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Abstract

Abstract

The human body is a complex structure composed of multiple cells, organs and
tissues. The cardiovascular system is responsible of transferring nutrients and oxy-
gen to all the body and the aorta plays an essential role. The upper portion of the
aorta, called ascending thoracic aorta, is a critical section since it has to support
the high pressure blood pumped by the heart. This is made possible thanks to the
micro-structure of the aortic wall, mainly composed of fibers (collagen and elastin).
With aging, changes may occur on the aortic micro-structure and may cause some
diseases such as aneurysms. Studying this microstructure is helpful to understand
its functions. To this end, several imaging modalities were used in the literature
especially the multi-photon microscopy and Second Harmonic Generation (SHG)
because of its good resolution in 3D. However, SHG images may present some arti-
facts such as noise in addition to some discontinuities on certain fibers. The study of
this micro-structure is based on the quantitative analysis of acquired 3D images in
order to extract information related to the geometry and the morphology of collagen
fibers as well as the composition of the considered specimen.

The goal of this thesis is, in the first place, to enhance 3D second harmonic
generated images of collagen fibers in order to make them more suited for a potential
quantitative analysis. To this end, a combination of a 3D directional filter (to deal
with fibers discontinuities) and a 1D and a 3D top-hat transforms (to reduce the
noise) is proposed. The second part of this thesis is focused on the quantitative
analysis of these images and in particular, orientations’ estimation of collagen fibers
in the 3D space. A new approach based on deep learning is introduced. A dataset
of 3D images of synthetic fibers is developed to ensure the learning phase of the
proposed neural network.

Résumé

Le corps humain est une structure complexe composée de plusieurs cellules, tissus
et organes. Le système cardiovasculaire est responsable du transfert de l’oxygène et
des nutriments vers tout le corps et l’aorte y joue un rôle essentiel. La portion supé-
rieure de l’aorte, appelée aorte thoracique ascendante, est assez critique puisqu’elle
doit supporter la pression élevée du sang pompé par le cœur. Ceci est possible grâce
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à la micro-structure de l’aorte qui est principalement composée de fibres (collagène
et élastine). Cependant, avec le vieillissement, des changements peuvent toucher
cette micro-structure et causer des pathologies comme les anévrismes. L’étude de
cette micro-structure est nécessaire pour comprendre ses fonctions. Ceci est possible
grâce à plusieurs modalités d’imagerie notamment la microscopie à deux photons
et la génération de seconde harmonique puisqu’elle offre une bonne résolution en
3D. Cependant, les images collectées peuvent présenter plusieurs artéfacts comme
du bruit et des discontinuités au niveau de quelques fibres. L’étude de cette micro-
structure est basée sur l’analyse quantitative des images acquises afin d’extraire
des informations relatives à la géométrie et la morphologie des fibres ainsi que la
composition du spécimen considéré.

Cette thèse a pour objectif, en premier lieu, d’améliorer des images 3D de se-
conde harmonique de fibres de collagène afin de les rendre exploitables pour une
éventuelle analyse quantitative. Pour se faire, une combinaison d’un filtre direction-
nel 3D (pour remédier au problème de discontinuité) et de transformées "top-hat" à
une et trois dimensions (pour réduire le bruit) est proposée. En second lieu, l’intérêt
est porté sur l’analyse quantitative de ces images et en particulier l’estimation de
l’orientation des fibres de collagène dans l’espace 3D. Une nouvelle approche basée
sur l’apprentissage profond est présentée. Une base de données contenant des images
3D de fibres synthétiques est développée pour assurer la phase d’apprentissage du
réseau de neurones proposé.
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Introduction

The human body is a highly complex structure which is composed of cells, tissues
and organs. This structure can be divided into different systems where each one of
them is responsible of one function. Among these system, there is the circulatory or
cardiovascular system which ensures the circulation of the blood from the heart to
the rest of the body and the reverse path through a network of blood vessels. The
occurrence of any pathology along this system can be very serious and may even lead
to death. These pathologies are referred to as cardiovascular diseases. One complex
and dangerous cardiovascular disease is the ascending aortic thoracic aneurysm. It
corresponds to a bulge in the ascending part of the aorta, the largest artery of
the human body. This condition can grow over time because of the weakening of
the aortic wall. Several risk factors are linked to aortic aneurysms, one can site
smoking, atherosclerosis, hypertension and drug abuse. Ascending thoracic aortic
aneurysms raised the interest of the bio-mechanical community because of the fact
that researchers can recover the damaged tissue from patients who had surgery to
remove the aneurysm since this pathology exposes the patient to some risks such as
the rupture and the dissection. The dissection corresponds to a tear in the inner layer
of the aorta which may prevent blood from reaching vital organs while the rupture
consists in a sudden burst of the aortic wall. In both cases, the probability that the
patient dies is very high and unfortunately, no significant symptoms are experienced
by the patient. Thus, it is complicated to diagnose the condition medically.

In order to prevent the aorta in general and the ascending aorta in particular from
aneurysms, it is interesting to study its micro-structure and especially collagen fibers
since they are responsible of the mechanical resistance of the aorta. Early studies
conducted on this protein led to the characterization at the microscopic scale (around
30 µm) of many tissues composed essentially of collagen by the mean of histology.
This technique consists in studying the microscopic structure of biological tissues
and the relations between individual elements [LAS15]. It involves a chemically
destructive process which can only be performed on ex vivo samples where a slicing
step is needed which prevents from three dimensional observations. The process can
also have an impact on the micro-structure of the considered specimen. For example,
a freezing process of the tissue is used for visualization purposes, which may destroy
some of its components. Its use remains, however, a standard for pathology diagnoses
in clinics. Hence, the study of the micro-structure evolution of a biological system
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ex vivo under a mechanical load is impossible with histology. In order to deal with
this issue, new imaging techniques have been tested and proved their efficiency.
Among those imaging modalities, one can cite first Scanning Electron Microscopy
(SEM) [Pra+03 ; OKH82]. It allows obtaining images with a resolution of 1−20 nm
but it lacks in-depth signal: only the peripheral surface can be imaged accurately.
As a remedy, other techniques would ideally ensure a precise quantification of the
collagen fibers within the volume of the material as oriented structures in space in an
adapted scale (1− 100 µm). For instance, X-rays Computed Tomography (XRCT)
and X-rays micro-tomography are well suited for quantifying collagen’s network
because they allow capturing their micro-structure through larger fields of view (up
to 1.7mm x 1.7mm) as compared to other microscopy techniques [Wal+15 ; Bai+18 ;
Dis+17]. In addition, it offers a resolution of 20 − 100 µm, though a compromise
between resolution and field of view must be made. However, the addition of X-ray
contrast agents may change the behavior of the specimen components, restraining
their use. Optical Coherence Tomography (OCT) [Fuj+00] has been used as an
alternative [Bab+14 ; Ugr+09]. Just like XRCT, OCT provides a resolution of 1−15

µm but it does not allow to capture individual components of a specimen. This
makes quantitative analysis hard to achieve such as for aortic ostial lesions where
it is not possible to clear the blood at the entrance to neighboring arteries. It is
dependent on the considered biological tissue scattering and absorption. Yet, it is
possible to use optical clearing agents to reduce light scattering but it can have
an impact on the tissue structure. Recently, a strong interest was shown toward
fluorescence microscopy, which requires the use of stains, but has limited physico-
chemical modification of biological tissues. For instance, confocal microscopy was
often used [Wu+03 ; Ste+08] because of its resolution of around 160 nm and its
capability to capture images through the specimen depth. Later, the emergence
of powerful lasers enabled multi-photon microscopy. This imaging technique, with
[Pol+13 ; Che+12 ; Yeh+02] or without polarizer [Cav+17 ; APB19], does not harm
the sample because it is less exposed to the laser. It offers a scale for representation
of the order of a microometer and a resolution up to 150 − 200 nm. Besides, it
allows imaging deeper into the sample and thus collecting more images in the depth
(up to 500 µm [YLP14]). Additionally, collagen fibers react to multi-photon laser
by generating second harmonics across the spectral region between 400 and 500 nm
[The+06]. This property, called Second Harmonic Generation (SHG) is an asset to
capture images of collagen fiber only, as this signal is specific and can be separated
from other signals.

The cited imaging modalities introduced some improvement on how to capture
sufficiently good images to extract information related to the structure and the func-
tion of collagen fibers. Studying the organization of the collagen fibers is of interest
in biomedical research since it allows diagnosing fibrosis [Cam11 ; Str+07] or ana-
lyzing their interaction with cancerous cells [Bre+14]. Moreover, in [Bro+03], the
authors tried to quantify the dynamics of collagen modification in tumors in vivo
after pharmacologic intervention. Besides, other researchers focused on the quantifi-
cation of fiber orientation in order to study structure-to-function relationships such
as in pressurized vessels [APB19 ; Cav+17 ; Sch+13], or waviness and density in
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order to identify the impact of sample aging [SM17 ; Wu+16]. However, this type of
quantification is complicated and requires dedicated methods. To-date, the conduc-
ted research in this field succeeded in characterizing collagen structures only in 2D
planes although those tissues are three-dimensional.

Keeping all the above in mind, this thesis is directed to investigate the following
hypothesis:

Research hypothesis : The collagen fibers network extracted in three dimen-
sions from SHG stacks is a better and more accurate alternative to determine its
geometry in the space.

The hypothesis was tested through realising the following research objectives:

— Considering the collagen network as a three dimensional volume.

— Improving SHG stacks of collagen fibers using three dimensional image pro-
cessing techniques

— Evaluating collagen fibers orientations in the three dimensional space using
deep learning

— Validating the proposed approach by comparing it with other techniques from
the literature

In addressing the previously mentioned objectives, this thesis is divided into 5
chapters, outlined in the following manner. All the chapters are reported essentially
in English along with a short abstract at the beginning written in French.

— Chapter 1 explores the medical and technical context on which the study is
based. A detailed review of the relevant collagen fibers imaging modalities in
addition to commonly used image improvement techniques is presented.

— Chapter 2 explores the development a new approach to improve the SHG stacks
based on combination of three dimensional image processing techniques.

— Chapter 3 explores the existent approaches to extract quantitative information
from SHG images in addition to the different quantitative information that
raises the interest of researchers in general. A detailed review of these two
aspects is reported.

— Chapter 4 presents a new approach based on deep learning to estimate collagen
fibers orientations in the three dimensional space. For this matter, a synthetic
dataset of three dimensional images of fibers was developed.

— Chapter 5 presents a comparison of the proposed deep learning approach with
some existing methods.

— Finally a detailed description of the main findings, limitations, and future
prospects is reported.

The project was carried out at CIS (Centre Ingénierie et Santé), in particular the
STBio (soft tissue biomechanics) group; which is an integral part of the university
École Nationale Supérieure des Mines de Saint-Étienne.
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Introduction

Le corps humain est une structure très complexe qui est composée de cellules,
tissus et organes. Cette structure peut être divisée en différents systèmes où cha-
cun est responsable d’une certaine fonction. Parmi ces systèmes, il y a le système
cardiovasculaire qui assure la circulation du sang du cœur au reste du corps et le
trajet inverse. Ce système est composé d’un réseau de vaisseaux sanguins (artères
et veines). L’apparition d’une pathologie le long de ce réseau peut être grave et
peut même causer la mort du patient. Ces maladies, dont fait partie l’anévrisme
de l’aorte thoracique ascendante, sont appelées maladies cardio-vasculaires. Il s’agit
d’une dilatation de la portion ascendante de l’aorte qui est la plus large artère du
corps humain. Cette pathologie peut s’aggraver au cours du temps à cause de l’affai-
blissement de la paroi aortique. Plusieurs facteurs de risque sont liés à l’anévrisme
aortique en général comme le tabac, l’athérosclérose, l’hypertension et l’abus de
drogue. L’anévrisme de l’aorte thoracique ascendante a suscité l’intérêt de la com-
munauté biomécanique puisqu’il est possible de prélever la partie endommagée de
l’aorte des patients qui subissent une intervention chirurgicale pour enlever l’ané-
vrisme en question. Cette intervention est nécessaire pour prévenir des risques de
complications comme la dissection et la rupture de l’aorte. La dissection correspond
à une déchirure au niveau de la couche interne de l’aorte qui peut empêcher le sang
d’atteindre les organes vitaux. Quant à la rupture, elle consiste en un brusque écla-
tement de la paroi aortique. Dans les deux cas, la probabilité que le patient décède
est très élevée. Malheureusement, l’anévrisme de l’aorte n’est accompagné d’aucun
symptôme significatif, ce qui rend son diagnostic compliqué.

Afin de prévenir les anévrismes de l’aorte en général et plus particulièrement
celui de l’aorte thoracique ascendante, il est intéressant d’étudier sa micro-structure
et en particulier les fibres de collagène car elles sont responsables de la résistance
mécanique de l’aorte. Les premières études portées sur cette protéine ont permis,
en utilisant l’histologie, de caractériser plusieurs tissus biologiques composés prin-
cipalement de fibres de collagène à une échelle microscopique (autour de 30 µm).
Cette technique permet d’étudier la structure microscopique des tissus biologiques
et les relations entre les différents éléments [LAS15]. Elle n’est appliquée que sur
une tranche de l’échantillon ce qui ne permet pas une observation en trois dimen-
sions. Elle nécessite un processus chimique destructif qui peut être appliqué à des
échantillons ex vivo uniquement et peut avoir un impact sur la micro-structure. Par
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exemple, l’échantillon peut être gelé pour permettre une bonne visualisation mais ce
processus peut nuire à la micro-structure. Malgré ses inconvénients, l’histologie reste
une méthode de référence pour le diagnostic des pathologies de l’aorte. Cependant,
il est impossible d’étudier l’évolution de la micro-structure d’un tissu biologique ex
vivo quand il est soumis à une charge mécanique en utilisant l’histologie. Pour remé-
dier à ce problème, plusieurs techniques d’imagerie ont été testées et ont prouvé leur
efficacité. Parmi ces techniques, on peut, tout d’abord, citer la microscopie électro-
nique à balayage [Pra+03 ; OKH82]. Ce type de microscopie permet d’obtenir des
images avec une résolution de 1 − 20 nm mais seulement la surface périphérique
peut être observée. D’autres modalités d’imagerie ont permis d’acquérir des images
à trois dimensions pour une quantification fine des fibres de collagène contenues dans
un certain volume à une échelle adaptée (autour de 1 − 100 µm). Par exemple, la
tomodensitométrie à rayons X est adéquate pour quantifier le réseau de collagène
puisqu’elle permet de capturer sa structure à travers un champ de vision (jusqu’à
1.7mm x 1.7mm) plus large que pour d’autres types d’imagerie [Wal+15 ; Bai+18 ;
Dis+17]. De plus, elle offre une résolution de 20−100 µm, mais un compromis entre
la résolution et le champ de vision doit être fait. D’autre part, la tomodensitométrie
à rayons X nécessite l’injection d’un agent de contraste dans l’échantillon à étudier
ce qui peut changer son comportement et restreindre son utilisation. La tomogra-
phie par cohérence optique [Fuj+00] a été utilisée comme une alternative [Bab+14 ;
Ugr+09]. Tout comme la tomodensitométrie à rayons X, la tomographie par cohé-
rence optique offre une résolution de 1− 15 µm mais ne permet pas la capture des
composants individuels du spécimen. Ceci rend l’analyse quantitative difficile à ef-
fectuer comme pour les lésions ostiales aortiques où il est impossible de distinguer
le sang à l’entrée des artères voisines. L’efficacité de cette méthode dépend de la
diffusion et de l’absorption du tissu biologique à étudier. Il est possible d’utiliser
un éclaircissant optique pour réduire la diffusion de la lumière mais il peut impac-
ter la structure du spécimen. Récemment, la microscopie à fluorescence qui, certes,
exige l’utilisation d’un agent de coloration, est devenue une référence pour l’étude
de la micro-structure des tissus biologiques puisque les colorants utilisés ne causent
que peu de modification physico-chimique de la micro-structure. Par exemple, la
microscopie confocale a souvent été utilisée [Wu+03 ; Ste+08] puisqu’elle offre une
résolution de 160 nm et permet d’acquérir des images en profondeur. Plus tard, avec
l’émergence des lasers puissants notamment les lasers femto-secondes, la microscopie
multiphotonique a vu le jour. Cette technique d’imagerie, avec [Pol+13 ; Che+12 ;
Yeh+02] ou sans polariseur [Cav+17 ; APB19], limite la détérioration de l’échan-
tillon puisqu’il est exposé moins longtemps au laser. Cette modalité d’imagerie offre
une échelle de représentation de l’ordre du micromètre et une résolution qui peut
atteindre 150 − 200 nm. De plus, elle permet d’acquérir des images encore plus en
profondeur (jusqu’à 500 µm [YLP14]). D’autre part, les fibres de collagène réagissent
au laser femto-seconde en générant de secondes harmoniques dans la région spec-
trale située entre 400 et 500 nm [The+06]. Cette propriété est un atout qui permet
d’acquérir des images contenant uniquement les fibres de collagène puisque le signal
de seconde harmonique généré peut être séparé des autres signaux.

Les modalités d’imagerie citées précédemment ont permis d’acquérir de meilleures
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images des fibres de collagène afin d’extraire des informations fiables concernant ces
fibres. Un intérêt majeur est porté sur l’étude de l’organisation des fibres de collagène
puisqu’elle permet de diagnostiquer les fibroses [Cam11 ; Str+07] et d’analyser l’in-
teraction des fibres avec les cellules cancéreuses [Bre+14]. De plus, dans [Bro+03]
par exemple, les auteurs ont tenté de quantifier la dynamique des modifications
au niveau des fibres de collagène dans les tumeurs in vivo après une intervention
pharmacologique. Par ailleurs, d’autres recherches ont porté sur la quantification
des orientations des fibres afin d’étudier leur relation structure-fonction comme par
exemple au niveau de vaisseaux sous pression [APB19 ; Cav+17 ; Sch+13] ou pour
étudier l’ondulation des fibres afin d’identifier son impact sur le vieillissement du
spécimen considéré [SM17 ; Wu+16]. Cependant, cette quantification nécessite des
méthodes dédiées qui peuvent être assez complexes. A ce jour, les recherches menées
dans ce domaine ont réussi à caractériser les fibres de collagène principalement en
deux dimensions malgré leur structure tridimensionnelle.

En gardant ces éléments à l’esprit, cette thèse vise à étudier l’hypothèse suivante:
Hypothèse de recherche : Le réseau de fibres de collagène étant une structure

tridimensionnelle, l’étude de l’orientation de ces fibres doit se faire en trois dimen-
sions afin de mieux les caractériser.

L’hypothèse a été testée en réalisant les objectifs de recherche suivants :

— Considérer le réseau de collagène comme un volume tridimensionnel.

— Améliorer les images de seconde harmonique tridimensionnelles des fibres de
collagène en utilisant des techniques de traitement d’images en trois dimen-
sions.

— Évaluer les orientations des fibres de collagène dans l’espace tridimensionnel
en utilisant l’apprentissage profond.

— Valider l’approche proposée en la comparant à d’autres méthodes de la litté-
rature.

En abordant les objectifs ci-dessus, cette thèse se divise en 5 chapitres, répartis de
la manière suivante. Tous les chapitres sont rédigés en anglais et sont accompagnés
d’un succinct résumé en français au début.

— Le chapitre 1 explore le contexte médical et technique sur lequel cette étude est
basée. Une revue détaillée des modalités d’imagerie utilisées pour l’acquisition
d’images de collagène ainsi que les méthodes les plus communes d’amélioration
de ces images est présentée.

— Le chapitre 2 explore le développement d’une nouvelle approche pour améliorer
les images de seconde harmonique de fibres de collagène basée sur une combi-
naison de plusieurs techniques de traitement d’images tridimensionnelles.

— Le chapitre 3 examine les approches existantes d’extraction d’informations
quantitatives à partir d’images de seconde harmonique ainsi que les différentes
métriques qui on suscité un intérêt majeur au sein de la communauté scienti-
fique. Une revue détaillée de ces deux aspects est présentée.

— Le chapitre 4 présente une nouvelle approche basée sur l’apprentissage profond
visant à estimer les orientations des fibres de collagène dans l’espace tridimen-
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sionnel. A cette fin, un jeu de données d’images synthétiques contenant des
fibres a été développé.

— Le chapitre 5 présente une comparaison de l’approche basée sur l’apprentissage
profond présentée dans le chapitre 4 avec quelques méthodes de la littérature.

— Finalement, une description détaillée des principaux résultats, des limites ainsi
que des perspectives est rapportée.

Le projet a été réalisé au Centre Ingénierie et Santé (CIS), en particulier au sein
du groupe STBio (biomécanique des tissus mous), qui fait partie de l’École Nationale
Supérieure des Mines de Saint Étienne.
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I.1 Résumé du chapitre

La circulation sanguine est un phénomène complexe qui est assuré par un réseau
de vaisseaux. Le cœur permet de pomper le sang vers le reste du corps à travers
l’aorte. Une portion critique de l’aorte correspond à sa partie ascendante qui se
trouve directement après la valve aortique qui reçoit le flux puissant de l’éjection
systolique. Par conséquent, cette portion peut être sujette à différentes maladies
comme les anévrismes. Pour comprendre les mécanismes et le comportement du
tissu aortique, il faut analyser sa micro-structure en particulier les fibres de colla-
gène. Pour se faire, plusieurs techniques d’imagerie ont été utilisées notamment la
microscopie de seconde harmonique. Dans cet état de l’art, une description de l’ana-
tomie et de la physio-pathologie du système cardiovasculaire humain est présentée.
De plus, une revue des principales technique d’imagerie utilisée dans l’acquisition
d’images de fibres de collagène est introduite ainsi que quelques unes des méthodes
de traitement d’images les plus implémentées pour l’amélioration des images de
seconde harmonique.

I.2 Abstract of the chapter

Blood circulation in the human body is a complex event which is ensured by a
network of vessels. The heart pumps the blood and the aorta transfer it to the rest of
the body. A critical part of the aorta is the ascending thoracic one since it receives a
powerful blood flux of the systolic ejection. Thus, it can be subject to several diseases
such as aneurysms. In order to understand the mechanics of the aortic tissue and
its behaviour, it is important to analyze its micro-structure, in particular, collagen
fibers. For this matter, several imaging modalities have been used such as Second
Harmonic Generation (SHG) microscopy. In this state-of the art, a report of the
anatomy and physio-pathology of the human cardiovascular system is proposed.
Besides, a review of the main imaging modalities used to acquire collagen fibers
images is introduced as well as some of the main image processing techniques used
to improve SHG images.
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I.3 Introduction

The human body is a complex system where the heart pumps oxygen and nutrient
rich blood to the rest of the body. This function is ensured by the circulatory system
and primarily by the aorta. This artery is composed of three layers namely the
intima, the media and the adventitia. The aorta is a large elastic artery which
mechanical function are really important to a proper functioning of the organism
and its physiological and mechanical functions are ensured by its micro-structure.
This micro-structure is composed of collagen, elastin and smooth muscle cells. The
aorta, as any other vessel, can suffer from different pathologies among which one can
cite aneurysms and in particular, the ascending thoracic aortic aneurysm located in
the ascending part of the aorta. This condition, if not treated on time, can cause
the patient’s death.

The analysis of the aortic micro-structure aroused great interest in the bio-
mechanical community. Researchers showed that this micro-structure is mainly com-
posed of elastic and collagen fibers and smooth muscle cells. Collagen plays an im-
portant role in holding the aorta together. Besides, many imaging modalities were
used to capture the essence of aortic micro-structure anatomy and behaviour. The
most promising one is the two-photon microscopy and second harmonic generation.
This technique allows us to collect 3D images of collagen fibers. However, these
images have some artifacts (blur, noise, discontinuities in the fibers, etc.).

In this chapter, a brief introduction on the anatomy, physiology and composition
of the aorta is provided. Next, an overview of the different diseases that may affect
the aorta will be exposed with a special focus on ascending thoracic aortic aneurysm
which is in the center of the present thesis. Then, an overview of the different imaging
modalities that were used in the literature to capture the aortic micro-structure is
introduced. Finally, a review of the main image processing techniques implemented
in the literature to improve second harmonic generated images is reported.

I.4 Anatomy and physio-pathology of the human
cardiovascular system

The human cardiovascular system, also called vascular or circulatory system, is
the system of the human body that allows the transportation of oxygen, hormones,
carbon dioxide, nutrients and blood cells through blood to and from cells. This
operation helps in stabilizing temperature and pH, maintaining homeostasis and
fighting diseases. It keeps blood (between 4 and 6 L) in continuous motion: the
blood’s total volume performs a cycle from and to the heart in around one minute
on average for a healthy man [Ste99].

I.4.1 Anatomy of the human cardiovascular system

The human cardiovascular system is a closed system composed of the heart, the
blood and blood vessels. It aims, through blood, to carry nutrients and oxygen to
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the body organs and remove carbon dioxide and other wastes.

I.4.1.1 Overview

The heart, which is the pump of the human body, is a cone-shaped muscular
organ. Its main function consists in keeping blood circulating through the cardio-
vascular system. It can be found in the mediastinum which is the thoracic cavity
between the lungs. Its size is around 9 cm wide and 14 cm long for an average
adult which is similar to the size of a fist [AFM17]. Four chambers composes the
heart: two thin-walled atria and two thick-walled ventricles, figure I.1. During the
cardiac cycle, the right atrium receives blood poor in oxygen from the entire body
through the major veins: the superior vena cava and the inferior vena cava. This
blood passes to the right ventricle through the tricuspid valve. Once it is full, the
ventricle contracts and pumps the blood toward the lungs for reoxygenation. The
left atrium receives oxygen-rich blood from the pulmonary veins and sends it to
the left ventricle through the bicuspid valve. The cycle ends when the left ventricle
pumps the blood into the aorta, [Mad02]. The cardiac cycle can be divided into two
main phases: the diastole phase when the blood flows to the atria and the systole
phase when the blood leaves the ventricles.

Figure I.1 – The heart’s internal view, [Mad02]

The vessels are tube-like structures that form a closed system which carries blood
to and from the heart. Their size decreases as they move away from the heart. Blood
is transported through vessels under high pressure which imply that vessels walls
need to be strong and elastic. They can be categorized into veins and arteries (figure
I.2, [FRW17]).

Arteries (respectively veins) give rise to even smaller arteries (respectively veins),
also called arterioles (respectively venule), figure I.3, [Van02]. This transition is
gradual through a progressive thinning of the vessel wall and the decrease of the
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Figure I.2 – Vascular system: arteries in red and veins in blue

lumen’s size (the size of the inside space of the vessel). Arterioles carry blood to
microscopic vessels known as capillaries which ensure not only the nourishment and
the oxygenation of tissues, but also the elimination of the carbon dioxide and wastes
by sending them through venules and then veins [RB11].

Figure I.3 – Micro-circulation at the capillary level

I.4.1.2 Arterial system

The arterial system is composed of two kinds of arteries: pulmonary arteries and
systemic arteries. The pulmonary arteries are low-presser arteries that carry blood
poor in oxygen from the heart to the lungs. On the other hand, systemic arteries
carry blood rich in oxygen, under high pressure, from the heart to the rest of the
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body. The pulse that can be felt over an artery close to the skin, is generated by
the expansion and contraction of the arterial tissue when the heart pushes blood
into arteries through the aorta [RB11]. Systemic arteries can be divided into elastic
and muscular arteries depending on their relative composition of elastic and muscle
tissue. Typically, large arteries are elastic arteries and small arteries are muscular
arteries. Small arteries and arterioles can be seen as valves allowing to carry blood
to capillaries. Their strong muscular wall is capable of expanding to many times its
diameter and also closing the path to blood in order to control the blood flow to the
capillaries.

I.4.1.3 Aorta

The aorta is the largest systemic artery in the human body. It supplies the body
with oxygen-rich blood. It also allows to maintain the blood pressure thanks to its
elasticity. The aorta will be in the center of our research.

I.4.1.3.a Anatomy

The aorta arises from the heart’s left ventricle upward and then loops 180 degrees
to continue its path toward the diaphragm and then to the rest of the body. In the
connection between the aorta and the left ventricle, there is a three-part valve which
prevent the blood from going back to the heart. The aorta is not only the largest
artery but also the thickest one. In fact, its length is around 30 to 40 cm, its average
diameter is around 3 cm [Ita+02] with a thickness of 2 to 3 mm [Erb01]. Thus, the
aorta can be divided into 3 regions: the Ascending Thoracic Aorta (ATA), the aortic
arch and the descending aorta, figure I.4 [KKA21].

Figure I.4 – Regions of the aorta

The ATA, sizing between 5 cm and 7 cm [Dag11], is enveloped in a pericardial
sheath and twisted around the pulmonary trunk. Its average diameter is estimated
to be 3.3 cm but varies with respect to some personal characteristics such as the sex,
the age and the mass index. An exhaustive description of the diameter variation in
the ascending aorta is reported by Goldfinger et al. [Gol+14]. It can be divided into
two sections namely the aortic root and the tubular ascending aorta. The first section
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starts from the aortic annulus and ends with sinotubular junction. It contains the
aortic annulus, the aortic valve, the Valsalva sinuses and the begining of the coronary
arteries. The normal average diameter of the sinotubular junction represents usually
85% of the aortic annulus diameter. Regarding the second section, it extends to the
inferior boarder of the left sternocostal junction. There are no branches arising from
this part of the aorta.

The aortic arch is positioned above the bifurcation of the pulmonary trunk, the
left pulmonary artery, the left main bronchus and some nerves. It starts when the
ascending aorta leaves the pericardium. From the aortic arch arise some arteries
that carry blood to the upper body, namely the brachiocephalic trunk, the left
common carotid artery and the left subclavian artery. In fact, the brachiocephalic
trunk supplies blood to the right side of the head and the right arm. Regarding the
left common carotid artery, it transfer blood to the left side of the head. Last but
not least, the left subclavian artery provides blood to the left arm [Nat+09].

The descending aorta starts at the level of the forth thoracic vertebra and ends
with the medial sacral artery and the common iliac arteries at the level of the forth
lumbar vertebra. It can be divided into descending thoracic and abdominal aorta
separated by the diaphragm [RB11]. Other arteries arise from the descending aorta
and carry blood to the internal organs and the thorax. Once it reaches the abdomen,
the aorta bifurcates into two branches named iliacs in order to supply blood to the
legs.

I.4.1.3.b Composition

The arterial wall is a complex structure. Its micro-structure varies alongside
the vascular tree and also depends on the sex, age and medical condition of each
individual. The aorta is not any different. However, like any other artery, the aorta
is composed of three layers, also called tunicae. These layers are: the tunica intima
(I), the tunica media (M) and the tunica adventitia (A), figure I.5 [GOH06].

tunica intima The internal layer is called the intima and is the thinnest layer.
It consists of a layer of endothelial cells which can be seen as a semi-selective bio-
logical boundary between the vessel lumen and surrounding tissue since it controls
the transit of white blood cells in and out the bloodstream [RF95] [Sur+96]. The
aorta contains also a sub-endothelial layer which is formed by connective tissues and
some oriented smooth muscle cells [Hum02]. The contact between the intima and
the blood is ensured by the endothelium which prevents blood clotting. The tunica
intima and the tunica media are separated by the internal elastic lamina which is
difficult to seperate from the tunica media. This lamina can be seen as a fenestra-
ted layer of elastin that not only allows the circulation of nutrients and electrolytes
between the two tunicae but also prevents the migration of smooth muscle cells.

tunica media The middle layer is the media and is the thickest layer. It is
composed of elastin, collagen bundles and smooth muscle cells. Elastin and smooth
muscle cells form what is called Medial Lamellar Units (MLU) or also muscoloe-
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Figure I.5 – Layers of arteries

lastic fascicles. MLUs are disposed concentrically. One MLU is composed of two
parallel circumferentially-oriented thick lamellae of elastin which present rounded
fenestration and enclosed smooth muscle cells. Clark and Glagov [CG85] introduced
a schema I.6 of the tunica media structure. In this figure, Ce designates smooth
muscle cell, E is for elastin and F is for collagen bundles. The number of MLUs
depends on the thickness of the aorta and, thus, decreases with the distance from
the heart. The smooth muscle cells allow to maintain the blood pressure in arteries.
The outtermost sheet of elastin, known as the external elastic lamina, separates the
media from the adventitia and is generally considered as a part of the tunica media.

Figure I.6 – Representation of the structure of the tunica media

tunica adventitia The outer layer is the tunica adventitia and is the strongest
layer. It contains fibrous connective tissue (mainly type I collagen fibers and elastin),
nerves and fibroblasts. An additional characteristic of this layer is that it contains
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small blood vessels known as the vasa vasorum that supply the aortic wall. However,
the intima and the media are nourished from the blood carried by the vessel. The
collagen fibers have an axial orientation. They are oriented axially, are undulated
in the basal state and are organized in bundles [Hum02]. However, this organiza-
tion varies during the cardiac cycle, going from undulated to straight configuration.
Regarding the elastin, they are different from those observed in the tunica media.
They have been described as ribbons, tangled and twisted, with sporadic branches
[CHH77]. Those fibrous connections make the tunica adventitia strong and thus,
protect the aorta from over expansion. It plays a protective role just like the epicar-
dium to the heart. The fibroblast ensures a function of regalution of the connective
tissues.

I.4.1.3.c Micro-structure

As seen in the previous section, the aorta is composed mainly of three micro-
structure: collagen, elastin and muscle cells.

Collagen Collagen is the most abundant protein in the human body. It en-
sures the strength and elasticity of the body’s connective tissues. It can be divided
into different types. Around 90% of the collagen in the human body are collagen
type I (skin, tendons and ligaments), II (cartilages) and III (scar tissue, vessel walls)
[Lod+00]. It is mostly found in the form of fibers. However, to be more accurate, it
is important to recall that the structures which can be seen in microscopic images
depend on the imaging scale and what we are observing: one can see bundles com-
posed of collagen fibrils at a scale of 20 µm or directly collagen fibrils at a scale of
100 nm. For simplicity, the bundles are also often called collagen fibers, and their
typical dimensions are in the order of one to a few tens of micrometer in diameter
and several hundreds of micrometer in length. Figure I.7 shows a simplified sketch
of the organization of collagen fibers in tendons which can be generalized to other
types of biological tissues.

Figure I.7 – Collagen fibers organization [Kar+17]

The fibrils fundamental structural unit is a triple helix with a length of 300

nm and a diameter of 1.5 nm [Lod+00]. It composed of three left-handed helical
polypeptide chains (α-chains). As any protein, collagen is formed by a sequence of
amino-acids. This sequence is made from a succession of triplets Gly-Xaa-Yaa, where
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Gly stands for glycyl and Xaa and Yaa positions are respectively occupied by propyl
and hydroxyprolyl residues [VG91].

Collagen fibrils are synthesized by the smooth muscle cells in the intima and
the media but by the fibroblasts in the adventitia. The polypeptide chains form the
procollagen. These molecules lose their non-collagenous domains through a synthetic
proteinases. This leads to the creation of tropocollagen, see figure I.8. The collagen
type is determined by how the α-chains are assembled.

Figure I.8 – Collagen synthesis [KMW13] (a) three peptide chains to form procol-
lagen, (b) procollagen, (c) formation of tropocollagen after procollagen removed its
termini, (d) tropocollagen, (e) tropocollagen self-assemble to form a collagen fibril
and (f) collagen fibrils self-assemble to form collagen fibers

The study of these fibers, which are essential to the proper functioning of tissues,
is fundamental in understanding the etiology of pathologies, their evolution, and in
improving their clinical diagnosis and management. In fact, Berillis et al. [Ber13]
showed that collagen types and quantities along the aorta depends on age, sex,
position along the aorta and pathologies. It is a multidisciplinary field which involves
mechanics, image processing, chemistry, biology, etc. Relevant researches targeting
this aspect require both suitable imaging techniques and reliable image analysis
methods.

Elastin The elastic fibers are one of the principle structures of the Extra-
Cellular Matrix (ECM). They are responsible of the elastic characteristic of biological
tissue, especially the aorta. They are composed of a microfibrillar component and an
amorphous component. The amorphous component is referred to as elastin fibers.
A polypeptide chain of amino acid residues, mainly glycine, alanine, and proline,
forms these fibers [Hum02]. Smooth muscle cells and fibroblasts ensure the synthesis
of elastin fibers.

Regarding elastic fibers synthesis, elastin chains are transformed into proelastin
which is cross-linked to form a more stable molecule. Elastic fibers result in a mesh of
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highly cross-linked structure of elastin. These fibers diameter varies between 0.2 and
0.5 µm and can be considered as forming networks or sheets. What is interesting
about elastic fibers is that they can be uniaxially extended up to 150% of their
original length when collagen fibers only reaches 10% [Hum02]. Unfortunately, like
any other protein, the concentration of elastic fibers decreases with age.

Smooth Muscle cells Vascular Smooth Muscle Cells (VSMC) represents the
major component of medium and large arteries [Hu+19]. they count for about 25 to
60% of the arterial dry weight. They have a spindle-shaped structure with a diameter
of 5 µm and a length of 100 µm [Hum02]. However, they are slightly thicker around
the nucleus. Usually, VSMCs are positioned such that the thicker portion of one cell
is next to the thinner portion of surrounding cells. Each VSMC is composed of a
contractile apparatus (i.e. actin and myosin filaments) enveloped in a non-muscle
cytoskeleton. The cytoskeleton is mainly composed of actin filaments, smooth muscle
myosin and intermediate filaments.

In elastic arteries, such as the aorta, VSMCs in the tunica media are usually
organized in layers, which are separated by thin (around 3 µm) sheets of elastin. It
is responsible of the synthesis of procollagen. This synthesis lasts between 10 and
60 minutes [Hum02].

I.4.2 Arterial diseases

Arterial diseases refer to vascular diseases that may affect arteries. Unfortunately,
they affects more and more individuals. They are often related to other diseases such
as diabetes and heart failure and are closely linked with turbulence in the blood
flow. The aorta, as any other artery, can be the subject of multiple diseases. In most
cases, these diseases can cause the patient’s death. In this section, we will introduce
different vascular diseases that may occur in the aorta and then we will focus on
ascending thoracic aortic aneurysm, which is related to the work presented in this
thesis.

I.4.2.1 Aortitis

Aortitis designates all forms of inflammation that may occur in the aorta. This
inflammation can be classified into two categories: infectious and more frequently,
non-infectious inflammation. Infectious inflammations are commonly caused by sy-
philis tuberculosis, salmonella and other bacteria [GC08]. On the other hand, non-
infectious inflammation are mainly caused by the large vessel vasculitides [GB10],
Giant Cell Arteritis (GCA) [KE10] and Takayasu arteritis [JLG02].

Aortitis clinical presentation differ from a person to another and depends on
its causes. Symptoms may involve back or chest pain and acute severe aortic in-
sufficiency (such as aortic dissection and rupture) [GC08]. It may also lead to the
formation of aneurysms and thrombosis.
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I.4.2.2 Atherosclerosis

Atherosclerosis is the most common aortic disease. It may affect all types of ves-
sels from thin to large ones. It is a chronic and progressive disease, which consists
of plaques build-up in the arteries wall. For the aorta, the consequences of athe-
rosclerosis are based on changes within the tunica media. This deposit is formed of
lipids, cholesterol, calcium and inflammatory cells named macrophages, [Agg+09],
see figure I.9 [Fog]. As a consequence, the concerned artery can get partially or
completely obstructed leading to ulceration or thrombosis.

Figure I.9 – Comparison between healthy artery and an artery with atherosclerosis

Atherosclerosis is caused by a complex interaction between genetic heritage and
environmental factors. The risk and the severity of this pathology can be increased
by smoking, diabetes mellitus, dyslipidemia and hypertension [DDD19].

Atherosclerosis in the aorta is generally characterized as mild, moderate or severe
[DDD19]. It does not usually affect the ascending aorta except when the patient suf-
fers from diabetes, previous aortitis or familial hyperlipoproteinemia. Severe forms
of atherosclerosis which often affect the abdominal aorta may cause aneurysm for-
mation, luminal obstruction or distal emboli.

I.4.2.3 Hypertension

Hypertension or high blood pressure is a very common disease. It is considered
by the World Health Organization as a cause of 54% of strokes and 47% of cases of
ischemic heart disease. It is considered as a risk factor for cardiovascular morbidity
and mortality [JKR18]. We can define hypertension as an elevation of blood pres-
sure. Usually, systemic hypertension corresponds to a systolic pressure higher than
160mmHg or a diastolic pressure greater than 90mmHg or both [Hum02].

Many factors can cause hypertension. One can cite genetics, bad diet, stress,
tabacco, some drugs and substances, improper functioning of some organs such as
the heart, the kidney or the nervous system or even the vasculature. When resulting

20



Zeineb Nejim

from a distinct disease, hypertension is qualified as secondary. On another hand,
hypertension can have a bad impact on the vessels and cause additional problems.
In fact, it may lead to a thickening of the tunica media.

I.4.2.4 Aortic aneurysm

Aneurysms correspond to a local dilation up to 50% of the aortic wall normal
diameter. Normal aortic diameter depends on the age and the sex of patients, see
figure I.10 [Gol+14]. In fact, it increases with age and men usually have larger aortas
than women. Aneurysms may occur in different parts of the aorta (e.g. thoracic and
abdominal aneurysms). It is caused by a loss of strength of the aortic wall. In this
case, a high pressure can make the aortic tissue bulge. The loss of strength is due to
the elastic fibers degeneration and smooth muscle cells dropout. This phenomena is
called cystic medial degeneration.

Figure I.10 – Normal sizes of diameters of the different parts of the thoracic aorta
with respect to age and sex and the used imaging modality (M: male, F: female,
Echo: echocardiography and CMR: cardiac magnetic resonance

This pathology can be fatal if not treated. In fact, aneurysms can dissect and
rupture and thus, cause the patient’s death. It is considered as one of the principal
causes of death among seniors in developed countries. For example, in 2019, aortic
aneurysms and aortic dissections caused more than 9000 deaths in the United States
where 59% of them were men [CHP]. In this thesis, we focus on the study of ascending
thoracic aortic aneurysms which we will describe in the next paragraph.

I.4.2.5 Ascending Thoracic Aortic Aneurysms (ATAA)

ATAA are a type of aortic aneurysms that occurs in the ascending thoracic aorta.
More than 50% of thoracic aortic aneurysms are localized in the ascending part of the
aorta. Studies showed that men and women are equally affected by this condition.
However, the age of diagnosis is 10 years higher for women [Clo+99 ; Sal+15].
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I.4.2.5.a Symptoms

Ascending thoracic aortic aneurysms are commonly asymptomatic, and are usually
discovered accidentally on imaging exams [DDD19]. The dilation of the ascending
aorta is an indolent long process. However, as they progress in size, some symptoms
may come out. In fact, patients may experience chest pain, back pain, dysphagia,
dyspnea and transient neurologic deficit. Besides, ATAAs may have some secon-
dary effects such as aortic regurgitation (when the heart’s aortic valve doesn’t close
tightly). In this case, a diastolic murmur can be detected during physical examina-
tion [Iss05]. In some extreme cases, when the ATAA suffers from an acute dissection
or a rupture, a sudden and severe anterior chest pain may affect the patient.

I.4.2.5.b Risk factors

As any disease, there are many factors that may increase the risk of getting
an ATAA. Among the basic ones, we can cite smoking, aging, diabetes and less
commonly atherosclerosis. However, the most dangerous one is hypertension. In fact,
when the blood leaves the heart with a high pressure, it will apply a high tension on
the ascending aorta which may eventually weaken the aorta and thus make it dilate.

Some genetic conditions, such as Marfan and Ehlers-Danlos syndromes, may also
cause ATAAs. Indeed, cystic medial degeneration is correlated with these conditions.
In these cases, the amount of elastic fibers in the aorta decreases and thus, leads to
increase stiffness and dilation [Iss05]. Bicuspid aortic valve is also associated with
many cases of ATAAs. Nistri et al. [Nis+99] analyzed echocardiographies of young
people with normally functioning bicuspid aortic valves and found out that 52% of
them had aortic dilatation.

I.4.2.5.c Diagnosis

ATAA diagnosis is usually accidental. Physicians discover the presence of an
ATAA when they ask their patient to do some imaging exams for other issues. Here,
we will focus on the different imaging modalities used to confirm the diagnosis of an
ATAA.

Thoracic aortic aneurysms is general can be seen on chest X-ray since they cause
a widening of the mediastinal silhouette, a tracheal deviation or an enlargement of
the aortic knob [Iss05]. However, enlarged mediastinal silhouette does not necessarily
mean that there is a thoracic aortic aneurysm. That’s why, CT-Scans may be a
good alternative to diagnose ATAAs and better define the aortic anatomy. CT-
Scans allows a 3D reconstruction of the aorta and its branches which enhances the
measurement of aneurysms and the detection of dissections [Sal+15]. Another used
method is MR angiography, see figure I.11. This imaging modality, even though
its spatial resolution is less than CT-scans and echocardiography, offers a good
reconstruction of the aorta’s anatomy.
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Figure I.11 – MR angiogram showing a ATAA of 4.7cm of diameter

I.4.2.5.d Complications

ATAAs can cause multiple complications. In some cases, those complications
are similar to stroke symptoms (i.e. weakness or paralysis of one side of the body,
difficulty speaking, etc). Besides, as mentioned above, ATAAs can be accompanied
by an aortic regurgitation. This condition can induce heart failure, infections that
affect the heart, such as endocarditis and even death.

The main complications with ATAAs is dissection and rupture. A dissection in
the ascending part of the aorta, which corresponds to a tear in the lining of the aorta,
will weaken the artery and may cause its rupture. The rupture will undoubtedly
cause an internal bleeding. In this case, if the patient is not addressed immediately,
he/she will certainly die.

I.4.2.5.e Treatment

The only treatment of ATAAs is surgery. However, in order to decide if the patient
needs surgery or not, the clinician must determine the diameter of the ATAA. If the
latter is greater than 5.5cm for patients without Marfan syndrome and 5cm for
patient with Marfan syndrome [DDD19], the physician will proceed to a surgical
intervention. This intervention consists in taking off the aneurysm and replacing it
by a prosthesis. It is a heavy surgery which requires bypass and its mortality in
larger center is estimated to vary between 3% and 5% [Iss05].

For patients that do not qualify for an ATAA repair, it is necessary to monitor
them with CT-scans or MR angiographies. The frequent examinations allow clinician
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to intervene when necessarily and prevent complications. Besides, it is also important
to manage risk factors with those patients by helping them quit smoking, control
their blood sugar and their blood pressure.

I.4.2.6 Aortic dissection

Aortic dissection is a dangerous condition. It may be lethal for the patient if not
treated on time. Aortic dissection corresponds to a tear in the tunica intima. This
allows the blood to fill up between the tunica intima and the tunica media. This
phenomena causes the two layers to separate and dissect.

Aortic dissection affects especially men and persons being over 60 years old.
Hypertension is considered as one of the main risk factors related to this condition
which causes a continuous stress on the inner layer of the aorta. Among the other
risk factors, one can cite aneurysms, fatty plaques, defects of the aortic valve and
genetics (e.g. Marfan syndrome [JD05] and Ehlers-Danlos syndrome [PJ08]).

For thoracic dissection, we use two common classifications, see figure I.12 [Gol+14] :

— The DeBakey classification: It categorises dissections with respect to their
location in the aorta;

— The Stanford classification: It categorizes dissection depending on their rela-
tion to the ascending aorta (A dissection when the dissection occurs in the
ascending section of the aorta and B dissection when the dissection occurs
elsewhere);

Figure I.12 – Global view on different aortic dissection and their treatment

Regarding the symptoms, aortic dissections are usually considered as a silent
condition but acute types of dissections can cause severe chest pain spreading to
the neck, the jaw and the back, shortness of breath and loss of conscience. Besides,
patients may get the same symptoms as a stroke such as a sudden difficulty of
speaking, visual loss and weakness on one side of the body [HCC16].
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I.5 Mechanical characteristics of the arterial tissue

Mechanobiology has shown that the behaviour of cells and tissues is governed by
mechanical stress and strain in addition to genetic and chemical stimuli [Mor+21].
The observation of the mechanical stimuli is highly dependent on the chosen scale
of observation. It can be global to the considered specimen or local to focus on a
small portion. Besides, it also depend on whether one wants to focus on the macro
or the micro-structure of the chosen biological tissue or cell. For example, in order to
understand the mechanism leading to aortic aneurysms, it is important to focus on
the mechanics of the tissue’s micro-structure (mainly collagen and elastin fibers). In
particular, collagen fiber characteristics and behaviour in soft tissues have been in
the center of many researches [SM17 ; APB19 ; Cav+17 ; Bre+14 ; Koc+14 ; Hil+12 ;
Cho+14] since this protein is responsible of tissues’ strength.

Multiple studies, in clinical and laboratory settings, have been conducted in order
to understand the mechanical characteristics of the arterial wall. They aimed at
understanding relationships between diameter, orientations, compliance, stiffness,
waviness and forces and pressures to which the aortic wall is subjected. Here we
present a brief description of the main experiments conducted for this purpose.

I.5.1 In vivo experiments

The determination of the stress and strain of an artery in vivo is very limited
[VYP73 ; SKK04 ; GST19]. However, one can extract other valuable information
from this type of tests. On can site blood pressure, state of diseases, diameter and
changes in the aortic geometry and responses to external stimuli. For this matter,
several imaging modalities are used such as ultrasounds [Åst+03 ; Dis+20], CT-scan
[Lar+11 ; Mey+20] and magnetic resonance imaging (MRI) [Dra+02 ; Fer+22]. For
example, the authors of [Fer+22] used a deep neural network to estimate wall shear
stress from four-dimensional flow MRI. The wall shear stress corresponds to the
force applied by the blood flow on the vessel wall. On another hand, Astrand et al.
[Åst+03] used ultrasound images of healthy individuals to determine the diameter
of several arteries. It is also possible to use the previously introduced imaging mo-
dalities to measure the evolution of the artery’s diameter between the diastole and
systole phases which is helpful to estimate the circumferential stiffness. The change
in the artery’s diameter is estimated to be up to 10 - 15% in the pulmonary aorta,
6 - 10% in the carotids, and 2 - 5% in the aorta [HR02].

To our knowledge, the majority of the in vivo experiments focused on the me-
chanical characteristics proper to the considered soft tissue. They are not suitable
to understand the material behavior of the arterial wall. In fact, in order to ana-
lyze the micro-structure, imaging modalities with high resolution are needed. Some
papers succeeded in capturing images of collagen fiber from skin in vivo using se-
cond harmonic generation microscopy. However, no mechanical characteristics were
estimated [Tan+13 ; Yas+18].
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I.5.2 Ex vivo experiments

Multiple types of ex vivo experiments have been conducted on soft tissues in
general and the aortic wall in particular to study the passive mechanical properties of
these tissues. These experiments are usually a combination of manual and computer
assisted manipulations for precision purposes. In order to properly study the multi-
axial behaviour of the arterial wall, several testing protocols have been proposed
and can be divided into three main categories:

1. Uniaxial testing: It is a simple testing protocol to obtain stress-strain curves
and, thus, has been widely used [Oka+02 ; Mat+09 ; Hol+05]. For these setups,
specimens are prepared from cylindrical portions from arteries and opened
longitudinally [Cho+09]. The specimen is, then, fixed delicately using screwed
clamps. One must pay attention to avoid the sample from slipping in the
tension’s direction. It is possible to perform uniaxial test on both the axial
and circumferential directions [Cho+09].
Soft tissues in general, and the aorta in particular, have a non-linear stress-
stretch response with a low and a high modulus regimes. The main purpose of
this test is to characterize the mechanical response of the considered specimen
as well as to help assessing failure properties. In fact, one can estimate the
level of mechanical stimulus which will damage the tissue. García-Herrera et
al. [Gar+12] have reported that arterial tissue tensile strength is higher in
the circumferential direction when compared to the axial direction. Regarding
aneurysmal aortas, Cavinato et al. [Cav+19] showed that they are much stiffer
than healthy samples.

2. Biaxial testing: It consists in stretching a portion of a soft tissue in two orthogo-
nal directions at the same time. It is possible to use a different stretch for each
direction. The sample is, then, stretched in the plane. Biaxial testing allows
to assess the anisotropy and heterogeneity of arterial walls [Som+10]. Besides,
they proved that, when using the same stretch, the circumferential direction
is characterized with a stiffer response than the axial direction [Cav+19]. In
[ZBD09], the authors reported that the stiffness of the tissue decreases when
its temperature increases but no significant change was observed for specimens
that have been frozen and refrigerated. Besides, they proved that, for biaxial
testing, the effect of the strain rate is negligible. Regarding arterial rupture,
Duprey et al. [Dup+16] showed that it occurs with a crack perpendicular to
the axial direction.

3. Inflation testing: Since uniaxial and biaxial testings do not take into conside-
ration arterial geometry, inflation testing was introduced to mimic the effect
of the blood pressure on arterial wall. Two possible setups are possible: (i)
bulge tests where samples are subjected to a constant pressure all over one
side [Cav+17 ; Rom+14] and (ii) tension-inflation testing where samples are
subjected to tension-inflation in cylindrical form [WP88 ; Gen+13]. For both
configurations, it is possible to use a saline solution or air to apply pressure
on the sample. For tension-inflation testing, the arterial mechanical response
is characterized by the changes of the diameter of the artery which depends
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on the applied pressure. It is also characterized by the changes of the reaction
force along the sample axis. Digital image correlation was used to estimate
stress and strain fields in the sample during the inflation.

I.5.3 Macroscopic mechanical properties of the arterial wall

The arterial wall, such as any other soft tissue, can be characterized through
a set of mechanical properties. Researchers tried over the years to determine the
geometrical and material properties of cardiovascular tissues by modeling their be-
haviour through equations taking into consideration stress and strain. These models
proved the following properties:

— Elasticity: Arteries elastic responses varies along the vascular network and
depends on the age and the considered specie. Arteries diameter undergoes
some fluctuations while no noticeable change is reported in the axial direction.

— Non-linearity: The stress-strain response of aortic tissues is highly nonlinear.
Besides, when the physiological pressure arises, aortic tissues are characterized
by a quick stiffening. This nonlinear behaviour can be observed in any load
direction [Cho+09].

— Anisotropy: This property is mainly introduced by the presence of fibers within
the micro-structure of aortic tissues. It describes a material whose mechanical
response is independent of the load’s direction. Patel et al. [PFJ69] conducted
a study on arterial anisotropy and suggested that the wall is cylindrically
orthotropic.

— Heterogeneity: When considering the microscopic level, it is obvious that heal-
thy aortic walls are not homogeneous. In fact, they are composed of multiple
constituents and their distribution varies from a layer to another. Davis et al.
[Dav+16] demonstrated the heterogeneity of the arterial wall at the millimeter
scale.

— Viscosity: Across the arterial wall, energy transmission is divided into parts:
Some energy is stored in the tissue and can potentially be restored because
of the tissue’s elasticity. The rest of the energy is dissipated because of the
tissue’s viscosity. This phenomena has been studied by Bergel et al. [Ber60]
through the examination of static and dynamic viscoelastic behavior in dog
arteries. This property is interesting to understand the mechanisms behind
aortic degenerative diseases.

— Incompressibility: The arterial tissue can be considered as a mixture compo-
site structure where the solid part is represented by collagen and elastin fibers
in addition to smooth muscle cells. Even though arteries are not really incom-
pressibile, they appear to be incompressible under several loading conditions.
Girerd et al. [Gir+92] demonstrated that the volume of the aorta does not
change in the range of physiological loading.

— Residual stress: It corresponds to the stress existing in a body when no external
load is applied. It participates in maintaining the homeostatic state in arteries
[Car+09]. It was first observed in arteries by Bergel et al. [Ber60].
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I.5.4 Limitation of the macro-characterization of arterial tis-
sues

The macro-analysis of the arterial wall is important to globally characterize it.
In fact, to study the evolution of aneurysms for example, it is important to have
an idea on the mechanical response of arteries. However, to explain this response, a
deeper look into the micro-structure is necessary. For arterial tissues, one needs to
consider fiber reorientation and recruitment processes. These phenomena are caused
by the reaction of the hierarchically organized micro-structure to mechanical loads
[Mor+21].

In recent years, many researchers attempted to develop models of soft tissues in
general and aortas in particular. These models need to take into consideration the
microscopic arrangement and its influence on the macroscopic mechanical response.
Continuum thermomechanics have been used to develop soft tissue models with
relevant micro-structure features that are responsible of the macroscopic behaviour
[VH18 ; MAH18]. Models based on the strain energy function have been developed to
describe arterial walls deformations [VYP73 ; TH87 ; FFP79]. It was also generalized
to shear deformations [Den+94]. The cited models are adequate to describe the
global microscopic mechanical response but they miss information relevant to the
micro-structure.

Hence, new models, referred to as structural models have been developed to ge-
nerate more general continuum models where fibers rearrangement is coupled with
the global mechanical response. To capture the anisotropy of arterial tissues, models
of fiber-reinforced materials are generally used. Here, the global mechanical response
to the rearrangment of the arterial wall micro-structure is considered in the strain
energy function. For example, Holzapfel et al. [HGO00] proposed a hyperelastic mo-
del to describe the arterial wall where the preferred fiber directions are incorporated
as a structural parameter.

I.6 Imaging modalities

In order to develop accurate model of the aorta mechanical response, it is inter-
esting to study the aortic wall micro-structure and quantify it. By analyzing this
micro-structure, it is possible to understand the aging process of the aorta and thus,
determine its relationship with vascular diseases and especially aneurysms. For this
matter, multiple imaging modalities have been used in the literature. In this section,
we will exhibit the main imaging techniques that were used to analyse collagen fibers
in biological tissues.

I.6.1 Histology

Histology, also referred to as microscopic anatomy, is a branch of biology studying
the microscopic anatomy of biological tissues. It consists in observing a slice of a
biological tissue using light or electron microscopy. The result of this observation
is a 2D image. However, it is possible to reconstruct a 3D image by combining 2D
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images of multiple slices. An example of the histology of the aortic wall can be seen
in figure I.13 [Slo]. One can capture the details of a biological tissue thanks to the
light attenuation when it passes through the specimen.

Figure I.13 – Histological section of human aorta

In order to proceed to a histological study of a biological tissue, the latter needs
to be prepared properly. First, it is necessary to cut the specimen into thin slices
so the light can get through it. However, this may damage the tissue and cause
tears, fractures and folds in the slices [Wal+15]. Then, the specimen needs to be
treated chemically to enhance the contrast between the different micro-structures
of the considered tissue. For this matter, staining techniques are used. It is also
common to freeze the tissue using some chemical products such as formalin and
paraffin [Wal+15]. Nevertheless, the use of those product is not without harm to the
tissue. In fact, they may cause variation in the tissue’s thickness [Smo+17 ; LL96].

I.6.2 Optical Coherence Tomography (OCT)

Initially, tomography refers to the reconstruction of cross-sectional images of a
certain object from its projections. It was described by J. Radon [Rad83] in 1917.
However, the use of tomography in medical imaging came later. It led to different
configurations depending on the nature and characteristics of the light used for
projections. Besides, data acquisition can be performed by reflected or transmitted
radiation.

OCT [Hua+91] is a new type of optical imaging modality. It is used to cap-
ture cross-sectional tomographic plane or volume of biological tissues and their
micro-structure. The principle is similar to ultrasound but offers a higher resolu-
tion (between 1 and 15 µm) [Fuj+00]. This imaging modality is non-invasive, based
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on measuring optical reflections and can be used on in vivo and ex vivo specimens.
Most OCT systems use continuous wave short coherent length light but they can
also perform with short-pulse light [BT02]. OCT was initially used to image different
types of biological tissues such as the retina and different eye structures and it still
has a wide application in ophthalmology since there is no need for a physical contact
to perform an OCT.

The first step towards the construction of a tomographic image using OCT
consists in measuring the axial range within the specimen. Spatial information re-
lated to the micro-structure of the considered biological tissue is determined by the
diffusion of the optical signal through the tissue. In fact, measuring the echo time
delay of the back-scattered signal is transformed into spatial information following
the formula ∆T = z/v where z is the distance traveled by the echo time delay, v is
the light velocity and ∆T is the echo time delay. In OCT, the mechanisms governing
the transverse and axial resolutions are independent. In fact, the coherence length
of the light source determines the axial resolution while the focusing properties of
an optical beam determines the transverse resolution.

Regarding aortic imaging, OCT allows observing native aortic tissues and their
micro-structure [Rea+13] and evaluating the mechanical properties of the aorta
[Aco+18]. However, limitations in the resolution of the OCT prevents it from cap-
turing the individual components of the aortic wall during loading and its main
advantage relies in having a large field of view to have a more global idea about
what is happening [Fuj+00].

I.6.3 X-ray micro-tomography

X-ray micro-tomography is an imaging technique that is able to penetrate in
the depth of a tissue with a micro spatial resolution (between 1 to 50 µm [Bar+]).
Thus, it is possible to recover good 3D images. During the scanning, the specimen
is rotating and is irradiated with X-rays.

Besides, it provides larger fields of view (up to 1.7mm x 1.7mm) as compared
to other imaging modalities [Wal+15], [Bai+18], [Dis+17], though a compromise
between resolution and field of view must be made. X-ray micro-tomography is
characterized by a lesser reflection and a higher transmission. In fact, the images
captured with this technique have a high contrast which corresponds to the high
absorption of the captured specimen. This implies that the quality of the image
closely depends on the considered specimen. For example, X-ray micro-tomography
works better on hard tissues than on soft tissues.

In order to improve the images of soft tissues, some contrast agents may be injec-
ted. However, these substances may change the behaviour of the specimen compo-
nents. In fact, they may damage the biological tissue, alter its mechanics and make
it shrink [Bai+18 ; Hel+18 ; She+16]. Figure I.14 shows an example of X–ray micro-
tomography without the use of X-ray contrast agents of a rat large artery embedded
in paraffin [Wal+15]. Despite its good resolution, X–ray micro-tomography is still
limited to histologically fixed unloaded and loaded specimens.
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Figure I.14 – Virtual radial slice of a rat large artery

I.6.4 Confocal microscopy

Confocal microscopy is a type of fluorescence microscopy. It was first introduced
in 1955 by Marvin Minsky and was patented in 1961 [Min19]. Minsky replaced
the condenser of conventional microscopes by a lens identical to the objective lens.
Besides, he introduced a first pinhole on the axis of the microscope to limit the field
of illumination and a second one on the focal plane of the reflected beams from the
specimen, the specimen being placed on the focal plan of the lens. The second pinhole
play the role of rejecting the rays not coming directly from the focal point. The first
Laser Scanning Confocal Microscope (LSCM) was developed by David Egger and
Paul Davidovits in 1969 [DE69] and was based on Minsky’s patent. Later, with
the technological advances related to lasers and computers, LSCMs have evolved
and became an efficient tool to capture micro-structures in biological applications.
Figure I.15 [SW05] shows a simplified setup of a LSCM. Here, the laser beams passes
through the pinhole and the dichroic mirror, are reflected by two rotating mirrors
converging through a lens to a point on the specimen. This point reflects also the
beam (under another wavelength) which goes through the rotating mirrors, the
dichroic mirror and the exit pinhole before reaching the detector. Other variants of
confocal microscopes exist such as multiple-beam confocal microscope using Nipkow
Disk which was proposed by Milan Hadravsky and Mojmir Petran in 1968 [Pet+68].

Figure I.15 – Comparison between different imaging modalities with respect to
their resolution and image penetration

Confocal microscopy offers many advantages in comparison with other imaging
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modalities. In fact, it has a higher resolution and a higher image penetration than
OCT, see figure I.16 [DF08]. That is why, it makes capturing the micro-structure of
the aorta in 3D possible under good conditions and thus, analyze their behaviour.
For this matter, the choice of the pinhole aperture is essential. In addition, the
specimen should not be exposed to the laser beams for too long because it might
get photo-bleached. It is interesting to use confocal microscopy in a fluorescent
mode imaging with different fluorophore markers in order to distinguish between
the different component of the specimen. However, since this technique scans the
specimen point by point, it can easily become computationally expensive. Besides,
the depth penetration is limited and depends on the considered specimen and the
wavelength [Got+16].

Figure I.16 – Comparison between different imaging modalities with respect to
their resolution and image penetration

I.6.5 Two-photon microscopy and second harmonic genera-
tion

Optical harmonics were first discovered in the 1960s when the high-intensity
pulsed lasers have been invented. It was Franken who observed Second Harmonic
Generation (SHG) in crystalline quartz by using a Q-switched ruby laser [Fra+61].
It became a very used method to characterize the second order Non-Linear Optical
(NLO) response of emerging materials, especially organic NLO materials. It led to
an increase of its use in different fields such as biomedical research [Ost13]. One of
those organic materials of interest is collagen which drew the attention of several
scientists. The non-linear polarization of a material is defined as:

32



Zeineb Nejim

P = χ(1)E1 + χ(2)E2 + χ(3)E3 + ... (I.1)

where P is the total induced polarization, χ(i) is the ith-order nonlinear suscepti-
bility, and E is the electric field vector of incident light [Boy08]. For SHG signals, χ(2),
which characterizes the material of the studied interface [She89] is strictly positive.

SHG imaging in biology was reported by Freund in 1986 [FDS86] when he tried
to characterize the polarity of collagen fibers in a rat-tail tendon. A more recent
practical implementation was reported by Campagnola in 2002 [Cam+02] where they
succeeded in imaging biological tissue at high resolution and fast acquisition rate.
In order to collect SHG images of collagen in biological tissues, a two-photon light
microscopy has been developed. This imaging technique is based on the excitation
of a molecule to a virtual state by two photons which are then converted into a
single photon of exactly total energy at double frequency, without absorption or
reemission of photons, see figure I.17. For two-photon excitation, photons in the
infrared spectral range are used under highly intense laser illumination (for example
Ti:sapphire lasers). Infrared photons are chosen because of their low energy. When
the energy gap between the ground state and the excited state is smaller than
the sum of the energy of the two photons, the non-linear process can occur. In this
case, the probability that a fluorescent molecule absorbs simultaneously two infrared
photons is a quadratic function of the excitation radiance [So02].

Figure I.17 – Simplified Jablonski diagram of the two-photon excitation process

The possibility to take microscopic images in three dimensions (i.e. depth dis-
crimination) is considered as one of the most interesting properties of two-photon
microscopes. It originates from the almost absence of out-of-focus light resulted by
the reflection. 80% or more of the total fluorescence signal may be cramped in a
region of 1µm thickness around the focal plane of a two-photon excitation [So02].
Notable two-photon excitation occurs where the photon density is high. It corres-
ponds to the focal volume of the microscope which can be as small as 0.1µm3

[ZWW03], i.e. the generation of fluorescent signal is limited to a restricted zone.
Thus, it is possible to reach several hundreds of micrometers in the depth of the
specimen. It was even possible to reach an imaging depth of 1.6mm in mouse cortex
[KHX11]. The laser needs to scan the entire specimen in the three dimensions to
generate a 3D image, which may involve relatively long acquisition times according
to the volume size and acquisition parameters. Finally, the use of two low energy
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photons limits the risk of photo-damage of the sample [SY06]. In addition, it maxi-
mizes the probability of detecting photons per excitation event in the right spot and,
thus, minimizes photo-bleaching (when the molecule looses its ability to fluoresce)
and photo-toxicity.

Figure I.18 – Left: one-photon excitation. Right: two-photon excitation (Image by
Steve Ruzin and Holly Aaron, UC Berkeley)

I.7 Pre-processing techniques

In order to process an SHG image or stack and to extract as much accurate
information as possible, it is important to remove the noise that is present. SHG
images of tissues present usually Poisson noise because of their poor signal to noise
ratio [Bre+14]. Common methods in pre-processing SHG images are introduced in
the following.

I.7.1 Median Filter

It is a simple and widely used filter to reduce noise in images and to smooth
them. Median filter [HYT79] is a non-linear smoothing filter. The value of each
pixel in the image is replaced by the median value of pixel’s intensity in a previously
defined neighborhood of size m ∗ m. In other words, The intensity values of the
pixels in the considered neighborhood are sorted, then the median value is assigned
to the pixel being processed. This way, pixels which are darker or brighter than their
surroundings and cover an area of m2/2 will be removed with a median filter of size
m ∗ m [Tya18]. To process peripheral pixels, it is necessary to pad with zeros the
image borders.

Median filters work well for removing random salt and pepper noises [GW18].
However, this kind of filter does not allow the suppression of Gaussian noise [OZV95]
which can be dealt with through deconvolution. They do not reduce the difference in
brightness of images and hence, preserve edges. However, when the signal-to-noise
ratio of the image is small, or the neighborhood is too large, median filters tend to
delete useful information and produce false noise edges.
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I.7.2 Contrast enhancement

The recognition of image features depends on the image contrast. However,
the contrast can be distorted by the imaging system because of poor illumination
conditions. For this purpose histogram equalization is widely used. A well acqui-
red gray-scale image should cover black and white pixels. It is also better that the
image’s shades are evenly distributed (i.e. the image histogram is uniform). Many
contrast transforms can be used for this purpose such as histogram equalization,
adaptive histogram equalization and Contrast Limited Adaptive Histogram Equa-
lization (CLAHE) [MA18]. Here, we will focus on the CLAHE algorithm which is
very used in SHG imaging [Koc+14 ; Hu+12].

CLAHE [Piz+87] is a variant of adaptive histogram equalization. It consists in
computing histograms of distinct regions and using them to redistribute the pixels
intensity values of the image. The difference between CLAHE and other adaptive
histogram equalization algorithms is that it clips the histogram at a pre-defined
value (i.e. if a histogram bin is higher than the clip limit, those pixels are clipped and
uniformly shared with other bins before proceeding to the histogram equalization). It
operates on small regions of the image called tiles. To remove the artificial boundaries
between the different tiles, bi-linear interpolation is used.

CLAHE is a good technique to improve local contrast and to enhance edges.
Compared to other adaptive histogram equalization techniques, it limits the noise
amplification. However, if the image is too noisy, a phenomena of noise amplification
may occur. The combination of CLAHE, median filter and edge sharpener (such as
high-pass filters) can be successful to maintain the image high spatial frequency
content.

I.7.3 Directional filters

When there is a need to study oriented features in an image, directional filters
[BS92] can be used. They consist in a filter bank containing lines in different direc-
tions. They can be used to detect edges or to identify object orientations. Those
filters have wedge-shaped pass-band spectral regions, and are therefore usually re-
ferred to as wedge or fan filters [SF96]. Wedge filters are also a filter bank where
each filter represents a region of the space shaped as a wedge, figure I.19. Those
filters work as a pass-band filters where each filter of the bank focuses on the cor-
responding region in the image. When the orientation of the wedge is known, the
determination of object directions is straightforward.

Wedge filters are an easy to implement and efficient tool to study oriented objects
in images. However, in order to have a fine description of the image features, it is
necessary to have thin wedges in as many directions as possible which will add more
computational costs.

I.7.4 Gradient magnitude

The gradient vector is a fundamental approach for finding extrema of a conti-
nuous and smooth function in space [HHH09]. Gradient direction gives information
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Figure I.19 – Ideal wedge filter with given aperture, and a certain angle

Figure I.20 – SHG of a human aorta Figure I.21 – Gradient magnitude

Figure I.22 – Gradient magnitude of a noisy SHG image

about the direction where the function is growing fast while the gradient magnitude
indicates how fast does the intensity change. Hill et al. [Hil+12] for example used
the gradient vector to detect the edges of the image as a first step to determine
fiber directions. The gradient is defined as the partial derivatives of a function with
respect to all its components. For 2D images, the gradient is usually achieved by the
convolution of the image by a couple of filters based on the Sobel filter [Sob14] or
the Prewitt operator [Pre70].

The fact that small displacements are considered to compute the gradient allows
to capture as much details as possible in any direction. The gradient works fine
with clear images without much noise. However, if the considered image is noisy, the
gradient will not bring any useful information. figure I.22.

I.7.5 Frangi filter

The Frangi filter [Fra+98] was first developed to be a vessel enhancement filter.
However, it was used to detect both vessel-like and tube-like structures in images.
Because of the collagen fibers morphology, which can be assimilated to tubes, the
Frangi filter was used to extract the fibers from SHG images.

The Frangi filter is based on the computation of the image’s hessian matrix. In
the proposed framework, the derivative of an image corresponds to its convolution
with derivatives of Gaussians. The second derivative of a Gaussian kernel figure I.23a
allows to measure the contrast between the region in and out of a range (−s, s), s
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(a) (b)

Figure I.23 – (a) Second derivative of a Gaussian kernel, (b) Ellipsoid described
by the eigenvalues

(a) (b)

Figure I.24 – (a) Original image, (b) Result after Frangi filter

being the standard deviation of the Gaussian. Through the analysis of the eigen-
values of the image’s hessian matrix, it is possible to extract the direction of the
smallest vessel’s curvature which corresponds to the main directions in which the
local second order structure of the image can be decomposed [Fra+98]. The eigen-
value decomposition gives three orthonormal directions figure I.23b which allow to
describe vessels in images.

Figure I.24 shows the results of the work of Cai et al. [Cai+14] when they applied
Frangi filter on SHG images of human skin. The use of multiscale Frangi filter,
through the analysis of the eigenvalues of the hessian matrix, makes it possible to
capture the smallest details of an image and thus, avoid the application of different
filters of different sizes. However, the Frangi filter may not take into consideration
any object in the image which does not have a circular cross-section.

I.8 Overview

The review of the state of the art presents us with a good understanding of
the complexity surrounding 3D imaging of arterial micro-structure. The aorta, as
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an important artery, may suffer from different conditions and thus, put in danger
individual’s life. The choice of ATAAs to focus on in this thesis is based on the
possibility to recover ascending aortic healthy and aneurysmal tissues from the hos-
pital to image them and analyze them. As seen in this chapter, SHG images are
not always ready to be analyzed. In fact, artifacts are often present on the images
especially on its 3D component. These stacks can be noisy, blurry and even present
some black regions. Besides, in the literature, most of the attempts to improve these
images were only applied on 2D images without taking into consideration the 3D
nature of the micro-structure. The first part of this thesis aims at addressing these
problems by realizing the following aspect:

Develop a new approach to improve the SHG stacks: To this aim, many
image processing techniques were tested and we finally propose a combination of a
top hat transform to reduce the noise and a 3D directional filter to reconstruct the
fibers in case of discontinuities (presence of black spots). The results will be exposed
in the following chapter.
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II.1 Résumé du chapitre

Les maladies cardiovasculaires, comme l’anévrisme de l’aorte thoracique ascen-
dante, sont déclenchées au niveau de la micro-structure. Afin d’acquérir des images
de cette micro-structure, et en particulier les fibres de collagène, la microscopie de
seconde harmonique est utilisée. Cependant, ces images présentent généralement des
artéfacts notamment du bruit, du flou et des discontinuités au niveau de certaine
fibres. Traiter ces artéfacts peut s’avérer complexe et nécessiter une combinaison de
plusieurs techniques. Pour se faire, une approche basée sur des filtres directionnels
3D pour reconstruire les fibres de collagène et des transformées "top-hat" à une et
trois dimensions pour réduire le flou et le bruit est proposée. Cette approche a été
appliquée sur des images de seconde harmonique 3D et a montré de bons résultat
quant à la restitution du réseau de collagène.

II.2 Abstract of the chapter

Vascular diseases, such as the ascending thoracic aortic aneurysm, are triggered
at a micro-structural level. To capture this micro-structure, in particular collagen
fibers, SHG microscopy is used. However, the resulting 3D images usually presents
some artifacts namely blur, noise and fibers’ discontinuities. Dealing with all these
issues may be complex and need a combination of multiple techniques. For this
matter, an approach based on 3D directional filters to reconstruct collagen fibers
as well as 1D and 3D white top-hat transforms to deal with the noise and the
blur is proposed. This approach was performed on 3D images and provided a good
restitution of the collagen network.
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II.3 Introduction

The aortic wall is a complex structure composed of three heterogeneous layers na-
mely the intima, the media and the adventitia. A strong interest was shown toward
the study of the micro-structure of the adventitia for mechanical purposes, espe-
cially to characterize traumatic aortic injuries and conditions such as aneurysms
and dissections.

As we have seen in the previous chapter, the analysis of 3D collagen SHG images
can be difficult because of occurring artifacts. This statement is, in particular, ap-
plicable to collagen SHG images of the ascending thoracic aorta. Therefore, it is
important to improve these images in order to properly characterize the aortic
micro-structure. The artifacts in SHG images may have a strong impact on the
quantitative analysis of collagen fibers. In fact, among these artifacts, one can cite
fibers discontinuities which lead to a wrong estimation of the collagen density. In
addition, the noise and the blur occurring in SHG images may lead to inaccurate
results in relation with fibers’ size, fibers’ orientation and even fibers’ waviness.

In this chapter, we start by describing the available 3D collagen SHG images and
the acquisition process. These images were taken by Cavinato et al. [Cav+17]. Then,
we will introduce some new approaches to deal with the artifacts on the stacks. Our
approaches focus on the entire 3D stacks unlike the majority of the techniques in the
literature where the authors processed the stacks slice by slice. Finally, we analyze
the effect of our filters parameters on the volume fraction of the collagen on images
of rabbit carotid arteries [Kra+17].

II.4 Description of the available 3D images

Images we used in the present work have been acquired in the lab. For more
details on the images, please refer to [Cav+17].

II.4.1 Acquisition

The aorta is a complex structure composed of three layers. All the images treated
in this thesis focus on the tunica adventitia since it is the last layer before complete
dissection and rupture. Collagen fibers of the adventitia layer hold the aorta together.
Here, we use SHG imaging to capture collagen fibers of different types of ascending
aortas.

II.4.1.1 The specimen

The conducted study includes three types of specimen:

— Porcine aortas were collected from a slaughterhouse from domestic pigs aged
between 6 and 12 months. Aortas were cut along the longitudinal direction.
Specimen had a square shape with 45mm long.
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— Fresh non-aneurysmal human aortas were collected via the French voluntary
body donation program from the Department of Anatomy of the University of
Saint-Etienne.

— Unruptured human ATAAs were collected from patients having elective sur-
gery to replace the aneurysmal segment of the aorta with a graft. The col-
lections and the experiments on the specimens respects a protocol approved
by the Institutional Review Board of the University Hospital Center of Saint
Etienne.

Specimens were placed in Phosphate Buffer Saline (PBS) in the refrigerator
under a temperature of 4◦C for 12 hours maximum. Before proceeding to tests, the
external edges of the adventitia were glued with ethyl cyanoacrylate on a 30mm
diameter PVC support appended to the inflation device. To track the regions of
interest under the microscope, fluorescent micro-particle was placed using a micro-
needle to mark its center on the outer part of the tissue. The maximum radius in
the axial-circumferential plane was about 300 µm.

II.4.1.2 The setup

The collected specimens are imaged by a multi-photon microscope with a certain
protocol. In this section, we exhibit the characteristics of the used microscope in
addition to the bulge inflation test protocol.

II.4.1.2.a Multi-photon microscopy

The used multi-photon microscopy is a LEICA TCS SP2 upright confocal micro-
scopy system equipped with a water immersion objective (HCX APO L UVI ×20
NA0.5). The laser source is a Ti:Sapphire femtosecond laser Chameleon Vision I
from COHERENT, Inc. The best compromise between SHG signal and two pho-
ton fluorescence (TPF) was reached with an excitation wavelength of 830nm. SHG
signal was collected between 375 and 425nm while TPF signals were collected bet-
ween 560 and 700nm. The scanned volumes is 750 × 750 × dz µm3. dz can vary
between 100µm and 500µm with respect of the permeability of the sample. For each
specimen, Cavinato et al. [Cav+17] proceeded to two scans after stabilization: one
of a stack placed 750µm away from the ROI marker and an adjacent stack 1.4 mm
away from it. The numerical resolution of the images is 1024x1024pixels. Regarding
the z-step, it corresponds to 1µm. At each z-step, each line of the specimen was
scanned twice and the average was retained.

Small motions may occur during the acquisition and distort it. To deal with
this issue, two quasi-instantaneous (QI) scans with a z-step equal to 15µm were
taken just before and after each main scan. These QI scans aim at providing data to
determine the needed z-correction to balance a possible z-motion. For more details,
refer to [Cav+17].
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II.4.1.2.b Bulge inflation test

Before starting the acquisition, the intimal side of the specimen is glued on
another PVC support. Then, it is assembled and tightened via a tightening nut
to the bulge inflation device, figure II.1. This ensures a hermetic closure for the
intimal surface while the adventitial surface is exposed. Cavinato et al. [Cav+17]
used PBS to cover the exposed adventitial surface during all the test duration. In
order to inflate and control the specimen volume, an automatic water pumping
system (WPI®, NE-501 Multi-Phaser) commanded with a LabVIEW program to
inject water at a constant rate (2 mL/min for human specimens and 30 mL/min for
porcine specimens). A pressure transducer (Omega®) was used to record pressure
values. When a pressure of interest is reached, the water injection stops and the
volume is kept constant.

Figure II.1 – Experimental setup to perform the bulge inflation test

The choice of pressures fell on the values of 200 and 450 mmHg because the
authors wanted to evaluate a wall stress state close to diastolic-systolic conditions
(around 120 mmHg) in addition to state beyond the physiological range.

II.4.2 Characteristics of collagen SHG images

Most of the available SHG images have a dimension of 1024 by 1024 pixels and
between 50 and 300 slices per stack. Slices are taken with 1µm step. 1024 pixels
correspond to 750µm. These stacks show dense undulated collagen fiber bundles.
The stacks taken under a mechanical load show that the collagen fibers become
straight following a preferred direction. When we visually analyze the 3D stacks,
we can see that there are some artifacts. In fact, we can observe on some stacks
the occurrence of some black regions and shadows. In addition, we can notice the
presence of a multiplicative noise and some blur.

II.4.2.1 Shadows

Collagen fibers network is a 3D structure. The fibers are undulated and do not
have necessarily a preferred direction. The creation of 3D stacks is performed slice

43



Chapter II. From raw to enhanced images: A story to tell

by slice. When capturing a slice in the depth of the specimen, the laser of the
microscope needs to pass through the fibers present in the superior slices. However,
the beams are backscatterd by the fibers and thus, prevented from reaching the
fibers beneath which will not be illuminated. This explains the presence of shadows.
In other terms, these shadows come from the presence of collagen fiber above the
capture slice. Figure II.2 shows an image with some shadows.

Figure II.2 – Example of an image with some shadows on different fibers

II.4.2.2 Black spots

On some of the available stacks, we noticed the presence of some black spots, see
figure II.3. This artifact is not proper to the specimen and is not introduced by the
microscope. In fact, these regions are most probably due to the presence of dust or
water when proceeding to the acquisition. Besides, if we look through the different
slices of a stack having a black region, we can see that this spot is always present in
the same place or a little bit displaced. This displacement is probably due to some
vibrations that made the dust move during the acquisition.

II.4.2.3 Noise

A very common type of noise in SHG images is the Poisson noise [Bre+14] also
called shot noise. This noise is introduced by the Charge Coupled Device (CCD)
which is usually the detector in two-photon microscopes. It is due to the low-light
conditions caused by the low number of photons. It is multiplicative noise and can
be modeled by a Poisson process expressed by the equation:

P (X = k) =
e−λλk

k!
(II.1)

where λ is the mean and k is the expected value.
This type of noise is associated with the particle nature of light. It actually

occurs in optical devices when counting photons at the level of the detector. Unlike
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Figure II.3 – Example of an image with some black regions

the Gaussian noise, the Poisson noise is a signal dependent noise. In fact, it depends
on the image brightness. Figure II.4 emphasize on a section extracted from an SHG
image of human aortic collagen fibers.

Figure II.4 – A portion of a collagen fiber extracted from an SHG image. The
intensity of the pixels forming this fiber is not homogeneous which is caused by the
Poisson noise.

II.4.2.4 Blur

SHG images are taken by a microscope which, as any optical system, introduces
some blur. This blur is caused by the Point Spread Function (PSF). This function
is specific to the used microscope.

II.4.2.4.a Definition of the PSF

PSF is the image of a point source of light imaged by an optical system. It
represents the 3D diffraction pattern of light emitted from an infinitely small point
source in the specimen and transmitted to the image plane through a high Numerical
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Aperture (NA) objective. The choice of the NA parameter is very important since
it affects the quality of the recovered image and thus, its resolution, see figure II.5
[Mic].

Figure II.5 – Relationship between NA and the image resolution

The airy disk presented in red in figure II.5 corresponds to how the microscope
sees a point. In fact, the laser beam converges and interfere at the focal point and
leads to the creation of diffraction pattern of concentric rings of light surrounding
a central bright disk. The radius of this disk is determined by the NA. Low NA
corresponds to large disks, figure II.6 [Oly], thus, to a bad resolution. The micro-
scope spatial resolution can be determined through the Full-Width at Half-Maximum
(FWHM). This metric is the width of the airy disk when its values equal to half its
maximum.

Figure II.6 – Relationship between NA and the image resolution

The PSF can be determined by three methods:

— experimentally: for two-photon microscopes, it is possible to insert a micro-
sphere of fluorescent substance in a specimen and image it with the microscope.
Then, from this image, it is possible to extract the needed information to
characterize the PSF (mainly the FWHM).

— theoretically: It is possible to use the Gibson and Lanni model [GL91] which
is based on the computation of the Optical Path Difference (OPD) between
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the design conditions and experimental conditions of the objective.

— analytically: it is possible to perform a blind deconvolution. Here, one can
start with an estimation of the PSF and then update it with respect to some
constraints and by applying an expectation maximization algorithm.

II.4.2.4.b Effect of the PSF

An image is a convolution of the object to capture and the PSF and can be
symbolically represented as:

Image(x, y, z, t) = object(x, y, z, t) ∗ PSF (x, y, z, t) (II.2)

where x, y and z are the coordinates of a voxel of the image and t is the time.
In the Fourier domain, this equation will be:

FT (Image(x, y, z, t)) = FT (object(x, y, z, t))× FT (PSF (x, y, z, t)) (II.3)

where FT stands for Fourier Transform.
3D PSFs in microscopy usually have rice seed shape. In fact, the refractive index

mismatch in biological tissues causes some spherical aberrations. This leads to a
degradation of the focus especially along the optical axis. Thus, the PSF is extended
along this axis [Jin+20 ; Lef+21]. It introduces some blur on the 3D volume. Its effect
is small on the 2D plan but is wider along the z axis. That is why the impact of the
PSF on the 2D slices of the stack is not very obvious but if one proceeds to a depth
descrimination of the stack, one can see that the fibers are very blurred.

II.5 Blur removal through the PSF

SHG stacks in general, and those we consider in this work in particular, show
that the PSF has a rice seed shape. As said previously, the PSF introduces some
blur. Therefore, by estimating the PSF, we can recover a cleaner image.

II.5.1 On synthetic images

In order to analyze the effect of the PSF on SHG images, we first created SHG
synthetic images. This makes it possible to overcome acquisition problems and give
the opportunity to focus on the mathematical operations before dealing with real
SHG images.

II.5.1.1 PSF creation

The creation of the PSF is based on 2 different Gaussians. We start by creating a
classical 2D Gaussian defined on a 1024x1024 support (because most of the available
SHG images have these dimensions), see figure II.7a. As a rice seed, this Gaussian
has a small variation. In order to have a 3D PSF, we multiply our 2D Gaussian by a
uni-dimensional Gaussian with a larger variation, see figure II.7b. This Gaussian has
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(a)
(b)

(c)

Figure II.7 – (a) 2D Gaussian, (b) 1D Gaussian and (c) cross-sectional view

a support of 256. In other terms, each slice of our 3D PSF is the product of the 2D
Gaussian by a value of our sampled uni-dimensional Gaussian. The cross-sectional
view is showed in figure II.7c. As intended, the resulting PSF has a rice seed shape.

II.5.1.2 Downgrading the image

Once the image is created, one can downgrade an image by convolving it with
the PSF. For this matter, we created a synthetic 3D stack where different undulated
fibers are lined up in the same direction and separated by the same distance, see
figure II.8. We have to mention that the aim behind this synthetic image is to master
the mathematical operations to downgrade (i.e. convolution) and recover an image
(i.e. deconvolution). This means that the synthetic image does not have to be similar
to real ones.

The created image is then convolved by the defined PSF. This operation cor-
responds to the product of the Fast Fourier Transform (FFT) of the image by the
FFT of the PSF. For more details on the FFT see chapter 3. The convolution is a
mathematical operation that is equivalent, on a digital support, to adding each voxel
of the image to its neighbours weighted by the kernel. It corresponds to applying
a Gaussian filter with different standard deviations on the 3D image. Inverse FFT
is then applied on the resulting product to recover a downgraded image. In figure
II.9, we show the effect of different PSFs on the created image. Theses tests were
conducted on 3D artificial stacks of dimensions (128, 128, 32).

From figure II.9, we can clearly see the effect of the different sizes of PSF. It is
important to say that, for visualization purposes, the chosen values are exaggerated
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(a) (b)

Figure II.8 – Example of a virtual image where (a) is a slice of the virtual stack
where there are some fibers and (b) is a section of the stack along the z axis.

compared to real PSFs. Figures II.9a and II.9b show a "small" PSF makes the slice
a little blurrier that the original one, figure II.8a. However, on the section along the
z axis at y = 70, we can see that the fibers sections are wider and we notice also the
appearance of some other bright pixels which correspond to the some wider (due to
the convolution) fiber portion which is close to the section plan. Moreover, a high
variance on a certain axis corresponds to a dispersion of bright pixels on the same
direction, see figures II.9b, II.9d and II.9f.

II.5.1.3 Recovering the initial image

In order to recover the initial image, we need to perform the inverse operation.
We deconvolve the image by the PSF used to degrade it. In the Fourier domain, it
corresponds to a division of the FFT of the downgraded image by the FFT of the
PSF and is expressed by:

FT (Image(x, y, z, t)) = FT (downgradedImage(x, y, z, t))/FT (PSF (x, y, z, t))

(II.4)
Even though, mathematically speaking, multiplying then dividing an image by

the same quantity will have the same image as a result. However, since the PSF is
very sparse, one can encounter some problems during the division. That is why, the
deconvolution will certainly introduce some noise. We tested the deconvolution with
different PSF variations and we exhibit the results in figure II.10. After some tests,
we were able to determine the maximum size (standard deviation) of the PSF to be
able to recover a decent image. All the tests were conducted on 3D images.

The deconvolution gives satisfying results in general. We noticed that it is pos-
sible to recover the initial image from the downgraded one when the PSF variations
in the (x,y) plan are smaller than 4. Indeed, figures II.10c and II.10d show that the
deconvolution did not work well for PSF variances equal to (10, 10, 4). However, the
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(a) (b)

(c) (d)

(e) (f)

Figure II.9 – Impact of the variance parameter of the PSF on the artificial stack.
(a) and (b) correspond respectively to a slice of the stack where the fibers are the
brightest and the corresponding section at y = 70 for a variance equal to (2, 2, 4),
(c) and (d) correspond respectively to a slice of the stack where the fibers are the
brightest and the corresponding section at y = 70 for a variance equal to (10, 10, 4)

and (e) and (f) correspond respectively to a slice of the stack where the fibers are the
brightest and the corresponding section at y = 70 for a variance equal to (2, 2, 10)
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(a) (b)

(c) (d)

(e) (f)

Figure II.10 – Results of the deconvolution process on different convolved images.
(a) and (b) correspond respectively to a slice of the stack where the fibers are the
brightest (slice number 6) and the corresponding section at y = 70 for variances
equal to (2, 2, 4), (c) and (d) correspond respectively to the slice number 6 and
the corresponding section at y = 70 for variances equal to (10, 10, 4) and (e) and
(f) correspond respectively to the slice number 6 and the corresponding section at
y = 70 for variances equal to (2, 2, 10)
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(a) (b)

Figure II.11 – (a) Example of a single fiber where a yellow line is draw. This line
corresponds to the direction along which the intensity evaluation profile is extracted.
(b) Intensity profile of one collagen fiber.

variance along the z axis does not have any impact on the result on the deconvolu-
tion. In fact, we conducted several tests with fixed (x,y) variances = 2 and varying
variance along the z axis (i.e. 4, 10, 20 and 50). Some examples are presented in
figures II.10a and II.10b as well as II.10e and II.10f. In all these cases, we succeeded
in recovering the initial image from the downgraded one.

II.5.2 On real images

Once we mastered the computational implementation of the 3D convolution and
the 3D deconvolution, we conducted the same tests on real SHG images.

II.5.2.1 PSF estimation and deconvolution

We tried to estimate the PSF from a real SHG stack. For this matter, we supposed
that collagen fibers have a cylindrical shape (i.e. having a disk for a cross-section).
We chosed one slice of the stack where we can distinguish clearly one fiber. We
then recovered the variation profile of the intensity of the pixels forming this fiber.
This profile certainly needs to be perpendicular to the fiber. Figure II.11 shows an
example of fiber to be considered and the corresponding intensity profile.

Since the effect of the PSF is practically nonexistent in the (x,y) plan, we focused
only on its effect in the stack’s depth. Because we assume that collagen fibers are
cylindrical, the chosen collagen fiber needs to have the same intensity profile along
the z axis. However, due to the effect of the microscope’s PSF, this profile is larger.
Thus, we perform a deconvolution of the real intensity profile by the expected one
(i.e. the profile captured from a slice). This way, we can recover an estimation of
the z-profile of the PSF which is supposed to have a Gaussian shape. This can be
summed up in the equation:

FT (IntP (z, t)) = FT (IntPexp(z, t))× FT (PSF (z, t)) (II.5)

⇕

FT (PSF (z, t)) = FT (IntP (z, t))/FT (IntPexp(z, t)) (II.6)
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where:

— IntP : is the wide intensity profile.

— IntPexp is the expected intensity profile

— PSF(z,t) is the z-profile of the PSF

II.5.2.2 Results

Both intensity profiles of the fiber were approximated to two generalized Gaus-
sian distributions. Figure II.12 shows an example of an intensity profile as well as
its approximation. Once the estimation of the z-PSF has been done, one can recons-
truct the 3D PSF by assuming the 2D PSF has the same standard deviations as the
intensity profile extracted from the 2D image. We proceed then to the deconvolution
of the stack by the estimated PSF.

Figure II.12 – Example of an intensity profile of a collagen fiber extracted along
the z axis in addition to its generalized Gaussian approximation.

Collagen fibers have usually a diameter around 10 pixels. The intensity profile
extracted in the (x,y) plan is defined on 11 pixels while it is defined on around
33 pixels along the z axis. This way, we are certain that it covers any potential
exceeding. Certainly, the intensity profile is wider along the z axis because of the
effect of the PSF. The main issue with this methodology consists in finding the
best approximation. The deconvolution was performed in the Fourier domain. It
is interesting to mention that, the support of the result of the deconvolution is
equal to the sum of supports of both intensity profiles. Figure II.13 shows both
approximations of intensity profiles of one fiber in addition to the result of the
deconvolution previously described. The result of the deconvolution corresponds to
the actual PSF along the z axis.
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(a) (b) (c)

Figure II.13 – Approximations of different intensity profiles: (a) approximation of
the intensity profile extracted in the (x,y) plan, (b) approximation of the intensity
profile along the z axis and (c) result of the deconvolution of (b) by (a)

The present approach did not succeed in recovering a clean Gaussian as a result
of the deconvolution, figure II.13c. This random result is probably due to the non-
smoothness of the the intensity profile approximation in the (x,y) plan. In fact,
the deconvolution in general enhances the noise. We tried multiple times to better
approximate this profile but we did not succeed. Thus, the approach based on the
deconvolution of real images by the PSF of the microscope aiming at improving
them was forsaken.

II.6 Shadows and black spots removal

As shown in sections 2.2.2.1 and 2.2.2.2, SHG images may present some shadows
and black regions. To deal with this problem, we needed to develop an algorithm
that aims at reconstructing the fibers when there are discontinuities. Here, we will
present our algorithm which is based on directional filters.

II.6.1 2D directional filter

The first attempt was to apply a 2D directional filter on all the slices of each stack
and see if we are able to reconstruct the fibers while taking the fibers orientations
in the space.

II.6.1.1 Specifications

A 2D directional filter is a bank of 2D filters. Each one of these filters is an image
containing one segment of a length l and tilted with an angle α. l is the same for
all the filters. At first, we need to define the number of angles we want to include
in our analysis. In more details, if we want to take into consideration d directions,
α will be equal to k × 2π

d
where k is an integer varying between 0 and d − 1. In

order to simplify computations, we divide the number of directions by 2 if it is even.
Then, for each pixel of the slice, we select the portion of the image centered on
this pixel and having the same dimensions as the created filters. This portion is
afterwards multiplied by each one of the filters. For each multiplication, we compute
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the mean intensity value. Finally the pixel’s value is updated with the maximum of
the calculated means. Mathematically, it is expressed as:

imF (x, y) = max(mean(im(x, y)×DirF ilteri(x, y))) (II.7)

where imF is the filtered image, im is the original image, DirF ilteri is the filter
number i of the filter bank, i ∈ [0, numberofdirections]

The choice of the segment’s length l has a strong impact on the resulting image
and the fibers reconstruction. In fact, the length needs to be equal to at least the
double of the discontinuity to fill. Regarding the choice of the number of directions,
the higher is the number of the directions, the more precise is the reconstruction.
In fact, directional filter aims at reconstructing the fibers with respect to their
neighborhood. Thus, if we consider more angles, our reconstruction will be sharper.

II.6.1.2 Results

The 2D directional filter works well to recover fibers continuities in the 2D plan.
Figure II.14 shows an example of an image after the application of a 2D directional
filter. One can see that the black regions present in the original image were suppres-
sed. This is also valid for shadows. Besides, we were also able to delete fibers that
are not relevant to the slice we are treating. It may introduce some smoothing effect
but it does not drastically affect the global shape of the fibers. Besides, there is no
notable impact on the fibers orientations in the space.

(a) (b)

Figure II.14 – (a) Original image, (b) Result after 2D Directional filter

In figure II.15, we shows another example of a segment of a collagen fiber where
occurs a discontinuity in addition to the resulting image after the application of the
2D directional filter. As we can see, the fiber is reconstructed. Besides, the result
can be harmonized a little bit more by applying a median filter. Furthermore, we
were able to delete some fibers that are not relevant to the considered slice.
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(a) (b)

Figure II.15 – (a) Original image, (b) Result after 2D Directional filter

II.6.2 3D directional filter

Here, we implement a 3D directional filter for the same purpose: reconstructing
collagen fibers with discontinuities. It is important to mention that the 3D version
is more computationally expensive than the 2D one.

II.6.2.1 Specifications

The 3D directional filter has the same specifications as the 2D version but with
some tilt added along the z axis. Usually, in biological tissues, collagen fibers are not
very tilted along the z axis (less than 5◦). For this reason, we decide to introduce three
different tilt angles: 1.5◦, 3◦ and 4.5◦. Thus, the number of direction is multiplied
by four. Regarding the length of the filters, it follows the same characteristics as for
2D directional filters.

II.6.2.2 Results

Regarding collagen fibers reconstruction, the 3D directional filter achieve as good
results as the 2D version. Figure II.16 shows the result after applying a 3D directional
filter.

(a) (b)

Figure II.16 – (a) Original image, (b) Result after 3D Directional filter
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The main contribution of the 3D directional filter is that we can distinguish a
certain tilt along the z axis. In fact, if we analyze a section of the stack along one
fiber, see figures II.17c and II.17f, we can notice that the fiber is quite tilted along
the z axis.

II.6.3 Comparison

In order to compare the two types of filter, we applied them both on the same
small part of an image where one can clearly see a fiber with at least one disconti-
nuity. Then, we section the slice along the collagen fiber. This way, we can analyze
the fiber’s behaviour in the space. As previously introduced, the 3D directional filter
allows having a better view of the collagen fiber orientations in the entire space, see
figure II.17.

(a) (b) (c)

(d) (e) (f)

Figure II.17 – (a) Original image, (b) Result after 2D Directional filter and (c)
Result after 3D Directional filter

However, these kind of filters may introduce some artifacts due to the effect of
the bright pixels surrounding the fiber. The 3D directional filter introduces more
artifacts than the 2D one since the number of surrounding pixels to take into consi-
deration is higher (the neighbouring pixels in the 3D space). In fact, if we chose
a high number of directions, the number of surrounding pixels will increase. The
filter’s length also has an impact on the result and the occurring artifacts. As a
matter of fact, in the case there is a large discontinuity and some small one, if we
use a high length, which allows to reconstruct the large discontinuity, on the small
discontinuities, it adds some artifacts caused by some far fibers. In order to deal
with this issue, it is possible to apply some morphological filters.

It is important to mention that the proposed directional filter works perfectly
with straight fibers but may encounter some issues with undulated ones. In fact, for
undulated fibers, if there is a large discontinuity, the proposed filter will reconstruct
this fiber with a straight line without taking into consideration its real geometry. In
order to deal with this problem, it is possible to apply a directional filter with small
length subsequently. This way, the fiber is reconstructed step by step and thus, in a
closer way to reality.
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II.7 Noise reduction

Poisson noise is is dominant in SHG images of collagen fibers. After a deep
investigation on the possible methods used to deal with it, we finally used the top-
hat transform on the available 3D stacks. In the following, a description of the
method as well as the results of its application will be exhibited.

II.7.1 Top-hat transform

The top-hat transform is a morphological operator based on erosion and dilation.
We selected the white top-hat (WTH) as it is adapted to our case (white fibers over
black background). It is defined as the difference between the input image and the
results of its opening by some structuring element. It is expressed as:

WTH(Im) = Im− (Im ◦ SE) (II.8)

where Im is the image, SE is the structuring element and ◦ denotes the opening
transform.

WTH keeps elements of the image that do not fit into the structuring element
and that are brighter than their surroundings. It is usually used for uniforming
illumination.

II.7.1.1 3D top-hat

We apply the 3D top-hat transform on a 3D stack. Here the structuring element
is cube-shaped. It is expressed as:

WTH(Im(x, y, z)) = Im(x, y, z)− (Im(x, y, z) ◦ SE(x, y, z)) (II.9)

We conducted multiple tests on several stacks. Figure II.18 exhibits three results
using structuring elements of sizes 7, 14 and 21.

The analysis of figure II.18 shows that the size of the SE has obviously a strong
impact on the image. In fact, for higher sizes of SE, we notice that there are more
fibers left on the slice than with lower sizes. This can also be seen on the section
images. Besides, the noise present at the bottom of the stack remains whatever is the
SE’s size. The used 3D WTH has a cube as a structuring element. However, since
the noise in SHG images is higher along the z axis, it is complicated to achieve a
good reconstruction. When we compare the different results with the original stack,
we notice that the 3D WTH may keep, in certain slices, some fibers which normally
belong to a superior slice. In fact, when the size of the structuring element is not
properly chosen, the algorithm will not succeed in dealing with the noise along the
z axis even if, visually, the result is satisfying in the (x,y) plan.

II.7.1.2 1D top-hat

In order to deal with the unwanted presence of some fibers, we decided to apply a
1D WTH along the z axis. This transform consider the 3D stack as a set of lines. For
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(a) (b) (c)

(d) (e) (f)

Figure II.18 – Impact of the SE size on the result: (a) result using a SE of size 7

pixels, (b) result using a SE of size 14 pixels, (c) result using a SE of size 21 pixels,
(d) section along the z axis result using a SE of size 7 pixels, (e) section along the z
axis result using a SE of size 14 pixels and (f) section along the z axis result using
a SE of size 21 pixels

each line, it allows to deal with the noise occurring on it while preserving collagen
fibers. The uni-dimensional top hat works the same as the 3D one except that the
structuring element is also uni-dimensional and we apply it on along the z axis. It
can be expressed as:

WTH(Im(xi, yj, z)) = Im(xi, yj, z)− (Im(xi, yj, z) ◦ SE) (II.10)

where i,j ∈ 0...1023 which corresponds to the dimension of the images. This way, we
focus more on the noise present in the z direction.

Tests on different stacks using different sizes of SE were conducted and the results
are quite satisfying. With a structuring element of a size equal or slightly higher than
the fiber’s depth, the recovering of collagen fibers works well. In fact, this configura-
tion allows to keep collagen fibers and delete the noise occurring in each line along
the z axis. Figure II.19 shows an example of stack before and after the application
of the 1D top-hat transform. The shown results corresponds to structuring element
of a size of 12 pixels. The irrelevant fibers were deleted. In addition, from figures
II.19c and II.19d, one can clearly see the fibers without all the noise present in the
original image.

In figure II.20 we present another example of stack where we applied a 1D WTH
of a size of 12 pixels. Here, we chose randomly the slice to show. If we compare
figures II.20a and II.20b, we may think that the uni-dimensional top-hat transform
suppresses important information. However, figures II.20a and II.20b, which corres-
pond to a 3D view of the entire stack, show that our transform keeps the necessary
information to recover a good 3D reconstruction and thus, a proper segmentation
of the collagen fibers.

Several tests were conducted on different stacks and with different SEs. 1D WTH
works well on all stacks. However, one should pay attention to fibers continuity that
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(a) (b)

(c) (d)

Figure II.19 – (a) original image, (b) result after 1D WTH, (c) section of the
original stack and (d) section of the 1D WTH resulting stack

may be impacted by the size of the SE.

II.7.1.3 Comparison

The result of the 3D top-hat presents more noise than the result of the 1D top-
hat, see figure II.21. In fact, by analyzing figure II.21a, one can clearly see that the
3D version keeps more fibers that the 1D WTH. However, the visual analysis of the
original stack confirms that the fibers kept by the 3D WTH are not relevant to the
slice we are studying. Thus, 1D WTH keeps the needed information in the 2D plan
and suppress most of the noise which makes the fibers more distinguishable for the
human eye.

In addition, when focusing on stacks sections on x = 512 and along the y axis, it
is obvious that the fibers section are sharper and the noise is less present after the
application of 1D WTH than with 3D WTH.

II.8 Combination of both techniques

Because of the artifacts that may be introduced by the directional filters, it is
wiser to apply the top-hat transform before the application of the directional filter in
order to limit the noise as much possible. In fact, when applied subsequently, those
two techniques ensure a good reconstruction of the fibers with a minimum noise.
Therefore, it is possible to apply once again a top-hat transform but this time in
3D after the directional filter. This way, the artifacts introduced by the directional
filter are reduced. Figure II.22 shows the results after the application of each filter.
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In this example, we used a 1D top-hat transform of size 11, a directional filter of
length 120 and covering 101 directions as well as a 3D top-hat transform of size 2.

By reducing the noise, the 3D directional filter introduces less artifacts. Meanw-
hile, it may add some smoothing effect which can be seen when sectioning the stack
as well as some artifacts caused by the considered high number of directions. This
issue can be dealt with by using a 3D white top-hat transform. A small size of the
structuring element for the 3D top-hat transform is chosen to reduce the noise as
much as possible. This way, we recover a perfectly reconstructed fiber which can be
later segmented easily.

II.9 Effect of the used filters on the collagen volume
fraction

Because some information related to the stretch of the tissues during mechanical
load are missing, in this section, we decided to work on 3D collagen SHG images
of rabbit carotid artery provided by Krasny et al. [Kra+17]. In this dataset, we
have multiple stacks which were captured under different loads. The idea here is
to implement the top-hat transform with several sizes and to see its impact on the
collagen volume fraction. In order to calculate the volume fraction, the stacks were
segmented using Otsu’s thresholding method after the application of each top-hat
transform.

Furthermore, it is necessarily to establish a relationship between the volume
fraction and the load applied on the aortic tissue. For this matter, we assume that
the volume fraction of collagen fibers remains stable regardless of the mechanical
load. In this case, the volume of the aortic tissue does not vary. This means that,
when under load, the length of the specimen increases while the width and the depth
vary accordingly. Thus, in terms of images, the x and y dimensions do not change
since we are focusing on a small portion of the specimen. However, the z dimension
should decrease with respect to the applied mechanical load. Unfortunately, it is not
the case for some stacks. Figure II.23 shows two examples of the volume fraction
evolution according to the size of the top-hat structuring element and the applied
load.

One can notice in figure II.23 that, for each slice, the different curves have almost
the same shape. But, unlike what is expected, there is no intersection point between
all of them. From both figures II.23a and II.23b, one can say that the volume frac-
tion drastically decreases when the mechanical load increases. This proves that the
previous assumption claiming that the volume fraction is constant is not valid. In
fact, even visually, one can clearly see that there is less collagen fibers when the spe-
cimen is under high loads. Besides, it is interesting to mention that, for some aortic
tissue, the captured stacks according to different loads seems to not correspond to
the exact same portion. The displacement during the acquisition may also have an
impact on the volume fraction since we are comparing two stacks of two different
specimen portions. To properly study the evolution of the volume fraction, it may
be judicious to redo the acquisition while paying more attention to the portion to
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capture. Unfortunately, for time consideration, that was not conducted in this PhD
work.

II.10 Conclusion

In this chapter, we presented some new approaches to deal with the artifacts
occurring in SHG images. The 3D directional filter showed satisfying results in re-
constructing discontinuous collagen fibers. For the noise removal, we propose to
perform a white top-hat transform on the SHG images. The uni-dimensional WTH
gives excellent results in deleting the majority of the noise while keeping all the nee-
ded information to properly reconstruct a 3D view of the collagen fibers. This way,
the segmentation becomes easy to perform. Besides, the combination of the WTH
and 3D directional filters gives good results in both fiber reconstruction and noise
reduction. The application of a 3D top-hat transform after the directional filter al-
lows to deal with the artifacts introduced by the directional filter. With this in mind,
the choice of the size of the structuring element of the WTH is really important in
order to keep a consistent volume fraction. That is why, we conducted some tests
on rabbit carotid arteries to evaluate the effect the size of the structuring element
of the WTH on the collagen volume fraction. Unfortunately, these tests were not as
conclusive as we expected.
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(a) (b)

(c) (d)

Figure II.20 – (a) Original crop, (b) Result after applying 1D WTH of size 12 (c)
3D view of the original crop (d) 3D view of the crop after applying 1D WTH of size
12
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(a) (b)

(c) (d)

Figure II.21 – (a) Result after applying 1D WTH, (b) Result after applying 3D
WTH (c) Section in the middle of the stack after the application of 1D WTH and
(d) Section in the middle of the stack after the application of 3D WTH

(a) (b) (c)

(d) (e) (f)

Figure II.22 – Results of the consecutive application of directional filters and top-
hat transforms: (a) result using a SE of size 11, (b) result after using a 3D directional
filter, (c) result after applying a 3D top-hat of size 2, (d) section of the fiber in (a)
along the z axis, (e) section of the fiber in (b) along the z axis and (f) section of the
fiber in (c) along the z axis
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(a)

(b)

Figure II.23 – Two examples of the evolution of the collagen volume fraction
according to the size of the top-hat structuring element

65



Chapter II. From raw to enhanced images: A story to tell

66



Chapter III
Quantitative analysis of SHG images:

A state of the art

Contents of the chapter

III.1 Résumé du chapitre . . . . . . . . . . . . . . . . . . . . . . . 68
III.2 Abstract of the chapter . . . . . . . . . . . . . . . . . . . . . . 68
III.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
III.4 Goals behind the quantitative analysis of collagen fibers . . . . . . . . 69
III.5 How can quantitative information from SHG images be extracted? . . . 70

III.5.1 Image transformations . . . . . . . . . . . . . . . . . . . 70
III.5.1.1 Fast Fourier Transform (FFT) . . . . . . . . . . . . 70
III.5.1.2 Wavelet Transform . . . . . . . . . . . . . . . . . 71
III.5.1.3 Radon Transform . . . . . . . . . . . . . . . . . 72
III.5.1.4 Hough Transform (HT) . . . . . . . . . . . . . . . 73
III.5.1.5 Summary . . . . . . . . . . . . . . . . . . . . . 73

III.5.2 Information selection and extraction . . . . . . . . . . . . . 76
III.5.2.1 Spatial information selection. . . . . . . . . . . . . 76
III.5.2.2 Statistical features extraction . . . . . . . . . . . . 79
III.5.2.3 Summary . . . . . . . . . . . . . . . . . . . . . 82

III.5.3 The case of deep learning . . . . . . . . . . . . . . . . . . 86
III.5.3.1 Definition. . . . . . . . . . . . . . . . . . . . . 86
III.5.3.2 Basic principles . . . . . . . . . . . . . . . . . . 87
III.5.3.3 Possible applications . . . . . . . . . . . . . . . . 89

III.6 Information to be extracted from SHG . . . . . . . . . . . . . . . 90
III.6.1 Geometric information (orientation, waviness) . . . . . . . . . 90

III.6.1.1 Scale of measure . . . . . . . . . . . . . . . . . . 90
III.6.1.2 Input data nature (2D / projected 3D / 3D) . . . . . . 94
III.6.1.3 Output data nature . . . . . . . . . . . . . . . . 95

67



Chapter III. Quantitative analysis of SHG images: A state of the art

III.6.2 Composition information (density) . . . . . . . . . . . . . . 95
III.6.2.1 Scale of measure . . . . . . . . . . . . . . . . . . 95
III.6.2.2 Input data nature (2D / projected 3D / 3D) . . . . . . 96
III.6.2.3 Output data nature . . . . . . . . . . . . . . . . 96

III.6.3 Morphologic information (fiber’s size) . . . . . . . . . . . . . 96
III.6.3.1 Scale of measure . . . . . . . . . . . . . . . . . . 97
III.6.3.2 Input data nature (2D / projected 3D / 3D) . . . . . . 97
III.6.3.3 Output data nature . . . . . . . . . . . . . . . . 98

III.6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 98
III.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

III.1 Résumé du chapitre

Les fibres de collagène représentent le composant majeur de la matrice extra-
cellulaire chez les mammifères. Par conséquent, l’étude de ces fibres est importante
en vue de la caractérisation des tissus de connection. La microscopie basée sur la
génération de seconde harmonique a souvent été utilisée pour acquérir des images
de ces fibres à partir de tissus biologiques. L’analyse quantitative de ces images
permet une fiable caractérisation des fibres de collagène. Plusieurs techniques ont
été développées afin d’extraire des informations relatives aux fibres à partir d’images
de seconde harmonique. Le présent état de l’art couvre les principales méthodes de
traitement d’images qui ont servi à l’analyse quantitative d’images de microscopie
de seconde harmonique ainsi que les différentes métriques pouvant être extraites de
ce type d’images.

III.2 Abstract of the chapter

Collagen fibers represent the major component of the extracellular matrix in
mammals in general. Thus, studying it is important to characterize connective tis-
sues. For this matter, SHG microscopy was often used to capture these fibers in
biological tissues and quantitative analysis of SHG images offers a reliable charac-
terization of them. Different approaches have been developed in order to extract
information from SHG images. This state-of-the-art covers the different image pro-
cessing techniques used to quantitatively analyze SHG images as well as the multiple
quantitative metrics that can be extracted from this type of images.

III.3 Introduction

Collagen fibers ensure keeping the arteries in general and the aorta in particular
strong and holding it together. Understanding their geometry, morphology, compo-
sition and behaviour is a challenge facing the scientific community. In the literature,
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multiple image processing techniques were used for this purpose. These techniques
can be divided into two different categories namely techniques used to transform
the image into another domain where it is possible to extract some quantitative
information, and techniques aiming at selecting and extracting information directly
from raw or pre-processed images. Meanwhile, these techniques did not include deep
learning which, despite its great potential, is not widely used on SHG images.

It is important to mention that the choice of the image processing technique
to use is very dependent on the information we want to extract or estimate. In
fact, it depends on the scale one wants to analyze (i.e. global or local information).
For example, regarding orientation estimation, the Fast Fourier Transform (FFT) is
often used. It allows to recover a distribution of orientations describing the fibers in
the considered image. On the other hand, for more local metrics like fiber sizes and
lengths, statistics are often used.

In the present chapter, a focus is made on the analysis of those SHG images
of collagen fibers and the different techniques that have been developed to extract
information aiming at characterizing these fiber networks. A special emphasis is put
on the accurate quantification of several quantities such as the fiber orientation, wa-
viness and dimensions in addition to the collagen density. To this aim, the chapter
is organized as follow: first, we will cover the question of how to extract quantita-
tive information from collagen SHG images by describing some of the main image
processing techniques used in the literature. Then, we will give a brief introduction
of deep learning and the different possibilities it offers. Finally, we will go through
the literature to present the used techniques and categorize them with respect to
the information we want to extract from SHG images.

III.4 Goals behind the quantitative analysis of col-
lagen fibers

The quantification of collagen fibers in biological tissues in general and in the
arterial wall in particular can be used for different aims:

— For mechanical characterization: As introduced in section 2 of the first chapter,
the orientation of collagen fibers can be taken into consideration to model
the mechanical response of the considered specimen in the best way possible
[HGO00 ; Mor+21].

— For organizational characterization: It is possible to follow the evolution of
collagen fibers orientations when a biological tissue is under a mechanical load
which can help with understanding the behaviour of the sample through aging
and potential pathologies [GMM18 ; Bay+09].

— For morphological characterization: In fact, by quantifying collagen fibers fea-
tures (length, diameter), it is possible to understand the impact of aging on
the micro-structure [Wu+11 ; Wu+16].

— For composition characterization: It is possible to use the density of collagen
in certain biological tissues and compare it with other samples to identify
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cancerous cells [Hom+08 ; Ros+20].

III.5 How can quantitative information from SHG
images be extracted?

The study of collagen fibers in the aortic wall is based on quantitative analy-
sis of these micro-structures. For this matter, there are plenty of image processing
techniques that help deducing and extracting important metrics from SHG images
of collagen fibers. These techniques can be divided into two categories: (i) tech-
niques based on image transformations where images are transformed into other
representations and (ii) techniques aiming at selecting and extracting information
from raw images. In this section, we will exhibit some of the main methods used to
quantitatively analyze collagen fibers from SHG images.

III.5.1 Image transformations

A strong interest has been shown in signal decomposition because of the uneven
distribution of signal energy in the frequency domain. It consists in dividing the
signal spectrum into its sub-spectra, which are then treated individually [Aka01].
Signal decomposition has been used for many applications such as compression and
feature extraction. For image analysis, and particularly for studying the collagen
fibers in SHG images, several image decomposition methods have been used: the
Fast Fourier Transform (FFT), the Wavelet Transform (WT), the Radon Transform
(RT) and the Hough Transform (HT). Those methods will be summed up in table
III.1.

III.5.1.1 Fast Fourier Transform (FFT)

The FFT is an efficient method to study the distribution of the pixels in an image
in general. The FFT image represent a map of spatial frequencies of the initial image.
It can be used with SHG images of highly oriented collagen fibers or not.

The Fourier Transform (FT) was initially used to characterize linear systems and
to identify their frequency components that make a continuous waveform [Ber69].
To process images, the Discrete Fourier Transform (DFT) is used. This transform
shares most of the continuous FT properties except that it is performed on finite
intervals.

The DFT coefficients can be computed by the Fast Fourier Transform (FFT)
which is a computationally cheap and fast algorithm originally introduced in 1965
by Cooley and Turkey [CLW69]. Different approaches can be chosen to compute
the FFT [Rad68 ; Blu70 ; Bru78 ; Riv77]. For instance the Rivard [Riv77] algorithm
decomposes the 2D FFT into two successive one-dimensional FFT.

Let f be the discrete function for which we want to compute the DFT. In one-
dimensional space, the input of this function represents the time. The result of the
DFT of f is a function of frequency.
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It consists in combining vertical and horizontal 1D DFT of an array into one 2D
transform that makes sense. One can first perform a 1D DFT over horizontal lines
of an image (figure III.1). The result is a matrix M where the first column contains
the zero frequencies which represent the average value of the intensity of each line.
The kth column represents the k − 1th order harmonics of the line. Following this
scheme, we are able to describe the intensity changes in the horizontal direction
without taking into consideration the vertical changes [Zon04].

(a) (b) (c)

Figure III.1 – (a) Second derivative of a Gaussian kernel, (b) Ellipsoid described
by the eigenvalues

To complete the 2D DFT, an additional 1D DFT is performed on the columns
of M. In fact, any column can be considered as a function at a constant frequency
and thus, one can apply a 1D DFT on it. This is possible because of the separa-
bility property of the DFT. The transform of any column of M is a spectrum of
constant amplitude harmonics that may be combined to recover the column again.
The zero-frequency component of the vertical 1D DFT is the average of all the
zero frequency components of the entire horizontal transforms. It corresponds to the
average intensity of the whole image.

The 2D FFT is an efficient operator to characterize an image and to capture
the variation of its texture (figure III.1b). However, the notion of space is lost when
the transition from space to frequency is performed. In fact, the 2D Fourier trans-
form gives information about global changes in frequency without any knowledge
regarding the section of the image corresponding to the frequency’s change. Besides,
Fourier transform may not work accurately to reconstruct an image which is highly
non-smooth [JH13].

III.5.1.2 Wavelet Transform

Wavelet methods have become a powerful tool in image processing during the
last twenty years. This is due to their ability to analyze non-stationary structures
and characterize local properties. An image is mapped to a phase space which is pa-
rametrized by a scale/size/resolution and a time/space parameters. Wavelet trans-
form is an alternative to the Fourier transform which characterizes the image in a
time/space frequency space [Dah+08].

The word “wavelet” is synonym to “small wave”. It was first introduced by Gross-
mann in 1984 [GM84]. It is introduced as an alternative to Fourier series and an
elegant multi-resolution signal processing tool thanks to its ability to naturally vary
the time-frequency resolution [Aka01]. It is a mathematical function of zero average
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used to divide a function into components at different scales. Each scale is computed
using a specific wavelet generated from an initial function named mother wavelet by
dilation and translation. Figure III.2 shows some frequently used mother wavelets
[SHB08]. These functions are defined in 1D as:

ψ(a,b)(t) =
1√
a
ψ(
t− b

a
) (III.1)

where a and b are the dilation and translation parameters. The dilation allows
to carry out a multi-scale analysis and enables to capture small details. Thanks
to this feature, wavelet transforms can be used for filtering, feature detection and
compression.

Figure III.2 – Famous wavelets

It is possible to perform a wavelet decomposition of an image (in 2D or even
for higher dimensions) in order to compress the data or to obtain a vector of fea-
tures which characterizes the data in a basis of wavelet. It is helpful to capture the
orientations changes in an image. For this matter, we need to perform a 2D Dis-
crete Wavelet Transform (DWT). As for the 2D FFT, it can be generated using the
horizontal and vertical 1D DWT. In the case of images, the transformation scale
in both direction is usually the same which simplifies the computations and gives
square transforms.

The main advantages of the wavelet transform is that it provides a localiza-
tion in both space and frequency domains. The wavelet transform allows to capture
small and coarse details. Indeed, wavelet transforms over-perform traditional Fou-
rier transforms in representing functions with sharp peaks discontinuities and in
correctly decomposing and reconstructing non-stationary, non-periodic and finite
signals [JH13]. In addition, it is possible to recover a good approximation of the
initial image with few components which is not the case of the Fourier Transform. It
can also be used to detect discontinuities and irregularities in signals. However, this
technique is computationally expensive for fine decomposition. The choice of the
mother wavelet and the number of decompositions can highly influence the result.

III.5.1.3 Radon Transform

The Radon transform is a mathematical transformation based on projections
which is the basis of Computed Tomography (CT). It can also be used to detect
edges. For SHG images, the Radon transform was usually used on the result of a
FFT of the image to detect the fibers orientation.

The Radon transform consists in performing different projections of an image
according to different angles. The resulting projection corresponds to the line integral
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(i.e. the sum of the pixels intensities in every direction) [Dea07]. For an image f(x,y),
its radon transform can be expressed as:

RT (ρ, θ) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(ρ− x cos θ − y sin θ)dxdy (III.2)

where δ is the Dirac function and ρ = x cos θ + y sin θ

In other terms, the RT maps an image from Cartesian coordinates to polar ones.
This transform can also be applied to 3D images. In this case, the integral is taken
over planes. The RT data is usually referred to as sinograms.

The use of a FFT gives qualitative information about the fibers orientations. To
deal with this issue, it is possible to apply an RT on the result of the FFT. Since it is
based on projections, it gives quantitative information for each considered angle. It
is important to have a sufficient number of angles to get accurate results in detecting
and extracting the fiber orientations.

III.5.1.4 Hough Transform (HT)

The Hough transform [Hou62] was first introduced to detect lines in images. this
algorithm was then simplified by duda et al. [DH72] and generalized to detect circles
and curves.

The original HT algorithm assumes that every line in an image can be represented
by a unique couple (slope, intercept). Duda et al. [DH72] changed this representation
by the couple (angle, distance), where the angle and the distance correspond to the
polar coordinates of a considered line in the image (the distance being the distance
between the image origin and its projection on the line). A matrix called accumulator
is created where its axes correspond to the parameters characterizing the line. Thus,
for each pixel of the image, the accumulator is incremented for all possible lines
passing through that pixel. The presence of an edge corresponds to a high value
position in the accumulator [Lea92]. A reconstruction of the initial image is possible
by retrieving the parameters corresponding to the peaks in the accumulator.

The HT gives good results when applied on an image where the edges were
already detected. It works fine with noisy data. This method allows to reconstruct
an edge if it is discontinuous when performing the edge detection algorithm. As a
consequence, the application of the HT needs a prior step to detect the edges but
does a good job in correcting those detected edges. For linear objects, the HT is
a good method to detect edges orientation directly from the accumulator matrix.
However, its effectiveness depends on the considered image: if two objects are aligned
in an image, the HT will exhibit them as one.

III.5.1.5 Summary

The advantages and drawbacks of image transformations previously cited are
applicable to SHG images. In fact, this type of images can be seen as an object
(collagen fibers) and a background. The image’s quality can vary with the noise and
the blur. Thus, to analyze collagen fibers, one needs transformations that are able
to extract information from SHG images. Some of these transformations certainly
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depend on how fine one wants the analysis to be. In table III.1, we present a summary
on the advantages and drawbacks of the previously mentioned transformations.
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Table III.1 – Image transformation methods

Methods Output Advantages Drawbacks
FFT Complex represen-

tation of the image
in the frequency do-
main

Captures the variation of the image
texture

Loses spatial information

Doesn’t work properly with highly non-
smooth images

WT Decomposed image Provides a localization in both space
and frequency domains

The result highly depends on the choice
of the mother wavelet

Detects discontinuities and irregulari-
ties

Is computationally expensive for fine
decomposition

Captures small and coarse details
RT Projection data Gives information with respect to the

angle of projection
Depends on the chosen number of
angles
Is computationally expensive for fine
analysis

HT Polar map of the
image

Corrects properly the detected edges Works better on detected edges

Can be used to estimate objects orien-
tations

Doesn’t distinguish between objects if
they are aligned
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III.5.2 Information selection and extraction

After the pre-processing of an image, the SHG image analysis needs to extract
as much valuable information as possible. For this matter, it is possible to extract
these information through a spatial characterization or a statistical one. For both
types of characterizations, many methods can be used. Some of them are detailed
hereafter and will be summed up in table III.2.

III.5.2.1 Spatial information selection

To analyze an image, it is important to consider the spatial distribution of the
pixel intensity. This is possible through several techniques: (i) segmentation, which
transforms an SHG image into a binary image where only the collagen fibers are
represented; (ii) skeletonization, which determines the center line of the collagen
fibers in the SHG images and thus, allows to extract geometrical information about
the fibers.

III.5.2.1.a Pixel-based segmentation

This type of segmentation aims to gather pixels corresponding to an object and
mark them. It is based on their intensity similarity and spatial proximity. The (au-
tomatic) thresholding segmentation is the easiest method for image segmentation.
Otsu thresholding algorithm [Ots79] is the most used one, especially on SHG images,
because of its simplicity in addition to the fact that it works particularly well when
the considered image contains two classes (an object and the background). Its prin-
ciple is to find the threshold that maximizes the interclass variance of a two-classes
histogram. In addition to this method, several other approaches exist to compute
the threshold such as entropy-based thresholding [Kha+15], [LLF04], minimum error
thresholding [KI86], moment-preserving thresholding [Tsa85] and fuzzy set threshol-
ding [Tiz05]...

Thresholding decomposes the image gray scale information with respect to gray
level of targeted objects. There are two types of thresholding segmentation: global
and local. The global threshold looks at the global picture: it divides the image into
two regions (background and target) regardless of the positions of objects. On the
contrary, local thresholding looks for a threshold in a neighborhood around any pixel
of the image.

The main advantages of thresholding techniques are their simplicity and their
fast computation. This type of segmentation works well when the image’s histogram
presents two or more peaks. However, it is highly sensitive to the tackled problem
and is specific to the considered image. In addition, it takes only into consideration
the intensity of the pixel/voxel and not its spatial information which makes this
method highly sensitive to noise [YH17]. In fact, small areas or isolated pixels can
be classified as independent regions even though they represent noise or belong to
another region. Besides, to segment SHG stacks where the pixels intensity decreases
with depth, it is complicated to find a threshold that takes into consideration that
phenomenon.
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III.5.2.1.b Region-based segmentation

Unlike pixel-based segmentation which classifies a pixel based on its intensity
value without taking into consideration the spatial context, region-based segmen-
tation looks for pixels having similar features. Several techniques belong to this
category such as region growing algorithm [AB94 ; MGM06], split and merge al-
gorithm [DR03 ; CA10] and clustering [TS11]. Our interest is paid to the region
growing algorithm since it has been used in quantifying SHG images of collagen.

First, the user selects initial seed points to be in a region. Then the algorithm
checks iteratively if the adjacent pixels should be added to the region according to
one or several of available criteria (gray scales texture, intensity, color, etc.) [YH17].
The algorithm then continues with the added pixels; it is an iterative algorithm.
Many criteria can be used to determine if a pixel belongs to a region . For example,
one can consider the difference between the considered pixel and the seed point
values and check if it is smaller than a given value. Moreover, it is possible to choose
more than one criterion for regional growth segmentation

Region-based segmentation allows to partition the image into sub-regions. Ho-
wever, those methods depend on the choice of seed points and do not work properly
on non-smoothly varying regions. Besides, a threshold is needed as a criterion to
construct the regions, thus, its choice is important. Finally, it is a local technique
with no global view on the image and it is sensitive to noise which may lead to an
over-segmentation.

III.5.2.1.c Edge-based segmentation

An important feature carrying information about objects is their borders i.e.
the discontinuities in the pixels’ intensity. To detect the gray levels discontinuities,
the most common approach is based on detecting edges, which represents a set of
connected pixels forming a boundary between two regions [GW18]. There is a gap
between the pixels values of two adjacent regions. Those discontinuities can be either
step edges or line edges. Step edges are characterized by the sudden change in the
pixel intensity from a region to another. Line edges correspond to a sudden change
of the pixel values followed by another sudden change to return to the initial value
within a short distance [SR09]. However, in real images, it is impossible to find those
types of edges because of the smoothing introduced by the optical systems (the effect
of the PSF of the used microscope in the case of SHG images for example) or by
the low frequency components of images. One can find ramp edges instead of step
edges and roof edges instead of line edges, where the pixel intensity changes occur
over a finite distance, figure III.3.

Such gaps can usually be detected with the help of differential operators such
as the Sobel operator [Sob14], the Laplacian and the Laplacian of gaussians (also
called Marr-Hildreth operator) [AR05], the Prewitt operator [Pre70] or the Kirsch
operator [Kir71]. More sophisticated techniques such as the Hough transform were
also used to determine image edges [Hou62]. Once the edges are detected, mathe-
matical morphology operators (erosion, dilation, opening, closing, etc.) are used to
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Figure III.3 – Edges types: (a) Step edge (b) Line edge (c) Ramp edge and (d)
Roof edge

fill the targeted regions and, thus, segment the image.
Edge-based segmentation is a high-level segmentation approach similar to the

way humans perceive an image. It works well on images with high contrast. However,
it is highly sensitive to noise. It is centered on local information and does not take
into consideration the global view. In addition, it doesn’t work well to detect corners
and when the contrast is low.

III.5.2.1.d Fast Marching Method (FMM)

The fast marching algorithm [MS96] allows to track objects boundary. It was
initially developed to follow an interface or contour propagating under a speed func-
tion F [Car10] and was then used in medical applications. The FMM is a discretized
and computationally optimized version of the level set method [OS88]. It aims at
spreading an initial surface until it covers the entire surface of interest (the collagen
fibers in our case) by solving the Eikonal equation:

|∇T |F = 1 (III.3)

where T(x,y) is the time when the curve crosses the point (x,y).
It is based on computing a distance map between the initial surface and its

surroundings. The surrounding points are divided into three regions: the accepted
points, the narrow band and the far region. Initially, the accepted point region is the
initial surface. The narrow band constitutes the closest pixel to the initial front. The
far region is what is left of the image. The Eikonal equation is solved on the edge
points of the initial surface. The points that satisfy this equation are then added to
the initial surface and the same steps are applied again until there is no more points
that may be added to the accepted point set.

The algorithm gives good results when the image is very distinct from its back-
ground. Besides, the use of such algorithm does not need a prior setting of the
parametric representation of the surface contour to be followed: this technique is
robust with respect to the topology to be analyzed. However, it relies entirely on a
physical interpretation of the problem characterized by the isotropic front propaga-
tion of the initial surface [Cri09]. Besides, the use of the first-order neighbors (only
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four neighbors) introduces errors in the computation of the travel-time from a point
to another.

III.5.2.1.e CT-FIRE

The CT-FIRE is an algorithm introduced by Bredfeldt et al. [Bre+14] that en-
ables the extraction of fibers through their skeletons. It was developed to extract
collagen fibers from SHG images in order to estimate their orientation and geometric
information.

This algorithm is based on two steps. The first one is a filtering using Curvelet
Transform (CT). Curvelet filters were introduced by Starck et al. [SCD02] in order
to overcome the limitation of highlighting lines and edges. The curvelet transform
is a wavelet transform except that instead of the wavelets, curved functions called
curvelets are used. The second step consists in applying the fiber extraction algo-
rithm FIRE developed by Stein et al. [Ste+08]. It describes the fibers as a set of
n vertices and p paths. Every path corresponds to a fiber characterized by k ver-
tex identifiers (pi = n1

i;n2
i; ..., nk

i). The image is smoothed using a Gaussian filter
before segmenting it through thresholding. Then, for each pixel of the segmented
image, the euclidean distance map is computed. This map is used to identify the
center lines of the fibers. Once the center lines identified, short non relevant fibers
are deleted and close fibers are connected.

The CT step introduced in the CT-FIRE algorithm improved the result of the
fibers extraction compared to the classic FIRE algorithm [Ste+08]. It provides bet-
ter results when the collagen fibers are densely packed. However, for highly noisy
images, other pre-processing techniques may be needed before applying the CT-
FIRE algorithm. It also does not work well on images where the fibers are wavy and
present a lot of intersections.

III.5.2.2 Statistical features extraction

The analysis of an image texture covers the region-specific identification of hi-
gher order properties which are hard to detect visually. Texture analysis leads to
the definition of statistically uniform regions of an image based on the intensity
distribution [Dud+19]. Statistical approaches that have been used to analyze SHG
collagen images can be divided into three categories: first order statistics, second
order statistics and directional statistics.

III.5.2.2.a First-Order Statistics (FOS)

First-order statistics estimates parameters derived directly from the image sta-
tistics. They are often used to simply describe the image intensity distribution. Ho-
wever, they ignore the spatial correlations between the pixels of the image. In other
terms, FOS describes the probability to observe a pixel having a certain intensity in
any position in the image. It includes intensity distribution histogram and standard
parameters such as mean, standard deviation, skewness and kurtosis (respectively
first, second, third and fourth statistical moments). Those metrics, in addition to
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second-order statistics have been used for example by Wu et al. [Wu+16] to extract
SHG image features changes that are associated to collagen aging process. In more
details:

— The intensity distribution histogram is a representation of the number of pixels
in an image with respect to their values. It is a useful tool to detect satura-
tion effects in an image (i.e. presence of pixels with maximum intensity), to
deduce the brightness (the image is bright if the histogram values are more
concentrated around high values) and to check the contrast (if the values of
the histogram are spread out without a noticeable peak);

— The mean, calculated from the pixels’ intensity or from the probability distri-
bution of the pixels’ intensity, is used to evaluate the presence of one texture
in the image. It consists in dividing the sum of pixels forming an image by the
total number of pixels. With this value, one can compare it to other neigh-
bouring pixels’ intensity to determine if they belong to the same texture or
not;

— The standard deviation captures how the pixels are spread out with respect
to their intensity. A low standard deviation means that the pixels’ values are
around the mean value. A high standard deviation means that the pixels’
values are dispersed from the mean value;

— The skewness evaluates the histogram’s lack of symmetry and allows to cha-
racterize the slope of the image histogram with respect to the central line. The
skewness of a normal distribution is equal to zero. A negative (resp. positive)
skewness denotes an image for which the majority of pixels have values smaller
(resp. greater) than the mean value. However, if the image data is multi-modal,
the skewness sign can be affected;

— The kurtosis describes how much a distribution is concentrated around a peak
(the mean) and allows to evaluate the efficiency of a denoising algorithm; There
is a relation between asymmetry and the value of the kurtosis. In fact, when
an image in asymmetrical, its histogram is wider, thus, its kurtosis is greater.

FOS are easy and fast to calculate. However, their interpretation is not always
simple. They give global information and cannot be used to quantify local informa-
tion (unless the initial image is divided into several ROIs).

III.5.2.2.b Second-Order Statistics (SOS)

Second-order statistics estimate parameters from the matrix generated by perfor-
ming a correlation between the image pixels. It studies, in particular, the topology
of one region compared to the image. Here we talk about texture analysis. This tech-
nique is usually used to describe and characterize a local area in an image through
the use of Gray Level Co-occurrence Matrix (GLCM) [HSD73] and some statistics:

— The GLCM evaluates the spatial relationships between the values of the pixel
intensity. It is a squared matrix of dimension equal to the number of gray levels
in the considered image (for example, 256 for 8 bit images). The parameters
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that will be presented subsequently [Iqb+21] can be calculated from the initial
image but they are more relevant when they are performed on the GLCM.

— The energy (also called uniformity) allows to evaluate the uniformity of the
image meaning that it detects disorders in the image textures. It is computed as
the square root of the sum of square elements in GLCM. When the considered
window is ordered, the energy is high;

— The inverse difference moment (IDM) measures the local homogeneity of an
image. It is more sensitive to the presence of elements near the diagonal in the
GLCM. When the IDM value increases, it means that the incidence of pixels’
pairs co-occurrence is enhanced which means that IDM is high when the image
is homogeneous. In other terms, its maximum is reached when elements in the
image are the same;

— The inertia (also called contrast) allows to study local variations in an image
by measuring the spatial frequency of the considered image. It represents the
difference between the highest and lowest intensities of the neighbouring pixels.
It is highly sensitive to large differences in the GLCM values and has a strong
correlation with the lowest and highest values in a ROI. An image having a low
inertia is characterized by a GLCM concentration term around the principle
diagonal. Inertia and the IDM are inversely correlated;

— The correlation characterizes the gray levels linear dependency on specified
pixels on an image (i.e. the repetitive nature of the texture element position).
Correlation between pixels implies that there is a linear relationship between
2 adjacent pixels within the considered window. A low correlation texture
means a low predictability of pixel relationships. Pixels are usually more highly
correlated with close pixels than with distant ones;

— The entropy focuses on the randomness of regions in an image with respect to
its neighborhood in terms of intensity distribution and thus, allows to detect
subtle variations in the GLCM. Low entropy values correspond to a uniform
and homogeneous image while high values correspond to unequal pixels in-
tensity. Complex textures usually have high entropy. Entropy is strongly and
inversely correlated to energy.

Texture analysis is widely used to measure a variety of characteristics or proper-
ties such as the way the studids material behaves and breaks, its structure etc. In
the case of SHG images, it helps with studying the morphology of collagen fibers.
Texture analysis can be performed on an entire image but it is more interesting to
use it on a localized area in order to capture morphological changes. This technique
allows seeing morphological modifications in the collagen structure (for example to
make a comparison between a benign and a malignant tumor) such as in [Mos+13]
but it does not give information about their geometric and composition information.
In fact, GLCM and SOS focus mainly on the relations between neighbouring pixels
which are suitable to study fiber local features.
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III.5.2.2.c Directional statistics

Directional statistics focuses on observations that have directions. These obser-
vations usually lie whether on the circumference of a circle (circular statistics) or
on the surface of a sphere or a hypersphere (spherical statistics) [LV17]. Statistical
analysis of directional data became more used after Fisher’s paper [Fis53] where
he explained the need to consider the curved nature of the sample space. Several
directional distributions emanated from Fisher’s contribution. They are based on
the extension of classical concepts from multivariate analysis (e.g. point estimation,
regression, multi-sample testing procedure) to directional setting [PG20 ; Mar+08 ;
MJ00].

In the following, we will focus on the Von Mises distribution which has been
used to extract quantitative information from SHG images of collagen fibers.

The Von Mises distribution is considered as a flexible circular distribution. It is
useful for a circle from a statistical inference point of view [MJ00]. It represents the
maximum entropy distribution for circular data when the first circular moment real
and imaginary parts are specified. It is characterized by two parameters, a location
parameter µ ∈ [−π, π] and a concentration parameter κ. κ is positive and it allows
to regulate the concentration of the distribution around µ. The probability density
function of a Von Mises distribution is defined as:

g(θ) =
1

2πI0(κ)
exp(κ cos(θ − µ)) (III.4)

where I0 is the modified Bessel function of order 0 and of the first kind. This distri-
bution was later generalized to higher dimensions by Von Mises and Fisher and thus,
was named von Mises-Fisher distribution. For a bivariate Von Mises distribution,
its probability density function is proportional to:

g(θ, ψ) ∝ exp(κ1 cos(θ − µ1) + κ2 cos(ψ − µ2)

+(cos(θ − µ1), sin(θ − µ1))A(cos(ψ − µ2), sin(ψ − µ2))
T )

(III.5)

The Von Mises distribution can also be referred to as the circular normal distri-
bution. To characterize collagen in SHG images, it is possible to evaluate the fiber
dispersion and its diameter by fitting a Von Mises distribution.

It is an interesting tool to study 3D images because it can be generalized to high
dimensions without using a lot of parameters. However, for SHG images of collagen,
this method assumes that all the fibers belong to a single family (i.e. having the
same orientation).

III.5.2.3 Summary

Same as for image transformations, the cited information selection and extraction
methods previously mentioned are well-suited for SHG images. CT-FIRE has even
been developed for SHG images. This type of images, which are composed of collagen
fibers and a background, is perfect for binary segmentation. Besides, the use of
statistics is very compatible with the nature of these fibers (undulated, straight,
noisy, discontinuous, etc.) since it allows to study their structure and texture. In
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table III.2, we present a summary of the advantages and drawbacks of methods
previously described.
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Table III.2 – Information selection and extraction methods

Methods Output Advantages Drawbacks
Thresholding Binary image Is simple and fast Is highly sensitive to noise

Works well for images having an histo-
gram with distinct peaks

Is specific to the considered image

Is a global method
Region-based seg-
mentation

Binary image Allows to partition the image Depends on the choice of the seed
points

Works properly on smoothly varying
regions

Is local technique with no global view

Edge-based seg-
mentation

Binary image Is a high-level segmentation approach Is highly sensitive to noise

Works well on images with good
contrast

Does a poor job detecting corners

FMM Segmented image Gives good results when the image is
very distinct from its background

Is a static technique

Is robust and fast The first-order nature introduces errors
in computation

CT-FIRE Fibers’ skeleton Works well on images of densely packed
collagen fibers

Needs sometimes some additional pre-
processing

FOS Statistical informa-
tion

Are fast and easy to implement Give global information

SOS Statistical informa-
tion

Capture changes in images Only give information on the fibers tex-
ture
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Methods Output Advantages Drawbacks
Directional statis-
tics

Mathematical func-
tion

Fit well the orientation distribution
profile of collagen fibers

Assume that the fibers follow one direc-
tion

Can be generalized to higher dimen-
sions with few parameters
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III.5.3 The case of deep learning

Recently, in all fields of image analysis and processing, deep learning has emerged
and has shown great results in different applications such as segmentation, regression
and classification. Certainly, the use of deep learning on 3D images and SHG images
is still limited but it shows promising results.

III.5.3.1 Definition

Deep learning is a sub-field of machine learning based on artificial neural networks
with more than one hidden layer. These networks were developed to mimic the
behaviour of the human brain by learning from a certain amount of data to do
a certain task (predict, segment, classify, etc.). There are three different types of
learning:

— supervised learning: it is an approach to make a system learn from a labeled
dataset. The system is trained until it can detect interesting features and the
relationship between the input data and the output labels. It is well suited for
classification and regression applications. It aims at giving a meaning to the
data in a specific context. Here, we need an expert to label the data correctly.
Supervised learning is interesting to implement especially because it can give
human-like judgment on the data. However, if the system is not trained with
enough data in terms of number and categories, it will not perform well.

— unsupervised learning: unlike the supervised learning, for unsupervised lear-
ning, we do not have the equivalent of output label. It aims at modeling the
underlying structure or distribution in the data in order to learn more infor-
mation about the data. It is referred to as unsupervised because there is no
need to have an expert to train the algorithm. In fact, the algorithm learns by
its own. It is good for clustering and association applications. Certainly, it is
interesting to use unsupervised learning when no labeled data and no expert
are available. However, it can be slow and computationally complex. Besides,
the risk of inaccurate results is higher and a human intervention is needed to
validate the output.

— reinforcement learning: Inspired from behavioural psychology, it allows the
system to learn from an interactive environment using feedback from its ac-
tions and experiences. It aims at learning the best action model to maximize
the agent reward, the reward corresponding to the feedback from the environ-
ment. The feedback can obviously be rewarding positive behaviour of punishing
negative behaviour. It is interesting to use reinforcement learning because it
shows great results in learning from its environment. However, it presents some
drawbacks: it may lose too much time if it does not proceed to the best actions.

With the development of fast computers and powerful GPUs, even deeper and
more efficient neural networks have appeared. In fact, to ensure the proper functio-
ning of the proposed network, it needs to learn from a high amount of data that
covers all the possible changes related to our output. For this purpose, regarding
the hardware, we need more performing GPUs and preferably higher memory. This
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configuration allows the training of neural networks in a descent amount of time.
This way, deep learning networks can reach a very high accuracy and can be very fast
too. Besides, unlike other machine learning algorithms, deep learning performance
increases when the amount of data increases too.

III.5.3.2 Basic principles

Deep neural networks are composed of an input layer, an output layer and mul-
tiple hidden layers. Each layer contains several neurons. A neuron can be seen as
a mathematical function. It collects information following a specific architecture
and aims at mimicking how the human brains learn. The neuron has three compo-
nents: (i) a number of input connections with some weights, (ii) a number of output
connections and (iii) an activation function, see figure III.4.

Figure III.4 – Graphical representation of an artificial neuron

The mathematical model of the output signal of a neuron j is expressed as:

yj(wj, bj, xj) = φ(bj +
m∑
k=1

xjk.wjk) (III.6)

where xjk is the input signal from the neuron i to neuron j, xj = [xj1, xj2, ..., xjm]

is input signal vector of the neuron j, wj = [wj1, wj2, ..., wjm] is the corresponding
input weight vector, bj is the bias of neuron j, and φ() is a nonlinear activation
function. The bias aims at shifting the activation function but it can be critical for
proper learning. The activation function is a function aiming at helping the network
learn complex patterns from the data. Basically, it is responsible of the nature of
the value one wants to feed to the following neuron. In other terms, for each neuron,
the activation function takes its input and convert it to a new value to transmit it
to the following neuron. The main feature of an activation function is that it can
introduce some non-linearity into a neural network. Among the classical activation
functions, the most straightforward is the Heaviside step function which indicates
if a neuron is firing or not. The choice of the activation function depends on the
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desired objective (computational power, analytic tractability, and the type of the
desired output signal (logistic or continuous) [Che+17]). Regarding the weights, they
emphasize the most relevant inputs and penalize the less relevant inputs.

There are many types of neural networks. One can cite:

— Feed-forward Neural Network (FNN): It is the most classical architecture of
neural networks. Here, there are only connections between each neuron and the
neurons in the following layer. It is a unidirectional connection and there is no
connection between neurons in the same layer. This explains the designation
"feed-forward". This way, information propagates from the input layer to the
output layer through the hidden layers. Figure III.5 shows an example of a
simple FNN with two hidden layers.

Figure III.5 – Graphical representation of a simple FNN

— Recurrent Neural Networks (RNN): They are usually used when the inputs and
outputs of a certain neuron are dependent. This architecture allows connections
between a neuron in a certain layer to a neuron in previous layers. This way,
the output of the neural network not only depends on the current input but
also on the historical input. In fact, it uses sequential information and exploits
dynamic temporal behaviors. It can be seen as an artificial neural network that
has memory. RNNs are usually used in time-related applications. However the
learning process may take more time than for FNNs because each output of
the activation function depends on data series recorded in RNNs.

— Spiking Neural Networks (SNN): SNNs are inspired from biological neural
networks and the neuron activation. In fact, in biological neural networks,
the communication between neurons is done through spikes. The voltage of
a neuron is disrupted by incoming signals. Then, when the voltage reaches a
certain threshold, the neuron transmits a short and high signal, which explains
the designation "spike". After firing a spike, the neuron enters in a rest moment
during which it cannot fire again. The use of this kind of spikes can improve the
dynamics of the SNN. Thus, SNNs are faster than FNNs or RNNs and have
higher information carriage capacity. In fact, SNNs can use lesser number
of neurons than traditional neural networks. Besides, they can be used for
real-time applications. However, the training process can become more time-
consuming and more challenging.
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III.5.3.3 Possible applications

Deep learning can be used for different purposes. In fact, it mainly depends on
the result we want to achieve. Here, we will focus on three applications, namely
image generation, regression, classification and segmentation. The list is obviously
non exhaustive.

III.5.3.3.a Regression

Regressive networks are often used for prediction and estimation purposes. In
this section, we will obviously focus on 2D and 3D images, which corresponds to
the SHG images data. Regarding the output, it is a vector of one or multiple values
(corresponding to the number of neurons in the output layer. The network is usually
composed of 2 parts: convolutional layers and fully connected layers. The convolu-
tional layers aims at convolving the input and passing it to the next layer. This
way, the network is able to reduce the dimensions of the input and recover a feature
vector which capture all the needed information to describe the initial image. This
vector is then fed to some fully connected layers which aim at giving an estimation
of a certain measure to be extracted. For example, regarding SHG images of collagen
fibers, regression can be used to estimate the average fiber orientation, the average
fiber diameter or the density. With this in mind, it has to be mentioned that, as
far as we know, there were no publications that used regressive models to estimate
measures from SHG images of collagen fibers. Through our literature review, we
did not find any paper that used a regressive deep network to estimate information
about collagen fibers. However, as an example of regression, on can cite [LLS17]
where the author used a deep regressive network to estimate stress-strain responses
of a chemically-treated collagenous tissue through SHG images.

III.5.3.3.b Classification

Classification consists of calculating a probability that an image represents a cer-
tain class. The common types of inputs are 2D or 3D images. Regarding the output,
it is a vector of N probabilities, N being the number of classes to be considered.
Classification neural networks are also composed of two parts: some convolutional
layers to extract a feature vector from the input and some fully connected layers
which map the feature vector to a vector of probabilities. For this matter, the soft
max function is usually used as activation function of the output layer. Classification
using deep learning is often used in medical imaging. For example, classification net-
works can be used to say if the images presents some anomalies or not (e.g. cancer).
As far as we know, there are no direct application of classification on SHG images of
collagen fibers. With this in mind, one can see the problem of orientation estimation
as a classification problem. In fact, one can choose N orientations and classify the
images with respect to fibers orientations. Regarding SHG images of collagen, clas-
sification represents the application that was mostly used. One can cite the work of
Huttunen [Hut+18], where the authors classified SHG images using a CNN whether
they represent healthy or cancerous ovaries.
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III.5.3.3.c Segmentation

Segmentation consists in separating the different components of an image, like,
for example, separating the object from its background. Again, inputs consist in 2D
or 3D images. Regarding the output, it is an image with the same dimensions as the
input. Classification neural networks are usually composed of two major parts: the
first one is based on convolution and aims at extracting a feature vector from the
input and the second part is based on deconvolution and aims at reconstructing a
segmented image from the feature vector. To proceed to proper segmentation, the
number of elements that one wants to extract from the image has to be fixed (in
the case of SHG images, one can for example work with two elements which are the
collagen fibers and the background). Segmentation using deep neural networks is
often used in medical imaging and showed very good results. Performing algorithms
exist for both 2D and 3D images. One can cite the work of [Sch+19], where a
comparison of different 2D and 3D methods aiming at estimating local orientations
was proposed.

III.6 Information to be extracted from SHG

In order to analyze and understand how collagen fibers behave when they are
under a mechanical load, it is necessary to quantify them using some relevant in-
formation. In the literature, researchers focused on three types of information that
can be extracted from SHG images of collagen fibers: its geometry, its composition
and its morphology. However, they dealt with different types of input data (thus
the output data were different) at different scales of measure. In the present section,
we will exhibit how those information were extracted through the literature. It is
important to say that we only found one paper in the literature where the authors
used some deep learning to quantitatively analyze collagen fibers.

III.6.1 Geometric information (orientation, waviness)

A strong attention in the biomedical community is paid to geometric information
of the collagen fibers. Changes in their geometric characteristics when they are under
a mechanical load can actually be seen with a naked eye on SHG image, hence, the
will to quantify it. Besides, their arrangement has a strong impact on the tissue’s
bio-mechanics.

III.6.1.1 Scale of measure

Orientation, waviness and curvature are the important Geometric information
about collagen fibers. Orientation is usually calculated globally but sometimes, re-
searchers shows interest in specific regions in an image and therefore they focus
on the local directions. On the other hand, waviness and curvature are determined
locally.
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III.6.1.1.a Local characterization

The study of collagen fibers in biological tissues showed that those fibers are
crimped and undulated. Thus, it is important to characterize their shapes. For this
matter, several techniques have been proposed.

For the estimation of the fiber waviness, one needs to start by extracting the
fibers. Sugita et al. [SM17] proposed an automated algorithm to compute the wavi-
ness of the collagen fibers. For this purpose, they determined the centers of the fibers
as the pixels with a local maximum intensity. Then, they computed the length of the
fiber as the distance between all the centers of a same fiber. Finally, they estimated
the waviness as a ratio between the euclidean distance between the first and the last
centers of one fiber and its length.

The CT-FIRE algorithm [Bre+14] is one of the techniques used to improve the
images by extracting the fibers. Bredfeldt et al. used also their algorithm to extract
the collagen fibers and then estimated the waviness. CT-FIRE was also used by
[Bes+19] to extract the collagen fibers in renal cells carcinoma and by [Zho+17] in
gastric cancer in order to characterize their organization and their straightness.

It is also possible to segment the SHG images and extract the collagen fibers
using other methods such as the skeletonization. Koch et al. [Koc+14] proposed
a new approach based on the application of several filters before segmenting the
images. They used sequentially a CLAHE, a histogram adjustment and a Frangi
filter to reduce the noise and enhance the fibrous information. Then, a threshold
was applied to recover a binary image where the fibers are well defined. Finally,
they applied mathematical morphology operators to retrieve the fibers skeleton.

Techniques which were not initially developed for quantifying collagen in SHG
images were also used. The most known one is the NeuronJ plugin [Mei+04] of
ImageJ software. This plugin was designed to characterize neurons which have a
linear shape. NeuronJ was used for tracing the fibers and analyzing their waviness
[Zya+17 ; Cho+14], [Zei+13]. Besides, a 3D implementation of this technique was
proposed and tested on SHG images. For example, to determine the fiber arc length,
Hill et al. [Hil+12] proceeded to a reconstruction of the SHG stack using a fast
marching algorithm to trace the fibers.

Once an accurate extraction of the collagen fibers is reached, it is possible to
compute the waviness as a ratio between the euclidean distance between the starting
and ending points of a fiber and its actual length [Hil+12 ; Koc+14 ; APB19]. The
estimation of those distances is done manually using ImageJ (National Institutes of
Health, Bethesda, MD, USA) or Imaris (Bitplane, CT, USA).

The waviness in the 3D space was also investigated by Luo et al. [LCK17].
They proceeded to a 3D skeletonization based on the fast marching algorithm. The
waviness computation is similar to what has been explained before, except that the
considered points have 3D coordinates.

Regarding the local orientation, some interesting techniques were tested on colla-
gen gels and showed their efficiency. One can cite the work of Bayan et al. [Bay+09]
where they used the Hough transform on different small partitions of the SHG image
to determine the dominant local orientation of the considered fiber. The size of the
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partitions is chosen such as they are likely to contain a linear fiber. The SHG images
were pre-processed to delete the noise through an adaptive thresholding and the ap-
plication of an erosion and a dilation if needed.

It is also possible to evaluate orientations after fibers extraction. In [Koc+14],
the authors used the segmented skeleton to calculate the local orientation as the
angle of the tangent line between the first and last points in a considered segment.
Some other researchers used the FFT to evaluate the local orientation, [Siv+10 ;
RMT09 ; Amb+12a ; LAT12]. For example, Rao et al. [RMT09] focused on the pre-
ferred orientation and the maximum spatial frequency of some regions in the SHG
images. To determine those metrics, they computed the 2D FFT of the considered
regions. The FFT gives the perpendicular angle to the dominant direction. To have
a better quantitative approximation, one can fit the probability distributions of fiber
orientations using one Gaussian function [SM17]. It is also possible to apply a 3D
FFT on the entire stack to evaluate the fibers most frequent direction in the space
[LAT12]. However, the poor resolution of the SHG images in the third dimension
may have a bad impact on the result of the 3D FFT to estimate fiber directions in
space.

Wavelet transforms were also used for the direction’s estimation [Til+14]. The
properties of the wavelet transform allow to capture small details and thus estimate
correctly the orientation of the fibers. For this matter, the local coefficients of the
wavelet transform were calculated and then clustered using K-Nearest Neighbors
(K-NN) [Alt92] and Principal Component Analysis (PCA) [Pea01].

Image gradient is an efficient method to estimate orientations. This technique was
initially developed by Chaudhuri et al. [CKS93]. It consists in computing the gradient
of the image to detect edges and then to keep only the most relevant direction.
The proposed method is similar to the Hough transform. It was later applied to
biological tissues [Kar+98] and to SHG images in particular such as in [Hil+12 ;
Phi+14 ; Kab+13 ; SBZ15]. In [Kab+13], the authors focused on a ROI from initial
SHG image where fibers have a pronounced dominant direction and calculated its
2D gradient to estimate the fiber’s orientation. Gradient calculation has proven
its efficiency over time to estimate orientations. For this purpose, it is possible to
combine it with its related weighted 2D structure tensors at each pixel. This has
been implemented in the powerful plugin OrientationJ available in ImageJ. Cavinato
et al. [Cav+17] used this plugin to extract the orientation distribution histogram
which was fitted using Gaussian functions to accurately quantify the dominant fibers
directions. In [ÁB15], the authors also used it on the images structure tensor.

Even though most of the proposed methods that have been used to quantify
collagen fiber orientation were performed in 2D, some researcher such as Liu at al.
[Liu+18] took into consideration the collagen fiber distribution in the 3D space.
They used the 3D directional variance algorithm to identify each pixel orientation
and then estimate the entire fiber orientation.

More recently with the emergence of deep learning algorithms, some authors
applied this technique to estimate local orientations of collagen fibers. For example,
in [Sch+19], a comparison of different 2D and 3D methods aiming at estimating
local orientations was reported. Besides, the authors introduced a new modality to
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transfer 2D weights to 3D weight in different network architectures to perform a
segmentation of some images with respect to local orientations.

III.6.1.1.b Global characterization

Most of the scientific contributions aiming at extracting quantitative informa-
tion from SHG images of collagen fibers in biological tissues focused on the fibers
orientation.

It is possible to determine fiber orientations using the FFT. It is the most used
technique for this matter [APB19 ; Bue+13 ; Chi10 ; Cho+14 ; LCD19 ; LAT12 ;
Rob+16 ; Siv+10 ; Wu+11 ; Pij+19 ; For+21]. This approach is also called FT-SHG
imaging [Amb+12a]. In [LCD19], the authors used the FFT on each image of cor-
neal lamellae stacks and then performed a segmentation on the transformed images
to only keep the dominant fiber directions. Once the segmentation achieved, it is
possible to recover the angle distribution that corresponds to each image. It is then
possible to evaluate the variation of the angles while going deeper in the stack. Ger-
mann et al. [GMM18] used the same methodology as Bueno et al. [Bue+13], based
on some pre-processing (noise reduction and edge sharpening) and a FFT to extract
the orientation of collagen fibers in SHG corneal images.

Usually, the use of the FFT is sufficient to estimate fiber directions but it can be
useful to make the procedure more automated. For example, Ayyalasomayajula et al.
[APB19] extracted the distribution using a finite mixture of Von Mises distribution
to fit the orientation distribution extracted from the FFT in order to determine
the global mean orientation. Others, such as [Sch+13] and [Pol+13] used a classical
Von Mises distribution for the same purpose. It is also possible to use a Gaussian
function for the fitting such as in [Amb+12b] where the authors tested the FT-
SHG on several human breast tissues. In some papers [Bri+15 ; Tan+14 ; Wu+11 ;
Krö+21], the focus was oriented toward the result of the FFT where an ellipse
was superimposed. The major axis of this ellipse corresponds to the orthogonal
of the dominant direction if the ratio between the major and the minor axes is
high. Otherwise, there is no preferable orientation. Besides, it may be useful to use
the Radon transform on the 2D FFT of the SHG images [McL15], [Meg+12] since,
unlike the FFT, it provides quantitative information for each discrete angle. It is also
common to use wedge filters after the FFT and then fit the orientation distribution
with a Von Mises distribution to better estimate the orientation [Pol+13 ; Sch+13 ;
Nie+16]. In [Zei+17], the author applied an FFT on the images. Then, they improved
the result of the transform by smoothing and enhancing it.

Directional filters were also used to determine the local orientation of the colla-
gen fibers. Wen et al. [Wen+14] proposed an approach based on those filters with
different scales to determine the collagen fibers orientation in ovarian cancer. They
extracted a histogram of the frequency of occurrence of individual patterns in an
image. A nearest neighbor classification was then performed on the extracted his-
tograms to distinguish between human normal and high grade malignant ovarian
tissues.

Some local techniques such as texture analysis have been used to quantify and
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describe the main fiber orientation. They showed their efficiency and they may
be also more precise than the classic FFT. In fact, Hu et al. [Hu+12] proposed
a new approach for texture analysis based on orientation-dependent gray level co-
occurrence matrix. They used their algorithm on ex vivo rat tendons to study the
dominant collagen fiber direction. For this matter, they focused on the correlation
feature of the GLCM.

III.6.1.2 Input data nature (2D / projected 3D / 3D)

The determination of the orientation and the waviness of collagen fibers can be
done using different types of input. Multi-photon microscopes allow to go deeper in
the tissue, and one can recover 3D stacks of images. However, most of the proposed
techniques in the literature were limited to the image plane.

Generally, 2D images are used. For example, Zyablitskaya et al. [Zya+17] used
2D SHG image of rabbit sclera to estimate the waviness of the collagen fibers. In
addition, to assess the accuracy of their measurements, they calculated the average
value on 10 SHG images. Ayyalasomayajula et al. [APB19] used 2D images but
limited their study to 10 slices of the stack. Then, the global orientation was set as
the average of the computed orientations.

However, for the computation of the waviness of the collagen fibers, some pa-
pers processed 3D images such as in [Hil+12], so they were able to characterize this
metric in 3D in arterial tissues. In this paper, the waviness was computed from a
3D reconstruction of the SHG images by tracing the fibers using a 2D marching
algorithm. This is possible because the waviness estimation is based on coordinates
which can be deduced from 3D SHG images. Meanwhile, an accurate 3D reconstruc-
tion of the SHG image may be hard to get because of the poor data resolution in
the third dimension.

Regarding the orientation measurements, Hill et al. [Hil+12] and Cavinato et al.
[Zha20] used a 2D superimposed projection of the 3D stack of SHG images. Phillippi
et al. [Phi+14] succeeded in evaluating both collagen and elastin fibers in the aorta
using superimposed 2D image stacks. The dominant orientation from a projection
of all the SHG stack images can be extracted to recover a 2D image that contains
all information from the entire stack [Hri+18]. However, it is more common to use
2D images to estimate the orientation [Bue+13 ; Kab+13] and look at its evolution
with respect to the stack depth [LCD19].

Some studies showed that the collagen fiber orientation in the axial–radial di-
rection is negligible [HH12 ; WM09]. However, in [LAT12], the authors proposed a
3D FFT approach to evaluate the fiber dominant orientation in 3D stacks of SHG
images. SHG stacks were also used to determine the waviness of the fibers such as
in [LCK17]. Bivariate Von Mises distribution was used by the authors of [Nie+16]
on 3D stacks of collagen in the aorta to fit the in-plane and out-of-plane collagen
fiber orientations.
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III.6.1.3 Output data nature

The outputs of all the methods cited above can be divided into two types: a single
value or an orientation distribution (i.e. a list). For example, the use of the FFT
followed by ellipse fitting [Bri+15 ; Tan+14 ; Wu+11] gives one value corresponding
to the dominant orientation in the considered stack or ROI. Single orientation values
can also be extracted using texture analysis which is applied locally [Hu+12]. It is
also possible to extract an orientation distribution histogram from the FFT by the
application of a Radon transform for example [McL15 ; Meg+12] or by extracting
the orientation distribution from the FFT and fit a Von Mises distribution on it
[Pol+13 ; Sch+13 ; APB19 ; Nie+16]. Histogram of the frequency of occurrence is
another representation of the orientation. It has been used in [Wen+14].

III.6.2 Composition information (density)

Fiber density estimation is important for collagen characterization. In the lite-
rature, there are two ways to define the density: the volume occupied by the fibers
in the stack (i.e. volume fraction) or the number of fibers in a considered region.

III.6.2.1 Scale of measure

The scale of measure depends on what has to be quantified. For volume frac-
tion estimation, the procedure is global and applied to the entire stack. It may be
interesting for some applications to focus on a ROI in the stack and calculate its
volume fraction (for example to characterize the evolution of tumor density). The
same reasoning is applicable to calculate the density as the number of fibers in the
entire stack or in a ROI. However, for an accurate estimation of the density, it is
important to choose a ROI that covers up to 10 times the collagen fiber diameter.

In order to evaluate the fiber density, it is mandatory to enhance the SHG image
by improving the signal to noise ratio. For this matter, it is important to filter
the image and to recover an accurate representation of the fiber network through
segmentation [Hom+08] or fiber extraction [Weg+17].

Gade et al. [GRC19] performed a segmentation on the SHG stack using the Otsu
thresholding. Then they computed the area of segmented pixels in every slice and
sum up the segmented area across the volume to calculate total areal density in the
image stack. The same procedure was followed by Balu et al. [Bal+14] and Tjin
et al. [Tji+14] where they performed a thresholding based on the mean and the
standard deviation of the considered image to exclude background emissions. Then
they computed the collagen area (which corresponds to our definition of density) as
the sum of the pixels that have intensity values greater than a certain threshold.

It is sometimes interesting to proceed to a complete image enhancement step,
because of the diminution of the pixel intensity when one goes deeper in the stack.
For this matter, it is useful to apply a CLAHE on the SHG images. Cai et al.
[Cai+14] enhanced the dermal layer of human skin SHG images using the CLAHE
algorithm. Then, they applied the Frangi filter and a segmentation using Otsu’s
tresholding in order to capture a representation of both the fibers and the holes in
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the images to finally have the best evaluation of the collagen fiber volume fraction.
CT-FIRE was used in [Bes+19], [Weg+17] and [Zho+17] to extract the collagen

fibers. For example, in [Bes+19], the authors extracted the collagen in renal cell
carcinoma in order to evaluate the density of the collagen in low and high grade
tumors. The density can be calculated as the number of pixels corresponding to the
fiber network with respect to the image or to the entire stack.

Second-order statistics in general and the Grey Level Co-Occurrence Matrix in
particular have been used to estimate the density of collagen fibers. In [Krö+21],
the authors used the GLCM and especially the homogeneity parameter to determine
the density of features in an image.

Some papers such as [AH10 ; Lin+05 ; Koe+06] focused on the estimation of
the ratio of both collagen and elastin fibers in SHG stacks. In [AH10], the authors
started by filtering the images to reduce the noise. Then, they segmented the images
and estimated the volume fraction of the fiber network as the sum of all the pixels
belonging to the segmented region.

III.6.2.2 Input data nature (2D / projected 3D / 3D)

The computation of the fibers density (also referred to as the volume fraction)
requires the entire stack. The evaluation of the density can be done in 2D (i.e. slice
per slice) or directly on the entire stack. It depends on how the segmentation is
performed (in 2D or 3D).

Cai et al. [Cai+14] were interested in 2D virtual biopsy images and not stacks.
So, they tested their approach only on single 2D images. In [Zho+17], the authors
focused on single SHG images and, thus, calculated the collagen density in the 2D
plane.

In general, SHG images are segmented separately. For example, in [GRC19] and
[Bal+14], the authors segmented the SHG images using a thresholding technique.
Then, they calculated the amount of white pixels in every image and summed them
up across the volume to calculate total 3D density.

A global overview of the stack gives more accurate estimations of the collagen
density. Abraham et al. [AH10] implemented their method on the entire SHG stack.

III.6.2.3 Output data nature

The estimation of the density is a single value. This measure can whether re-
present the density of the entire stack [AH10] or the density of a specific SHG image
[GRC19 ; Bal+14].

III.6.3 Morphologic information (fiber’s size)

In addition to geometric and composition information, it is necessary to know
the fiber morphology in order to have a complete picture of the considered micro-
structure. For this matter, the intersections between the collagen fibers and the fiber
size have been investigated in the literature.
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III.6.3.1 Scale of measure

The study of the intersection between the collagen fibers and even the estimation
of their size are done locally because they are specific to a fiber (size) or a region
(intersection). In order to be able to extract those information from the SHG images,
it is important to enhance them.

For example, Koch et al. [Koc+14] used segmented SHG images to estimate the
fiber diameter. They performed some mathematical morphology operators (erosion
and dilation) to obtain a 1-pixel thick fiber skeleton. This skeleton was later used
to calculate the fibers radii from the initial segmented image.

In some cases depending on the application, only the characterization of the
evolution of the morphology is needed. For this matter, texture analysis is used.
In [Wu+16], the authors used this technique to study the impact of aging on the
skin microstructure. They computed the contrast, correlation and entropy from the
GLCM of the image and analyzed them to estimate the fiber structure and morpho-
logy. The contrast was computed to assess the presence of a fine structure of collagen
fibrils. Wu et al. [Wu+16] characterized how the collagen matrix is distinct from its
surrounding and if there is loss in collagen through time using the computation of
correlation. This can be generalized to distinguish between the collagen fibers and
thus, estimate their diameter [Cic+09]. It is also possible to deduce if there are linear
fibers and a fine structure through the computation of the entropy [Wu+16].

Some researchers showed interest in evaluating the fibers length. In [SM17], the
authors extracted the centers of each fiber assuming that they correspond to a
maximum intensity value and then estimated the fiber length as the sum of the
distances between their centers. The fiber length can be evaluated manually from
the SHG images of collagen gels after segmentation and using ImageJ drawing tool
[Aje+11].

Moreover, collagen fibers that are extracted using the CT-FIRE algorithm can
be used to extract manually the length and the fibers diameter [Ros+20 ; Zho+17 ;
Dri+16 ; Weg+17]. In [Ros+20], the collagen fibers in every SHG image of feline
mammary adenocarcinoma were identified by the mean of the CT-FIRE algorithm.
Once the fiber extraction achieved, each fiber was analyzed and its length and width
were extracted in addition to the percentage of straight fibers.

Some out-of the box techniques were used. For instance, Robinson et al. [Rob+16]
estimated the collagen fibers thickness using the BoneJ plugin for ImageJ [Dou+10]
which was initially developed to measure bones geometry. This algorithm gives the
thickness of a considered fiber.

III.6.3.2 Input data nature (2D / projected 3D / 3D)

For texture analysis, the application is done usually on 2D images. Indeed, Wu
et al. [Wu+16] were only interested in investigating some layers of the dermis with
the strongest collagen intensity. In [Cic+09], the investigation was also limited to
2D SHG images of human dermis.

In the case of a skeletonization such as in [Koc+14], the authors used 2 2D
images (one of the fibers skeleton and one of the enhanced image) to determine the
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fibers radii. In addition, to estimate the fibers length, they used the skeleton of the
fibers. Sugita et al. [SM17] focused also on the fiber length and used 2D SHG images
since the fiber centers were determined in the 2D plane. It is also possible to extract
the fiber network using the CT-FIRE algorithm and determine the fiber length and
diameter [Zho+17], [Dri+16].

Papers that considered segmentation of the SHG images focused on each image
individually and did not apply the segmentation to the entire stack [Aje+11].

III.6.3.3 Output data nature

The estimation of the length and the thickness of the collagen fibers from SHG
images is usually done manually after some operations to extract the center line of
the fibers (using skeletonization or local maximum intensity). The result is, thus, a
numerical value for each measure and each fiber.

III.6.4 Summary

Table III.3 – Main methods used in the literature

Measure Methods References

W
av

in
es

s Locally local maximum intensity [SM17]
Manual (ImageJ, Imaris) [Hil+12], [APB19]
CT-FIRE [Bes+19], [Zho+17],

[Bre+14]
Skeletonization [Koc+14], [LCK17]
NeuronJ [Zya+17], [Cho+14],

[Zei+13]
FMM [Hil+12]

O
ri

en
ta

ti
on Locally Segmentation + Hough

transform
[Bay+09]

skeletonization [Koc+14]
FFT [Siv+10], [RMT09],

[Amb+12a], [LAT12],
[SM17]

Wavelet transform [Til+14]
Gradient [Hil+12], [Phi+14],

[Kab+13], [SBZ15],
[Cav+17], [ÁB15]

3D directional variance [Liu+18]
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Measure Methods References
Globally FFT [Bue+13], [Chi10]

[Cho+14], [LCD19],
[LAT12], [Rob+16],
[Zei+17] [Siv+10],
[Wu+11], [Pij+19],
[GMM18]

FFT + Von Mises [APB19]
FFT + Wedge filter + Von
Mises

[Pol+13], [Sch+13],
[Nie+16]

FFT + Gaussian [Amb+12b]
FFT + ellipse fitting [Bri+15], [Tan+14],

[Wu+11]
FFT + Radon transform [McL15], [Meg+12]
Directional filters [Wen+14]
Texture analysis [Hu+12]

D
en

si
ty Segmentation [GRC19], [Bal+14],

[Tji+14], [Cai+14], [AH10],
[Lin+05], [Koe+06]

CT-FIRE [Bes+19], [Weg+17]
[Zho+17]

Si
ze Manual [Aje+11]

BoneJ [Rob+16]
Skeletonization [Koc+14]
Local maximum intensity [SM17]
Texture analysis [Wu+16], [Cic+09]
CT-FIRE [Ros+20], [Zho+17],

[Dri+16] [Weg+17]

III.7 Conclusion

The quantitative analysis of collagen fibers through SHG images can be very
challenging considering the large number of possibilities among available image pro-
cessing methods. These methods can be divided with respect to the quantitative
metric we want to extract from the images (information about the geometry, the
morphology or the composition of collagen fibers). However, through our review of
the state of the art, we noticed that machine learning techniques and especially
deep learning algorithms were missing despite the outstanding results that these
algorithms showed in different applications such as object detection, medical image
segmentation and image denoising. Besides, most of the proposed approaches in the
literature focused on 2D images and neglected the 3D aspect of the fibers. The se-
cond part of this thesis aims at dealing with these problems by realizing the following
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aspects:
Propose a new approach based on deep learning to estimate collagen

fibers orientation in the 3D space: For this matter, we developed a synthetic
dataset containing 3D images of fibers. We made sure that these images resemble as
much as possible the original ones. Then, we propose a CNN aiming at estimating
the global orientations of collagen fibers. In chapter 4, different tested deep networks
will be presented as well as the obtained results.

Compare our approach with existing methods: The estimation of global
orientations from 3D images may differ from the one from 2D images. In fact, when
the orientation is estimated in the 2D plan, it only takes into consideration the
fibers of that plan. However, when the fibers orientation estimation is performed in
the 3D space, it takes into consideration all the fibers in the space. If these fibers
do not have the same orientation as the ones in the 2D plan, the global orientation
estimation will be different. In chapter 5, the efficiency of the final network presented
in chapter 4 will be tested and compared.
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IV.1 Résumé du chapitre

Les réseaux de fibres de collagène sont connus pour jouer un rôle important dans
la réponse mécanique des tissus biologiques quand ils sont soumis à certaines charges.
Afin d’étudier cette réponse, l’orientation des fibres de collagène est souvent estimée.
Plusieurs techniques ont été développées à cette fin mais, à notre connaissance, l’uti-
lisation de l’apprentissage profond reste limitée. De plus, la majorité de ces méthodes
traitent uniquement des images 2D. Dans le but de proposer une première tentative
d’estimation des orientations des fibres de collagène à partir d’image de seconde
harmonique 3D utilisant l’apprentissage profond, un jeu de données contenant des
milliers d’images 3D de fibres synthétiques a été crée et utilisé pour entrainer deux
réseaux de neurones convolutionnels. L’estimation de l’orientation des fibres dans le
plan (x,y) est réussie et donne de bons résultats sur des images réelles. Par contre,
l’orientation suivant l’axe z ne fonctionne pas proprement à cause de la présence du
bruit selon cette direction.

IV.2 Abstract of the chapter

Fibrous collagen networks are well known to play an important role in the me-
chanical response of biological tissue when they are under some loads. In order to
study this response, collagen fiber orientation is usually estimated. Multiple tech-
niques have been developed for this purpose but, to our knowledge, did not include
deep learning approaches and in general focused on 2D. To propose a first attempt
to estimate fiber orientations from 3D images using deep learning, a dataset of syn-
thetic fibers was developed and was used to train two convolutional neural networks
in order to estimate fiber orientations (along x and z axes). Only the estimation
of the orientation in the (x,y) plan succeeded and showed satisfying results when
tested on real stacks.

IV.3 Introduction

Collagen is the most abundant protein in the human body. It is considered as
structural since it is responsible of the maintain of the strength and the elasticity
of the body’s connective tissues. Thus, directionality and orientation information of
collagen fibers are very useful for the determination of bio-mechanical properties of
biological tissues.

Recently, computational and experimental methods have been combined to mo-
del soft tissues mechanical behaviour and SHG imaging became the new standard
in analyzing collagen fiber networks [Cav+17 ; APB19]. Collecting SHG images of
collagen networks was made possible through two-photon microscopes and powerful
infrared lasers. Most of the published papers focus on the quantitative analysis of
collagen fibers especially the estimation of their orientations in the 2D space. The
most common method used for this purpose is the Fast Fourier Transform (FFT)
[SM17 ; Amb+12a ; Rob+16] which is sometimes combined with other techniques
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such as the Radon transform [Dea07] and ellipse fitting distribution [Bri+15]. Ho-
wever, since SHG imaging provides 3D stacks of collagen fibers, it is interesting to
consider evaluating fiber orientations in space. Besides, modern techniques, such as
deep learning, proved their efficiency in dealing with large data but their use on
SHG images is still limited.

In this chapter, we start by introducing a developed dataset of synthetic fibers.
This dataset is used in a new approach to estimate collagen fibes orientations from
SHG images. This approach is based on deep convolutional neural network. Then, we
describe different architectures that have been tested as well as their corresponding
results.

IV.4 Strategy

Orientation estimation of collagen fibers can be sometimes challenging when
the images are noisy. In addition, improving the images is also as challenging as
the previously mentioned task and the result is not always adequate. In fact, the
result depends on the used microscope and image processing techniques. In order
to deal with this issue, it may be interesting to use a deep learning approach to
resolve it. This approach consists in using some 3D synthetic images where fiber
orientations are known to estimate fibers orientations in real images. Figure IV.1
gives an overview this strategy.

Figure IV.1 – Overview of the proposed approach

Our method consists in using deep learning and more precisely Convolutional
Neural Networks (CNN) to estimate collagen fiber orientations from SHG images.
We chose to propose a neural network for each orientation estimation. For this
matter, we need a consistent amount of data to train the network. This phase is
only feasible when an annotated dataset is available. In fact, we are following a
supervised learning approach where our network is trained with 3D images and the
corresponding orientation of collagen fibers.

In order to describe the collagen fibers in the 3D space, two angles must be
estimated: θ the angle in the plan and ϕ the fiber orientation along the z axis (see
figure IV.2). In the following, all orientations are estimated in degrees.
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Figure IV.2 – Representation of the angles to estimate

IV.4.1 Annotated dataset

We dispose of a set of 3D SHG images of collagen fibers captured from the
adventitial layer of human and animal aortas. These stacks could not be used for the
training process of our network since information about collagen fiber orientations
is not labelled. For this matter, a new synthetic dataset was elaborated.

The creation of this dataset was based on collagen fiber characteristics in biolo-
gical tissues. In fact, those fibers are usually undulated in a resting state and they
form straighter lines when they are under a mechanical load. Thus, in the crea-
tion process of our synthetic stacks, we chose to have random fibers representations
in each stack. Here is a list of the global parameters that are randomly chosen to
generate a 3D stack of fibers:

— The number of fibers: in a given stack, there are between 20 and 99 fibers.

— The mean and the standard deviation values for θ (θ is assumed to follow a
normal distribution).

— The mean and the standard deviation values for ϕ (ϕ is assumed to follow a
normal distribution).

— The density of the synthetic fibers. This value is calculated after the creation
of the image. Thus, it is not linked to the generation process.

In addition to the above mentioned global parameters, we need some information
about each one of the fibers in the stack. These information are:

— Starting point X: it corresponds to the x coordinate of the starting point of
the considered fiber.

— Starting point Y: it corresponds to the y coordinate of the starting point of
the considered fiber.

— Starting point Z: it corresponds to the z coordinate of the starting point of
the considered fiber.

— θ: the orientation of the considered fiber along the x axis. θ varies between 0

and 360 degrees.

— ϕ: the orientation of the considered fiber along the z axis. ϕ varies between 0

and 180 degrees. Certainly, ϕ is very small (around 5◦) but here we exagge-
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rate this angle in order to generalize our network to any orientation or stack
rotation.

— Fiber length: the length of the considered fiber. This measure needs to be
greater than 10 pixels in order to be easily visible to the human eye.

— Radius: in the creation process of the fibers, we assume the collagen fibers have
circular section so the radius corresponds to this section. It varies between 1

and 3 pixels.

— Amplitude, Frequency and the Phase: since the fibers are usually undulated, we
assume that this undulation can be approximated by a sine wave. Thus, it can
be expressed as: z = Asin(2πfn+ξ), where n describes the direction to follow.
To have an acceptable configuration without exaggerations, the amplitude A
is set to vary between 1 and 3, the phase ξ is set to vary between 0 and 180

degrees and the frequency f is set to vary between 0 (the fiber is linear if it is
too short (i.e. less than 15 pixels)) and fiberlength

10

These information are saved into a JSON file to make its use easier. Figure IV.3
shows an example of information used to create a synthetic fibers stack.

Figure IV.3 – Example of parameters used to create a synthetic stack

Because the training process of deep neural networks necessitates a consistent
amount of data, we generated 4000 3D stacks containing between 20 and 99 fibers
which corresponds to 50 stacks per number of fibers. For hardware and time consi-
derations, the choice of the images dimensions is set to 128x128x64 pixels. Figure
IV.4 shows some examples of generated stacks.

IV.4.2 Make real and synthetic images similar

The goal of the present chapter is to estimate collagen fiber orientations from
real images. For this matter, the available images of the adventitial layer are pre-
processed using the top-hat transform and the directional filter previously presented
(see chapter 2). Certainly, the resulting images may sometimes still present some
issues especially due to the directional filter.

On the other hand, the synthetic images contains sharp and well defined fibers.
It is then essential to downgrade the synthetic dataset to make its images’ regularity
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(a) (b)

Figure IV.4 – (a) Original image, (b) Result after 3D Directional filter

similar to the real ones. We decided to apply a Gaussian filter to the synthetic images.
This Gaussian filter is applied to mimic the effect of the directional filter and any
additional noise left after the application of the top-hat transform. Besides, training
the network with images having some noise participates in making the network more
robust and allows it to be more accurate in estimating collagen fiber orientations
from fibrous tissues in general.

Because of the dimensions we chose for the training dataset, synthetic images
may be compared to real image regions with the same dimensions. Thus, orientations
obtained from synthetic images can be considered as local for real stacks.

Meanwhile, some configurations of fiber orientations can not be obtained with our
algorithms. Figure IV.5 shows an example of SHG image of collagen fibers captured
from the adventitial layer of carotid artery of a rabbit. The global fiber orientation
is not even clear for the human eye.

IV.4.3 Estimation

For collagen fiber orientations estimation, we decided to use a regressive form of
a CNN. It is also possible to perform a classification, however, in order to have a
fine estimation, it is necessary to set a high number of classes which may cause the
computation to be expensive and slow. The developed dataset was used to apply a
supervised learning approach on our network.

As far as we know, there are no other publications that addressed the question of
orientation estimation by using regressive neural networks. Thus, we tested several
architectures. Meanwhile, all the tested architectures were composed of two parts:
some convolutional layers and some fully connected layers. The main differences
affect two aspects:

— The structure of convolutional layers: the term convolutional layer refers to a
block of 3 components namely a certain number (1 or 2) of convolutions, a
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Figure IV.5 – Example of real stack where the fibers do not have a pre-dominant
orientation

max pooling and a normalization.

— The number of convolutional layers: this parameter usually depends on the
image dimensions and the number of convolutions per layer.

— The number of fully connected layers: it has an impact on the complexity of
the network however, it may make the architecture converge faster.

We started our tests with an example of 3D CNN published in keras website
by Hasib Zunair [Zun]. This network aimed at classifying some medical images to
say if there is cancer or not. Obviously, in our application, we change the output
to have an estimation of fibers orientations. More details of the conducted tests are
presented in the following section.

The choice of the learning rate, the optimizer and the loss function were driven by
the results of multiple tests. We chose to work with a learning rate that decays as long
as the training progresses. The learning rate intervenes when computing the loss.
The loss is based on a minimization. The starting learning rate (a high value) helps
in reaching the minimum fast while small values allow to make a fine minimization to
reach the exact minimum value. In our case, the learning rate starts with the value of
0.0001 and then decreases following an exponential shape. Regarding the optimizer,
it is the Adam algorithm [KB17] that was chosen. Adam stands for adaptive moment
estimation. It aims at optimizing stochastic objective function through first-order
gradient. The advantage of this optimizer is that it adapts the learning rate for
each weight of the neural network through the learning process. This algorithm
offers multiple benefits such as computational efficiency, little memory requirements,
suitability to problems with large data and even more. On the other hand, the chosen
loss function is the Mean Squared Logarithmic Error (MSLE). It is computed as the
mean squared logarithmic error between the predicted value and the ground truth.
This loss function is used for regression problems. It is mainly used when the targeted
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value has a spread of values and when there is no need to heavily punish the model
when predicting large values.

IV.5 Orientation estimation

Once the main parameters of the network are set, the training phase can be
initiated. But before that, it is important to define the nature of the targeted out-
put. There are two possibilities: (i) predicting the two angles simultaneously or (ii)
proposing a deep neural network for each angle to estimate. In the following, the
conducted tests will be detailed. For all the training phases, the input to the tested
networks is a fixed-size 128x128x64 image. These images contain artificial fibers and
are downgraded through the application of a Gaussian filter. Regarding the Gaus-
sian filter, we applied one with a standard deviation of (1, 1, 2). It is wider along the
z axis to mimic the effect of the PSF. It is important to mention that, during the
testing on real images, these images were improved using a unidirectional top-hat
transform. For the different output configurations, we proceeded to a fine tuning
using tensorboard in order to find the best parameters.

IV.5.1 Estimation of two angles simultaneously

The first tested approach is the prediction of both angles simultaneously. For
the training process, inputs are 3D synthetic stacks and outputs are vectors of two
coordinates, namely θ and ϕ.

IV.5.1.1 Network architecture

Multiple tests were conducted to determine the best architecture for this appli-
cation. The choice was set to include four convolutional layers. The kernel size is set
to 3x3x3. The convolution stride and the spatial padding are both equal to 1 pixel.
This way, the result of the convolution has the same dimensions as its input. After
each convolution, there is a max pooling layer of size 2 and a batch normalization
layer. These 4 convolutional layers in addition to the max pooling allow the reduc-
tion of the input dimensions which reaches 6x6x2. Regarding the fully connected
(FC) layers, the choice fell on the use of only two FCs. The first one has 8 chan-
nels while the second has 4 channels. In fact, we noticed that too many FCs tend
to make the algorithm computationally expensive and may also cause overfitting.
Figure IV.6 shows a global architecture of the proposed network. The activation
function of all neurons of the proposed network is the Rectified Linear Unit (ReLU)
activation function. This function outputs the input directly if it is positive and
returns zero if it is negative. It is the most commonly used activation function. The
reason behind its success is its computational simplicity, its linear behaviour and its
representational sparsity.

The proposed architecture needs around 25 epochs to converge with a batch of
size 8. The size of the batch is constrained by the available memory on the GPU.
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The dataset was set as follows: 3800 images were used for the training phase and
200 were used for the testing process.

IV.5.1.2 Results and discussion

The multiple conducted tests showed that the estimation of both angles does
not work properly. In fact, usually, we succeed in having a good approximation of
only one angle. The evolution of the loss during the training and the testing phases
is exposed in figure IV.7. The figure shows that both curves converges to a value
around 1. The value 1 may seem to be high since it is different from 0 but it allows
us to obtain θ values modulo 180. In fact, when the 3D images were created, the
mean value of θ was set randomly between 0 and 360 degrees. However, for mean θ
values of α and α+180, the network will not see any difference and we will have as
output one of those two values.

After the training and the testing processes, we validate our model using another
synthetic stack of fibers that was never used before. This stack, in addition to the
stacks used for training and testing, are chosen randomly from our dataset. Figure
IV.8 shows an example of result that we obtained using the architecture described
above. The estimation of θ is good since it is equal to the real value modulo 180 (i.e.
318 ≃ 137 + 180). However, for ϕ estimation, the result is not good enough. The
difference between the predicted value and the ground truth is around 20 degrees
which is very high.

The retained network was also tested on real images. To start, we focused on a
3D portion of an SHG stack of collagen fibers where most of the fibers are aligned
and straight. θ is extracted manually using ImageJ and its value is around 110◦.
Meanwhile, the proposed network gives a prediction of 139◦. This gap between the
ground truth value and the predicted one can be explained by the fact that in the
considered portion of stack, we can distinguish between 2 sets of fibers, each set
having a proper dominant orientation. In order to deal with this issue, we kept only
the slices where all the fibers have the same direction and we replaced the rest with
empty slices. Unfortunately, the problem remains the same. Several other tests on
different real stacks were carried out but the results were not conclusive.

Regarding the estimation of ϕ, the proposed network gave an estimation of 73◦.
Here also the prediction is far from the reality since the fibers are quite planer so
the prediction needs to be close to 90◦.

IV.5.2 Estimation of θ

Since the simultaneous estimation of both angles did not work properly, we
decided to estimate one angle at a time. Here, we focus on the estimation of θ.
For this matter, two scenarios were tested: (i) the estimation of both the cosine and
sine of the desired angle and (ii) the straightforward estimation of the considered
angle. In the following, we will expose the different tested architectures and the main
results.
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IV.5.2.1 Estimation of cos and sin

In order to obtain a good estimation of θ, it is interesting to try to predict its
sine and cosine values. For this prediction, we use the mean squared error as a loss
function.

IV.5.2.1.a Network architecture

Multiple tests were carried out to determine the best architecture to estimate the
sine and cosine values of θ. These tests included networks having four convolutional
blocks or three blocks containing two successive convolutional layers. Several varia-
tions in the kernel size were tested. The convolution stride and the spatial padding
are both equal to 1 pixel in order to maintain the same dimensions as its input. Each
convolution block contains a max pooling layer of size 2 and a batch normalization
layer. These convolutional layers in addition to the max pooling allow the reduction
of the input dimensions. This last tensor is then flattened before being fed to the
first fully connected layer. Only two fully connected layers with varying number
of neurons were included in the tested architectures. The activation function of all
neurons of the tested architectures is the ReLU activation function except for the
output layer where the used activation function is the hyperbolic tangent. This way,
we ensure that the output values will range between −1 and 1. All architectures
were trained and tested on around 25 epochs with a batch of size 8. The dataset
was set as follow: 80% of the images are used for the training phase while 20% are
used for the testing process. Regarding the loss function, we used the classical mean
squared error function which works well with the output of our application.

IV.5.2.1.b Results and discussion

The conducted tests were not conclusive. Unfortunately, we were not able to
make any network converge. In fact, in most of the tests, the loss continuously
decreases during the training process while it remains globally constant (around
0.5) during the testing process. Figure IV.9 shows an example of the evolution of
the loss function. Most of the tested networks showed an evolution similar to what
is exhibited here.

When we try to estimate the sine and cosine values of θ, we aim at estimating two
values related to our angle. This means that if the tested network fails to estimate one
value, it will affect the loss result. However, since the network does not distinguish
between fibers oriented at θ and θ + 180, the probability of wrongly predicting the
sine, the cosine or both is high. Thus, during the testing process, the loss can be
elevated which explains why the tested networks do not converge.

IV.5.2.2 Direct estimation

The estimation of the cosine and sine values of θ was not conclusive and, just
like the simultaneous estimation of both angles, only one angle is at best correctly
estimated. That is why we decided to try the straight forward estimation of θ.
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IV.5.2.2.a Network architecture

Same as previously, several tests were carried out to determine the best architec-
ture for θ estimation. The final choice was set to include four convolutional layers.
The kernel size is set to 3x3x3 for all convolutions. The convolution stride and the
spatial padding are both equal to 1 pixel in order to maintain the same dimen-
sions as its input. Each convolution is followed by a max pooling layer of size 2 and
a batch normalization layer. These 4 convolutional layers in addition to the max
pooling allow the reduction of the input dimensions which reaches 6x6x2. This last
tensor is then flattened before being fed to the first fully connected layer. Two fully
connected layers are enough to make the network converge without over-fitting. The
first one has 512 channels while the second has 2 channels. Figure IV.10 shows the
global architecture of the proposed network. The activation function of all neurons
of the proposed network is the ReLU activation function.

The proposed architecture needs around 25 epochs to converge with a batch of
size 8. The size of the batch is constrained by the available memory on the GPU.
The dataset was set as follows: 3800 images were used for the training phase and
200 were used for the testing process.

IV.5.2.2.b Results and discussion

The carried out tests showed that the estimation of θ gives satisfying results.
The evolution of the loss during the training and the testing phases is showed in
figure IV.11. The figure shows that both curves converges to a value around 1.1.
This value may seem to be high since it is different from 0 but, again, it allows us
to obtain θ values modulo 180.

After the training and the testing processes, we validate our model using another
synthetic stack of fibers that was never used before. This stack, in addition to the
stacks used for training and testing, are chosen randomly from our dataset. Figure
IV.12 shows an example of result that we obtained using the architecture described
above. The estimation of θ is good since it is equal to the real value modulo 180 (i.e.
198 ≃ 19 + 180.

Afterwards, the retained network was tested on real images. First, we used the
same portion of the SHG stack of collagen fibers which was used in the previous
section. θ is extracted manually using ImageJ and its value is around 110◦. Meanw-
hile, the proposed network gives a prediction of 293◦ which corresponds also to an
orientation of 113◦. The few degrees difference between the predicted value and the
one extracted manually from one slice of the stack can be explained by the fact that
our network estimates the global orientation of collagen fibers in a volume and the
fibers orientations have some variances. Thus, an error of 3◦ is acceptable.

IV.5.3 Estimation of ϕ

Once the estimation of θ is completed, we focus of the estimation of ϕ. For this
matter, we followed the same process as for θ which is based on evaluating the results
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of two architectures, one to estimate the cosine and sine values of ϕ and the other
one to straight forward estimate the value of ϕ.

IV.5.3.1 Estimation of cos and sin

In this section, the output of the proposed deep network is a vector of two values:
sin(ϕ) and cos(ϕ). It is interesting to mention that, since it is difficult to distinguish
between fibers oriented at ϕ and ϕ+ 180, if the prediction of the proposed network
corresponds to − sin(ϕ) and − cos(ϕ) (where ϕ is the ground truth), we will consider
it as a proper prediction.

IV.5.3.1.a Network architecture

Several tests were conducted in order to determine the best architecture capable
of estimating the sine and cosine values of θ. These tests included networks with four
convolutional blocks or three blocks each containing two successive convolutional
layers. During these tests, the kernel size of the convolutions varied and included
several variations. The convolution stride and the spatial padding are both equal to 1

pixel in order to maintain the same dimensions as its input. Each convolution block is
composed, in addition to the convolution layer(s), of a max pooling layer of size 2 and
a batch normalization layer. Convolutional layers as well as the max pooling layer
allow the reduction of the input dimensions. This last tensor is then flattened before
being fed to the first fully connected layer. Only two fully connected layers with
varying number of neurons were included in the tested architectures. The activation
function of all neurons of these architectures is the ReLU activation function except
for the output layer where the used activation function is the hyperbolic tangent
to have output values ranging between −1 and 1. All architectures were trained
and tested on around 25 epochs with a batch size of 8. The dataset was set as
follow: 80% of the images are used for the training phase while 20% are used for
the testing process. Regarding the loss function, we used the classical mean squared
error function which works well with the output of our application.

IV.5.3.1.b Results and discussion

Same as for θ, we were not able to make any of the tested architectures converge.
The reasons of this divergence, which were mentioned before, are not applicable in
this case. In fact, since ϕ is initially defined between 0 and 180 degrees, the network
can not confuse it with ϕ+ 180. It can not predict values that it did not encounter
during the training process.

For all tested networks, the loss function decreased continuously during the trai-
ning process but settled down between 0.3 and 0.4 during the testing process. We
noticed also that, in the best case scenarios, we have a good estimation of only one
value between the sine and the cosine. The issue with ϕ estimation is probably due
to the effect of the used Gaussian filter to mimic the PSF of the microscope. In fact
the Gaussian filter is wider along the z axis which may add some difficulties to train
the network. This makes the fibers wider along the z axis and can possibly make
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two or more fibers touch. It would be interesting to carry out more tests related to
this application but using another dataset where we make sure that fibers do not
touch and maybe try with straight fibers before introducing undulated ones.

IV.5.3.2 Direct estimation

After the estimation of the sine and cosine values of ϕ, we proceed to the di-
rect estimation of this angle. For this matter, many architectures were tested. An
overview of this architectures as well as the related results will be exhibited in the
following.

IV.5.3.2.a Network architecture

In order to estimate the value of collagen fibers orientations along the z axis, we
tested several network architectures. These tests included multiple sizes of kernels,
multiple numbers of convolutional layer and two pooling functions. The convolution
stride and the spatial padding are both equal to 1 pixel in order to maintain the
same dimensions as its input. Meanwhile, the number of FC layers was fixed to 2.
The number of filters for the convolutional layers as well as the number of neurons
in the FC layers vary also with the different tested architectures. The activation
function of all neurons of the tested network is the ReLU activation function.

IV.5.3.2.b Results and discussion

Regrettably, the conducted tests did not give any good result in estimating ϕ.
When analyzing the evolution of the loss value during the training and the testing
phases, we can notice that some architectures tend to fit exactly its training data
but it has trouble with the testing data. It is the overfitting phenomena. In table
IV.1, we present a summary of the different architectures where the loss evolution
of the training and testing processes converges as well as the result of an example
of prediction using them. The stack used for the last prediction is a synthetic stack
which was not used during the training nor the testing.

Table IV.1 – Different tested architectures for ϕ estimation

CNN architecture Kernel Pooling FC Validation
Conv(16)+BN+pooling+ (7x7x7) max FC(16) +

FC(8)
ground
truth =
60◦

Conv(16)+BN+pooling+ (5x5x5) max prediction
= 92◦

Conv(32)+BN+pooling+ (5x5x5) max
Conv(64)+BN+pooling (3x3x3) max
Conv(16)+BN+pooling+ (3x3x5) max FC(16) +

FC(8)
ground
truth = 7◦
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CNN architecture Kernel Pooling FC Validation
Conv(16)+BN+pooling+ (3x3x5) max prediction

= 71◦

Conv(32)+BN+pooling+ (3x3x5) max
Conv(64)+BN+pooling (3x3x5) max
Conv(16)+BN+pooling+ (3x3x5) average FC(16) +

FC(8)
ground
truth =
85◦

Conv(16)+BN+pooling+ (3x3x5) average prediction
= 65◦

Conv(32)+BN+pooling+ (3x3x5) average
Conv(64)+BN+pooling (3x3x5) average
Conv(16)+BN+pooling+ (7x7x7) max FC(16) +

FC(8)
ground
truth =
175◦

Conv(32)+BN+pooling+ (5x5x5) max prediction
= 83◦

Conv(32)+BN+pooling+ (5x5x5) max
Conv(64)+BN+pooling (3x3x3) max
Conv(4)+BN+pooling+ (3x3x3) max FC(32) +

FC(16)
ground
truth =
100◦

Conv(4)+BN+pooling+ (3x3x3) max prediction
= 89◦

Conv(8)+BN+pooling+ (3x3x3) max
Conv(8)+BN+pooling+ (3x3x3) max
Conv(16)+BN+pooling (1x1x1) max
Conv(8)+BN+pooling+ (3x3x3) max FC(16) +

FC(8)
ground
truth =
85◦

Conv(8)+BN+pooling+ (3x3x3) max prediction
= 70◦

Conv(16)+BN+pooling+ (3x3x3) max
Conv(16)+BN+pooling+ (3x3x3) max
Conv(32)+BN+pooling (1x1x1) max
Conv(16)+Conv(16)+BN
+pooling+

(3x3x3) max FC(4) +
FC(2)

ground
truth =
32◦

Conv(4)+Conv(4)+BN
+pooling

(3x3x3) max prediction
= 64◦
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CNN architecture Kernel Pooling FC Validation
Conv(16)+Conv(16)+BN
+pooling+

(3x3x3) max FC(512) +
FC(4)

ground
truth =
133◦

Conv(128)+Conv(128)+BN
+pooling

(3x3x3) max prediction
= 77◦

Conv(64)+Conv(64)+BN
+pooling+

(1x1x1) max FC(16) +
FC(8)

ground
truth =
19◦

Conv(128)+Conv(128)+BN
+pooling

(1x1x1) max prediction
= 84◦

Conv(4)+Conv(4)+BN
+pooling+

(3x3x3) max FC(4) +
FC(2)

ground
truth =
180◦

Conv(8)+Conv(8)+BN
+pooling+

(3x3x3) max prediction
= 64◦

Conv(16)+Conv(16)+BN
+pooling+

(3x3x3) max

Conv(32)+BN+pooling (1x1x1) max
Conv(4)+Conv(4)+BN
+pooling+

(5x5x5) max FC(4) +
FC(2)

ground
truth =
97◦

Conv(8)+Conv(8)+BN
+pooling+

(3x3x3) max prediction
= 78◦

Conv(16)+Conv(16)+BN
+pooling+

(3x3x3) max

Conv(32)+BN+pooling (1x1x1) max

The results of the predictions show that ϕ estimation is very limited. In fact, in
best case scenario, there is a gap of 11◦ between the ground truth and the predicted
value. Because of the bad results during the testing process on synthetic data, no
tests were carried out on real stacks of collagen fibers.

IV.6 Conclusion

In this chapter, we described different approaches to estimate collagen fibers
orientations. For this matter, we introduced a new dataset of synthetic fibers. Each
stack of this dataset contains a certain number of fibers oriented following two angles
θ and ϕ. These stacks were then downgraded by convolving it with a Gaussian filter
in order to mimic the effect of the PSF and the noise that may be introduced by the
directional filter on real SHG images. Certainly, raw images are pre-processed using
the top-hat transform but we added some noise to the synthetic images to make
the network robust to noise. This way, it will properly work even when raw images

115



Chapter IV. Orientation estimation of collagen fibers using deep learning

still have some noise. The resulting dataset was used to train multiple deep neural
networks aiming at estimating fiber orientations. We were able to find a network that
correctly estimates θ on synthetic and real images. Unfortunately, the estimation of
ϕ was not successful and, despite all the tested architectures, we were not able to
have a proper estimation of the considered angle.
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Figure IV.6 – Architecture of the proposed network to estimate both θ and ϕ
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Figure IV.7 – Evolution of the loss during the training and the testing phases
when estimating both θ and ϕ

Figure IV.8 – Example of the prediction of the orientations of synthetic fibers,
the firs angle corresponds to ϕ while the second one corresponds to θ

.
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Figure IV.9 – Example of the evolution of the loss function when estimating both
the cosine and sine values of θ
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Figure IV.10 – Architecture of the proposed network to estimate θ
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Figure IV.11 – Evolution of the loss during the training and the testing phases
when estimating θ

Figure IV.12 – Example of the prediction of θ of synthetic fibers
.
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V.1 Résumé du chapitre

L’analyse quantitative des images de seconde harmonique et précisément l’esti-
mation de l’orientation des fibres de collagène dans les tissus biologiques est impor-
tante en vue de l’étude de la nature et du comportement de cette protéine. Ainsi,
plusieurs approches ont été développées dans la littérature et ont été testées princi-
palement sur des images 2D. Le réseau de neurones proposé et décrit dans la section
IV.5.2.2 du chapitre précédent considère le volume 3D en entier dans l’estimation
de l’orientation. Une comparaison entre ce réseau de neurones et quelques unes des
méthodes les plus utilisées à cette fin est présentée. Ce réseau a montré des résultats
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assez satisfaisants pour l’estimation de l’orientation des fibres droites et ondulées.

V.2 Abstract of the chapter

The quantitative analysis and especially the orientation’s estimation of collagen
fibers in biological tissue is important to study the nature and behaviour of this
protein. For this purpose, several approaches were developed in the literature and
were tested on mainly 2D images. The proposed neural network takes into consi-
deration the entire stack when evaluating the average orientation. A comparison
between the proposed network and some common orientation estimation methods is
exposed. This network showed satisfying and coherent results whether for straight
or undulated fibers.

V.3 Introduction

Orientation estimation of collagen fibers from SHG images has been in the center
of bio-mechanical research since it is an interesting information to have in order to
characterize these fibers. For this matter, multiple methods have been developed.
However, most of these methods focused on 2D images from the SHG stack and
not the entire volume. Thus, it is interesting to compare the estimation results of
our deep network to some of the most used approaches in the literature in order to
validate it as well as to see if the inclusion of the 3D aspect of the stack has any
effect on the estimated orientation.

In this chapter, we will start by introducing the elected stacks which will be
used to test the accuracy of the proposed deep network. On the second part, we will
present the results of θ estimation through multiple techniques from the literature.
The methods that will be covered in the present chapter are the 3D FFT, the CT-
FIRE algorithm in addition to Cavinato et al. technique which is based on the 2D
FFT.

V.4 Data preparation

For comparison purposes, we chose to use the same collagen fiber SHG stacks to
test some approaches aiming at estimating fiber orientations. In this chapter, we will
present the results of three different stacks containing fibers with different shapes.
These stacks will be referenced to as:

— stack 1: it corresponds to a rabbit’s carotid artery. Collagen fibers are straight
because this stack was captured when the specimen was under a certain me-
chanical load. These fibers have almost the same orientation.

— stack 2: it corresponds to a human ascending thoracic aorta. Collagen fibers
are quite undulated. These fibers have slightly different orientations but the
average orientation will be considered.
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— stack 3: it corresponds to a rabbit’s carotid artery. Collagen fibers are undu-
lated but they do not have a dominant orientation. Even for the human eye,
it is difficult to distinguish between the different fibers in the stack.

A slice from each one of these stacks is exhibited in figure V.1. These stacks
are pre-processed using the white top-hat transform to reduce the noise. This way,
the fibers become clearer especially along the z axis. These stacks were chosen to
validate our deep learning approach on different types of fibers: straight, undulated
and random ones.

(a) (b) (c)

Figure V.1 – An image from (a) stack 1, (b) stack 2 and (c) stack 3

These stacks are portions from bigger stacks. In fact, since the proposed network
need inputs of dimensions (128, 128, 64) and the available stacks have usually di-
mensions of (1024, 1024, z) where z varies from a stack to another, we had to work
with small portions from original stacks. We chose portions that contain multiple
fibers having a common orientation. To ensure this condition, the depth of the selec-
ted portion is usually smaller than 64. To deal with this issue, we pad the extracted
portion with zeros before feeding it to our network.

V.5 Orientation estimation using different methods

Once the data is preprocessed, we can proceed to the validation of our method
by comparing it with other approaches.

V.5.1 Orientation’s estimation results

In order to validate our approach based on deep learning to estimate collagen
fiber’s orientation from SHG images, we compare it to different other techniques
from the literature. In the following, we are presenting results of some commonly
used ones, namely the 3D FFT, the CT-FIRE algorithm in addition to an approach
developed by Cavinato et al. in our lab. Certainly, we focus on the estimation of θ. It
is important to mention that the CT-FIRE and the approach developed by Cavinato
et al. are performed in 2D (i.e. on a single image of the stack). In the following, for
comparison purposes, we will only consider the orientation along the x axis.
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V.5.1.1 Deep learning

We present the results of the proposed method described in chapter 4. Here,
the deep neural network is already trained using the previously developed synthetic
dataset.

We start our tests by using stack 1. It was pre-processed using a top-hat trans-
form with a structuring element of size 15. In this stack, fibers are straight. The
proposed deep network estimates θ to be roughly equal to 283◦. This value is equi-
valent to 103◦ (i.e. 103◦ = 283◦−180) since the network does not distinguish between
θ and θ + 180. This estimation seems to be accurate especially when we compare it
to the angle extracted manually from one image of the stack using ImageJ (around
110◦). Regarding stack 2, it was pre-processed using a top-hat transform with a
structuring element of size 15. Our network gave an estimation of θ around 333◦.
This angle is equivalent to 153◦ (i.e. 153◦ = 333◦−180). This estimation seems to be
accurate especially when we compare it to the angle extracted manually from one
image of the stack using ImageJ (around 150◦). We end up with stack 3 where colla-
gen fibers do not have any preferential orientation. Certainly, the proposed network
will give an estimation of θ but it will not have any significance. Same as for both
previous stacks, stack 3 was pre-processed with a top-hat transform with a struc-
turing element of 15. The estimation given by our network is around 276◦ which
equivalent to the value 96◦. Table V.1 summarizes the different estimated values of
θ.

stack index 1 2 3
θ estimation 103◦ 153◦ 96◦

Table V.1 – Estimation results using deep learning

V.5.1.2 3D FFT

The application of the 3D FFT on collagen SHG images was performed using
the plugin "FFTJ" of ImageJ. For each stack, we calculate its 3D FFT and we plot
the logarithmic power spectrum where the origin of the Fourier domain is placed
on the volume-center. In the center slice of the recovered spectrum, we find a white
line which direction corresponds to the dominant orientation minus 180. Figure V.2
shows the power spectra of the three considered stacks.

For stack 1, the angle drawn in figure V.2a is equal to 20◦. Thus, the orientation
of collagen fibers is estimated to be around 110◦ (i.e. 110◦ = 20◦ + 90◦). Regarding
stack 2, from its power spectrum, we can extract and angle around 48◦. Therefore,
the fiber orientation corresponds to 138◦ (i.e. 138◦ = 48◦ + 90◦). Meanwhile, for
the last stack, we were not able to extract any distinguishable line from its power
spectrum. This is not surprising because stack 3 contains fibers that do not have a
dominant direction. Thus, no orientation’s estimation was possible.
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(a) (b) (c)

Figure V.2 – Power spectra of: (a) stack 1, (b) stack 2 and (c) stack 3

stack index 1 2 3
θ estimation 110◦ 138◦ −−

Table V.2 – Estimation results using 3D FFT

V.5.1.3 CT-FIRE

For the CT-FIRE algorithm, we proceeded to two different tests: one with one
raw image from the considered stack and one with this image being pre-processed
using the top-hat transform. This transform certainly reduces the noise and makes
fibers clearer in the 3D space. However, it does not suppresses all the noise which
can cause some inaccuracies when trying to estimate the orientation.

The CT-FIRE algorithm already proceeds to a noise reduction through the cur-
velet transform. It also allows extracting the fibers network from the image. Each ex-
tracted fiber is characterized by several parameters including the orientation. Thus,
we will consider the average orientation for comparison purposes. However, as can
be seen in figure V.3, fiber extractions were very noisy. The estimated average orien-
tation based on the pre-processed image is equal to 117.3◦.

(a) (b) (c)

Figure V.3 – Stack 1: (a) original image, (b) fibers extraction from raw image and
(c) fiber extraction from pre-processed image

For stack 2 and stack 3, we applied the CT-FIRE algorithm only on pre-processed
images using the white top-hat transform. Regarding stack 2, the result of the ex-
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traction is showed in figure V.4. The considered algorithm extracted fibers that do
not exist (the ones in pink for example in figure V.4b). Unfortunately, CT-FIRE
was not able to properly extract undulated fibers. The estimated global orientation
is equal to 109.1◦

(a) (b)

Figure V.4 – Stack 2: (a) pre-processed image and (b) fibers extraction using CT-
FIRE

For the last stack where the fibers are undulated and have no preferential orien-
tation, the fiber extraction was really bad, see figure V.5. It is important to mention
that, even for the human eye, it is quite complicated to properly distinguish between
collagen fibers, especially after the top-hat transform. In fact, since this transform
is more oriented into the 3D volume, there is less information in pre-processed slices
than in raw ones. Still, CT-FIRE gave a global orientation estimation of 88.4◦. All
the presented results are summed up in table V.3.

(a) (b)

Figure V.5 – Stack 3: (a) pre-processed image and (b) fibers extraction using CT-
FIRE
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stack index 1 2 3
θ estimation 117◦ 109◦ 88◦

Table V.3 – Estimation results using CT-FIRE

V.5.1.4 Cavinato et al. method

The method used in this section was exposed by Cavinato et al. in 2020 [Zha20]. It
is used to estimate planar orientation distributions of collagen fibers. For this matter,
the authors considered the projection of 3D stacks of SHG images of collagen fibers
and applied a 2D FFT on them. In order to extract the orientation distribution, the
power spectrum is is integrated through the use of a wedge-shape sum approach.
We applied this methodology on projections from pre-processed stacks using the
white top-hat. This available code for this method estimates angles with respect
to the horizontal axis. Thus, some changes are necessary to recover an orientation
expressed with respect to the vertical axis.

Figure V.6 shows the different resulting orientation distributions of the 3 consi-
dered stacks. From each distribution, the maximum is extracted and it corresponds
to the fibers orientation with respect to the horizontal axis. For stack 1, the fibers
orientation is equal 62◦ which corresponds to 118◦ with respect to the vertical axis.
Regarding stack 2, we can see that there is no absolute max since the probability of
every angle between 0◦ and 90◦ is high and constant to a certain point. Meanwhile,
the maximum probability corresponds to an angle of 32◦. The value is equivalent to
148◦ with respect to the vertical axis. For stack 3, we notice that the probabilities
of the majority of possible orientations is low and it is hard to define a maximum to
this curve. This is not surprising because the fibers in the considered stack are not
organized in the space. However, the maximum probability corresponds to 0◦ which
is equivalent to an angle of 90◦ with respect to the vertical axis. These results are
summed up in table V.4.

stack index 1 2 3
θ estimation 118◦ 148◦ 90◦

Table V.4 – Estimation results using Cavinato’s method

V.5.2 Additional tests

We performed more tests on additional 5 stacks containing straight fibers and
another 5 stacks containing undulated stacks. These tests included stacks with wide
and thin fibers as well as stacks with a single or multiple fibers. The results of
the orientation estimation are summed up in the table V.5. The chosen stacks are
presented in appendix A. Stacks Undulated 4, Undulated 5 and Straight 5 correspond
to images of rabbit carotids where all the other stacks correspond to human aortae.
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(a) (b)

(c)

Figure V.6 – Orientation distributions of: (a) stack 1 (b) stack 2 and (c) stack 3

Table V.5 – Results of the orientation estimation on using different me-
thods

Stacks DL 3DFFT CT-
FIRE

Cavinato
et al.

Visually

St
ra

ig
ht 1 116◦ 112◦ 101◦ 114◦ 113◦

2 110◦ 170◦ 97◦ 107◦ 175◦

3 107◦ 148◦ 119◦ 143◦ 153◦

4 97◦ 93◦ 94◦ 93◦ 90◦

5 106◦ 49◦ 62◦ 51◦ 50◦

U
nd

ul
at

ed 1 118◦ 130◦ 133.7◦ 119◦ 130◦

2 123◦ 180◦ 95◦ 148◦ 180◦

3 110◦ 140◦ 90◦ 148◦ 150◦

4 90◦ 135◦ 70◦ 169◦ 80◦

5 115◦ – 103◦ 156◦ 150◦
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V.5.3 Discussion

The previously presented orientation estimation methods proved their efficiency.
However, there is some differences between their results.

For the deep learning approach, it is important to mention that the included
slices in the considered stack have a strong impact on the result of the orientation’s
estimation. In fact, if we include other fibers that have a totally different orientation,
the estimation will be an approximation of the mean orientation. In stack 1, collagen
fibers have close but different orientations. That is why, the estimated orientation
is different from the one estimated using the 3D FFT for example where the orien-
tation corresponds to the most frequent one. Besides, deep learning performs better
when using noisy images. As a matter of fact, the noise that is present in the back-
ground of the fibers is taken into consideration when calculating the FFT. However,
the advantage of the deep learning approach is that it considers fibers as a whole.
Since the proposed network was trained using noisy images, it is able to estimate
orientation from noisy images. Meanwhile, from the additional tests, we noticed that
our deep network works better with thin fibers (see stacks Straight 1 and Straight
4 and Undulated 4 in appendix A). However, for thick fibers, the orientation’s es-
timation is completely wrong. This is explained by the fact that the network was
trained using stacks containing thin fibers and not bundles. It is important to say
that, for this type of stacks, even other methods such as the CT-FIRE algorithm
and Cavinato et al. approach have trouble estimating the fiber orientation (e.g. for
stacks Straight 2 and Undulated 2 ).

Regarding the 3D FFT, it allows the identification of the most frequent orienta-
tion since it converts the stack to the frequency domain. Thus, the noise can affect
the result of this transformation. However, usually the resulting orientation estima-
tion is still coherent with the reality. For example, for stack 1, θ estimation using
the 3D FFT (110◦) and the deep learning approach (103◦) are quite close. The dif-
ference can be explained by the fact that the deep learning approach consider the
fiber network in 3D, thus, it estimates the average orientation while the 3D FFT
estimates the most frequent orientation. For stack 2, we tried to extract the most
frequent orientation but it was not as clear as for the first stack. It is more of an ap-
proximation than a good estimation. It is even possible to say that the orientation is
somewhere between 120◦ and 170◦ where we can find the whiter pixels in the power
spectrum. This is coherent with the estimation using the deep learning approach.
On the other hand, for the stack Undulated 4, the 3D FFT did not correctly esti-
mate the orientation. This is caused by the multiple fibers and their high waviness.
Meanwhile, the 3D FFT is still the most robust technique to estimate orientations.

As regards the CT-FIRE algorithm, the result of the fibers extraction is highly-
dependent on the quality of the image. In fact, any noisy pixels that are present
outside the fibers can be considered as a fiber and will be included in the network
extraction. This has been showed when the CT-FIRE algorithm was applied on
both raw and pre-processed images. Thus, the result of the orientation estimation is
biased by the non-existent extracted fibers. Besides, since it is applied on one slice
of the stack, the result of the orientation’s estimation may be different from the one
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based on deep learning where the entire stack in taken into consideration. This may
explains the differences in θ estimation for all three stacks especially for stacks 1

and 2. Meanwhile, this approach works well with stacks with dominant fibers such
as Straight 1, Straight 4 and Undulated 4.

The method of Cavinato et al. is also based on the FFT except that it is applied
on the projection along the z axis of one stack and not on the 3D volume. The results
of θ estimation for both stack 1 and stack 2 are quite similar. The small differences
(around 8− 10◦) are due to the dimension of the performed FFT. In fact, the most
frequent frequency in the 3D volume is certainly different from the most frequent
one in a 2D projection. Besides, we noticed that this approach do not work properly
on noisy data such as on stacks Straight 3 and Undulated 2. In fact, noise has a
strong impact on changes in the pixels intensity and, thus, the spatial frequency. On
the other hand, for the stack Undulated 4, the projection along the z axis contained
too many fibers with different orientations which confuses the algorithm.

Stack 3 is initially considered as a 3D volume where collagen fibers are not
organized in the space. However, all the tested orientation estimation methods gave
close results. It is also important to mention that it is difficult to compare between
approaches that use different types of inputs (2D or 3D). Besides, we chose to use the
same pre-processed stacks for all the tested methods which may have caused some
bias for some techniques (namely the CT-FIRE algorithm). In fact, to properly
function, this algorithm needs an image with minimum noise.

V.6 Conclusion

In this chapter, in order to validate our deep learning approach, we presented the
results of θ estimation using several techniques from the literature as well as ours.
Despite the fact that the chosen techniques do not use the same type of inputs (2D or
3D), the various estimations were consistent and coherent. In fact, for straight fibers,
our deep network gives a satisfying estimation which is close to the one estimated
using the FFT for example. Regarding undulated and thick fibers, our neural network
performs good and the result is consistent with the reality. It is even possible to say
that it outperforms other approaches since it gives an average estimation of θ while
the FFT for example tends to find the most frequent spatial frequency. And because
of the thickness of the fibers, it is difficult to determine this frequency. However,
for thick noisy fibers, the estimation using deep learning faces some issues. On the
other hand, for disorganized fibers, all the tested methods gave similar estimation
even if it does not really have any significance. Finally, the comparison of the deep
learning approach with other methods to estimate θ is conclusive and proves that
the proposed network can be used to this end especially for straight and relatively
thin fibers.
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Main findings

This summary briefly recalls the aspects of the literature that have been high-
lighted in the present work as well as the major novel advances resulting from it.

— 3D Micro-structural imaging: After reviewing the state of the art in chap-
ter 1, it was shown the study of collagen fibers is closely related to the used
imaging modality and the quality of the acquired images. Multi-photon micro-
scopy through second harmonic generation is proved to be the best imaging
modality to capture 3D images of biological tissues containing collagen fibers.
However, these images may present some artifacts. To deal with it, several
image processing techniques, mainly in 2D, were used.

— SHG image improvement: SHG images suffers in general from three types
of artifacts: (i) fibers discontinuities due to shadows effect or the presence of
black regions caused by the presence of air or dust during the acquisition, (ii)
the blur introduced by the PSF of the used microscope in addition to (iii) the
Poisson noise caused during the acquisition. Both the blur and the Poisson
noise were dealt with using a uni-dimensional top-hat transform along the z
axis. On the other hand, fibers discontinuities were overcome by the use of a
3D directional filter. Certainly, the proposed filter introduces some additional
noise. However, the application of a 3D top-hat transform after the directional
filter was able to suppress most of the noise and reconstruct a proper collagen
fiber network.

— Quantitative analysis: The study of collagen fibers is based on quantita-
tive analysis. For this purpose, several image processing techniques were used
whether to transform the initial image to another domain where it is pos-
sible to extract some information (e.g. FFT, HT, etc.) or to select and extract
directly information from the SHG image (e.g. segmentation, CT-FIRE, sta-
tistics, etc.). After reviewing the state of the art related to which quantitative
information to extract, it was shown that the choice of the image processing
technique is dependent on the metric to extract. Despite their great potential,
deep learning applications are still very limited on SHG images and collagen
fibers. Besides, most of the available methods in the literature focused on 2D

133



GENERAL CONCLUSION

images while neglecting the depth of the tissue.

— Collagen fiber orientation estimation from 3D images: Improved SHG
images demonstrated a good 3D representation of the collagen fiber network.
From these stacks, it is possible to extract two angles to describe fiber orien-
tations in the 3D space. Deep learning was used for this purpose. The training
process was performed using a dataset of synthetic fibers which were down-
graded to look like real SHG images. At the end, only the orientation in the
2D plan was estimated correctly.

— Deep learning and orientation estimation: The proposed deep neural
network was compared to other orientation estimation techniques from the
literature and it provided coherent results. This network has the advantage to
determine the average orientation in a stack while most of the literature focuses
only on the most frequent one. Thus, this method works better on small stacks
of undulated fibers to estimates their global orientation than other techniques
introduces in the literature.

Limitations

The study presented in this thesis is not without limitations. In the following,
these limitations are exposed:

— Computational expenses: In order to have a good fiber reconstruction, the
3D directional filter needs to cover a large number of directions. This necessity
makes the algorithm computationally expensive. In fact, it takes around 5
hours on a cluster (CPU Intel Xeon E5-2660 v3 of 10 cores at 2,6 GHz) to
process a 3D image of dimension (128,128,15) with a length of 120 pixels and
101 directions covered. Besides, to apply this filter on bigger images, it needs
a large memory.

— Adaptability of the size of the filter: The three dimensional directional
filter as proposed is characterized by a constant length and a constant number
of directions. However, fiber discontinuities are not all the same. Besides, the
directional filter is applied on all the pixels of the stack even when there is no
need to any reconstruction.

— First orientation estimation: The result of the estimation of θ is highly
dependent on the considered stack. In fact, when this stack contains only
fibers that have almost the same direction, the proposed network gives a good
estimation. Meanwhile, if other slices, where fibers are oriented in a completely
different direction, are introduced the result changes and becomes irrelevant.

— Second orientation estimation: Unfortunately, the different tested archi-
tectures of deep neural networks did not succeed in estimating ϕ. The fact that
the stacks present more noise along the z axis made the orientation estimation
along this axis more complex.
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Prospects

The limitations cited before can be overcome through different approaches which
includes:

— It is possible to deal with the computational expenses of the three dimensional
directional filter by parallelizing it on the GPU. It is necessary to have a
powerful GPU with a large memory since the available stacks are big (around
105 million pixels). Regarding the adaptability of the proposed filter, it would
be interesting to develop a new version which will be oriented toward the size
of fiber discontinuities.

— For ϕ estimation, it is necessary to reduce the noise along the z axis as much
as possible. A new dataset of synthetic fibers without the addition of any type
of noise can be used to train a deep neural network. This way, it will be used
on filtered (even segmented) real images. Thus, the noise along the z axis is
dealt with and ϕ estimation can potentially work.

— Deep learning in general and convolutional neural networks in particular show
a great potential in dealing with heavy 3D images for multiple purposes. Since
volume fraction is an important quantitative information to have, developing
a neural network aiming at estimating that metric can be interesting.

— Deep learning potential can be exploited to different applications related to
SHG images (e.g. segmentation, denoising, etc.). For these application an ap-
propriate dataset needs to be available.
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Principaux résultats

Ce succinct résumé rappelle les différents aspects de la littérature qui ont été
soulignés par le présent travail ainsi que les principales avancées qui en résultent.

— Imagerie micro-structurale 3D: Après la revue de l’état de l’art dans le
chapitre 1, il a été montré que l’étude des fibres de collagène est étroitement
liée à la technique d’imagerie utilisée et la qualité de images acquises. La mi-
croscopie multi-photonique à travers la génération de seconde harmonique est
considérée comme la meilleure modalité d’imagerie pour acquérir des images
3D de tissus biologiques contenant des fibres de collagène. Cependant, ces
images peuvent contenir plusieurs artéfacts. Plusieurs méthodes de traitement
d’images ont été proposées dans la littérature pour remédier à ce problème
mais la majorité s’est focalisé sur des tranches 2D.

— Amélioration des images de seconde harmonique: Les images de se-
conde harmonique souffrent en général de 3 types d’artéfacts: (i) de la discon-
tinuité au niveau de certaines fibres causée par un effet d’ombre ou la présence
de poussière lors de l’acquisition, (ii) du flou introduit par la fonction d’éta-
lement du point propre au microscope et (iii) du bruit de Poisson causé lors
de l’acquisition. Le flou et le bruit de Poisson ont été traités par l’application
d’une transformée "top-hat" unidimensionnelle suivant l’axe z. D’autre part,
un filtre directionnel 3D a été utilisé pour reconstruire les fibres discontinues.
Certainement, ce filtre introduit encore du bruit mais il est possible de l’en-
lever en appliquant une transformée "top-hat" 3D. Ainsi, il est possible de
reconstruire un réseau de fibres de collagène net.

— Analyse quantitative: L’étude des fibres de collagène est basée sur l’analyse
quantitative. A cette fin, plusieurs méthodes de traitement d’images peuvent
être utilisées, d’une part pour transformer l’image brute dans un autre domaine
où il est possible d’extraire certaines informations (FFT, HT, etc.) et d’autre
part pour sélectionner et extraire directement des métriques des images brutes
(segmentation, CT-FIRE, etc.). Après la revue de l’état de l’art relatif au choix
de la technique de traitement d’image en fonction de l’information à extraire,
il a été prouvé que ce choix est étroitement lié à la métrique à évaluer. Malgré

137



CONCLUSION GENERALE

son potentiel, l’apprentissage profond est rarement utilisé sur des images de
seconde harmonique de fibres de collagène. En plus, la majorité des méthodes
de la littérature est focalisée sur des images 2D en négligeant la composante
3D du tissu biologique considéré.

— Estimation des orientations des fibres de collagène à partir d’images
de seconde harmonique 3D: Les images de seconde harmonique filtrées
montrent une bonne représentation 3D du réseau de collagène. De ces images,
il est possible d’extraire deux angles décrivant l’orientation du réseau de fibres
dans l’espace. L’apprentissage profond a été utilisé pour l’estimation de ces
angles. Un jeu de données contenant des images 3D de fibres synthétiques qui
ont été bruitées pour ressembler à des images de seconde harmonique réelles a
été utilisé pour entrainer le réseau proposé. Cependant, seulement l’estimation
de l’orientation des fibres dans le plan (x,y) a abouti à un résultat correct.

— Apprentissage profond et estimation d’orientation: Le réseau profond
proposé a été comparé à d’autres techniques d’estimation d’orientation parues
dans la littérature et a montré des résultats cohérents. Ce réseau a l’avantage
de déterminer une orientation moyenne à partir d’une image 3D tandis que
le reste de la litérature cherche l’orientation la plus fréquente dans l’image.
Par conséquent, cette méthode fonctionne proprement sur de petites images
contenant des fibres droites ou ondulées pour estimer leur orientation globale.

Limites

L’étude présentée dans cette thèse présente certaines limites. Ces limites peuvent
se résumer en:

— Besoin matériel: Afin d’avoir une bonne reconstitution de fibres, il faut
considérer un nombre assez important de directions pour le filtre directionnel
3D à appliquer. Cette nécessité augmente forcément le temps de calcul. En
effet, l’application d’un filtre directionnel 3D d’une longueur de 120 pixels et
couvrant 101 directions sur une image de dimension (128,128,15) dure autour
de 5 heures sur un cluster de calcul (CPU Intel Xeon E5-2660 v3 de 10 cœurs
à 2,6 GHz). De plus, ce type de filtres nécessite la disponibilité d’encore plus
de mémoire pour permettre son utilisation sur des images plus grandes.

— Adaptabilité de la longueur du filtre directionnel: Le filtre directionnel
3D comme proposé est caractérisé par une longueur constante et un nombre
de directions constant. Le filtre est appliqué sur tous les pixels de l’image sans
prendre en considération si ce pixel correspond à une discontinuité ou pas. De
plus, les discontinuités ne figurent pas sur toutes les fibres du réseau et ne sont
pas toutes similaires.

— Estimation de θ: Le résultat de l’estimation de θ dépend fortement de l’image
3D considérée. En effet, si l’on inclut des tranches qui contiennent des fibres
dont l’orientation est complètement différente du reste du volume, le résultat de
l’estimation est impacté. Ceci est dû au fait que le réseau estime une orientation
moyenne.
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— Estimation de ϕ: Malheureusement, les différentes architectures testées pour
estimer cet angle n’ont pas permis de l’estimer correctement. du fait que les
images (réelles et synthétiques) présentent plus de bruit suivant l’axe z, l’esti-
mation devient plus complexe.

Perspectives

Les limites citées précédemment peuvent être palliées via plusieurs approches.
Ceci peut inclure:

— Il est possible de surmonter les besoins matériels par l’utilisation d’une carte
graphique performante qui possède une large mémoire puisque les images uti-
lisées peuvent atteindre 105 millions de pixels. Pour ce faire, il est nécessaire
de paralléliser l’algorithme déjà écrit. Par rapport à l’adaptabilité du filtre, il
serait intéressant de développer une version qui traite uniquement les discon-
tinuités et non l’image entière.

— Pour l’estimation de ϕ, il est nécessaire de réduire le bruit suivant l’axe z autant
que possible. Il serait possible de développer un autre jeu de données sans
l’ajout de bruit afin de l’utiliser pour entrainer un autre réseau de neurones.
Dans ce cas, lors du test sur des images réelles, il faudrait les filtrer. Par
conséquent, l’estimation de ϕ pourrait éventuellement fonctionner.

— L’apprentissage profond en général et les réseaux convolutionnels en particu-
lier ont montré un grand potentiel dans le traitement de larges images 3D
pour différentes applications. La fraction volumique est une grandeur qu’on
cherche souvent à estimer. Il serait possible de développer un réseau de neu-
rones convolutionnel qui assure cette tâche.

— L’apprentissage profond peut être utilisé dans plusieurs autres applications
relatives aux images de seconde harmonique 3D, comme par exemple la seg-
mentation ou le dé-bruitage. Pour ce faire, un jeu de données adéquat est
nécessaire.
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Appendix: Stacks included in the
orientation estimation tests

Here, we present the stacks used in the additional tests were some orientation
estimation methods are compared.

Straight 1 Straight 2
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Straight 3 Straight 4

Straight 5 Undulated 1

Undulated 2 Undulated 3
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Undulated 4 Undulated 5
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Abstract

The human body is a complex structure composed of multiple cells, organs and tissues. The
cardiovascular system is responsible of transferring nutrients and oxygen to all the body and the
aorta plays an essential role. The upper portion of the aorta, called ascending thoracic aorta, is a
critical section since it has to support the high pressure blood pumped by the heart. This is made
possible thanks to the micro-structure of the aortic wall, mainly composed of fibers (collagen and
elastin). With aging, changes may occur on the aortic micro-structure and may cause some diseases
such as aneurysms. Studying this microstructure is helpful to understand its functions. To this end,
several imaging modalities were used in the literature especially the multi-photon microscopy and
Second Harmonic Generation (SHG) because of its good resolution in 3D. However, SHG images
may present some artifacts such as noise in addition to some discontinuities on certain fibers. The
study of this micro-structure is based on the quantitative analysis of acquired 3D images in order
to extract information related to the geometry and the morphology of collagen fibers as well as the
composition of the considered specimen.

The goal of this thesis is, in the first place, to enhance 3D second harmonic generated images
of collagen fibers in order to make them more suited for a potential quantitative analysis. To this
end, a combination of a 3D directional filter (to deal with fibers discontinuities) and a 1D and a 3D
top-hat transforms (to reduce the noise) is proposed. The second part of this thesis is focused on
the quantitative analysis of these images and in particular, orientations’ estimation of collagen fibers
in the 3D space. A new approach based on deep learning is introduced. A dataset of 3D images of
synthetic fibers is developed to ensure the learning phase of the proposed neural network.
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Résumé

Le corps humain est une structure complexe composée de plusieurs cellules, tissus et organes.
Le système cardiovasculaire est responsable du transfert de l’oxygène et des nutriments vers tout le
corps et l’aorte y joue un rôle essentiel. La portion supérieure de l’aorte, appelée aorte thoracique
ascendante, est assez critique puisqu’elle doit supporter la pression élevée du sang pompé par le cœur.
Ceci est possible grâce à la micro-structure de l’aorte qui est principalement composée de fibres
(collagène et élastine). Cependant, avec le vieillissement, des changements peuvent toucher cette
micro-structure et causer des pathologies comme les anévrismes. L’étude de cette micro-structure est
nécessaire pour comprendre ses fonctions. Ceci est possible grâce à plusieurs modalités d’imagerie
notamment la microscopie à deux photons et la génération de seconde harmonique puisqu’elle offre
une bonne résolution en 3D. Cependant, les images collectées peuvent présenter plusieurs artéfacts
comme du bruit et des discontinuités au niveau de quelques fibres. L’étude de cette micro-structure
est basée sur l’analyse quantitative des images acquises afin d’extraire des informations relatives à la
géométrie et la morphologie des fibres ainsi que la composition du spécimen considéré.

Cette thèse a pour objectif, en premier lieu, d’améliorer des images 3D de seconde harmonique de
fibres de collagène afin de les rendre exploitables pour une éventuelle analyse quantitative. Pour se
faire, une combinaison d’un filtre directionnel 3D (pour remédier au problème de discontinuité) et de
transformées "top-hat" à une et trois dimensions (pour réduire le bruit) est proposée. En second lieu,
l’intérêt est porté sur l’analyse quantitative de ces images et en particulier l’estimation de l’orientation
des fibres de collagène dans l’espace 3D. Une nouvelle approche basée sur l’apprentissage profond est
présentée. Une base de données contenant des images 3D de fibres synthétiques est développée pour
assurer la phase d’apprentissage du réseau de neurones proposé.
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