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The Secret Life of JPEG images: Forgery detection using compression traces
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Titre: La vie secrète des images JPEG : Détection de falsification via les traces de compression Mots clés: Forensique d'image, compression JPEG, a contrario Résumé : Avec l'avènement de la photographie numérique et les progrès des outils de retouche photo, modifier une image est devenu facile et accessible à tous. La plupart de ces modifications visent à améliorer l'image, mais certaines ont pour but d'en altérer le sens. De telles contrefaçons peuvent facilement être rendues visuellement réalistes. Heureusement, ils déforment également la structure même de l'image, telle qu'elle se forme au cours de sa chaîne de traitement. En effet, la formation d'une image numérique, des capteurs de la caméra au stockage au format JPEG, laisse des traces caractéristiques, qui agissent comme une signature de l'image. La dissimulation, la modification ou l'ajout d'un objet étranger dans l'image dénaturent ces signatures et créent des incohérences détectables. Cette thèse étudie la compression JPEG et la signature digitale (sous forme de motifs de blocs de 8 × 8 pixels) qu'elle laisse sur l'image. Ces motifs sont ensuite exploités pour proposer plusieurs algorithmes de détection de falsification. Ces méthodes sont basées sur la théorie statistique a contrario, conduisant à des algorithmes de décision automatique, ne nécessitant pas d'interprétation visuelle. Parmi les méthodes proposées figure zero, un nouvel algorithme de détection de falsification d'images qui analyse les artefacts JPEG et détecte les retouches lorsqu'une anomalie locale est jugée statistiquement significative. Cette méthode constitue l'état de l'art en matière de détection de falsification par les traces JPEG et peut être utilisée par le grand public grâce à un outil développé par l'Agence France-Presse. La thèse explore également l'évaluation des méthodes de détection de falsification en général. Une nouvelle méthodologie non sémantique est proposée, ainsi que les jeux de données associés. Ils permettent de caractériser la sensibilité des outils forensiques par rapport à des opérations d'images spécifiques et d'éviter les difficultés des évaluations sémantiques.

phy and the progress of photo editing tools, modifying an image has become easy and accessible to all. Most of these modifications aim at improving the image, but some are intended at altering its meaning. Such forgeries can easily be made visually realistic. Fortunately, they also distort the very fabric of the image, as it is formed during the camera pipeline. Indeed, the formation of a digital image, from camera sensors to storage in JPEG format, leaves characteristic artifacts, which act as a signature of the image. Concealing, modifying or adding a foreign object in the image distorts these signatures and creates detectable inconsistencies. This thesis studies JPEG compression and the fingerprint (in the form of 8 × 8 block patterns) that it leaves on the image. The patterns are then exploited to propose several image forensic algorithms. These methods are based on the a contrario statistical theory, leading to automatic decision algorithms, not requiring the need for visual interpretation. Among the proposed methods is zero, a new image forensic algorithm which analyzes JPEG artifacts and detects image tampering when a local anomaly is found to be statistically significant. This method is the current state of the art in forgery detection by JPEG traces and can be used by the general public through a tool developed by Agence France-Presse news agency. The thesis also explores the evaluation of forgery detection methods in general. A new non-semantic methodology is proposed, together with the associated datasets. They enable to characterize the sensitivity of forensic tools relative to specific image traces and to avoid the difficulties of semantic evaluations.
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À mes grands-pères

Résumé

Lors d'une prise de vue avec un appareil photographique, le fichier brut produit par l'appareil subit plusieurs traitements avant d'obtenir l'image finale. En particulier, une photographie numérique est débruitée, dématricée (interpolation des couleurs manquantes), les aberrations chromatiques et les distorsions optiques sont corrigées, et elle subit des transformations non linéaires pour rehausser son contraste. Elle est finalement compressée pour être stockable et transmissible dans un temps raisonnable. Le standard JPEG (Joint Photographic Experts Group) est le format de compression d'images numériques le plus couramment utilisé aujourd'hui pour les photographies. Il permet de stocker en mémoire un fichier image de telle sorte qu'il prenne moins de place sur le disque. Cela entraîne une perte d'information et donc de qualité qui se traduit par l'apparition d'artefacts sous la forme de carrés, formant ce qu'on appelle la grille JPEG. Plus la compression est forte, plus cette grille est visible. Par ailleurs, même imperceptibles à l'oeil nu, cette signature est statistiquement significative et donc détectable.

À ces opérations classiques dans la chaîne de traitement d'une image peuvent se rajouter des modifications globales comme des changements de couleur, de luminosité ou des retouches locales, appelées falsifications, avec des finalités diverses. Ces opérations sont à la portée de tous grâce aux logiciels de retouche. Le gommage, la suppression, le clonage ou l'insertion d'objets dans une image causent une rupture d'homogénéité des traces de compression. L'état de l'art de la détection de falsifications s'appuie sur ces considérations pour proposer des révélateurs numériques, à savoir des opérateurs capables de mettre en évidence les zones semblant avoir été falsifiées. Un examen de ces méthodes montre néanmoins qu'elles souffrent de lacunes dans l'évaluation de la confiance qui peut être attribuées à leurs détections. En l'absence d'une modélisation probabiliste et statistique, il n'est pas possible de quantifier la sûreté des détections.

À travers les algorithmes présentés dans cette thèse, nous visons à recréer un historique de compression complet des images analysées. Nous accompagnons les incohérences détectées dans l'image d'une validation statistique basée sur les méthodes de détection a contrario, utilisant des arguments de grande déviation. Ce procédé nous permet de définir nos détections à travers la probabilité que de tels évènements se produisent par hasard, afin d'éviter les faux positifs. Ainsi, nos outils proposent une analyse automatique des images, et ne nécessitent ni interprétation, ni donc expertise dans le domaine. Les algorithmes développés sont publiés et mis à disposition en ligne afin de pouvoir être utilisés par le plus grand nombre, en particulier par les journalistes de fact-checking via l'outil de vérification InVID-WeVerify développé par l'Agence France-Presse. Afin de faire de la recherche reproductible, les publications scientifiques sont accompagnées de leur code source et d'une démonstration en ligne via le journal IPOL (Image Processing On Line, https://www.ipol.im).

Enfin, nous explorons l'évaluation même des méthodes de détection de falsification. Nous proposons une méthodologie et un jeu de données permettant d'étudier la sensibilité des outils à des artefacts spécifiques, ainsi que leur capacité à effectuer des détections sans indices sémantiques sur l'image. Plus qu'un simple outil d'évaluation, cette méthodologie peut être utilisée pour évaluer les forces et faiblesses de chaque méthode.

Introduction

This chapter provides a short description of the problem and the main contributions of this thesis. The focus is the JPEG compression analysis for forgery detection purposes. Two forgery detectors based on the grid detection for JPEGcompressed images are proposed, and one algorithm to estimate the quality of the JPEG compression of an image. All methods are based on the a contrario methods introduced by Desolneux, Moisan and Morel. They give reliable results with a controlled number of false detections. The main contribution of this thesis is perhaps the forgery detection algorithm, called zero, which is a fast and reliable parameter-free algorithm. The method is used massively by the general public and is also evaluated by a methodology and a database presented in this dissertation. This chapter ends by listing the contributions of this thesis throughout publications, projects and popular science content.

Can we believe everything that we see?

Due to increasingly sophisticated editing software, it is becoming easier to realistically manipulate images and videos [START_REF] Farid | Photo Forensics[END_REF]. Figure 1 shows an example of a tampered image for entertainment reasons. The manipulations made on the image are: a copy-move, a splicing and a crop. In a copy-move forgery, parts of the image content are copied and pasted within the same image, whereas for a splicing forgery, portions of the image content are borrowed from other images [START_REF] Walia | Digital image forgery detection: a systematic scrutiny[END_REF]. Other types of forgeries exist such as erasing or inpainting [START_REF] Arias | A variational framework for exemplar-based image inpainting[END_REF] which can be a kind of copy-move forgery. Tampered Figure 1: Original image on the left and forged image on the right. The JPEGcompressed image has been cropped, and forged: the red bandana has been added from another image and warped to fit; the dog has been copy-moved from the center to the right. The forged image has then been saved in JPEG format.

footage can also entail dramatic consequences. For example, in the past, there were numerous cases where political opponents have been discredited using forged images or videos. Therefore, having tools that can say if an image has undergone manipulation or not is very useful, especially for the police and journalists.

These tasks are addressed in the research domain of multimedia forensics. In contrast to active approaches, passive multimedia forensic techniques do not assume any embedded security scheme, such as watermarks [START_REF] Puech | Authentication and Data Hiding[END_REF]. A large body of passive multimedia forensic algorithms has been proposed in the last two decades [START_REF] Verdoliva | Media Forensics and DeepFakes: An Overview[END_REF], starting from the seminal work of Farid [START_REF] Farid | Image forgery detection[END_REF]. Some methods rely on the content of the image, as, for instance, copy-move detection methods [WAAN18; Ehr19; CPV15a; DWC20; PF04a]. Others are generic learning-based methods [WAN19; [START_REF] Cozzolino | Noiseprint: A CNN-Based Camera Model Fingerprint[END_REF][START_REF] Huh | Fighting Fake News: Image Splice Detection via Learned Self-Consistency[END_REF] which can be limited by the training data. Finally, some methods rely on subtle statistical artifacts, traces left by the operations to form and store the image [CPV15b; MS09; LPZ13; Gar+21; Des+18; Iti+21; BGM18; BGM20; PF05a; PF05c]. This thesis addresses these types of methods and more particularly the ones relying on the JPEG (Joint Photographic Experts Group) compression traces [KS07; BP12; Far09a; LYY09; YSC07; Lin+09b; BDRP11; Iak+18; AF17].

After this introductory chapter, this dissertation is structured in six further chapters. Chapter 1 illustrates the motivation for this work (Section 1.1) and reviews the concepts underlying this thesis: Sections 1.2 and 1.3 recapitulate the main processing steps of a digital image before introducing forgery detection approaches in Sections 1.4 and 1.5. Then, Section 1.6 presents the a contrario theory used throughout the methods presented in this thesis. Chapter 2 describes an automatic local Grid Origin Detector, called GOD, which detects the JPEG grid locally and globally through the extraction of the block artifact grid. Chapter 3 describes a reliable estimator of the quantization table, which estimates the quantization matrix used during the compression. These two algorithms are an improvement to state-of-the-art approaches in JPEG-based methods through the application of the a contrario framework. Chapter 4 investigates a new proposition to detect the grid of a JPEG-compressed image and leads to the zero method presented in Chapter 5. zero is a fast and parameterfree algorithm which detects local and global JPEG grids to detect forgeries. These four methods are detailed and experimented on real case images. The zero method is also evaluated on the database presented in Chapter 6, where we study the problem of the evaluation of forensic tools and offer a methodology to do so. Finally, we conclude this dissertation and present possibilities for future work that arise based on our contributions.

The secret life of a digital image (Chapter 1)

From the raw acquisition on the camera sensor to its storage, an image undergoes a series of operations: denoising, demosaicing, white balance, gamma correction and compression, see Figure 2. These operations produce artifacts in the final image, often imperceptible to the naked eye but still detectable. By analyzing those artifacts, it is possible to reconstruct the history of an image. Indeed, one can model the different operations that took place during the creation of the image, as well as their order and parameters. Information about the specific camera pipeline of an image is relevant by itself, in particular because it can guide the restoration of the image. More importantly, it provides an identifying signature of the image. Inconsistencies in the pipeline that are incoherent across the whole image often give clues and lead to conclude that the image has been tampered with. Section 1.2 details the major operations of the processing chain.

One of the major contemporary challenges of multimedia forensics is to cope with lossy compression, as it occurs during social network sharing. Lossy compression algorithms sacrifice signal fidelity to reduce the file size. The primary target of signal removal are imperceptible components, such as the high frequencies, whose absence does not impact exceedingly the perceived quality of the image.

The copy-move detection approaches are generally insensitive to compression, as they rely on visual information that is preserved during compression. However, their usage is quite limited and only tackles one type of forgery. Learning-based methods are often trained on compressed images but the results are hard to explain and may fail to generalize to forgery scenarios they haven't met. Some trace-based algorithms which rely on subtle artifacts, such as the demosaicing artifacts, are limited to high quality images with little compression. Indeed, JPEG compression is quick to remove the highest frequencies of an image, where demosaicing traces lie. As such, demosaicing analysis methods have little to no robustness to JPEG compression, and can only analyze uncompressed images or slightly compressed images. An overview of the state-of-the-art forensic algorithms is presented in Section 1.4. This thesis focuses on the compression artifacts themselves, which seem to give reliable cues for all types of images, from native images stored on a computer to multiply-sent images on social media. The major limitation of compression-based algorithms is that its initial compression fabric is concealed if a secondary compression is stronger than the first one, or if additional compression follows.

We seek to determine the compression history of an image. We will focus on the JPEG (Joint Photographic Experts Group) standard, which is nowadays the most common method to store images. Most cameras use this format but others exist, such as HEIF (High Efficiency Image Format) or WebP (Web Picture Format), which are also lossy compression algorithms and therefore leave various signatures; nevertheless, these signatures are different from the ones produced by JPEG. As we will see in Section 1.5, the analysis of the JPEG coding of an image makes it possible to detect local manipulations. For this, the methods developed during this thesis take advantage of the structured loss of information caused by this step in the processing chain.

The JPEG compression algorithm is detailed in Section 1.3; what follows is a description of the main steps. A color space transformation is followed by a subsampling of the chrominance channels. Each channel is then partitioned into non-overlapping 8×8 pixel blocks and the 2D discrete cosine transform (DCT) type II is applied to each of these blocks. Due to the independent encoding of the blocks, pixel discontinuities are introduced across the block boundaries of the decompressed image, see Figure 3. The more compressed the image, the stronger the edges of the 8 × 8 blocks.

Each of the 8 × 8 blocks undergoes a quantization step performed in the spectral domain. A quantization table (related to the compression quality QF ) provides a quantization factor for each DCT component. The JPEG block artifacts are clearly noticeable when the image has been strongly compressed, i.e. with large values in the quantization table (Q-table), and are almost imperceptible when the compression quality is high. However, a grid is always present in lossy compression (QF ≤ 99). At this step, some DCT coefficients are canceled out when they have a small value relative to the quantization factor. After this step, all 8 × 8 blocks have a number of zeros that depends both on the compression quality and on the image content. Finally, the quantized DCT coefficients are losslessly compressed by exploiting, among other things, the presence of zero values.

Therefore, the signature of the standard JPEG compression appears in two characteristic patterns: the division into 8×8 non-overlapping blocks and the quantization, according to a quantization matrix, of the DCT coefficients. In other words, the two features to be detected on JPEG images are:

1. the origin of the 8×8 grids;

2. the values of the quantization matrix.

In order to authenticate an image, the previous detection methods must verify that: 1) the origin of the grid is aligned with the top left of the image; and 2) the quantization table calculated from the image is similar to the one in the header of the JPEG file. If the image is not in the JPEG format, this kind of analysis may be also useful as the image may have been previously stored in JPEG format.

In order to detect a forgery, JPEG-based algorithms can detect local grids which are not aligned with the global grid of the image, or they can detect an area with a missing grid. Also, a forgery can be represented as an area having a quantization table different from the one in the file's header or the one estimated globally.

Let's take the example of Figure 1. The copy-move area has a shifted grid with respect to the global grid. The spliced area may not be aligned with the global grid or may even have no traces of a grid (because it may come from an uncompressed image, or be resampled, or may be gone through warping). Finally, the cropping step makes the global grid of the image shift and has a 63 64 chance of not being aligned with the top left of the image.

ELA [START_REF] Krawetz | A picture's worth[END_REF] GHOST [START_REF] Farid | Exposing digital forgeries from JPEG ghosts[END_REF] BLK [START_REF] Li | Passive detection of doctored JPEG image via block artifact grid extraction[END_REF] DCT [START_REF] Ye | Detecting digital image forgeries by measuring inconsistencies of blocking artifact[END_REF] DQ [START_REF] Lin | Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis[END_REF] CAGI [START_REF] Iakovidou | Content-aware detection of JPEG grid inconsistencies for intuitive image forensics[END_REF] Figure 4: State-of-the-art JPEG-based tampering detection methods from MATLAB Toolbox [START_REF] Zampoglou | Large-scale evaluation of splicing localization algorithms for web images[END_REF] and used in the forensic tool InVID-WeVerify, applied to the forged image.

Some state-of-the-art JPEG-based algorithms (described in Section 1.5) were applied to our forged image and the results are shown in Figure 4. Most methods aim at producing heatmaps and highlight the areas that are assumed to be suspicious or forged. The outputs need to be analyzed by a person and require an interpretation. The downside of these methods is the presence of false alarms. Some areas may be highlighted because of the limitations of some algorithms rather than because of a detection (see GHOST in Figure 4). Hence the need for new methods giving reliable results. To do so, an a contrario analysis, described in Section 1.6, can be used.

The methods developed during this thesis are based on the reverse engineering of the JPEG compression of an image along with the statistical a contrario validation step. The a contrario detection theory was developed by Desolneux, Moisan, and Morel [START_REF] Desolneux | Meaningful alignments[END_REF] and is based on a statistical formulation of the non-accidentalness principle [START_REF] Wagemans | Perceptual use of nonaccidental properties[END_REF][START_REF] Marc | Genericity in spatial vision[END_REF]. Its aim is to control the expected number of false detections under random conditions. Its rationale is that events likely to arise by accident should not be considered meaningful detections and must be rejected. In other words, only significant deviations from randomness are meaningful.

Automatic Grid Origin Detector (Chapter 2)

The first application of the a contrario framework on a forgery detection method is the one presented in Chapter 2. This chapter describes an algorithm, called GOD as Grid Origin Detector, that exploits blocking artifact traces to locally recover the grid embedded in the image by the JPEG compression. The algorithm returns a list of grids associated with each part of the image.

As a first step, the method uses Chen and Hsu's cross-difference to reveal the artifacts [START_REF] Chen | Image tampering detection by blocking periodicity analysis in JPEG compressed images[END_REF]. Let I be the X × Y luminance component of the input image and I(x, y) the intensity value at pixel (x, y) with 0 ≤ x ≤ X -1 and 0 ≤ y ≤ Y -1. The cross-difference of an image is defined by C(x, y) = |I(x, y) + I(x + 1, y + 1) -I(x + 1, y) -I(x, y + 1)|.

It amounts to calculating the absolute value of the result of a convolution of the image by a 2 × 2 kernel. The grid becomes visible thanks to this differentiating filter applied to the compressed image. The stronger the compression, the more this feature is present. Figure 5 reveals the blocking artifacts on parts of our forged image to focus on two anomalies. Indeed, in spliced zones of the images, there are no visible blocking artifacts (image on the left). In the copy-moved areas, it is likely to produce a grid misalignement, that is not visually obvious.

After applying the differential filter, the cross-difference image is decomposed into overlapping windows. Each window has a say and votes, independently, for its grid origin. Each window votes for a grid by looking at the horizontal (k x ) and vertical (k y ) strict local maxima separately. Each direction (horizontal or vertical) has 8 different possible grid origins, since a typical JPEG block is of size 8×8. Finally, the a contrario validation step delivers for each detected grid a Number of False Alarms (NFA) which tells how unlikely it is that the detection is due to chance.

Following the a contrario theory (see Section 1.6) a test is defined for each possible structure to be detected or evaluated; in our case each possible window in the Figure 5: Close-ups of the cross-difference image. On the left, a forged area with a less important grid (or no grid). On the right, a misaligned grid. Both are not necessarily obvious to the naked eye. image is tested. The mathematical setting corresponds to a multiple testing procedure to control the expected number of false detections under the background model H 0 [START_REF] Gordon | Control of the mean number of false discoveries, Bonferroni and stability of multiple testing[END_REF]. The Number of False Alarms of observing a value e is defined by

NFA = N T P H 0 (E ≥ e),
where N T is the number of events tested and P H 0 (E ≥ e) is the probability of observing a value as large as e for a random variable E under the stochastic model H 0 . A detection is declared when the NFA for a given event e is below a certain threshold ; the a contrario setting ensures that the average number of false detections under H 0 is controlled by .

In our situation, the a contrario framework determines whether a window's vote is significant or not. Each window has two events to test: the horizontal (x) and the vertical (y) JPEG fingerprints. A window is called significant when both of these events are -meaningful, i.e., NFA x < and NFA y < . where B(η, κ, ρ) is the binomial tail, |ω| the number of windows, k the number of votes for a certain grid and n the total number of votes. The number of tests N T , which is in relation with the total number of windows in the image, is detailed in Section 2.2.4. The only parameter is the step size of the windows used, which represents the exhaustiveness of the method. The application to image forgery detection is twofold: first, the presence of discrepant JPEG grids with low NFA is a strong forgery cue; second, knowledge of the grid is anyway required for further forensic analysis.

Applying this method to the forged image of Figure 1 results in the following: there are several significant grids in the image, locally (shown in red in Figure 6) and globally (there are different significant global grids). This is an important information implying that the image has gone through at least two different compressions. The result of the method is shown in Figure 6 and lacks precision. To be more precise, the window size can be made smaller, but the method consumes too much time on this image of size 5100 × 4900. More examples on forged images are illustrated in Section 2.3.

Figure 6: The result of GOD. Red is chosen for the areas that have a foreign grid.

Since the JPEG compression algorithm quantizes the values, another family of methods is based on analyzing the histograms of the DCT coefficients.

Reliable Quantization Table Estimator (Chapter 3)

The degree of JPEG compression can be adjusted by the choice of a so-called quality factor QF . Each software associates this value to a quantization table, which is an 8 × 8 matrix used to quantize the DCT coefficients of an image. The forged image used in this chapter is in JPEG format and thus has a Q-table in its header, see Figure 7.

In Chapter 3, we propose a method for recovering the JPEG quantization table relying only on the image information, without any metadata from the file header; thus the proposed method can be applied to an uncompressed image format to detect a previous JPEG compression. Once again the a contrario statistical validation is used to decide whether significant quantization traces are found or not, and to provide a quantitative measure of the confidence on the detection. Estimating the Q-table can have several applications in forgery detection. Among others, it can reverse engineer the image by saying if the image has gone through a compression step or not and give the quantization table. Comparing the table to the one in the header is a first cue of forgery detection.

The method proposed here starts by analyzing the DCT coefficients of the luminance channel of the image. The method focuses on the 63 AC coefficients and leaves the DC coefficient (which has different properties) untreated. The histogram of each of the 63 coefficients is analyzed and each quantization value q between 1 and 255 is evaluated. An example of a histogram for an uncompressed image and compressed image (with quantization value equal to 5) is shown in Figure 8. We determine the value q by comparing the errors between the coefficients and the nearest multiple of q. These errors follow a Gaussian distribution according to Luo, Huang, and Qiu [START_REF] Luo | JPEG error analysis and its applications to digital image forensics[END_REF] and the normalized errors can be compared. Rather than simply considering that the correct q corresponds to the one for which the sum of the errors is minimal, we perform a statistical validation.
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The a contrario theory is used to decide which quantization values are significant for each coefficient, and to select the best quantization value among the significant ones. For each of the 63 coefficients to estimate c, we define the Number of False Alarms of a candidate q as NFA(c, q) = N T P(S n ≤ s)

where P(S n ≤ s) is the p-value of the random variable S n associated to s, the sum of the normalized quantization errors according to q. Detections are declared when NFA(c, q) ≤ ε, implying that the DCT coefficient c presents significant quantization traces for value q. The number of tests N T and the expression of the p-value term are detailed in Section 3.2.2.

When applied to the forged image of Figure 1, the method gives an interesting cue that the image has gone through several compressions since the estimated Q-table is slightly different from the one in the file header (see Figure 7). estimated quantization matrix (-when not meaningful):
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In principle, the method does not require that the JPEG blocks be aligned with the standard JPEG grid starting at the top-left of the image. This can be false if, for instance, the image has been cropped after a JPEG compression, as we know it is the case in our example. In such a case, the same algorithm could be applied to each of the 64 possible JPEG grid origins; valid detections would only be produced around the correct alignment (see Section 5.5). Since we know which the global significant grids are from the previous method, we can realign the top-left of the image. In this case, if we realign the image with its most significant global grid origin, we get this second estimated quantization matrix, which is therefore the Q- This table is consistent with the Q-table of the original image from Figure 1. Of course, in typical cases of forgery detection, we do not have access to the original image to be able to compare. Other examples of double compressed images are illustrated in Sections 3.3.4 and 3.3.6.

Another application of the estimation of the Q-table is computing error maps, see Section 3.3.7. We know that the image has gone through at least two non-aligned JPEG compressions and therefore we can compute two forgery maps regarding each table. The first compression is stronger than the second compression since the values in the Q-table are bigger. Two error maps are illustrated in Figure 9. The forged areas have a larger error than the rest of the image. Indeed, the added part is less quantized than the rest of the image (only the second compression was applied in this area) and the copy-moved area has its JPEG grid shifted. We observe that the result is clearer with the error map computed from the estimated quantization table which was not in the header of the file. This emphasizes why it is important to know the most significant grid of a JPEG-compressed image, embedded by the strongest compression the image has gone through.

Figure 9: Error maps computed on the double-compressed forged image. One for each compression. On the left, the error according to the first and strongest compression. On the right, the error according to the second (latest) compression. The blue region corresponds to an area where the error is low, whereas in the red area the error is high.

A Simple Grid Origin Detector (Chapter 4)

After analyzing the DCT coefficients and their histograms (see Section 1.5 for more details), a significant observation is that many values were put to zero. Indeed, this is the main reason why JPEG compression is efficient for storing in a way that the file takes less storage space. The method proposed in Chapter 4 is based on a simple idea turned into an algorithm which can detect the global grid origin of a JPEG-compressed image.

Given an image, 64 variants are generated by cropping according to the 64 possible grid positions. Then, each variation is compressed by the JPEG algorithm with quality factor equal to 100 and the resulting file sizes are analyzed. If the smallest size is significantly smaller than the others according to a criterion, then its grid origin corresponds to the JPEG grid. Figure 10 shows the file size of different variants of the uncompressed image, the original image and the forged image we are analyzing in this chapter. Thus, the method tells us that the forged image has gone through JPEG compression and has been cropped. We may notice here that when the image has gone through a JPEG compression there is a certain structure in the bar graphs which is detailed in Section 4.2.

By itself, this method can tell if a JPEG image has been cropped. Also, as seen in the previous section, it is a simple way to know "where" to estimate the Q-table and therefore compute a better error map. Indeed, not only for the method presented in the previous section, but knowing the global grid origin can also help other state-ofthe-art JPEG-based methods.

Figure 11 shows the results of the same methods as in Figure 4, but applied to the image which has been realigned with its grid origin associated to the strongest JPEG compression it has gone through. We observe that knowing the grid origin of the image and realigning the image in consequence has helped these JPEG-based methods. Indeed, the results of DCT and DQ went from no detection at all to a correct detection and the detections of CAGI and BLK have improved. ZERO: counting zeros to detect forgeries (Chapter 5)

In addition to the more classic spatial (Chapter 2) and spectral (Chapter 3) methods, we introduced a third way based on the principle that JPEG compression has the objective of minimizing the file size. Our zero method extends this idea from Chapter 4 as we decide to pick the likeliest JPEG blocks as those containing the largest number of zero DCT coefficients. Chapter 5 details this method that counts the number of zeros to detect the grid origin of an image. zero exploits the fact that JPEG compression puts DCT values to zero and identifies the presence of a JPEG grid when a significant number of DCT zeros is observed for a given grid origin. This method can be applied globally to identify a JPEG compression, and also locally to identify image forgeries when misaligned or missing JPEG grids are found. The method detects for each pixel its corresponding grid and can be applied to images that are compressed multiple times as it is usually the case on social media. Once again, the algorithm includes an a contrario statistical validation, which associates an NFA with each tampering detection. Detections are obtained by a threshold of the NFA, which renders the method fully automatic and endows it with a false alarm control mechanism. As for the method detailed in Chapter 2, there is a voting process but instead of having each window of the image vote for a grid origin, each pixel votes for a grid origin. The method is therefore more precise and is parameter-free. Each pixel may belong to 64 different overlapping 8 × 8 blocks, as illustrated in Figure 12 and votes for the grid origin of the block with most zeros and each vote is illustrated by a color. Green corresponds to the original grid (aligned with the top-left of the image) and black to a non-valid vote (in the case of a tie for instance). Figure 13 shows two examples of vote maps. On the left, the original image has its global grid starting at the top-left of the image and it is consistent with the whole image. On the right, there is a different global grid, a significant foreign local grid for the copy-moved area and a less easy to interpret by still clearly visible foreign grid in the spliced area.

In the same way as the cross-difference filter, there is a need for a statistical validation which is quite similar to the one for the method of Chapter 2. The vote map is partitioned into connected regions sharing the same grid vote. A region growing algorithm is used for partitioning the vote map: starting from a seed pixel, the neighbor pixels are iteratively aggregated when voting for the same grid. where B(n, k, p) is the tail of the binomial distribution. Given an observed number of votes k in the window w for the grid g among a total of n points inside w. We compute the probability of obtaining at least k votes under H 0 . The number of tests N T , which is in relation with the size of the image, is detailed in Section 5.2.4. When this probability is small enough, there exists evidence to reject the null hypothesis and declare that a meaningful grid origin was found.

The method is applied in three ways: first globally to detect the global grid origin of the image. Then, locally to detect foreign grids (shown in red in Figure 14) and finally, to an alternate version of the image to detect areas where the global grid is absent (shown in blue in Figure 14). In our example, the copy-moved area has a different grid than the global image which is coherent with the result given by zero.

The spliced area has both traces of a missing grid and a different grid. Indeed, there is no trace of the global grid since it comes from the first JPEG compression. However, since the image has been compressed again, there are traces of a JPEG compression in this area, coherent with the grid origin at the top-left of the image, in color green.

During this thesis, the method zero has been integrated to a widely used tool, called InVID-WeVerify, created by the AFP (Agence France-Presse) news agency, a Figure 14: The result of zero. Red is chosen for the areas that have a foreign JPEG grid whereas blue is for the areas having no traces of the main grid. If a block is both blue and red, it is marked in red, as this is the more valuable detection. screenshot is shown in Figure 16. This forensic tool is a plug-in for journalists and fact checkers, usable by anyone (more about this tool in Appendix A). Therefore, zero has been tested on images in the wild. More examples of real-case forgeries (images posted on social media) are illustrated in Section 5.5. zero has also been evaluated and compared to other JPEG-based methods on the Trace database presented in Chapter 6.

The evaluation of trace-based methods (Chapter 6)

Image forensics algorithms are mainly evaluated by their performance in benchmark challenges. This practice has several limitations: in many cases, the same database is split into training and evaluation data. As a consequence, algorithms are trained and evaluated on images that have gone through similar image processing pipelines, forgery algorithms and anti-forensic tools. Hence, there is no guarantee that such learning-based methods will work in the wild, where those parameters vary much more. Regardless of the variety of the training set, the question arises of whether the forgeries are being detected by trained detectors for semantic reasons, or because of local inconsistencies in the image. Indeed, while semantic analysis of an image can provide hints, the rigorous proof of a forgery should not be based on semantic arguments only. The situation is similar to the dilemma arising from the observations of Galileo, which contradicted the accepted knowledge of his time. In the words of Bertolt Brecht [START_REF] Brecht | Life of Galileo[END_REF]:

Galileo: How would it be if your Highness were now to observe these impossible as well as unnecessary stars through this telescope?

The Mathematician: One might be tempted to reply that your telescope, showing something which cannot exist, may not be a very reliable telescope, eh?

The telescope could have been unreliable, indeed, and a scientific inquiry on the instrument could have been justified. However, concluding, as the Mathematician does, that the telescope was unreliable just based on the contents of the observations is not prudent. Similarly, the proof of a forgery must be based on image traces, not on semantic arguments, because the semantics of an image are usually the purpose and not the means of a forgery.

With these considerations in mind, we propose a methodology and a database to evaluate image forensic tools on images where authentic and forged regions only differ in the traces left behind by the image processing pipeline. Using this methodology, we create the Trace database by adding various forgery traces to raw images from the Raise [START_REF] Dang-Nguyen | Raise: A raw images dataset for digital image forensics[END_REF] dataset, as shown in Figure 15. This procedure avoids the difficulties of producing convincing and unbiased semantic forgeries, which often requires manual work. We create several datasets, each of which corresponding to a specific pipeline inconsistency, such as a different noise level or compression pattern. This gives us insight into the sensitivity of forensic tools to specific traces, and thus highlights the complementarity of different methods.

Summary of Contributions

This thesis deals with automatic detection of forgeries through the analysis of JPEG compression traces. As basic tools, three JPEG forensic algorithms have been proposed. They are all based on the non-accidentalness principle and the a contrario methods introduced by Desolneux, Moisan and Morel. They give precise results with a controlled number of false detections. The first one, the GOD grid origin detector, emphasizes the spatial blocking artifact in a JPEG image. The detection is made locally in a family of windows which the minimum size is the only parameter of the method.

In the same way, the second method is inspired by the state-of-the-art algorithms and tries to estimate reliably the quantization table used during JPEG compression. These two methods, applied globally to the image, make it possible to perform JPEG reverse engineering. The third contribution, which is also the main contribution of this thesis is zero. zero is the best performing method and works parameter-free. The speed of the method allows it to be used through the InVID-WeVerify plug-in for fact checkers and by the general public. The method also has been evaluated and performs well on another contribution of this thesis: the Trace database.

Publications

This thesis has led to the following publications:

Conference and Journal

• A Reliable JPEG Quantization 

Popular Science Journal

• Les traces de compression pour détecter les photomontages, Tina Nikoukhah, Interstices, 2021.

• Tout ce que les algorithmes de traitement d'images font pour nous, Tina Nikoukhah, Interstices, 2020.

Online demos

A recurrent problem of computer vision and image processing communities -and in computational science in general -is that of producing "reproducible research". The description of an algorithm in a paper provides the main ideas, but it is often hard to go from the description of an algorithm to a program that actually runs as it is described. The original data and parameters used are also often missing. To overcome this situation, the algorithms produced during this thesis have been published on IPOL, Image Processing On Line. IPOL is a journal which publishes reproducible articles, with a special focus on the mathematical details and with a strict peer-review which checks that the source code matches well the specifications given in the paper. The algorithms developed during the thesis can be tested online with images provided by the users: 

• A Reliable JPEG Quantization

Projects

The algorithms developed during this thesis were used in the DEFALS project to retrieve the JPEG compression history of an image. Indeed, the project's goal was to detect forged images and localize the forged areas. The forgery detection methods were useful on the "into the wild" images but the main challenge of this project was about forged images before JPEG compression (the databases are kept private). Estimating the quantization table was our most useful approach for this project since it gave the intensity of the compression applied to the images and therefore gave a cue to which other methods would work or not. Indeed, demosaicing-based methods don't work if the image is too compressed. We also participated in the ENVISU4 project, financed by the International Fact-Checking Network (IFCN). The goal was to improve the forensic tools in the InVID-WeVerify plug-in developed by the AFP news agency and make them easier to use: to obtain an automatic result when possible and to guide the users so that they can make a decision by limiting the emergence of false positives. zero was included in the plug-in (see a screenshot of the tool in Figure 16) and a comparison tool, called CheckGIF, was implemented, see Appendix A.

Popular Science

The fight against false information being a hot topic, the subject of this thesis has been covered in some media: a radio segment was aired on France Culture, a short presentation of this thesis was published on the online newspaper Le Blog Binaire -Le Monde and interviews were given to other media publishers (Les Echos, BFM TV and the Data Analytics Post). All these contributions are listed here: http: //nikoukhah.com/tina/mediation.html.

In addition, two articles for the general audience have been published in the online journal Interstices and presented in Appendix B. The first one is about the processing chain of a digital image and has been published in the paper journal Pour La Science Chapter 1

Image Forensics and JPEG Compression

This chapter provides the necessary background that this thesis builds upon. We first formalize image forensics standard problems faced by the police and journalists. Then we describe an image's pipeline and more thoroughly the JPEG compression step which is the main focus of this thesis. We propose an overview of the state of the art approaches for forgery detection and present forgery detection through JPEG artifacts. Finally, we introduce the statistical theory employed to make detections automatic. Parts of the two first sections of this chapter have been published as a chapter of a book [START_REF] Bammey | Sécurité multimédia[END_REF][START_REF] Bammey | How to Reconstruct the History of a Digital Image, and of Its Alterations[END_REF].

Introduction

The Internet, digital media, new means of communication and social networks have boosted the emergence of a connected world where perfect mastery over information becomes utopian. Images are ubiquitous and therefore have become an essential part of the news. Unfortunately, they have also become a tool of disinformation aimed at distracting the public from reality.

Manipulation of images is everywhere. Simply removing red eyes from family photos could already be called an image manipulation, whereas it is simply aimed at making a flash image look more natural. Even amateur photographers can easily erase the electric cables of a vacation panorama, correct physical imperfections such as wrinkles on a face, not to mention touch-ups done on models in magazines. Beyond these harmless examples, image manipulation can lead to falsified results in scientific publications, reports or journalistic articles. Altered images can imply an altered meaning, and can thus be used as fake evidence, for instance to use defamation against someone or report a paranormal phenomenon. More frequently, falsified images are published and relayed on social media, in order to create and to contribute spread of fake news.

The proliferation of consumer software tools and their ease of use have made image manipulation extremely easy and accessible. Some software even go as far as to automatically restore a natural look to an image when parts of it have been altered or deleted. Recently, deep neural networks have made it possible to generate manipulated images almost automatically. One example is the site This Person Does Not Exist 1 , which randomly generates faces of people who do not exist while being unexpectedly realistic. There are also other variants such as This Cat Does Not Exist or This City Does Not Exist. The most surprising application is undoubtedly the arrival of deepfake methods, which allow, among other things, to replace a face in a video with the one of another person (face swapping).

Criminal background

These new possibilities of image manipulation have been exploited for a long time by governments, criminal organizations and offenders. Stalinist propaganda images can come to mind, in which certain characters who had become undesirable were removed from official photographs (Figure 1.1). Today, image manipulation can serve the interests of criminal or terrorist organizations as part of their propaganda (false claims, false events, masking of identification elements, addition of objects). Face swapping and deepfake techniques are also a simple way to undermine the image and privacy of public figures by placing them in compromising photos. The manipulation of images is also a means of exerting coercion, pressure or blackmail against a third party. These new image manipulation techniques are also used by pedophiles to generate photographs that satisfy their fantasies. Manipulated images can also be used to cause economic harm to companies through disinformation campaigns. Administrative documents can be falsified in order to obtain official papers, a rental document or a loan from specialized organizations. Face morphing, whose objective is to obtain the photo of a visually "compatible" face from two faces, enables two users to share the same ID in order to deceive an identity check.

Issues for law enforcement

In the past, confessions, testimonies or photographs were enough to prove guilt. Technologies were not sufficiently developed to mislead investigators. Today, these methods are no longer sufficient and law enforcement authorities need innovative scientific tools to be able to present reliable evidence in court. As technology evolves rapidly, law enforcement agencies must continuously ensure scientific monitoring in order to keep up with the state-of-the-art technology, to anticipate and to have the most recent tools available to detect manipulation and other forms of cheating for malicious purposes. It is essential to maintain a high level of training for the experts responsible for authenticating the images. In fact, the role of the police, and in particular of the technical and scientific police, is to highlight any falsification in order to allow perpetrators to be sentenced, but also to exonerate the persons under judicial enquiry if they are innocent or if their crime cannot be proven. The role of the expert in image authentication is to detect any form of manipulation, rigging or editing aimed at distorting reality. They must be able to answer the following questions:

• Has the image been altered?

• Does it represent the real scene?

• What is the history of the image and its possible manipulations?

• What is the manipulated part?

• Is the image coming from the device that supposedly took it?

In general, it is easier to conclude that an image is falsified than to say that it is authentic. Detecting manipulation traces is getting harder over time, as new forgery methods are being developed. As a consequence, not finding any forgery traces does not prove the image's authenticity. The level of expertise of the forger should also be taken into account. In fact, the possible traces of manipulation will not be the same depending on whether the author is a neophyte, a seasoned photographer or a special effects professional. The author can also use so-called anti-forensic techniques aimed at masking traces of manipulation so that they become undetectable by experts; it is up to the expert to know these techniques and their weaknesses.

Current methods and tools of law enforcement

As technologies evolve over time, detection tools must also adapt. Particularly during the transition from film photography to digital images, the authentication methods that were mainly based on a magnifying glass observation (visual analysis of defects, consistency of shadows and lighting, vanishing points) have been completed through structural and statistical analyzes.

To this date, few effective commercial tools can authenticate images. Most of the time, experts need to design their own tools, which poses the problem of their acceptability in court. In order to compensate for this lack of objective and precise tools, the police recruits trainees, who participate in national projects (DEFALS challenge funded by the DGA and the National Research Agency) or international projects (H2020 projects of the European Commission). The objective is to involve university researchers as well as industrialists and practitioners (forensic experts). In addition, experts are developing good practice guides such as the Best Image Authentication Practice Manual within the framework of the ENFSI2 , in order to standardize and formalize analysis methodologies.

The digital image is an essential medium of communication in today's world. People need to be able to trust this method of communication. Therefore, it is essential that news agencies, government agencies and law enforcement maintain and preserve trust in this essential technology.

Issues for journalists

Verifying images has become a major part of the journalists' every day job to quote and reuse eyewitness content or to debunk decontextualized and tampered pictures. Nevertheless, proving web images authenticity remains a difficult task.

Following the rise of so-called fake news wave in 2016, fact-checking has become very trendy among media organizations and non-governmental organizations. The database maintained by the US Duke university reporters' Lab lists in August 2021 a total of 349 active fact-checking organizations in the world.

Social media giants like Facebook have partnered with fact checkers to help them verify viral content, including images and videos, on their platforms. Fact checkers need therefore to be able to prove and explain in a verifiable process, like in science or math, why an image is fake. The first common step is to reverse search with engine indexing billions of images like Google images, Yandex, Bing or Tineye. The image may be real but simply taken out of context (date, place, depicting another previous event).

Fact checkers may also find an original image (or a supposed original image). Then, they need to match and compare this image with the one they try to verify. If no original image can be found, then the only possible method would be to detect hypothetical forgeries in the image file.

Current methods and tools of journalists and fact-checkers

Even if the research field of digital image forensics has a strong link with the fight against fake news, the developed methods usually remain in the academic environment. Indeed, most of these methods are unknown or difficult to use by the general public. Their implementation -when not provided by the authors-often requires background knowledge on image processing and coding skills. And, even when the implementation is provided, making the algorithms run still requires some computational expertise. Some academic tools exist trying to bring these methods into the public domain (such as the demo platform of IPOL) but their use amongst general public is still underdeveloped.

In order to close this gap, different image verification tools have been created. These platforms are specially created for general public use, helping fact checkers and individuals in general to integrate the forensics methods developed by the academia in their daily life. The main image verification tools are listed below.

• Image Verification Assistant [START_REF] Zampoglou | Web and Social Media Image Forensics for News Professionals[END_REF] is a web-based application, developed within the REVEAL project, that exposes the results of seven image forensics algorithms to end users, and additionally presents the Exif metadata (if any) of the input image.

• The InVID-WeVerify plug-in [START_REF] Teyssou | The InVID plug-in: web video verification on the browser[END_REF] incorporates seven state-of-the-art forensic methods to analyze still images, using the backend of the above Image Verification Assistant. Furthermore, it integrates image-reverse search engines, metadata viewers as well as a magnifier lens. This platform also performs video analysis by keyframe fragmentation.

• FotoForensics is an online platform that provides a simple interface for image tampering detection. The list of integrated tools includes metadata extraction, error level analysis and JPEG quality estimation. Despite being easy to use and free, it does not incorporate the main forensic algorithms developed by researchers.

• The Forensically online tool regroups a set of filters for digital image forensics.

The main features include metadata extraction, error level analysis, noise level estimation, luminance gradient computation and JPEG analysis. Filters are provided together with parameters the user can adjust. This platform is free and easy to use. However, it does not incorporate most of the recent state-of-the-art forensic filters.

• Ghiro is an open source project that provides a fully automated image forensic tool. The main features are metadata extraction, thumbnail consistency analysis, GPS localization, error level analysis and image hash matching. Despite being open source, local installation is not straightforward for the general public.

• The Assembler experiment conducted by Jigsaw and Google Research provided journalists and fact checkers with recently developed methods to detect manipulated images. It incorporated six state-of-the-art filters, combining both, AI models and classical methods. This experiment is now closed according to Jigsaw's website.

• The Authenticate software by Amped provides a comprehensive tool for image analysis. It includes integrity verification, context analysis, camera identification, processing analysis and tampering detection. However, this is a professional expensive software, inaccessible for the general public.

Fact checkers operating forensic tools reported in a survey launched at the beginning of the Envisu4 project that they mainly used the InVID-WeVerify verification plug-in forensic toolkit (96,8%) but also Forensically (28,6%), Fotoforensics (25,4%) and the (now closed) Assembler experiment from Google Jigsaw (4,8%).

It is worth mentioning that verification platforms are not the only support fact checkers use to analyze images. Reverse image search engines, such as Google, Yandex and TinEye, are also used to analyze and compare visually similar images on the web. However, sometimes the original image is not published online. Fortunately, it is possible to find out more about an image by analyzing its history: the operations the image has gone through. The next section describes the main steps of an image's life cycle. The main steps in the digital image acquisition process, illustrated in Figure 1.2, will be briefly described in this section. The way in which noise is affected at each step of the camera processing chain will also be discussed. Other important steps, such as denoising, are beyond the scope of this chapter and will therefore not be covered here.

Describing the image processing chain

Raw image acquisition

The first step of acquiring a raw image consists of counting the number of incident photons over the sensor along the exposure time. There are two different technologies used in camera sensors: Charge Coupled Devices (CCDs) and mostly Complementary Metal-Oxide-Semiconductors (CMOS). Although their operating principles differ, both can be modeled in a very similar way [START_REF] Aguerrebere | Study of the digital camera acquisition process and statistical modeling of the sensor raw data[END_REF]. Both sensors transform incoming light photons into electronic charge which interacts with detection devices to produce electrons stored in a potential light well. When the latter is full, the pixels become saturated, and the electrons are no longer as into output voltage values. The final step is to convert the analog voltage measurements into digital quantized values. The value at each pixel at this stage can be modeled as a Poisson variable whose expectation is the real pixel value. Furthermore, all channels have the same noise curve. Since noise is Poisson distributed, noise variance follows a simple linear relation as shown in Figure 1.2. A raw image preserves all the original information collected from the captured natural scene. This advantage provides the photographer more flexibility for further adjustments by using image-editing software.

Demosaicing

Most cameras cannot see color directly, because each pixel is obtained through a single sensor which can only count the number of photons reaching it in a certain wavelength range. In order to obtain a color image, a color filter array (CFA) is placed in front of the sensors. Each of them only takes into account the photons of a certain wavelength. As a result, each pixel has a value relative to one color. By using filters of different colors on neighboring pixels, the missing colors can then be interpolated.

Although others exist (such as the X-Trans from Fujifilm), almost all cameras use the same CFA: the Bayer array, which is illustrated in Figure 1.3. This matrix samples half the pixels in green, a quarter in red, and the last quarter in blue. Sampling more pixels in green is justified by the human visual system, which is more sensitive to the color green [START_REF] Mullen | The contrast sensitivity of human colour vision to redgreen and blue-yellow chromatic gratings[END_REF]. Unlike other steps in creating an image, a wide variety of algorithms are used to demosaic an image. Bilinear interpolation is the simplest of the demosaicing algorithms. It consists of linear interpolation of missing colors by the average of a pixel's direct neighbors sampled in that color. This method is simple, but tends to produce strong aberrations in non-flat regions, especially in the presence of edges or details. To avoid these artifacts, more recent methods attempt to simultaneously take into account information from the three color channels and avoid interpolating along a steep gradient [START_REF] Jr | Adaptive color plan interpolation in single sensor color electronic camera[END_REF][START_REF] Getreuer | Zhang-Wu Directional LMMSE Image Demosaicking[END_REF]. More recently, convolutional neural networks have been proposed to demosaic an image. For instance, Demosaicnet uses a convolutional neural network to jointly interpolate and denoise an image [START_REF] Gharbi | Deep Joint Demosaicking and Denoising[END_REF][START_REF] Ehret | A Study of Two CNN Demosaicking Algorithms[END_REF]. Even if these methods offer superior results to algorithms without training, they also require more resources, and are therefore not widely used yet in digital cameras.

There is a large array of methods that exist for image demosaicing. The number increases since most industrial cameras do not disclose their algorithms, which are often private. No demosaicing method is perfect -after all, it is a matter of reconstructing missing information -and produce some level of artifacts, although some produce much fewer artifacts than others. Therefore, it is possible to detect these artifacts to obtain information on the demosaicing method applied to the image. Figure 1.2 shows that, after demosaicing, each channel has a different noise curve. This is due to the fact that channels are processed differently by the demosaicing algorithm. After this, noise is spatially correlated.

Color Correction

White balance aims to adjust values obtained by the sensors so that they match the colors perceived by the observer by adjusting the gain values of each channel. The way in which white balance adjusts the output depends on the characteristics of the light sources, and is done so that achromatic objects from the real scene are rendered as such [START_REF] Losson | From the Sensor to Color Images[END_REF]. For example, white balance can be achieved by multiplying the value of each channel by a different amount, so that a pixel that has a maximum value in each channel is found to have the same maximum value 255 in all channels. Then, the image goes through what is known as gamma correction. The charge accumulated by the sensor is proportional to the number of photons incident on the device during the exposure time. However, human perception is not linear with respect to the signal intensity [START_REF] Gt Fechner | Elemente der psychophysik, breitkopf und härtel[END_REF]. Therefore, the image is processed to accurately represent human vision by applying a concave function to the input u of the form f k,γ = ku 1 γ , where k is a constant and γ typically varies between 1.8 and 2.2. The idea behind this procedure is not only to enhance the contrast of the image, but also to encode more precisely the information in the dark areas, which are too dark in the raw image. After this step, the noise curves are no longer monotonically increasing.

Nevertheless, commercial cameras generally do not apply this simple function, but rather a tone curve. Tone curves allow image intensities to be mapped according to precomputed tables that simulate the non-linearity present in human vision. Till this step, a full-color image in an uncompressed format has been created and is not very practical for storage or transmission. Therefore, a lossy compression algorithm is usually proposed to reduce the image data size.

Compression

The JPEG (Joint Photographic Experts Group) standard proposed in 1992 was the first standard for image compression. As presented in more detail in the next section, the main steps in JPEG compression are chroma subsampling, block-based and quantization of Discrete Cosinus Transform (DCT) coefficients. JPEG2000 uses the Discrete Wavelet Transform (DWT) on blocks, rather than the DCT, and improves bit rates, at the cost of increased computational complexity. The WebP (Web Picture Format) codec was introduced by Google in 2010, and is targeted to online applications. A novel feature of this technique is that it also considers interrelations between neighboring blocks. HEIF (High Efficiency Image Format), proposed by Apple in 2015, employs a DCT on blocks of variable size. The novel AVIF (AV1 Image File Format) standard, proposed in 2019, targets online applications, as well, and achieves the highest compression performance.

JPEG compression 8x8 blocks

Compressed file 8x8 table

Input image

Color space transformation DCT Quantization Entropy coding The stages of the JPEG compression algorithm (ISO/IEC 10918 -ITU-T Recommendation T.81 [Jpe]), illustrated in Figure 1.4, are detailed below. The first stage of the JPEG encoding process consists of a color space transformation from RGB to YC B C R where Y is the luminance component and C B and C R are the chrominance components of the blue difference and the red difference. Since the human visual system is less sensitive to color changes than to changes in luminance, color components can be subsampled without too much affecting visual perception.

Downsampling of the chrominance

  Y C B C R   =   0.299
0.587 0.114 -0.169 -0.331 0.5 0.5 -0.419 0.081

    R G B   +   0 128 128   .
The subsampling ratio generally applied is 4:2:0, which means that the horizontal and vertical resolutions are reduced by a factor of 2. After the color subsampling, each channel is divided in blocks of 8 × 8 and each block is processed independently. The Discrete Cosine Transform (DCT) is applied to each block of each color channel and the coefficients are quantized. The DCT operation converts the pixel value in the spatial domain to the corresponding coefficients in the DCT domain by using the following formula for the luminance channel Y for instance: for u = 0. 1 for u > 0. The DC (Direct Current) coefficient representing the mean value of pixels in an 8 × 8 block from the spatial domain is located at position (0, 0) in the spectral domain. The AC (Alternating Current) coefficients refer to the remaining 63 coefficients in the 8 × 8 block. In general, the main energy of the image comes from the low-frequency components and concentrates in the upper left corner of the grid representing the background of the image in the spatial domain. On the contrary, the DCT coefficients from the high-frequency components are generally less important as they mostly represent fine texture and noise.

I(u, v) = 1 4 T u T v 7 i=0 7 j=0 Y (i,
The DCT coefficients go through a lossy compression operation, referred to as quantization. By dividing each unquantized DCT coefficient by the quantization step and rounding it, the quantization operation is formulated by:

D(u, v) = round I(u, v) Q(u, v)
where Q(u, v) is the corresponding quantization step which constitutes the 8×8 quantization table and the rounding operation depends on the encoder. Indeed, the modular design of the JPEG algorithm allows for different implementations: the use of ceil, floor or nearest integer rounding [START_REF] Agarwal | Photo forensics from JPEG dimples[END_REF].

The quantization table is linked to the quality factor QF and provides a factor for each component of the DCT blocks. The JPEG quality factor QF , ranging between 1 and 100, corresponds to the rate of image compression. The lower this rate, the smaller the resulting file, but the more deteriorated the image. It is during this quantization step that the greatest loss of information occurs, but it is also this step that performs most of the memory savings. The coefficients corresponding to the high frequencies, of which the human visual system struggles to distinguish the variations, are the most quantized, sometimes going so far as to be entirely canceled.

Finally, the quantized blocks are encoded without loss to obtain a JPEG file. As it is shown in Figure 1.5, each 8 × 8 block is zig-zagged and the coefficients are arranged in the form of a vector in which the first components represent the low frequencies and the last ones represent the high frequencies.

Lossless compression by Run-length Encoding (RLE) then exploits the long series of zeros at the end of each vector due to the strong quantization of the high frequencies, and then a Huffman code allows for a final lossless compression of the data, to which a header is finally added to form the file.

The process of the JPEG decompression works in the reverse order: entropy decoding, dequantization and Inverse DCT (IDCT). First, the entropy decoder extracts the quantized DCT coefficients D(u, v), which is multiplied by the corresponding quantization step Q(u, v) to obtain the dequantized DCT coefficient I d (u, v): Each block is zig-zagged to be encoded as a vector with a sequence of zeros.

I d (u, v) = D(u, v)Q(u, v).
Then, the luminance channel Y is reconstructed in the spatial domain by transforming the dequantized DCT coefficients using the IDCT operation:

Y (i, j) = 7 u=0 7 v=0 T u T v I d (u, v) cos (2i + 1)uπ 16 cos (2j + 1)vπ 16 .
Finally a color space transformation to RGB is performed, and the pixel values may not be integers or can go beyond the finite dynamic range ([0, 255]). Therefore, rounding and truncation operations are necessary. The final decompressed image is different from the uncompressed format image because of the quantization, rounding and truncation errors. They all form the global error , which according to the central limit theorem, is assumed to have a Gaussian distribution [START_REF] Luo | JPEG error analysis and its applications to digital image forensics[END_REF]: ε ∼ N (0, 1 12 ). Regarding the noise curves, the dynamic range remains unchanged after JPEG compression. However, noise is reduced after JPEG compression due to the quantization of the DCT coefficients, in particular those corresponding to high frequencies.

The noise present in JPEG images is the result of several transformations on the initial noise model, which initially follows a Poisson distribution. In the end, the final image's noise does not follow any predefined model, it instead depends on many unknown parameters that are set by each manufacturer. The only certainty we have is that noise is intensity dependent and frequency dependent [START_REF] Gardella | The Impact of JPEG Compression on Prior Image Noise[END_REF].

Each step of the camera pipeline leaves specific traces on the image. Those traces can be detected and analyzed to reveal how a specific image was processed. This knowledge is of utmost importance for image authentication. Knowing what pipeline was used to create an image enables one to link it to a camera, a camera model or a specific processing software. Reverse-engineering of the image formation pipeline, or part of it, is also at the core of many forgery detection methods. Indeed, tampering with an image often alters its traces as well; the forged region then appears inconsistent with the reverse-engineered model.

Forgery detection

During an investigation, one may be confronted with images from any stage of the life cycle in Figure 1.2. Some methods rely on metadata like file headers [KJF11; Glo12; MRF20]. However, this information is often modified or removed when sharing images online [START_REF] Giudice | A classification engine for image ballistics of social data[END_REF]. In the following, we consider algorithms targeting the pixel representation of images, without resorting to metadata.

Two paradigms concur for forgery detection. The first way consists in designing many different methods, each addressing separate kinds of inconsistencies in the image. Each step of the camera pipeline, shown in Figure 1.2, leaves various traces on the image; modifying the image or adding part of an image onto another will result in different traces in the authentic and forged region. Depending on the history of a forged image, various kind of traces may be affected and detected. For instance, both demosaicing and JPEG compression leave periodic artifacts on an image. When an image is forged, a local shift in the phase of the artifacts may occur. However, while demosaicing disruptions can only be detected on high-quality images, that were never much compressed nor resampled [BGM20; PF05a], JPEG inconsistencies are inherently not present on uncompressed images, but much easier to spot on lower-quality ones such as those that are posted on social media. It is then possible to detect shifts in the patterns, or regions where the compression quality is inconsistent with the rest of the image. These methods work when the forgery was done after an initial compression of the whole image or the added forged area. This is the case for most of the forged images found online to spread misinformation. Indeed, JPEG images are downloaded, tampered with, then uploaded again, leading to images having sometimes several compressions. Methods based on the traces of JPEG compression are the focus of this thesis and will be discussed in Section 1.5.

Noise analysis can also provide important clues of potential forgeries. As seen in the noise curves of the authentic and forged regions are thus likely to present different noise profiles. Figure 1.6 depicts this situation: the forged region presents a different noise model than that of the background image. Several methods aim at detecting this kind of inconsistencies [CPV15b; MS09; LPZ13; Gar+21]. For instance, Mahdian and Saic [START_REF] Mahdian | Using noise inconsistencies for blind image forensics[END_REF] perform local wavelet-based noise level estimation using a median absolute deviation estimator. Lyu, Pan, and Zhang [START_REF] Lyu | Exposing Region Splicing Forgeries with Blind Local Noise Estimation[END_REF]'s method relies on the kurtosis concentration phenomenon. Splicebuster [START_REF] Cozzolino | Splicebuster: A new blind image splicing detector[END_REF] computes the noise residual of an image after a high-pass filter, and uses the co-occurences of said residuals as local features characterizing the signature of an image. A Gaussian-uniform mixture model is then used to detect and localize regions where the signature is different from the rest of the image. More recently, Noisesniffer [START_REF] Gardella | Noisesniffer: a Fully Automatic Image Forgery Detector Based on Noise Analysis[END_REF] defines a background stochastic model enabling the detection of local and statistically-significant anomalies in noise.

The variety of traces that can be present in images make exhaustiveness difficult. However, these methods are self-explanatory. Another possibility is to consider forgery detection as a unique learning problem and develop a generic model -usually a neural network -to localize forgeries in the image [WAN19; CV20; Huh+18]. While these methods are more generic and potentially more exhaustive, their results are opaque and unexplained. It is thus difficult to know when, and to what extent, they can be trusted. One can also attempt to detect forgeries directly; for instance ManTraNet [START_REF] Wu | ManTra-Net: Manipulation Tracing Network for Detection and Localization of Image Forgeries With Anomalous Features[END_REF] is a bipartite end-to-end network, trained to detect image-level manipulations with one part, while the second part is trained on synthetic forgery datasets to detect and localize forgeries in the image. Noiseprint [START_REF] Cozzolino | Noiseprint: A CNN-Based Camera Model Fingerprint[END_REF] extends on Splicebuster [START_REF] Cozzolino | Splicebuster: A new blind image splicing detector[END_REF] by using Siamese networks to extract another noise residual from an image. Selfconsistency [START_REF] Huh | Fighting Fake News: Image Splice Detection via Learned Self-Consistency[END_REF] analysis also uses a Siamese network with the goal of detecting whether two patches are likely to share the same Exif metadata, and thus to have been processed with the same pipeline.

A different family of approaches considers the content of the image itself. A typical case of forgery, called internal manipulation, consists in cloning an area of the image onto another part of the image. This modifies an image by directly using parts of itself, like inpainting [Ari+11] and copy-move. Specific tools were therefore developed to detect these areas by distinguishing internal copies from simply similar objects [WAAN18; Ehr19; CPV15a]. The first methods are based on Cozzolino, Poggi, and Verdoliva [START_REF] Cozzolino | Efficient densefield copy-move forgery detection[END_REF]'s approach. Other methods use and compare key points, like those obtained with SIFT [START_REF] David G Lowe | Distinctive image features from scale-invariant keypoints[END_REF], which allows similar content to be linked. But this is often too permissive to detect copy-move forgeries. This is why specialized methods, such as [START_REF] Ehret | Robust copy-move forgery detection by false alarms control[END_REF] propose comparisons between descriptors to avoid the detection of similar objects. Neural networks can also be used to detect copy and paste manipulations, such as [START_REF] Wu | BusterNet: Detecting copy-move image forgery with source/target localization[END_REF], where a first branch of the network detects the source and altered regions, while a second branch determines which of the two is the forgery. This is different from other methods which generally cannot distinguish the source from the forgery.

JPEG compression analysis

In JPEG encoding, the division of the image into 8 × 8 blocks and the application of a quantization step (see Section 1.3) lead to the appearance of discontinuities at the edges of these blocks in the decompressed image. Figure 4.1 shows the blocking effect, also called block artifact grid, which appears after JPEG compression. A contrast enhancement allows to see clearly the 8 × 8 blocks. In an image having undergone JPEG compression, the 8 × 8 blocks are created following a regular pattern starting at the pixel in the top left of the image and therefore coinciding with an original grid having for two-dimensional coordinate (0, 0). Some image forensic methods exploit directly these traces [Luo+07; LYY09; Iak+18] as does one of our methods, presented in Chapter 2. When an image is forged, the block artifact grid is often disrupted and detecting it leads to detecting the manipulation. Figure 1.8 illustrates blocking disruption in case of several kinds of forgeries. When an image is cropped, the top-left block artifact grid is cut off and so the grid origin is most probably (with a 63 64 chance) no longer (0, 0). Internal copy-move and sometimes splicing create an area with a misaligned grid (with a 63 64 chance). Other forgeries such as erasing or inpainting or splicing from an uncompressed or resampled image (where the block artifact grid has been destroyed) create an area with no trace of compression.

Detection based on JPEG grid

Luo et al. [START_REF] Luo | A novel method for detecting cropped and recompressed image block[END_REF] derive a descriptor for the regularity of the block artifact grid. Their distortions are then detected through violations in the symmetry of the descriptor. In the BLK [START_REF] Li | Passive detection of doctored JPEG image via block artifact grid extraction[END_REF] method, the image is filtered based on local derivatives, weak edges are detected, and the coherence with an aligned 8 × 8 grid is measured. A feature corresponding to the local strength of the blocking pattern is extracted. Feature variations indicate local absence or misalignment of the grid and can be considered as a tampering cue. CAGI [START_REF] Iakovidou | Content-aware detection of JPEG grid inconsistencies for intuitive image forensics[END_REF] uses the artifact measure introduced by Zhigang Fan and de Queiroz [START_REF] Fan | Identification of bitmap compression history: JPEG detection and quantizer estimation[END_REF]: their method evaluates multiple grid positions with respect to a fitting function. Areas with low contribution are identified as inconsistent with the main grid and therefore potentially tampered. An image segmentation step is introduced to distinguish between object edges and manipulation boundaries. With a similar idea, the method presented in Chapter 2 extracts the block artifact grid via Chen and Hsu [CH08]'s method before applying a statistical validation method making the method automatic.

When an already compressed image is compressed again, the images is double compressed. In general, in double JPEG compressed images, the block grids of the The block artifact grid disruptions shown in Figure 1.8 are altered when a second compression occurs. Indeed, when the JPEG image is cropped and compressed again, we get two misaligned grids all over the image. When the image is forged and has a local misaligned grid, then after a second compression, the forged area will have a double misaligned grid. In the case of an area with missing traces of this blocking effect, the forged area can be detected as a single compressed area whereas the rest of the image is double compressed.

Detection based on JPEG quality

The greatest loss of information is during the quantization step, explored in more detail in Section 1.3. The blocking effect is due to this quantization, depending on the quality factor QF , applied on all 8 × 8 size blocks (Figure 1.9).

The detection of double compression can also be done through the estimation of the quality factor. Lukáš and Fridrich [START_REF] Lukáš | Estimation of primary quantization matrix in double compressed JPEG images[END_REF] read the second quantization table in the header of the JPEG file and estimate the quality factor of the first compression. Close to the ELA [KS07] method, Farid [START_REF] Farid | Exposing digital forgeries from JPEG ghosts[END_REF] proposes a simple method to see areas of an image where the quality is different from the rest of the image. GHOST recompresses the already compressed image and the difference takes a minimum if both compression settings are identical. The method gives out a heatmap and therefore needs a visual inspection or an additional step to make the method automatic. In Fu, Shi, and There is a clear structure after quantization of the coefficients. The value of quantization is q = 6.

table and looks at the errors between the DCT coefficients and the multiples of the coefficients of this estimated Q-table. This is close to what we do in Chapter 3 but with a different way of estimating the table.

Most of the existing methods aim to produce heatmaps and highlight the areas that seem suspicious or forged. The outputs need to be analyzed by a person and need interpretation. However, the user does not necessarily have the knowledge to interpret the results. Furthermore, visual analysis of all images is not possible if many images are to be inspected. Therefore a validation is needed to determine whether the observations are indeed caused by compression or they are simply due to chance. This validation can be carried out by the a contrario approach 

A contrario theory

To make a detection truly automatic, a forgery detection method should ideally provide a binary output of the detection. To do so, an a contrario analysis can be used.

The a contrario detection theory was developed by Desolneux, Moisan, and Morel [START_REF] Desolneux | From Gestalt Theory to Image Analysis[END_REF].It is a way of selecting detection thresholds while controlling the number of false detections under a background or null hypothesis H 0 .

They introduced what they called the "Computational Gestalt Theory" [START_REF] Desolneux | Meaningful alignments[END_REF]. Inspired by the Gestalt theory, they wanted to create an image analysis theory based on principled decisions. The most important decision is the validation of a detection. The proposition is based on the non-accidentalness principle [AH95; Wag92], which can be informally stated as: there should be no perception in white noise. More generally, the detection thresholds should be set to produce, on average, no detection on unstructured data. The principle comes into play where an event of interest is called meaningful if its occurrence is non-accidental, in the sense that the relation between its parts is too regular to be the result of an accidental arrangement of independent parts [START_REF] Desolneux | From Gestalt Theory to Image Analysis[END_REF].

The idea is illustrated in the words of Ian Fleming in Goldfinger : Once is happenstance. Twice is coincidence. The third time it's enemy action. The quote suggests the idea that a large number of coincidences imply a common cause. Lowe [START_REF] David G Lowe | Visual Recognition from Spatial Correspondence and Perceptual Organization[END_REF] expressed the same idea more formally in the context of pattern detection in digital images: we need to determine the probability that each relation in the image could have arisen by accident, P (a). Naturally, the smaller that this value is, the more likely the relation is to have a causal interpretation.

The a contrario approach aims at detecting parts of the data with anomalous statistics. The formulation requires: 1) a family of events or parts to be analyzed; 2) a function x i → S(x i ) providing the degree of significance of a data part x i ; and 3) a stochastic model H 0 for random data. The latter determines the distribution of such random data, which in turn allows to evaluate whether a given event is common or rare.

The formalism is based on a multiple test procedure as used in statistics [HT87] and is very similar to the procedure of Gordon et al. [START_REF] Gordon | Control of the mean number of false discoveries, Bonferroni and stability of multiple testing[END_REF]. We want a criterion F such that detections are declared when F (i, y i ) ≤ for a fixed value . The main idea of the a contrario approach is to design F to control the expected number of detections under H 0 ; i.e., when F is applied to random variables Y i . In such conditions, any detection would be a false detection. Here we will follow the formulation introduced by Grosjean and Moisan [START_REF] Grosjean | A-contrario detectability of spots in textured backgrounds[END_REF].

Definition. Let {Y 1 , ..., Y N T } be a set of N T random variables. A function F (i, j) is an NFA for the random variable Y i if ∀ > 0, E H 0 N T i=1 1 F (i,Y i )<ε < ε.
In words, this implies that the expected number of random variables satisfying F (i, Y i ) ≤ is bounded by ; this condition is equivalent to

N T i=1 P(F (i, Y i ) ≤ ) ≤ .
A function F satisfying this definition ensures that the average number of false detections under a background model H 0 is less than . Thus, an NFA allows controlling the global number of false detections by making detections only when F (i, y) ≤ for the observed value y.

Proposition. Let {Y 1 , ..., Y N T } be a set of N T random variables and {ν 1 , ..., ν N T } a set of positive real numbers such that N T i=1 1 ν i ≤ 1.
Then, the function

F (i, y) = ν i P[Y i ≥ y]
is an NFA.

The condition N T i=1 1 ν i ≤ 1 allows to apply a different confidence level ν i to each test while still controlling the average number of false detections by . In short, a detection will be declared in x i if

NFA i = ν i P[S(X i ) ≥ S(x i )] ≤ ,
where is a fixed value indicating the average number of false detections one is ready to accept when x is a realization of X ∼ H 0 . In particular, we can set ν i = N T for all i (which corresponds to the Bonferroni correction in multiple test settings), assigns the same risk N T to each test, while keeping the average number of false detections below . Also, in many practical applications and in this thesis the value = 1 is adopted.

In the algorithms presented in this thesis, the NFA is therefore defined as

NFA = N T P[S(X i ) ≥ S(x i )].
A large NFA means that the event can appear often by chance and is not relevant; inversely, the smaller the value, the more unlikely and the more meaningful the event.

An event e is called -meaningful if and only if NFA < .

The NFA can be thought of as a corrected p-value. Just like for the p-value, the smaller NFA the more meaningful the observed event is, i.e., the less likely it is to appear in an image randomly selected under the H 0 model. In this way, controls the average number of events under the H 0 hypothesis.

In order to apply the a contrario paradigm, three ingredients need to be provided: a family of tests to be evaluated, a function S defining an observed quantity and a probabilistic model for the background or null hypothesis H 0 . The choice of these three components is a modeling step. For the methods in Chapters 2, 3 and 5 using this statistical validation, these three components have been chosen accordingly.

In the next chapter, this framework has been added to a state-of-the-art approach to detect JPEG compression. The structure we are looking for is the regular pattern of the block artifact grid left by the compression algorithm. A detection will be validated only when its observation corresponds to an extremely unlikely event in the absence of any causal interpretation, that is, in an unstructured image. The basic model of the unstructured image, or a contrario model, is one where no block artifact grid should be perceived. This can be an uncompressed image or even better a Gaussian white noise.

Chapter 2

Local JPEG Grid Detection via Blocking Artifacts

This chapter describes an algorithm that exploits JPEG artifacts to locally recover the grid embedded in the image. The method, called GOD as Grid Origin Detector, is the application of the a contrario validation step to Chen and Hsu's cross-difference filtering to reveal the artifacts and deliver a Number of False Alarms (NFA) for each detected grid. The only parameter is the step size of the windows used, which represents the exhaustiveness of the method. The application to image forgery detection is twofold: first, the presence of discrepant JPEG grids with low NFA is a strong forgery cue; second, knowledge of the grid is anyway required for further JPEG forensic analysis.

This work is published as Local JPEG Grid Detector via Blocking Artifacts, a Forgery Detection Tool on IPOL [START_REF] Nikoukhah | Local JPEG Grid Detector via Blocking Artifacts, a Forgery Detection Tool[END_REF] which is an improvement over our work published in the MIPR conference [START_REF] Nikoukhah | Automatic JPEG grid detection with controlled false alarms, and its image forensic applications[END_REF]. An online demo is available at: https: // ipolcore. ipol. im/ demo/ clientApp/ demo. html? id= 283 .

Introduction

The JPEG format, described in Section 1.3, is currently the most common method for compression of digital photography. The encoding process consists of the following steps:

• The RGB (red, green and blue) color channels are converted to YCbCr (luminance and two chroma components).

• The chroma channels Cb and Cr are subsampled. The sampling ratios depend on the parameters used in the compression method.

• Each of the three image channels is partitioned into 8×8 non-overlapping blocks.

• The type II 2D Discrete Cosine Transform (DCT) is then applied to each block.

• The DCT coefficients of each block are quantized according to a given table.

• The resulting 8×8 blocks are losslessly encoded by using run length and Huffman coding.

The quantization of DCT coefficients (lossy compression) leaves traces at the boundaries of each 8 × 8 block, as shown in Figure 2.1. These traces, characteristic of JPEG compression, can be used to retrieve the grid, depicted in red in the figure. Since the blocks are of size 8 × 8, there are 64 possible grid origins. In the following, a grid will be characterized by its origin's coordinates g x and g y . If the JPEG image has not been further processed after decompression, the grid's origin should be (0, 0). Our method analyzes the blocking artifacts locally in several image windows, and aims to determine whether a JPEG grid is observed in each one. The algorithm is composed of three main steps: First, a cross-difference filter [START_REF] Chen | Image tampering detection by blocking periodicity analysis in JPEG compressed images[END_REF] is applied to the luminance channel of the image to emphasize the JPEG traces. Then, a family of overlapping windows is created as illustrated in Figure 2.2. In each window, the horizontal and vertical local maxima of the cross-difference vote for the JPEG grid origin that would imply that a block boundary passed through them. Finally, the votes go through a statistical validation step based on the a contrario theory [START_REF] Desolneux | From Gestalt Theory to Image Analysis[END_REF]. The result of the algorithm is the list of all the windows and their vote: a meaningful grid or no detection. The presence of two or more different JPEG grid origins may be a cue for image forgery. On the other hand, when a single and coherent JPEG grid origin is found all over the image, further JPEG analysis can be performed to authenticate the image.

The only parameter of this method is the minimum window step (W ×W pixels, W must be a multiple of 8 as we will see later). The smaller W , the more exhaustive the
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Algorithm

Algorithm 1 provides a pseudo-code of the full method. Each step of this algorithm is described in the following subsections.

Algorithm 

Luminance Component

The algorithm takes an RGB image and computes (algorithm 1 step 1) its luminance according to the JPEG standard:

I = 0.299 R + 0.587 G + 0.114 B,
where R, G and B are the values of the red, green and blue channels at a given pixel. The chroma components, Cb and CR, are not used in the proposed method. These components are usually sub-sampled in JPEG images. The sub-sampling ratios for rows and columns may be different and they vary from image to image. When these ratios are known, the proposed approach could be adapted to use, additionally, the chroma components.

Grid Extraction

The blocking artifacts appear as luminance changes along the block frontiers. Several filters were proposed in the literature to emphasize the blocking artifacts.

Let I be the X × Y luminance component of the input image and I(x, y) the intensity value at pixel (x, y), with 0 ≤ x ≤ X -1 and 0 ≤ y ≤ Y -1. The simplest method [START_REF] Lin | Digital image source coder forensics via intrinsic fingerprints[END_REF] to reveal the presence of block artifacts computes the absolute value of the gradient magnitude image. This first order derivative is approximated by two difference filters,

• horizontally:

|I x (x, y)| ≈ |I(x, y) -I(x -1, y)|;
(2.1)

• and vertically:

|I y (x, y)| ≈ |I(x, y) -I(x, y -1)|. (2.2)
Other authors [START_REF] Li | Passive detection of doctored JPEG image via block artifact grid extraction[END_REF] use the absolute value of second order derivatives approximated by

• horizontally:

|I xx (x, y)| ≈ |2I(x, y) -I(x + 1, y) -I(x -1, y)|;
(2.3)

• and vertically:

|I yy (x, y)| ≈ |2I(x, y) -I(x, y + 1) -I(x, y -1)|. (2.4)
Yet, as can be seen in Figure 2.3, both filters have a strong response to the edges and textures present in the image and may induce aberrant grid detection. To reduce the interference of the background scene details, a cross-difference filter proposed in [START_REF] Chen | Image tampering detection by blocking periodicity analysis in JPEG compressed images[END_REF] is defined by

C(x, y) = |I(x, y) + I(x + 1, y + 1) -I(x + 1, y) -I(x, y + 1)|. (2.5)
This filter amounts to the absolute value of a convolution of the image with a 2 × 2 kernel as given in step 2 of algorithm 1. To avoid setting boundary conditions, the JPEG grid detection will work only in the region where the cross-difference is well defined: everywhere except the last row and column of the image.

Cross-difference filter

First-order difference filter Second-order difference filter Our method uses this filter to reveal the compression artifacts. However, in cases where the image has been weakly compressed, even this filter can be inefficient. The JPEG format has a quality parameter Q measuring the compression quality in a scale ranging from 1 to 100. The higher the compression quality Q, the less the image is compressed and the dimmer the JPEG grid. The image in Figure 2.3 comes from a smartphone camera which compresses at quality 93 and the images of Figure 2.4 have been compressed with the ImageMagick package1 with varying quality factors. 

Voting Process

The JPEG grid is evaluated locally, so a counting process is performed independently in each window, see algorithm 1 step 3. Figure 2.2 illustrates the family of windows Ω(W ) we use. In principle, any pixel of the image can be used for the upper-left corner and any pixel can be used for the lower-right corner of a window. But to simplify the comparison between different grid origins, we will restrict the windows to sizes multiple of 8; in this way, any of the eight horizontal or vertical grid origins are equally represented in each window. However, to accelerate the computation, only a subset of these rectangular windows is computed: the number depends on how local you want the method to be, with W being the minimum window side size such that pixels of the image with coordinates multiple of X W and Y W are used as the corners of the family of rectangular windows. Thus the total number of windows with sizes that are multiples of W is

|Ω(W )| = 1 4 X W X W + 1 Y W Y W + 1 . (2.6)
When a JPEG grid is present, the local maxima of the cross-difference tend to concentrate on JPEG block frontiers as shown in Figure 2.3. Therefore each horizontal or vertical local maximum of the cross-difference C(x, y) votes for the grid origins compatible with such block frontiers, namely x mod 8 and y mod 8, see algorithm 1 steps 7 to 13. Thus, each local maximum votes for origin g x or g y with values from 0 to 7.

To work in an area where the cross-difference and the computation of the local maxima are both defined, the family of local windows Ω(W ) is set with 1 ≤ x ≤ X -2 and 1 ≤ y ≤ Y -2.

Working with a reduced family of windows is just the result of a practical consideration, to obtain a faster algorithm. With an adequately chosen value for W , the algorithm will give a good balance between producing a result similar to the exhaustive search (W = 8) while significantly reducing the computational time.

Validation Step

The validation step is based on the non-accidentalness principle which prescribes to reject detections that could be the result of an accidental configuration. Accordingly, the a contrario approach introduced by Desolneux, Moisan, and Morel [START_REF] Desolneux | From Gestalt Theory to Image Analysis[END_REF] proposes to control the expected number of false detections on a noise or a contrario model H 0 where the desired structure could only be present by chance.

Our a contrario assumption is the absence of a JPEG grid. Under that assumption the local maxima votes should be ceteris partibus uniformly distributed between 0 and 7. A detection will be considered when the number of votes for a particular position is too large to be the result of chance.

The mathematical setting corresponds to a multiple testing procedure to control the expected number of false detections under the null model H 0 [START_REF] Gordon | Control of the mean number of false discoveries, Bonferroni and stability of multiple testing[END_REF]. The Number of False Alarms (NFA) of observing a value e is defined by

NFA = N T P H 0 (E ≥ e) (2.7)
where N T is the number of events tested and P H 0 (E ≥ e) is the probability of observing a value as large as e for a random variable E under the stochastic model H 0 . The event is called -meaningful if and only if NFA < . The question to be answered is whether a window's vote for a coordinate (g x , g y ) is meaningful or not. Each window has two events to test: the horizontal g x and the vertical g y grid origin coordinate. A window will be called meaningful under the a contrario assumption when both of these events are -meaningful, i.e. NFA x < and NFA y < . Let us denote by n x and n y the total number of horizontal and vertical votes (see algorithm 1 steps 14 and 17). We will denote by k x and k y the number of votes for the most voted grid, horizontal and vertical respectively (algorithm 1 steps 15 and 18). Because it was imposed that the window size is a multiple of eight, each of the possible grid origins has the same number of potential votes, and directly comparing the number of votes is fair. We need now to determine whether k x and k y are too large to be the result of chance, which implies that too many of the positions compatible with a given grid voted for it. However, evaluating directly the probability of observing k x or more votes for a given origin is difficult because the votes are not independent. Indeed, the computation of a local maximum requires comparing three consecutive values of the cross-difference, and each of the latter is computed using a 2 × 2 set of image pixels. Thus, a horizontal local maximum involves a 4 × 2 set of image pixels. As a consequence, the votes on a given column are not independent. Nevertheless, the votes would be independent if we counted only rows at distance two. Ideally, we should perform two tests, one with even rows and another one with odd rows. A simpler way is to count all the rows and then divide by two. If the votes were equally distributed on the rows, then this count would give the same value as any of the sub-counts. If not, necessarily one of the two sub-counts would have more votes. So k x /2 is a conservative count of the number of independent votes.

Among the |ω| pixels in the window ω, only |ω|/8 are potential maxima associated to each of the 8 horizontal grid origins. Using the same reasoning as before, only half of them can be considered independent. That means that among the |ω|/16 positions that could have voted for a given horizontal grid position, only k x /2 actually did. Our a contrario random model H 0 is that each of these votes are independent Bernoulli random variables. The probability of voting for these random variables is unknown a priori ; the proposed algorithm makes an empirical estimation given by nx |ω| , that is the total number of votes in the window over the total number of pixels in the window. Then, the probability of observing as many votes just by chance is thus

B |ω| 16 , k x 2 , n x |ω| ,
where B(η, κ, ρ) is the binomial tail given by

B(η, κ, ρ) = η j=κ η j ρ j (1 -ρ) η-j . (2.8)
The number of tests N T corresponds to the total number of windows in the image, times the number of different horizontal grid origins, times 2 to count the two tests theoretically performed, one for odd rows and one for even rows. Here, we will not take into consideration the reduction of the family of windows described in the last section; indeed, the only purpose of such reduction is reducing the computational time, but we want the result for a given window to be the same as if the exhaustive search were performed. Thus,

N T = 2 × 8 × |Ω(8)| ≈ 16 1 4 X 8 Y 8 2 = (XY ) 2 1024 .
Following the a contrario theory, we define the Number of False Alarms (NFA) as

NFA x = (XY ) 2 1024 B |ω| 16 , k x 2 , n x |ω| .
(2.9)

An analogous reasoning is performed for the vertical grid origin. The evaluation of the horizontal and vertical grid origins are different tests and even different families of test; therefore, there is no problem of independence between the horizontal and vertical test for the same window. Similarly to the horizontal case, the NFA for the second test is

NFA y = (XY ) 2 1024 B |ω| 16 , k y 2 , n y |ω| . (2.10)
All in all, a JPEG grid is detected when NFA x < and NFA y < , see algorithm 1 step 20. Desolneux, Moisan, and Morel [DMM08] suggested using = 1 which implies getting, on average, less than one false detection per image. This makes sense when many detections are expected per image. An example of this is the detection of line segments in an image [START_REF] Grompone Von Gioi | LSD: a Line Segment Detector[END_REF], where hundreds or thousands of them are present in a typical image; accepting less than one false detection seems thus reasonable. In our current problem, however, it may seem contradictory to set = 1 as in a normal JPEG image we expect to find just one grid; accepting one false grid detection in H 0 would imply getting, on average, a spurious grid detection on every image, even when no JPEG compression is present. Nevertheless, the proposed a contrario formulation treats the horizontal and vertical grid evaluations as different families of tests, and the number of false detections is controlled so as to get no more than false horizontal origin detections and no more than false vertical origin detections. The JPEG grid origin detection requires both tests to be satisfied, so we know the expected number of JPEG grid origin detections is also controlled by . Actually, its expected value is much lower. Indeed, when setting = 1 one expects to obtain, under the null model H 0 , one test among a total of (XY ) 2 1024 horizontal tests to be positive; it is also expected that one test among a total of (XY ) 2 1024 vertical tests to be positive. But to obtain a false JPEG grid origin detection, both tests must correspond to the same window. There is no reason why for spurious horizontal and vertical tests to be satisfied on the same window. As a result, we may expect to observe accidental horizontal and vertical detections on the same window in about one out of Ω(8) ≈ (XY ) 2 16384 random images of size X × Y ; this is again reasonable. Even for images as small as 100 × 100, this corresponds to one false detections every 6103 images. (A tighter selection of would be possible, but it would require the user to select the acceptable false alarm rate.) All in all, we set = 1 as this simple criterion results in an effective control of the number of false JPEG grid origin detection without the need for further user intervention.

Concerning the numerical implementation, two comments are relevant. First, in our implementation, the computation of the binomial tail is performed using the following relation to the Gamma function,

n k = Γ(n + 1) Γ(k + 1) • Γ(n -k + 1) ,
for which there are effective implementations readily available. To speed up the computations, the sum of the binomial tail is truncated when the error can be bounded to be less than 10%.

Second, the NFA may reach very small values, which may underflow the usual IEEE 754 number representation. Our implementation in the C programming language, which uses IEEE 754 number representation, computes log 10 (NFA) instead of NFA, allowing for a larger numeric range. Any logarithm base is equally useful for this purpose; the 10 base makes it slightly easier to read the order of magnitude of the NFA values. Of course, the test must now compare log 10 (NFA) to log 10 ( ), which for = 1 is zero.

Parameter Choice and Computational Complexity

The algorithm's only parameter is the size of the smallest window W ×W . The smaller W , the more local the method, and the longer the computation. The code can be executed in parallel, the computation at each window is independent from the others. It is reasonable to use values W ≥ 64 so that each window has at least 8 repetitions of the JPEG 8 × 8 blocking artifact. We observed that smaller values increase the computation time while rarely adding meaningful detections.

In a nutshell, the algorithm first computes the cross-difference of the whole image; then, for each window the votes are counted, and finally an NFA value is computed. The number of operations required for computing the cross-difference is proportional to the number of pixels in the image. The bottleneck is the second step, which is proportional to the product of the number of windows analyzed and the size of each window. From equation 2.6 we know that the number of windows is bounded by

|Ω(W )| ≤ (XY ) 2 W 4 .
Two operations are performed per window: counting the number of votes and selecting the maxima per axis for the computation of the NFA values. Only the vote count is relevant for the present calculation as the other computations require a constant number of operations per window. The complexity, thus, is determined by the number of votes which requires as many operations as the size of the window. This value is bounded by the largest window, the one covering the full image. Thus, the complexity of the algorithm is

computational complexity = O (XY ) 3 W 4 . (2.11)
In other words, the complexity is proportional to the cube of the number of pixels in the image. Also, the larger the smallest window W , the faster the method. The speed-up comes at the cost of a reduced spatial resolution, reducing the capacity to detect small forgeries.

To give an idea of the usefulness of performing a non-exhaustive search, Eq. 2.11 shows that doubling W reduces the computational time by a 16 factor. Then, relative to the exhaustive search (W = 8), the speed-up obtained are about 16 for W = 16, 256 for W = 32, 4096 for W = 64, and so on. Thus, the value of W determines in practice the analysis time and may result in an exhaustive but slow, or in a very fast process.

Experiments

The algorithm should detect the strongest grid, namely the one with the heaviest compression, in case of several successive compressions. Indeed, most post-processed or tampered images have been compressed at least twice, once when acquired and once after processing. In the following we analyze the results of our detection algorithm for several meaningful applications.

JPEG Compression Detection

A first simple application is to tell if an image has undergone JPEG compression or not. If the image has undergone a lossy compression, a global grid is detected and so the coordinates to its origin is returned, otherwise there is no detection. The method does not needs to be exhaustive and can therefore look at big windows in the image, therefore performing few tests and being very fast. image size: 768x512, window step size: 64, number of evaluated windows: 1848 number of meaningful windows: 0 (0 %) number of meaningful windows for each JPEG grid origin:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 best log(NFA) for each JPEG grid origin: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
number of meaningful JPEG grids found: 0 no meaningful grid found No suspicious traces found in the image with the performed analysis.

Again, the proposed algorithm, with W = 64 gives the following result for the JPEG version of the image: image size: 768 x 512, window step size: 64, number of evaluated windows: 1848 number of meaningful windows: 1736 (93 %) number of meaningful windows for each JPEG grid origin:

1736 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 best log(NFA)
for each JPEG grid origin:

-637.8 -----number of meaningful JPEG grids found: 1 most meaningful JPEG grid origin (0,0) with NFA: 10^-637.838 No suspicious traces found in the image with the performed analysis.

This second table represents the number of votes per coordinate. Here, 1736 windows voted meaningfully for the origin (0, 0) out of the 1848 windows which did vote. In the online demo, to each block's vote is associated an NFA. Here, the most meaningful NFA is printed.

We can illustrate with this example the impact of the parameter W on the processing time: 

W time (s

Crop Detection

In Figure 2.6, we took an original JPEG image and cropped a square out of it. Algorithm 1 was tested on the cropped image with W = 64, which led to testing 3025 windows. Of these windows, 2883 detected the grid (4, 4) with overwhelming significance. The origin of the global grid being different from (0, 0), the (anticipated) conclusion is that the image has been cropped. The output of the algorithm is the following: 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -930.3 - - - - - - - - - - - - - - - - - - - - - - - - - -
number of meaningful JPEG grids found: 1 most meaningful JPEG grid origin (4,4) with NFA: 10^-930.259 The most meaningful JPEG grid origin is not (0,0). This may indicate that the image has been cropped.

Forgery Detection

In the example of Figure 2.7 with W = 256, the list of votes returned two meaningful grids (0, 0) and (0, 5). The red area represents the windows which voted for a foreign grid and the blue area the windows with a non-meaningful vote: the whole image voted for the coordinates (0, 0), whereas the foreign area for another. We conclude that the area marked in red has a JPEG grid with an offset which is different from the rest of the image. The output of the algorithm is the following:

image size: 3264 x 2448, window step size: 256, number of evaluated windows: 3510 number of meaningful windows: 3458 (98 %) number of meaningful windows for each JPEG grid origin:

3455 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 best log(NFA) for each JPEG grid origin: -1162.4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4.2 - - - - - - - - - - - - - - - - - - - - - -
number of meaningful JPEG grids found: 2 most meaningful JPEG grid origin (0,0) with NFA: 10^-1162.4 second most meaningful JPEG grid origin (0,5) with NFA: 10^-4.22603 This image shows more than one meaningful JPEG grid. This may be caused by image manipulations such as resampling, copy-paste, splicing, or some particular periodic pattern in the scene. Please examine the deviant meaningful blocks to make your own opinion about a potential forgery.

In some cases, an area can be revealed where there are no meaningful grids at all. This may be caused by several reasons: if there has been an external copy-paste from an uncompressed image, or by operations such as erasing. Further work will look into areas of non-meaningful overlapping windows.

For example, the image of Figure 2.8 is an example of a real case image from the social network Twitter posted to propagate fake news. The blue area is forged, as it can be seen thanks to the original image on the right. Indeed, there are no detectable JPEG blocks in this area probably caused by too much post processing. 

Limitations

As the method relies on the ability of the cross-difference filter to reveal the blocking artifacts, in some cases which are detailed below, it may not detect the proper grid or any grid at all.

High Quality Images

When the image is only slightly compressed, with quality parameters 98, 99 or 100, the JPEG blocks are often imperceptible, even after the cross-difference enhancement.

The algorithm may fail to detect the JPEG global grid for small images of high quality.

Interference with Resampling traces

The main limitation of the proposed method is its relation with the presence of periodic patterns in the image. Indeed, a JPEG grid is revealed by periodic structures on the cross-difference. To be detected, the structure needs to show, locally, a period of 8 pixels (or a multiple). In rare occasions, this may be observed in a natural image, and it is of course a violation of our a contrario hypothesis. Nevertheless, this phenomenon is arguably rare, as the method requires the presence in the image of a periodic structure with the right 8-period on both, the horizontal and vertical directions. While rare in natural images, such periodic traces, however, can arise as artifacts left by an image resampling operation.

Resampling an image creates a regular pattern [START_REF] Alin | Exposing digital forgeries by detecting traces of resampling[END_REF] which can, when aligned horizontally or/and vertically interfere with the JPEG 8 × 8 grid. For example, a JPEG image loses (naturally) its JPEG blocking artifact when stretched. However, sometimes, it creates a new periodic pattern as it can be detected in the image of Figure 2.9. The image was JPEG compressed and of size 512 × 512, after being stretched vertically, became of size 512 × 520. -

- - - - - - - - - - - - - -2.3 - - - - - - - -2.5 - - - - - - - - - - - - - - - - - - - - - - - -2.5 - - - - - - - -4.9 - - - - - - - -1.
1 -number of meaningful JPEG grids found: 5 most meaningful JPEG grid origin (6,6) with NFA: 10^-4.88746 second most meaningful JPEG grid origin (6,2) with NFA: 10^-2.48428 This image shows more than one meaningful JPEG grid. This may be caused by image manipulations such as resampling, copy-paste, splicing, or some particular periodic pattern in the scene. Please examine the deviant meaningful blocks to make your own opinion about a potential forgery.

In the case illustrated in Figure 2.10, the resampling was applied to an uncompressed image, and it led to the detection of several grid origins. The image on the left was stretched horizontally and vertically to obtain an image twice as big. This image shows more than one meaningful JPEG grid. This may be caused by image manipulations such as resampling, copy-paste, splicing, or some particular periodic pattern in the scene. Please examine the deviant meaningful blocks to make your own opinion about a potential forgery.

Future work will focus on using similar techniques specially tailored for image resampling detection and on being able to tell the difference between resampling and JPEG compression. Our best guess so far is to look for several periodic patterns, not only of 8 pixels. We observed that if an image is upsampled before being also JPEG compressed, the resampling traces can remain detectable if the final compression is mild enough.

Conclusion

The proposed JPEG grid detection method involves Chen and Hsu's cross-difference filtering to emphasize blocking artifacts. The detection is made locally in a family of windows, where each local maximum votes for a JPEG grid origin, and the most voted grid position is taken as candidate. An a contrario validation step of this candidate is used to control the number of false detections. The resulting method is unsupervised and depends on a single parameter for selecting the balance between exhaustiveness and speed of the algorithm.

The algorithm can be used in image forensics to detect cropped or tampered images, and it can also be used to provide the grid localization for further JPEG analysis. The main limitation of the proposed method is that image upsampling traces may lead to meaningful detections that are not JPEG related. Future work will concentrate on this decision problem. To avoid this interference, next chapter focuses on the DCT coefficients of the image instead of the spatial traces.

Chapter 3

Reliable Quantization Table Estimation

The degree of compression can be adjusted by the choice of a quality factor QF . Each software associates this value to a quantization table, which is a 8 × 8 matrix used to quantize the DCT coefficients of an image. In this chapter, we propose a method for recovering the JPEG quantization table relying only on the image information, without any metadata from the file header; thus the proposed method can be applied to an uncompressed image format to detect a previous JPEG compression. The a contrario statistical validation is used to decide whether significant quantization traces are found or not, and to provide a quantitative measure of the confidence on the detection. The presented algorithm assumes that the JPEG blocks are aligned to the standard grid due to the existence of reliable JPEG grid origin detectors.

This work is published as A Reliable JPEG Quantization Table Estimator on IPOL [START_REF] Nikoukhah | A Reliable JPEG Quantization Table Estimator[END_REF]. An online demo is available at: https: // ipolcore. ipol. im/ demo/ clientApp/ demo. html? id= 399 .

Introduction

Image forensics [START_REF] Farid | Photo Forensics[END_REF] aims at revealing the operations undergone by an image during the camera pipeline [START_REF] Delbracio | Mobile Computational Photography: A Tour[END_REF] or afterwards. An important example of such operations is JPEG compression, which depends on a quality factor (QF) parameter. This quality factor is associated to two quantization tables (Q-tables), which are 8 × 8 matrices of integer values; the JPEG standard does not specifies the Q-tables for each QF, which depend on the particular software used for compression. This work describes a reliable method for estimating the main JPEG quantization table used during compression based solely on the decompressed digital image.

When the image to be analyzed is encoded in a JPEG file, there is no need to detect the JPEG quantization tables, as all the relevant information is contained in the header of the JPEG file itself. Indeed, these tables are required for JPEG decompression. Nevertheless, even in that case, it may be interesting to detect traces of a previous JPEG compression. More importantly, in forensic applications one wants to analyze images which may have been converted to any file format and study whether one or more JPEG compressions were applied. For these reasons, the method described here takes only the pixel values of the image as input and uses no metadata information nor header information that may be contained in the image file.

Fan and de Queiroz [FQ00; FDQ03] proposed a method to extract the quantization table using maximum likelihood estimation. Their algorithm gives good results but the estimation performance deteriorates at very high bit rates (QF > 95). In [FSS07], Benford's law is applied to the DCT coefficients. The method works by re-compressing the image with several QFs and fitting the different distributions of the DCT coefficients to the proposed law. The QF of the version having the least fitting artifact is chosen and its corresponding Q-table is selected. Both methods require that the possible Q-tables are known in advance and estimate the complete table by looking up in a list of common tables [START_REF] Gregory | The JPEG still picture compression standard[END_REF]. In [START_REF] Thai | JPEG Quantization Step Estimation and Its Applications to Digital Image Forensics[END_REF], a statistical model for quantized coefficients is introduced with better accuracy than the Laplacian model, yet it is time consuming. The closest approach to ours is Ye, Sun, and Chang [YSC07]'s method. These authors propose an estimation method based on the power spectrum of the histogram of the DCT coefficients. After low-pass filtering the second derivative of the power spectrum, they count the number of local minima to establish the quantization step.

The method described here uses a statistical test, based on Desolneux, Moisan and Morel's a contrario theory [START_REF] Desolneux | From Gestalt Theory to Image Analysis[END_REF] introduced in Section 1.6, to control the number of false detections. This test allows one to compute a quantitative measure of the confidence associated to each element of the table, and to reject the estimation when this measure is not good enough. When no element of the quantization table is found, this may indicate that the image has not gone through a JPEG compression or, that an operation has been done after the compression that tampered the JPEG history of the image.

Q-table estimation

The JPEG encoding process described in detail in Section 1.3, has a quantization step according to a given table (Q-table) chosen regarding the parameter of the compression. This quantization table provides a factor for each DCT component and determines the compression level; the larger the factors, the lower the resulting file size, but also the lower the image quality. Quantization tables may have an associated quality factor QF , which is an integer in the range from 1 (high compression ratio, worst quality) to 100 (lowest compression ratio, best quality). Note that different Q-tables may be associated to the same QF factor; the Q-tables are one of the primary sources of variability among JPEG encoders [START_REF] Farid | Digital image ballistics from JPEG quantization: A followup study[END_REF]. The QF factor can be estimated from the values of the Q-tables [START_REF] Cogranne | Determining JPEG Image Standard Quality Factor from the Quantization Tables[END_REF].

Figure 3.1 shows a 3000 × 2000 pixels JPEG picture and its quantization table. In natural images, most of the energy is concentrated in the low and medium frequencies. Thus, the quantization tables usually have larger values (entailing more compression) for higher frequencies, as it is the case in the figure .  A lossless compression by Run-Length Encoding (RLE) exploits the long series of zeros at the end of each vector. A Huffman code then allows a last lossless compression of the data, to which a header is finally added to form the final JPEG file. The quantization table is stored in the header of the JPEG file to allow for decoding.

For each quality factor, there are two associated Q-tables, one for the luminance channel and the second one for the chroma components. In this work, we focus on the luminance channel. The method presented here could be extended to the chroma channels and estimate the second quantization table; this requires, however, knowing the chroma subsampling factors or to estimate them.

The method proposed here starts by analyzing the DCT coefficients of the luminance channel of the image. The method focuses on the 63 AC coefficients and leaves the DC coefficient (which has different properties) untreated. The histogram of each of the 63 coefficients is analyzed and each quantization value between 1 and 255 is evaluated. A statistical test based on the a contrario theory [DMM08] is used to decide which quantization values are significant for each coefficient, and to select the best quantization value among the significant ones. In principle, the method does not require that the JPEG blocks be aligned to the standard JPEG grid starting at pixel (0, 0). This can be false if, for instance, the image has been cropped after JPEG compression. In such a case, the same algorithm could be applied to each of the 64 possible JPEG grid origins; valid detections would only be produced for the correct alignment. Nevertheless, due to the existence of reliable JPEG grid detectors presented in the Chapters 2, 4 and 5 this exhaustive search can be avoided. The presented algorithm therefore assumes that the JPEG blocks are aligned to the standard grid. However, the statistical tests will not make such hypothesis, so that, if required the method could be applied to all the possible 64 JPEG grid origins to find the right alignment. (This is important when the algorithm is used as a detector of falsified regions: such regions may have a different quantization table and their origin differ from the one of the main image.) Algorithm 3 provides a pseudo-code of the full method whose steps are detailed below.

The DCT coefficient histogram

The JPEG DCT quantization step has a clear effect on the histogram of the DCT coefficients of an image. This effect is illustrated in Figure 3.2 where the histogram of the same DCT coefficient is plotted before and after the JPEG compression. Even when the pixel values are integers, the DCT coefficients are real values. The JPEG quantization step transforms each DCT coefficient into an integer, multiple of the quantization value q [FGD01]. Then, the JPEG decompression process transforms the integer DCT coefficients into real pixel values, which are later rounded to integer pixel values. Due to the latter rounding, the DCT coefficients of the uncompressed image are no longer integers but present a narrow distribution around the quantization values, as can be seen in Figure 3.2 (right). The quantization value in Figure 3.2 is q = 6, and therefore the uncompressed coefficients are centered around values 0, 6, -6, 12, -12, and so forth. Estimating the quantization table reduces to deciding if these periodic peaks are present or not in the histogram. Given one of the 63 AC DCT coefficients c and a candidate quantization value q, the algorithm computes the quantization error for each block b i of the image. That is, given the value v i = DCT(b i , c), the nearest multiple of q determines the corresponding peak number V i = round v i q . The normalized quantization error is

Algorithm 2: JPEG Quantization Table Estimation input : Image I = (R, G, B) output: Quantization table Q output: Associated NFA table 1 Q[•] ← non valid initialize as not detected 2 NFA[•] ← ∞ 3 Y ← Round(0.299 R + 0.587 G + 0.114 B)
e i = 2 v i q -V i , (3.1)
where a multiplicative factor 2 is set to normalize the values into the range [0, 1]. A normalized quantization error e i = 0 means that the coefficient is an exact multiple of q, whereas e i = 1 means that the coefficient is at mean distance from the previous or the next quantization values.

The error distribution reflects how concentrated the DCT coefficients are around the quantization values. Consider for example the coefficients with values around 6 in the non-compressed image, see Figure 3.2 (left). The distribution decreases from values 3 to 9, the range of values corresponding to the first peak (V i = 1). However, the normalized quantization errors e i are the average of the negative errors (values from 3 to 6) and the positive errors (values from 6 to 9). Thus, the normalized quantization error is roughly uniformly distributed for non-quantized DCT coefficients; Figure 3.3 (left) shows the normalized quantization error distribution corresponding to Figure 3.2 (left), which is approximately uniform. (This is not true for the central peak (V i = 0) which due to symmetry shows a non-uniform distribution, highly concentrated on small values, even in uncompressed images; for this reason it will be ignored in the proposed method, see step 11 in Algorithm 3.) On the other hand, when the DCT coefficients are quantized, the normalized quantization error distribution has a clear concentration on small values, as shown in Figure 3.3 (right). The next section presents the statistical test used to decide between these two cases. 

Statistical validation

The proposed validation procedure is based on the a contrario theory, which relies on the non-accidentalness principle [START_REF] David G Lowe | Visual Recognition from Spatial Correspondence and Perceptual Organization[END_REF][START_REF] Andrew P Witkin | On the role of structure in vision[END_REF]. Informally, this principle states that there should be no detection in noise. In the words of D. Lowe, "we need to determine the probability that each relation in the image could have arisen by accident, P (a). Naturally, the smaller that this value is, the more likely the relation is to have a causal interpretation" [START_REF] David G Lowe | Visual Recognition from Spatial Correspondence and Perceptual Organization[END_REF]p. 39]. This principle has shown its practical use for detection purposes such as segment detection [START_REF] Grompone Von Gioi | LSD: a Line Segment Detector[END_REF], vanishing points detection [START_REF] Lezama | Finding vanishing points via point alignments in image primal and dual domains[END_REF], anomaly detection [START_REF] Davy | Reducing anomaly detection in images to detection in noise[END_REF], or forgery detection.

In our context, we need to assess whether the DCT coefficients are quantized. This is translated into deciding whether the normalized quantization error distribution is significantly concentrated on small values or not. We define a stochastic null model H 0 where the normalized quantization errors E i are independent random variables, uniformly distributed in [0, 1]. Then, we define the statistic

s = n i=1 e i ,
where e i is the normalized quantization error defined by (3.1). Hence, s can take values in the range [0, n]. For non-compressed values one would expect to observe s ≈ n 2 , while a value of s ≈ 0 would indicate a distribution concentrated around the quantization values. Thus, when the value s is small enough we can reject the null hypothesis H 0 and conclude that the values are indeed quantized. The question is for which values s is considered small enough.

Under the null hypothesis H 0 , s becomes a random variable S n , the sum of n independent and uniformly distributed random variables E i . (The subscript n was added to remind the number of elements in the sum.) Thus, S n follows the Irwin-Hall distribution [START_REF] Kotz | Continuous multivariate distributions[END_REF] and its p-value is given by

P(S n ≤ s) = 1 n! s k=0 (-1) k n k (s -k) n . (3.2)
Given an observed value s, P(S n ≤ s) is the probability of obtaining by chance such a small value under H 0 . When this probability is small enough, there exists evidence to reject the null hypothesis and declare that a significant quantization step was detected. However, the multiplicity of tests needs to be taken into account when considering that the probability is small enough. To use an analogy, even if the odds of each individual lottery ticket is 1/1000, the chances of winning are very high when buying 1000 tickets. Similarly, if 1000 tests were performed, it would not be surprising to observe an event that appears with probability 1/1000 under random conditions. The number of tests N T needs to be included as a correction factor, as it is standard in statistical multiple hypothesis testing [START_REF] Gordon | Control of the mean number of false discoveries, Bonferroni and stability of multiple testing[END_REF]. The null hypothesis H 0 is rejected when P(S n ≤ s) ≤ ε N T for a predefined value ε; this is called the Bonferroni correction. Equivalently, and following the a contrario literature, we define the Number of False Alarms (NFA) of a candidate (c, q) as NFA(c, q) = N T P(S n ≤ s)

(3.3) and detections are declared when NFA(c, q) ≤ ε, implying that the DCT coefficient c presents significant quantization traces for value q. One can show [START_REF] Desolneux | From Gestalt Theory to Image Analysis[END_REF] that under the null hypothesis H 0 the expected number of false alarms with NFA ≤ ε, is bounded by ε:

E H 0   (c,q)∈N T 1 NFA(c,q)≤ε   < ε,
where N T is the set of N T tests. As a result, ε corresponds to the mean number of false detections per image under H 0 . In most practical applications, the simple value ε = 1 is suitable; we will set it once and for all in our application as well. With this choice, the expected number of false detections per image is guaranteed to be upper-bounded by 1.

In the present case, one test is performed for each of the 63 DCT coefficients, and in each case 255 quantization values are tried. Also, at least in principle, all possible 64 JPEG grid origins could be tried. Then, the number of tests is

N T = 64 × 63 × 255.
Finally, a candidate q is accepted as a significant quantization of coefficient c when NFA(c, q) = 64 × 63 × 255 × P(S n ≤ s) ≤ 1.

(3.4)

It is possible that more than one quantization candidate q leads to a significant validation. This can happen for instance for a divisor q of the correct q = m • q . For example, the histogram in Figure 3.2 (right) has a quantization factor q = 6. A significant quantization is also obtained when evaluating the same histogram with q = 3; indeed, the histogram is quantized with such step, only that it is not the best fit, as half the quantization values are not represented. Fortunately, the statistics of the normalized quantization errors allows one to pick the best value. Figure 3.4 plots the normalized quantization error distribution when the histogram of Figure 3.2 (right) is analyzed with quantization values 3, 6, 12, and 13. For q = 3 and q = 6 the distributions are concentrated on the small values, leading to correct significant validations of both cases. However, the distribution is more concentrated on small values with the right q = 6 value. Thus, the corresponding NFA is smaller. As a result, if more than one quantization value is significant for a given coefficient, the one with smaller NFA value is selected. Note that a multiple of the right quantization value does not lead to a significant detection. See the case with q = 12 in Figure 3.4 as an example. Indeed, half the histogram peaks are placed at the interval ends, leading to a U distribution which does not pass the statistical test. A wrong quantization value leads to a mixed distribution that is not validated either, see the case with q = 13. Some clarifications are required concerning the implementation of the p-value term in Equation 3.2. Computing the actual sum would be too expensive and may also lead to numerical representation problems. Indeed, the NFA may reach very small values, which may underflow the usual IEEE 754 number representation. Our implementation in the C programming language, which uses IEEE 754 number representation, computes log 10 (NFA) instead of NFA, allowing for a larger numeric range. Any logarithm base is equally useful for this purpose; the 10 base makes it slightly easier to read the order of magnitude of the NFA values. Of course, the test must now compare log 10 (NFA) to log 10 (ε), which for ε = 1 is zero.

To ease the computational burden, a simpler upper-bound is used to approximate the actual sum in Equation 3.2. Because an upper-bound is used, if the approximated NFA is smaller than the detection level, the same is true for the exact NFA. Thus, no false detection results from this approximation. Conversely, it is possible to fail to make a detection when the actual value is below the detection level while the approximation is not. Nevertheless, this does not represent an important risk as quantized DCT coefficient distributions usually result in very small probability terms, and even the q = 12 q = 3 q = 13 q = 6 Figure 3.4: Normalized quantization error distributions for the coefficient in Figure 3.2 (below) when evaluated with quantization values of q = 3, q = 6, q = 12 and q = 13. upper bound usually takes very small values. Numerical experiments confirmed that the impact of this approximation is limited.

Two different upper-bounds for the p-value are actually used to approximate its number. First, it can be shown that the first term of the sum in Equation 3.2 is an upper bound to the full sum, The second upper-bound is obtained from Hoeffding's inequality [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF]. The sum S n satisfies the condition of the inequality, leading to the following upper-bound:

P(S n ≤ s) ≤ s n n! . ( 3 
P(S n ≤ s) ≤ e -2 ( n for s < n
2 , which is the interesting case. In logarithm,

log 10 P(S n ≤ s) ≤ -2 ( n 2 -s) 2 n log 10 e.
(3.10) Both these upper-bounds are needed to obtain a reasonable good approximation of the p-value term for the whole range s ∈ 0, n 2 . Indeed, the first term approximation (Equation 3.5) is tight for small values of s (even exact for s ≤ 1), but it degrades when s ≈ n 2 . On the other hand, the upper-bound obtained from Hoeffding's inequality is quite rough for small values and gets better for s ≈ n 2 . Thus, the p-value approximation is obtained as the minimum of the two approximations, leading to a reasonable approximation for the whole range. All in all,

log 10 P(S n ≤ s) ≈    min n log 10 s•e n -1
2 log 10 (2πn), -2

( n 2 -s) 2 n
log 10 e , s < n 2 , 0, s ≥ n 2 . (3.11) This is the approximation used in step 15 of Algorithm 3.

There is a potential pitfall in using this approximation. The NFA is used to decide when a histogram is indeed quantized, but also to select the best quantization factor q when more than one satisfies the detection threshold. In such a case, the value q leading to a smaller NFA is selected. This could lead to a wrong selection if two candidates takes values where NFA approximation errors are very different. Indeed, the approximation error is not uniform on the whole range of values of n and s. Thus, the factor with larger NFA value but smaller approximation error may be preferred over the real quantization factor if the approximation error of the latter is larger enough. This effect could be even worse if the different upper-bounds are used in each case. An alternative would be to select the best quantization factor among the significant ones by comparing s n instead of the approximated NFA values. Nevertheless, we did not observe this problem so its impact is probably limited.

Table 3.1 shows the quantization table and associated NFA values obtained by the proposed method applied to the image from Figure 3.1. In this case, no error was made and 63 elements of the Q-table were estimated. Notice the very small NFA values, implying a very high confidence on the result. We also observe that the NFA values are less significant in the high frequencies; the reason is that these coefficients have fewer samples. Indeed, most values are put to zero as it is illustrated in Section 1.3 (Figure 1.5). The NFA values are also less significant for the coefficients with the quantization factor q = 1. As one can see in Figure 3.5, the groups of values around each multiple of q are very close, leading to a less concentrated distribution of the normalized errors, and resulting in a less significant detection.

Computational complexity

The first step of the algorithm is obtaining the Y channel from the (R, G, B) colorspace. After that, the DCT of all 8 × 8 blocks in the Y channel is computed. The number of operations is proportional to the number of blocks in the image in both steps. Then, 63 × 255 statistical tests are performed, one for each quantization candidate and each DCT coefficient. The computation of the normalized quantization errors and their sum is again proportional to the number of blocks in the image. All in all, the number of operations required is proportional to the number of blocks. Thus, the complexity of the method grows linearly with the number of image pixels. 

Experiments

This section illustrates the strengths and limitations of the proposed method by performing several experiments. For this, an initial uncompressed image was cropped to different sizes, which was then JPEG compressed using different quality factors. In all cases, the JPEG compression was performed using the ImageMagick package 1 . The estimated Q-table values are displayed in courier font and non-detections are represented by a dash. The actual Q-tables encoded on the JPEG headers were extracted using the DJPEG tool created by the Independent JPEG Group.2 

Uncompressed images

When the proposed algorithm is applied on uncompressed images, it should produce no detection as the DCT coefficients will show no sign of quantization. The normalized quantization errors should approximately follow the null model H 0 , leading to an NFA larger than 1. The following table shows an example, obtained on the non-compressed image of Figure 3.1: Indeed, all the NFA values are larger than 1 (the log 10 NFA > 0) and no coefficient was detected as quantized.

estimated quantization matrix: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Impact of the JPEG compression quality

Figures 3.6 and 3.7 illustrate the impact of the JPEG compression quality (as determined by the quality factor QF) on the obtained result. When the JPEG compression is stronger (lower image quality), as shown in Figure 3.7, some of the high-frequency DCT coefficients are missing. Indeed, more and more DCT are put to zero, due to the strong quantization value. Hence, very few samples are left to perform the statistical test. Recall that the validation step only takes into considerations the non-zero coefficients.

In all cases, the detected elements of the Q-table provided the right value (as verified comparing with the table encoded in the JPEG header). Thus, no false detection was produced. Moreover, as shown in Figure 3.6, the case of QF = 100 is correctly detected making it possible to distinguish between an uncompressed image and a losslessly Image 
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Unknown grid origin

By default, the proposed algorithm assumes a standard JPEG grid with origin at (0, 0). This is not an important assumption, as there are reliable methods to estimate the grid origin when JPEG traces are present (see Chapters 2, 4 and 5). Nevertheless, when the proposed algorithm is applied on an image having its grid origin different from (0, 0), there should be no detection. For instance, this can happen when the image has been cropped after its compression. This is mainly what happens except in some cases when one of the two coordinates (horizontal or vertical) is aligned with the correct grid.

To illustrate this behavior, the same test image used before was JPEG compressed with QF = 90 and then cropped so as to obtain different effective grid origins. All the 64 possible grid origins where generated and Figures 3.11, 3.12 and 3.13 show six particularly interesting cases; no detection was made on the remaining cases. As expected, the quantization table is correctly detected when the grid origin is (0, 0). Also, no detection is performed when the grid origin is (4, 4), completely out of phase with the tested grid (0, 0). Nevertheless, there are some detections when there is a grid shift of just ±1 in the vertical or horizontal direction, i.e., for the grids (0, 1) or (0, 7) (Figure 3.12), or for grid (1, 0) or (7, 0) (Figure 3.13).

The DCT is a separable transform, so it can be interpreted as the superposition of an horizontal and a vertical 1D DCT transforms. When translating the grid one position horizontally, the vertical components remain almost the same. For this reason, in some cases the coefficient quantization is still detectable after a one pixel horizontal or vertical shift of the grid origin. Notice that the detected quantization values correspond in most cases to the same quantization values as in the QF = 90 table, with an error of ±1. Also, in all those cases, the detections found on the wrong grid origin are clearly less meaningful (with a larger NFA) compared to the correct grid alignment. These shifted grid detections can only be observed on large images; on small images, with fewer samples, with the degraded NFA, they will not lead to meaningful detections. Thus, it should be possible to identify the right grid origin by selecting the grid with more meaningful detections. This would work, however, under the assumption that a single JPEG compression was performed. The next section shows an experiment with double JPEG compression at different grid positions.

Grid origin (0, 0) Grid origin (4, 4) estimated quantization matrix: ----associated log10(NFA) values: 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.5 6.0 5.7 6.0 6.0 6.0 5.3 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.7 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Grid origin (0, 1) 6.0 6.0 -11.4 -18.9 6.0 -2.0 -19.8 6.0 6.0 6.0 6.0 6.0 6.0 5.7 -26.9 6.0 6.0 6.0 6.0 6.0 6.0 6.0 -42.2 6.0 6.0 6.0 6.0 6.0 6.0 6.0 3.0 6.0 6.0 6.0 6.0 5.1 6.0 5.6 5.3 6.0 6.0 6.0 6.0 6.0 6.0 5.3 5.9 1.2 4.2 -10.0 -5.6 -2.8 -0.3 1.4 -5.5

estimated quantization matrix: 2 2 3 5 7 9 11 - - - 3 4 - 2 2 - - - - - - - 2 - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - 19 
Grid origin (0, 7) -56.6 -20.6 -635.2 -110.9 -240.6 -115.5 -202.0 5.0 6.0 6.0 -14.9 -23.7 5.8 -1.5 -18.7 6.0 6.0 6.0 6.0 6.0 6.0 5.8 -30.9 6.0 6.0 6.0 6.0 6.0 6.0 6.0 -41.1 6.0 6.0 5.6 5.6 6.0 5.9 6.0 0.7 6.0 5.6 6.0 6.0 5.9 5.9 5.1 5.8 6.0 6.0 6.0 6.0 6.0 6.0 5.6 6.0 5.2 4.5 3.5 -5.9 -5.3 -4.9 -1.2 -4.7

Figure 3.12: Different crops of the JPEG image with quality 90 and their estimated table by the proposed method. Dashes (-) indicate non-detected values (no candidate quantization value was validated as the NFA was bigger than 1). All the estimated values are incorrect.

estimated quantization matrix: - - - - - -11 2 - - - - - -11 3 - - - - - -11 3 - - - - - - - 4 3 - - - - -15 5 - - - - - -17 9 - - - - - -19 13 - - 2 - - - 19 
associated log10(NFA) values: 6.0 6.0 6.0 6.0 6.0 6.0 -60.5 -53.2 6.0 6.0 6.0 6.0 6.0 6.0 -3.0 -138.4 6.0 6.0 6.0 6.0 6.0 6.0 -0.5 -277.5 5.4 6.0 6.0 6.0 6.0 6.0 0.4 -167.1 -35.6 6.0 6.0 6.0 6.0 6.0 -2.9 -55.2 3.0 6.0 6.0 6.0 5.8 6.0 -4.4 -16.5 2.8 6.0 6.0 6.0 5.0 5.6 -4.2 -30.5 5.5 3.7 -3.6 5.3 5.7 6.0 -15.1

Grid origin (7, 0)

estimated quantization matrix: - - - - - -11 2 - - - - - - - 3 - - - - - -11 3 - - - - - - - 4 3 - - - - -14 5 - - - - - -17 9 - - - - - - 9 13 - - 2 - - - 19 
associated log10(NFA) values: 5.9 5.8 6.0 6.0 6.0 6.0 -13.8 -54.8 6.0 6.0 6.0 6.0 6.0 6.0 2.3 -141.8 6.0 6.0 6.0 6.0 6.0 6.0 -0.1 -277.2 5.9 6.0 6.0 6.0 6.0 6.0 1.5 -163.3 -45.5 6.0 6.0 6.0 5.8 6.0 -1.8 -52.5 2.6 6.0 6.0 6.0 5.9 6.0 -9.6 -20.8 3.6 6.0 6.0 6.0 5.4 5.7 -4.5 -29.8 5.0 5.3 -4.2 5.5 4.0 6.0 -14.5

Figure 3.13: Different crops of the JPEG image with quality 90 and their estimated table by the proposed method. Dashes (-) indicate non-detected values (no candidate quantization value was validated as the NFA was bigger than 1). All the estimated values are incorrect.

Figures 3.14, 3.15 and 3.16 show all the detected quantization factors among all the possible grid origins for a non-aligned doubly compressed image. Indeed, the image was first compressed at quality QF 1 = 90, then cropped by removing 4 lines and 4 columns. The image was then compressed at quality QF 2 = 98. As expected, the proposed algorithm detects correctly both quantization tables when the analysis is performed on the right grid origins, see Figure 3.14. But as explained in the previous section, the algorithm also produces detection on the grids with ±1 horizontal or vertical shifts. Figure 3.15 shows the spurious detection around the grid (4, 4) and Figure 3.16 shows the spurious detections around the grid (0, 0). This example shows that selecting the correct grid origin is not trivial when the aim is also to detect multiple possible JPEG compressions. More work is required to evaluate the possibility of solving this combined problem. 

Grid origin (4, 4)

Application to forgery detection
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Figure 3.17: Forged and double compressed image rendered by the software Photoshop and its quantization table for the Y channel stored in the header.

Estimating the Q-table of an image is a first cue of forgery detection for several reasons. First, knowing that the image has gone through a JPEG compression step leads to knowing which family of forensic methods to use. Indeed, some methods are not robust to too much JPEG compression [BGM20; BGM21] and others only work if at least one JPEG compression was applied and with the correct grid origin [Iak+18; LYY09; YSC07].

Secondly, it gives information on which quantization table was used and so one can verify that it is coherent with the software it is supposed to have gone through or with the Q-table stored in the header if the format is JPEG. Indeed, in the following estimated table from the image of Figure 3.17, the table is different from the one in the header: This means that the image had at least one other JPEG compression before the last one with the table stored in the header. Also, having a Q-table with a different dynamic (higher values in low frequencies) may be suspicious.

Finally, whether the format of the image to analyze is JPEG or not, the estimated table can be used to compute an error map, as does the method proposed by Ye et al. [START_REF] Ye | Detecting digital image forgeries by measuring inconsistencies of blocking artifact[END_REF]. Indeed, for a forged image, the estimated table (which may be different from the one in the header) has values coming from a previous compression as it is explained in the previous sections. The DCT coefficients of the image that correspond to the original area should therefore be quantized accordingly, on the other hand in the falsified part there is a priori no reason that this is the case. Indeed, if the forged part has a different grid origin or quantization factor or even no trace of JPEG at all, there is no reason for the DCT coefficients to be quantized around the values estimated by the method. In this example, the image has gone through at least two compressions and the added region has no JPEG traces from the previous compression.

An error map, illustrated in Figure 3.18, can be computed by computing the following error on each 8 × 8 block:

E = 1 64 1≤i≤64 2 v i q i -V i ,
where q i is the meaningful value estimated by the method in the Q-table.

The blue region corresponds to an area where the error is low, whereas in the red area the error is high. Indeed, the added part is less quantized than the rest of the image (only the second compression was applied in this area).

Figure 3.18: Original image and its error map on top; forged image and its error map on the bottom. The blue region corresponds to an area where the error is low, whereas in the red area the error is high.

Conclusion

A reliable JPEG quantization table estimation algorithm based on the a contrario theory was described. The method uses only information from the image itself and does not require any data from the file header. The statistical validation step secures 100 the detection, leading to a very small number of false detections. In addition, the method has a linear computational complexity with the size of the image. Future work will focus on extending the method to estimate the Q-table of the chroma channels.

Chapter 4

Simple JPEG Grid Origin Detection

This chapter describes a simple algorithm to detect the main grid origin of an image based on the JPEG standard itself: putting DCT values to zero to store them in a more efficient way. Given an image, 64 variants are generated by cropping according to the 64 possible grid positions. Then, each variation is compressed by the JPEG algorithm with quality factor equal to 100 and the resulting file sizes are analyzed. If the smallest size is significantly smaller than the others according to a criterion, then its grid origin corresponds to the JPEG grid. The method can be used for crop detection in images and as a preliminary step of forgery detection.

This work is published as Détection de grille JPEG par compression simulée at the GRETSI conference [START_REF] Nikoukhah | Détection de grille JPEG par compression simulée[END_REF].

Introduction

Knowing about the history of an image is an asset to detect forgeries. Indeed, detecting an uncommon step may lead to finding a tampering. Our approach is based on the fact that any operation undergone by an image leaves invisible but detectable traces. Thus, it is possible to retrieve them in order to detect if any of these traces have been altered by a malicious modification. This thesis focuses on the JPEG compression operation, which allows you to save an image without the need for a large storage capacity. As explained several times in this thesis, JPEG compression leaves traces in the form of blocks of 8 × 8 forming a grid on the image. We propose here a method for detecting this grid in any image. The method, simpler and faster than the state of the art, is based on the compression algorithm itself: the different grid possibilities are tested and the one creating the lightest JPEG file is chosen.

In JPEG encoding, after converting the color channels, a given image is divided into blocks of size 8 × 8 pixels, each independently encoded. Due to independent encoding, discontinuities are introduced across the block boundaries of the decompressed image. Figure 4.1 shows this phenomenon of JPEG block artifacts. The image on the left represents a part of an uncompressed image and on the right, the same part after JPEG compression with quality factor QF equal to 80. After a change in contrast, blocks of 8 pixels by 8 pixels can be clearly seen. The JPEG quality factor corresponds to its compression ratio which is a parameter of the algorithm ranging from 1 to 100. The lower this rate, the lighter the resulting file, and the more degraded the image. During compression, a compromise is made between file size and image quality.

As explained in Section 1.5, the operation undergone by each of the 8 × 8 blocks is called quantization and is done in the spectral domain after application of the Discrete Cosine Transform (DCT). A quantization table (related to the compression quality) provides a factor for each DCT component. It is at this stage of the algorithm during which the greatest loss of information (and therefore of visual quality) occurs, but it is also this step which saves the most space in the disk storage. Indeed, some DCT coefficients are cancelled when they have a low value compared to the quantization factor (which is the case for most high frequencies because they are subject to high quantization). Thus, all 8 × 8 DCT blocks have a more or less significant quantity of zeros, depending on the compression quality. Each block of quantized DCT values is arranged in a "zigzag" order and the coefficients are stored as a vector in which the first component represent the low frequencies and the last the high frequencies. Then, lossless compression by Run-Length Encoding (RLE) coding is applied to exploit the presence of long series of zeros at the end of the vector. Finally, this data is compressed by a Huffman code to which a header is added to form the file in JPEG format.

Proposed method

In an image that has been JPEG compressed, the 8 × 8 blocks are created according to a regular pattern starting at the pixel at the top left of the image and thus coinciding with an original grid of coordinates (0, 0). The purpose of the method is to find the 8 × 8 block separation step of the JPEG algorithm. The position of the grid is given by its origin (this can vary if the image is cropped). If a grid is present, among the 8 × 8 = 64 different original possibilities, only one is correct. An example of blocks with three different grid positions is shown in Figure 4.2. Algorithm 3 provides a pseudo-code that we will now explain. coding and therefore in the final file.

Our proposal is to test the 64 different origins of possible grids. Thus, given an image with a width of W and height of H, 64 variants of the image of the same size are created by cropping. The images are of width 8 W/8 -8 and height 8 H/8 -8. Then, the DCT is applied to all the 8 × 8 blocks of each image, as would the JPEG compression do. The DCT coefficients are rounded to the closest integer and stored according to the RLE coding. Comparing the sizes of the final 64 files is the same as comparing the 64 files after a lossless JPEG compression, i.e., with a quality of 589 3 6 -3 0 2 -2 0 -16 6 0 4 -1 0 -2 -2 32 -1 4 -4 -1 1 -2 0 -4 -9 4 1 -1 -2 -4 0 -12 -15 4 3 -2 -3 -1 -1 -21 -11 7 3 -2 -4 -1 1 -23 5 8 2 1 -2 -1 0 -6 7 2 2 0 -1 0 1 586 -3 6 -1 0 1 -1 1 -15 5 -1 8 0 0 0 1 30 1 6 0 0 0 0 0 -7 -7 0 0 0 -1 0 0 -14 -18 1 0 0 0 0 0 -20 -14 0 0 0 0 0 0 -20 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 641 -6 -15 1 -1 3 4 0 -34 -2 3 0 3 -1 -3 0 QF = 1001 The use of the JPEG algorithm itself allows us to use a simple method that benefits from existing highly efficient compression codes.
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Of the 64 lossless compressed variants, the lightest file is the one that was cut correctly: according to the artifact of the JPEG blocks. In Figure 4.4, the byte size of the different variants is displayed. The three graphs are associated with the case where the input image is: uncompressed, compressed and finally compressed and trimmed so that the first 4 rows and first 4 columns of pixels have been removed.

The first bar graph is the size of the 64 files of the algorithm output in the case of an image that has never been compressed. The graph below is the graph associated with the same image but compressed. Compared to the first bar graph, there is a certain structure in the second graph. The shortest red bar corresponds to the smaller file size and therefore to the exact position of the grid, here (0, 0). The next seven bars are also shorter than the next ones. They correspond to the tested positions with at least one of the two exact coordinates (according to x). For the others, one bar out of eight is shorter, this corresponds to positions with the other exact coordinate (following y). Indeed, on the third graph, we find the minimum corresponding to the correct position (here x = 4 and y = 4) and the other 15 smaller ones correspond to the coordinates where x = 4 or y = 4.

In summary, on an image that has been JPEG compressed, among the 64 variants, it has a small file size (corresponding to the correct x, y), 15 medium file sizes (corre- sponding to the correct x or y, but not both), and 48 large file sizes. We use the sizes of the 48 largest files to define a reference threshold to validate or not the detection according to the size of the smallest file.

Suppose the 64 file sizes ordered in ascending order s1 , . . . , s64 . A detection is then validated when

s1 < µ -κ • σ, (4.1)
where µ and σ are, respectively, the mean and standard deviation of the 48 largest file sizes. Here, we propose a threshold that is based on an empirically determined value of κ = 7 so that there is no false detection in noise images.

Speed up

As mentioned before, the file for the grids that share one component with the true grid have are smaller size than files corresponding to the 48 other possible grids. Therefore, we can derive a faster version of the algorithm previously described by first finding one grid position which yields a smaller file size, and then testing the remaining possibilities. In short, the idea is:

• We compute the file size corresponding to the diagonal grids (s 0,0 , s 1,1 , . . . , s 7,7 ).

• Let us consider only the two smallest one s i,i and s j,j . At this point, either one of them is the true grid and the other is unrelated, or both have one common component with the true grid.

• To resolve the uncertainty, we compute the file sizes si,j and sj,i .

• The true grid corresponds to the lowest file size of the 10 computed grids, and the same empirical thresholding strategy presented in the previous section can be applied with µ and σ computed on the remaining 6 values of the diagonal.

The strategy allows to reduce the number of JPEG compressions from 64 to 10.

Results

The first experiment was conducted on cases where no detection should be obtained. This experiment determined the κ value yielding the decision threshold of the method. The first data set consisted of 200 noise images with a Gaussian distribution of 500×500 and 1, 000 × 1, 000. We also used the UCID [START_REF] Schaefer | UCID: An uncompressed color image database[END_REF] uncompressed image collections (886 images) and Kodak [Kod] (24 images). The Table 4.1 shows the result for the empirical threshold obtained of κ = 7. Few false detections were obtained among the uncompressed image database.

The fast grid extraction method (BLK) [START_REF] Li | Passive detection of doctored JPEG image via block artifact grid extraction[END_REF] does not have any decision criterion. In all cases a grid position is given and therefore any result is a false detection. The method does not claim to determine whether an image has been compressed or not, so it should be coupled with a JPEG compression detector.

The method presented in Chapter 2 is based on the a contrario validation guaranteeing a non-detection in noise. It therefore has a low false positive rate. The results of our first assessment are presented in the To illustrate the validity of the proposed approach, we performed detections on 12 288 images generated from the Kodak [Kod] uncompressed image database. The 24 images in the database were compressed to different quality factors (50, 60, 70, 80, 90, 93, 95, 98 and 99), then trimmed into the 64 different positions to test all possible grid positions. The Table 4.2 shows the results for the three compared methods. The BLK [START_REF] Li | Passive detection of doctored JPEG image via block artifact grid extraction[END_REF] method returns good results for compression rates up to 95. However, it does return false detections. On the other hand, the GOD method from Chapter 2 seeks to control this percentage of false detections and achieves good results for high compression qualities. Finally, the method presented here presents a perfect score up to a compression ratio of 95 and no false detection. Above QF = 98, it is difficult to distinguish a clear difference in the file sizes. The cropping step of the method implies that between each version (image of the same size but with different origins), some rows and columns may be different and therefore the exact same image content is not processed. Thus, the larger the image, the less important this difference, and therefore the more effective the method.

Despite its simplicity, the proposed method produces results comparable to the state of the art and better for the majority of compression ratios.

Experiments

Reverse engineering is a useful tool for image falsification detection. A first useful information is knowing if the image has undergone JPEG compression or not. Then, knowing its grid origin is the first cue to forgery detection. Indeed, a main grid different from (0, 0) indicates that the image has gone through a cropping step which means the image is not authentic. Furthermore, knowing the JPEG history of the image helps applying state-of-the art methods to detect local forgeries.

Crop Detection

An application to a case of information manipulation is illustrated in Figure 4.5: the photograph on the right was cropped to obtain the image on the left that looks like a shark's shadow. For the latter, our method detects an original grid of (4, 7) and therefore decides that the image has been cropped. Indeed, the origin of the JPEG grid is always (0, 0) unless the image has been cut. We do detect a JPEG grid with a position of (0, 0) in the global image. By applying our method, we detect that the main grid is (6, 6). This information is quite important since if we put the image as it is in a forgery processing chain which applies state-of-the-art JPEG forgery detection methods [KS07; Lin+09b; LYY09; YSC07], some may fail. Whereas if we realign the image so that the main grid is (0, 0), we get more interesting results. This observation is illustrated in Figure 4.7 where all the applied methods perform better on the realigned image. 

Conclusion

A method for detecting the origin of the JPEG grid has been proposed. It is based on the JPEG file sizes obtained after lossless compression of the 64 cropped variants of the image. No information regarding the size of the initial image is required. The proposed algorithm alone allows to detect the presence of JPEG compression and to give the origin of its grid. Thus, the proposed solution can be used as a stand-alone algorithm to detect cropping operations, or it can be inserted into a typical advanced processing chain for complex and local alteration detection. Moreover, we understand by this experiment that the file size is an interesting approach. Indeed, the method is based on putting values to zero and storing them in an efficient way. Next chapter presents a method looking exclusively at these values put to zero to do JPEG reverse engineering and detect local forgeries.

Chapter 5

ZERO: Local JPEG Grid Detection via the DCT zeros

This chapter describes a method for detecting JPEG compression as well as its grid origin. The method described here extends the idea from the previous chapter and identifies the presence of a JPEG grid when a significant number of DCT zeros is observed for a given grid origin. This method can be applied globally to identify a JPEG compression, and also locally to identify image forgeries when misaligned or missing JPEG grids are found. The algorithm includes an a contrario statistical validation step, which associates a Number of False Alarms (NFA) with each tampering detection. Detections are obtained by a threshold of the NFA, which renders the method fully automatic and endows it with a false alarm control mechanism.

This work is published as ZERO: a Local JPEG Grid Origin Detector Based on the Number of DCT Zeros and its Applications in Image Forensics on IPOL [START_REF] Nikoukhah | ZERO: a Local JPEG Grid Origin Detector Based on the Number of DCT Zeros and its Applications in Image Forensics[END_REF] which is an improvement over our work published in the CVPR workshop conference [START_REF] Nikoukhah | JPEG grid detection based on the number of dct zeros and its application to automatic and localized forgery detection[END_REF]. An online demo is available at: https: // ipolcore. ipol. im/ demo/ clientApp/ demo. html? id= 390 .

Introduction

Along the image formation pipeline of a camera, the raw data from the sensor undergoes a series of operations: denoising, demosaicing, white balance, gamma correction, compression, to mention a few [START_REF] Delbracio | Mobile Computational Photography: A Tour[END_REF]. These operations create artifacts in the final image, often imperceptible to the naked eye but nevertheless statistically significant and therefore detectable. The detection and interpretation of these traces make it possible to reconstruct, to some extent, the history of the image; in other words, to know the operations that took place during the creation of the image, as well as their order and parameters. Anomalies in these traces may indicate the presence of image forgeries.

This work describes a method called zero, which aims at detecting whether an image has undergone a JPEG compression during its history. A statistical test, based on Desolneux, Moisan and Morel's a contrario theory [START_REF] Desolneux | From Gestalt Theory to Image Analysis[END_REF], is used to decide when a significant JPEG grid is found while controlling the number of false detections. The method described here derives from the one in [START_REF] Nikoukhah | JPEG grid detection based on the number of dct zeros and its application to automatic and localized forgery detection[END_REF] but includes some improvements such as the fact that it can detect more types of forgeries.

When the image to be analyzed is encoded in a JPEG file, there is no need to detect the JPEG grid as all the relevant information is contained in the header of the JPEG file itself. Nevertheless, even in that case, it may be interesting to detect traces of a previous JPEG compression. More importantly, in forensic applications one wants to analyze an image in any format and study whether one or more JPEG compressions were applied. For these reasons, the method described here takes as input only the pixel values of the image and uses no metadata information that may be contained in the image file.

The method described here can be applied globally to the whole image to detect JPEG compression. The grid detected globally is considered the main grid. The method can also be applied locally to parts of the image. When a JPEG grid is detected in a part of the image and its grid origin is different from the main JPEG grid, it is considered as an anomaly and thus as a forgery. Another kind of anomaly is when the JPEG traces are missing in a part of an image where they should be present. The proposed algorithm provides two binary forgery masks: one showing foreign grid areas and the other showing missing grid areas. The statistical test leads to some theoretical guarantees and provides secure results for tampering detection. The aim is to obtain very few false detections.

The JPEG encoding process described in detail in Section 1.3, has a quantization step according to a given table (Q-table) chosen regarding the parameter of the compression. This quantization table provides a factor for each DCT component and determines the compression level; the larger the factors, the lower the resulting file size, but also the lower the image quality. The quantization table is associated with a compression quality QF , an integer value from 1 to 100; the worst quality corresponds to QF = 1 and the best quality corresponds to QF = 100. DCT coefficients are put to zero when their value is smaller than the quantization factor. Hence, each 8 × 8 block gets a number of zeroed DCT coefficients, that depends both on the compression quality and on the image content.

Finally, the quantized DCT coefficients are losslessly compressed by exploiting, among other things, the presence of zero values. Indeed, each 8 × 8 block is scanned in a zig-zag pattern and the coefficients are arranged in the form of a vector in which the first components represent the low frequencies and the last ones the high frequencies. A lossless compression by Run-Length Encoding (RLE) exploits the long series of zeros at the end of each vector. A final lossless compressed file is obtained by Huffman encoding, to which a header is finally added to form the final JPEG file.

The quantization step, which has the most impact on the compression factor and the image quality, leaves traces at the boundaries of each 8 × 8 block, as shown in Figure 5.1. These traces, characteristic of JPEG compression, illustrate what we call the grid, depicted in red in the figure. Since the blocks are of size 8 × 8, there are 64 possible grid origins. In the following, a grid will be characterized by its origin's coordinates g x and g y . If a JPEG image has not been further processed after decompression, the grid's origin should be (0, 0).

As described in Section 1.3, the JPEG algorithm sets to zero some of the DCT coefficients of 8 × 8 blocks, and the more zeros in the quantized DCT, the smaller the JPEG file size. Based on this fact, the core of the method described here is to count the total number of zeros of each hypothesized DCT block position. In the presence of JPEG compression, this number should be maximum when the 8 × 8 block is aligned with the JPEG grid. Indeed, non-aligned blocks include additional discontinuities due to blocking artifacts, leading to larger DCT coefficients compared to an aligned block. The JPEG block artifacts can be clearly seen when the image has been strongly compressed, i.e. with large values in the quantization table, and are almost imperceptible when the compression quality is high. However, a grid is always present in lossy compression (QF ≤ 99) and the method zero should be capable to detect it.

The JPEG grid detection method

This section describes the main component of zero, namely the algorithm to identify a JPEG grid and its position based on the number of zeros in the DCT of blocks.

Luminance computation

The algorithm zero takes an RGB image and focuses on the luminance channel computed according to the JPEG standard:

Y = round 0.299 R + 0.587 G + 0.114 B ,
where R, G and B are the red, green and blue channels. The grid detection method could be adapted to use the chroma components Cb and Cr. This requires knowing the chroma downsampling factors. Alternatively, all the possible downsampling factors could be tested and the right one validated by a statistical test similar to the one described in this work. But this would imply considering a number of different cases, making the algorithm more complex. For the sake of simplicity, and because the algorithm is already reasonably sensitive, the chroma components are not used by the method described here. Nevertheless, exploiting the information of the chroma components should extend a little the detectability of forgeries; this will be the focus of future work.

Identifying DCT zeros

A crucial point is how to determine which DCT coefficient were zeros, which is far from being a trivial task. Indeed, DCT coefficients, which were set to zero during compression, usually don't keep an exact zero value after decompression. During JPEG decompression, an inverse DCT transform is performed on each block, transforming the integer DCT coefficients into pixel values that are real numbers. Then, those real numbers are rounded to produce an integer image. Different mathematical operators (e.g. floor, ceil or round ) can be used to convert the pixel values from floating-point to integer values [START_REF] Agarwal | Photo forensics from JPEG dimples[END_REF]. This uncompressed, integer image is the input to the present method (in the case that the image was indeed JPEG compressed). This rounding step, which results in an integer image, also modifies the corresponding DCT values. It can be shown that this step is statistically equivalent to the addition of a Gaussian noise (with standard deviation equal to 1 12 ) to the initial integer DCT values [START_REF] Thai | JPEG Quantization Step Estimation and Its Applications to Digital Image Forensics[END_REF]. Thus, a DCT coefficient that was put to zero during compression, does not keep an exact zero value after decompression. Yet, it remains close to zero. We propose to count the number of coefficients with absolute values smaller than 0.5. This allows one to discriminate zeros even when the DCT coefficient quantization is at its finest rate, with a quantization factor of one. Each pixel may belong to 64 different overlapping 8 × 8 blocks, as illustrated in Figure 5.2. To compute the JPEG grid origin vote map, those 64 blocks are evaluated for each pixel. The 64 DCTs of those blocks are computed as well as the corresponding number of zeros. Then, each pixel votes for the grid origin of the block with most zeros. In the case of a tie, the pixel does not vote. There is relevant information when two or more blocks have the same number of zeros. However, exploiting this information would make the algorithm more complex. Again, given that the method is already reasonably sensitive, we preferred to keep a simple formulation. Exploiting such information is possible and would be the focus of future work.

Grid origin vote map

Performing the count as described, which means evaluating the 64 blocks for each pixel, requires computing 64 DCTs per pixel; but this is wasteful as every block is shared with 64 other pixels and this can be exploited to avoid recomputing the DCT. A more efficient procedure will be described in Section 5.4.1.

In order to make a fair vote, a pixel must actually belong to 64 blocks included inside the image domain. This is not true for the pixels within a 7 pixel wide region around the image border, or for the pixels on the lower and right border of the image, where JPEG blocks are incomplete if the image size is not a multiple of 8. In those cases, the pixels could vote for a grid origin different from the actual one, just because there is no 8 × 8 block in the image aligned with the grid and containing them. When the image has been manipulated, the same problem can appear on any border. Thus, the positions within 7 pixels from the border are prevented from voting. 

Statistical validation

When analyzing a JPEG image, the most voted grid probably corresponds to the right one. But the most voted grid origin does not necessary correspond to a JPEG grid actually present. Indeed, even in uncompressed images, one of the grids will get more votes than the others, usually by a small margin. A statistical criterion is therefore needed to decide whether this prominence is caused by JPEG compression or not.

The validation procedure proposed here is based on the a contrario theory [DMM08], introduced in Section 1.6 which relies on the non-accidentalness principle [Low85; WT83]. Figure 5.4: Zoom on a vote map for an image of Gaussian noise. Each color represents a vote for a given grid origin. The black color corresponds to non-valid votes. One can observe entire blocks of 8 × 8 pixels voting for the same origin; this is the case when a block has a local maximum of number of zeros.

In our context, we need to assess the probability that a given grid origin gets a large number of votes purely by chance. To that aim, a stochastic null model H 0 for the votes is required. It is here easily given by Laplace's principle of indifference: in absence of JPEG compression, each of the 64 blocks containing a given pixel would have the same chance of being the one with the largest number of zeros; that would depend on the image content and there is no reason to suppose that it is synchronized with a particular 8 × 8 grid origin. However, the votes of neighbor pixels are not independent, even in noise images. Indeed, there are always blocks that are local maxima of the number of zeros, and those blocks get the votes of every pixel belonging to it. Figure 5.4 shows a vote map obtained in an image of noise where one can observe entire blocks of 8 × 8 pixels voting for the same origin, the result of local maxima. This implies that votes are correlated within a distance of 8 pixels; on the other hand, pixels at distance larger than eight are largely uncorrelated. Thus, we define a stochastic null model H 0 for votes at distance eight in which votes are independent and uniformly distributed among all the 64 grid origins.

Let us suppose that we are observing a patch of an image where the number of votes for a given valid grid origin is counted at a distance of eight pixels. Let us say that k votes are counted for that valid grid among a total of n votes. Under the null hypothesis H 0 , the fact pixels vote for a given grid origin becomes Bernoulli random variables with probability 1 64 . So under H 0 , the number of votes becomes a random variable K and, given the independence of votes (at distance larger than eight), it follows a binomial distribution of parameter p = 1 64 . Thus,

P(K ≥ k) = B(n, k, p) = n j=k n j p j (1 -p) n-j ,
where B(n, k, p) is the tail of the binomial distribution. Given an observed number of votes k, P(K ≥ k) is the probability of obtaining at least k votes under H 0 . When this probability is small enough, there exists evidence to reject the null hypothesis and declare that a meaningful grid origin was found. However, the multiplicity of tests needs to be taken into account when considering that the probability is small enough. To use an analogy, even if the odds of each individual lottery ticket is 1/1000, the chances of winning are very high when buying 1000 tickets. Similarly, if 1000 tests were performed, it would not be surprising to observe an event that appears with probability 1/1000 under random conditions. The number of tests N T needs to be included as a correction factor, as it is standard in statistical multiple hypothesis testing [START_REF] Gordon | Control of the mean number of false discoveries, Bonferroni and stability of multiple testing[END_REF]. The null hypothesis H 0 is rejected when P(K ≥ k) < ε N T for a predefined value ε. This is called the Bonferroni correction. Following the a contrario methodology, we define the Number of False Alarms (NFA) of a candidate grid g on a given window w as NFA(g, w) = N T P(K ≥ k).

(

This is equivalent to what was just stated, the null hypothesis H 0 is rejected when NFA(g, w) < ε. It can be shown [START_REF] Desolneux | From Gestalt Theory to Image Analysis[END_REF] that under the null hypothesis H 0 the expected number of false alarms with NFA(g, w) < ε, is bounded by ε:

E H 0   (g,w)∈N T 1 NFA(g,w)<ε   < ε, (5.2) 
where N T is the set of N T tests. As a result, ε is a (tight) upper bound to the mean number of false detections per image under H 0 . In most practical applications, the value ε = 1 is suitable; we will set it once and for all in our application as well. With this choice, the expected number of false grid detections per image under H 0 is guaranteed to be upper-bounded by 1. (Notice that this is the expected number of false JPEG grid detections, not the expected number of false forgery detections, for which one false detection per image would not be an acceptable rate.)

The validation procedure will be used to evaluate the JPEG grid on the whole image as well as on local windows, thus enabling local forgery detection. To that aim, every window of a X × Y pixels image is included in the family of tests. Also, the 64 grid origins are tested on each window. Finally, as was mentioned, the vote map is sampled on a grid with 8 × 8 cells. A difficulty is that there are 64 possible such grids, all of which should be evaluated. It follows that the number of tests is approximately

N T = XY • XY • 64 • 64, (5.3) 
because there are XY possible positions for the upper-left corner and XY possible positions for the lower-right corner of the window. The two 64 terms correspond to all possible JPEG grid origins and to all possible grids to subsample the vote map. All in all, given a window to be analyzed, the grid origin with the maximum of votes is selected and its number of votes at distance eight pixels is counted. Then, the NFA is given by

NFA(g, w) = 64 2 • (XY ) 2 • B n, k, 1 64 , (5.4) 
where k is the number of votes in the window w (at distance 8) for the grid g among a total of n points inside w (again at distance 8). A JPEG grid is detected when NFA < 1.

In addition of being used to decide whether a JPEG grid is present or not, the NFA also allows to compare two possible grid interpretations. In some cases, two or more grid origins could be meaningful (NFA < 1) on the same window. The lower the NFA, the more surprising the observation is under the stochastic null model H 0 . Thus, the lower the NFA, the more meaningful the detection. When two or more grids are detected for the same region, the one with the lower NFA will be selected as the main one.

In principle, votes must be counted at distance eight in both directions. This corresponds to the votes with coordinates (x 0 + 8i, y 0 + 8j) for integers i and j. For a given window, this test must be performed for all other 64 grids with x 0 and y 0 in {0, 1, . . . , 7}. A simpler way is to evaluate a lower bound for the number of votes in the most voted grid; this is performed as follows. Instead of counting votes at distance of eight pixels for those offsets, we can count every vote and divide the number by 64. Indeed, let v be the total of votes in the window for the given grid. If those votes were equally distributed on the eight-distance subsamplings, one would have k = v 64 for each of the subsamplings. If not, necessarily one of the subsamplings will have more votes. Hence we can deduce that there is at least one of those subsamplings with k votes satisfying k ≥ v 64 . So by counting every vote and dividing the count by 64 we are considering the worst case and we are sure that a detected grid is meaningful. Naturally, the count of votes for every pixel in the window is also divided by 64. The NFA is evaluated then by

NFA(g, w) ≈ 64 2 • (XY ) 2 • B |w| 64 , v 64 , 1 64 , (5.5) 
where |w| is the total number of pixels in the window w and v is the total number of votes for g in w. Algorithm 6 describes the ensuing JPEG grid detection method.

Constant blocks along the vertical or horizontal direction

The picture in Figure 5.5 was taken with the portrait mode of a smartphone. The background of the scene is made blurrier to mimic the bokeh effect. When compressed heavily, the blurry area is quantized, and a large number of the 8 × 8 blocks that were almost flat, become flat. Indeed, most DCT coefficients have small values in almost flat blocks. A strong quantization will put them all to zero, resulting in flat blocks. Because the DCT is separable, a similar effect is observed in blocks presenting a soft gradient in a direction roughly vertical or horizontal: in this case, the coefficients in one direction have almost constant values, and the quantization may make them equal. As a result, blocks that are almost constant in the vertical or horizontal direction, will become exactly constant in the vertical or horizontal direction. This phenomenon can be seen in Figure 5.6. In other words, a strong JPEG compression results in a large number of vertically or horizontally constant blocks.

Figure 5.5: Left: Image compressed with quality 50. The image was taken with the portrait mode which creates this bokeh effect. Middle: vote map without the constant fix, i.e., when counting blocks that are constant along the vertical or horizontal direction. Right: forgeries detected when not using the constant fix; these are false detections.

Figure 5.6: Zoom on a constant region along the vertical direction. Middle: vote map when taking into account all votes. Right: vote map when discarding the votes of blocks constant along the vertical or horizontal direction.

Regions of images that are constant along the vertical or horizontal direction are problematic for the proposed statistical validation. Indeed, for a given pixel, instead of having 64 blocks to compare the votes, only 8 of them are different. Thus, the probability of voting for a particular grid by chance is actually 1 8 and not 1 64 . The statistical test could be misled to consider as meaningful configurations that are not. Under random conditions, this would be an extremely rare accident; however, the tendency of JPEG to create blocks that are constant along the vertical or horizontal direction requires handling this situation.

In many cases, regions that are constant along the vertical or horizontal direction extend over several blocks in both directions. Then, there would be a tie in the voting process and corresponding pixels will not vote. Nevertheless, there are cases in which there are several blocks in a row that are constant along the vertical direction, but only of one block height. Then, the correct vertical origin will get the best vote. But in the horizontal direction, pixels could vote for any grid with probability 1 8 instead of 1 64 , undermining the statistical model. An analogous case appears interchanging vertical and horizontal directions.

A more sophisticated statistical model could handle this case. But a simpler solution is to prevent blocks that are constant along the vertical or horizontal direction from voting. In such cases the pixel gives a non valid vote, as in the case of ties. The result can be seen in Figure 5.6. This simple solution is nevertheless discarding useful information; a refined solution might be the focus of future work.

Application to image forensics

Detection of global JPEG grids

A first application of the method is to tell whether an image has undergone JPEG compression or not. JPEG grid detection is the first step of many forgery detection algorithms, and the image compression history an important cue. It can be used to detect a grid origin different from (0, 0), which indicates that the image has been cropped. In image restoration, grid detection is also used to remove grid artifacts by a deblocking procedure [CCR98; JZT21]. When JPEG compression is lossless, which is obtained by setting the quality factor QF equal to 100, then no DCT coefficient is forced to zero; in such a case the actual grid cannot be discriminated by zero and this is a clear limitation of the method. Another one is when the image is too compressed, for instance QF = 1; in that case most blocks are constant (vertically and horizontally) as all AC coefficients are put to zero. The compression is not detected by zero, because of the decision made in the Section 5.2.5. Yet, as explained before, a refined version of the method could handle this situation. Such high-compressed images are anyway easily detectable by other methods [START_REF] Nikoukhah | Local JPEG Grid Detector via Blocking Artifacts, a Forgery Detection Tool[END_REF].

Finding the main grid origin yields a reference to which local grid detections can be compared to detect forgeries. The image may actually have several meaningful global grids. This may be caused by several reasons, all suspicious (double compression, resampling, etc.). In that situation, the grid having the most votes, therefore being the most meaningful globally, is selected as the main grid.

Detection of local foreign JPEG grids

The proposed JPEG grid detection method can be performed globally but also locally on every image window. Any region with a meaningful grid that is different from the main one hints at a forgery. Indeed, when part of a JPEG image is copied and pasted, it retains its grid traces. In 63 out of 64 times (assuming that the forger did not explicitly align the grid), the grid origin will not correspond to the main one, thus allowing its detection. This is true whether it is a case of copy-move from the same image (see Figure 5.7) or when the copied part is taken from a different JPEG image. It can also happen that the method fails to detect a global grid, but still finds local areas with meaningful JPEG grids; this generally indicates the presence of a forgery.

The same algorithm as described in Section 5.2 can be applied directly on every window of the image. But this would be computationally expensive. Instead, we propose a heuristic using a greedy algorithm to accelerate the search for forged regions; the final validation still uses the same statistical test used for the global grid. What follows is a quick overview. The detailed description of the full heuristic procedure will be given in Section 5.4.3.

The proposed heuristic uses a region growing procedure to partition the vote map into connected regions sharing the same grid vote. Starting from a seed pixel (x, y), the neighboring pixels voting for the same grid are incrementally aggregated. As Figure 5.8 shows, votes for the same grid can be disconnected, so a relaxed notion of neighborhood is needed. We observe that a window showing a meaningful grid origin necessarily has a vote density for this grid origin larger than 1 64 . Thus, votes for the right grid should not stand farther away than eight pixels, on average. To allow for some local variation in the distribution, we set this neighborhood size a little larger and use W = 9. This value was chosen experimentally, the goal being to avoid false positives.

For each connected region endowed with a valid grid origin different from the main one, a bounding box is then computed and the NFA statistical test is performed. If the statistical test confirms that a foreign grid is indeed present, the pixels in the connected region (which all voted for the same grid) are marked in a forgery mask. snapshots taken from the same camera at the same position and with the same JPEG QF . Only the grid is incoherent. The region growing algorithm is naturally greedy: Once a region has been evaluated, its pixels are marked to accelerate the algorithm by preventing them from being used again in other regions.

Due to variations in the number of votes, the raw forgery mask contains holes, see Figure 5.8 up-right. To give a more useful forgery map, these holes are filled by a mathematical morphology closing operator [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF] with a square structuring element of size W (the same as the neighborhood used in the region growing step). The downright image of Figure 5.8 shows an example of the final forgery mask.

Forgeries are detected when an area has a meaningful grid origin that is different from the main one. However, there are no direct meaningful results with this approach when the forged area has no JPEG traces. For instance, the forged area may come from another image which was not JPEG compressed, or the JPEG traces may have being lost due to several post-processes such as resampling or blurring. The next section describes a way to detect this type of forgery.

Detection of local missing JPEG grids

When an image has a global grid, erasing an area as it is done in Figure 5.9 -or adding a part from an uncompressed image, or processing the forged area to make it fit -may erase traces of any JPEG grid. If the forged area has no JPEG traces left, the method described in Section 5.2 cannot detect it directly as anomalous. Indeed, the proposed statistical test detects the presence of a JPEG grid, but not its absence. Nevertheless, an anomaly is sometimes visible in the vote map, as shown in the middle-left image of Figure 5.10. We describe here an easy adaptation of the method to cope with this situation.

The idea is to perform a second forgery detection step where the image to be analyzed is JPEG compressed with the best possible quality that is still detectable (QF = 99); in that way, a detectable grid of origin (0, 0) is induced in parts where none was present. A second vote map can be computed after this procedure, which is illustrated in the middle-right image of the Figure 5.10. But only the pixels which did not vote significantly for the main grid in the first forgery detection step (as indicated in the initial vote map) are allowed to vote. The pixels that initially voted for the main grid are instead put to a non valid vote. In the figure, the forged region has now a consistent grid of origin (0, 0) (green) as imposed, while the rest shows non valid votes (black). Every region with a meaningful (0, 0) grid on the second vote map corresponds to a region where the JPEG traces were indeed originally missing; they are therefore marked on the second forgery detection map, as shown on the bottomright of Figure 5.10.

Why is a second JPEG compression useful? Its goal is to verify whether the missing grid traces are due to the absence of JPEG compression, or just to some peculiarity of the image contents. For example, the initial vote map on Figure 5.10 shows many pixels not voting for (0, 0); most of them, which appear in black, correspond to saturated areas; others are just too small to lead to a meaningful detection. Figure 5.11 right shows another example where most pixels of an authentic JPEG image do not vote for (0, 0), due simply to the high-quality JPEG compression (QF = 99). When performing the second compression, such regions generally remain undetected, confirming that it was the contents of the image that led to the missing votes. On the other hand, a forged region is confirmed by detecting JPEG traces after the imposed compression, showing that those traces would have been present if the region had been even mildly JPEG compressed. So the absence of traces is indeed an anomaly, probably the result of an image forgery.

Detailed description of the method

Algorithm 4 provides a pseudo-code of the method applied to an image. Each step of this algorithm is described in the following subsections. of the JPEG compression algorithm, as would be required to perform step 6 of Algorithm 4; instead, the code takes as a second input the JPEG compressed version of the input image with QF = 99. In terms of the pseudo-code, the image I is expected as a second input, to be computed externally using standard tools (such as the Im-ageMagick package https://imagemagick.org). In the case where this second input is not provided, the analysis of missing grids is not performed and only the F mask is produced. 15 votes(7-pixel wide border) ← non valid prevent border pixels from voting 16 return votes Performing the count as described in Section 5.2.3 requires computing 64 DCTs per pixel. But every block is shared with 64 other pixels and this can be exploited to avoid recomputing the DCT. Algorithm 5 describes the procedure. A table is used to keep track of the largest number of zeros found for each pixel, initially set to zero everywhere. The DCT of every 8 × 8 block in the image and its number of zeros are computed. 1 Every pixel included in the block is checked and the table of zeros is updated when the current block has more zeros than previously found for that pixel. The table of votes is also updated to the grid origin corresponding to the block with more zeros (GridAlignedWith(b)), or to non valid in case of a tie, a constant block or a pixel on the border. In that way, the DCT of each 8 × 8 block in the image is case in which all pixels vote for the same grid. Indeed, for any smaller region, the NFA will never be smaller than 1.

Voting process

Algorithm 8: GrowRegion input : votes input : seed pixel (x, y) input : distance to look for neighbors W input : usedpixels output: a region of pixels R

1 γ ← votes(x, y) 2 R ← (x, y) 3 repeat 4 for (x , y ) ∈ R do 5 for i ∈ {x -W, . . . , x + W } do 6 for j ∈ {y -W, . . . , y + W } do 7 if votes(x, y) = γ and usedpixels(i, j) = false then 8 R ← R ∪ (i, j) 9 until R does not change 10 return R

Computational complexity

zero, as described in Algorithm 4, essentially computes a vote map and then goes through all the votes to apply the statistical validation. To create the vote map, the equivalent of 64 JPEG compressions are needed. Indeed, the main cost of Algorithm 5 is computing the DCT of every 8 × 8 block in the image, while the JPEG algorithm computes the DCT of non-overlapping 8 × 8 blocks, which implies keeping only one out of 64 blocks. The DCT computations are independent making it possible for us to implement them in parallel (OpenMP is used in the reference code). Afterwards, the validation and the region growing both have linear complexity relative to the number of pixels. The whole process is roughly repeated, after a JPEG compression, looking for missing grids. As a result, the computational cost is roughly the same as performing 129 times the JPEG compression of the same image.

More precisely, there are XY blocks to be processed (neglecting incomplete blocks on the border), and the DCT transform on 8 × 8 block requires a constant number of operations. Thus, computing the vote map has a computational complexity linear with the number of pixels in the image. The validation and the region growing steps are also linear with the number of pixels. Performing a JPEG compression is also linear. All in all, the computational complexity of zero is linear with the number of pixels:

ComputationalComplexity = O(XY )
where X × Y is the size of the input image.

Experiments

This section will illustrate the different cases of use of the proposed method through multiple experiments. The input image as well as the output of zero will be shown. The latter includes one or two colored vote maps, one or two forgery masks and a colored merged forgery mask. An additional text output, provided by the reference code, gives an interpretation and the relevant information.

JPEG detection

If the image is large enough, zero can detect JPEG traces even for high quality lossy JPEG compression (up to QF = 99). The vote maps on Figure 5.11 illustrate the slight difference between the vote map of an uncompressed image and that of a high-quality JPEG compressed image. The amount of green on the vote map on the right is enough to detect that the image has gone through a JPEG compression and to name the correct main grid. The forgery masks (not shown) are all black, since in these cases no forgeries were detected.

The following text output explains that the main grid of the image is (0, 0). Therefore, the image has gone through a JPEG compression. Note that the NFA, expressed by its logarithm, is actually 10 -296.33 , an extremely small number, indicating how meaningful the detection is. In Figure 5.12, we took an original JPEG image and cropped a square out of it. The origin of the global grid being different from (0, 0), the (anticipated) conclusion is that the image has been cropped. The vote maps have different colors: the first one is for the (0, 0) grid and the second one for the (4, 4) grid.

Crop detection

Unaligned double compression detection

Double compression can be detected by the presence of two or more global grids. Nevertheless, the detection by zero is possible only when the two grids are not aligned. Figure 5.13 shows three experiments, in which the same image have been respectively and successively, compressed, cropped and compressed again. The conclusion on the first is that it was JPEG compressed. The result on the second image shows a JPEG grid origin different from (0, 0), indicating that the image has been cropped. Finally, in the last vote map of Figure 5.13, the two colors are present. The most significant is the one from the last compression, even if the quality is higher than the previous one. If the second compression were much stronger (with a lower quality), then it would probably have masked the previous one. Then only one grid would have been detected.

The text output for the first image is:

main grid found: #0 (0,0) log(nfa) = -6060.7 No suspicious traces found in the image with the performed analysis.

For the second image:

main grid found: #36 (4,4) log(nfa) = -5959.07

The most meaningful JPEG grid origin is not (0,0). This may indicate that the image has been cropped.

And for the last image:

main grid found: #0 (0,0) log(nfa) = -3110.45 meaningful global grid found: #36 (4,4) log(nfa) = -169.145

There is more than one meaningful grid. This is suspicious. 

Copy-move forgery

The forged image in Figure 5.14 was made by internal copy-move operations. A brick has been copy-moved four times. This is clearly visible in the vote map as regions with a different vote than the background grid (0, 0). The resulting forgery mask shows a perfect detection in this case. The forgery mask F shows the area where foreign grids (different from the main one (0, 0)) were detected.

The text output of the method, when the first part of the method is executed, is:

main grid found: #0 (0,0) log(nfa) = -224056 This may be caused by image manipulations such as resampling, copy-paste, splicing. Please examine the deviant meaningful region to make your own opinion about a potential forgery.

Splicing forgery

The image in Figure 5.15 is quite interesting because the main grid is not (0, 0) but the forged area is. Indeed, the algorithm detects several global grids in the image. This is a cue that the image has gone through multiple JPEG compressions with different grid origins. Indeed, the image on the bottom-left (the original image) has probably been compressed, then cropped and forged before being compressed again. zero detects as most meaningful the first compression, which indeed has the lowest quality. 3 The forgery is therefore the area having a different grid than the rest. In this case, the pristine area has gone through two compressions and zero detects the one with the (6, 6) grid, while the forged area only shows traces of the last compression with the (0, 0) grid. If the inserted image region had any trace of a previous JPEG compression, it was probably erased by the re-sampling needed to make it fit in the desired position. The text output of zero is:

main grid found: #54 (6,6) log(nfa) = -14127.2 meaningful global grid found: #0 (0,0) log(nfa) = -494.782 meaningful global grid found: #6 (6,0) log(nfa) = -13.2262

A meaningful grid different from the main one was found here: bounding box: 622 247 to 1215 917 [594x671] grid: #0 (0,0) log(nfa) = -736.034

The most meaningful JPEG grid origin is not (0,0). This may indicate that the image has been cropped.

There is more than one meaningful grid. This is suspicious.

Suspicious traces found in the image. This may be caused by image manipulations such as resampling, copy-paste, splicing. Please examine the deviant meaningful region to make your own opinion about a potential forgery. The image in Figure 5.16 has not been JPEG compressed, however the spliced area comes from an image having JPEG traces. The result is that the global image has no JPEG grid but a local detection is made. In this case, the method stops with the computation of the forgery map F of foreign grids and does not try to detect areas with missing JPEG grid since this is the main estimation in the image.

Compressed forgery in an uncompressed image

The text output of zero is:

No overall JPEG grid found.

A meaningful grid was found here: bounding box: 1461 642 to 1804 883 [344x242] grid: #13 (5,1) log(nfa) = -86.9189

Suspicious traces found in the image.

This may be caused by image manipulations such as resampling, copy-paste, splicing. Please examine the deviant meaningful region to make your own opinion about a potential forgery. The forged area in the image in Figure 5.17 has no detectable JPEG traces. This can be seen in the colored vote map in the middle-top image of Figure 5.17. This image is to be compared with the middle-bottom vote map obtained after imposing a QF = 99 JPEG compression to detect the missing grids. In the middle-top vote map, the central face shows a different behavior than its background. In it there are fewer and less meaningful votes for the main grid, and no other grid is meaningful either. Indeed, in this area the JPEG traces (present in the rest of the image) are missing. Applying the compression (bottom images) reveals JPEG traces with grid origin (0, 0) in this area; the missing traces are not due to the image contents, it is indeed a forged area without JPEG traces, and it is detected. The text output of zero is: main grid found: #0 (0,0) log(nfa) = -33624 A region with missing JPEG grid was found here: bounding box: 568 256 to 839 670 [272x415] grid: #0 (0,0) log(nfa) = -49.259 Suspicious traces found in the image. This may be caused by image manipulations such as resampling, copy-paste, splicing. Please examine the deviant meaningful region to make your own opinion about a potential forgery.

Missing JPEG grid forgery

Removed area with healing

In Figure 5.18, the forgery was made with the healing functionality of the software Affinity. The inpainting removed two persons in the scene background. For the person on the left, the edges can be seen in the vote map. For the inpainting region on the right, several different grids were detected. Most likely, the inpainting algorithm copied patches from the rest of the image to fill in the area, therefore also copying the JPEG traces in wrong positions. The first forgery mask in Figure 5.18 shows the areas with a foreign grid and the second forgery shows areas where JPEG traces are missing. The forgery on the left is missed by the method but the one on the right is detected.

As can be noticed in the forgery maps of Figure 5.18, areas with a different JPEG grid overlap with areas with a missing grid. This overlap is mainly caused by the morphological mask closing and by the fact that bounding boxes are evaluated rather than the pixels themselves.

Merged masks

A convenient way to visualize the results is by merging both forgery masks. Red is chosen for the areas that have a foreign JPEG grid whereas blue is for the areas having no trace of the main grid. If a block is both blue and red, it is marked in red, as this is the more valuable detection. See some examples in Figure 5.19.

Comparaison with state-of-the-art methods

There are several tools for detecting forgeries based on JPEG compression traces. The most famous ones (used by mass-media online) are ELA (Error Level Analysis) [START_REF] Krawetz | A picture's worth[END_REF] and GHOST [START_REF] Farid | Exposing digital forgeries from JPEG ghosts[END_REF], which are very similar. Both attempt to detect JPEG compression ratio differences throughout the image. In JPEG forensics, the main methods are either based on the histograms of DCT coefficients [BDRP11; YSC07] or based on the detection of a higher contrast at the block edges [START_REF] Chen | Image tampering detection by blocking periodicity analysis in JPEG compressed images[END_REF][START_REF] Fan | Identification of bitmap compression history: JPEG detection and quantizer estimation[END_REF].

Three methods: CAGI [START_REF] Iakovidou | Content-aware detection of JPEG grid inconsistencies for intuitive image forensics[END_REF], BLK [START_REF] Li | Passive detection of doctored JPEG image via block artifact grid extraction[END_REF] and the method presented in Chapter 2 are closely related to ours as they detect forgeries by locating inconsistencies of JPEG blocking artifacts. In Li, Yuan, and Yu [START_REF] Li | Passive detection of doctored JPEG image via block artifact grid extraction[END_REF]'s method, the image is filtered based on local derivatives, weak edges are detected, and the coherence with an aligned 8 × 8 grid is measured. A feature corresponding to the local strength of the blocking pattern is extracted. Feature variations indicate local absence or misalignment of the grid and can be considered as a tampering cue. Iakovidou et al. [START_REF] Iakovidou | Content-aware detection of JPEG grid inconsistencies for intuitive image forensics[END_REF] use the artifact measure introduced by Fan and Queiroz [START_REF] Fan | Identification of bitmap compression history: JPEG detection and quantizer estimation[END_REF]: their method evaluates multiple grid positions with respect to a fitting function. Areas with low contribution are identified as inconsistent with the main grid and therefore potentially tampered. An image segmentation step is introduced to differentiate between inconsistencies produced by tampering and those attributable to image content. In Chapter 2, we apply the filter proposed by Chen and Hsu [START_REF] Chen | Image tampering detection by blocking periodicity analysis in JPEG compressed images[END_REF] to reveal these blocking artifacts before using a statistical method to increase the reliability of the detection.

These methods make it possible to detect what is undoubtedly one of the most commonly used tampering schemes: the copy and paste of image parts which break the alignment of the original grid, either because of its location or because of transformations (scaling, rotation, etc.) of the manipulated area. Another way to alter an image is by simply cropping it to remove undesirable parts of the photographed scene. This method, frequent in photojournalism, can significantly alter the interpretation of a scene. To detect cropping, Li et al. [START_REF] Li | Passive detection of doctored JPEG image via block artifact grid extraction[END_REF] and the methods presented in Chapter 2 and Chapter 4 detect the grid globally and exploit the fact that its origin may no longer be at (0, 0). Our method, being based on the detection of the global JPEG grid, is also able to detect this type of manipulation.

We also qualitatively compared our method to other forgery detection methods based on compression traces analysis in Figures 5.20 and 5.21. Figure 5.20 shows two images with an internal copy-move coming from the FAU dataset [START_REF] Christlein | An Evaluation of Popular Copy-Move Forgery Detection Approaches[END_REF] and Figure 5.21 shows four face-swaps from Twitter. The reference code of Algorithm 5 dealing with floating point arithmetic, is implemented in the C programming language. Depending on the system hardware, the compiler used, and the compiler optimization options, different approximations may be performed. This may lead occasionally to slightly varying DCT values which, when compared to ±0.5 for the rounding, may result in an additional or missing zero. Small differences may occur in the vote maps and therefore in the NFA computations. Figure 5.22 is an example where this difference in the voting process implies differences in the forgery maps.

The text output of the method on the two platforms were as follows. On a MacOS system: main grid found: #0 (0,0) log(nfa) = -96814.3 A meaningful grid different from the main one was found here: bounding box: 848 2493 to 912 2599 [65x107] grid: #57 (1,7) log(nfa) = -0.187477 Suspicious traces found in the image. This may be caused by image manipulations such as resampling, copy-paste, splicing. Please examine the deviant meaningful region to make your own opinion about a potential forgery. and a Linux system: main grid found: #0 (0,0) log(nfa) = -96839.7

No suspicious traces found in the image with the performed analysis.

As can be observed, the numerical values are very similar, but nevertheless different, and these small differences lead in rare occasions, as the one in Figure 5.22, to different detection results.

Limitations

Quality factor 1 and quality factor 100

The result for an uncompressed image, compressed at quality 100, or for an image compressed at quality 1, give the same result:

No overall JPEG grid found.

An image compressed at QF = 100 has no zero DCT coefficients as their values are not quantized with this quality factor. At QF = 1 instead, non-detection is caused by the fact that most of the pixels do not vote as they belong to constant blocks. Since no vote is performed, no grid is found, see Figure 5.23.

The strong compression cases can be handled easily by other methods [START_REF] Nikoukhah | Local JPEG Grid Detector via Blocking Artifacts, a Forgery Detection Tool[END_REF]. Also, as explained before, refining the voting approach should allow us to handle these cases using the same main ideas, at the price of a more complex algorithm. Figure 5.24 illustrates a limitation of the proposed method, and all the method based on the JPEG grid origin. Forgeries are detected as regions in which the local grid origin does not agree with the one of the global grid. This means that when the grid of the forged regions aligns perfectly with the global grid, the proposed method will fail to detect the forgery. Nevertheless, this happens only once for every 64 positions. In Figure 5.24, the same rectangle area was copied twice in the forged image, but only one of the copies was detected. The other one has the correct grid origin. Since the copy-move was, in this case, done only horizontally, this happened with a chance of 1/8. In a saturated region, the DCT coefficients of the blocks are all equal to zero, except for the DC coefficient. The number of zeros are tied and the votes are all non-valid. Thus it is impossible for the method zero to distinguish the JPEG grid in saturated regions. Since no valid JPEG grid can be found, it will never disagree with the global grid and therefore saturated parts of a forgery cannot be found. However, as soon as a part of the forgery is not saturated it can be detected as it is shown in Figure 5.25. Another limitation is when the forged region is too small. In Figure 5.26, three people have been copy-moved in the image but only two of them have been detected by the method zero. Since the statistical test must be satisfied to detect a forgery, there is a minimal detectable region size that depends on the image size, the JPEG compression quality and the image contents.

Saturated area

Small forgeries

Resampling detections

Resampling traces may disrupt JPEG blocking traces. Indeed, resampling an image creates a regular pattern [START_REF] Alin | Exposing digital forgeries by detecting traces of resampling[END_REF] which can, when aligned horizontally or/and vertically, interfere with the JPEG 8 × 8 grid. For example, a JPEG image loses (naturally) its JPEG blocking artifact when stretched, as the period of the artifacts is no longer eight pixels. However, sometimes, it creates a new periodic pattern as it can be detected in the image of Figure 5.27. The image was JPEG compressed and of size 512 × 512, after being stretched vertically, became of size 512 × 520. The horizontal JPEG traces are still present. The vertical JPEG traces are modified, but the interference between the original sampled grid, and the new re-sampling grid leads to local artifacts with a vertical periodicity of near eight pixels. The periodic pattern is detected locally, therefore it results in partial detections covering almost all the image, indicated as forgeries. One of the local detections is selected as the main grid just because it is slightly more meaningful than the others. The most meaningful JPEG grid origin is not (0,0). This may indicate that the image has been cropped.

There is more than one meaningful grid. This is suspicious.

Suspicious traces found in the image. This may be caused by image manipulations such as resampling, copy-paste, splicing. Please examine the deviant meaningful region to make your own opinion about a potential forgery.

Double compression

The fact that the algorithm may detect several global grids may come from the fact that the image was compressed multiple times with a crop operation in the middle. For example, the image in Figure 5.28 was compressed, then cropped and then compressed again in a lighter way than the first compression. The output of the method is: main grid found: #0 (0,0) log(nfa) = -7462.48 meaningful global grid found: #7 (7,0) log(nfa) = -53.2931 meaningful global grid found: #39 (7,4) log(nfa) = -2782.57 A meaningful grid different from the main one was found here: bounding box: 7 7 to 1377 1374 [1371x1368] grid: #39 (7,4) log(nfa) = -2753.02 A region with missing JPEG grid was found here: bounding box: 7 7 to 1377 1347 [1371x1341] grid: #0 (0,0) log(nfa) = -677.296 A region with missing JPEG grid was found here: bounding box: 7 1115 to 471 1369 [465x255] grid: #0 (0,0) log(nfa) = -23.3211

There is more than one meaningful grid. This is suspicious.

Suspicious traces found in the image. This may be caused by image manipulations such as resampling, copy-paste, splicing. Please examine the deviant meaningful region to make your own opinion about a potential forgery.

Figure 5.28: Not aligned double compressed image, its vote map and result. This image was first compressed with quality 90, then cropped so that the grid origin became (7, 4) and compressed again with quality 98.

The method detected the first grid (7, 4) and the second one (0, 0) as the main one, but also detected a grid with the horizontal coordinate of the first compression and the vertical coordinate of the second one. It could have detected also the grid (0, 7). This is both an asset of the method (detecting double compression is a first cue to forgery detection) but also a drawback since the local detection is afterwards disrupted.

Big JPEG compressed forgery in an uncompressed image

Figure 5.29: JPEG forgery in an uncompressed image, its vote map and result. An example of wrongly attributed detection: a JPEG compressed image has been pasted into an uncompressed image. The only JPEG traces are the ones in the forged part, which is large enough to result in a global detection. Indeed, this part is larger than 1/64th of the image. The method correctly detects the missing JPEG grids in the background. The result is that the background is marked a forged, while it is more natural to say that the small region is the forged one.

In the example in Figure 5.29, the forged area is JPEG compressed and the rest of the image is not. This could be detected as it was in the example of Figure 5.16. Here, however, the forged area is larger than 1/64th of the image. Therefore, its grid is detected as the global grid. The forged mask F is all black, detecting no local grid. The algorithm detected, correctly, the presence of anomalies in the image. However, the interpretation produced is not correct, or at least not the most natural one. Indeed, it would be more natural to say that the forgery is the small region in a larger background, although this is a subjective evaluation. The text output for this image is: main grid found: #2 (2,0) log(nfa) = -80.0532 A region with missing JPEG grid was found here: bounding box: 7 7 to 1912 1072 [1906x1066] grid: #0 (0,0) log(nfa) = -1788.81 A region with missing JPEG grid was found here: bounding box: 1698 7 to 1895 199 [198x193] grid: #0 (0,0) log(nfa) = -2.81145

The most meaningful JPEG grid origin is not (0,0). This may indicate that the image has been cropped. Suspicious traces found in the image. This may be caused by image manipulations such as resampling, copy-paste, splicing. Please examine the deviant meaningful region to make your own opinion about a potential forgery.

Missed missing grid detection

The image in Figure 5.30 is a JPEG image where the forged area comes from an uncompressed image. The area may be too small in this example and is therefore not detected in the forgery mask M . In this example again, better forgery detection is obtained with quality factor 98. Indeed, three men have been erased and the car and the second man from the left have been moved a bit and forged. Unfortunately, many false detections are also made with a lower quality factor (95 here). We decided to keep the quality factor to the maximum value 99 to keep the false detection rate to a minimum, even though some detections (visible in the vote map) are missed. Future work will focus on improving the detectability of missing grids while still controlling false detections. 

Merged masks

Conclusion

This chapter describes a JPEG grid detection and tampering localization method based on the number of zeros in the DCT blocks. It has a high accuracy detecting JPEG compression up to quality factor of 99. It performs reliable reverse engineering and detects forgeries by giving an automatic, localized, and reliable result without requiring any human interpretation. The proposed algorithm is efficient; especially for detecting local foreign grids as it is tested on the database presented in the next chapter. The bottleneck is the computation of the vote maps, which requires about the same number of operations as performing 129 JPEG compressions of the same image. The perspective for future work includes handling the color information, and improving the detectability of missing grids.

Chapter 6

Non-Semantic Evaluation of Image Forensics Tools: Methodology and Database

This chapter presents a new method for evaluating image forensics tools, that characterizes what image cues are being used by each detector. Our method creates arbitrarily large datasets of tampered images where one to several detection cues are present. Starting with raw images, we alter aspects of the image formation pipeline inside a mask, while leaving the rest of the image intact. This does not change the image's interpretation; we thus call non-semantic such alterations, as they give no semantic cues to detectors. This method avoids the time consuming and often biased creation of convincing semantics. All aspects of image formation (noise, CFA pattern and algorithm, JPEG compression pattern and quality) can vary freely and independently in both the authentic and tampered parts of the image. Based on this methodology, we create a database and conduct an evaluation of the main state-of-the-art image forensics tools, and in particular our zero method.

This work is published as Non-Semantic Evaluation of Image Forensics Tools: Methodology and Database in the WACV conference [START_REF] Bammey | Non-Semantic Evaluation of Image Forensics Tools: Methodology and Database[END_REF].

Introduction

Digital images play an extensive role in our lives and forgeries are present everywhere [START_REF] Farid | Photo Forensics[END_REF]. Creating visually realistic image alterations is easy. Yet these modifications leave behind cues: each operation has an impact on the image in the form of a particular trace. Some forgery detection tools aim at detecting a specific trace in a suspicious image by finding local inconsistencies, while other methods, usually learning-based, are more generic. Semantic analysis of an image can provide hints, but the rigorous proof of a forgery should not be based only on semantic arguments. The situation is similar to the dilemma arising from the observations of Galileo, which contradicted the knowledge of his time. In the words of Bertolt Brecht [START_REF] Brecht | Life of Galileo[END_REF]:

Galileo: How would it be if your Highness were now to observe these impossible as well as unnecessary stars through this telescope?

The Mathematician: One might be tempted to reply that your telescope, showing something which cannot exist, may not be a very reliable telescope, eh? The telescope could have been unreliable, indeed, and a scientific inquiry on the instrument could have been justified. However, concluding, as the Mathematician does, that the telescope was unreliable just based on the contents of the observations is not prudent. Similarly, the proof of a forgery must be based on image traces, not on semantic arguments, because the semantics of an image are usually the purpose and not the means of a forgery.

Image forensics algorithms are mainly evaluated by their performance in benchmark challenges. This practice has several limitations: in many cases, the same database is split into training and evaluation data. As a consequence, algorithms are trained and evaluated on images that have gone through similar image processing pipelines, forgery algorithms and anti-forensic tools. Hence, there is no guarantee that such learning-based methods will work in the wild, where those parameters vary much more. Regardless of the variety of the training set, the question arises of whether the forgeries are being detected by trained detectors for semantic reasons, or because of local inconsistencies in the image.

With these considerations in mind, we propose a methodology and a database to evaluate image forensic tools on images where authentic and forged regions only differ in the traces left behind by the image processing pipeline. Using this methodology, we create the Trace database by adding various forgery traces to raw images from the Raise [DN+15] dataset, as shown in Figure 6.1. This procedure avoids the difficulties of producing convincing and unbiased semantic forgeries, which often requires manual work. We create several datasets, each of which corresponding to a specific pipeline inconsistency, such as a different noise level or compression pattern. This gives us insight into the sensitivity of forensic tools to specific traces, and thus highlights the complementarity of different methods. Our contribution is twofold:

1. we create a database of "fake" images with controlled inconsistencies in their formation pipeline, 2. using this database, we conduct an evaluation of existing forensic tools.

Most recent forgery-detection datasets start from pristine images and perform several sorts of forgeries on them [START_REF] Zheng | A Survey on Image Tampering and Its Detection in Real-world Photos[END_REF]. Since the creation of early datasets [DWT13; Hsu+08; NC04], the number of tampering techniques has increased to include new ones such as colorization [START_REF] Castro | A dataset of 1050-tampered color and grayscale images (CG-1050)[END_REF], inpainting [CBR20; Mah+19] and morphing [START_REF] Mahfoudi | DEFACTO: Image and Face Manipulation Dataset[END_REF][START_REF] Zhou | Two-Stream Neural Networks for Tampered Face Detection[END_REF]. Post-processing and counter-forensic techniques have been increasingly used to produce visually imperceptible forgeries; but such approaches may also introduce detectable traces.

Efforts have also been made to automatically obtain large datasets. Yet, the resulting forged images are either semantically incorrect [Ame+11; Chr+12] or biased [START_REF] Mahfoudi | DEFACTO: Image and Face Manipulation Dataset[END_REF]. Both scenarios pose problems for training neural networks, which risk overfitting on the forgeries methods and semantic content.

The variety of forgery methods makes the evaluation of forensic tools difficult to interpret, as the performance depends on the suitability of the detection tool for the specific forgery method. In quantitative experiments, using multiple datasets, and especially datasets with varied forgeries, helps assess the quality of a forensic tool. However, those results also become harder to interpret. On the other hand, while results using the proposed database will not be reflective of uncontrolled scenarios, they help precisely identify which traces a forensic tool can and cannot detect.

Related works

There is a large literature on image forensics, starting from the seminal work of Farid [START_REF] Farid | Photo Forensics[END_REF]. Some methods focus on the detection of a specific tampering attack such as copy-move or splicing, but the most classic forgery detection methods, described in Section 1.4, aim at detecting local perturbations of the traces left in the image by the processing chain. Such local disruptions hint at a local forgery. To do so, these methods strive to suppress image content and highlight intrinsic artifacts left by demosaicing, JPEG encoding (see Section 1.5), etc. [START_REF] Alin | Statistical tools for digital forensics[END_REF]. These forgery detection methods, which are evaluated in this chapter, can therefore be grouped by their specificallytargeted traces, which we now briefly review.

Forgery detection methods

Noise-level-based methods analyze the noise model of images (see Section 6.2.3) to find regions with a different amount of noise, that could result from tampering. Mahdian and Saic [MS09] perform local wavelet-based noise level estimation using a median absolute deviation estimator. Lyu, Pan, and Zhang [START_REF] Lyu | Exposing Region Splicing Forgeries with Blind Local Noise Estimation[END_REF] relies on the kurtosis concentration phenomenon. More recently, Noisesniffer [START_REF] Gardella | Noisesniffer: a Fully Automatic Image Forgery Detector Based on Noise Analysis[END_REF] defines a background stochastic model enabling the detection of local and statistically-significant noise anomalies. These methods can potentially detect a relatively wide variety of forgeries, as each can alter the noise level.

Detecting the specific image demosaicing algorithm (see Section 1.2.2) has not been attempted since the 2005 pioneer paper by Popescu and Farid [START_REF] Alin | Exposing digital forgeries in color filter array interpolated images[END_REF], conceived at a time where those algorithms were simpler and easier to distinguish, although some generic noise-pattern analysis method can distinguish different algorithms given large enough regions [START_REF] Cozzolino | Noiseprint: A CNN-Based Camera Model Fingerprint[END_REF]. However, detecting the mosaic pattern has received more extensive coverage. Choi, Choi, and Lee [CCL11] used the fact that sampled pixels were more likely to take extremal values, while Shin, Jeon, and Eom [SJE17] noticed that they had a higher variance. Bammey, Gioi, and Morel [BGM20] combined the translation invariance of convolutional neural networks with the periodicity of the mosaic pattern to train a self-supervised network into implicitly detecting demosaicing artifacts. Because demosaicing artifacts lie in the high frequencies, they are lost under a strong JPEG compression or when the image has been downsampled. As such, they are usually best used on high-quality images.

JPEG compression leaves blocking effects and quantization of the DCT coefficient of each block. As it is done in Section 1.5, JPEG forensic tools can thus be divided into two categories. BLK [START_REF] Li | Passive detection of doctored JPEG image via block artifact grid extraction[END_REF] and CAGI [START_REF] Iakovidou | Content-aware detection of JPEG grid inconsistencies for intuitive image forensics[END_REF] analyze blocking artifacts, while other methods analyze the DCT coefficients. More precisely, CDA [START_REF] Lin | Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis[END_REF] and I-CDA [START_REF] Bianchi | Improved DCT coefficient analysis for forgery localization in JPEG images[END_REF] are based on the AC coefficient distributions, while FDF-A [START_REF] Amerini | Splicing forgeries localization through the use of first digit features[END_REF] is based on the first digit distribution of AC coefficients. zero, presented in Chapter 5, counts the number of null DCT coefficients in all possible JPEG block and deduces the grid origin. These methods can only work when the forgery was done after a first JPEG compression. And when this is the case, they usually yield very good results.

In the past few years, multi-purpose tools were proposed to detect inconsistencies from multiple traces simultaneously. Splicebuster [START_REF] Cozzolino | Splicebuster: A new blind image splicing detector[END_REF] uses the co-occurences of noise residuals as local features revealing tampered image regions. Noiseprint [START_REF] Cozzolino | Noiseprint: A CNN-Based Camera Model Fingerprint[END_REF] extends on Splicebuster and uses a Siamese network trained on authentic images to extract the noise residual of an image, which is then analyzed for inconsistencies. ManTraNet [START_REF] Wu | ManTra-Net: Manipulation Tracing Network for Detection and Localization of Image Forgeries With Anomalous Features[END_REF] is a bipartite end-to-end network, trained to detect imagelevel manipulations with one part, while the second part is trained on synthetic forgery datasets to detect and localise forgeries in the image. Finally, Self-consistency [START_REF] Huh | Fighting Fake News: Image Splice Detection via Learned Self-Consistency[END_REF] analysis also uses a Siamese network with the goal of detecting whether two patches have been processed with the same pipeline. They make use of N-Cuts segmentation [START_REF] Shi | Normalized cuts and image segmentation[END_REF] to automatically cluster and detect relevant traces of forgeries. With these methods, exhaustiveness is theoretically possible. However, results are not self-explanatory and those methods decisions are harder to justify. Furthermore, learning-based methods can be limited by the training data, and may fail to generalize well in uncontrolled scenarios.

Datasets for forgery detection

There is also considerable literature proposing datasets for the evaluation of forensic tools. An early example is the Columbia Dataset [START_REF] Ng | A Data Set of Authentic and Spliced Image Blocks[END_REF], which only contains spliced 128 × 128 grayscale blocks for which no masks are provided. New benchmarks were proposed in 2009 with CASIA V1.0 and V2.0 [START_REF] Dong | CASIA Image Tampering Detection Evaluation Database[END_REF]. These datasets included splicing and copy-move attacks, with a total of 8000 pristine images and 6000 tampered images. Post-processing was introduced as a counter-forensics technique. MICC F220 and F2000 datasets [START_REF] Amerini | A SIFT-based forensic method for copy-move attack detection and transformation recovery[END_REF] as well as the IMD dataset [START_REF] Christlein | An Evaluation of Popular Copy-Move Forgery Detection Approaches[END_REF] provide further benchmarks for copy-move detection. These datasets were constructed in an automatic way. While the first two randomly select the region of the image to be copy-pasted, IMD dataset performed snippets extraction. Other datasets adressing copy-move forgeries with post-processing counter attacks are also available [START_REF] Tralic | CoMoFoD -New database for copy-move forgery detection[END_REF][START_REF] Wen | COVERAGE -A novel database for copy-move forgery detection[END_REF].

Image forgery-detection challenges are another source of benchmark datasets. The National Institute of Standards and Technology (NIST) organizes, since 2017, an annual challenge for which different datasets are released [START_REF] Guan | MFC Datasets: Large-Scale Benchmark Datasets for Media Forensic Challenge Evaluation[END_REF]. It includes automatically and manually generated forgeries of considerable variety, and can thus be useful to evaluate image forgery detection in uncontrolled scenarios. Some datasets aim at performing forgeries imperceptible to the naked eye. A good example is the Korus dataset [KH16; KH17] which contains 220 pristine images and 220 handmade tampered images targeting object removal or insertion.

The recent DEFACTO [START_REF] Mahfoudi | DEFACTO: Image and Face Manipulation Dataset[END_REF] dataset is constructed on the MSCOCO [Lin+15] dataset and includes a wide range of forgeries such as copy-move, splicing, inpainting and morphing. Semantically meaningful forgeries are generated automatically but with several biases such as copy-pasting objects in the same axis or only performing splicing with simple objects.

Most recent forgery-detection datasets start from pristine images and perform several sorts of forgeries on them [START_REF] Zheng | A Survey on Image Tampering and Its Detection in Real-world Photos[END_REF]. Since the creation of early datasets [DWT13; HC06; NC04], the number of tampering techniques has increased to include new ones such as colorization [START_REF] Castro | A dataset of 1050-tampered color and grayscale images (CG-1050)[END_REF], inpainting [CBR20; Mah+19] and morphing [START_REF] Mahfoudi | DEFACTO: Image and Face Manipulation Dataset[END_REF][START_REF] Zhou | Two-Stream Neural Networks for Tampered Face Detection[END_REF]. Post-processing and counter-forensic techniques have been increasingly used to produce visually imperceptible forgeries; but such approaches may also introduce detectable traces.

Efforts have also been made to automatically obtain large datasets. Yet, the resulting forged images are either semantically incorrect [Ame+11; Chr+12] or biased [START_REF] Mahfoudi | DEFACTO: Image and Face Manipulation Dataset[END_REF]. Both scenarios create problems for training neural networks, which risk overfitting on the forgeries methods and semantic content. The variety of forgery methods makes the evaluation of forensic tools difficult to interpret, as the performance depends on the suitability of the detection tool for the specific forgery method. In quantitative experiments, using multiple datasets, and especially datasets with varied forgeries, helps assess the quality of a forensic tool. However, those results also become harder to interpret. On the other hand, while results using the proposed database will not be reflective of uncontrolled scenarios, they help precisely identify which traces a forensic tool can and cannot detect. 

Image formation pipeline

Raw image acquisition

The value at each pixel can be modeled as a Poisson random variable [START_REF] Foi | Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data[END_REF]. Noise variance at this step thus follows an affine relation σ 2 = A + Bu where u is the intensity of the ideal noiseless image and A and B are constants (see Figure 6.2). Furthermore, given the nature of the noise sources at this step, noise can be accurately modeled as uncorrelated, meaning that noise at one pixel is not related with the noise at any other pixel.

Demosaicing Most digital cameras are equipped with a single sensor array. In order to obtain a color image, a color filter array (CFA) is placed in front of the sensor to split incident light components according to their wavelength. Thus, the raw image obtained from the sensor is a mosaic containing a single color component per pixel: red, green, or blue. Demosaicing methods interpolate the missing colors at each pixel to reconstruct a full color image. After demosaicing (Figure 6.2), each channel has a different noise curve, and noise becomes spatially correlated.

Color Correction In order to obtain a faithful representation of the colors as perceived by the observer, white balance adjusts color intensities in such a way that achromatic objects from the real scene are rendered as such [START_REF] Losson | From the Sensor to Color Images[END_REF]. This is done by scaling each channel separately, thus also scaling differently the noise level of each channel. Given that the relationship between stimulus and human perception is logarithmic [START_REF] Gt Fechner | Elemente der psychophysik, breitkopf und härtel[END_REF], cameras then apply a power law function to the intensity of each channel. After this step, known as gamma correction, the noise level is no longer monotonously increasing with the intensity.

JPEG compression

The JPEG image standard is the most popular lossy compression scheme for photographic images [START_REF] Gregory | The JPEG still picture compression standard[END_REF]. The image goes through a color space transformation and each channel is partitioned into non-overlapping 8 × 8 blocks. The type-II discrete cosine transform is applied to each of these blocks. The resulting coefficients are quantized according to a table (described in Section 1.3) and the coefficients are then compressed without additional loss. Due to the cancellation of high-frequency coefficients, the noise is reduced after compression.

Proposed methodology

What we want is to create a dataset that enables one to test the sensitivity of methods to specific traces, without containing other traces.

We created a database of "forged" images which leaves the semantics of the images intact. The overall idea of our method is to take a raw image, process it with two different pipelines, and merge the two processed images as follows: the first image is used for the authentic region and the second image for the "forged" area determined by a mask, as can be seen in Figure 6.1. As a base we use the RAISE-1k dataset [START_REF] Dang-Nguyen | Raise: A raw images dataset for digital image forensics[END_REF], which contains one thousand pristine raw images of varied categories, taken from three different cameras. We note that the variety of source cameras is not important to our database, as we erase the previous camera traces by downsampling the image, then resimulate the whole image processing pipeline ourselves, as explained below. Furthermore, our open source generation code can be applied on any other source of images, to automatically generate arbitrarily large quantities of "forged" images.

Methodology for the creation of the database A raw image already contains noise, furthermore its pixels are all sampled in the same CFA pattern. In order to reduce the noise and eliminate the CFA pattern, we start by downsampling each image by a factor 2. This enables us to choose the amount of noise to be added, and to mosaic the image in any of the four possible patterns. Once the image has been downsampled, we process the image with two different pipelines. The two images are then merged as explained above.

Forgery masks For each image we construct two different kinds of masks, which we shall call endomasks and exomasks. Since inconsistencies in the image processing pipeline are usually most visible at the border of the forgery, endomasks are obtained as regions of a segmentation of the image. To do this, we segment the original images with EncNet [START_REF] Zhang | Context Encoding for Semantic Segmentation[END_REF]. For each image, we take a pixel at random, and select the image region it belongs to. We accept the mask if its size is less than half the image's, otherwise we pick another pixel until we find a suitable mask. This ensures that each image has only one forgery, whose size is at most half the image's. Using such endogenous masks or endomasks corresponding to a region of the segmented image ensures almost invisible forgeries. Indeed their borders are natural image borders, as shown in Figure 6.3.

The exomasks are instead unrelated to the image's content. To determine them, we Figure 6.3: Details of the same image with forgeries made using the two masks. On the left, the endomask coincides with the image's structure, here a tree. The forgery is less conspicuous than on the right where the exomask is in the sky, where the borders do not coincide with the images' content.

start by pairing the images of the dataset according to their endomasks' sizes. Then, the endomask of each image is used as the exogenous mask, or exomask, of its paired image. Using a mask from another image ensures that the mask is not linked to the image's semantic. The chosen pairing enables comparisons separately on each image, as the size of the masks is similar. See Figure 6. JPEG Quality dataset In this dataset, both the authentic and forged regions are processed with the same pipeline, except for the JPEG compression which is done in the two regions with different quality factors, again chosen uniformly between 75 and 100. Like with the CFA Algorithm dataset or the JPEG grid data, a new JPEG grid pattern is also randomly chosen, which has a 63 64 chance of being different from the main region's grid. This dataset simulates the effect of the splicing of an image onto another, both images being compressed at different quality factors.

Hybrid dataset One could argue that although generic learning-based forensics tools may not be able to point out a single inconsistency in an image, they might be best suited to find multiple inconsistencies stacked together. Clearly, a splicing may introduce joint inconsistencies in noise level, JPEG encoding and demosaicing; while a direct copy-move can introduce alterations in the JPEG and CFA grids. To investigate such possibilities, in addition to the five specific datasets described above, we created a sixth, hybrid dataset. In this dataset, forgeries combine noise, demosaicing and/or JPEG compression traces. At least two of those traces are altered in each images.

Experiments

Evaluated methods

We used the constructed database to conduct an evaluation of image forensics tools. We tested both classic and state-of-the-art forgery detection methods pertaining to different traces: noise-level-based detection methods Noisesniffer 

Evaluation Metrics

We evaluated the results of these methods using the Matthews correlation coefficient (MCC) [START_REF] Matthews | Comparison of the predicted and observed secondary structure of T4 phage lysozyme[END_REF]. This metric varies from -1 for a detection that is complementary to the ground truth, to 1 for a perfect detection. A score of 0 represents an uninformative result and is the expected performance of a random classifier. The MCC is more representative than the F1 and IoU scores [Chi17; CJ20], partly as it is less dependant on the proportion of positives in the ground truth, which is especially important given the large variety of forgery mask sizes in the database.

The MCC was computed for each image, and then averaged over each dataset. As most surveyed methods do not provide a binary output but a continuous heatmap, we weighted the confusion matrix using the heatmap.

Results

The complete results are given in Table 6.1. Visualization of the detection by several methods on one image across all datasets can be seen in Figure 6.5. In the CFA and JPEG datasets, state-of-the-art methods that focus on those specific traces for CFA (Bammey [BGM20]) and for JPEG (zero from Chapter 5), perform much better than generic tools. This is partly expected, as those methods aim to detect exactly this specific trace. This observation is more nuanced in the Noise Level dataset where, depending on the type of mask considered, Noisesniffer [START_REF] Gardella | Noisesniffer: a Fully Automatic Image Forgery Detector Based on Noise Analysis[END_REF] and Self-Consistency [START_REF] Huh | Fighting Fake News: Image Splice Detection via Learned Self-Consistency[END_REF] achieve the best results. Indeed, exomasks cover a wider range of intensities enabling a better comparison between noise models, which is exploited by Noisesniffer. Also, half the forgeries present in this database are undetectable for this method since it is only able to detect forgeries having lower noise levels.

Consistency, which works much better on endomasks. Both observations are easily explained: the noise model is better estimated by Noisesniffer on a flat region. The same explanation is valid for Noiseprint, which also loses performance with exomasks. In contrast, Self-consistency's content-awareness is lost when segmenting forgeries with exomasks. Regardless of the dataset considered, the scores obtained by all of the methods have a high standard deviation with respect to their mean value. This suggests that, given a dataset, the scores in each individual image are not concentrated around the mean but rather spread on a large range of values. Hence, even for methods having low scores, some good detections are likely to happen.

Discussion

The fact that most examined methods perform similarly on exo-and endomasks could lead us to conclude that we could use only one kind. However, comparing the results on both reveals the ability of some methods, such as Self-consistency [START_REF] Huh | Fighting Fake News: Image Splice Detection via Learned Self-Consistency[END_REF], to perform content-aware localization. The goal of this evaluation was not to rank different methods, but to offer a rigorous insight on the capabilities of each method. Knowing the kind of inconsistencies to which each forensic tool is sensitive helps understand and explain its detections in uncontrolled cases, and can help efforts to combine different methods. In that sense, the proposed database is complementary to more traditional databases.

Methods that focus on detecting specific traces are often opposed to more generic methods. However, this study shows the complementary and possible synergies between the two paradigms. For instance, results on the CFA Algorithm datasets showed that, even without explicitly training them, neural networks were sometimes able to detect changes in the demosaicing algorithm, a fact that is usually considered almost impossible, especially locally, except with the most basic demosaicing algorithms [START_REF] Alin | Exposing digital forgeries in color filter array interpolated images[END_REF].

Our experiments also reveal a problematic issue with many of the tested methods. Even though they can yield decent scores, the standard deviations of theses scores over all images of the same dataset is often very high. Even though algorithms perform well on many forgeries, they also often yield false positives that require interpretation to be distinguished from true detections, such as Bammey and Noiseprint in some datasets of the example image seen in Figure 6.1. This is a critical point for many methods, as it makes them usable only to a trained eye.

Conclusion

Image forensics datasets are usually grouped according to forgery types (e.g. splicing, inpainting, or copy-moves), and do not separate the semantic content from the actual traces left by the forgery. In this chapter, we proposed to remove the semantic value of forgeries so as to focus only on the traces. We designed a methodology to automatically create image "forgeries" that leave no semantic traces, by introducing controlled changes in the image processing pipeline. We built datasets by focusing on noise-level inconsistencies, mosaic and JPEG artifacts, and conducted an evaluation of some image forensics tools using this dataset.

Although we focused on three kinds of changes in the forgeries, the same methodology can be applied to more traces, including PRNU inconsistencies, multiple compres-sion, or image manipulations such as resampling. In fact, we can address all forgeries where two different camera pipelines are involved. This includes copy-move, splicing and some methods of inpainting. Further work will incorporate other traces, such as those left by synthesis methods.

Our method can transform automatically large sets of images into forged images with fully controlled tampering cues and no bias that might cause overfitting. Besides evaluation of existing image forensics tools, this methodology could also be used to train forgery detection methods, although care would be needed so as not to overfit if using the same methodology for both training and evaluation.

Conclusion

This thesis was dedicated to image forgery detection through JPEG compression analysis. Several contributions were made to the state of the art in digital image forensics. Several automatic methods were proposed, with no need for visual interpretation of the result. The source code for the proposed methods are publicly available, as well as online tools ensuring that they can be used massively.

Chapter 1 introduced the subject of forgery detection and detailed how JPEG compression affects an image.

Chapter 2 explored the spatial artifacts left by JPEG compression. The proposed JPEG grid detection method involves Chen and Hsu's cross-difference filtering to emphasize blocking artifacts. The detection is made locally in a family of windows, where each local maximum votes for a JPEG grid origin, and the most voted grid position is taken as candidate. An a contrario validation step of this candidate is used to control the number of false detections. The resulting method is unsupervised and depends on a single parameter for selecting the balance between exhaustiveness and speed of the algorithm. The algorithm can be used in image forensics to detect cropped or tampered images, and it can also be used to provide the grid localization for further JPEG analysis. The main limitation of this method is that periodic pattern within the image may lead to meaningful detections that are not JPEG related.

Chapter 3 explored the JPEG traces by looking at the quantized DCT coefficients. A reliable JPEG quantization table estimation algorithm based on the a contrario theory was described. The method uses only information from the image itself and does not require any data from the file header. The statistical validation step secures the detection, leading to a very small number of false detections. In addition, the method has a linear computational complexity. After knowing the grid localization in an image, the estimation of the Q-table can be used to compute a heatmap to enhance the forged areas as the areas having an incoherent quantization.

Chapter 4 explored a third way of performing JPEG reverse engineering by computing the file size of several versions of the compressed image. It is based on the JPEG file sizes obtained after lossless compression of the 64 cropped variants of the image. No information regarding the size of the initial image is required. The proposed algorithm alone allows to detect the presence of JPEG compression and to give the origin of its grid. Thus, the proposed solution can be used as a stand-alone algorithm to detect cropping operations, or it can be inserted into a typical advanced processing chain for complex and local alteration detection.

Chapter 5 is the main contribution of this thesis, a JPEG grid detection and tampering localization method based on the number of zeros in the DCT blocks. It has a high accuracy detecting JPEG compression up to quality factor of 99. It performs reliable reverse engineering and detects forgeries by giving an automatic, localized, and the processing chain of a digital image, the goal being to obtain the "perfect" image, the one that will give the illusion of reality.

Our camera, smartphone or computer, via various image processing software, applies these operations to the image in order to obtain a final result. To know which algorithms to apply, the Exif data accompanying the image can be taken into account. Specialized software can also give you the possibility to play with the parameters of these algorithms.

In L'appareil enregistre aussi des informations, appelées métadonnées EXIF, telles que la marque et le modèle de l'appareil et de l'objectif ; la date, l'heure, le lieu de la prise de la photo et les paramètres de prise de vue. Ces informations ajoutées aux données brutes du capteur forment le fichier RAW. 
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 2 Figure 2: Simplified processing pipeline of an image, from its acquisition by the camera sensor to its storage as a JPEG-compressed file.
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 103 Figure 3: Close-ups on an uncompressed image, moderately compressed image and strongly compressed image. The blocking effect can be seen in the compressed images. The more compressed the image, the stronger the edges of the 8 × 8 blocks.
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 78 Figure 7: Forged and doubly compressed image and its quantization table for the luminance channel stored in the header.
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 1011 Figure 10: Size of the 64 files for the uncompressed, compressed original and compressed forged image. Each bar represents the file size at a certain grid position. The blue bar is the smallest one according to a criterion detailed in Section 4.2. Bar graphs have been zoomed to better distinguish differences.
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 12 Figure 12: Each pixel (yellow) belongs to 64 different 8 × 8 blocks of the image. Six of them were drawn in different colors on the left. Top right shows (in red) the position of a patch not aligned with the grid. Bottom right shows (in green) the position of the patch containing the pixel matching the JPEG grid.

Figure 13 :

 13 Figure 13: Left: original image and its vote map. Right: forged image and its vote map. The color indicates the origin of the grid of the JPEG blocks detected locally.

  Figure 15: In Chapter 6, different image formation pipelines are applied to the same raw image to obtain two images, that are combined to obtain a forged image. The authentic and forged regions present different camera pipeline traces, but are otherwise perfectly coherent. The only difference between the authentic and forged regions are the camera pipeline traces. The last row shows the result of two forensic tools on this image: zero from Chapter 5 and ManTraNet [WAN19].

Figure 16 :

 16 Figure16: Illustration of the zero method being easy to understand among the other filters of the same family. Image from @GuillaumeTC's Twitter account.

Figure 1 . 1 :

 11 Figure 1.1: An example showing how an image has been modified several times in a row, each person disfavored seeing their image removed from the photo. Only Joseph Staline appears in the four photos.

  Figure 1.2: Simplified processing pipeline of an image, from its acquisition by the camera sensor to after its storage as a JPEG-compressed image. The left column represents the image as it goes through each step. The right column plots the noise of the image as a function of intensity in all three channels (red, green blue). The noise curves are obtained with the extended Ponomarenko et al. method [CB13].
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 1 Figure 1.3: The Bayer Matrix is by far the most used for sampling colors in cameras.
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 1 Figure 1.4: JPEG compression pipeline.

Figure 1 . 5 :

 15 Figure 1.5: An example of the impact of quantization on a DCT block. Each DCT coefficient is quantized by a value found in a quantization matrix. Rounding to the nearest integer results in many of the high frequency coefficients being set to zero. Each block is zig-zagged to be encoded as a vector with a sequence of zeros.

Figure 1

 1 Figure 1.6: Example of a forged image (left) and local noise curves (right). The forged area comes from a different image that has its own pipeline. Noise models (right) differ between the background image (pink) and the donor one (green). The resulting tampered image presents local inconsistencies in the noise model.

Figure 1

 1 Figure 1.7: Close-ups on an image before and after compression. The contrast has been enhanced to observe the JPEG artifacts, in particular the blocking effect, allowing us to see the edges of the 8 × 8 blocks.

  Figure 1.8: Forgeries impact on a strongly compressed JPEG image: the authentic image, the cropped image, the image forged by copy-move and the image forged by removing an area.

Figure 1 Figure 1

 11 Figure 1.9: Close-ups of the images displayed after compression with several quality factors.

  [DMM08] and has indeed shown its practical use for detection purposes such as line segment detection [Gio+12], vanishing points detection [Lez+14], anomaly detection [Dav+18], or forgery detection [BGM18; Gar+21] including the methods presented in Chapter 2 [Nik+20; Nik+18], Chapter 3 [Nik+22] and Chapter 5 [Nik+21; Nik+19a].

Figure 2

 2 Figure 2.1: JPEG block artifacts. The red dotted lines highlight the boundaries of the 8 × 8 blocks used in the compression.
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  Figure 2.2: An image, its cross-difference version and a sample of windows starting at coordinate (x, y).

Figure 2

 2 Figure 2.3: Close-ups of the cross-difference, first-order derivative and second-order derivative of the image.

  Figure 2.4: Comparison of cross-difference images for different JPEG compression quality factors.

Figure 2

 2 Figure 2.5: Uncompressed image and JPEG compressed image at quality 90.

Figure 2 . 6 :

 26 Figure 2.6: Original and cropped JPEG compressed images.

  image size: 668 x 687, window step size: 64, number of evaluated windows: 3025 number of meaningful windows: 2883 (95 %) number of meaningful windows for each JPEG grid origin: log(NFA) for each JPEG grid origin:-

  Figure 2.7: Original and forged images from Christlein et al. [Chr+12]'s dataset. Meaningful windows for a foreign grid in red, non-meaningful windows in blue.

Figure 2 . 8 :

 28 Figure 2.8: Real case image from Twitter, detection and original image. The blue area represents an area without any detection.

Figure 2 . 9 :

 29 Figure 2.9: Compressed image and stretched version of the same image (8 pixels added in height).

Figure 2 .

 2 Figure 2.10: Uncompressed image and double stretched in both directions image.

8QFigure 3 . 2 :

 32 Figure 3.2: Histograms of a DCT coefficient for an uncompressed image (left) and after JPEG compression with quantization value q = 6 (right).

Figure 3 . 3 :

 33 Figure 3.3: Histogram of the normalized quantization errors of a DCT coefficient for uncompressed (left) and JPEG compressed (right) images. Normalized quantization errors of JPEG compressed image are highly concentrated on small values, while an approximately uniform distribution is observed in uncompressed image (or rather moderately concentrated on large values).

Figure 3 . 5 :

 35 Figure 3.5: An example of histogram of a DCT coefficient with q = 1.

Figure 3 .

 3 Figure 3.11: Different crops of the JPEG image with quality 90 and their estimated table by the proposed method. Dashes (-) indicate non-detected values (no candidate quantization value was validated as the NFA was bigger than 1). All the estimated values are correct.

Figure 4

 4 Figure 4.1: Close-ups on an uncompressed and compressed image (QF = 80). The contrast of the images has been enhanced to observe JPEG artifacts.

Figure 4 .

 4 3 illustrates an example of one of the blocks of the image after the application of the DCT and a rounding of the coefficients to the nearest integer. It should be noted that unlike the other two cases presented on the right in Figure4.3, there are a significant number of zeros in the matrix. These zeros are concentrated towards the end of the vector created by zig-zag, as shown in the diagram at the top left of Figure4.3. According to the very principle of JPEG compression, RLE coding makes vectors with successive zeros shorter and therefore takes up less space during Huffman g x , g y ← argmin (s x,y ) 10 else 11 g x , g y ← grid not found

Figure 4 . 2 :

 42 Figure 4.2: Different possible grid positions for a JPEG block. The one on the top right is correct.

Figure 4

 4 Figure 4.3: DCT block coefficients rounded to the nearest integer in an uncompressed case, compressed with the correct grid position and compressed then cropped.

Figure 4

 4 Figure 4.4: Size of the 64 files for the uncompressed, compressed intact and compressed cropped image. Each red bar represents the file size at a certain grid position. Bar graphs have been zoomed to better distinguish differences.

Figure 4 . 5 :

 45 Figure 4.5: Image out of context.

Figure 4 .

 4 Figure 4.6 shows a face swap (swapping the face of one subject in an image with another, for humorous effect) posted on social media.

Figure 4 . 6 :

 46 Figure 4.6: Forged image from the well-known Twitter account GuillaumeTC (on the left) and the original image (on the right).

Figure 4 . 7 :

 47 Figure 4.7: Image with main grid at (6, 6) on the left and the same image when removing 6 lines and rows to obtain an image with main grid at (0, 0). State-of-the-art methods are applied to both versions of the forged image.

Figure 5

 5 Figure 5.1: JPEG block artifacts. The red dotted lines highlight the boundaries of the 8 × 8 blocks used in the compression.

Figure 5

 5 Figure 5.2: Each pixel (yellow) belongs to 64 different 8 × 8 blocks of the image. Six of them were drawn in different colors on the left. Top right shows (in red) the position of a patch not aligned with the grid. Bottom right shows (in green) the position of the patch containing the pixel matching the JPEG grid.

Figure 5

 5 Figure 5.3: Left: Uncompressed image and its vote map. Right: JPEG compressed image and its vote map. In both cases, the pixels which return a non valid vote (a tie, border or a third reason that is explained in Section 5.2.5) are shown in black.

Figure 5 .

 5 Figure 5.3 shows two vote map examples. Each color is assigned to one of the 64 possible grid origin votes and black to non-valid votes. The vote map on the left corresponds to an uncompressed image; we observe a random vote map. The vote map on the right corresponds to a JPEG compressed image. The black areas correspond to the pixels which did not vote because of a tie, because they are on the border, or for another reason explained in Section 5.2.5. Blocks in flat image regions can have the same maximal number of zeros, resulting in ties; this happens in the saturated parts of the image.

Figure 5

 5 Figure 5.7: Copy-move impact on a strongly compressed JPEG image. The left image is authentic and the right image is forged by copy-move. The JPEG grids are apparent. A local shift of a square region is easily spotted on the right image.

  Figure 5.8: Up-left: a tampered image. Down-left grid origin vote map. Up-right: raw forgery mask. Down-right: final forgery mask after morphological closing.

Figure 5 . 9 :

 59 Figure 5.9: Erasing impact on a strongly compressed JPEG image. The left image is authentic and the right image is forged by erasing an area. The JPEG grids are easy to see and so are the local missing grids on the right image.

Figure 5 .

 5 Figure 5.10: Forged image (top-left) and original image (top-right). The forgery has erased the JPEG traces. The middle-left image is the vote map of the forged image and the middle-right image is the second vote map. The final row shows the initial forgery detection mask (bottom-left) and the forgery detection mask after recompression (bottom-right).

Algorithm 4 :

 4 zero input : Image I = (R, G, B) defined in Ω output: Main grid Γ output: Forgery map of foreign grids F output: Forgery map of missing grids M 1 Y ← Round(0.299 R + 0.587 G + 0.114 B) compute luminance image 2 votes ← ComputeVotes(Y ) algorithm 5 3 Γ ← DetectGlobalGrids(votes) algorithm 6 4 F ← DetectForgeries(votes, Γ) algorithm 7 excluding main grid Γ 5 if Γ is a valid grid then look for local areas without a grid 6 I = (R , G , B ) ← JPEGCompression(I, 99) compress input image at quality QF = 99 7 Y ← Round(0.299 R + 0.587 G + 0.114 B ) y) ∈ Ω and votes(x, y) = Γ do 10 votes (x, y) ← non valid remove pixels that initially voted for the main grid 11 M ← DetectForgeries(votes , [1 : 63]) algorithm 7 excluding grids 1 to 63, use only grid 0 (0, 0)

Algorithm 5 :

 5 ComputeVotes input : luminance channel Y output: votes 1 votes ← non valid initialize votes 2 zeros ← 0 initialize number of zeros 3 for b ∈ Blocks8x8 do loop on all 8 × 8 blocks 4 d ← DCT(Y (b)) DCT of the block 5 z ← d i,j ∈d i,j =0,0 1 |d i,j |<0.5 number of zeros in the block, excluding the DC coefficient 6 for (x, y) ∈ b do 7 if z = zeros(x, y) then tie, do not vote 8 votes(x, y) ← non valid 9 else if z > zeros(x, y) then 10 zeros(x, y) ← z 11 if IsConstantAlongH(b) or IsConstantAlongV(b) then 12 votes(x, y) ← non valid 13 else 14 votes(x, y) ← GridAlignedWith(b)

  Figure 5.11 shows an example where the image (of size 512 × 512) on the right is the compressed version with quality factor 99 of the image on the left.

Figure 5 .

 5 Figure 5.11: Left: uncompressed image and its vote map. Right: compressed image at quality 99 and its vote map.

  main grid: #0 [0 0] log(nfa) = -296.33 No suspicious traces found in the image with the performed analysis.

Figure 5 .

 5 Figure 5.12: Left: compressed image and its vote map. Right: cropped version of the same image and its vote map.

Figure 5 .

 5 Figure 5.13: Left: compressed image at quality 95 and its vote map. Middle: previous image cropped and its vote map. Right: previous image compressed at quality 98 and its vote map.

Figure 5 .

 5 Figure 5.14: Left: tampered image by copy-move. Middle: vote map. Right: forgery mask F .

Figure 5 .

 5 Figure 5.15: Up: forged image from the well-known Twitter account GuillaumeTC, its vote map and forgery mask F . Down: Original image found online, its vote map and forgery mask F .

Figure 5 .

 5 Figure 5.16: Left: tampered image. Middle: vote map. Right: forgery mask F .

Figure 5 .

 5 Figure 5.17: Up: forged image, its vote map and forgery mask F . Down: compressed version at QF = 99, its vote map for the second round and forgery mask M . The forged image comes from GuillaumeTC's twitter account.

Figure 5 .

 5 Figure 5.18: Up: forged image by healing, vote map, forgery mask F and forgery mask M . Down: original image, vote map, forgery mask F and forgery mask M .

  Figure 5.20: Results of the proposed method compared to the JPEG state-of-the-art methods. The first one produces a difference image, the next three heat maps and the last two masks. The methods are applied to the forged image and to its original source.

5. 5 .

 5 Figure 5.22: Left: forged image. Middle: result on MacOS, where a detection was made, in red. Right: result on Linux, where no detection was made.

Figure 5 .

 5 Figure 5.23: Images and vote maps for the uncompressed image (left) and for JPEG compression with QF = 100, 80, 10, 1 (middle-left, middle, middle-right, and right, respectively).

  Figure 5.24: Left: tampered image by copy-move (twice). Middle: vote map. Right: forgery mask F . An example of a missed detection: one of the two forged regions was not detected because its local grid was correctly aligned with the global grid.

Figure 5 .

 5 Figure 5.25: Left: tampered image in the sky. Middle-left: original image. Middleright: vote map. Right: forgery mask F . An incomplete detection caused by saturation in the image.

Figure 5 .

 5 Figure 5.26: Left: tampered image by copy-move of three people. Middle: vote map. Right: forgery mask F . An example of a missed detection: one of the three forged regions was not detected because it is too small.

Figure 5 .

 5 Figure 5.27: Up: Compressed image and its vote map and forgery mask F . Down: Compressed and stretched version of the image (8 pixels in height) and its vote map and forgery mask F .

Figure 5 .

 5 Figure 5.30: Tampered image and its vote maps F and M. An example of a missed detection: the forgery and the image are too small. The forged area is uncompressed.

Figure 5 .

 5 Figure 5.31: Tampered image from GuillaumeTC's Twitter account and its vote maps. An example of a missed detection.

Figure 5 .

 5 Figure 5.32: Tampered images, their vote maps after compression at quality 98 and final detection.

Figure 5 .

 5 Figure 5.34 shows examples of the different limitations described before by the merged masks visualisation, that combines the two forgery masks F and M .

Figure 5 .

 5 Figure 5.33: Up: Forged image, colored vote map and possible original image. Down: zero applied to the image of Figure 5.22 with compression levels 99, 98 and 95. All the forged area is detected in the second version but also some false detection at the top. Indeed, when compressing too much, the number of false detections increases as can be seen on the third image.

Figure 5 .

 5 Figure 5.34: Examples of limitations of zero. Images to analyze and the final results of both forgery masks merged.

  Figure 6.1: Different image formation pipelines are applied to the same RAW image to obtain two images, that are combined to obtain a forged image. The authentic and forged regions present different camera pipeline traces, but are otherwise perfectly coherent. The last row shows the result of two forensic tools on this image.

  Figure 6.2: Evolution of the noise curves when passing through the successive steps of a simplified image processing pipeline.

Figure 6 .

 6 Figure 6.2 summarizes the image processing pipeline [Del+21] and shows how the noise curves change at its different steps. The main steps are detailed in the following, as they were described in more detail in Section 1.2.

  Figure 6.4: For each image, we use an endomask (left) taken from the image's segmentation, and an exomask (right) taken from another image and thus decorrelated from the image's contents. The last two images were paired during mask creation, thus the endomask of each becomes the exomask of the other.

  [Gar+21], Lyu [LPZ13; ZPK17] and Mahdian [MS09; ZPK17]; CFA-grid detection methods Bammey [BGM20], Shin [SJE17] and Choi [BGM21; CCL11]; JPEG-based methods CAGI [Iak+18; ZPK17], FDF-A [Ame+14; ZPK17], I-CDA [BDRP11; ZPK17], CDA [Lin+09b; ZPK17] and BLK [LYY09; ZPK17] as well as our method from Chapter 5, and generic methods Splicebuster [CPV15b], Noiseprint [CV20], ManTraNet [WAN19] and Self-Consistency [Huh+18].

Figure

  Figure B.4: Simplified processing pipeline of an image, from its acquisition by the camera sensor to its storage as a JPEG-compressed image.

Figure B. 5 :

 5 Figure B.5: An example of a demosaicing algorithm: from raw image to color image.

Figure C. 2 :

 2 Figure C.2: Le pixel de coordonnées (18, 12) est encadré en rouge.

  Figure C.4: Chaîne de traitement simplifiée d'une image, depuis son acquisition par le capteur de la caméra jusqu'à son stockage sous forme d'image compressée au format JPEG.

Figure C. 5 :

 5 Figure C.5: Un exemple d'algorithme de dématriçage : de l'image brute vers l'image couleur.

  

  

  

  

  

  

  

  

  table of the previous JPEG compression:

	estimated quantization matrix (-when not meaningful):
		3	3	5	7 12 15 18
	4	4	4	6	8 17	-17
	4	4	5	7 12 17 21 17
	4	5	7	9 15 26	-19
	5	7 11 17 20 33	-23
	7 11 17 19 24	-	-	9
	15 20 23 26	-	-	-	-
	-29	-29	-	-	-31

Table Estimator ,

 Estimator Tina Nikoukhah, Miguel Colom, Jean-Michel Morel and Rafael Grompone von Gioi, Image Processing On Line (IPOL), 2022.

• The Impact of JPEG Compression on Prior Image Noise, Marina Gardella, Tina Nikoukhah, Yanhao Li and Quentin Bammey, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022. • Non-Semantic Evaluation of Image Forensics Tools: Methodology and Database, Quentin Bammey, Tina Nikoukhah, Marina Gardella, Rafael Grompone von Gioi, Miguel Colom and Jean-Michel Morel, IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2022. • ZERO: a Local JPEG Grid Origin Detector Based on the Number of DCT Zeros and its Applications in Image Forensics, Tina Nikoukhah, • Comment reconstruire l'histoire d'une image digitale, et de ses altérations, Sécurité Multimédia vol. 1, Quentin Bammey, Miguel Colom, Marina Gardella, Rafael Grompone von Gioi, Jean-Michel Morel, Tina Nikoukhah and Denis Perraud, ISTE, 2021.

Table Estimator

 Estimator 

	: https://ipolcore.
	ipol.im/demo/clientApp/demo.html?id=399
	• ZERO: a Local JPEG Grid Origin Detector Based on the Number of
	DCT Zeros and its Applications in Image Forensics: https://ipolcore.
	ipol.im/demo/clientApp/demo.html?id=390
	• Local JPEG Grid Detector via Blocking Artifacts, a Forgery Detection

Tool: https://ipolcore.ipol.im/demo/clientApp/demo.html?id=283

  Figure 3.1: JPEG-encoded picture and its quantizationtable for the Y channel. The JPEG quality factor of this table is QF = 95.

	2 1	1	2	2	4	5	6
	1 1	1	2	3	6	6	6
	1 1	2	2	4	6	7	6
	1 2	2	3	5	9	8	6
	2 2	4	6	7	11 10	8
	2 4	6	6	8	10 11	9
	5 6	8	9	10 12 12 10
	7 9 10 10 11 10 10 10

Table 3

 3 

.1: Quantization table and associated NFA values obtained by the proposed method for the image in Figure

3

.1. Notice that the proposed method does not estimate the DC coefficient (upper-left empty position).

Table 4

 4 

				.1.	
				datasets	
			noise UCID [SS03] Kodak [Kod]
	BLK [LYY09]	% true % false 100 -	-100	-100
	GOD (Chapter 2)	% true % false	-0	-0.3	-0
	Proposed	% true	-	-	-
	method	% false	0	0.04	0
	Table 4.1: Results of the proposed method compared to BLK and GOD on uncom-
	pressed images.				

Table 4 .

 4 2: Results of the proposed method compared to BLK and GOD on 12 288 compressed and cropped images from the Kodak[Kod] database.

  .128 (0.228) -0.008 (0.070) 0.029 (0.153) -0.007 (0.076) 0.052 (0.179) 0.098 (0.210) 0.098 (0.210) 0.091 (0.198) 0.091 (0.198) -0.011 (0.073) 0.005 (0.111) -0.009 (0.082) 0.020 (0.140) 0.061 (0.182) 0.061 (0.182) -0.004 (0.087) -0.003 (0.085) 0.226 (0.242) 0.226 (0.242) 0.228 (0.249) 0.228 (0.249) 0.203 (0.244) 0.203 (0.244) 0.014 (0.169) -0.015 (0.139) -0.017 (0.139) 0.216 (0.265) 0.216 (0.265) 0.216 (0.273) 0.216 (0.273) 0.187 (0.264) 0.187 (0.264) -0.004 (0.068) -0.003 (0.098) -0.005 (0.097) 0.449 (0.351) 0.449 (0.351) 0.442 (0.350) 0.442 (0.350) 0.378 (0.354) 0.378 (0.354)

					Dataset		
			Noise Level	CFA Grid	CFA Algorithm	JPEG Grid	JPEG Quality	Hybrid
	Noise-level-based	Noisesniffer Lyu Mahdian	0.128 (0.228) 0.010 (0.090) 0.010 (0.090) 0.007 (0.137) 0.007 (0.137) 0.046 (0.146) 0.046 (0.146) 0.055 (0.171) 0.055 (0.171)	0.002 (0.093) 0.010 (0.157) 0.005 (0.082) 0.023 (0.159)	0.002 (0.094) 0.009 (0.159) 0.039 (0.128) 0.057 (0.183)	0.000 (0.089) 0.007 (0.148) 0.005 (0.086) 0.014 (0.146)	0.002 (0.091) 0.012 (0.097) 0.012 (0.097) 0.013 (0.156) 0.018 (0.150) 0.018 (0.150) 0.036 (0.132) 0.055 (0.158) 0.055 (0.158) 0.052 (0.180) 0.067 (0.191) 0.067 (0.191)
	CFA-based	Bammey Shin Choi	0.007 (0.084) 0.021 (0.153) 0.007 (0.101) 0.004 (0.123) 0.026 (0.025) 0.030 (0.018)	0.682 (0.329) 0.682 (0.329) 0.665 (0.349) 0.665 (0.349) 0.104 (0.166) 0.104 (0.166) 0.099 (0.171) 0.099 (0.171) 0.603 (0.203) 0.603 (0.203) 0.575 (0.191) 0.575 (0.191)	0.501 (0.427) 0.501 (0.427) 0.491 (0.429) 0.491 (0.429) 0.085 (0.172) 0.085 (0.172) -0.002 (0.042) -0.001 (0.043) 0.015 (0.109) 0.023 (0.095) 0.029 (0.091) 0.133 (0.288) 0.133 (0.288) 0.018 (0.107) 0.020 (0.100) 0.128 (0.290) 0.128 (0.290) 0.015 (0.109) 0.084 (0.179) 0.084 (0.179) -0.005 (0.058) -0.006 (0.059) 0.012 (0.114) 0.012 (0.114) 0.420 (0.208) 0.420 (0.208) 0.001 (0.002) -0.001 (0.003) 0.156 (0.114) 0.156 (0.114) 0.385 (0.210) 0.385 (0.210) -0.001 (0.002) 0.001 (0.001) 0.139 (0.116) 0.139 (0.116)
		ZERO	0.000 (0.000) 0.000 (0.000)	0.000 (0.000) 0.000 (0.000)	0.000 (0.000) 0.000 (0.000)	0.796 (0.349) 0.796 (0.349) 0.756 (0.387) 0.756 (0.387)	0.732 (0.413) 0.732 (0.413) 0.638 (0.451) 0.638 (0.451) 0.708 (0.421) 0.708 (0.421) 0.624 (0.453) 0.624 (0.453)
	JPEG-based	0.004 (0.045) 0.003 (0.052) 0.000 (0.000) 0.031 (0.139) I-CDA CAGI FDF-A 0.000 (0.000)	0.000 (0.027) 0.000 (0.042) 0.000 (0.000) 0.000 (0.000)	0.002 (0.033) 0.001 (0.044) 0.000 (0.000) 0.000 (0.000)	0.038 (0.077) 0.038 (0.077) 0.023 (0.077) 0.023 (0.077) 0.416 (0.417) 0.416 (0.417) 0.423 (0.408) 0.423 (0.408)	0.044 (0.080) 0.044 (0.080) 0.031 (0.071) 0.031 (0.071) 0.028 (0.082) 0.028 (0.082) 0.021 (0.073) 0.021 (0.073) 0.422 (0.407) 0.422 (0.407) 0.381 (0.407) 0.381 (0.407) 0.414 (0.414) 0.414 (0.414) 0.385 (0.408) 0.385 (0.408)
		CDA	-0.001 (0.034) 0.000 (0.055)	0.000 (0.052)	0.485 (0.339) 0.485 (0.339)	0.474 (0.344) 0.474 (0.344) 0.401 (0.360) 0.401 (0.360)
		BLK	0.000 (0.015) 0.002 (0.029)	0.006 (0.078) 0.025 (0.164)	0.009 (0.079) 0.026 (0.164)	0.232 (0.461) 0.232 (0.461) 0.227 (0.459) 0.227 (0.459)	0.229 (0.458) 0.229 (0.458) 0.171 (0.430) 0.171 (0.430) 0.223 (0.455) 0.223 (0.455) 0.161 (0.430) 0.161 (0.430)
		Noiseprint	0.127 (0.200) 0.127 (0.200) -0.001 (0.069) -0.001 (0.069) 0.066 (0.149) 0.066 (0.149) 0.108 (0.232) 0.108 (0.232) 0.002 (0.114) 0.002 (0.114) 0.060 (0.179) 0.060 (0.179)	0.013 (0.087) 0.013 (0.087) 0.016 (0.140) 0.016 (0.140)	0.178 (0.248) 0.178 (0.248) 0.153 (0.230) 0.153 (0.230) 0.138 (0.279) 0.138 (0.279) 0.128 (0.261) 0.128 (0.261)
	Multi-purpose	ManTraNet Self--consistency	0.049 (0.091) 0.049 (0.091) 0.032 (0.099) 0.032 (0.099) -0.004 (0.065) 0.000 (0.040) 0.000 (0.040) -0.004 (0.065) 0.053 (0.165) 0.074 (0.169) 0.074 (0.169) 0.053 (0.165) 0.082 (0.323) 0.082 (0.323) 0.028 (0.261) 0.028 (0.261) 0.036 (0.270) 0.036 (0.270) 0.154 (0.429) 0.154 (0.429) 0.077 (0.393) 0.077 (0.393) 0.082 (0.403) 0.082 (0.403)	0.004 (0.023) 0.004 (0.023) 0.000 (0.043) 0.000 (0.043) 0.011 (0.262) 0.011 (0.262) 0.060 (0.386) 0.060 (0.386)	0.095 (0.164) 0.095 (0.164) 0.112 (0.169) 0.112 (0.169) 0.086 (0.171) 0.086 (0.171) 0.107 (0.176) 0.107 (0.176) 0.078 (0.335) 0.078 (0.335) 0.138 (0.370) 0.138 (0.370) 0.151 (0.440) 0.151 (0.440) 0.246 (0.425) 0.246 (0.425)
		Splicebuster	0.099 (0.188) 0.099 (0.188) 0.100 (0.217) 0.100 (0.217)	0.003 (0.085) 0.003 (0.085) 0.012 (0.157) 0.012 (0.157)	0.075 (0.157) 0.075 (0.157) 0.072 (0.202) 0.072 (0.202)	0.005 (0.083) 0.005 (0.083) 0.006 (0.135) 0.006 (0.135)	0.084 (0.175) 0.084 (0.175) 0.101 (0.192) 0.101 (0.192) 0.082 (0.220) 0.082 (0.220) 0.099 (0.215) 0.099 (0.215)

0

Table 6 .

 6 1: Results of different state-of-the-art forensics tools on our six datasets, using the Matthews Correlation Coefficient (MCC), detailed in Sec. 6.4.2. The methods, on the left, are grouped by categories. As a baseline, a random classifier is expected to yield a score of 0. The mean of the MCC scores over each image of the dataset, as well as the standard deviation in parentheses, are shown for the exogenous mask and endogenous mask datasets. Grayed-out numbers represent results of methods on datasets that are irrelevant to said methods. The best two scores are underlined for each database.
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If the image has undergone JPEG compression with a quality of Q, compressing it with this same rate would not change the file size to the correct grid but would reduce those of the others, making discrimination less effective.

return Γ, F , M For the sake of simplify, the reference code does not include an implementation

The DCT computation uses the usual float IEEE 754 number representation. Different platforms and even compilers use slightly different numerical approximations which may result in slightly different DCT values. As a result, the comparison of the absolute value to 0.5 may lead in some rare cases to different results depending on the computational setting.

In the reference C code, the grids are numbered from 0 to 63, 0 corresponding to (0, 0) and 63 to (7, 7). The function detect forgeries takes as input a grid number to be excluded, plus the largest grid number to be included. Therefore, for the foreign grid detection: the main grid is selected as the excluded grid parameter and the maximum grid value is set to 63; for the missing grid detection: the non valid grid is set as grid to be excluded and the maximum grid number is set to 0, thus only grid 0, i.e. (0, 0), is used.

This can be verified by JPEG quantization table estimation methods.

Remerciements

JPEG compressed image [START_REF] Ho | An effective histogram-based approach to JPEG-100 forensics[END_REF]. Concerning the missing values, in some cases the Q-table can be completed when a known table is identified with the detected values, as proposed in methods like [START_REF] Fu | A generalized Benford's law for JPEG coefficients and its applications in image forensics[END_REF]. Figure 3.8 illustrates the impact of the image size on the result quality. The proposed algorithm was applied to different crop sizes of the same image as before, JPEG compressed with QF = 93. One can observe that the larger the image, the more elements of the Q-table are detected by the method. Indeed, the larger the image, the more non-null DCT coefficients and the better the statistical information to validate the a contrario test.

Impact of the image size

As said before, what is important is the number of non-null DCT coefficients. As a result, the number of elements detected by the method for a given image size may depend on the contents of the image. Figure 3.9 shows the result obtained on two equal sized crops of same image. The first one corresponds to a flat region of the image, where most high-frequency DCT coefficients are null or have a small value. On the other hand, the second crop corresponds to a highly textured part of the image, with more high-frequency contents and thus more non-null DCT coefficients. As expected, more elements of the Q-table are detected in the second case.

Aligned double JPEG compression

When an image has gone through several compressions, only the last Q-table is in the header. However, the DCT coefficients have gone through more than one quantization. Figure 3.10 shows an image first compressed at quality QF 1 = 90, then QF 2 = 98; the figure also shows the quantization table for the Y channel stored in the JPEG header, and the estimated quantization table.

The estimated table is very different from the one in the header and is also not the same as the one for QF = 90, which can be seen in Figure 3.7. Most of the estimated estimated quantization matrix: 

Grid origin (5, 4)

Grid origin (4, 3) Grid origin (4, 5) Grid origin (0, 1)

Grid origin (0, 4)

Grid origin (4, 0)

Grid origin (0, 7) 5 s1 , . . . , s64 ← ascending order (s 0,0 , . . . , s 7,7 ) 6 µ ←mean (s 17 , . . . , s64 ) 7 σ ← variance (s 17 , . . . , s64 ) 8 if s1 < µ -κ • σ then computed only once. Finally, the votes of all the pixels within a distance 7 from the image border are set to non-valid.

The vote maps displayed in the examples of this chapter and in the demo are colored with a Python script. The non valid votes are in black, the other votes are colored. For example, the vote for the grid (0, 0) is green.

Main grid detection

Algorithm 6: DetectGlobalGrids input : votes output:

Warning("More than one meaningful grid globally") After computing the vote map, the NFA for each of the 64 possible grids is computed on the whole image. Algorithm 6 describes the procedure. The most meaningful one, which is the one with the most votes, will be called the main grid. If none of the grids is meaningful, which means that the NFA is larger than 1, then no main grid is detected. A warning is produced when more than one global grid is found, as this may indicate that the image was manipulated.

Concerning the numerical implementation, two comments are relevant. First, in our implementation, the computation of the binomial tail is performed using the following relation to the Gamma function:

for which there are effective implementations readily available, for example on http: //www.rskey.org/gamma.htm. To speed up the computations, the sum of the binomial tail is truncated when the error can be bounded to be less than 10%.

Secondly, the NFA may reach very small values, which may underflow the usual IEEE 754 number representation. Our implementation in the C programming language, which uses IEEE 754 number representation, computes log 10 (NFA) instead of NFA, allowing for a larger numeric range. Any logarithm base is equally useful for this purpose; the 10 base makes it slightly easier to read the order of magnitude of the NFA values. Of course, the test must now compare log 10 (NFA) to log 10 (ε), which for ε = 1 is zero.

Forgery detection

After determining the main grid (one of the 64 different possibilities or none at all), a forgery may be a local area having a meaningful grid different from the main one or a missing grid when there is a main grid. To detect each type of forgery, the following method described in Algorithm 7 is called with different parameters. The vote map (which may be the initial vote map or the secondary one after the JPEG compression) is analyzed by a region growing method (Algorithm 8) to detect regions that voted for a particular grid. For the foreign JPEG grid detection, the method aims at detecting regions that voted for a grid that is different from the main grid. For the missing JPEG grid detection, the method aims at detecting regions that voted for the grid (0, 0). 2 An NFA computation is done in a bounding box around the area and a forgery is detected if the result is meaningful. This step results in a binary forgery mask. In the reference code, to accelerate the method, the NFA is only computed if the region is larger or equal to a minimal size of 64 log N T log 64 . This corresponds to the minimal size of a region which can lead to meaningful detection in the most favorable Multiple datasets One of our goals is to determine which inconsistencies each forensic tool is sensitive to. Changes in the image processing pipeline, done at different steps of the chain, lead to different inconsistencies (see Section 6.2.3). In consequence, we created five specific datasets, each of which features a specific change in the image processing pipeline. For each image, we started by randomly choosing the three parameters that are used for this image across all datasets:

• The mosaic pattern, chosen among the four possible offsets of the camera's Bayer pattern;

• the demosaicing algorithm, chosen randomly among those available in the Li-bRaw library [Lib];

• the gamma-correction power.

The gamma correction is the same for both regions of the image, and the mosaic pattern is the same except for the CFA Grid, CFA Algorithm and Hybrid datasets.

For each image, both the endo-and exomasks, constructed as explained above, are the same across all datasets.

Raw Noise Level dataset In this dataset we add random noise to each raw image before processing it. As pointed out in Section 6.2.3, noise variance in raw images follows a linear relation given by σ 2 = A + Bu, where A and B are constants and u is the noiseless image. We start by randomly selecting two different pairs of constants (A 0 , B 0 ) and (A 1 , B 1 ), in a range that ensures the resulting images look natural. Both images are then processed with the same pipeline. This dataset mimics the inconsistencies in noise models that could be found in spliced images.

CFA Grid dataset

In this dataset we only change the mosaic pattern of the forged image inside the mask. Thus, the original image and the forged one would be identical if not for their mosaic grid origins. This kind of trace may appear (with probability 3 4 ) when the forgery was an internal copy-move.

CFA Algorithm dataset In this dataset, the two processing pipelines use different demosaicing algorithms. The demosaicing pattern is chosen independently for each pipeline. Thus there is a 1 4 chance that they are aligned. A new mosaic pattern is also randomly chosen, thus having a 3 4 chance of being different from the one of the main image. This dataset represents the change in the mosaic that would occur from splicing, as two different images most likely do not share the same demosaicing algorithms, and the alignment of their patterns after splicing is random.

JPEG Grid dataset

In this dataset we only change the compression grid origin. Similarly to the CFA Grid dataset, if the forgery is an internal copy-move, the JPEG grid of the forged region is different from the grid in the authentic region, with probability 63 64 . The JPEG compression quality for both pipelines is then chosen randomly, keeping the values in a range that is typical of most compressed images and challenging enough for JPEG-based algorithms. or Bammey [START_REF] Bammey | An Adaptive Neural Network for Unsupervised Mosaic Consistency Analysis in Image Forensics[END_REF], correctly detect the forgeries in the relevant images, but tend to make noise-like false detections in the images for which they cannot see the forgery. Automatically selecting the relevant detections of an algorithm would make it easier to use without needing interpretation. zero's automatic validation step makes it easier to use. The image and mask can be seen in Figure 6.1.

On the hybrid dataset, the scores of the specific methods are lower than on the specific datasets. For the JPEG-based methods, this is explained by the fact that one sixth of this dataset does not feature JPEG compression traces. For the CFA and Lyu and Mahdian noise-based methods, this is made worse by the fact that JPEG compression alters the previous noise and demosaicing artifacts, as shown in Figure 6.2. In particular, CFA-based methods are notoriously weak on JPEG images, since JPEG compression removes the high frequencies, in which mosaic artifacts lie. This can be seen in Figure 6.5, where the CFA-based method Bammey cannot make any prediction on the hybrid image, where the main and forged region were compressed with quality factors of 93 and 75, respectively. On the other hand, Splicebuster obtains a higher score on the hybrid dataset since the analysis of noise residuals co-occurences enables this method to detect traces in multiple steps of the camera processing chain.

While multi-purpose forensic methods can, to some extent, detect noise-level inconsistencies, in the demosaicing algorithm and in the JPEG quality, they are blind to shifts in both the JPEG and CFA grids. This is not entirely surprising; with the exception of Splicebuster, the tested generic tools are based on mostly-convolutional neural networks, which are invariant to translation. Although Noiseprint [START_REF] Cozzolino | Noiseprint: A CNN-Based Camera Model Fingerprint[END_REF] adapts its training scheme to be able to detect shifts in periodic patterns, it entirely fails to see the demosaicing grid, and does little better than random detecting JPEG grid inconsistencies.

Most methods perform similarly on the endomask and exomask datasets. Two notable exceptions are Noisesniffer which underperforms on endomasks, and Self-reliable result without requiring any human interpretation. The proposed algorithm is efficient; the bottleneck is the computation of the vote maps, which requires about the same number of operations as performing 129 JPEG compressions of the same image.

In Chapter 6, we introduced a novel way to evaluate forgery detection methods. By locally modifying the formation pipeline of an image, we were able to create "nonsemantic forgeries", that contain changes in the underlying traces of the image without changing any of its semantic content. This methodology enables trace-aware evaluation of forensics tools, as it can highlight exactly to which traces each method is sensitive. zero beats the state of the art on this dataset.

All in all, the main contributions of this thesis are three-fold:

• The improvement of JPEG forensics methods: by making the block artifact grid extraction automatic with the Grid Origin Detector method (Chapter 2) and the estimation of the quantization table with a control of false detections by the Q-table method (Chapter 3).

• The introduction of a new state-of-the-art method, zero in Chapter 5, which has been integrated in the forensic plug-in InVID-WeVerify.

• The Trace methodology and database, introduced in Chapter 6, which provides a method to estimate the non-semantic detection strengths and weaknesses of all forensic methods.

The contributions of this dissertation open up a number of possibilities for followup investigations. All methods are applied on the luminance channel of the image and could be adapted to handle color information. Also, zero is the first level of analysis and, coupled with Q-table it could be more thorough. Instead of only looking for the zeros in the DCT distribution, we could look at each estimated coefficient by Q-table, and detect if the value is in or out of the distribution. This would lead to a more efficient algorithm to detect double compressed forged images and areas with no JPEG traces (e.g. with missing grid areas).

The methods developed in Chapter 2 and 5 have one limitation regarding the resampling operation. Similar techniques could be specially tailored for image resampling detection and could be able to tell the difference between resampling and JPEG compression. Our best guess so far is to look for several periodic patterns, not only those that are 8 pixels periodic. We observed that if an image is upsampled before being also JPEG compressed, the resampling traces can remain detectable if the final compression is mild enough.

Further work on the Trace database would include a systematic analysis of more camera traces and post-processing applied to the whole image, such as double compression traces. In addition to evaluation, the proposed methodology could also be used to train forgery detection methods.

Appendix A The InVID-WeVerify plug-in

This appendix presents a new enhanced forensic toolkit, developed in the En-visu4 project and integrated in the AFP's fact-checking tool InVID-WeVerify. The purpose of this projet was to tackle forensic tools usability problems reported by fact checkers trying to debunk fake images. In response to this challenge, we significantly enhanced the forensic toolbox, with new state-of-the-art methods such as zero, completely redesigned user interface and integrated a new tool to compare images and export the result into an animated GIF image to better reveal image manipulation. This forensic toolkit is used in the image processing course given to journalists and teachers through the Master of EMI, ENS Paris-Saclay and ESJ Lille.

A.1 Forensics tool

Since digital image forensics is a very active research field, new methods are being constantly developed. The forensics toolbox was updated to include some of the newest methods. Specifically, were added Splicebuster [START_REF] Cozzolino | Splicebuster: A new blind image splicing detector[END_REF], CFA [START_REF] Choi | CFA Pattern Identification of Digital Cameras Using Intermediate Value Counting[END_REF], Mantranet [START_REF] Wu | ManTra-Net: Manipulation Tracing Network for Detection and Localization of Image Forgeries With Anomalous Features[END_REF], Fusion [START_REF] Charitidis | Operation-wise Attention Network for Tampering Localization Fusion[END_REF], CMFD [START_REF] Wu | BusterNet: Detecting copy-move image forgery with source/target localization[END_REF] and RCMFD [START_REF] Ehret | Robust copy-move forgery detection by false alarms control[END_REF] and zero [START_REF] Nikoukhah | ZERO: a Local JPEG Grid Origin Detector Based on the Number of DCT Zeros and its Applications in Image Forensics[END_REF] described in this thesis in Chapter 5.

The more complementary filters we add, the best chances of detecting a forgery we have. However, adding new filters increases the number of false positives. To manage this, we added methods having a statistical validation step that controls the number of false detections [START_REF] Nikoukhah | ZERO: a Local JPEG Grid Origin Detector Based on the Number of DCT Zeros and its Applications in Image Forensics[END_REF][START_REF] Ehret | Robust copy-move forgery detection by false alarms control[END_REF]. Furthermore, the statistical validation step enables these methods to output a binary detection mask such as in Figure A.1, helping users to easily interpret the result.

In addition to methods providing binary decision masks, the interpretability of the results is eased by the incorporation of Fusion [START_REF] Charitidis | Operation-wise Attention Network for Tampering Localization Fusion[END_REF]. This method develops a deep learning-based approach and aims at giving one final heatmap. Instead of inspecting the input image itself, the Fusion method merges all the signals from the other filters into one final visualization that requires no expert knowledge for interpretation.

A.1.1 Classification of the forensic tools

In order to provide the users with a clearer analysis, the tools provided in the toolkit were classified into enhancers and filters. The first category corresponds to different visualizations of the suspected image, highlighting different aspects, while the second one corresponds to forgery detection methods aiming to find inconsistencies in the image. Furthermore, within the filters category, methods were grouped according to the specific traces they use for tampering detection.

Enhancers vs. filters The goal of image enhancers is to obtain another version of the very same image that is more suitable for visual inspection. This is done by highlighting certain characteristics that are usually hidden behind the image content. Image enhancers do not aim at detecting forgeries but can provide visual cues pointing out to suspicious regions that should be regarded more in detail. The enhancers integrated in the toolkit are error level analysis [START_REF] Krawetz | A picture's worth[END_REF], the median filter and the Laplacian operator.

On the other hand, filters are methods specifically designed for forgery detection. They aim at detecting anomalies that can be caused by tampering. These algorithms output a map pointing out to the zones were inconsistencies were found. A list of the filters integrated to the toolbox is given in the next subsection according to the category they belong to. Special care should be taken when analyzing enhancers for forgery detection since they can lead to mistaken conclusions [START_REF] Bidder | Expert Criticizes Allegations of Russian MH17 Manipulation[END_REF]. Enhancers should not be used as a proof of forgery but rather as a clue. For instance, in Figure A.2 (left), the enhancers show the American Constitution differently than the background of the image, suggesting this zone might be forged. Indeed, the added Constitution coming from a different image has probably gone through several operations such as warping, which disrupts the traces in this zone. However, no decision is made on the authenticity of this zone. The final proof of forgery should be given by filters, as shown in A.2 (right).

Families of filters

The goal of image verification platforms is not only to detect forgeries but also to provide users with simple yet accurate information about the inconsistencies found. Many forgery detection methods share a common approach and can be, therefore, grouped according to it. This provides a coarse-to-fine explanation of the algorithms: from the general approach shared by all the family to the specifies of each method.

Four categories were defined in order to display the thirteen filters integrated in the interface. The first family is called compression and corresponds to the forgery detection algorithms that search for inconsistencies in the JPEG compression artifacts, as explained in Section 1.5. This family comprises six filters, namely zero [Nik+21], GHOST [START_REF] Farid | Exposing digital forgeries from JPEG ghosts[END_REF], CAGI [START_REF] Iakovidou | Content-aware detection of JPEG grid inconsistencies for intuitive image forensics[END_REF], DQ [START_REF] Lin | Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis[END_REF], DCT [START_REF] Ye | Detecting digital image forgeries by measuring inconsistencies of blocking artifact[END_REF] and BLK [START_REF] Li | Passive detection of doctored JPEG image via block artifact grid extraction[END_REF]. This is the family with the most methods, which is adequate since the tested images mostly come from social media where images are JPEG compressed.

The second category groups all methods that focus on in-camera processing chain traces and is therefore named traces. These traces include noise analysis and CFA patterns. The algorithms grouped under this category are Splicebuster [START_REF] Cozzolino | Splicebuster: A new blind image splicing detector[END_REF], Wavelet [START_REF] Mahdian | Using noise inconsistencies for blind image forensics[END_REF] and CFA [START_REF] Choi | CFA Pattern Identification of Digital Cameras Using Intermediate Value Counting[END_REF].

The deep-learning family is formed by more generic, neural-network-based methods. Though these methods do not necessarily search for the same forgery traces, they share the approach under which they are constructed. Namely, these algorithms are trained to directly detect and localize forgeries. This category includes Mantranet [START_REF] Wu | ManTra-Net: Manipulation Tracing Network for Detection and Localization of Image Forgeries With Anomalous Features[END_REF] and Fusion [START_REF] Charitidis | Operation-wise Attention Network for Tampering Localization Fusion[END_REF].

Finally, under the cloning name, the last family comprises direct methods aiming to detect similar patches on the image that can be the result of internal copy-paste. Two filters make up this family: CMFD [START_REF] Wu | BusterNet: Detecting copy-move image forgery with source/target localization[END_REF] and RCMFD [START_REF] Ehret | Robust copy-move forgery detection by false alarms control[END_REF].

A.1.2 Improvement of the user interface design

According to this classification, one of the first steps was to redesign the user interface by presenting all filters of the same family together on the same screen than the analyzed image, see Figure A.3.

To improve the legibility of the results, we decided to display the heatmap outputs of the different methods with the mako colormap [CSH20; Was21]. This colormap is legible even for color-deficient people, and is perceptually uniform, i.e. the perceived luminance increases linearly with the values. This is in contrast to the often-used jet colormap, which is not legible by color-deficient people and leads to large gaps in color for relatively small differences of values. Under the jet colormap, middle values (which correspond to mild confidence in a forgery) would appear brighter than highly-confident results.

A.2 CheckGIF: homography to better reveal image tampering

A common practice among journalists and fact checkers is to perform image reverse search on the images they want to verify. Image similarity search (on Google, Yandex, Bing, Tineye) is indeed the main verification practice on images and videos (using keyframes). Whenever an image has been tampered, the result of this query often leads to the source image, or at least, to an image that is supposed to be the source. Careful visual inspection is then required in order to determine the matching regions and to spot the forged areas. However, this task can be difficult since, aside from tampering, images undergo several manipulations that make naked-eye comparison cumbersome. Indeed, manipulations such as cropping, resampling, rotation or change of contrast can make this comparison tricky.

In order to address this issue, we included a tool that eases this task by finding the correct alignment between both images, based on the ORSA homography algorithm [START_REF] Moisan | Automatic Homographic Registration of a Pair of Images, with A Contrario Elimination of Outliers[END_REF]. The main steps of this matching process can be described as follows. First, the algorithm extracts scale-invariant keypoints from both images. Then, these keypoints are matched from one image to the other and used to fit the parameters of an homography, see Figure A.4.

Once the homography is obtained, the geometrical transformations can be applied to the images so that both images will match, see Figure A.5.

The search engine Tineye offers such a comparison feature but only between already indexed images. In the tool, fact checkers can use any image from social networks, or local images, even if they are not indexed somewhere. On top of this comparison mechanism, the generation of an animated GIF that flips from one image to the other at a speed defined by the end-user was added. Flipping between these aligned images eases visual comparison and reveals visually the image manipulation. Those images then can be downloaded and embedded in debunking reports. 

Appendix B

The thesis for the general audience

Photography has become a massively popular practice. Thanks to the arrival of smartphones, it has become very easy to take a beautiful picture and share it with thousands of people in a few seconds on social networks. However, we tend to forget all the work done by image processing algorithms, those methods that allow the creation of the image, its visualization, its improvement and its storage. Throughout this chapter, we will follow the evolution of a digital image during its processing chain, from what a photographic sensor receives to the final file stored in memory.

From photographic sensor to JPEG images

Everything starts with the acquisition of the image. In the same way that our eyes manage to see an object, a camera "sees" thanks to its sensor. A photographic sensor is an electronic component that forms the basis of digital cameras, the equivalent of film in silver photography. It is composed of cells sensitive to light, called photosites. These react to the amount of light they receive and convert it into a number, which is then stored in the camera's memory. After the acquisition, we obtain a table of values representing the light intensity associated with each photosite.

To obtain a color image, the technology is inspired by human perception, by associating to each value one of the three following colors: red, green or blue. To do this, the photosites are covered with a colored physical filter. There are various arrangements (for example the X-trans of Fujifilm) but the most popular is the Bayer matrix, composed of 50% of green, 25% of red and 25% of blue. An image with its Bayer matrix is illustrated in Figure B.1. Each photosite returns only the intensity of the primary color associated. By additive synthesis, these three colors can reconstitute all the colors of the visible spectrum. The predominance of green is due to the fact that human vision is more sensitive to this color.

The camera also records information, called Exif metadata, such as the model of the camera and lens; the date, time, location of the photo and the shooting parameters. This information added to the raw sensor data forms the RAW file.

An image is composed of pixels. The definition of our image here is 7360 × 4912 pixels. It is a matrix (or an array of integers) with two dimensions with 7360 pixels in width and 4912 pixels in height. Each pixel then has a horizontal x-coordinate and a vertical y-coordinate. The reading of the coordinates of a pixel can be done as in the example in Figure B.2. Performing an operation on an image is therefore like performing an operation on a matrix. 

Of course, this is just one example to illustrate the demosaicing algorithm. The methods used are more complex and are often combined with other treatments such as denoising or sharpening.

At this step, the visualization is still not acceptable: the demosaiced image requires a calibration of its colors. A white balance allows to obtain an image with colors faithful to the scene independently of the lighting conditions: so that the white of the image appears white on our screens. The software allows you to choose the white balance according to a type of scene such as natural light or fluorescent light.

To obtain an image that is as faithful as possible to reality, other treatments are classically integrated into the chain such as exposure correction, corrections to compensate for the imperfection of the lenses as well as corrections of optical distortions. The correction of chromatic aberrations allows the removal of the undesirable colored fringes around the elements of an image. These corrections can be made by knowing the model of the lens. For example, the DxO PhotoLab software has a database of lenses and applies the associated correction.

The image still undergoes color corrections, such as gamma correction which makes the scene more representative of the brightness perceived by human vision and other classic operations to improve the sharpness, reduce the noise (denoising), remove blur and enhance the contrast, until obtaining the formed image.

For a color image, the file is composed of a matrix where each element is a triplet of values and Exif data. The storage can be seen as the arrangement of all this information in the memory. There are different ways to store them. In order to display an image, you have to "undo" this storage. To do this, the viewing software must know how our image was previously stored: it therefore needs to know its format.

In our example, the file in TIFF format is 103 MB in size. This is not the size of the image, which is called the resolution, nor the color depth, which is the number of bits used for each channel, but the space the file occupies in memory. To get an idea, 150 files of 103 MB fill a smartphone with 16 GB of memory! We therefore prefer to compress our files, i.e. to arrange them in such a way as to reduce the space occupied on the digital medium.

For images, there is a compression standard called JPEG with extensions like JPG, jpg, JPEG or jpeg. Most devices use this format, but there are others such as WebP (by Google) or HEIF (by Apple).

The JPEG algorithm depends on a quality parameter Q, ranging from 1 to 100. The smaller the parameter, the more the image loses quality. Indeed, the compression is known as with loss. It is done by removing some information that are details not very visible to the human eye. The image on the right of the Figure B.6 is the image reconstructed after storing the image on the left in JPEG format with Q equal to 85. We notice that this loss is not visible and when this image is stored, the file (image and its metadata) takes only 3.8 MB of memory space. However, if we decrease the Note that when we do not store all the information of the image, we obviously cannot reconstruct the original image with all its details. The whole subtlety of the method is to find the right compromise between the space occupied by the file in memory and the loss of information in the image.

A few steps in the image processing chain have been illustrated here, but the story of an image's life does not end there. Applications such as Instagram, Facebook or Snapchat allow you to crop the image, straighten it and apply different filters. All these actions are also based on image processing algorithms. When publishing on social networks, they apply transformations: they can resize the images, re-compress them and most of the time, remove the Exif metadata.

New methods are constantly being developed to meet the needs of new technologies, the desire for better quality images and the sharing opportunities offered by the Internet.

Compression traces to detect photomontages

Social networks, such as Facebook, Twitter, Instagram, WhatsApp and so many others, allow images to be shared massively and quickly. These images are sometimes used as "evidence" to go with a piece of information. But then should we believe everything we see? The tampering of images is not new. Long before the invention of digital imagery and the emergence of social networks, the regimes of Mussolini, Stalin and also Mao produced forged photographs to twist history to their advantage. Back then, it required long hours of work, advanced equipment and extensive expertise, whereas today anyone with a computer, tablet or smartphone can become a skilled forger thanks to the multitude of tools available. The creation, storage or edition of an image (whether it is a fake for malicious purposes or purely aesthetic to improve a photo as in the example of the Figure B.8) requires the use of several image processing algorithms. These operations often leave traces that are sometimes invisible to the naked eye, but that can be analyzed and detected using dedicated tools.

Throughout this chapter, we will give you the keys to understand how the traces of JPEG compression can help detect forgeries. Research teams around the world are working on the development of reliable tools, with the ambition to make them available to the general public and journalists, so that everyone can do this work for the emergence of the truth. These forgery detection tools are intended to complement the currently widespread approach of tracing the source of an image, especially in cases where the original image that has been misappropriated is not accessible.

A simple way to prove that an image has been faked is to find the source image from which the forgery was done and compare them. Just as it is possible to perform a text search in the Google search engine, it is possible to enter an image to see similar images available on the Internet: this is called a reverse image search. Other search engines offer this same functionality, such as Tineye or Yandex.

By searching for the origin of the image, we can see that some photos are not forged but taken out of context. This is the simplest manipulation: recovering old images and changing their meaning by changing their caption rather than their content. Sometimes the original image is not published online. Fortunately, even without the help of the Internet, it is possible to find out more about an image. Instead of knowing what site it came from or what platforms it was shared on, sometimes we can find out how, where and when it was taken. An image file from a camera contains, in addition to the photograph itself, technical information about the image (definition, resolution...) but also about the context of the shooting (date, time, geographical position...). These metadata named Exif can be examined. However, it is impossible to rely completely on these metadata that go with the image, because they are easily modified, and are even most often absent. Most social networks such as Twitter, Facebook or Instagram voluntarily remove them to preserve the privacy of their users. Our goal is therefore to obtain information only from the image and the pixels that compose it.

An analysis of the image allows us to know what transformations have been applied to it. Indeed, a digital photograph undergoes a chain of processing, from the moment the camera sensor receives the light, until the image appears on our screens. These steps (described in Figure B.4) and additional steps such as various tampering or modifications constitute the history of the image. All these image processing operations leave traces, imperceptible but rarely undetectable.

A forgery detection approach consists then in recovering this processing chain from the traces present in the image and look locally if each zone has the same history as the rest of the image. For our example, the yellow area has a different history than the rest of the image (Figure B.9).

Let's take the reverse order of the steps in Figure B.4 processing chain, and look at the JPEG compression operation. As a reminder, this operation allows an image file to be stored in an optimal way so that it takes up less space on the disk.

The stages of the JPEG compression algorithm, illustrated in Figure B.10, are detailed below. The first stage consists of a conversion of the colorspace. The image with the channels of color red, green and blue (RGB) is converted into base YCbCr: a channel of luminance and two channels of colors. The human eye being more sensitive to the luminance, the channels of colors are often subsampled to take less space.

Each channel is then cut in blocks of 8 × 8 pixels which do not overlap and where each block is then treated independently. After passing in the Fourier domain via a discrete cosine transform (DCT), a quantization depending on a parameter Q is applied. The quality factor Q, which is a parameter of the algorithm ranging from 1 to 100, corresponds to the compression ratio. The lower this rate is, the lighter the resulting file is, and the more the image is deteriorated. It is during this stage of the algorithm that the greatest loss of information (and thus of visual quality) occurs, but it is also that which makes it possible to gain the most space in memory. JPEG compression leads to the attenuation of high frequencies to which the human eye is not very sensitive. These are areas that vary greatly over a few pixels, such as highly textured areas. Each block is then encoded using lossless data compression algorithms and a header is added to form the file in JPEG format.

To view a JPEG file, it must then be decompressed, i.e., the steps detailed above must be reversed in order to display the image. However, the information lost during the quantization of the blocks of 8 pixels on each side cannot be reconstituted and this leads to the appearance of discontinuities at the edge of the blocks of the decompressed image. Indeed, the deterioration observed on the images of Figure B.7 takes the form of squares of 8 × 8 pixels.

By zooming in on an image that has been compressed, we can see with the naked eye these blocks (Figure B.11), forming what is known as the JPEG grid, which correspond to the traces of the compression. The lower the quality factor Q, the more compressed the image is and therefore the more marked these traces are. However, these traces are always present even if they are imperceptible.

JPEG compression has these particular characteristics that cannot be naturally present in the image. Algorithms developed during this thesis can reliably detect them and thus tell if an image has undergone JPEG compression and with which parameters.

If these traces are present, it is possible to analyze them to detect if they are coherent in the whole image. Indeed, discontinuities in the JPEG grid could betray a tampering work on the photograph. To do this, various tools are available via software or online platforms (InVID-WeVerify, Fotoforensics, Authenticate, etc.). Some of them are an aid to visual analysis, others enhance incoherent areas and methods are being developed to give a binary result, i.e. able to say with certainty if a certain area of an image has been modified.

Let's take the example of the Figure B.8 image and apply some tools that will analyze the traces left by the JPEG compression. The image has been tampered with to erase the person in the background. Various filters and operations (such as those in Here, three filters are applied to our forged image, in order to amplify the compression traces. In our example, these tools allow us to see the traces but not to detect any inconsistency. However, it is possible that these enhancers are sufficient in some cases of forgery, such as when the falsified area has a significantly different quality compression than the rest of the image.

Cross-difference [CH08]

ELA [START_REF] Krawetz | A picture's worth[END_REF] Laplacian An image from another JPEG image that was compressed differently (more heavily, thus with larger JPEG traces) was pasted into the tampered area. The JPEG compression history of this area is therefore different from the history of the rest of the image.

We notice that this modification has an impact on the compression traces which are more marked in the tampered area. The tools of the Figure B.14 do not allow to give definitive results concerning a possible forgery, nor to authenticate a photograph, only to help in visual analysis. Fortunately, detection algorithms exist to find these inconsistencies for us. and DQ [START_REF] Lin | Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis[END_REF] appear to be correct. GHOST [START_REF] Farid | Exposing digital forgeries from JPEG ghosts[END_REF] reveals a new structure that did not appear in the test image and that corresponds well to the forged area. CAGI [START_REF] Iakovidou | Content-aware detection of JPEG grid inconsistencies for intuitive image forensics[END_REF] detects a part of this area but also other parts of the image. BLK [START_REF] Li | Passive detection of doctored JPEG image via block artifact grid extraction[END_REF] does not detect the tampering and highlights non-tampered areas of the image. While these methods often reveal tampering, they can also reveal unaltered parts of the image. They have a major flaw: they sometimes make false detections, often due to structures present in the image.

Figure B.16 shows the results of the previous methods on the original image. In this case, where all parts of the image have the same compression history, one would expect to have no areas that are different from any other. Any detection for this image is then a false positive.

It is therefore important to limit false results. For this, methods with a statistical validation layer are developed to control false detections. It is also important not to expect any expertise from the users of these tools, which are aimed at a wide audience. So-called automatic methods, i.e. those that do not require interpretation, are also being developed by researchers. Their purpose is to return a binary and reliable result, followed by a confidence probability. They may not systematically detect forgeries, but the alerts they raise can be considered as reliable.

The method zero described in this thesis is an automatic method that minimizes false detections. The automatic detection algorithm zero detects inconsistencies in the JPEG grid. The white area corresponds to the area detected as falsified in the image. The JPEG traces in the white zone are then different from the traces associated with the black zone. We notice in Figure B.17 that zero does not detect any anomaly in the case of the original image, thus no false detection. The goal is not to have a single method resulting in a single image. Indeed, it is important to have a large battery of tools, because even if they are based on the same JPEG compression trace, they are not based on the same approach. Thus, having several methods revealing the same area can be seen as validation. There are also fusion-type approaches that seek to return a single result from different methods. If several of them have detected an area as suspicious, then the final result will indicate a forgery in that same area. Of course, some of these methods also have the same limitations and are sensitive to the same type of image structure. Hence the importance of developing automatic methods capable of controlling false detections. The objective would be to have tools capable of detecting inconsistencies for each trace left by the operations undergone by the image. These will also have to be robust to other operations that can be applied after tampering, such as color changes, size changes and numerous compressions. However, it will always be possible to overwrite interesting traces allowing for forgery detection, but often this would lead to a strong reduction in image quality. With today's cameras and their quality, it is suspicious when the image is too degraded.

Appendix C

La thèse pour le grand public La photographie est devenue une pratique massivement répandue. Grâce à l'arrivée des smartphones, il est devenu très facile de faire une belle photo et de la partager à des milliers de personnes en quelques secondes sur les réseaux sociaux. Cependant, nous avons tendance à oublier tout le travail effectué par les algorithmes de traitement d'images, ces méthodes qui permettent la formation de l'image, sa visualisation, son amélioration et son stockage. Au long de ce chapitre, nous allons suivre l'évolution d'une image numérique au cours de sa chaîne de traitement, depuis ce que reçoit un capteur photographique jusqu'au fichier final stocké en mémoire.

Du capteur photographique à l'image JPEG

Tout commence par l'acquisition de l'image. De la même manière que nos yeux parviennent à voir un objet, un appareil photo voit grâce à son capteur.

Un capteur photographique est un composant électronique qui constitue la base des appareils photo numériques, l'équivalent de la pellicule en photographie argentique. Il est composé de cellules sensibles à la lumière, appelées des photosites. Ces derniers réagissent à la quantité de lumière qu'ils reçoivent et la convertissent en un nombre entier, qui est ensuite enregistré dans la mémoire de l'appareil photo. À la sortie du capteur, on obtient alors un tableau de valeurs représentant l'intensité lumineuse associée à chaque photosite.

Pour obtenir une image en couleur, la technologie s'inspire de la perception humaine, en associant à chaque valeur une des trois couleurs suivantes : rouge, vert ou Quelques étapes de la chaîne de traitement d'une image ont été illustrées ici, mais l'histoire de la vie d'une image ne s'arrête pas là. Les applications telles que Instagram, Facebook ou Snapchat permettent de recadrer l'image, la redresser et lui appliquer différents filtres. Toutes ces actions reposent aussi sur des algorithmes de traitement d'images. Lors de la publication sur les réseaux sociaux, ces derniers appliquent des transformations : ils peuvent redimensionner les images, les compresser à nouveau et la plupart du temps, ils suppriment les métadonnées EXIF.

De nouvelles méthodes sont constamment développées afin de répondre aux besoins dus à l'arrivée de nouvelles technologies, le désir d'avoir des images de meilleure qualité et les opportunités de partage qu'offre Internet. Tout au long de ce chapitre, nous allons vous donner des clefs pour comprendre comment les traces de la compression JPEG peuvent aider à la détection de la falsification. Des équipes de recherche à travers le monde travaillent sur le développement d'outils fiables, avec l'ambition de les mettre à la disposition du grand public et des journalistes, afin que chacun puisse faire ce travail pour l'émergence de la vérité. Ces outils de détection de falsifications se veulent des compléments à l'approche actuellement bien répandue de la recherche de la source d'une image, en particulier dans les cas où l'image originale qui a été détournée n'est pas accessible.

Les traces de compression pour détecter les photomontages

Une manière simple de prouver qu'une image a été truquée est de trouver l'image source à partir de laquelle le trucage a été effectué et de les comparer. De la même Un fichier image issu d'un appareil photo contient, en plus de la photographie elle-même, des informations techniques sur l'image (définition, résolution. . . ) mais aussi sur le contexte de la prise de vue (date, heure, position géographique. . . ). Ces métadonnées nommées EXIF peuvent être examinées. Cependant, il est impossible de se fier complètement à ces métadonnées qui accompagnent l'image, car elles sont facilement modifiables, et sont même le plus souvent absentes. La plupart des réseaux sociaux comme Twitter, Facebook ou Instagram les suppriment volontairement pour préserver la vie privée de leurs utilisateurs. Notre but est donc d'obtenir de l'information uniquement à partir de l'image et des pixels qui la composent.

Une analyse de l'image permet de savoir quelles transformations lui ont été appliquées. En effet, une photographie numérique subit une chaîne de traitement, à partir du moment où le capteur de l'appareil photo reçoit la lumière, et jusqu'à ce que l'image apparaisse sur nos écrans. Ces étapes (décrites dans la Prenons l'ordre inverse des étapes présentes dans la chaîne de traitement de la Figure C.4, et intéressons-nous à la compression JPEG. Pour rappel, cette opération permet de stocker en mémoire un fichier image de telle sorte qu'il prenne moins de place sur le disque. Les étapes de l'algorithme de compression JPEG, illustrées dans la figure C.10, sont détaillées ci-dessous. La première étape consiste en une conversion de l'espace colorimétrique. L'image aux canaux de couleur rouges, verts et bleus (RVB) est convertie en base YCbCr : un canal de luminance et deux canaux de couleurs. L'oeil humain étant plus sensible à la luminance, les canaux de couleurs sont souvent souséchantillonnés pour occuper moins d'espace.

Blocs 8x8

Fichier compressé

Chaque canal est ensuite découpé en blocs de 8 × 8 pixels qui ne se chevauchent pas et où chaque bloc est alors traité indépendamment. Après passage dans le domaine de Fourier via une transformée en cosinus discrète (DCT), une quantification dépendant d'un paramètre Q est appliquée. Le facteur de qualité Q, qui est un paramètre de l'algorithme allant de 1 à 100, correspond au taux de compression. Plus ce taux est faible, plus le fichier résultant est léger mais plus l'image est dégradée. C'est lors de cette étape de l'algorithme que se produit la plus grande perte d'information (et donc de qualité visuelle), mais c'est aussi celle qui permet de gagner le plus de place en mémoire. La compression JPEG conduit à l'atténuation des hautes fréquences auxquelles l'oeil humain est très peu sensible. Il s'agit des zones qui varient fortement sur quelques pixels, comme les zones très texturées. Chaque bloc est ensuite codé en suivant des algorithmes de compression de données sans perte et un en-tête est ajouté afin de former le fichier sous le format JPEG.

Pour visualiser un fichier JPEG, il faut alors le décompresser, c'est-à-dire inverser les étapes détaillées précédemment pour pouvoir afficher l'image. Cependant, les informations perdues lors de la quantification des blocs de 8 pixels de côté ne peuvent être reconstituées et cela conduit à l'apparition de discontinuités au bord des blocs de l'image décompressée. En effet, la dégradation observée sur les images de la