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Résumé

Un exciton polariton apparaît lorsqu’une paire électron-trou liée dans une micro-
cavité semi-conductrice interagit fortement avec les photons de la cavité. En raison
des pertes inévitables de photons, une injection continue est nécessaire via une
source externe afin de maintenir un état stationnaire. Il a été montré que ce gaz d’ex-
citon polariton hors-équilibre présente des caractéristiques similaires à la condensa-
tion de Bose-Einstein à l’équilibre, cependant, il a été découvert que l’ordre à longue
portée est détruit par les fluctuations de la phase du paramètre d’ordre caractérisant
la transition de phase. Ceci provient du fait que la dynamique effective de la phase
suit l’équation de Kardar-Parisi-Zhang (KPZ) qui décrit la croissance stochastique
d’une interface.

Dans ce type de problème est le champ de hauteur qui décrit le profil de l’inter-
face. Dans la classe d’universalité définie par l’équation KPZ, on a découvert que la
distribution de probabilité des fluctuations de hauteur, ainsi que leurs fonctions de
corrélation, sont sensibles à la géométrie globale de la croissance, définissant ainsi
des sous-classes d’universalité. Nous proposons un protocole simple qui modifie la
géométrie de la phase des exciton polaritons, rendant ainsi les sous-classes asso-
ciées à la géométrie plate et circulaire à 1d, accessibles dans un système quantique
complexe. Nous calculons les propriétés statistiques en un point, ainsi qu’en deux
points de la phase du condensat, et nous observons un accord extrêmement satis-
faisant avec les prédictions théoriques KPZ.

En 2d, il a été avancé que la dynamique KPZ peut être entravée par la présence
de tourbillons, et que Berezinskii-Kosterlitz-Thouless est le mécanisme responsable
de la perte de cohérence. Beaucoup d’efforts ont été consacrés aux simulations
numériques du système ces dernières années, mais son diagramme de phase est
loin d’être complet, et tous les régimes possibles ne sont pas pris en compte. Nous
montrons que pour une gamme de valeurs de pompe modérément élevées, les
fonctions de corrélation de la fonction d’onde du condensat suivent les lois d’échelle
universelles KPZ pour des paramètres pertinents sur le plan expérimental. Nous
obtenons également la distribution des fluctuations de phase et montrons qu’elle
est non gaussienne, comme prévu pour un processus aléatoire KPZ.

Mots-clés : universalité, physique statistique hors de l’équilibre, phénomènes cri-
tiques





Kardar-Parisi-Zhang universality in the phase of
a condensate of exciton polaritons : from the
scaling of correlation functions to advanced sta-
tistics of the phase in 1+1 and 2+1 dimensions

Abstract

An exciton polariton arises when a bound electron-hole pair in a semiconductor
microcavity strongly interracts with cavity photons. Due to the unavoidable losses of
photons, continuous injection is needed via an external source in order to maintain
a steady state. It has been shown that this non-equilibrium exciton polariton gas dis-
plays similar characteristics to Bose-Einstein condensation in equilibrium, however,
it was discovered that off-diagonal long-range order is destroyed by fluctuations of
the phase of the order parameter characterizing the phase transition. This is due
to the fact that the effective dynamics of the phase of the condensate follows the
Kardar-Parisi-Zhang (KPZ) equation describing the stochastic growth of an inter-
face.
A central quantity in this type of problem is the height field, which describes the
shape of the interface. In the universality class defined by the KPZ equation, it was
discovered that the probability distribution of height fluctuations, as well as their cor-
relation functions, are sensitive to the global geometry of the growth, thus defining
universality sub-classes. We propose a simple protocol which alters the geometry of
the phase of exciton polaritons, thus making the sub-classes associated with the flat
and circular geometry in 1d accessible in a complex quantum system. We compute
one-point, as well as two-point statistical properties of the phase of the condensate,
and we observe very good agreement with the KPZ theoretical predictions.

In 2d, it was argued that the KPZ dynamics may be hindered by the presence of
vortices, and that Berezinskii-Kosterlitz-Thouless is the mechanism responsible for
the loss of coherence. A lot of effort has been devoted into numerical simulations
of the system in recent years, but its phase diagram is all but complete, and not all
possible regimes are accounted for. We report that for a range of moderately high
pump values, precise KPZ scaling is found in the scaling of correlation functions
of the condensate wavefunction for experimentally-relevant parameters. We also
obtain the distribution of the phase fluctuations and find that it is non-Gaussian, as
expected for a KPZ stochastic process.

Keywords : universality, out-of-equilibrium statistical physics, critical phenomena
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mati, Alberto Rosso, Benôıt Vermersch, Iacopo Carusotto, and Nikolaos Proukakis, for

accepting to review the following manuscript.

This thesis is the result of three years of work, following the transition from high-energy

theoretical physics to statistical physics out-of-equilibrium. I would like to offer my
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General introduction

Changes of basic states of matter occur in many types of systems, from the most simple

and ever-present such as water, to exotic ones which are created in extreme conditions in

laboratories across the world. Interestingly enough, these phenomena are also interdis-

ciplinary, in the sense that they appear in diverse fields such as economics [1], sociology

[2], and psychology [3].

Phase transitions

Understanding the rich mechanisms behind these phase transitions, has been one of the

most challenging tasks in the heart of statistical physics for more than 100 years. Usu-

ally, the onset of these phenomena is related to the tuning of a control parameter until

a transition point is reached, and the transition is classified by following the evolution

of a suitable order parameter while the system changes its phase. Nowadays, this is

achieved according to the following scheme: in a first order phase transition, the order

parameter is discontinuous at the transition point, whereas it changes continuously in

a second order phase transition. Both types can be realized in a discrete system of

one-component spins in 2d or 3d. Starting from a high-temperature disordered state, by

reducing the temperature one observes a continuous build-up of magnetization starting

at a temperature Tc in the absence of external magnetic field. It is useful to note that

this onset of long-range order is usually associated with spontaneous symmetry breaking

(SSB), which in this case is the discrete Z2. Alternatively, a first order phase transition

is encountered by tuning the magnetic field at a fixed T < Tc and the sign of the mag-

netization suddenly changes.

In order to understand how scale invariance emerges during a second order phase tran-

sition, it is instructive to define a “coarse-grained” magnetization m̃(r⃗) and look at how

its fluctuations are correlated. We expect that, for a homogeneous system, its expecta-

tion value is equal to a constant, ⟨m̃(r⃗)⟩ ≃ m̃, and we can define a connected correlation

1
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function C(∆r) = ⟨m̃(r⃗)m̃(r⃗ +∆r⃗)⟩ − m̃2. The correlation function is predicted to de-

cay exponentially for a typical length scale ξ, which is called correlation length. When

T ≳ Tc, ξ is finite but large, and magnetization fluctuations decay exponentially at large

scales. As the temperature is increased, the correlation length decreases all the way until

zero at T → ∞. On the other hand, when T ≲ Tc, long-range order starts to emerge, and

clusters of the same spin start to appear. As temperature is decreased, the correlation

length decreases and clusters become increasingly isolated. The point T = Tc is actually

a critical point, and the correlation length diverges, while the correlation function decays

as a power-law. The system thus becomes scale invariant, and microscopic details of the

system are unimportant, leading to the concept of universality. One can then study

the system using an effective theory using collective fluctuations; the phenomenological

Landau-Ginzburg theory [4], and the field-theoretical renormalization group (RG) (see

the initial paper by Kadanoff [5] and a summary of the subsequent developments on

this idea by Wilson [6]), which involves progressively integrating out degrees of freedom

at small scales until the desired scale is reached. By doing this, one can study how

the microscopic couplings “flow” as the scale is changed. Scale invariance corresponds

to a fixed point where the flow stops, and one can then compute universal quantities

by studying the behavior of the couplings near the fixed point. Lastly, it is useful to

note that recently a new subject field arose, which has made remarkable progress in

determining critical exponents with extreme precision, called conformal bootstrap, see

[7] and references therein.

It is now known that the first and second order phase transitions mentioned above are

not the whole story. In 1966, Stanley and Kaplan [8, 9] computed certain response

functions in the high temperature limit for the XY model in 2d, where the spins have

two components. Power-law behavior of these quantities was found near a critical Tc,

suggesting that a phase transition should take place, but it cannot be associated with

the onset of true long-range order as in the low-temperature phase of the one-component

case mentioned above, due to the Mermin-Wagner theorem [10]. This theorem states

that the fluctuations of the order parameter will destroy order for dimensions d ≤ 2

when there is SSB of a continuous symmetry such as U(1). Instead, the system develops

“quasi”-long-range order associated with bound pairs of vortices, and the correlation

function decays with a power law. The exponent characterizing the decay is universal

only on the transition point, while it depends on temperature as one pushes deep in

the low-temperature phase. On the other hand, the high-temperature phase exhibits

proliferation of free vortices which destroy order, and correlations decay exponentially.

This infinite order phase transition is the well-known Berenzinskii-Kosterlitz-Thouless

(BKT) phase transition [11].
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Bose-Einstein condensation in equilibrium

Lots of interesting phenomena appear when “quantum” properties arise in classical sys-

tems. This can be understood in the context of a phase transition, which separates

an ordinary phase in the high-temperature regime, from a more exotic one at low tem-

peratures. Of particular interest to us is the Bose-Einstein condensation (BEC) (see

[12] for the German version of Bose’s article and [13] for an overview of the derivation

by Einstein in 1924-1925, translated in English). According to the bosonic statistics,

the mean occupation number of a quantum state with energy ϵi can be written as [14]

⟨n(ϵi)⟩ = 1/

(
e

ϵi−µ

kBT − 1

)
, where µ is the chemical potential, T is the temperature and

kB is the Boltzmann constant. In the limit of high temperature, we have µ≪ ϵg, where

ϵg is the energy of the ground state. However, as the temperature decreases, µ increases

with an upper limit of ϵg, which implies macroscopic occupation of the ground state

manifest in the formation of a condensate with finite density ng. On the other hand,

the excited states have low occupation. The critical temperature can be estimated by

comparing the de Broglie wavelength λdB of the bosons with the inter-particle distance,

which can be written as l = ⟨n⟩1/d. For high temperatures, we have l ≫ λdB, meaning

that the “particle” dominates over the “wave” nature. In 3d, at a critical temperature

Tc, this is reversed and particles start behaving as waves, making the quantum nature

apparent. In 2d, it can be shown [15] that Tc = 0, meaning that condensation does not

happen for any nonzero temperature.

The first papers that attempted to connect BEC to experimental results appeared in

1928-1932 [16–19]. In particular, at Tc = 2.17K it was shown that 4He exhibits a peak

of the specific heat, while below Tc it displays frictionless flow, and it was called a “su-

perfluid”. These results imply that 4He could undergo a phase transition at Tc, and an

attempt to connect these results to BEC was made in 1938 [20]. However, it was met

with skepticism, because 4He is a strongly-interacting gas, thus the connection to the

considerations by Bose and Einstein regarding non-interacting ideal gas could not be

established. Many years later, several experimental works appeared concerning trapped

weakly-interacting alkali gases, enabled by advanced techniques such as magnetic trap-

ping and laser cooling: 87Rb atoms [21], as well as 23Na atoms [22] in a harmonic trap

were demonstrated to exhibit true BEC. These amazing discoveries sparked a wide in-

terest in ultra-cold atoms, and in the years that followed, a multitude of atomic species

was shown to exhibit BEC. However, the critical temperature Tc was found to be ex-

tremely small in the nanoKelvin range, and in more recent years there has been a search

of alternative systems displaying BEC.
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Out-of-equilibrium phase transitions

While equilibrium phase transitions discussed above are very rich in terms of the un-

derlying physics, one should note that thermal equilibrium is a rather elusive concept in

the real physical world. In the case of non-equilibrium systems, it is usually impossible

to track the precise microscopic dynamics of their constituents, and it has been found

that an effective way to model these systems is by a Langevin equation, according to

which the deterministic evolution is supplemented by a stochastic contribution. One

then resorts to computing appropriate expectation values of stochastic fields over the

noise distribution.

Features of scale invariance were observed in non-equilibrium systems, such as diverging

correlation length, in analogous manner to second order phase transitions in equilib-

rium. Moreover, in some cases, it was observed that the dynamics drives the system

to criticality without the need for an external parameter to be tuned, leading to novel

non-equilibrium phase transitions. Theoretically, the concept of RG outlined above can

be generalized in order to study these critical dynamics. A significant step in this di-

rection was made when a path integral formulation for the Langevin equation governing

the dynamics appeared by Martin-Siggia-Rose-Janssen-de Dominicis [23–25]. Here we

make a crucial remark. In equilibrium, it is usually a valid strategy to study how the

interactions modify the critical properties of the free theory by treating them in per-

turbation theory in the context of RG, but this is not always the case. Due to this,

non-perturbative techniques were developed, namely an exact RG equation describing

the flow of the effective average action [26]. The effective action encodes the properties

of the theory after one integrates out all fluctuations, while an infrared cutoff kc is in-

troduced in the effective average action; only fluctuations with momenta |qfl| > kc are

integrated out. Therefore, by reducing kc one progressively integrates out fluctuations

with smaller momenta (larger spatial scales), until reaching the full effective action at

kc = 0. On the other hand, for kc → ∞, no fluctuations are integrated out and the effec-

tive average action corresponds to the full action S of the theory. This procedure is the

cornerstone of the modern approach to the non-perturbative, or functional RG (NPRG

or FRG), which was more recently implemented in order to study non-equilibrium uni-

versal properties [27].

Drawing inspiration from the fascinating physics behind non-equilibrium phase tran-

sitions, in this thesis we focus on the celebrated Kardar-Parisi-Zhang (KPZ) equation

and its associated universality class. This is associated with the “kinetic roughening”

of an interface undergoing stochastic growth, namely the development of very large
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fluctuations of its height as time increases. In particular, we study a system that has

been shown to belong to this universality class, the Bose-Einstein condensate of exciton

polaritons (EP). This system consists of bound electron-hole pairs in a semiconductor

microcavity, which are called excitons, in the strong-coupling regime with cavity pho-

tons. Due to the continuous losses of photons from the microcavity, external pumping

is necessary in order to maintain a steady state configuration, thus the system is intrin-

sically out-of-equilibrium. While many common characteristics with the Bose-Einstein

condensate in equilibrium have been reported [28], the effective dynamics of the phase of

the condensate follows the KPZ equation, thus KPZ fluctuations destroy the off-diagonal

long-range order of the system.

It was shown in the late nineties, that one-point statistical properties (probability dis-

tribution), as well as two-point statistical properties (correlation function) of the KPZ

height fluctuations, at the limit of large times, depend on the global geometry of the

growth. Therefore, the universality class should be partitioned into distinct geometry-

dependent universality sub-classes. This raises an interesting question: what does this

imply for the exciton polariton system? Can these sub-classes be realized for the phase

of the condensate? We will address these questions in 1d, and in particular, we will

study whether the sub-class associated with the curved (“droplet”) geometry can be

accessed in polariton condensates by engineering the geometry of the phase profile. We

achieve this by introducing a confining potential, and we derive the KPZ equation for

the phase of an inhomogeneous condensate. Indeed, we show that a precise agreement

with the theoretical predictions is reached regarding the curved KPZ sub-class, both for

the probability distrubutions of the phase fluctuations at one point in space, as well as

for their spatial correlation function, albeit in a small region in which smooth curvature

is achieved.

In 2d, the situation is a bit more delicate. Whereas the mapping of the phase dy-

namics to the KPZ equation is still valid, it was suggested in the literature that the

appearance of vortices will destroy the off-diagonal long-range order developed in po-

lariton condensates. In particular, via arguments based on perturbative RG techniques,

it was shown that the length scales needed for KPZ fluctuations to set in were or-

ders of magnitude larger than the experimentally-attainable system sizes for polariton

condensates. However, parts of the phase diagram are still unexplored, thanks to the

extremely large dimensionality of the parameter space. Whether KPZ universality is in-

deed present in the exciton polariton condensate is the second question we will address

in this thesis. To this end, we perform extensive numerical simulations of condensates

with experimentally-relevant system sizes, exploring different parameter regimes. We
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show that a vortex-free regime exists, in which conclusive KPZ scaling can be found

by studying the first-order correlation function of the condensate wavefunction. Addi-

tionally, we study the phase fluctuations themselves, and we show qualitative agreement

with large-scale numerical results pertaining to the 2d KPZ universality class in terms

of one-point statistics.

This thesis manuscript is organized as follows. In chapter 1 we introduce the concept of

kinetic roughening, the Edward-Wilkinson equation which is a simple model describing

this process, and the need to generalize it. This leads to the KPZ equation and the

universality class it defines, which is the centerpiece of our work. In particular, we will

introduce exact results which have been found in one dimension, as well as the tools to

probe them, and finally we will discuss about the difficulties that arise in two dimensions.

In chapter 2 we review the precise mechanism under which exciton polaritons undergo

Bose-Einstein condensation, the state-of-the-art, and the model we use to numerically

simulate the system. Moreover, we present the mapping from this model to the KPZ

equation. In chapters 3 and 4 we present our results, which concern the one-dimensional

exciton polariton Bose-Einstein condensate under confinement, and the two-dimensional

case, respectively. Our results are summarized in the following articles:

1. Konstantinos Deligiannis, Davide Squizzato, Anna Minguzzi and Léonie Canet

“Accessing geometry-dependent Kardar-Parisi-Zhang universality sub-classes with

exciton polaritons”, Europhysics Letters (EPL) 132, 67004 (2021),

2. Konstantinos Deligiannis, Quentin Fontaine, Davide Squizzato, Maxime Richard,

Sylvain Ravets, Jacqueline Bloch, Anna Minguzzi and Léonie Canet “Kardar-

Parisi-Zhang universality in discrete two-dimensional driven-dissipative exciton

polariton condensates”, arXiv:2207.03886, currently under peer-review.



Chapter 1

Non-equilibrium growth

phenomena and the

Kardar-Parisi-Zhang universality

class

In this chapter, we will present the centerpiece of this thesis, the Kardar-Parisi-Zhang

(KPZ) equation [29] and its universality class. We will begin by introducing the concept

of self-organized criticality in order to motivate some phenomenological models which

were proposed in order to model it, and we will quantify the statistics of interfaces

growing under stochastic noise. In particular, we will introduce the Edwards-Wilkinson

(EW) equation and the need to generalize it, leading to the KPZ equation. We will then

describe universal properties of this model, and discuss their dependence on growth

geometry. We note here that the KPZ equation was discovered in 1986 and has since

then sparked a wide interest in both mathematics and physics communities. By now

there are many comprehensive reviews covering the mathematical aspects, as well as

modern developments, see for example [30–33].

1.1 Self-organized criticality

The concept of self-organized criticality was introduced in [34], and tried to shed some

light on the onset of complexity in natural systems, meaning the emergence of collective

phenomena that dominate over microscopic interactions between the constituents of a

system. This work studied a cellular automaton, formulated in terms of a function

7
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f(x, y) defined on a 2d grid, with fixed boundary conditions such that f(x, y) = 0 on

the edge of the grid. As long as f > fc at a point (x, y), where fc is a critical value, f

is constantly updated in each time step according to the following rule,

f(x, y) → f(x, y)− 4, f(x± 1, y) → f(x± 1, y) + 1, f(x, y ± 1) → f(x, y ± 1) + 1

(1.1)

such that nearest neighbour interactions are explicitly included, and the evolution is

initialized such that f ≫ fc at random points on the grid. Once f < fc ∀(x, y), the
system stops evolving, and is in a “locally minimally stable” state. Local perturbations

of such a state lead to the formation of clusters. Strikingly, power-law scaling arises in

the distribution of the size of these clusters, as well as in the distribution of the lifetime

of the perturbations that cause them, indicating scale invariance. This means that the

macroscopic state of such a system is critical, but the crucial difference with equilibrium

phenomena is that this happens without the need to tune an external control parameter,

and a non-equilibrium system under non-linear interactions and noise can evolve towards

criticality itself. We note here that a cellular automaton describing the time evolution

of a variable via Eq. (1.1) is a sufficiently general model, therefore many systems can

be identified as following similar dynamics, from the collapse of a pile of sand, to the

formation of a mountain ridge.

To make these considerations apparent, we present an example in 1d, which is illus-

trated in Fig. 1.1. A colony of pathogen in a petri dish, if limited by a smooth obstacle

which is suddenly removed, will grow upwards. Regardless of the precise local interac-

tions of the neighbouring molecules, which is stochastic and very complicated in nature,

macroscopically a rough front emerges with fluctuations that grow over time. These are

scale invariant and resemble fractals [35], and this type of phenomenon is called kinetic

roughening.

In order to study the scale invariance and criticality in this type of growth, we define

a stochastic function h(t, x⃗). This corresponds to the height of the growing interface

at spatial position in d spatial dimensions, x⃗ ∈ Rd, and time t. We are interested in

studying its statistical properties, fluctuations and correlations. Initially [30, 35–37],

researchers computed the interface roughness w2(t, l), which is defined as the standard

deviation of the height, averaged over many samples,

w(t, l) =

〈√〈
[h(t, x⃗)− ⟨h(t, x⃗)⟩l]2

〉
l

〉
, (1.2)
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where ⟨·⟩l = 1/ld
∫
ddx⃗(·) corresponds to a spatial average in d dimensions, carried over

a volume ld, and ⟨·⟩ corresponds to average over different noise realisations. Strikingly,

it was found by Family and Vicsek [38] that this quantity can be rewritten with the help

of a scaling function gw,

w(t, l) ∼ tβgw

(
lt−1/z

)
∼




lα, l ≪ l∗(t),

tβ, l ≫ l∗(t),
(1.3)

for α, β, z ≡ a/β being the roughness, growth, and dynamical universal critical expo-

nents, respectively. Moreover, the crossover length scale can be expressed as l∗(t) = t1/z.

We can see that once the length l surpasses this length scale, the interface width be-

comes independent of l itself, and rather behaves as tβ. While being historically im-

portant because it reveals scaling laws and is numerically tractable, Eq. (1.3) offers

little more practically. This is because it involves spatial averages, and it is not a pure

statistical quantity. We will motivate the need for defining appropriate observables in

sections 1.3.2.1, 1.3.2.2 in order to unlock the full features of KPZ scaling.

Figure 1.1: Experimental realisation of kinetic roughening in a complex system. Can-
cer cells undergo cell division and the colony grows perpendicularly to the petri dish.
Snapshots of the time evolution are shown, where one can clearly identify the interface,
which displays larger spatial fluctuations with increasing times. Figure taken from [32].

1.2 Phenomenological models

So far, we have established that the behavior of stochastic growth shares similar fea-

tures with criticality in second order phase transitions, hence in an analogous manner

the growth can be characterized in terms of universality classes. The next step is to

understand the nature of the stochastic function h(t, x⃗) characterizing the growth, and

then to determine the critical exponents α, β, z for the Edwards-Wilkinson (EW) and

Kardar-Parisi-Zhang (KPZ) universality classes.
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1.2.1 Edwards-Wilkinson equation

Historically, one of the first attempts at developing an equation which accounts for this

type of growth was made in the context of cancerous cells [39], where a “seed” that is

placed at a given point grows diffusively to its neighbours. The resulting model by Eden

with the help of Parisi and Zhang [40–42] presents a unified approach to tackle this

problem. However, due to issues mainly related with tractability of the equation and

the fact that it appeared to provide redundant information for describing the universal

behavior, more appropriate models have been constructed since. One important such

model was proposed by Edwards and Wilkinson [43], who devised the following equation,

∂h(t, x⃗)

∂t
= ν∇2h(t, x⃗) + η(t, x⃗) , (1.4)

where the noise η(t, x⃗) follows a Gaussian distribution with zero mean and a system-

dependent variance D, namely

⟨η(t, x⃗)⟩ = 0,
〈
η(t, x⃗)η

(
t′, x⃗′

)〉
= Dδd

(
x⃗− x⃗′

)
δ
(
t− t′

)
(1.5)

and ν is also a system-dependent parameter. This equation possesses several symmetries,

namely it is invariant under space and time translations, rotations and height transla-

tions, as expected for kinetic roughening. Insights on its solution can be obtained by

the Fokker-Planck approach [30]. This relies on the fact that this is a Langevin equation

governing the evolution of the continuous dynamic field h(t, x⃗) under the effect of noise,

and this problem can be mapped to a Fokker-Planck equation for the time evolution of

probability density functional for a height configuration {h(x⃗)} in the d−dimensional

space, P [{h(x⃗)}],

∂P [{h(x⃗)}]
∂t

= −
∫
ddx⃗

δ

δh

{
ν∇2h(t, x⃗)P [{h(x⃗)}]

}
+
D

2

∫
ddx⃗

δ2P [{h(x⃗)}]
δh2

. (1.6)

A few remarks are now in order. Firstly, one can verify that this equation admits a

Gaussian stationary solution,

Pstat[{h(x⃗)}] = e−
ν
D

∫
ddx⃗(∇⃗hstat(x⃗))2 . (1.7)

Of course, a stationary solution and hence the notion of a “stationary state”, can be

applicable to a dynamical growth only in the limit where time is fixed but very large,

t0 → ∞. This, combined with the fact that a diffusive process, such as the one modelled

by Eq. (1.4), can be expressed as a Wiener process [44] in 1d, tells us that there should

be a limit, where one can map Pstat to the probability density of a Wiener process;

indeed this is the case, if x is interpreted as t, one has hstat →W , where W is a Wiener



Non-equilibrium growth phenomena and the Kardar-Parisi-Zhang universality class 11

process. In other words, in the stationary state, for large t0, the interface behaves like

a Wiener process in the spatial domain. This allows us to readily deduce the roughness

exponent α from the correlation function,

〈
(W (t)−W (0))2

〉
≃ t , (1.8)

and according to the aforementioned mapping, the same correlation function corresponds

to the average squared displacement

〈
(hstat(x)− hstat(0))

2
〉
≃ x (1.9)

in the appropriate long-time limit, and so α = 1/2 from the scaling Eq. (1.3). Note that

this quantity is predicted to have the same power-law behavior as the roughness of the

interface w2(x, t0) from Eq. (1.3), but with a different scaling function. In d dimensions,

the roughness, growth and dynamical critical exponents α, β, z can be extracted from

demanding Eq. (1.4) be invariant under a scale transformation that is defined as follows,

x→ bx t→ bzt h→ bαh , (1.10)

from which we find

α =
2− d

2
β =

2− d

4
z = 2. (1.11)

In 1d, this is in agreement with the prediction for α from the Wiener process.

1.2.2 Kardar-Parisi-Zhang equation

Despite the EW equation being a first step towards theoretically understanding stochas-

tic growth, experiments conducted for various systems did not show the predicted scaling

laws of Eq. (1.3). The EW equation is linear, and hence can be solved exactly for the

statistics of the height fluctuations, but a crucial ingredient is missing; it does not ac-

count for kinetic roughening, and the dynamics is only driven by smoothening caused

by diffusion. In other words, Eq. (1.4) implies that the growth occurs always vertically

at a given point, while it is more natural to assume that it occurs normally to this point.

This is illustrated in Fig. 1.2.

It is straightforward to show via a geometric argument that this feature corresponds

to including one more term to the EW equation, corresponding to the first relevant
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Figure 1.2: Growth corresponding to EW model (a), and in a more natural setting
(b), where the growth occurs along the local normal to the surface (see text). Figure

taken from [32].

non-linearity. By doing so, one obtains the Kardar-Parisi-Zhang (KPZ) [29] equation,

∂h(t, x⃗)

∂t
= ν∇2h(t, x⃗) +

λ

2
(∇⃗h(t, x⃗))2 + η(t, x⃗) , (1.12)

where η(x⃗, t) is still a Gaussian white noise, whose properties are the same as in Eq. (1.5).

The KPZ equation crucially obeys one more symmetry which is not satisfied by the EW

equation, and this is the statistical tilt symmetry. This can be proven via mapping to

the stochastic Burger’s (SB) equation [45] for the KPZ “velocity” u⃗(t, x⃗) = −λ∇⃗h(t, x⃗),
which reads

∂u⃗

∂t
+ (u⃗ · ∇⃗)u⃗ = ν∇2u⃗+ ξ⃗ , for ξ⃗ = −λ∇⃗η. (1.13)

This equation describes a randomly forced infinitely compressible fluid, and admits the

well-known Galilean symmetry,

t→ t′ = t , (1.14a)

x⃗→ x⃗′ = x⃗+ λu⃗0t , (1.14b)

u⃗(t, x⃗) → u⃗′(t′, x⃗′) = u⃗(t′, x⃗′)− u⃗0 , (1.14c)

where u⃗0 is a constant vector. Crucially, the coefficient of the non-linearity λ can be

shown to not change with scale in the level of field theory. The importance of this

symmetry, which corresponds to the statistical tilt symmetry of the KPZ equation,

becomes apparent from the realisation that the covariant time derivative, from which

the left-hand side of the SB equation originates,

D̂ =
∂

∂t
+ u⃗ · ∇⃗ (1.15)

should be scale-invariant. By using the scale transformation Eq. (1.10) in Eq. (1.15), we

find

D̂ → D̂′ = b−z
(
∂

∂t
+ bα+z−2u⃗ · ∇⃗

)
. (1.16)
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The global prefactor b−z can be absorbed by redefining the field, and the two components

exactly match each other under change of scale if the following exponent identity is true,

α+ z = 2 , ∀d (1.17)

This allows us to extract all three scaling exponents in 1d, since only then Eq. (1.7)

is also a solution to the Fokker-Planck equation corresponding to the KPZ equation.

This can be shown formally in the discrete limit, but after using an appropriate spatial

discretization prescription for the nonlinearity [46], the continuum limit can be safely

taken. We have

∂P [{h(x⃗)}]
∂t

=−
∫
ddx⃗

δ

δh

{[
ν∇2h(t, x⃗) +

λ

2
(∇⃗h(t, x⃗))2

]
P [{h(x⃗)}]

}

+
D

2

∫
ddx⃗

δ2P [{h(x⃗)}]
δh2

, (1.18)

By inserting the stationary distribution Eq. (1.7) in Eq. (1.18), one finds that the λ−
dependent contributions are

−λ
∫
ddx⃗{∇2h(t, x⃗)Pstat[h(t, x⃗)]−

ν

D
(∇⃗h(t, x⃗))2∇2h(t, x⃗)Pstat[h(t, x⃗)]}.

The two terms can be treated separately. The first integral can be brought to a form of

total derivative which vanishes on the boundaries, under the assumption that the field

vanishes at infinity. The second integral is zero only in 1d because it can also be brought

to a total derivative in this case,

∫
dx

(
∂h(t, x)

∂x

)2 ∂2h(t, x)

∂x2
=

1

3

∫
dx

∂

∂x

((
∂h(t, x)

∂x

)3
)
.

This is not the case in dimensions d ̸= 1, due to the more complicated contraction struc-

ture in terms of spatial indices.

By comparing with the Wiener process as was done in the previous section, one concludes

that α = 1/2, and by using Eq. (1.17) one finds

α =
1

2
β =

1

3
z =

3

2
. (1.19)

Let us emphasize that determining the scaling exponents is only a part of the story, and

the stationary probability density at t → ∞ does not at all correspond to completely

solving the theory, even in 1d. This is because, besides knowledge of the universal

spatial fluctuations at the stationary state attained by systems that belong to the KPZ
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universality class, one must also look at temporal fluctuations at fixed spatial point x0

and classify their statistics.

1.3 Exact results in 1d

1.3.1 Long-time limit of the interface height

The following behavior, which was derived in order to generalize certain exact results of

integrable systems belonging to the KPZ universality class, is widely used and describes

the time evolution of the height profile at a fixed spatial point,

h(t) → u∞t+ (Γt)β χ, (1.20)

where we can see that in the long time limit, the evolution consists of two terms. The

first corresponds to growth of the mean profile, which is deterministic and linear in time.

By computing the mean derivative,

〈
∂h(t)

∂t

〉
= u∞ + βΓβtβ−1

〈
∂χ

∂t

〉
, (1.21)

where β < 1 for the KPZ universality class in any dimension, it is clear that u∞ is

the asymptotic velocity in the limit t → ∞. The second term grows in time with

the KPZ exponent β and contains the random variable χ which captures the rescaled

height fluctuations. The goal of this section is to link the statistics of this stochastic

variable with KPZ universality. We note here that both u∞,Γ are found to have a non-

trivial dependency on the KPZ parameters ν, λ,D [47], and are hence system-dependent

constants. Therefore, we expect that the only role they can play in determining universal

statistics are in terms of appropriate normalizations.

1.3.2 Geometry dependence

1.3.2.1 One-point statistics

An important first step was made in this direction when the probability density function

in the long-time limit at a fixed spatial point x0 was computed [48, 49] for the totally

asymmetric simple exclusion process (TASEP), a discrete model which was known to

exhibit the KPZ scaling in 1d, and more details about which will be given soon. The

resulting distribution of the temporal fluctuations, under suitable rescaling, is distinctly

non-Gaussian, and its mathematical expression, as well as its higher-order moments,
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were computed exactly. These works ultimately inspired several studies by mathemati-

cians [50], as well as physicists [51–56], to tackle the more general question; can an

analytic solution for the universal one-point statistics of the solution of the KPZ equa-

tion be found in all times, provided that it is an equation for a continuous field? In

order to answer this question, one has to formally define what it means to solve the

KPZ equation. In order to do so, it is instructive to use the Cole-Hopf transformation

[32],

h =
2ν

λ
lnZ , (1.22)

and by substituting to Eq. (1.12) we arrive at the stochastic heat equation (SHE),

∂Z

∂t
= ν∇2Z − λ

2ν
Z“× ”η. (1.23)

The symbol “× ” means that we must adopt either the Itô or Stratonovich convention

in order to make sense of the multiplicative noise [44], but the equation is now free

of the non-linearity. This is particularly important, because this term is actually ma-

lignant in the KPZ equation; we have showed that at least in 1d, the interface in the

stationary state is a Brownian motion (Wiener process) in space, therefore it does not

make sense to take the square of its derivative, as the height field roughens its spatial

derivative will diverge. However, on one hand, according to Bertini and Giacomin [57],

the solution of the KPZ equation can be defined via the solution of the SHE, and it

was further shown that this procedure can be circumvented, as proven by Hairer [58],

who eventually provided a rigorous mathematical foundation to the KPZ equation itself.

Provided that a solution of the KPZ equation can formally be written, one can now

prove that the probability density function actually interpolates between a Gaussian in

the short-time limit, and the non-trivial distribution found by the authors of [48, 49] in

the long-time limit. However, it is important to note that these works dealt with a dis-

crete model describing a growth in which a curved interface in the shape of a parabola is

developed, and the latter works [50–54] assumed an initial condition for the KPZ equa-

tion which is appropriate for this particular growth. Therefore, the natural question to

be asked is whether different initial conditions, which determine the asymptotic shape

the interface takes while undergoing growth, plays a role in the asymptotic probability

density function. Intuitively, the answer to this question is negative. The linear term in

Eq. (1.20) simply tells us that the mean profile grows linearly with time, but crucially,

this term is independent of the geometry and of the spatial position. Therefore, by

subtracting it from the height at any space point, we can access the growing fluctua-

tions δh = h(t) − u∞t. Then, the probability density once the power-law is removed,

P [δh/tβ] = P [χ] has no reason to depend on the growth geometry. As we will see,
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however, this is not the case.

We will now briefly consider the asymmetric simple exclusion process (ASEP) [59, 60],

in order to illustrate whether the geometry dependence we mentioned indeed exists.

Additional details related to the calculations and the actual mathematical theorems can

be found in the excellent reviews [32, 33].

Figure 1.3: (a) Schematic representation of the ASEP, (b) mapping to an interface
growth problem by introducing valleys and mountains depending on the hopping. The

black dot corresponds to an occupied site. Figure taken from [32].

ASEP is defined on a lattice with xi ∈ Z as shown in Fig. 1.3. Inbetween spatial coordi-

nates xi, xi+1 there are sites which are either occupied or empty. Empty sites can only

be filled by hopping from neighbouring occupied sites, which happen independently, and

a hopping rate q is assigned to the right and p = 1 − q to the left. This system can

be mapped to an interface growth of a height function h(t, x) as shown in the same

figure, by introducing a descending slope from xi to xi+1 if the site is occupied, and an

ascending slope if the site is empty. Once it gets filled, the height at some x0 increases

by ∆h(t, x0) = h(x0, t) − h(x0, 0), and in time this is equal to the net number of hops

passing through x0, which is ∆N = N→(x0)−N←(x0). This type of stochastic growth

was known to belong to the KPZ universality class, and interesting physics can be ex-

tracted by looking at the temporal fluctuations of the quantity h(t, x0) at a given point

x0, which is taken to be x0 = 0 due to translational invariance.

The results mentioned so far were derived for p = 0, which defines the TASEP. The initial

condition for this growth is a step function, such that the sites for x < 0 are occupied

and for x > 0 are empty. According to the mapping illustrated in Fig. 1.3 and described

above, the corresponding height profile h(t = 0, x) would then be a wedge. Alternatively,

if one uses an initial condition where alternating sites are occupied from −∞ to ∞, the

height profile h(t = 0, x) would be a jagged, but globally flat interface. Lastly, one

can envisage an initial condition where the occupation of each site is initially selected
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Figure 1.4: Schematic representation of three important initial conditions of the
TASEP and the corresponding initial height profiles h(t = 0, x) by mapping to an
interface growth problem, in a similar manner to Fig. 1.3. Figure taken from [32].

randomly, but with a fixed probability of 1/2, in order to ensure the globally flat shape.

Due to this randomness, h(t = 0, x) would display significantly larger fluctuations. These

three cases are shown in Fig. 1.4. We note that these are simply the main ones, and

historically combinations of them have also been investigated [33], leading to interesting

results.

Here we make a crucial remark. The scaling exponents are the same despite the different

initial condition for the TASEP, after all it is in the KPZ universality class. However, it

turns out that in terms of the one-point statistics as defined in the beginning of this sec-

tion, the probability density functions for the reduced fluctuations χ in Eq. (1.20) have

markedly different forms. At the level of the discrete models, this is traced back to the

different symmetries that arise in the combinatorics involved in their study, and which

crucially depend on the initial condition. This leads to partitioning the universality class

to geometry-dependent universality sub-classes, according to the initial condition of the

growth. The same results were obtained in the continuum, and have more recently been

observed in a series of beautiful experiments [61–63], thus conclusively proving that such

a partitioning is not merely an artifact of the discrete models.

The wedge initial condition is associated with the circular KPZ sub-class, the charac-

teristic trait of which being the propagation of the interface fluctuations in the radial

direction due to the inherent curvature. Its one-point statistics in the long-time limit

follow the one of the Tracy-Widom Gaussian Unitary Ensemble (TW-GUE), which cor-

responds to the probability density function of the largest eigenvalues of random N ×N
matrices belonging to this ensemble, in the limit N → ∞ and after appropriate rescaling.

The celebrated early works on TASEP by Baik, Deft and Johansson in 1999 and 2000

sparked a wide interest in the field, and during the next decade, in parallel with research

on the statistics of the exact solution of the KPZ equation with this initial condition,

the flat one was also extensively studied [64–69]. It was proven that the distribution in

this case corresponds to the one of the Tracy-Widom Gaussian Orthogonal Ensemble
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Figure 1.5: The three distributions of relevance in the 1d KPZ universality class.
The numerical data is available online, courtesy of M. Prähofer and H. Spohn, at [75].
One can see that the distributions are clearly non-Gaussian and are distinct among
themselves. Exact values of their skewness and excess kurtosis, which quantify the

asymmetry and the length of the tails, respectively, can be found in [76].

(TW-GOE). Regarding the initial condition which corresponds to the random occupa-

tion of sites, taken to be a Brownian motion in space for the interface height, the result

corresponds to the Baik-Rains (BR) distribution [70–73]. In this case, the sub-class is

referred to as stationary, because the distribution of h(x, 0) is the Gaussian stationary

solution of the Fokker-Planck equation related to the KPZ equation in 1d, Eq. (1.7). By

using Eq. (1.20), we have

χ
1-pt dist.−→





χTW-GOE, flat sub-class ,

χTW-GUE, circular sub-class ,

χBR, stationary sub-class

for t→ ∞. (1.24)

Here χBR, χTW-GUE, χTW-GOE follow the Baik-Rains, TW-GUE and TW-GOE proba-

bility distributions, respectively. The three distributions are shown in Fig. 1.5. We note

here that the same results were found in parallel for another important discrete model in

the KPZ universality class, the polynuclear growth (PNG). In particular, using appro-

priate initial conditions corresponding to growth under the aforementioned geometries

[74] confirmed the results for the wedge and flat initial conditions of the TASEP.

We therefore conclude that there is a deep connection between the KPZ universality class

in 1d and random matrix theory, the realm where Tracy-Widom [77] statistics lie, which

is robust at least at the level of one-point statistics for the flat and circular sub-classes.

As we will see in the next section, this correspondence does not hold for multi-point
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statistics. The BR distribution, and thus the one-point statistics for the stationary sub-

class, has no connection to random matrix theory, and was rather discovered when a need

for another distribution with zero mean arose during the investigation of a particular

extension of the circular PNG problem, which was used to model the stationary PNG

interface.

1.3.2.2 Two-point statistics

After discussing the probability density functions which constitute statistics of fluctu-

ations at a single space point, it is instructive to proceed with correlation functions,

namely the joint probability at different space/time points in 1d, {h(t1, x1)h(t2, x2)}.
The first quantity that was studied [78] in the context of the 1d PNG problem is the

spatial correlation function,

Ct0(∆x) = ⟨h(t0, x+∆x)h(t0, x)⟩−⟨h(t0, x+∆x)⟩ ⟨h(t0, x)⟩ ≡ ⟨h(t0, x+∆x)h(t0, x)⟩c .
(1.25)

By using Eq. (1.20), one is then interested to find the long-time limit of this expression.

One finds

Ct0(∆x) → (Γt0)
2β ⟨χ1χ2⟩c , (1.26)

where χ1, χ2 correspond to random numbers representing the fluctuations at the two

space points. If the KPZ dynamical scaling is present, then the only relevant variable

in the long-time limit is ζ ∼ x/t2β [79], and not space or time separately, Therefore the

local evolution of the height can be written as

h(t, x) → u∞t+ (Γt)βχ(t, ζ),

which, in turn, means that ⟨χ1χ2⟩c ≡ ⟨χ(t0, ζ)χ(t0, ζ +∆ζ)⟩c. Crucially, in the long-

time limit, this quantity should not depend on time anymore; the only such dependence

should be encoded in the spatial correlation of the field itself, Eq. (1.25). In a similar

manner as for the mapping of the stationary solution probability density function to

a Brownian motion at the end of section 1.2.1, the scale-invariant fluctuations can be

mapped to a stochastic process in this limit, and ζ is interpreted as the time τ of this

process. Therefore, the (originally spatial) correlation function should be mapped to a

time correlation function of this process. Indeed, for the circular sub-class, this limit

process is called Airy2 [78, 80], while for the flat one it is called Airy1 [67, 81]. In a

similar manner to Eq. (1.24) for convergence in terms of 1-point statistics, we can now
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write

χ(t0, ζ)
2-pt dist.−→




A1(ζ), flat sub-class,

A2(ζ)− ζ2, circular sub-class,
(1.27)

where Ai corresponds to the Airyi process. We note here that the −ζ2 contribution nat-

uraly arises in the context of the circular sub-class, and corresponds to the deterministic

parabolic shape of the droplet in the PNG model [78]. For the stationary case, it was

found that the fluctuations field χ(ζ, t) is correctly accessed if one further subtracts the

h(x = 0, t = 0) term as well, namely

hstat(t, x)− h(t = 0, x = 0) → u∞t+ (Γt)2βχstat(ζ, t), (1.28)

otherwise one ends up with the trivial Brownian motion in space. The novel limit process

in this case is the Airystat in terms of 2-point statistics [82]. The connection with the

results of section 1.3.2.1 is of course established for fixed ζ for all three sub-classes. We

note here that one can associate certain dynamics of the appropriately rescaled largest

eigenvalue of TW-GUE matrices, called Dyson’s Brownian motion [83], to the Airy2

process [84], but this is not the case for the TW-GOE matrices [85]. Therefore, the

apparent correspondence between the mathematics of KPZ and random matrix theory

in terms of 1-point statistics, indeed ceases to exist for 2-point statistics.

1.4 Results in 2d

While statistics of 1d interfaces belonging to the KPZ universality class are well studied

and many exact results are available, mainly because of a multitude of integrable systems

that belong to this class, this is not the case in 2d. We stress that this section is not

intended to serve as a complete overview of the developments on this subject, and we

rather present certain historically important developments.

1.4.1 Numerical simulations

Historically, numerical simulations were used extensively in order to tackle the deter-

mination of the scaling exponents in the 2d KPZ universality class. As was the case in

1d, significant attempts were made to simulate discrete models belonging to the KPZ

universality class, see for example Refs. [86–97], or the KPZ equation itself [98–101]. We

note that, in Refs. [88, 90], a d−dependent closed form for the exponents was proposed,

according to which α = 2/5, β = 1/4, z = 8/5 in 2d, however, it was suggested that

strong crossover effects might limit the accuracy of this type of ansätze. Furthermore, a
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particularly important result appeared in Ref. [102], according to which, the spatial dis-

cretization used in the prior attempts to numerically simulate the continuum model was

unstable, due to divergences appearing for large value of the non-linearity parameter.

Nowadays, the most reliable predictions have come from efficient numerical simulations

of very large systems [103]. In Ref. [104] it was shown that Eq. (1.20) holds for β ≃ 0.24

in 2d, and the concensus among the literature is now that α ≃ 0.39 is a valid approxi-

mation for sufficiently large systems in 2d.

Regarding the partitioning to geometry-dependent sub-classes, numerics have also turned

out to be very useful. For the analog of the 1d stationary sub-class, universal ratios of

cumulants of the reduced height fluctuations were computed [92, 105, 106], as well as for

the analogs of the flat and curved 1d sub-classes [104, 107–109]. It was quantitatively

shown that the skewness and excess kurtosis do not match if the geometry is different.

However, qualitatively, the corresponding one-point statistics cannot be matched to the

BR or TW distributions, and exact results are still missing. Therefore, phenomeno-

logical fitting distributions were proposed for the reduced height fluctuations, namely

the generalized Gumbel distribution and the Pearson distribution. Regarding 2-point

statistics, the connected spatial correlation function was computed for the flat sub-class

[110], and the difference from its 1d analog, the Airy1 covariance, was highlighted.

1.4.2 Analytical results

Analytical attempts on extracting universal results for the 2d KPZ universality class

are notoriously difficult to come by. Regarding the critical exponents, the Galilean

transformation leaves the KPZ equation invariant in 2d, and this results to the exponent

identity Eq. (1.17), but one cannot infer what is the exact value for χ because there is

no closed form of a stationary solution and hence no mapping to the Wiener process.

One can show that this originates from the absence of the time-reversal symmetry in

2d. However, using perturbative field-theoretical techniques, the first predictions of an

analytical expression of the critical exponents appeared in 1998 [111], which were in

agreement with the earlier numerical simulations by Kim and Kosterlitz in 1989, and a

few years later a more refined prediction appeared [112], according to which z ≃ 1.62.

A particularly important result appeared in 1999 [113], where it was shown that the

perturbative RG flow of the effective KPZ coupling gKPZ = λ2D
ν3

can be computed

exactly to all orders, but this yields a run-away flow to infinity, instead of a fixed-point

solution, which would be associated with roughening and KPZ dynamics. This means

that non-perturbative RG should be used in order to capture the relevant fixed point,

raising doubts about the validity of the previous results. Using this framework, some



Non-equilibrium growth phenomena and the Kardar-Parisi-Zhang universality class 22

results have appeared more recently [114, 115]. Indeed, it was shown that the strong-

coupling fixed point is not at all connected with the Gaussian fixed point associated

with EW dynamics, which explains the failure of perturbation theory. A prediction for

the growth exponent α = 0.33 was given in [114], while a more refined calculation [116]

predicts α = 0.373. In the latter work, the dimensionless variance of the distribution

of the rescaled fluctuations in the analog of the stationary sub-class, as well as the full

scaling function, were also found.



Chapter 2

Quantum fluids of light

As explained in chapter 1, experimentalists began searching for alternative systems

with more favorable properties, as part of the quest to increase the critical temperature

at which Bose-Einstein condensation takes place. In particular, it was suggested that

hybrid light-matter systems such as exciton polaritons (EP), which exhibit a lighter

mass, could be excellent candidates for BEC, and thus make quantum physics observable

in an unprecedented manner. However, it was later realized that the nature of the BEC

transition undergone in these systems is of non-equilibrium nature, in stark contrast to

the BEC at equilibrium, where the control parameter is either the temperature, or the

particle number. In this chapter, we will present the exciton polaritons mentioned above,

which are formed by the strong coupling of excitons and cavity photons. In particular,

we will describe the mechanism of their creation, and discuss the possibility of formation

of a BEC in such systems. We will also describe in detail the mapping of the dynamics

of the phase of the EP to the KPZ equation, and highlight the consequences of the

mapping to the development of coherence in polariton condensates.

2.1 Physical system

2.1.1 Excitons

One of the two ingredients of the system, excitons, are formed in semiconductors. The

process is conceptually simple, as an electron can be excited from the valence band to

the conduction band, leaving behind a lack of negative charge. This is interpreted as a

quasi-particle of positive charge, which is called a hole, as shown in Fig. 2.1. Due to the

opposite charges, the Coulomb interaction favors the formation of an excited electron-

hole bound state called exciton. Excitons are formed both in bulk materials, and also

23
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in bidimensional structures obtained in quantum wells (QW), in which a material with

small bandgap (e.g. GaAs) is sandwitched between two layers of material with wider

bandgap (e.g. AlAs). In the latter case, confinement along the direction of change

of material (usually taken to be the z direction) is achieved, while the electrons are

free to roam in the xy plane on the material with the smaller bandgap. Excitons are

characterized by their mass mx, which is usually taken to be the sum of the effective

masses of the electron and the hole,mx = me+mh. Moreover, excitons are approximated

by the hydrogen atom, and their binding energy and radius can be characterized by the

effective Rydberg and the Bohr radius, which read [117]

R∗y =
µ̃e4

2ϵ2dℏ2
, α∗B =

ℏ2ϵd
µ̃e2

, (2.1)

where µ̃ is the reduced mass of the electron-hole system, which is given by µ̃−1 =

m−1e +m−1h , e is the electron charge, and ϵd the static dielectric constant of the material.

For a more comprehensive review on the subject of excitons, we refer the reader to [118].

Figure 2.1: Ground and excited state energy of a semiconductor as a function of the
wavevector. In the ground state, the valence band is filled, whereas the conduction
band is empty. An electron can be excited via external stimulation, leaving behind
a lack of negative charge (hole). The electron and the hole bind together to form an

exciton, due to the Coulomb interaction. Figure taken from [119].

2.1.2 Cavity photons

The other basic ingredient of the system is cavity photons. A major feature is that they

must be confined in the same semiconductor material, such that they overlap with the

QW hosting the excitons. For this purpose, two Bragg mirrors are widely used, which

can be engineered to offer very high reflectivity, in order to create a “microcavity” [120].

More specifically, by placing them at relative distance L along the z axis, one can show

that an incident photon is effectively confined on the direction z perpendicular to the
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mirror planes, for specific wavelengths which depend on L and certain characteristics of

the mirrors. This implies that the momentum along this direction is quantized,

kz = N
2π

L
, with N ∈ Z. (2.2)

A crucial point is that confinement gives rise to an effective mass for the photon, since

the dispersion relation in the microcavity [28],

ωc(k∥) =
c

n0

√
k2z + k2∥ ≃

ckz
n0

(
1 +

k2∥
2k2z

)
, kz ≫ k∥ ,

can be written as

ωc(k∥) = ωc(k∥ = 0) +
ℏ

2mcav
k2∥ , (2.3)

where ωc(k∥ = 0) = ckz/n0 and mcav = ℏωc(k∥ = 0)/(c2/n20) for dielectric medium

of refractive index n0. Here, one should notice that, due to the c−2 dependence, the

effective mass mcav is typically very small, of the order of mcav ≃ 10−5me. Furthermore,

we stress that despite the enormous reflectivity of the mirrors, an incident photon will

not stay in the cavity forever, bur rather will escape from the cavity due to the non-

ideal mirrors. In typical EP experiments, the timescale is of a few picoseconds, see e.g.

[121–123].

2.1.3 Exciton polaritons

The strong coupling between the confined photonic degrees of freedom with the excitons

in a semiconductor microcavity was first discussed in [124]. This originates from a

minimal light-matter coupling in the microscopic Hamiltonian [117], of the form

H =
1

2me

(
p⃗− e

me
A⃗

)2

, (2.4)

where p⃗ corresponds to momentum of the exciton, A⃗ to the vector potential of the

electromagnetic field and the coupling constant is p⃗ · A⃗ ∝ ΩR. We describe photons and

excitons by annihilation and creation operators â, â†, denoted with a subscript “x” or

“c” for excitons and photons, respectively. In particular, in second quantization, the
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Hamiltonian of the system in Eq. (2.4), can be written as H = Hc +Hx +Hxc, where

Hc =

∫

k
ℏωc(k)â

†
c(k)âc(k) , (2.5a)

Hx =

∫

k
ℏωx(k)â

†
x(k)âx(k) , (2.5b)

Hxc =

∫

k
ℏΩR

[
â†c(k)âx(k) + â†x(k)âc(k)

]
. (2.5c)

Here Hxc corresponds to the light-matter interaction and the interaction constant ΩR

is called the Rabi frequency. The requirement of strong coupling is satisfied if ΩR is

the dominant energy scale in the system, in particular ΩR > γ, where γ represents the

loss rate from the cavity. In order to diagonalize the total Hamiltonian of the system

Htot = Hc +Hx +Hxc, we introduce new operators,

ψ̂LP(k) = X(k)âx(k) + C(k)âc(k) , (2.6)

ψ̂UP(k) = −C(k)âc(k) +X(k)âx(k) , (2.7)

where X(k), C(k) are called Hopfield coefficients. We note here that the very large

mass of the excitons mx compared to the effective mass of the photons mcav leads to

approximating the exciton dispersion with a constant, ωx(k) ≃ ωx,0. On the other hand,

the dispersion relation of the photon is well approximated by a parabola, as can be seen

from Eq. (2.3). The eigenenergies of the system are found to be

ELP(k) =
ℏ
2
(ωc(k) + ωx(k))− ℏ

√
(ωc(k)− ωx(k))

2

4
+ Ω2

R , (2.8a)

EUP(k) =
ℏ
2
(ωc(k) + ωx(k)) + ℏ

√
(ωc(k)− ωx(k))

2

4
+ Ω2

R. (2.8b)

We therefore find that, in the case of strong light-matter coupling, two new hybrid eigen-

states with different energies arise, as linear superpositions of the excitonic and photonic

modes due to Rabi splitting [125]. The new eigenstates are called Lower Polariton (LP)

and Upper Polariton (UP), see Fig. 2.2 for a pictorial representation of some possible

pumping schemes, and Fig. 2.3 for the full dispersion relation. Particles in these new

eigenstates are created (destroyed) by ψ̂†LP, ψ̂
†
UP (ψ̂LP, ψ̂UP) respectively. As we will de-

scribe below, the population of the UP branch is usually negligible when compared to

the LP where condensation takes place, hence the order parameter is usually associated

with ψLP.
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Figure 2.2: Three different pumping schemes for creation of EPs. A first method
consists of shining a laser where the photons carry momentum k = kLP, min (left).
Alternatively, by pumping in-between the minimum and the inflection point of the
LP branch (middle), pairs of polaritons can scatter to two distinct states while being
allowed to do so by the conservation of momentum. This results to massive occupation
of two states, called the signal (minimum of the LP branch) and the idler (close to
the maximum of the LP branch), and the system is in the optical parametric oscilator
(OPO) regime. A third approach consists of pumping high-energy excitons with no
particular phase (right), which eventually relax down and condense to the minimum of
the LP, see also Fig. 2.3. We refer the reader to [28] for a more complete account of

the intricacies associated with each pumping scheme. Figure taken from [126].

2.1.4 Driven-dissipative Bose-Einstein condensation

Intense debate has sparked (see e.g. [127]) on what is the precise nature of this kind of

non-equilibrium phase. Answering this question is non-trivial due the fact that equilib-

rium BEC formation and lasers have some common features. Indeed, for a long time, the

close analogy between lasers and second-order phase transitions was known [128, 129].

In the case of lasers, the steady state is of non-equilibrium character and results from

balance between pump and losses; this is of fundamental importance for population in-

version, which is the cornerstone of a standard lasing process. Moreover, the defining

characteristic of such a system is that off-diagonal long-range order (ODLRO) is dis-

played, which means that the electromagnetic field Ê(x) displays first-order coherence

lim
|x⃗−x⃗′|→∞

〈
Ê†(x⃗)Ê(x⃗′)

〉
̸= 0 , (2.9)

and light emitted by a laser device above its threshold remains coherent over large

distances. However, it should be noted that weak light-matter coupling is enough for

stimulated emission and hence for a lasing process. On the other hand, a BEC phase

transition happens at equilibrium. Therefore, we deduce that the strong light-matter

coupling, which amounts to new eigenstates of the system being formed, automatically

rules out an optical laser, while the non-equilibrium character of the system due to

the inherent drive and dissipation rules out an equilibrium BEC phase transition. The

answer as to what exactly EPs are thus must lie somewhere in the middle between these

two limiting cases [130].
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Figure 2.3: Experimental setup used in [122] under a non-resonant pumping scheme.
Energy dispersion of the polariton modes versus in-plane wave vector k∥ and the inci-
dence angle θ (left). The excitonic dispersion is clearly identified as a constant ωx,0,
while the photon one is a parabola (dashed lines). The UP and LP branches are also
clearly visible (solid lines). The pump is tuned at an energy level even higher than
the UP branch, and the excess amount is eventually relaxed to the bottom of the LP
branch, via a variety of mechanisms, such as lattice phonon interaction and exciton
scattering. We refer the reader to the excellent review [120] where this point is dis-
cussed in detail. Macroscopic population of this state then follows, which is associated
with a hybridized Bose-Einstein condensation, as proven in this work. Emitted energy
as function of k∥ for three different pump powers, corresponding to below threshold,
exactly at threshold, and above threshold (left to right), as well as energy distribution
around a cone. Below threshold the energy is rather broadly distributed, while above

threshold a clear consolidation at the lowest quantum state k∥ = 0 is observed.

So far it has been established that ODLRO is established in the EP system via emission

of coherent light, using a variety of different pumping schemes. Experimentally, this

was shown in the context of pumping close to the inflection point of the LP (Fig. 2.2,

second panel) [131–133], and was predicted theoretically in [134] to correspond to a

sort of Bose-Einstein condensation, where the symmetry breaking associated with the

transition is of a U(1) between the signal and idler modes. On the other hand, the quest

for achieving spatiotemporal coherence in the case of non-resonant pumping (Fig. 2.2,

third panel) [121, 135–137] also started. The first observation of an BEC of EP was

experimentally reported in [122]. The experimental realisation is shown in Fig. 2.3, as

well as results regarding occupation of the state of lowest in-plane momentum. In this

work, a well-defined pumping intensity threshold is identified, above which much longer

temporal coherence is reported, due to the formation of a BEC. Moreover, build-up

of spatial coherence is found, which was linked to the formation of a condensate. In

equilibrium BEC, this implies the development of ODLRO, however, it was later proven

that KPZ fluctuations destroy ODLRO in this non-equilibrium setting, and this is the

object we study in this thesis.
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2.2 Gross-Pitaevskii Equation

Given that we established some form of Bose-Einstein condensation phenomenon hap-

pening in the case for EPs under incoherent pumping, we will now construct a phe-

nomenological model for the description of the system. We note here that this type of

pumping scheme will be assumed throughout this thesis, unless stated otherwise. This

is because no coherence is able to be inherited from the pump laser, which is a necessary

ingredient for the emergence of KPZ physics in the system. While this fact directly rules

out the coherent pump where the incident momenta are in resonance with the minimum

of the LP branch, the OPO regime depicted in the central panel of Fig. 2.2 is not ruled

out and also exhibits KPZ physics. In this case, one has to deal with a 3-mode system

(pump, signal, idler), and moreover, according to the analysis performed in [138, 139],

this setup encounters strong sensitivity of the outcome to the pump characteristics.

2.2.1 From many-body to mean-field theory

The model presented in this section was introduced in [140, 141] and takes into account

the physical features of the system described above. A significant simplification of the

problem is achieved by the fact that the EP are described by a single classical field,

as long as the particles populate almost exclusively the minimum of the LP, and hence

they behave as a macroscopic condensate. In this case, a complex generalization of the

well-known Gross-Pitaevskii equation (gGPe) [142] used in equilibrium systems can be

employed. The gGPe is a non-linear Schrödinger equation for the classical mean-field

ψ = ψ(t, x) =
〈
ψ̂LP(t, x)

〉
, which in our case describes the EP in the LP branch. A rate

equation describing the excitonic reservoir is coupled to the gGPe, in order to explain

the scattering of the high-energy carriers which allows the population of the condensate.

We note that the precise mechanism under which the relaxation from the reservoir to the

condensate happens is extremely complex and involves many different processes [143].

However this model has been found to be effective in predicting experimental results,

without the need to incorporate the precise mechanisms underlying the gain in detail.

In the most general case, the gGPe and the rate equation of the reservoir read:

iℏ
∂ψ

∂t
=

[
F−1 [ELP(k)] +

iℏ
2

(
Rnr −F−1 [γl(k)]

)
+ 2grnr + g |ψ|2

]
ψ , (2.10a)

∂nr
∂t

= P − γrnr −Rnr |ψ|2 . (2.10b)

In Eqs. (2.10a, 2.10b), the reservoir density nr is stimulated by pumping P , and is

continuously depleting with a rate γr. The gain from the reservoir into the condensate

is introduced via an amplification term R. The Gross-Pitaevskii equation includes an
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imaginary term corresponding to the deterministic effects of the drive and dissipation,

as well as contact polariton-polariton interactions and polariton-reservoir interactions,

with coupling constants indicated by g, gr respectively. The polariton loss-rate, which

is in general momentum-dependent, is indicated by γl(k), whose full expression is given

in Eq. (2.12) below.

In order to write the dispersion relation for the LP branch, we take into account cer-

tain approximations. As can be seen in Fig. 2.3, polaritons under incoherent pumping

eventually condense at the minimum of the LP branch, which corresponds to the lowest

momentum state. Without loss of generality, we focus on the case where the system

has zero detuning δ, namely δ ≡ ωx,0 − ωc,0 = 0, with the generalization for δ ̸= 0

being straightforward, also from an experimental point-of-view. This choice simplifies

Eq. (2.8a), and we can expand,

ELP(k) ≃ ℏωLP +
ℏ2

2mLP
k2 − 1

2ℏΩR

(
ℏ2

2mLP
k2
)2

, (2.11)

where ωLP = ωc,0 − ΩR and mLP = 2mcav and k = |⃗k|. By including up to quartic

corrections, we are able to take into account excitation modes not strictly at the bottom

of the LP branch.

As extensively discussed in the literature, in order to construct a more faithful model,

it is expected that an extra momentum dependence should arise, coming either from

the drive, or dissipation of the condensate [143]. This has been mostly carried out by

introducing a frequency-selective pump, see e.g. [144, 145]. We will rather choose to

introduce a momentum dependence on the polariton loss-rate. Our choice is motivated

by the fact that there is experimental evidence of a momentum-dependent linewidth.

On the other hand, the precise details of the pumping mechanism and the relaxation

are not known in the incoherent pumping case. Therefore, we take

γ(k) = γ0 + k2γ2 , (2.12)

where γ0 ≃ 1/τpol, for typical polariton lifetime τpol, and γ2 corresponds to an increase

of losses at finite wavevector k = |⃗k|. We note that, while the momentum dependence

was measured as being linear in the wavevector in the experiment carried out in [146], in

principle the functional form is a characteristic of the given experiment [147] and indeed

a quadratic dependence was recently used [148]. Furthermore, the quadratic dependence

in Eq. (2.12) is rather convenient, due to its well-defined Fourier transform.
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2.2.1.1 Adiabatic approximation

After introducing the full model, we can make a further approximation, in the case where

γr ≪ γl. This means that the characteristic timescale for the reservoir dynamics is much

longer than the one for the condensate, τr ≫ τpol. Therefore, for the relevant timescale of

the polaritons, the reservoir density can be thought of as being approximately constant,

and hence the rate equation Eq. (2.10b) can be directly integrated, which leads to

nr =
P

γr +R |ψ|2
. (2.13)

After substituting this expression, along with the dispersion relation Eq. (2.11) and the

polariton loss rate Eq. (2.12) into Eq. (2.10a), we finally arrive at

iℏ
∂ψ

∂t
=



(
− ℏ2

2mLP
∇2 + iℏ

γ2
2
∇2

)
+
iℏγ0
2


 p

1 + |ψ|2
ns

− 1




+2gr
P

γr

(
1 + |ψ|2

ns

) + g |ψ|2

ψ , (2.14)

where we have performed the inverse Fourier transforms to express the dispersion relation

and the loss rate in real space, and we have further defined a dimensionless pump

parameter p ≡ P/Pth = PR/(γ0γr). We have also introduced the saturation density

ns = γr/R. It should be stressed that ns is not known experimentally, due to the

aforementioned difficulties in accessing the precise mechanisms for stimulating the LP

branch in the incoherent pump case. On the other hand, the pump is very well controlled,

and in fact p naturally acts as a control parameter for the phase transition.

2.2.1.2 Steady-state solution

We are interested in finding a stationary, steady-state solution of Eq. (2.14). So far we

have been interested in a homogeneous condensate, since there is no external potential

in the system. The full case where a confinement potential is introduced is crucial to our

work and will be presented in chapter 3. For a homogeneous condensate, we substitute

ψ(t) =
√
n0e

iθ0(t), where n0 is a uniform and constant density, and θ0 is the global phase.

The real and imaginary parts of the resulting equation read

∂tθ0 = −gn0 − 2gr
P

γr

(
1 + n0

ns

) , (2.15a)

0 =
ℏγ0
2

(
p

1 + n0
ns

− 1

)
. (2.15b)
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By examining these equations, we see that n0 = 0 is the stable solution if P ≤ Pth, while

a steady-state density proportional to p is found when P > Pth,

n0 = ns(p− 1), (2.16)

thus reinforcing the claim that p naturally corresponds to the control parameter. The

macroscopic phase of the condensate in the steady state is uniquely fixed, the U(1)

symmetry is broken and a non-equilibrium phase transition takes place.

2.2.2 Statistical fluctuations beyond mean-field

The mean-field model described in the previous section is based on treating the many-

body quantum fields as classical complex fields which correspond to their expectation

value. This assumption explicitly excludes the presence of fluctuations, and the only

excitations around the MF solution one can study are the Bogoliubov excitations caused

e.g. by an external perturbation. In an equilibrium condensate, this was introduced in

[142], and the Bogoliubov modes were characterized. On the other hand, for a non-

equilibrium condensate under incoherent pumping, key differences in the behavior of

the Bogoliubov modes were found [149], especially in the low-momentum sector. The

mean-field model, however, is approximate since it neglects statistical fluctuations which

naturally arise from the stochastic nature of the drive and dissipation. To account for

such fluctuations, a stochastic element must be added to the Gross-Pitaevskii equation.

We refer the reader to the work by Gardiner and Davis [150] and references therein

for details regarding the calculations, and we present here the main ideas, which were

applied in the case of polaritons under incoherent pumping in [141].

2.2.2.1 Quantum and statistical fluctuations

The main idea behind the inclusion of a stochastic contribution to the system comes

from its interplay with an excitonic reservoir, which replenishes polaritons. Going back

to the quantum mechanical treatment of the problem, the total Hamiltonian of our

system, since we disregard the UP, can be written as

H = H0 +Hs-r, with H0 = HLP +Hr. (2.17)

We recall that LP are created (annihilated) by the operator ψ̂†LP (ψ̂LP), which we will

indicate as ψ̂† (ψ̂) for short-hand notation, and here we also consider excitons in the

reservoir which are created (annihilated) by the operator ϕ̂† (ϕ̂). The Hamiltonians read
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HLP =

∫

x
ψ̂†(x)F−1[ELP(k)]ψ̂(x) +

g

2
ψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x) , (2.18a)

Hr =

∫

x
ϕ̂†(x)F−1[ER(k)]ϕ̂(x) +

gr
2
ϕ̂†(x)ϕ̂†(x)ϕ̂(x)ϕ̂(x) , (2.18b)

where a contact two-body polariton-polariton interaction of strength g has been included,

as well as interaction among the excitons in the reservoir gr, which is of the same order

of magnitude [28]. The dispersion relations for the LP is given in Eq. (2.11), whereas

the one for the excitons is treated as a constant due to the large mass, however in

principle it is also a parabola, albeit extremely shallow. Regarding the coupling term

Hs-r, it involves mixing of operators, such that particles can be transferred between the

reservoir and the LP,

Hs-r =

∫

x
gc

(
ϕ̂†(x)ϕ̂(x)ϕ̂(x)ψ̂†(x) + ϕ̂†(x)ϕ̂†(x)ϕ̂(x)ψ̂(x)

)
= Hgain +Hloss , (2.19)

where also gc is of the same order as g, gr. We note here that, in principle, there

are more terms involved, such as terms including three LP operators ψ,ψ†, as well as

HMF = gc
∫
x ϕ
†ϕψ†ψ. The former is assumed to be negligible in [141], while the latter

does not contribute to exchange of particles between the two subsystems, but rather

only to constant mean-field shifts.

We write a von Neumann equation for the total density matrix in the Schrödinger

picture,
dρ

dt
= −i [H, ρ] , (2.20)

and the reduced density matrix for the LP is obtained by tracing out the reservoir and

reads

ρLP = Trrρ. (2.21)

It is advantageous now to switch to the interaction picture, and we introduce a super-

script “I” to denote the quantities expressed in this picture. We have

H(I)
s-r = eiH0tHs-re

−iH0t , (2.22a)

ρ(I) = eiH0tρe−iH0t , (2.22b)

dρ(I)

dt
= −i

[
H(I)

s-r , ρ
(I)
]
. (2.22c)



Quantum fluids of light 34

We note here that the definition of the reduced density matrix for the LP, once the

reservoir is traced out, reads in the interaction picture

ρ
(I)
LP = Trrρ

(I). (2.23)

In order to access its time evolution, we write the formal solution of Eq. (2.22c) after

two iterations,

ρ(I)(t)− ρ(I)(0) = −i
∫

t′

[
H(I)

s-r (t
′), ρ(I)(0)

]
−
∫

t′

∫

t′′

[
H(I)

s-r (t
′),
[
H(I)

s-r (t
′′), ρ(I)(t′′)

]]
,

(2.24)

and by taking the partial trace in order to access the desired ρ
(I)
LP from Eq. (2.23), we

finally obtain

ρ
(I)
LP(t)− ρ

(I)
LP(0) = −

∫

t′

∫

t′′
Trr

[
H(I)

s-r (t
′),
[
H(I)

s-r (t
′′), ρ(I)(t′′)

]]
. (2.25)

Here we have used the fact that Trr

[
H(I)

s-r (t′), ρ(I)(0)
]
= 0. In order to prove this, we

first have to assume that the LP and the reservoir are initially uncorrelated, such that

the density matrix can be written as a product,

ρ(I)(0) = ρ(I)r (0)⊗ ρ
(I)
LP(0). (2.26)

The partial trace, therefore, contains terms such as

gcψ̂
†(t′)ρ(I)LP(0)Trr

(
ϕ̂†(t′)ϕ̂(t′)ϕ̂(t′)ρ(I)r (0)

)
, (2.27)

where the number of ϕ̂, ϕ̂† operators in the product is imbalanced, and such a process

would not conserve the total particle number, hence its expectation value is zero. This

allows us to select the terms that contribute to the partial trace in Eq. (2.25). In

particular, it can be seen from Eq. (2.19) that the only nonvanishing partial traces

contain the following products

Trr

(
Hgain / lossHloss / gainρ

(I)
)
, (2.28)

such that the numbers of annihilation/creation operators acting on the subspace of

the reservoir balance out. In order to proceed, we extend the previous assumption

Eq. (2.26) to be valid for any time, and hence the LP can be unraveled from the reservoir.

This is because the coupling among the two subsystems is considered to be small, and

the “environment” is generally thought of as being statistically independent from the

“system” [151, 152]. A nonzero term contributing to ρ
(I)
LP, in the spirit of Eq. (2.28),
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reads

R1 = g2c

∫

t′,t′′

∫

x′,x′′
Trr

[(
ϕ̂†(t′)ϕ̂(t′)ϕ̂(t′)ψ̂†(t′)

)(
ϕ̂†(t′′)ϕ̂†(t′′)ϕ̂(t′′)ψ̂(t′′)

)
ρ(I)
]

≃ g2c

∫

trel,Tcm

∫

xrel,Xcm

Πf (trel, Tcm, xrel, Xcm)

×
(
ψ̂†(Tcm + trel/2, Xcm + xrel/2)ψ̂(Tcm − trel/2, Xcm − xrel/2)ρ

(I)
LP

)
,

(2.29)

where center-of-mass and relative coordinates have been introduced,

Xcm =
x′ + x′′

2
xrel = x′ − x′′

Tcm =
t′ + t′′

2
trel = t′ − t′′. (2.30)

The prefactor Πf (trel, Tcm, xrel, Xcm) encodes information related to the exchange of

energy via scattering which involves 3 particles. It can be written in the following form

[141]

Πf =
1

Ω3

∑

k1,k2,k3

ei(xrel∆k−trel∆ϵ)f(Tcm, Xcm, k1)[f(Tcm, Xcm, k2)+1][f(Tcm, Xcm, k3)+1] ,

(2.31)

where Ω is the relevant area of the system, k1, k2, k3 the momenta of the reservoir

excitons, and ϵx(k1), ϵx(k2), ϵx(k3) their dispersion relations. This process is shown in

diagrammatic form in Fig. 2.4.
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x0, t0

Figure 2.4: Interaction of LP and reservoir. At the node x′′, t′′, one reservoir exciton
(straight line) with momentum k1 interacts with one LP (curly line) with zero momen-
tum, and two excitons k2, k3 are created. The total change in energy and momentum
from Eq. (2.31) are ∆ϵ = ϵx(k2) + ϵx(k3) − ϵx(k1) and ∆k = k2 + k3 − k1. This is an
out-scattering process, as a LP is destroyed and the reservoir gains energy. On the other
hand, at the node x′, t′, two excitons are destroyed and one LP is created, therefore

this is an in-scattering process.
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Following the same logic, all the contributing terms in Eq. (2.25) can be gathered, and

we find for ρLP after reverting back to the Schrödinger picture [141],

∂ρLP
∂t

= −i [HLP, ρLP] +Kin(ρLP) +Kout(ρLP), (2.32)

During this process, using certain approximations and intricacies related to the system is

necessary. In particular, emphasis was put in the reservoir being treated as a thermalized

gas in [141], while the concept of the Markov approximation was discussed in [150]. This

means that the reservoir can be thought of as being unaffected from back-action from the

LP. We will return to this point at the end of this section, but for now the back-action

is treated in the general case as non-zero. More explicitly, we refer to Kin(Kout) as gain

(loss) induced to the LP by in(out)-scattering of high-energy excitons in the reservoir.

These are written as

Kin (ρLP) =
1

2

∑

k

∫

xrel

Rin[ELP(k), nr]

×
(
eikxrelψ̂†(xrel)ρLPψ̂(k)− eikxrelψ̂(k)ψ̂†(xrel)ρLP + h.c

)
,

(2.33)

Kout (ρLP) =
1

2

∑

k

∫

xrel

Rout[ELP(k), nr]

×
(
eikxrelψ̂(k)ρLPψ̂

†(xrel)− eikxrelψ̂†(xrel)ψ̂(k)ρLP + h.c
)
.

(2.34)

and the operators are evaluated at the same time Tcm in center-of-mass coordinates.

We note here that the peculiar coupling between operators expressed in Fourier space

and operators in real space arises naturally in this formalism when taking the trace in

the last term of Eq. (2.32). The rates written above are expected to have the following

general forms,

Rin [ELP(k), nr] = n2rR̃in (ELP(k)) , (2.35a)

Rout [ELP(k), nr] = nrR̃out (ELP(k)) + γ(k), (2.35b)

for γ being the LP loss rate defined in Eq. (2.12).

So far, we have derived a master equation Eq. (2.32) which in principle contains all the

information regarding the time evolution of states in our quantum system. We now use

the fact that the EP condensate is a coherent state. This means that we can attempt to

map the equation of motion for ρLP, Eq. (2.32), to an equation for the quasiprobability

density of a classical field describing the coherent state [152]. In general, this can be done

via a number of ways. Firstly, in the Glauber-Sudarshan P representation [153, 154],
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one exploits the fact that any density matrix can be written as an ensemble over coher-

ent states, and in this case one can show that moments of the quasiprobability density

function correspond to expectation values of normal ordered products. Secondly, in the

Husimi Q representation [155], one uses the fact any operator can be written as the

diagonal matrix element of coherent states, which is an overcomplete basis, and in this

case the moments of the quasiprobability density function correspond to expectation

values of anti-normal ordered products. The prefix “quasi” refers to functions which

can be negative or singular, and hence their integral can be negative in small regions.

We refer the reader to [152] and references therein for a more complete accord of these

representations, as well as for the Wigner representation, which we will outline in more

detail below.

The Wigner representation was originally derived as a tool to obtain the joint probability

of the position and momentum of quantum particles. In our case, we define the functional

PW [ψ,ψ∗] on the space of complex functions (ψ,ψ∗) ≡ (ψ(x), ψ∗(x)),

PW [ψ,ψ∗] =
1

π2

∫

λ,λ∗
e−λψ

∗+λ∗ψχW [λ, λ∗] , (2.36)

where (λ, λ∗) ≡ (λ(x), λ∗(x)), and χW [λ, λ∗] is the characteristic Wigner functional

χW [λ, λ∗] = Tr
(
ρLPe

λψ̂†−λ∗ψ̂
)
, (2.37)

where the trace should be evaluated over coherent states of polaritons. We now have

to map the time evolution of the density matrix of the quantum field Eq. (2.32) to an

equation of motion for PW ≡ PW [ψ,ψ∗], as a tool in order to arrive to a stochastic

partial differential equation for a classical field, as explained in section 2.2.1. In order to

proceed, the action of the operators on the density matrix can be mapped to a differential

operation on PW , namely [152]

ψ̂ρLP ↔
(
ψ +

1

2

∂

∂ψ∗

)
PW , (2.38a)

ψ̂†ρLP ↔
(
ψ∗ − 1

2

∂

∂ψ

)
PW , (2.38b)

ρLPψ̂
† ↔

(
ψ∗ +

1

2

∂

∂ψ

)
PW , (2.38c)

ρLPψ̂ ↔
(
ψ − 1

2

∂

∂ψ∗

)
PW (2.38d)
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With these relations, the commutator in Eq. (2.32) can be decomposed via Eq. (2.18a),

∫

x
−i
[
ψ̂†F−1[ELP(k)]ψ̂, ρLP

]
→
∫

x
i

(
∂

∂ψ
F−1[ELP(k)]ψ − ∂

∂ψ∗
F−1[ELP(k)]ψ

∗
)
PW ,

∫

x
−ig

2

[
ψ̂†ψ̂†ψ̂ψ̂, ρLP

]
→
∫

x
i

{(
g
∂

∂ψ
|ψ|2 ψ − g

∂

∂ψ∗
|ψ|2 ψ∗

)

+

[
g

4

∂

∂ψ

∂

∂ψ∗

(
∂

∂ψ∗
ψ∗ − ∂

∂ψ
ψ

)]}
PW .

(2.39)

The term related to in-scattering transforms in the following way,

Kin(ρLP) →
∫

x

1

2

[
− ∂

∂ψ(x)
R̂inψ(x)−

∂

∂ψ∗(x)
R̂∗inψ∗(x) + R̂in

∂2

∂ψ(x)∂ψ∗(x)

]
PW .

(2.40)

and similarly does the one for out-scattering. Here we have defined the convolution

operator

R̂inf(x) =
∑

k

∫

x′
Rine

iq(x−x′)f(x′) ≡ Rinf(x) , (2.41)

where Rin is given by Eq. (2.35a). By gathering all the terms, we finally obtain the equa-

tion of motion for the Wigner function, under the assumption that ∂ρLP/∂t corresponds

to ∂PW /∂t,

∂PW
∂t

=

∫

x

[
− ∂

∂ψ(x)
Fdet −

∂

∂ψ∗(x)
F ∗det +

1

2

(
Rin +Rout + F−1[γ(k)]

) ∂2

∂ψ(x)∂ψ∗(x)

+i
g

4

∂

∂ψ(x)

∂

∂ψ∗(x)

(
∂

∂ψ∗(x)
ψ∗(x)− ∂

∂ψ(x)
ψ(x)

)]
PW , (2.42)

where we have defined the deterministic force acting on the LP field at position x,

Fdet ≡ Fdet|x,

Fdet = −i
[
F−1[ELP(k)] +

i

2

(
Rin −Rout −F−1[γ(k)

)
+ g |ψ(x)|2

]
ψ(x). (2.43)

It is instructive to look now at what is the strength of small fluctuations of the field

if one implements the Wigner representation on a d−dimensional grid of N sites and

elementary volume ∆V = (N/l)d. The field carries dimensions ∆V −1/2, hence ∆ψ =

∆V −1/2. Under the assumption that ∆PW /∆ψ ∼ ∆ψ, one can readily deduce the

strength of the terms containing second- and third-order derivatives in Eq. (2.42). This

is a crucial point, since it allows us to neglect the latter given the “diluteness” condition,

which constitutes the Truncated Wigner Approximation (TWA),

γ0 ≫
g

∆V
. (2.44)
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In this case, the equation of motion can be approximated by a true Fokker-Planck

equation in the case where the coefficient of the second-order derivative in Eq. (2.42) is

positive-definite. This is a stochastic differential equation for the field ψ(t, x) [44],

dψ(t, x) = Fdet(t, x)dt+ dW (t, x), (2.45)

where dW is a complex Gaussian random increment with zero mean and a covariance

which corresponds to twice the aforementioned coefficient,

⟨dW (t, x)⟩ = 0 , (2.46a)

〈
dW (t, x)dW ∗(t, x′)

〉
= (Rin +Rout + γ0)

δx,x′

∆V
dt. (2.46b)

We note here that in Eqs. (2.44, 2.46b) the zeroth order contribution to the LP loss rate

γ0 has been kept as an approximation with regards to the noise strength, but we shall

see that the full momentum dependence plays a crucial role in the deterministic term.

From now on we will define the total amplification term R[nr, ELP] = Rin−Rout. While

the quadratic (linear) behavior of Rin(Rout) in Eqs. (2.35a, 2.35b) were motivated by

treating the reservoir as essentially a thermalized gas, this is not always the case for

incoherent pumping; all that we need is an irreversible process which stimulates the

LP [28]. In a generic manner, this is written as R[nr] which is monotonically growing,

and under the assumption that condensation happens almost exclusively in the k = 0

mode, we can write R[nr, ELP] = Rnr for R ≡ R[ELP(0)]. Moreover, the Markovian

approximation was found to be appropriate for most experimental conditions, as the

Rabi splitting and kBT are well separated, ΩR ≫ kBT . Therefore, from now on, we will

consider Rout = 0. One can now readily compare the deterministic part of the Langevin

equation Eq. (2.45) with the MF model Eq. (2.10a), after properly restoring the units.

The term proportional to grnr is generated if HMF is included in the analysis. In that

case, there is an extra contribution to Eq. (2.25) since Trr[H
(I)
MF, ρ

(I)] ̸= 0, and the second

order term corresponds to a scattering process that involves only 2 reservoir excitons

after computing the partial trace of products such as Trr
(
HMFHMFρ

(I)
)
.

Lastly, we emphasize that the complex field ψ(t, x) entered in our analysis as a parameter

of the Wigner function. Physical observables related to the system, however, should be

thought of as expectation values of ψ̂ in the quantum mechanical picture. While, as we

mentioned above, expectation values of normal (anti-normal) products of creation and

annihilation operators can be directly accessed in the P (Q) representations, it can be

proven that symmetrized products correspond to computing moments of PW [152], for
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example
1

2
⟨ψ̂ψ̂† + ψ̂†ψ̂⟩ = ⟨ψψ∗⟩W ≡

∫

ψ,ψ∗
ψψ∗PW [ψ,ψ∗] , (2.47)

and we can easily generalize to expectation value of any power of the operators. This

allows us to extract observables by sampling from the Wigner distribution. In particular,

for local observables in space, this introduces small corrections, as seen for example in

computing the density of the LP,

⟨|ψ|2⟩W = ⟨ψ̂†ψ̂⟩+ 1

2∆V
, (2.48)

where we have used that the commutator of the LP operators is
[
ψ̂, ψ̂†

]
= δx,x′/∆V .

This type of corrections shows us that a well-defined discretization of the system is

necessary in order to regularize physical observables, such that no divergences can appear

in the continuous limit ∆V → 0.

2.3 Dynamics of phase fluctuations and mapping to KPZ

equation

We have proven that indeed the complex LP field ψ obeys a stochastic partial differential

equation, in which the noise has the appropriate strength given the diluteness condition.

We now switch back to continuous space, such that δx,x′/∆x
d = δd(x − x′). Eq. (2.14)

now reads

iℏ
∂ψ

∂t
=



(
− ℏ2

2mLP
∇2 + iℏ

γ2
2
∇2

)
+
iℏγ0
2


 p

1 + |ψ|2
ns

− 1




+g |ψ|2 + 2gr
P

γr

(
1 + |ψ|2

ns

)


ψ + ℏξ′ , (2.49)

where the stochastic contribution comes from the random function ξ′. It can be shown

that the integral of such a function corresponds to the Wiener process [44],

∫ t

0
ξ(t′)dt′ =W (t). (2.50)

Note that this type of integral naturally occurs during the integration of stochastic

differential equations such as Eq. (2.45) and is mathematically well-defined, therefore

we are allowed to define dW (t) ≡ W (t+ dt)−W (t) = ξ′(t)dt, despite the fact that the

Wiener process itself is non-differentiable. Returning to Eq. (2.49), we explicitly write
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the units of energy and density in d dimensions,

ϵ0 = ℏ/τ0 ρ0 = 1/ld0 , (2.51)

where τ0, l0 are the units for time and space, respectively. The various parameters of

our system can be expressed as

γ0 = γ̃0/τ0 γr = γ̃r/τ0 γ2 = γ̃2l
2
0/τ0

ψ =
√
ρ0ψ̃ ns = ρ0ñs P = P̃ /τ0l

2
0 (2.52)

R = R̃l20/τ0 g = g̃ϵ0/ρ0 gr = g̃rϵ0/ρ0.

The dimensions of the noise can be extracted from its covariance Eq. (2.46b), where we

have in continuous space

〈
ξ′(t, x)ξ′∗(t′, x′)

〉
= 2

Rnr + γ0
2

δd(x− x′)δ(t− t′) = 2σδd(x− x′)δ(t− t′) , (2.53)

where σ = γ̃0(p+1)/2 is the noise strength. We can now define a new stochastic variable,

ξ̃ =
ξ′√
σ/ld0τ

2
0

, such that ⟨ξ̃(t, x)ξ̃∗(t, x′)⟩ = 2δd(x̃− x̃′)δ(t̃− t̃′) , (2.54)

and henceforth we omit the tildes, as we work exclusively in dimensionless units. We

further define Kc =
ℏ2

2mLPϵ0l
2
0
,Kd = γ2

2 and the threshold reservoir density nr,th = P/γr

for convenience. Our equation finally reads

i
∂ψ

∂t
=


− (Kc − iKd)∇2 +

iγ0
2


 p

1 + |ψ|2
ns

− 1


+ g |ψ|2 + 2gr

nr,th(
1 + |ψ|2

ns

)


ψ +

√
σξ ,

(2.55)

We are now interested in studying the statistical fluctuations induced by the noise.

We work in the density-phase representation, which consists of expressing the field as

ψ(t, x) =
√
n(t, x)eiθ(t,x). The spatial and temporal derivatives are expressed as

∂ψ

∂t
= ψ

(
1

2n

∂n

∂t
+ i

∂θ

∂t

)
, (2.56a)

∇2ψ = ψ

(
− 1

4n2
(∇n)2 + 1

2n
∇2n+

i

n
∇n∇θ + i∇2θ − (∇θ)2

)
. (2.56b)
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By substituting into Eq. (2.55), we have for the real and imaginary parts, respectively,

−∂θ
∂t

= Kc

(
1

4n2
(∇n)2 − 1

2n
∇2n+ (∇θ)2

)
+Kd

(
− 1

n
∇n∇θ −∇2θ

)

+ gn+ 2gr
nr,th

1 + n/ns
+

√
σ

n
Re
(
e−iθξ

)
,

(2.57)

1

2n

∂n

∂t
= Kc

(
− 1

n
∇n∇θ −∇2θ

)
+Kd

(
− 1

4n2
(∇n)2 + 1

2n
∇2n− (∇θ)2

)

+
γ0
2

(
p

1 + n/ns
− 1

)
+

√
σ

n
Im
(
e−iθξ

)
.

(2.58)

We now expand around the homogeneous MF solutions,

n = n0 + δn(t, x) , (2.59a)

θ = θ0(t) + δθ(t, x), (2.59b)

such that the zeroth order equations correspond to Eqs. (2.15a, 2.15b). Under the

assumption that the statistical density fluctuations are smooth and stationary, as well

as much smaller than the steady state density n0, namely

∇δn ≃ 0 ,
∂δn

∂t
≃ 0 ,

δn

n0
≪ 1 , (2.60)

we can derive an equation valid up to first order in δn. To this order, we can straight-

forwardly solve Eq. (2.58) for δn, after using the zeroth order result for the steady state

MF density Eq. (2.16),

δn =

[
−Kc∇2δθ −Kd(∇δθ)2 +

√
σ

n0
Im
(
e−iθ0ξ

)] 2pns
γ0

, (2.61)

where the contribution of the fluctuations to the noise is expected to be negligible. Under

these assumptions, substituting Eq. (2.61) in Eq. (2.57) leads to a KPZ equation for the

phase fluctuations,

∂δθ

∂t
= ν∇2δθ +

λ

2
(∇δθ)2 +

√
Dη , (2.62)

where the parameters ν, λ,D are fixed by the microscopic parameters of the gGPe,

ν = Kd + aKc , (2.63a)

λ = −2(Kc − aKd) , (2.63b)

D =
σ

2n0
(1 + a2), , (2.63c)
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with

a =
2pgns
γ0

(
1− 2grnr,th

p2gns

)
. (2.64)

We note here that the real and imaginary parts of the noise ξ, have the following corre-

lations,

〈
Re(ξ(t, x))Re(ξ∗(t′, x′))

〉
=
〈
Im(ξ(t, x))Im(ξ∗(t′, x′))

〉
= δ(x− x′)δ(t− t′) , (2.65a)

〈
Re(ξ(t, x))Im(ξ∗(t′, x′))

〉
= 0. (2.65b)

The real noise η has unit variance ⟨η(t, x)η(t′, x′)⟩ = 2δ(x−x′)δ(t− t′) and is defined as

η = −
√

σ

n0

[
Re
(
e−iθ0ξ

)
+ aIm

(
e−iθ0ξ

)]

= −
√

σ

n0
[Re (ξ) cos θ0 − aRe (ξ) sin θ0 + Im (ξ) sin θ0 + aIm (ξ) cos θ0] . (2.66)

Therefore, we have conclusively proven that the dynamics of fluctuations of the phase

of the condensate wavefunction for the LP can be mapped to a KPZ equation, when the

system is not subject to confinement. We will treat the latter case separately in chapter

3, and highlight its differences from the homogeneous case.





Chapter 3

Signatures of KPZ universality

sub-classes in the phase of 1d

exciton polaritons

The connection between KPZ universality and the Bose-Einstein condensate of exciton

polaritons became apparent in recent years, and the dynamics of the phase of the po-

lariton condensate was proven to be mapped onto a KPZ equation [156–158]. This has

profound implications, as it shows that the nature of polariton condensates is very differ-

ent from their equilibrium counterparts. In 1d, there have been some works confirming

this mapping, from the point-of-view of scaling of spatio-temporal correlations [158], as

well as in terms of distribution of phase fluctuations [159] for experimentally-relevant

parameters. Moreover, the conclusive experimental demonstration of KPZ scaling in a

1d polariton condensate was provided in Ref. [148], thus promoting it to a compelling

experimental platform to probe KPZ universality.

In this chapter, we will discuss how the curved universality sub-class associated with

the KPZ growth in a “droplet” geometry can be accessed in exciton polaritons in 1d,

adding to the previous results concerning the flat and stationary sub-classes [159]. From

the point-of-view of numerical simulations, we propose a protocol in which the system is

subjected to an external confining potential. This makes the system inhomogeneous, and

we will show that the phase at the boundaries of the system propagates in time faster

than the phase at the bulk, effectively leading to a bending of the phase profile. We

compute the first order correlation function of the condensate wavefunction in space and

time, which can be mapped to the correlation function of the condensate phase, under

some approximations and a cumulant expansion. Moreover, we will compute certain

45
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observables which rely on extracting the phase of the condensate directly. In both cases,

the sensitivity to the growth geometry is directly visible.

3.1 Model for EP under external confinement

We consider the following gGPe for the EP system under an external confining potential

V (x),

iℏ
∂ψ

∂t
=



(
− ℏ2

2mLP
∇2 − ℏ4

8ΩRmLP
∇4 + ϵ+ V (x) + iℏ

γ2
2
∇2

)
+
iℏγ0
2


 p

1 + |ψ|2
ns

− 1




+g |ψ|2
]
ψ + ℏξ′. (3.1)

Here, we use the adiabatic approximation for eliminating the reservoir dynamics. For the

purpose of this chapter, we have included the expansion of the dispersion relation for the

EP in the LP branch to fourth order, as written in Eq. (2.11), and the polariton-reservoir

interaction has been assumed to be neglibible, gr ≃ 0. Furthermore, the complex noise

ξ′ has the same properties as the one introduced in Eq. (2.53). We choose the following

units τ0, ϵ0, l0, ρ0 for time, energy, space, and density of the wavefunction,

τ0 = γ−10 ϵ0 = ℏγ0 l0 =

√
ℏ

2mLPγ0
ρ0 =

γr(p− 1)

Rp
, (3.2)

in order to rescale the gGPe (3.1). Moreover, under the assumption that the condensate

amplitude is small, |ψ|2 ≪ ns, we can expand the denominators in Eq. (3.1), and for the

choice of units Eq. (3.2) we arrive at the following dimensionless equation,

i
∂ψ̃

∂t̃
=
[
−(Kc − iKd)∂

2
x̃ −K(2)

c ∂4x̃ − (rc(x̃)− ird) + (uc − iud)|ψ̃|2
]
ψ̃ +

√
σ′ξ̃ , (3.3)

where the dimensionless noise ξ̃ has covariance
〈
ξ̃(t, x)ξ̃(t′, x′)

〉
= 2δ(x̃ − x̃′)δ(t̃ − t̃′).

All the parameters in Eq. (3.3) are expressed with respect to the microscopic ones from

Eq. (3.1) via

Kc = 1 Kd =
mγl,2
ℏ

K(2)
c =

γl,0
2Ω

rc = −ϵ+ V (x)

ℏγ0
rd =

p− 1

2
uc =

g

ℏγ0
n0

ud =
pR

2γr
ρ0 σ′ = σ

τ0
ρ0l0

. (3.4)

For the entirety of this chapter we will omit the tildes, and we will work exclusively

under this choice of units.
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3.2 Numerical simulations

Our analysis consists of numerically integrating Eq. (3.1) by using the second-order

split-step Fourier method. The parameters of the equation were taken to be compatible

with typical experiments conducted in Institut Néel in Grenoble with CdTe samples, in

the group of Maxime Richard [147, 160]. In particular, we used the following values:

m = 4 × 10−5me, γ0 = 0.5 ps−1, γr = γ0/25, g = 0.4996 µeV × µm, γl,2 = 1.3

µm2 × ps−1, ΩR = 100 ps−1, p = 1.6, ns = 50 µm−1. The system size was taken to be

L = 210l0. We record the wavefunction ψ(t, x) during the time evolution and extract

its phase θ(t, x) ∈ (−π, π]. Our study is performed in the low-noise regime, where we

confirmed that there are no topological defects, such as solitons or phase slips, and in

this case, the phase can be safely unwrapped, θ(t, x) → θunw(t, x) ∈ (−∞,∞). In our

numerical simulations, the unwrapping is achieved by constraining the phase such that

the difference between neighouring space-time points is less than κ ·2π, where the factor
κ ≃ 1 is chosen empirically in order to take into account unwinding errors due to space

and time discretization. Henceforth, in our numerical results we refer to the phase as

the unwrapped field θunw.

3.3 Mapping to the inhomogeneous KPZ equation

Starting from Eq. (3.3), we express the wavefunction in the density-phase representation.

The density and phase fields are now decomposed in the following way

n(t, x) = n0(t, x) + δn(t, x) , θ(t, x) = θ0(t, x) + δθ(t, x) , (3.5)

where (n0, θ0) are defined as the zeroth-order solutions, and (δn, δθ) are small fluctua-

tions around these solutions. We first focus on the former, and we note that, due to the

confining potential, an explicit space dependence should be included in n0 and θ0, in

contrast to the analysis of section 2.3. We obtain these quantities by averaging Eq. (3.3)

over the noise fluctuations

∂tn0 =−Kd
(∂xn0)

2

2n0
+Kd∂

2
xn0 − 2n0Kd(∂xθ0)

2 − 2Kc(∂xn0)(∂xθ0)− 2n0Kc∂
2
xθ0

+ 2n0rd − 2n20ud ,

∂tθ0 =−Kc
(∂xn0)

2

4n20
+Kc

∂2xn0
2n0

−Kc(∂xθ0)
2 +Kd

(∂xn0)(∂xθ0)

n0
+Kd∂

2
xθ0 + rc(x)

− ucn0.



Signatures of KPZ universality sub-classes in the phase of 1d exciton polaritons 48

Under the assumption that ∂tn0 ≃ 0, meaning that the density reaches a steady state,

and moreover that the density fluctuations are smooth and sufficiently stationary, such

that ∂tδn ≃ 0 and ∂
(n)
x δn ≃ 0, we can analyse the fluctuations, as defined in Eq. (3.5).

In particular, the time evolution for δθ is governed by

∂tδθ = Kd∂
2
xδθ −Kc(∂xδθ)

2 + ∂xδθ

(
Kd

∂xn0
n0

− 2Kc∂xθ0

)

+ δn

[
Kc

(∂xn0)
2

2n30
−Kc

∂2xn0
2n20

−Kd
(∂xn0)(∂xθ0)

n20
− uc

]
−
√
σ′

n0
Re[ξe−θ0 ] , (3.6)

where the density fluctuations δn ≡ δn(x) are expressed as

δn =
2n0Kd

[
2(∂xθ0)(∂xδθ) + (∂xδθ)

2
]
+ 2Kc

[
(∂xn0)(∂xδθ) + n0∂

2
xδθ
]
− 2

√
σ′n0Im[ξe−iθ0 ]

2rd − 4n0ud +Kd
(∂xn0)2

2n2
0

− 2Kd(∂xθ0)2 − 2Kc∂2xθ0
.

(3.7)

In this calculation, we used the generic fact that the mean phase grows linearly with

time, whereas the fluctuations grow with the KPZ exponent t1/3 in 1d, and therefore

δθ ≪ θ0, as well as ∂
(n)
x δθ ≪ ∂

(n)
x θ0. We now substitute Eq. (3.7) into Eq. (3.6), and we

arrive at an inhomogeneous KPZ equation, which reads

∂tδθ = ν(x)∂2xδθ +
λ(x)

2
(∂xδθ)

2 +
√
D(x)η(t, x) + ṽ(x)∂xδθ. (3.8)

The KPZ parameters are given by

ν(x) = Kd + 2n0Kcũ(x), λ(x) = 2[−Kc + 2n0Kdũ(x)] , (3.9)

where the function ũ(x) is defined as

ũ(x) =
Kc

[
(∂xn0)2

2n3
0

− ∂2xn0

2n2
0

]
−Kd

(∂xn0)(∂xθ0)
n2
0

− uc

Kd

[
(∂xn0)2

2n2
0

− 2(∂xθ0)2
]
− 2Kc∂2xθ0 + 2rd − 4udn0

. (3.10)

The noise in Eq. (3.8) is defined as η = ζ/
√
D(x), where ζ is a function of the real and

imaginary parts of the complex noise of the gGPe ξ, namely

ζ(t, x) ≡ −2
√
σ′n0ũ(x)Im(ξe−iθ0)−

√
σ′

n0
Re(ξe−iθ0). (3.11)

We find ⟨ζ(t, x)⟩ = 0, while the noise strengthD(x) can be computed from the covariance

⟨ζ(t, x)ζ(t′, x′)⟩, under the assumption that

〈
Re(ξ(t, x))Re(ξ(t′, x′))

〉
=
〈
Im(ξ(t, x))Im(ξ(t′, x′))

〉
= δ(x− x′)δ(t− t′)

〈
Re(ξ(t, x))Im(ξ(t′, x′))

〉
= 0 . (3.12)
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One finds ⟨ζ(t, x)ζ(t′, x′)⟩ = 2D(x)δ(x− x′)δ(t− t′) with

D(x) =
σ′

2n0

(
1 + 4ũ2(x)n20

)
(3.13)

One should note here the presence of an extra term ṽ(x)∇δθ in Eq. (3.8), with

ṽ(x) = −2Kc∂xθ0 + 4n0Kdũ(x)∂xθ0 +Kd
∂xn0
n0

+ 2Kcũ(x)∂xn0 , (3.14)

however, we argue that this term is zero due to the parity symmetry of the confinement

potentials used in our analysis. More explicitly, since V (x) is symmetric under x→ −x,
it follows that θ(t, x) and n(t, x) are both even functions of x. It follows from Eq. (3.14)

then, that the function ṽ(x) is an odd function of x. We are interested in the behavior

of the phase profile around the central tip at x = 0, since away from it the profile is

more strongly influenced by the drag at the boundaries and is not expected to follow

the KPZ dynamics. Thus, around the central tip at x ≃ 0, ṽ(x) ≃ 0 (odd function) and

the extra term ṽ(x)∂xδθ can be neglected in Eq. (3.8). One finally recovers the KPZ

equation with x-dependent coefficients.

3.4 Influence of the confinement potential

In order to test the robustness of our proposal to engineer a curved phase profile, we

investigate the influence of the precise shape of the confining potential by studying two

different potentials: a harmonic potential, as well as Gaussian walls,

VH(x) =
1

2
mω2

0x
2 , (3.15a)

VG(x) =
V0
ℓ

(
e−(

x−L/2
ℓ

)2 + e−(
x+L/2

ℓ
)2
)
. (3.15b)

The trap frequency ω0 in VH is adjustable, and we found that the most favorable con-

ditions for studying KPZ universal properties are achieved when the potential is a very

shallow parabola, and we set ω0 ≃ 4 × 10−4γ0. Regarding VG, it can be seen that it

interpolates, for a given strength V0, between a hard-wall potential VG,1 for ℓ → 0 and

a smooth-wall potential VG,2 for ℓ ≫ 0, as illustrated in Fig. 3.1. Note that in the

simulations, since ℓ is expressed in units of the characteristic length l0, ℓ < 1 effectively

corresponds to the ℓ → 0 limit. Typical phase profiles obtained for the hard-wall po-

tential VG,1 (ℓ = 0.01), the smooth Gaussian walls VG,2 (ℓ = 100), the shallow harmonic

potential, and without any confinement, are shown in Fig. 3.2. The hard-wall potential

initially only affects the boundaries and then slowly bends the phase profile. For larger

values of ℓ, a larger portion of the phase profile immediately feels the potential, and the
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Figure 3.1: Gaussian walls potential for different values of the parameter ℓ =
0.01, 10, 50, 100, which interpolates between hard walls (ℓ = 0.01, yellow) and smooth

walls (ℓ = 100, red). The ratio V0/ℓ = 10 is kept constant.
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Figure 3.2: Typical phase profiles at different times during the evolution, with lighter
colours corresponding to larger times, together with the relevant potentials (black
smooth curves). (i) Absence of confining potential, leading to a flat profile, (ii) presence
of the parabolic confining potential VH , (iii) VG,1 (ℓ = 0.01), and (iv) VG,2 (ℓ = 100).
Note that for the latter we averaged over 6 realizations of the noise in order to stabilize
the profile, leading to a profile which displays gradual bending due to the effective drag

at the boundaries, as explained in the text.

bending occurs more rapidly. With this potential, the phase profile displays a smoother

curvature around the central tip at short times. However, for all values of ℓ, at late
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times, a cusp forms at the central tip and the phase is no longer smoothly curved, which

is also true for the harmonic potential. The KPZ regime is thus expected to develop

only at intermediate times for both types of confining potentials, and not necessarily in

the asymptotic limit of very large times, as we will illustrate below.

3.4.1 Scaling of the variance

In order to assert the presence of the KPZ regime, we first study the scaling of the

variance of the phase profile ⟨∆θ(t, x0)2⟩ at various space points x0, with

∆θ(t, x = x0) = θ(t, x0)− ⟨θ(t, x0)⟩ , (3.16)

and where ⟨...⟩ denotes the average over noise realisations. This quantity is expected

to behave as
〈
∆θ(t, x0)

2
〉
∼ t2/3 if the dynamics is in a KPZ regime. Our results are

displayed in Fig. 3.3 for both VG,2, VH . For the former, one observes a KPZ dynamics
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Figure 3.3: Variance of the phase computed at different x0 for the evolution with (i)
VG,2 and (ii) VH . The KPZ scaling persists for longer times around the central tip for

the latter potential.

at short and intermediate time, before a sharp crossover occurs to another regime at

long times. The time of the crossover depends on the location on the phase profile. It

corresponds at x = 0 to the time where the cusp is formed, and this is where the KPZ

regime is the most extended in time. It is also clear that the KPZ scaling extends over

a longer time for the parabolic potential, thus deeming it more favorable to study the

KPZ dynamics. However, we found that even with Gaussian walls, the KPZ advanced

statistics can still be precisely observed, as shown below. We focus in the following on

the central tip x = 0 (for one-point statistics), and hence omit the arguments.
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3.4.2 Results for shallow harmonic potential

3.4.2.1 Validity of the mapping to the inhomogeneous KPZ equation

In the case where V (x) = 0, one recovers the standard mapping to the homogeneous KPZ

equation where the KPZ parameters Eqs. (3.9, 3.13) are constant. With a non-vanishing

potential VH , these parameters continuously vary with space. Such a variation crucially

affects the dynamics, since the average velocity of the phase
∂ ⟨θ⟩
∂t

is proportional to

the KPZ non-linearity λ. Qualitatively, when V ̸= 0, the non-linearity is larger where

the potential is stronger. Therefore, we expect that the condensate phase profile will be

effectively dragged, as was already seen in Fig. 3.2. Let us note that for such a shallow

potential, the spatial variation of the KPZ parameters in Eqs. (3.9, 3.13) is small, and

in the vicinity of x = 0 one finds ν(x) ≃ νflat, λ(x) ≃ λflat, D(x) ≃ Dflat, as shown in

Fig. 3.4.
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Figure 3.4: KPZ parameters ν(x), λ(x), D(x) obtained for the harmonic potential VH
after performing the average within the KPZ time window (see text), denoted by the
overline bar, after restoring the original units. Their spatial variation is very smooth
for this choice of confining potential and their values in the vicinity of the central point

are very close to the homogeneous ones.
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We now assess whether the assumptions underlying the calculation in section 3.3 are

fulfilled for this type of potential. To this end, we compute the spatial profiles of the

zeroth-order solutions for the EP system (n0, θ0), the density fluctuations δn, the first

spatial derivatives ∂xn0, ∂xδn, ∂xθ0 (with the bars denoting time averages) and the cur-

vature of the phase ∂2xθ0. The zeroth-order solutions are obtained as n0(t, x) = ⟨n(t, x)⟩
and θ0(t, x) = ⟨θ(t, x)⟩ at any given t. The density fluctuations are then defined as

δn(t, x) = n(t, x)−n0(t, x), and the spatial derivatives are computed numerically. Typi-

cal results are displayed in Fig. 3.5 for the density, and Fig. 3.6 for the spatial derivatives

and the curvature. These results demonstrate that the time dependence of n0, θ0 is neg-
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Figure 3.5: (i) Zeroth-order spatial density profile n0(t, x) for t/τ0 = 200, 1400, 2000
with lighter colours corresponding to larger times, together with the theoretical predic-
tion nmf = ρ0rd/ud obtained in the homogeneous case for the same parameters (dashed)
and the time average n0 (blue) in the time window in which we observe KPZ dynamics
(see section 3.4.2.3), which extends approximately from t/τ0 = 1400 until t/τ0 = 1600.

(ii) Time averaged spatial density fluctuations δn in the same window.

ligible near x = 0 for the relevant time window in which KPZ behavior is observed,

which we will show in sections 3.4.2.2, 3.4.2.3, 3.4.2.4, hence it is justified to perform a

time average of θ0 recorded in this window, denoted by the overline bar. The curvature

is then found to be a negative constant near x = 0 as expected. Lastly, δn ≪ n0 and

∂xδn ≃ 0, hence our assumptions are consistent.

3.4.2.2 Scaling of the first-order correlation function of the condensate

wavefunction

The KPZ scaling properties can be studied directly from the first-order correlation func-

tion of the EP condensate wavefunction,

g1(∆t,∆x) =
|⟨ψ∗(t+∆t, x+∆x)ψ(t, x)⟩|〈√

n(t+∆t, x+∆x)n(t, x)
〉 , (3.17)
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Figure 3.6: (i) Comparison of spatial derivatives ∂xn0, ∂xδn, ∂xθ0. For the shal-
low harmonic potential, n0 turns out to be very close to nmf and its spatial
derivative can be neglected. (ii) Zeroth-order phase profile θ0(t, x) for t/τ0 =
200, 800, 1400, 1600, 2000, 3000, 3800, 4000, with lighter colours corresponding to later
times, demonstrating very slow time dependence in the vicinity of x = 0 within the
KPZ time window, and (iii) its curvature after performing a time average in the KPZ
window. By fitting the data near x = 0, we estimate the curvature to be approximately

equal to 1.4× 10−4 (dashed line).

Note that the first-order coherence g1 is routinely measured in EP experiments, rendering

the following analysis easily accessible. By neglecting the density-phase correlations and

performing a cumulant expansion, one can relate g1 to the connected correlation function

of the phase C, obtaining to first order

−2 ln [g1(∆t,∆x)] =
〈
[θ(t+∆t, x+∆x)− θ(t, x)]2

〉
−
〈
θ(t+∆t, x+∆x)− θ(t, x)

〉2

≡ C(∆t,∆x) . (3.18)

If the phase follows the 1d KPZ dynamics, it should endow the Family-Vicsek scaling

form [38]

C(∆t,∆x) = C0∆t
2/3F1d

(
y0

∆x

∆t2/3

)
, (3.19)
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where F1d(y) is a universal scaling function and C0, y0 are non-universal normalisation

parameters defined as

y0 = (2Aλ2)−1/3, C0 = Γ2/3, where A =
D

ν
, Γ =

λ

2
A2 , (3.20)

where the numerical prefactors are conventional. The precise form of the scaling function

F1d(y) is known exactly only for the stationary interface [79]. However, the scaling

function satisfies the same asymptotics in all sub-classes

F1d(y)
y→0−→ F1d,0 , F1d(y)

y→∞∼ 2y , (3.21)

where F1d,0 is a universal constant that depends on the geometrical sub-class, and whose

values are known exactly. Therefore, one expects similar behavior for the scaling func-

tions in the three sub-classes, apart from small vertical shifts reflecting the differences

in F1d,0 and thus small changes in the intermediate crossover region between the two

asymptotic limits. In our simulations, we determined C(∆x,∆t) from the wavefunction

correlation function g1 using Eq. (3.18). We first estimated the KPZ scaling exponents

with and without the confining potential by studying the equal-time and equal-space

correlation functions, which, according to Eqs. (3.19, 3.21), should behave as

C(∆t = 0,∆x) ∼ A∆x2χ, (3.22a)

C(∆t,∆x = 0) ∼ F1d,0Γ
2/3∆t2β , (3.22b)

with χ = 1/2 and β = 1/3 the 1d KPZ roughness and growth critical exponents. We

found χ = 0.49 ± 0.01 and β = 0.30 ± 0.01 in both the flat and the curved cases for

the purely spatial and purely temporal correlations, see Fig. 3.7. The value of the

growth exponent β slightly differs from the theoretical one but it is comparable with

values reported in previous studies of EP condensate for this system size [159] for the

flat geometry. Furthermore, one can extract the value of the parameter A defined in

Eq. (3.22a) from the spatial correlation. We find

A ≃





0.032l−10 , curved geometry

0.035l−10 , flat geometry.
(3.23)

These values can be compared with the theoretical one Ath ≡ D/ν. For the flat case, D

and ν are related to the microscopic parameters through Eqs. (3.9, 3.13) with ∂xθ0 = 0

and n0 = nmf = ρ0rd/ud. One finds Ath ≃ 0.0377l−10 , which is in very close agreement

with the value extracted from the spatial correlation. For the curved case, we focus on

spatial points around the central tip. As shown in Fig. 3.4, although the parameters D

and ν depend on x, they are nearly constant in the vicinity of x = 0 and very close to
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Figure 3.7: (i) Purely spatial and (ii) purely temporal correlation functions, with the
scaling laws as guide to the eye for each case (dashed lines), for the curved (main plots)
and flat (insets) geometries. We display three curves which correspond to different fixed
values of temporal and spatial separation, ∆t/τ0 = 0, 40, 100 and ∆x/l0 = 0, 16, 64

(darker to lighter shades).

the values for the flat case, hence one finds A(x) ≃ A(x = 0) ≃ Aflat. The procedure we

followed for determining the parameter Γ is outlined in Appendix A.

Let us now construct the universal scaling function F1d(y) defined in Eq. (3.19). For

this, we first selected all the data points lying in the correct scaling regime by filtering

out the points differing by more than small cutoffs ϵx, ϵt from the expected scaling

laws in Eqs. (3.22a, 3.22b) for each value of spatial and temporal separation. The

scaling function is then obtained by plotting C(∆t,∆x)/(C0∆t
2/3) as a function of

y0∆x/∆t
2/3. The results are displayed in Fig. 3.8 together with the theoretical curve

F1d,stat(y) for the stationary case [79]. For both the flat and the curved cases, we

observe a reasonable collapse of all the data points onto a single function F1d, which

demonstrates that C indeed takes a scaling form. Additionally, we confirm that the

scaling functions F1d are quite similar for the three cases. However, it is not a perfectly

one-dimensional curve, it has a finite (small) thickness, and the numerical values for

F1d,0 = F1d(0) differ of about ∼ 40% from the theoretical exact values in both the

flat and curved cases (F num
1d,flat(0) ≃ 0.95 vs F th

1d,flat(0) = 0.63805..., F num
1d,curved(0) ≃ 1.23

vs F th
1d,curved(0) = 0.8132...). These discrepancies may originate from the fact that the

actual growth exponent is slightly smaller than the theoretical one, and also from the

fact that the g1 function includes other contributions beside the phase correlations, even

if they are assumed to be small (higher-order cumulants of the phase or density-phase

correlations). However, we emphasise that the values of these constants are clearly

distinct in the two cases, and their ratio (or relative difference) turns out to be within

3% accuracy with the theoretical ratio (or relative difference). This indicates that the
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mapping from the Gross-Pitaevskii to the KPZ equation is well-grounded, and that both

the flat and the curved universality sub-classes can be probed in EP systems.
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Figure 3.8: Universal scaling function F1d(y) for the flat (blue dots) and curved (red
triangles) phase profiles. The theoretical result for the stationary interface F1d,stat(y)
is shown for comparison (solid line). The theoretical values F th

1d,flat(0) = 0.63805...,

F th
1d,curved(0) = 0.8132..., F th

1d,stat(0) = 1.15039... are indicated in the inset, together

with the two numerical curves for y0∆x/∆t
2/3 → 0.

3.4.2.3 One-point statistics of the phase fluctuations

As we discussed in section 1.3.2, the global geometry of the growth influences various sta-

tistical properties, thus partitioning the KPZ universality class into distinct sub-classes

which share the same critical exponents. In particular, we saw that the statistics of

rescaled height fluctuations at a fixed space point x0 in the long-time limit correspond

to the TW-GOE, or to the TW-GUE distribution, if the interface is flat, or circular, re-

spectively. We now probe this in the context of EP, in which we saw that the roughening

interface is the phase profile. More precisely, as the phase profile propagates linearly in

time with fluctuations growing as t1/3, one introduces the rescaled fluctuation field χ,

defined from the long time behavior of the phase in 1d,

θ(t, x) → ω∞t+ (Γt)β χ(t, ζ) , (3.24)

where ω∞ is the asymptotic frequency of the phase, which has a non-trivial dependence

on the KPZ parameters [161], and ζ is the spatial coordinate rescaled by the correlation

length of fluctuations ζ ≡ x/ξ(t) with ξ(t) = (Γt)2/3 2
A [162]. We focus on the universal

statistical properties of the centered unwound phase ∆θ(t, x0) = θ(t, x0) − ⟨θ(t, x0)⟩.
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This corresponds to the statistical properties of the field χ(t, x0/ξ(t)).

We first perform a study of the higher-order cumulants of ∆θ(t, x0). This is because,

in order to compare the probability distribution of the rescaled phase fluctuations and

their correlation function to the theoretical ones, the normalisations must be fixed,

which involve Γ. We computed Γ in Appendix A, by choosing the value of Var(χ),

whether the GOE or the GUE one, and thus to guess a priori which of the sub-class is

realised. However, let us emphasise that the sub-class can be determined without any

prior knowledge by computing universal ratios of cumulants, which are independent of

the normalisations. More specifically, we compute the third and fourth order cumu-

lants of the centered phase
〈
∆θ3

〉
c
≡
〈
∆θ3

〉
and

〈
∆θ4

〉
c
≡
〈
∆θ4

〉
− 3

〈
∆θ2

〉2
. From

them, one can construct the skewness sk(∆θ) =
〈
∆θ3

〉
c
/
〈
∆θ2

〉3/2
and excess kurtosis

ku(∆θ) =
〈
∆θ4

〉
c
/
〈
∆θ2

〉2
, which are universal. They can be compared with the theo-

retical values for sk(χ) and ku(χ) which are known exactly for both the GOE and GUE

distributions [76] and do not depend on the non-universal parameters ω∞ or Γ. Our
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Figure 3.9: Skewness and excess kurtosis of the centered unwound phase field of the
condensate in the (i, ii) curved and (iii, iv) flat geometries, together with the theoretical
values corresponding to the TW-GOE (blue) and TW-GUE distribution (red). We also

display the universal plateaus reached for each geometry (green).
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results are presented in Fig. 3.9 for both geometries, where the curved one corresponds

to evolution under the shallow harmonic potential VH from Eq. (3.15a). Let us note

that the sign of the skewness sk(∆θ) corresponds to the sign of the KPZ non-linearity

λ, which is negative for our choice of experimental parameters.

For the flat geometry, since the profiles are homogeneous, we performed an additional

spatial average in order to accumulate statistics. We find convergence to the anticipated

values for both cases, in particular for the skewness, in the same time windows as for the

variance corresponding to the KPZ regime. For the curved geometry, we observe at large

times a departure from the stationary plateaus which correspond to KPZ universality, in

line with previous observations. The excess kurtosis, which involves the determination

of the fourth-order cumulant, is naturally less statistically tame, even for the case of the

curved geometry where averaging over 10.000 independent realisations of the noise has

been performed at the chosen space point x = 0.

These results are an independent confirmation that the fluctuations of the phase with

or without confinement follow two different distributions, and their skewness and excess

kurtosis coincide with the ones expected for a curved or flat geometry respectively. This

justifies a posteriori the choice of Var(χ) in section 3.4.2.2. Let us emphasise that these

quantities may be easier to measure experimentally and could be used as a direct probe

of the strong non-Gaussianity of the distributions, and also of the existence of different

universality sub-classes for these distributions.

We now compute the rescaled fluctuation field χ from ∆θ following Eq. (3.24), at the

plateaus shown in Fig. 3.9. Note that for the flat case, we conform to the standard

definition of the TW-GOE random variable found in the literature, and further rescale

χ as χ → 2−2/3χ. We construct the histograms of χ both for the flat case without

confinement and for the curved case with the confining potential VH from Eq. (3.15a).

The resulting distributions are displayed in Fig. 3.10, where they are compared with

the theoretical distributions. We note that the negative sign of the non-linearity λ im-

plies that the comparison should be against the mirror distributions PTW-GOE(−χ) and
PTW-GUE(−χ). One observes a clear distinction between the two cases, and moreover

the distribution for the curved case is in excellent agreement with the TW-GUE dis-

tribution, thus demonstrating that one can indeed tune the KPZ geometrical sub-class

realised in the EP system.
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Figure 3.10: Centered distribution of the rescaled phase fluctuations χ sampled at
x = 0, for flat (blue dots) and curved (red triangles) phase profiles, together with the

theoretical TW-GOE and TW-GUE distributions.

3.4.2.4 Two-point statistics of the phase fluctuations

After establishing a clear distinction in terms of one-point statistics of the phase fluctua-

tions in the two geometries, manifesting in a very good agreement with the Tracy-Widom

distributions, we now study the two-point statistics of the phase fluctuations, where the

curved geometry is again realised by VH .

In our simulations, we computed the correlation function of the rescaled phase fluctu-

ations, in a similar manner as is done for the height fluctuations in Eqs. (1.25, 1.26).

More specifically, we have

Cχ(∆ζ) =
⟨∆θ(t, x)∆θ(t, x+∆x)⟩

(Γt)2/3
. (3.25)

As we discussed in section 1.3.2.2, for a KPZ interface, these correlations correspond to

the time correlation function of the Airy1, respectively Airy2 process in the asymptotic

limit, in the flat, respectively curved geometry

Cχ(∆ζ) = Gi(∆ζ) =
〈
Ai(t

′ +∆ζ)Ai(t
′)
〉
, (3.26)

where i = 1, 2 stands for Airy1, respectively Airy2, processes. The results we obtained

for the two geometries are presented in Fig. 3.11. We note that in line with the rescaling
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of χ in the flat case mentioned in section 3.4.2.3, we also perform in this case the follow-

ing rescaling t→ t/2−2/3 and G1 → G1/2
−2/3 to conform to the standard definition of the

Airy1 process [63] and compare with the theoretical results from [85]. Furthermore, in

the curved geometry, the limit stochastic process is shown to be χcurved(ζ, t)
d→ A2− ζ2,

where −ζ2 reflects the influence of the mean profile [78], which is automatically sub-

tracted in our case since we consider the connected function. For the flat case, we

10−2 10−1 100

∆ζ

10−1

6× 10−1

8× 10−1

C
χ
(∆
ζ
)

−25 0 25
x/l0

〈θ
(x
/x̂

)〉

G1

G2

Figure 3.11: Correlation function Cχ of the rescaled phase fluctuations as a function
of the rescaled length ∆ζ for different times for the flat case (blue dots) and for the
curved case (green and orange triangles), together with the theoretical results for the
correlation of the Airy1 G1(∆ζ) (dashed line) and Airy2 G2(∆ζ) (solid line) processes
presented in [85, 163, 164]. For the flat phase profile, data corresponding to times
t/τ0 = 7.5 × 103, 8.125 × 103, 1 × 104 is shown, and for the curved phase profile, data
corresponding to t/τ0 = 4× 102, 1.6× 103 is shown (lighter to darker colors correspond
to increasing times). For the curved case, the red shades correspond to the small ∆ζ
regime where the phase profile is locally curved, while green correspond to large ∆ζ,

where the profile is shaped by the effective drag – see inset.

observe that the correlation function is stable in time, from t/τ0 = 7 × 103 to, ap-

proximately, t/τ0 = 1 × 104 and we find a good agreement with the theoretical Airy1

correlations G1(∆ζ), even for large ζ. The small shift visible in the figure can be traced

back to the fact that the parameter Γ in Eq. (3.25) is extracted from the numerical

simulations and is found to be a bit larger than the theoretical value (see Appendix A).

For the curved case, the correlation function is stable over a time window from t/τ0 =

4 × 102 until t/τ0 = 1.6 × 103 where the KPZ scaling regime is observed. We focus

on the small−∆ζ limit, corresponding to small spatial separation around x = 0. In-

deed, we expect a local curvature only around the central tip, since the profile near the

boundaries is affected by the effective drag ensuing from the confining potential. The
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phase correlations are found to behave as an Airy2 process only over this limited range

of space, but the agreement with the theoretical Airy2 correlations G2(∆ζ) on this range

is extremely satisfactory.

3.4.3 Results for smooth Gaussian walls

We computed the probability distribution and the correlation of the rescaled height fluc-

tuation field χ for the smooth Gaussian walls VG,2, in the same spirit as sections 3.4.2.3

and 3.4.2.4, respectively. The results are displayed in Figs. 3.12 and 3.13, to be com-

pared with the corresponding Figs. 3.10 and 3.11, where the curvature was achieved by

using the shallow parabolic potential VH . We note here that the parameter Γ was com-

puted separately for this case, following the procedure outlined in Appendix A, but the

parameter was taken to correspond to the theoretical prediction A = Ath = D/ν. One

−5 −4 −3 −2 −1 0 1 2 3 4
χ

10−4

10−3

10−2

10−1

100

P
(χ

)

P (χcurved)

PTW−GUE

Figure 3.12: Centered distribution of the rescaled phase fluctuations χ sampled at
x = 0, for the curved phase profile with VG,2, together with the theoretical TW-GUE

distribution.

observes that the probability distribution still follows with great accuracy a TW-GUE

distribution, as for the parabolic potential, although the time window of the KPZ dy-

namics is shorter. We also computed the probability distribution of the rescaled phase

fluctuations for the hard-wall potential VG,1, and the agreement is as remarkable, the

two curves being in fact superimposed. For the two-point statistics, the agreement with

the theoretical curve for the Airy2 process is still satisfactory for small ∆ζ. As for VH ,

the phase acquires a smooth curvature only around the central point, such that the spa-

tial region where the universal properties of the KPZ curved sub-class can be observed

has a limited extension.
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Figure 3.13: Correlation function Cχ of the rescaled phase fluctuations as a function
of the rescaled length ∆ζ for the curved phase with VG,2, together with the theoretical
results for the correlation G2(∆ζ) of the Airy2 process. Data corresponding to times
t/τ0 = 4 × 102 (orange triangles), 9 × 102 (red triangles) is shown. The red shades
roughly correspond to the small ∆ζ regime where the phase profile is locally curved,
while green correspond to large ∆ζ, where the profile is shaped by the effective drag,

in the same spirit as for Fig. 3.11.

3.5 Conclusions

In this chapter, we have shown that by engineering the confining potential of 1d exciton

polaritons one can tune the geometry of the phase of the condensate and thus access

both the flat and curved KPZ universality sub-classes. In particular, we have found ex-

cellent agreement with the theoretical exact results, not only for the scaling properties,

but also at the level of one-point statistics (probability distributions). Additionally, we

performed the very first analysis of a very fine statistical quantity, for both the flat and

the curved phase geometry: We probed the reduced correlations, which are the sub-

leading behavior emerging once the dominant scaling one (studied in section 3.4.2.2)

has been subtracted. In this respect, the agreement found with the theoretical results

for the Airy processes is remarkable, albeit only locally for the curved case since the

condensate phase is only curved on a limited range by the confining potential. The re-

sults presented here strongly confirm the relevance of KPZ dynamics for the EP system,

as KPZ universal properties emerge from the microscopic Gross-Pitaevskii model in all

levels we explored.

We note that the KPZ statistics related to the curved geometry are found to be nearly
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insensitive to the precise form of the confining potential, thus highlighting the robust-

ness of our protocol. Therefore, our findings pave the way for stimulating new protocols

for investigating KPZ universality in experiments, since the KPZ sub-classes can be

accessed through simple engineering of the EP system. In particular, harmonic confine-

ment can be implemented by a suitable engineering of the pumping mechanism [165].

Whereas probing the scaling properties is readily accessible from the measurement of the

first-order correlation function, the experimental determination of the probability distri-

butions may be more challenging as it involves the measurement of the time and space

resolved phase of the condensate. This requires the development of specific interferomet-

ric techniques capable of resolving very small times. On the other hand, higher-order

correlations have been measured in [166, 167] for the case of ultracold atoms. Similar

techniques could be implemented in the EP system, leading to the possibility of access-

ing universal ratios of cumulants, and thus enabling the demonstration of the typical

non-gaussian shape of the TW-GOE and TW-GUE probability distributions and the

characterization of universality sub-classes.



Chapter 4

KPZ universality in discrete 2d

driven-dissipative exciton

polariton condensates

The 2d polariton condensate appears to be significantly different from its 1d counterpart,

which was studied in chapter 3, in terms of the emergence of KPZ dynamics. We note

that we will discuss here the case of incoherent pumping, and refer the reader to, for

example, [139, 168, 169] for works related to coherent driving, and in particular the

Optical Parametric Oscillation (OPO) regime, where the possibility of observing KPZ-

like behavior was recently highlighted [138], as well as related to the newly-proposed

quadratic driving [170].

4.1 The fate of off-diagonal long-range order in 2d

In 2d, bosonic quantum fluids at equilibrium undergo a Beresinskii-Kosterlitz-Thouless

(BKT) transition associated to vortex-antivortex unbinding. The deviation from equi-

librium, which is determined mainly from the polariton lifetime – larger lifetimes cor-

responding to equilibrium-like conditions, appears to drastically affect the behavior of

vortices. More specifically, for systems out of equilibrium, the attractive vortex-anti-

vortex interaction is dramatically dampened at large distances, and can even change

sign to become repulsive [171, 172], hindering their annihilation. Moreover, in more

extreme non-equilibrium conditions, the vortex motion can be self-accelerated, leading

to the creation of new vortex pairs.

65
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Concerning the emergence of KPZ universality, from the study of anisotropic [173] or

compact [174, 175] versions of the KPZ equation and RG arguments, it was suggested

that the presence of vortices hinders the KPZ behavior. More specifically, it was claimed

that in a weakly anisotropic system, when the KPZ non-linearity λ is large, vortex-anti-

vortex pairs always unbind, and the proliferation of vortices, which happens at spatial

scale Lv, spoils the stretched exponential decay of coherence with the KPZ universal

critical exponents predicted to occur at LKPZ ≫ Lv if topological defects were absent

[173]. On the other hand, when a strong anisotropy is imposed, or λ ≃ 0, the behavior

of the system is associated with a BKT phase transition. Several studies, based on both

experiments and numerical simulations, have reported BKT-like types of behaviors in

2d, with scattered results. In particular, spatial and temporal power laws decays of first

order correlation functions, with respective exponents αs and αt, were found numeri-

cally with unequal values αs = 2αt > 1/4 in moderately non-equilibrium conditions and

pump values close to condensation threshold [176], in quantitative agreement with theo-

retical calculations [149] and experiments [177]. On the other hand, αs = αt < 1/4 were

measured in an experiment where the polaritons have a remarkably high lifetime, of the

order of 100ps [178]. To summarize the above considerations, the emerging consensus

in the community is that the physics of 2d polariton systems is dominated by vortices

and BKT behaviors, or its non-equilibrium analogue, where the exponents of the power

law in the decay of spatial and temporal coherence in the ordered phase can be different.

Two important points should be emphasized, however. Firstly, as can be seen from

Eq. (2.49), there are many parameters in the model which can be tuned in numeri-

cal simulations, and to a certain extent also in experiments, in principle leading to a

multitude of possible regimes. For example, in the case of incoherent pumping, the

momentum-dependent relaxation to the minimum of the lower polariton branch is not

well understood experimentally, and this plays an important role in the magnitude of

the KPZ non-linearity λ, and hence in the realizability of a KPZ regime for experimen-

tally relevant system sizes. Secondly, the majority of the theoretical arguments outlined

above are based on perturbative RG analysis [179–181]. However, as we discussed in

section 1.4.2, it was shown in the late nineties [113] that such a scheme fails to capture

the strong-coupling fixed point associated with the KPZ rough phase in 2d, which ren-

ders any arguments based on perturbative flow equations fragile.

Indeed, first signatures of KPZ universality were reported [182] in the scaling of spatio-

temporal correlation functions in some region of the parameter space, and regimes of

absence of topological defects were accessed numerically in the limit of low-noise. Still,

it was unclear whether this could be extended via further tuning of the parameters to
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the nominal regime, in which the noise strength is fixed by the pump and losses, as in

Eqs. (2.46b, 2.53). In this chapter, we demonstrate the existence of a KPZ regime for

the phase dynamics of polariton condensates in 2d for realistic parameters, which place

the system in highly non-equilibrium conditions. In particular, we show that topological

defects such as vortices are absent for these parameters and moderately high pump,

allowing us to uncover the KPZ scaling in the spatio-temporal correlation function of

the condensate wavefunction. Furthermore, we compare the obtained scaling function

with the one predicted for KPZ by NPRG approaches, finding an excellent agreement.

Finally, we present the first analysis of the fluctuations of the phase of the condensate,

via the calculation of the probability distribution function and its universal cumulants,

and show that they are compatible with results from large-scale numerical simulations

of KPZ systems [104, 109].

4.2 Model

Our starting point is again Eq. (2.49) for ψ ≡ ψ(t, r⃗), as it was introduced in sec-

tion 2.2.2.1, which we rewrite for clarity,

iℏ
∂ψ

∂t
=



(
− ℏ2

2mLP
∇2 + ϵ+ iℏ

γ2
2
∇2

)
+
iℏγ0
2


 p

1 + |ψ|2
ns

− 1




+ℏg |ψ|2
]
ψ + ℏξ′. (4.1)

We used the adiabatic approximation for eliminating the reservoir dynamics, as was done

in chapter 3, and the interaction between the polaritons and the reservoir excitons has

again been assumed to be negligible gr ≃ 0. For the kinetic term, we only include the

approximation of the dispersion relation for the EP near the bottom of the LP branch,

which reads

ELP(k) = ϵ+ ℏ2k2/2mLP (4.2)

according to Eq. (2.11), where ϵ = ℏωLP. The complex noise ξ′ has zero mean and

covariance ⟨ξ′(r⃗, t)ξ′∗(r⃗′, t′)⟩ = 2σδ2(r⃗ − r⃗′)δ(t− t′), where the noise nevel is σ = γ0(p+

1)/4. Let us note that in 2d, there is an extra factor of 2 in the denominator according

to the literature, when compared to the noise nevel for the 1d system from Eq. (2.53).

Furthermore, we do not include the confinement potential V (x) in our analysis, thus we

place the system in a flat spatial geometry.
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4.3 Numerical simulations

We numerically integrate the gGPe (4.1) using a split-step procedure in Python3 for

each noise realization. We use a 2d grid with spacing α = 2.83µm, which consists of

N = 64 points for the analysis of the correlation functions (sections 4.4 and 4.5) and

we perform a finite-size analysis for systems consisting of N = 32, 64, 128 points for the

study of the distribution of fluctuations (section 4.6). Note that a finite dx of a few µ

m can model experimental systems where the polariton condensate forms on a lattice of

micro-pillars, which corresponds to the configuration where 1D KPZ was observed [148].

The system parameters are chosen as m = 8 × 10−5me, where me is the mass of the

electron, γ0 = 0.3125ps−1, γr = γ0/10, γl,2 = 0.1 µm2ps−1, ns = 3.75µm−2. We note

that the value considered for γ0 corresponds to a polariton lifetime τ = 3.2ps, which

indeed places the system in highly out-of-equilibrium conditions. Moreover, throughout

this chapter, we consider a non-interacting system, where the polariton-polariton inter-

action is set to zero, g = 0.

Let us note that by appropriate rescaling of the field and time, the KPZ equation (1.12)

can be expressed in term of a single parameter gKPZ = λ2D/ν3, which is dimension-

less for d = 2. For our choice of parameters outlined above, we find gKPZ ≃ 105, thus

paving the road for observing KPZ universal properties for small system sizes of rele-

vance to polariton experiments. Moreover, let us mention that several works introduce

some anisotropy in the polariton effective mass (m∥,m⊥), which leads through a similar

mapping to the anisotropic extension of the KPZ equation [173]. However, as long as

the product m∥m⊥ remains positive, the anisotropy is irrelevant and the universal prop-

erties of the anisotropic KPZ dynamics are controlled by the isotropic fixed point. In

the case where m∥m⊥ < 0, the non-linearity gKPZ becomes irrelevant and the effective

properties of the system are governed by the anisotropic Edwards-Wilkinson (Gaussian)

fixed point [179, 180, 183]. Since we are interested in the nonlinear KPZ regime, we

consider an isotropic polariton dispersion and thus neglect any anisotropy effect.

The numerical integration is performed with a time step of dt = 0.16ps for the results

of section 4.4, and down to dt = 0.0016ps for the results of section 4.6. This finer

discretization ensures that the phase at a given point on the 2d plane can be uniquely

unwrapped in time θ(t) ∈ (−π, π] → (−∞,∞) in the absence of vortices, by constraining

the phase difference between two consecutive times to be less than f × 2π. This proce-

dure is robust, as long as f ≥ 0.5. Realizing this is crucial, since a compact field can

feature topological defects, such as phase jumps or vortices, which lead to the existence

of various regimes. Whereas a compact version of the KPZ equation turns out to be
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relevant in some systems such as driven vortex lattices in disordered superconductors

[184] or polar “active smectic” phases [181], we show that the behavior of the phase in

the regime studied in this work belongs to the non-compact KPZ universality class.

In order to tentatively locate the KPZ regime, we first investigate the density of topo-

logical defects, which are either purely spatial vortices in the (x, y) plane, or space-time

vortices which have a non-vanishing projection of their vorticity in the (t, x) and/or (t, y)

planes. The latter were shown to play an important role in 1d [148, 158]. Maintaining

the other parameters fixed, we vary the reduced pump p from low p ≃ 1 (close to thresh-

old) to moderately high p = 2. For each value of p, we determine the density of purely

spatial and space-time vortices, which is shown in Fig. 4.1, with typical phase config-

urations in the (x, y) plane (similar maps are obtained in the (t, x) and (t, y) planes).

The numerical procedure to detect the vortices and compute their density is detailed in

Appendix B. We find that the number of vortices drastically decreases when increasing

the pump power, and for p ≳ 1.6, very few spatial vortices are present, in agreement

with Ref. [176], and also very few space-time vortices. Both appear only by pairs of

nearby vortex and anti-vortex. We hence focus in the following on the highest value of

the pump p = 2, which appears as more favorable for observing KPZ dynamics. We

show in section 4.5 that the KPZ regime is robust, to a certain extent, against decreasing

the pump power.

The presence of topological defects turn out to be also sensitive to the discreteness of

space, and we find that the presence of a lattice (modeled by the grid with finite dx) is

favorable to observe the KPZ regime since the density of such defects is suppressed when

increasing the lattice spacing dx, as shown in Fig. 4.2. For dx ≳ 1µm, the emergence of

space-time vortices is rare and very short-lived. In the following, we choose dx = 2.83µm,

which is close to the spacing in experimental micro-pillar lattices [148], and for which

the number of both spatial and space-time vortices is very small and does not spoil the

KPZ universal properties.

4.4 KPZ scaling in spatio-temporal correlation functions

Using our numerical simulations we calculate the first-order correlation function g1,ψ of

the condensate wavefunction, which is defined as

g1,ψ(∆t,∆r) =
|⟨ψ∗(t0, r⃗0)ψ(t0 +∆t, r⃗0 +∆r⃗⟩|√
⟨n(t0, r⃗0)⟩ ⟨n(t0 +∆t, r⃗0 +∆r⃗)⟩

, (4.3)
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Figure 4.1: Density of purely spatial and space-time vortices as a function of the
pump power p, with typical phase configurations in the (x, y) plane (vortex - green,
anti-vortex - red) shown for p = 1.2 (left) and p = 1.8 (right) for a grid spacing of

dx = 2.83µm.
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Figure 4.2: Density of purely spatial and space-time vortices as a function of the
lattice spacing, with typical phase configurations in the (t, y) plane (vortex - green,
anti-vortex - red) shown for a grid spacing of dx = 0.71µm (left) and dx = 1.41µm

(right), for a fixed pump power p = 2.
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Because of isotropy, g1,ψ only depends on the modulus ∆r = |∆r⃗|, therefore we also

average the data over spherical shells of radius ∆r around r⃗0, and we choose here r⃗0 = 0⃗.

Under the assumption that the density-phase and density-density correlations are both

negligible, the expression of g1,ψ becomes

g1,ψ(∆t,∆r) ≃
〈
ei∆θ

〉
, (4.4)

where ∆θ ≡ θ(t0 +∆t, r⃗0 +∆r⃗)− θ(t0, r⃗0). As was discussed for the case of 1d, see for

example Eq. (3.18), upon performing a cumulant expansion of g1,ψ to lowest order, one

deduces that it is related to the connected correlation function C of the phase as

−2 ln [g1,ψ(∆t,∆r)] =
〈
∆θ2

〉
− ⟨∆θ⟩2 ≡ C(∆r⃗,∆t) . (4.5)

where C conforms to the equivalent definition for the interface,

C(∆t,∆r⃗) = ⟨h(t+∆t, r⃗ +∆r⃗)h(t, r⃗)⟩ − ⟨h(t+∆t, r⃗ +∆r⃗)⟩⟨h(t, r⃗)⟩. (4.6)

Let us note that Eq. (4.6) also takes a scaling form, defined as

C(∆t,∆r⃗) = C0∆t
2βF2d

(
y0

∆r⃗

∆t1/z

)
, (4.7)

where the universal scaling function F2d is computed in Appendix C. One deduces that

the scaling function F2d has the predicted asymptotics,

F2d(y)
y→0−→ F2d,0 , F2d(y)

y→∞∼ F2d,∞y
2χ , (4.8)

Note that g1,ψ constitutes a reliable observable to access the scaling behavior of the

phase only provided the previous assumptions are verified. This is not guaranteed a

priori and has to be assessed, but we stress that it was shown to be the case in 1d

in the experimental conditions where the KPZ regime was evidenced [148]. They are

also satisfied in our study, as shown in section. 4.5. We first study the equal-time and

equal-space correlation functions. If the phase follows the KPZ dynamics in 2d, then

according to Eqs. (4.7, 4.8), −2 ln |g1,ψ| should exhibit the power-law behavior

−2 ln |g1,ψ(∆t = 0,∆r)| ∼ ∆r2χ , (4.9a)

−2 ln |g1,ψ(∆t,∆r = 0)| ∼ ∆t2β , (4.9b)

with χ ≃ 0.39, β ≃ 0.24. We observe the expected scaling behavior both in space and

time, as shown in Fig. 4.3. For temporal correlations, the KPZ scaling extends for
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Figure 4.3: (i) Equal-space and (ii) equal-time correlation functions (blue plain lines)
evaluated from g1,ψ as explained in the text, compared with the KPZ scaling laws (black
dashed lines). The numerical data follow the KPZ scaling for an extended range of time
and space separations (indicated by the green shade). The local exponents, which are
computed from Eqs. (4.10a, 4.10b) are shown in the inset in both cases, together with
their fits by a constant in the green region (solid green lines, denoted 2βEP and 2χEP )
and the values from KPZ numerical simulations (black dashed line, denoted 2β and
2β). Note that a running average has been used in order to smoothen the equal-space

correlation function (i) before using Eq. (4.10b).

time differences spanning over a decade, from 3× 102 − 1.5× 104ps, whereas for spatial

correlations, the KPZ scaling is observed over a range from 10 − 40µm. The limited

space range is related to the relatively small size of our system, with a condensate of

approximately 90µm radius. Note that the polariton interaction with the reservoir gr

was set to zero here, but it is likely to play a role on the typical space and time scales

where KPZ dynamics dominates, as observed in 1d [148].

In order to provide a quantitative estimate of the critical exponents χ and β, we compute

the local exponent, given by the following logarithmic derivative

d

d ln∆r

[
ln
(
−2 ln |g1,ψ(∆t = 0,∆r)|

)]
∼ 2χ , (4.10a)

d

d ln∆t

[
ln
(
−2 ln |g1,ψ(∆t,∆r = 0)|

)]
∼ 2β . (4.10b)

The result is shown in the insets of Fig. 4.3. We fit the obtained local exponents by a

constant in the appropriate spatial and temporal windows, which yields the values of

the universal exponents βEP ≃ 0.22±0.06 and χEP ≃ 0.36±0.04. These values are well

in agreement with the results from numerical simulations for the 2d KPZ universality

class.

We now study the scaling properties of the spatio-temporal correlations over the whole

relevant domain (∆t,∆r). For this, we first select the data lying within the scaling

regime, indicated in the inset of Fig 4.4. We then construct the scaling function F2d(y)

defined in Eq. (4.7). The normalizations C0, y0 are determined from fitting the equal-

time and equal-space correlation functions with the power-laws Eqs. (4.9a, 4.9b) in the



KPZ universality in discrete 2d driven-dissipative exciton polariton condensates 73

10−2 10−1 100 101

y0∆r/∆t1/z

100

101

102

−
2

ln
g 1
,ψ

(∆
t,

∆
r)
/C

0
∆
t2
β g1,ψ

10 50

∆r[µm]

102

103

104

105

∆
t[
ps

]

0.2 0.4 0.6 0.8

Figure 4.4: Universal scaling function F2d(y), from our numerical data (blue dots)
and from the FRG calculation (solid line). Inset: Space-time map of g1,ψ, with the red

contour delimiting the scaling region where data are selected to construct F2d(y).

appropriate ranges. The corresponding fitting coefficients br, bt are related to C0, y0 by

br = C0y
2χ
0 F2d,∞ and bt = C0F2d,0, and F2d,0 and F2d,∞ are given in Appendix C. Our

results are shown in Fig. 4.4, together with the theoretical scaling function calculated

from FRG. We observe a collapse of the data onto a single curve, which matches with

the theoretical one with impressive accuracy. This result shows that the phase of the

two-dimensional polariton condensate follows a KPZ effective dynamics over extended

length and time scales for our choice of parameters.

4.5 Robustness of the KPZ regime

In order to test the robustness of the KPZ regime, we compute the correlation function

g1,ψ for different values of p. The equal-time and equal-space correlations, compensated

by the KPZ power-laws, are displayed in Fig. 4.5. We find that the temporal scaling is

very robust, as plateaus for time delays spanning approximately 103 − 104ps are clearly

identified for all values of the pump. The spatial scaling turns out to be more sensitive

to the pump variations, and plateaus for spatial separations approximately 10 − 40µm

are apparent for p ≳ 1.8, but not for lower values of the pump. The progressive de-

parture from the KPZ regime, manifest in the spatial scaling, can be attributed to the

increasing effect of density-phase correlations, as shown below. To conclude, we find a

robust KPZ scaling for the correlation functions in the moderately-high pump regime,
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Figure 4.5: (i) Equal-space and (ii) equal-time correlation functions g1,ψ, with darker
colours corresponding to larger values of the pump parameter, p = 1.6, 1.7, 1.8, 2, 2.5.
The correlations are compensated by the appropriate KPZ power laws, such that the
corresponding data appear as plateaus in the KPZ spatial and temporal ranges, which

are highlighted in gray.

which is especially stable for the temporal behavior.

As explained in section 4.4, the connection between the correlations of the condensate

field ψ and the correlations of the phase field θ itself relies on some assumptions. In

order to check their validity, we extract from the condensate field its density n(t, r⃗) and

phase θ(t, r⃗), and compute separately the contributions in g1,ψ of the density

g1,n(∆t,∆r) =

〈√
n(t0, r⃗0)n(t0 +∆t, r⃗0 +∆r⃗

〉

√
⟨n(t0, r⃗0)⟩ ⟨n(t0 +∆t, r⃗0 +∆r⃗)⟩

(4.11)

and the one of the phase

g1,θ(∆t,∆r) =
〈
ei(θ(t0+∆t,r⃗0+∆r⃗)−θ(t0,r⃗0))

〉
. (4.12)

The results for p = 2 and p = 1.6 are displayed in Fig. 4.6. We observe that g1,n is very

close to unity over the whole KPZ spatial and temporal ranges for both pump powers,

and is constant for p = 2, while it develops a finite (but small) slope for p = 1.6. Thus,

the role of density-density correlations is indeed small, and in particular, it is neglibible

for larger pump powers. The density-phase time correlations are almost vanishing, since

g1,ψ(∆t, 0) and g1,θ(∆t, 0) almost perfectly coincide over the whole KPZ time range, as

shown in panel (i) of Fig. 4.6. The density-phase space correlations are more important,

and their effect increases while decreasing the pump. One observes in panel (ii) of

Fig. 4.6 that for p = 2, they do not change the scaling behavior of g1,ψ(0,∆r) as they

just amount to a global multiplicative factor as compared with g1,θ(0,∆r), whereas for
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Figure 4.6: (i) Equal-space and (ii) equal-time correlation functions g1,ψ (darker) and
g1,θ (lighter), for p = 1.6 (blue colors) and p = 2 (red colors). The dashed lines indicate
the corresponding stretched exponentials with KPZ exponents and the KPZ regime is
highlighted as in Fig. 4.5. In panel (ii), the lighter shades are shifted upwards after
multiplying by a factor of 1.25 in order to avoid overlapping with the darker shades.

Inset: Density-density correlation g1,n for these values of the pump.

p = 1.6, g1,θ(0,∆r) no longer follows the KPZ stretched exponential behavior. Thus, one

concludes that for p = 2, the behavior of the correlations g1,ψ indeed reflects the KPZ

scaling of the phase itself, both in space and time, whereas for p = 1.6, the density-phase

space correlations also contribute to the behavior of the g1,ψ, and the KPZ regime no

longer exists.

4.6 One-point statistics of the phase fluctuations

We now study the probability distribution of the rescaled fluctuations of the unwrapped

phase θ ≡ θ(t, r⃗0) at a fixed space point r⃗0. For the classical interface in 1d de-

scribed by a height field h, the distribution of the reduced height fluctuations defined

as χ = (h − v∞t)/(Γt)1/3, with v∞ and Γ non-universal parameters, is known exactly.

As we discussed in section 1.3.2.1, the distribution was shown to be sensitive to the

global geometry of the growth, thereby defining three main universality sub-classes. For

flat, curved, or stationary geometries, the probability distribution is given by Tracy-

Widom GOE (Gaussian Orthogonal Ensemble), Tracy-Widom GUE (Gaussian Unitary

Ensemble) or Baik-Rains distributions, respectively [76]. Strikingly, these universality

sub-classes can also be realized in the polariton condensate in 1d [159], where the role of

global geometry can be emulated by appropriate external potentials [185]. These results

were discussed in depth in chapter 3.

In 2d, the only available theoretical results regarding the distribution of the reduced

height fluctuations are from numerical simulations [104, 106, 109]. As in 1d, the height
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Figure 4.7: (i) Three typical unwrapped phase trajectories, displaying zero, one, or
two phase jumps. (ii) P [θ(ti)] for a given ti (gray symbols). We first select the data for
which |θti − θti,max| < ϵ, which we highlight in gray, and then we perform a secondary
selection for P [θti ] > Pmin, where Pmin is shown as a dashed black line. We highlight
the data which satisfy both criteria (green dots), as well as the extrapolated data (red

V symbols).

field exhibits a linear growth in time, with average velocity v∞, over which fluctua-

tions develop with a tβ scaling. All numerical works find that the distribution of the

reduced fluctuations χ are non-Gaussian, and suggest the existence of different geometry-

dependent universality sub-classes as in 1d. However, we stress that there is no known

analytical form for these distributions, in analogy to the Tracy-Widom or Baik-Rains

distributions in 1d, and therefore, we will rely on a comparison of the first universal

cumulants of the phase, namely the skewness and excess kurtosis, which are defined as

sk(δθ) = µ3/µ
3/2
2 , ku(δθ) = µ4/µ

2
2 − 3 , (4.13)

where µn = ⟨δθn⟩ correspond to the n−th moments of the height fluctuations δθ = θ−µ1.
Due to the absence of analytical results, various attempts have been made to fit the re-

sulting distribution to the Pearson or the generalized Gumbel distributions, due to their

relevance to other non-equilibrium problems, see for example [186], however these dis-

tributions ultimately fail to capture the behavior of rare events of relevance to the 2d

KPZ growth problem.

To investigate the statistical properties of the phase fluctuations, we record, for p = 2,

5120 independent realisations of the time evolution of ψ, from which we extract the

phase. Typical unwrapped phase trajectories are shown in panel (i) of Fig. 4.7. One

observes that in our strong out-of-equilibrium conditions, phase jumps occur. As illus-

trated in the inset, these are rapid changes of the phase on a very short time scale of the

order of 10ps. We stress that these jumps are present even after carefully unwrapping

the phase in time at a given space point r⃗0, as discussed in section 4.3, by compensating
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Figure 4.8: Histogram of the centered and rescaled phase fluctuations δθ in the
appropriate time window for different system sizes L = 90.5µm, 181µm, 362µm (fuchsia,
light green, dark gray symbols, respectively). Each curve (and hence the analysis
concerning each system size) comprises of approximately 8 × 106 data. The Gaussian
distribution N is also shown, together with the generalized Gumbel distribution with
scaling parameter κ = 6, G6 [104]. The probability density function is clearly non-
Gaussian even near the center, as shown in the inset, and resembles the generalized

Gumbel distribution.

for the instantaneous 2π shifts due to definition of the phase modulo 2π which happen

in one discrete time step as small as 0.0016ps. The existence of these jumps disrupts the

leading linear behavior in time, and thus prevents from consistently defining the reduced

fluctuations as δθ ∝ (θ − ⟨θ⟩)/tβ.

In order to circumvent this issue, we resort to a similar analysis performed in 1d and

reported in [148]. We first compute the probability density function P [θti ] for each dis-

crete time instant ti in the KPZ window. An example of such a distribution is shown in

panel (ii) of Fig. 4.7. The occurrence of a phase jump results in a shift of approximately

2π in the values of the phase. Hence, the fluctuations of the realization where no, one,

two, . . . jumps occurred populate the distribution in the first, second, third, . . . peak,

where the different peaks are separated by approximately 2π. These peaks have a similar

shape, which shows that the dynamics is in fact piece-wise KPZ in between the jumps.

To study the shape of the distribution with more accuracy, we select the fluctuations

in the first peak for each time instant, by requiring |θti − θti,max| < ϵ, where θti,max is

the point for which P [θti,max] = max(P [θti ]), and we focus on the subset of them where

P [θti ] > Pmin. For each time instant, the corresponding distribution is centered at zero,

by subtracting the first moment of the selected data, δθti = θti − µ1,ti , and normalized
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Figure 4.9: Finite size analysis for the (i) skewness and (ii) excess kurtosis of the
phase fluctuations δθ, with error bars corresponding to the standard deviation found
after performing the computation at four distinct space points r⃗i with i = 1..4, as well
as of the interpolated data δθint as explained in the text, with their respective error
bars. We also show the universal values for the generalized Gumbel distribution with
scaling parameter κ = 6 used in Ref. [104] (black) in order to compare to large-scale
numerical simulations pertaining to the growth regime in flat geometry for the 2d KPZ

universality class.

to unit variance. We then sum the fluctuations of the first peaks, properly normalized,

for all time instants in the appropriate time window where cumulants reach stationary

values. The obtained distribution is shown in Fig. 4.8.

We stress that both ϵ and Pmin are selected empirically. This leads to unavoidable errors

in the computation of cumulants from Eq. (4.13), due to the small number of discrete

bins for given ti. We attempt to counter the effect of such errors by interpolating in order

to create a new data set δθint, and we quantify their effect by computing the skewness

and excess kurtosis of both data sets. Our results are shown in Fig. 4.9. In particular, we

display the mean values for the skewness and excess kurtosis for plateaus corresponding

to stationary behavior found in a time window ∆ti = (1.1× 103ps, 1.6× 103ps). These

values are larger by 25% to 40% for both quantities compared with the numerical results

from simulations of KPZ systems, but we emphasize that our system is much smaller

that the systems simulated in Refs. [104, 109].

4.7 Conclusions

In this chapter, we have shown, using numerical simulations of the discrete stochastic

generalised Gross-Pitaevskii equation, that a KPZ regime can be achieved in discrete 2d
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driven-dissipative exciton polariton condensates under incoherent pumping. We have ob-

tained the condensate spatio-temporal first-order correlation function, and shown that,

for the parameters studied, it exhibits stretched exponential behavior, both in space

and time, with critical exponents characteristic of the 2D KPZ universality class. This

scaling persists in a finite region of pump strength and lattice spacing. Moreover, the

associated scaling function accurately matches with the KPZ theoretical scaling function

given by FRG methods. We have also obtained the distribution of the phase fluctuations,

which is highly non-Gaussian and very close to the distribution computed in numerical

simulations of KPZ interfaces. This is a compelling evidence that the phase fluctuations

behave as the KPZ stochastic process.

Our findings open promising perspectives. On the theoretical side, it would be desirable

to obtain a consistent description of the phase diagram of a polariton condensate in 2d,

with a clear understanding of the interplay between the various possible regimes such

as non-equilibrium BKT and KPZ. This remains a challenge, as the parameter space

to explore is multi-dimensional. This means that, in principle, various parameters of

the model (e.g. polariton-polariton interaction strength, polariton loss rate, saturation

density) can be tuned. On the experimental side, the evidence of a KPZ regime in 2d

polaritons would constitute a major breakthrough, especially since a convincing realiza-

tion of KPZ universality class in 2d is still missing and actively sought for. Note that

the experimental demonstration of the KPZ scaling in 1d polariton condensates is very

recent [148], and similar techniques could be used in 2d.





Chapter 5

Conclusions & Perspectives

In this thesis, we studied universal properties related to the KPZ universality class,

which arise when studying an inherently out-of-equilibrium system, an exciton polari-

ton condensate.

In 1d, we proposed a simple protocol in order to test whether the system is versatile

enough in order to access different KPZ universality sub-classes. By introducing a con-

fining potential to the system, we achieve the bending of the phase front, due to the

propagation velocity being inhomogeneous, and in fact being proportional to the confin-

ing potential strength. We employed extensive numerical simulations of the EP system

in presence of the confinement, which proved that the boundaries of the phase front

indeed propagate faster than the bulk, thus leading to the gradual bending of the front,

followed by uniform propagation after a finite time. We showed that a given point on

the front follows the KPZ dynamics until a certain time when the drag induced by the

potential reaches it. We computed the scaling function for the system, with and without

the confinement potential, and we report excellent agreement with the analytical result

[79]. Its asymptotic value when the argument tends to zero corresponds to the variance

of the distribution of the rescaled fluctuations, thus deeming a detailed study of their

statistics necessary in order to distinguish between the sub-classes. Furthermore, we

have found that the probability distrbution of rescaled phase fluctuations is markedly

different, depending on whether the potential is present or not. In particular, it corre-

sponds to the theoretical prediction for the circular and flat sub-class, the TW-GUE and

TW-GOE distribution, respectively. Moreover, the spatial correlation function of the

rescaled fluctuations was found to match with the corresponding prediction in the two

cases, the covariance of the Airy2 and Airy1 stochastic process, with the only limitation

being the limited spatial range in which smooth curvature is achieved in the phase front
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when the confinement is present.

In 2d, we explored whether the KPZ universality is present in the system, without the

confinement potential. In this case, topological defects are expected to be more promi-

nent, thus rendering the extraction and the unwinding of the phase more subtle. In

the literature, it was theoretically argued that the KPZ regime may be hindered by the

presence of vortices, and a non-equilibrium BKT behaviour was reported close to the

condensation threshold. However, the numerical simulations have been conflicting so

far, and no widely approved concensus has been reached regarding the complete phase

diagram. We have shed some further light on this debate, by performing numerical

simulations for polariton condensates, using certain parameter values realistic in exper-

iment, such as the pump relative to threshold, and the noise level. Furthermore, we

have found that the discreteness of space is crucial for the onset of KPZ universal dy-

namics. The latter is very much achievable experimentally, e.g. in a lattice of coupled

micropillars. Lastly, we considered an extremely non-equilibrium system, due to the

high loss rate of polaritons from the cavity. As our main result, we have found that, the

condensate spatio-temporal first-order correlation function, for the parameters studied,

exhibits stretched exponential behavior, both in space and time, with critical exponents

characteristic of the 2D KPZ universality class. This scaling persists in a finite region of

pump strength. The scaling function of the system was found to match with the FRG

predictions from Ref. [116], one of the few analytical results available for the 2d KPZ

universality class. Furthermore, we have performed the first study of the phase of a 2d

non-equilibrium polariton system. We reported on various difficulties that arise due to

phase jumps induced by the large noise nevel, but nonetheless, we have computed the

probability distribution of rescaled fluctuations and universal ratios of high order cumu-

lants, namely the skewness and excess kurtosis. We have found that both are compatible

with the reported values from large-scale numerics of discrete systems in the 2d KPZ

universality class, although the cumulants display differences of about 20% to 40% with

respect to the numerical results for a 2d classical interface.

These results naturally call for experimental verification. Based on accurate measure-

ment of the first order correlation function, a recent study [148] proved that the KPZ

physics is dominant in 1d, thus demonstrating the non-equilibrium character of the ex-

citon polariton system. A similar experimental test of our confinement protocol would

readily promote the system to a strong rival to turbulent liquid crystals [61, 62], when

it comes to a high-precision platform for studying KPZ physics in depth. However, the

measurement of the phase up to very small times would be needed in order to con-

clusively distinguish between the Tracy-Widom distributions, but such a technique is
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currently missing. More recently, however, correlations of arbitrarily high order have

been measured for ultracold atoms, paving the way of accessing higher order cumulants,

provided they can also be applied in EP systems.

In 2d, plenty of interesting questions arise from our findings. Focusing on the case of

EP systems under incoherent pumping, the precise role of the saturation density and

the polariton linewidth on the enhancement of the visibility of KPZ scaling, as well

as on the proliferation of vortices, require further study. On that front, it is particu-

larly important to also understand the role of polariton-polariton interactions. On one

hand, their presence is not fundamental for the existence of a KPZ regime, since the

mapping still holds at vanishing interactions, as can be seen from Eqs. (2.63a, 2.63b,

2.63c, 2.64), provided that there is a momentum-dependent loss-rate. Furthermore, the

study reported in Ref. [182] suggests that the development of the KPZ regime is favored

by weak interactions. We note that such conditions can be accessed experimentally in

polariton condensates by appropriate tuning of Feshbach resonances [187]. However,

on the other hand, we emphasize that it is unclear how the apparent favor of weak

polariton-polariton interactions in terms of the KPZ universality can be reconciled with

the findings of [171, 172] discussed in Sec. 4.1, according to which, the ratio γ0/gns

strongly influences the vortex dynamics.

From the above, it is clear that further extensive numerical analysis of the system is

warranted, which would consist of tuning separately the polariton-polariton interaction

strength, the saturation density, as well as polariton loss rate, in order to carefully assess

their effect on the extent of the spatial and temporal windows where the KPZ scaling

is present in the system, and moreover, whether the study of the phase fluctuations can

amount to even more accurate predictions related to the skewness and excess kurtosis.

Moreover, it is important to introduce a non-uniform pump in order to better mimic the

experimental conditions. Furthermore, alternative pumping schemes could be consid-

ered from an experimental point-of-view, such as the introduction of a quadratic drive

[170], which has shown great promise in enhancing the visibility of KPZ scaling theoret-

ically. Lastly, after drawing inspiration from the study we performed in 1d, it would be

interesting to explore the effect of a confinement potential to the 2d system.





Appendix A

Numerical estimation of Γ

Let us discuss about the value of the numerical parameter Γ, which is used to rescale the

first-order correlation function of the EP wavefunction in chapter 3, in order to extract

the universal scaling function F1D(y) via Eqs. (3.19, 3.20).

For our choice of parameter values (corresponding to Grenoble experiments), we obtain

Γth = λA2

2 ≃ 0.00136τ−10 . However, this parameter can be extracted from our simulations

from the definition of the long-time ansatz Eq. (1.20), as well as from the purely temporal

correlation Eq. (3.22b). We choose the former, as it directly involves the phase. From

this definition, it follows that the variance of the phase is related to the variance of the

rescaled fluctuations χ as
〈
∆θ2

〉
= (Γt)2/3Var(χ) , (A.1)

where the value of Var(χ) is known exactly in both geometries [76]. We stress that, at

this stage, we assume that the flat and circular sub-classes are realized in our system if

the geometry of the growth is tuned via the external confinement potential. However,

as we show in section 3.4.2.3 via a detailed study of the skewness and excess kurtosis

of the phase fluctuations, convergence to the universal values for the Tracy-Widom

distributions is observed, thus justifying our assumption.

In order to extract Γ, we compute
〈
∆θ2

〉
/t2/3, average over the plateaus reached in the

appropriate time windows corresponding to the KPZ regime and divide by Var(χ). The

values obtained before the rescaling by the variance are illustrated on Fig. A.1 where

these plateaus are shown. We obtain

Γ ≃





0.0013τ−10 , curved geometry

0.002τ−10 , flat geometry.
(A.2)
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Figure A.1: Determination of the Γ parameter in the (i) curved and (ii) flat geom-
etry, together with the theoretical values for Γ2/3Var(χ) (red and blue dashed lines)
obtained from the microscopic parameters with the theoretical value of Var(χ) for the
identified distribution in each case. The rescaled variance

〈
∆θ2

〉
/t2/3 is averaged over

the plateaus in the green time windows and then divided by Var(χ), which yields the
values listed in Eq. (A.2).

These values are in agreement with the theoretical estimate Γth. Even though Γ depends

on x in the curved case, it is almost constant if one restricts to a small space region

around the central point x = 0. We observe that while the data for the curved phase

lies very close to the corresponding theoretical prediction (before the departure from

KPZ universality for large times), the value for the flat phase differs by about 30% from

the theoretical one. We are, at present, unable to explain this small discrepancy, but

nevertheless we take it into account in our work by using in the normalisations the actual

numerical values of Γ.



Appendix B

Vortex detection

In order to search for vortices in the phase of the condensate and locate their cores, one

usually computes the circulation I =
∮
C ∇⃗θ · d⃗l around closed contours C enclosing each

point of the 2D grid. If a quantized vortex is present at a point, then I = κ2π, where κ

is the vortex charge, else I = 0 [188]. The closed contour C should be defined such that

it encloses a small part of the fluid containing up to one vortex core, in which case the

circulation does not depend on the precise form of the contour.

However, this method quickly becomes intractable when applied to each point in a grid

consisting of many points, such as a space grid with fine spatial discretization, or a space-

time grid, defined by selecting one spatial direction and time. In the latter case, the

time discretization is typically chosen as much finer than the spatial one, thus requiring

an extremely large number of points in order to study the dynamics of the condensate

until some time after the steady state has been reached. We circumvent this issue by

computing the curl of the gradient of the phase of the condensate, ∇⃗×∇⃗θ. By definition,

the projection of this quantity in each of the three directions, the two spatial and the

temporal ones, is related to the infinitesimal circulation of the gradient of the phase

around each point of the grid,

∇⃗ × ∇⃗θ · S⃗ → I , (B.1)

where S⃗ is the normal vector,

S⃗ = dx2t̂+ dxdtx̂+ dxdtŷ , (B.2)

where dx is the unit length, which is chosen to be the same for both the x and y

directions, and dt is the unit time.

From our numerical simulations, we extract the phase of the condensate in the (x, y)

plane in an appropriate time window in the steady state, thus creating an (effectively)
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3d dataset. We then compute the components of the gradient numerically along each

direction separately, once the phase has been unwrapped in that direction. Finally, we

compute each of the components of the curl straightforwardly. Overall, this procedure

allows us to identify, in a particularly efficient manner, both the spatial vortices, as well

as the space-time topological defects, by mapping the 2+1-dimensional problem to three

distinct 2-dimensional ones.

In order to compute the vortex density, we study each component of the curl separately.

More specifically, for each component i = {x, y, t}, we count the number of non-zero

values of each curl component for each distinct “slice” {xi, yi, ti}. This allows us to

compute the mean number of defects,

Nvort,xy =
1

#ti

∑

ti∈∆t
countvort(ti) , (B.3a)

Nvort,xt =
1

#yi

∑

yi

countvort(yi) , (B.3b)

Nvort,yt =
1

#xi

∑

xi

countvort(xi) , (B.3c)

where ∆t = 100ps starting from an initial sampling time t0 = 100ps, for which the

steady state of the system has already been reached for our choice of parameters. We

then normalize our result by dividing with the total number of points in the 2d grid,

and we present our results for the mean occupation of our grid by topological defects in

Figs. 4.1 and 4.2.



Appendix C

Scaling function for KPZ growth

in 2d

As we already discussed in section 1.4.2, analytical results pertaining to the KPZ uni-

versality class in 2d are notoriously hard to come by. In particular, the KPZ rough

phase is described by a genuinely strong-coupling fixed-point in d ≥ 2. Indeed, it was

shown in [113] that the perturbative RG flow equation for the effective KPZ coupling

gKPZ can be resummed exactly, yielding an expression valid to all orders in perturbation

theory in the vicinity of d = 2. However, gKPZ flows to infinity, and not to a finite

fixed point associated with the KPZ rough phase. Therefore, any RG calculation based

on perturbative techniques fails to qualitatively capture the strong-coupling fixed-point,

and one cannot extract any sound information about the KPZ fixed-point in 2d or higher

dimensions from the resulting flow equation.

A non-perturbative RG calculation was devised using the inherently non-perturbative

Functional Renormalisation group (FRG) in Refs. [114–116], which allows one to access

the strong-coupling KPZ fixed-point in all dimensions. It shows that the KPZ fixed-point

is not connected to the Gaussian Edwards-Wilkinson fixed-point in any dimension, which

explains the failure of perturbation theory, even resummed at all orders. The universal

scaling function associated with the two-point correlation function in 2d was calculated

in [116], which provides the scaling function F̊2d defined as

C̄(ω, p⃗) =
2

pd+2+χ
C̄0F̊2d

(
ȳ0
ω

pz

)
, (C.1)

where C̄0, ȳ0 are non-universal normalization constants, and C̄(p⃗, ω) is the Fourier trans-

form of the connected two-point correlation function Eq. (4.6). More specifically, for
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arbitrary values of time and space separation (t, r⃗), the Fourier transform reads

C(t, r⃗) =

∫ ∞

−∞

dω

2π

∫
ddp⃗

(2π)d

(
e−i(ωt−p⃗·r⃗) − 1

)
C̄(ω, p⃗). (C.2)

By replacing C̄(ω, p⃗) by its scaling form (C.1), switching to polar coordinates, and finally

changing frequency variable to τ = ȳ0ω/p
z, one obtains in 2d

C(t, r⃗) =
C̄0

ȳ0

1

2π2

∫ ∞

0
dτF̊2d(τ)

∫ ∞

0

dp

p3+χ−z
[cos(pzτt/ȳ0)BJ(0, pr)− 1] (C.3)

where BJ is a Bessel function, and the parity of F̊2d has been used. By changing

momentum variable to u = pzτt/ȳ0, one finally obtains

C(t, r⃗) = C0t
2χ/zF2d(y0x/t

1/z)

F2d(y) =

∫ ∞

0
dτF̊2d(τ)τ

2χ/z

∫ ∞

0

du

u2χ/z

[
cos(u)BJ(0, (u/τ)1/zy)− 1

]
(C.4)

C0 =
C̄0

(2π2)zȳ1+2χ
0

y0 = ȳ0
1/z (C.5)

We stress that the normalization constants C0 and y0 are not universal, and have to be

prescribed. In this appendix, we fix C0 and y0 such that F2d,0 = 1 and F2d,∞ = 0.45.

We note that this was not the case in 1d, where F1d,∞ = 2 in Eq. (3.21), and C0, y0

were fixed by the KPZ parameters ν, λ,D according to Eq. (3.20). Those particular

normalizations are fixed historically, and amount to directly comparing F1d,0 with the

theoretical results pertaining to the Tracy-Widom and Baik-Rains distributions, namely

their variance. Such results are not available in 2d, hence the precise normalizations are

not important.

The integrals in (C.4) were computed numerically, using the tabulated data for F̊2d from

Ref. [116]. In chapter 4, we use the function F2d computed from FRG as the theoretical

reference for the scaling function of the 2d KPZ universality class.



Appendix D

Remarks on the space

discretization

For the entirety of this thesis, the numerical simulation of the time evolution was per-

formed using the NumPy and SciPy libraries of Python, as well as the framework for

parallel calculations offered by the QuTiP package [189, 190].

The most important ramification of simulating a continuous system, is the fact that one

has to pay attention to discretize the space and time, as the notion of the continuum

does not exist for the computer. By doing that, during the course of the analysis pre-

sented in chapter 4, we came across extremely interesting physical phenomena which

seem to directly influence the appearance of KPZ universal properties, in the context of

a condensate of exciton polaritons in 2d.

More specifically, we have found that, by increasing the number of grid sites N and

decreasing the discretization length scale dx of our 2d grid, in a way that the total length

of the system L = Ndx remains constant, more and more vortices seem to populate the

system, as seen in Fig. 4.2. Whereas in the continuum limit dx → 0 the vortex density

seems to converge to a stationary value, we have found that the majority of the vortices

are still localized in one pixel of the space-time grid defined by the two grid spacings

(dx, dt). Albeit counter-intuitive, this means that, the KPZ phase dynamics can only

be visible (in this parameter regime) in systems which are engineered to be discrete, in

order to dampen the proliferation of hybrid space-time vortices. We have found that,

for our choice of system parameters detailed in section 4.3, this can be achieved for

a spatial grid spacing of dx ≳ 1.5µm. For less discrete systems, the proliferation of

vortices overruns the system, and coherence is lost immediately. Furthermore, we have
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found that the numerical stability of the time evolution is achieved for dt ≤ 2× 10−1ps

for our split-step solver.
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[82] J. Baik, P. L. Ferrari, and S. Péché. Limit process of stationary TASEP near the

characteristic line. Communications on Pure and Applied Mathematics, 63(8):

1017–1070, 2010. https://doi.org/10.1002/cpa.20316.

[83] M. Mehta. Random matrices, Pure and Applied Mathematics Series vol. 142.

Elsevier BV, Amsterdam Netherlands, 2004.

[84] K. Johansson. Discrete polynuclear growth and determinantal processes.

Communications in Mathematical Physics, 242(1):277–329, 2003.

https://doi.org/10.1007/s00220-003-0945-y.

[85] F. Bornemann, P. L. Ferrari, and M. Prähofer. The Airy1 process is not the limit

of the largest eigenvalue in GOE matrix diffusion. Journal of Statistical Physics,

133(3):405–415, 2008. https://doi.org/10.1007/s10955-008-9621-0.

[86] J. G. Zabolitzky and D. Stauffer. Simulation of large Eden clusters. Phys. Rev.

A, 34(2):1523–1530, 1986.

https://link.aps.org/doi/10.1103/PhysRevA.34.1523.

[87] J. Kertész and Dietrich E. Wolf. Anomalous roughening in growth processes.

Phys. Rev. Lett., 62(22):2571–2574, 1989.

https://link.aps.org/doi/10.1103/PhysRevLett.62.2571.

https://doi.org/10.1023/A:1019791415147
https://doi.org/10.1023/B:JOSS.0000019810.21828.fc
http://dx.doi.org/10.1088/1742-5468/2011/01/P01031
https://doi.org/10.1007/s00220-008-0515-4
https://doi.org/10.1002/cpa.20316
https://doi.org/10.1007/s00220-003-0945-y
https://doi.org/10.1007/s10955-008-9621-0
https://link.aps.org/doi/10.1103/PhysRevA.34.1523
https://link.aps.org/doi/10.1103/PhysRevLett.62.2571


Bibliography 101

[88] J. M. Kim and J. M. Kosterlitz. Growth in a restricted solid-on-solid model.

Phys. Rev. Lett., 62(19):2289–2292, 1989.

https://link.aps.org/doi/10.1103/PhysRevLett.62.2289.

[89] B. M. Forrest and L-H. Tang. Surface roughening in a hypercube-stacking model.

Phys. Rev. Lett., 64(12):1405–1408, 1990.

https://link.aps.org/doi/10.1103/PhysRevLett.64.1405.

[90] J. M. Kim, J. M. Kosterlitz, and T. Ala-Nissila. Surface growth and crossover

behaviour in a restricted solid-on-solid model. Journal of Physics A:

Mathematical and General, 24(23):5569–5586, 1991.

http://dx.doi.org/10.1088/0305-4470/24/23/022.

[91] L-H. Tang, B. M. Forrest, and D. E. Wolf. Kinetic surface roughening. II.

Hypercube-stacking models. Phys. Rev. A, 45(10):7162–7179, 1992.

https://link.aps.org/doi/10.1103/PhysRevA.45.7162.

[92] C-S. Chin and M. den Nijs. Stationary-state skewness in two-dimensional

Kardar-Parisi-Zhang type growth. Phys. Rev. E, 59(3):2633–2641, 1999. URL

https://link.aps.org/doi/10.1103/PhysRevE.59.2633.

[93] J. Kondev, C. L. Henley, and D. G. Salinas. Nonlinear measures for

characterizing rough surface morphologies. Phys. Rev. E, 61(1):104–125, 2000.

https://link.aps.org/doi/10.1103/PhysRevE.61.104.

[94] E. Marinari, A. Pagnani, and G. Parisi. Critical exponents of the KPZ equation

via multi-surface coding numerical simulations. Journal of Physics A:

Mathematical and General, 33(46):8181–8192, 2000.

http://dx.doi.org/10.1088/0305-4470/33/46/303.

[95] F. D. A. Aarão Reis. Universality and corrections to scaling in the ballistic

deposition model. Phys. Rev. E, 63(5):056116–, 2001.

https://link.aps.org/doi/10.1103/PhysRevE.63.056116.
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L. Dominici, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, M. H. Szymańska,
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L. Dominici, K. West, Loren N. Pfeiffer, G. Gigli, Fabrice P. Laussy, M. H.
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