could be adapted for other software. AntaresSimulator aims to minimize thetotal operational cost of a given electricity generation and consumption systemwhile ensuring supply can adequately match demand adequacy, from a ‘perfectforesight’ perspective, under the optimization function below:
min

∑
t

∑
z

Pz,t ∗MCz,t + δ+z,t ∗G+
z,t + δ−z,t ∗G−

z,t (4.1)
where t is the time step, hourly in our case study, z is the price zone, and foreach in zone z and time t, Pz,t is the electricity generation, MCz,tis the marginal
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generation cost,G+
z,t is the unsupplied energy ("loss of load"), δ+z,t is the cost of un-supplied energy,G−
z,t is the renewable energy curtailment, and δ−z,t is the cost of en-ergy curtailment. The full formulation of the optimization problem can be foundin Doquet et al. (2011) and on the software webpage (“AntaresSimulator,” 2022). Itsimulates the electrical system for a whole year at hour-by-hour resolution andcomputes an hourly electricity marginal generation cost at the intersection of thesupply and demand curves, while also modeling the constraints of thermal powerplants (ramping constraints, start-up costs and minimum up-time), the variabilityin solar PV and wind generation via a set of weather data, and the optimization ofhydro storage plant generation through the year. On the other hand, some sim-plifications are made, due to the hourly time step, on the dynamics of the powersystem. The European power network is also approximated at the national scale,with capacities between price zones, but congestions insides a price zone are notmodelled here.The zones considered in this work are 37 price zones of Western and CentralEurope, with some countries corresponding to a single price zone (e.g. France,Spain, Germany and Belgium) while others are split into several price zones (e.g.Italy and Norway). The area selected is identified in Figure 4.1 and gathers mostof the synchronous grid of Continental Europe, as well as the UK, Ireland, Scandi-navia and the Baltics.

Figure 4.1: European countries in the area studied
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A key asset of AntaresSimulator for modeling EV flexibility is that it enables theaddition of custom sets of constraints to model several EV smart charging modes,as described in the following sections. The data processed through AntaresSimu-lator in our methodology is described in Figure 4.2.

Figure 4.2: Inputs and outputs of our electrical system modeling process
4.2.2 EV aggregation for EV flexibility modeling
In order to integrate widespread adoption of EVs into a power systemmodel, it isnecessary to aggregate the vehicles into a limited number of equivalent objects,as power-systemmodels cannot independentlymodel the severalmillion EVs thatare expected to be on the roads inWestern Europe in themid-term (2030 to 2040).In order to do so, Ried et al. (2020) and Wulff et al. (2020) reviewed some of thefollowing approaches that are being used in the EV literature.On the one hand, a significant share of the EV literature aims to precisely ag-gregate the charge of a limited number of EVs at the local scale. Some studiesconsider independently every charging events, which is not scalable. Wu andSioshansi (2017) introduce an operational heuristic for the optimal placement ofmultiple EVs charge at a charging station level, modeling well the constraints of
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multiple EV flexibility. However, electricity prices are exogenous from the opti-mization, which implies that this approach is not suited for our case study. Thesame observation is made on the methodology from Wang et al. (2021), in whichthe rolling window approach concentrates on the stochastic EV connection anddemand, but cannot be easily coupled to power system modeling.Second, some studies model EV flexibility by computing the maximum SOCcurve (EVs that charge as soon as possible) and the minimum SOC curve (EVs thatcharge as late as possible, in order to leave with a battery fully charged) for eachvehicle. The charging algorithm then select the optimal aggregated charging pro-file constrained between the total minimum and maximum SOC curves (Cai etal., 2018). In a similar fashion, Barot and Taylor (2017) proposed a more complexand exact mathematical consideration of EV flexibility boundaries that employsMinkowski sums to aggregate the charging constraints of a multiple EVs. Unfor-tunately, this approach is not applicable to our study of millions of EVs in a powersystem model.Ultimately, the best approach identified for the problem studied here is tomodel EV fleets as an equivalent battery, while adding constraints to the opti-mization problem so that the mobility needs of EVs, and the evolution of theirconnection, on-road consumption and recharge needs are modelled. This choicewas advocated by Ried et al. (2020). The methodology and limits of our EV aggre-gation solution are presented in the subsection 4.2.3.The aggregation of EVs as proposed in this Chapter was made possible by thefact that we had modelled EV connection and demand beforehand. This method-ologymight not be easily applicable based on only average values of EV departuretimes and daily energy demand.
4.2.3 Modeling EV smart charging inside a power system sim-

ulation tool
It has long been known in the battery literature that lithium-ion batteries losesome of their charging power is when their state of charge is close to 100% (Pel-letier et al., 2017). However, in this work, as we are studying aggregated EVs atthe hourly time-scale, EV battery charge is approximated as linear in time at itsconstant rated power.The focus of this case study is to study the impacts of EV charges in France onthe European power system. As a result, in the modeling implemented for thisstudy, all EV-related parameters are geared to the French zone. Themethodologycan be scaled up to pan-European level with a set of equations formultiple zones ifEV input data is generated similarly for the other zones. In addition, the followingEV equation and parameters only relate to EVs that accept charge management.Other ‘uncontrolled’ EVs, whose charging is modelled using the methodology de-scribed in Chapter 3, are added to the non-flexible demand. The charge of flexibleEVs, referred to as "smart charging", is determined by AntaresSimulator: it is con-sidered as one of themany decision variables of the operational costminimisation
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problem.In the specific case of modeling EV smart charging inside our model, the majoroutput decision variable of our methodology is EV demand on the power net-work at each time-step CE
t V , while the other decision variable required to ensurethat EVs are sufficiently charged is the energy stored in EVs connected to the grid,named ESc

t on (in kWh), is equivalent to state-of-charge (in percentage) multipliedby the battery capacity (in kWh).The relation between these two variables is found by using two different equa-tions towrite the evolution of the state of charge of every vehicle in the simulation.First, the evolution of EV aggregated charge level can be split between connectedand disconnected vehicles,
∆ESallEV

t = ESallEV
t − ESallEV

t−1 = ∆EScon
t +∆ESunc

t ,∀t (4.2)
where ∆ESallEV

t is the variation between two consecutive time steps of thestored energy stored across all EVs, ∆EScon
t is the variation in stored energystored in EVs connected to the grid at time t, and∆ESunc

t is the variation in storedenergy in EVs that are not plugged in. Then, as we consider that during oursimulation, the number of EVs is constant,
∆ESallEV

t = CEV
t −DEV

t , ∀t (4.3)
where DEV

t the electricity consumption of vehicles on the road. As a result,when fitting equation 4.3 into equation 4.2,
∆EScon

t = CEV
t − (DEV

t +∆ESunc
t ),∀t (4.4)

which is the main equation that links EScon
t and CEV

t , while the third term
(DEV

t +∆ESunc
t ) reflects the variation on stored energy in the connected vehiclesinduced by the disconnection of fully charged EVs and the connection of someEVs at the end of their trips. This last term is exogenous to EV charging strategiesand is therefore computed prior to the simulation by our EV trip and connectionmodule (see section 3.2.6).

CEV
t , the EV demand on the power network, can be negative in settings thatuse grid injection from vehicles that allow V2G,

CEV
t = ηw ∗ CWEV

t − 1/ηi ∗ CIEV
t (4.5)

where ηw is the efficiency of electricity conversion for grid withdrawal, ηi the ef-ficiency of electricity conversion for grid injection,CWEV
t the electricity withdrawnfrom the grid, and CIEV

t the energy injected into the grid.The additional constraints for EV flexibility are defined as follows:
Capacont ∗ SOCmin ≤ EScon

t ≤ Capacont ,∀t (4.6)
CEV

t ≤ P con
t ∗ τ, ∀t (4.7)
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∑
t in day

CEV
t = Ctotday, ∀day (4.8)

∑
t in tw

CEV
t ≤ CmaxEV

tw ,∀tw (4.9)
CIEV

t ≤ P con,V 2G
t ∗ τ, ∀t (4.10)

∑
t in day

CIEV
t ≤ CImaxEV

day,∀day (4.11)
Equation 4.6 ensures that that the energy level stays between the maximumtotal capacity of connected EVs, Capacont , and a minimum state of charge SOCmin

that reflect a ‘safety-buffer’ state-of-charge that needs to be kept in EV batteries inthe event of unexpectedmobility needs (aggregated for all EVs). Typical selectable
SOCmin values range from 20% to 40% depending on average battery capacity.Equation 4.7 limits the power that can be withdrawn from the grid at any time-step below the total charging power of connected EVs, P con

t , computed by themobility model, times the time step selected τ .In most studies on EV smart charging, each charging session is constrained toreach a 100% state-of-charge before the vehicle leaves. To do so, when aggregat-ing a large pool of vehicles, equation 4.8 forces the optimization to withdraw, eachday, as much energy as in the case of an uncontrolled charge scenario Ctotday.Note that in order to match an EV connection pattern in which a significant shareof charging time windows are spread over the night (typically 18:00 to 07:30), the“day” can preferably be selected from 08:00 to 08:00 in equation 4.8. Heggartyet al. (2020) showed that flexibility is a multi-timescale topic that can be classifiedinto three sections: annual, weekly, and daily flexibility. Under equation 4.8, EVsare limited to daily flexibility only. However, as battery capacities are tending toexpand, a significant share of EVs might soon be able to be used for daily com-mutes for nearly a week before the need to be fully charged again. As a result,equation 4.8 can be disabled to study the potential of weekly EV flexibility.One of the major limits to aggregation identified when modeling EV chargewith only the previous constraints is that on some days, all the daily smart charg-ing demand could be satisfied in a limited number of time-steps, especially atmidday which correlates with peak solar PV generation. However, looking at theindividual EV patterns that were generated by our mobility model, some EVs areonly connected at night (e.g. between 18:00 and 07:30) while others are connectedat work during the day (e.g. between 08:00 and 17:00). As a result, some of thesmart charging load curves initially computed (without this constraint) showed allthe electricity withdrawn by EVs between 10:00 and 15:00, which is highly unreal-istic (way over the share of EVs connected in this time window, which is one ofthe limit of aggregating EVs into a single object in the model). To overcome thisissue, equation 4.9 was added to our optimization problem. For various selectedtime-windows tw, we limit EV charge to themaximum possible energy withdrawal
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from the grid in that time window CmaxEV
tw , which is computed from our mobilitymodel as the share of energy withdrawn in that time-window when individual EVstry to maximize it. The specific time-windows selected and typical values for theirmaximum energy demand are described in section 4.3.1.Finally, equations 4.10 and 4.11 are added to study V2G: Eq. 4.10 ensures thatenergy injected by those vehicles to the grid CIEV

t is bounded by the total con-nected power of EVs allowing V2G P con,V 2G
t , while Eq. 4.11 limits each day’s amountof energy injected back to the grid below CImaxEV

day . This constraint is set basedon the user acceptance of additional cycling of EV batteries for grid flexibility (typ-ically 1 additional cycle per month, 1 additional cycle per week, or no limit on gridinjection). For instance, if we allow 1 additional cycle per week, themaximum totalenergy injected each week is the sum of battery capacities of V2G-able EVs, whichis distributed among the days of the week in proportion to the number of vehiclesthat get connected.To summarize the EV smart charging modes enabled by our model, Table 4.1indicates the set of equations to be enabled for each case.

Constraint Unidirectio-nal smart(daily)
Unidirectio-nal smart(weekly) V2G (daily) V2G(weekly)

4.6 X X X X4.7 X X X X4.8 X X4.9 X X X X4.10 X X4.11 X X
Table 4.1: Constraints activated according to charging mode selected
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Variable Description Unit Source
CEV

t

Net EV consumption from thegrid kWh Optimizedinside Antares-Simulator
Capacont Total EV capacity connected kWh Mobility model(chap 3)
CmaxEV

tw

Maximum EV demand in timewindow tw
kWh Mobility model(chap 3)

Ctotday
Energy to be charged in day fordaily flexibility kWh Mobility model(chap 3)

CIEV
t EV injected power to the grid kWh Optimizedinside Antares-Simulator

CImaxEV
day

Maximum energy injected eachday by V2G kWh Assumption
CWEV

t

EV withdrawn power from thegrid kWh Optimizedinside Antares-Simulator
ESallEV

t Total energy stored in all EVs kWh Optimizedinside Antares-Simulator
EScon

t

Total energy stored in connectedEVs kWh Optimizedinside Antares-Simulator
ESunc

t

Total energy stored in uncon-nected EVs kWh Optimizedinside Antares-Simulator
DEV

t

Energy consumption of EVs onthe road kWh Mobility model(chap 3)
ηi

EV injection efficiency (to thegrid) Assumption
ηw

EV withdrawal efficiency (fromthe grid) Assumption
P con
t Total EV power connected kW Mobility model(chap 3)

P con,V 2G
t V2G-able EV power connected kW Mobility model(chap 3)

SOCmin Minimum state-of-charge to bekept in batteries % Assumption
τ Time step of the simulation hour Selected
Table 4.2: Parameters of the EV chargingmodule inside electricity production costmodel
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4.2.4 Time-of-use charging
In addition to the smart charging modes described in the previous section, EVload can also be controlled through static tariff signals, in which a smart metercharges the battery during predefined low-price periods. Electricity unit commit-ment and dispatch models do not directly compute such EV charging patterns,but the results of smart charging simulations are useful for understanding theoptimal periods for EV charge.Various time-of-use charging profiles can be found in the literature. On onehand, when considering a limited number of EVs or a basic approach for largeEV fleets, some studies introduce a time-of-use charging mode by delaying thestart of all EV charging sessions by one or a few time-steps, after peak demand(Arvesen et al., 2021; Liu et al., 2014; Xydas et al., 2016), which does not inducea second peak as long as EV time-of-use demand equals a few percents of totalconsumption. On the other hand, aggregating a large number of EVs with differ-ent time signals spread through several locations or contracts makes it possibleto create an “improved” time-of-use load curve (RTE, 2019). In the same spirit, Liet al. (2016) assesses how to create more optimal time-of-use tariffs at the localscale by creating clusters of consumers to study the best low price windows. Oneway to build this kind of time-of-use demand curve is to compute the daily aver-ages (possibly split between weekdays and weekends, and between seasons) ofa smart charging demand curve, as computed with the methodology describedabove. The “improved” time-of-use curve would then be generated by applyingthe daily pattern to the total energy consumption of each day from the input data,in order to better consider solar generation than the "basic" approach. Those twoapproaches for building time-of-use tariff EV demand curves are illustrated in Fig-ure 4.3.
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Figure 4.3: Illustration of the generation of Time-of-use profiles

4.3 Case study: electric vehicles and generation-
load adequacy in Europe in 2040

4.3.1 Data and assumptions
European electricity generation and transmission system scenario

For this case study we selected the same prospective analysis of the integrationEVs in 2040 as studied in the case study of Chapter 3 . In addition to the transporta-tion system, thewhole electricity generationmix in Europe is also expected to shifttowards decarbonization over the coming decades, with a growing share of elec-tricity generated from renewable sources. Here we selected the National TrendsScenario from the 2020 ENTSO-E Ten years network development plan (TYNDP), atthe 2040 time-horizon, as electricity generation mix data for this study (ENTSO-E,2020a). In this scenario, renewable electricity generation reaches 73% of gener-ated electricity (42% wind, 15% solar and 16% hydro) in the European countriesstudied (zone illustrated in Figure 4.1). The investment paths for electricity gener-ation and transmission to 2050 for this scenario are described for each country inadditional files on the ENTSO-E website (ENTSO-E, 2020b). In this scenario, France,for instance, is set to grow electricity generation from renewables from 21% to 65%between 2018 and 2040, while nuclear will decrease from 72% to 34% and otherthermal sources from 7% to 1% (see Table 4.3).
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Technology 2018 (Historicaldata) 2040 (NationalTrends Scenario)Wind 5.1% 39.3%Solar 1.9% 12.5%Hydro 12.5% 12.7%Other renewables 1.6% 0.8%Nuclear 71.7% 34%Gas 5.7% 0.7%Other thermal 1.5% 0%
Table 4.3: Evolution in share of electricity generated by technologies in Francebetween 2018 and 2040 (National Trends scenario)
Electric vehicle development in France in 2040

Regarding EV developement scenarios, as we rely on the EV modeling methodol-ogy described in the previous Chapter, the assumptions on EV parameters chosenfor our case study are similar to those in section 3.3.1.Additionally, our mobility models can also serve to compute maximum energyconsumption in various time windows, to be used in constraint 4.9 of our EV flexi-bility aggregation methodology. Based on most commonmobility patterns foundin the results of Chapter 3, two time-windows were arbitrarily selected in which EVcharging is limited (below a value computed with the model described in Chapter3): the mid-day time window (10:00 - 15:00), which matches peak solar generation,and the night-timewindow (17:00 - 08:00) inwhich EVs connected at home are usu-ally charged. Maximum share of EV charge in these windows was 57% of demandin the mid-day time-window as "systematic" connection (resp. 40% as connection"when needed") and 81% of demand in the night-time window (resp. 73%).
4.3.2 EV smart charging results
For all results presented in the following sections, only the flexibility of EVs locatedin France is modelled. The load and flexibility of EVs in other countries are keptsimilar in all of the results presented here as the way they were modelled in theinitial simulation (uncontrolled load, plus an equivalent battery, to take into ac-count demand side flexibility). However, adding flexibility to the electricity systemin one country also reduces operational costs and carbon emissions in neighbor-ing countries. There are many indicators than can serve to analyze EV demandflexibility, including the annual operational cost in France or in Europe, carbonemissions, France’s electricity trade balance, renewable energy curtailment (es-pecially solar and wind), gas and oil-based electricity generation, the loss of loadprobability and amount of unsupplied energy. In our case study, as all these indi-cators follow the same trends, we mainly present the total European operationalcost and carbon emissions, which are the most relevant for our analysis of theimpacts of EV charge on the european electrical system.

105



In this work, we aggregated every EV of the simulation inside only one object ofthe proposed methodology, including PHEV (due to the low share of vehicles be-ing PHEVs in our case study). However, one could separate EVs into several suchclusters with their set of equations and input data, especially to distinguish be-tween PHEVs, private BEVs and company BEVs in order to compute the flexibilitypotential of these vehicle types separately.The methodology relies on climate data of 35 representative weather years,which helps taking into account the variability of these results according to yearlyweather conditions. Results presented in this Chapter are averaged other those35 weather year data.These analyses allow us to estimate the value of EV flexibility for the power sys-tem but not to directly deduce the benefit for users, which depends on fixed costsin the electricity bill, taxes, and a potential share of the smart charging revenuefor a third-party actor (i.e. aggregator).
Connection behaviors

To begin with the analysis of the results, we study the diffusion of EV smart charg-ing (daily flexibility) by 20% increments, for two connection behaviors introducedin section 3.2.7: "systematic" connection and connection "when needed". 20%increments were selected to illustrate the effects of smart charging diffusion aswe do not expect strong discontinuities within these increments. As identifiedearlier and illustrated in Figure 4.4, occasional charging is preferable for uncon-trolled EVs, as the charging sessions are less synchronized. However, the higherthe number of vehicles that adopt unidirectional smart charging, themore prefer-able it becomes that EV owners connect their vehicle systematically. Smart charg-ing 24.4million EVs in France reduces annual carbon emissions in Europe for elec-tricity generation by 2.4 MtCO2 (0.6%) in the connection "when needed" scenario,and by 3.2 MtCO2 (0.9%) in the "systematic" connection scenario.
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Figure 4.4: Impact of EV smart charging (unidirectional and at daily scale) adoptionon pan-European electricity generation operational costs and emissions
Daily or weekly flexibility

As identified in section 4.2.3, EVs are often studied as flexibility providers at thedaily scale, though increasing BEV battery capacities imply that their charge canbe delayed by a few days without any drawbacks on the mobility needs side. Inthis section, we compare three scenarios to evaluate EV flexibility potential at thedaily and weekly time-scales. The first scenario is the uncontrolled charge of EVsthat connect every time they get to a charging point. In the second scenario, everyEV adopts smart charging, at the daily scale (i.e. the battery is always fully chargedwhen the vehicle leaves). In the third scenario, every EV is in weekly smart charg-ing mode (i.e. the battery is always kept at least at 30% SOC, but not necessarilycharged every day).For the analysis in Figure 4.5, a specific week has been selected (late-Octoberof a given weather year), which includes two days with medium renewable gener-ation followed by three days with high wind production, and then at the end of theweek low renewable generation, followed again by two days with high wind pro-duction. With uncontrolled charging, a large share of EV demand is synchronouswith peak demand and comes after solar generation times, which means thatthermal power plants and imports are required to match demand at peak times.
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Figure 4.5: French electricity hourly demand and generation per technology for aselectedweek inOctober, for the no flexibility, daily flexibility andweekly flexibilityscenarios
Second, the scenario with daily EV flexibility shows that with smart charging,EVs are charged as much as possible in peak times that coincide with solar gen-eration, and thus less electricity is imported or generated with gas power plants.Lastly, in the weekly flexibility scenario, EVs avoid charging in times that coincidewith low renewable (especially wind) energy production, which further reduces
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imports, gas generation and renewable spillage compared to other scenarios. Thegains for daily and weekly flexibility of EV charging are not similar for every weekin the year, as longer periods of low-renewable generation do not allow weeklyflexibility to reduce emissions and cost as much as in the time period selected forFigure 4.5.In practice, such aweekly EV demand optimization could turn out less efficient,due to imperfect forecasting of supply and demand.
Time-of-use charging

In this section, we compare three time-of-use charging approaches. First, a basiccontrol signal, where the charging of each vehicle connecting at peak demand(18:00–21:00) is postponed by three hours. Second, an improved tariff profile atthe daily level, calculated from an average smart charging profile over 4 types ofday: summer weekday, summer weekend, winter weekday, and winter weekend.Finally, improving tariff profiles at the weekly level, where the profile is averagedfor 7-day long load curve results of a smart charging (weekly flexibility) simulation.Simple controls through time-of-use tariffs can reduce the operating costof the system compared to an uncontrolled scenario. Flexibility is substantiallygreater if a more optimal tariff profile is used. On the other hand, the weekly-builttariffs do not bring significant gain in the profile construction, sinceweekly flexibil-ity is mainly useful for dynamically adapting to days where renewable generationis low.

Figure 4.6: Comparison of time-of-use strategies on annual European electricitygeneration cost (for EV flexibility in France only, and every EV in systematic con-nection behavior)
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Vehicle-to-grid

Different degrees of V2G adoption were also simulated, for two mains options:with a limit of one additional battery cycle per week, or without any injection limit(in relation to the constraint 4.11 of our methodology). In our simulations, PHEVsare not available for V2G, due to their limited battery capacity. In both cases, butespecially in the scenario with no injection limit, the more V2G is developed, thelower the marginal gain of adding V2G flexibility to the electric system (Figure 4.7,where V2G is compared with daily smart charging). The additional gains of addingV2G is nearly decreasing at every 5% increment in our simulation. This result alsoimplies that in a electrical systemwith a lack of flexibility, V2G could be 3 to 4 timesmore profitable for the user than in a system with sufficient flexibility.In practice, bidirectional charging is currently growing mainly for frequencyregulation markets (Borne et al., 2018), but we identify here a potential on energymarkets in a scenario with high adoption of renewables, where the injection ofthe energy stored in the battery (either to power the house via V2H, or directly onthe grid) has economic and environmental benefits.

Figure 4.7: Incremental effect of V2G adoption (EV flexibility in France, operationalcost variation at the European scale), all remaining EVs in unidirectional smartcharging
Comparison of those strategies

Once all smart charging modes have been described and analyzed, we graphedFigure 4.8 to compare them. It appears that all control modes significantly reducethe total operational cost of the European power system by 0.4% to 1.8%. Thegains with time-of-use tariff charging are clearly increased by using an improvedtariff signals than a basic 2 hours shift. Finally, for the most efficient solutions(dynamic smart charging and V2G), weekly flexibility adds a significant gain in ascenario with a high share of solar and wind generation, which increases the need
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for such flexibility.

Figure 4.8: Annual European electricity generation operational costs for eachcharging strategy (for EV flexibility in France only, and every EV in systematic con-nection behavior)
Finally, the distribution of hourly electricity generation costs (sorted in ascend-ing order) for the main smart charging modes studied in this Chapter are pre-sented in Figure 4.9. The distribution for improved time-of-use tariff and dynamicsmart charging are very close and overlapping in this graph. This graph illus-trates as well that our simulation optimizes the electricity generation system asa whole, and does not model explicitly a given market (day-ahead for instance),which means that it is not possible to observe and study negatives prices here.However, negative prices may appear under some circumstances, when takinginto account competition between actors and negative price bidding to keep apower plant running.Here we highlight the impacts of smart charging modes on marginal genera-tion costs, showing that increasing demand-side flexibility has two effects: it re-duces the frequency of negative or near-zero marginal costs (when all consump-tion is covered by renewables excluding hydro storage) and decreases the occur-rence of very high marginal costs, as EVs withdraw less electricity (or even injectelectricity into the grid) during peak demand when they are smartly-charged. Wealso add for comparison purposes the distribution of generation costs without EVdemand (and the same generation capacities), which is not realistic, but illustrates
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the approximation of studying large EV diffusion fromhistoricalmarket data (with-out EVs).This graph is generated in the base case scenario on thermal units marginalgeneration costs (see next subsection), which means that we can expect muchhigher peak prices in scenarios with much higher gas and oil prices.

Figure 4.9: Price duration curves (distribution of electricity system marginal gen-eration costs)
Impact of fuel prices on value of smart charging

All the results shown abovewere output from the initial electricity generation datafrom the 2020 TYNDP. In this input dataset and as often predicted in 2019, the av-erage European marginal cost of electricity generation via gas power plants (in-cluding a mix of combined cycle and open cycle gas turbines, some with carboncapture and storage) for prospective studies is around 90€/MWh. Recent eventsshow that gas can reach significantly higher prices for various reasons, includingcarbon tax increases, pandemics, and geopolitical conflicts.Therefore, we evaluated the sensitivity of EV flexibility under several costs ofelectricity generation from gas power plants. This initial assumption of 90€/MWhcost of generated electricity from gas power plants corresponds to approximately30€/MWhon the gas spotmarket (depending on efficiency of the plant and carbontaxes). Recently, gas prices skyrocketed from below 20 €/MWh in 2020 to over 100€/MWh in Western Europe in early 2022 (Kuik et al., 2022). Hence, we compared
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here EV smart charging results with up to 150 €/MWh gas market price (equiva-lent to around 315 €/MWh marginal cost of electricity generated from gas powerplants).Results in Figure 4.10 show that both the total European electricity generationOPEX and the gain from smart charging 24 million EVs are highly dependent ongas prices. This finding implies that absolute values for generation cost reductionand EV owner flexibility revenue when studying EV flexibility are to be taken withcaution, under the set of assumptions used to compute them. The value of smartcharging EVs increase along fossil fuel prices (as smart charging helps decreas-ing their use). However, the relative ranking of EV charging flexibility modes, andother indicators such as carbon emissions and renewable energy spillage, are lesssensitive to fuel price.

Figure 4.10: Impact of marginal costs for gas power plants on EV smart chargingbenefits for the European electricity system. For comparison purposes, 100% EVsin uncontrolled charging mode (blue) and dynamic smart charging (orange)
Others

In the appendix 4.A, we illustrate some other sensitivity studies, especially on bat-tery capacity, charging point power, other demand-side flexibility means, lowerfrequency of mid-day connection. These parameters have lesser impact on EVdemand-side flexibility than what is presented in this section 4.3. The results forother indicators than costs and emissions at the European level are shown, aswell as the results per weather year.
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4.4 Discussion
EVs can be smartly charged via various different strategies that respond to severalchallenges the electrical system is set to face with growing market penetration ofrenewable energy sources. In this Chapter, we focused on optimal hourly opera-tion of the European power system (generating units, storage, interconnection).The smart charging modes suited to each flexibility challenge, as well as the addi-tional equipment required, are summarized in Table 4.4.In France, in 2021, only 37% of EV owners had already adopted smart chargingoptions, and among them more than 75% are in basic delayed charging (Enedis,2020), so the potential for further developing EV flexibility is still huge.To simplify the analysis, we studied extreme cases with 100% EVs in one smartcharging mode, but in practice these options will coexist, depending on how farEV owners accept each charging mode. It would be instructive to simulate thesedifferent modes in competition to see how they interact with each other. Thiskind a simulation would also serve to compare the benefits of each solution byconsidering the total cost of infrastructure (charging stations and communicationdevices) and the cost of additional battery degradation from V2G. Moreover, wecarried out our study in a given electricity generation system, but the scaling offlexibility solutions and the investment in generation capacities may depend onpolitical choices surrounding demand-side flexibility development (including EVs).Nevertheless, the methodology for calculating the availability of vehicles atcharging stations and the constraint on EV charging requires setting arbitraryvalues for the minimum SOC to be maintained, and the limits of V2G injection.This parameters would be refined or confirmed once more feedback on EV smartcharging is available. Additionnaly, themode of EV aggregation into a single objectis also an approximation, but no perfect method has been found in the literature,andwe tried here to improve the existing literature by adding limitation on energywithdrawn in several time windows, computed from our mobility model.Finally, the analysis of the results in this work is done solely from the point ofview of the electrical system. The issue of how to incentivize EV users to adoptsmart charging behaviors is not addressed, while some authors highlight thatmarket rules are not currently ready to maximize EV flexibility (Borne et al., 2018;Codani et al., 2015). It is important to point out that though the "systematic con-nection" behavior is highly beneficial for the power system, the cost differenceperceived by the consumer may be too small to incentivize such a behavior.

114



Electrical sys-tem hourlydispatch chal-lenges in 2040
Uncontrol-led EVcharging

Time-of-use tariffcharging
Dynamicsmartcharging(daily)

Dynamicsmartcharging(weekly)
V2G (daily) V2G(weekly)

Avoiding alarger peakdemand(18:00–20:00)
No Yes Yes Yes Yes Yes

Better synchro-nize EV chargingwith peak solarproduction
No Dependson tariffstructure Yes Yes Yes Yes

Adapt dynam-ically to dailyvariations in re-newable gener-ation (especiallywind)
No No Yes Yes

Yes(addedvalue ofV2G)

Yes(addedvalue ofV2G)
Adapt to weeklyvariations in re-newable gener-ation (especiallywind)

No No No Yes Partially Yes

Most suitedconnectionbehavior
Any,prefer-ably when
convenient

Any,preferably
systematic

Preferably
systematic

Systematicconnec-tion only
Preferably
systematic

Systematicconnec-tion only
Additionalcharging andcommunica-tion equipmentrequired

None Smart-meter
Smartcommuni-cation

Smartcommuni-cation

Smartcommu-nicationand V2Gcharger

Smartcommu-nicationand V2Gcharger
Table 4.4: Main challenges for the electricity system hourly supply-demand adequacy and appro-priate EV smart charging modes

4.5 Conclusion
To analyze the impacts of EV smart charging adoption on power systems, we pro-pose a two-stepmethodology. Firstly, EV connection and demand data for variousconnection behaviors and EV development scenarios are generated from a mo-bility model based on travel survey data (see Chapter 3). Secondly, these datasetsare integrated into a power system supply–demand adequacy model to estimate
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the value of EV smart charging for the European electrical system and comparea large number of smart charging strategies. For prospective studies on EV flex-ibility, we strongly advocate co-modeling the transport sector with the electricitysector to go further than most previous work in the literature.The cost and carbon emissions reduction of the unidirectional smart charg-ing of 24 Million EVs in France (compared to uncontrolled charge) is estimated ataround 1.1 G€ and 3.2MtCO2-eq annually, under our initial assumptions. IEA (2019)reviews life-cycle analysis comparisons between EVs and thermal vehicles. On av-erage, in a low carbon electricity generation power system, life cycle (over 10 years)total emissions of an EV (400 km range) are estimated at around 14 tCO2-eq, com-pared to 34 tCO2-eq for a thermal vehicle. Thus, each EV reduces emissions byaround 2 tCO2-eq per year, compared to the same distances being travelled witha thermal vehicle. As a result, in our scenario with 24 Million EVs in France, wecan expect a 48 GtCO2-eq yearly reduction of emissions of EV compared to ther-mal vehicles, additionally to the 3.2 MtCO2-eq reduction of electricity generationemissions from smart charging. We can conclude from this analysis, that 6.5% ofthe carbon emissions reduction of a smartly charged EV is linked to the electric-ity generation sector in our scenario, with an electricity generation sector alreadylow-carbon. Higher shares of carbon reduction linked to the electricity generationsector are forecasted for areas in the world with high carbon intensive electricitygeneration.We identified in this Chapter three major recommendations to get the maxi-mum value from EV demand flexibility. First, tariff-based, dynamic smart and V2Gcharging modes should be developed, depending on user acceptance of thesetechnologies. Second, it seems important to incentivize mid-day charging, espe-cially with charging stations at the workplace for daily commuters or at home forprosumers, to better synchronize charging with peak solar production. Lastly, EVflexibility is maximized by encouraging systematic connection, to enlarge the ac-cessible chargingwindowandeven allowEV charging to bepostponed to followingdays (weekly flexibility).For prospective studies that premise large EV adoption, we advise usingelectricity-systemmodels, as increasing demand-side flexibility influencesmarketprices, hence making the price-taker assumption a dangerous one, with signifi-cant impact on results. The benefits of converting an EV to smart charging arenot linear, especially with V2G that may meet flexibility needs even with limitedadoption. The value of smart charging is also highly dependent on parametersthat are exogenous from the transport sector, such as gas prices and carbontax. Additionally, the competition with other prospective demand-side flexibil-ity sources, especially hydrogen electrolyzers and industrial load management isworth studying.To go further with the analysis of EV flexibility, this work may be comple-mented by studying other potential EV flexibility–electricity system interactionsthan hourly supply–demand disptach, such as network congestion (at the trans-mission and distribution level), frequency regulation, and intra-day energy mar-
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kets studied with imperfect forecasts. These topics may not be conflicting witheach others in terms of EV flexibility (e.g. for prosumers, charging EV at peak solarproduction reduces both electricity generation costs and grid congestion). Fur-thermore, our study focuses only on personal vehicles, whereas other means ofmobility are also expected to ‘go electric’, such as two-wheelers, trucks, and buses,which could bring additional electricity flexibility potential from the transport sec-tor, as well as fuel-cell vehicles powered by electrolyzer-produced hydrogen. Fi-nally, further work based on these results, such as complementary evaluationson other countries, other mobility solutions and other electricity generation sce-narios should help design solutions to incentivize and further develop EV demandflexibility. 1

1The main findings of this Chapter, along with a short summary of Chapter 3 have been pub-lished in Lauvergne et al. (2022)
117





Bibliography

AntaresSimulator. (2022). https : / / antares - simulator . org / pages / software -presentation/1/Arvesen, A., Völler, S., Hung, C. R., Krey, V., Korpås, M., & Strømman, A. H. (2021).Emissions of electric vehicle charging in future scenarios: The effects oftime of charging. Journal of Industrial Ecology, 25(5), 1250–1263. https://doi.org/10.1111/jiec.13144Barot, S., & Taylor, J. A. (2017). A concise, approximate representation of a collec-tion of loads described by polytopes. International Journal of Electrical Power
& Energy Systems, 84, 55–63. https://doi.org/10.1016/j.ijepes.2016.05.001Borne, O., Perez, Y., & Petit, M. (2018). Market integration or bids granularity toenhance flexibility provision by batteries of electric vehicles. Energy Policy,
119, 140–148. https://doi.org/10.1016/j.enpol.2018.04.019Borozan, S., Giannelos, S., & Strbac, G. (2021). Strategic Network Expansion Plan-ning with Electric Vehicle Smart Charging Concepts as Investment Options.
Advances in Applied Energy, 100077. https://doi.org/10.1016/j.adapen.2021.100077Cai, H., Chen,Q., Guan, Z., &Huang, J. (2018). Day-aheadoptimal charging/dischargingscheduling for electric vehicles inmicrogrids. Protection and Control of Mod-
ern Power Systems, 3(1), 9. https://doi.org/10.1186/s41601-018-0083-3Codani, P., Petit, M., & Perez, Y. (2015). Participation of an electric vehicle fleet toprimary frequency control in France. International Journal of Electric and Hy-
brid Vehicles, 7(3), 233. https://doi.org/10.1504/IJEHV.2015.071639Doquet, M., Fourment, C., & Roudergues, J. (2011). Generation & transmissionadequacy of large interconnected power systems: A contribution to therenewal of Monte-Carlo approaches. 2011 IEEE Trondheim PowerTech, 1–6.https://doi.org/10.1109/PTC.2011.6019444Enedis. (2020). Enquête comportementale auprès des possesseurs de véhiculesélectriques : Habitudes de roulage et de recharge.ENTSO-E. (2020a). Completing the map – Power system needs in 2030 and 2040,70.ENTSO-E. (2020b). Ten-year network development plan (tyndp) 2020, consulta-tion, last accessed in june 2022. https://consultations.entsoe.eu/system-development/tyndp2020/Fischer, D., Harbrecht, A., Surmann, A., & McKenna, R. (2019). Electric vehicles’ im-pacts on residential electric local profiles – A stochasticmodelling approachconsidering socio-economic, behavioural and spatial factors. Applied En-
ergy, 233-234, 644–658. https://doi.org/10.1016/j.apenergy.2018.10.010Foley, A., Ó Gallachóir, B., Hur, J., Baldick, R., & McKeogh, E. (2010). A strategic re-view of electricity systems models. Energy, 35(12), 4522–4530. https://doi.org/10.1016/j.energy.2010.03.057

119

https://antares-simulator.org/pages/software-presentation/1/
https://antares-simulator.org/pages/software-presentation/1/
https://doi.org/10.1111/jiec.13144
https://doi.org/10.1111/jiec.13144
https://doi.org/10.1016/j.ijepes.2016.05.001
https://doi.org/10.1016/j.enpol.2018.04.019
https://doi.org/10.1016/j.adapen.2021.100077
https://doi.org/10.1016/j.adapen.2021.100077
https://doi.org/10.1186/s41601-018-0083-3
https://doi.org/10.1504/IJEHV.2015.071639
https://doi.org/10.1109/PTC.2011.6019444
https://consultations.entsoe.eu/system-development/tyndp2020/
https://consultations.entsoe.eu/system-development/tyndp2020/
https://doi.org/10.1016/j.apenergy.2018.10.010
https://doi.org/10.1016/j.energy.2010.03.057
https://doi.org/10.1016/j.energy.2010.03.057


Funke, S. Á., Plötz, P., & Wietschel, M. (2019). Invest in fast-charging infrastructureor in longer battery ranges? A cost-efficiency comparison for Germany. Ap-
plied Energy, 235, 888–899. https://doi.org/10.1016/j.apenergy.2018.10.134Green, R. C., Wang, L., & Alam, M. (2011). The impact of plug-in hybrid electric vehi-cles on distribution networks: A review and outlook. Renewable and Sustain-
able Energy Reviews, 15(1), 544–553. https://doi.org/10.1016/j.rser.2010.08.015Heggarty, T., Bourmaud, J.-Y., Girard, R., & Kariniotakis, G. (2020). Quantifyingpower system flexibility provision. Applied Energy, 279, 115852. https://doi.org/10.1016/j.apenergy.2020.115852IEA. (2019).Global EV Outlook 2019: Scaling-up the transition to electricmobility. OECD.https://doi.org/10.1787/35fb60bd-enJarvis, R., &Moses, P. (2019). Smart Grid Congestion Caused by Plug-in Electric Vehi-cle Charging. 2019 IEEE Texas Power and Energy Conference (TPEC), 1–5. https://doi.org/10.1109/TPEC.2019.8662152Kuik, F., Adolfsen, J., Lis, E., & Meyler, A. (2022). Energy price developments in andout of the covid-19 pandemic – from commodity prices to consumer prices.https://www.ecb.europa.eu/pub/economic-bulletin/articles/2022/html/ecb.ebart202204_01~7b32d31b29.en.htmlLauvergne, R., Perez, Y., Françon,M., & Cruz, A. T. D. L. (2022). Integration of electricvehicles into transmission grids: A case study on generation adequacy inEurope in 2040. Applied Energy, 326, 120030. https://doi.org/https://doi.org/10.1016/j.apenergy.2022.120030Li, R., Wang, Z., Gu, C., Li, F., &Wu, H. (2016). A novel time-of-use tariff design basedon gaussian mixture model. Applied Energy, 162, 1530–1536. https://doi.org/https://doi.org/10.1016/j.apenergy.2015.02.063Liu, Z., Wu, Q., Nielsen, A., & Wang, Y. (2014). Day-Ahead Energy Planning with100% Electric Vehicle Penetration in the Nordic Region by 2050. Energies,
7(3), 1733–1749. https://doi.org/10.3390/en7031733Mehta, R., Verma, P., Srinivasan, D., & Yang, J. (2019). Double-layered intelligentenergymanagement for optimal integration of plug-in electric vehicles intodistribution systems. Applied Energy, 233-234, 146–155. https://doi.org/10.1016/j.apenergy.2018.10.008Pelletier, S., Jabali, O., Laporte, G., & Veneroni, M. (2017). Battery degradation andbehaviour for electric vehicles: Review and numerical analyses of severalmodels. Transportation Research Part B: Methodological, 103, 158–187. https://doi.org/10.1016/j.trb.2017.01.020Ried, S., Dengiz, T., Soldner, S., & Jochem, P. (2020). Aggregating load shifting po-tentials of electric vehicles for energy systemmodels. 2020 17th International
Conference on the European Energy Market (EEM), 1–6. https://doi.org/10.1109/EEM49802.2020.9221974Robinius, M., Otto, A., Syranidis, K., Ryberg, D. S., Heuser, P., Welder, L., Grube, T.,Markewitz, P., Tietze, V., & Stolten, D. (2017). Linking the Power and Trans-port Sectors—Part 2: Modelling a Sector Coupling Scenario for Germany.
Energies, 10(7), 957. https://doi.org/10.3390/en10070957

120

https://doi.org/10.1016/j.apenergy.2018.10.134
https://doi.org/10.1016/j.rser.2010.08.015
https://doi.org/10.1016/j.apenergy.2020.115852
https://doi.org/10.1016/j.apenergy.2020.115852
https://doi.org/10.1787/35fb60bd-en
https://doi.org/10.1109/TPEC.2019.8662152
https://doi.org/10.1109/TPEC.2019.8662152
https://www.ecb.europa.eu/pub/economic-bulletin/articles/2022/html/ecb.ebart202204_01~7b32d31b29.en.html
https://www.ecb.europa.eu/pub/economic-bulletin/articles/2022/html/ecb.ebart202204_01~7b32d31b29.en.html
https://doi.org/https://doi.org/10.1016/j.apenergy.2022.120030
https://doi.org/https://doi.org/10.1016/j.apenergy.2022.120030
https://doi.org/https://doi.org/10.1016/j.apenergy.2015.02.063
https://doi.org/https://doi.org/10.1016/j.apenergy.2015.02.063
https://doi.org/10.3390/en7031733
https://doi.org/10.1016/j.apenergy.2018.10.008
https://doi.org/10.1016/j.apenergy.2018.10.008
https://doi.org/10.1016/j.trb.2017.01.020
https://doi.org/10.1016/j.trb.2017.01.020
https://doi.org/10.1109/EEM49802.2020.9221974
https://doi.org/10.1109/EEM49802.2020.9221974
https://doi.org/10.3390/en10070957


RTE. (2019). Integration of electric vehicles into the power system in France.Schill, W.-P., & Gerbaulet, C. (2015). Power system impacts of electric vehicles inGermany: Charging with coal or renewables? Applied Energy, 156, 185–196.https://doi.org/10.1016/j.apenergy.2015.07.012Slednev, V., Jochem, P., & Fichtner, W. (2021). Impacts of electric vehicles on the Eu-ropean high and extra high voltage power grid. Journal of Industrial Ecology,jiec.13216. https://doi.org/10.1111/jiec.13216Soares, F., Lopes, J. A., Almeida, P., Moreira, C., & Seca, L. (2011). A stochastic modelto simulate electric vehicles motion and quantify the energy required fromthe grid. Power Systems Computation Conference (PSCC).Wang, Z., Jochem, P., Yilmaz, H. Ü., & Xu, L. (2021). Integrating vehicle-to-grid tech-nology into energy system models: Novel methods and their impact ongreenhouse gas emissions. Journal of Industrial Ecology, jiec.13200. https ://doi.org/10.1111/jiec.13200Wolinetz, M., Axsen, J., Peters, J., & Crawford, C. (2018). Simulating the value ofelectric-vehicle–grid integration using a behaviourally realistic model. Na-
ture Energy, 3(2), 132–139. https://doi.org/10.1038/s41560-017-0077-9Wu, F., & Sioshansi, R. (2017). A two-stage stochastic optimization model forscheduling electric vehicle charging loads to relieve distribution-systemconstraints. Transportation Research Part B: Methodological, 102, 55–82.https://doi.org/10.1016/j.trb.2017.05.002Wulff, N., Steck, F., Gils, H. C., Hoyer-Klick, C., van den Adel, B., & Anderson, J. E.(2020). Comparing Power-System and User-Oriented Battery Electric Vehi-cle Charging Representation and Its Implications on Energy SystemModel-ing. Energies, 13(5), 1093. https://doi.org/10.3390/en13051093Xydas, E., Marmaras, C., & Cipcigan, L. M. (2016). A multi-agent based schedulingalgorithm for adaptive electric vehicles charging. Applied Energy, 177, 354–365. https://doi.org/10.1016/j.apenergy.2016.05.034

121

https://doi.org/10.1016/j.apenergy.2015.07.012
https://doi.org/10.1111/jiec.13216
https://doi.org/10.1111/jiec.13200
https://doi.org/10.1111/jiec.13200
https://doi.org/10.1038/s41560-017-0077-9
https://doi.org/10.1016/j.trb.2017.05.002
https://doi.org/10.3390/en13051093
https://doi.org/10.1016/j.apenergy.2016.05.034


4.A Additional results and sensitivity studies
In this appendix are gathered additional results that complements the analysis ofEV smart charging carried out in this Chapter.

Figure 4.11 illustrates the various indicators that can be chosen to comparesmart charging scenarios in our case study, for the results of Figure 4.4. An ad-ditional result shown here is that EV smart charging in France has an impact ongeneration costs and carbon emissions in other European countries, which justifythe choice of mostly illustrating results at the European scale in this Chapter.Then in Figures 4.12 and 4.13, the 6 main smart charging modes compared inthis Chapter are illutrated under another format: each dot corresponding to atime-step of our model (hourly), in graphs showing the correlation between EVdemand and marginal generation cost (4.12) and average carbon emissions (4.13).It appears that for scenarios with 100% smart charging or V2G, EV demand is closeto 0 at all time steps whenmarginal costs and emissions are the highest. Time-of-use tariffs achieve at reducing the frequency of simultaneously high EV demandand generation marginal cost, as on average our improved time-of-use profilematches the optimal charging times, but not as much as dynamic smart chargingmodes.Figure 4.14 compares the flexibility value of EV smart charging with the station-ary batteries installed in France for grid flexibility in our scenario (6 GWmaximumpower and 12 GWh total capacity in our scenario). These battery are mainly usedfor daily flexibility and a little bit for weekly flexibility. It appears that the diffusionof smart charging from 20% to 40% EVs (which means 4.9 Million EVs in our sce-nario) produces slightly more flexibility than the initial stationary batteries of ourscenario in this sensibility study.Next, in Figure 4.15, we illustrate that the flexibility of other neighboring coun-tries (which has not beenmodified in other sensitivity analysis on EV demand flex-ibility in France) also has a large impact on total European costs and thus on thevalue EVs can generate by proving demand-side flexibility. Ideally, the flexibility ofEV demand should bemodelled for each country in such simulation, but analyzingmobility patterns in each country is very time-consuming compared to its limitedadded value when studying sensibilities on EV smart charging in France.Figures 4.16 and 4.17 show what are the impacts of reducing the average bat-tery capacity and charging point rated power (respectively). First, for the batterycapacity, we observe very little impact when every vehicle is charged at 100% atevery charging session (daily flexibility), for the two charging behaviors illustrated.However, when EVs accept weekly flexibility, lower battery capacities reduce thegains from delaying EV demand, as EV need to be charge more frequently. Sec-ondly, when every charging point maximum power is reduced to those of a stan-dard residential slow charger (3.7 kW), the gains of EV smart charging are slightlyreduced for every scenario illustrated here, as less EV demand can be concen-trated at time steps when marginal costs are the lowest. It is to be noted that for
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weekly flexibility, reducing charging power appears less damageable than reduc-ing battery capacities.In Figure 4.18, the initial results of EV smart charging are compared with caseswith lower mid-day connection, which illustrates that the more EVs are availableat the mid-dat window (10:00-15:00), the more EVs can be charged at peak solarproduction, when generation costs are often the lower in our scenario with 12.5%of solar among electricity generation in France (and 15% across Europe).Finally, Figure 4.19 shows the difference between the 35 climate data yearsused for this case study (all results shown previously were averaged over these35 years). We illustrate here, than results on Annual French carbon emissionsand electricity exports differ greatly from a weather year to another. However, asexpected, the charging modes compared are always in the same order, and EVflexibility greatly helps reducing electricity generation costs and emissions evenin the most favorable weather year in our case study.
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Figure 4.11: Comparison of 6 main indicators for the study of smart charging dif-fusion
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Figure 4.12: Comparison of the 6 smart charging variants described in Chapter 4,on the correlation between EV demand and hourly electricity generationmarginalcost (±3 €/MWh noise added for better readability)
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Figure 4.13: Comparison of the 6 smart charging variants described in Chapter 4,on the correlation between EV demand and electricity generation average carbonemissions
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Figure 4.14: Comparison of smart charging diffusion and the use of stationary bat-teries to reduce European system operational costs (100% systematic connection)

Figure 4.15: Impacts on flexibility in other countries on the European system op-erational costs (100% systematic connection)
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Figure 4.16: Impact of average EV battery capacity on demand side flexibility pro-vided (100% smart charging diffusion)

Figure 4.17: Impact of EV charging points rated power on demand side flexibilityprovided (average initial flexibility depends on connection behavior, 13.3 kW forsystematic and 10.8 kW for when convenient) (100% smart charging diffusion)
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Figure 4.18: Impact of reduced mid-day EV connection on demand side flexibilityprovided

Figure 4.19: Influence of the weather year data on EV flexibility provision (sortingin ascending order for uncontrolled EV charge), for the smart charging modescompared in this Chapter
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5 - General Conclusion

In this dissertation, we presented a methodological framework to study in aprospective horizon the different possibilities for electric vehicles to provide flexi-bility for the electrical systems, and illustrated themwith case studies for the 2040horizon, for the flexibility of French vehicles within the European electrical system.This conclusive Chapter is composed of two parts. First, the main findings ofthis thesis are summarized. Then, the final section proposes several emergingresearch questions related to our work.

5.1 Summary of contributions
The first introductory Chapter of this dissertation describes the decarboniza-tion perspectives of the transport and electricity generation sectors in the worldand more particularly in Europe, in line with the Paris climate agreements andthe EU Fit for 55 package. Electric vehicles appear as one of the main solutions todecarbonize the transport sector and reduce its related local pollution, on severalmeans of transportation (individual cars, two-wheelers and heavymobility), alongwith hydrogen and bio-fuels, by reducing the carbon intensity of energy. Urban-ism change towards shorter distances to be travelled and modal shift towardspublic transport and soft mobility are solutions acting on other levers. Batteryelectric vehicles are especially efficient to reduce climate impacts of transport inareas where electricity generation is already low-carbon. On the other hand, theelectrical system transition towards more renewable sources in the generationmix induce a decrease of the flexibility provided by generation units, which opensa potential value for expanding demand-side flexibility. Additionally, individualcars are likely to account for a significant share of the electricity demand-side flex-ibility related to mobility in the medium term (up to 2040).It has already been proven that power grids can accommodate the expectedEV diffusion in the short term (up to 2025) in most regions of the world, with lowimpacts on electricity markets, however, a major question still open is the impactof a broad EV development in the medium and long term.Finally, we have listed the areas of interaction between electric mobility andthe electric system, before selecting the core topic studied in the following Chap-ters.

Chapter 2 aims to comparemodeling approaches for studying the integrationof electric vehicles into different aspects of the power system. We show that al-though many studies in the literature focus mainly on the study of one of thesetwo elements, a joint modeling of transportation and electrical system seems tobe the most appropriate for prospective studies related to EV charging. We thenobserve that the various EV charging modeling approaches are adapted to dif-
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ferent aspects of the electrical system, in particular activity-basedmodels for verylocal studies, and aggregated statisticalmodels based onmobility surveys for elec-tricity dispatch studies without taking into account network issues.Moreover, the evaluation of EV smart charging strategies is often based onhistorical data, assuming a price-taker hypothesis for EVs, which is relevant in theshort term, butmust be overcome formedium and long termprospective studies.For this purpose, several approaches and optimization objects can be found in theliterature, which we have detailed.We conclude the Chapter by proposing recommended approaches to addressthe different research questions mentioned in the introductory Chapter, and par-ticularly the one studied in the following sections of this manuscript, for which amacromobility model based onMonte-Carlo simulation of a travel survey datasetin order to generate averaged national charging patterns seems the most suited.

Chapter 3 presents the method chosen and developed for the generation ofelectric vehicle connection data from transport surveys. First, the main inputsand outputs of the model are described, as well as the 5 steps that compose thealgorithm: generating the parameters of the vehicles, assigning trips to each ve-hicle, calculating the evolution of the consumption and location of these vehicles,deducing their connection times to the network (depending on the connectionbehavior). The vehicles’ data are finally aggregated to generate a statistically rep-resentative charging profile for several socio-professional categories (commuters/ retired, rural / urban) and trips (local mobility / long distance travels) that canbe identified in our input data, in order to study multiple EV diffusion among thepopulation scenarios.This model is illustrated primarily to generate charging data from individualBEVs, but is also able of providing consumption data for PHEVs, FCEVs and othermobility segments, as long as similar data and assumptions are provided.Beyond the uncontrolled electricity demand from the grid, our model alsocomputes the evolution of the battery capacity and charging power connected tothe grid, as well as the hourly amount of vehicles that disconnect (with their bat-tery fully charged) and connect to the a charging point. All these data are neededto feed the EV smart charging module presented in Chapter 4.Next, we illustrate for a case study at the 2040 time-horizon using the Frenchnational travel survey that the connection and demand of EVs depend on severalassumptions, including the area of EV diffusion (longer distances and earlier ar-rival times are found in rural areas, compared with urban areas), the parametersof the charging infrastructure as well as the vehicle types (i.e. large BEVs, smallBEVs, PHEVs), which the study of provides more accurate data than the use ofa single averaged profile. The EV connection data generated shows that a sig-nificant share of uncontrolled EV demand is synchronous with electrical systempeak demand (18:00-20:00), and two other smaller EV demand peaks are found,at the arrival at work (08:00-09:00) and at mid-day. Finally, as expected, the pa-rameter that seems most key to the availability of vehicles for smart charging is
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the frequency of connection to the grid , with a much wider window for optimalcharging times in case of daily connection.
Chapter 4 concludes the methodological sequence presented in this thesis bymodeling themultiple possibilities of EV smart charging, within AntaresSimulator,an economic dispatch model, which allows the study of the optimal EV chargingperiods (according to the charging constraints used to model the various smartcharging approaches) that minimize the annual operational system costs.Six main variants of EV smart charging are compared, ranking in the followingascending order for the reduction of cost and operational emissions of the elec-trical system: basic time-of-use tariffs, improved time-of-use tariffs, daily dynamicsmart charging, weekly dynamic smart charging, V2G (daily) and V2G (weekly). Ad-ditionally, we perform several sensitivity analyses on these smart chargingmodes,including increasing gas prices, which has the largest impact on EV flexibility valueamong other sensitivity analyses. V2G is (as expected) the charging mode that re-duces the most the electricity system emissions and generation costs. However,themore EVs are available for providing bidirectional flexibility, the less reductionof emissions and costs per EV are observed (as demand-side flexibility is morebeneficial when the system lacks flexibility).We observe different marginal production cost distributions according to thesmart charging modes, which validates the initial hypothesis that EVs cannot beconsidered price-takers when their diffusion implies that their demand exceed afew percent of total electricity demand.We then conclude this section by advising to develop these various smartcharging modes concurrently (according to their acceptance by each consumer),while taking care to incentivize a frequent connection behavior, as well as to studyinmore detail theweekly flexibility of the recharge (when EVs are not fully chargedat each charging session), enabled by the increasing volume of the battery capac-ity and relevant in a system with a high penetration of solar and wind production(that increase the need for weekly flexibility).After highlighting the potential of EV demand-side flexibility and the major pa-rameters that have an effect on its value for the hourly dispatch of the Europeanelectricity system, we summarise them in Figure 5.1, along with the current devel-opment of EV demand flexibility in France. Even if EV diffusion in still in its infancy,it appears clearly that more work is needed to incentivize demand-side flexibility,as 63% of EV charging is yet uncontrolled in France. A major challenge appearsto be that some barriers for EV development (especially the reduction of chargingtimes, even for local mobility) may be in contradiction with smart charging diffu-sion.
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Figure 5.1: Main parameters that have an impact on EV flexibility and its currentdevelopment status in France2.

5.2 Further work
The work conducted in this thesis raises a large number of additional researchtopics, either directly related or ancillary to our joint transport-electricity systemanalysis methodology, and in a variety of research areas (economics, electricitynetwork science, business models, consumer incentivization, and environmentalanalysis).
Studying the other aspects of electricity system flexibility

In the introduction, we identified 5 main areas of EV-electrical system interaction(generation and network investment, hourly optimal dispatch, grid congestion,
2See Enedis (2020) in the Bibliography of Chapter 4 for more information about the currentdevelopment of EV flexibility in France
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short termmarkets and grid frequency) and this thesis focused on a single aspect,optimal economic dispatch of electricity generation, which seemed relevant in themedium termand a research gap in the academic literature for the French system.A question directly underlying this work is the comparison of the interest of EVsmart charging relative to these 5 aspects. Such work has already been carriedout on historical data, but it also seems relevant to study these interactions on aprospective horizon, and by integrating EVs in power systemmodels to go beyondthe price-taker hypothesis. In addition to comparing the benefits of EVs in eachcase, it is also interesting to study if the EV demand-side flexibility required forthese aspects are contradictory or cumulative. For instance, we encourage study-ing, under European zonal markets, whether synchronizing EV consumption withsolar/wind generation at the national level to minimize generation costs will in-duce network congestion, given that the consumption and production sites arenot always at the same location.Please note that such an analysis seems very complicated to carry out. Indeed,it is important to use a scenario/data set that it will be possible to study on all theaspectsmentioned above, including prospective network data, at the national andcontinental scale, and data for several markets, as well as the related modelingtools.Finally, even if this kind of study were to be completed, one should keep inmind that these comparisons remain very specific to a spatio-temporal frame-work. For example, it is expected that for very congested grids, as in some regionsof the US, the value of EV flexibility for grid flows will be higher than in France,where the distribution and transport grids are already sized for high electric de-mand.Additionally to studying other flexibility objectives, one could also study thecompetition between EV demand and other demand-side flexibility sources,mainly electrolyzers, industrial and other flexible residential appliances, in or-der to identify which flexibility sources are the most adapted to each aspectmentionned here (hourly dispatch, grid congestion, frequency regulation, etc.).
Incentives to EV smart charging

The work of this thesis was conducted from the central point of view of the elec-tricity system. This choice is relevant to study long-term "optimal" EV flexibility, butrequires additional studies on how to incentivize EV users to accept smart charg-ing in order to achieve the cost and emission reduction of electricity generationmodeled throughout this dissertation.On the onehand, a relevant topic of tariff design emerges, for instance through’willingness to accept’ studies (to be compared with the result of analyses such asthose conducted in this thesis, battery degradation costs and to the cost of addi-tional infrastructure required for smart charging, such as bidirectional chargersand communication systems). On the other hand, incentivizing demand-side flex-ibility could go beyond economic issues, either by notifying EV owners how muchcarbon emissions the smart charging of their EVs has saved, or by constraining
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EVs to be charged off peak at specific locations, such as at work, where vehiclesusually stay parked much longer than average charging time.An underlying question is also the allocation of EV flexibility income betweenthe different actors involved in EV flexibility: the EV owner, electric system op-erators, the state (through potential taxes), the charging point operator, the carmanufacturer and the aggregator (for dynamic smart charging). This distributionhas been studied from a game theory point of view for the case of frequencyregulation with V2G. However, for EV optimal charging times that minimizes elec-tricity generation cost, the equation is slightly more complex, with smart chargingmodes that involve different actors (e.g., time-of-use charging does not requireaggregators or data from the car manufacturer), and charging points that belongto either a private operator, a public operator or the EV owner (with different tech-nical requirements).
Integration EV modeling into environmental studies

In this thesis, beyond the purely economic aspect, we have also proposed amethodology to estimate the benefits of EV charging flexibility for the reductionof electric generation carbon emissions. Thus, in environmental studies, based onlife-cycle analysis, comparing the relevance of thermal, battery electric, hydrogenand hybrid vehicles (usually based on averaged electricity generation emissionsdata, without taking into account any smart charging), it could turn out interestingto add to the comparison smartly charged EVs, based on results described in thisthesis.In addition, other issues such as the use of second-life EV batteries for theelectric system require a similar analysis methodology to estimate their environ-mental gain.
Mobility in a changing world

Finally, to open up the spectrum of analysis, the methodology proposed in thisthesis also invites to be declined for a large number of prospective scenarios, re-lated to the evolution of the transport and electricity generation sectors in ourchanging world, in the spirit of fast reduction of fossil fuel consumption.Among others, we can mention the effect of a reduction in the mass of indi-vidual vehicles, the evolution of urban planning and behaviors inducing a modalshift towards public transport and soft mobility (which could reduce the distancestraveled in individual vehicles as well as the travel speeds), a rise of carpooling, astrong growth of public EV fast chargers rather than slow chargers at home, thedevelopment of innovative mobility solutions such as autonomous vehicles andmobility as a service, the electrification of other means of transport (especiallytrucks and buses), a stronger decentralization of electricity production, or otherinnovations to be discovered and societal changes that are yet to happen.
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A - The impact of EV smart charging on the grid

In this appendix, we propose an analysis of the impact on the transmissiongrid of some EV load curves computed during this manuscript (in Chapter 3 and4). In the literature review of this thesis, this topic has been identified as a gap inthe academic literature.For this purpose, the imaGrid software, developed by RTE, is used, as wellas data from a 2035 scenario, based on France’s Programmation Pluriannuelle de
l’Energie (PPE), for the development of the transmission network and generationsources in France. A study area composed of 5 departments in theNorth of France(departments n° 59, 60, 62, 76 and 80) was selected, where an easily accessiblestudy was available. This area has three main characteristics: high renewablegeneration (especially wind) in rural areas, and nuclear reactors in the North ofthe area, along with a strong electricity transmission grid around these nuclearplants, while the major cities are located North and East of the zone.Our methodology is based on the Load Flow analysis of this study area (athourly intervals), which allows us to calculate the flows on the 404 lines (of thetransmission grid only, above 63 kV) and the load of the 80 transformers in thearea, for several generation and consumption scenarios in the area. For example,Figure A.1 shows the power flow on a selected line, compared to the capacity ofthe line (which depends on the temperature and therefore on the season). Weobserve that this line is congested on several time steps, one of which is identified.

Figure A.1: Annual evolution of the power flow on a selected line (between nodesANSER and ZBERG)
Thus, we can extract indicators on the network load, such as the number of
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time steps where the network is congested, or the average overload power (com-pared to the line capacity).For our comparison here, the previously calculated load curves are reused.Since our simulations are for 2040 and with different electricity mix and weatherdata, we cannot adapt the load curves of dynamic smart charging modes (smartunidirectional and V2G). By 2035, on the scenario trajectory, 50% of EVs are elec-trified in France, so the consumption data are weighted accordingly.Thus, we will compare 6 scenarios: adding uncontrolled and time-of-use loadcurves to the base case, for 3 different EV diffusion scenarios: homogeneous dif-fusion in the population, urban diffusion (EVs homogeneously distributed amongurban areas dwellers) and rural diffusion (every vehicle is an EV in rural areas,where are located 26% of the vehicles in the area, and the remaining EVs are ho-mogeneously affected within urban areas).The results obtained, presented in Figures A.2 and A.3 show that EV diffusion isa parameterwith a strong impact on network congestion, with amore constrainednetwork when EVs are added in urban areas. On the other hand, the time-of-usecontrol presented seems to slightly increase network constraints.

Figure A.2: Time step of the year with at least one overloaded line in the zone ofstudy (Load Flow simulation)
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Figure A.3: Average overload power of overloaded lines in the zone of study (LoadFlow simulation)
These first results need to be confirmedwith studies on other areas, and usingdata calculated for the same time horizon and the same electricity mix data.To go further in this analysis, simulating the network in Optimal Power Flow(OPF) will allow to estimate the cost to compensate the congestion on the network,which allows to compare the economic interest of smart charging EVs for networkpurposes and the reduction of electric generation costs computed in Chapter 4.
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B - Résumé en français

Cette thèse vise à étudier l’interaction entre les véhicules électriques (VE) et lessystèmes électriques. Pour ce faire, un plan en quatre chapitres est utilisé, dontles principaux messages sont présentés dans la suite de ce résumé en languefrançaise.
Chapitre 1 : Introduction générale
Ce chapitre est composé de cinq parties qui permettent d’introduire et cadrerle sujet de cette thèse.Tout d’abord, le chapitre commence par un rappel des travaux du GIEC, ainsiqu’une mise en contexte des deux secteurs étudiés dans cette thèse, le transportet la production d’électricité, au sein des émissions de carbone françaises et eu-ropéennes.Ensuite, l’historique de l’évolution des pratiques de mobilité en France estprésenté, ainsi que les perspectives de réduction des émissions du secteur. Lamobilité électrique apparaît comme une des principales solutions pour agir surle levier de l’intensité carbone de l’énergie de propulsion des véhicules. Les per-spectives d’électrification des différents modes de transport sont abordées, et cesont les véhicules individuels qui ont le potentiel le plus élevé (en consommationtotale) ainsi que les bus et camions dans une moindre mesure.Egalement dans une perspective de décarbonation, la production électriquedans le Monde (ainsi qu’en UE et en France) est en tendance d’évolution vers desmix comportant plus d’énergies renouvelables (en particulier solaire PV et éolien),en remplacement de centrales fossiles carbonées. Historiquement, ces dernièresétaient responsables d’une grande part de la flexibilité des systèmes électriquespour assurer l’équilibre offre-demande, ce qui implique de développer d’autressolutions de flexibilité, notamment la flexibilité de la consommation.Ainsi, les véhicules électriques (VEs) constituent une part du potentiel de flexi-bilité de consommation à horizonprospectif. Plusieurs domaines d’interaction en-tre les VEs et le système électriques sont identifiés, pour répondre aux problèmesde flexibilité du système électrique à différentes échéances temporelles et surdivers aspects (optimisation du l’utilisation de moyens de production, fréquencedu réseau, flux sur le réseau). Ainsi, divers modes de pilotage de la recharge deces VEs se développent, qui sont étudiés dans la suite des travaux.Enfin, le cadrage du sujet de cette thèse sur les véhicules individuels élec-triques, ainsi que le sujet du dispatch électrique européen à horizon prospectif2040 est proposé, afin de répondre aux deux questions de recherche :
Comment modéliser l’intégration prospective aux systèmes électriques une diffu-

sion massive de véhicules électriques ?
Comment comparer les principauxmodes de pilotage de la consommation des VEs,

et quels paramètres impactent le plus le potentiel de flexibilité de consommation ?
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Chapitre 2 : Revue de littérature des modèles de charge na-
turelle et de pilotage des véhicules électriques

Dans ce chapitre, nous effectuons une revue de la littérature académique desmodèles permettant de générer des données de connexion et de consommationdes VEs, ainsi que des modèles relatifs à leur pilotage.Différentes catégories demodèles sont identifiées, avec en général un sujet derecherche adapté qui leur est associé. Nous présentons aussi les optimisationsprésentes dans la littérature relatives au pilotage des VEs : minimiser le coût derecharge, limiter l’appel de puissance local ou les congestions sur le réseau, max-imiser la part d’énergie renouvelable autoconsommée . . .La plupart des articles comparés se focalisent soit sur le transport, soit sur lesystème électrique, avec une modélisation approximative de l’autre aspect. Enparticulier, beaucoup d’articles utilisent des données de marché électrique his-toriques, et considèrent les VEs comme des price-takers. Cette approche est per-tinente à court terme, tant que les VEs constituent une part négligeable de la con-sommation électrique totale. Cependant, pour des études prospectives à moyenet long terme, il semble important de modéliser séquentiellement les secteurs dutransport et de la production électrique afin de dépasser cette approximation.Finalement, nous concluons ce chapitre en identifiant l’approche demodélisa-tion la plus pertinente au vu de la littérature pour chacun des principaux sujetsde recherche relatifs à l’intégration des VEs dans les systèmes électriques.
Chapitre 3 : Modèle prospectif de demande des véhicules

électriques
A la suite de la revue de littérature effectuée dans le chapitre 2, l’approche laplus adaptée au sujet de recherche de cette thèse a été identifiée puis développée.Ainsi, le modèle utilisé pour générer les données de connexion et de consomma-tion des VEs est décrit dans ce chapitre.Les données d’entrée sont composées de deux élements. Dans un premiertemps, la liste des hypothèses devant être sélectionnées est indiquée. Ensuite, lesdonnées individuelles de déplacement proviennent le plus souvent dans la littéra-ture d’enquête transport, menées à lamaille locale ou nationale. Pour ces travaux,nous avons traité les enquêtes mobilités 2008 et 2019 en France (qui ne diffèrentque peu sur l’utilisation des véhicules individuels). Les déplacements sont notam-ment séparés selon plusieurs paramètres qui influent sur les données de mo-bilité (distances et horaires des déplacements), tels que la zone de résidence dupossesseur (rural, urbain ou métropole) et la catégorie socio-professionnelle (VEutilisé pour se rendre au travail ou pour autres motifs). Une séparation est égale-ment réalisée entre les trajets de mobilité locale et les trajets longue distance, quinécessitent parfois une recharge haute puissance en cours de trajet.Les étapes demodélisation sont ensuite présentées : générationdes paramètresdes véhicules, génération des plannings de déplacement, calcul des consomma-tions liées aux déplacements et de l’emplacement des VEs, calcul de la demande
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électrique des VEs, puis agrégation des résultats par catégories (type de véhicule,lieu de recharge, zone . . . ).Notre modèle est basé sur des simulations Monte-Carlo, qui consistent en lagénération d’un très grand nombre de tirages aléatoires sur les données d’entrée,afin d’obtenir des profils moyens statistiquement représentatifs.Le modèle proposé possède l’avantage de pouvoir prendre en compte unelarge diversité de scénarios dediffusiondes VEs, de leur infrastructure de recharge,ainsi que des comportements des usagers (se connecter systématiquement,quand l’état de charge de la batterie est faible ou en week-end). De plus, même sila thèse se focalise sur les véhicules individuels électriques et hybrides recharge-ables, une adaptation du modèle pour traiter les autres vecteurs énergétiques(hydrogène et biocarburants) ainsi que les bus et camions est présentée.Pour finaliser ce chapitre, le modèle est appliqué sur un cas d’étude de dif-fusion massive de véhicules électriques en France à horizon 2040, avec environdeux tiers de la flotte électrifiée. Les courbes de charge et de disponibilité auxbornes liées à plusieurs variantes sont illustrées.
Chapitre 4 : Flexibilité de la consommation des véhicules

électriques pour le dispatch du système électrique

A partir des données de connexion et des besoins énergétiques des VEsgénérés grâce au modèle présenté dans le chapitre 3, ce chapitre vise à inté-grer les VEs à des simulations du dispatch du système électrique européen (enprenant en compte les moyens de production dans chaque pays ainsi que lescapacités d’échange entre zones de prix électriques).Les millions de VEs potentiellement pilotés sont regroupés au sein d’un ob-jet électrique équivalent au sein de notre modèle. Les contraintes utilisées pourmodéliser cette agrégation et le pilotage de la recharge de ces VEs sont décritesest justifiées dans ce chapitre. Ces dernières permettent d’étudier un grand nom-bre de modes de pilotage qui émergent : pilotage à partir de signaux tarifaires(basiques ou améliorés), pilotage dynamique unidirectionnel (smart charging) oupilotage dynamique bidirectionnel (vehicle-to-grid, V2G).Nous comparons ensuite ces modes de pilotage selon le gain économique etd’émissions de carbone qu’ils apportent au dispatch des moyens de productionélectriques, basé sur un cas d’étude à horizon 2040 dans un système électrique àforte pénétration des moyens de production renouvelables. Dans notre scénariode référence, le pilotage dynamique unidirectionnel de la charge des 24 Millionsde VEs réduit le coût de production d’électricité d’environ 1 G€ annuels, ainsi queles émissions associées de 2.4 MtCO2-eq.Les paramètres qui influent le plus sur la valeur de la flexibilité de la chargedes VEs sont le prix des combustibles (en particulier le gaz), la diffusion desmodesde pilotage (dans l’ordre croissant de valeur : signaux tarifaires, smart charging etV2G), ainsi que la possibilité de procurer de la flexibilité hebdomadaire en per-mettant le report de la charge d’un ou quelques jours. A horizon 2040 à fort
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développement du solaire PV, il apparaît que le milieu de journée est un des mo-ments de la journée où les coûts de production électrique sont les plus bas, doncla connexion d’une part des VEs en milieu de journée est également souhaitablepour réduire les coûts et émissions du système électrique.
Conclusion générale

Pour conclure ce manuscrit, les principaux messages de la thèse sont re-groupés.Il apparaît que le pilotage de la recharge est peu développé en France en 2021,de l’ordre de 37%des usagers. Ainsi, les travauxmenés dans cette thèse appellentà développer davantage la flexibilité de consommation des VEs dans les années àvenir, par les différents modes de pilotage identifiés, selon l’acceptabilité par lesusagers, au vu des gains estimés à horizon 2040.Enfin, des sujets de recherche émergents connexes à ce travail de thèse sontévoqués, notamment sur (1) l’étude de la flexibilité de la recharge des VEs pourd’autres aspects du système électrique que le dispatch optimal, (2) les incitationsdes usagers aupilotage de la recharge, (3) l’étude environnementale de l’intérêt dupilotage des VEs et (4) le besoin de déclinaison du cadre d’analyse construit danscette thèse pour d’autres scénarios de la mobilité dans notre monde en évolutionvers la neutralité carbone.
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Résumé: Dans le cadre de la réduction de l’impact
environnemental du secteur des transports de per-
sonnes et de marchandises, la mobilité électrique
est amenée à se développer dans les années à venir.
La recharge des véhicules électriques (VE) présente
un potentiel intrinsèque de flexibilité de la con-
sommation électrique, du fait de périodes de con-
nexion généralement plus longues que nécessaire
pour recharger le véhicule, en particulier pour les
véhicules individuels. Cette thèse se focalise sur
l’étude de cette flexibilité de consommation, qui
permet de réduire les coûts opérationnels et les
émissions de carbone du système électrique, en
particulier à horizon prospectif de forte diffusion
de la mobilité électrique. Afin de traiter ce su-
jet de recherche, l’introduction présente les enjeux
de décarbonation des secteurs du transport et de
production d’électricité en France ainsi que leurs

interactions. Dans un second temps, les princi-
pales méthodes de modélisation des VEs et de leur
impact sur différents aspects du système électrique
sont décrites. Ensuite, un modèle pour obtenir des
données de connexion et de demande électrique
de ces véhicules, à partir de données d’enquête
transport, est proposé. Finalement, l’intégration
de ces données dans un modèle de dispatch ho-
raire du système électrique Européen est présen-
tée, puis illustrée sur diverses hypothèses relatives
au développement de la mobilité électrique à hori-
zon 2040. Cette méthodologie permet ainsi la
comparaison des principaux modes de pilotage de
la recharge des VE, ainsi que l’identification des
paramètres qui influent le plus sur la valeur de
cette flexibilité de consommation : le prix des com-
bustibles fossiles ainsi que les variantes sur la dif-
fusion des modes de pilotage des VE.

Title: Impacts and opportunities of new mobilities for the electrical system
Keywords: Electric vehicles, Electrical system, Demand-side flexibility, Energy transition

Abstract: In the context of environmental impact
reduction of the passenger and freight transport
sectors, electric mobility is set to grow in the com-
ing years. Electric vehicle (EV) charging has a
natural potential for electricity demand flexibility
as connection periods are generally longer than
the necessary charging time, especially for individ-
ual vehicles. This thesis focuses on the study of
this demand-side flexibility, which induces a reduc-
tion of the operational costs and carbon emissions
of the electricity system, in particular in scenar-
ios with substantial diffusion of electric mobility.
The analysis begins with a discussion of the decar-
bonization pathways of the French transport and
electricity generation sectors as well as their mu-
tual interactions. This is followed by a descrip-

tion of the state-of-the-art methods for model-
ing EVs and their impact on different aspects of
the electricity system. A model to generate EV
connection and electrical demand data based on
transport survey data is then proposed. Finally,
the integration of these data in an hourly dispatch
model of the European power system is presented
and illustrated on various scenarios of the electric
mobility development by 2040. This methodology
allows the comparison of the foremost EV smart
charging modes, as well as the identification of
the parameters that most influence the value of
this demand-side flexibility: the price of fossil fuels
and the level of diffusion of the various EV smart
charging modes.
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