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Preface 

My thesis focuses on developing computational methods for biomolecular 

conformational variability analysis in cryo electron tomography (cryo-ET) and their use for the 

analysis of nucleosome conformational variability in situ. It is an interdisciplinary thesis 

between computer science and structural biology. I came to this field after studying electrical 

and electronics engineering and two master's programs in science and technology. During my 

second master's program, I completed a six-months internship at the IMPMC (Sorbonne 

University, Paris) in 2019. This internship was under the supervision of Dr. Slavica Jonic. My 

internship was to extend a method called HEMNMA to cryo-ET. HEMNMA was developed in 

the group of Dr. Jonic and is used for analyzing single-particle analysis (SPA) data in terms of 

biomolecular conformational variability. During my internship, we established a collaboration 

with Dr. Amélie Leforestier (LPS, University Paris-Saclay, Orsay) and Dr. Mikhail Eltsov 

(currently at IGBMC, Strasbourg). They were interested in our unique method for analyzing 

their tomographic data of nucleosomes in situ. My internship led to promising preliminary 

results. Dr. Jonic proposed a continuation of my internship for a Ph.D. under her supervision, 

co-supervised by Dr. Leforestier, and in collaboration with Dr. Eltsov in an interdisciplinary 

doctoral program at Sorbonne University called Interfaces for the Living (the French name is 

Interface pour le Vivant, abbreviated IPV). I applied for this project, obtained funding for a 

Ph.D. through a competition, and started my Ph.D. in October 2019. 

During my Ph.D., my primary host lab was IMPMC, where I worked on methods 

development with Dr. Jonic's group. Also, I spent considerable time at LPS working with Dr. 

Leforestier's team, and I was involved in biological sample preparation (freezing, cryo-

sectioning, observations) as well as data analysis and interpretation. My Ph.D. also took part in 

an interdisciplinary project called CRYOCHROM, funded by the French National Research 

Agency (abbreviated as ANR in French), directed by Dr. Leforestier, and in partnership with 

the group of Dr. Jonic, Dr. Eltsov, and Dr. Victor (specialist of chromatin modelization). 

CRYOCHROM investigates the conformations and distributions of nucleosomes in order to 

understand how chromatin functions. Although it is not the main focus of my Ph.D., I have 

gathered as much information as possible regarding the many stages of biological sample 

preparation and data acquisition and their associated characteristics and challenges. My 

participation in sample preparation and data collecting sessions is therefore documented in this 

manuscript.  
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Introduction 

Biomolecules exhibit different forms of variability. Different copies of the same 

biomolecular complex can differ while interacting with their environment. A biomolecule may 

bind a substrate while another does not or binds another. They can be chemically modified 

when interacting with proteins. However, one notable source of variability is a gradual change 

of the conformation of biomolecules, commonly referred to as continuous conformational 

variability. My thesis was primarily concerned with developing image processing algorithms 

for assessing continuous conformational variability acquired in cryogenic Electron 

Tomography (cryo-ET) data. 

Assume having some biomolecules trapped in a liquid medium or perhaps their mother 

cell. Assume that some of these biomolecules are copies of the same complex, and you are 

interested in visualizing them to understand their structure and dynamics. Cryogenic Electron 

Microscopy (cryo-EM) offers a way to observe these biomolecules, more precisely, after 

vitrifying (freezing) them. Imagine these biomolecules moving around, changing conformation 

elastically, and interacting with their surroundings before they freeze. Suddenly, freeze the 

whole. You will have a snapshot of these biomolecules at that pre-freezing moment. This 

snapshot is the kind of data you would expect from cryo-EM/ET, which can be in the form of 

an image called a micrograph in the case of cryo-EM 2D imaging or a volume called a 

tomogram in the case of cryo-ET. Cryo-ET is particularly useful for visualizing biomolecules 

in situ, thanks to its 3D data that helps disentangle the crowded cellular environment. 

A micrograph or tomogram may contain many of these copies at different locations and 

orientations, besides their varying forms. These copies can be isolated into sub-images (called 

single particle images) or subvolumes (called subtomograms). For obtaining high-resolution 

3D models for the biomolecule under study, single particle images or subtomograms should be 

sorted in such a way to get an average 3D structure. For a long time, specimen heterogeneity 

had a negative connotation and was only seen as a factor limiting the resolution of 3D 

reconstructions. However, research in the last decade has shown that identifying conformational 

transitions from heterogeneous samples can help study molecular mechanisms in action. One 

way to sort this biomolecular variability is discrete classification. However, classification is 

effective for discrete cases of variability (such as substrate binding) but not so much for 

continuous flexibility. 
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To understand this flexibility, we need methods to analyze a continuum of 

conformational states. Before this thesis, few methods considered continuous conformational 

changes explicitly for cryo-EM 2D data, but no method existed for cryo-ET 3D data. 

Subtomograms are noisy, low contrast, suffer from spacial anisotropies due to the image 

formation and the type of acquisition in the electron microscope, and thus are very difficult to 

analyze individually. 

This thesis presents the first two methods that address the continuous conformational 

variability of biomolecules in cryo-ET data, HEMNMA-3D and TomoFlow. HEMNMA-3D 

analyzes experimental data with motion directions simulated by Normal Mode Analysis and 

allows the discovery of an extensive range of biomolecular motions hidden in the data. 

However, HEMNMA-3D depends on this prior (simulated motion directions), making it prone 

to misinterpretation and bias when misused. TomoFlow extracts movements from the data 

without prior information using a computer vision technique called the Optical Flow. Therefore, 

it is less prone to misuse. However, when it encounters large motion magnitudes, it results in a 

smooth and downscaled version of the actual biomolecular motion. Although the mathematical 

models used by HEMNMA-3D and TomoFlow differ, both can explore biomolecular 

conformational landscapes and are superior to classification into discrete classes. In this thesis, 

I systematically validate HEMNMA-3D and TomoFlow on synthetic datasets. Also, I 

demonstrate the utility of these two methods on experimental cryo-ET data of nucleosome 

conformational variability in situ, taking part in an ongoing study of nucleosome in cells. The 

two methods show coherent results, shedding insight into the conformational variability of 

nucleosomes, in line with previous visual and theoretical analyses of nucleosome 

conformations. I demonstrate that these methods produce valuable results with especially 

challenging in situ data, nucleosomes. They are thus also expected to be useful for 

conformational studies of other biomolecular complexes in vitro and in situ. 

HEMNMA-3D and TomoFlow software are now publicly available as part of the cryo-

ET data processing pipeline of the open-source software package ContinuousFlex, which is 

now a plugin of Scipion software and its backend software Xmipp that is widely used in the 

field. Throughout my Ph.D., I helped develop and maintain these three software packages, 

particularly ContinuousFlex. 

This thesis manuscript is organized as follows: 
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Chapter 1 summarizes the essential instruments, technologies, and methods in electron 

microscopy used to collect data from biological samples, focusing on cryo-ET.  

Chapter 2 covers biomolecular conformational variability captured by cryo-ET and 

reviews approaches other than those conducted in this thesis for dealing with it. 

Chapter 3 introduces the nucleosome case study, summarizing previous findings and 

theoretical nucleosome conformation predictions. It explains how in situ nucleosome cryo-ET 

data are collected and what was uncovered from them prior to the start of this thesis. 

Chapter 4 covers the mathematical background required for a thorough understanding 

of the methods developed in this thesis (i.e., HEMNMA-3D and TomoFlow), particularly the 

principles of Normal Mode Analysis and Optical Flow. Also, this chapter presents the cryo-ET 

subtomogram dataset of nucleosomes in situ that was analyzed in this thesis, highlighting 

practical considerations we followed for obtaining and pre-processing this dataset. 

HEMNMA-3D and TomoFlow are explained in Chapters 5 and 6, respectively. These 

chapters describe their methodologies and validation using synthetic datasets and present the 

results produced by applying them to the in situ nucleosome dataset presented in Chapter 4. 

Chapter 5 also compares HEMNMA-3D to traditional data analysis methods for biomolecular 

structure and dynamics determination in cryo-ET. 

Chapter 7 summarizes the software contribution of this thesis. 

I end this manuscript with Chapter 8 on discussions, conclusions, and possible future 

works drawn from this thesis.  
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Chapter 1. Cryogenic electron microscopy and approaches 

for data collection of biological samples 

A microscope is a tool that allows seeing details in objects that would otherwise be too 

small to see with the eyes. Microscopes started to be used as scientific tools centuries ago. One 

of the early promoters for microscopes to study biological material was Robert Hooke; in 1665, 

he published a book called Micrographia [1], where he reported several observations from daily 

life. Interestingly enough, he discovered that plants are made of small structures that he called 

cells. Several years later, a fabric merchant, Antonie van Leeuwenhoek designed a microscope 

to examine fabrics. His microscope was advanced enough, and his curiosity led him to discover 

microorganisms. He reported seeing tiny creatures that he called Animalcules that will later 

change our understanding of diseases [2]. Despite the advances in science and technology, these 

early microscopes are similar to light microscopes nowadays. 

Light microscopes, shown in Figure 1a, operate on light, i.e., photons. A photon, which 

is a quantized fluctuation of the electromagnetic field has a wavelength that is larger than atoms, 

proteins, and most viruses. 

 

Figure 1 The general scheme of light and electron microscopes. The light microscope (a). 

Comparison between light and electron microscopes (b). Adapted from Thermofisher website 

(https://www.thermofisher.com). 
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Light microscopes can be used to see a range of microorganisms but are not powerful 

enough to see most viruses, molecules, or atoms (see Figure 2). Thus, to see smaller objects, 

the first electron microscope was invented by Max Knoll and Ernest Ruska in the 1930s [3]. A 

comparison between light and electron microscopes is shown in Figure 1b. These microscopes 

operate on electrons instead of photons. Electrons are up to 105 times smaller in wavelengths 

than visible light photons, giving them the ability to resolve individual atoms. 

This chapter summarizes the physical and data processing principles for imaging 

biological samples using electron microscopes. 

 

Figure 2 Range of sizes of different objects that can be resolved with eye, light, and electron 

microscopes. Adapted from BioNinja website (https://ib.bioninja.com.au/). 

The molecules in the air scatter electrons; hence, the column of the electron microscope 

in which electrons travel should be vacuumed. The early usage of electrons for imaging 

macromolecular biological samples faced two limitations that led to the invention of cryo-EM. 

Firstly, the vacuum causes dehydration, thus the destruction of biological samples. Secondly, 

biological samples are very fragile to the high energy of the electron beam, which destroys the 

organic matter. An early attempt to cope with the first limitation was using dehydrated samples, 

which comes at the expense of damaging the native structures and leading to aggregation. An 

attempt to cope with the electron beam damage was the usage of heavy metals to increase the 

contrast and have a protective effect by coating the macromolecular complexes. The metal 

stains appeared darker in the electron microscopes and helped observe prints of the imaged 
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complexes. This technique was popular until the 1990s for observing proteins and viruses [4-

6]. However, metal stains allow visualization of their interaction with macromolecules, and not 

the macromolecules themselves (besides other artifacts caused by the staining), thus limiting 

the resolution and the relevance of the observed structures [7]. 

In the 1980s, a technological breakthrough of imaging samples that are rapidly cooled 

to cryogenic temperatures to avoid dehydration and using phase contrast to avoid staining 

enabled resolving near-to-native high-resolution structural characteristics [8-10] in what is 

called cryogenic Electron Microscopy (cryo-EM). 

The building blocks of cryo-electron microscopes 

A schematic drawing on an electron microscope is shown in Figure 3. The column of 

the electron microscope contains: 

1- An electron gun. 

2- A condenser lens system; is used to condense the electron beam. 

3- An objective lens system; is used to generate a magnified version of the object. 

4- Several intermediate lens systems and a projector lens system; are used to magnify 

the object further. 

5- An electron detector. 

 

Figure 3 A schematic drawing of an electron microscope. Adapted from [11]. 
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Image formation in the electron microscope 

To form an image for a sample in the microscope, electrons interact with the sample. 

Amplitude contrast and phase contrast are the two types of contrast that contribute to image 

formation in electron microscopes [12]. To understand amplitude contrast, one must envision 

the incident electrons as particles scattered by objects in the sample. Some of these electrons 

will be absorbed by the sample, and others will be scattered at a high angle and removed by the 

objective lens aperture, hence, producing contrast (see Figure 4a). However, thin biological 

cryo-EM samples are composed of light elements (macromolecules: C, N, H, P, O, in a H, O, 

Ca, Mg, …environment) that scatter electrons at a low angle, leading to negligible amplitude 

contrast. 

To understand phase contrast, one must envision the incident electrons as waves, 

scattered upon interaction with an object. Scattering results in phase shift. In the image plane, 

the scattered electron waves and the unscattered electron waves arrive at the detector 

recombined, and phase-contrast develops, resulting from their interference (see Figure 4b). 

However, scattered and unscattered electrons arrive at too small a phase shift when images are 

acquired precisely at focus. To increase the phase shift, lens aberrations and underfocus are 

used.  

 

Figure 4 Schematic drawing of how the two types of contrast develop in the electron 

microscope (a) amplitude contrast which can be explained when the electron is envisioned as 

a particle, and (b) phase contrast which can be explained when the electron is envisioned as a 

wave. Adapted from [13]. 
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Such an image is therefore not an exact projection of a biological sample. It is modified 

by the Contrast Transfer Function (CTF), summarized in the following section. 

The Contrast Transfer Function (CTF) and the electron dose 

CTF describes the modulation of the spatial frequency information of an image acquired 

by an electron microscope. CTF is related to the physical parameters of the microscope, 

including its accelerating voltage, lens aberrations, and, most importantly, the defocus. The 

CTF is a decaying two-dimensional sinusoid alternating about zero [14]. It is visualized as what 

is known as Thon rings in the power spectrum of the micrograph of an amorphous structure (as 

shown in Figure 5, bottom). The effects of the CTF include 1) loss of information at some 

spatial frequencies (the frequencies with zero amplitude shown by the black Thon rings in 

Figure 5), 2) dampening of the information of higher frequencies, and 3) phase inversion when 

CTF crosses zero. 

The CTF effects can be partially corrected by flipping the inverted phases and boosting 

the higher spatial frequencies [15]. Still, CTF correction cannot retrieve frequencies where the 

CTF is zero. 

 

Figure 5 EM images of carbon film (on the top) and their corresponding Fourier transform (on 

the bottom). The Fourier transform shows the Thon rings and the corresponding CTF curves. 

The images were obtained with defocus values of 0.5 µm and 1 µm from left to right. Adapted 

from [11]. 

To cope with the information loss caused by the CTF, multiple image acquisitions of 

the sample from a fixed view can be collected at multiple defoci. However, biological samples 
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are fragile, and the electron dose used for imaging has to be limited to avoid significant radiation 

damage. A demonstration of the sample degradation with the accumulation of electron dose is 

shown in Figure 6. The high-frequency information, essential for observing the imaged samples 

at high resolution, is lost after the first few electrons per Å2 (e-/ Å2) during image acquisition, 

and more evident damage is observed with higher electron dose accumulation [16]. 

 

Figure 6: An example of radiation damage as a function of electron dose when imaging 

biological samples in cryo-EM. Adapted from [16]. 

Sample preparation and data collection approaches 

Cryo-EM allows observing hydrated specimens in their native aqueous environment 

vitrified by rapid freezing. Most cryo-EM applications to date explore biomolecules’ 

conformations in vitro, i.e., after purification. The scientific and technological advances in 

various fields allowed cryo-EM to become one of the pillars of structural biology with a method 

called Single Particle Analysis (SPA) [17], shown in Figure 7. SPA is based on imaging 

thousands to millions of copies of a biomolecule located in a vitrified thin film of the solution. 

Vitrification is based on rapidly freezing a thin film (typically 50-100 nm) suspended on a holey 

carbon film covering an EM grid (or EM grid in short) obtained from a solution containing the 

purified copies of the biomolecule. This rapid freezing is usually done by plunging the sample 

into a cryogenic fluid (e.g., liquid ethane). This method, known as plunge-freezing [13, 18], 

allows forming vitreous ice, which preserves the native structures and has desired properties 

for cryo-EM imaging. Cryo-EM images of the vitrified sample, corresponding to electron-beam 

projections of different holes of the EM grid for electrons that travel through the sample, is 

called a micrograph. A single micrograph is a two-dimensional (2D) image, possibly containing 

copies of the biomolecule, at random locations and orientations. For SPA, the locations of these 

copies are then "picked" (isolated in smaller-sub images), manually or via computer algorithms, 

into images containing single biomolecules, which are called single-particle images, or in short 

single particles [19]. Despite the challenge, algorithms for sorting the orientations of single 
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particles are widespread and allow high-resolution 3D reconstructions for various biomolecules 

[20]. 

 

Figure 7 Cryo-EM and SPA pipeline. Adapted from [17]. 

Thin-film cryo-EM followed by SPA is a technique for biomolecules in vitro. Hence, it 

is not designed to image biomolecules in their cellular environment (in situ). On the one hand, 

some biomolecules cannot be purified or thus lose some of their properties. On the other hand, 

purifying biomolecules does not shed enough light on their functions and interactions with other 

biomolecules inside the cells. 

In order to visualize biomolecules in situ, one needs to vitrify their containing cells or 

tissues and obtain thin enough samples for them to be imaged by cryo-EM. Small cells, like 

bacteria or picoeukaryotes, or thin cellular extensions can be vitrified by plunge-freezing [21], 

whereas thicker samples (particularly large cells or tissues) cannot. A solution to vitrify thick 

samples (up to 200 µm) is high-pressure freezing (HPF), where the temperature is dropped, and 

the pressure is increased simultaneously for a few milliseconds [22]. Vitrified cells must then 

be thinned using two techniques, namely, cryogenic Focused Ion-Beam milling (cryo-FIB 

milling) [23] or ultrathin cryo-sectioning [24]. 

Cryo-FIB milling is usually used for obtaining sections from cells that can be grown 

and frozen on EM grids. It employs a beam of gallium ions to obtain 100-250 nm thin sections 

called lamellae of the cellular material. Cryo-sectioning allows obtaining sections from any 

type of sample, including larger ones frozen by HPF, then transferred onto an EM grid. The 

sectioning is done using a diamond knife that mechanically cuts serial 30-100 nm thin slices of 

the sample. Although this technique can provide thinner sections and larger surface areas than 

cryo-FIB milling, it is coupled with compression artifacts caused by the mechanical cutting 

process, absent in cryo-FIB milled samples. Compression is a major artifact that deforms the 
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sample in the cutting direction and depends on the nature and density of the material and on the 

object scale. Deformations can be severe on the level of the long-range structures, such as entire 

cells or organelles [25, 26]. However, on the molecular level, deformations were reported to be 

negligible or inexistent [27, 28]. 

The crowded cell environment, with its overlapping molecules, remains an obstacle 

when analyzing cryo-EM micrographs corresponding to vitreous cell sections compared to thin-

film samples of purified biomolecules in dilute solution. Hence, 2D SPA is usually not the go-

to method in this case, but cryogenic Electron Tomography (cryo-ET) thanks to the 3D 

information that allows disentangling the crowded environment [29]. 

Cryo-ET is a 3D imaging technique based on obtaining cryo-EM micrographs of a 

sample at multiple tilting angles, usually from -60 to 60 degrees with 1 to 4 degrees angular 

step [30]. The set of micrographs of different tilted views is called a “tilt-series” and is then 

reconstructed into a 3D volumetric image called a tomogram. This principle of cryo-ET is 

illustrated in Figure 8. 

 

Figure 8 Principle of cryo-ET image acquisition scheme. The left shows the tilt series 

acquisition of a 3D object. The middle shows the tilt series and what they represent relative to 

the 3D object. The right shows how the tilt series can be reconstructed into a 3D volume 

called a tomogram representing the 3D object. Adapted from [29]. 

A tomogram, possibly corresponding to a vitrified cell section or lamella can contain 

copies of biomolecules at locations and orientations that can shed light on their biological 

function and mutual interactions. The locations of these copies can be picked, manually or via 

computer algorithms, into sub-volumes containing single copies of the biomolecules, which are 

called subtomograms. Algorithms (explained in the next chapter) for aligning the 
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subtomograms and obtaining an average of them are called Subtomogram Averaging (STA or 

StA) [31]. STA allows high-resolution 3D reconstructions of biomolecular structures [32]. 

Tomographic reconstruction and missing wedge artifacts 

The fundamentals of obtaining 3D reconstructions of biomolecular complexes from 

cryo-EM single-particle images and obtaining tomographic reconstructions from cryo-ET tilt 

series images are best explained by the Fourier central slice theorem [33, 34]. According to this 

theorem, a central slice through the Fourier transform of a 3D object corresponds to the Fourier 

transform of the object’s 2D projection at the same orientation as the orientation of the central 

slice (see Figure 9). In cryo-ET tomographic reconstruction, the 2D Fourier transform of an 

aligned tilt-series [35] is positioned to create a 3D Fourier transform of the reconstructed 

tomogram. A tomogram is obtained by the 3D inverse Fourier transform. 

 

Figure 9 Fourier central slice theorem. The 2D Fourier Transform of a 2D projection image 

resulting from projecting a 3D object corresponds to a central slice across the original 3D 

object's Fourier transform with the same projection angle. Adapted from [36]. 

Several tomographic reconstruction algorithms are useful for different applications. The 

most common approach is Weighted Back-Projection (WBP) [37], which calculates for each 

image in the tilt series a backprojection body, and the tomographic reconstruction becomes the 

sum of all the backprojection bodies. WBP uses a weighting filter that reduces the contribution 

of low spatial frequencies. Several other reconstruction algorithms exist and are usually 
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algebraic-based; two of the most common ones are Simultaneous Iterative Reconstruction 

Technique (SIRT) [38] and Simultaneous Algebraic Reconstruction Technique (SART) [39]. 

SIRT and SART offer a good contrast which can be useful for particle picking, whereas WBP 

provides a higher resolution for subtomogram averaging.  

Due to the limitation of the tilting angle used in acquiring the tile series, which is usually 

limited in the range ±60°, a tomogram in Fourier space has a missing wedge region (shown in 

Figure 10 on the top). The missing views in the tilt series used to reconstruct tomograms, i.e., 

the missing wedge in the Fourier space of a tomogram, cause data anisotropies known as 

missing wedge artifacts [40, 41]. 

 

Figure 10 Missing wedge artifacts in cryo-ET tomographic reconstructions. From [42].   
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Chapter 2. State of the art: cryo-ET methods for 

biomolecular conformational variability analysis 

Conformational variability of biomolecular complexes 

The structures (their shapes) and chemistry of biomolecular complexes determine their 

functions to a large extent. Hence, understanding their structures is crucial to understanding 

their working mechanisms. However, biomolecules are flexible, and they exhibit gradual 

conformational transitions, referred to as continuous conformational variability, as shown in 

Figure 11A. As will be seen in the next chapter, this variability can be intrinsic or induced by 

other factors exerting forces on them. Besides continuous variability, biomolecules can bind or 

unbind substrates, giving rise to a form of discrete variability, shown in Figure 11B. Continuous 

and discrete variabilities may happen together, such as binding and unbinding different 

substrates while continuously changing conformations, as shown in Figure 11C. 

 

Figure 11 Types of conformational and compositional variabilities. (A) Examples of 

continuous conformational variabilities for biomolecules: DNA Pol α-B complex continuous 

conformational movements, 70S ribosome continuous ratchet-like movement, and tomato 

bushy stunt virus swelling-like movement. (B) An example of discrete compositional 

variability of substrate binding GroEL-GroES vs. GroEL-GroES-rhodanese. (C) combined 

discrete and continuous variabilities of 80S ribosome elongation cycle, binding and unbinding 

different ligands while continuously changing conformations. Adapted from [43-45]. 
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Data processing methods for determining biomolecular structure and 

dynamics from cryo-ET specimens 

Subtomograms contain copies of biomolecular structures at different locations, 

orientations, and conformations. Subtomograms suffer from a low signal-to-noise ratio (SNR) 

due to the small electron dose used to obtain the tilt series to avoid radiation damage to the 

fragile biological sample. The MW artifacts are often observed as elongation along the beam 

axis, blurring, and distracting caustics in the subtomograms. Due to the low SNR and the MW, 

cryo-ET data processing is mainly based on rigid-body aligning and averaging many 

subtomograms to enhance the data quality and reveal the targeted biomolecular structure. 

STA is the process that allows obtaining high-resolution models of biomolecular 

structures from cryo-ET subtomograms after aligning them to a reference orientation and 

averaging them, as shown in Figure 12. 

 

Figure 12 The process of subtomogram averaging. Adapted from [31]. 

However, as biomolecules are flexible, the biomolecular copies in subtomograms vary 

due to this flexibility, giving rise to two STA problems. On one side, this variability limits the 

resolution of 3D reconstructions since subtomograms do not contain identical copies. On the 

other side, STA hides the information relevant to conformational transitions that help study 

biomolecular mechanisms captured in cryo-ET. In order to account for these two problems, 

previous computational methods simplify the problem by discretizing the gradual transitions of 

biomolecular structures and addressing the problem via classification. Classification can be 
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done during STA or posterior to it. Hereafter, I review STA and classification techniques used 

to determine structure and dynamics in typical cryo-ET data processing pipelines other than the 

methods developed in this thesis. 

Subtomogram Averaging (STA) 

STA workflow (shown in Figure 12) is an iterative alignment and averaging procedure: 

subtomograms are aligned against a reference to maximize a scoring function; the aligned 

subtomograms are averaged to produce a volume that becomes the reference for the next 

iteration of alignment. The starting reference is preferably chosen as the average of all or a 

subset of the subtomograms that are randomly oriented; however, in some cases, another 

starting reference can be justified, e.g., a very low-resolution version of the anticipated average 

shape, which gets refined iteratively during STA. The scoring function used in STA is usually 

the Constrained Correlation Coefficient (CCC) [46], which restricts the Correlation Coefficient 

(CC) calculation to the Fourier space region that excludes the MW. 

The search for the angular and shift alignments of subtomograms can be done in Real 

or Fourier spaces [47, 48], allowing the determination of the six-dimensional rigid-body 

parameters, i.e., three rotational angles and three shifts for each of the subtomograms, applied 

to align them to the global subtomogram average. 

STA is a computationally demanding process, especially for large datasets; however, 

nowadays, datasets of subtomograms are small compared to SPA in terms of the number of 

instances (subtomograms), especially in situ. 

The symmetry of an analyzed complex can be beneficial for structural determination in 

STA since each subtomogram can be assigned to multiple views of the global average, 

depending on the axes of symmetry. 

Before diving into classification practice, it is worth mentioning that the MW artifacts 

must be carefully considered when producing subtomogram classes. Otherwise, one might fall 

into the trap of producing erroneous results by misinterpreting these MW artifacts as different 

conformational classes. Moreover, when a subtomogram is aligned against a global reference 

(the subtomogram average), the shifting parameters resulting from the alignment can be applied 

to the subtomogram. In practice, after STA, the shifting information can be used to extract 

centered subtomograms that will require only angular information (three angles, commonly 



 

 

22 

addressed as Euler angles) to be applied to each subtomogram to align it to the global average. 

In some classification techniques, in particular post-alignment classifications (explained next), 

centered subtomograms are used. 

Subtomogram classification posterior to STA 

The simplest form of classification is to set a threshold value for the CC between the 

aligned subtomogram and the reference; all subtomograms below the threshold are removed 

from the dataset (not taken into the average), which can be helpful when most subtomograms 

contain the properly aligned structure of interest; in such cases, CC thresholding can be used to 

remove misaligned subtomograms or those containing other structures. 

Nevertheless, when there is a high degree of structural heterogeneity or misalignment, 

such approaches may fail because the CC is calculated using a reference averaged from highly 

heterogeneous particles. A more sophisticated approach to post-alignment classification is to 

compare the subtomograms in the dataset and sort out the dataset into several different classes. 

This clustering is usually performed on a correlation matrix using Principal Component 

Analysis (PCA) [49] and k-means clustering or hierarchical clustering [50, 51]. 

In the following, a brief background [51] on post-alignment classification is 

summarized. 

Let 𝑆𝑖 and 𝑆𝑗 be two subtomograms associated with their corresponding sets of Euler 

angles (𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖) and (𝛼𝑗 , 𝛽𝑗 , 𝛾𝑗) obtained via STA to align the subtomograms to a common 

reference system (that of the global subtomogram average) and let 𝑊 be a binary missing wedge 

window. 

Then 𝑆𝑖
̀  and 𝑆�̀� can be defined as the aligned version of 𝑆𝑖 and 𝑆𝑗 respectively, i.e. 𝑆𝑖

̀  and 

𝑆�̀� are found by applying the corresponding set of Euler angles to 𝑆𝑖 and 𝑆𝑗. Similarly, let 𝑤𝑖 

and 𝑤𝑗 be the missing-wedge windows that correspond to 𝑆𝑖
̀  and 𝑆�̀�, i.e. 𝑤𝑖 and 𝑤𝑗 are found by 

applying the corresponding set of Euler angles to 𝑊. Let 𝑤𝑖𝑗 = 𝑤𝑖 ∗ 𝑤𝑗 be the intersection of 

the two 𝑤𝑖 and 𝑤𝑗, i.e. 𝑤𝑖𝑗 = 1 only for the region where the Fourier space of both 𝑆𝑖
̀  and 𝑆�̀� is 

not missing. Let 𝑀 be a mask for the region of interest in the aligned subtomograms, where 𝑀 

can be binary or a more sophisticated mask constructed based on morphological operations on 

the global subtomogram average. 
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We can now obtain a normalized and common missing wedge constrained version of 

the two subtomograms. The normalization can be done by subtracting the mean 𝜇 and dividing 

by the standard deviation; however, the mean and standard deviation should be constrained both 

to 𝑤𝑖𝑗 in Fourier space (obtained via Fourier Transform FT) and to 𝑀 in the real space: 

 

𝑆�̃� = 
𝑀 ∗ 𝐹𝑇−1(𝐹𝑇(𝑆𝑖

̀ ) ∗ 𝑤𝑖𝑗) − 𝜇𝑖

∑ 𝑀𝑥,𝑦,𝑧  √∑ (𝑀 ∗ 𝐹𝑇−1(𝐹𝑇(𝑆𝑖
̀ ) ∗ 𝑤𝑖𝑗) − 𝜇𝑖)

2
𝑥,𝑦,𝑧

 

𝑆�̃� = 
𝑀 ∗ 𝐹𝑇−1(𝐹𝑇(𝑆�̀�) ∗ 𝑤𝑖𝑗) − 𝜇𝑗

∑ 𝑀𝑥,𝑦,𝑧 √∑ (𝑀 ∗ 𝐹𝑇−1(𝐹𝑇(𝑆�̀�) ∗ 𝑤𝑖𝑗) − 𝜇𝑗)
2

𝑥,𝑦,𝑧

 

(2.1) 

The covariance matrix 𝐶𝑀 can then be written as the matrix for which its elements are: 

 CMij  =  ∑ 𝑆�̃�
𝑥𝑦𝑧

(𝑥, 𝑦, 𝑧) 𝑆�̃�(𝑥, 𝑦, 𝑧) (2.2) 

Where 𝑖 and 𝑗 are for all the subtomograms in the dataset. 

This covariance matrix in eq (2.2) is then fed to a classification algorithm (e.g., 

Hierarchical clustering) or is fed first to a dimensionality reduction technique (e.g., PCA) 

followed by a clustering algorithm (e.g., k-means). 

Simultaneous subtomogram classification and alignment 

Classification of subtomograms during alignment is usually performed through 

multireference alignment or maximum likelihood estimation. 

In simple terms, multireference alignment starts from known references of low 

resolution that are used to separate a heterogeneous dataset. Multireference-based approaches 

require a number of references, which determines the number of classes [50, 52]. There are two 

strategies to perform a multireference alignment. In both strategies, each subtomogram is 

aligned against all the given references. In the first strategy, each subtomogram is assigned to 

a class to which it is most similar, and at the end of each iteration, the members of each class 

are averaged to generate a new set of references. The second strategy uses a scoring function to 

determine the contribution weight (between 0 and 1) for each subtomogram to each class, i.e., 

each subtomogram contributes to the average of all the classes with different weights. In both 
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strategies, the differences between the classes are amplified through iterative alignment and 

averaging, and the starting references are refined. 

Subtomogram classification based on maximum likelihood estimation [53-55] is rather 

more sophisticated than multireference alignment. It is based on a different data model that does 

not require starting references but only choosing a number of desired classes. The data model 

used for maximum-likelihood estimation [53] is given by: 

 𝑋𝑖
0 + 𝑋𝑖

𝑚 = 𝑅Φ𝑖
𝐴𝑘𝑖

+ 𝐺𝑖  (2.3) 

Where: 𝑋𝑖
0 is Fourier transform of an input subtomogram i. 𝑋𝑖

𝑚 is the missing Fourier 

components from the 𝑋𝑖
0 due to the MW. 𝑘 is the number of classes chosen by the user, and 𝑘𝑖 

is the class that the subtomogram i will be assigned to it. 𝐴𝑘𝑖
 is one of 𝑘 unknown 3D structures 

in Fourier space. 𝑅Φ𝑖
is the transformation matrix that represents the six-dimensional rigid-body 

alignment parameters Φ𝑖 (three angles and three shifts) that aligns 𝐴𝑘𝑖
 to the subtomogram (and 

its inverse can align the subtomogram to 𝐴𝑘𝑖
). 𝐺𝑖 is independent white Gaussian noise with 

mean zero and unknown standard deviation σ. An alteration of this data model can be done in 

a few ways, such as the absence of the term 𝑋𝑖
𝑚 which leads to a different optimization problem 

[56] or the change of the noise model from white to colored [57]. 

The task is the determination for each subtomogram i the class assignment 𝑘𝑖 and the 

six-dimensional rigid-body alignment parameters Φ𝑖. An optimization algorithm was originally 

implemented in [53] for the task above, and advanced versions were recently implemented in 

the software package Relion [58]. 

Methods summary for analyzing conformational variabilities in subtomograms 

Cellular cryogenic electron tomography (cryo-ET) is currently undergoing its 

“resolution revolution” reaching a near-atomic resolution in situ [59] and allowing studying 

macromolecules in their physiological environment that affects their conformational landscape 

[28, 60].  

This section summarizes and discusses practical considerations, advantages, and 

disadvantages of families of STA and classification methods, summarized in Figure 13. 
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Figure 13 Families of subtomogram averaging and classification. 

Mainstream STA techniques nowadays perform what we can call an exhaustive search 

for the six-dimensional parameters for every subtomogram in a dataset to align all 

subtomograms to a common reference system (the one of the subtomogram average). This six-

dimensional search problem is computationally expensive. Thus, the search for these 

parameters is usually divided into consecutive optimizations by coupling two angles and 

searching for the shifts separately. However, STA remains computationally expensive and 

usually requires a few days to align small-size subtomogram datasets (ranging between 

hundreds to tens of thousands), even on powerful computers using algorithms that use new 

technologies (multiple CPU and GPU computing). Faster alignment of subtomograms can be 

performed using Fast Rotational Matching (FRM) [48] by aligning the subtomograms by taking 

advantage of Spherical Harmonics (Fourier space of spherical coordinates), but it has not yet 

gained popularity in readily available cryo-ET packages despite its high potential in reducing 

the computational time. Other techniques implemented this search based on machine learning 

[61], but it is still an open field and has not yet produced significant results up to my knowledge. 

Subtomogram averaging followed by post-alignment classification, and multireference 

alignment, are widespread techniques for subtomogram alignment and classification and are 

offered by the most readily available packages for cryo-ET data analysis, e.g., Dynamo [50]. 

Post-alignment classification is simple to use and, at least for advanced users, does not 

necessitate defining the number of classes in advance. The resultant dendrogram (tree) can be 

viewed before deciding the number of classes when utilizing post-alignment classification via 

Hierarchical clustering, for example. Furthermore, it is not computationally expensive. Because 
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it is based on reconstructing a covariance matrix (correlation matrix), the matrix can be 

reconstructed once, and a varied number of classes can be tested. However, post-alignment 

classification has a disadvantage: it is strongly reliant on STA alignment quality, which 

degrades with widely varied specimens. 

Multireference alignment methods require prior knowledge of the specimen's 

anticipated conformations by providing a set of starting references. Although these references 

are refined during the alignment, these methods are still prone to bias by the references' choice, 

resulting in overfitting and misinterpretations. Another problem in multireference alignment is 

called the “attractor problem”, where the class that contains the larger number of subtomograms 

results in the highest similarity score with the subtomograms in the dataset since its average has 

the highest SNR. The attractor problem often results in empty classes, i.e., some starting 

references die during iterative alignment due to the attractor problem. 

Maximum likelihood estimation methods for subtomograms alignment and 

classification started to gain popularity in the past few years since they were offered by the 

Relion package [58] (commonly used for SPA and recently extended to cryo-ET). Nevertheless, 

maximum likelihood estimation methods suffer from two major drawbacks. First, the number 

of classes must be set (decided) in advance. A new choice of the number of classes requires 

repeating the entire maximum likelihood-based alignment. Second, they suffer from the 

attractor problem, as in multi-reference alignment techniques explained above. 

Generally speaking, classification helps remove outliers and separate discrete types of 

variabilities. However, the drawbacks discussed above for subtomograms classification 

techniques limit their capacity to provide classes showing transitions of biomolecular 

conformations. The limited number of classes averages out rare conformations necessary to 

understanding the biomolecular landscape. Also, in general, biomolecules are flexible, with 

continuous conformational transitions; hence, particles assigned to the same class will rarely, 

if ever, have perfectly identical conformations, resulting in lower resolution averages. 

With recent instrumentation and software development, more research moves toward 

studying single-particle subtomograms individually (with no or a minimum of averaging) by 

developing new methods for denoising, missing wedge correction, and 3D reconstruction [40, 

41, 62].  
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Chapter 3. State of the art: Chromatin and nucleosome 

studies 

This thesis analyzes cryo-ET data obtained from Drosophila embryos frozen by HPF 

and cryosectioned to explore the conformational variability of nucleosomes in situ. 

The following chapter provides a brief literature review on nucleosome structure and 

dynamics, introduces the biological model used in the study, and explains how HPF and cryo-

ET of vitreous sections (CETOVIS) are employed for data acquisition. 

Chromatin and the Nucleosome Core Particle (NCP) 

Eukaryotic cells organize their genome, reaching several billions of Deoxyribonucleic 

Acid (DNA) base pairs (bp), by packing it into a nucleus [63]. The genome is not randomly 

packed but is organized into chromatin. Chromatin is formed by a series of monomers called 

nucleosomes, forming the so-called “beads-on-a-string” filament [64], as shown in Figure 14. 

Chromatin repeats nucleosomes every 160 to 240 bp of DNA, which varies between 

species, cells, and even within cells. The Nucleosome Core Particle (NCP) [65] shown in Figure 

14 comprises ~146 bp of DNA wrapped ~1.65 times, forming a left-handed superhelix around 

a histone octamer. The histone octamer consists of two copies of each of the histone proteins 

H2A, H2B, H3, and H4. Histones contain flexible N-terminal regions called histone tails, which 

extend from the core and may carry post translational modifications (PTMs), and have critical 

functions in regulating chromatin [66]. 

Chromatin and its nucleosome building blocks regulate the major genome processes of 

transcription, replication, and repair [67, 68]. Different chromatin regions can be functionally 

defined (Figure 15): gene-rich and transcriptionally active euchromatin (EuC), and more 

compact and littler transcribed heterochromatin (HC) domains, including constitutive 

heterochromatin (cHC), gene-poor and enriched in repetitive sequences, and facultative 

heterochromatin (fCH) which can switch between active and repressed states. They have 

different chemical PTMs on the histone tails (acetylation, methylation, and phosphorylation). 

PTMs and other regulatory factors remodel nucleosome distribution in space and time and can 
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incorporate histone variants. For example, PTMs allow chromatin to be more or less condensed 

[69] or bind specific regulatory factors. 

 

Figure 14 (A) “Bead-on-string” structure of chromatin, with nucleosomes linked by a DNA 

segment. (B) The nucleosome core particle consisting of ~146 bp of DNA wrapped ~1.65 

turns around a histone octamer as a building block of chromatin in bead-on-string form. (C) 

Sketch of the histone tails. Adapted from [65, 66]. 

 

Figure 15 Major chromatin regions: cHC, fHC, and EuC differ by histone tail PTMs. 

Courtesy of Amélie Leforestier. 

The nucleosome family of conformations and variants 

The canonical nucleosome structure shown in Figure 14 was obtained by X-ray 

crystallography of engineered nucleosome particles that are identical, symmetric, highly stable, 

and assembled from recombinant histones and optimal DNA sequences [65, 70-73]. However, 
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there is increasing evidence that nucleosomes are a family conformations [28, 67, 74-83]. 

However, most studies were performed in vitro or in silico. 

In vitro, nucleosomes exhibit several types of variations categorized into salt-induced 

transitions, intrinsic dynamics, chemical variations, and conformational changes upon 

interaction with other proteins. An interested reader is referred to recent reviews in [84-86]. 

Examples are illustrated in Figure 16. 

 

Figure 16 Examples of four categories of nucleosome variations obtained from in vitro 

studies. (A) At different salt concentrations, (on top) nucleosomes extend and retract histone 

tails [82], and (on bottom) change the distance between the DNA gyres (P) [28]. (B) 

Nucleosomes can exhibit spontaneous dynamics, such as unwrapping a segment of their DNA 

(or breathing) and gaping, or edge opening [75, 81]. (C) Two examples of histone variants; as 

centromeric CENP-A and H2A.B [77, 87]. (D) Nucleosomes analyzed interacting with linker 

histone H5 and the chromatin remodeling factor ISWI [88, 89]. Adapted from [28, 75, 77, 81, 

82, 87-89]. 

Theoretical models and simulations also predict nucleosome conformational variations 

related to their dynamics and/or and histone composition, as shown in Figure 17  [90], with the 

gaping, opening, and breathing motions, subnucleosomal particles such as “hemisomes” (half 

nucleosomes) [91] or “tetrasomes”, and “reversomes”, nucleosomes with right-handed DNA 

wrapping [92], to mention a few. 
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Figure 17 Examples of hypothetical in silico nucleosome conformational changes showing 

nucleosome gaping, opening (also referred to as DNA unwrapping in other literature), and 

breathing. Non octameric nucleosomes and right-handed particles are also predicted. Adapted 

from [90]. 

In situ, most studies are indirect [93, 94]. Recent cryo-ET approaches provided the first 

direct insights into nucleosome structure and variability. At the start of this thesis, two research 

studies documented nucleosome variability in situ [28, 95], one of which was performed in the 

research group of the co-supervisor of this thesis, Dr. Amélie Leforestier [28]. 

In [95], nucleosomes from a HeLa cell thinned by cryo-FIB milling were observed using 

cryo-ET. The resultant tomogram, shown in Figure 18A, shows the nuclear envelope and the 

nucleoplasm with nucleosomes in densely and loosely populated regions associated with HC 

(Figure 18C) and EuC (Figure 18D). Two averages were also obtained via subtomogram 

averaging and classification shown in Figure 18B, one of which resembles a canonical 

nucleosome and the other associated with longer DNA, as in a chromatosome [96]. 
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Figure 18 (A) Cryotomogram of a cryo-FIB-thinned HeLa cell. The nuclear envelope with a 

nuclear pore complex (arrow) is recognized. Chromatin regions with different nucleosome 

concentrations are observed, corresponding to HC (enclosed by purple dotted lines) and EuC. 

(B) Two subtomogram averages are shown at 50% transparency with the edited 

crystallographic structures docked PDB 1AOI on top and PDB 5NLO (chromatosome with 

linker histone) at the bottom. (C, D) Tomographic slices (10 nm) of the (C, HC) and (D, EuC) 

positions boxed in A, enlarged (zoomed in) by a factor of 4.5. Adapted from [95]. 

Drosophila embryonic brain: a biological model to study nucleosome in situ 

The primary model used in [28] is Drosophila embryonic brain at late developmental 

stages (12-15) shown in Figure 19. Embryos, protected by their vitelline membrane, can be 

vitrified by HPF without damaging risks of osmotic stress induced by the surrounding 

cryoprotective solution. Cell nuclei occupy a relatively large volume fraction in the Drosophila 

embryonic brain cells, thus providing a higher chance of finding chromatin regions in cryo-

sections. In addition, cHC forms a unique compact domain that can be distinguished from 

EuC/fHC upon purely morphological criteria, thus facilitating the identification of chromatin 

compartments, opening perspectives for the retrieval of functional information. These 

advantages render the Drosophila embryos a well-characterized experimental system for 

studying nucleosomes in situ. 
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Figure 19 Drosophila embryo at stages 12-15 used as a biological model for studying 

nucleosomes in situ. Courtesy of Mikhail Eltsov. 

The tools and methods, from Drosophila flies to nucleosome-containing 

tomograms 

This section summarizes the workflow used to obtain nucleosome-containing cryo-

tomograms of Drosophila embryonic brain cells, starting from the culture of the Drosophila 

flies. 

During my Ph.D., I participated in experimental sessions that aim to record new cryo-

tomogram for further analyses. I describe here the procedures used during these experimental 

sessions. Similar procedures were followed by M. Eltsov and A. Leforestier before the 

beginning of my thesis to obtain the tomographic data used in this thesis (see Chapter 4). The 

results available before I started are summarized at the end of this section. 

Drosophila melanogaster flies (Bloomington Stock number 30564) are maintained in a 

standard Bloomington medium, and Embryos are collected on grape juice agar plates as shown 

in Figure 20a. The embryos are floated in water and then plunged in 50% v:v bleach for a few 

seconds in order to dechorionate them, i.e., for dissolving their chorion, to allow their 

vitrification as shown in Figure 20b. The dechorionated embryos are still viable and develop 

normally. They are inspected under a stereomicroscope, and late development stages (14-15) 

are identified [97] and transferred into copper carriers filled with dextran 25% in phosphate-

buffered saline, as embedding medium. The carrier is mounted on the HPF holder (Figure 20c) 

and is transferred to the HPF machine (Wohlwend Compact 03), which applies high pressure 
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(2045 bars) and low temperature (liquid nitrogen at -196°C) simultaneously, as shown in Figure 

20d. 

 

Figure 20 Experimental procedures followed to culture Drosophila embryos (a) rinsing and 

dechorionated them (b) identifying late development stages and transferring them on carriers 

then HPF rod (c) vitrifying the embryos using HPF (d). See text for details. 

Frozen embryos are sectioned at -145°C using an ultramicrotome (Leica Ultracut 

FC6/UC6) installed in a controlled environment (humidity level is maintained below 20%) 

using diamond knives (25°, Diatome) to obtain sections of 50 or 75 nm thickness, that are 

collected on EM grids (e.g., Quantifoil R2/2), as shown in Figure 21a. The sections are checked 

by 2D imaging using an available EM (JEOL 2010F at LPS) until nuclei-rich cell regions are 

reached (embryonic brain cells); serial sections of these regions are then prepared and stored 

for cryo-ET (tilt series acquisition) using a high-end EM (Titan Kryos 300kV), as shown in 

Figure 21b. The raw data (tilt series movies) are processed and reconstructed into a tomogram 

(see Chapter 4 for more details). 
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Figure 21 Cryo-Sectioning of Drosophila embryos (a) and cryo-ET tilt-series acquisition on 

high-end cryo-EM (b). See text for details. Source: ((a), bottom) Courtesy of M.Eltsov & 

A.Leforestier. ((b), bottom) Courtesy of Fatima Taiki.  

In my thesis, I analyzed a dataset obtained by M. Eltsov with a Titan Krios (FEI, 

Thermofischer, Eindhoven, The Netherlands) operated at 300 kV equipped with a GATAN GIF 

Quantum SE post-column energy filter and K2 Summit direct electron detector (Gatan, 

Pleasanton, USA). Tilt series were recorded using Serial EM software 

(https://bio3d.colorado.edu/SerialEM) [98] at a nominal magnification of 64000 × (2.2 

Å/pixel), and a target defocus of -3.5 µm. The dose-symmetric recording scheme [99] was 

applied within an angular range from 60˚ to +60˚, with a starting angle 0˚ and an angular 

increment of 2˚. The electron dose was set to 1.5 𝑒−/ Å2 for individual tilt images, corresponding 

to the total dose of 91.5 𝑒−/ Å2 for the complete tilt series. A marker-less tilt series alignment 

was done in IMOD [100], three dimensional CTF correction and weighted backprojection with 

the voxel size of 4.4 Å were performed using EmSART (https://github.com/uermel/Artiatomi) 
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[101] provided by Achilleas Frangakis [99, 100].  The reconstructed volumes were denoised 

using 3D non-linear anisotropic diffusion filter of Etomo of IMOD (k = 1, 15 iterations).  

These data allowed visualization of individual nucleosomes in situ at a level of detail 

sufficient to follow the DNA wrapped around and measure the distance between the DNA gyres 

(see Figure 22). This has in particular revealed a variation of this distance, indicative of a 

gaping-like conformational variability in situ.  

 

Figure 22 CETOVIS of Drosophila embryonic brain interphase nuclei. (a) A virtual slice of a 

tomogram (5 nm) shows the nuclear envelope and a nuclear pore complex (NPC); regions 

enclosed in dashed lines are highly populated in nucleosomes (arrows). (b) Four nucleosome 

views (3 side views and the top view) identified in the tomogram are compared to cryo-ET 

images simulated from the crystallographic structure PDB 1EQZ. The distance P between the 

DNA gyres around the nucleosome can be measured in side views (orange line profiles). (c) 

Histogram of the distance between the DNA gyres. Adapted from [28]. 
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Chapter 4. Background for the methods developed in this 

thesis and an experimental dataset of nucleosomes in situ 

analyzed with these methods 

In this thesis, two cryo-ET data processing methods for analyzing continuous 

conformational variability of biomolecular complexes were developed, namely, HEMNMA-

3D and TomoFlow, and they were used to analyze a dataset of nucleosomes in situ. 

HEMNMA-3D is based on matching simulated movements with subtomograms based 

on Normal Mode Analysis (NMA), whereas TomoFlow extracts such movements from the data 

based on 3D dense optical flow. 

This chapter reviews NMA and optical flow and explains how the dataset for 

nucleosomes in situ was obtained and pre-processed before it was analyzed in terms of 

conformational variability using HEMNMA-3D and TomoFlow. 

Normal Mode Analysis (NMA) 

When an atomic structure with N atoms is represented in the Cartesian coordinate 

system, three coordinates represent every atom in space. The Cartesian representation gives 

each atom three degrees of freedom and the overall structure 3N degrees of freedom. These 

degrees of freedom explain how this structure might change the conformation when interacting 

with its environment. However, the atoms forming a macromolecular structure are connected 

via chemical bonds; hence, not all these degrees of freedom represent physically feasible 

motions. In other words, the structure is associated with its energy. 

Two methods are commonly used to simulate molecular mechanics, namely, Molecular 

Dynamics (MD) [102] and Normal Mode Analysis (NMA) [103]. 

MD simulations are based on exploring different conformations using the Cartesian 

coordinates of atoms while considering the energy cost caused by the modification of bond 

strengths, angles, and electrostatic interactions of the atomic structure with its simulated 

environment. MD simulations can be accurate, but they are computationally demanding, and 

the simulation setting is a tedious task. 
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NMA simplifies macromolecular degrees of freedom that describe the motions of the 

structure by changing the coordinate system to a set of elastic motion degrees called normal 

modes. This section summarizes the computation of normal modes based on the elastic network 

model [104, 105]. This model represents the interaction between the atoms as locally connected 

by elastic springs within a cutoff distance, giving rise to the following energy function. 

𝐸𝑝  =  ∑ 𝐸𝑝(𝑟𝑖 , 𝑟𝑗)

𝑟𝑖,𝑗
0 <𝑅

 
(4.1) 

Where R denotes the radius of interaction between the atoms, 𝑟𝑖,𝑗 = |𝑟𝑖 − 𝑟𝑗| denotes the 

distance between the atoms i and j, the zero superscripts indicate the given initial configuration, 

and 𝐸(𝑟𝑖 , 𝑟𝑗) denotes the Hookean pairwise potential between atoms i and j, and is given by: 

𝐸𝑝(𝑟𝑖 , 𝑟𝑗) =
𝐶

2
(𝑟𝑖,𝑗 − 𝑟𝑖,𝑗

0 )
2
 

(4.2) 

Where C is the bond strength between the connected atoms (spring stiffness constant).  

It is evident in eq (4.2) that this model assumes that the potential energy is equal to zero 

at the initial configuration (substituting 𝑟𝑖,𝑗 by 𝑟𝑖,𝑗
0 ). In other words, this model assumes that the 

initial structure is given at minimum energy conformation before calculating NMA. 

For a conformation 𝒓, this potential energy can be expanded around its initial 

conformation 𝒓𝟎 as the following Taylor series: 

𝐸𝑝(𝒓)  =  𝐸𝑝(𝒓𝟎)  +  ∑(
𝜕𝐸𝑝

𝜕𝑟𝑖
)0(𝑟𝑖 − 𝑟𝑖

0)

𝑖

+
1

2
∑ (

𝜕2𝐸𝑝

𝜕𝑟𝑖𝜕𝑟𝑗
)0(𝑟𝑖 − 𝑟𝑖

0)(𝑟𝑗 − 𝑟𝑗
0)

𝑖,𝑗
 +  ⋯ 

(4.3) 

Where superscripts of zero indicate the initial conformation. The first term is zero 

because it is the potential energy of the initial structure, which is assumed to be zero. The second 

term is zero because the first derivative of the potential energy is evaluated at the initial 

conformation, which is assumed to be the minimum of the potential energy. 
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Hence, an estimate of the potential energy to second-order is the sum of pairwise 

potentials: 

𝐸𝑝(𝒓) ≈
1

2
∑ (

𝜕2𝐸𝑝

𝜕𝑟𝑖𝜕𝑟𝑗
)0(𝑟𝑖 − 𝑟𝑖

0)(𝑟𝑗 − 𝑟𝑗
0)

𝑖,𝑗
 

=   
1

2
∑ (𝑟𝑖 − 𝑟𝑖

0) 𝐻𝑖,𝑗  (𝑟𝑗 − 𝑟𝑗
0)  =  

1

2
 ∆𝒓𝑻𝑯

𝑖,𝑗
∆𝒓 

(4.4) 

Where 𝑯 is the Hessian matrix obtained from the second derivatives of the potential 

with respect to the displacements 𝒓, and ∆𝒓 is the vector of the atomic displacements of the 

structure relative to the initial conformation.  

Now, by substituting eq (4.1) in the second derivative of the potential energy (
𝜕2𝐸𝑝

𝜕𝑞𝑖𝜕𝑞𝑗
) 

we get the following derivatives [106]: 

𝜕2𝐸𝑝

𝜕𝑥𝑖𝜕𝑦𝑗
 =  −

𝐶(𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗)

𝑟𝑖,𝑗
2

,
𝜕2𝐸𝑝

𝜕𝑥𝑖𝜕𝑧𝑗
 =  −

𝐶(𝑥𝑖 − 𝑥𝑗)(𝑧𝑖 − 𝑧𝑗)

𝑟𝑖,𝑗
2

,

𝜕2𝐸𝑝

𝜕𝑦𝑖𝜕𝑧𝑗
 =  −

𝐶(𝑦𝑖 − 𝑦𝑗)(𝑧𝑖 − 𝑧𝑗)

𝑟𝑖,𝑗
2

 

(4.5) 

Where x, y and z represent the Cartesian components of the atoms. 

Hence, 𝐻𝑖,𝑗 which is equal to (
𝜕2𝐸𝑝

𝜕𝑞𝑖𝜕𝑞𝑗
)0 for 𝑖 not equal to 𝑗, and 𝑟𝑖,𝑗

0 < 𝑅: 

𝐻𝑖,𝑗  =  −
𝐶

𝑟𝑖,𝑗
0 2

[
 
 
 
 𝑥𝑖,𝑗

0 2
𝑥𝑖,𝑗

0 𝑦𝑖,𝑗
0 𝑥𝑖,𝑗

0 𝑧𝑖,𝑗
0

𝑥𝑖,𝑗
0 𝑦𝑖,𝑗

0 𝑦𝑖,𝑗
0 2

𝑦𝑖,𝑗
0 𝑧𝑖,𝑗

0

𝑥𝑖,𝑗
0 𝑧𝑖,𝑗

0 𝑦𝑖,𝑗
0 𝑧𝑖,𝑗

0 𝑧𝑖,𝑗
0 2

]
 
 
 
 

 (4.6) 

Where 𝐻𝑖,𝑗 = 0 for 𝑟𝑖,𝑗
0 > 𝑅 and the diagonal submatrices 𝐻𝑖,𝑖 are given by: 

𝐻𝑖,𝑖  =  − ∑ 𝐻𝑖,𝑗
𝑗; 𝑗≠𝑖

 (4.7) 

It is obvious that is of size 3N x 3N, where N is the number of atoms in the structure. 
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The eigenvectors of the Hessian matrix 𝑯 are normal mode vectors, and its eigenvalues 

are squares of normal mode frequencies: 

𝑯 𝒂𝒋 = 𝜔𝑗
2𝒂𝒋 (4.8) 

Where 𝒂𝒋 and 𝜔𝑗
2 are the eigenvectors and eigenvalues of 𝑯, respectively. Recall that 

𝑯 is symmetrical, which renders its eigenvalues real and positive, and its eigenvectors real and 

orthogonal [107]. 

Solving the problem in eq (4.8) is equivalent to the diagonalization of 𝑯, which is 

equivalent to setting the cross-products 𝑖, 𝑗 of the second-order term of the potential energy 

functions to zero and keeping only quadratic terms 𝑖, 𝑖, i.e., a harmonic approximation of the 

potential energy function: 

𝑨𝑻 𝑯 𝑨 =  𝑳 (4.9) 

Where 𝑨 =  [𝒂𝟏 ⋯ 𝒂𝟑𝑵] and 𝑳 =  (
𝜔1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜔3N

) 

𝑯 has six zero eigenvalues in general, i.e., zero frequency modes, corresponding to 

rigid-body shifts and rotations. Therefore, this reduces the number of normal modes 

representing non-rigid-body motions to 3N-6. 

NMA simulates molecular mechanics for atomic structures. However, it is also possible 

to perform NMA on EM maps after converting them into a collection of Gaussian functions 

(pseudoatoms) that describe well the shape of the molecule [108, 109].  

The diagonalization of the Hessian matrix is the most computationally demanding part 

of NMA. In the case of atomic structures, one way to reduce the size of the Hessian is to use 

the rotation-translation block (RTB) method, which divides the structure into blocks (one or a 

few consecutive residues per block) whose rotations and translations are considered rather than 

all degrees of freedom for all atoms [110, 111]. Since the RTB method reduces the basis for 

Hessian diagonalization, it allows fast computing of normal modes. 

Normal modes represent a basis for molecular elastic deformation, i.e., a 

macromolecular structure at conformation 𝐴 displaced using a linear combination of given 
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amplitudes along its 𝑀 normal modes will reach a conformation 𝐵. Hence, one of the common 

applications of NMA is its usage for the elastic deformation of an existing atomic (or 

pseudoatomic) structure of one conformation to fit an EM map of a different conformation of 

the same macromolecule, which is usually known as normal mode flexible fitting (shown in 

Figure 23) and allows obtaining atomic (or pseudoatomic) resolution models for the EM map 

[105, 112-114]. 

We will see an extension of normal mode elastic fitting to subtomographic data in 

Chapter 5. For more details on NMA and other methods to calculate normal modes, the reader 

is referred to [106]. 

 

Figure 23 The general scheme of elastic deforming of a reference structure (atomic or 

pseudoatomic) using normal modes to fit a density map (e.g., an EM map or a subtomogram 

average). 

Optical flow 

Optical flows are a family of computer vision algorithms representing movements in 

image sequences [115]. A typical optical flow algorithm takes as input two video frames and 

finds the corresponding pixel-to-pixel displacements between the two images. Some optical 

flow algorithms track the displacements of features that are extracted from the images (features 

can be edges, corners, etc.) and are called sparse optical flows. Whereas dense optical flow 
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algorithms, which will be discussed in this chapter and serve as background for one of the 

methods developed in this thesis (TomoFlow in Chapter 6), find the displacement 

corresponding to all the pixels between the two images. The term optical flow will refer to 

dense optical flow hereafter. 

Given two images, 𝐼1 and 𝐼2, of moving 3D objects. A typical example for 𝐼1 and 𝐼2 is 

when they represent two consecutive video frames of a video 𝐼, i.e., 𝐼1 = 𝐼(𝑡) and 𝐼2 = 𝐼(𝑡 +

1); however, they can also be two similar enough images where the notion of time is not 

essential, such as in the problem of deformable image registration [116] (see Figure 24). 

 

Figure 24 Optical flow between two video frames shows each pixel's displacement (A). An 

optical flow application on finding an object's deformation in multiple views (B). Adapted 

from [117, 118]. 

To find the relationship between the pixels of two images 𝐼1 and 𝐼2, one can start by 

assuming that the brightness of pixels does not change during the motion between the pixels of 

the two images, i.e., for a pixel (𝑥, 𝑦) in 𝐼1, the same pixel brightness should be found at some 

distance (𝑢, 𝑣) from that pixel in 𝐼2, as follows: 

𝐼1( 𝑥 , 𝑦 )  =  𝐼2( 𝑥 +  𝑢 , 𝑦 +  𝑣 ) (4.10) 

A second assumption is that pixel displacement is small and can be approximated with 

the first term of Tailor expansion (one-pixel range), as follows: 

 𝐼( 𝑥 +  𝑢 , 𝑦 +  𝑣 ) ≈  𝐼(𝑥, 𝑦)  +
𝜕𝐼

𝜕𝑥
𝑢 + 

𝜕𝐼

𝜕𝑦
𝑣 (4.11) 
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Dense optical flow can be defined as the set of (𝑢, 𝑣) for each pixel (𝑥, 𝑦) between 𝐼1 

and 𝐼2 to satisfy (4.10 – 4.11). 

Those two assumptions were reasonable to establish a practical computational base for 

the optical flow. Still, they are limiting factors because brightness values can change during the 

motion, and the motion can be beyond the one-pixel range. The work of Gunner Farneback in 

[119] provides solutions for those two problems based on quadratic expansions by i) assuming 

that the flow field is smooth locally (close pixels move in the same direction) and estimating a 

displacement vector for each pixel while taking into account its neighborhood helps in 

minimizing brightness errors and sensitivity to noise; and ii) calculating optical flow iteratively, 

i.e., an optical flow found at iteration n becomes a prior used to estimate optical flow at iteration 

n+1, and on multiple scales (pyramids) of the input images help estimate motion fields that 

account for larger pixel displacement. 

The next section summarizes the work of optical flow calculation proposed by Gunner 

Farneback in [119]. 

Estimating optical flow based on quadratic expansions (Farneback optical flow) 

Farneback optical flow [119] represents a pixel neighborhood in an image by a quadratic 

function. A quadratic function is given by: 

𝑓(𝒙) =  𝒙𝑇𝑨𝒙 +  𝒃𝒙 +  𝑐 (4.12) 

Where A is a symmetrical matrix, b is a vector, and c is a scalar, and these parameters 

(A, b, and c) can be found based on the weighted least square fit of the signal (pixel 

neighborhood). 

Now, given a quadratic expansion 𝑓1 if translated by a displacement 𝑑, and the result is 

𝑓2, then: 

𝑓2(𝒙) = 𝑓1(𝒙 − 𝒅) = (𝒙 − 𝒅)𝑇𝑨𝟏(𝒙 − 𝒅) + 𝒃𝟏(𝒙 − 𝒅) + 𝑐1  

=  𝒙𝑇𝑨𝟐𝒙 + 𝒃𝟐𝒙 + 𝑐2 
(4.13) 

Where: 
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𝑨𝟐 = 𝑨𝟏 (4.14) 

𝒃𝟐 = 𝒃𝟏  −  𝟐𝑨𝟏𝒅 (4.15) 

𝑐2 = 𝒅𝑇𝑨𝟏𝒅 − 𝒃𝟏
𝑇𝒅 + 𝑐1 (4.16) 

Then, the displacement 𝑑 can be found as: 

𝐝 =  −
1

2
𝑨𝟏

−1(𝒃𝟐  − 𝒃𝟏), 𝑨𝟐 = 𝑨𝟏 (4.17) 

Now in the cases where we have two image neighborhoods, one would first find the 

quadratic approximations of both images in some neighborhoods, i.e., 𝑨𝟏(x), 𝒃𝟏(𝒙), 𝑐1(𝒙), 

𝑨𝟐(x), 𝒃𝟐(𝒙), and 𝑐2(𝒙). Then, the task is to model the translations 𝒅(𝒙) for every pixel. 

We can set 𝑨(𝒙) as: 

𝑨(𝒙)  =  
1

2
(𝑨𝟏(𝒙)  + 𝑨𝟐(𝒙)) (4.18) 

Then 𝒅(𝒙) can be found by substituting 𝑨(𝒙) in eq (4.15) by: 

𝑨(𝒙) 𝒅(𝒙)  =  −
1

2
(𝒃𝟐(𝒙)  − 𝒃𝟏(𝒙))  =  ∆𝒃(𝒙) (4.19) 

Where ∆𝒃(𝒙) =  −
1

2
(𝒃𝟐(𝒙) − 𝒃𝟏(𝒙)).   

Note that 𝒅(𝒙) is a spatially varying displacement field that replaces the global 

displacement 𝒅 used in eq (4.13).  

In principle, eq (4.19) can be solved pointwise, but further improvement in the accuracy 

of the resultant displacement field can be achieved when integrating the information over the 

neighborhood by satisfying eq (4.19) with a solution that minimizes: 

∑ 𝑤𝑖

𝑖 ∈ 𝑁

‖𝑨𝒊 𝒅(𝒙) − ∆𝒃𝒊‖
2 (4.20) 

Where 𝑖 represents the indices of pixels in a neighborhood 𝑁, and 𝒘 represents the 

weights given for the neighborhood when estimating the displacement for a specific pixel. The 
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central pixel should have the highest weight, and other pixels are weighted according to their 

distances.  

The solution 𝒅(𝒙) that minimizes eq (4.20) is given by:  

𝒅(𝒙)  =  (∑ 𝑤𝑖

𝑖 ∈ 𝑁

𝑨𝒊
𝑻𝑨𝒊)

−1 ∑ 𝑤𝑖

𝑖 ∈ 𝑁

𝑨𝒊
𝑻∆𝒃𝒊 (4.21) 

Now assume that an a priori displacement vector �̃�(𝒙) is known for the displacement 

between 𝑓1 and 𝑓2. Then eq (4.18 – 4.19) can be updated by: 

𝐀(𝐱)  =  
1

2
(𝑨𝟏(𝒙)  + 𝑨𝟐(�̃�)) (4.22) 

∆𝒃(𝒙)  =  −
1

2
(𝒃𝟐(�̃�)  −  𝒃𝟏(𝒙)) + 𝑨(𝒙)�̃�(𝒙) (4.23) 

Where �̃�  =  𝒙 + �̃�(𝒙). Obviously, substituting �̃�(𝒙) with zero in eq (4.22 – 4.23) gives 

back eq (4.18 – 4.19). This prior displacement field can be used in two ways; the first is to find 

the displacement field iteratively, starting with �̃�(𝒙) equals zero at the first iteration. And the 

second is to find the optical flow at multiple scales, with multiple iterations at every scale, 

starting from the coarsest scale and moving up, by using the optical flow from one scale as a 

prior at the following scale. 

In this thesis, I have used a 3D version of Farneback optical flow, which directly extends 

the original implementation of 2D Farneback optical flow. The following sections explain the 

multiscale iterative approach used to find Farneback-3D optical flow and examine its 

robustness to noise when finding optical flow between noisy EM maps. 

Multiresolution pyramidal approach for 3D optical flow calculation 

This section describes the multiresolution pyramidal approach for 3D optical flow (OF) 

calculation with Farneback-3D toolbox (https://pypi.org/project/farneback3d), which is used in 

TomoFlow (in Chapter 6).  

The 3D OF pyramidal approach involves (i) creating a multiresolution volume pyramid 

by downsampling the volume at each pyramid level (see Figure 25), (ii) calculating OF 

iteratively at each pyramid level, and (iii) propagating the OF calculated at a coarser level to 
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the next finer level in order to refine it, until the finest (original volume) level is reached. 

Between the pyramid scales, the OF propagation is done by upsampling the OF found on a 

coarser level to the next finer level and applying this upsampled OF onto the reference volume 

at the finer level to create a warped reference that is then used to find the OF at that finer level.  

In Farneback-3D, a Gaussian anti-aliasing filtering is applied to the volume at each 

pyramid level before the volume is downsampled (the Gaussian standard deviation is adjusted 

to the scaling factor selected for downsampling). The scaling factor of 0.5 was used in the 

experiments in this section and in TomoFlow, meaning that each volume dimension was 

reduced by 2 at each pyramid level. The coarsest volume pyramid level is 32x32x32 voxels, 

which is the coarsest level allowed by Farneback-3D; also, we used 2-level pyramids for 

volumes of size 643 voxels and 3-level pyramids for volumes of 1283 voxels. We used a window 

size of 10 × 10 × 10 voxels for integrating the displacement field over a neighborhood of each 

voxel and 10 iterations of the algorithm at each pyramid level. All other parameters of 

Farneback-3D were used with their default values. TomoFlow graphical interface, integrated in 

ContinuousFlex (in Chapter 7) allows modifying these values. 

The OF is first calculated on the coarsest pyramid level (lowest scale) and, then, it is 

refined on the first finer pyramid level (larger scale), followed by the refinement on the next 

one etc., until the refinement on the finest pyramid level (original scale, i.e., the input volumes). 

For each pyramid level, the OF is calculated iteratively. In each iteration, the calculated OF is 

applied to the reference volume to warp it; this warped reference is then used to find the OF in 

the next iteration and produce the reference for the following iteration, etc., until the 

convergence is achieved (the OF between two successive iterations does not change 

significantly).  

 

Figure 25 Multiresolution data pyramid scheme. 
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The robustness of Farneback-3D to noise  

In this section, we show the performance of the Farneback 3D optical flow (OF) method 

in matching different conformational variability magnitudes, challenged by noise only. Also, 

we provide a quantitative assessment of the algorithm for mapping conformations while 

disentangling it from the subtomographic-approach limitations such as missing wedge and 

rigid-body (angular and shift) variability. The PDB:4AKE chain A structure (obtained at 2.2 Å 

resolution by X-ray crystallography and referred here to as AK) was used to synthesize three 

conformations by elastic deforming AK using its normal mode 7 and gradually increasing the 

amplitude of the mode. The three synthesized conformations were then converted into volumes 

(volume size: 1283 voxels; voxel size: 1 Å3) and noise was applied directly onto these volumes 

(without low-pass filtering of the volumes or synthesizing tilt series and calculating 3D 

reconstructions). 

The conformational distance of each of the three synthetic conformations is reflected by 

the selected amplitude of normal mode 7. The following three values of the amplitude were 

used: 1) -75 (the structure referred to as AK_75), 2) -125 (the structure referred to as AK_125), 

and 3) -200 (the structure referred to as AK_200). The four atomic structures (AK, AK_75, 

AK_125 and AK_200) are shown in Figure 26. These structures converted into volumes are 

shown in Figure 27.  

The root mean square deviations (RMSDs) of the AK_75, AK_125 and AK_200 

structures with respect to the AK structure are shown in Table 1, along with the cross-

correlations (CC) between the AK volume and each of the AK_75, AK_125 and AK_200 

volumes. 

Random Gaussian noise was added to each of the AK_75, AK_125 and AK_200 

volumes in such a way to obtain the following 6 values of the signal-to-noise ratio (SNR): 1) 

0.5, 2) 0.1, 3) 0.05, 4) 0.01, 5) 0.005, and 6) 0.001. In Figure 28, we show the different SNR 

values of the volumes using central slices of the noisy AK_125 volumes as an example. 

The OF was calculated using Farneback-3D with a 3-level volume pyramid of a scaling 

factor of 0.5 (meaning a pyramid with the levels of 1283, 643 and 323 voxels for the test datasets 

analyzed in this section, where 323 voxels is the coarsest pyramid level allowed by Farneback-

3D). 
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We calculated the OFs between the non-noisy AK volume and the noisy AK_75, 

AK_125 and AK_200 volumes (6 SNR values for each of AK_75, AK_125 and AK_200). Each 

OF was used to warp the AK volume. The obtained warped AK volumes are the non-noisy 

estimates of the noisy AK_75, AK_125 and AK_200 volumes and are called “matched” 

volumes (the term introduced in the TomoFlow, see Chapter 6). 

The “matched” volumes for AK_75, AK_125 and AK_200 are shown Figure 29, Figure 

30, and Figure 31, respectively. The CCs between the non-noisy versions of each of the AK_75, 

AK_125 and AK_200 volumes and the corresponding “matched” volumes are presented in 

Table 2. 

The visual comparison in Figure 29, Figure 30, and Figure 31, and the corresponding 

results in Table 2 indicate that the matched volume approached the conformation in all different 

noisy volumes (the CC between the matched volume and each of the non-noisy versions of the 

AK_75, AK_125 and AK_200 volumes is always higher than the original cross correlation 

before the matching). Better results were obtained for smaller magnitudes of the conformational 

change and lower noise levels. 
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AK AK_75 AK_125 AK_200 

    
AK + AK_75 + AK_125 

+ AK_200 

AK + AK_75 AK+ AK_125 AK + AK_200 

    

Figure 26 Atomic structures used in the experiment. See the text in this section for details on 

how they were obtained.  

 

 

AK AK_75 AK_125 AK_200 

    
AK + AK_75 + AK_125 

+ AK_200 

AK + AK_75 AK+ AK_125 AK + AK_200 

    

Figure 27: Volumes used in the experiment. See the text in this section for details on how they 

were obtained. 
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Figure 28 Central slices of the volume AK125 at different values of the signal-to-noise ratio 

(SNR). 
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Before OF 

matching 

AK AK_75 AK + AK_75 

   
 

After OF matching 

Matched SNR 0.5 Matched SNR 0.5 + 

AK_75 

Matched SNR 0.1 Matched SNR 0.1 + 

AK_75 

    
Matched SNR 0.05 Matched SNR 0.05 + 

AK_75 

Matched SNR 0.01 Matched SNR 0.01 + 

AK_75 

    
Matched SNR 0.005 Matched SNR 0.005 + 

AK_75 

Matched SNR 0.001 Matched SNR 0.001 + 

AK_75 

    

Figure 29 OF-based matching of the non-noisy AK volume to different noisy versions of the 

AK_75 volume. 
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After OF matching 

Matched SNR 0.5 Matched SNR 0.5 + 

AK_125 

Matched SNR 0.1 Matched SNR 0.1 + 
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Matched SNR 0.05 Matched SNR 0.05 + 

AK_125 

Matched SNR 0.01 Matched SNR 0.01 + 
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Matched SNR 0.005 Matched SNR 0.005 + 

AK_125 

Matched SNR 0.001 Matched SNR 0.001 + 

AK_125 

    

Figure 30 OF-based matching of the non-noisy AK volume to different noisy versions of the 

AK_125 volume. 
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Before OF 

matching 

AK AK_200 AK + AK_200 

   
 

After OF matching 

Matched SNR 0.5 Matched SNR 0.5 + 

AK_200 

Matched SNR 0.1 Matched SNR 0.1 + 

AK_200 

    
Matched SNR 0.05 Matched SNR 0.05 + 

AK_200 

Matched SNR 0.01 Matched SNR 0.01 + 

AK_200 

    
Matched SNR 0.005 Matched SNR 0.005 + 

AK_200 

Matched SNR 0.001 Matched SNR 0.001 + 

AK_200 

    

Figure 31 OF-based matching of the non-noisy AK volume to different noisy versions of the 

AK_200 volume. 
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Table 1 Quantitively measure of the difference between the AK conformation and each of the 

three synthetic conformations used here (AK_75, AK_125 and AK_200), expressed in terms 

of the root mean square deviation (RMSD) between the atomic structures and in terms of the 

cross-correlation (CC) between the volumes from these atomic structures. Note here that the 

CC in this table is calculated for non-noisy volumes. 

 AK_75 AK_125 AK_200 

RMSD compared to AK [Å] 1.8431 3.0719 4.915 

CC with AK 83.78% 73.27% 61.59% 
 

Table 2 Cross-correlation between the “matched” AK volume and the non-noisy AK_75, 

AK_125 and AK_200 volumes. The AK volume “matching” was done with respect to 

different noisy versions of the AK_75, AK_125 and AK_200 volumes. 

 SNR 0.001 SNR 0.005 SNR 0.01 SNR 0.05 SNR 0.1 SNR 0.5 

AK_75 94.75% 98.18% 98.50% 98.96% 99.01% 99.06% 

AK_125 92.71% 97.23% 97.90% 98.52% 98.65% 98.65% 

AK_200 86.23% 95.27% 96.56% 97.46% 97.53% 97.63% 

An experimental dataset used to analyze nucleosomes in situ 

The Drosophila embryo cryo-sample preparation, vitreous sectioning, tilt series 

acquisition, and tomogram reconstruction were performed as described in Chapter 3 and in [28]. 

The dataset preprocessing described in this section was provided by Dr. Mikhail Eltsov 

(IGBMC, Strasbourg University, Strasbourg). 

A slice of the experimental nucleosome tomographic data is shown in Figure 32. 

Nucleosomes were manually picked in IMOD. Then, 643 voxel subtomograms (voxel size of 

4.4 Å) were extracted from the original non-denoised volumes. To refine manually-picked 

nucleosome coordinates, subtomogram alignment and averaging were performed with 

SubTomogramAveraging (https://github.com/uermel-/Artiatomi) script using a sum of the 

randomly rotated subtomograms as an initial reference. 

Alignment of subtomograms was performed in two steps. Initially, a bandpass filter was 

applied with a low cutoff frequency of 3 reciprocal-space pixels, a high cutoff frequency of 8 

reciprocal-space pixels, and a Gaussian edge smoothing with a standard deviation of 3 

reciprocal-space pixels. Ten iterations of an unconstrained rotational search (three rotational 

degrees of freedom) were performed with an angular sampling step of 10, and a translational 

search (three translational degrees of freedom) was performed within a radius of 5 real-space 

pixels. In the second step, a bandpass filter was applied with low and high cutoff frequencies 
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of 15 reciprocal-space pixels and 3 reciprocal-space pixels, respectively, and a Gaussian edge 

smoothing with a standard deviation of 3 reciprocal-space pixels. At that step, 20 iterations of 

the rotational search were performed with an angular sampling step of 2, constrained to 20° 

around the orientation found in the previous step, and the translational search radius was 

reduced to 3 real-space pixels. The cross-correlation between the last several iteration averages 

(0.994) indicated the stabilization of the subtomogram alignment. A new set of subtomograms 

of the same dimensions and voxel size was extracted at the refined nucleosome positions were 

exported to be analyzed by HEMNMA-3D and TomoFlow (in Chapters 5 and 6). The 

nucleosome data used in this thesis have been deposited in EMPIAR and EMDB databases 

under the accession codes EMPIAR-10679 and EMD-12699, respectively. 

The nucleosome conformational variability detected in this dataset in previous works 

[28, 120] was mainly described as gapping and breathing motions of the nucleosome [90]. 

However, these conformational variabilities were previously identified only via manual 

measurements [28]. 

 

Figure 32 A slice of the experimental nucleosome tomographic data: (A) A 5-nm thick slice 

through a tomographic reconstruction showing an area of compact chromatin at a nuclear 

periphery (chromatin) that is easily distinguished from cytoplasm filled with ribosomes 

(arrows). (B) An enlargement of the chromatin area is outlined with a white square in (A). 

Circles indicate positions of nucleosomes selected for subtomogram extraction. 
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Chapter 5. HEMNMA-3D: Cryo-ET data processing 

method based on NMA to analyze continuous 

conformational variability of biomolecular complexes 

This chapter presents HEMNMA-3D, the first method for analyzing cryo-electron 

subtomograms in terms of continuous conformational changes of complexes. 

HEMNMA-3D combines elastic and rigid-body 3D-to-3D iterative alignments of a 

flexible 3D reference (atomic structure or electron microscopy density map) to match the 

conformation, orientation, and position of the complex in each subtomogram. 

The elastic matching combines molecular mechanics simulation (Normal Mode 

Analysis of the 3D reference) and experimental, subtomogram data analysis. The rigid-body 

alignment includes compensation for the missing wedge due to the limited tilt angle of cryo-

ET. The conformational parameters (amplitudes of normal modes) of the complexes in 

subtomograms obtained through the alignment are processed to visualize the distribution of 

conformations in a space of lower dimension (typically, 2D or 3D), referred to as the space of 

conformations. This allows a visually interpretable insight into the dynamics of the complexes, 

by calculating 3D averages of subtomograms with similar conformations from selected 

(densest) regions and by recording movies of the 3D reference's displacement along selected 

trajectories through the densest regions. 

HEMNMA-3D was published in 2021 in two manuscripts. The first manuscript [120] 

describes HEMNMA-3D and shows its validation using synthetic datasets and its application 

to the experimental dataset describing in situ nucleosome conformational variability (presented 

in Chapter 4). The second manuscript [121] (a more detailed version available on bioRxiv 

[122]) compares HEMNMA-3D to conventional methods of subtomogram averaging and 

classification on a synthetic dataset of nucleosome conformational variability. 

This chapter presents the method and results originally published in the mentioned 

articles. 
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HEMNMA-3D method 

A graphical summary of HEMNMA-3D is presented in Figure 33. The flowchart in 

Figure 34 describes the workflow of the proposed method, which was inspired by the workflow 

of HEMNMA [43, 123]. 

 

Figure 33 A graphical summary of the data flow of HEMNMA-3D. (A) Input subtomograms 

containing the same biomolecule but at different orientations, positions, and conformations 

(here represented with a low noise level for illustration). (B) Input subtomograms projected 

onto a low-dimensional “space of conformations,” describing and visualizing the 

biomolecular conformational variability contained in the subtomograms. (C) Grouping of 

close points (subtomograms with similar biomolecular conformations) and averaging of 

subtomograms in these groups. (D) Animating biomolecular motion along trajectories 

identified in the densest regions. 

The workflow of HEMNNA-3D comprises the following steps: 

(1) Input: the input to the method are a reference structure and a set of subtomograms. 

In the case where the reference structure is a density map (a 3D volume such as an EM map or 

a subtomogram average), a conversion to 3D Gaussian functions (pseudoatoms) takes place.  

(2) Normal mode analysis of the reference atomic structure or the reference 

pseudoatomic structure (obtained by converting the reference density map into 3D Gaussian 

functions in the previous step). 

(3) Combined iterative elastic and rigid-body 3D-to-3D alignment of the reference 

structure with the input subtomograms, with missing wedge compensation. 

(4) Visualization of computed conformations. 
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In the remaining part of this section, we describe these steps in more detail. Please note 

that the first two steps of the workflow are exactly as those of HEMNMA and were thoroughly 

presented, tested and discussed in previously published works on HEMNMA, its tools and 

applications [43, 108, 109, 123, 124], one of which I contributed [123]. Here, we recall their 

basic principles. 

 

Figure 34 Flowchart of HEMNMA-3D. (A) Workflow. (B) Combined iterative elastic and 

rigid-body 3D-to-3D alignment step (the core module of HEMNMA-3D). 

Input reference and conversion of reference density maps into pseudoatoms  

A reference structure of the molecule targeted in the subtomograms can be used in the 

form of an atomic model (PDB formatted files) or a density map, such as an EM map (SPA 

reconstruction) or a subtomogram average (obtained using classical StA without considering 

conformational heterogeneity). Although our method can be used with both atomic and density-

map reference structures, one should prefer using a reference density map from the data at hand, 

if it can be obtained. 

If a reference density map is used, it must be converted into a collection of Gaussian 

functions (pseudoatoms) with a carefully selected standard deviation (pseudoatom size, whose 
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default value is 1 voxel [108, 109]). The pseudoatom size should lead to a structure (called 

pseudoatomic structure) that, converted back to a density map, approximates the input density 

map with a small error (given a target approximation error, whose default value is 5%).  

Optionally, a mask on the density map can be used prior to the conversion into 

pseudoatoms (e.g., a spherical binary mask of a given radius) to reduce background noise. Such 

masks may also be useful if applied on input cryo-ET subtomograms to maximize the chance 

of having a single molecular complex in each subtomogram (Preprocessing block in the 

workflow in Figure 34A. 

Normal mode analysis 

This step involves computing normal modes of a reference atomic or pseudoatomic 

structure for the 3D-to-3D elastic alignment in the next step. The computation of normal modes 

is based on the elastic network model [104, 105] by representing the interaction between the 

(pseudo-)atoms as if they are locally connected by elastic springs (within a cutoff distance). 

Normal Mode Analysis requires the diagonalization of a 3N * 3N matrix of second derivatives 

of the potential energy (Hessian matrix), where N is the number of nodes in the elastic network 

model determined by the total number of atoms (or pseudoatoms) in the input reference. In the 

case of atomic structures, we use the rotation-translation block (RTB) method, which divides 

the structure into blocks (one or a few consecutive residues per block) whose rotations and 

translations are considered rather than all degrees of freedom for all atoms [110, 111]. Since 

the RTB method reduces the basis for Hessian diagonalization, it allows fast computing of 

normal modes. Since pseudoatomic structures usually contain fewer nodes (pseudoatoms) than 

atomic structures, normal modes can be obtained by a direct diagonalization of the 3N * 3N 

Hessian, which is referred to as the Cartesian method. Larger values of the interaction cutoff 

distance (the distance below which atoms or pseudoatoms do not interact) lead to more rigid 

motions. The atomic interaction cutoff distance may be set manually (by default 8 A) and the 

pseudoatomic cutoff distance is recommended to be computed automatically based on the 

distribution of the pseudoatomic pairwise distances (e.g., as the value below which is a given 

percentage of all distances as in [43, 108, 109, 123]. The modes are computed along with their 

respective collectivity degrees, which count the number of atoms or pseudoatoms affected by 

the mode as in [125].  
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To allow faster data analysis and avoid noise overfitting in the 3D-to-3D elastic 

alignment in the next step, we select a subset of normal modes (usually, less than 10) with the 

lowest frequencies and highest collectivities, as previously described [43, 123, 124].  

Low-frequency high-collectivity normal modes have been shown to be relevant to 

functional conformational changes [126-130]. The first six (lowest-frequency) normal modes 

are related to rigid-body transformations and are thus not used for the 3D-to-3D elastic 

alignment in the next step. The rigid-body 3D-to-3D alignment is done without using these 

rigid-body normal modes, as explained in the next paragraph. 

Combined iterative elastic and rigid-body 3D-to-3D alignment 

This step, represented in Figure 34B, is the backbone of the proposed method. It has 

been inspired by the combined iterative elastic and rigid-body 3D-to-3D alignment step of 

StructMap method [131], which was proposed for pairwise similarity analysis of SPA high-

resolution EM maps (no missing wedge). In HEMNMA-3D proposed here, this step comprises 

simultaneous NMA-based elastic alignment (search for amplitudes of a linear combination of 

normal modes) and rigid-body alignment (search for orientation and position, meaning 3 Euler 

angles and x, y, and z shifts) of the reference structure with each given subtomogram. It refines 

the amplitudes of displacement along each used normal mode (elastic parameters) as well as 

the angles and shifts (rigid-body parameters) of the reference structure until the best match is 

obtained between this reference structure and the given subtomogram. The latter is achieved by 

maximizing the similarity between the subtomogram and the density volume from the 

elastically deformed, oriented and shifted reference, and includes missing wedge compensation. 

The missing wedge compensation is done by calculating the cross-correlation between the 

reference and subtomogram density maps only in the region of the Fourier space where the data 

can be trusted, i.e., by constraining the cross-correlation evaluation to the Fourier space region 

that excludes the missing wedge region (the region outside of the one specified by the tilt angle 

range, e.g., -60˚ to +60˚. To maximize this constrained cross-correlation (CCC), we use a 

variant of Powell's UOBYQA method, which subjects the objective function to a trust-region 

radius [132]. For each subtomogram, the normal mode amplitudes are initiated with zeros, 

meaning that the non-deformed reference is used in the first iteration. As the iterations evolve, 

the reference model is displaced with the new guesses of the normal mode displacement 

amplitudes, converted into a volume and rigid-body aligned with the subtomogram using the 

method of fast rotational matching [48]. At the end of each iteration, the CCC is found and fed 
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to the numerical optimizer [132]. The iterations repeat until the final value of the trust-region 

radius or the maximum number of iterations is reached. 

Visualizing and utilizing the space of conformations 

The number of elastic alignment parameters (normal mode amplitudes) is determined 

by the number of selected normal modes for the 3D-to-3D elastic alignment. The ensemble of 

normal mode amplitudes (for all subtomograms) can be projected onto a lower-dimensional 

space, so-called conformational space, using a dimensionality reduction technique. Here, we 

use linear Principal Component Analysis (PCA) as it is the most widely known and intuitively 

clear dimensionality reduction method, but other dimension reduction methods could also be 

used (linear or nonlinear). The dimensionality reduction is usually performed to two or three 

dimensions, which allows a global data display and easier modeling of conformational changes. 

Each point in the conformational space represents a subtomogram and close points correspond 

to similar conformations in the subtomograms. The points that differ significantly from the 

remaining observations (too isolated, outlier points) may be excluded from further analysis by 

excluding the points below a certain p-value based on the Mahalanobis distance (the distance 

between each point and the whole distribution) [133]. The space of conformations can then be 

analyzed to reveal molecular dynamics. This can be done by averaging subtomograms of similar 

conformations in the densest regions of the conformational space or by exploring the densest 

regions by fitting curves (approximation by line segments) through the data and displacing the 

reference structure along these curves (referred to as trajectories) to animate the motion along 

them. 

Averaging subtomograms of similar conformations 

Close points in the conformational space can be grouped, which results in grouping 

subtomograms of similar conformations and averaging them. Before computing group 

averages, the rigid-body alignment parameters found along with the 3D-to-3D elastic alignment 

are applied to the subtomograms. Optionally, before computing group averages, the missing-

wedge Fourier space region of individual subtomograms may be filled in with the 

corresponding region of the global average computed from all subtomograms. A similar 

procedure of missing wedge filling of individual subtomograms is used in EMAN2 software 

package [134]. The subtomogram averages obtained from the selected groups of subtomograms 
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can be overlapped and compared to understand the conformational changes of the complex in 

the given set of subtomograms. 

Animating motions (trajectories) 

Distinct trajectories can be determined through the data in the conformational space, 

and animated to see the motion of the biomolecule while it is displaced along the trajectory. To 

animate a trajectory, several points (e.g., 10) along the trajectory should be mapped back to the 

original displacement space (e.g., using inverse PCA), resulting in elastic alignment parameters 

that can be used to deform the reference atomic or pseudoatomic structure. Concatenating and 

displaying the resulting structures can show a movie-like animation of the reference 

biomolecule traveling across the specified trajectory.  

Results and discussion 

In this section, we present and discuss the results of HEMNMA-3D with synthetic and 

experimental subtomograms. 

Synthesizing datasets for testing the method performance 

For testing HEMNMA-3D in general, and the combined elastic and rigid-body 3D-to-

3D alignment module in particular (which is the core module of the proposed method), we 

synthesized two datasets of conformationally heterogeneous subtomograms that mimic discrete 

and continuous conformational variability, called "Discrete" and "Continuous" datasets 

respectively. The flowchart for the data generation procedure is shown in Figure 35 and is 

detailed in the following. 
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Figure 35 Flowcharts of synthesis of the datasets used for testing and validating HEMNMA-

3D, namely “Discrete” dataset (left) and “Continuous” dataset (right). 

The "Discrete" dataset comprises 900 synthetic subtomograms representing three 

different (synthetic) conformations of the atomic PDB:4AKE structure [135] of adenylate 

kinase chain A (1656 atoms), i.e., 300 subtomograms per conformation. We generated this 

dataset using the atomic PDB:4AKE structure and its first two non-rigid-body normal modes, 

i.e., modes 7 and 8 (note here that the mode number corresponds to the frequency of the mode 

and that higher numbers correspond to higher frequencies). Precisely, the three conformations 

are represented by the following amplitudes of modes 7 and 8: (mode 7, mode 8) ∈ {(-150, 0), 

(+150, 0), (0, +150)}. 

The "Continuous" dataset comprises 1000 synthetic subtomograms representing a 

continuum of conformations of the same PDB:4AKE structure. We generated this dataset using 

this atomic structure and its modes 7 and 8 using a linear relationship between the amplitudes 

of the two modes. More precisely, the synthesized amplitudes of modes 7 and 8 were identical 

and randomly distributed in the range [-200, +200] (uniform distribution). 
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To generate a subtomogram, first, we deform the atomic structure using appropriate 

amplitudes for the selected normal modes depending on the dataset in hand, i.e., we use (mode 

7, mode 8) = (+150, 0) or (-150, 0) or (0, +150) to create a subtomogram in the "Discrete" 

dataset, while we assign a random value in the range [-200, 200] for both mode 7 and mode 8 

to generate a subtomogram in the "Continuous" dataset. Then, we convert the deformed 

structure to a volume of size 643 voxels and a voxel size of 2.2 Å [136]. Afterwards, we rotate 

and shift this volume in 3D space using random Euler angles and random x, y, z shifts, and we 

project the rotated and shifted volume using tilt values -60˚ to +60˚ to obtain a tilt series. We 

simulate microscope conditions by adding noise, modulating the images with the contrast 

transfer function (CTF) of the microscope (using the defocus of -1 µm), then adding noise again 

in such a way that a part of the noise will be modulated by the CTF, and the other part will not 

with a total SNR = 0.01.  

Finally, we reconstruct a volume (our synthetic subtomogram) from the tilt series using 

a Fourier reconstruction method [20]. A few examples of the synthesized subtomograms (SNR 

= 0.01) and their less noisy version (SNR = 0.5, for illustration) is presented in Figure 36. 

 

Figure 36 Examples of synthetic subtomograms containing the same molecule but at different 

orientations, positions and conformations for two different noise levels. (A) Low level of 

noise (SNR = 0.5). (B) High level of noise (SNR = 0.01). 

Synthetic discrete-type conformational variability 

In this experiment, our goal is to retrieve the ground-truth amplitudes of normal modes 

7 and 8 by the combined elastic and rigid-body alignment (the core module of HEMNMA-3D) 

of a reference model with the subtomograms in the "Discrete" dataset. In other words, the goal 
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is to find a solution for the challenging inverse problem of finding the conformation of the 

structure in each subtomogram. Since the proposed method can use two choices for the 

reference model, namely, an atomic structure and a density map (e.g., an EM map or a 

subtomogram average), we performed two types of tests. In the first test type, the atomic 

structure used to generate the synthetic subtomograms (chain A of the PDB:4AKE) was used 

as a reference for retrieving normal mode amplitudes of the synthetic subtomograms. In the 

second test type, we converted the atomic structure into a density map (volume) of size 1283 

voxels and voxel size of 1 Å3 and we used this density map as a reference for retrieving normal 

mode amplitudes of the synthetic subtomograms. In the case of the reference density map, 

normal modes were computed from the corresponding structure obtained by converting the 

density map into pseudoatoms (1675 pseudoatoms for the given pseudoatom radius of 1.25 

voxels and the target approximation error of 5%). In both cases (reference atomic structure and 

reference pseudoatomic structure, with their corresponding normal modes), we used three 

modes (modes 7, 8 and 9) instead of only two modes (modes 7 and 8 that were used to generate 

synthetic subtomograms), to make the 3D-to-3D elastic and rigid-body alignment task even 

more challenging. 

Figure 37 presents the estimated amplitudes of normal modes 7 and 8 (the estimated 

amplitude of normal mode 9 is close to 0 and is therefore not shown graphically). Table 3 

presents the mean absolute error and the standard deviation between the estimated and ground-

truth normal-mode amplitudes. In both test cases, the three distinct synthetic groups of 

subtomograms are correctly separated, considering the extreme noise level. The results show a 

less accurate alignment in the second case, which is expected since, in that case, the atomic 

structure was used to generate the dataset and the pseudoatomic structure was used as the 

reference model for the method to estimate the normal-mode amplitudes from this generated 

dataset. This is in contrast to the first test case where the same atomic structure was used to 

create the dataset and as the reference for the method to estimate the normal-mode amplitudes 

from this dataset. Figure 38 shows grouping and averaging the subtomograms in the first test 

type (atomic reference). We compared the obtained subtomogram averages with the 

corresponding ground-truth subtomograms. The visual comparison shows no significant 

difference between them, and the cross-correlation values vary between 97-98%. 
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Figure 37 Plots showing the output of the 3D-to-3D elastic and rigid-body alignment module 

of HEMNMA-3D with “Discrete” dataset (synthetic subtomograms are simulating discrete 

conformational heterogeneity). (A) Use of the atomic structure (chain A of PDB:4AKE) and 

its normal modes to estimate the conformational parameters (normal-mode amplitudes) and 

rigid-body parameters (orientation and shift) of the molecules in the input synthetic 

subtomograms. (B) Use of a pseudoatomic structure (from a simulated density map) and its 

normal modes to estimate the conformational and rigid-body parameters of the molecules in 

the input synthetic subtomograms. The goal was the retrieval of the ground-truth relationship 

between the amplitudes along normal modes 7 and 8; ideally, all data should lay in one of the 

following three clusters of normal-mode amplitudes: (mode 7, mode 8) ∈ {(-150, 0), (150, 0), 

(0, 150)}; each point in the plot represents a subtomogram and close points represent similar 

conformations. Note that the dashed curves enclose the data points where p-value > 0.01 in 

Table 3. See the text for more details on this experiment. 

 

Table 3 Mean absolute error and standard deviation between the estimated and ground-truth 

normal-mode amplitudes along with the angular and shift distances obtained with HEMNMA-

3D and “Discrete” synthetic dataset, using an atomic structure (Atomic) and simulated EM 

map (Volume) as input references. 

Experiment Mode 7 Mode 8 Mode 9 

p-value Samples 

Ref Dataset mean Std mean std mean std 

Atomic "Discrete" 16.51 11.87 10.91 7.64 10.7 6.66 P > 0.01 871/900 

Volume "Discrete" 17.7 13.26 11.9 10.13 12.29 8.03 P > 0.01 870/900 
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Figure 38 Averages of the three groups (enclosed by ellipses) of subtomograms identified 

from the output of the 3D-to-3D elastic and rigid-body alignment module of HEMNMA-3D 

with “Discrete” dataset, using the atomic structure (chain A of PDB:4AKE) and its normal 

modes to estimate the conformational parameters (normal-mode amplitudes) and rigid-body 

parameters (orientation and shift) of the molecules in the input synthetic subtomograms. 

Subtomograms are represented by points and close points represent similar conformations. 

The numbers of volumes written above the shown subtomogram averages are the numbers of 

synthetic subtomograms used for computing these subtomogram averages (the numbers of 

points enclosed by the corresponding ellipses). On the bottom, the subtomogram averages are 

shown at 50% transparency along with the corresponding ground-truth deformed atomic 

structure (in red). 

Synthetic continuous-type conformational variability 

Similarly to the previous experiment, our goal in this experiment is to find a solution for 

the inverse problem of finding the conformation of the structure in each subtomogram using 

the combined elastic and rigid-body alignment of a reference model with the subtomograms in 

the "Continuous" dataset. 
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We used the same two reference models as in the previous experiment to estimate the 

normal-mode amplitudes: an atomic structure (chain A of PDB:4AKE) and a density map from 

this atomic structure.  

Also, as in the previous experiment, we used three modes for both tests (atomic or 

pseudoatomic modes 7, 8 and 9). 

Figure 39 presents the estimated amplitudes of modes 7 and 8 (the estimated amplitude 

of mode 9 is close to 0 and is not shown in the plots). Table 4 shows the mean absolute error 

and the standard deviation between the estimated and ground-truth normal-mode amplitudes. 

 

Figure 39 Plots showing the output of the 3D-to-3D elastic and rigid-body alignment module 

of HEMNMA-3D with “Continuous” dataset (synthetic subtomograms are simulating 

continuous conformational heterogeneity). (A) Use of the atomic structure (chain A of 

PDB:4AKE) and its normal modes to estimate the conformational parameters (normal-mode 

amplitudes) and rigid-body parameters (orientation and shift) of the molecules in the input 

synthetic subtomograms. (B) Use of a pseudoatomic structure (from a simulated density map) 

and its normal modes to estimate the conformational and rigid-body parameters of the 

molecules in the input synthetic subtomograms. The goal was the retrieval of the ground-truth 

relationship between the amplitudes along normal modes 7 and 8 (ideally linear relationship, 

with equal amplitudes of normal modes 7 and 8); each point in the plot represents a 

subtomogram and close points represent similar conformations. Note that the dashed ellipses 

enclose the data points where p-value > 0.001 in Table 4. See the text for more details on this 

experiment. 
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Table 4 Mean absolute error and standard deviation between the estimated and ground-truth 

normal-mode amplitudes along with the angular and shift distances obtained with HEMNMA-

3D and “Continuous” synthetic dataset, using an atomic structure (Atomic) and simulated EM 

map (Volume) as input references. 

Experiment Mode 7 Mode 8 Mode 9 

p-value Samples 

Ref Dataset mean std mean std mean std 

Atomic "Continuous" 20.12 11.3 12.78 11.24 12.74 7.71 
P > 

0.001 
960/1000 

Volume "Continuous" 21.94 12.59 14.03 9.92 15.68 10.04 
P > 

0.001 
957/1000 

 

Figure 40 Averages of eight groups (enclosed by ellipses) of subtomograms identified from 

the output of the 3D-to-3D elastic and rigid-body alignment module of HEMNMA-3D with 

“Continuous” dataset, using the atomic structure (chain A of PDB:4AKE) and its normal 

modes to estimate the conformational parameters (normal-mode amplitudes) and rigid-body 

parameters (orientation and shift) of the molecules in the input synthetic subtomograms. 

Subtomograms are represented by points, and close points represent similar conformations. 

The numbers of volumes written above the shown subtomogram averages are the numbers of 

synthetic subtomograms used for computing these subtomogram averages (the numbers of 

points enclosed by the corresponding ellipses). On the bottom, the subtomogram averages are 

shown at 50% transparency along with the corresponding theoretical centroid deformed 

atomic structure (in red). 
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In both test cases, a linear relationship between the estimated amplitudes of normal 

modes 7 and 8 is clearly distinguishable, which is close to the identity relationship between the 

ground-truth amplitudes considering strong noise present in the data. As in the previous 

experiment, the results show a slightly less accurate alignment in the second test type 

(pseudoatomic reference) for the same aforementioned reason. Figure 40 shows the grouping 

and averaging of subtomograms in this experiment, with 8 subtomogram averages calculated 

along the distribution of the points for the first test type (atomic reference). The subtomogram 

averages show different conformations of adenylate kinase chain A. Note that the noise 

contained in the individual subtomograms (SNR = 0.01, Figure 36B) was reduced through 

subtomogram averaging (Figure 40). Additional experiments for other noise levels in input 

subtomograms can be found in the next section. 

Additional synthetic data tests with different noise levels 

Additional tests were performed on HEMNMA-3D using synthesized datasets at 

different noise levels of conformationally heterogeneous subtomograms that mimic continuous 

conformational variability. The noise levels were chosen as A) without noise, B) SNR = 0.4, 

C) SNR = 0.1, D) SNR = 0.04, E) SNR = 0.01 and F) SNR = 0.005. 

Each dataset comprises 200 synthetic subtomograms representing a continuum of 

conformations of the same PDB:4AKE structure. Here, the amplitude value of normal mode 7 

is chosen randomly in the range {-300, 300} and the amplitude value mode 8 is half of the value 

of mode 7. The goal in this experiment is to find a solution for the inverse problem of finding 

the conformation of the structure in each subtomogram using the combined elastic and rigid-

body alignment of a reference model with the subtomograms in the different-SNR datasets. 

Figure 41 presents the estimated amplitudes of modes 7 and 8 (the estimated amplitude 

of mode 9 is close to 0 and is not shown in the plots). Table 5 shows the mean absolute error 

and the standard deviation between the estimated and ground-truth normal-mode amplitudes. 
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Figure 41 Plots showing the output of the 3D-to-3D elastic and rigid-body alignment module 

of HEMNMA-3D with synthetic datasets at different noise levels (synthetic subtomograms 

are simulating continuous conformational heterogeneity), using the atomic structure (chain A 

of PDB:4AKE) and its normal modes to estimate the conformational parameters (normal-

mode amplitudes) and rigid-body parameters (orientation and shift) of the molecules in the 

input synthetic subtomograms. (A) Without noise, (B) SNR = 0.4, (C) SNR = 0.1, (D) SNR = 

0.04, (E) SNR = 0.01, (F) SNR = 0.005. The goal was to retrieve the ground-truth relationship 

between the amplitudes along normal modes 7 and 8 (ideally a linear relationship, with the 

amplitude of normal modes 8 equals to half the amplitude of mode 7); each point in the plot 

represents a subtomogram, and close points represent similar conformations. Note that the 

dashed ellipses contain the data points where the p-value is specified in Table 5. 
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Table 5 Mean absolute error and standard deviation between the estimated and ground-truth 

normal mode amplitudes obtained with HEMNMA-3D synthetic datasets for different noise 

levels, using an atomic structure as an input reference. The corresponding region for the p-

value is shown in Figure 41. 

Noise and CTF Mode 7 Mode 8 Mode 9 

p-value Samples 

Defocus [µm] SNR mean std mean std mean std 

No Noise 6.38 4.47 3.37 3.51 3.7 3.85 P > 10^-9 199/200 

-1 0.4 8.23 6.35 7.49 5.29 5.64 4.02 P > 0 200/200 

-1 0.1 8.26 6.34 8.1 5.83 5.85 4.26 P > 0 200/200 

-1 0.04 11.14 7.2 8.11 5.89 6.98 4.83 P > 10^-9 199/200 

-1 0.01 26.68 9 13.11 8.75 16.59 9.26 P > 0.01 190/200 

-1 0.005 35.86 14.2 20.87 11.02 19.4 9.53 P > 0.01 187/200 

Experimental cryo-ET data: nucleosomes in situ 

We applied HEMNMA-3D on a dataset comprising ~650 in situ subtomograms of 

nucleosomes collected from a cell of a Drosophila embryonic brain (dataset presented in the 

previous chapter), whose conformational variability was detected but not fully explored in 

previous work [28]. The subtomograms had the size of 643 voxels and a voxel size of 4.4 Å3. 

A density map obtained with classical subtomogram averaging (without considering 

conformational heterogeneity) was used as the reference density map for HEMNMA-3D 

(Figure 42C). The resolution of this reference density map is around 2 nm (as determined by 

Fourier Shell Correlation between the reference density map and the density map from the 

atomic nucleosome structure PDB:3w98 [137] shown in Figure 42B). For more information on 

how this reference density map (global initial subtomogram average) was obtained, please see 

Chapter 4. This reference density map was converted into pseudoatoms (1368 pseudoatoms for 

the pseudoatom radius of 0.5 voxels and the target approximation error of 5%) and normal 

mode analysis of the obtained reference pseudoatomic structure was performed. The combined 

elastic and rigid-body alignment was performed using the pseudoatomic structure and a set of 

its six low-frequency high-collectivity normal modes (selected as described above and in 

HEMNMA-related works [43], [124] and [123]). The normal-mode amplitudes estimated 

through the alignment (six normal mode amplitudes per subtomogram) were then projected 
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onto a 2D space of conformations using PCA. The space of conformations is presented in Figure 

42. Recall that each of the points represents a subtomogram, and close points represent similar 

conformations. By inspecting this conformational space, we identified four densest regions with 

70, 183, 74, and 64 points from left to right in Figure 42D. Following this analysis, we grouped 

the subtomograms in each of these four regions and averaged them. Before averaging, we filled 

in the missing-wedge Fourier space region of the individual subtomograms with the 

corresponding region of the global average computed from all subtomograms (please note that 

this global average was computed after aligning subtomograms using the rigid-body alignment 

parameters found along with the 3D-to-3D elastic alignment by HEMNMA-3D, which is a 

similar density map to the initial global average map shown in Figure 42C as both density maps 

result from averaging conformational heterogeneous subtomograms). The displacement of the 

reference pseudoatomic structure (converted into a density map) along two directions D1 and 

D2 in the space of conformations is shown in Figure 43 and in the supplementary material of 

the published article [120] Movie S1 and Movie S2. The significant difference between the four 

group averages (Figure 42D) and the reference density map (Figure 42C) as well as the motion 

observed along the two directions D1 and D2 (Figure 43, Movie S1 and Movie S2) can be 

described, mainly in terms of opening the nucleosome by increasing the distance between the 

two gyres of the DNA superhelix. This result consents the previous findings, observed but not 

fully explored in a previous study (manual analysis) of the nucleosome conformational 

variability [28]. The group averages are also compared with the atomic nucleosome structure 

PDB:3w98 in Figure 44. 



 

 

73 

 

Figure 42 Illustration of HEMNMA-3D use with in situ cryo-ET nucleosome dataset. (A) 

Space of conformations resulting from projecting the estimated amplitudes of six normal 

modes onto a two-dimensional space using PCA. (B) Nucleosome atomic structure 

PDB:3w98, for comparison purposes. (C) Nucleosome subtomogram average (around 2 nm 

resolution) used as the input reference density map for HEMNMA-3D, obtained by classical 

subtomogram averaging, without considering conformational heterogeneity [for more 

information on how this global initial subtomogram average was obtained, see Chapter 5 

(Nucleosome data preparation and acquisition)]. (D) Four subtomogram averages from four 

densest regions in the space of conformations (regions encircled with ellipses) showing 

different nucleosome conformations, mainly different gap distances between the nucleosome 

gyres. The numbers of volumes written above the subtomogram averages shown in (D) are 

the numbers of in situ cryo-ET subtomograms used for computing these subtomogram 

averages (the numbers of points enclosed by the corresponding ellipses). 
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Figure 43 Displacement of the reference density map along two directions D1 and D2 in the 

space of conformations obtained (Figure 42) with HEMNMA-3D with in situ cryo-ET 

nucleosome dataset. (A) Space of conformations (left) as shown in Figure 42 and two 

directions D1 and D2 used to displace the reference density map (Figure 42C) in this space 

(right). (B) Displacement of the reference density map along the D1 and D2 directions (10 

frames of the corresponding trajectory are shown row-wise). 
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Figure 44 Comparison of the atomic nucleosome structure PDB:3w98 with the four in situ 

nucleosome subtomogram averages obtained with HEMNMA-3D (the experiment shown in 

Figure 42, which used a preliminary nucleosome subtomogram average as input reference 

density map for HEMNMA-3D). (A) Four views of the four subtomogram averages 

overlapped. (B) Four views of the four averages overlapped at 50% transparency with 

PDB:3w98. (C) Four views of PDB:3w98. 

Comparing HEMNMA-3D to traditional STA and classification 

This section compares HEMNMA-3D performance with existing literature on a 

synthesized dataset of nucleosomes with a synthetic continuous shape variability. First, it 

presents how a dataset was synthesized; then, it presents the methods applied and results 

obtained on this dataset using i) the traditional methods of subtomogram averaging and 

classification, and ii) HEMNMA-3D. 

Simulating a dataset of nucleosome conformational variability 

We synthesized a dataset comprising 1000 subtomograms with a continuous shape 

variability of the nucleosome by generating a linear combination of two reported motions for 

the nucleosome, breathing and gaping [90], with a linear dependence between the amplitudes 

of normal modes corresponding to the two motions. 

First, we performed NMA of the nucleosome atomic structure available in the PDB 

database under the code 3w98 and we visualized the motions carried by the different computed 
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normal modes. Among these modes, we identified the modes describing breathing and gaping 

motions as normal modes 9 and 13, respectively. We generated a dataset using a linear 

relationship between the amplitudes of normal modes 9 and 13 so that the nucleosome is 

simultaneously breathing and gaping. Precisely, at one end of the generated ground-truth 

conformational distribution, the nucleosome's two DNA ends (arms) are moving away from 

each other, and at the same time, the gap between the two DNA gyres increases. At the other 

end of the generated conformational distribution, the DNA arms approach each other and the 

gap between the two DNA gyres decreases. We simulated a gradual transition between the two 

ends, representing a continuum of nucleosome shapes, combining breathing and gaping. Equal 

random amplitudes uniformly distributed in the range [-150, 150] were used for the two normal 

modes 9 and 13. An illustration of the simulated movements is provided in Figure 45. 

 

Figure 45 Synthesized combined breathing and gaping motions of the nucleosome (PDB 

3w98 structure): (a) nucleosome breathing motion, (b) nucleosome gaping motion, (c) 

generated ground-truth conformational distribution (top) comprising 1000 synthetic 

nucleosome shape variants obtained by a linear combination of modes 9 and 13, with a linear 

dependence between the normal-mode amplitudes (blue points in the plot), and 3 

representative shapes (bottom) corresponding to the two ends and the middle of the 

conformational distribution. 
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To generate this dataset, for each subtomogram, we performed the following steps: 

• Elastically deform the atomic structure (PDB:3w98) using equal random amplitudes 

for the two normal modes 9 and 13 in the range [-150, 150]. 

• Convert the elastically deformed structure to a density map of size 64 x 64 x 64 

voxels (voxel size: 3.45 Å x 3.45 Å x 3.45 Å), using [136]. 

• Rotate and shift the volume in 3D space using random Euler angles and random x, 

y, z shifts (the random shift range is ±5 pixels from the center). 

• Tilt and project the randomly rotated and shifted volume, using the tilt angle from -

60˚ to +60˚ with 1˚ step, to obtain a collection of 2D projection images (i.e. tilt 

series). 

• Simulate microscope conditions by adding noise, modulating the images with the 

contrast transfer function (CTF) of the microscope (using the defocus of -0.5 µm), 

then adding noise again in such a way that a part of the noise will be modulated by 

the CTF, and the other part will not, with a total SNR = 0.01. 

• Invert the CTF phase (a common CTF correction). 

• Reconstruct a volume (our synthetic subtomogram) from the obtained tilt series 

using a Fourier reconstruction method [20] 

Figure 46 shows an example subtomogram from the synthesized dataset and the 

corresponding ideal volume, for comparison in real space and in Fourier space. 
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3  

Figure 46 Example of a noisy and missing-wedge affected synthetic subtomogram compared 

with the corresponding ideal volume of the nucleosome: (a) ideal volume (without noise and 

without missing wedge artifacts), (b) noisy and missing-wedge affected synthetic 

subtomogram. 

Traditional subtomogram averaging and post alignment classification 

StA provides a global average without considering the shape variability, and it provides 

a basis for performing classification of subtomograms (classification of the subtomograms 

aligned through StA). 

We applied StA on the synthetic nucleosome dataset, using the protocol based on the 

rigid-body alignment approach of [48] (recall that this rigid-body alignment approach is also 

used in the elastic and rigid-body alignment of HEMNMA-3D). This StA protocol uses an 

exhaustive angular search (with FRM method) and a shifts search within a region of interest, 

and compensates for the missing wedge by using the CCC (evaluation of the correlation 
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between the subtomogram average of each iteration and the given subtomogram density maps, 

but excluding the evaluation in the missing-wedge region of the given subtomogram). 

We followed the procedure in [48] and set the shifts search region to 10 voxels from the 

image center. We started iterations using an average of the unaligned subtomograms (this StA 

procedure is referred to as reference-free alignment). After six iterations, StA converged 

(further iterations gave the same results). The StA averages are shown in Figure 47. 

 

Figure 47 Subtomogram averaging applied to the synthetic nucleosome subtomograms. A 

reference-free alignment was performed using Fast Rotational Matching 

After StA, we applied the obtained rigid-body alignment parameters (found through 

StA) on the subtomograms, and we evaluated the covariance matrix CCCij of pairwise 

constrained cross-correlation (see Chapter 2 for more details). We performed the two most 

common post-alignment classification techniques on the CCCij matrix, namely hierarchical 

clustering and PCA followed by k-means [47, 51]. 

The hierarchical clustering on 1-CCCij matrix was performed to 10 classes using the 

Agglomerative Clustering module of Python Scikit-Learn package (version 0.22.1 and default 

parameters were used) [138]. We note that applying the clustering algorithm directly on the 

CCCij matrix gives identical results, and we used the convention proposed in the literature [47, 

51]. The clustering tree (dendrogram) and class averages are shown in Figure 48. 
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Figure 48 Hierarchical clustering applied to the synthesized nucleosome subtomograms. Top: 

hierarchical tree for 1-CCCij matrix. Bottom: views (vertically in the same color) of different 

subtomogram class averages (horizontally in different colors). 

The k-means clustering was performed following PCA on the CCCij matrix. The 

clustering was done into 10 classes (k=10) based on the first two principal axes, using the k-

means module of Scikit-Learn. In general, the choice of the number of principal axes to perform 

classification is arbitrary, as explained in [51]. Since the dataset was synthesized with two 

degrees of freedom (nucleosome breathing and gaping), we set the number of principle axes to 

2, to obtain the best results. Figure 49 shows the classification of the PCA space and the 

resultant class averages. 
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Figure 49 K-means clustering applied to the synthesized nucleosome subtomograms. Top: k-

means clustering in the space of the first two PCA axes of CCCij matrix. Bottom: views 

(vertically in the same color corresponding to the color in the PCA space) of different 

subtomogram averages (horizontally in different colors). 

We note that the two tested classification techniques give similar outputs, showing 

different discrete class averages of the nucleosome, at different breathing and gaping 

magnitudes. However, these outputs do not allow an unambiguous interpretation of the results 

in terms of the synthesized ground-truth conformational transitions of the nucleosome (from 

the smallest magnitudes to the largest magnitudes of breathing and gaping and vice versa). 

HEMNMA-3D 

Applying HEMNMA-3D to the synthesized nucleosome dataset aims at solving the 

inverse problem of finding the nucleosome shape variant in each subtomogram, i.e. estimating 

the amplitudes of normal modes 9 and 13 of the PDB structure 3w98 as close as possible to the 

generated ground-truth amplitudes.  
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We set the method parameters as follows: 

• NMA settings: To make the elastic and rigid-body 3D registration task more realistic 

and challenging, we used three normal modes (modes 9, 10 and 13) instead of only 

two modes (modes 9 and 13 used to generate the dataset). 

• FRM settings: The shift range for the rigid-body registration (FRM method) is set 

to 10 pixels. 

 The amplitudes estimated for modes 9 and 13 using HEMNMA-3D are shown in Figure 

50a. It is graphically intelligible that the linear relationship is retrieved between the estimated 

amplitudes of the two modes. Figure 50b shows the histogram of the amplitudes estimated for 

mode 10 and confirms that they are globally near zero. 

 

Figure 50 Output of the elastic and rigid-body 3D registration module of HEMNMA-3D 

using synthesized nucleosome subtomograms. The goal was the retrieval of the ground-truth 

amplitudes of normal modes 9, 10 and 13. Ideally, the amplitudes of mode 10 are equal to 

zero and there is a linear relationship between the amplitudes of modes 9 and 13 in the range 

[-150, 150]: (a) amplitudes of mode 9 vs amplitudes of mode 13, (b) histogram of amplitudes 

of mode 10. 

Table 6 presents the mean absolute error between the estimated and ground-truth 

normal-mode amplitudes and the standard deviation of the error. It should be noted that 14/1000 

points were excluded from the statistics as found to differ significantly (outlier points) from the 

remaining observations. These points were excluded for having a p-value below 10-4 based on 

the Mahalanobis distance [133]. 
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Table 6 Mean absolute error between the estimated and ground- truth normal-mode 

amplitudes and the standard deviation of the error, for HEMNMA-3D using synthesized 

nucleosome subtomograms. Points below the p-value of 10-4 were excluded (14/1000 points) 

from the error evaluation based on the Mahalanobis distance. 

Normal mode amplitude Mode 9 Mode 10 Mode 13 

Actual range [-150, 150] 0 [-150, 150] 

Measure Mean Std Mean Std Mean Std 

Absolute error 10.86 8.66 9.98 7.82 10.81 8.83 

Normal-mode amplitudes do not have a physical unit. Nonetheless, the Root Mean 

Square Deviation (RMSD) [139] between the reference atomic coordinates and these 

coordinates displaced using the calculated errors as the normal-mode amplitudes can transform 

these errors in physical units. The nucleosome core complex comprises eight histone proteins 

surrounded by 146 DNA base pairs. The synthesized movements (breathing and gaping) mainly 

impacted the DNA loops. Evaluating the RMSD without excluding the core histones can give 

a false sense of achieving higher accuracy by pulling the RMSD value towards zero. Therefore, 

the reported RMSD hereafter is based on the nucleosome's DNA loops only (chain I and J of 

the PDB structure 3w98).  

We found an RMSD of 0.44 Å corresponding to the mean absolute errors in Table 6 (for 

a combined displacement along modes 9, 10 and 13). Also, we found an RMSD of 0.79 Å 

corresponding to the sum of the mean and standard deviation of the errors in Table 6. Hence, 

the error range is significantly inferior to the pixel size used to create the data (3.45 Å). 

Figure 51a shows grouping and averaging of subtomograms through the point 

distribution in the conformational space (ten equally distanced groups). The corresponding 

subtomogram averages show the expected combination of continuous motions of breathing and 

gaping, which can be compared with the ground-truth motion in Figure 45. 

Figure 51b shows the displacement of the reference structure along 10 points in the 

direction of the point distribution in the conformational space. 

The obtained subtomogram averages and animation show that the ground-truth 

nucleosome motion (a combination of breathing and gaping) was retrieved. 
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Figure 51 HEMNMA-3D applied to the synthesized nucleosome subtomograms. (a) group 

averages for ten equally distanced groups along the subtomogram (point) distribution in the 

conformational space, (b) displacement of the reference PDB structure 3w98 along the 

direction of the data distribution in the conformational space, 10 frames represented by red 

dots. Note: each column represents four different views of the same structure. 
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Discussion 

This chapter presented HEMNMA-3D, the first cryo-ET subtomogram data analysis 

approach to study continuous conformational variability of biomolecular complexes, which 

maps a set of subtomograms into a space of conformations using a reference model and its 

normal modes. The conformational space permits i) grouping (and averaging) subtomograms 

with similar conformations and revealing hidden conformations and ii) recording animated 

displacements of the reference model along the densest regions of the space, along trajectories 

identified by curve fitting of the data in these regions. These HEMNMA-3D outputs could be 

valuable to cryo-ET studies of molecular mechanisms involved in conformational changes of 

complexes in vitro and in situ. HEMNMA-3D is thoroughly tested using synthetic 

subtomograms and applied to a cryo-ET experimental dataset (nucleosome subtomograms 

recorded in situ in Drosophila interphase nucleus). It provides promising results coherent with 

previous findings. 

Additionally, we compared HEMNMA-3D to two state-of-the-art methods for cryo-ET 

classification following STA, on a synthetic dataset of nucleosome shape variability. Both 

methods gave similar outputs, showing different discrete class averages of the nucleosome at 

different breathing and gaping magnitudes. However, the choice of the number of classes is 

arbitrary in these methods and the shape transitions between the obtained class averages are 

ambiguous, probably because of the continuous nature of the shape variability.  

However, unlike the classification methods, HEMNMA-3D is limited to 

macromolecular elastic shape variability that can be explained with NMA. It is not suitable for 

analyzing other structural variabilities such as macromolecular disassembly or binding and 

unbinding of ligands. Future work can involve combining this method with classification to 

first disentangle such discrete structural variabilities and then analyze continuous intraclass 

variability. 

An open-source software with a graphical user interface is provided for this method with 

a C++ backend, and a Message Passing Interface parallelization scheme, explained in Chapter 

7. 
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Chapter 6. TomoFlow: Cryo-ET data processing method 

based on optical flow to analyze continuous 

conformational variability of biomolecular complexes 

This chapter presents TomoFlow, a method for analyzing macromolecular continuous 

conformational variability in cryo-ET subtomograms based on a three-dimensional dense 

optical flow (OF) approach. The resultant lower-dimensional conformational space allows 

generating movies of macromolecular motion and obtaining subtomogram averages by 

grouping conformationally similar subtomograms. The animations and the subtomogram group 

averages reveal accurate trajectories of macromolecular motion based on a novel mathematical 

model that makes use of OF properties. 

TomoFlow was published in early 2022 [140]. This chapter describes the method, 

results, and conclusions of TomoFlow as presented in the published manuscript. It mainly 

shows the tests on simulated datasets generated using different techniques, namely Normal 

Mode Analysis and Molecular Dynamics Simulation, and an application of TomoFlow on a 

dataset of nucleosomes in situ (the dataset presented in Chapter 4 and previously analyzed using 

HEMNMA-3D in Chapter 5), which provided promising results coherent with previous 

findings using the same dataset but without imposing any prior knowledge on the analysis of 

the conformational variability. 

TomoFlow method 

This section first introduces TomoFlow’s general scheme and objectives and then walks 

the reader through its building blocks with the necessary mathematical derivations and 

theoretical background. 

TomoFlow (shown in Figure 52) analyzes the conformational variability in 

subtomograms after MW-correction and rigid-body alignment. It performs OF-based matching 

of the subtomograms with an input reference (e.g., global subtomogram average) in the 

presence of a mask of the region of interest. Then, it collectively analyzes the resultant OFs 

between the input reference and each of the subtomograms by finding their Gram matrix and 

mapping it to a lower-dimensional space called the space of conformations (e.g., via PCA). In 
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the conformational space, each point corresponds to a subtomogram, and close points 

correspond to subtomograms containing similar conformations. Accordingly, the 

conformational space is interactively processed by i) grouping close points in dense regions and 

averaging the corresponding subtomograms to obtain subtomogram averages at different 

conformations, and ii) generating movie animations on the input reference while it fits curves 

in the conformational space following data distribution manifolds, i.e., animating the input 

reference to show the motion following the dense regions in the space. 

 

Figure 52 Proposed pipeline for analyzing conformational variability in a set of 

subtomograms using 3D dense optical flows between a reference (here, subtomogram 

average) and each of the subtomograms. 

Employment of 3D dense OF for elastic and rigid-body matching of subtomograms  

Dense optical flow has been explained in Chapter 4 in detail. This subsection reminds 

the reader of the working principles of 3D dense OF. It then explains how OF can be employed 

for 3D elastic and rigid-body matching, allowing subtomogram rigid-body alignment 

refinement and continuous conformational variability analysis. 

3D dense OF is an algorithm that aims at finding the voxel-to-voxel correspondence 

between two volumetric images. OF calculations depend on two principles; the first principle 

is brightness consistency, which means that the gray-level values (i.e., the brightness) of the 

corresponding voxels in the two input volumes are similar. To find the relationship between the 

voxels of two volumes 𝐼 and 𝐻, we assume that for a voxel (𝑥, 𝑦, 𝑧) in 𝐻, a voxel in 𝐼 with 

similar brightness can be found at some distance (𝑢, 𝑣, 𝑤) on 𝑥, 𝑦, and 𝑧 axis respectively: 
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𝐻(𝑥, 𝑦, 𝑧) ≈ 𝐼(𝑥 + 𝑢, 𝑦 + 𝑣, 𝑧 + 𝑤) (6.1) 

The second principle is that the distance (𝑢, 𝑣, 𝑤) is small and that a limited number of 

terms (e.g., one term) of a Taylor expansion of the right-hand term of eq (6.1) is enough to 

describe the motion: 

𝐼(𝑥 + 𝑢, 𝑦 + 𝑣, 𝑧 + 𝑤) ≈ 𝐼(𝑥, 𝑦, 𝑧) + 
𝑑𝐼

𝑑𝑥
𝑢 +

𝑑𝐼

𝑑𝑦
𝑣 +

𝑑𝐼

𝑑𝑧
𝑤 

(6.2) 

Dense OF between 𝐼 and 𝐻 can be defined as the set of magnitudes (𝑢, 𝑣, 𝑤) for all 

(𝑥, 𝑦, 𝑧) between 𝐼 and 𝐻 to satisfy (6.1 - 6.2). 

The two principles above established a practical computational background for OF over 

the years. Still, OF has suffered limitations in its functionality when the corresponding pixels 

(or voxels) in the two input images (or volumes) do not have the same brightness or are 

significantly distanced, which rendered OF sensitive to noise and only accounting for small 

displacements [115]. The 2D OF method of Farnebäck [119], which is a more recent approach, 

deals with these issues by combining two features. The first is enforcing local smoothness of 

the OF (close pixels move in the same direction) by approximating a neighborhood of each 

pixel in each of two given images with a polynomial (the coefficients of the local polynomial 

are estimated from a weighted least squares fit to the signal values in the neighborhood) and by 

integrating information about the displacement field between the two images over a 

neighborhood of each pixel. The data approximation by local polynomials is similar to local 

data smoothing and the displacement field integration over a pixel neighborhood is similar to 

local OF smoothing. It should also be noted that this method is not based on calculating image 

gradients (in eq (6.2)), but it finds a solution of a set of linear algebraic equations (the 

displacement of a pixel is calculated by directly evaluating matrices expressed in terms of the 

polynomial coefficients over a neighborhood of the pixel) and this solution is generally unique 

except in the case when the neighborhood is exposed to the aperture problem [119]). The 

aperture problem refers to the fact that when a moving object is viewed through a limited-

size aperture, the direction of motion of a local feature or a region of the object may be 

ambiguous. In general, this problem is relevant to rigid objects with straight-line edges or flat 

regions (e.g., for a moving rectangle, motion of an edge in the direction perpendicular to that 

edge can be determined unambiguously, but motion of the edge along itself and motion of the 

inner flat region of the rectangle cannot be determined unambiguously). This problem is less 
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relevant to cryo-EM and cryo-ET of biological macromolecules, which are generally flexible 

with curved edges and without flat regions. The second important feature of the method of 

Farnebäck [119] is calculating OF iteratively and over multiple scales of the input images 

(image pyramids) [141, 142], which involves refining an OF estimation from a previous 

iteration or from a coarser image scale, i.e., propagating a refined OF from a coarser to a finer 

image scale and iterating on each image scale. The two features mentioned above increase 

robustness to noise, brightness differences, and larger displacements, leading to improved 

accuracy of the OF calculation.  

An extension of the 2D OF method of Farnebäck [119] to deal with volumetric data 

(Farneback-3D) has been recently implemented (https://pypi.org/project/farneback3d) and this 

3D OF calculation method was used in TomoFlow that is presented here. For more information 

on the iterative multiscale (pyramidal) approach for 3D OF calculation used in TomoFlow, the 

reader is referred to Chapter 4.  

The concept of OF can be employed for 3D elastic and rigid-body matching, as 

explained hereafter. Let 𝑉 be a reference volume with a high SNR (e.g., a subtomogram 

average), and let 𝑟 be the (𝑥, 𝑦, 𝑧) coordinates of 𝑉. Moreover, let 𝑆 be an MW-corrected and 

rigid-body aligned subtomogram. Then, the following relationship between 𝑉 and 𝑆 is valid: 

𝑆 = 𝑉(𝑟 + 𝛿𝑂(𝑟) + 𝛿𝐶(𝑟) + 𝛿𝐴(𝑟)) + 𝑁 (6.3) 

Where 𝛿𝑂 represents the voxel-to-voxel relationship between 𝑉 and 𝑆 to have an ideal 

rigid-body alignment, i.e., it stands for the rigid-body alignment imperfections of 𝑆; 𝛿𝐶 

represents the relationship between the voxels of 𝑉 and 𝑆 to have an ideal elastic matching, i.e., 

it stands for the conformational variability of the subtomograms with respect to the reference; 

𝛿𝐴 represents the residual anisotropies of the subtomogram after MW and Contrast Transfer 

Function (CTF) correction; 𝑁 is the subtomogram background noise. 

3D dense OF between 𝑉 and 𝑆 can provide an estimate of the three voxel relationships 

combined, i.e., 𝛿𝑂  +  𝛿𝐶 + 𝛿𝐴, challenged by the noise 𝑁. Luckily, recent 3D dense OF 

implementations are loyal to the signal and can operate under very low SNR, especially when 

helped by a mask that eliminates the background. We can apply algorithms that can minimize 

the data anisotropies, i.e., 𝛿𝐴, mainly in terms of MW correction [40, 41] and 3D CTF correction 

https://pypi.org/project/farneback3d
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[101, 143]. Hence, 3D dense OF between 𝑉 and 𝑆 in the aforementioned conditions is an 

estimate of their rigid-body and elastic relationships combined: 

𝑂𝐹(𝑉, 𝑆) ≈ 𝛿𝑂(𝑟) + 𝛿𝐶(𝑟) (6.4) 

When OF is calculated, it can be applied to the voxels of 𝑉 to estimate 𝑆; this operation 

is called warping, and the result Ŝ will be an estimate of 𝑆 with high SNR that we will refer to 

as a “matched” subtomogram. An illustration of OF calculation and its usage in matching 

subtomograms is shown in Figure 53. 

 

Figure 53 Illustration of the employment of 3D dense OF for elastic and rigid-body matching 

of subtomograms: V is a volume with a high SNR (e.g., a subtomogram average). S is a 

volume with a low SNR and contains a similar object as V but at a different conformation and 

a slightly different orientation and position (e.g., a MW-corrected subtomogram that was 

rigid-body aligned but not perfectly). Ŝ is an estimation of S found by warping V using 3D 

OF, i.e., Ŝ is a matched version of S using V and the OF. 

MW correction and refining the rigid-body alignment 

In conventional StA and classification, a compensation for the MW is commonly 

performed using a scoring function that operates in the Fourier space region excluding the MW 

[144]. However, for analyzing individual cryo-ET subtomograms in real space, the MW 

artifacts should be corrected.  

In the previous subsection, we have shown that MW correction is needed to minimize 

the data anisotropies of an analyzed subtomogram, i.e., 𝛿𝐴 in eq (6.3). Also, we have shown 

that the 3D dense OF can match a subtomogram with a reference in terms of the rigid-body and 

elastic relationships combined, i.e., 𝛿𝑂(𝑟) + 𝛿𝐶(𝑟) in eq (6.4). Therefore, to analyze the 

conformational variability of subtomograms, it is essential to correct the MW and disentangle 

between OF’s rigid-body and elastic matching, which we will discuss in this subsection. 
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 Several methods for MW correction were proposed in the literature [5, 145] and any of 

them could be used in conjunction with the proposed method. Here, we use a simple method to 

fill the MW of each subtomogram in Fourier space by the corresponding section from the 

aligned average, which was initially implemented in Eman2 [146]. We incorporate the MW 

correction in an iterative rigid-body refinement procedure based on OF subtomogram matching. 

The procedure is shown in Figure 54 has the following steps: 

Step 1. Rigid-body alignment: this can be achieved using StA methods [48, 50, 58, 146, 

147] to obtain a table of rigid-body parameters (angles and shifts) that can align the 

subtomograms to a global subtomogram average. Here, we use reference-free rigid-body 

alignment using the StA protocol in [48]. 

Step 2. MW correction of subtomograms: this can be done using any MW correction 

algorithm (e.g., LoTToR [40]). Here, we fill the subtomogram MW region in Fourier space by 

the corresponding region of an aligned subtomogram average, as initially implemented in 

Eman2 [146].  

Step 3. Alignment of the MW-filled subtomograms with the average using the StA table: 

after filling the MW of the subtomograms, we apply the rigid-body alignment of the latest StA 

table and obtain MW-corrected and aligned subtomograms. 

Step 4. Calculation of 3D OF between the subtomogram average and each MW-filled and 

aligned subtomogram: this should be done in the presence of a mask that determines the region 

of interest, which can be obtained by thresholding the subtomogram average and applying 

morphological operations such as dilating and closing. At this step, we also calculate warped 

versions of the subtomogram average using 3D OF calculated for each subtomogram. These 

warped versions of the subtomogram average are referred to as “matched subtomograms”. 

Step 5. Rigid-body alignment of matched subtomograms against the subtomogram average: 

this step disentangles the rigid-body and elastic matchings of OF by searching for rigid-body 

alignment of matched subtomograms against the subtomogram average. We perform this step 

using Fast Rotational Matching (FRM) [48]. 

Step 6. Updating the table of rigid-body alignment and calculating a new subtomogram 

average: this is done by combining the initial rigid-body alignment parameters (from the StA 

table) with the rigid-body refinement parameters obtained in the previous step, which is done 

by multiplying the corresponding rotational matrices and finding the rigid-body parameters for 

the resultant matrix [148].  
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This process can be repeated (1-3 times is usually enough), restarting at Step 2, which 

results in subtomograms that are MW-corrected and whose rigid-body alignment is refined. 

 

Figure 54 Pipeline for rigid-body alignment of subtomograms, MW correction, and 

refinement of the rigid-body alignment based on OF subtomograms matching. 

Analyzing the continuous conformational variability based on OF 

Assume that a set of subtomograms {𝑆𝑖} has undergone MW correction and rigid-body 

alignment and refinement, following the procedure presented in the previous subsection and 

Figure 54. Then let 𝑉 be a reference for the target macromolecule contained in {𝑆𝑖}, e.g., the 

corresponding subtomogram average of {𝑆𝑖}. Concurrently, OF calculation in the presence of 

the mask of the region of interest, between 𝑉 and each subtomogram in {𝑆𝑖}, will mainly stand 

for the term 𝛿𝐶(𝑟) in equation (4) since 𝛿𝑂(𝑟) was minimized as a result of the rigid-body 
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refinement. In other words, the OF after MW correction and rigid-body alignment refinement 

represents the elastic matching relationship between the voxels of the 𝑉 and 𝑆𝑖. 

Now let set {𝐹𝑖} be the set of OFs between 𝑉 and {𝑆𝑖}: 

𝐹𝑖 = 𝑂𝐹(𝑉, 𝑆𝑖) (6.5) 

Let 𝑆𝑖  ∈  𝑅𝑙∗𝑚∗𝑛, then 𝐹𝑖  ∈ 𝑅3∗𝑙∗𝑚∗𝑛 since OF gives a 3D vector for each voxel in 𝑉 to 

its matching voxel in 𝑆𝑖. We note here that cryo-ET subtomograms are usually cubic volumes, 

therefore 𝑙 = 𝑚 = 𝑛. 

The corresponding Gram matrix 𝐺 of {𝐹𝑖} can be defined as: 

𝐺𝑖,𝑗 = 𝑣𝑒𝑐(𝐹𝑖)
𝑇 ∗ 𝑣𝑒𝑐(𝐹𝑗) (6.6) 

Where 𝑣𝑒𝑐(. ) is the vectorization operation, i.e., it reshapes the matrix to a single 

column. 

Once the Gram Matrix is found, a dimensionality reduction technique can be applied 

(e.g., PCA) to obtain an essential conformational space. 

Interactively processing the conformational space by selective 3D averages and 

animating trajectories 

In the conformational space, each point assigns an OF, which in turn assigns a 

subtomogram. Close points represent subtomograms of similar conformations and vice versa. 

Dense regions in the conformational space can be grouped interactively, and the corresponding 

subtomograms can be averaged. Comparing the subtomogram averages from different groups 

can help understand the conformational changes of the complex in the given set of 

subtomograms. 

Data distribution paths (trajectories) can be interactively determined in the 

conformational space, by choosing a set of points {𝑃𝑖} across the data distribution. The motion 

of the macromolecule can be obtained by displacing the reference (e.g., the subtomogram 

average) along the trajectory determined by points {𝑃𝑖}, as explained below. 
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Once a trajectory is determined in the conformational space (points {𝑃𝑖} are chosen), the 

inverse mapping should be applied (e.g., using inverse PCA) on {𝑃𝑖}, and the result will be a 

set of vectors {�̂�𝑖} of the same length as the columns of the Gram matrix 𝐺 given in equation 

(6). To proceed on how animations can be obtained, we need to rewrite eq (6.6) alternatively. 

Let 𝑂 be the matrix of vectorized OFs in its columns as follows: 

𝑂𝑖 =  𝑣𝑒𝑐(𝐹𝑖) (6.7) 

Then, 𝐺 can be written as: 

𝐺 =  𝑂𝑇 ∗ 𝑂 (6.8) 

Hence, any column of 𝐺 can be expressed as: 

𝐺𝑖 = 𝑂𝑇 ∗ 𝑣𝑒𝑐(𝐹𝑖) (6.9) 

We take advantage of the representation of 𝐺 in eq (6.9) to approximate a set of OFs 

{𝐹�̂�} that correspond to {�̂�𝑖} as follows: 

𝑣𝑒𝑐(𝐹�̂�) ~ (𝑂𝑇)+ ∗ �̂�𝑖 (6.10) 

Where the (. )+ is the Moore-Penrose matrix pseudoinverse operation 

The retrieved set of {𝑣𝑒𝑐(𝐹�̂�)} can be reshaped to OFs: 

𝐹�̂� = 𝑣𝑒𝑐3∗𝑙∗𝑚∗𝑛
−1 (𝑣𝑒𝑐(𝐹�̂�)) (6.11) 

The set of retrieved OFs, i.e., {𝐹�̂�}, can be used to warp the input reference, which will 

generate a set of Trajectory Volumes {𝑇𝑉�̂�} that represent the set of trajectory points {𝑃𝑖}. 

Finally, displaying {𝑇𝑉�̂�} shows a movie-like animation of the reference while traversing the 

selected trajectory. 

Results 

This section first provides a step-by-step showcase and evaluation of the proposed 

method, TomoFlow, on simulated datasets. Then, it shows an application of TomoFlow on an 

experimentally obtained dataset for nucleosomes in situ. 
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Tests on simulated datasets with continuous and discrete conformational variability 

The experiments presented in this section were carefully designed to demonstrate the 

ability of the method to retrieve continuous and discrete conformational variabilities under 

simulated microscope conditions. These experiments are not claimed to be realistic in terms of 

their biological significance; rather, they are as realistic as possible in terms of the 

sophistication of simulating noise, MW artifacts, CTF, and radiation damage compared to other 

works [47, 51, 54]. For a quantitative assessment of the algorithm for mapping conformations 

while disentangling it from the subtomographic-approach limitations such as MW and rigid-

body (angular and shift) variability, the reader is referred to Chapter 4. 

 Simulating datasets with discrete and continuous macromolecular conformational 

variability 

In order to test the proposed method, we synthesized two conformationally different 

datasets, each with different noise intensities.  

The first dataset simulates discrete conformational variability. It was created using 

Normal Mode Analysis (NMA) [149]. We will call this dataset the “NMA-dataset”. This dataset 

comprises 999 subtomograms at three simulated conformations of chain A of the atomic 

PDB:4AKE structure of adenylate kinase. More precisely, we synthesized 333 subtomograms 

for each of the three conformations simulated using normal modes 7 and 8 of chain A of the 

atomic PDB:4AKE structure The three conformations in this dataset correspond to the 

following normal mode amplitudes (mode 7,mode 8)  ∈  {(−100, 0), (100, 0), (0, 100)}. The 

ground-truth conformational space for NMA-dataset is determined by the amplitudes along 

normal modes 7 and 8. A visual representation of this space and the conformations it contains 

is presented in Figure 55A. 

The second dataset simulates continuous conformational variability. It was created using 

Molecular Dynamics (MD) [150]. We will call this dataset the “MD-dataset”. MD is a 

simulation approach for exploring conformational dynamics by generating trajectories 

describing a structure evolving over time. This dataset comprises 1000 subtomograms 

representing a continuum of conformations generated using an MD trajectory between two 

conformations of adenylate kinase chain A from the PDB structures PDB:4AKE (most open 

conformation) and PDB:1AKE (most closed conformation). The MD trajectory was simulated 
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using GENESIS [151] by Rémi Vuillemot, another Ph.D. student in the team at IMPMC. The 

ground-truth conformational space of the MD-dataset will be presented here by its first two 

principal axes (PCA). A visual representation of this space and the conformations it contains is 

presented in Figure 55B. 

 

Figure 55 Ground-truth conformational spaces for the two simulated datasets. (A) NMA-

dataset: mode 7 and 8 amplitude space with the corresponding three conformations that it 

contains. (B) MD-dataset: principal axes 1 and 2 showing a continuum of conformations (MD 

trajectory) between the PDB structures 4AKE (most open conformation) and 1AKE (most 

closed conformation). 

While simulating data, we followed the best practices presented in the literature [47, 51, 

54, 120] to make the data challenging while keeping the objectives clear. For each 

subtomogram, we convert the PDB structure that represents the desired conformation (i.e., 

either one of the three conformations in the NMA-dataset or one of the continuum of 

conformations in the MD-dataset) to a volume of size 643 voxels and voxel size of 2.2 Å3 [136]. 

Then, we low-pass filter the volume to 6 Å resolution in order to simulate radiation damage and 

other effects such as data misalignments incorporated at the tomogram reconstruction step 

(skipping low-pass filtering would result in better retrieval of conformational variability but is 

less realistic). Afterward, we rotate and shift this volume in 3D space using random Euler angles 

and random 𝑥, 𝑦, 𝑧 shifts in the radius of 5 voxels from the center. To obtain a tilt series, we 

project the rotated and shifted volume using tilt values -60° to +60° with 2° step. We simulate 

microscope conditions by adding noise and modulating the tilt series with a CTF of defocus -1 

µm. Then we add noise again (a part of the noise will be modulated by the CTF, and the other 

part will not). The same procedure is repeated for three different SNR values (0.1, 0.03, 0.01) 
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and without noise. Then, we invert the CTF phase. Finally, we reconstruct volumes (synthetic 

subtomograms) using a Fourier reconstruction method [20]. Figure 56 shows four examples of 

the simulated subtomograms (without noise and at the three different SNR values) for the same 

conformation, orientation, and position of the macromolecule, along with the corresponding 

ideal (ground-truth) density volume (the volume with no noise and no missing wedge artifacts, 

which is not a result of the reconstruction but obtained by converting the atomic structure of 

that conformation). To give the reader an idea of the resolutions of these subtomograms, we 

compared them with the ground-truth volume of the same conformation and found the 

resolutions of 6.4 Å, 13.9 Å, 19.9 Å and 23.6 Å for the simulated subtomogram without noise 

and with SNR of 0.1, 0.03, and 0.01, respectively (volumes in Figure 56),  based on the Fourier 

Shell Correlation (FSC) between the non-masked volumes and the FSC threshold of 0.5. 

 

Figure 56 Central slices in real and Fourier spaces of a simulated subtomogram without noise 

and at different SNRs compared to the corresponding ideal volume. 
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Rigid-body alignment and refinement with MW correction 

We applied the proposed in Figure 54 for rigid-body alignment and refinement with 

MW correction on the simulated datasets as follows: 

Step 1. Performed reference-free rigid-body alignment using the StA protocol in [48]. This 

StA protocol uses an exhaustive angular search (with FRM), a shifting search within a region 

of interest, and MW compensation. The shifting search was set to the range of 10 voxels from 

the center, and the maximum searched normalized frequency to 0.25. The iterative alignment 

was performed for 15 iterations (complete stability was achieved in the rigid-body alignment 

parameters and the resulting average). 

Step 2. Filled the MW region in Fourier space for each subtomogram by the corresponding 

region of the aligned subtomogram average. 

Step 3. Rigid-body aligned the MW-corrected subtomograms. 

Step 4. Calculated the 3D OFs between the subtomogram average and each MW-filled and 

aligned subtomogram using Farneback-3D after multiplying both volumes with a mask. We 

generated this mask by binarizing the subtomogram average, dilating it by a structural element 

of size three, keeping its largest connected component, and smoothing its boundaries with a 

Gaussian filter of standard deviation equal to two. This step results in “matched 

subtomograms”. In all experiments in this article, Farneback-3D was run with i) a 2-level 

volume pyramid of scaling factor of 0.5 (meaning a pyramid with the levels of 643 and 323 

voxels in the case of these two test datasets), ii) a window size of 10 × 10 × 10 voxels for 

integrating the displacement field over a neighborhood of each voxel, iii) 10 iterations of the 

algorithm at each pyramid level, and with default values of all other parameters. It should be 

noted that 323 voxels is the coarsest pyramid level allowed by Farneback-3D. 

Step 5. Performed rigid-body alignment of matched subtomograms against the 

subtomogram average using FRM (the same method used for StA but here without MW 

compensation) in the range of 4 voxels from the center. 

Step 6. Combined the StA table with the rigid-body refinement parameters obtained in the 

previous step and calculated a new subtomogram average (refined reference).  

We iterated the MW correction and rigid-body refinement process by first performing 

Step 1 once and Steps 2-6 three times. Table 7  shows the obtained rigid-body alignment results 

before and after applying this refinement algorithm. They show that the refinement globally 
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reduces the distances between the estimated and ground-truth rigid-body parameters (angles 

and shifts) in the presence of noise and conformational variability (Table 7). 

Conformational variability analysis 

The datasets are ready for continuous conformational variability analysis after applying 

the MW correction and rigid-body refinement algorithm. Subsequently, we calculated the OFs 

between the refined reference and the MW corrected and rigid-body aligned subtomograms for 

each dataset. Then, we found the Gram matrix of OFs based on equations (6.5 - 6.6) and applied 

PCA. The conformational space, represented by the space of the first two principal vectors, for 

each dataset, at different noise intensities, is shown in Figure 57. A comparison between the 

ground-truth conformational spaces in Figure 55 and the retrieved conformational spaces in 

Figure 57 shows that i) for the NMA-dataset, the separation between the three conformations 

in the retrieved conformational space is evident for all the tested noise intensities, and ii) for 

the MD-dataset, the trajectory is more evident for lower noise intensity (higher SNR), and it is 

the least evident when the SNR is 0.01. 

Table 7 Mean and standard deviation (STD) of the absolute distance between ground-truth 

and estimated rigid-body parameters via StA before and after the proposed rigid-body 

refinement algorithm applied to NMA-dataset and MD-dataset.  

Dataset Noise 
Before/After 

Refinement 

Angular distance [deg] 
Shifting distance 

[vox] 

Mean STD Mean STD 

NMA-

dataset 

No Noise 
Before 2.8 1.5 1.9 0.2 

After 2.5 1.4 0.9 0.1 

SNR = 

0.1 

Before 2.8 1.5 1.2 0.2 

After 2.5 1.3 1.2 0.2 

SNR = 

0.03 

Before 3.1 3.1 1.3 0.4 

After 2.4 2.3 1.2 0.4 

SNR = 

0.01 

Before 17.0 39.3 2.7 2.5 

After 16.5 39.7 2.6 2.4 

MD-

dataset 

No Noise 
Before 3.3 2.5 1.4 0.2 

After 3.1 2.4 1.0 0.2 

SNR = 

0.1 

Before 2.6 1.6 1.5 0.2 

After 2.5 1.7 1.5 0.2 

SNR = 

0.03 

Before 4.0 2.9 1.6 0.2 

After 3.9 2.7 1.4 0.2 

SNR = 

0.01 

Before 4.8 3.4 1.2 0.4 

After 4.5 3.1 1.0 0.3 

To give the reader a sense of what the method can achieve when applied to challenging 

datasets expected in experimental studies, we will base our evaluation of the retrieved 
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conformations for both datasets on the most challenging noise case (SNR = 0.01), in which the 

molecule is barely visible in the subtomograms (Figure 56). 

 Conformational variability analysis for the NMA-dataset 

This subsection presents the results of analyzing the conformational variability in the 

NMA-dataset at SNR = 0.01 using TomoFlow. Figure 58 presents the retrieved conformational 

space of this dataset, highlighting three distinct groups of points in this space and their 

corresponding subtomogram averages. Moreover, each group average is compared with its 

ground-truth atomic structure at the corresponding conformation by docking this atomic 

structure into the average volume and displaying the volume at 40% opacity.  

 

Figure 57 Plots showing the output conformational spaces found by TomoFlow on NMA-

dataset and MD-dataset for different noise intensities. The ground-truth conformational 

spaces for these datasets are shown in Figure 55. We note here that only the distribution 

should be compared with the ground-truth, which indicates that the inter-relationship between 

the conformations was retrieved correctly (i.e., similar conformations were mapped to close 

points and vice versa); the limits of the horizontal and vertical axes do not correspond to those 

of the ground-truth since the ground-truth conformational space relates atomic structures (NM 

amplitudes or PCA of MD trajectory) and retrieved conformational space relates OFs. 

We compared the three obtained subtomogram averages with the ground-truth volumes 

of the corresponding conformations (the atomic structures of these conformations converted 

into volumes), based on the FSC between non-masked volumes and the FSC threshold of 0.5. 

The obtained resolutions of the three volumes from left to right in Figure 58 are 9.6 Å, 9.5 Å, 

and 9.5 Å, respectively. Note here that each of the three volumes was obtained by averaging 

around 300 subtomograms (Figure 58) and recall that the resolution of an individual 
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subtomogram is around 24 Å for SNR = 0.01. Thus, we observe that the resolution was 

improved by more than 50 % by averaging only 300 subtomograms, which were aligned in 

terms of molecular conformation, orientation and position using TomoFlow. 

Since the conformational variability in this dataset is discrete, animations are not 

presented for this dataset.  

Conformational variability analysis for the MD-dataset 

This subsection presents the results of analyzing the conformational variability in the 

MD-dataset at SNR = 0.01. Figure 59A presents the retrieved conformational space of this 

dataset, highlighting six selected groups of subtomograms in this space and their corresponding 

averages. Moreover, each group average is compared with the ground-truth atomic structure 

found as the group's centroid at the corresponding conformation by docking this atomic 

structure in the average volume and displaying the volume at 40% opacity (Figure 59A). 

Regarding the number of groups and their locations, it is encouraged to try more and fewer 

groups, which may help to better understand the conformational variability. TomoFlow 

software (so is the software of HEMNMA-3D in Chapter 4) provides a graphical interface for 

an interactive selection of the regions in the low-dimensional conformational space in which 

subtomograms will be summed and their averages computed. Usually, the averages will be 

calculated from the densest regions (the regions with the largest numbers of points, i.e., 

subtomograms). The density of points can be visualized using different shades of coloring the 

points (from the lowest density indicated by the lightest color to the highest density indicated 

by the darkest color). The size (radius) of each subtomogram averaging region in the 

conformational space should be selected carefully. Indeed, small-radius regions should still 

contain enough subtomograms to produce subtomogram averages with sufficiently attenuated 

noise and MW-induced deformations. Also, large-radius regions should not result in smooth 

subtomogram averages because the conformational differences between such smooth averages 

from different regions may not be distinguishable. In general, the higher the resolution and the 

number of subtomograms, the more it is possible to select denser regions of smaller radii and 

reveal the conformational variability of the targeted macromolecule, and vice versa. 
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Figure 58 The conformational space found using TomoFlow on the NMA-dataset with SNR = 

0.01 (the ground-truth conformational space is shown in Figure 55). The shown volumes are 

averages of three groups of subtomograms identified by the highlighted ellipses. The number 

shown inside an ellipse corresponds to the number of points it encloses. The bottom row 

displays the averages at 40% opacity with their corresponding ground-truth atomic structure 

docked inside for comparison. 

The averages obtained from the six selected groups of subtomograms in Figure 59A (the 

selected regions of the conformational space of the MD-dataset at SNR = 0.01) were compared 

with the corresponding ground-truth volumes (the volumes obtained by converting the atomic 

structure of the group's centroid at the corresponding conformation), based on the FSC between 

non-masked volumes and the FSC threshold of 0.5.  The obtained resolutions of the six volumes 

from left to right in Figure 59 are 9.8 Å, 9.7 Å, 9.7 Å, 9.8 Å, 11.6 Å, and 15.8 Å, respectively. 

It can be noted that these resolutions are correlated with the numbers of subtomograms averaged 

in each group (the numbers shown in Figure 59A). For instance, the subtomogram average of 

the lowest resolution (15.8 Å) was obtained from the lowest number of subtomograms (80). 

Also, note that the resolution is 11.6 Å for averaging 101 subtomograms and it is below 10 Å 

for averaging 112 subtomograms (the averaging of 112-185 subtomograms resulted in the 

resolution of 9.7-9.8 Å). Thus, we observe that the resolution can improve by more than 50 % 

with respect to the resolution of an individual subtomogram (24 Å for SNR = 0.01) by averaging 

as little as around 100 subtomograms, if these subtomograms are aligned in terms of molecular 

conformation, orientation and position using TomoFlow. 
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Figure 59B presents an animation following the data distribution manifold. This 

animation is generated by applying the inverse PCA mapping on the identified points (the ten 

numbered red points shown in the space), then using equations (6.10 - 6.11) to generate the 

corresponding OF for each point. These generated OFs are then used to warp the subtomogram 

average (the global average found after refinement) to generate volumes. The latter volumes 

correspond to the animation frames, shown as the numbered volumes at the bottom row. When 

these volumes are displayed sequentially, they show an animation that reveals the MD trajectory 

used to create the data. This animation is provided in the supplementary material of the 

published article [140] (Supplementary Movie 1). 

 

Figure 59 Continuous conformational variability analysis via selective subtomogram averages 

and animation using TomoFlow conformational space of the MD-dataset with SNR = 0.01. 

(A) Subtomogram averages of six groups of subtomograms identified by the highlighted areas 

of the conformational space. The number shown inside a highlighted area corresponds to the 

number of points it encloses. The bottom row displays the averages at 40% opacity with their 

corresponding ground-truth atomic structure (group centroid) docked inside for comparison. 

(B) Displacement of the global subtomogram average along the direction of the data 

distribution in the conformational space (molecular motion along a trajectory); animation 

consisting of ten frames represented by a sequence of red dots (from 1 to 10, see also 

Supplementary Movie 1 in the Supplementary Material of the published article [140]). The 

ground-truth conformational space is shown in Figure 55. 

Conformational variability of nucleosomes in situ 

This section describes the application and results of TomoFlow on nucleosomes in situ, 

in their interphase nucleus context. We use a dataset containing 666 subtomograms (EMPIAR-

10679) of nucleosomes extracted from cryo tomographic reconstruction of a vitreous section of 
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a high-pressure frozen Drosophila embryonic brain [28, 120], with a subtomogram volume size 

of 643 and voxel size of 4.4 Å3 (dataset described in Chapter 4)  

First, we used the StA parameters to reproduce the global subtomogram average. We 

used the average to generate a mask of the region of interest, which was then used to refine 

rigid-body alignment and analyze the conformations in the data. We generated the mask by 

binarizing the subtomogram average, dilating it by a structuring element of size three, keeping 

its largest connected component, and smoothing its boundaries with a Gaussian filter of 

standard deviation equal to two. Second, we performed seven MW correction and rigid-body 

refinement iterations following the procedure shown in Figure 54. Third, we analyzed the 

conformational variability after rigid-body alignment and MW correction of subtomograms. 

We applied PCA on the Gram matrix of OFs, and the conformational space determined by the 

first two principal axes is shown in Figure 60.  

By inspecting the conformational space, we notice that the first principal axis has 

significantly larger variability than the second principal axis. We analyzed the variability 

carried along the first principal axis by analyzing two subtomogram averages and an animation 

generated along this principal axis. We selectively generated subtomogram averages from 

groups of points at the beginning and the end of the data distribution. The regions for the groups 

of points are shown as highlighted areas in Figure 60A, along with their corresponding 

subtomogram averages. The averages are generated for the MW-corrected and rigid-body 

aligned subtomograms. Also, we generated animation for the variability along the first principal 

axis, within the limits of the data distribution manifold represented by the line D in Figure 60B. 

This animation is generated by estimating the OFs for ten points along line D, then warping the 

global subtomogram average using these estimated OFs. The resulting volumes are displayed 

sequentially to generate the animation (Supplementary Movie 2 in Supplementary Material of 

the published article [140] and Figure 60B). 
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Figure 60 TomoFlow applied to cryo-ET dataset of nucleosomes in situ. (A) group averages 

for two regions specified by highlighted areas in the conformational space and the 

corresponding averages. The number inside a highlighted area indicates the number of 

subtomograms the area encloses. (B) an illustration showing the displacement of the global 

subtomogram average along the first axis in the limits of the data distribution shown by line D 

in the conformational space. The arrows on the different views of the global average show the 

direction of the movement in this animation. The animation is provided in the supplementary 

material (Supplementary Movie 2 in Supplementary Material of the published article [140]). 

The main differences between the two group averages (Figure 60A) and the motion 

observed along line D (Figure 60B) indicate that TomoFlow detected a combined breathing and 

gapping motion of the nucleosome, with the breathing motion more expressed. These results 

are consistent with those of HEMNMA-3D using the same dataset [120] (Chapter 5) but without 

imposing any prior knowledge (like simulated motion directions by NMA) on the analysis of 

the conformational variability. 

Discussion 

This chapter presented TomoFlow method that addresses continuous macromolecular 

conformational variability captured in cryo-ET subtomograms. TomoFlow employs dense 3D 

optical flow, posterior to conventional StA, to refine the rigid-body alignment and analyze the 

conformational variability. The method maps the subtomograms to a space of conformations 

and allows i) interactively generating subtomogram averages of different conformations, and 
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ii) navigating the conformational space of the macromolecule via animations based on a 

reference (e.g., the global subtomogram average).  

We presented the method with simplified yet sufficient mathematical derivations that 

are necessary for understanding and implementing it. We tested the method by synthesizing 

two datasets under challenging conditions and testing its capability in retrieving their ground-

truth conformational spaces. The results of the tests with simulated data indicate that i) the 

proposed rigid-body refinement can improve the alignment quality in the presence of 

conformational variability, and ii) the proposed conformational variability analysis can 

accurately recover hidden conformations. Additionally, we tested TomoFlow using a cryo-ET 

dataset of nucleosomes in situ, which provided promising results coherent with previous 

findings using the same dataset [120] but without imposing any prior knowledge on the analysis 

of the conformational variability. 

TomoFlow performs the analysis in real space. Hence, it requires MW correction instead 

of the MW compensation in reciprocal space that is used in HEMNMA-3D. MW correction 

algorithms exist and TomoFlow can work in conjunction with any of them. Here, we used a 

method for MW correction based on filling the MW region of subtomograms with the 

corresponding region of the global subtomogram average. A more advanced MW correction 

method can be used in the future and might lead to better results.  

OF is a powerful and robust image analysis algorithm. Earlier OF approaches were 

detecting small changes, typically in a few pixels/voxels range. Recent OF methods, such as 

Farneback-3D used in TomoFlow, cope with this limitation by combining OFs from multiple 

scales (pyramid-scheme processing). Nevertheless, TomoFlow will be more efficient for 

smaller conformational variability in the data (for a systematic test of TomoFlow matching 

different conformational variability magnitudes, the reader can see Chapter 4). Additionally, 

Farneback-3D method enforces the smoothness of the motion field between the two given 

volumes (the volumes between which the OF should be calculated), which allows a correct 

calculation of the OF under very heavy noise and resisting against MW artifacts. However, the 

OF smoothness enforcement induces smoothness of the generated animation (a smooth version 

of the warped reference in each frame, e.g., Figure 60B). Finally, obtaining animations requires 

Moore-Penrose pseudoinverse to be found for a large matrix given in equation (10). This matrix 

is defined as the matrix of column-wise vectorized OFs that can be three times the dimensions 

of the input subtomogram dataset; for instance, generating animations after processing a dataset 
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that comprises 1000 subtomograms of volume size 643 will require the inversion of 3*643 rows 

by 1000 columns, which becomes computationally challenging for large datasets, mainly in 

terms of the required memory. However, a downsampling (e.g., by 2) of the OFs before 

reconstructing the matrix significantly reduces the computational requirements, resulting in less 

detailed animations. 

Despite the limitations discussed above, the presented TomoFlow method provides a 

promising new insight into what can be achieved in cryo-ET studies of macromolecular 

conformational variability. The advancement in OF development might allow even better 

TomoFlow performance in the future. TomoFlow is not directly applicable to analyzing 2D 

images. However, it can analyze 3D volumes reconstructed from 2D images, potentially coming 

from other cryo-EM modalities, such as single-particle images. 
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Chapter 7. Software contributions 

The methods developed in this thesis were integrated into a software package called 

ContinuousFlex, along with other methods developed in Dr. Jonic's team for processing cryo-

EM/ET data, mainly in terms of biomolecular continuous conformational variability. 

ContinuousFlex is a plugin of open-source software called Scipion, which is a software that 

was initially developed for SPA cryo-EM data processing and was recently extended to process 

cryo-ET data. The backend of Scipion, which is the backend of ContinuousFlex, is implemented 

in a software package called Xmipp. 

During my thesis, I was the principal developer of ContinuousFlex, which we partially 

described in a journal manuscript during its early development in late 2019 [123], and in another 

journal manuscript (to date, it is under review) that reviews all the methods of ContinuousFlex. 

For three years, I was in charge of maintaining ContinuousFlex and assisting other members of 

Dr. Jonic's team in adding new methods. I also took part in the development of Scipion, 

particularly its extension to tomography [152], and in the development of Xmipp [153]. 

This chapter introduces ContinuousFlex, and describes the practical aspects and 

software of HEMNMA-3D and TomoFlow. 

ContinuousFlex 

ContinuousFlex is a user-friendly open-source software package primarily developed 

for obtaining conformational landscapes of macromolecules by an exhaustive analysis of their 

continuous conformational variability in cryo-EM/ET data (Figure 61a). Additionally, it 

provides methods for flexible fitting of cryo-EM maps with atomic models (Figure 61b). 

ContinuousFlex branched from Scipion [154] and its backend software Xmipp [153] in 2019 

[123]. It is currently available as a plugin of Scipion, with Xmipp hosting several of its backend 

data processing steps. This pluginization allowed better maintenance, faster development, and 

more frequent releases of bug fixes and developed methods. As a plugin of Scipion, 

ContinuousFlex allows reproducible research, as all the data processing steps used in 

experiments are automatically stored on the disk (together with their parameters) and can be 

reproduced at any moment using the same or modified parameters. Additionally, the project 
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containing all the data processing steps can be directly uploaded to EMPIAR, as allowed by 

Scipion. 

Currently, ContinuousFlex contains software for running (1) recently published 

methods HEMNMA-3D [120], TomoFlow [140], and NMMD [155]; (2) earlier published 

methods HEMNMA [43, 123] and StructMap [131]; and (3) methods for simulating cryo-EM 

and cryo-ET data with conformational variability and methods for data preprocessing [120, 140, 

155, 156]. It also includes external software for molecular dynamics simulation (GENESIS 

[157]) and normal mode analysis (ElNemo [158]), used in some of the mentioned methods. 

Besides, ContinuousFlex currently also offers a deep learning extension of HEMNMA, named 

DeepHEMNMA (manuscript under review). 

 

Figure 61 Illustration of the methods in ContinuousFlex: (a) methods used for obtaining 

conformational landscapes of macromolecules by an exhaustive analysis of their continuous 

conformational variability in cryo-EM/ET data; (b) methods for flexible fitting of cryo-EM 

maps with atomic models. The methods in ContinuousFlex are based on normal mode 

analysis (NMA), molecular dynamics simulation (MD), combination of NMA and MD 

(NMMD), deep learning, or optical flow 

HEMNMA-3D software: Analysis of a set of subtomograms using normal modes 

ContinuousFlex allows performing all the steps of HEMNMA-3D, as follows (Figure 

62): 

1- Importing an atomic structure (1.a) or an EM map (1.b1). If an EM map is imported, it is 

converted to a pseudoatomic structure (1.b2).  

2- Performing NMA. 

3- Importing volumes (subtomograms), synthesizing volumes (optional), resizing volumes 

(optional), masking volumes (optional), and performing traditional subtomogram averaging 
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(optional). We note here that the protocol "Synthesize volumes" can be used to create data 

for testing the method and is not a part of data processing, whereas the protocol 

"Subtomogram averaging" can be used to find the global subtomogram average of the input 

set (which can serve as a starting reference for HEMNMA-3D). The protocols "Resize 

volumes" and "Apply mask" are optional data preprocessing techniques. 

4- Performing rigid-body and normal-mode-based elastic alignment of the reference model 

with each subtomogram. At this step, HEMNMA-3D calculates normal-mode amplitudes, 

three Euler angles, and a 3D shift for each subtomogram. 

5- Obtaining and analyzing a low-dimensional conformational space using the normal-mode 

amplitudes, Euler angles, and shifts estimated for all subtomograms at step 4. This step 

allows obtaining movies of conformational transitions and subtomogram averages of 

similar conformations from the conformational space. 

 

Figure 62 Graphical interface of HEMNMA-3D in ContinuousFlex. Green box: input 

subtomograms. Red branch: HEMNMA-3D processing with an atomic structure as the 

reference. Blue branch: HEMNMA-3D processing with an EM map as the reference. None of 

the tools marked as optional (menu on the left) were used in this figure. The numbers of the 

steps in the menu on the left are indicated in the tree on the right. 

Step 4 of HEMNMA-3D software is MPI parallelized, allowing multiple volumes to be 

processed simultaneously.  

TomoFlow: Analysis of a set of subtomograms using optical flow 

ContinuousFlex allows performing all the steps of TomoFlow, as follows (Figure 63): 
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1- Importing volumes (subtomograms) and some optional tools for creating and applying 

masks, denoising volumes, missing wedge correction, and synthesizing volumes. The mask 

tools are useful for creating a mask based on the global subtomogram average and applying 

it to aligned subtomograms to eliminate the background noise. 

2- Importing an external reference (optional) as an EM map or an atomic structure converted 

to an EM map to perform subtomogram alignment. This is only recommended when 

reference-free subtomogram alignment fails. 

3- Performing or importing subtomogram alignment and averaging, generating a mask for the 

region of interest (used from Optional tools in Step 1), refining the rigid-body alignment, 

and filling the missing wedge.  

4- Finding the OF between the refined subtomogram average and the missing wedge corrected 

and aligned subtomograms, then using the OFs to construct a Gram matrix. 

5- Obtaining the conformational space (PCA on the Gram matrix) and its interactive analysis 

by generating movies of conformational transitions along different directions in the space 

and calculating subtomogram averages of similar conformations. 

TomoFlow software is MPI parallelized for rigid-body alignment, and it uses GPU 

processing for OF calculation. 

 

Figure 63 Graphical interface of TomoFlow in ContinuousFlex. Green box: input 

subtomograms. Blue box: traditional subtomogram averaging (which can also be done using 

other software packages and imported to Scipion). Red branch: other steps specific to 

TomoFlow. 
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Chapter 8. Discussion, conclusion and future work 

The future cryo-ET research could be more inspired by the current trend in SPA. The 

research in SPA has moved towards analyzing continuous conformational variability, starting 

with a few methods that were sprouted almost a decade ago and kept evolving, such as 

HEMNMA [43, 123, 124] and Manifold Embedding [159, 160], and passing through a 

significant amount of new methods that have been developed in the past few years, mostly 

based on Deep Learning such as cryoSparc [161], Multi-CryoGan [162], cryoDrgn [163, 164] 

and others [165],[166], including a deep learning extension of HEMNMA referred to as 

DeepHEMNMA developed in the team at IMPMC (manuscript under review). These methods 

can potentially be extended to cryo-ET data; however, deep learning methods require large 

datasets in general to train. Unfortunately, so far, cryo-ET datasets are still of small size in terms 

of the number of particles, especially in situ. On the other hand, the methods developed in this 

thesis (HEMNMA-3D and TomoFlow), can deal with continuous conformational variability in 

cryo-ET data despite the small number of subtomograms since they have mathematical bases 

to extract interpretable results from datasets of any size and are not based on Deep learning. 

It should be reminded that better statistics (including those produced by PCA) are 

obtained for larger datasets. The cryo-ET datasets that can be collected (thus, analyzed by 

HEMNMA-3D and TomoFlow) nowadays are still much smaller than those produced by single-

particle cryo-EM. However, the goal of the PCA in HEMNMA-3D and TomoFlow is to reveal 

the major motions of the complex. In this context, a dataset of 2000 subtomograms that can be 

obtained nowadays may be considered large enough for such PCA and should allow revealing 

the main motions of the complex. In this thesis, we have shown the results of an experiment 

with 666 in-situ cryo-ET nucleosome subtomograms, which appear to be sufficient for 

revealing the breathing and gapping motions of the nucleosome, the two main motions of the 

nucleosome that have also been detected using two different methods in situ [28] as well as in 

a theoretical study [90]. 

In this thesis, two methods for continuous conformational variability in cryo-ET were 

introduced. The first method is called HEMNMA-3D, and is based on matching simulated 

movements using normal mode analysis with experimental subtomograms. It requires a prior 

selection of a subset of simulated movements (normal modes) that will be a basis for searching 

the data. The selection of normal modes is a critical step, and is recommended to be performed 
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using a criterion of low-frequency and high-collectively modes. When this prior is properly 

selected, HEMNMA-3D allows discovering the full range of macromolecular motion hidden in 

input data.  Nevertheless, when this prior is not well selected (e.g., some important normal 

modes are not selected), HEMNMA-3D might generate results that might be misinterpreted. 

The second method is called TomoFlow, and is based on extracting movements from the input 

data by matching it with a reference based on a three-dimensional dense optical flow (OF) 

approach. TomoFlow does not use any prior information and is thus less prone to 

misinterpretation and misuse. However, to encounter large motion magnitudes, TomoFlow 

results in smoothing the OF and downscaling the true macromolecular motion. HEMNMA-3D 

and TomoFlow can be applied to the same dataset to cross-validate the obtained results. Both 

methods were applied to the case study of nucleosomes in cells and showed similar results, 

coherent with previous findings and theoretical anticipations of nucleosome conformations, 

mainly showing gapping and breathing motions of the nucleosome. 

It should be noted that grouping similar structures and computing their averages for 

improving SNR, as it is done in the traditional StA workflows, is not the main objective of 

HEMNMA-3D and TomoFlow. Their main objective is to obtain the conformational landscape 

that can be easily visualized (in two or three dimensions determined by the first two or three 

principal axes) and explored in terms of molecular flexibility animations along different 

directions (animated displacements of a reference conformation). Yet, HEMMNA-3D and 

TomoFlow allow making such groups of similar structures and computing their averages, but 

in contrast to the traditional, discrete classification methods, the number of groups in 

HEMNMA-3D and TomoFlow is not defined prior to the analysis and it is selected according 

to the conformational distribution in the low-dimensional conformational space. Furthermore, 

using traditional StA workflows, less dominant conformations are likely to be undiscovered as 

being wiped out through the global or class averages blindly (no possibility of visualizing all 

conformations in a common frame and selecting the conformations to average accordingly). On 

the contrary, HEMNMA-3D and TomoFlow provide a visualization of the full conformational 

space and, thus, allows discovering less dominant conformations (as less dense regions in this 

space) and prevents from wiping such conformations out thanks to an interactive selection of 

the regions from which the averages will be calculated. However, HEMNMA-3D and 

TomoFlow are not designed for analyzing all types of structural variabilities such as 

macromolecular disassembly or binding and unbinding of ligands, but it can be combined with 

discrete classification methods to disentangle such structural variabilities and then analyze 
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continuous intraclass variability using class averages as references instead of the global 

subtomogram average. 

Each of HEMNMA-3D and TomoFlow has its advantages and drawbacks. Interesting 

future work is to combine the two methods in single data processing pipeline. The main 

disadvantage of TomoFlow is that its optical flow backend enforces data smoothness, which 

helps avoid overfitting and keeps the method robust to noise. However, this smoothness does 

not allow the discovery of large movements. Relaxing the smoothing effect of optical flow is 

not possible in the presence of very high noise. The main disadvantage of HEMNMA-3D is 

that it is dependent on a prior selection of a set of normal modes, which can be subjective, and 

results may vary when data is analyzed with different prior selections of the modes. Recently, 

we have developed a way to project optical flow vectors on normal modes, which allows using 

normal modes in the TomoFlow pipeline without prior selection of a subset of normal modes. 

The logic is to project the results of TomoFlow on normal modes, use normal modes to update 

the starting reference, and use TomoFlow again. The disadvantage of this combination is the 

required processing time, which multiplies by the number of iterations performed (e.g., 5 times 

the processing time of TomoFlow, if 5 iterations are used). 

One of the challenging tasks is cryo-ET data analysis is tilt series alignment. An aligned 

tilt series, which is used for tomographic reconstruction, can still have some errors that limit 

the resolution of the tomogram. Hence, research has been going on to refine the tilt series 

alignment after STA, based on an idea commonly known as “per-particle per-tilt” [59, 134, 147, 

167]. This refinement usually involves extracting a subtilt-series for every subtomogram (per 

particle tilt-series) and using subtomograms as markers to refine the global tilt series alignment 

based on the information of the STA. The current research direction is moving toward altering 

the STA procedure to align the per-particle tilt -series (sub-stacks) as images in such a way to 

have computationally cheaper STA (in terms of disk space and processing time). However, the 

latter idea is still under development, with a notably advanced work presented in a package 

called SUSAN (SUbStack ANalysis package, https://github.com/Kudryas-hevLab/SUSAN). 

HEMNMA-3D and TomoFlow have the potential to be used in refining tilt-series alignments 

in the presence of continuous conformational variability. Therefore, interesting future work is 

to adapt HEMNMA-3D and TomoFlow to analyze sub-stacks instead of subtomograms, as in 

SUSAN. 

https://github.com/Kudryas-hevLab/SUSAN
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Finally, interesting work is the development of new methods to describe the 

displacement field between different molecular conformations, other than normal mode 

analysis and optical flow used in this thesis. 
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Résumé : 

La tomographie électronique cryogénique (cryo-ET) est une technique de biologie structurale qui permet 

de déterminer la structure et la dynamique des complexes biomoléculaires dans leur environnement 

cellulaire natif. Au cours de la dernière décennie, la cryo-ET a connu divers développements 

instrumentaux et logiciels qui ont permis d'obtenir des informations structurelles sans précédent sur les 

processus fondamentaux de la vie cellulaire. Néanmoins, plusieurs défis restent à relever avant que la 

cryo-ET puisse atteindre son plein potentiel. Les données 3D des biomolécules produites à l'aide de la 

cryo-ET sont bruyantes, peu contrastées, souffrent d'anisotropies spatiales et sont donc très difficiles à 

analyser individuellement. Par conséquent, les méthodes courantes de traitement des données cryo-ET 

visent à faire la moyenne de plusieurs copies de données 3D de biomolécules individuelles pour obtenir 

une structure moyenne à une résolution plus élevée. Cependant, les biomolécules sont des entités 

flexibles, et le calcul de la moyenne cache des informations sur leur variabilité conformationnelle, alors 

qu'une compréhension complète des mécanismes fonctionnels des biomolécules ne peut être obtenue 

que si leur variabilité conformationnelle est prise en compte. Entravées par les défis mentionnés ci-

dessus, les techniques précédentes abordent la variabilité biomoléculaire par la classification, en 

discrétisant les transitions continues des biomolécules en un nombre fini d'états. Par conséquent, un défi 

critique du traitement des données est de développer des méthodes qui seront capables d'interpréter les 

données en termes de transitions conformationnelles continues. Dans cette thèse, je présente les deux 

premières méthodes de traitement des données cryo-ET qui traitent de la variabilité conformationnelle 

continue des biomolécules, HEMNMA-3D et TomoFlow. HEMNMA-3D analyse les données 

expérimentales avec des directions de mouvement simulées par l'analyse en mode normal, et permet la 

découverte d'une large gamme de mouvements biomoléculaires cachés dans les données. Cependant, 

HEMNMA-3D dépend de ce préalable (directions de mouvement simulées), ce qui le rend susceptible 

d'être mal interprété et biaisé en cas de mauvaise utilisation. TomoFlow extrait les mouvements des 

données sans information préalable à l'aide d'une technique de vision par ordinateur appelée "Optical 

Flow". Il est donc moins susceptible d'être mal interprété et mal utilisé. Cependant, lorsqu'il rencontre 

de grandes amplitudes de mouvement, il produit une version lisse et réduite du mouvement 

biomoléculaire réel. HEMNMA-3D et TomoFlow ont des modèles mathématiques différents, mais tous 

deux sont capables d'explorer les paysages conformationnels biomoléculaires et sont supérieurs à la 

classification. Je valide systématiquement HEMNMA-3D et TomoFlow sur des ensembles de données 

synthétiques. Je montre également le potentiel de ces deux méthodes sur des données cryo-ET 

expérimentales de la variabilité conformationnelle des nucléosomes in situ, dans le cadre d'une étude en 

cours sur la structure et la dynamique des nucléosomes dans les cellules. Les deux méthodes présentent 

des résultats cohérents, permettant de mieux comprendre la variabilité conformationnelle des 

nucléosomes, en accord avec les analyses visuelles et théoriques précédentes des conformations des 

nucléosomes. Je démontre que ces méthodes produisent des résultats valables avec des données in situ 

difficiles des nucléosomes. Sur cette base, elles devraient également être utiles pour les études 

conformationnelles d'autres complexes biomoléculaires in vitro et in situ. Les logiciels HEMNMA-3D 

et TomoFlow sont accessibles au public, en tant que partie du pipeline de traitement des données cryo-

ET du progiciel open-source ContinuousFlex, qui est actuellement un plugin du logiciel Scipion, 

largement utilisé dans le domaine, et qui utilise le logiciel backend Xmipp de Scipion. Je contribue à la 

maintenance et au développement de ces trois logiciels, en particulier de ContinuousFlex. 

Mots-clés : Cryo-ET, Analyse continue de la variabilité conformationnelle, HEMNMA-3D, TomoFlow, 

Structure et dynamique des nucléosomes dans les cellules, ContinuousFlex, Scipion et Xmipp. 
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Abstract: 

Cryogenic electron tomography (cryo-ET) is a structural biology technique that allows determining  

structure and dynamics of biomolecular complexes in their native cellular environment. During the last 

decade, cryo-ET has witnessed various instrumental and software developments that allowed 

unprecedented structural insights into the fundamental processes of cellular life. Nevertheless, several 

challenges remain to be addressed before cryo-ET can reach its full potential. 3D data of biomolecules 

produced using cryo-ET are noisy, low in contrast, suffer from spacial anisotropies, and thus are very 

difficult to analyze individually. Hence, mainstream cryo-ET data processing methods aim to average 

multiple copies of 3D data of individual biomolecules to obtain an average structure at a higher 

resolution. However, biomolecules are flexible entities, and the averaging hides information about their 

conformational variability, whereas a complete understanding of functional mechanisms of 

biomolecules can only be achieved when their conformational variability is taken into account. Hindered 

by the challenges mentioned above, previous techniques address biomolecular variability with 

classification, discretizing continuous transitions of biomolecules into a finite number of states. Hence, 

a critical data processing challenge is to develop methods that will be able to interpret data in terms of 

continuous conformational transitions. In this thesis, I present the first two cryo-ET data processing 

methods that address continuous conformational variability of biomolecules, HEMNMA-3D and 

TomoFlow. HEMNMA-3D analyses experimental data with motion directions simulated by Normal 

Mode Analysis, and allows the discovery of a large range of biomolecular motions hidden in the data. 

However, HEMNMA-3D depends on this prior (simulated motion directions), making it prone to 

misinterpretation and bias when misused. TomoFlow extracts movements from the data without prior 

information using a computer vision technique called the Optical Flow. Therefore, it is less prone to 

misinterpretation and misuse. However, when it encounters large motion magnitudes, it results in a 

smooth and downscaled version of the actual biomolecular motion. HEMNMA-3D and TomoFlow have 

different mathematical models, but both are able to explore biomolecular conformational landscapes 

and are superior to classification. I systematically validate HEMNMA-3D and TomoFlow on synthetic 

datasets. Also, I show the potential of these two methods on experimental cryo-ET data of nucleosome 

conformational variability in situ, taking part in an ongoing study of nucleosome structure and dynamics 

in cells. The two methods show coherent results, shedding insight into the conformational variability of 

nucleosomes, in line with previous visual and theoretical analyses of nucleosome conformations. I 

demonstrate that these methods produce valuable results with challenging in situ data of nucleosomes. 

Based on this, they are also expected to be useful for conformational studies of other biomolecular 

complexes in vitro and in situ. The software of HEMNMA-3D and TomoFlow is publicly available, as 

part of the cryo-ET data processing pipeline of the open-source software package ContinuousFlex, 

which is currently a plugin of Scipion software, extensively used in the field, and uses Scipion’s backend 

software Xmipp. I contribute to the maintenance and development of these three software packages, 

especially ContinuousFlex. 

 

Keywords: Cryo-ET, Continuous Conformational Variability Analysis, HEMNMA-3D, TomoFlow, 

Nucleosome Structure and Dynamics in cells, ContinuousFlex, Scipion and Xmipp. 


