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Abstract

In this thesis, novel h- and hp-adaptive strategies suited for the discontinuous Galerkin
formulation of the compressible Navier-Stokes equations are established in the frame-
work of the European collaborative project CODA (CFD ONERA DLR Airbus). The
novel adaptive strategies target unstructured grids, considering a metric-based simplicial
remeshing approach, with application to steady laminar (Navier-Stokes or NS), steady
turbulent (Reynolds-Averaged Navier-Stokes or RANS) and unsteady turbulent scale-
resolving configurations (Zonal Detached Eddy Simulation or ZDES). The definition of
the size field (h) and the polynomial degree distribution (p) is driven by an a posteriori
error estimator, combining the measure of the energy associated with the highest-order
modes and the inter-element jumps. The choice of refining either in h or p is driven by
a smoothness indicator based on the decay of the modal coefficients in each element.
The performance of the h- and hp-adaptive algorithms is firstly assessed for 2D and 3D
laminar flows, demonstrating a significant gain in accuracy of the adaptive simulations
with respect to uniformly refined simulations. The adaptive hp-strategy is then extended
to mixed-element meshes to account for the anisotropy of the boundary layers for the
RANS and ZDES turbulence modeling approaches. Namely prisms located in the bound-
ary layers can be p-enriched, while the tetrahedra discretizing the outer region of the
flow can be both subject to p-enrichment and h-refinement. The adaptive hp-strategy is
applied to a 3D turbulent jet issued from a nozzle, in both RANS and ZDES configuration
(for which the adaptive algorithm is extended to unsteady flows), and validated through
comparisons with the experiments and numerical results from the literature. The un-
steady ZDES simulations are used to perform aeroacoustic analyses using the Ffowcs
Williams-Hawkings (FW-H) method. Both fluid flow and acoustic results are shown to
provide good agreement with the references while adapting the mesh, with a reduced
number of degrees of freedom. The last part of this work focuses on the extension of
the h-adaptation strategy to transonic flows considering complex geometries. For this
purpose, the adaptation strategy is improved by allowing the projection of the adapted
surface mesh on the CAD. This allows the adaptive strategy to take into account the exact
representation of the geometry, which is of fundamental importance for complex indus-
trial applications. A modification of the error estimator for the h-adaptive algorithm is
proposed to account for shock capturing and transonic simulations. The performance of
the developed algorithm is finally assessed for inviscid simulations of an isolated wing
and a wing-body aircraft configuration.
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Résumé

Dans cette thèse, de nouvelles stratégies adaptatives h et hp pour la formulation
Galerkine discontinue des équations de Navier-Stokes compressibles sont établies dans
le cadre du projet collaboratif européen CODA (CFD ONERA DLR Airbus). Les nouvelles
stratégies adaptatives visent la simulation de configurations laminaires stationnaires
(Navier-Stokes ou NS), turbulentes moyennées (Reynolds-Averaged Navier-Stokes ou
RANS) et turbulentes avec résolution des grandes échelles (Zonal Detached Eddy Sim-
ulation ou ZDES). Une méthode de remaillage non structurée basée sur un champ de
métrique a été développée en ce sens. La définition du champ de tailles caractéristiques
des éléments (h) et de la distribution des degrés polynomiaux (p) est pilotée par un es-
timateur d’erreur a posteriori. Ce dernier combine la mesure de l’énergie associée aux
modes d’ordre supérieur et les sauts entre les éléments. Le choix du raffinement en h
ou en p est guidé par un indicateur de régularité basé sur la décroissance des modes
polynomiaux dans chaque élément. La performance des algorithmes adaptatifs h et hp
est premièrement évaluée pour des écoulements laminaires en 2D et 3D. Un gain de pré-
cision significatif des simulations adaptatives par rapport aux simulations uniformément
raffinées est ainsi obtenu. La stratégie adaptative hp est ensuite étendue pour la prise
en compte de couches limites, nécessitant des éléments anisotropes, afin de satisfaire
les besoins de résolution des modélisations RANS et ZDES. En particulier, les prismes
situés dans les couches limites sont enrichis en p, alors que les tétraèdres de la région
extérieure sont à la fois soumis à un enrichissement en p et à un raffinement en h. Puis,
l’algorithme adaptatif hp est étendu aux écoulements instationnaires et appliqué au jet
turbulent 3D d’une tuyère, via une modélisation RANS et ZDES. Les simulations sont
validées par des comparaisons avec les expériences et les résultats numériques de la lit-
térature. Les simulations ZDES instationnaires permettent l’analyse aéroacoustique de
l’écoulement en utilisant la méthode de Ffowcs Williams-Hawkings (FW-H). Les résul-
tats de la dynamique de l’écoulement fluide et de son champ acoustique montrent un
bon accord avec les références pour un nombre réduit de degrés de liberté. La dernière
partie de ce travail se concentre sur l’extension de la stratégie d’adaptation h aux écoule-
ments transsoniques considérant des géométries complexes. À cette fin, la méthode
d’adaptation est améliorée en ajoutant au processus la projection du maillage de sur-
face adapté sur la CAD. La représentation exacte de la géométrie est alors assurée, ce
qui est d’une importance fondamentale pour les applications industrielles complexes.
L’estimateur d’erreur de l’adaptation h est de plus enrichi pour une meilleure capture
des chocs, caractéristiques des écoulements transsoniques. L’algorithme développé est
finalement évalué pour la simulation non visqueuse d’une aile isolée et d’une configura-
tion d’avion aile-fuselage.
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Chapter 1

Introduction

1.1 Context and motivations
More efficient, silent and cleaner aircraft designs require new concepts and increasingly
complex physical modeling, integrating the multi-physical interactions between aerody-
namics, acoustics, propulsion, structures and flight control systems. These new models
must be carefully validated, so that Computational Fluid Dynamics (CFD) can be in-
tegrated as a primary tool in the certification process, reducing our reliance on costly
experimental testing and enabling high-fidelity simulations that allow for a fine study
of physical phenomena around complex geometries. However, high-fidelity simulations
often require a very high computational effort due to the use of a very large number of
spatial degrees of freedom (dofs) to capture accurately features stemming from complex
physics.

In this context, adaptive strategies are of great interest for optimizing the cost and ac-
curacy of the simulations. In practice, adaptive methods lead to the concentration of the
dofs in regions of interest of the flow, guided by an error estimate [109, 182, 301]. Pure
mesh adaptation, also referred to as h-adaptation, is performed to improve the resolution
of the flow features employing both classical second order numerical methods [298, 20]
and high-order methods [180, 76], by modifying the existing mesh according to an adap-
tation criterion. In the regions lacking resolution, h-adaptation aims at decreasing the
size h of the elements, while increasing it in overrefined regions. When dealing with
high-order methods, the increased resolution necessary to accurately solve the flow fea-
tures can be achieved by locally increasing the order of the numerical method. In par-
ticular, for spectral element methods, increasing the order of accuracy corresponds to
increasing the degree p of the polynomials which approximate the solution. This kind of
spatial resolution adaptation is called p-adaptation [219, 14, 300].

In particular, the research community has begun to focus on hp-adaptive methods us-
ing piecewise polynomial approximations, in which, one not only locally adapts the size
h of the mesh, but also the degree of the polynomials p, within the element. These adap-
tive methods offer better flexibility and efficiency than adaptive methods implementing
only h-refinement or p-enrichment [182, 75, 34].

Among novel high-order numerical methods, discontinuous Galerkin (DG) schemes
are a special class of spectral element methods which provide a natural framework for

1
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hp-adaptation. In recent years, DG methods [167, 111] have become increasingly pop-
ular for the solution of nonlinear convection dominated flow problems [91]. DG meth-
ods are high-order finite element discretizations based on the variational formulation
of the governing equations, and combine features from Finite Volume (FV) and Finite
Element (FE) methods. DG methods lack of continuity constraints at the element bound-
aries, allowing for straightforward element-wise changes of the numerical features of
the method. A number of aspects make DG methods especially interesting, such as their
high-order of accuracy achieved on arbitrary unstructured meshes, accurate description
of curved boundaries and suitability to parallel computing thanks to a compact sten-
cil. Moreover, efficient, local, simple and low-computational cost a posteriori jump and
spectral error indicators [202, 236, 139, 245] can be exploited for mesh or polynomial
adaptation.

In the context of high-fidelity CFD simulations, the use of unstructured or hybrid
meshes is often preferred over structured meshes for their higher flexibility in the mesh-
ing process and in the number of degrees of freedom needed to simulate a given con-
figuration. DG is particularly suited for unstructured computational meshes, since the
increased order derives from a local approximation of the differential operator. The com-
putational stencil of DG methods thus remains compact independently of the order, and
the quality of the approximation presents a lower sensitivity to the mesh regularity as
compared to the high-order FV schemes [46]. However, for DG methods, the computa-
tional complexity and memory requirements increase with the polynomial order of the
numerical approximation. As a consequence, for DG methods to become an industri-
ally affordable alternative to FV solvers, it is essential to develop hp-adaptive techniques
capable to reduce their computational cost.

We note that the low dissipation and dispersion properties of DG schemes make them
the perfect candidates for the simulation of turbulent unsteady phenomena and their
acoustic qualification, which require very accurate numerical schemes. Scale-resolving
simulations are powerful tools that can help understanding turbulence and the noise gen-
eration mechanisms in aircraft, especially in the design of novel engine nozzles concepts,
which are known to be the main sources of noise of an aircraft at take-off. Traditionally,
scale-resolving simulations of aerodynamic problems have been performed by means of
high-order FD and FV schemes, presenting, however, two important limitations. Both
lose some of the parallel efficiency when employing an extended stencil, and their nom-
inal order of accuracy near physical boundaries.

Concerning the physical modeling of turbulent flows, despite their extensive
and well-assessed use for industrial configurations, Reynolds-averaged Navier-Stokes
(RANS) simulations fail in predicting accurately non-equilibrium turbulent flows in
which the turbulent large scales strongly affect the mean flow quantities [79], as for ex-
ample with strongly detached and transitional flows [260]. RANS involves the solution
of fluid dynamics equations considering time averaged quantities, such that the effects of
the scales of turbulence are fully modeled. Large Eddy Simulation (LES) is designed to
characterize explicitly the spatial and temporal dynamics of turbulent scales and the un-
steady features encountered for example in transitional flows, gas turbine combustors,
nozzles. Nonetheless, LES yields prohibitive costs to capture the wall-bounded turbulent
dynamics at high Reynolds numbers.
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Hybrid RANS/LES models have been proposed to combine the most attractive prop-
erties of the two approaches: the attached boundary layer is predicted by RANS models,
while the unsteady 3D large eddies are captured by LES, decreasing the computational
cost of separated turbulent flows with respect to LES. This allows for a significant re-
duction of the number of degrees of freedom, which wall-resolved LES would need to
capture the smaller structures developed in the boundary layer. Hybrid RANS/LES mod-
els in general, together with Wall Modeled LES, that can be often seen as a subcategory
of hybrid RANS/LES models, represent at the present time the only means to simulate
relevant industrial configurations with sufficient accuracy and affordable computational
time.

1.2 Scientific and industrial objectives

The main goal of the present PhD thesis is to provide a contribution towards the indus-
trialization of DG methods, by optimizing their computational cost while maintaining
their high accuracy for Airbus applications.

In particular this work is aimed at developing adaptive techniques in the context of
the new unstructured flow solver CODA [183], developed in partnership by Airbus, ON-
ERA and DLR, and targeting research and industrial aerodynamic problems of interest.
This new CFD platform is designed for both innovative numerical methods and physical
models, and efficient parallel and heterogeneous architectures, applying modern soft-
ware techniques to a wide range of multidisciplinary applications. The object-oriented
CODA framework permits the integration of advanced inter-operable CFD components,
including different flow solvers (Finite Volume, modal and nodal discontinuous Galerkin
schemes) applied to the Euler, Navier–Stokes, RANS, LES and hybrid RANS/LES equa-
tions.

The main research axis consists in the development of efficient adaptive strategies
(both h and hp) for DG, suitable for industrial configurations, employing unstructured
simplicial meshes. In particular, the MMG library [6, 97], supporting both 2D and 3D
remeshing, has been chosen in this work as the remeshing tool. The adaptive algorithm
is developed in the FlowSimulator environment [203] used in Airbus. This modular
framework couples different applications of the CFD and the Computational Structural
Mechanics (CSM) workflow on High Performance Computing (HPC) platforms, and the
different modules of the FlowSimulator platform share a common data structure and
software architecture.

The main target applications of this research are scale-resolving aeronautical indus-
trial configurations. The final part of this thesis concerns steady aircraft configurations,
in order to provide the basis for future DG/RANS adaptive simulations on transonic test
cases, representative of Airbus aerodynamic design activities.

1.3 Overview of the thesis

In this thesis we propose novel metric based h- and hp-adaptive strategies tailored for
DG schemes and tetrahedral elements. The introduction of an hp-decision strategy aims
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at improving the efficiency and behavior of pure h-adaptive algorithms. An efficient a
posteriori error estimator, which employs the solution itself to derive estimates of the
discretization error, is used to control the element size for h-adaptation, and both the el-
ement size and the polynomial degree for hp-adaptation. Concerning the hp-adaptation
algorithm, we propose that the choice on whether to h-refine or p-enrich an element be
driven by the decay rate of the modal coefficients of the DG approximation, which char-
acterizes the smoothness of the solution in the element. An isotropic mesh-refinement
strategy is employed in this work. In the case of RANS and hybrid RANS/LES simulations
this is fit for adapting the resolution in free-shear regions, while the anisotropic flow re-
gions (e.g. boundary layers) can be meshed with fixed anisotropic prismatic elements
whose resolution is modulated through p-adaptation.

Several numerical steady and unsteady test cases are studied to assess the efficiency
of the developed adaptive algorithms. Adaptive simulations are compared to simulations
performed on uniformly refined meshes and/or reference simulations from the literature,
in order to measure the gain provided by the adaptive algorithms. The developed algo-
rithm is finally applied to the hybrid RANS/LES scale resolving simulations of a subsonic
jet at 𝑅𝑒 = 106 aimed at aeroacoustic analyses. The adaptation tool and the error esti-
mator employed to drive the adaptation process are then adjusted for inviscid transonic
simulations of wing/aircraft configurations.

The manuscript is organized as follows.
Chapter 2 presents the details of the discretization of the Navier–Stokes (and Eu-

ler) equations using the discontinuous Galerkin method. Different turbulence modeling
approaches are presented, with a particular focus on the RANS equations employing
the Spalart-Allmaras turbulence model, and the Detached Eddy Simulation (DES)/Zonal
Detached Eddy Simulation (ZDES).

In Chapter 3 a bibliographic review of the different spatial resolution adaptive
techniques is conducted. In particular different h-adaptation, p-adaptation and hp-
adaptation techniques are presented, highlighting their main advantages and drawbacks,
and their field of application. Some relevant a posteriori error estimators are finally pre-
sented.

In Chapter 4, the order of convergence of the employed DG discretization is first
assessed for unsteady inviscid computations, thanks to the test case of the transport of
an isentropic vortex. The properties of the DES/ZDES in the context of DG are then
studied, focusing on the influence of the 𝑦+ value by performing RANS simulations of
the flow over a flat plate at Reynolds number equal to 5 · 106, and of the DES constant
for DG simulations on a turbulent Taylor-Green Vortex (TGV) at Reynolds number equal
to 5000.

Chapter 5 provides a thorough description of the h- and hp-adaptive algorithms
developed in this work. The error estimator, the smoothness indicator and the de-
gree/metric prescription are here detailed. The assessment of the implemented h- and
hp-adaptation algorithms is then performed on three subsonic laminar configurations,
namely the 2D flow past a NACA0012 airfoil, the 3D flow past a sphere and the 3D flow
past a delta wing. Comparisons are made with respect to uniformly refined meshes, to
highlight the gain provided by the adaptive strategies. The hp-adaptive algorithm is then
applied to RANS simulations of a turbulent configuration of an isothermal subsonic jet
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issued from the PPRIME nozzle [63], and validated by comparisons with experiments
and a reference RANS simulation.

Chapter 6 extends the h/hp-adaptation algorithm to unsteady turbulent flows. The
modifications of the adaptive procedure for such applications are here described. First,
the test case of the transport of an isentropic vortex allows us to validate the un-
steady static h/hp-adaptive implemented strategies, by comparison with uniformly re-
fined meshes. Then the hp-adaptive strategy is tested on a hybrid RANS/LES (DES)
configuration, the subcritical flow past a sphere. The results are validated and discussed
by comparisons with other numerical references in the literature. The hp-adaptive strat-
egy is finally applied to the unsteady configuration of the PPRIME nozzle, with a hybrid
RANS/LES approach, namely the ZDES mode 1. Here the initial hp-mesh for starting
the hybrid RANS/LES adaptation process is obtained via a series of low computational
cost RANS hp-adaptations from Chapter 5. Results on the flow field and on the far-field
acoustics, performed using a Ffowcs Williams-Hawkings approach, are presented and
compared to the experiment and the numerical references from the literature.

In Chapter 7, the h-adaptive strategy is improved by introducing the possibility to
reproject the geometrical surfaces to its CAD. This important feature allows for treating
more complex geometries typical of the Airbus industrial context. Thanks to this devel-
opment, the complete surface mesh adaptation can be performed without degrading the
geometry representation over the course of the different adaptation steps. Moreover, the
availability of an artificial viscosity technique for DG methods in the CODA flow solver
allows us to apply the h-adaptive algorithm to inviscid transonic configurations of the
ONERA M6 wing and the body-wing configuration of the CRM. The error estimator is
here adapted to the different physics of the flow presenting a strong physical discontinu-
ity as a shock.

In Chapter 8 concluding remarks and directions for future research are discussed.

1.4 Fundings

This CIFRE PhD thesis has been funded by ANRT and Airbus under the CIFRE contract
n. 2019/0568, and it has been carried out at ONERA in Châtillon (Hauts de Seine, FR)
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this thesis have been performed using HPC resources from GENCI-CINES (Grant 2020-
A0082A11470 and Grant 2021-A0102A11470) and internal ONERA and Airbus HPC
resources.
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Chapter 2

Flow equations and discretization

This chapter describes the equations for solving compressible fluid flow problems in
Section 2.1, as well as the discontinuous Galerkin discretization implemented in the
flow solver CODA used in the present work in Section 2.3.

2.1 The compressible Navier-Stokes equations

The motion of a compressible fluid in a three-dimensional domain Ω ∈ R3 is described
by the compressible Navier-Stokes (NS) equations, which take the form

𝜕𝑡u + ∇ · (F𝑐 (u) − F𝑣 (u,∇u)) = 0, ∀x ∈ Ω, 𝑡 > 0
u(x, 0) = u0(x), ∀x ∈ Ω

, (2.1)

with appropriate boundary conditions prescribed on 𝜕Ω. The vector u represents the
conservative variables, with 𝜌 being the density, v being the velocity vector and 𝐸 the
specific total energy. The convective and diffusive fluxes F𝑐 (u) and F𝑣 (u,∇u) are defined,
respectively, as:

u =


𝜌

𝜌vT

𝜌𝐸

 , F𝑐 (u) =


𝜌vT

𝜌vvT + pI
𝜌𝐸vT + pvT

 and F𝑣 (u,∇u) =


0
𝝉

vT𝝉 − qT

 (2.2)

with:

𝝉 = 2`S𝐷 = `(𝑇)
(
∇v + (∇v)T − 2

3
(∇ · v)I

)
, q = −_∇𝑇 , (2.3)

p = 𝜌𝑅𝑇 = (𝛾 − 1) (𝜌𝐸 − 1
2
𝜌v · v) . (2.4)

where p is the static pressure, 𝛾 =
𝐶𝑝

𝐶𝑣
is the ratio of specific heats, `(𝑇) is the dynamic

viscosity, S𝐷 is the deviatoric component of the strain-rate tensor S =
1
2
(∇v+ (∇v)T), 𝑇 is

the temperature, 𝑅 is the specific gas constant, and _ = `
𝐶𝑝

𝑃𝑟
is the thermal conductivity,

with 𝑃𝑟 the Prandtl number. In this work, a value of 𝑃𝑟 = 0.72 is used. The perfect gas

7



8 CHAPTER 2. FLOW EQUATIONS AND DISCRETIZATION

law is used to close the system of equations, and the dependence of the viscosity on the
temperature is expressed using the Sutherland’s law.

The behavior of inviscid flows is governed by the Euler equations. They correspond
to the Navier–Stokes equations with zero viscosity ` = 0 and zero thermal conductivity
_ = 0. They then take the form of equations (2.1) with F𝑣 = [0].

2.2 Turbulence modeling

Different physical modeling approaches can be used for the simulation of turbulent flows.
These range from Direct Numerical Simulation (DNS) (the most precise and computa-
tionally expensive), which solves all turbulent scales, to the Reynolds-Averaged Navier-
Stokes (RANS) approach, which describes the average motion by modeling all the tur-
bulent scales (the least precise and cheapest from a computational point of view). In-
termediate steps in a scale of precision and subsequent computational cost are the Large
Eddy Simulation (LES) and the hybrid RANS/LES methods. In this section we present
the different approaches mentioned here, and detail the specific formulations used in
this work.

2.2.1 The Reynolds-Averaged Navier-Stokes equations

Reynolds developed a statistical description of turbulence by averaging in time the
Navier-Stokes equations.

The conservative variables u can be decomposed as follows:

u(x, 𝑡) = u(x, 𝑡) + u′(x, 𝑡) with u(x, 𝑡) = 1
Δ𝑡

∫ Δ𝑡
2

− Δ𝑡
2

u(x, 𝑡 + 𝜏)𝑑𝜏 , (2.5)

where u(x, 𝑡) is the time averaged value and u′(x, 𝑡) the instantaneous fluctuations. This
description corresponds to the classical RANS approach for statistically steady flows,
where the averaged quantity is constant in time u(x). If the averaged quantity is time-
dependent, we refer to an approach called URANS with u(x, 𝑡). The time interval Δ𝑡
must be chosen to be large enough with respect to the time scale of the turbulence, but
at the same time sufficiently small with respect to the time scale of the global unsteady
phenomena.

Averaging the convective term, the fluctuating velocity gives rise to an extra term
containing the correlation between the components of the fluctuating velocities, the
Reynolds stress tensor −𝜌v′ ⊗ v′.

In RANS simulations, the Reynolds stresses are unknown and need to be modeled in
order to close the system of equations. The system can be closed with the Boussinesq
hypothesis, expressing the Reynolds stress tensor using averaged quantities

𝜏𝜏𝜏t = 2`𝑡S𝐷 − 2
3
𝜌𝑘I, qt = − `𝑡

𝑃𝑟𝑡
𝐶𝑝∇𝑇 , (2.6)

where 𝑃𝑟𝑡 = 0.9 is the turbulent Prandtl number, `𝑡 is the turbulent dynamic viscosity
and 𝑘 is the turbulent kinetic energy.
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In order to correctly capture velocity gradients near the wall, in RANS simulations
the first element at the wall should be small enough to ensure 𝑦+ ∼ 1 in the wall-normal
direction. Usually RANS meshes are highly anisotropic in the boundary layers, since very
high 𝑥+ and 𝑧+ can be generally employed in the two directions tangential to the wall.

The modeling of the turbulent viscosity and of the turbulent heat fluxes can be re-
alised with different RANS models. Among the most popular, we can find the 𝑘−𝜖 model
by Launder and Spalding [178], the one equation model by Spalart & Allmaras [276],
the 𝑘 − 𝜔 by Wilkox [305] and the 𝑘 − 𝜔 by Menter [206]. In this work we will use the
approach by Spalart & Allmaras, described more in detail in the next paragraph.

The Spalart-Allmaras turbulence model

The mean flow equations are coupled with the one-equation turbulence model of
Spalart-Allmaras (SA) [276] to solve a modeled transport equation for the kinematic
eddy turbulent viscosity. In particular we describe the more recent formulation, known
as the "negative" version of the SA model, which keeps into account the modification
proposed by the original authors in [23], including the modifications for compressibility
effects. The Reynolds-Averaged Navier-Stokes equations with the SA turbulence model
can be written in conservative form by adding a source term to equation (2.1) as:

𝜕𝑡u + ∇ · (F𝑐 (u) − F𝑣 (u,∇u)) = S(u,∇u), ∀x ∈ Ω, 𝑡 > 0
u(x, 0) = u0(x), ∀x ∈ Ω ,

(2.7)

where we assume that u is the vector of time-averaged conservative variables over a
given time interval and 𝑡 is a pseudo time. Here and in the remainder of this section we
have dropped the symbol (·) for clarity. The turbulent conservative variable 𝜌ã is added
to the vector of conservative variables and the convective and diffusive fluxes F𝑐 (𝜌ã),
F𝑣 (𝜌ã,∇(𝜌ã)) are defined as:

F𝑐 (𝜌ã) = 𝜌ãvT, F𝑣 (𝜌ã,∇(𝜌ã)) =
1
𝜎
(` + 𝑓𝑛1𝜌ã)∇ãT . (2.8)

In the diffusive fluxes, the turbulent stress tensor 𝜏𝜏𝜏t and the turbulent heat fluxes
qt in equation (2.6) are added respectively to 𝜏𝜏𝜏 and q defined in equation (2.3). In
particular the term depending from 𝑘 is ignored for this type of one-equation model,
because 𝑘 is not readily available. The turbulent dynamic viscosity `𝑡 is defined as:

`𝑡 =

{
𝜌ã 𝑓𝑣1(𝜒) for ã ≥ 0
0 for ã < 0

, 𝑓𝑣1(𝜒) =
𝜒3

𝜒3 + 𝑐3
𝑣1
, 𝜒 =

𝜌ã

`
(2.9)

The source terms act on the conservation equation only for the turbulent variable 𝜌ã and
read:

S(𝜌ã,∇(𝜌ã)) = −𝜌(𝑃 − 𝐷) − 𝑐𝑏2
𝜎
𝜌∇ã · ∇ã + 1

𝜎
(a + 𝑓𝑛1ã) ∇𝜌 · ∇ã (2.10)
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where the production and destruction terms, 𝑃 and 𝐷, are defined by:

𝑃 =

{
𝑐𝑏1(1 − 𝑓𝑡2)�̃�ã for ã ≥ 0
𝑐𝑏1(1 − 𝑐𝑡3)𝜔ã for ã < 0

𝐷 =


(
𝑐𝑤1 𝑓𝑤 − 𝑐𝑏1

^2 𝑓𝑡2

) (
ã

d𝑤

)2
for ã ≥ 0

−𝑐𝑤1

(
ã

d𝑤

)2
for ã < 0

(2.11)

and

𝑓𝑛1 =


1 for ã ≥ 0
𝑐𝑛1 + 𝜒3

𝑐𝑛1 − 𝜒3 for ã < 0
, 𝑓𝑡2 = 𝑐𝑡3 exp(−𝑐𝑡4𝜒2), 𝑓𝑤 = 𝑔

(
1 + 𝑐6

𝑤3

𝑔6 + 𝑐6
𝑤3

) 1
6

(2.12)
with

𝑔 = 𝑟 + 𝑐𝑤2(𝑟6 − 𝑟), 𝑟 = min
(
𝑟𝑙𝑖𝑚,

ã

𝜔^2d2
𝑤

)
, (2.13)

where d𝑤 is the distance to the nearest wall and 𝜔 the vorticity magnitude.
The modified vorticity magnitude �̃� is given by

�̃� =


𝜔 + 𝜔 for 𝜔 > −𝑐𝑣2𝜔

𝜔 +
𝜔(𝑐2

𝑣2𝜔 + 𝑐𝑣3𝜔)
(𝑐𝑣3 − 2𝑐𝑣2)𝜔 − 𝜔 for 𝜔 < −𝑐𝑣2𝜔

, (2.14)

where 𝜔 and 𝑓𝑣2 are given by

𝜔 =
ã

^2d2
𝑤

𝑓𝑣2, 𝑓𝑣2 = 1 − 𝜒

1 + 𝜒 𝑓𝑣1
. (2.15)

For the sake of completeness, we give the values of the constants in the above expres-
sions: 𝑐𝑣1 = 7.1, 𝜎 = 2/3, 𝑐𝑏1 = 0.1355, 𝑐𝑏2 = 0.622, ^ = 0.41, 𝑐𝑤2 = 0.3, 𝑐𝑤3 = 2, 𝑟𝑙𝑖𝑚 = 10,
𝑐𝑡3 = 1.2, 𝑐𝑡4 = 0.5, 𝑐𝑣2 = 0.7, 𝑐𝑣3 = 0.9, 𝑐𝑛1 = 16.

2.2.2 Scale-resolving simulations

While RANS (and URANS) well predicts the average and the instantaneous forces on the
body, the temporal fluctuations are lost, and they prove not reliable for highly unsteady
flows. For computations as acoustic analysis, scale-resolving simulations (DNS, LES or
hybrid RANS/LES) are mandatory in order to obtain good results.

Direct Numerical Simulation

The DNS method is the most straightforward approach to solve unsteady turbulent flows,
since the entire spectrum of the turbulence is represented without the need of any mod-
eling. DNS does not involve approximations, other than those due to the numerical dis-
cretization. The unsteady, three-dimensional Navier-Stokes equations are numerically
solved, and all the motion scales are resolved, requiring a mesh fine enough to capture
the smallest scale of turbulence.
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However, the high computational cost of this method makes it prohibitive for most
engineering problems, where typical Reynolds are in the range of 𝑅𝑒 = 105 − 108.

In fact, the computational cost of DNS depends on the Reynolds number: the higher
the Reynolds number, the higher the spatial requirements in order to solve all the
scales. This can be demonstrated from the Kolmogorov analysis [171] for homogeneous
isotropic turbulence, according to which the ratio between the largest scales 𝐿 of the
flow and the smallest scales [ is proportional to a power of the Reynolds number related
to the large scales 𝑅𝑒𝐿

𝐿

[
∝ 𝑅𝑒

3
4
𝐿
. (2.16)

The computational cost is largely determined by the resolution requirements, since the
grid spacing must be small enough to resolve the dissipative scales [, and the computa-
tional box size must be large enough to represent the energy-containing motions with
scale 𝐿.

Given the three-dimensionality of turbulence, the required number of degrees of

freedom to compute the entire complete flow, scales with 𝑅𝑒
9
4
𝐿
.

Moreover, it has been shown [88] that the simulation of wall-bounded flows increases
the dependence of the number of degrees of freedom on the Reynolds number to 𝑅𝑒3.5

𝐿
,

due to the higher resolution needed by turbulent boundary layers. While being a power-
ful research tool to carry out experiments which are difficult or impossible to realize in
the laboratory, DNS cannot be considered for engineering design. The resolution of the
Navier-Stokes equations is for the moment restricted to low Reynolds flows.

Large Eddy Simulation

For this reason, LES was introduced in the 60s [274]. Here turbulence scales smaller
than the mesh size are filtered and modeled, while the large scales containing most
of the energy of the flow are fully simulated. However, this method requires a very
fine resolution in the three directions near the body because the very small scales of
turbulence present in the thin boundary layer along the walls must have a reasonably
high resolution in order to correctly evolve. Usually Wall Resolved LES requirements
impose Δ𝑦+ = 1, Δ𝑥+ = 100 and Δ𝑧+ = 20 [83], where 𝑦 is the direction normal to the
wall, 𝑥 is the streamwise and 𝑧 is the spanwise direction.

Wall Resolved LES methods are still too cost demanding for the industrial context.
Wall-Modeled LES (WMLES) [237, 177] are LES methodologies where the near-wall
region is modeled, relaxing the 𝑦+ = 1 constraint, and allowing to simulate a time-
dependent wall-bounded flow with affordable computational resources.

Even though LES will never explicitly appear in the computations in this work, a
small overview of the LES classical approach is given here for the sake of completeness
and to help the understanding of hybrid RANS/LES methods.

The flow quantities may be decomposed into a large scale contribution and a subgrid
contribution by applying a spatial filter to the Navier-Stokes equations. The conservative
variables u are therefore decomposed as follows

u(x, 𝑡) = û(𝑥, 𝑡) + u′(x, 𝑡) . (2.17)
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The large scales û are adequately resolved on a relatively coarse grid, whereas the effects
of the small scales u′ contribution on the large scale flow are described by a model.
Two important differences with Reynolds decomposition in equation (2.5) are that û is
obtained by a spatial filter instead of a time average, and that it contains a part of the
most energetic turbulent fluctuations, that control the evolution of the flow. This is in
contrast with the Reynolds decomposition, where all the turbulent scales are filtered out
by the time average operator. In particular û corresponds to the filtered field with a filter
function 𝐺Δ associated with a length Δ.

In the case of compressible flow problems, such as the ones considered in the present
work, we introduce a filter which is weighted by the density, the Favre filtering operator

(.̃). For any quantity 𝑓 we define a Favre filtered quantity as 𝑓 =
𝜌 𝑓

�̂�
.

Similarly to what has been obtained in RANS modeling with the introduction of 𝝉𝑡 ,
the filtered momentum equation involves an additional term expressing the effects of
the modeled scales on the resolved scales, the subgrid stress tensor

𝝉SGS = −𝜌v ⊗ v + �̂�ṽ ⊗ ṽ . (2.18)

The subgrid stress tensor 𝝉SGS can be split into a deviatoric and a spherical part:

𝝉SGS = 𝝉𝑆SGS + 𝝉𝐷SGS . (2.19)

The spherical contribution has been included in the modified filtered pressure

𝑝I ≡ 𝑝I − 𝝉𝑆SGS , (2.20)

while the subgrid stress tensor 𝝉𝐷SGS needs to be modeled in order to close the system
of the filtered Navier-Stokes equations.

The most commonly used subgrid closure is of the eddy-viscosity type, which consists
in approximating 𝝉𝐷

𝑆𝐺𝑆
in terms of filtered flow variables

𝝉𝐷SGS ≈ �̂�a𝑠𝑔𝑠S̃𝐷 , (2.21)

by introducing the concept of an eddy viscosity a𝑠𝑔𝑠. The subgrid heat flux can be mod-
eled with a similar eddy-viscosity approach.

For high Reynolds numbers, the eddy viscosity can be modeled as a𝑆𝐺𝑆 = 𝑙2
𝑆
|S̃|,

with 𝑙𝑆 a characteristic length scale of the model depending on the filter width Δ. The
Smagorinsky model is the most commonly used LES model, and reads a𝑆𝐺𝑆 = (𝐶𝑆Δ)2 |S̃|,
with 𝐶𝑆 the Smagorinsky constant.

Despite the difficulties associated with determining an appropriate 𝐶𝑆, the value
𝐶𝑆 = 0.18 was obtained with the procedure proposed by Lily in [187]. However, the
Smagorinsky subgrid model has been successfully used to carry out LES calculations in
a number of different applications with a 𝐶𝑆 = 0.1 − 0.2.

Among the most popular approaches for the modeling of the eddy viscosity, we can
find also the dynamic model by Germano [144], the WALE [224], the Vreman [296] and
the VMS [157] models.
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Hybrid RANS/LES methods

Hybrid RANS/LES methods allow to combine a LES type resolution far from the walls
and a RANS modeling in the boundary layer. This method allows for using highly
anisotropic meshes (RANS like) at the walls, while maintaining a good resolution of
the turbulence far from them.

Among the several hybrid RANS/LES models that have been proposed over the years,
and carefully reviewed in [131, 79, 154], we can find the Detached Eddy Simulation
(DES), the Partially-averaged Navier-Stokes (PANS), the Partially Integrated Transport
Modeling (PITM) and the Scale Adaptive Simulation (SAS). The key differentiating fac-
tor between these methods is the approach employed to control the turbulent viscosity in
different regions of the flow. By progressively reducing the turbulent viscosity in regions
away from the wall, the different models allow the development and resolution of the
largest turbulent scales.

In DES models this is obtained by applying an upper limit to the RANS length scale in
a destruction term. In LES zones, the limiting is active and the eddy viscosity is decreased
by increasing the destruction term.

PANS, PITM, SAS models modify the RANS model coefficients in RANS equations
such that RANS equations can develop fluctuating solutions.

In the PANS and PITM, the turbulent viscosity is reduced by decreasing the destruc-
tion term in the dissipation (𝜖) equation. This decreases the turbulent viscosity both
because the dissipation term has increased, and because the increased dissipation term
decreases the turbulent kinetic energy. These models do not use a filter width, while
resolving a large part of the turbulence spectrum, and for this reason they have been
classified by Fröhlich and von Terzi [131] as "second-generation URANS models".

In the SAS model based on the 𝑘 − 𝜔 model, an additional source term in the 𝜔
equation is active in resolved turbulence, while it is inactive for steady flows. When the
source term is active, it increases 𝜔, which in turn decreases the turbulent viscosity.

In the next paragraph we will revise more in detail the approaches of Detached Eddy
Simulation and the Zonal Detached Eddy Simulation.

Detached Eddy Simulation One of the most popular hybrid RANS/LES approaches is
the Detached Eddy Simulation (DES), originally developed by Spalart et al. [277]. It is
based on the consideration that RANS modeling efficiently simulates attached boundary
layers, while presenting many difficulties in providing realistic solutions for separated
flows, which require an LES approach. Thus the main idea is to solve a RANS model
close to the wall and an LES model farther away.

In DES formulation, the wall distance d𝑤 of the SA turbulent variable transport equa-
tion, is replaced with the hybrid length scale d̃𝐷𝐸𝑆.

d̃𝐷𝐸𝑆 = min(d𝑤 , 𝐶𝐷𝐸𝑆Δ̃𝐷𝐸𝑆) , (2.22)

where Δ̃𝐷𝐸𝑆 is the maximum grid extension Δ𝑚𝑎𝑥 = max(Δ𝑥 ,Δ𝑦 ,Δ𝑧) in the original for-
mulation. 𝐶𝐷𝐸𝑆 is a coefficient usually set to 0.65 which has been calibrated from de-
caying homogeneous turbulence simulations [270].
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In practice this modification is active in the destruction term of the RANS-SA equa-
tion. Using this model, the eddy viscosity of the RANS model progressively turns into
a subgrid viscosity a𝑡 ∝ �̃�Δ2 of the same type of Smagorinsky turbulent viscosity in the
LES areas in the free stream and flow separation away from the walls, when production

𝑃 ∼ �̃�ã and destruction 𝐷 ∼
(

ã

d̃𝐷𝐸𝑆

)2
terms are balanced.

A main drawback of the modeling was found in the so-called “Modeled-Stress Deple-
tion” (MSD) phenomenon [278], usually accompanied by a decrease of the skin friction
coefficient. This phenomenon occurs when the grey area (the region where the model
switches from the fully modeled turbulence (RANS) to mostly resolved turbulence (LES)
and d𝑤 ' Δ) is located in the boundary layer, but the available resolution is not suffi-
cient to resolve the relevant turbulent scales, typically when the streamwise and span-
wise grid spacings are similar to the boundary layer thickness Δ𝑥 or Δ𝑧 ' 𝛿. In this case,
if the mesh is not sufficiently fine to correctly capture the turbulent scales via the LES
mode, and, not being the model able to convert the modeled turbulent kinetic energy
into a resolved one, the Reynolds stress levels are underestimated compared to the RANS
model. In some cases, as a consequence, the separation line moves forward leading to a
“Grid-Induced Separation” (GIS) [208].

Several modifications to the original DES formulation have been proposed over the
years, in order to solve the aforementioned shortcomings. The most popular are the
Delayed Detached Eddy Simulation (DDES) [278] and the Improved Delayed Detached
Eddy Simulation (IDDES) [273]. In DDES, the DES length is modified to incorporate a
shielding function 𝑓𝑑 depending on the velocity gradients, built to ensure that boundary
layers are fully treated in RANS, based on measures depending on flow characteristics
and not only from the grid design. The IDDES model combines DDES with Wall Modeled
LES functionalities. In general, the IDDES formulation provides different response de-
pending on the presence or not of inflow turbulent content. In the first case, it reduces to
WMLES, otherwise a DDES response is obtained. However IDDES is only of limited use
in industrial flows as it does not provide sufficient shielding capabilities in RANS mode
[207].

The Zonal Detached Eddy Simulation The hybrid RANS/LES method that we use
in this work is the Zonal Detached Eddy Simulation (ZDES). It was proposed by Deck
[101] and was initially based on the Spalart Allmaras (SA) [276, 23] RANS model, as
an efficient solution to achieve a faster decay of the eddy viscosity in the LES mode
with respect to classical DES/DDES. ZDES prevents then the “Grid-Induced Separation”
phenomenon and the “Modeled-Stress Depletion”.

In the ZDES framework, the wall distance d𝑤 of the SA turbulent variable transport
equation is replaced with the hybrid length-scale d̃𝑍𝐷𝐸𝑆. The employed hybrid length
scale, corresponding to a particular “mode” of ZDES, depends on the problem of interest.
Mode 1 is used for flows where the separation is fixed by the geometry, mode 2 for flows
where the separation is induced by a pressure gradient on a smooth surface, while mode
3 concerns flows in which the separation is strongly influenced by the dynamics of the
boundary layer.

In ZDES, the user has to specify the mode which needs to be used in each of the
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regions, depending on the flow characteristics. The length scale d̃𝑍𝐷𝐸𝑆 for each of the
modes is indicated as:

d̃𝑍𝐷𝐸𝑆 =


d𝑤 𝑚𝑜𝑑𝑒 0
d̃
𝐼

𝐷𝐸𝑆 𝑚𝑜𝑑𝑒 1
d̃
𝐼 𝐼

𝐷𝐸𝑆 𝑚𝑜𝑑𝑒 2
d̃
𝐼 𝐼 𝐼

𝐷𝐸𝑆 𝑚𝑜𝑑𝑒 3

(2.23)

where the exact definitions of d̃
( ·)
𝐷𝐸𝑆 are given later, and depend on a Δ̃, the subgrid

length scale.
The original definition proposed for Δ̃ in ZDES is the cubic root of the volume of

the cell |𝐾 |, Δ𝑣𝑜𝑙 = 3
√︁
|𝐾 |, and not the maximum grid extension Δ𝑚𝑎𝑥 = max(Δ𝑥 ,Δ𝑦 ,Δ𝑧)

as Spalart et al. proposed in their DES formulation. More recently, Chauvet et al. [85]
proposed an alternative definition for Δ̃ taking into account the local vorticity of the flow.

In this work we use the original ZDES formulation Δ̃ = Δ𝑣𝑜𝑙, but adapted for high-
order schemes. This length scale is divided by the number of 1D degrees of freedom for
a DG method, 𝑝 + 1, in order to obtain the high-order sub-grid length scale of the DES
model Δ̃𝐷𝐺 =

Δ𝑣𝑜𝑙
𝑝+1 , as already considered in the LES literature for both hexahedral and

tetrahedral meshes [99, 190]. The hybrid length scale for each mode takes the following
definition:

d̃
𝐼

𝐷𝐸𝑆 = min(d𝑤 , 𝐶𝐷𝐸𝑆Δ̃𝐼𝐷𝐸𝑆) (2.24)

d̃
𝐼 𝐼

𝐷𝐸𝑆 = d𝑤 − 𝑓𝑑 max(d𝑤 − 𝐶𝐷𝐸𝑆Δ̃𝐼 𝐼𝐷𝐸𝑆) (2.25)

d̃
𝐼 𝐼 𝐼

𝐷𝐸𝑆 =

{
d𝑤 if d𝑤 < dinterface

𝑤

d̃
𝐼

𝐷𝐸𝑆 otherwise .
(2.26)

In the above, 𝑓𝑑 is the original DDES shielding function, Δ̃𝐼
𝐷𝐸𝑆

corresponds to the
aforementioned Δ̃ (that in this work corresponds to Δ̃𝐷𝐺 to take into account the DG
scaling), and Δ̃𝐼 𝐼

𝐷𝐸𝑆
depends on the value of 𝑓𝑑 (see Deck [102]). Recently Deck [103]

proposed a new formulation of the ZDES mode 2 - EP (Enhanced Protection) to avoid
the failure of the previous method when considering fine meshes or adverse pressure
gradient. The hybrid length scale d̃

𝐼 𝐼 𝐼

𝐷𝐸𝑆 relies on the parameter dinterface which is the
distance from the wall of the RANS/LES interface where the switch between the two
models occurs.

While in the ZDES mode 1 and 2 the attached boundary layers are treated in RANS,
ZDES mode 3 can be seen as a Wall Modeled LES approach in which the outer part of at-
tached boundary layers is resolved in LES. While the first two methods can handle typical
RANS streamwise and spanwise resolutions in the wall region, the spacing requirements
for the third mode are more strict and tend to those for LES [250, 135].

Another aspect differentiating ZDES from standard DES/DDES approaches is that the
near-wall corrections 𝑓𝑣1, 𝑓𝑣2, 𝑓𝑤 are the same as the RANS Spalart-Allmaras model in
RANS mode, while in LES mode they are modified:

𝑓𝑣1 = 1, 𝑓𝑣2 = 0, 𝑓𝑤 = 1, (2.27)
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which are their asymptotic values far from the wall. This formulation avoids a drop
of the subgrid viscosity that could be caused by the damping functions of the RANS
model in the resolved LES zones presenting low eddy viscosity levels. In this work, the
modifications in equation 2.27 and the length scale ˜𝐷𝑒𝑙𝑡𝑎𝐷𝐺, are used also for DES
computations in Chapters 4 and 6.

2.3 Numerical discretization of the fluid dynamics equations

2.3.1 The discontinuous Galerkin method

Here we present a brief description of the discontinuous Galerkin (DG) method imple-
mented in the CODA solver. A more detailed presentation of this class of methods is
provided in [91, 111].

We start by defining a shape-regular partition of the domain Ω, into a tessellation T𝐾
of 𝑁 non-overlapping and non-empty elements 𝐾 of characteristic size ℎ. We also define
the sets E𝑖 and E𝑏 of interior and boundary faces in T𝐾 , such that Eℎ = E𝑖 ∪ E𝑏.

Let V 𝑝

ℎ
= {𝜙ℎ ∈ 𝐿2(Ω) : 𝜙 |𝐾∈ P 𝑝 (𝐾),∀𝐾 ∈ T𝐾 } be the functional space formed by

piece-wise polynomials of total degree at most 𝑝, and Φ
𝑝

𝐾
= (𝜙1

𝐾
, ..., 𝜙

𝑁𝑝

𝐾
) ∈ P 𝑝 (𝐾) a

hierarchical and orthonormal basis of P 𝑝, of dimension 𝑁𝑝, confined to 𝐾.
The solution in each element is thus expressed as

uℎ (x, 𝑡) =
𝑁𝑝∑︁
𝑙=1

𝜙𝑙𝐾 (x)u
𝑙
𝐾 (𝑡),∀x ∈ 𝐾, 𝐾 ∈ T𝐾 ,∀𝑡 ≥ 0 . (2.28)

The polynomial coefficients (u𝑙
𝐾
)1≤𝑙≤𝑁𝑝 represent the degrees of freedom of the discrete

problem in element 𝐾. To generate the orthonormal basis within each element, we em-
ploy the methodology developed by Bassi et al. [39], which consists in defining a starting
set of monomial basis functions in each (arbitrarily shaped) element and applying a mod-
ified Gram-Schmidt orthonormalization procedure. The resulting basis yields a diagonal
mass matrix in each element of the discretization, simplifying the resolution of the sets
of equations with the variational formulation. Additionally, Φ𝑝

𝐾
is a hierarchical basis if

it is contained in higher-order basis, that is Φ𝑝

𝐾
⊂ Φ

𝑝+1
𝐾

. In this case, equation (2.28) can
be rewritten for an element 𝐾 of degree 𝑝𝐾 as:

uℎ (x, 𝑡) =
𝑝𝐾∑︁
𝑞=0

∑︁
𝑙∈𝑑𝑞

𝜙𝑙𝐾 (x)u
𝑙
𝐾 (𝑡),∀x ∈ 𝐾, 𝐾 ∈ T𝐾 ,∀𝑡 ≥ 0 , (2.29)

where 𝑑0 = {1} and 𝑑𝑞 =
{
𝑙 ∈ 2...𝑁𝑝 (𝐾) | 𝜙𝑙𝐾 ∈ P𝑞 (𝐾) \ P𝑞−1(𝐾)

}
is the set of indices of

the basis functions of total degree equal to 𝑞.
The number of degrees of freedom for a polynomial degree of the DG approximated

solution 𝑝 in two and three dimensions are respectively:

𝑁𝑝,2𝐷 =
(𝑝 + 1) (𝑝 + 2)

2
and 𝑁𝑝,3𝐷 =

(𝑝 + 1) (𝑝 + 2) (𝑝 + 3)
6

. (2.30)
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The conservation law is discretized in physical space by using a discontinuous
Galerkin method and the semi-discrete variational form of the system of equations (2.1)
thus reads: find uℎ in V 𝑝

ℎ
such that ∀𝜙ℎ ∈ V 𝑝

ℎ
we have∫

T𝐾
𝜙ℎ𝜕𝑡uℎ𝑑𝑉 + L𝑐 (uℎ, 𝜙ℎ) + L𝑣 (uℎ, 𝜙ℎ) = 0 . (2.31)

In equation (2.31) L𝑐 and L𝑣 represent the weak form of the convective and viscous
terms respectively. The following notations are introduced: for a given interface 𝑒 in E𝑖
we define the average operator as {{u}} = (u+ + u−)/2, the jump operator is defined as
[[u]] = u+ ⊗ n − u− ⊗ n where u+ and u− are the traces of the variable u at the interface
between elements 𝐾+ and 𝐾−. The DG discretization of the convective terms then reads

L𝑐 (uℎ, 𝜙ℎ) = −
∫
T𝐾

F𝑐 (uℎ) · ∇ℎ𝜙ℎ𝑑𝑉 +
∫
E𝑖
[[𝜙ℎ]]h𝑐 (u+

ℎ,u
−
ℎ ,n)𝑑𝑆 +

∫
E𝑏
𝜙+ℎF𝑐 (u𝑏) · n𝑑𝑆 ,

(2.32)

where the boundary values u𝑏 = u𝑏 (u+
ℎ
,u𝑒𝑥𝑡 ,n), with u𝑒𝑥𝑡 a reference external state

computed such that the boundary conditions are satisfied on E𝑏. The numerical flux
h𝑐 is chosen such that it is consistent and conservative. In this work we use the Roe
flux [254] with an entropy fix similar to that of Harten [151] for all simulations. In
general, Roe-type fluxes, presenting or not an entropy fix or other modifications of the
flux function dissipation [43, 99, 47, 174, 299], are a common choice for DG simulations
for different types of flows, together with the LLF [218, 43, 99, 249] numerical flux.

The discretization of the viscous terms is performed using the BR1 approach of Bassi
& Rebay [41]. This approach relies on the definition of the conservative variable gradi-
ents as auxiliary variables 𝝈 = ∇u which verify the following equations:

𝝈 − ∇u = 0 , (2.33)

𝜕𝑡u + ∇ · (F𝑐 (u) − F𝑣 (u,𝝈)) = 0 . (2.34)

This leads to the introduction of the so called global lifting operator Lℎ such that:

𝝈ℎ = ∇ℎuℎ + Lℎ , (2.35)

and Lℎ satisfies the following condition∫
T𝐾
𝜙ℎLℎ𝑑𝑉 = −

∫
E𝑖
{{𝜙}}[[u𝑢]]𝑑𝑆 −

∫
E𝑏

𝜙+

2
(u+
ℎ − u𝑏) ⊗ n𝑑𝑆 . (2.36)

The discrete variational form of the viscous term for the BR1 method therefore takes the
form

L𝑣 (uℎ, 𝜙ℎ) =
∫
T𝐾

F𝑣 (uℎ,∇ℎuℎ + Lℎ) · ∇ℎ𝜙ℎ𝑑𝑉 −
∫
E𝑖
[[𝜙ℎ]]{{F𝑣 (uℎ,∇ℎuℎ + Lℎ)}} · n𝑑𝑆

−
∫
E𝑏
𝜙+ℎF𝑣 (u𝑏,∇u𝑏 + Lℎ) · n𝑑𝑆 .

(2.37)
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The integrals in the formulas above are computed by numerical integration, with the
specific quadrature formulas depending on the type of element/face being considered.
We here therefore briefly list the quadrature rules used in this work, and the correspond-
ing number of quadrature points.

Quadrilateral and hexahedral elements use tensor-product formula obtained from
the 1D Gauss-Legendre quadrature rule. Numerical integration on triangles and tetra-
hedra is efficiently performed by means of the optimized quadrature rules proposed by
Witherden et al. [307]. Prismatic elements employ a combination of a Gauss-Legendre
quadrature in the extrusion direction and the aforementioned optimized quadrature for
triangles in the other two directions. When the required integration degree 𝑖𝑑, which in-
dicates the maximum degree of a polynomial which is exactly integrated by the formula,
is superior to 7, these optimized quadrature rules are replaced by the tensor-product
rules for every type of element.

By default, the integration degree used for a given polynomial degree 𝑝 of the DG
discretization is defined as 𝑖𝑑 = 2𝑝 + 1. The number of integration points 𝑁𝑞𝑝 required
by each quadrature rule for 𝑝 ≤ 5 are reported in table 2.1. For higher polynomial
or integration degrees, the number of integration points is simply computed as 𝑁𝑞𝑝 =[
INT

(
𝑖𝑑 + 2

2

)]𝑑
, where INT is the integer division and 𝑑 is the number of dimensions of

the element/face.

polynomial
degree
𝑝

integration
degree
𝑖𝑑

#dofs
2D
𝑁𝑝,2𝐷

#dofs
3D
𝑁𝑝,3𝐷

#quadrature
points
𝑁𝑞𝑝

tri quad tetra prisms hexa
1 3 3 4 6 4 8 12 8
2 5 6 10 7 9 14 21 27
3 7 10 20 15 16 35 60 64
4 9 15 35 25 25 125 125 125
5 11 21 56 36 36 216 216 216

Table 2.1: Number of dofs per element in 2D and 3D in the first two columns. Default
number of quadrature points per element for 2D elements (triangles and quadrilaterals)
and 3D elements (tetrahedra, prisms, hexahedra) used in this work, without overinte-
gration.

Overintegration may be performed by using an increased integration degree with
respect to the default for a given polynomial degree. This means that, for example, for
𝑝 = 2 in a tetrahedron with integration degree 𝑖𝑑 = 7 there will be 𝑁𝑞𝑝 = 35 quadrature
points, and in any 𝑝 = 4 3D element with integration degree 𝑖𝑑 = 11 there will be
𝑁𝑞𝑝 = 216 quadrature points. In this work standard integration is always used with
the exception of the convected vortex test case analyzed in Chapters 4 and 6, where
overintegration is performed.
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2.3.2 Time integration

The spatially discrete problem can be written as an initial value problem of the following
form: being U the vector of degrees of freedom 𝑢𝑖

𝐾
(𝑡), given U(0), find U(𝑡) such that

M 𝑑U
𝑑𝑡

+ R(U) = 0 , (2.38)

where R is the spatial residual vector, and M is the block-diagonal mass matrix. The
mass matrix of the element 𝐾 is the 𝐾-th block of M and has components

M𝐾
𝑖 𝑗 =

∫
𝐾

𝜙𝑖𝜙 𝑗𝑑𝑉 . (2.39)

The system (2.38) can be solved with any ordinary differential equations integration
scheme in order to obtain the evolution of the dofs 𝑢𝑖

𝐾
(𝑡).

Two different types of temporal discretization schemes are employed in this work.
The time integration for unsteady problems can usually be performed by using ex-

plicit Runge-Kutta schemes [67, 269] or implicit methods, such as Rosenbrock-Wanner,
ESDIRK and BDF methods [302]. In the current work only the explicit third or fourth
order classical Runge-Kutta schemes [67] are employed for unsteady simulations.

For steady problems we use an implicit integration scheme. One of the most used
methods is the backward Euler method to advance the solution in time from an initial
condition until the steady state solution is achieved. In this work the initial condition
is either a uniform flow, or is projected from a simulation obtained on a discretization
with a lower resolution (in terms of h or p or both). In order to solve the resulting linear
system, the two main classes of iterative methods are the stationary iterative methods,
among which we find the Jacobi method and the Gauss-Seidel method, and the more
general Krylov subspace methods, such as the preconditioned GMRES [258]. In this
work we use a matrix-free GMRES method with a block Jacobi preconditioner, using an
LU block decomposition.

2.3.3 Shock capturing

The modal DG discretization of the flow equations (Navier Stokes, Euler, RANS) em-
ployed in this work requires the addition of an artificial viscosity to obtain stable so-
lutions in the presence of shocks. The results presented in the last chapter of this
manuscript use the modification by Glaubitz [145] of the original artificial viscosity
method by Persson and Peraire [236].

Using the Laplacian formulation of the artificial viscosity, the equation (2.1) is modi-
fied adding a term ∇ · (𝜖𝐴𝑉∇u):

𝜕𝑡u + ∇ · (F𝑐 (u) − F𝑣 (u,∇u)) = ∇ · (𝜖𝐴𝑉∇u), ∀x ∈ Ω, 𝑡 > 0
u(x) = u0, ∀x ∈ Ω

. (2.40)

In particular 𝜖𝐴𝑉 is the dynamic artificial viscosity `𝐴𝑉 in all the equations, except
for the total energy equation, where `𝐴𝑉 is replaced by an artificial thermal conductivity

due to the artificial viscosity _𝐴𝑉 = `𝐴𝑉
𝐶𝑝

𝑃𝑟
.
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A modal resolution-based shock sensor 𝑆 in equation (2.41) is introduced in order
to define the location and strength of the dissipation added by the artificial viscosity
method. It is piecewise constant and it is defined using the density as a characteristic
quantity for the shock detection.

𝑆 =
| | (𝜌)ℎ,𝑝 − (𝜌)ℎ,𝑝−1 | |2𝐿2 (𝐾 )

| | (𝜌)ℎ,𝑝 | |2𝐿2 (𝐾 )
. (2.41)

The sensor measures the norm of the difference between the numerical solution 𝜌ℎ,𝑝

and the projection of the numerical solution on the reduced-order space V 𝑝−1
ℎ

, 𝜌ℎ,𝑝−1,
divided by the norm of the density.

Once the shock has been detected by the sensor 𝑆, and artificial viscosity is activated,
the amount of viscosity to add is determined by the smooth viscosity a𝐴𝑉 defined as

a𝐴𝑉 =


0 , 𝑠 < 𝑠𝑟𝑒 𝑓 − 𝑘𝑟
a𝑚𝑎𝑥
𝐴𝑉

2

(
1 + sin 𝜋 (𝑠−𝑠𝑟𝑒 𝑓 )

2𝑘

)
, 𝑠𝑟𝑒 𝑓 − 𝑘𝑟 ≤ 𝑠 ≤ 𝑠𝑟𝑒 𝑓 + 𝑘𝑟

a𝑚𝑎𝑥
𝐴𝑉

, 𝑠 > 𝑠𝑟𝑒 𝑓 + 𝑘𝑟

(2.42)

The maximum value of the artificial viscosity a𝑚𝑎𝑥
𝐴𝑉

∝ ℎ

𝑝
is defined as:

a𝑚𝑎𝑥𝐴𝑉 =
1
2

max
(����𝜕 𝑓𝜕𝑢 ����) · ℎ𝑝 , (2.43)

with max
(����𝜕 𝑓𝜕𝑢 ����) the maximum eigenvalue of the convective term over the integration

points of all the elements, ℎ the element characteristic size, 𝑝 the polynomial degree,
and 𝑘𝑟 a case-dependent ramp parameter, usually chosen equal to 1.

The sensor 𝑠 in equation (2.42) is modified from the original version in [236] and
chosen as

𝑠 = log10 𝐹 with 𝐹 = min
(
𝑐𝑝4 · 𝑆, 1

)
, (2.44)

with 𝑠𝑟𝑒 𝑓 = −2 and 𝑐 a parameter defined to control the sensor sensitiveness. The
value of the parameter 𝑐 increases with the nonlinearity of the underlying equations. In
this work 𝑐 = 1 is employed.



Chapter 3

State of the art of spatial resolution
adaptive techniques

Spatial resolution adaptive techniques aim at locally increasing (or decreasing) the de-
grees of freedom in a computational domain, in order to obtain an accurate numerical
solution with a reduced computational cost (memory requirements and CPU time) as
compared to standard approaches based on uniform refinement or manual meshing of
the computational domain.

Generally, there are three categories of techniques for adapting the spatial resolution:
h-adaptation, where the element sizes vary while the order of the numerical approxima-
tion is constant; p-adaptation, where the order of the numerical approximation varies
while the element sizes are constant; hp-adaptation, which is a combination of both h-
and p-adaptation.

The vast majority of the studies reported in the literature focuses on h-adaptivity,
which is the only option for low order numerical discretizations. For high-order methods,
h-adaptivity is mostly well-suited for non-smooth solutions with singularities such as
shocks, or geometrical singularities (corners or sharp edges). However, in regions of the
computational domain where the solution is smooth but still presenting large numerical
errors, p-adaptivity is preferred since it provides the fastest convergence rate for smooth
problems. This has led to the development of hp-adaptive techniques combining both h-
and p-refinement options.

We present in this chapter an overview of the existing h-, p- and hp-adaptive strate-
gies, and introduce the fundamental background for the adaptive techniques developed
in this work.

3.1 h-adaptation techniques

Concerning pure h-adaptation, two main approaches, reviewed more in detail in the
following sections, are identified:

• Element subdivision employing non-conforming elements and hanging nodes;

• Metric-based remeshing.

21
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Other two less common approaches that can be found in the literature are:

• Conformal element subdivision. Some examples using triangular/tetrahedral
meshes can be found in [251, 28, 320, 308]. In the case of quadrilat-
eral/hexahedral elements, either quadrilaterals/hexahedra can be obtained after
the adaptation [138, 150] or a combination of elements, such as quadrilaterals
and triangles in 2D or pyramids and tetrahedra in 3D [223]. This type of adapta-
tion, especially in the case of quadrilaterals/hexahedra, generally requires complex
algorithms in order to avoid poor quality elements.

• r-adaptation [22, 90, 316], consists in adapting the mesh by node relocation with
constant connectivity, offering the possibility to introduce mesh adaptation capa-
bilities into existing flow solvers with minimal intrusivity, as there is no need for
updating data structures and connectivities.

These last two approaches are less common, given their lower degree of flexibility and
their strong dependence on the initial mesh.

3.1.1 Hanging nodes approach

In the element splitting with hanging nodes technique, the produced meshes are char-
acterized by nodes on edges and faces that are not vertices of all the cells sharing those
edges or faces. When refining a mesh with this approach, every initial “parent cell”,
selected for refinement by a given marking criterion, is divided into “children cells”. On
the other hand, coarsening is performed by reverting a refinement step, which consists
in agglomerating children cells into the initial parent cells. Although the hanging node
scheme provides significant mesh flexibility, it requires additional memory to maintain
the mesh hierarchy which is used by the refinement/coarsening mesh adaptation opera-
tions.

Element splitting-based mesh adaptation is mainly performed on (initially) struc-
tured hexahedral meshes, however some examples of non-conformal element splitting
based on triangular/tetrahaedral meshes can be found in the literature [323]. The el-
ement splitting technique allows the refinement to remain local but introduces non-
conformal nodes which lie on the edges of neighboring elements. Despite the ability of
DG methods to easily handle non conforming meshes from a numerical point of view
[175, 75, 181, 78], those meshes can be cumbersome to handle at the implementation
level.

The element splitting can be isotropic or anisotropic. In isotropic refinement, cells
marked for refinement are split along all the directions. In anisotropic refinement, the
division is applied in one (or even two in 3D) dominant direction. Anisotropic refinement
is usually employed when the flow features are predominantly to be resolved in one
direction, as for example boundary layers and shocks. However, one main disadvantage
of such techniques is that the possible stretching directions of the elements are strongly
dependent on the initial mesh topology.

From a practical point of view, isotropic refinement for a quadrangular element
would produce four new children elements, while anisotropic refinement would only
generate two.
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Figure 3.1: Isotropic (left) and anisotropic (middle and right) element splitting.

Hanging nodes-based isotropic mesh adaptation

Some examples of isotropic mesh adaptation by element splitting can be often found the
literature for laminar [226] or low-to-moderate Reynolds numbers scale resolving flows
[164, 26]. Their use for higher Reynolds number flows in RANS and hybrid RANS/LES
simulations is mainly established in the context of overset grids [77, 306].

Here elements presenting an error above a certain threshold are refined by dividing
a parent cell into four (in two dimensions) or eight (in three dimensions) children cells.
Usually this threshold is defined by a fixed-fraction marking strategy, where a fixed frac-
tion of all elements are selected for refinement and/or coarsening based on the absolute
values of the local indicators, or by a maximum marking strategy, in which the element
is marked when its error is greater than a given fraction of the maximum local error.

Usually, researchers enforce that the mesh presents at most a degree of nonconfor-
mity of two. This constraint means that an element can have in 2D a maximum of two
neighboring elements along a single edge, whereas in 3D it cannot have more than 4
neighboring elements along a single face. This is done for ease of implementation, and
to avoid strong cell-to-cell size variations.

Hanging nodes-based anisotropic mesh adaptation

Anisotropic mesh adaptation requires the automatic detection of the dominant direc-
tions along which additional resolution is required. In classical second order FV/FE ap-
proaches, this information is often provided by the gradients [162, 321] or the Hessian
of the solution [298]. However, different criteria can be found as regards LES simula-
tions, where anisotropic error indicators, estimating the directional small-scale energy,
can be employed to adapt a grid in an anisotropic manner [282].

In the context of DG simulations for advection-diffusion-reaction problems, Geor-
goulis et al. [142] implemented an anisotropic adaptive algorithm to control of the error
in a prescribed target functional. This approach involves exploiting both local isotropic
and anisotropic mesh refinement, based on choosing the most competitive subdivision
of elements marked for refinement from a series of trial local refinements.

Using a similar approach, Ceze & Fidkowski [74] proposed to prescribe the
anisotropy of the elements naturally arising from the minimization of a cost function
including both an output error estimate and a count of the additional degrees of free-
dom for each refinement option, with application to laminar and RANS configurations.
With this approach, the anisotropy is not directly prescribed from direct assumptions on
the solution anisotropy.

In a DG hp-adaptive framework with unsteady laminar applications, Chalmers et
al. [78] used a directional estimator built from the coefficients of the Legendre polyno-
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mials, and performed directional h-refinement based on the value of this estimator in
each direction.

An alternative to the Hessian approach for high-order methods has been used for
2D and 3D non-conformal refinement of quadrilateral/hexahedral elements by Leicht
& Hartmann [180, 181]. Here inter-element jumps in the solution can provide a sim-
pler approximation for the (𝑝 + 1)𝑡ℎ order derivatives, providing comparable results to
an approach using derivative information. While elements requiring refinement are de-
termined with an adjoint-based error indicator, the anisotropy jump indicator decides
whether to split the element along a particular direction, or in an isotropic manner.
This approach has been successfully applied to 2D and 3D inviscid and laminar viscous
simulations, and extended to RANS simulations in a later work on hp-adaptation [182].

3.1.2 Metric-based remeshing

Metric-based remeshing adaptive approaches are used essentially for simplicial meshes.
These consist in generating a new mesh for the entire computational domain, adapted
according to some metric fields that depend on physical or geometrical data. The original
mesh is used to store the characteristics of the new mesh during regeneration. The new
mesh is described using a Riemannian metric, based on the assumption that in an optimal
mesh all edge lengths will have unit measure in the metric space.

The use of a metric-based approach provides high flexibility in terms of prescribing
precise sizes to an element. This avoids the constraint imposed by the element split-
ting history, and the implementation of complex data structures needed by an element
splitting approach.

However, despite the great flexibility offered by the remeshing strategy, the prescrip-
tion of the metric is not straightforward, requiring a characteristic size for each node
(or element), in addition to anisotropic characteristics (orientation and aspect ratio)
in anisotropic approaches. The criteria for adapting the mesh are often more sophis-
ticated than for element splitting-based mesh adaptation. In fact, for splitting-based
h-adaptation, the prediction of the number of dofs in the new mesh is exact and this can
be used to tackle more easily the definition of the error target above which an element
should be marked for refinement (or below which it should be marked for coarsening
when possible). In metric-based adaptation there exist some criteria to predict the num-
ber of elements in the new mesh, namely guided by the ratio of new and old sizes for
isotropic meshes [47] and adding the contribution of aspect ratios for anisotropic meshes
[76], or by the notion of “complexity”, which is a quantity proportional to the number
of vertices or elements in the mesh [191]. However these criteria strongly depend on
the ability of the remesher to strictly respect the imposed metric, depending in turn also
on the chosen smoothing parameters (e.g. ℎ𝑔𝑟𝑎𝑑 in the case of the remesher MMG, as
detailed later), which may affect this prediction.

The metric-based approach is extensively used in the literature, and a number
of remeshing software is available, often under open-source licensing. Among the
many mesh adaptation software using the metric-based strategy, based on the Delaunay
method, we can find BAMG from University Pierre et Marie Curie-LJLL and INRIA [153],
Feflo.a from INRIA [195], refine from NASA [210], Omega_h from Rensselaer Polytech-
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nic Institute and subsequently by Sandia National Laboratories [159], pragmatic from
Imperial College London [146], EPIC from Boeing [209], Metrix from INRIA [19], MMG
from Bordeaux INP, CNRS, Sorbonne Université and INRIA [97].

Both the isotropic [98, 47, 232] and the anisotropic [191, 97, 314, 185] variants
have shown promising results in the literature. However, while for isotropic remeshing
approaches, more easily adaptable to 3D, the metric field can be built by defining only
one size per element, anisotropic approaches would need an efficient approximation
of a (𝑝 + 1)𝑡ℎ derivative tensor. The application of high-order anisotropic methods to
configurations relevant for aeronautic purposes is part of very recent research.

After briefly recalling some theoretical notions underlying the metric-based mesh
generation, we revise here some anisotropic and isotropic remeshing approaches. At the
end of the section some features of the remesher used in this study, MMG, are presented.

Basic notions of metric-based mesh generation

The mesh is modeled as a continuous medium: at the continuous level, we consider
mesh elements being represented by ellipsoids (ellipses in 2D). In this geometric repre-
sentation, the size of the element is its volume (area in 2D), its shape is associated with
the ratio of the lengths of its semi-axes and its orientation is provided by its principal
axis vectors [107]. Therefore, the control of the element size can be achieved by specify-
ing a metric tensor M(x) to prescribe the size, shape and orientation of mesh elements
over the whole domain. M(x) is a 𝑑 × 𝑑 symmetric positive definite matrix, with 𝑑 the
number of dimensions of the problem. This metric tensor guides the generation of a
quasi-uniform mesh of Ω in the metric M.

In the continuous framework a metric tensor M is a continuous element [191], that
can be geometrically represented by its unit ball. A discrete element 𝐾 is said to be unit
with respect to a continuous element M if the length of all its edges is unit in the metric
M. The standard Euclidean scalar product is then modified using a proper metric tensor
field, in order to prescribe a unit edge length

𝑙M (e) = | |e| |M =
√︁

TeMe = 1 , (3.1)

where 𝑙M (e) is the distance between the extrema of the vector e. The set of points
satisfying the relation above describes an ellipsoid in three dimensions (ellipse in two
dimensions), for which the length of each semi-axis is given by the square root of the
inverse of the corresponding eigenvalues of M. As the metric is not constant in an
element but varies across the domain, after parametrizing the curve e(𝑠) : [0, 1] → R𝑑

the average length of a mesh edge e is introduced:

𝑙M (e) =
∫ 1

0

√︁
TeM(𝑠)e 𝑑𝑠 . (3.2)

The desired adapted mesh is then a unit mesh, i.e. a mesh such that for each edge
𝑙M (e) ' 1. In practice, the remesher builds a mesh such that the edges lengths are close

to 1. In particular every edge of the mesh 𝑙 verifies:
1
√

2
< 𝑙 <

√
2.
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In order to deal with a single metric at the vertices, metric intersection and interpo-
lation procedures are then employed. For a more complete treatment of these specific
subjects the reader should refer to [129, 107].

The metric tensor can be diagonalized and decomposed as:

M(x) = R(x)Λ(x) RT(x) (3.3)

where R is the square matrix whose 𝑖-th column is the eigenvector (v𝑖)𝑖=1,..,𝑑 of M and
Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues
Λ𝑖𝑖 = _𝑖. The matrix Λ thus prescribes the size and shape of the element, while the
matrix R prescribes its orientation.

The element sizes are then linked to the eigenvalues by ℎ𝑖 = 1/
√
_𝑖 with 𝑖 = 1, ..., 𝑑.

The metric tensor can be rewritten as:

M(x) = D2/𝑑 (x)R(x) Z (x) RT(x) (3.4)

where the density function is defined as D(x) =
√︁

detM(x) =
(
Π𝑑
𝑗
_ 𝑗

)1/2
=

(
Π𝑑
𝑗
ℎ 𝑗

)−1
. The

anisotropic quotients tensor Z (x) is defined as a diagonal matrix with the 𝑑 anisotropic

quotients equal to 𝑟𝑘 (x) = ℎ𝑑𝑘
(
Π𝑑
𝑗
ℎ 𝑗

)−1
as diagonal entries.

For an isotropic metric the semi-axes of the ellipsoid (ellipse in 2D) have the same
length, and the 𝑑 eigenvalues associated with the ellipsoid coincide, i.e. ℎ1 = ℎ2 = ℎ3 =

ℎ𝑛, the j-th eigenvectors are simply the j-th coordinate vectors, and the anisotropic quo-
tients are all unitary. We obtain then the sphere (and the circle in 2D) of radius 1.

For a thorough review about metric-based generation theory, the reader can refer to
[141, 129, 130, 191].

Figure 3.2: Examples of unit elements with respect to a continuous element in 2D.
Anisotropic (left) and isotropic (right) metric.

Metric-based anisotropic mesh adaptation

Concerning anisotropic mesh adaptation, the most common strategy, typically used in
FE/FV contexts, consists in computing a metric based on the Hessian matrix of the solu-
tion [73, 129, 192].

One of the most popular approaches for second order methods is the multi-scale
metric method developed by Loseille & Alauzet [191, 192]. Using their approach, the
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error on the mesh is minimized analytically, using calculus of variations. The resulting
multi-scale metric field is found to be the optimal, under a specified target complexity.
The multi-scale method has been successfully applied to a wide range of applications,
including RANS simulations of the ONERA M6 wing, the NASA Common Research Model
(CRM) high lift configuration and the JAXA Standard Model (JSM) [30, 209, 211, 257].
The method has been successively extended in order to control the error in an output
functional in [194]. In previous works, Formaggia et al. [125] and Venditti & Darmofal
[292] had already made the first attempts to combined output-error indicators with
the Hessian of the solution. The multi-scale anisotropic mesh adaptation approach by
Loseille & Alauzet was as well extended to unsteady flows and moving geometries in
[35, 21] using a fixed-point algorithm, and was employed by Park et al. [234] for hybrid
RANS/LES adaptive simulations.

In the context of DG methods, the Hessian-based metric was used by Remacle et
al. [248] and by Alauzet et al. [18] using second-order discretizations (𝑝 = 1) to pre-
scribe the anisotropy to the element. For higher order DG discretizations, Remacle [247]
exploited the Hessian as a correction indicator to compute the direction of shocks and
other discontinuities, after a smoothness indicator was employed as a shock detector.
Later, Ceze & Fidkowski [76], based on previous findings [122] that the directions ob-
tained from the Hessian often correlate reasonably well with directions obtained from
approaches using higher-order derivatives, employed the information from the Hessian,
for high-order DG schemes, combining it with output-based error estimates, for the sim-
ulation of laminar and RANS configurations.

However, except for some approximations, this strategy is not directly applicable
to higher orders, as the standard Hessian matrix approach found in the literature for
low-order methods is based on a linear approximation of a scalar quantity. The er-
ror on a piecewise linear interpolation of a smooth function is bounded by a quadratic
term involving the second derivatives (the Hessian) of the function. The definition of
a two-dimensional metric tensor is more difficult for high-order methods, where the in-
terpolation error depends on a term involving the (𝑝 + 1)𝑡ℎ derivative of the solution.
This complication is the reason why the 3D metric-based anisotropic mesh adaptation
for high-order methods is today still an open research topic, and only few works with
realistic 3D applications have been published.

An attempt to extend anisotropic mesh adaptation to high-order methods was made
by Pagnutti et al. [227], where the authors developed a method to calculate a metric
for arbitrary 𝑝 using a Fourier series representation of 𝑝 + 1 order terms. While the
method should be valid for any order of accuracy in both two and three dimensions,
they focused only on third order schemes in two dimensions in [227] and the method
was not extended to 3D/higher-order methods.

Coulaud & Loseille [94] extended the multi-scale approach of Loseille & Alauzet
[192] to high-order numerical methods, by controlling the high order interpolation er-
ror. The method is based on an iterative algorithm to derive a local optimal metric to
approximate the interpolation error to a quadratic form. This optimal local metric is
then globally optimized via a calculus of variation to obtain the optimal distribution of
the degrees of freedom. This method however was initially applied only to 3D analytical
functions, and successively it was employed for high-order mesh generation [119, 252],
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rather than anisotropic mesh adaptation.
Carabias et al. [69] proposed to use a least-square method to fit a third-order er-

ror into a quadratic term. An optimization problem was then analytically solved to
obtain the optimal mesh metric distribution. The method was applied to an acoustic
propagation benchmark. However, the method was not extended to 3D and/or viscous
configurations due to the high computational cost of their CENO third-order approxima-
tion scheme, and the authors intended to switch to a different numerical scheme, as for
example DG.

Shakoor et al. [266] developed a method directly approximating the third-order error
as a quadratic form through a geometric averaging operation. The method was applied
to 2D and 3D inviscid configurations but was limited to quadratic FEM approximations
of the solution, without extending it to higher-order approximations.

The most fruitful approaches for high-order anisotropic metric-based mesh adapta-
tion up to date appear to be the Mesh Optimization via Error Sampling and Synthesis
(MOESS) initially developed by Yano & Darmofal [312], and the methods based on the
error model initially developed by Dolejší [110] for hp-adaptation.

At first, Yano et al. [314] applied the fixed-fraction Mach-anisotropy method (FFMA),
a modification of the algorithm developed by Fidkowski & Darmofal [122] to 2D sub-
sonic, transonic and supersonic RANS configurations. Their adaptation strategy was
based on an output-based error estimate, to be minimized for a given cost. In 2D, they
set the anisotropy stretching ratio equal to the 𝑝 + 1 root of the ratio between the max-
imum derivative of the Mach and the derivative normal to this direction. However, the
search over all directions to determine the maximum 𝑝 + 1 derivative does not appear to
be extensible in a straightforward manner to three dimensions.

In a later work, Yano & Darmofal [312] developed a unified framework for
anisotropic h-adaptation for problems with localizable error estimates. They solved a
continuous constrained optimization problem of the tensor valued field corresponding to
a Riemaniann metric tensor using the mesh-metric duality by Loseille & Alauzet [192]. In
particular their adaptive method iterates towards a mesh minimizing an error functional
while constrained by a maximum cost functional, by performing local error sampling
steps. The anisotropic adaptation is driven by an output-based error estimate and the
cost functional is represented by the maximum allowed number of degrees of freedom.

They tested this optimization algorithm for advection–diffusion problems [312], for
inviscid and laminar simple configurations [311] and for 2D/3D boundary layers prob-
lem [313]. They presented as well results on a 3D laminar configuration and on 2D
RANS simulations of the flow past an RAE 2822 airfoil and multi-element airfoils in
Yano’s PhD thesis [313], highlighting the overall better performance of the newly devel-
oped MOESS approach as compared to the previous FFMA approach.

However, despite the perfect scalability of the adaptation algorithm and its suitability
for multi-process computing, they measured that the time spent on error estimation and
adaptation was a significant fraction of the flow solve time (60% for the NACA 0006
Euler shock propagation problem and %16 for the transonic RANS RAE 2822). Although
they observed a decrease of the relative cost with the increase of the complexity of
the test case, this aspect could realistically lead to a very high computational cost for
industrial problems requiring a significantly large number of dofs.
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The MOESS algorithm was extended to two dimensional inviscid and laminar un-
steady flows by Krakos et al. [173] and by Doetsch et al.[108], and was employed by
Carson et al. [71] to simulate 3D laminar configurations.

Focusing now on the second mentioned approach for high-order anisotropic mesh
adaptation, the error model developed by Dolejší [110] is a generalization for high-order
of the multi-scale metric method developed by Loseille & Alauzet for second-order meth-
ods in [191]. While the author presented this approach in the context of hp-adaptation,
we focus here only on the h-adaptation part of the methodology. The approach con-
sists in a number of steps, which aim at minimizing the interpolation error. The first
step consists in computing an estimate of the (𝑝 + 1)𝑡ℎ order derivatives of the solution.
This is computed by evaluating a higher-order patch reconstruction for each element by
exploiting the information over all its neighboring elements (see [113] for a detailed
discussion). The computed derivatives are then used to identify the optimal anisotropy
(orientation and aspect ratio). Finally, the mesh sizes are defined by an analytical for-
mula which corresponds to the equidistribution of the interpolation error for a given
bound.

In recent work, Rangarajan et al. [239, 243] improved the approach modifying only
the definition of the mesh sizes by solving a global optimization problem, which presents
an analytical solution, for a given number of dofs. This approach was further extended
to goal-oriented adaptation in [244, 242], by including a suitable adjoint-based error
estimate in the error model.

In a similar manner, Balan et al. [34] based the definition of the error size on adjoint
estimates, while employing the error model proposed by Dolejší [110] for the computa-
tion of the local anisotropy. With this approach, the area of the mesh elements is reduced
or increased according to a fixed-fraction marking criterion. A user-specified mesh frac-
tion is used to define the reference error level. The elements with errors higher than the
reference are refined and those with errors lower than the reference are coarsened using
an heuristic formulation of the new mesh sizes depending on their local error.

These approaches have been tested on a variety of 2D and 3D configurations, ranging
from analytical problems and simple inviscid and laminar configurations [110, 34, 239,
243], with more complex RANS configurations recently reported in [241].

Despite the very promising results, these methods have been developed for steady
configurations, and they do not appear to be extensible in a straightforward manner to
unsteady turbulent configurations.

Dolejší’s error estimates have been employed to develop as well hp-adaptive strate-
gies, as will be presented in Section 3.3 dedicated to hp-adaptation techniques.

Metric-based isotropic mesh adaptation

Isotropic approaches are present in the literature mostly in the context of unsteady com-
plex applications.

Bernard et al. [47] used a dynamic mesh adaptation strategy for ocean modelling,
solving two saddle point optimization problems that can be solved in a closed form
for constant polynomial degree. The first minimizes the global error in the domain
while keeping constant the number of elements. The second is based on minimizing the
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number of elements while keeping the global error constant in the domain. They do not
perform node repositioning but only edge swap, edge collapse and edge split.

In the context of LES, Daviller et al. [98] used a sensor on the time-averaged dissipa-
tion of kinetic energy, provided as field function to the remesher, and applied the adap-
tive procedure to a swirler with two counter-rotating passages. Agostinelli et al. [16]
generalized the original contribution proposed by Daviller to complex turbulent reacting
flows. Odier et al. [225] applied the approach by Daviller for complex Wall Modeled
turbomachinery flows. For Wall Modeled simulations, they modified the definition of the
metric to account for both the losses occurring out of the boundary layer, and a good
prediction of the boundary layer, by imposing a different metric at wall cells, while using
Daviller’s original metric in other cells.

The strategy developed by Benard et al. [45] defined the new mesh sizes in order
to respect two criteria: one minimizes a quantity depending on the second derivatives
of the time-averaged flow velocity and one ensures that a sufficient part of turbulent
scales is explicitly resolved. Their strategy was initially applied to the simulation of the
isothermal flow in a complex meso-combustor, and more recently to wind turbine wakes
[319] as well as to a lean-premixed semi-industrial burner [215].

In figure 3.3 we show an example of the two main h-adaptive strategies on the lid-
driven cavity test case (the Reynolds numbers are different, but the flow characteristics
are very similar). The h-adapted meshes with a quadrilateral-hanging node approach
by Offermans et al. [226] is in the left panel and the mesh obtained with a simplicial
metric-based approach is depicted in the right panel. The metric-based h-adaptation is
performed with the h-adaptive strategy developed during this thesis.

Figure 3.3: Example of mesh adaptation for the lid driven cavity. On the left the mesh ob-
tained with isotropic elements splitting-based mesh adaptation by Offermans et al. [226]
at 𝑅𝑒 = 7500 with the flow solver Nek5000. On the right, the mesh obtained with an
isotropic metric-based adaptive strategy at 𝑅𝑒 = 1000, performed with the flow solver
CODA and the h-adaptive strategy developed in this work.
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MMG library

The remeshing library used in this work is MMG. MMG is an open source software
for simplicial remeshing [6, 97], supporting both 2D and 3D remeshing (MMG2D and
MMG3D). The MMG library has been already used extensively in the context of FV and
FE methods [98, 45, 61, 259]. We provide a short description of the MMG mesh adapta-
tion and optimization algorithm.

MMG’s goal is to remesh T𝐾,𝑖, where 𝑖 is the index corresponding to the mesh adap-
tation step, into a new mesh T𝐾,𝑖+1, which is a close approximation of the computational
domain Ω, adapted to a specified local size feature. From the user’s point of view, MMG
takes as inputs a mesh T𝐾,𝑖 and a discrete metric map M∗

𝑖+1 defined at each vertex. We
employ the superscript * to remind that the desired metric field M∗

𝑖+1 is prescribed by
the user on the mesh T𝐾,𝑖, even though the real metric associated with the mesh T𝐾,𝑖+1
is M𝑖+1, which is different due to quality constraints. These constraints need to be sat-
isfied by MMG, in addition to reproducing the prescribed metric field. MMG defines
a continuous metric field using interpolation schemes, local modifications and quality
checks. It then outputs the mesh T𝐾,𝑖+1 with a corresponding metric field M𝑖+1, which is
an approximation of the desired metric M∗

𝑖+1.
The approach MMG uses for three-dimensional domain remeshing is a local, iterative

remeshing procedure. It consists in conducting local modification operations both on the
surface and volume parts, which affect very limited areas of the meshes at hand, and a
sequence of meshes is produced, until it converges toward the final optimal mesh T𝐾,𝑖+1.
Among the local mesh modifications that the software performs inside the volume there
are edge split, edge collapse, edge swap and node relocation.

Regarding the handling of boundaries, MMG locally reconstructs the “ideal” surface
from the discrete geometry of the input mesh, using cubic Bézier triangles. The Haus-
dorff distance, defined as the distance between the ideal and the discrete mesh surface
is controlled in order to ensure a good boundary approximation.

The parameters needed by MMG to perform the adaptation are listed below :

• ℎ𝑚𝑎𝑥: the maximum allowed size of an edge in T𝐾,𝑖+1;

• ℎ𝑚𝑖𝑛: the minimum allowed size of an edge in T𝐾,𝑖+1;

• ℎ𝑔𝑟𝑎𝑑: the gradation value which controls the ratio between two adjacent edges
(for a given gradation of ℎ𝑔𝑟𝑎𝑑, two adjacent edges ℎ1 and ℎ2 in T𝐾,𝑖+1 must respect

that
1

ℎ𝑔𝑟𝑎𝑑
≤ ℎ1
ℎ2

≤ ℎ𝑔𝑟𝑎𝑑);

• ℎ𝐻𝑎𝑢𝑠𝑑: controls the geometric approximation of the boundaries 𝜕T𝐾,𝑖+1. It im-
poses the maximal distance between the piecewise linear representation of the
boundary and the reconstructed ideal boundary.

The parameters ℎ𝑚𝑎𝑥, ℎ𝑚𝑖𝑛 and ℎ𝐻𝑎𝑢𝑠𝑑 depend on the length scale of the problem, while
ℎ𝑔𝑟𝑎𝑑 controls the quality of the mesh. The lower the gradation, the better the mesh
quality. However, higher gradation values impose less constraints, and allow for a better
match between the prescribed metric M∗

𝑖+1 and the actual metric M𝑖+1 computed by
MMG, without introducing extra elements.
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A more detailed explanation of MMG features can be found in [97].

3.2 p-adaptation techniques

p-adaptation consists in modifying the local polynomial degree for the approximation of
the solution within the element, while not requiring a modification of the topology of the
mesh. It provides a faster convergence than h-adaptation for smooth flows (the error is
proportional to ℎ𝑝+1, 𝜖 = 𝑂 (ℎ𝑝+1)), while it is not desirable for non-smooth flows where
the convergence rate is fixed by the singularities (𝜖 = 𝑂 (ℎ1)). In the case of discontinu-
ities, DG methods employing high polynomial degrees may suffer from stability issues,
for which usually shock capturing techniques are applied while potentially deteriorating
the convergence order of the solution.

The error estimators can often be used indistinctly for p- or h-adaptation, and the
selected criteria for adapting the mesh are usually very similar to those employed for el-
ement splitting-based mesh adaptation, which are more straightforward than for metric-
based h-adaptation. In fact, the fixed-fraction marking strategy can be easily used, given
the exact prediction of the number of the dofs in the new mesh when using p-adaptation.
Moreover, the choice of the new degree of the polynomial in the element constitutes in
general a more constrained and less flexible choice with respect to selecting a precise
size for each element. This can be seen both as a limitation with respect to h-adaptation,
and a strength, allowing to refine the mesh in a smoother and more robust way. This
might be preferable in some cases as for example for scale-resolving simulations.

However, the lower degree of flexibility of p-adaptation with respect to h-adaptation
may lead to the necessity of sufficiently fine initial meshes.

Another complication introduced by p-adaptive techniques is the requirement of ad
hoc load balancing treatments in the flow solver. These need to take into account, in
the mesh partitioning process, the variable computational load due to the non-uniform
polynomial degree distribution, and not only the equidistribution of the elements, as
done by classical mesh partitioners.

Applications to steady inviscid and laminar computations can be found in the litera-
ture [256, 219, 116, 172]. Ekelschot et al. [116] in particular highlighted the necessity
of implementing h-adaptive techniques in the vicinity of shocks and strong discontinu-
ities.

Despite these applications, its faster convergence rate for smooth flows, together
with the consistent reduction of dissipation and dispersion errors that high-orders of
accuracy enable, make p-adaptation particularly interesting especially for scale-resolving
simulations of turbulent flows, for which they are mainly employed.

In the context of LES/ILES simulations, pure p-adaptation has been successfully ap-
plied to DG methods [81, 100, 14, 218, 300] and is more popular than h-adaptation,
which is usually preferred for FV and FE methods [216, 164, 303, 282, 98, 45].

Static p-adaptation of unsteady flows was performed by Chapelier et al. [81] on a
channel flow at friction Reynolds number 𝑅𝑒 = 392, by Tugnoli et al. [284] on the flow
around a square section cylinder at Reynolds number 𝑅𝑒 = 22000 and in the flow over
periodic hills at 𝑅𝑒 = 2800, by Naddei [218] on the transitional flow past a NACA0012
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airfoil at 𝑅𝑒 = 50000, and by de la Llave Plata et al. [100] and Bassi et al. [38] on the flow
past a circular cylinder at Reynolds numbers respectively 𝑅𝑒 = 140000 and 𝑅𝑒 = 3900.
Abbà et al. and Wang et al. [14, 300] followed a dynamic approach for the simulation of
turbulent flows, such as the temporally evolving mixing layer, the interaction of a vortex
and a square cylinder [14], and the transitional flows over a cylinder with 𝑅𝑒 = 3900
and the SD7003 wing with 𝑅𝑒 = 60000 [300].

Two meshes obtained respectively with p- and metric-based h-adaptation are com-
pared in figure 3.4. The test case is the flow past a circular cylinder at 𝑅𝑒 = 40. The
polynomial degree distribution obtained with p-adaptation by Naddei et al. [219] is de-
picted in the left panel. Their adaptive strategy was controlled by the SSED error es-
timator, described in equation (3.6) with a variable polynomial degree from 𝑝 = 2 to
𝑝 = 6. The h-adapted mesh in the right panel has been obtained with the metric-based
h-adaptive strategy developed in this work with a fixed polynomial degree 𝑝 = 2.

Figure 3.4: Example of spatial resolution adaptation for the circular cylinder at 𝑅𝑒 =

40. On the left the mesh obtained with p-adaptation by Naddei et al. [219] with the
flow solver AGHORA with variable 𝑝 = 2 − 6. On the right, the mesh obtained with h-
adaptation, performed with the flow solver CODA and the h-adaptive strategy developed
in this work with fixed 𝑝 = 2.

3.3 hp-adaptation techniques

Regarding hp-adaptivity, the local error estimator is not sufficient to guide the adap-
tive algorithm. While the error estimator is still used to identify the elements requiring
improved resolution, an additional strategy needs to be defined to identify whether h-
refinement or p-enrichment should be employed. This is usually referred to as the hp-
decision strategy. Generally, this choice is made according to an estimate of the smooth-
ness of the solution within an element. If the solution is sufficiently smooth, the adaptive
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algorithm opts for p-enrichment, while non-smooth regions are h-refined. Thanks to hp-
adaptation, the best of the two approaches are combined. While theoretically achieving
exponential convergence (with respect to h-adaptive methods which converge with an
algebraic rate), the constraint on the initial mesh typical of p-adaptive methods are re-
laxed [105]. Moreover, pure p-adaptation needs the use of very high polynomial degrees
to ensure a sufficient level of flexibility, which can be cumbersome to optimize in terms
of load balancing and cost per dof, and can lead to strong numerical instabilities. Hence
the interest of employing an hp-technique for DG schemes (applied to LES), where the
use of very high order polynomials can be replaced by the possibility to adapt also the
size of the elements. As already mentioned for pure p-adaptation, the implementation of
ad hoc load balancing treatments is necessary also for hp-adaptation. In their absence,
high levels of load imbalance might offset any computational time reduction produced
by the locally adaptive approach, and significantly increase the computational cost of
simulations.

Several hp-decision indicators have been proposed in the literature.
In the context of octree-based mesh adaptation, Gui & Babuška [148], followed by

Adjerid et al. [15], assessed the solution smoothness thanks to the ratio between error
estimates based on 𝑝 and 𝑝 − 1 approximations. Houston et al. [155] developed an
hp-algorithm based on the estimation of the local Sobolev regularity index of a given
function, by monitoring the decay rate of its Legendre expansion coefficients. These two
approaches, however, cannot be applied to 𝑝 = 1 computations because they are based
on lower-order estimates.

Mavriplis [202] determined the local smoothness of the solution by computing the
decay rate of the Legendre expansion coefficients of the solution under the assumption
that, for non-smooth solutions, the discontinuities in the solutions deteriorate this decay
rate. Leicht et al. [182] and Chalmers et al. [78] extended this approach to multiple di-
mensions, the first for 2D/3D inviscid, laminar and RANS flows, the second for unsteady
laminar simulations.

A sensor based on a measure of the inter-element jumps of quantities such as the
density, pressure and velocities in the solution, was used by Burgess and Mavriplis [66]
and by Wang et al. [301] for respectively compressible laminar and inviscid 2D cases.
The latter proposed to couple the jump-based sensor with a criterion based on the ratio
of the flow quantity obtained by using the truncated expansion of modal coefficients, to
the one obtained with the full expansion [236], in order to assess the smoothness of the
solution.

The aforementioned approaches (and the related ones) have been largely exploited
in the literature in later works on DG hp-adaptation [143, 117, 33, 308, 231] in several
fields of application. However they usually require the manual setting of different pa-
rameters that can often be case-dependent, especially in the definition of the threshold
between smooth and non-smooth behavior of the solution.

In [137], Gao & Wang proposed to identify the non-smooth regions with an accuracy-
preserving Total Variation Diminishing marker, presenting no case-dependent parame-
ters.

In the work by Ceze & Fidkowski [75], the choice between h- and p-adaptation, as
well as the anisotropy prescription, is made by optimizing a merit function that incor-
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porates both an output sensitivity and a measure of the solution cost on the new mesh,
without performing smoothness measurements. The cost was estimated considering two
measures of CPU work, the number of degrees of freedom and the number of floating
point operations. The adaptive strategy was validated on both 2D and 3D flows, for
inviscid, laminar and RANS configurations.

In [212], Mitchell and McClain summarized several strategies proposed over the
years for the determination between h- and p-adaptation.

In the context of remeshing adaptation strategies, previously described in Section
3.1.2, the methodologies presented by Dolejší, Balan, Rangarajan et al. [110, 34, 112,
240, 241] can be modified to produce anisotropically adapted hp-meshes. For this pur-
pose the anisotropic features as computed by the error model of Dolejší, and the optimal
mesh size are computed by considering for each element a modified local polynomial
degree (𝑝 − 1, 𝑝, 𝑝 + 1). The polynomial degree to employ for the target resolution is
then defined either as the one which provides the minimum number of dofs for a given
error [112, 240] or the minimum bound of the interpolation error [34]. We remark how-
ever that when including a variable polynomial degree, the optimal density distribution
cannot be computed analytically, but requires an iterative solution process.

These adaptation methodologies were validated by performing numerical experi-
ments, including boundary layer problems, as well as compressible flow test cases such
as inviscid and laminar configurations, and RANS simulations of the turbulent flow past
a multi-element airfoil.

To the best of the authors’ knowledge, the presented approaches (and the related
works) relying on Dolejší error estimates, constitute the only study in the literature of
hp-adaptive techniques for metric-based mesh adaptation.

In figure 3.5, we present a comparison between the spatial discretizations obtained
with p- (left panel) and hp-adaptation (right panel) of the flow past a sphere at 𝑅𝑒 = 200.
The p-adaptation has been performed by Rueda-Ramírez et al. [256] on a fixed mesh
with a variable polynomial degree from 𝑝 = 2 to 𝑝 = 7 with an anisotropic approach
(in the legend 𝑁𝑎𝑣 is the average polynomial degree in the three directions). The hp-
adapted mesh on the right has been obtained with the approach developed in this work,
with the polynomial degree ranging from 𝑝 = 1 to 𝑝 = 3 (presented in Chapter 5).

3.4 a posteriori error estimators

The error estimators driving adaptive strategies that can be found in the literature mainly
belong to three main groups:

• Discretization error-based indicators formally measure the difference between the
numerical and the exact solution. The discretization error is mainly caused by
the interaction between the spatial discretization scheme, the mesh resolution,
the mesh quality, and the behavior of the solution itself and its derivatives. They
include estimates of higher-order solutions and estimates based on the residual,
such as the truncation error [255].
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Figure 3.5: Example of spatial resolution adaptation for the sphere at 𝑅𝑒 = 200. On
the left the polynomial distribution obtained with anisotropic p-adaptation by Rueda-
Ramírez et al. [256] with 𝑝 = 2 − 7. On the right, the mesh obtained with hp-adaptation
with a variable 𝑝 = 1 − 3, performed with the flow solver CODA and the adaptive strate-
gies developed in this work.

• Feature-based indicators identify particular physical phenomena which need to
be accurately captured, as for example shock, boundary layer or vortex detection
[236, 87, 166].

• Goal-oriented error indicators identify regions in which a lack of resolution influ-
ences the most a scalar output function, which in aeronautic applications is often
the lift or the drag coefficient. This is performed by solving an adjoint problem
[123, 152].

Despite being inexpensive and simple to implement, feature-based estimators usually
lack robustness and require some experience from the user in the studied phenomenon.
On the other hand, adjoint-based mesh adaptation, even if in the last twenty years has
been shown to be successful in a large range of steady applications [291, 232, 193, 240]
and unsteady Euler and low Reynolds number flows [199, 44, 121, 108], only very
recently has become an option for turbulent scale-resolving simulations [40]. In fact, in
typical unsteady adjoint approaches, a backward-in-time integration is required, which is
considerably expensive for three-dimensional simulations from a memory requirements
and computational cost point of view. However, those mentioned recent studies rely
on entropy-adjoint error estimates for moderate Reynolds number flows, while goal-
oriented mesh adaptation to minimize the error in specific target quantities such as lift
and drag still seems out of reach in an industrial context for scale-resolving simulations.

In the next subsections we list some of the discretization error-based and feature-
based error estimators found in the literature and useful for the purpose of this
manuscript. This is not intended as a comprehensive overview of these classes of a
posteriori error estimators, for which the reader is redirected to [219] and the cited
works.
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3.4.1 High order-based error estimators

This class of error estimators relies on the assumption that the error on the high-order
polynomial approximation of the solution is strictly related to the content of the highest-
order mode. The estimators presented in the next paragraphs are completely local and
require only the knowledge of the polynomial expansion within the element.

Small Scale Energy Density (SSED)

This error estimator is based on an approximation of the error E𝐾 of the numerical
solution u with respect to the exact solution u𝑒𝑥 in the element by computing the norm
of the difference between the numerical solution uℎ,𝑝 and the projection of the numerical
solution on the reduced-order space V 𝑝−1

ℎ
, namely uℎ,𝑝−1:

E𝐾 = | |uℎ − u𝑒𝑥 | | ' | |uℎ,𝑝 − uℎ,𝑝−1 | | (3.5)

The error based on the norm of the high-order modes of the momentum vector is
normalized by the volume of the element (as done by Naddei et al. [219] for laminar and
LES p-adaptive simulations). This has been found to provide better results as compared
to the classical SSED indicator not normalized by the volume proposed in [175] (LES-
VMS simulations) when a mesh with large variation in element size in the domain is
employed. The final formulation reads:

𝜖2
SSED,𝐾 =

∫
𝐾
| | (𝜌v)ℎ,𝑝 − (𝜌v)ℎ,𝑝−1 | |2𝑑𝑉

|𝐾 | =
| | (𝜌v)ℎ,𝑝 − (𝜌v)ℎ,𝑝−1 | |2𝐿2 (𝐾 )

|𝐾 | , (3.6)

where (𝜌v)ℎ is the momentum vector and |𝐾 | is the volume of the element.

Spectral Decay (SD)

Persson and Peraire first introduced in [236] the Spectral Decay estimator as a shock
capturing sensor in the formulation presented in Chapter 2, in equation 2.41. It was
then successively used by Tumolo et al. [285] for p-adaptive simulations for the shallow
water equations. The Spectral Decay indicator, following the approach of Tumolo et
al. [285] and Naddei et al. [219] is defined as:

𝜖2
SD,𝐾 =

∫
𝐾
| |uℎ,𝑝 − uℎ,𝑝−1 | |2𝑑𝑉∫
𝐾
| |uℎ,𝑝 | |2𝑑𝑉

=
| |uℎ,𝑝 − uℎ,𝑝−1 | |2𝐿2 (𝐾 )

| |uℎ,𝑝 | |2𝐿2 (𝐾 )
. (3.7)

When applied to the momentum variable 𝜌v as done in [219], the SD estimator in
equation (3.7) can be seen as a normalization of the SSED in equation (3.6), by the
norm of all the modes of the momentum, corresponding to the total “energy” in the
cell. Other variables can be used to estimate the error, other than the momentum, as for
example the pressure, employed by Bassi et al. [38] for p-adaptation of the implicit LES
of incompressible transitional flows.

Tugnoli et al. [284] and Flad et al. [124] employed a similar formulation with the
norm of the momentum, but they removed the contribution of the cell-average in the
computation of the total energy at the denominator.
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3.4.2 Jump error estimators

This class of error estimators is based on the assumption that the exact solution is con-
tinuous across elements, except when a physical discontinuity is present in the flow
configuration. Therefore a jump in the numerical solution can be considered as a mea-
sure of the error. These indicators only require the knowledge of the projection at the
interface of the solution from the direct neighbors. They usually constitute a convenient
indicator from a practical implementation point of view because they require the same
jump information needed for the computation of the numerical fluxes.

Average jump error estimator

This estimator was used by Bernard et al. [47] for ocean modeling. The average value
of the conservative variables at a given interface 𝑒 in E𝑖 is used to approximate the exact
solution u+

𝑒𝑥:

u+
𝑒𝑥 '

1
2
(u+
ℎ + u−

ℎ ) , (3.8)

where u+
ℎ

and u−
ℎ

are respectively the traces of the variable u at the interface between
elements 𝐾+ and 𝐾−. They then define the error E𝑒 on the interface 𝑒 as half the jump
of the variable traces across the interfaces:

E𝑒 = | |u+
ℎ − u+

𝑒𝑥 | | '
1
2
| |u+

ℎ − u−
ℎ | | (3.9)

and they consider an averaged error over each interface 𝑒, for the norm of the conserva-
tive variables:

𝜖2
JUMP,𝑒 =

∫
𝜕𝐾𝑒

| |u+
ℎ
− u−

ℎ
| |2𝑑𝑆

4|𝜕𝐾𝑒 |
=

| |u+
ℎ
− u−

ℎ
| |2
𝐿2 (𝜕𝐾𝑒 )

4|𝜕𝐾𝑒 |
. (3.10)

The error indicator is then normalized by the area of each interface |𝜕𝐾𝑒 | (that in 2D is
the length of the edge 𝑒, while in 3D is the area of the face 𝑒). For each element 𝐾 they
compute the error estimator by the following simple rule:

𝜖2
avgJUMP,𝐾 =

1
𝑁𝑒

|𝐾 |
𝑁𝑒∑︁
𝑒=1

𝜖2
JUMP,𝑒 (3.11)

with 𝑁𝑒 the number of edges in 2D as in the original formulation [47], or the number of
faces of the element in 3D.

The authors also use the relative error defined as

𝜖2
avgJUMP𝑟𝑒𝑙,𝐾

=
𝜖2

avgJUMP,𝑒

2| |uℎ | |2𝐿2 (𝐾 )
. (3.12)

Maximum jump error estimator

The following discontinuity sensor was used at first by Krivodonova et al. [174] for shock
detection and limiting for hyperbolic conservation law purposes, then by Gassner et
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al. [139, 140] for spatial adaptation purposes. The estimator is defined as the maximum
jump of a variable, such as the density or the pressure, at the element 𝑒 interfaces

𝜖maxJUMP,𝐾 = max
𝑒

max
𝑗

���� (uℎ)+(𝑥 𝑗) − (uℎ)− (𝑥 𝑗)
(uℎ)+(𝑥 𝑗) + (uℎ)− (𝑥 𝑗)

���� (3.13)

= max
𝑒

max
𝑗

�����
[ [
(uℎ)+(𝑥 𝑗)

] ]
2
{
(uℎ)+(𝑥 𝑗)

} ����� , (3.14)

where the 𝑥 𝑗 denotes the location of the 𝑗-th interpolation/quadrature point on the
element interface 𝑒.

3.4.3 Combination of error indicators

Small-Scale Lifted indicator (SSL)

In his thesis work [218], Naddei improved the performances of the SSED indicator by
proposing as refinement indicator the “Small-Scale Lifted” indicator. It consists in a
combination of the SSED indicator in equation (3.6) and an additional term which ap-

proximates the error in the gradient of the momentum
ℎ𝐾

|𝐾 |1/2
𝑑∑︁
𝑖=1

��������𝜕 (𝜌v)ℎ,𝑝
𝜕𝑥𝑖

− 𝜕 (𝜌v)𝑒𝑥
𝜕𝑥𝑖

��������.
In order to compute the additional term, he employed an approach inspired by the

BR1 and BR2 schemes of Bassi et al. [41] described in section 2.3.1, by approximating
the exact gradient by the lifted gradient of the momentum. The resulting error estimator
reads

𝜖SSL,𝐾 = 𝜖SSED,𝐾 + ℎ𝐾

|𝐾 |1/2
𝑑∑︁
𝑖=1

| |i · L𝜌v
ℎ
| |𝐿2 (𝐾 ) , (3.15)

with i the 𝑖-th unit vector defining the physical coordinate system. The second term
includes information on the jumps of the solution at the interfaces of the elements.

In equation (3.15) the gradient term is scaled by the characteristic element size, de-
fined as ℎ𝐾 = |𝐾 |1/𝑑. An alternative definition of ℎ𝐾 , better suited for general anisotropic
meshes, was also proposed.

Maximum jump+Spectral Decay error estimator

Another example of combinations of two error estimators is the indicator used by
Colombo et al. [92]. They observed by numerical experiments that an error estima-
tor based on the jumps at the interfaces of the elements is reliable for any polynomial
degree, whereas an error indicator based on the high-order modes, the SD in their work,
is reliable only for 𝑝 ≥ 2. The SD estimator is accurate but can yield strong cell-to-cell
variations, hence the interest of coupling such indicator with a jump error estimator. The
latter identifies a larger region for adaptation and smooths out the overall indicator map.
According to these observations, they implemented a combination of the two indicators.
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The two estimators appear in the formulations respectively in equations (3.13) and
(3.7), and are computed using the pressure variable.

Both indicators are normalized by their respective maximum and minimum values
over the whole domain (min-max normalization) before the coupling:

𝜖SD+maxJUMP,𝐾 = INT
(

𝑝𝐾

max(2, 𝑝𝐾 )

)
𝜖SD,𝐾 + 1

max(1, 𝑝𝐾 )
𝜖maxJUMP,𝐾 (3.16)

where 𝑝 is the polynomial degree of the numerical solution and INT represents an integer
division (meaning that 𝜖SD,𝐾 is set to 0 for 𝑝 ∈ [0, 1]).



Chapter 4

Validation on canonical test cases

This chapter is dedicated to the validation of the numerical methods and models de-
scribed in Chapter 2, and to the study of the impact of several numerical parameters
relevant in the context of RANS and scale-resolving simulations.

In Section 4.1 we verify the numerical error order of convergence of the DG method
for the convection of an isentropic vortex, featuring various polynomial degrees and
unstructured triangular grids.

In Section 4.2 we study the admissible near-wall resolution in terms of wall normal
spacing for DG RANS from high Reynolds number flat plate simulations.

Finally, in Section 4.3, the influence of the DES constant 𝐶𝐷𝐸𝑆 is studied from canon-
ical Taylor-Green vortex computations, featuring various polynomial degrees and un-
structured tetrahedral grids.

4.1 Study on the DG order of convergence on unstructured
meshes - Isentropic CoVo vortex case

The test case of a vortex convected by a uniform flow (referred to as CoVo in the follow-
ing) is usually aimed at testing the capability of numerical methods to preserve vorticity
in an unsteady inviscid flow. The accurate transport of vortices is indeed very important
for LES and DES, as well as for rotorcraft unsteady applications. An analytical solution
of the CoVo test case is available, allowing us to conduct an error analysis aimed at
verifying the order of accuracy of the DG scheme implemented in CODA.

The “fast” configuration with 𝑀∞ = 0.5 is chosen from the High-Order Workshop
[12]. The vortex has a characteristic radius 𝑅𝑐 = 0.005 and strength 𝛽 = 0.2. The
domain is a square of side 𝐿𝑥 , 𝐿𝑦 = 0.1, with periodic boundary conditions in the 𝑥 and
𝑦 directions, and the vortex is initialized with its center at (𝑥𝑐, 𝑦𝑐) = (0.05, 0.05).

41
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The flow is initialized as:

𝑇 (x, 𝑡) = 𝑇∞ − 𝑈
2
∞𝛽

2

2𝐶𝑝
𝑒−𝑟

2

𝑢(x, 𝑡) = 𝑈∞

(
1 − 𝛽 𝑦 − 𝑦𝑐

𝑅𝑐
𝑒−𝑟

2/2
)

(4.1)

𝑣(x, 𝑡) = 𝑈∞𝛽
𝑥 − 𝑥𝑐
𝑅𝑐

𝑒−𝑟
2/2

with the heat capacity defined as 𝐶𝑝 = 𝑅
𝛾

𝛾 − 1
, the free-stream velocity 𝑈∞ =

𝑀∞
√
𝛾𝑅𝑇∞ and the non-dimensional distance to the (initial) vortex core position 𝑟 =√︁

(𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2

𝑅𝑐
. The fluid pressure p, temperature 𝑇 and density 𝜌 are prescribed

such that the vortex is a steady solution of the reference free-stream flow (without the
vortex):

𝜌(x, 0) = 𝜌∞
(
𝑇 (x, 0)
𝑇∞

) 1
𝛾−1

(4.2)

p(x, 0) = 𝜌(x, 0)𝑅𝑇 (x, 0)

Relatively long simulations are usually performed, where the solution is advanced in
time for many time periods, and the solution obtained at the last instant is compared to
its analytical counterpart.

The time necessary for the vortex to advect through the computational domain is

𝑇𝐶𝑜𝑉𝑜 =
𝐿

𝑈∞
. In the following analysis, simulations are performed for 10𝑇𝐶𝑜𝑉𝑜, lower

than the 50𝑇𝐶𝑜𝑉𝑜 suggested in the guidelines of the High-Order Workshop, but still rep-
resentative to assess the dissipation and dispersion properties of the numerical scheme.

We present the errors measured on two quantities, the pressure and the entropy. The
first is the 𝐿2 norm of the relative error on the pressure, computed as:

𝑒𝑟𝑟𝑜𝑟pressure =

√√√√∫
T𝐾

(
p−p𝑒𝑥𝑎𝑐𝑡

p𝑒𝑥𝑎𝑐𝑡

)2
𝑑𝑉

|T𝐾 |
(4.3)

where p𝑒𝑥𝑎𝑐𝑡 is the analytical pressure, used also as initialization in equation (4.2), and
|T𝐾 | is the volume of the entire computational domain.

Moreover, in an Euler simulation without shocks, no sources of dissipation (other
than numerical) are present, and the entropy is supposed to be equal to the entropy of
the free-stream reference state. Defining the approximated entropy as 𝑠 =

p
𝜌𝛾

, we can

compute the 𝐿2 norm of the relative error on the entropy as:

𝑒𝑟𝑟𝑜𝑟entropy =

√√√√∫
T𝐾

(
𝑠−𝑠∞
𝑠∞

)2
𝑑𝑉

|T𝐾 |
(4.4)
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where 𝑠∞ is the approximated entropy of the infinite reference state.
For all the tested meshes, overintegration has been employed to benefit from a more

precise computation of the integral error in the solution. Time steps are chosen small
enough to measure dissipation and dispersion due to the spatial scheme and not due to
the time integration.

The CoVo simulations are performed on six uniformly refined unstructured meshes
counting respectively 112, 404, 1596, 6226, 24529, 96936 elements, for the three dis-
cretizations 𝑝 = 1, 𝑝 = 2 and 𝑝 = 3. We remind that in 2D a 𝑝 = 1, 𝑝 = 2 and 𝑝 = 3
element respectively contains 3, 6, 10 dofs, the number of dofs of our simulations ranges
approximately from 300 to one million.

Figure 4.1: CoVo at 𝑀∞ = 0.5. Initialization of the streamwise velocity (top row) and
of the pressure (bottom row). Left column: coarsest mesh (112 elements) with 𝑝 = 1
reconstruction (336 dofs). Middle column: coarsest mesh (112 elements) with 𝑝 = 3
reconstruction (1120 dofs). Right column: finest mesh (96936 elements) with 𝑝 = 3
reconstruction (969360 dofs).

In figure 4.1 a zoom of the initial condition of the CoVo in terms of the streamwise ve-
locity and pressure are respectively presented in the top and the bottom panels. The left
panels refer to the coarsest discretization (the first mesh with 𝑝 = 1), the middle panels
refer to the coasest mesh but with a 𝑝 = 3 discretization, while the right panels refer to
the finest discretization (the last mesh with 𝑝 = 3). The visible mesh edges in figure 4.1
are those used for the computations, while the initial solutions are projected on a very
fine post-processing mesh. This simple exercise shows how poor is the reconstruction of
solution for the coarse 𝑝 = 1 mesh. Here the interfaces between the triangular elements
are clearly visible, and the low order 𝑝 = 1 discretization on these very coarse elements
provides a reconstruction which barely resembles, from a visual point of view, to the
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prescribed initialization of the CoVo. On the other hand, we can see in the middle plots,
how the fourth order 𝑝 = 3 resolution provides a much more faithful representation of
the CoVo, despite the very coarse mesh. The right panels present the solution on the
finest available discretization, showing how the prescribed CoVo should look like with a
very low interpolation error.

In figure 4.2 we present the error on the entropy, computed as in equation (4.4), and
on the pressure, computed as in equation (4.3), for the six meshes, for 𝑝 = 1 in blue,
𝑝 = 2 in red and 𝑝 = 3 in black solid lines. In dotted lines the theoretical second, third
and fourth order are plotted respectively in blue, red and black.

First of all, we observe from figure 4.2 that on the coarsest mesh the simulations are
still far from the asymptotic range of convergence, and similar error levels are obtained
with different polynomial degrees.
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Figure 4.2: CoVo at 𝑀∞ = 0.5. Error on entropy (left) and pressure (right)

We can notice that the asymptotic range has been achieved from the first mesh for
𝑝 = 3 computations, while approximately from the second for 𝑝 = 2 computations and
from the third mesh for 𝑝 = 1 computations. Once the asymptotic range has been es-
tablished, we can compare the curves obtained with numerical simulations with the the-
oretical curves representing the convergence order. Keeping in mind that for a smooth
problem, the order of convergence of a DG method should be 𝑝 + 1, we can confirm that
the theoretical orders are achieved with the current DG implementation on triangular
meshes, given that numerical curves match very closely theoretical orders.

4.2 Near-wall resolution requirements for DG/RANS - Turbu-
lent flow over a flat plate at 𝑅𝑒 = 5 · 106

The objective of the study presented in this section is to determine the acceptable near-
wall resolution in terms of 𝑦+ for high-order DG methods and provide a comparison
with the best practices for classical second-order schemes, for which a value of 𝑦+ = 1 is
commonly employed.
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The non-dimensional wall coordinate 𝑦+ is defined as:

𝑦+ =
𝑦𝑤𝑢𝜏

a
, with 𝑢𝜏 =

√︂
𝜏𝑤

𝜌
(4.5)

where 𝑦𝑤 is the distance of the first cell from the wall, 𝑢𝜏 is the friction velocity and 𝜏𝑤
is the wall shear stress.

The influence of the 𝑦+ value of the mesh is studied for three discretization orders
𝑝 = 1, 2, 3 by performing simulations of the turbulent flow over a flat plate. The analysis
is here carried out by performing RANS simulations. However, we expect these results
to be applicable to ZDES simulations mode 1, for which the boundary layers are fully
solved in RANS mode.

The configuration used in this study is the “2D Zero Pressure Gradient Flat Plate
Verification Case” for turbulence modeling by NASA [13]. The case is run at 𝑀∞ = 0.2
and Reynolds number of 𝑅𝑒𝐿 = 5 · 106 based on length 𝐿 = 1. The plot in figure 4.3
shows the layout of the flat plate grids used for this study, with the boundary conditions
employed. The stagnation pressure p𝑡/p∞ = 1.02828 and the stagnation temperature
𝑇𝑡/𝑇∞ = 1.008 are imposed at the inflow, far-field Riemann conditions are imposed at the
top boundary at 𝑦 = 𝐿, and the static pressure p/p∞ = 1 is imposed at the outflow at
𝑥 = 2𝐿. The flat plate at the bottom boundary extends from 𝑥 = 0 to 𝑥 = 2𝐿 at 𝑦 = 0, and
is modeled as a solid adiabatic wall, while symmetric boundary conditions extend from
𝑥 = −0.24𝐿 to 𝑥 = 0, in the bottom boundary preceding the flat plate.

Figure 4.3: DG/RANS of the flat plate at 𝑅𝑒 = 5 · 106. The computational mesh G1 with
stretching factor 𝛼 = 1.05 (left) and Mach contour on the whole domain of the flat plate
(right).

Since DG methods feature a polynomial variation of the solution inside the mesh
cells, the relevant minimum height of the first cell for a DG method is considered as
𝑦𝑤,𝐷𝐺 = 𝑦𝑤/(𝑝 + 1), where 𝑦𝑤 is the height of the first element. For a cell-based FV
method, the minimum wall normal spacing is computed as the distance of the cell cen-
ter from the wall 𝑦𝑤,𝐹𝑉 = 𝑦𝑤/2. For 𝑝 = 1 simulations 𝑦𝑤,𝐷𝐺 = 𝑦𝑤/2, therefore the
computation of the relevant height of the first cell is the same as classical FV.

Simulations with different wall normal spacings 𝑦𝑤 of the first element on the wall
are performed. In the wall-normal direction the mesh is stretched with a geometric
progression, and the stretching factor 𝛼 is the parameter governing the wall normal
spacing of the first element 𝑦𝑤 = 𝐿/(∑𝑁𝑦−1

𝑖=0 𝛼𝑖).
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#dofs
(per elem)

#elems
grid G1

total #dofs
grid G1

#elems
grid G2

total #dofs
grid G2

DG 𝑝1 3 224x97 65184 224x97 65184
DG 𝑝2 6 224x97 130368 158x69 65412
DG 𝑝3 10 224x97 217280 123x53 65190

Table 4.1: DG/RANS of the flat plate at 𝑅𝑒 = 5 · 106. Resolution of the employed grids
G1 and G2.

The study has been conducted considering two mesh configurations. The first, called
hereafter G1, consists in structured 𝑁𝑥 × 𝑁𝑦 = 224 × 97 grids, represented in figure 4.3.
The streamwise spacing is kept at a constant value Δ𝑥 = 0.01 (equivalent to an average
𝑥+ ' 1800 over the flat plate - notice that no DG scaling has been applied to this value, as
will be explained for 𝑦+ in the following). G1 simulations results are plotted in straight
lines and circles in figures 4.4 and 4.5. For a DG method, several dofs are present in
each element in each direction depending on the employed discretization order, thus G1
simulations provide a different number of dofs for each discretization (table 4.1).

The different global resolution between DG discretizations is likely to affect the study,
as the results depend not only on the DG-relevant height of the first cell 𝑦+

𝐷𝐺
, but also on

the DG-relevant streamwise spacing 𝑥+
𝐷𝐺

= 𝑥+/(𝑝 + 1). Therefore, we decided to conduct
the study also defining the same number of dofs for the three discretizations, denomi-
nated here as G2. The 𝑝 = 1 mesh counting 224x97 elements is kept the same, yielding
around 65K dofs, while a 158x69 elements mesh is employed for 𝑝 = 2 simulations and
a 123x53 elements mesh is employed for 𝑝 = 3 simulations in the G2 configuration. Also
in this case the Δ𝑥 spacing is constant for each set of 𝑝 = 1, 𝑝 = 2, 𝑝 = 3 meshes and
the different wall normal spacing of the first cell are achieved by changing the stretching
factor of the geometric progression. Therefore all the G2 simulations performed feature
around 65K dofs and are represented in dotted lines and crosses respectively in figures
4.4 and 4.5.

Different simulations are performed for 𝑝 = 1, 𝑝 = 2, 𝑝 = 3 discretizations varying the
height of the first cell. For each simulation we compute 𝑦+𝐷𝐺, which we define as the
height of the first cell 𝑦𝑤,𝐷𝐺, multiplied by the average of 𝑢𝜏/a over all the cells in the
first layer of elements of the boundary layer, computed from the reference simulation.
This value is chosen as the one to control the spatial resolution, since the value of 𝑦+

𝐷𝐺

varies along the streamwise direction. We then monitor the error in the friction drag
coefficient as well as the skin friction coefficient at two different locations of the flat
plate, 𝑥 = 0.1 and 𝑥 = 0.97. These values are reported for each simulation as a function
of 𝑦+𝐷𝐺 in figures 4.4 and 4.5. Since for this test case the pressure drag coefficient is
zero, the friction is the only contribution to the drag coefficient. The reference for the
computation of the error is performed using a 𝑝 = 4 discretization on a mesh featuring
the smallest employed wall-normal spacing, and half the streamwise spacing of that
employed in G1.

Typically, for wall-resolved RANS simulations, in order to ensure a proper representa-
tion of the velocity profile with accurate gradients, the chosen value for FV computations
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is 𝑦+
𝐹𝑉

= 1 for the first layer. In this section we want to assess the possibility to employ
higher values of 𝑦+

𝐷𝐺
for higher-order methods.
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Figure 4.4: DG/RANS of the flat plate at 𝑅𝑒 = 5 ·106. Error on the value of the integrated
friction drag coefficient 𝐶𝐷 𝑓 𝑟𝑖𝑐 along the flat plate.
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Figure 4.5: DG/RANS of the flat plate at 𝑅𝑒 = 5 · 106. Error on the value of the friction
coefficient 𝐶 𝑓 𝑟𝑖𝑐 at 𝑥 = 0.1 (left) and at 𝑥 = 0.97 (right) of the flat plate.

The first observation regarding figures 4.4 and 4.5 concerns the dependence of the
𝐶 𝑓 𝑟𝑖𝑐, and consequently the 𝐶𝐷 𝑓 𝑟𝑖𝑐, on the number of dofs in the streamwise direction.
While the mesh G1 coincides with G2 for 𝑝 = 1 computations, we can compare G1 and
G2 curves for 𝑝 = 2 and 𝑝 = 3 computations and analyze the differences.

For all the three plots, we notice that straight (G1) and dotted (G2) curves are almost
superimposed for both 𝑝 = 2 and 𝑝 = 3 discretizations, for values 𝑦+𝐷𝐺 higher than 1.
Below this threshold, the discrepancies between G1 and G2 results are due to the higher
streamwise resolution of G1 simulations. This means that the convergence of the 𝐶 𝑓 𝑟𝑖𝑐
(and 𝐶𝐷 𝑓 𝑟𝑖𝑐) value is guided only by the height of the first cell, except when dealing with
very low values of the error, where a higher streamwise resolution leads to better results.
We are typically not interested in meshes with 𝑦+𝐷𝐺 significantly lower than 1. In fact
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employing very refined meshes at the wall would impose severe constraints on the time
step. The dependence of 𝐶 𝑓 𝑟𝑖𝑐 only on the height of the first cell is thus demonstrated
and the following observations will be made independently from the use of G1 or G2
meshes.

Looking at the blue curves in figures 4.4 and 4.5, in order to accurately capture the
gradients in the near-wall region and achieve 1% errors on the 𝐶 𝑓 𝑟𝑖𝑐 (and 𝐶𝐷 𝑓 𝑟𝑖𝑐), the
requirement 𝑦+

𝐷𝐺
' 1 seems an adequate choice for the second order method. It follows

that the second order DG discretization 𝑝 = 1 imposes basically the same 𝑦+ constraint
as a FV discretization.

While for 𝑦+𝐷𝐺 > 2.5 no substantial difference is observed between the three DG
discretizations, the 𝐶 𝑓 𝑟𝑖𝑐 at two locations 𝑥 = 0.1 and 𝑥 = 0.97, and the integrated 𝐶𝐷 𝑓 𝑟𝑖𝑐
values, obtained with the higher order discretizations 𝑝 = 2 and 𝑝 = 3, appear to be less
sensitive to the value 𝑦+𝐷𝐺 when lower values of 𝑦+𝐷𝐺 are employed.

The 𝑝 = 2 and 𝑝 = 3 discretizations achieve the same accuracy with respect to the
integrated 𝐶𝐷 𝑓 𝑟𝑖𝑐 obtained by the second-order discretization at 𝑦+𝐷𝐺 = 1, with larger
wall spacing of respectively 𝑦+𝐷𝐺 ' 1.8 and 𝑦+𝐷𝐺 ' 2.1 (figure 4.4). Considering the
error on the skin friction coefficient 𝐶 𝑓 𝑟𝑖𝑐 at 𝑥 = 0.1 in the left panel of figure 4.5, a
value of 𝑦+𝐷𝐺 ' 2.3 is sufficient for 𝑝 = 2 and 𝑝 = 3 discretizations to achieve the same
accuracy as compared to 𝑝 = 1 simulations with 𝑦+𝐷𝐺 = 1, while 𝑦+𝐷𝐺 ' 2.1 is sufficient
for the 𝐶 𝑓 𝑟𝑖𝑐 at 𝑥 = 0.97.

In turn, for the same value of 𝑦+𝐷𝐺 = 1, a reduction of the error of almost one order
of magnitude is obtained by using 𝑝 = 2 and 𝑝 = 3 as compared to the 𝑝 = 1 simulations.

The second and third columns of table 4.2 show the 𝑦+𝐷𝐺 values necessary to obtain
respectively a 1% error on the 𝐶𝐷 𝑓 𝑟𝑖𝑐 and the error on the 𝐶𝐷 𝑓 𝑟𝑖𝑐 at 𝑦+𝐷𝐺 = 1 for the
three discretizations.

𝑦+𝐷𝐺
@1% error on 𝐶𝐷 𝑓 𝑟𝑖𝑐

error on 𝐶𝐷 𝑓 𝑟𝑖𝑐
@ 𝑦+𝐷𝐺 ' 11

DG 𝑝1 1.32(G1,G2) 0.7%(G1,G2)

DG 𝑝2 1.96(G1)
1.96(G2)

0.12%(G1)
0.17%(G2)

DG 𝑝3 2.24(G1)
2.32(G2)

0.06%(G1)
0.13%(G2)

Table 4.2: DG/RANS of the flat plate at 𝑅𝑒 = 5 · 106. The 𝑦+𝐷𝐺 value needed to achieve
1% error on 𝐶𝐷 𝑓 𝑟𝑖𝑐, and the achieved error on 𝐶𝐷 𝑓 𝑟𝑖𝑐 at 𝑦+𝐷𝐺 ' 1 1 for the three
discretizations.

The curves representing errors in figures 4.4 and 4.5 stagnate below 𝑦+𝐷𝐺 ' 1 due to

1Note that 𝑝 = 3 simulations in figure 4.4, both G1 and G2, present a numerical undershoot of the
error on the 𝐶𝐷 𝑓 𝑟𝑖𝑐, for 𝑦+𝐷𝐺 exactly equal to 1. This behavior is spurious and not representative of the
real behavior of the error on the 𝐶𝐷 𝑓 𝑟𝑖𝑐. Since results obtained by 𝑝 = 2 and 𝑝 = 3 simulations appear
to converge to a precise error level for each discretization for 𝑦+𝐷𝐺 < 1, we decided to employ in the last
column of table 4.2, for both 𝑝 = 2 and 𝑝 = 3, the values of the error on the 𝐶𝐷 𝑓 𝑟𝑖𝑐 at which each simulation
converges, namely the error values obtained at 𝑦+𝐷𝐺 < 0.3.
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other sources of errors (mostly the singular point of the flat plate) which do not depend
only on the height of the first cell, but also on the streamwise resolution. The spurious
undershoots that can be seen in the three figures (for G1𝑝3 in figure 4.4, G1𝑝2 in the left
panel of figure 4.5 and G2𝑝2 in the right panel of figure 4.5) are due to the coefficient
oscillating around the reference value. This can lead to an artificial yet localized sudden
decrease of the error for very low error levels.

In conclusion, when handling high order discretizations (i.e. greater than 2), it ap-
pears from our analysis that the classical constraint of 𝑦+

𝐷𝐺
= 1 can be relaxed, and a

higher value of 𝑦+
𝐷𝐺

' 2.5 seems adequate in order to retrieve results similar to second
order discretizations with 𝑦+

𝐷𝐺
' 1. Equivalent DG wall normal spacings for high-order

methods can be then chosen more than twice than those employed for second order
methods, allowing for higher time steps in time explicit simulations, while still providing
good accuracy.

4.3 Influence of the DES constant for DG simulations using
unstructured grids - Taylor-Green vortex at 𝑅𝑒 = 5000

In this section we assess the value of the DES model constant 𝐶𝐷𝐸𝑆 in the context of
DG simulations for unstructured tetrahedral grids. This constant determines the ampli-
tude of the subgrid dissipation in regions of the flow featuring developed turbulence.
Shur et al. [270] found the optimal value of the 𝐶𝐷𝐸𝑆, which verifies a Kolmogorov iner-
tial range up to the grid cut-off, for simulations of the homogeneous decaying isotropic
turbulence, using a centered fourth-order accurate differencing scheme.

In the same spirit, we choose here to compute the 3D Taylor-Green vortex case to
assess the capacity of DES to predict the physics of turbulence for different discretization
orders of a modal DG method. This case describes freely decaying isotropic turbulence
in a periodic box with length of each spatial direction 𝐿𝑥 = 2𝜋𝐿 with 𝐿 = 1. The initial
conditions with Mach 𝑀0 = 0.1, and 𝑈0 = 𝑀0

√
𝛾𝑅𝑇0, are given by:

𝑝(x, 0) = 𝜌0𝑈
2
0

[
1

𝛾𝑀2
0
+ 1

16
· (cos (2𝑥/𝐿) + cos (2𝑦/𝐿)) · (cos (2𝑧/𝐿) + 2)

]
𝑢(x, 0) = 𝑈0 · sin (𝑥/𝐿) · cos (𝑦/𝐿) · cos (𝑧/𝐿) (4.6)

𝑣(x, 0) = −𝑈0 · cos (𝑥/𝐿) · sin (𝑦/𝐿) · cos (𝑧/𝐿)
𝑤(x, 0) = 0

This initial condition corresponds to large vortical structures in the computational do-
main, which progressively break up into smaller structures and generate an energy cas-
cade. The flow is initialized as isothermal (𝑝(x, 0)/𝜌(x, 0) = 𝑝0/𝜌0 = 𝑅𝑇0). The Reynolds
number is 𝑅𝑒 = 𝜌0𝑈0𝐿/`0 = 5000, and the unsteady simulation is performed for a time
𝑇 = 15𝑡𝑐, where 𝑡𝑐 = 𝐿/𝑈0 is the characteristic convective time.

The pseudo-eddy viscosity field ã is initialized with the turbulent viscosity obtained
from the Smagorinsky model

ã(x, 0) = (𝐶𝑆 · Δ)2 ·
√︃

2𝑆𝑖 𝑗 (x, 0)𝑆𝑖 𝑗 (x, 0) , (4.7)
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where 𝐶𝑆 = 0.17 is the Smagorinsky constant, Δ =
3√ |𝐾 |
𝑝+1 is the characteristic size of

each mesh element 𝐾 (computed as the cubic root of its volume) divided by the number
of 1D degrees of freedom for a DG method, and 𝑆𝑖 𝑗 is the strain rate tensor obtained
analytically from equations (4.6).

4.3.1 DG computations at fixed number of dofs ' 723

In this section we perform simulations at relatively low fixed number of dofs #dofs ' 723

(the number is not exact due to the tetrahedral unstructured meshes for which an exact
control of the number of elements is not straightforward) for different discretization or-
ders, from 𝑝 = 1 to 𝑝 = 5. Given that 𝑝 = 1, 2, 3, 4, 5 discretizations count respectively
4, 10, 20, 35, 56 degrees of freedom per element, meshes including respectively around
723/4, 723/10, 723/20, 723/35, 723/56 elements are employed for each discretization (fig-
ure 4.6). Note that the number of dofs per element is different from Sections 4.1 and
4.2 because here the problem is three-dimensional.

Figure 4.6: DG/DES of the Taylor-Green vortex at 𝑅𝑒 = 5000. Computational mesh (left)
for a 𝑝 = 3 simulation with resolution 723, and respective iso-surface of 𝑄 = 5(𝑈0/𝐿)2 at
𝑡𝑐 = 10, coloured by the streamwise velocity component (right).

The quantities we monitor in order to assess the quality of the representation of the
turbulence are the normalized enstrophy b and the normalized kinetic energy 𝐸𝑘

b =
1

𝜌0𝑈
2
0 |T𝐾 |

∫
T𝐾

𝜌𝝎 · 𝝎
2

𝑑𝑉 (4.8)

𝐸𝑘 =
1

𝜌0𝑈
2
0 |T𝐾 |

∫
T𝐾

𝜌v · v
2

𝑑𝑉 (4.9)

The reference DNS simulations have been performed on a mesh employing 4803 dofs
[82] with a eighth order Spectral Difference method.
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We compute the energy spectra of the solution at time 𝑡 = 10, when all scales of the
flow are developed.

When analyzing LES results obtained with DG methods it is assumed that the resolu-
tion limit is defined by the cut-off wavenumber 𝑘1/3 =

3√#dofs/3. This is justified by the
fact that the DG discretization represents accurately the spectrum for wavenumbers up
to 𝑘1/3 =

3√#dofs/3, followed by a steep decrease of the energy for higher wavenumbers
[220]. This is only due to the properties of the DG approximation. The presence of extra
numerical dissipation might lead to additional discrepancies between DNS and LES also
at lower wavenumbers.
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Figure 4.7: DG/DES of the Taylor-Green vortex at 𝑅𝑒 = 5000. The 3D energy spectrum
within the inertial sub-range at time 𝑡𝑐 = 10 compared to the Kolmogorov scaling 𝐸 (𝑘) ∝
𝑘−5/3. 𝑝 = 1, 2, 3, 4, 5 simulations with 𝐶𝐷𝐸𝑆 = 0.65.

In figure 4.7, the theoretical slope of the energy spectrum 𝑘−5/3 is clearly observed
in the inertial range for 𝑝 = 3, 4, 5 simulations, with a good fit with the DNS reference
computation. The damping of energy occurs at wavenumbers between 14 and 16 for
the three discretizations 𝑝 = 3, 4, 5, before the limit value 𝑘1/3 = 72/3 = 24. As the
discretization order is increased, the cut-off occurs at higher wavenumbers and the decay
of the spectrum is slower. However the three curves are very close to each other, meaning
that the maximum wave length resolution limit is almost the same for 𝑝 ≥ 3, and no
further significant improvements can be expected further increasing the discretization
order.

The 𝑝 = 2 simulation presents a damping at a lower wavenumber compared to 𝑝 = 3
but still presents the theoretical slope at low wavenumbers, while the 𝑝 = 1 simulation
provides results far from the theoretical behavior, damping a significant part of the en-
ergy associated with the large scales. This is due to the intrinsic numerical dissipation
that low order DG schemes provide. The higher the order of the DG discretization, the
lower the numerical dissipation. This means that for a low-order scheme the numer-
ical dissipation is too strong to correctly represent the turbulent behavior, unless the
resolution is dramatically increased.

It is thus preferable to employ high-order 𝑝 ≥ 2 discretizations when an accurate
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representation of turbulence is sought with a fixed number of degrees of freedom.
For hp-adaptation to be attractive from the computational time point of view, an ad

hoc load balancing technique is mandatory to fully exploit the potential of variable order
degree simulations. Since this goes beyond the scope of this work, and no sophisticated
load balancing techniques are employed here, we choose to employ a maximum polyno-
mial degree discretization 𝑝 = 3 in the adaptive algorithm for the sphere and the PPRIME
nozzle in Chapter 6. As shown in figure 4.7, the high-order 𝑝 = 3 discretization provides
a good representation of turbulent phenomena, on par with higher-order discretizations.

All the following analysis are then conducted on a 𝑝 = 3 discretization, representative
of our final test cases.

The sensitivity of the model to the constant 𝐶𝐷𝐸𝑆 is studied and the corresponding
results are displayed in figure 4.8. The results of DES simulations are presented in
terms of the time evolution of the enstrophy and the kinetic energy, with respect to the
filtered DNS data, and the 3D energy spectrum with respect to the DNS spectrum. For
a fair comparison between the DES and the reference DNS computations, especially for
the levels of enstrophy which are strongly affected by the resolution, the DNS is filtered
using the transfer function associated with the DG discretization introduced by Chapelier
et al. [80]. The DNS velocity and vorticity fields are filtered and the corresponding
spatially-integrated quantities are computed with a sampling Δ𝑡𝑐 = 1 between 𝑡𝑐 = 1 and
𝑡𝑐 = 20.
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Figure 4.8: DG/DES of the Taylor-Green vortex at 𝑅𝑒 = 5000. Normalized enstrophy
(left) and kinetic energy (middle) over the course of the simulation for a DGp3 dis-
cretization for different values of the 𝐶𝐷𝐸𝑆. The 3D energy spectrum within the inertial
sub-range at time 𝑡𝑐 = 10 compared to the Kolmogorov scaling 𝐸 (𝑘) ∝ 𝑘−5/3 (right).

Analyzing the plots of the enstrophy over the course of the simulation in the left panel
of figure 4.8, the decrease of the 𝐶𝐷𝐸𝑆 constant from the original value 𝐶𝐷𝐸𝑆 = 0.65
to 𝐶𝐷𝐸𝑆 = 0.01, 0.1, 0.2, 0.4, 0.5 leads to a slightly better representation of the peak of
enstrophy, due to a weaker dissipation introduced by the DES model. When employing
low values of the 𝐶𝐷𝐸𝑆 = 0.01, 0.1, 0.2, the model seems not to provide a sufficient
dissipation after the peak of enstrophy, with an overestimation of the enstrophy for 𝑡 ≥
12. At the same time, the kinetic energy evolution in the middle panel of figure 4.8 shows
a low sensitivity to variations of the DES constant, meaning that the model predicts
accurately the decay of the kinetic energy employing several values of the 𝐶𝐷𝐸𝑆 constant.

The value of the constant 𝐶𝐷𝐸𝑆 seems to affect marginally the energy spectra in the
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right panel of figure 4.8. The simulations performed with different 𝐶𝐷𝐸𝑆 values provide
indeed a similar decay of the turbulent energy spectrum.

The method appears therefore to be robust to variations of the 𝐶𝐷𝐸𝑆, and the stan-
dard value 𝐶𝐷𝐸𝑆 = 0.65 does not appear to introduce an excessive amount of dissipation.

4.3.2 Mesh sensitivity study

In this subsection we study the sensitivity of DG-DES simulations on the mesh resolution
for a fixed polynomial degree. We perform simulations on different resolutions, and
compare them with the filtered DNS data at the respective cut-off wave number 𝑘1/2. The
𝑝 = 3 discretization is considered, and simulations counting #dofs = 483, 963, 1443 are
performed on tetrahedral meshes, in addition to #dofs = 723, presented in the previous
section. Three different values of the constant 𝐶𝐷𝐸𝑆 = 0.1, 0.4, 0.65 are compared.

We made comparisons for the enstrophy development for the three resolutions. In
the following we only report and analyze the evolution of the enstrophy. Kinetic energy
is not shown here because only very small differences can be found between the dif-
ferent computations. Note the different scale of the enstrophy b levels for the different
resolutions considered.
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Figure 4.9: DG/DES of the Taylor-Green vortex at 𝑅𝑒 = 5000. Volume-averaged enstro-
phy. Different values of 𝐶𝐷𝐸𝑆 for three resolutions #dofs = 483, 963, 1443.

As already observed for the simulations using 723 dofs, increasing 𝐶𝐷𝐸𝑆 leads to
a stronger dissipation and lower levels of the enstrophy. A low value of the constant
𝐶𝐷𝐸𝑆 = 0.1 does not provide a sufficient dissipation after the peak of enstrophy has been
reached. In particular, higher levels of the enstrophy than the respective filtered DNS are
observed for 𝑡𝑐 ≥ 12 for the two coarse resolutions with 483 (left panel in figure 4.9) and
723 dofs (left panel in figure 4.8). On the other hand, when increasing the resolution
to 963 and 1443 dofs, the model always provides sufficient dissipation to the unresolved
scales, without requiring high values of the 𝐶𝐷𝐸𝑆.

The energy spectrum is also analyzed to provide a further insight in the mechanism
of the turbulent decay. As already pointed out for the resolution corresponding to 723

dofs, the energy spectra at 𝑡𝑐 = 10 obtained with 3 different values of the 𝐶𝐷𝐸𝑆 are
almost indistinguishable, for each resolution. This confirms the overall low criticity of
this constant for the generation and development of turbulent scales.

According to Sagaut et al. [260] the DES approach can be considered analogous to
the well-known Smagorinsky model for free-shear flows, and a value of 𝐶𝐷𝐸𝑆 = 0.65 is
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Figure 4.10: DG/DES of the Taylor-Green vortex at 𝑅𝑒 = 5000. The 3D energy spectrum
within the inertial sub-range at time 𝑡𝑐 = 10 compared to the Kolmogorov scaling 𝐸 (𝑘) ∝
𝑘−5/3 for three resolutions #dofs = 483, 963, 1443 and different 𝐶𝐷𝐸𝑆 values.

equivalent to the Smagorinsky constant 𝐶𝑆 ' 0.2. Due to the intrinsic dissipation of DG
methods, a lower 𝐶𝑆 = 0.1 is often employed [100] for LES/DG simulations. We could
think that decreasing the constant to 𝐶𝐷𝐸𝑆 = 0.3 or 0.4 would be an appropriate choice
to allow the subgrid model to provide a sufficient amount of dissipation, without over-
dissipating the turbulent structures. These values would correspond to a 𝐶𝑆 ' 0.1 − 0.13
according to Sagaut’s relations. However, for the purposes of this work we prefer to use
the classical constant value 𝐶𝐷𝐸𝑆 = 0.65, since very few differences are observed in the
time evolution of the enstrophy by changing the 𝐶𝐷𝐸𝑆 value, and almost no differences
are found out in the decay of the turbulent spectrum. A much wider analysis would be
necessary to assess the effective benefits that changing this constant would bring, and
eventually propose a different value.

4.4 Conclusion

In this chapter, some features of the DG methods coupled with RANS/DES are analyzed
for canonical test cases. The first validation test case, the transport of an isentropic
vortex, has been used to verify the convergence order of the employed DG method on
unsteady simulations performed on unstructured triangular meshes. A sensitivity study
on the minimum wall spacing 𝑦+ for RANS has been carried out for the flow over a flat
plate at Reynolds number equal to 5 ·106 using structured quadrilateral meshes, showing
that increasing the order of accuracy of the DG approximation allows for relaxing the
constraints on the near-wall resolution. Finally, the value of the DES constant has been
tested for DG on grids composed of tetrahedra, from the Taylor-Green Vortex test case,
representing the breakdown into turbulence and the following decay of homogeneous
isotropic turbulence. It has been shown that the modulation of the DES constant does
not impact significantly the turbulent spectrum. However, the choice of the polynomial
degree has a significant impact, and at least a fourth order approximation is required
to obtain a good representation of turbulent structures in the fully-developed turbulent
regions, at least for relatively coarse simulations.



Chapter 5

h- and hp-adaptation for steady
computations

In the present chapter, we describe in detail the adaptation strategies used in this re-
search, based on the coupling of accurate DG-based indicators extracted from the flow
solver CODA, with the external remeshing library MMG, and we apply them to steady
flow test cases.

Section 5.1 provides a thorough description of the h- and hp-adaptive procedures.
In Section 5.2, the performance of the developed adaptation algorithms is assessed

for the 2D laminar viscous flow past a NACA0012 airfoil, and for the 3D laminar viscous
flows past a sphere and past a delta wing, by comparisons with uniform refinement.
Simulations are performed using polynomial degrees 𝑝 = 1, 2, 3.

In Section 5.3, the hp-adaptive algorithm is applied and validated on a turbulent
configuration of an isothermal subsonic jet issued from a round nozzle, by comparing
RANS adaptive simulations with the experimental data and a numerical reference.

Finally, the main conclusions of this study are presented in Section 5.4.

5.1 The steady h- and hp-adaptive algorithms

The adaptation procedure is driven by an a posteriori error estimator which controls
the solution accuracy within the domain, identifying the regions lacking the requested
resolution. The resolution in these regions is improved by either decreasing the size
of the element or increasing the polynomial degree which approximates the solution. A
smoothness indicator guides the hp-decision, leading to p-enrichment for smooth regions
and h-refinement for non-smooth regions.

The final applications targeted in this first part of the thesis work involve hybrid
RANS-LES simulations of turbulent jets, and in general 3D configurations with a high
number of degrees of freedom. The possibility to extend the algorithm to 3D in a
straightforward manner is, in this context, an essential requirement. This is why an
isotropic mesh refinement-based strategy is selected, which is fit for adapting the resolu-
tion in free-shear regions, while the flow regions presenting highly anisotropic features
(e.g. boundary layers) can be meshed with fixed anisotropic elements whose resolution

55
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is modulated through p-adaptation.
A metric-based hp-mesh combines continuous and discrete settings, to be prescribed

respectively to the nodes and to the elements of the mesh. The geometry of elements
changes smoothly, and is prescribed to the remesher by means of a nodal size map.
In contrast, the approximation polynomial degree is a discrete quantity unequivocally
defined for each element. The following sections describe the strategies to create an
hp-mesh in the context of metric-based mesh adaptation, without using complex opti-
mization algorithms. We briefly summarize the two procedures in algorithms 1 and 2.

We remind that the remesher MMG handles only linear meshes, presenting a linear
approximation of the mesh elements. Curved meshes, which represent the geometry
by using higher degree polynomials, have not been employed to perform simulations
in this work. We remark that in this work we make use of the compact wording, e.g.
“𝑝 = 2 elements”, to refer to those elements which are characterized by a local spatial
DG discretization using polynomials of degree 𝑝 = 2. They must not be confused with
curved elements presenting a quadratic approximation of the boundaries.

5.1.1 a posteriori error estimator

The first step in the construction of the present hp-adaptation strategy is to devise an
accurate and simple error estimator suited to various polynomial degrees.

The interest of coupling two different indicators has been emphasized in Section
3.4.3. We follow therefore the same idea as Colombo et al. [92] and Bassi et al. [38] by
combining two error estimators, one based on the energy of the highest-order modes,
the so-called Small Scale Energy Density (SSED) estimator 𝜖SSED (presented in equation
3.6), and the second one based on the jumps across element interfaces, 𝜖JUMPmom (with
a similar formulation of the estimator from equations (3.9), (3.10) and (3.11)).

In our work the solution component on which we estimate the error is the norm of
the momentum, while Colombo and Bassi employed the pressure. Moreover the error
estimators we use in this work have the dimensions of a momentum [𝜌u], while Bassi
and Colombo employed non dimensional estimators (before the coupling and the further
normalization over the minimum and the maximum values).

Concerning the first error estimator based on the highest-order modes of the solu-
tion, several variants are found in the literature. Naddei et al. [219] compared different
error estimators, among which we find the SD with the formulation used by Tumolo
et al. [285], identical to that of Bassi and Colombo, except that the error is estimated
from the momentum rather than the pressure. In the context of turbulent flows, Tug-
noli et al. [284] and Flad et al. [124] employed a similar formulation with the norm of
the momentum, but they decided to remove the contribution of the cell-average in the
computation of the total energy. Tugnoli et al. discussed that this choice was made to
avoid an underestimation of the error in zones of the domain presenting a strong mean
flow. Alternatively, in recirculation zones, a low value of the momentum can yield an
overestimation of the momentum-based normalized error estimator.

Based on these considerations and on the work of Naddei et al., who observed better
performances of the SSED estimator with respect to the “normalized version” of Tumolo
et al. We therefore decided to employ the SSED estimator in the formulation of equation
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(3.6), measuring the error only from the highest-order modes, and to formulate the
JUMP error estimator accordingly.

The second error estimator is a modified version of the one proposed by Bernard et
al. [47] presented in equations (3.9), (3.10) and (3.11). We then define the error E𝑒
on the interface 𝑒 as in equation (3.9) and we consider an averaged error over each
interface 𝑒, for the norm of the momentum vector, as done in equation (3.10) for a
generic variable:

𝜖2
JUMPmom,𝑒 =

∫
𝜕𝐾𝑒

| | (𝜌v)+
ℎ
− (𝜌v)−

ℎ
| |2𝑑𝑆

4|𝜕𝐾𝑒 |
=

| | (𝜌v)+
ℎ
− (𝜌v)−

ℎ
| |2
𝐿2 (𝜕𝐾𝑒 )

4|𝜕𝐾𝑒 |
. (5.1)

For consistency with the dimensions of the SSED indicator in equation (3.6), the error
indicator here is normalized by the area of each interface |𝜕𝐾𝑒 | (or for 2D problems the
length of the edge 𝑒). For each element 𝐾 we compute the error estimator by the same
rule as the original formulation, except that here we do not multiply the numerator by
the volume of the cell:

𝜖2
JUMPmom,𝐾 =

1
𝑁𝑒

𝑁𝑒∑︁
𝑒=1

𝜖2
JUMPmom,𝑒 , (5.2)

with 𝑁𝑒 the number of faces of the element in 3D (or edges in 2D).
Both indicators are normalized by their respective maximum and minimum values

over the whole domain T𝐾 (min-max normalization) before the coupling:

𝜖𝐾 = 𝜖SSED,𝐾,𝑛𝑜𝑟𝑚 + 𝜖JUMPmom,𝐾,𝑛𝑜𝑟𝑚 (5.3)

=
𝜖SSED,𝐾 − min(𝜖SSED)T𝐾

max(𝜖SSED)T𝐾 − min(𝜖SSED)T𝐾
+

𝜖JUMPmom,𝐾 − min(𝜖JUMPmom)T𝐾
max(𝜖JUMPmom)T𝐾 − min(𝜖JUMPmom)T𝐾

. (5.4)

In references [92, 38] which focus on p-adaptation and our preliminary work [36] fo-
cused on h-adaptation, the contribution of the error estimator based on the solution
jump decreased as the polynomial degree increased and the contribution of the modal
estimator was switched off for 𝑝 = 1. In this work we prefer a uniform approach to
combine the two error estimators for all polynomial degrees. We observed that even
though the estimator based on the highest order modes is not always optimal for 𝑝 = 1
computations, its coupling with a jump error estimator still performs well for low-degree
polynomials.

This error estimator will be the only estimator used in all the chapters of the thesis,
except in the last Chapter 7, where a different formulation of the error estimator taking
into account also the pressure will be introduced for the adaptation of transonic flows.

5.1.2 Smoothness indicator

The difficulty in hp-adaptive methods lies in the choice whether to adapt an element
with h-refinement or p-enrichment. In this work we follow the approach proposed in 1D
by Mavriplis [202]. It is based on the assumption that the decay rate of the spectrum of
the DG modal coefficients is related to the convergence rate of the solution. This infor-
mation is exploited to evaluate the smoothness of the solution in the mesh elements. It
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is assumed that for a 1D Legendre expansion with coefficients 𝑎 (𝑞) with 𝑞 = 0, ..., 𝑝𝐾 , the
modal coefficients decay exponentially fast after the asymptotic range has been reached:

|𝑎 (𝑞) | ' 𝐶 exp(−𝜎𝑞) , (5.5)

where 𝐶 and 𝜎 are constants determined by a least-squares best fit of log(𝑎 (𝑞) ) vs. 𝑞

(see equation 2.29). The decay coefficient 𝜎 is then used as smoothness indicator. The
reliability of the smoothness estimate increases with the polynomial degree. High decay
rates imply that the solution is smooth, while the solution deviates from analytical be-
havior in the presence of low decay rates. In this work, following Mavriplis’ choice, we
use a threshold value of 1: elements with 𝜎𝐾 > 1 are assumed to be smooth, and subject
to p-enrichment; if this condition is not fulfilled, then h-refinement is used.

For 2D and 3D computations, several modal coefficients can contribute to an index
𝑞. Therefore we need to gather in some way the coefficients of the modes to retrieve
one single value per index 𝑞. Based on Mavriplis’ work [202], the extension to 2D has
been performed by Chalmers et al. [78], who computed a one-dimensional smoothness
indicator for each mode, and used the minimum value for 𝜎. Leicht et al. [182] proposed
to extend the approach in 3D through the accumulation of all coefficients of the Legendre
polynomials of the corresponding multi-dimensional degree. They tested the classical
threshold between smooth and non-smooth element 𝜎 = 1 as well as different threshold
values.

The approach we follow in our work to retrieve one single coefficient for indices 𝑞
for 2D and 3D configurations consists in computing the coefficient 𝑎 (𝑞) as the 𝐿2-norm
of 𝑢 (𝑞) of the coefficients of the polynomial basis as:

𝑎
(𝑞)
𝐾

=

√︄∑︁
𝑙∈𝑑𝑞

𝑢
(𝑙)2

𝐾
∀𝑞 ∈ (1, 𝑝𝐾 ) , (5.6)

with 𝑑𝑞 the set of indices of the basis functions of total degree equal to 𝑞 (introduced in
equation (2.29)). We notice that the coefficient associated with 𝑞 = 0 corresponds to the
average of the solution over the element, which can severely bias the decay rate. There-
fore we chose not to employ the coefficient 𝑎 (0) in the log-linear regression log(𝑎 (𝑞) )
vs. 𝑞. As a result, 𝑝 = 1 computations lack information about the smoothness of the
solution, and the smoothness indicator can be computed only for high-order elements,
i.e. 𝑝 ≥ 2. In this work 𝑝 = 1 elements are always fictitiously marked as smooth
elements, always requiring p-adaptation. A different strategy, employing smoothness in-
dicators better suited for shock capturing, should be used in future work for test cases
with strong physical discontinuities, where a low polynomial degree is desired in these
regions. The decay rate is computed from the modal coefficients associated with the
norm of the momentum. The smoothness indicator can also serve as an indicator of the
convergence rate of the solution, which will be exploited in the mesh refinement strategy
described below.

5.1.3 Metric prescription for h-adaptation

At the end of the simulation 𝑖, the error estimator in each mesh element is computed from
the solution and indicated as 𝜖𝐾,𝑖. The updated element size ℎ∗

𝐾,𝑖+1 is then prescribed
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for each mesh element (𝐾, 𝑖), similarly to the approach proposed by Bernard et al. [47]
and by Remacle et al. [246] for finite elements. We follow the assumption that the local
error converges asymptotically to zero at a given convergence rate. In particular, for a
DG method the 𝐿2-norm of the error in the solution decays asymptotically as O(ℎ𝑝+1)
[111].

In a pure h-adaptive context, under the assumption of asymptotic regular behavior,
the error for one element 𝐾 can be thus seen as:

𝜖𝐾 ' Cℎmin(𝑘,𝑝+1)
𝐾

, ∀𝐾 ∈ T𝐾,𝑖 , (5.7)

with C depending only on the solution, for a fixed polynomial degree, and the Sobolev
index 𝑘 depending on the regularity of the solution. In the presence of a physical or
geometrical discontinuity, the smooth convergence order 𝑝+1 is lost. Houston et al. [155]
approximated the Sobolev index 𝑘 solution to estimate the regularity of the solution.
Remacle et al. [247] defined a priori a given resolution to resolve the discontinuities,
by prescribing a fixed small desired size to elements presenting non-smooth behavior.
In our work we exploit the fact that the convergence order of the solution is limited in
the vicinity of discontinuities to 𝜖𝐾 ' 𝑂 (ℎ1). Therefore we impose the convergence rate
𝑚 = 𝑝 + 1 if the solution is smooth, and 𝑚 = 1 if the solution is non-smooth. For 𝑝 = 1
computations for which the smoothness indicator cannot be computed, the convergence
rate is always set to 𝑚 = 𝑝 + 1.

Since the input size-field that MMG requires is node-based, while the error estimator
𝜖𝐾,𝑖 is element-based, a volume-weighted average of the error estimator is computed
based on its values in the elements surrounding each node. This node-based error esti-
mator will be denoted as 𝜖𝑛,𝑖.

The h-adaptation algorithm therefore acts as follows.
The first step consists in obtaining from the initial mesh the metric M0, which is

calculated by MMG from a preliminary remeshing step, and the initial characteristic
lengths ℎ0. For each subsequent step, the metric M is automatically produced by MMG.

In an isotropic context ℎ𝑛 measures the length of the edge of the equilateral tetra-
hedra surrounding the node 𝑛 in 3D (triangle for 2D). In practical terms MMG provides
as output of the remeshing process a non-scalar matrix, which means that it introduces
some anisotropy. In this case the eigenvalues associated with the metric are not identi-
cal. In order to make the output compatible with our isotropic strategy, we extract the
characteristic length ℎ𝑛 from MMG by recalling the notions of density with respect to the
metric tensor M introduced in Section 3.1.2. The characteristic length is then consid-
ered equal to the cubic root (square root in 2D) of the inverse of the mesh density in the
metric M at the node 𝑛

ℎ𝑛 = D−1/𝑑
𝑛 = (Π𝑑𝑗=1ℎ 𝑗)

1/𝑑 = (Π𝑑𝑗=1_ 𝑗)
−1/(2𝑑) , (5.8)

where 𝑑 is the number of dimensions and _ 𝑗 are the eigenvalues associated with the
metric tensor output of MMG.

According to the value of the averaged error estimator 𝜖𝑛,𝑖 at each node 𝑛 of the
mesh, the new characteristic length imposed to the node 𝑛 is decreased if 𝜖𝑛,𝑖 > 𝜖∗

𝑖+1 or
is kept unchanged if 𝜖𝑛,𝑖 ≤ 𝜖∗

𝑖+1, with 𝜖∗
𝑖+1 being the global desired error level for the
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𝑖 + 1 simulation, and defined later in Section 5.1.5. We will call hereafter Tℎ,𝑖 ⊆ T𝐾 the
subset of the refined nodes, while T=,𝑖 ⊆ T𝐾 is the subset of the nodes not marked for
refinement.

Adapting equation (5.7) to nodal values, the new characteristic sizes ℎ∗
𝑛,𝑖+1 imposed

at the adaptation step 𝑖 + 1 at mesh nodes Tℎ,𝑖 are expressed as

ℎ∗𝑛,𝑖+1 = ℎ𝑛,𝑖

(
𝜖∗
𝑖+1
𝜖𝑛,𝑖

) 1
𝑚𝑛

, ∀𝑛 ∈ Tℎ,𝑖 , (5.9)

where subscript 𝑛 refers to quantities defined at nodes. ℎ∗
𝑛,𝑖

is the characteristic size of
the element 𝑛 at the adaptation step 𝑖 and 𝑚𝑛 is the assumed convergence rate on the
node 𝑛.

In order to define the value of 𝑚𝑛, the element-wise smoothness indicator 𝜎𝐾 is
computed first, and the corresponding nodal value 𝜎𝑛 is obtained by the means of a
volume-weighted average. When the solution is considered smooth, i.e. 𝜎𝑛 > 1, we
choose 𝑚𝑛 = 𝑝 + 1. For the rest of the nodes corresponding to non-smooth regions, the
value 𝑚𝑛 = 1 is chosen.

A user-defined parameter, the maximum refinement factor 𝑟ℎ, is needed to avoid
uncontrolled or excessive size changes between two subsequent adaptation steps. The
value of 1/𝑟ℎ represents the minimum allowed ratio ℎ∗

𝑛,𝑖+1/ℎ𝑛,𝑖 such that we have ℎ∗
𝑛,𝑖+1 ≥

ℎ𝑛,𝑖/𝑟ℎ, i.e. in one adaptation step the edge can decrease its size by at most 𝑟ℎ times.
Once the new characteristic size has been identified, the input size-field is provided

to MMG for each node of the mesh 𝑖 as a diagonal matrix M∗
𝑖+1 = Λ∗

𝑖+1 = (ℎ∗
𝑛,𝑖+1)

−2I,
where I is the identity matrix. This input field allows MMG to perform the refinement
process, which is seamless for the user.

Once the new mesh has been output by MMG, the solution from the previous mesh
is projected onto the adapted mesh by means of an 𝐿2 projection.
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Algorithm 1: h-adaptation algorithm

set i=0;
create the initial mesh T0;
obtain from MMG the initial characteristic lengths field ℎ0;
while #dofs < #dofsmax do

perform the simulation on T𝑖;
compute the a posteriori error estimator 𝜖𝐾,𝑖 on T𝑖;
compute the smoothness indicator 𝜎𝐾,𝑖 on T𝐾,𝑖;
choose the target error 𝜖∗

𝑖+1 in order to fulfill the given refinement criterion;
average the error estimator at the nodes 𝜖𝑛,𝑖 (volume-weighted average);
average the smoothness indicator at the nodes 𝜎𝑛,𝑖 (volume-weighted
average);

if 𝜖𝑛,𝑖 > 𝜖∗𝑖+1 then
adapt the current size ℎ𝑛,𝑖 to the new ℎ∗

𝑛,𝑖+1 provided by the formulation
(5.9);

else
leave the current size ℎ∗

𝑛,𝑖+1 = ℎ𝑛,𝑖 unmodified;
end
give the new metric to MMG, which generates the refined mesh T𝐾,𝑖+1;
project the solution of T𝐾,𝑖 on T𝐾,𝑖+1;
i+=1;

end

5.1.4 Degree and metric prescription for hp-adaptation

Similarly to h-adaptation, at the end of the simulation 𝑖, we compute the error estimator
as well as the smoothness indicator from the solution in each mesh element as 𝜖𝐾,𝑖. Then
both the updated polynomial degree 𝑝𝐾,𝑖+1 and the new element size ℎ𝐾,𝑖+1 are imposed
for each mesh element 𝐾, as described below. We start by a constant polynomial degree
map 𝑝 = 𝑝min, ∀𝐾 ∈ T𝐾 . We can define three non overlapping sets of elements of the
mesh

T𝐾,𝑖 = Tℎ,𝑖 ∪ T𝑝,𝑖 ∪ T=,𝑖 , (5.10)

where Tℎ,𝑖 is the subset of the elements marked for h-adaptation, T𝑝,𝑖 is the subset of the
elements marked for p-adaptation and T=,𝑖 is the subset of the elements not marked for
any adaptation. An element cannot be selected for both h- and p-adaptation.

Firstly the smooth elements, i.e. the elements with a smoothness indicator 𝜎𝐾 > 1,
and the 𝑝 = 1 elements, which lack in information about their smoothness, are marked
for p-adaptation if they present an error estimator 𝜖𝐾,𝑖 greater than a target error 𝜖∗

𝑖+1,
and their polynomial degree is increased by one. A threshold on the maximum poly-
nomial degree 𝑝max that the algorithm can employ is defined by the user. After the
threshold is attained, h-adaptation is performed also on elements presenting a smooth
solution. Thus, for smooth and 𝑝 = 1 elements lacking resolution, the new polynomial
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degree is defined as:

𝑝∗𝐾,𝑖+1 = max(𝑝𝐾,𝑖 + 1, 𝑝max), ∀𝐾 ∈ T𝑝,𝑖 . (5.11)

We use the superscript * also for the polynomial degree to remind that this corresponds
to the desired polynomial degree on the mesh 𝑖 + 1, but is imposed on the mesh 𝑖. The
degree map is not going to be exactly preserved in each location of the the mesh 𝑖 + 1,
due to the interpolation of the polynomial degree from one mesh to another.

Once the elements subject to p-refinement have been chosen for the subset of the
mesh T𝑝,𝑖

T𝑝,𝑖 = {𝐾 ∈ T𝑖 | 𝜖𝐾,𝑖 > 𝜖∗𝐾,𝑖+1 and [(𝜎𝐾,𝑖 > 1 and 𝑝𝐾,𝑖 + 1 ≤ 𝑝max) or 𝑝𝐾,𝑖 = 1]} , (5.12)

we still need to address the remaining elements 𝐾 ∈ Tℎ,𝑖 ∪ T=,𝑖. Similarly to equation
(5.7), the error in an element 𝐾 at the adaptation step 𝑖 verifies:

𝜖𝐾 ' Cℎ𝑚𝐾
𝐾
, ∀𝐾 ∈ Tℎ,𝑖 ∪ T=,𝑖 . (5.13)

Assuming that C remains constant for non p-refined elements 𝐾 ∈ Tℎ,𝑖 ∪ T=,𝑖 between
iterations 𝑖 and 𝑖 + 1, we can use the formula (5.9) to compute the new sizes for nodes
𝑛 ∈ Tℎ,𝑖.

This allows for h-refining the elements belonging to the subset Tℎ,𝑖:

Tℎ,𝑖 = {𝐾 ∈ T𝑖 | 𝜖𝐾,𝑖 > 𝜖∗𝐾,𝑖+1 and [𝜎𝐾,𝑖 ≤ 1 or (𝜎𝐾,𝑖 > 1 and 𝑝𝐾,𝑖+1 > 𝑝max)] and 𝑝𝐾,𝑖 ≠ 1} .
(5.14)

To be consistent with the node-based input size-field required by MMG, the quan-
tities 𝜖𝑛,𝑖, 𝑝𝑛,𝑖 and 𝜎𝑛,𝑖 are computed at nodes using a volume-weighted average with
contributions only from surrounding elements that are not marked for p-enrichment at
the current step. This choice is illustrated in figure 5.1. This prevents an excessive re-
finement in p-refined zones, and keeps valid the hypothesis of a constant C between
two adaptive steps in equation (5.13). This selective weighted average allows for an
hp-choice despite the fact that p is evaluated for each element and h is defined at the
nodes.

Figure 5.1: Simplified central node with surrounding simplicial elements (marked for
p-adaptation, for h-adaptation and not marked for adaptation). The nodal weighted
average of the error estimator, the polynomial degree and the smoothness indicator for
the prescription of the sizes is performed only on highlighted elements.

The size ℎ∗
𝑛,𝑖+1 is then imposed at the nodes 𝑛 as done in equation (5.9). The theo-

retical convergence order 𝑚𝑛 is 𝑝𝑛 + 1 if 𝜎𝑛 > 1 and 1 if 𝜎𝑛 ≤ 1, as considered in the
previous section.
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It should be noted that the nodal polynomial degree 𝑝𝑛 is no longer an integer after
the nodal average. Again, 𝑝 = 1 elements are considered as smooth and the prescribed
convergence order is 𝑚𝑛 = 𝑝𝑛 + 1.

The regions presenting a higher error estimator value than the target, with smooth
solution or 𝑝 = 1 approximation, are p-enriched, while the regions with non-smooth
solution or already at their maximum polynomial degree are subject to h-refinement,
again when the error is higher than the target.

The input size-field ℎ∗
𝑛,𝑖+1 is provided to MMG for each node of the mesh 𝑖 analogously

to what is done for h-adaptation. MMG returns the new adapted mesh 𝑖 + 1, and the
new polynomial degree map 𝑝∗

𝐾,𝑖+1 is interpolated from mesh T𝐾,𝑖 to mesh T𝐾,𝑖+1 with
a nearest-neighbor interpolation: the new degree prescribed to an element of the old
mesh is assigned to all the elements of the new mesh presenting their centers inside the
old cell.
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Algorithm 2: hp-adaptation algorithm

set i=0;
create the initial mesh T0;
obtain from MMG the initial characteristic lengths field ℎ0;
set an initial polynomial degree map 𝑝0 = 𝑝min;
while #dofs < #dofsmax do

perform the simulation on T𝐾,𝑖;
compute the a posteriori error estimator 𝜖𝐾,𝑖 on T𝐾,𝑖;
compute the smoothness indicator 𝜎𝐾,𝑖 on T𝐾,𝑖;
choose the target error 𝜖∗

𝑖+1 in order to fulfill the given refinement criterion;
if 𝜖𝐾,𝑖 > 𝜖∗𝑖+1 and [(𝜎𝐾,𝑖 > 1 and 𝑝𝐾,𝑖 + 1 ≤ 𝑝max) or 𝑝 = 1)] then

adapt the current polynomial degree of the elements 𝐾 ∈ T𝑝,𝑖 as
𝑝∗
𝐾,𝑖+1 = 𝑝𝐾,𝑖 + 1;

else
leave the current polynomial degree of the element 𝑝∗

𝐾,𝑖+1 = 𝑝𝐾,𝑖

unmodified;
end
average the polynomial degree 𝑝𝐾,𝑖 of elements 𝐾 ∈ Tℎ,𝑖 ∪ T=,𝑖 at the nodes
𝑝𝑛,𝑖;

average the error estimator 𝜖𝐾,𝑖 of elements 𝐾 ∈ Tℎ,𝑖 ∪ T=,𝑖 at the nodes 𝜖𝑛,𝑖;
average the smoothness indicator 𝜎𝐾,𝑖 of elements 𝐾 ∈ Tℎ,𝑖 ∪ T=,𝑖 at the nodes
𝜎𝑛,𝑖;

if 𝜖𝑛,𝑖 > 𝜖∗𝑖+1 then
adapt the current size ℎ𝑛,𝑖 to the new ℎ∗

𝑛,𝑖+1 provided by the formulation
(5.9);

else
leave the current size ℎ∗

𝑛,𝑖+1 = ℎ𝑛,𝑖 unmodified;
end
give the new metric to MMG, which generates the refined mesh T𝐾,𝑖+1;
project the new polynomial degree map 𝑝∗

𝐾,𝑖+1 from T𝐾,𝑖 to T𝐾,𝑖+1;
project the solution of T𝐾,𝑖 on T𝐾,𝑖+1;
i+=1;

end
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5.1.5 Choice of the target error

To complete the adaptation algorithm, we need to specify how the target error 𝜖∗
𝑖+1 is

defined. This is given by a revisited fixed-fraction marking strategy, which allows for
a rapid convergence of the mesh adaptation algorithm towards the optimal mesh. The
classical version of the fixed-fraction marking strategy [181, 314, 264] controlling the
percentage of the mesh to refine (and often the percentage to coarsen) shows poor
results in this context. This is due to the fact that the prescribed decrease of sizes here
directly depends on the magnitude of the error estimator. A strong gap in the error
estimator magnitude between the highest value and the mean value over the domain
would lead to a localized refinement only in zones with the highest intensity of the
error estimator, and an insufficient refinement in zones with medium intensity of the
estimator. This leads to an early and unwanted stop of the refinement algorithm.

The strategy we propose in this work allows for controlling the number of dofs in
the mesh, in order to prescribe the appropriate target error. We assume that the desired
number of elements #elt∗𝑖+1 in the new mesh can be computed thanks to the prescribed
reduction of element sizes [47, 246]:

N∗
𝑖+1 = #elt∗𝑖+1 =

∑︁
𝐾

(
ℎ𝐾,𝑖

ℎ∗
𝐾,𝑖+1

)𝑑
, (5.15)

where 𝑑 is the number of dimensions of the mesh, and the characteristic sizes of the
elements ℎ𝐾,𝑖 and ℎ∗

𝐾,𝑖+1 considered here are an average of the lengths associated with
the nodes 𝑛 of the element 𝐾.

In the context of hp-adaptation the formula above can be rewritten keeping into
account a variable polynomial degree for the element 𝐾.

N∗
𝑖+1 = #dofs∗𝑖+1 =

∑︁
𝐾

𝑁𝑝 (𝑝∗𝐾,𝑖+1)
(
ℎ𝐾,𝑖

ℎ∗
𝐾,𝑖+1

)𝑑
, (5.16)

where 𝑁𝑝 (𝑝∗𝐾,𝑖+1) is the number of dofs associated with the desired polynomial degree
in the element 𝐾.

We introduce a parameter 𝑓𝑟 > 1 used to define the target error, which corresponds
to the increase of dofs wanted at each adaptation step.

The target error is then defined as the value 𝜖∗
𝑖+1 such that N∗

𝑖+1(𝜖∗𝑖+1) = 𝑓𝑟 · N𝑖. This
value is in practice obtained by an iterative procedure, using the bisection method from
the Python package SciPy to solve the equation:

𝑔(𝜖∗𝑖+1) = N∗
𝑖+1(𝜖

∗
𝑖+1) − 𝑓𝑟 · N𝑖 = 0 , (5.17)

where N𝑖+1 is the number of dofs wanted in the following adaptation step. Using a bisec-
tion method for numerically solving the equation (5.17) requires that the function 𝑔(𝜖∗

𝑖+1)
is a continuous function defined on an interval [𝑎, 𝑏], where 𝑔(𝑎) and 𝑔(𝑏) have opposite
signs. The interval is bounded by the minimum and maximum values of the error esti-
mator at the adaptation step 𝑖 on the domain T𝐾 [min(𝜖)T𝐾,𝑖 ,max(𝜖)T𝐾,𝑖 ]. With 𝑓𝑟 > 1, the
inequality 𝑔(𝑏) = 𝑔(max(𝜖)T𝐾,𝑖 ) < 0 always applies, because N∗

𝑖+1(max(𝜖)T𝐾,𝑖 ) = N𝑖 and no
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elements are marked for refinement. On the other hand, although 𝑔(𝑎) = 𝑔(min(𝜖)T𝐾,𝑖 ) >
0 is verified most of the time, in some cases the approximated formulas in equations
(5.15) and (5.16) can provide negative values of the function 𝑔. This is caused by the
constraints imposed by the smoothness, maximum polynomial degree, or maximum re-
finement factor (or a combination of the three). Marking all elements for refinement
could still provide N∗

𝑖+1(min(𝜖)T𝐾,𝑖 ) < 𝑓𝑟 ·𝑁𝑖. In this case, a target error 𝜖∗
𝑖+1 = 0 is directly

chosen without launching the root-finding algorithm, and all the elements are marked
for refinement, while still respecting all the aforementioned constraints.

For h-adaptation, the new lengths are computed from the equation (5.9), the new
number of elements is computed from the equation (5.15) and the iterative procedure
results in the target error 𝜖∗

𝑖+1 needed to obtain #elt∗𝑖+1 = 𝑓𝑟 · #elt𝑖 elements. For hp-
adaptation, the new lengths and the new polynomial degrees are computed respectively
with the equations (5.9) and (5.11), the new number of dofs is computed with the
equation (5.16) and the iterative procedure results in the target error 𝜖∗ needed to obtain
#dofs∗𝑖+1 = 𝑓𝑟 · #dofs𝑖.

5.1.6 Particular treatment for hybrid meshes

The use of prisms or hexahedra in boundary layers is beneficial for computing the gra-
dients with high-accuracy or satisfying precisely near-wall resolution in terms of 𝑦+ for
turbulent flows. A common practice involves the definition of a structured (extruded reg-
ular quadrilaterals) or pseudo-structured (extruded unstructured quadrilaterals or trian-
gles) zone capturing the boundary layer around the body, which blends with an outer
region composed of tetrahedra [200, 27, 281]. The adaptation methodology proposed
in Sections 5.1.3 and 5.1.4 is straightforwardly extended to hybrid meshes. During the
adaptation process, boundary layer structured or pseudo-structured elements are main-
tained while the remeshing is applied only on tetrahedra. Regarding the hp-adaptation
approach, the p-refinement applies to any type of element, overcoming the constraint
that elements with a fixed geometry impose in a pure h-adaptive context. This allows
for improving the resolution in boundary layers as well, if the error indicator is active
in these regions. No specific treatment is required concerning MMG, which preserves
quadrilaterals and prisms by default. The preservation of hexaedra, pyramids and gen-
eral polygonal elements can be implemented in a straightforward manner.

5.2 Results on steady laminar configurations

In this section we assess the presented adaptive algorithms on three 2D/3D steady lam-
inar test cases: the 2D flow past a NACA0012 airfoil, the 3D flow past a sphere and the
3D flow past a delta wing.

The parameters of the adaptation process for the laminar test cases are chosen as
follows:

• ℎ𝑔𝑟𝑎𝑑 = 1.5, which is higher than the default value of MMG ℎ𝑔𝑟𝑎𝑑 = 1.3. This value
shows a good compromise between excessive refinement induced by a low value
of ℎ𝑔𝑟𝑎𝑑, and the loss of isotropy and mesh quality induced by a high value.
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• ℎ𝐻𝑎𝑢𝑠𝑑 = 0.01 for the sphere, which has constant curvature and diameter equal to
1, and ℎ𝐻𝑎𝑢𝑠𝑑 = 0.002 for the NACA0012, which has a chord size equal to 1, but
maximum thickness equal to 0.12 and a strong curvature at the leading edge. In
general ℎ𝐻𝑎𝑢𝑠𝑑 = 0.01 is a suitable value for an object of size 1 in each direction
[6]. For smaller (respectively larger) objects, the value of the Hausdorff parameter
needs to be decreased (respectively increased). This parameter is irrelevant for the
delta wing, which does not present curved boundaries.

• ℎmin is set to a low value, which is never reached in the presented adaptation
processes.

• ℎmax is set as the size of the domain where far-field boundary conditions are im-
posed.

• 𝑟ℎ = 2 such that between two steps of the adaptation process, the edge of the
equilateral triangle can at most halve its size.

• 𝑓𝑟 = 1.5 is used for all the laminar test cases. A sensitivity study of the adaptation
process to this parameter is carried out for the NACA0012 case.

• 𝑝min = 1 is the minimum polynomial degree of the spatial discretization allowed for
hp-adaptation. The initial simulations are performed with a uniform polynomial
degree 𝑝 = 1 for hp-adaptation.

• 𝑝max = 3 is the maximum polynomial degree that the spatial discretization is al-
lowed to reach for hp-adaptation. We have chosen not to employ higher polynomial
degree discretizations, since ad hoc load balancing techniques, mandatory to fully
exploit the potential of hp-adaptation, are not here employed. Moreover, increas-
ing the order in case of implicit time integration, increases the stiffness of the linear
problem, which requires stronger and more robust preconditioners, and leads to a
significant increase of the computational time. The fourth order 𝑝 = 3 discretiza-
tion is considered here as a good compromise between the benefits provided by
high order methods and the improved robustness of lower order methods.

Initial meshes are easily created with MMG by providing a uniform coarse metric and
forcing the location of the mesh nodes on the wall. By using the mesh smoothing ca-
pability of MMG with ℎ𝑔𝑟𝑎𝑑 = 1.5, the resulting mesh is uniform and very coarse far
away from the body and presents a smooth refinement towards the solid boundaries. By
using this approach, the initial metric at the nodes needed by the adaptation module is
provided directly by the remesher.

The error on drag and lift coefficients is computed as the absolute value of the dif-
ference between the coefficient of the adaptive simulation at the 𝑖𝑡ℎ step, Coef𝑖, and a
reference coefficient Coef𝑟𝑒 𝑓 extracted from a simulation with a finer resolution, nor-
malized by the latter.

|ΔCoef | =
����Coef𝑖 − Coefref

Coefref

����
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The error on h- and hp-adapted meshes is compared to uniformly refined meshes, ob-
tained with MMG by prescribing at each nodes half the corresponding size on the previ-
ously refined mesh.

5.2.1 Laminar flow past a NACA0012 airfoil

The h- and hp-adaptive algorithms are assessed in the present section for a flow repre-
sentative of aerodynamic applications. We consider the steady, subsonic and viscous flow
around the NACA0012 airfoil, which is a well-known test case used in CFD for valida-
tion purposes (turbulence models, shape optimization, numerical schemes), and among
others for steady mesh adaptation [180, 227, 311, 33].

The configuration studied here has a free-stream Mach number of 𝑀∞ = 0.5, angle
of attack 𝛼 = 1◦ and Reynolds number of 𝑅𝑒 = 5000. The main feature of this flow is the
thin, laminar boundary layer developing over the airfoil.

Reference results are obtained on a finer mesh with a 𝑝 = 3 discretization highly
refined around the body. Those results compare favorably with other results present in
the literature, as seen in Table 5.1.

𝐶𝐷 𝐶𝐷 𝑓 𝑟𝑖𝑐 𝐶𝐷𝑝𝑟𝑒𝑠 𝐶𝐿

Swanson et al. (NASA report) [280] 0.055980 0.032758 0.023222 0.018464
Yano & Darmofal [311] 0.055317 - - 0.018274
Haga et al. [5] 0.05589 - - 0.018923
Balan et al. [33] 0.055317 - - -
current 0.055662 0.032801 0.022861 0.019983

Table 5.1: Laminar flow past a NACA0012 airfoil at 𝑅𝑒 = 5000. Integral flow quantities
found in the literature and for the present reference.

The small discrepancies in the 𝐶𝐿 with respect to other references are due to the
different analytical definition of the NACA0012 used in this paper. We employed the re-
vised definition [1], while the reference values provided in table 5.1 have been obtained
using the exact formula of the NACA0012 airfoil.

The mesh shown in the left panel in figure 5.2 contains 789 triangular elements and
is used as initial mesh. It is a C-type mesh, centered at the airfoil mid chord with a radius
of 80 chords and extends for 100 chords in the rear region. Adiabatic viscous conditions
have been imposed on the walls of the airfoil, and free-stream far-field boundary condi-
tions have been imposed on the external boundaries.

Seven series of computations are performed: three uniformly refined series with
𝑝 = 1, 2, 3, three pure h-adaptation series with 𝑝 = 1, 2, 3 referred later as ℎ(𝑝 = 1),
ℎ(𝑝 = 2), ℎ(𝑝 = 3) and one hp series. Figure 5.2 presents the meshes generated during
the adaptation steps for the ℎ(𝑝 = 2) series. We can see that the adaptation yields
a concentration of the refinement in the boundary layer region around the airfoil, the
stagnation region near the leading edge and the wake in the region downstream of the
airfoil.

The error on the drag coefficient and lift coefficient integrated over the walls of
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(a) (b) (c)

Figure 5.2: Laminar flow past a NACA0012 airfoil at 𝑅𝑒 = 5000. Zoom on the Mach num-
ber iso-contours of the cell-averaged solution (a) on the initial mesh (789 elements/4734
dofs), (b) on the 3rd adapted mesh (3446 elements/20676 dofs) and (c) on the 6th

adapted mesh (8974 elements/53844 dofs), for the ℎ(𝑝 = 2) simulations.
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Figure 5.3: Laminar flow past a NACA0012 airfoil at 𝑅𝑒 = 5000. Comparisons between
the convergence history of the drag coefficient for hp-adapted meshes, h-adapted meshes
and uniformly refined meshes in 𝑝 = 1, 𝑝 = 2, 𝑝 = 3. 𝐶𝐷 vs. number of dofs (left) and
|𝐶𝐷 − 𝐶𝐷𝑟𝑒 𝑓 |/𝐶𝐷𝑟𝑒 𝑓 vs. number of dofs (right).

the NACA0012 airfoil, 𝐶𝐷 and 𝐶𝐿, is evaluated for the different meshes by computing
the difference between the values obtained on the adapted mesh and those from the
reference 𝑝 = 3 simulation.

The convergence history of the 𝐶𝐷 and 𝐶𝐿 (left) and the error (right) versus the
number of dofs of the performed simulations are shown respectively in figures 5.3 and
5.4. For all pure h-adaptive simulations, four adaptation steps are sufficient for 𝑝 = 1,
𝑝 = 2 and 𝑝 = 3 to reach a level of error on the drag coefficient lower than the error
obtained on the corresponding finest uniformly refined meshes. The hp-adaptive process
is also capable in only four adaptations to reach an error level lower than the uniform
𝑝 = 3 most refined mesh, and with less degrees of freedom than 𝑝 = 1, 𝑝 = 2 and 𝑝 = 3
h-adaptive simulations. A similar behavior is observed for the lift coefficient 𝐶𝐿 in figure
5.4.
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Figure 5.4: Laminar flow past a NACA0012 airfoil at 𝑅𝑒 = 5000. Comparisons between
the convergence history of the lift coefficient for hp-adapted meshes, h-adapted meshes
and uniformly refined meshes in 𝑝 = 1, 𝑝 = 2, 𝑝 = 3. 𝐶𝐿 vs. number of dofs (left) and
|𝐶𝐿 − 𝐶𝐿𝑟𝑒 𝑓 |/𝐶𝐿𝑟𝑒 𝑓 vs. number of dofs (right).

For the higher order adapted simulations, ℎ(𝑝 = 2), ℎ(𝑝 = 3) and the hp-simulations,
we observe that at the end of the adaptive process, the error in the drag and lift coef-
ficients is reduced by around two orders of magnitude with respect to the uniformly
refined simulations. Note that the stagnating behavior of the error below a certain
threshold is explained by the relative uncertainty about the reference value, which is
not exact but obtained from a computation on a very fine mesh.

The error on second order 𝑝 = 1 simulations decreases at a lower rate than ℎ(𝑝 = 2),
ℎ(𝑝 = 3) and hp simulations, which is due to the combination of several factors. Namely,
the initial lower count of dofs, the increased numerical error compared to higher orders
and, as discussed in Section 5.1.1, the lower accuracy of the SSED part of the error
estimator for low-order discretizations because of the related limited spectral content
inside the cells.

(a) (b) (c)

Figure 5.5: Laminar flow past a NACA0012 airfoil at 𝑅𝑒 = 5000. Contours of the polyno-
mial degree distribution (a) on the initial mesh (4734 dofs), (b) on the 3rd adapted mesh
(18219 dofs) and (c) on the 6th adapted mesh (51834 dofs), for the hp simulations.
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Figure 5.5 displays the polynomial degree distribution for the first, third and sixth
adaptation steps obtained from the hp-adaptation process. A part of the wake region is
first detected as non-smooth where the elements are still too large to accurately capture
the physical features, and present values of the smoothness indicator lower than 1. As
the mesh is refined, these regions are detected as smooth and the wake is adapted first
by increasing the polynomial degree and then by decreasing the size of the element (see
figures 5.5(b) and 5.5(c)).

(a) (b) (c)

Figure 5.6: Laminar flow past a NACA0012 airfoil at 𝑅𝑒 = 5000. Zoom of figure 5.5.

A close-up view of the p distribution around the airfoil is displayed in figure 5.6. Since
this flow presents globally smooth features, the general trend of the hp-adaptation is to
first increase the polynomial degree, and then decrease the size when the polynomial
degree in the element saturates at the maximum allowed value 𝑝max. We can still notice
from figure 5.6(c) that the exterior part of the shear layers of the airfoil remains at
𝑝 = 2 over the course of the adaptation process, while the element size decrease in that
area. This behavior is explained by the gradation of the remesher (see Section 3.1.2),
which ensures a smooth increase in the element size between the highly refined near
wall area and the outer part. This results in a slight over-refinement in zones where the
error estimator is not necessarily high. However, this behavior is compensated by the
hp-adaptation algorithm, which does not increase p in these regions.

The influence of the refinement factor 𝑓𝑟 , which controls the increase of number
of dofs at each adaptation step has also been assessed for hp-adaptive simulations. The
corresponding error plots are presented in figure 5.7. The algorithm is tested by selecting
seven different values of 𝑓𝑟 from 1.2 to 2, and by analyzing the effect of this parameter
on the convergence history of the 𝐶𝐿 and 𝐶𝐷 values. As can be seen from figure 5.7, all
values of 𝑓𝑟 drive the integral errors to convergence. This parameter, however, affects
the rate of convergence in terms of number of dofs. In particular, by increasing 𝑓𝑟 , more
elements are selected for refinement, including some elements presenting a low error.
On the other hand, a small value of 𝑓𝑟 mainly refines the zones presenting a strong error,
leading to a more rapid convergence in terms of dofs. However, despite the fact that a
very small value of 𝑓𝑟 makes the algorithm converge to the same value with much less
dofs, more adaptation steps are necessary to achieve convergence. This process can be
time consuming since more remeshing steps and more flow simulations must be realized.
In addition, too small refinement factors lead to oscillations in the error because too few
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Figure 5.7: Laminar flow past a NACA0012 airfoil at 𝑅𝑒 = 5000. Study on the indepen-
dence from the refinement factor on hp-adaptive simulations.

elements are adapted at each step, as can bee seen for 𝑓𝑟 = 1.2. The choice of the
increment in terms of number of dofs from one step to another can thus be seen as a
trade-off between the number of adaptation steps and the computational time. For this
reason, in the present section, the three laminar configurations are adapted using a value
𝑓𝑟 = 1.5 , which proved to be an efficient choice to ensure a good convergence for a low
number of iterations.

5.2.2 Laminar flow past a sphere at low Reynolds number

In this section, the h- and hp-adaptive algorithms are validated performing simulations
of the context of the three-dimensional flow past a sphere at 𝑀∞ = 0.2 and low Reynolds
number 𝑅𝑒 = 200. This particular configuration, already studied by Rueda et al. [256]
in the context of p-adaptive DG methods, is characterized by a separation determined
by the viscous processes at the wall, which creates a recirculation region behind the
body. This flow regime presents a steady and axi-symmetrical behavior, which is lost
for higher Reynolds numbers. Reference results are obtained from a 𝑝 = 3 computation
on a highly-refined mesh around the body and compared to results from the literature
[256, 126, 118] in table 5.2.

𝐶𝐷

Rueda et al. [256] 0.7771
Fadlun et al. [118] 0.7567
Fornberg [126] 0.7683
current 0.7782

Table 5.2: Laminar flow past a sphere at 𝑅𝑒 = 200. Integral flow quantities found in the
literature and for the present reference.

The initial mesh counts 6651 tetrahedral elements (plot in figure 5.8(a)): the density
of the mesh on the surface of the body is high enough to obtain an accurate representa-
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tion of the geometry. This allows the remesher to keep the right curvature of the surface
when the mesh is successively refined during the adaptation steps. The mesh is spher-
ical with a radius equal to 100 diameters of the sphere of unit diameter, and its origin
is located at the center of the solid body. The surface of the sphere is treated as a vis-
cous adiabatic wall, and the external boundaries are modeled with free-stream far-field
boundary conditions.

(a) (b) (c)

Figure 5.8: Laminar flow past a sphere at 𝑅𝑒 = 200. Close-up view of the error estimator
iso-contours computed (a) on the initial mesh (6651 elements/133020 dofs), (b) on
the 3rd adapted mesh (37920 elements/758400 dofs) and (c) on the 6th adapted mesh
(154171 elements/3083420 dofs), for the 𝑝 = 3 simulations. Slices of 𝑦 = 0.

Three h-adaptive simulations named ℎ(𝑝 = 1), ℎ(𝑝 = 2), ℎ(𝑝 = 3) are performed
for 3 different polynomial degrees. An hp-adaptive simulation is also performed using
𝑝max = 3 and a constant 𝑝 = 1 degree distribution on the initial mesh.

Close-up views of the ℎ(𝑝 = 3) meshes are shown in figure 5.8, namely the initial
mesh (figure 5.8(a)) and the meshes obtained after 3 and 6 adaptation steps (respec-
tively figures 5.8(b) and 5.8(c)). The adaptation procedure is able to refine the mesh
in flow regions of interest, around the body and in the sphere wake. The iso-values of
the error estimator computed at the three steps of the adaptive process are presented, in
which we have used the same color-scale for the three plots. The initial mesh presents
very high values of the error estimator in the wake, resolved here by a few very coarse
elements, and low values on some small surface elements, which appear to be already
sufficiently refined. We remind here that the values of the error estimator used for the
adaptation are normalized by their min/max values in the domain. As the adaptation
process progresses, the error estimator varies in a more limited range of values. This is
a manifestation that by improving the resolution, the distribution of the error estima-
tor becomes more regular. At the 6th adaptation step, the zone of interest of the flow
does not present any element with a significant difference in the error estimator value
from the average. The adaptation process can be considered as converged, as from this
point on, the h-refinement is going to take place mainly in the far wake, where the error
estimator remains relatively high until the wake is fully refined up to the downstream
boundary. When this happens, it is not necessary to pursue the adaptation process.

Figure 5.9 shows the convergence history of the drag coefficient (right) and its er-
ror with respect to the reference value (left) for h-/hp-adapted and uniformly refined
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Figure 5.9: Laminar flow past a sphere at 𝑅𝑒 = 200. Comparisons between the con-
vergence history of the drag coefficient for hp-adapted meshes, h-adapted meshes and
uniformly refined meshes in 𝑝 = 1, 𝑝 = 2, 𝑝 = 3. 𝐶𝐷 vs. number of dofs (left) and
|𝐶𝐷 − 𝐶𝐷𝑟𝑒 𝑓 |/𝐶𝐷𝑟𝑒 𝑓 vs. number of dofs (right).

simulations. We can observe how the adaptive algorithms are capable of reaching the
correct values of 𝐶𝐷 with less dofs with respect to the uniform meshes. Pure ℎ(𝑝 = 1)
adaptation converges more slowly than high-order h-adaptive simulations, as expected
for the considerations already made for the 2D flow past a NACA0012 airfoil. Nonethe-
less a consistent gain of around 10 times the number of dofs is observed with respect to
𝑝 = 1 uniformly adapted meshes. The hp-adaptive procedure converges slightly faster
than ℎ(𝑝 = 2) and ℎ(𝑝 = 3) adaptations in the first steps.

When considering stiff problems (e.g. featuring geometrical, physical singularities or
turbulence), it can be challenging to obtain a high-order solution on the initial coarse
mesh without increasing gradually the polynomial degree first, due to robustness issues.
This difficulty is alleviated when considering our hp-adaptation method as the progres-
sive p-refinement based on smoothness detection is integrated in the adaptation process
and reinforces the high-order solver robustness. We choose to assess the performance of
the two h- and hp-adaptive strategies in terms of number of dofs only (represented by
the plots error vs. #dofs for the three laminar test cases), rather than the performance
in terms of CPU time which can vary depending on the efficiency of the implicit time
stepping approach used. In order to be relevant, a comparison based on CPU time would
require an accurate load balancing strategy and optimized implicit schemes. We also
note that since we are dealing with static adaptive strategies, the CPU time necessary to
perform one adaptive step (error estimation, metric map computation, degree map com-
putation, remeshing, interpolation) is negligible with respect to the CPU time necessary
to perform the implicit steady flow simulation.
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5.2.3 Laminar flow past a delta wing at low Reynolds number and high
angle of attack

In this section, the DG h- and hp-adaptation strategies are assessed for a delta wing
configuration at laminar conditions with inflow Mach number equal to 𝑀∞ = 0.3, the
angle of attack 𝛼 = 12.5◦ and Reynolds number, based on the root chord length 𝐿 = 1,
𝑅𝑒 = 4000. The delta wing features a sharp leading edge and a blunt trailing edge.

The main feature of this case is the rolling-up of the flow at the leading edge yielding
the development of a vortex together with a secondary vortex, which persists in the
wake.

This test case has been studied in the first three High-Order Workshops [5], as well
as by Leicht & Hartmann [180], Ceze & Fidkowski [75] and Tsolakis et al. [283] in the
framework of h/hp-adaptation. The reference values of drag and lift coefficients 𝐶𝐷 and
𝐶𝐿 for the current computations have been obtained by extrapolation of the last points
of 𝑝 = 3 uniform simulations. The results are shown in table 5.3 and compared to values
used in the literature.

𝐶𝐷 𝐶𝐿

Hartmann et al. [5] 0.1658 0.347
Ceze et al. [5] 0.16578 0.34771
current 0.165617 0.34716

Table 5.3: Steady laminar flow past a delta wing at 𝑅𝑒 = 4000. Integral flow quantities
found in the literature and for the present reference.

The initial mesh of 3775 tetrahedral elements, as for the two previous test cases, is
slightly refined near the surface of the wing, with a fast coarsening when moving to-
wards the far-field boundaries. The geometry and the boundaries are built according to
the High-Order Workshop meshes: the domain is a box of size 10.62𝐿 × 5.31𝐿 × 12.74𝐿,
respectively in the directions 𝑥, 𝑦, 𝑧 in figure 5.10. Half of the model is simulated with
symmetric boundary conditions applied on the wall-normal/streamwise plane of sym-
metry. The wing surface is modeled as a no slip isothermal wall with 𝑇𝑤 = 𝑇∞, and the
external boundaries as free-stream far-field boundary conditions.

In figure 5.10 the high-order solution on the initial coarse mesh (left) and on the
eighth iteration of the hp-adaptive algorithm, has been reconstructed on a very fine post-
processing mesh, and sliced on the 𝑦 = 0 and 𝑥 = 1.77𝐿 planes. The Mach number iso-
contour map is shown in the sliced planes, the skin friction coefficient colors the surface
of the wing, and the transparent iso-contour of the Mach number represents 𝑀 = 0.2.
Looking at the surface of the wing, we can notice the clustering of the elements along
the sharp leading edge, and especially in the rear part, where the geometry changes
abruptly into the blunt trailing edge. This refinement allows for an accurate generation
of the trailing vortices. A sharp representation of these vortices is also observed further
away in the wake, as seen from the 𝑥-cut plane and the Mach iso-surfaces enveloping
the vortical structures behind the body.

Figures 5.11 and 5.12 collect the results obtained on the sequences of uniformly
refined meshes with 𝑝 = 1, 2, 3, h-adapted meshes (ℎ(𝑝 = 1), ℎ(𝑝 = 2), ℎ(𝑝 = 3)) and
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Figure 5.10: Laminar flow past a delta wing at 𝑅𝑒 = 4000. Slices of 𝑦 = 0 and 𝑥/𝐿 =

1.77 planes of the reconstructed high-order solution on a finer post-processing mesh.
Initial mesh (15100 dofs) at left, and 8th hp-adapted mesh (1543678 dofs) at right.
Mach contour for volume slices, friction coefficient for surfaces, isosurface 𝑀 = 0.2
transparence.
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Figure 5.11: Laminar flow past a delta wing at 𝑅𝑒 = 4000. Comparisons between the
convergence history of the drag coefficient for hp-adapted meshes, h-adapted meshes
and uniformly refined meshes in 𝑝 = 1, 𝑝 = 2, 𝑝 = 3. 𝐶𝐷 vs. number of dofs (left) and
|𝐶𝐷 − 𝐶𝐷𝑟𝑒 𝑓 |/𝐶𝐷𝑟𝑒 𝑓 vs. number of dofs (right).

hp-adapted meshes. 𝐶𝐷 and 𝐶𝐿 values are shown in left plots, while their errors with
respect to the reference solution can be found in right plots. ℎ(𝑝 = 1) simulations,
despite being clearly the least competitive strategy to reduce the number of dofs, still
reaches the same level of accuracy on the errors on target quantities compared to the
most uniformly refined 𝑝 = 1 mesh with around respectively 90% (for 𝐶𝐷) and 50% (for
𝐶𝐿) less dofs. As observed for the previous test cases, the use of an hp-adaptive strategy
ensures a faster convergence of the error for the first steps of the adaptive process, while
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Figure 5.12: Laminar flow past a delta wing at 𝑅𝑒 = 4000. Comparisons between the
convergence history of the lift coefficient for hp-adapted meshes, h-adapted meshes and
uniformly refined meshes in 𝑝 = 1, 𝑝 = 2, 𝑝 = 3. 𝐶𝐿 vs. number of dofs (left) and
|𝐶𝐿 − 𝐶𝐿𝑟𝑒 𝑓 |/𝐶𝐿𝑟𝑒 𝑓 vs. number of dofs (right).

the error curve is superposed to that from the ℎ(𝑝 = 2) simulations for a higher number
of dofs (and lower error). For this test case slightly lower performances of the adaptive
process are observed for ℎ(𝑝 = 3) simulations, where the dofs in regions far from the
body have a strong impact on the dofs count, while not improving the solution in a
satisfactory way. However the slower convergence achieved for ℎ(𝑝 = 3) simulations
with respect to ℎ(𝑝 = 2) and hp simulations starts showing for values of the error on
the 𝐶𝐷 and 𝐶𝐿 lower than 10−3, in a region where the extrapolation procedure of the
reference value could affect the reliability of the evaluation of the error.

The same remarks made for the previous test cases regarding the peaks of errors in
the low error region of the plot are still valid. In this region, oscillations around the
reference value can lead to strong low and high peaks lacking of physical meaning in the
adaptive procedure.

(a) (b) (c)

Figure 5.13: Laminar flow past a delta wing at 𝑅𝑒 = 4000. Contours of the polynomial
degree distribution (a) on the initial mesh (15100 dofs), (b) on the 3rd adapted mesh
(110836 dofs) and (c) on the 6th adapted mesh (563580 dofs), for the hp simulations.
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(a) (b) (c)

Figure 5.14: Laminar flow past a delta wing at 𝑅𝑒 = 4000. Close-up view of figure 5.13

For the hp-adaptive simulations, figures 5.13 and 5.14 display the polynomial degree
distribution on the 𝑥𝑧 plane at 𝑦 = 0 for the initial mesh, as well as the meshes obtained
after 3 and 6 adaptation steps. The geometric singularities are refined first, then the
shear layers around the body and the wake are progressively refined over the course of
the adaptation process. In particular, the elements around the leading edge singularity
keep a 𝑝 = 2 polynomial degree for several adaptive steps. This is due to the smoothness
indicator marking this zone as non-smooth. As the singular region gets better resolved,
those 𝑝 = 2 elements located around the corner progressively switch to 𝑝 = 3.

5.3 Results on a turbulent configuration: the isothermal sub-
sonic turbulent jet flow issued from the PPRIME nozzle at
𝑅𝑒𝐷 = 106

In this section, the DG-hp methodology is assessed for RANS simulations of a turbulent
jet configuration described in [63], for which experiments have been performed at the
Bruit & Vent jet-noise facility of the Institut PPRIME, Poitiers, France, and reference data
are available [63]. Computational references are available as well in the literature. This
configuration has been simulated using LES by Brès et al. [63] to analyze features such
as near-wall adaptive mesh refinement, synthetic turbulence and wall modeling inside
the nozzle. Hybrid RANS/LES simulations have been performed by Gand et al. [135] to
assess the generation of a turbulent inflow, and RANS simulations by Neifeld et al. [222]
for jet noise prediction purposes with an eddy relaxation source model.

The operating conditions are defined in terms of the total pressure ratio p𝑡/p∞ = 1.7
and total temperature ratio 𝑇𝑡/𝑇∞ = 1.15. The jet is isothermal (𝑇𝑗/𝑇∞ = 1), the Mach
number is 𝑀 𝑗 = 𝑈 𝑗/𝑐 𝑗 = 0.9, and the Reynolds number 𝑅𝑒𝐷 = 𝜌 𝑗𝑈 𝑗𝐷/` 𝑗 ' 106, where
the subscript 𝑗 refers to jet properties. 𝑈 𝑗 is the mean jet exit longitudinal (𝑥-direction)
velocity, 𝑐 is the speed of sound, 𝐷 = 0.05𝑚 is the exit diameter of the nozzle, 𝜌 is the
density and ` is the dynamic viscosity.

The axi-symmetric computational domain extends from approximately -10𝐷 (the
length of the nozzle in the 𝑥-direction) to 50𝐷 in the streamwise direction 𝑥, and from
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−30𝐷 to 30𝐷 in the radial direction, and includes the nozzle geometry with its exit cen-
tered at (𝑥, 𝑦, 𝑧) = (0, 0, 0) (slices shown in figure 5.15).

Figure 5.15: RANS PPRIME nozzle configuration. Slices of the initial mesh, entire do-
main (left) and zoom on the nozzle (right)

A slow coflow at Mach number 𝑀∞ = 0.01 is imposed outside the nozzle (the flow
is at rest in the experiment). This prevents spurious recirculation and facilitates flow
entrainement. All solid surfaces of the nozzle are treated as no-slip adiabatic walls.

The initial mesh is generated with the mesh generation software ANSA [3]. The ge-
ometry of the body and the far field boundaries are created and meshed using triangles,
and the surface of the body (the internal and external walls of the nozzle) is projected
normal to the wall to generate the prismatic boundary layer, whose first cell measures
0.0003𝐷 in the wall-normal direction. The wall-normal spacing of these near-wall prisms
is set such that we obtain an accurate representation of the turbulent boundary layer us-
ing the SA model with 𝑝max = 3, following the guidelines in Section 4.2.

The rest of the volume is then filled with tetrahedra. The initial mesh created by
ANSA is processed by MMG employing the size field output of a first “analysis step”.
The remesher is actually able to output an isotropic size field from any given mesh. The
parameters considered for the hp-adaptive simulation are the same as those used in the
previous section. The exception is the higher ℎ𝑚𝑖𝑛 = 8 · 10−4 = 0.016𝐷, which is the
length of the smallest edge of the boundary layer prisms constituting the interface with
tetrahedra.

5.3.1 Modified degree and metric prescription for the PPRIME nozzle

In the field of nozzle/jet configurations an unstructured mesh approach has been exten-
sively used in the literature, both for RANS simulations [106, 2] and resolved LES of jets
[324, 190]. Nevertheless, the use of anisotropic elements on boundary layer regions is
of crucial importance for RANS equations, where the constraint of 𝑦+ ' 1 is fundamental
to capture the correct boundary layer profile.
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During the RANS adaptation process, boundary layer prisms (which include the sur-
face) are kept unchanged, and the remeshing adaptive algorithm acts only for tetrahe-
dra. Due to the twofold nature of the RANS test case chosen here, which couples internal
and external aerodynamics, it has been decided not only to preserve the boundary layer,
but also all the tetrahedral elements internal to the nozzle. The reason is that a remesh-
ing of the tetrahedra inside the nozzle, which are constrained by the fixed surface sizes
can severely affect the quality of the mesh. This step is handled by MMG, which is able
to preserve a set of tetrahedra specified by the user.

The hp-adaptive algorithm is modified according to the consideration of a frozen
region of mesh elements. We can now define three main zones of the mesh T𝐾 : T𝐵𝐿,𝑖,
T𝑇𝐼,𝑖, T𝑇𝐸,𝑖, which are respectively the prismatic layer of the near-body pseudo-structured
region, the portion of tetrahedral mesh inside the nozzle, and the outer tetrahedral
region.

In the regions T𝐵𝐿,𝑖 and T𝑇𝐼,𝑖, which are not subject to h-adaptation, the choice be-
tween h-refinement and p-enrichment is relaxed, and an under-resolved element does
not require anymore smooth features to be p-adapted. A value of the error estimator
greater than the target value is sufficient to mark for p-refinement. The tetrahedral re-
gion external to the nozzle T𝑇𝐸,𝑖 is free to be h- and p-adapted according to the usual
criteria adopted for laminar computations (see Section 5.1.4).

Therefore, to sum up, the only condition that elements with a fixed geometry (prisms
and internal tetrahedra, regions T𝐵𝐿,𝑖 and T𝑇𝐼,𝑖,) need to fulfill to be p-enriched is to
present an error estimator greater than the target error. Elements allowed to be h- or
p- adapted (tetrahedra external to the nozzle T𝑇𝐸,𝑖) are h- or p-enriched following the
procedure described in Section 5.1.4.

While this approach proves very powerful for flows which weakly depend on the
discretization of the geometry, as in the case of the presented nozzle, some enhance-
ments are still required in order to fully extend this approach to every type of config-
uration. The representation of curve boundaries through high-order elements and the
use of much higher polynomial degrees are essential to well capture the features of the
flow while keeping the surface mesh fixed. This would allow the accurate simulation
of industrial flow configurations as wings or aircraft, without strongly depending on the
initial discretization of the geometry.

5.3.2 Analysis of results

We present here the results obtained with hp-adaptation on the PPRIME configuration.
The initial mesh, shown in figure 5.15, contains around 1.5 millions of dofs, with a
constant polynomial degree 𝑝 = 1 over the whole computational domain. In figure 5.16,
a first qualitative comparison can be done on the cell-averaged Mach number solution
obtained on the initial mesh and on the hp-adapted mesh after 5 adaptation steps, with
𝑓𝑟 = 1.5, counting 10 million dofs. The initial coarse mesh clearly leads to an early
dissipation of the jet and produces strongly asymmetric features. In contrast, the hp-
adapted mesh in the right panel of figure 5.16 clearly symmetrizes the flow, and the
improved resolution permits a better development of the jet.

The quality of hp-adaptation results is quantitatively assessed by extracting the
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Figure 5.16: RANS PPRIME nozzle configuration. Contour of the cell-averaged Mach
number for the initial mesh (left) and the mesh after 5 adaptation steps with 𝑓𝑟 = 1.5
(10M dofs).

streamwise velocity profiles on the jet centerline (𝑟 = 0) and lipline (𝑟 = 𝐷/2) in fig-
ure 5.17 and in the jet at four different positions from the nozzle exit, 𝑥/𝐷 = 1, 5, 10, 15
(see figure 5.18). The curves obtained for different steps of the adaptation process using
a refinement factor of 𝑓𝑟 = 1.5 are compared to the reference experimental results [63].
Moreover, in order to assess our DG hp-adaptive RANS results, we performed a highly
resolved second order FV RANS computation on a hexahedral structured mesh counting
48 million elements, and used it as a numerical reference.
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Figure 5.17: RANS PPRIME nozzle configuration. Velocity profiles on the centerline
(left) and on the lipline (right).

The results yielded by the three last iterations of the hp-algorithm with respectively
6.9, 10.1 and 14.5 million dofs practically collapse, showing that mesh convergence has
been achieved for the adaptive RANS simulations in four adaptation steps.

The RANS computations, both DG adaptive and the structured reference FV RANS,
show a significant underprediction of the centerline velocity for 𝑥/𝐷 ≥ 5. This effect is
associated with a lower length of the potential core. This behavior is a well-known flaw
of RANS models, see [2]. Despite these differences with the experimental results, which
are attributed to the RANS model, the adaptive simulations provide results in overall
good agreement with the fine FV reference computation. At 𝑥/𝐷 = 1 the shape of the
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Figure 5.18: RANS PPRIME nozzle configuration. Radial velocity profiles at 𝑥/𝐷 =

1, 5, 10, 15 (from left to right).

velocity profile is improved at each adaptation step, and the finest adaptive simulations
match almost perfectly the experiment. At 𝑥/𝐷 = 5, converged adaptive simulations are
still very close to the experiment, yet showing a slight overprediction of the spreading
rate of the jet. At 𝑥/𝐷 = 10 and 𝑥/𝐷 = 15, the radial velocity profiles obtained from RANS
simulations show significant discrepancies with respect to the experimental results, yet
achieving very close results to the FV fine simulation.

Overall, the results obtained from hp-adaptation all converge towards the same so-
lution with a low number of adaptation steps, with 15 to 30% the number of degrees of
freedom of the structured FV simulation, i.e. 7, 10 and 15 versus 48 million dofs. As a
matter of fact, as already mentioned before, we observe that the hp-adaptive procedure
starting from a low order polynomial distribution gradually improves the robustness of
the solution of the implicit system of equations. Moreover, the use of an automated
adaptive process circumvents the difficulties that a classical manual structured meshing
process may involve, especially when handling complex geometries.

The last aspect we have studied is the influence of the refinement factor 𝑓𝑟 on the
adaptive process. We show in figure 5.19 two meshes containing both approximately
10 million dofs, one obtained after five adaptation steps based on a refinement factor
𝑓𝑟 = 1.5 (left panel in figure 5.19) and the other after three adaptation steps based on
a refinement factor 𝑓𝑟 = 2 (right panel in figure 5.19). We clearly see how the mesh
adaptation algorithm is capable, in both cases, of detecting the zones of interest. Most
of the dofs are concentrated around the potential core and in the outmost part of the
jet shear layer. In particular, for the mesh refined with a lower refinement factor (and
thus more adaptation steps), we can remark a concentration of elements in the zone
presenting the highest gradients in the solution. This corresponds to the cone enclosing
the potential core. This feature is less marked if a higher refinement factor is used.
In the second case (see right panel in figure 5.19), the adaptation focuses on a wider
zone of interest and provides a smoother mesh size distribution. This results in a slower
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Figure 5.19: RANS PPRIME nozzle configuration. Zoom on hp-adapted meshes with
around 10M dofs obtained with 𝑓𝑟 = 1.5 (left) and 𝑓𝑟 = 2 (right)

convergence towards the optimal mesh, as observed for the NACA0012 test case based
on different refinement factors (see figure 5.7 in Section 5.2.2).

In figures 5.20 and 5.21 we present a comparison at around 10M dofs between the
adapted meshes using 𝑓𝑟 = 1.5 and 𝑓𝑟 = 2 (respectively the fifth and the third adapta-
tions).
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Figure 5.20: RANS PPRIME nozzle configuration. Velocity profiles on the centerline
(left) and on the lipline (right) using 𝑓𝑟 = 1.5 and 𝑓𝑟 = 2 at around 10M dofs.

While the velocity profiles at 𝑥/𝐷 = 1, 5, 10, 15 and the lipline velocity profile are ba-
sically identical for the mesh obtained with 𝑓𝑟 = 1.5 and 𝑓𝑟 = 2, some small discrepancies
are present in the velocity profile in the centerline. The irregularities at the end of the
potential core are due to still coarse elements. The impossibility to spatially average the
solution in the centerline may accentuate the discontinuous behavior of the solution in
proximity of coarse elements interfaces, due to the discontinuous nature of DG.

The differences in the results shown in the two meshes in figure 5.19 can be quanti-
fied by computing the 𝐿2-norm of the error on the velocity profiles at 𝑥/𝐷 = 1, 5, 10, 15
along the radial line, and at 𝑟 = 0, 𝑟 = 0.5 along the respective streamwise line for each
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Figure 5.21: RANS PPRIME nozzle configuration. Radial velocity profiles at 𝑥/𝐷 =

1, 5, 10, 15 (from left to right) using 𝑓𝑟 = 1.5 and 𝑓𝑟 = 2 at around 10M dofs.

adaptation step as in equation (5.18)

𝑒𝑟𝑟𝑜𝑟 =
| |𝑢 − 𝑢𝑟𝑒 𝑓 | |𝐿2

| |𝑢𝑟𝑒 𝑓 | |𝐿2
=

√√√∫
𝑙
(𝑢 − 𝑢𝑟𝑒 𝑓 )2𝑑𝑥∫
𝑙
𝑢2
𝑟𝑒 𝑓

𝑑𝑥
(5.18)

where 𝑙 is the line on which the profile is extracted, and 𝑢𝑟𝑒 𝑓 are the profiles obtained
from the fifth adaptation step of the adaptive process based on 𝑓𝑟 = 2, counting 41
million dofs. The error plot as a function of number of dofs is shown in figure 5.22.
As expected, the norm of the error on the velocity profiles decreases faster, yet requires
more adaptation steps, for a lower value of 𝑓𝑟 . In contrast, a higher value value of 𝑓𝑟
reduces the convergence rate of the error, though globally needs less adaptation steps.
As already pointed out, the optimal value yields a trade-off between maximizing the
convergence rate and minimizing the number of adaptations.

This is a delicate topic if we keep in mind the possibility to generate adapted RANS
meshes to use as the starting point of a static adaptive procedure for unsteady turbulent
flows, as will be presented in Chapter 6. For scale-resolving simulations, the necessity of
reducing the overall computational cost is crucial. In this case, due to the costly transient
and the time-averaging of the error estimator needed at each adaptation step, the user
might prefer to use a higher refinement factor with the consequent lower number of
adaptation steps.

5.4 Conclusions

In this chapter, h- and hp-adaptive strategies suitable for discontinuous Galerkin meth-
ods have been proposed and assessed, for solving steady fluid flow problems on unstruc-
tured meshes. An a posteriori error estimator based on both the measure of the energy
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Figure 5.22: RANS PPRIME nozzle configuration. Comparisons between the conver-
gence history of the norm of the integrated error along the profiles 𝑟/𝐷 = 0, 1/2 and
𝑥/𝐷 = 1, 5, 10, 15 (from top left to bottom right) for two different refinement factors
𝑓𝑟 = 1.5, 2. 𝑒𝑟𝑟𝑜𝑟 vs. number of dofs.

contained in the highest order polynomial modes and the jumps at the element inter-
faces has been assessed in the framework of isotropic metric-based h- and hp-adaptation.
These methodologies have been combined with a smoothness indicator guiding both the
choice between h- and p-adaptation and the reduction of the size of elements marked
for h-adaptation.

Adaptive DG computations of three configurations of 2D/3D laminar steady flows on
triangular/tetrahedral meshes have been performed based on polynomial degrees 𝑝 = 1,
𝑝 = 2 and 𝑝 = 3. The overall adaptation strategies are found to capture accurately the
zones in which the solution needs higher refinement and zones already well refined.
This yields a significant reduction in terms of number of degrees of freedom to reach
a given error level, compared to simulations with uniform mesh refinement. Besides,
we have focused on the additional accuracy that both h- and hp-adapted meshes using
high-polynomial degrees bring with respect to 𝑝 = 1 simulations.

The performance and the flexibility of the proposed hp-algorithm have been also
demonstrated in the context of turbulent jet 3D RANS simulations. The use of hybrid
meshes composed of prisms in boundary layers subject to p-refinement and tetrahedra in
the free stream regions subject to both h- and p-refinement allowed for a convergence of
the DG-hp numerical solution using only 7 million dofs with results in close agreement
with a simulation on a structured mesh using classical FV schemes with 48 million dofs.
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Chapter 6

hp-adaptation for turbulent
unsteady computations

In this chapter we present and apply an extension of the hp-adaptation strategy intro-
duced in the previous chapter, for hybrid RANS/LES simulations of unsteady turbulent
flows.

In Section 6.1 we focus on the description of the extension of the method to the
unsteady hybrid RANS/LES formalism.

In Section 6.2 the h/hp-strategies for unsteady flows are assessed on the CoVo test
case, and adaptive simulations are compared to uniformly refined meshes for the three
spatial discretizations.

In Section 6.3 hp-adaptation is applied to the subcritical flow past a sphere at
Reynolds 𝑅𝑒 = 3700. The resulting meshes are first evaluated from a qualitative point
of view, then velocity and pressure profiles are compared to DNS and LES results in the
literature.

In Section 6.4 the hp-adaptive algorithm is applied to the PPRIME nozzle in a
ZDES mode 1 configuration, starting the adaptation from a previously adapted mesh
on a steady RANS solution. Flow field results and acoustic results, obtained with a
Ffowcs Williams-Hawkings (FW-H) acoustic post processing, are assessed qualitatively
and quantitatively by comparison with reference results.

6.1 The h/hp-adaptive algorithms for turbulent unsteady
computations

The steady adaptation strategy presented in Chapter 5 can be easily extended for static
h/hp-adaptation of unsteady flows. In static adaptation, the objective of the adaptive
algorithm is to identify a unique optimal spatial resolution for the simulation of a given
unsteady flow. This often relies on the computation of the flow or error estimator statis-
tics (e.g. time average/rms of the flow field, or time average/maximum/rms of the error
estimator, etc). The adapted mesh is intended to be optimally representing the instan-
taneous flow at any moment. This is in contrast with dynamic adaptation strategies in
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which the resolution is adapted over the course of the simulation to follow the instanta-
neous resolution requirements.

In our static approach, the adaptive algorithm is applied once a pseudo-steady state
of the flow is reached. Instead of the instantaneous values, the time-average of the error
estimator and the smoothness indicator accumulated for a given period of the flow is
considered.

The error estimator employed to identify the regions lacking in accuracy, and im-
prove their resolution by h or p-adaptation, is the same employed for steady flows. The
smoothness indicator guiding the hp-decision is slightly modified to take into account
the nature of the turbulent flows and is presented in the next paragraph.

6.1.1 Smoothness indicator

As already described in the previous chapters, a crucial point in hp-adaptive methods
is the definition of a relevant strategy to choose whether to adapt an element with h-
refinement or p-enrichment. In Chapter 5, we adopted the approach initially proposed
for 1D by Mavriplis [202], which follows the assumption that the decay rate of the
spectrum of DG modal coefficients is related to the convergence rate of the solution.
This information is exploited to evaluate the smoothness of the solution in the elements
in the mesh. In this chapter, we propose an alternative definition of the smoothness
indicator that takes into account the underlying physics of unsteady turbulent flows. It
is here assumed that for a 1D Legendre expansion of coefficients 𝑞 = 0, ..., 𝑝𝐾 the power
decay of the modes 𝑞 can be expressed as:

𝐸 (𝑞) ' 𝐶𝑞−𝜎 (6.1)

where 𝐸 (𝑞) is the energy associated with the mode 𝑞, 𝐶 and 𝜎 are constants determined
by a least-squares best fit of log(𝐸 (𝑞) ) vs. log(𝑞). The decay coefficient 𝜎 is then used
as smoothness indicator. In particular, the modal energy is proportional to the square of
the momentum 𝐸 (𝑞) ∝

(
𝑎 (𝑞)

)2, where 𝑎 (𝑞) are the polynomial coefficients associated with
the norm of the momentum for the 𝑞-th mode. High decay rates imply that the solution
is smooth, while the solution deviates from analytical behavior in presence of low decay
rates. This particular formulation of the decay rate is interesting for turbulent flows as it
correspond to the slope of spectral decay for the energy carried by turbulent scales. We
can therefore draw a similarity with the classical Fourier analysis of turbulence and in
particular the universality of the energy decay slope in the inertial range.

In the context of the calibration of a spectral dynamic modeling procedure for Large-
Eddy Simulation, Chapelier et al. [82] observed that high values of 𝜎 are found in lami-
nar or well-resolved regions, while low values are likely to appear in elements presenting
an intense but poorly resolved small-scale activity. The authors used this evaluation of
the energy decay as an estimation of the quality of the resolution in each element, al-
lowing for adapting the intensity of the sub-grid dissipation locally. They evaluated a
priori the threshold value of under-resolution 𝜎𝑡ℎ𝑟 from Taylor-Green Vortex (TGV) di-
rect numerical simulation data at 𝑅𝑒 = 5000 and they obtained values very close to
the theoretical slope −5/3 found in Fourier space in the inertial range. For this reason
they were able to link the smoothness indicator to the universal −5/3 power law which
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uniquely describes the shape of the energy spectrum in the inertial subrange. We can
exploit the same observations and use the value 𝜎𝑡ℎ𝑟 = 5/3 as the threshold between
smooth and non-smooth behavior in this chapter. Elements with 𝜎𝐾 > 5/3 are assumed
to be smooth, and subject to p-enrichment, otherwise if this condition is not fulfilled
h-refinement is used.

The coefficients of the modes are combined to obtain one single value per index 𝑞
with the same approach presented in equation 5.6 for 2D and 3D computations.

Similarly to previous considerations for steady flows, we chose not to employ the
coefficient 𝑎 (0) in the log-log regression log(𝑎 (𝑞) )2 vs. log(𝑞). In fact the coefficient asso-
ciated to 𝑞 = 0 represents the cell-averaged solution, and it can severely bias the decay
rate. This is problematic for 𝑝 = 1, as removing the first coefficient prevents the estima-
tion of the smoothness indicator. Therefore, as already done in Chapter 5, 𝑝 = 1 elements
are arbitrarily always marked as smooth elements, always requiring p-adaptation.

6.1.2 Strategy for unsteady flows

Once a statistically-steady solution (or statistically-periodic, according to the studied
problem) has been reached on the initial mesh, the error estimator and the smoothness
indicator are collected for a relatively short time period 𝑇𝜖 𝜎, with respect to the total
simulation time needed for data analysis and statistics collection 𝑇stats. This allows the
user to perform the successive adaptation steps without accumulating flow statistics for
a long time. In fact the error estimator is very sensitive to poorly-resolved zones, and
does not require a very long time to become representative in such zones needing an
improved resolution. Both the error estimator/smoothness indicator and the flow data
are sampled at a constant sampling time step Δ𝑡sampl.

After each adaptation and projection of the previous solution on the newly adapted
mesh, the error and the smoothness estimator and the flow data statistics are collected
after a transient 𝑇trans. This transient is necessary in order to let the solution adapt to the
new spatial resolution.

The transient period 𝑇trans, the collection period of the error estimator and the
smoothness indicator 𝑇𝜖 𝜎, and the sampling time interval Δ𝑡sampl are generally case-
dependent, as well as the total simulation duration where flow statistics are collected
𝑇stats. Thus they must be chosen accordingly to features depending on the studied flow.

6.2 Static adaptation for the CoVo test case

In this section, the adaptive strategies extended to unsteady flows are validated on a
canonical test case, the convection of an isentropic vortex test case presented in Chapter
4.

As outlined in the previous section, the error estimator and the smoothness indicator
are collected and averaged for a shorter time period 𝑇𝜖 𝜎 = 𝑇CoVo than the total simulation
time 10𝑇CoVo. As the behavior of the flow, and the resolution requirements, do not vary
over two successive periods, the collection of the error estimator and the smoothness
indicator on only one period is sufficient to control the adaptation strategy. The error
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estimator and the smoothness indicator are sampled at a constant sampling time step
Δ𝑡sampl = 𝑇CoVo/1000.

We remark that, as this is not a turbulent flow, the smoothness indicator is the
one used for steady simulations, and not the smoothness indicator adapted for scale-
resolving simulations introduced in the previous section 6.1.1.

As the CoVo is initialized using an analytical expression, the projection step of the
solution from the previous mesh to the new one is unnecessary. Moreover, due to the
absence of transient, the collection of the smoothness and error indicators is started from
the beginning of each simulation.

Figure 6.1: CoVo at 𝑀∞ = 0.5. Velocity (left) and pressure (right) on the 11th h-
adaptation (4375 elements /43750 dofs) with a spatial 𝑝 = 3 discretization.

In figure 6.1 we show the mesh obtained after 11 h-adaptations with a 𝑝 = 3 dis-
cretization. The elements are concentrated in the zone traversed by the vortex, which
is a central band of the domain. The refinement of the whole zone is due to the static
adaptation approach for unsteady flows. Indeed the adaptation process needs to produce
a spatial resolution which is well adapted for the full simulation time. This is in strong
contrast with the results which would be produced by a dynamic adaptation approach,
for which the concentration of elements would have “followed” the vortex, refining only
the zone instantaneously traversed by the vortex, and coarsening the rest of the domain.

This test case might probably greatly benefit from dynamic adaptation strategies.
Nonetheless, these present a number of technical and implementation issues that can
impact both the accuracy and the efficiency of the resulting simulations.

A dynamic approach would require for all the tools used in the adaptive algorithm
to be implemented directly in the flow solver, with direct memory access exchanges
rather than file-based input/output. The implementation of dynamic load balancing
would additionally be fundamental to ensure the equidistribution between different pro-
cesses/threads of the computational load, and thereby ensure high parallel efficiency
over the course of the simulation. This procedure has a non-negligible cost when the
number of adaptations grows significantly as it happens for dynamic adaptation with
respect to static adaptation. Finally we mention that dynamic adaptation in general re-
quires accurate, conservative and efficient projection techniques to transfer the solution
between two adapted meshes. In their absence, the numerical errors (dissipation, alias-
ing, non-conservativity) can severely impact the accuracy of the resulting simulations. In
fact the projected solution should be readily exploitable, without previously undergoing
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the simulation of a transient period. The difficulties mentioned above have not been
analyzed in this work, and require a significant effort to produce accurate and efficient
implementations. This therefore justifies the interest in static adaptation strategies, at
least for flows for which the spatial resolution requirements are not expected to vary
significantly over the course of the simulation.

Figure 6.2: CoVo at 𝑀∞ = 0.5. Polynomial degree distribution (left), velocity (middle)
and pressure (right) on the 15th hp-adaptation (45609 dofs).

In figure 6.2 the hp-mesh obtained at the 15th hp-adaptation step is presented: the
left panel shows the polynomial distribution, while the middle and the right panels rep-
resent the streamwise velocity and the pressure of the reconstructed high-order solution.

The size distribution on the mesh shows a very similar concentration of the dofs in
the central area, to that reported in figure 6.1 for pure h-adaptation. Moreover this
refined zone is entirely discretized with 𝑝 = 3 elements, while the two bands closer to
the top and bottom boundaries, not touched by the transported vortex, are discretized
with 𝑝 = 1 elements. Only very few 𝑝 = 2 elements delimit the 𝑝 = 3 zone from the 𝑝 = 1
zone. This behavior is expected. As the CoVo does not present any non-smooth feature,
the hp-adaptive algorithm is supposed to achieve the maximum allowed degree, before
starting h-adaptation.

We now focus on the analysis of the error convergence properties of the adaptive
algorithms, compared to uniformly refined simulations. The entropy and pressure errors
for each simulation are presented in figure 6.3. Only the first four uniformly refined
meshes employed in Section 4.1 are shown, and 11 h-adaptations are performed for
𝑝 = 1, 𝑝 = 2 and 𝑝 = 3, while 15 hp-adaptations are performed with a minimum degree
𝑝min = 1 and a maximum degree 𝑝max = 3. At the last adaptation step, the error on the
h-adapted meshes has reached a lower value with respect to the error of the respective
most uniformly refined meshes. This is true also for the hp-adapted meshes as compared
to 𝑝 = 3 uniform meshes.

Figure 6.3 shows an overall very good behavior of the h- and hp-adaptive procedures.
As observed already for the steady test cases in Chapter 5, the h-adapted meshes provide
a faster convergence for both the entropy and the pressure errors, as compared to the
uniformly refined meshes using the same DG spatial discretization. Despite the non-
optimality of a static adaptive algorithm, a gain in dofs is always achieved with respect
to uniformly adapted meshes. Analyzing the curves of the error for the hp-adapted
meshes, we notice that after an initial gain with respect to the h(p=3) adapted meshes,
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Figure 6.3: CoVo at 𝑀∞ = 0.5. Convergence history of the entropy (left) and pressure
(right) errors.

the curves start to superimpose (exactly for the plot of on the entropy error, and in a less
regular way for the pressure error), recovering the theoretical convergence behavior.

6.3 DES of the subcritical flow past a sphere at 𝑅𝑒 = 3700

In this section we validate the unsteady hp-adaptation strategy on a canonical turbulent
flow configuration, the flow past a sphere at 𝑅𝑒 = 3700.

The flow at this Reynolds number is subcritical, characterized by a laminar separation
near the equator of the sphere. The transition to turbulence occurs in the separated shear
layer. The turbulent wake is formed after transition to turbulence in the initially laminar
shear layer, and the vortices created from the shear layers are shed at a characteristic
large-scale shedding frequency. For a complete physical analysis of the evolution of the
flow field in this configuration, we refer to the work by Rodriguez et al. [253].

6.3.1 Flow field computational set-up

The flow is simulated at a Reynolds number 𝑅𝑒 =
𝑈∞𝐷

a∞
= 3700, based on the freestream

velocity 𝑈∞ and the kinematic viscosity a∞, and the sphere diameter 𝐷. A free-stream
Mach number 𝑀∞ = 0.2 is chosen to simulate near incompressible flow conditions. The
solid surfaces of the sphere are treated as no-slip adiabatic walls. The outer boundary
conditions are set to free-stream stagnation pressure/stagnation temperature inflow at
the inlet, static pressure outflow at the outlet of the domain, and they are defined us-
ing both the relevant stagnation quantities (pressure and temperature), and the static
pressure in the lateral surfaces of the external cylindrical domain.

The cylindrical computational domain extends from approximately −5𝐷 to 25𝐷 in
the longitudinal direction 𝑥, and has a radius of 7𝐷. The sphere geometry is centered in
the origin at (𝑥, 𝑦, 𝑧) = (0, 0, 0).

The initial mesh G0, uniformly discretized with 𝑝 = 1 elements, counts 31259 ele-
ments (125036 dofs) and is generated with MMG by providing a metric and forcing the
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#hp-adaptation
G0 hpG1 hpG2 hpG3 hpG4 hpG5

#dofs (M) 0.125 0.222 0.535 0.877 1.375 2.087

Table 6.1: hpDG/DES of the subcritical flow past a sphere at 𝑅𝑒 = 3700. Number of dofs
for the different hp-adapted meshes.

location of the mesh nodes on the wall. Unlike the steady cases in Chapter 5 where a
trivial constant metric field was used, we chose here to set gradual sizes varying with
the radius from the body to the far field. In fact a very bad resolution of the initial mesh
around the body would prevent the flow around the sphere from developing coherent
turbulent structures due to high dissipation, and it would require many adaptive steps
to achieve a relevant solution.

The time intervals regarding the transient phase, the collection of the error estimator
and the smoothness indicator, and the total duration of the simulation, introduced in
Section 6.1.2 and expressed in characteristic time units 𝑡𝑐 = 𝐷/𝑈∞, are chosen as follows:

• Δ𝑡sampl = 0.0067𝑡𝑐, which corresponds to 150 samples for each 𝑡𝑐,

• 𝑇trans = 10𝑡𝑐,

• 𝑇𝜖 𝜎 = 10𝑡𝑐, which corresponds approximately to 2 shedding cycles of the wake
flow,

• 𝑇stats = 350𝑡𝑐, as proposed in the DNS study by Rodriguez et al. [253] to ensure a
sufficient convergence of the solution statistics.

The parameters of MMG and the adaptation tool are the same as those proposed for
the steady computations in Chapter 5. However, for this case, the minimum mesh size is
modified to to ℎ𝑚𝑖𝑛 = 𝐷/100 to avoid a too strong restriction on the time step. Keeping
into account the number of 1D dofs for DG introduced for the flat plate in Chapter 4, the
effective DG minimum size is ℎ𝐷𝐺,𝑚𝑖𝑛 = 𝐷/(100 · (𝑝+1)), which for a 𝑝 = 3 discretization
corresponds to ℎ𝐷𝐺𝑝3,𝑚𝑖𝑛 = 𝐷/400.

6.3.2 Computational meshes and qualitative instantaneous flow field anal-
ysis

Figure 6.5 shows the initial mesh G0 using uniform polynomial degree 𝑝 = 1 and the 5
hp-adapted meshes employed in this study, hpG1, hpG2, hpG3, hpG4, hpG5. In table 6.1
we summarize the number of dofs employed for each hp-adapted mesh.

In figure 6.4 the distribution of the error estimator in the region surrounding the
sphere is shown for the initial mesh (left panel), the second adapted mesh (middle
panel) and the fourth adapted mesh (right panel).

In the initial mesh, the highest values of the error estimator are observed in the
laminar boundary layer, while for the second and the fourth adapted meshes, relatively
high values of the error estimator are found in the zone characterized by the strongest
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Figure 6.4: hpDG/DES of the subcritical flow past a sphere at 𝑅𝑒 = 3700. Zoom of the
error estimator distribution around the body and near-wake. G0 on the left, hpG2 in the
middle, hpG4 on the right.

turbulent activity with the highest values of the root mean square (rms) of the velocity
fluctuations at the end of the recirculation bubble (in figure 6.10), and in the shear
layers. In this flow configuration the shear layers are initially laminar (up to a variable
distance between 𝑥/𝐷 = 1.8 and 𝑥/𝐷 = 2.6 according to Rodriguez et al. [253]). Despite
their laminarity, the error estimator is found to correctly activate in shear layers until the
end of the adaptation process. Due to its low speed motion, associated with low values
of the rms of the velocity fluctuations characterizing this zone, in the fourth adaptation
we can observe low values of the error estimator, which considers this zone resolved
enough to sustain the turbulent motion in the recirculation bubble.

The meshes produced by the adaptive algorithm, with the associated polynomial
degree distribution, are depicted in figure 6.5.

Due to the intrinsic global smoothness of the flow configuration, the adaptation is
essentially applying p-enrichment until the maximum degree is reached, and then ℎ-
adapting the mesh. Some large elements, which are still 𝑝 = 2, especially up to adap-
tation 4, can be found in the wake. This is possibly due to values of the smoothness
indicator lower than 𝜎 < 5/3 in these very still coarse elements with an under-resolved
solution, far from the theoretical behavior. Additionally, some small 𝑝 = 2 elements can
be found as well in the region immediately outside the shear layer. This might be caused
by intermittent values of 𝜎𝐾 due to spurious modal coefficients with very low values.
This effect might have been removed by using a longer time sampling of the smoothness
indicator.

In figure 6.6 the Q-criterion is employed to visualize the vortical structures in the
wake of the sphere colored by the streamwise velocity.

The initial mesh and the first three adapted meshes are clearly too coarse to correctly
represent all the turbulent structures of the flow. Some large structures are already
discernible in the recirculation bubble for hpG2 and hpG3. However, the Q-criterion
visualization in the near wake presents strong numerical artifacts due to the high-order
reprojection of a very under-resolved solution on a fine mesh. hpG4 is the first mesh in
the adaptive process found to correctly represent the large eddies of the turbulent wake.
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Figure 6.5: hpDG/DES of the subcritical flow past a sphere at 𝑅𝑒 = 3700. Zoom of the
polynomial degree distribution around the body and near-wake. G0 to hpG5, from top
left to bottom right.

Upon further refinement, of essentially the shear layers and the wake in the hpG5 case as
observed in figures 6.4 and 6.5, a larger number of small turbulent structures is captured,
due to the high resolution in the wake. In both hpG4 and hpG5 the typical large-scale
wavy structure in the wake corresponding to the vortex shedding phenomenon, is rec-
ognizable. This is particularly evident in the case of the finest hpG5.

6.3.3 Quantitative data analysis

A quantitative data analysis is performed in this section for the validation of the hp-
adaptive scale-resolving simulations.

At first we analyze the results obtained by extracting, for the six meshes, the velocity
signal at two probes located in the shear layer. The two probes are located at the po-
sitions P1(𝑥/𝐷 = 2.4, 𝑟/𝐷 = 0.6) and P2(𝑥/𝐷 = 3, 𝑟/𝐷 = 0.6), and the data is extracted
over a period of 350 𝑡𝑐.

The Power Spectral Density (PSD) is computed based on the radial velocity 𝑣𝑟 on the
two probes, and is showed in figure 6.7. The Welch method [304] discussed in appendix
A for the post-processing of an acoustic signal, is used for the computation of the PSD.
An overlap of 75% is used with N=15000 sampled data per time window (the signal is
windowed with a Hann approach), leading to 13 averaging windows. The spectra are
azimuthally averaged on four equally azimuthally spaced probes at the same streamwise
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Figure 6.6: hpDG/DES of the subcritical flow past a sphere at 𝑅𝑒 = 3700. Iso-surface of
𝑄 = 0.2(𝑈∞/𝐷)2, colored by the streamwise velocity component (right).
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Figure 6.7: hpDG/DES of the subcritical flow past a sphere at 𝑅𝑒 = 3700. PSD of the
radial velocity signal recorded at locations P1(𝑥/𝐷 = 2.4, 𝑟/𝐷 = 0.6) in the left panel and
P2(𝑥/𝐷 = 3, 𝑟/𝐷 = 0.6) in the right panel

The first three meshes G0, hpG1 and hpG2 predict spectra with a very poor quality,
especially in the low frequency range, where they provide strongly overestimated values
of the PSD with respect to the more refined hpG3, hpG4, hpG5.

We focus on the curve corresponding to the adapted mesh hpG5. At first we remark
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that the adapted mesh is able to capture the large-scale vortex frequency, with a peak
in the spectra at 𝑆𝑡 = 0.21, which is the dominant frequency of the flow. This is in line
with numerical references in table 6.2. Additionally, the P1 probe identifies the presence
of a secondary broadband peak in the range 𝑆𝑡 ≈ 0.4 − 0.8, present only in the closest
probe to the sphere. This secondary characteristic frequency (𝑆𝑡𝐾𝐻 = 0.72 in the study
by Rodriguez et al.) is related to the Kelvin–Helmholtz instabilities generating in the
shear layer.

At probe P2 the flow is fully turbulent and presents a spectra with a well defined −5/3
power turbulent decay in the inertial range. At the first probe P1, despite being located
in an already unstable zone of the shear layer, the motion is still dominated by the
Kelvin-Helmoltz instabilities, and the spectrum decay more rapidly than the turbulent
slope −5/3.

The mean and root mean square (rms) streamwise velocity profiles are collected
as well during 350𝑡𝑐, at the centerline, presented in figure 6.10, and at different loca-
tions in the wake, presented in figures 6.8 and 6.9. Velocity profiles are compared to
numerical and experimental results in the literature. Available DNS data are those by
Rodriguez et al. [253] performed on a fully unstructured mesh counting 9.48M cells with
a second-order scheme, and by Bazilevs et al. [42] performed on a prismatic/tetrahedral
grid counting 1.1M nodes/6.3M elements with a linear FEM method. Bazilevs et al.
performed a very long simulation (1000 𝑡𝑐) and observed some discrepancies accord-
ing to the chosen time window. Only the results obtained on the second time window
(W2), of comparable duration of the time window employed by Rodriguez et al. are
here reported for comparison. The results from two LES computations have been as well
included in our comparison to the hp-adaptive simulations: Yun et al. [315] employed
a dynamic subgrid-scale model on a 3.3M cells Immersed Boundary mesh, while Eitel-
Amor et al. [115] used a classical Smagorinsky model with a Lattice-Boltzmann Method
(LBM) with local hierarchical adaptive grid refinement on a 51.7M cells mesh.

The shedding frequency 𝑆𝑡, the separation angle 𝜙𝑠, the mean drag coefficient 𝐶𝐷,
the base pressure coefficient 𝐶𝑝𝑏 and the mean length of the recirculation bubble 𝐿𝑟 are
summarized in table 6.2 for several computations from the literature, and compared to
our current computation on the hpG5 mesh.

The normalized mean velocity 𝑢/𝑈∞ profiles in figure 6.8 show the impact that hp-
refinement has on the flow field development. DNS results by Rodriguez et al. are de-
picted in dashed black lines, DNS results by Bazilevs et al. in dotted blue lines, LES
results by Yun et al. in black crosses and LES results by Eitel-Amor et al. in grey dia-
monds. The hp-meshes are plotted in solid lines in pink, magenta, orange, grey, green
and red, respectively for G0, hpG1, hpG2, hpG3, hpG4 and hpG5.

The initial mesh G0 is extremely under-resolved, yielding velocity profiles very far
from the numerical and experimental references. Thanks to the adaptive process, simu-
lations on hp-adapted meshes lead to a progressive alignment of the hp-adaptive results
towards the numerical reference solutions, even though the different numerical results
present some discrepancies. The shape of the velocity profiles at 𝑥/𝐷 = 1.6 for the finest
hpG4 and hpG5 is very similar to those obtained by Bazilevs et al., Yun et al. and Eitel-
Amor et al. The DNS profiles by Rodriguez et al. showed more negative values of the
velocity at locations 𝑥/𝐷 = 1.6 and 𝑥/𝐷 = 2, both located in the recirculation zone, with
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𝑅𝑒 𝑆𝑡 𝜙𝑠(°) 𝐶𝐷 𝐶 𝑝𝑏 𝐿𝑟

Rodriguez et al. [253] (DNS) 3700 0.215 89.4 0.394 -0.207 2.28
Bazilev et al. [42] (DNS) 3700 0.221 89.4 0.392 -0.207 2.28
Pal et al. [228, 229] (DNS) 3700 0.21 91.7 0.3938 -0.215 2.22
Seidl et al. [265] (DNS) 5000 - 89.5 0.38 - -
Kim et al. [169] (exp.) 4200 0.225 - - -0.224 -
Park et al. [235] (LES) 3700 0.21 - 0.359 -0.193 2.60
Yun et al. [315] (LES) 3700 0.21 90 0.355 -0.194 2.622
Eitel-Amor et al. [115] (LES) 3700 0.21 93.9 0.378 -0.190 2.51
Kamble et al. [165] (PANS) 3700 0.217 89.79 0.396 -0.22 2.24
current hpG5 (DES) 3700 0.21 90.3 0.382 -0.195 2.55

Table 6.2: hpDG/DES of the subcritical flow past a sphere at 𝑅𝑒 = 3700. Integral flow
quantities from the literature and current results.

respect to adaptive simulations and the DNS by Bazilevs et al.
The position 𝑥/𝐷 = 3, located near the end of the recirculation zone presents the

most scattered results. While the DNS from Rodriguez et al. and Bazilevs et al. predict
higher (positive) velocities in the centerline, the LES by Yun et al. and Eitel-Amor et al.
predict respectively slightly negative and almost zero values, meaning that the flow is
at the end of the recirculating region. The velocity profiles obtained with the DES hp-
adaptation tend to intermediate values between the two LES approaches. In locations in
the wake further downstream (𝑥/𝐷 = 5 and 𝑥/𝐷 = 10), hpG5 reaches very close profiles
to the DNS by Rodriguez et al.
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Figure 6.8: hpDG/DES of the subcritical flow past a sphere at 𝑅𝑒 = 3700. Mean stream-
wise velocity profiles on different locations in the wake 𝑥/𝐷 = 0.2, 1.6, 3, 5, 10 (from left
to right). Comparison between hp-adaptive and experimental/numerical results.

A further insight in the flow field development is provided by the profiles of the
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normalized rms of the fluctuation of the streamwise velocity
√︁
𝑢′𝑢′/𝑈∞ in figure 6.9.

The progressive increase in resolution leads to a decrease of the rms levels in the shear
layer at locations 𝑥/𝐷 = 1.6 and 𝑥/𝐷 = 2. The finest mesh hpG5 provides significantly
lower rms values than the DNS by Rodriguez et al. at these locations. This trend is
observed as well with respect to the results by Bazilevs et al., but to a minor extent. This
behavior is a clear indicator of a certain delay in the formation of instabilities in the shear
layer when increasing the resolution. The rms profiles values obtained on hpG5 for the
upstream locations 𝑥/𝐷 = 3, 5, 10 closely match DNS results by Rodriguez et al., showing
a significant improvement of the solution in the region at the end of the recirculation
bubble and the wake.
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Figure 6.9: hpDG/DES of the subcritical flow past a sphere at 𝑅𝑒 = 3700. Root-mean
square of the streamwise velocity fluctuations profiles in the wake 𝑥/𝐷 = 1.6, 3, 5, 10
(from left to right). Comparison between hp-adaptive and experimental/numerical re-
sults.

In figure 6.10 the axial streamwise velocity profile monotonically moves downstream
when increasing the resolution, getting closer to the DNS results (LES results are not
available for this plot). The velocity profile for hpG4 in the recirculation region is very
similar to that of Bazilevset al., and both the value of the minimum and its location
are similarly predicted. Lower values and a more upstream position are found for the
DNS computation by Rodriguez et al. However, the finer hpG5 moves the profile further
downstream the DNS and overestimates the recirculation length by 10% (𝐿𝑟 = 2.28
is found by the two DNS, 𝐿𝑟 = 2.55 by the DES-hpG5 adaptive simulation, and 𝐿𝑟 =

2.51 and 2.667 is found by the two LES).
Looking at the right panel of figure 6.10 depicting the profiles of the rms of the axial

velocity fluctuations, hpG4 closely matches profiles by Bazilevs et al. and the two peaks
at 𝑥 ≈ 2 and 𝑥 ≈ 3 are similarly represented (the first having a lower intensity than the
second). Rodriguez et al. report higher rms values in the recirculation bubble and two
rms peaks of similar intensity at 𝑥/𝐷 ≈ 2.5 and 𝑥 ≈ 3.5. hpG4 deviates from results by
Bazilevs et al. and Rodriguez et al. for 𝑥 > 4 due to a lower resolution in the wake. When
increasing the resolution, hpG5 provides slightly lower rms in the recirculation region,
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Figure 6.10: hpDG/DES of the subcritical flow past a sphere at 𝑅𝑒 = 3700. Mean (left)
and rms (right) streamwise velocity profiles on the wake axis 𝑟/𝐷 = 0. Comparison
between hp-adaptive and experimental/numerical results.

a lower intensity of the main peak and the secondary peak has almost been completely
smoothed out. As observed in figure 6.9, the wake 𝑥/𝐷 > 4 is much better represented
than hpG4, providing intermediate rms levels between the DNS by Rodriguez et al. and
Bazilevs et al.

The azimuthal distribution of the mean values of the pressure coefficient 𝐶𝑝 and the
Reynolds-normalized friction coefficients 𝜏𝑤/(𝜌∞𝑈∞)𝑅𝑒0.5 on the surface of the body, are
finally presented in figure 6.11. Looking at the 𝐶𝑝 distribution in the left panel, we can
notice how, when increasing resolution, the 𝐶𝑝𝑏 increases, and the hpG5 adapted mesh
provides results in excellent agreement with experimental and numerical references, in
particular with the LES approach by Eitel-Amor et al. The peak value in the friction
coefficient obtained using hpG5 is in very close agreement with the results by Bazilevs
et al., while underestimated with respect to the DNS by Rodriguez et al. Looking at the
integrated total drag, a lower value of the mean drag coefficient 𝐶𝐷 = 0.382 with respect
to the DNS by Bazilevs et al. and Rodriguez et al. is obtained by the most refined hpG5
mesh. This result is closer to the LES results by Eitel-Amoret al. (𝐶𝐷 = 0.378). Also the
results by Yun et al. underestimate the 𝐶𝐷. The underestimation of the 𝐶𝐷 is indeed
directly related to the overestimation of the recirculation length.

6.3.4 Discussion on the sensitivity of 𝐿𝑟

The sensitivity of the length of the recirculation zone 𝐿𝑟 to the numerical method em-
ployed, is a very well-known topic observed in several works in the literature. In partic-
ular the delay in the formation of the turbulent instabilities, with a subsequent overes-
timation of the predicted length of recirculating zones, is found to be a common issue
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Figure 6.11: hpDG/DES of the subcritical flow past a sphere at 𝑅𝑒 = 3700. Mean pres-
sure coefficient 𝐶𝑝 and mean normalized skin-friction coefficient 𝜏𝑤/(𝜌∞𝑈∞)𝑅𝑒0.5 on the
surface of the sphere. Comparison between hp-adaptive and experimental/numerical re-
sults.

when employing DES-like methods.
Among the several examples, Uzun et al. [289] observed longer recirculation bub-

bles in both cylinders for a supercritical tandem cylinder configuration at 𝑅𝑒 = 166000,
attributing the issue to the high eddy viscosity values in the initial detached shear layer.
The same trend was observed for both their coarse and fine grids (31M and 133M grid
points).

For the subcritical flow past a cylinder at 𝑅𝑒 = 3900 (which has very similar flow
features to our sphere at 𝑅𝑒 = 3700), Itam et al. [160] observed much longer recircu-
lation bubbles than the experiment, when not using a subgrid scale model and when
using a DDES model (with a 𝑘 − 𝜖 closure). When switching to a dynamic VMS (Vari-
ational Multi Scale) approach, they found excellent agreement with experiments and
other numerical references. In the same work, they observed an opposite behavior when
considering the higher 𝑅𝑒 = 20000 configuration, with no model simulations and simula-
tions with a dynamic VMS approach providing identical recirculation lengths, very close
to experiments, and DDES predicting lower values.

D’Alessandro et al. [96] proposed the implementation of a DES model based on the
𝑣2 − 𝑓 approach, and investigated its behavior with respect to several DES-like models,
on the subcritical flow past a circular cylinder at 𝑅𝑒 = 3900. They presented extremely
scattered data, depending on both the employed DES-like model and the level of refine-
ment of the mesh. They observed longer separating shear layers on fine grids, and early
transition (and shorter shear layers) on coarse meshes when employing the proposed
DES-𝑣2 − 𝑓 model. In particular the overestimation of the recirculation length could be
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observed for the finest mesh. In their work, the standard SA-DES simulations predicted
significantly shorter recirculation lengths for any grid resolution, but we remarked that
the implementation of SA-DES was the original by [277] without the modifications sug-
gested by Deck presented in Section 2.2.2.

Jee et al. [163], although not overestimating the recirculation region, tested two
different DES models on two meshes of 0.8M and 6M elements, showing in both cases
significantly longer recirculation zones when employing finer meshes.

The prediction of the correct length of the recirculation zone is a sensitive issue also
in a pure LES context.

For the subcritical cylinder configuration, de la Llave Plata et al. [100] predicted de-
layed instabilities with a classical WALE model (strong overprediction of the recirculation
length with lower rms values in the axis) with respect to experimental measurements,
using a fifth order DG discretization. The use of a VMS model provided results in very
close agreement with the experiment. They observed fairly good results (though worse
than VMS) also when not employing any subgrid scale model.

For the same test case, Lysenko et al. [198] observed a longer recirculation zone
than the experiment with the most accurate dynamic 𝑘-equation eddy-viscosity SGS
model model (TKE), while conventional Smagorinsky significantly underestimated this
quantity. Moreover, the authors highlighted the noticeable discrepancies found in the
literature when analyzing this very sensitive quantity, in experimental measurements,
LES and even DNS computations. 𝐿𝑟 from experimental measurements ranged from
𝐿𝑟 = 1.19 − 1.51, LES data resulted in 𝐿𝑟 = 0.9 − 1.64, and DNS computations resulted
in 𝐿𝑟 = 1.41 − 1.59. In the case of the DNS by Rodriguez et al., the grid independence
study they proposed showed a 5% variation of the length of the recirculation bubble be-
tween the most refined and the second to last most refined mesh, suggesting that further
refinement could potentially further increase the length of the recirculation bubble.

The very high sensitivity of this quantity from the several employed numerical ingre-
dients, such as subgrid scale models, spatial discretization parameters, grid resolution,
appears to be therefore quite an established matter in the literature. This discussion
gives some insight on why our DES hp-adaptation presents some discrepancies with
respect to the DNS results, given the strong impact that the quality of the employed
turbulence model has on modeled scale-resolving simulations. Moreover, when treating
spatial resolution adaptive techniques, the quality of results has a double dependence
on the chosen turbulence model. In fact, the subgrid scale model drives not only the
dissipation due to the under-resolved eddies in each element, but also the distribution of
the error estimator in the domain (and subsequently the whole adaptive process). The
latter in fact depends on the features of the flow, which are partly dependent on the used
subgrid scale model.

6.3.5 Additional simulations and further investigation

In order to assess the solution obtained on the finest (in previous Section 6.3.2 and 6.3.2)
hpG5 mesh, we decided to perform some additional simulations (D, E, F, G), whose
numerical settings are summarized in table 6.3. Cases H and I are used to investigate
the sensitivity of the solution to the model.
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#case
B C D E F G H I

#dofs (M) 1.375 2.087 2.525 4.605 1.874 3.160 2.087 2.087
turb modeling

(a𝑡/a∞)
DES

4
DES

4
DES

4
DES

4
DES

4
DES

4
DES

0.001
ILES

𝑝 1-3 1-3 2-4 4 1-3 1-4 1-3 1-3

Table 6.3: hpDG/DES of the subcritical flow past a sphere at 𝑅𝑒 = 3700. Computational
details of the additional simulations.

Cases B and C respectively correspond to the already previously analyzed hpG4 and
hpG5 meshes, which employ polynomial degrees from 1 to 3.

The D case employs the hpG4 mesh, but a uniform increase of the polynomial degree
by 1 is applied in each element of the mesh (the polynomial degree in this case is in the
range 𝑝𝐷 = 2 − 4). The uniform increase of the spatial resolution is supposed to provide
a good guess of the trend followed by the adaptive process (that should converge to
similar values but with a lower number of degrees of freedom).

Case E eliminates all the polynomial degree variations, and consists in a uniform 𝑝 =

4 distribution in the hpG5 mesh (𝑝𝐸 = 4). This 4.6M dofs simulation is the most refined
simulation presented in this study and is expected to be the most reliable reference for
the assessment of the adaptive results.

Moreover, a separate adaptation process is performed by considering an increased
maximum polynomial degree from 3 to 4. Case F is the fourth adapted mesh from such
adaptive process (𝑝𝐹 = 1 − 4). Time-converged results on intermediate meshes are not
available.

The adaptive process presented in previous section employing 𝑝𝑚𝑎𝑥 = 3, is further
carried on, and the sixth adapted mesh hpG6 corresponds to case G (𝑝𝐺 = 1 − 3).

Cases H and I consist respectively in a DES computation varying the value of a𝑡/a∞
at the inflow of the domain from the default a𝑡/a∞ = 4 used in previous computations
to a lower value a𝑡/a∞ = 0.001, and in an ILES computation (solving the Navier-Stokes
equations without any subgrid scale models). Both cases H and I are performed on hpG5
with 𝑝𝐻,𝐼 = 1 − 3.

The meshes employed in cases D, E, F, G with their polynomial distribution are de-
picted in figure 6.12. Cases B, C, H and I have the same hp distribution as that presented
on the right bottom panel in figure 6.5.

In figure 6.13 we compare profiles of the mean centerline velocity in the wake. This is
the most relevant quantity for the computation of the length of the recirculation bubble,
and it is found to be strictly correlated to the other main phenomena of the flow (earlier
or later destabilization of the flow as well as overestimated and underestimated 𝐶𝐷
values).

A first observation is that the solution obtained on the further adaptation hpG6 (case
G in blue circles) provides very similar values of the recirculation length to hpG5 and
a velocity profile superposed to that obtained on hpG5. The adaptation procedure has
reached its converged solution, and further refinements are not expected to significantly
vary the solution.



104 CHAPTER 6. hp-ADAPTATION FOR TURBULENT UNSTEADY COMPUTATIONS

Figure 6.12: hpDG/DES of the subcritical flow past a sphere at 𝑅𝑒 = 3700. Zoom on the
polynomial map distribution around the sphere for cases D, E, F, G.
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Figure 6.13: hpDG/DES of the subcritical flow past a sphere at 𝑅𝑒 = 3700. Mean stream-
wise velocity profiles on the wake axis 𝑟/𝐷 = 0. Comparison between different hp-DG
simulations.

Moreover, we observe very similar velocity profiles when performing uniform 𝑝-
enrichments on hpG4 (case D, in green dotted lines) and on hpG5 (case E in red squares),
which both overestimate 𝐿𝑟 by around 10% with respect to the DNS data. This suggests
that the solution has converged, in a certain limit imposed by the mesh topology pro-
vided by the adaptation. The hp-adaptive process is not supposed to always converge
to the DNS solution, because it is strictly linked to the subgrid scale model used. An
hp-adaptive process using DES/LES models should converge to DNS only in the case
it would be able to ensure that all elements have a size allowing the resolution of the
whole range of turbulent scales. This is quite contradictory in the context of DES/LES
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adaptation, where the underlying basic principle is the modeling of the non resolved
small turbulent scales.

As previously mentioned, we performed as well a new hp-adaptive process with an
increased 𝑝max = 4 (a higher ℎ𝑚𝑖𝑛 ≈ 𝐷/33, ℎ𝐷𝐺,𝑚𝑖𝑛 = 𝐷/165, is employed to avoid too
small time step sizes when increasing the polynomial degree in small wall elements).
Also in this case the adaptation has led to an almost identical velocity profile in the axis
behind the wake. This proves how the adaptation process is robust enough to lead to the
same results when using different parameters. If we look at the same adaptation step
when using 𝑝max = 3 (case B) and 𝑝max = 4 (case F), we can observe that 4 adaptations
are sufficient to achieve converged results in the case of 𝑝max = 4 but not in the case of
𝑝max = 3. This is probably due to the use of a higher order discretization, but also to the
fact that the resulting mesh F has 30% more dofs than the mesh B. In order to prove the
first hypotesis, the two cases should have exactly the same resolution. It is probable that
hpG3 with 𝑝max = 4 could yield similar results to case B with a lower number of dofs
thanks to its higher order of accuracy, but full computations were not performed and a
satisfactory answer cannot be provided.

These four test cases showed an overall agreement in the results obtained on different
meshes and different spatial discretizations, suggesting that the solution obtained on
hpG5 mesh can be actually considered the converged solution of the hp-adaptive process.
Moreover they helped us to attribute, with a certain level of confidence, the mismatch
between the results obtained on the hp-adaptation and the DNS results to the employed
model and not to the adaptation process itself.

Finally, we decreased in case H the viscosity ratio at the inflow boundary a𝑡/a∞, and
we obtained a very similar axial velocity profile to previous simulations, with a slight
increase of the length of the recirculation bubble. Some differences between results
obtained with standard and zero values of a𝑡/a∞ at the inlet were observed also by
D’Alessandro et al. [96] for the circular cylinder at 𝑅𝑒 = 3900 using different DES-based
methods.

The ILES computation (case I) predicts as well a slighly longer recirculation length,
as observed by Itam et al. [160] in the 𝑅𝑒 = 3900 cylinder configuration (with respect to
a DES-like model).

Some caution should be however advised when analyzing results obtained on the
adapted meshes, varying the model or setting of parameters of the model. In fact the
“grid-converged” hpG5 with DES using the standard viscosity ratio could be not “grid-
converged” with another model, that could have differently adapted also the intermedi-
ate meshes in the adaptive process.

In general, the dependence of the adaptive process from the employed subgrid scale
model could be weakened only by improving the subgrid scale model itself. In order
to achieve more reliable results, the interest in employing VMS and/or dynamic LES
approaches has been pointed out by de la Llave Plata et al. [100] and Itam et al. [160]
in the context of low to medium Reynolds bluff body configurations. However, although
being very powerful tools for the correct computation of moderately turbulent flows,
pure LES approaches are still very uncommon for highly turbulent industrial flows, due
to their strong requirements in term of wall resolution. The hybridization proposed
by Itam et al., restricting the model to Dynamic VMS in LES regions provided very
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good results, while keeping the wall resolution to RANS standards. The extension and
the validation of similar approaches on different high Reynolds configurations could be
an interesting topic for future research, to improve the robustness of scale resolving
techniques, by minimizing the dependence of the final solution to the model.

6.4 ZDES of the jet flow issued from the PPRIME nozzle at
𝑅𝑒𝐷 = 106

In this section, we apply the hp-methodology for steady flows introduced in the previ-
ous chapter and extended to unsteady flows in Section 6.1, to ZDES computations of
a nozzle configuration. The nozzle test case analyzed in this work corresponds to the
configuration studied with a RANS approach in Section 5.3.

First, the state of the art of jet flow scale-resolving simulations is briefly presented
in Section 6.4.1, focusing on the different approaches found in the literature to reduce
the computational cost and to inject turbulent instabilities. Previous jet flow simulations
performed with discontinuous Galerkin methods as well as classical methods to perform
acoustic analysis are briefly described.

Then the computational set-up of the hp-adaptive simulations using a ZDES ap-
proach, starting from RANS-adapted meshes, are presented in Section 6.4.2.

In Section 6.4.3 flow field results are presented, analyzed and compared to those
obtained by other authors in the literature.

In the last part of this section, in Sections 6.4.4 and 6.4.5, an aeroacoustic analysis
is performed to predict far-field noise, which is known to be a major issue in the design
of aircraft. A Ffowcs Williams-Hawkings method (FW-H) [120] is employed in this work
for this purpose.

6.4.1 Motivation and state of the art of jet flow scale-resolving simulations

An important issue in aircraft certification concerns the level of noise produced by an
aircraft in the various phases of flight. It is well known that jet engine noise is one of the
main sources of noise in civil aircraft during take-off. It is mainly for noise prediction
purposes that round jets have become a recurrent subject of numerical investigation.
Moreover, with the new high and ultra-high bypass ratio (HBR and UHBR) engines com-
ing into service to ensure a lower environmental footprint of aircraft, engine installation
noise also becomes an issue, due to the position of the exhausting jet closer to the wing.
This leads to strong interactions between the jet flow and the deployed wing control
surfaces. It becomes then more important than ever to assess the reliability of CFD
computations for noise prediction.

Despite the use since the late nineties of numerical simulations to support exper-
imental data in the study of jet aeroacoustics [214, 25, 55, 48, 290], and the strong
progresses in improving jet representation [50, 310, 51, 63], the achievement of results
fully matching experimental data still remains a challenge.



6.4. ZDES OF THE JET FLOW ISSUED FROM THE PPRIME NOZZLE AT 𝑅𝑒𝐷 = 106 107

Numerical approaches for the simulation of jet flows First jet flow investigations
were performed with DNS [62, 294] at much lower diameter-based Reynolds numbers
than realistic engine jets. Despite the increase of computational means in recent years,
DNS is still out of reach for realistic Reynolds numbers, and LES has become the most
common approach for jet noise prediction.

Different approaches can be found in the literature, which mainly differ in the tech-
nique used to reduce the computational cost of simulations.

One approach consists in not including the nozzle geometry in the computational
domain, but imposing a mean velocity profile as inflow boundary condition [52, 170],
which can be disturbed to mimic a turbulent inflow. Despite being cheaper than simu-
lations including the geometry, this approach does not ensure that the velocity profile is
representative of the real flow conditions.

An explicit inclusion of the nozzle geometry with a pure LES approach has been
performed by several authors [288, 58, 56]. However Reynolds numbers simulated with
this approach usually range from 104 to 2 ·105 for very simple nozzle geometries, and are
still too computationally expensive for complex geometries and configurations at higher
Reynolds numbers. We remind that values of the diameter-based Reynolds number of jet
flows considered in experiments is of the order of the million.

In order to achieve a reduction in the number of degrees of freedom inside the nozzle,
WMLES approaches have been considered in the literature [64, 179, 63].

Another approach to reduce the computational effort in the computation of jet flows
was introduced by Shur et al. [271] and followed by other authors [295, 68]. It consists
in a two-step RANS-LES approach, which uses a previous complete RANS simulation
including the nozzle, to provide the mean inflow to prescribe at the inlet boundaries of
a successive LES computation, which simulates only the isolated jet without the nozzle
geometry. However, turbulence should be generated for the LES simulation for com-
parisons with the experiments, since RANS provides only mean flow data. Moreover
no feedback from the LES jet simulation can be brought to the interior of the nozzle
simulated in RANS, preventing the formation of some fluctuations depending on the
geometry further upstream, that could impact the shear-layer instability.

Various other approaches involve the use of hybrid RANS/LES methods for the
simulation of jet flows. Some examples of high Reynolds flows can be found in
[86, 65, 309, 132, 293], where more complex geometries are simulated. These geome-
tries, including chevron and dual stream configurations, are more representative of jet
engines with respect to classical single stream round jets, and become affordable thanks
to the lower grid constraints on the boundary layer that hybrid RANS/LES methods im-
pose, as opposed to the more strict LES requirements. A critical aspect of this kind of
approach consists in a potential delay in the LES content development [102].

Turbulence tripping techniques One of the main difficulties in the simulation of
turbulent jets lies in obtaining a turbulent jet from the nozzle exit, as in real jets at
𝑅𝑒𝐷 > 105 [317, 158]. This requires extremely fine resolutions inside the nozzle and
close to the nozzle exit where the mixing layer develops, which is not computationally
affordable for high Reynolds number flows.

The initial laminarity of the shear layer strongly influences the jet flow development,
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leading to incorrect values of the potential core length and turbulence levels. This in
turn leads to an overestimation of the acoustic field due to vortex pairing [318, 53, 57,
58, 156].

Different methods exist in the literature to inject disturbances in the boundary layer
and thereby trigger the transition to a turbulent flow inside the nozzle. Some of the
most common methods are the divergence-free vortex-ring method [55, 184, 290], the
methods based on annular mixing layer linear stability theory [322, 49], and the meth-
ods based on geometrical tripping [261, 127, 189, 297]. Among the approaches recently
employed for turbulent jet flows or general boundary layers, we find as well the Synthetic
Eddy Method [161, 133], the Random Flow Generation (RFG) technique [275, 65], and
the methods based on roughness elements (or tripping dots) included in the computa-
tional domain with the Immersed Boundary Method (IBM) [104, 135] or source terms
[60].

Jet flow simulations with DG methods Traditionally, jet flow simulations for aeroa-
coustic purposes have been performed by means of high-order finite difference (FD)
[214, 55, 290] due to their high accuracy, essential for capturing accurately the com-
plex turbulent physical phenomena in jet flows. Simpler and more robust second or-
der Finite Volume schemes are often used in industrial as well as research contexts
[65, 63, 189, 297]. In this case, low-dissipation spatial schemes are fundamental for
a correct representation of turbulence [133, 286, 293].

Few works have employed up to now discontinuous Galerkin methods to simulate
jets [149, 201, 93, 190, 59, 84, 267].

In [149], Ham et al. use a second-order DG method to predict the far-field noise gen-
erated by a jet at 𝑅𝑒𝐷 ∼ 1.1 · 106. Although comparisons with experimental flow fields
were reasonable, an excessive falloff in the high frequency range was observed, empha-
sizing the requirement of additional refinement and/or higher order discretizations.

In the works by Marek et al. [201] and Carton de Wiart et al. [72], respectively third-
order incompressible and fourth-order compressible DG-LES computations of turbulent
jets were performed, at relatively low Reynolds numbers 𝑅𝑒𝐷 = 2 − 5 · 104, which are
significantly lower than industrial jets.

Fourth-order DG simulations of the JEAN nozzle configuration at 𝑅𝑒𝐷 = 106 were
performed by Lorteau et al. [190] on unstructured grids, and compared to the results
obtained using a FV unstructured solver. Although the outcome of this comparison high-
lighted the potential of the DG method to accurately represent the complex physics of
turbulent jets, no tripping technique was used in this study, which led to some discrep-
ancies between the simulation results and the experimental data.

Corrigan et al. [93] have also reported results from third-order DG simulations of
a coarse supersonic jet (6 million elements), showing the potential of the high order
computation with respect to a second-order continuous Galerkin solver on a significantly
finer mesh.

More recently, Chauhan et al. [84] compared supersonic turbulent jet simulations at
Reynolds 8.5 · 105, using different subgrid scale models as ILES, Smagorinsky and Vre-
man, on meshes with over 100 million degrees of freedom. The computational mesh
was divided into a near field zone discretized with a third order DG formulation which
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used as well wall functions at the nozzle walls, while the intermediate zone was dis-
cretized with a second order Finite Volume method. This approach can be assimilated
to a variable-order a priori adaptive simulation. The far-field was solved with the FW-H
equations for acoustic noise prediction. They showed better performances of the Vreman
model in predicting the far-field noise, yet yielding some discrepancies as compared to
experimental measurements.

Results on jet simulations performed with DG methods have been usually obtained
by employing classical convective schemes (LLF [190], HLLC [93] and Roe [149]).

Computational Aero Acoustics (CAA) approaches The description of both the flow
field and the acoustic field with Navier-Stokes equations, referred to as Direct Noise
Computations [29], would require a tremendous grid resolution, due to the need of
transporting accurately short acoustic waves over long distances. This approach is usu-
ally not applicable to realistic applications, presenting a prohibitive computational cost.

For this reason, hybrid approaches are employed instead. The most common ap-
proaches rely on integral methods (as the Lighthill analogy [186], the Kirchhoff method
[197] and the Ffowcs William-Hawkings (FW-H) method [120]) or on the use of the
linearized Euler equations (LEE) [54, 213, 51] for the acoustic propagation.

The chosen hybrid approach for aeroacoustic predictions consists in solving the CFD
field with scale-resolving simulations (DNS, LES, ILES, hybrid RANS/LES) to determine
the near-field flow results, and then using these data to compute the far-field noise
radiated from the jet using the FW-H surface integral formulation.

This hybrid approach has been employed for jet noise predictions of different con-
figurations, such as in installed wing/jet or isolated jets configurations [136, 230, 287,
290, 309, 205, 238, 221, 189, 190] as well as for other aircraft components as landing
gears, flaps, rotors [70, 176, 95, 168, 188].

6.4.2 Flow field computational set-up

Operating conditions The operating conditions are the same which have been pre-
sented in Section 5.3 for the RANS steady case. They are summarized in table 6.4.

p𝑡/p∞ 𝑇𝑡/𝑇∞ 𝑇𝑗/𝑇∞ 𝑀 𝑗 𝑅𝑒𝐷 𝑀∞
1.7 1.15 1 0.9 106 0.01

Table 6.4: Operating conditions of the PPRIME jet flow.

All solid surfaces of the nozzle are treated as no-slip adiabatic walls. Far-field bound-
ary conditions are imposed on the lateral surfaces of the external cylindrical domain, the
relevant stagnation pressure and temperature are defined at the inflow of the nozzle and
the free-stream static pressure is specified at the outlet.

As proposed in Section 5.3, prisms and tetrahedral elements inside the nozzle are pre-
served over the course of the adaptation. These elements will be subject to p-adaptation
only.
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Figure 6.14: hpDG/ZDES simulations of the PPRIME nozzle. Slice of the computational
domain for the hpG1 discretization with polynomial degrees (left). High-order solution
interpolated on a fine post-processing mesh of the pressure fluctuations in grey scale,
with a sketch of the interface of the sponge layer zone.

Resolution and computational domain The initial mesh, called hpG1 in the follow-
ing, is the hp-mesh obtained from the steady hp-adaptation using RANS equations to
solve the nozzle/jet flow presented in Section 5.3. This mesh counting 11.6 million dofs
and providing a sufficient level of convergence with RANS equations, is used as starting
point for ZDES mesh adaptation. Two ZDES adaptation steps are performed, yielding a
discretization hpG2 with 18.9 million dofs, and a discretization hpG3 with 31.7 million
dofs.

The axisymmetric computational domain extends from approximately −10𝐷 (the lon-
gitudinal length of the nozzle in the 𝑥-direction) to 50𝐷 in the longitudinal direction 𝑥,
and from −30𝐷 to 30𝐷 in the radial direction. A sponge layer is created for elements
presenting their cell centers more than 35 diameters far from the nozzle exit in the
streamwise direction 𝑥𝑐 > 35𝐷, and 10 diameters from the axis of the jet 𝑟𝑐 > 10𝐷 in the
radial direction. The mesh elements in these regions have a very large size which can
compromise the stability of the simulations when turbulent structures or high amplitude
sound waves pass through them, if a high order of accuracy is defined in those cells. An
elegant way fitting to the present hp-methodology consists in forcing these elements to
a low order 𝑝 = 1 discretization. This creates a sponge layer which further damps the
aforementioned problematic phenomena as well as reducing the overall computational
burden of the simulations. This forcing is kept active through the adaptive procedure. In
the left panel of figure 6.14 a slice of the domain representing the polynomial degrees,
with the sponge layer in 𝑝 = 1, is showed. In the right panel of figure 6.14, the high-
order pressure fluctuations field is projected on a fine mesh. The acoustic field is briefly
analyzed to assess the lack of potential acoustic reflections due to the sponge layer zone
(highlighted by the red lines) or p-variations. The lack of reflections of acoustic waves
across the sponge layer interface is evident, while the identification of acoustic sources
due to p-interfaces in the jet would require a finer analysis. However, no critical reflec-
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tions seem to be affecting the acoustic field, which correctly propagates to the far-field
with a preferred direction in the range between \ ∼ 40◦ and \ ∼ 20◦ above the jet axis.

Adaptation parameters and characteristic time periods The parameters used by
MMG and the adaptation module are:

• ℎ𝑔𝑟𝑎𝑑 = 1.5, which is the default value used in this work. It provides a good
compromise between excessive refinement induced by a low value of ℎ𝑔𝑟𝑎𝑑, and
the loss of isotropy and mesh quality induced by a high value.

• ℎ𝑚𝑖𝑛,tetra is set to ℎ𝑚𝑖𝑛 = 0.016𝐷 for tetrahedra, which is the length of the smallest
edge of the boundary layer prisms which constitutes the interface with tetrahedra.
The height of the first element of the prismatic layer is ℎ𝑚𝑖𝑛,prisms = 0.0003𝐷, and
is fixed along the geometry and over the course of the adaptive procedure.

• ℎ𝑚𝑎𝑥 is set as the size of the domain.

• 𝑟ℎ = 4 such that between two steps of the adaptation process, the edge of the
equilateral triangle can at most divide by four its size.

• 𝑓𝑟 = 2 such that the desired number of dofs in the newly adapted mesh is twice
the number of dofs present in the previous mesh. We remind that the adaptive
procedure, together with the remeshing step performed by MMG, is not always
able to respect the exact desired number of dofs, while however providing a good
guess.

• 𝑝min = 1 is the minimum polynomial degree of the spatial discretization allowed
for hp-adaptation.

• 𝑝max = 3 is the maximum polynomial degree that the spatial discretization is al-
lowed to reach for hp-adaptation.

The time intervals required to pass the transient and collect the error estimator statis-
tics, introduced in Section 6.1.2, are chosen as follows:

• Δ𝑡sampl = 0.0067𝑡𝑐, which corresponds to 150 samples for each 𝑡𝑐;

• 𝑇trans = 50𝑡𝑐, is sufficient for the solution to adapt to the new resolution and provide
relevant error and smoothness estimates, not biased by transient phenomena;

• 𝑇𝜖 𝜎 = 30𝑡𝑐, is chosen long enough to correctly capture the main features of the
flow, but short enough to avoid increasing the computational time of the adaptation
process;

• 𝑇stats = 150𝑡𝑐, providing sufficiently time-converged statistics, especially in zones
relatively close to the nozzle exit and the end of the potential core. In farther
regions, where the flow field is dominated by lower frequency phenomena, the
simulation may need longer collection times to achieve full convergence.
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Turbulence modeling approach In the current work a combination of the ZDES mode
0 (RANS) and ZDES mode 1 model is employed. In particular the model is set to RANS
mode inside the nozzle, as depicted in figure 6.15.

The hybrid length in the destruction term of the SA equation is defined as:

d̃𝑍𝐷𝐸𝑆 =

{
d𝑤 in RANS zones
min(d𝑤 , 𝐶𝐷𝐸𝑆Δ̃𝐷𝐸𝑆) in DES zones

(6.2)

Figure 6.15: hpDG/ZDES simulations of the PPRIME nozzle. Forcing of the interior of
the nozzle to RANS mode.

The use of RANS modeling inside the nozzle allows us to ensure the correct boundary
layer evolution inside the nozzle, while employing RANS-like streamwise and azimuthal
mesh spacings, and hence decreasing the computational cost that a Wall Resolved LES
simulation would have required. However, no turbulent injection/tripping techniques
are here employed. In fact, a RANS-like streamwise and azimuthal resolution in the
nozzle, while reducing the computational cost of the adaptive simulations, would be
insufficient for the development of small turbulent structures (see Chapter 2).

Adaptation strategy starting from RANS-adapted meshed The strategy employed
consists in performing first a series of hp-adaptations using affordable steady RANS sim-
ulations which in turn provide a starting mesh for the hybrid RANS/LES adaptation that
already captures some important features of the unsteady simulation. This approach,
where the accurate and expensive hybrid RANS/LES adaptation is performed starting
from a RANS-adapted mesh, is preferred over starting the adaptation process on a very
coarse mesh with hybrid RANS/LES simulations. Such a mesh would prevent the turbu-
lent structures of the flow from developing, and could yield numerical instabilities and
very poor quality results. Moreover it would dramatically increase the computational
time for the whole adaptation process, as many unsteady adaptation steps would be
needed to reach accurate results.

Starting from a RANS solution is also natural in the present hybrid RANS/LES con-
text, as the wall-attached flow (and eventually other critical zones using a Zonal DES
approach) is solved in RANS mode, and a ZDES statistically-steady flow can be easily
established from a RANS solution, after a transient period 𝑇trans.

In this section we employ as a first mesh for the adaptation, called hpG1 in the fol-
lowing, the third adapted mesh in Section 5.3 using 𝑓𝑟 = 2. We preferred to run hybrid
RANS/LES simulations starting from this mesh and not the 𝑓𝑟 = 1.5 grid with a similar
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number of dofs. Despite the faster convergence of 𝑓𝑟 = 1.5 meshes for RANS computa-
tions, the adapted meshes present some features strongly adapted to the RANS solution,
as the massive refinement of the RANS high-gradient zones around the potential core.
This is appropriate for RANS simulations, while from an a priori knowledge of the stud-
ied turbulent jet, we preferred a mesh with smoother topological features, to adapt to
the new unsteady flow with a higher degree of flexibility.

Park et al. [234] explored the potential of hybrid RANS/LES mesh adaptation, while
using RANS adapted meshes as initial meshes for DDES fixed-point adaptation. Although
the method was not completely mature, they successfully applied metric-based mesh
adaptation to wing and aircraft configurations. A full validation and a deeper study of
scale-resolving adaptive simulations from RANS-adapted meshes could be of interest, but
exceeds the scope and the computational means of the present work. Here we intend to
show an application of hp-adaptation for industrially-relevant flow configurations, and a
pragmatic approach is chosen in order to deal with realistic computational resources.

6.4.3 Flow field results

Computational meshes

Figure 6.16 shows the three hp-meshes employed in this study: hpG1, the initial hp-mesh
of the ZDES adaptive procedure, adapted from a previous RANS adaptation; hpG2, the
first adapted hp-mesh from a ZDES simulation; hpG3, the second adapted hp-mesh from
a ZDES simulation.

Figure 6.16: hpDG/ZDES simulations of the PPRIME nozzle. Zoom of the polynomial
degree map in the nozzle exit region and the early jet plume for the three hp-adapted
meshes, hpG1 on the left, hpG2 in the middle, hpG3 on the right.

The mesh hpG1 mostly presents 𝑝 = 2 and 𝑝 = 3 elements in the jet plume, except
at the exit of the nozzle in the region close to the axis, which is discretized with 𝑝 =

1 elements. The external part of the shear layers presents 𝑝 = 2 elements since the
smoothness estimator in previous RANS simulations had detected non-smooth features
in this region, and had prevented the algorithm from increasing the polynomial degree
in this zone.

A concentration of the h-refinement can be observed around the potential core. The
zone relevant for unsteady ZDES simulations is the mixing layer zone where the vortices
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develop from the lip of the nozzle. In this region the maximum polynomial degree 𝑝 = 3
is selected by the algorithm. As seen from TGV tests in [37], this property is desirable
because high-order DG discretizations describe the turbulence more accurately than low
order discretizations with an equivalent number of degrees of freedom.

hp-adapted meshes hpG2 and hpG3 increase the degree of 𝑝 = 2 elements located
in the jet plume to the maximum 𝑝 = 3, especially on the axis of the jet. Globally,
the polynomial degree distribution remains the same for the three meshes hpG1, hpG2
and hpG3, since the RANS adaptation had already broadly identified the flow regions of
interest and provided a reasonable initial discretization.

The most important difference between the three hp-meshes resides in the size of the
elements in the jet plume. The mixing layer, presenting strong vortical structures need-
ing very fine resolutions to be adequately captured, is progressively h-refined, since the
maximum polynomial degree has already been reached. Higher degree computations
would need ad-hoc load balancing techniques, which are not the subject of the present
study, but will be addressed in future work. We also note that very high-order unstruc-
tured DG discretizations can present robustness or efficiency issues, which might not be
compatible with applications in a challenging industrial context.

In figure 6.17 we display the distribution of the error estimator on the mesh hpG1
and hpG2, according to which hpG2 and hpG3 are built.

Figure 6.17: hpDG/ZDES simulations of the PPRIME nozzle. Zoom of the distribution of
the error estimator in the nozzle exit region and the early jet plume for the hp-adapted
meshes, hpG1 on the left and hpG2 on the right.

The error estimator is found to correctly identify the most unresolved zones of the
flow, well detecting the turbulent shear layers of the jet. In particular we notice a grow-
ing intensity of the error estimator in zones corresponding to high rms values of the
velocity, whose profiles will be presented in the following sections, in figures 6.22 and
6.24. These regions are mainly the lipline and the centerline at the end of the potential
core. This behavior is reflected by the distribution of the degrees of freedom in figure
6.16, where the elements in the lipline are h-adapted in both the adaptive steps, being
already at their maximum polynomial degree 𝑝 = 3, and the elements in the centerline
are first mainly p-adapted (hpG2) and then h-adapted (hpG3). A difference with respect
to the steady RANS adaptations performed in Section 5.3 lies in the concentration of
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the dofs obtained by the adaptation. Indeed the most refined region for scale-resolving
simulations is mainly located in the turbulent shear layers, while for RANS equations
it is mainly identified in the high mean velocity gradient zone of the potential core.
While we believe that RANS-adapted meshes can provide an appropriate initial guess for
scale-resolving adaptations, the requirement of performing proper scale-resolving adap-
tation is highlighted by the pronounced differences in the solved flow features by the
two turbulence modeling approaches.

Qualitative instantaneous field analysis

A first qualitative assessment of the results is now conducted by the means of the vi-
sualizations of the instantaneous flow field for the three hp-meshes hpG1, hpG2, hpG3,
which are presented in figure 6.18 and 6.19 and compared.

Figure 6.18: hpDG/ZDES simulations of the PPRIME nozzle. Iso-contours of the tem-
perature 𝑇/𝑇∞ in colored-scale and the pressure fluctuations (p − p∞)/p∞ in greyscale.
Zoom of the hpG1 mesh (top), the hpG2 mesh (center) and the hpG3 mesh (bottom).

Figure 6.18 describes the instantaneous fields of temperature (colour) and pressure
fluctuations (grey scale), for the meshes hpG1 with 11.6 millions dofs (top), hpG2 with
18.9 millions dofs (middle) and hpG3 with 31.7 millions dofs (bottom). These pictures
illustrate that the most resolved computation captures smaller turbulent structures, as
compared to the two coarser simulations, thanks to the hp-adaptation in the zones of
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interest of the jet. Moreover, we notice that the use of a finer grid resolution in the jet
flow leads to a slower jet development (and a longer potential core). This trend will be
further discussed in the next section.

Figure 6.19: hpDG/ZDES simulations of the PPRIME nozzle. Iso-contours of vorticity at
𝑥/𝐷 = 1, 2, 3 (from left to right) for hpG1 (top), hpG2 (middle), hpG3 (bottom).

In figure 6.19, vorticity snapshots are shown for three different sections 𝑥/𝐷 = 1, 2, 3
downstream the nozzle (plots from the left to the right), for hpG1, hpG2, hpG3 com-
putations (top, middle, bottom rows). hpG1 displays larger structures than hpG2 and
hpG3 resolutions for 𝑥/𝐷 = 1, while the solutions obtained for hpG2 and hpG3 are al-
most indistinguishable. More consistent differences can be found for locations further
downstream the exit nozzle. While for hpG1 the turbulent structures are barely cap-
tured at 𝑥/𝐷 = 2, 3, hpG2 displays a sharp representation of small structures. This is
more marked for hpG3.

Quantitative data analysis

In this section, the simulation results are analyzed in terms of mean and fluctuating
velocity profiles in the various regions of interest of the jet flow.

First we study the quality of the solution at the exit of the nozzle, and the boundary
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Figure 6.20: hpDG/ZDES simulations of the PPRIME nozzle. Boundary layer velocity
profile at 𝑥/𝐷 = 0.04. Comparison between hp-adaptive and reference results.

layer velocity profile is extracted in figure 6.20 at 𝑥/𝐷 = 0.04. For the three simulations,
the velocity profiles for hpG1, hpG2, hpG3, respectively in blue, red and black straight
lines, are found to match experimental data in squared symbols and the RANS simula-
tion on hpG1 in dotted lines. Note that in the proximity of the nozzle exit, no substantial
differences can be found between hpG1, hpG2 and hpG3 hybrid RANS/LES results, be-
cause the flow features here mainly depend on the zones solved with RANS equations,
which are similarly resolved for the three discretizations.

We note that a turbulent average velocity profile is obtained at the nozzle exit due to
the RANS modeling used inside the nozzle, but turbulent injection was not considered in
this work, thus some discrepancies between the present results and experimental results
or numerical results with turbulence tripping inside the nozzle are expected.

#dofs
(M)

spatial
discretization

mesh type

Brès et al. [63] G1 16 FV-2o unstruct hexahedra
Brès et al. [63] G2 69 FV-2o unstruct hexahedra
Gand & Huet [135] G1 48 FV-2o struct hexahedra
Gand & Huet [135] G2 143 FV-2o struct hexahedra
Shur et al. [272] G1 8.4 FV-ho struct hexahedra
Shur et al. [272] G2 23 FV-ho struct hexahedra
Lorteau et al. [190] G1 78 DG-4o unstructured tetrahedra
Lorteau et al. [190] G2 165 FV-2o unstruct tetrahedra
hpG1 [present] 11.6 hp-DG unstruct tetrahedra+prisms
hpG2 [present] 18.9 hp-DG unstruct tetrahedra+prisms
hpG3 [present] 31.7 hp-DG unstruct tetrahedra+prisms

Table 6.5: hpDG/ZDES simulations of the PPRIME nozzle. Comparison between the
number of dofs for simulations in the literature and the present hp-adapted simulations.

The mean streamwise velocity profiles on the jet axis 𝑟/𝐷 = 0 and on the lipline



118 CHAPTER 6. hp-ADAPTATION FOR TURBULENT UNSTEADY COMPUTATIONS

turbulence
modelling

turbulent
injection

simulated
duration
(𝐷/𝑈 𝑗)

Brès et al. [63] G1 LES-Vreman yes 2000
Brès et al. [63] G2 LES-Vreman yes 1150
Gand & Huet [135] G1 ZDES mode 2 no 300
Gand & Huet [135] G2 ZDES mode 2 no 300
Shur et al. [272] G1 RANS profile+ILES no 250
Shur et al. [272] G2 RANS profile+ILES no 250
Lorteau et al. [190] G1 LES-Smagorinsky no 180
Lorteau et al. [190] G2 LES-Smagorinsky no 250
hpG1 [present] ZDES mode 1 no 150
hpG2 [present] ZDES mode 1 no 150
hpG3 [present] ZDES mode 1 no 150

Table 6.6: hpDG/ZDES simulations of the PPRIME nozzle. Comparison between param-
eters in simulations in the literature and the present hp-adapted simulations.

𝑟/𝐷 = 0.5, are compared in figures 6.21 and 6.22 to experimental and numerical results
obtained by Brès et al. [63] in green lines, Gand & Huet [135] in magenta lines, Shur et
al. [272] in orange lines, and Lorteau et al. [190] in cyan lines, whose parameters and
numerical set-up are described in tables 6.5 and 6.6. Dotted lines represent coarse grids
for each reference, while dashed lines represent fine grids. Shur et al. and Lorteau et
al. show the mean velocity profile along the streamwise direction at the radial position
corresponding to the peak of rms velocity instead of the lipline velocity. However the
peak of the rms velocity is found very close to 𝑟/𝐷 = 0.5, and the two quantities can be
directly compared.

Before further analyzing the results, the reference data and the related numerical
techniques and modeling approaches are briefly reviewed.

Brès et al. used a second order Finite Volume approach on unstructured hexahedral-
dominant grids, obtained with an a priori isotropic mesh adaptation procedure, where it
is not an error estimator that guides the refinement process, but an a priori knowledge
of the physical phenomenon. Starting from a structured mesh with a low number of
elements, several embedded zones of refinement with specific target length scale were
defined by the user and enforced iteratively by the adaptation tool. Moreover further
mesh refinement was applied inside the nozzle in the near-wall region. Regarding their
LES strategy, the Vreman subgrid model was used, coupled with an equilibrium wall
model inside the nozzle, which allows for selecting element sizes significantly larger
than 𝑦+ = 1 at the wall. They also used synthetic-turbulence boundary conditions to
model the boundary-layer trip present in the experiment on the internal nozzle surface.

Gand & Huet adopted hexahedral structured meshes with a second-order FV scheme,
modeling the turbulence with ZDES mode 2 and ZDES mode 3 approaches. Here we
consider only their ZDES mode 2 results, since both ZDES mode 1 employed in this
work and ZDES mode 2 aim at modeling the boundary layers inside the nozzle with a
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RANS approach without a tripping of turbulent structures and thus account for a similar
modeling approach.

Shur et al. employed high-order FV schemes on structured meshes. They used a
two-stage simulation procedure in which the inflow velocity profile was imposed from
a RANS solution previously obtained on a coupled nozzle/jet plume RANS simulation,
excluding the geometry from the ILES computation. This allowed them to reproduce the
effect of the boundary layer considerably reducing the high cost of a coupled nozzle/jet
plume LES. Because of this, a direct comparison between the number of dofs employed in
their simulations and in our adaptive DG hp-meshes cannot be done in a straightforward
manner. However, it is still interesting to compare our results with those obtained by
Shur et al. as in both cases the nozzle exit profile is obtained from RANS modeling
approaches.

Lorteau et al. adopted a fourth-order DG approach on fully tetrahedral meshes. No
tripping procedure was employed, and the Smagorinsky subgrid model was used for LES.
Their only DG simulation results (G1) are shown in dotted lines. The shear layer was
here laminar close to the nozzle exit, as no turbulent injection technique was considered
to trigger the transition to turbulence within the nozzle.

For each of the four numerical references, results obtained on two grid resolutions
(except for Lorteau et al. for which only one DG resolution is available) are extracted
and compared to the present hp-adaptive results. At first we observe that by refining
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Figure 6.21: hpDG/ZDES simulations of the PPRIME nozzle. Mean streamwise velocity
profiles on the jet axis 𝑟/𝐷 = 0 (left) and on the lipline 𝑟/𝐷 = 0.5 (right). Comparison
between hp-adaptive and reference results.

(in h and p) the jet plume, the velocity decay on the jet axis becomes slower, leading to
longer potential cores (as already observed in figure 6.18). Surprisingly, we observe that
the adaptive simulation hpG2 seems to provide closer results to the experiment, while
the more refined hpG3 mesh overestimates the length of the potential core. While this
results might appear unexpected, this behavior has been already pointed out by Shur
et al. [272] (in orange lines), and can be found in results from Gand & Huet [135] (in
magenta lines) as well. The hpG3 fine mesh provides an axial mean velocity profile
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in very close accordance with their most refined simulations. It should be reminded
that these two modeling approached are very similar to the one employed in this work.
However, a similar overestimation of the length of the potential core is also observed in
pure LES simulations on the fine grid by Brès et al. [63] (in dashed green lines) in a less
marked manner, and by Lorteau et al. (in cyan lines). The reasons for this overestimation
of the jet potential core length are still not clear. Shur et al. hypothesized two reasons
for this behavior: one is that it might be caused by the use of ILES, while the other
is that it might be caused by the feedback loop between jet turbulence and nozzle not
accurately reproduced by the system of boundary conditions. The second observation
would be valid also for our ZDES mode 1 model, because the small-scale variations of
the turbulent flow cannot travel upstream and interact with the interior of the nozzle,
which is modeled in RANS. Lorteau et al. attributed this overestimation to the lack of an
appropriate turbulent injection technique to trigger the transition to turbulence within
the nozzle, as it happens in the experiment.

Even though a formal answer has not been found, we think that a combination of
several effects could be the cause of this behavior. In particular the lack of turbulent
injection: the turbulent transition and formation of jet coherent structures here occurs
in the shear layer, outside the nozzle. This consists in the process of vortex rolling-up
and pairing, after which three-dimensional turbulence appears. This may affect both the
flow and the acoustic solution in different ways [63, 190, 132]. We remind here that the
experiment presents a fully turbulent boundary layer, after triggering the turbulence in-
side the nozzle with a strip. In this case, the boundary layer turbulent structures formed
inside the nozzle are likely to influence the dynamics of shear-layer structures formed
in the vicinity of the nozzle exit. A similar tripping technique could be considered as
future work in order to elucidate its effect on the jet plume flow dynamics and verify if
the simulations converge towards the experimental results when the mesh is refined or
adapted. It is also possible that the resolution is still insufficient. In this case, a fourth
more refined simulation (not considered in this thesis due to limited computational re-
sources) should be performed in order to assess the flow properties in terms of mean and
fluctuating profiles and verify the trends observed in the previous three hp-simulations.

Compared to reference simulations, the axial mean velocity is in very close accor-
dance with the most refined simulations by Gand & Huet and Shur et al., while for
𝑥/𝐷 > 10 the decay of the velocity is faster for hpG3. This is due to a lower resolution
in this zone with respect to the two authors, suggesting that a further adaptation step
providing additional refinement for 𝑥/𝐷 > 10 might eventually slow the decay of the
centerline velocity.

Analyzing the mean velocity profile on the lipline in the right panel of figure 6.21,
reveals the impact that grid refinement has in the development of the shear layer, espe-
cially for 𝑥/𝐷 > 2. Here grid refinement yields an increased velocity along the lipline,
which tends towards the experimental profile.

In figure 6.22 we report the rms of the streamwise velocity profiles in the centerline
(left) and in the lipline (right). Looking at the centerline velocity profiles, we notice
that the profile is not smooth, but presents spurious peaks. These peaks are pronounced
for the coarse simulation hpG1, while they tend to decrease in intensity thanks to the
adaptive grid refinement. This aspect can originate from the DG scheme, where the
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Figure 6.22: hpDG/ZDES simulations of the PPRIME nozzle. Root-mean square of the
streamwise velocity fluctuation profiles on the jet axis 𝑟/𝐷 = 0 (left) and on the lipline
𝑟/𝐷 = 0.5 (right). Comparison between hp-adaptive and reference results.

solution is discontinuous across elements and the polynomial approximating the solu-
tion can have very sharp shapes near the interfaces of very coarse elements, but also
possibly from the statistical sampling which is low at the centerline due to the inability
of performing a spatial azimuthal averaging at this location. This behavior is improved
thanks to the mesh adaptation, and peaks in the solution gradually disappear for hpG2
and hpG3. These numerical artifacts in the solution are not apparent for the lipline plots
in the right panels of figures 6.21 and 6.22, as well as the velocity profiles in figures 6.23
and 6.24, due to the better sampling of the solution which is averaged in the azimuthal
direction and/or a better resolution in the lipline area.

The small peak seen in the lipline velocity rms profile around 𝑥/𝐷 = 0.5 is very sim-
ilar for hpG2 and hpG3, indicating that in the region close to the nozzle exit the two
meshes display the same flow features, probably due to the similar size of the elements
in this region. A lack of resolution just downstream of the jet exit appears to accelerate
the mixing-layer transition, resulting in higher axial (in the centerline) and peak values
(in the lipline) of turbulence intensities for the hpG1 simulation as compared to the more
refined simulations hpG2 and hpG3. This can be seen both in the right and the left panel
of figure 6.22 for 𝑥/𝐷 > 0.5. For the finer simulations we observe an underestimation of
the turbulence intensities with respect to the experiments in the early phases of the jet
development for 𝑥/𝐷 < 10. This behavior is observed as well for the reference simula-
tions. Dotted curves, representing coarser meshes, show higher rms levels than dashed
curves, representing the finest mesh for each reference. This is particularly evident for
simulations by Shur et al. and Gand & Huet. The decrease in axial/peak rms velocities
for 𝑥/𝐷 < 10 can be directly associated with the longer potential core length for the fine
simulations [51]. In contrast, a lower resolution leads to lower rms axial/peak velocities
downstream of 𝑥/𝐷 = 10.

For 𝑥/𝐷 > 10 peak rms levels in the lipline match more closely the experiment when
the mesh is adaptively refined, which indicates that the adaptation strategy is able to
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refine far wake regions and yield a better representation of the turbulent structures
in these regions. The irregular axial rms profiles for 𝑥/𝐷 > 10 suggest that statistics
could be collected for a longer sampling period to provide smoother plots. In fact, from
𝑥/𝐷 > 10 the flow has a longer eddy turnover time than the region close to the exit
nozzle. Moreover the rms quantities need more time to converge as compared to average
quantities, and the axial quantities cannot be azimuthally averaged.
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Figure 6.23: hpDG/ZDES simulations of the PPRIME nozzle. Mean streamwise velocity
profiles at different locations in the jet plume 𝑥/𝐷 = 1, 5, 10, 15 (from left to right).
Comparison between hp-adaptive and reference results.

Figures 6.23 and 6.24 show the mean and rms streamwise velocity radial profiles
at different axial locations downstream of the nozzle exit. For the locations 𝑥/𝐷 = 1, 5
closer to the nozzle exit, we observe an improvement in the prediction of the mean
velocity profile during the mesh adaptation process, and a lower shear layer thickness
of the jet is observed for hpG2 and hpG3 simulations. At locations 𝑥/𝐷 = 10, 15, similar
observations to those made for the centerline profile in figure 6.21 can be made. hpG1
clearly underestimates the mean velocity level close to the centerline. hpG2 seems to
provide results in close agreement with experimental results, while the hpG3 simulation
overestimates the velocity for 𝑟/𝐷 < 0.5 at both the locations, especially at 𝑥/𝐷 = 15.

However, the hpG3 profile at 𝑥/𝐷 = 10 closely matches the finest simulation by Gand
& Huet, and displays intermediate values between their coarse G1 and their fine G2 for
𝑥/𝐷 = 15. This confirms once again the trend of overestimation of the axial velocity
when refining the mesh, already observed by other authors who performed numerical
simulations on two different grid resolutions.

From the profiles of the rms of the velocity fluctuations in figure 6.24, we see that
hpG2 and hpG3 provide lower levels of turbulent intensities with respect to the hpG1 re-
sults, for 𝑥 = 1, 5, 10. Since the simulation does not present explicit turbulent structures
at the nozzle exit, lower levels of the rms of velocity are expected in the vicinity of the
nozzle. The higher levels of the hpG1 simulation, apparently closer to the experimental
results than hpG2 and hpG3, are attributed to a lack of resolution, which fictitiously pro-
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Figure 6.24: hpDG/ZDES simulations of the PPRIME nozzle. Root-mean square of the
streamwise velocity fluctuation profiles at different locations in the jet plume 𝑥/𝐷 =

1, 5, 10, 15 (from left to right). Comparison between hp-adaptive and reference results.

vides a better solution (as already observed in the right panel of figure 6.22). The same
behavior is observed for 𝑥/𝐷 = 5 and 𝑥/𝐷 = 10, yet the hpG1 simulation shows a sub-
stantial overestimation of rms levels when getting closer to the axis. This is related to the
coarse grid-induced rapid growth of the shear layer due to the RANS-to-LES transition.
This produces larger vortices, leading to a higher kinetic energy.

All these observations agree with the results by Brès et al. and Gand & Huet, respec-
tively displayed with green and magenta lines, comparing the coarse (dotted lines) and
the fine (dashed lines) simulations. The rms velocity profile at 𝑥/𝐷 = 15 matches more
closely the experiment as the mesh is refined, as can be observed also for the simulations
by Brès et al. and Gand & Huet. This emphasizes the ability of the hp-adaptation strat-
egy to detect and refine the turbulent structures in the far wake and improve in turn the
estimation of the turbulent fluctuations.

Overall good results, in agreement with numerical references, have been obtained
with the present unstructured hp-adaptive strategy with a reasonable amount of degrees
of freedom. The most refined hp-adapted mesh employed here presents a lower number
of dofs than both the unstructured DG-𝑝3 simulations by Lorteau et al. and the structured
FV simulations by Gand & Huet, while achieving very close results.

Observations and comparisons with Brès et al. and Shur et al. in terms of number of
dofs employed and achieved accuracy should be analyzed with caution. This is because
the former employed both turbulent injection which explicitly guaranties explicit turbu-
lent structures inside the nozzle, and a wall model for LES which allows for defining a
coarser mesh inside the nozzle compared to our approach. The latter did not mesh the
interior of the nozzle, yielding an overall reduction of dofs compared to approaches with
an explicit meshing of the nozzle interior.

To conclude the assessment of the present simulations, the near field pressure fluc-
tuations are analyzed. We directly record the pressure time history at four probes
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P1(𝑥/𝐷 = 2.62, 𝑟/𝐷 = 1.07), P2(𝑥/𝐷 = 3.42, 𝑟/𝐷 = 1.18), P3(𝑥/𝐷 = 4.47, 𝑟/𝐷 = 1.33),
P4(𝑥/𝐷 = 5.85, 𝑟/𝐷 = 1.52), downstream the nozzle exit for 36 equally spaced locations
in the azimuthal direction. The Power Spectral Density (PSD) is then computed from the
pressure fluctuations signal and the resulting spectra are azimuthally averaged.
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Figure 6.25: hpDG/ZDES simulations of the PPRIME nozzle. PSD of the pressure signal
recorded at locations P1(𝑥/𝐷 = 2.62, 𝑟/𝐷 = 1.07), P2(𝑥/𝐷 = 3.42, 𝑟/𝐷 = 1.18), P3(𝑥/𝐷 =

4.47, 𝑟/𝐷 = 1.33), P4(𝑥/𝐷 = 5.85, 𝑟/𝐷 = 1.52) from top left to bottom right.

In figure 6.25 we compare the hpG1, the hpG2 and the hpG3 computations to the
experiment and the coarse G1 simulation from Brès et al. for which the results are im-
mediately available.

In the inertial subrange, the spectra follow the expected -7/3 slope for the pressure,
up to the grid cut-off Strouhal number 𝑆𝑡𝑐𝑜. The 𝑆𝑡𝑐𝑜 number depends on the resolu-
tion of the mesh in each sampled location, and the more refined grids can resolve the
PSD spectra up to increasing 𝑆𝑡𝑐𝑜 numbers. This is observed in figure 6.25, where the
spectrum of the coarse hpG1 starts to deviate from the theoretical behavior at lower 𝑆𝑡
numbers than hpG2 and hpG3 in all the four locations. In particular we can observe, for
example at the location P4 in the right panel of the bottom row of figure 6.25, that the
hpG1 mesh presents 𝑆𝑡𝑐𝑜 ≈ 1.5, which increases for hpG2 (𝑆𝑡𝑐𝑜 ≈ 3) and hpG3 (𝑆𝑡𝑐𝑜 ≈ 4).

Moving to the medium frequency range of the spectra, we notice a global overes-
timation of the near field noise levels for the discretization hpG1 with respect to the
experiment. While the discretization hpG2 provides spectra in better agreement with ex-
perimental results in the low-frequency range, a slight overestimation of the noise level
is still present in the Strouhal range 1 < 𝑆𝑡 < 3. This overestimation is more marked for
the probe located closer to the nozzle exit.

Regarding the finer hpG3 discretization, the shear-layer development is character-
ized by lower pressure spectra levels, in accordance to the lower turbulence intensities
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already pointed out in figure 6.22. This results in an overall good prediction of the
near-field noise levels in the medium frequency range, and an underestimation in the
low-frequency range of the spectra. It should be remarked that, as already discussed,
some mismatch between adaptive numerical results and numerical/experimental results
are most likely caused by the lack of turbulence injection method, as well as the relatively
short duration of the adaptive simulations with respect to reference simulations.

6.4.4 Far-field acoustics computational set-up

For the three hp-meshes, we performed computations of the far-field noise on two ar-
rays of microphones: a cylindrical array located at 14.3𝐷 from the jet axis and a polar
array located at 50𝐷 from the nozzle exit. For each angle of observation, 36 azimuthal
microphones have been employed. The cylindrical and the polar arrays are represented
respectively in the left and in the right panel of figure 6.27, together with the complete
Ffowcs Williams-Hawkings (FW-H) surface chosen for the study.

The FW-H surface integral method is used to estimate the far-field noise implemented
in the KIM software developed at ONERA [238]. This method allows for computing the
acoustic radiation of the acoustic sources generated by a turbulent flow: starting from
the fluid flow field computed with LES on a surface enclosing the noise sources, the noise
is propagated to the observer located far from the noise source.

The high-order solution is extracted on a cylindrical-conical-cylindrical surface en-
closing the nozzle geometry and the noise surfaces, as shown in figure 6.26, and stored
with a sampling period Δ𝑡FW-H = 0.033𝑡𝑐, which corresponds to once every five flow
statistics collections (Δ𝑡sampl = 0.0067𝑡𝑐). This surface is closed at the downstream ex-
tremity, and the additional flux terms proposed by Rahier et al. [238] are used in the
FW-H formulation, in order to improve the stability of the noise computed from the
different surfaces, especially in the low frequency part of the spectra.

The instantaneous flow field is extracted on four different surfaces of revolution (S1,
S2, S3, S4) in figure 6.26, which differ by their radial extent, in order to assess the effects
of the position of the surfaces on the acoustic results. The radii of the upstream cylinder-
shaped control surfaces S1, S2, S3, S4 are respectively 𝑟/𝐷 = 0.68, 1, 1.35, 1.7. Truncated
cones with spreading rate 𝛼 = 0.15 (final radii 𝑟/𝐷 = 3.68, 4, 4.35, 4.72 respectively for
S1, S2, S3, S4) connect the upstream cylinders with downstream cylinders. The closing
surfaces D1, D2, D3 are located at 𝑥/𝐷 = 20, 25, 30.

Only the results obtained by signals extrapolated from the surface S1-D3 are pre-
sented in this section. The independence of acoustic results from the choice of the sur-
face employed to perform the integration is assessed in appendix A on the finest mesh
hpG3.

The total sampling time for the pressure on the FW-H surfaces is the same as for the
accumulated statistics 𝑇stats = 150𝑡𝑐. However, due to geometrical transients at the be-
ginning and end of the acoustic extrapolation, the exploitable interval reduces to around
130𝑡𝑐. Although we are aware of the relatively short time of collection of the pressure
signals, the overall behavior of the hp-adaptation on acoustic results is still represen-
tative. Some examples of relevant simulations performed over similar amounts of non-
dimensional units can be found in [51] for the finest grids and in [190] for similar nozzle
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configurations.

Figure 6.26: hpDG/ZDES simulations of the PPRIME nozzle. Schematics of the acoustical
set-up. Location of the FW-H surfaces.

6.4.5 Far-field acoustic results

The Power Spectral Density (PSD) is computed on the microphones at different angles
of observation, from \ = 20◦ to \ = 90◦, and is azimuthally averaged on the 36 azimuthal
microphones for each angle of observation to compensate for the shorter time signal in
the simulations with respect to experiments and reference LES and ZDES results. The
Welch method is used to estimate the PSD [304]. A Hann window is applied to each
block composed of 1000 data samples and an overlap of 75% is imposed. We have
chosen to employ this set of parameters for the spectral post processing, which provides
strongly smoothed PSD spectra, in order to help their readability and the comparisons
among the different hp-meshes. Different parameters for the Welch PSD estimation are
tested in appendix A providing very similar results. A low sensitivity of the Overall
Sound Pressure Level (OASPL) to the number of overlapping segments chosen for the
post processing is also shown in appendix A.

The PSD is reported in [dB/St], as a function of the frequency expressed in
terms of the corresponding Strouhal number 𝑆𝑡 = 𝑓 𝐷/𝑈 𝑗 , following the same non-
dimensionalization used in the experiment and the LES reference results by Brès et al.

The resulting spectra obtained on the three hp-adapted meshes are shown in figure
6.28, hpG1 in blue, hpG2 in red, hpG3 in black, and compared with experimental results
in squared symbols and LES reference results by Brès et al. on the G1 mesh in dotted
green lines.

In the first place we observe that the noise level is overestimated for the coarse hpG1
and the medium mesh hpG2 for all the observation angles. The use of more refined
meshes globally leads to lower levels of the PSD, especially in the low frequency range.
This behavior is in accordance with the lower turbulence intensities pointed out in figure
6.22, when increasing the resolution. This results in a very good prediction of the farfield
noise levels by the finest hpG3 mesh in the medium frequency range, and a slight under-
estimation in the low-frequency range of the spectra for low angles of observations. This
behavior is expected, as the turbulent intensities predicted by the hpG3 mesh in the axis
just downstream the potential core, which are correlated to the strong low frequency
noise emitted at low angles, are slightly underestimated as compared to experimental
measurements.
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Figure 6.27: hpDG/ZDES simulations of the PPRIME nozzle. Representation of the cylin-
drical (left) and polar array (right) with the chosen FW-H surface S1-D3.

Moreover, for high angles of observation, especially for \ > 70◦, the PSD is overes-
timated in the medium frequency range for all the three resolutions. This is due to the
vortex rolling and pairing which in our simulations, performed without turbulent injec-
tion or tripping techniques in the nozzle, occurs outside the nozzle and causes increased
noise levels with respect to the experiment. However, we can observe that globally hp-
adaptation leads to spectra which are in closer agreement with the experiment, and a
less pronounced bump in the medium/high frequency range.

Finally, the Overall Sound Pressure Level (OASPL) in [dB] is computed in the fre-
quency range 0.05 < 𝑆𝑡 < 3, for both the cylindrical and the polar array (figure 6.29).
Very similar observations to those made for the spectra can be made for the OASPL lev-
els. Globally, the OASPL is overestimated for both the coarse and the medium meshes,
especially for high angles. While still overestimating the noise levels of around 1 dB in
the polar array and 2 dB in the cylindrical array for high angles of observation, due to
the vortex pairing phenomenon, the finest hpG3 mesh provides global results in good
agreement with the experimental measurements. For low angles of observation \ < 40◦,
the noise levels are underestimated of around 1-2 dB, due to the underestimation of the
low frequencies in the PSD spectrum. Similar results can be observed in the simulations
by Shur et al. [272], who observed acoustic levels in closer agreement with the experi-
mental measurements, despite a longer potential core, when refining the mesh. This is
probably linked to the correct levels of turbulent intensities obtained far from the nozzle
on the lipline for 𝑥/𝐷 > 10, observable in the right panel in figure 6.22, and the com-
parable maximum turbulent fluctuations level on the jet axis in the left panel in figure
6.22, that might compensate for the weaker rms levels observed in the potential core.



128 CHAPTER 6. hp-ADAPTATION FOR TURBULENT UNSTEADY COMPUTATIONS

60

80

100

120

θ = 90◦

60

80

100

120

θ = 75◦

60

80

100

120

θ = 60◦

60

80

100

120

θ = 45◦

60

80

100

120

θ = 40◦

60

80

100

120

θ = 35◦

60

80

100

120

θ = 30◦

60

80

100

120

θ = 25◦

10−1 100 101

St

60

80

100

120

θ = 20◦

P
S
D

(p
′ )

[d
B
/S
t]

60

80

100

120

θ = 90◦

60

80

100

120

θ = 80◦

60

80

100

120

θ = 70◦

60

80

100

120

θ = 60◦

60

80

100

120

θ = 50◦

60

80

100

120

θ = 40◦

60

80

100

120

θ = 30◦

10−1 100 101

St

60

80

100

120

θ = 20◦

P
S
D

(p
′ )

[d
B
/S
t]

0°

10°

20°

30°

40°

50°

60°
70°

80°90°

95 100 105 110 115
OASPL[dB]

θ[◦]

OASPL[dB]

θ[◦]

OASPL[dB]

θ[◦]

experiment
BrèsG1
hpG1
hpG2
hpG3

Figure 6.28: hpDG/ZDES simulations of the PPRIME nozzle. PSD of the pressure on the
cylindrical microphone array of radius r = 14.3D (left) and on the polar microphone
array at 50D from the nozzle exit (right) for different angles of observation.
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Overall, the adaptation process has significantly improved the estimation of the far-
field noise. These results are providing a reliable prediction of the trend that the acoustic
levels follow when increasing the resolution. However, as observed by Gand & Huet
[135] for the fluid flow results, longer simulation times (𝑇stats > 300𝐷/𝑈 𝑗) should be
performed in order to decrease the uncertainties, especially due to the low frequency
phenomena characterizing the jet evolution.
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Figure 6.29: hpDG/ZDES simulations of the PPRIME nozzle. OASPL on the cylindrical
microphone array of radius r = 14.3D (left) and on the polar microphone array at 50D
from the nozzle exit (right) for different angles of observation.

6.5 Conclusions

In this chapter, the hp-adaptation strategy on hybrid prismatic/tetrahedral meshes
has been proposed for scale-resolving simulations of turbulent flows based on hybrid
RANS/LES approaches.

Adaptive simulations of the convection of a vortex test case have been first performed
to validate the implementation of the static unsteady adaptive strategy. The usual error
estimator based on both the measure of the energy contained in the highest order poly-
nomial modes and the jumps of the solution at the element interfaces, and the smooth-
ness indicator based on the decay of the polynomial modes have been averaged over one
characteristic period of the flow, before performing the adaptation step. The integral
error on the entropy and on the pressure with respect to the analytical solution obtained
after 10 rounds of the vortex, has demonstrated a gain in terms of number of dofs of the
adaptive strategies as compared to uniform refinement.

For scale resolving simulations, the error estimator has been found to correctly iden-
tify the flow regions of interest in a hybrid RANS/LES context. This error estimator has
been used in the hp-adaptive algorithm in combination with a slightly different formu-
lation of the smoothness estimator employed for steady configurations, better suited for
scale-resolving simulations.

The hp-adaptive algorithm has been tested on the subcritical flow past a sphere, at
Reynolds number 𝑅𝑒 = 3700 using Detached Eddy Simulation. The flow solution ob-
tained on the resulting final hp-adapted mesh matches LES numerical results from the
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literature, while employing a lower number of degrees of freedom. Some discrepancies
with the DNS data show the strong dependency of the hp-adaptive process on the em-
ployed turbulence model. The use of dynamic and/or VMS models should be preferred
when a very high level of accuracy is sought. Although achieving mesh convergence for
a modeled scale-resolving simulation is made a difficult task due to the dependency of
the model itself on the mesh size, additional simulations have been performed in order
to assess the convergence and the quality of the results obtained with the adaptive pro-
cess. Very similar results are found when uniformly 𝑝-enriching the discretization of the
adapted meshes, when employing a higher maximum degree in the adaptive process,
and when performing a further adaptation step.

hp-adapted DG computations of the PPRIME nozzle at 𝑅𝑒𝐷 = 106 have been carried
out in a ZDES mode 1 configuration, and the impact of the increased resolution has
been analyzed for three adapted meshes hpG1, hpG2, hpG3 presenting respectively 11.6,
18.9 and 31.7 million dofs. Quantitative results compared fairly well to the numerical
references, obtaining overall close results to classical FV schemes on structured meshes
and non-adaptive DG methods, with a reduced number of degrees of freedom. The flow
solver CODA has been interfaced with the acoustic solver KIM, and the acoustic analysis
of the far-field propagated jet noise has been performed on the hp-adapted meshes using
a FW-H method. The acoustic spectra and OASPL computed from the pressure signal on
the microphones located in the far-field present a good agreement between the adaptive
simulations and the numerical and experimental references.

However, some discrepancies can be found in the flow field obtained on the finest
adapted meshes, with respect to the results obtained by the experimental measurements.
In particular, longer potential cores, associated with lower turbulence intensities, are
found when increasing the resolution. This appears to be a recurrent issue in the litera-
ture, especially when dealing with simulations in which the turbulence is not explicitly
triggered inside the nozzle. The impact that the lack of turbulent injection, together
with increased spatial resolutions, has on the statistics of the jets, should be carefully
validated in order to find an unequivocal answer.



Chapter 7

Towards mesh adaptation for
transonic flows over complex
geometries: application to
industrial configurations

In this chapter, we present the most recent improvements of the h-adaptation strategy
that we have introduced to account for complex geometries and flows presenting physi-
cal discontinuities such as shocks. The aim of these developments is to progress towards
hp-adaptation for transonic applications of industrial interest. The study presented in
this chapter focuses on inviscid flows. An extension towards viscous turbulent flows
could be the subject of future research.

An essential feature for the application of the developed adaptive strategies to indus-
trial applications is the correct representation of the geometry at each adaptation step.
For relatively simple geometries such as the ones considered in the previous chapters, an
initial fine enough discretization of the surface is sufficient to preserve the correct geom-
etry over the course of the adaptive process. However, for industrial design purposes on
complex configurations, even a small misrepresentation of the surface can significantly
bias the results.

In Section 7.1.1 we describe the implementation in our adaptation tool of the pos-
sibility to reproject the surface of the body to the CAD employed to generate the initial
mesh. A modification to the current error estimator, tested on subsonic configurations
in previous chapters, is proposed in Section 7.1.2 for transonic simulations to improve
shock capturing features.

The implementation of the reprojection on the CAD geometry has allowed us to test
the h-adaptive strategy in Sections 7.2 and 7.3 on two configurations of industrial in-
terest, the transonic ONERA M6 wing and the wing/body configuration of the Common
Research Model. Due to the limited efficiency in handling high Reynolds viscous flows
by the current isotropic adaptive algorithm, only inviscid flows are considered.
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7.1 Modifications to the adaptive algorithm

7.1.1 Reprojection algorithm

The adaptive strategies presented up to this point lack an essential feature which is
required for the simulation of wall-bounded flows past complex geometries.

The default MMG surface remeshing capabilities are driven by the ℎ𝐻𝑎𝑢𝑠𝑑 parameter.
This parameter, despite being useful to ensure a proper representation of curved bound-
aries, is case-dependent. Moreover, even choosing an adequate ℎ𝐻𝑎𝑢𝑠𝑑 value, given the
lack of intrinsic knowledge of the CAD geometry, the initial surface mesh needs to be
sufficiently fine to avoid a progressive degradation of the surface representation over the
adaptation steps.

In the present work, in order to remove these constraints, we opt for implementing
the possibility to reproject the newly adapted surface mesh output from MMG, on the
CAD. In figure 7.1 we show the algorithm for h-adaptation, with the two new bricks
depicted in orange. The different software used in the adaptation are reported in paren-
thesis for each block.

initial mesh 
(GMSH/ANSA+MMG)

simulation 
(CODA)

error and smoothness
estimation 
(CODA)

size prescription 
(adaptation module)

remeshing  
(MMG)

geometry reprojection 
(OpenCascade)

volume mesh deformation
(FSMeshDeformation)

START

no

END

ndofs max?

interpolation  
of the solution 

(CODA)

yes

Figure 7.1: Adaptation algorithm for h-adaptation modified to handle complex geome-
tries.

For this purpose the OpenCascade library [10] with its python wrapper pythonOCC
[11] is employed. The BREP format is used to store the CAD model (in
IGES or STEP format), mainly consisting of vertices, edges, faces. The class
GeomAPI_ProjectPointOnSurf is employed to compute the orthogonal projection
of each point of the body geometry onto the BREP faces from the CAD.

However, this step is not sufficient to obtain good quality meshes. In fact in case
of a strong misrepresentation of the geometry and/or very small elements, it can lead
to the intersection of 3D elements with the geometry and the onset of mesh elements
with a negative volume. A possible solution consists in deforming the produced volume
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mesh while preserving unchanged the correct surface mesh. It uses the linearized theory
of elastic deformations on the volume mesh, and solves a numerical approximation of
the corresponding partial differential equations using the Finite Element Method. The
degrees of freedom are in this case the displacements at each node [114]. The solution
of the linear system relies on the PETSc solver, in particular in this work we used an
ILU-preconditioned GMRES iterative solver.

The developed reprojection capability becomes an integral part of the adaptation
module, but can be used also as stand-alone module to fix low quality meshes. An
example of misrepresentation of the geometry is presented in the left panel of figure 7.2,
while in the right panel we report its corrected counterpart.

Figure 7.2: Inviscid flow past the ONERA M6 wing at 𝑀∞ = 0.84. Zoom on the tip of the
wing. The surface obtained from MMG on the left and the reprojected surface on the
right.

The ℎ𝐻𝑎𝑢𝑠𝑑 parameter used to generate the meshes reported in this chapter is the
default value ℎ𝐻𝑎𝑢𝑠𝑑 = 0.01. This is suboptimal for the test case of the ONERA M6
wing and the CRM wing/body configuration, for which a lower value should be used.
This value has been employed in order to partly avoid the dependence of the mesh
adaptation algorithm on this parameter, and let only the error estimator act in highly
curved zones. This will be of particular interest for future developments of the present
adaptive algorithms, including the use of high-order curved elements. In fact, for high-
order meshes it is expected that the number of elements in the proximity of highly curved
geometries will decrease as opposed to cases employing linear meshes. Under these
conditions, the error estimator should take into account only the physical features of the
flow, since the geometric representation of the boundaries would be exactly reproduced
by the curved mesh. On the contrary, in linear meshes, the estimator is expected to
activate also where very coarse elements are used to discretize highly curved regions.
The use in this study of a lower ℎ𝐻𝑎𝑢𝑠𝑑 parameter would partially bias the assessment of
the ability of the error estimator to mark such under-resolved regions.

In figure 7.3 a detail of the nose of the wing/body CRM aircraft configuration, pre-
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Figure 7.3: Inviscid flow past the CRM wing/body configuration at 𝑀∞ = 0.85. Zoom
on the wind-shield. Left: intial mesh, center: mesh after 5 ℎ(𝑝 = 1) adaptations, right:
mesh after 10 ℎ(𝑝 = 1) adaptations.

sented with further details in Section 7.3, is shown for the initial mesh and the mesh
adapted 5 and 10 times for a 𝑝 = 1 discretization. In the initial mesh, the very coarse
linear elements are not sufficiently small to capture the detail of the wind shield. Thanks
to the mesh adaptation strategy including CAD reprojection capabilities, we are able to
recover the initially hidden geometric details. In contrast, this information would be
completely lost and the geometry representation further deteriorated in the absence of
the geometry reprojection.

We remark however that the implementation of the geometry reprojection as a cor-
rection step, as done in this work, is suboptimal. While it provides good results with an
acceptable CPU cost, the optimal implementation would require the interaction between
the CAD geometry and the surface mesh directly in the remeshing step.

7.1.2 Error estimator for transonic simulations

The estimator used up to this point has been shown to be accurate for laminar sub-
sonic and scale-resolving simulations, but was not designed for transonic simulations.
In particular, the estimator lacks information from thermodynamic quantities that are
representative of the shock features. In fact the presence of shocks in the analyzed flow
can severely change the effectiveness of the current estimator, requiring the inclusion of
shock capturing features.

In this section, we introduce a modification to the error estimator presented in Sec-
tion 5.1.1 in equation (5.3), and used in previous chapters, in order to efficiently capture
shocks. In particular, a contribution of the pressure field is added to both the high-order
based term and the jump-based term of the existing estimator.

In the following, the high-order-based contribution of the error estimator, computed
from the pressure, will be called 𝜖SSP for Small Scale Pressure, and the contribution based
on the jump of the pressure 𝜖JUMPpres.

𝜖mom+pres,𝐾 = 𝜖SSED,𝐾,𝑛𝑜𝑟𝑚 + 𝜖JUMPmom,𝐾,𝑛𝑜𝑟𝑚 + 𝜖SSP,𝐾,𝑛𝑜𝑟𝑚 + 𝜖JUMPpres,𝐾,𝑛𝑜𝑟𝑚 (7.1)

As done for equation (5.3), each single estimator in equation (7.1) is normalized over
their respective maximum and minimum values in the domain.
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In particular the term 𝜖SSP,𝐾 is computed as:

𝜖2
SSP,𝐾 =

| |pℎ,𝑝 − pℎ,𝑝−1 | |2𝐿2 (𝐾 )
|𝐾 | (7.2)

and the term 𝜖2
JUMPpres is computed as:

𝜖2
JUMPpres,𝐾 =

1
𝑁𝑒

𝑁𝑒∑︁
𝑒=1

| |p+
ℎ
− p−

ℎ
| |2
𝐿2 (𝜕𝐾𝑒 )

4|𝜕𝐾𝑒 |
. (7.3)

In the previous equations, pℎ,𝑝 is the solution computed from the conservative vari-
ables, and pℎ,𝑝−1 is the projection of pℎ,𝑝 to the element-wise polynomial space V 𝑝−1.
We remind that in our compressible formulation of the Euler equations, the pressure is
not a conservative variable, for which this projection operation would have been trivial.
Then the projection of the pressure on the reduced polynomial space V 𝑝−1 is not readily
available, and must be explicitly computed.

7.2 h-adaptation of the inviscid transonic flow past the ON-
ERA M6 wing

In this section, we apply the h-adaptation strategy to the ONERA M6 wing [8, 263].
The ONERA M6 wing is a swept, semi-span wing without twist, which uses a symmetric
airfoil. The geometry is modified from its original description to display a sharp trail-
ing edge [9]. This test case has been considered for previous mesh adaptation studies,
both in its turbulent RANS [233, 30] and inviscid version [128, 32]. The inviscid con-
figuration has been used for validation of Euler solvers [89] and for shape optimization
[196, 262].

The flow conditions are taken from Test 2308 [263], with 𝑀∞ = 0.84 and angle of
attack 𝛼 = 3.06◦. The initial mesh counts 15253 elements, which corresponds to 61012
dofs for a 𝑝 = 1 discretization and 152530 dofs for a 𝑝 = 2 discretization, and is depicted
in figure 7.4.

The domain is a half three dimensional C-shaped mesh, with the symmetry plane
located at 𝑦 = 0. The root leading edge is centered in the origin in the symmetry plane,
and the far-field is located at a distance of approximately 87 mean aerodynamic chords
𝑐 (𝑐 = 0.64607𝑚, 𝑏 = 1.1963𝑚 is the semi-span of the wing).

h-adaptation is performed on the ONERA M6 wing for a 𝑝 = 1 and 𝑝 = 2 discretiza-
tion, using both the standard error estimator used in previous chapters 𝜖mom and the
estimator 𝜖mom+pres presented in equation (7.1), and the performance of the newly in-
troduced error estimator is assessed over uniform refinement.

h(p=1) adaptive simulations

Starting with a qualitative analysis, we report in figure 7.5 the meshes obtained after ten
adaptation steps by using the two error estimators, 𝜖mom on the left panel and 𝜖mom+pres
on the right panel.
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Figure 7.4: Inviscid flow past the ONERA M6 wing at 𝑀∞ = 0.84. Pressure coefficient
contour on the initial mesh with a 𝑝 = 1 discretization.

Figure 7.5: Inviscid flow past the ONERA M6 wing at 𝑀∞ = 0.84. Pressure coefficient
contour on the 10th ℎ(𝑝 = 1) adapted meshes with 𝜖mom in the left panel and 𝜖mom+pres
in the right panel.

We can observe that the former indicator 𝜖mom is unable to fully capture the disconti-
nuities, which characterize the flow. The leading and the trailing edges are well refined,
while only one side of the lambda-shock is correctly refined. On the other hand, when
employing a combination of error estimators on the momentum and on the pressure, the
shock is clearly well resolved, as well as the high-velocity gradient zones at the trailing
and the leading edges.

For a more quantitative analysis, we report the convergence history of the two inte-
gral quantities 𝐶𝐷 and 𝐶𝐿 in figure 7.6 obtained with the adaptive procedure guided by
the two error estimators. The results are compared to uniformly refined meshes, and to
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the 𝐶𝐷 and 𝐶𝐿 values obtained by Balan et al. [32] from adapted meshes as reference. In
particular we use the values from their anisotropic Hessian-based mesh adaptation with
the finest available mesh counting around 6 million dofs. Given that the anisotropic
mesh adaptation is supposed to perform significantly better than isotropic adaptation
for transonic cases, we believe that their computations are sufficiently reliable to serve
as numerical reference.
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Figure 7.6: Inviscid flow past the ONERA M6 wing at 𝑀∞ = 0.84. Convergence history
of the integral quantities 𝐶𝐷 and 𝐶𝐿 vs. number of dofs for ℎ(𝑝 = 1) simulations for the
two error estimators, compared to 𝑝 = 1 uniformly refined simulations and the reference
simulation by Balan et al. [32].

From the plots in figure 7.6, no significant differences can be found when using
the two error estimators, and they both provide a faster convergence of the integral
quantities with respect to the uniformly refined meshes. They appear to converge to
the same values of 𝐶𝐷 and 𝐶𝐿, in close agreement with the results by Balan et al., and
approximately at the same rate. Given the very different topology of the meshes obtained
with the two error estimators, it appears that a certain compensation of the effects might
be present in the computation of the two integral quantities.

For this reason we analyze the pressure coefficient profiles at 6 spanwise stations
over the wing after 10 adaptations (the corresponding meshes are presented in figure
7.5), and we compare them to the results from the experiment and a numerical result
from the literature.

In particular we can find Euler computations in the paper from Choi et al. [89],
performed with the SU2 DG-FEM flow solver. They showed comparisons of the pressure
coefficient distribution at different locations of the wing with experimental data. The
results included in figure 7.10 are obtained on a mesh counting around 2.2 million
elements, with a DG-𝑝2 discretization, yielding around 58M dofs (their polynomial basis
is different from the one used in this thesis, and involves (𝑝 + 1)3 dofs per element).

As expected, inviscid numerical results cannot be directly compared to experimental
results, which present much smoother shocks due to the presence of viscosity, but are
still representative of the main characteristics of flow, as we can observe in figure 7.7.
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Figure 7.7: Inviscid flow past the ONERA M6 wing at 𝑀∞ = 0.84. Pressure coefficient
profiles at 𝑦/𝑏 = 0.2, 0.44, 0.65, 0.8, 0.9, 0.99 for the two error estimators on the 10th

ℎ(𝑝 = 1) adaptation, compared to the reference simulation by Choi et al. [89] and the
experiment.

The Euler computations presented in this chapter are not meant to be predictive of the
real flow, but are a demonstration of the shock capturing capabilities of the adaptive
procedure, combined with a more complex geometric representation of the body than in
previous chapters.

The adaptive process is capable to recover the physical features of the flow start-
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ing from a very poorly accurate initial solution (violet dotted lines in figure 7.7). This
is significant as it demonstrates the robustness of the method for its application in an
industrial environment.

Comparing now the curves obtained with the two estimators, we observe from the
plots in figure 7.7, that the adaptive simulations obtained with the combined error esti-
mator on the momentum and on the pressure in red, match with a very good agreement
the results from Choi et al. in dashed blue lines. The insufficient resolution of the left
shock provided by the meshes adapted using the 𝜖mom estimator is highlighted in figure
7.7, especially at the first four stations, from 𝑦/𝑏 = 0.2 to 𝑦/𝑏 = 0.8. The representation
of the shock is clearly much smoother than in the numerical reference and the numerical
solution from 𝜖mom+pres.

An aspect requiring attention is that for transonic simulations, and even more for
inviscid cases, the error estimator always presents high values along the shock. This
leads to infinite refinement of the shock if a minimal size is not imposed. While in a
viscous simulation the shock wave presents a finite thickness depending on the viscosity
and the velocity values, in inviscid simulations the shock should physically have zero
thickness, if the discretization errors were not taken into account.

In the adaptation process presented in figures 7.5, 7.6 and 7.7, the value ℎ𝑚𝑖𝑛 =

3 · 10−3 is used to limit the refinement. All the other parameters are not varied from
Chapter 5, with the exception of the default ℎ𝐻𝑎𝑢𝑠𝑑 = 0.01. Considering the number
of 1D degrees of freedom in a DG discretization, we can assume that for a given DG
discretization, the effective DG size is ℎ𝑚𝑖𝑛,𝐷𝐺 = ℎ𝑚𝑖𝑛/(𝑝 + 1) (similarly to what done in
Section 4.2 for the computation of the effective DG 𝑦+𝐷𝐺 value or in Section 2.2.2 for
the computation of the 1D subgrid filter).

For a 𝑝 = 1 discretization, the effective minimum DG size is therefore ℎ𝑚𝑖𝑛,𝐷𝐺 =

3 · 10−3/2 = 1.5 · 10−3 ' 1/430𝑐. We can then assess the dependence of the adaptive
strategy on this parameter, by performing computations using a lower ℎ𝑚𝑖𝑛 = 1 · 10−3

(ℎ𝑚𝑖𝑛,𝐷𝐺 ' 1/1290𝑐) and a higher ℎ𝑚𝑖𝑛 = 5 · 10−3 (ℎ𝑚𝑖𝑛,𝐷𝐺 ' 1/258𝑐) as compared to the
previously used ℎ𝑚𝑖𝑛 = 3 · 10−3.

Figure 7.8: Inviscid flow past the ONERA M6 wing at 𝑀∞ = 0.84. Pressure coefficient
contour on the 10th ℎ(𝑝 = 1) adapted meshes obtained with different ℎ𝑚𝑖𝑛 values. ℎ𝑚𝑖𝑛 =
5 · 10−3 in the left panel, ℎ𝑚𝑖𝑛 = 3 · 10−3 in the middle panel (same as the right panel in
figure 7.7) and ℎ𝑚𝑖𝑛 = 1 · 10−3 in the right panel.

In figure 7.8 the mesh obtained after 10 adaptations with ℎ𝑚𝑖𝑛 = 5 · 10−3, shown in
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the left panel, has already reached the maximum refinement in the shock, in the leading
and in the trailing edge. Once this occurs, the refinement, obeying to the increment of
the number of dofs prescribed by the adaptive algorithm, acts almost uniformly on the
wing, and in particular in the region between the leading edge and the shock, leading to
a large uniformly refined region around the leading edge. This leads also to a refinement
of the shock in the volume at a larger distance from the wall than the two meshes with
smaller ℎ𝑚𝑖𝑛 values. The middle panel reports the same mesh already shown in the right
panel of figure 7.5. The right panel in figure 7.8, corresponding to the lowest value of
ℎ𝑚𝑖𝑛, shows a stronger refinement in the more intense shock region closer to the tip,
delaying the refinement of the shock region closer to the root.
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Figure 7.9: Inviscid flow past the ONERA M6 wing at 𝑀∞ = 0.84. Convergence history
of the integral quantities 𝐶𝐷 and 𝐶𝐿 vs. number of dofs for ℎ(𝑝 = 1) simulations using
different ℎ𝑚𝑖𝑛 values.

Looking at the convergence history of the integral quantities in figure 7.9, despite
some oscillations in the 𝐶𝐿, the simulations with ℎ𝑚𝑖𝑛 = 1·10−3 and ℎ𝑚𝑖𝑛 = 3·10−3 provide
very similar values of the 𝐶𝐿 and the 𝐶𝐷, while the adaptation with ℎ𝑚𝑖𝑛 = 5 · 10−3 tends
to significantly lower values of 𝐶𝐿.

The trend highlighted in figure 7.8 is reflected in figure 7.10, where sharper profiles
in the shock are found with ℎ𝑚𝑖𝑛 = 1 · 10−3 for 𝑦/𝑏 ≥ 0.8 with respect to the other two
meshes, while the 𝐶𝑝 profiles on the lower surface still present some differences with the
other profiles, since in this case the adaptive algorithm has concentrated the refinement
mainly in the shock region.

The sharper discontinuities that can be seen employing the lowest ℎ𝑚𝑖𝑛 for the 𝑦/𝑏 =

0.99 are explained by a lower thickness of the resolved shock, due to the use of smaller
elements. However, we remark that the visualization relies on the element-averaged
pressure coefficient extracted in each surface element. Since several dofs are present
per element in a DG discretization, we cannot exclude that slightly sharper peaks are
present also in the solution employing ℎ𝑚𝑖𝑛 = 3 · 10−3, but the size of the element is not
sufficiently small to correctly represent it by its mean value.

This study highlights the importance of the definition of a minimal size ℎ𝑚𝑖𝑛 to avoid
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Figure 7.10: Inviscid flow past the ONERA M6 wing at 𝑀∞ = 0.84. Pressure coefficient
profiles at 𝑦/𝑏 = 0.2, 0.44, 0.65, 0.8, 0.9, 0.99 using different ℎ𝑚𝑖𝑛 values on the 10th ℎ(𝑝 =

1) adaptation.

an overrefinement of the shock. At the same time, it has shown that ℎ𝑚𝑖𝑛 does not affect
significantly the adaptation process, provided that this value is selected within a range
of acceptable values, which is related to the numerical shock thickness. For viscous
simulations it is expected that the adaptive process will present a lower dependency on
this value, due to the finite shock thickness in the presence of viscous effects.
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h(p=2) adaptive simulations

We now consider the results of hp-adaptive simulations using a 𝑝 = 2 discretization.
The objective of this study is to highlight potential differences in the error estimator
behavior between 𝑝 = 1 and high-order discretizations. The value of ℎ𝑚𝑖𝑛 is chosen
again as 3 · 10−3.

Figure 7.11: Inviscid flow past the ONERA M6 wing at 𝑀∞ = 0.84. Pressure coefficient
contour on the 7th ℎ(𝑝 = 2) adapted meshes with 𝜖mom in the left panel and 𝜖mom+pres in
the right panel.

The meshes obtained on a 𝑝 = 2 discretization using the two error estimators 𝜖mom
and 𝜖mom+pres are presented in figure 7.11. The differences between the two meshes
are less pronounced as compared to the 𝑝 = 1 simulations in figure 7.5. This is mainly
due to two reasons. The first is that the error estimator is more accurate when computed
using a high-order discretization as compared to a second order discretization, especially
thanks to the increased amount of information provided by the highest-order modes of
the solution. The second reason lays in the different exponent in the size reduction
formulation in equation 5.9 for 𝑝 = 1 and 𝑝 = 2 simulations. In fact, since the smoothness
indicator is not available for 𝑝 = 1 simulations, the exponent is always set to 𝑚𝑛 = 𝑝+1 =

2 in this case. On the other hand, 𝑝 = 2 simulations benefit from a decreased 𝑚𝑛 in
non smooth zones, which additionally contributes to the reduction of the sizes of the
elements over the course of the adaptations.

Despite the smaller differences with respect to ℎ(𝑝 = 1) meshes, the mesh obtained
with 𝜖mom+pres in the right panel of figure 7.11 well captures both the shock and the
trailing/leading edge, while the mesh obtained with 𝜖mom in the right panel has a lower
resolution of the shock (we can observe larger elements both on the wing surface and in
the symmetry plane).

In figure 7.12 the convergence history of the 𝐶𝐷 and 𝐶𝐿 value obtained with the
estimators 𝜖mom and 𝜖mom+pres on 𝑝 = 2 discretizations are compared to the ℎ(𝑝 = 1)-
adaptation using 𝜖mom+pres.
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Figure 7.12: Inviscid flow past the ONERA M6 wing at 𝑀∞ = 0.84. Convergence history
of the integral quantities 𝐶𝐷 and 𝐶𝐿 vs. number of dofs for ℎ(𝑝 = 2) simulations using
different error estimators, compared to ℎ(𝑝 = 1) simulations and the reference simula-
tion by Balan et al. [32].

Both the 𝐶𝐷 and the 𝐶𝐿 values seem to converge to the same values as 𝑝 = 1 adap-
tations. A faster convergence than 𝑝 = 1 can be noticed especially for the 𝐶𝐷 value after
the third adaptation, while this is harder to claim for the 𝐶𝐿, which has an oscillating
behavior for the 𝑝 = 1 case and is more sensitive to the representation of the geometry.
Large 𝑝 = 2 elements in the leading edge in initial steps are still insufficient to provide
the correct solution if the geometry is represented by coarse linear elements. In order
to provide as fair as possible comparisons between the two discretizations, quadratic
elements should be employed for the 𝑝 = 2 discretization.

The distribution of the pressure coefficient is shown in figure 7.13 in order to further
validate the solution obtained on h-adapted meshes.

As expected from the quantitative analysis of the mesh visualization in figure 7.11,
the difference in the resolution of the shock between 𝜖mom in green lines and 𝜖mom+pres
in black lines is not as pronounced as it is for ℎ(𝑝 = 1). Nonetheless slightly improved
results are obtained for 𝜖mom+pres in the two positions closer to the root.
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Figure 7.13: Inviscid flow past the ONERA M6 wing at 𝑀∞ = 0.84. Pressure coefficient
profiles at 𝑦/𝑏 = 0.2, 0.44, 0.65, 0.8, 0.9, 0.99 for two error estimators on the 7th ℎ(𝑝 = 2)
adaptation, compared to the reference simulation by Choi et al. [89], the experiment,
and the 10th ℎ(𝑝 = 1) adapted mesh.



7.3. h-ADAPTATION OF THE INVISCID TRANSONIC FLOW PAST THE CRM WING/BODY

CONFIGURATION 145

7.3 h-adaptation of the inviscid transonic flow past the CRM
wing/body configuration

In this last section, the h-adaptive procedure is tested on the Common Research Model
(CRM) [7]. The CRM is an open geometry configuration designed by NASA and Boeing
in consultation with other aerospace industries, to provide a representative geometry
of a contemporary transonic commercial transport for the validation of CFD tools. This
transonic transport aircraft model with a design cruise Mach number of 0.85 has been
used in the last editions of the AIAA Drag Prediction Workshop (DPW) [4] and High
Order Workshop (HOW) [5].

The transonic flow at 𝑀∞ = 0.85 is considered. The geometry employed here is built
from the CAD with an aeroelastic deflection at the angle-of-attack 𝛼 = 2.75◦, from the
HOW5 (and DPW6). A lower 𝛼 = 1.5◦ is here employed to provide 𝐶𝐿 values obtained
with the inviscid simulation in a range of values comparable to those obtained by exper-
iment and viscous simulations (𝐶𝐿 = 0.5 − 0.55).

The CRM configuration has been recently subject to RANS mesh adaptation in the
high lift configuration proposed in the Third High Lift Prediction Workshop (HiLiftPW-
3) [211, 17, 31]. Inviscid configurations have been mainly employed for validation
purposes [279] or shape optimization [24, 268, 217].

The initial mesh in figure 7.14 employed to start the h-adaptive procedure counts
37829 elements, which means 151316 dofs for a 𝑝 = 1 discretization, and 379290 dofs
for a 𝑝 = 2 discretization. The domain is half a cubic box, with the nose of the aircraft
close to 𝑥 = 0, in the symmetry plane located at 𝑦 = 0, and the far-field located at
approximately 417 mean aerodynamic chords 𝑐 from the body (𝑐 = 0.2758 in the mesh).

Figure 7.14: Inviscid flow past the CRM wing/body configuration at 𝑀∞ = 0.85. Pressure
coefficient contour on the initial mesh with a 𝑝 = 1 discretization. Detail of the wing in
the right panel.

The error estimator introduced in Section 7.1 is employed to control the h-adaptive
simulations for the 𝑝 = 1 and 𝑝 = 2 discretizations. The minimum size is here ℎ𝑚𝑖𝑛 =
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1 · 10−3 ' 1/276𝑐, with an effective DG spacing ℎ𝑚𝑖𝑛,𝐷𝐺 = 5 · 10−4 ' 1/552𝑐 for 𝑝 = 1
computations and ℎ𝑚𝑖𝑛,𝐷𝐺 ' 3.3 · 10−4 ' 1/827𝑐 for 𝑝 = 2 computations.

The surface meshes output from the ℎ(𝑝 = 1) adaptive procedure are shown in figures
7.15 and 7.16 for the 7th and the 10th adaptation steps, with a contour of the element-
averaged pressure coefficient.

Figure 7.15: Inviscid flow past the CRM wing/body configuration at 𝑀∞ = 0.85. Pressure
coefficient contour on the 7th (left) and the 10th (right) ℎ(𝑝 = 1) adapted mesh.

Figure 7.16: Inviscid flow past the CRM wing/body configuration at 𝑀∞ = 0.85. Pressure
coefficient contour on the 7th (left) and the 10th (right) ℎ(𝑝 = 1) adapted mesh. Detail
of the wing from figure 7.15.

The shock is refined starting from the region presenting the strongest discontinuity,
closer to the tip. Then, progressively, the refined shock zone extends towards the root,
similarly to what observed for the ONERA M6 wing. The leading edge and trailing
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edge are discretized with increasingly smaller elements, and the fuselage is progressively
refined as well in a more uniform manner.

These are not the only features that the adaptive algorithm is capable to identify. We
take a deeper look by extracting a volume slice on the progression of meshes at 𝑥 = 2
(𝑥 ' 7𝑐) in the left panels of figure 7.17, in particular we report the initial mesh and the
meshes after 2, 5 and 9 adaptations. In the right panels of figure 7.17 we post-process
the 𝑝 = 1 solution obtained on the four meshes, by interpolating it on a finer mesh, and
we show the contours of the vorticity on different planes in the tip region.

Thanks to the adaptive procedure, the trailing edge vortex is progressively refined
as seen from figure 7.17. While the initial mesh provides a very limited representation
of the trailing edge vortex, the quality of its representation by the vorticity contours is
increased over the adaptive process, as clearly observable in the right panels of figure
7.17.

The visualization of the artificial viscosity, designed to track discontinuities and sta-
bilize the numerical scheme, highlights the capability of the adaptive strategy to remove
spurious numerical artifacts, while refining the description of the relevant flow features.
We show in figure 7.18 the progression of meshes from the initial to the 7th adapted
mesh, with contours of the artificial viscosity, with a zoom on the tip region of the wing.
The addition of artificial viscosity, aimed at stabilizing DG computations, is supposed to
be active only in regions presenting discontinuous features, while vanishing in the rest
of the domain.

Initially, the artificial viscosity is mainly active in both the shock and in a large region
close to the leading edge, up to the third adapted mesh in figure 7.18. The adaptive
algorithm first concentrates some efforts on the leading and on the trailing edge regions
(first and second adaptations), which are too poorly discretized to allow the refinement
of other flow features. Here high values of the artificial viscosity are present not only
in the elements directly connected to the leading edge, but also in a larger region. This
is an indication that the very coarse discretization with linear elements of the curved
leading edge is leading to high-order oscillations which are identified by the artificial
viscosity shock sensor. When the leading edge is refined sufficiently and the curvature is
more representative of the real geometry, the artificial viscosity is of lower intensity and
is limited to very few elements in the leading edge, in addition to the elements in the
shock.

From the third adaptation, the shock starts to be refined, and its position moves
backwards up to the fifth adaptation. From this point on, the shock has a stable position
and continues to be refined until ℎ𝑚𝑖𝑛 is achieved. The transient positioning of the shock
in the first four adapted meshes, does not significantly affect the adaptive procedure,
even if no coarsening is employed. In fact, by limiting the reduction in size of each
element to be at most two (𝑟ℎ = 2), the refinement produced during these first steps is
similar to the refinement due to the ℎ𝑔𝑟𝑎𝑑 parameter, which simply avoids abrupt size
variation from one element to the other.

The plots in figure 7.18 have served as well to assess the artificial viscosity techniques
implemented in the flow solver CODA on both 3D aircraft configuration and very coarse
linear meshes. The possibility to exploit the Persson-Peraire sensor for the choice be-
tween h- and p-adaptation for transonic applications, similarly to what was proposed by
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Figure 7.17: Inviscid flow past the CRM wing/body configuration at 𝑀∞ = 0.85. Initial
mesh, 2nd, 5th and 9th ℎ(𝑝 = 1) adapted meshes from top to bottom panels. Volume slice
in the 𝑦 − 𝑧 plane at 𝑥 = 2 (𝑥 ' 7𝑐) in left panels with pressure coefficient 𝐶𝑝 contour,
vorticity | |𝜔| | contour on planes 1.88 < 𝑥 < 1.97 in right panels.

Wang [301], can be realistically explored in future research also for 𝑝 = 1 elements for
this kind of configurations. Although the artificial viscosity distribution is governed by a
ramp-up function from smooth to irregular regions, it should be possible to exploit the
same threshold values that are used to calibrate this function for each polynomial degree
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Figure 7.18: Inviscid flow past the CRM wing/body configuration at 𝑀∞ = 0.85. Artificial
viscosity `𝐴𝑉 contour. Initial mesh and ℎ(𝑝 = 1) adaptations 1,2,3,4,5,6,7 from top left
to bottom right.
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considered.
The convergence history of the 𝐶𝐷 and the 𝐶𝐿 values is presented in figure 7.19 for

uniform refinement with 𝑝 = 1 in grey lines, ℎ(𝑝 = 1) adaptation in red lines, ℎ(𝑝 = 2)
adaption with 𝜎𝑡ℎ𝑟 = 1 in green lines, and ℎ(𝑝 = 2) adaption with 𝜎𝑡ℎ𝑟 = 0.5 in orange
lines. The inclusion in this study of two different values of the smoothness indicator
threshold will be motivated later.
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Figure 7.19: Inviscid flow past the CRM wing/body configuration at 𝑀∞ = 0.85. Conver-
gence history of the integral quantities 𝐶𝐷 and 𝐶𝐿 vs. number of dofs for ℎ(𝑝 = 1) and
ℎ(𝑝 = 2) adapted simulations compared to 𝑝 = 1 uniformly refined simulations.

The h-adapted meshes with 𝑝 = 1 provide a faster convergence of both the 𝐶𝐷 and
the 𝐶𝐿 values with respect to the 𝑝 = 1 uniformly refined meshes. The gain in dofs
provided by h-adaptation with respect to uniform refinement is however less obvious for
the 𝐶𝐷. This is probably due to the interaction between the different components of the
drag in an inviscid flow (induced, wave and spurious) that are varying. A far field drag
decomposition analysis should be performed [204] to clarify the different contributions
to the global drag. The 𝐶𝐷 value obtained performing ℎ(𝑝 = 2) adaptation for both the
smoothness indicator thresholds, converges significantly faster than the ℎ(𝑝 = 1) simula-
tions, as expected by the higher order of accuracy, and similarly to what observed for the
ONERA M6 wing in figure 7.12. The 𝐶𝐿, after the first adaptations mainly affected by
the coarse discretization of the leading edge with linear elements, achieves a converged
value with a lower number of dofs than the adaptive ℎ(𝑝 = 1) discretization.

We report the 𝐶𝑝 profiles in figure 7.20 obtained from the initial mesh, from the last
ℎ(𝑝 = 2) meshes for 𝜎𝑡ℎ𝑟 = 0.5 (7th and 8th) and 𝜎𝑡ℎ𝑟 = 1 (7th) and the last four adapted
ℎ(𝑝 = 1) meshes (8th, 9th, 10th and 11th) in order to assess the effective convergence
of the solution. Only this type of convergence study can be performed, given that no
consistent numerical reference has been found in the literature for this test case.

For ℎ(𝑝 = 1) simulations, the position of the shock in the 8th adapted mesh in solid
red lines is already correctly captured, but the solution is still varying between the 8th

and the 9th adaptation step in blue solid lines, especially in the locations closer to the
root and the last location at 𝑦/𝑏 = 0.97. The 10th adaptation in solid yellow lines and the
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Figure 7.20: Inviscid flow past the CRM wing/body configuration at 𝑀∞ = 0.85. Pressure
coefficient profiles at 𝑦/𝑏 = 0.125, 0.37, 0.5024, 0.7268, 0.8456, 0.97 for ℎ(𝑝 = 1) and ℎ(𝑝 =

2) adaptations.

11th adaptation in black dashed lines are superimposed almost everywhere, proving that
our results are very close to mesh convergence. One exception is the secondary shock
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at 𝑦 = 0.99, where the finest mesh provides a sharper representation. This secondary
shock structure is characterized by a forward-swept lambda shape in the wing tip region,
visible in the right panel of figure 7.15 and in both panels of figure 7.22 presented in the
following for ℎ(𝑝 = 2) adaptations. The solution on ℎ(𝑝 = 2) adapted meshes in squared
symbols is very close to ℎ(𝑝 = 1) results, detecting the same position for the primary
shock and the small secondary shock in the tip region.

We now focus on the influence of the smoothness indicator threshold 𝜎𝑡ℎ𝑟 on the
adaptation process. We recall that the smoothness indicator threshold is used to dis-
tinguish within the mesh adaptation process, the elements which are characterized by
smooth solutions with a convergence rate 𝑚 = 𝑝 + 1, and those which are characterized
by non-smooth solution and are assumed to present a reduced convergence rate 𝑚 = 1.

The smoothness indicator is not defined for 𝑝 = 1 discretizations, therefore we ana-
lyze 𝑝 = 2 simulations.

Figure 7.21: Inviscid flow past the CRM wing/body configuration at 𝑀∞ = 0.85. Smooth-
ness contour on the 8th ℎ(𝑝 = 2) adapted mesh with 𝜎𝑡ℎ𝑟 = 0.5. Volume slices at
𝑦/𝑏 = 0.15 and 𝑦/𝑏 = 0.78.

Figure 7.21 illustrates the smoothness indicator distribution on the 8th adapted mesh
using 𝜎𝑡ℎ𝑟 = 0.5. The blue color marks elements with 𝜎𝐾 < 0, which constitute a very
small percentage of the elements marked as non smooth. Elements in green present
values of the smoothness indicator 0 < 𝜎𝐾 < 0.5, while elements in red have 0.5 < 𝜎𝐾 <
1. Grey elements are considered smooth for both values of 𝜎𝐾 , verifying 𝜎𝐾 > 1.

In our standard approach described in Chapter 5, the value 𝜎𝑡ℎ𝑟 = 1 (as in the orig-
inal study by Mavriplis [202]) is used to differentiate between smooth and non smooth
elements. From figure 7.22 the threshold 𝜎𝑡ℎ𝑟 = 1 appears however to be too high,
unexpectedly marking as non smooth some elements which do not appear to be lo-
cated in a problematic region of the flow. For this reason we have chosen to test the
h-adaptation strategy by employing 𝜎𝑡ℎ𝑟 = 0.5, as proposed by Leicht et al. [182] in
their hp-adaptation of the DLR-F6 wing-body RANS configuration. The elements colored
in green or blue, present almost exclusively in the shock, would be the only elements
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marked as non smooth by the adaptation employing 𝜎𝑡ℎ𝑟 = 0.5.
The meshes obtained after 7 adaptations using the standard 𝜎𝑡ℎ𝑟 = 1 and the lower

threshold 𝜎𝑡ℎ𝑟 = 0.5 are shown in figure 7.22.

Figure 7.22: Inviscid flow past the CRM wing/body configuration at 𝑀∞ = 0.85. Pressure
coefficient contour on the 7th ℎ(𝑝 = 2) adapted mesh using 𝜎𝑡ℎ𝑟 = 0.5 and 𝜎𝑡ℎ𝑟 = 1. Detail
of the wing.

The use of different threshold values does not introduce significant differences in the
adapted meshes. One minor difference that can be identified is in the size distribution
outside the shocks (as for example in the fuselage), which in the case of 𝜎𝑡ℎ𝑟 = 1 presents
“spots” of refined zones. This is due to the interaction between a checkerboard-like
pattern of the error estimator in the fuselage (visible also for the ℎ(𝑝 = 1) adaptation
in figure 7.15), and values of smoothness indicator 𝜎 < 𝜎𝑡ℎ𝑟 which yield a stronger
refinement. Besides, the mesh obtained using 𝜎𝑡ℎ𝑟 = 0.5 presents a slightly coarser
discretization of the shock next to the root with respect to the 𝜎𝑡ℎ𝑟 = 1 mesh, which is
however not visibly affecting the pressure coefficient profiles in figure 7.20.

The influence of 𝜎𝑡ℎ𝑟 on the h-adaptive algorithm appears therefore to be limited.
However, we point out that the use of different values might lead to more evident differ-
ences if used as hp-choice in the context of hp-adaptation. For such cases a more detailed
study might be of interest.

7.4 Conclusion

We have implemented in our adaptation tool the possibility to reproject the surface mesh
of the body onto the respective CAD employed to generate the initial mesh. This was
one of the main bottlenecks of the adaptive algorithm towards its application for realistic
aircraft configurations. The implementation of the CAD reprojection capabilities has
allowed us to carry on the mesh adaptation procedure, starting from very coarse initial
meshes. The algorithm has been capable to preserve the correct geometry representation
over the course of the adaptation process, and avoid a progressive deterioration of the
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geometry that could have occurred without the interaction of the adapted meshes with
the CAD of the geometric representation of the body. Moreover, the algorithm has been
able to gradually take into account the geometric details, initially hidden in the early
coarse stages of the mesh adaptation process.

The error estimator has been modified for transonic simulations in order to improve
the shock capturing feature of the error estimator, by taking into account the error on
the pressure, in addition to the one computed on the momentum employed in previous
chapters.

The adaptive algorithm has been tested on two test cases representative of Airbus
aerodynamic design activities: the ONERA M6 wing and the CRM wing/body configura-
tion. In this chapter the simulated flows have been solved with the Euler equations, due
to the limited efficiency in handling high Reynolds viscous flows by the current isotropic
adaptive algorithm. Despite the simplified configuration, as compared the RANS flows
of more significant interest for industrial applications, these test cases have allowed us
to both validate the reprojection algorithm and assess the performance of the error esti-
mator.

The modified error estimator has been applied to second and third order DG sim-
ulations of the M6 wing. While providing results for third order simulations globally
similar to the ones provided by the previous estimator, the new error estimator signif-
icantly improves the behavior of the ℎ(𝑝 = 1) adaptive process. In the case of 𝑝 = 1
in fact, the addition of the contribution of the pressure clearly compensates for both
the lower performance of the error estimator for low order discretizations, and the lack
of smoothness indicator that would help to further reduce the sizes of under resolved
elements in non-smooth zones. The performance of the h-adaptive algorithm has been
assessed with respect to uniformly refined meshes, demonstrating a faster convergence
of the integral quantities. The impact of the limiting of the minimum size ℎ𝑚𝑖𝑛 in the
adaptation process has also been assessed for ℎ(𝑝 = 1) simulations.

Even though fully DG 𝑝 = 1 simulations cannot be considered as high-order simula-
tions, the development of well established error estimators and adaptation techniques
also for 𝑝 = 1 discretizations is important essentially for two reasons. First, industrial
aerodynamic design activities still rely on second order schemes. Second, a correct error
estimation for second order discretizations is essential for an efficient hp-adaptation for
transonic flows which is a subject of future research.

The h-adaptive algorithm has been finally applied to the CRM wing/body configura-
tion by performing DG ℎ(𝑝 = 1) and ℎ(𝑝 = 2) adaptive simulations. The adaptation has
correctly identified the zones of most interest of the flow (shock, leading edge, trailing
edge, trailing edge vortex). A global gain in terms of degrees of freedom of the h-adapted
meshes with respect to second-order uniformly refined meshes, has shown the potential
of mesh adaptation and high-order discretizations for the simulation of such flow con-
figurations, over classical second-order approaches. The results obtained on the ONERA
M6 wing and the CRM highlighted the relevance of the developed adaptive techniques
for industrial aircraft computations. The development of two important features such as
the handling of anisotropic elements and curved geometries will be mandatory in future
work to fully exploit the potential of high-order adaptive techniques for steady RANS
aircraft configurations.



Chapter 8

Conclusions and perspectives

8.1 Conclusions

The objectives of this PhD thesis have been the development of hp-adaptive techniques
based on discontinuous Galerkin methods in the framework of the new generation flow
solver CODA (CFD ONERA DLR Airbus), and their application to test cases relevant
in an industrial aeronautical context. A particular interest towards hybrid RANS/LES
simulations for acoustic applications by employing adaptive DG methods, has motivated
the largest part of this work. This research program supports the initiative to develop an
automatic mesh-solver process for aerodynamic design activities.

After a brief introduction of the flow equations, the most common approaches for
scale resolving simulations have been presented in Chapter 2, with a focus on classi-
cal Detached Eddy Simulation and Zonal Detached Eddy Simulation, using the Spalart-
Allmaras model. The modal high-order discontinuous Galerkin discretization of the
Navier-Stokes equations employed in this work has been presented as well in Chapter 2.

An overview of resolution adaptation techniques has been then presented in Chap-
ter 3, highlighting the different approaches in the literature to perfom h-, p- and hp-
adaptation, focusing on a posteriori error estimators relevant in the approach employed
in this work. This class of error estimators, directly computed exploiting information
only from the DG solution, constitutes an efficient, local, simple and low-computational
cost choice.

In Chapter 4, devoted to the validation and the assessment of DG techniques for
unsteady and turbulent applications, the order of convergence of the flow solver CODA
has been first validated for an unsteady test case with an analytical solution to assess the
numerical errors of the DG scheme using unstructured simplicial meshes. Preliminary
analyses on the influence of the 𝑦+ value in RANS boundary layers, and on the 𝐶𝐷𝐸𝑆 in
homogeneous turbulence, have also been carried out. These analyses have illustrated
that the use of high-order polynomials is beneficial in the sense that it both relaxes the
near-wall resolution requirements, and accurately represents the turbulent structures in
fully-developed turbulent regions.

In Chapter 5, h- and hp-adaptive strategies suitable to discontinuous Galerkin meth-
ods have been developed for solving steady fluid flow problems on unstructured simpli-
cial meshes. An a posteriori error estimator based on both the measure of the energy
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contained in the highest order polynomial modes and the jumps at the element inter-
faces has been assessed in the framework of isotropic metric-based h- and hp-adaptation.
These methodologies have been combined with a smoothness indicator guiding both the
choice between h- and p-adaptation and the reduction of the size of elements marked
for h-adaptation. Adaptive DG computations of three configurations of 2D/3D laminar
steady flows on triangular/tetrahedral meshes have been performed based on polyno-
mial degrees 𝑝 = 1, 𝑝 = 2 and 𝑝 = 3. Overall, the adaptation strategies have been found
to capture accurately the zones in which the solution needs higher refinement and zones
already well refined. This has yielded a significant reduction in terms of number of de-
grees of freedom to reach a given error level, as compared to simulations with uniform
mesh refinement. One limitation of the hp-choice employed in this hp-adaptive method,
is the inability to compute the smoothness indicator for low order elements, which, if
marked for refinement, are always p-enriched. This can be acceptable for intrinsically
smooth subsonic flows, while it might be not suitable for transonic flows. In this case the
use of high-order discretizations in shocks would increase the number of dofs without
increasing the local order of convergence, and at the same time it would yield stability
issues, which are of increasing severity for increasing polynomial degrees.

The proposed hp-adaptive algorithm has been then extended to hybrid meshes, as
anisotropic structured or pseudo-structured mesh elements are necessary to capture ad-
equately boundary layer dynamics in RANS and LES simulations. For this reason we
have introduced in our simulations a fixed prismatic near-wall mesh for capturing the
boundary layer, whose elements cannot be remeshed but only p-enriched. The perfor-
mance of the hp-algorithm for hybrid meshes has been demonstrated in the context of
turbulent jet 3D RANS simulations, on the PPRIME nozzle test case. The DG hp-adapted
numerical solution has provided converged results in close agreement with a simulation
on a structured mesh using classical FV schemes with a much larger number of dofs. The
considered adaptive strategy represents therefore a suitable approach for similar config-
urations, in which the most important features in the boundary layer can be effectively
resolved by applying only p-refinement on the initial frozen boundary layer mesh. How-
ever, this might not be the case for other types of applications, such as transonic aircraft
configurations. For such applications, for example, the shock should be h-refined also
on the surface and in the boundary layer, and not only in the isotropic fully tetrahedral
region above the prismatic boundary layer.

In Chapter 6 the adaptive algorithms has been extended as well to unsteady flows,
with the final aim of performing hybrid RANS/LES simulations of the jet issuing from
the PPRIME nozzle.

The same error estimator based on both the measure of the energy contained in
the highest order polynomial modes and the jumps of the solution at the elements in-
terfaces, has been employed for the simulation of scale-resolving flows, with a slightly
modified smoothness indicator for scale-resolving simulations, based on the decay of the
polynomial modes. The strategy for each adaptation step has consisted in first simulat-
ing a transient phase required for the solution to adapt to the new discretization, then
collecting and averaging the error estimator and the smoothness indicator for a given
characteristic period of the flow, which is a fraction of the time necessary for the first
and second order flow statistics to converge. After these steps, specific to the algorithm
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for unsteady flows, the same adaptive strategy adopted for steady flows has been applied
by using the time-averaged error estimator and smoothness indicator for the prescription
of the new sizes and polynomial degrees.

The unsteady adaptive strategies have been first assessed on the transport of a vortex
by uniform flow, proving a gain in terms of number of dofs of the adaptive strategies
against uniform refinement. This has proven as well that a static adaptation approach
can be efficiently applied when the technological tools are not yet adapted for dynamic
approaches, also on such spatially evolving test cases. The hp-adaptation unsteady proce-
dure has been then applied to a hybrid RANS/LES configuration of a sphere at 𝑅𝑒 = 3700
using a DES approach. The error estimator has been found to correctly identify the flow
regions of interest in a hybrid RANS/LES context, and the hp-adapted meshes have pro-
vided results in line with the references in the literature using similar subgrid turbulence
models, with a decreased number of dofs.

In the last section of Chapter 6, the hp-adaptive algorithm has been applied to the
PPRIME nozzle test case at 𝑅𝑒𝐷 = 106 in a hybrid RANS/LES configuration. ZDES mode
1 combined to mode 0 has been used to separate the interior part of the nozzle, mod-
eled using RANS equations, and the free jet area, modeled using modified DES equa-
tions. The unsteady hybrid RANS/LES adaptation has been here initialized from an
initial hp-mesh provided by a series of steady RANS adaptations. In fact starting from
a very coarse initial mesh would have here dramatically increased the computational
time for the whole adaptation process, as many unsteady adaptation steps would have
been needed to reach accurate results with properly developed turbulent structures. The
flow solver CODA has been then interfaced with the acoustic solver KIM developed at
ONERA, in order to perform Ffowcs Williams-Hawking aeroacoustic far-field computa-
tions on the adapted meshes. The impact of increased resolution has been analyzed for
three adapted meshes presenting respectively 11.6, 18.9, 31.7 million dofs. Quantitative
fluid flow results have compared fairly well to numerical references, obtaining overall
close results to classical FV schemes on structured meshes and non-adaptive DG meth-
ods, with a reduced number of degrees of freedom. Within an uncertainty range due
to the short simulation time, the adapted simulation shows a very good agreement with
reference acoustic spectra and OASPL in the far-field. However, some questions remain
open on the impact of turbulent injection and strong mesh refinement on the statistics
of the jets. In fact, although results have compared well with numerical data, it appears
that refining the mesh could lead to longer potential cores and lower levels of velocity
fluctuations in the potential core with respect to experimental measurements.

These results have shown nonetheless the potential of high-order DG hp-adaptation
in performing scale resolving simulations of turbulent flows, for both aerodynamic and
aeroacoustic prediction purposes. They have provided a motivation to continue explor-
ing LES models for high-order methods and turbulence generation mechanisms to pro-
vide results sufficiently in agreement with experiments in the simulation of jets.

In the last Chapter 7, concerning the work mostly performed in the last period of
the thesis carried out in Airbus, the main objective has been the demonstration of the
complete adaptive chain on transonic wall-bounded flows past complex geometries. For
this purpose, we have implemented in our adaptation tool the possibility to reproject the
surface mesh of the body onto the respective CAD employed to generate the initial mesh,
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by exploiting external and FlowSimulator libraries. We focused in this chapter on the
inclusion of shock capturing in the adaptive procedure, by modifying the error estimator
to take into account also the pressure as a representative variable on which computing
the error estimator in each element. As previously mentioned, the current strategy,
relying on isotropic error estimators and size definition approach, is not yet well adapted
for the efficient adaptation of the boundary layers of high Reynolds numbers flows. For
this reason, we have focused in this chapter only on inviscid flow conditions. Despite the
simplified configurations employed, these test cases have still allowed the validation of
the reprojection algorithm and the assessment of the error estimator behavior.

Second order DG ℎ(𝑝 = 1) and third order DG ℎ(𝑝 = 2) adaptive computations have
been performed on the ONERA M6 wing and on the CRM wing/body test cases. The
estimator has been found to correctly identify the critical zones of the transonic flow
past wings and full aircraft configurations, such as shocks in the first instance, but also
the leading edge, the trailing edge and the trailing vortex region.

The 𝐶𝐷 and 𝐶𝐿 resulting from the h-adaptive procedures have demonstrated a faster
convergence rate as compared to second-order uniformly refined discretizations, leading
to a consistent reduction of dofs with respect to the classical refinement approach. The
suitability of the adopted artificial viscosity approach for the stabilization of DG schemes
has been as well verified in the framework of aircraft configurations. Inviscid simula-
tions have provided very sharp shocks, not deteriorated by the addition of the artificial
viscosity, which has been observed to activate at the expected locations. This study has
been intended both to directly demonstrate in the context of CODA a preliminary metric-
based adaptive capability for Airbus applications, and to serve as a validation basis of the
numerical and technological ingredients for future high-order h- and hp-adaptation to
transonic aircraft configurations. The current restriction to isotropic elements is subopti-
mal with respect to anisotropic mesh adaptation for transonic viscous flows. In particular,
the lack of anisotropic features represents a significant limitation to capturing efficiently
the boundary layers, as well as testing efficiently the adaptive procedure on realistic test
cases.

We believe that the present work significantly contributes towards the application of
high-order metric-based spatial resolution adaptation to industrial configurations. The
developed strategy and the obtained results provide the fundamental building blocks
for future research and developments. The full integration of such adaptive techniques
in the industrial aerodynamic design process will however require a number of further
improvements, which are outlined in the next section.

8.2 Perspectives

We list here some possible paths to follow in future work to improve the developed
adaptive algorithms.

• Anisotropic mesh adaptation for high order DG methods. The development of an
anisotropic h-adaptive method, aimed at adapting the mesh following the direc-
tional features of the flow, would significantly improve the adaptation procedure.
Transonic simulations would benefit from the discretization of the shocks with



8.2. PERSPECTIVES 159

anisotropic elements, allowing for a consistent reduction of the number of degrees
of freedom to represent anisotropic flow features with respect to the use of isotropic
elements. Moreover an automatic anisotropic meshing of the turbulent boundary
layers would be very beneficial as well for both RANS and scale-resolving simula-
tions. Different strategies can be targeted for handling boundary layers. One pos-
sibility would consist in employing a fully tetrahedral mesh, where the boundary
layers would be discretized with highly anisotropic tetrahedra. A second strategy
would rely on pseudo-structured prismatic boundary layers with automatic adapta-
tion of the surface and of the height of the boundary layer. The choice between the
two strategies would strictly depend on the available tools (mainly the remesher
in the fully tetrahedral case and the extruder in the pseudo-structured boundary
layer approach) and the accuracy of the employed numerical methods on the two
types of boundary layer meshes.

• Load balancing techniques. A robust load-balancing strategy should be developed in
order to make hp-adaptive techniques competitive from a CPU time point of view.
The results reported in this work show the potential of hp-methods with respect
to uniformly refined meshes and h-adaptive techniques, in terms of number of
dofs. The parallel implementation employed for computations in this work has
consisted in the partitioning of the mesh according to a criterion based on the
number of elements, and not of the number of dofs. This means that, without a
robust load-balanced implementation of the hp-DG solver, simulations performed
on hp-adaptive meshes might have a comparable cost to a simulation performed on
the same h-mesh, but discretized with the uniform maximum polynomial degree. If
dynamic h- and hp-adaptation are targeted, these load balancing techniques should
be able to efficiently balance the work load at run time.

• Dynamic unsteady h- and hp-adaptation. Although static unsteady adaptation has
provided satisfying results on a statistically steady flow configuration such the
studied subsonic jet, a dynamic unsteady adaptation procedure would be neces-
sary for time evolving flows without statistically steady or periodic features. This
would require the implementation of a dynamic load balancing technique for the
p-adaptation part, as well as efficient run time mesh redistribution. More accurate
techniques of reprojection of the solution from a mesh to the new finer one should
also be implemented. In fact in dynamic mesh adaptation, the reprojected solution
should be immediately exploitable on the subsequent time step. The reprojection
strategy should therefore be conservative and avoid the introduction of spurious
oscillations. However, the essential feature for the efficiency of dynamic unsteady
h- and hp-adaptation is the implementation of the adaptive process directly as part
of the flow solver rather than in an external, file based tool. This is the only way
to avoid expensive exchanges of information during the simulation, which should
be fully coupled to the adaptation process.

• Adaptations with coarsening. One possible drawback of the currently implemented
adaptive algorithm is the lack of a coarsening mechanism. This is justified by the
fact that in the present work, very coarse meshes have been employed as initial
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meshes, and the algorithm aims at increasing the number of dofs at each adapta-
tion step. It means that even though in early stages of adaptation the error esti-
mator might mark for adaptation some cells in zones presenting high values of the
error in these intermediate meshes providing not converged solutions, this would
not lead to extremely overrefined zones, given the initially very coarse meshes.
However, if adaptation is to be used on arbitrarily refined initial meshes for the op-
timization of the distribution of the dofs in the mesh, without having their number
increased at each adaptation, coarsening would be mandatory. Fixed-point iter-
ations would assure the “optimality” of the distribution of the dofs, overcoming
a possible transient behavior of the error estimator, however at the expense of a
higher number of adaptation steps.

• Extension to high-order elements. The exploitation of the full potential of high-order
adaptive methods can be possible if the adaptive algorithms are extended to high-
order elements. This would allow the discretization of the surfaces with a lower
number of elements, while keeping a high order of accuracy on the correct geome-
try. This would lead to a faster convergence of the adaptive algorithms, which are
now constrained by the presence of a large number of boundary elements in order
to correctly represent the geometry.

• Mesh convergence studies, subgrid models and turbulence injection for turbulent jets
at high Reynolds numbers. In future work, turbulent injection/tripping techniques
should be considered, in order to rigorously assess the impact of the developed
turbulent structures in the interior of the nozzle, on both flow field and far-field
acoustic results. Moreover, a deeper insight on the dependence of jet flow statistics
on the mesh resolution and on subgrid turbulence models should be performed in
order to finally clarify the recurrent issue in the literature concerning the solution
on refined meshes diverging from experimental results.

• hp-adaptation for transonic flows. The interest of high-order DG methods in tran-
sonic simulations should be further explored by implementing hp-adaptive strate-
gies well suited for transonic simulations. The shock should be discretized with
low order elements (preferably with polynomial degrees not higher than 𝑝 = 1),
while the current smoothness indicator is not implemented for 𝑝 = 0 or 𝑝 = 1 el-
ements. A possible path could be the use of the Persson-Peraire indicator used for
the computation of the artificial viscosity, imposing a threshold value between h-
and p-adaptation consistent with the value used in the artificial viscosity definition
to mark elements needing additional dissipation. Even though the aim of such an
hp-adaptation strategy should be preserving a low-order discretization in shocks,
we cannot completely exclude some high-order elements to be present in shocks. If
employing very high-order polynomials, the flow solver should be equipped as well
with more robust stabilization/shock capturing techniques for high-order simula-
tions, other than the Persson-Peraire artificial viscosity, such as the entropy residual
based method by Guermond et al. [147]. Moreover, the reduction of the local or-
der of accuracy is known as being an important limitation of DG methods in the
simulation of flows featuring strong discontinuities, such as in transonic industrial
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aeronautical configurations. The development of an effective hp-strategy would
aid the investigation of the global convergence behavior of high-order adaptive DG
methods in the presence of shocks. A very careful distribution of h and p over the
computational domain, lowering p and increasing h near discontinuities, and max-
imizing p in smooth regions, would allow us to benefit the most from high order
methods applied to complex transonic configurations.
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Appendix A

Validation of the acoustic analysis

A.1 Influence of the averaging procedure

The PSD spectra of the acoustic signals presented in section 6.4 have been estimated
using the Welch method [304]. The Welch procedure is carried out by dividing the
time signal into successive blocks, computing the periodogram for each block using a
windowing sequence, and then averaging the PSD estimates. Each block can overlap the
adjacent block by a certain factor. This method allows for reducing the typical oscillations
encountered when evaluating the raw spectrum of a given signal using the classical
Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT) methods. However,
the signal size must be sufficiently long for the block decomposition to be efficient. In our
case, the signal length (130𝑡𝑐) is relatively short, but obtaining clean spectra is important
to be able to compare to the other data sets. We apply a Hann window to each block
composed of N=1000 sampled data, with an overlap of 75%. This leads to 11 averaging
blocks. In order to validate the PSD levels provided by the employed settings, the spectra
for the fine hpG3 mesh in black in figure 6.28 are compared with the spectra obtained
by using only one block of data, and with those obtained by varying the overlap factor
and the number of sampled data N for each averaging block.

In figure A.1, the spectra obtained using one averaging block are depicted in orange,
while those employing segments of data samples of length N=1000 and a 75% overlap-
ping (and 11 averaging blocks) are depicted in black. In magenta lines we report the
spectra obtained by increasing the number of sampling data for each block to N=2000
while fixing the overlapping to 75% (with 4 averaging blocks), and in cyan lines the re-
sults obtained by decreasing the overlap to 50% with N=1000 (and 6 averaging blocks).
The same colors are employed for the OASPL levels in figure A.4. The PSD spectra ob-
tained by employing the three different settings for the averaging blocks appear to be
correctly averaging the spectra computed over the entire length of the signal. The spectra
obtained using the three sets of parameters in black, magenta and cyan lines, are almost
completely superposed. However, it is the integrated noise levels that can confirm the
insensitivity of the computed noise levels to the employed averaging procedure.

In the OASPL plot in figure A.4, the levels obtained averaging over different numbers
of blocks of sample data and those obtained employing only one block of data are almost
indistinguishable, indicating that the chosen set of parameters is reliable for the acoustic
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analysis.
We remark that the spectra presented here have always been spatially averaged on

the 36 azimuthal microphones for each angle of observation. Without this spatial av-
eraging procedure, the spectra would have displayed strong oscillations, complicating
comparisons between the different curves.

A.2 Sensitivity study on the FW-H surfaces

In this section we study the influence of the FW-H surface employed for the acoustic
post processing, on the PSD spectra and, consequently, on the integrated OASPL levels
obtained from the computation on the finest hpG3 adapted mesh.

We remind that the instantaneous flow field has been extracted at each sampling
time step on four different surfaces of revolution (S1, S2, S3, S4) in figure 6.26, which
differ by their radial distance.

At first, a comparison is performed by setting the closing surface to D3 (the farthest),
and varying the surface of revolution S1, S2, S3, S4. For both the cylindrical and the
polar array, the spectra obtained for different angles of observation and the OASPL in
[dB] computed in the frequency range 0.05 < 𝑆𝑡 < 3 are shown respectively in figure A.2
and A.5.

Looking at the spectra, we observe that the results obtained using the four surfaces of
revolution are almost indistinguishable at the low/medium frequency range, which has
a strong impact on the OASPL values. The curves start to differ at a Strouhal number
between 1 and 2, depending on the observation angle. This is an expected behavior, due
to the fact that the farther the surface from the jet region, the lower the grid resolution,
and the lower the cut-off Strouhal number. This means that short-wavelength acoustic
waves are not well resolved near the farther surfaces, leading to a rapid drop of the PSD
levels.

As can be noticed from the OASPL plots in figure A.5, this affects the overall com-
puted noise only to a minor extent. Some small differences can be seen especially for
high angles of observation \ > 50◦, while low angles present very similar results. In
fact sound levels at low angles of observation are mostly affected by the more energetic
vortices at the end of the potential core, which are essentially captured in the same way
by the four surfaces. On the other hand, the smaller turbulent structures in the jet shear
layer, closer to the nozzle exit, which contribute the most to the noise at high angles of
observation, might dissipate while reaching the farthest surface S4 and yield lower noise
levels.

As the results from S1 and S2 are very close to each other, we can assume the two
surfaces as reliable enough to predict the correct noise levels, and we have decided to
employ the S1 surface.

The second part of the sensitivity study consists in a the comparison of the results
obtained by varying the closing surface while keeping fixed the surface of revolution.
For this purpose, S1 is kept fixed and the results obtained using D1, D2, D3 are shown in
figures A.3 and A.6, respectively showing the spectra at different angles of observation
and the corresponding OASPL levels.
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Despite very similar results observed for the spectra displayed in figure A.3, figure A.6
displays the highest levels of the OASPL for every angle of observation, when employing
the D1 surface, especially for \ < 40◦. The computations performed with D2 and D3
provide indistinguishable noise levels from \ = 90◦ up to \ ∼ 30◦ − 25◦. At the lowest
angle \ = 20◦, D2 provides a higher noise level as compared to D3.

This behavior has been observed by Rahier et al. [238] using the same FW-H formu-
lation with the additional flux terms employed in this work, employing different closing
surfaces. They motivated the discrepancies observed for low angles of observation with
the wave refraction due to the velocity gradients in the jet, which leads to a cone of si-
lence around the jet axis and noise reductions on the jet axis. They observed as well that
the shorter the control surface the less these refraction effects are taken into account,
and highlighted the need of control surfaces long enough to compute the jet acous-
tic radiation at observer points located near the jet axis. Following these observations,
and the typical length of the control surfaces which range from 𝑥/𝐷 = 25 to 𝑥/𝐷 = 30
[63, 205, 134], we chose to employ the farthest D3 surface for the comparisons between
the three hp-adapted meshes presented in section 6.4.
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Figure A.1: hpDG/ZDES simulations of the PPRIME nozzle. PSD of the pressure on the
cylindrical microphone array of radius r = 14.3D (left) and on the polar microphone
array at 50D from the nozzle exit (right) for different angles of observation. Different
parameters for the Welch PSD estimation.
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Figure A.2: hpDG/ZDES simulations of the PPRIME nozzle. PSD of the pressure on the
cylindrical microphone array of radius r = 14.3D (left) and on the polar microphone
array at 50D from the nozzle exit (right) for different angles of observation. Different
FW-H surfaces of revolution.
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Figure A.3: hpDG/ZDES simulations of the PPRIME nozzle. PSD of the pressure on the
cylindrical microphone array of radius r = 14.3D (left) and on the polar microphone
array at 50D from the nozzle exit (right) for different angles of observation. Different
closing FW-H surfaces.
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Figure A.4: hpDG/ZDES simulations of the PPRIME nozzle. OASPL on the cylindrical micro-
phone array of radius r = 14.3D (left) and on the polar microphone array at 50D from the nozzle
exit (right) for different angles of observation using different number of overlapping blocks for
the Welch PSD estimation and different parameters for the Welch PSD estimation.
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Figure A.5: hpDG/ZDES simulations of the PPRIME nozzle. OASPL on the cylindrical micro-
phone array of radius r = 14.3D (left) and on the polar microphone array at 50D from the nozzle
exit (right) for different angles of observation using different FW-H surfaces of revolution.
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Figure A.6: hpDG/ZDES simulations of the PPRIME nozzle. OASPL on the cylindrical micro-
phone array of radius r = 14.3D (left) and on the polar microphone array at 50D from the nozzle
exit (right) for different angles of observation using different closing FW-H surfaces.
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