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A cast steel is a metallic product obtained by pouring molten steel into a mold cavity. 

After cooling, the product is removed from the mold and is usually heat treated in order to 

deliver the mechanical requirements that the customer demanded. Casting steels has the 

advantage of producing complex form components ranging from hundreds of grams to 

hundreds of tons [1]. Actually, cast steels are widely used in several areas such as energy, 

automotive, construction, mining… and due to the increasing demand for better mechanical 

properties, an extra effort has to be done to overcome certain issues, for instance hydrogen 

embrittlement which is being treated in the present work. 

This document is a thesis manuscript realized in collaboration between the “Sciences des 

Matériaux et des Structures“ (SMS) center of Mines Saint-Etienne and the foundry group 

Safemetal. The aim of this study is to increase our knowledge of hydrogen embrittlement (HE) 

for low-alloy cast steels, in particular about the interaction between hydrogen and porosity, 

cast steels usually having porosity defects due to different reasons, which are explained later 

in this document. 

The industrial partner has a foundry at Feurs in France, which produces different parts of 

low-alloy cast steels. The hydrogen concentration is usually around 4 ppm on average. This 

concentration is measured at the molten state, during manufacturing, by means of Hydris 

sensor system. A compilation of data permitted to plot the evolution of the hydrogen 

concentration in the steel over a whole year as presented in Figure 1 (a). Each point represents 

the average hydrogen concentration for different steel grades (low-alloy steels), measured at 

the molten state, during a given month. It shows the effect of the local weather on the 

hydrogen concentration which increases in summer. Figure 1 (b) presents the hydrogen 

concentration as a function of the water vapor pressure, calculated using Antoine equation 

[2]. Figure 1 (b) indicates that the hydrogen concentration in the molten steel increases 

linearly with increasing the water vapor pressure in the shop atmosphere. After solidification, 

this hydrogen is trapped inside the final product, which can lead to HE. In fact, it has been well 

proved that hydrogen represents a harmful element for steels because it can lead to a serious 

decrease in mechanical properties, especially loss of ductility [3][4]. After the removal of the 

products from the molds and after heat treatments, tensile tests are usually performed on 

some samples in order to verify the mechanical properties. In few cases, investigation of the 

fracture surface using scanning electron microscope (SEM) shows a special defect known as 
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“fish-eyes” as illustrated in Figure 2. This defect is related to the presence of hydrogen in steel. 

In order to understand the formation of this defect, further investigations are made in this 

study. As it can be understood, it is important to explore first the effect of porosity in the 

hydrogen trapping and diffusion processes to be able to treat efficiently the HE problem in 

cast steels. Finally, it should be mentioned that there is a limited amount of data in literature 

about HE in cast steels. 

In this work, a comparative study was made between two states of the same material: a 

porous state and a non-porous state in order to highlight the role of porosity in hydrogen 

diffusion, trapping and embrittlement. This document is divided into five chapters. The first 

chapter is a literature review in which the important points and the basic notions required to 

treat this issue are presented. Furthermore, some results from previous works are discussed 

in details. The second chapter is dedicated to the experimental methods that were used in 

this study. First, a general description of each instrument is given and then, the different 

experimental procedures and post-treatments are detailed. In particular, a special focus is set 

on the calibration procedure of the thermal desorption spectrometry (TDS) and the possible 

contribution of the adsorbed water to the TDS final signal. The third chapter is devoted to 

investigate the role of porosity in hydrogen diffusion and trapping using two main techniques: 

electrochemical permeation (EP) and TDS. Furthermore, from the TDS data, a method is 

proposed to estimate the hydrogen fugacity of the charging solution used in this work, as well 

as the hydrogen solubility of the material. The fourth chapter corresponds to a numerical 

study in which two models based on two different approaches are presented. These models 

are used to simulate permeation tests in porous specimens and to explore the effect of various 

parameters such as hydrogen fugacity and porosity fraction on the hydrogen diffusion 

behavior. In addition, a comparison between the experimental permeation data and the 

numerical results is made. In the last chapter, the focus is set on the combined effect of 

hydrogen and porosity on the mechanical properties of the studied steel. Tensile tests were 

performed on H-charged and uncharged specimens in order to underline this effect and to 

understand the formation of fish-eye. These findings are completed by a study of the fracture 

surfaces using SEM. Finally, a summary of the important findings of this work is presented. In 

addition, several perspectives are proposed in order to investigate further the relationship 

between hydrogen and porosity and to improve the numerical models. 
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Figure 1: (a) The trend of hydrogen concentration in the molten steel for the year 2017 at SafeMetal, 
Feurs, France. The hydrogen concentration was measured by means of Hydris sensor system. (b) The 

hydrogen concentration as a function of the water vapor pressure. 

 

 

Figure 2: SEM micrograph showing the fish-eye defect, which is related to the presence of hydrogen 
in the material (from SafeMetal). 
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I Chapter 1: Literature Review 
 



 

8 



 

9 

I.1 Steel elaboration 

I.1.1 Cast steel elaboration in arc furnaces 

The most common manufacturing processes used for melting steels are electric arc 

furnaces and induction furnaces. The material used in this study is a low–alloy cast steel. It 

was elaborated in an electric arc furnace by a double-slag process, which permits the 

dephosphorization and the desulfurization of the steel [5]. In fact, phosphorous and sulfur can 

have an embrittlement effect on the steel when their concentrations exceed certain 

thresholds [6]. The elaboration process is presented in Figure 3. The first step consists of 

loading the charge (shop returns and purchased scrap) into the furnace and adding lime 

(calcium oxide). Then, the charge starts to melt under the high voltage applied by means of 

the electrodes. In fact, the metal is heated due to the current flow. Once the charge is fully 

melted, a first slag is created on the molten steel. At the same time, a continuous oxygen 

lancing is performed in order to oxidize phosphorous and reduce carbon content 

(decarburization) [7]. As a result, tricalcium phosphate is formed in the slag [8]. At this point, 

the slag has to be removed because it is very rich in phosphorous. After that, the melter checks 

the bath chemistry by collecting a sample from the molten steel. Based on the analysis results, 

alloys (ferromanganese, ferrosilicon, ferromolybdenum…) are added to adjust the chemical 

composition. It should be mention that oxygen lancing is stopped just before adding the alloys. 

Then, a second slag is added combined with aluminum ingots in order to reduce the bath and 

remove sulfur [8][9]. It should be mentioned also that the reduction of the bath permits to 

recover the alloys that were oxidized during the oxygen-lancing step (oxidation). After a 

second check of the melt chemistry, a new alloy addition is performed. Afterwards, the slag 

has to be removed before pouring the molten steel in the ladle. Once in the ladle, a last 

adjustment is made, if required, by using a small amount of alloys and the steel is “killed” by 

adding different chemical components (aluminum, titanium, zirconium, silicon…). The aim of 

this operation is to reduce the content of gases such as O and N (by forming non-gaseous 

stable phases: SiO2, Al2O3, TiN, ZrN…) in order to avoid gas evolution during solidification, 

which can lead to the formation of gas porosity [10]. Unfortunately, this operation cannot be 

performed on hydrogen [11]. Therefore, other solutions have been proposed such as vacuum 

degassing and inert gas flushing. However, the cost and the efficiency of these operations 

limited their use in the steelmaking industry. Finally, the molten steel is poured into a mold. 
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Then, the final product is removed from the mold after solidification. Finally, heat treatments 

are performed on the product in order to fulfill the mechanical requirements and to reduce 

hydrogen concentration. This hydrogen degassing operation is known as “baking. It consists 

in heating steel for a certain time at a given temperature in order to obtain hydrogen 

desorption. 

 

Figure 3: The operating cycle for cast steel elaboration in an electric arc furnace with a double-slag 
practice. 

I.1.2 Porosity formation 

The final product of casting has usually porosity defects with different sizes and shapes. 

There is mainly two major reasons for the porosity formation in castings during solidification: 

shrinkage and gas evolution[12][13]. Shrinkage porosity is a result of the volume reduction of 

steel due to the phase transformation from the liquid to the solid state. This problem can 

usually appear when the feeding system is inadequate and cannot provide enough liquid 

metal. As a result, the porosity is generally localized at the last zones to solidify [12]. The shape 

of this type of porosity is usually not spherical and it takes the form of the remaining space 
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between dendrites [14][15]. In the other hand, gas porosity is caused by the evolution of the 

dissolved gases during solidification. In fact, the solubility of elements such as N and H 

(illustrated in Figure 4) decreases significantly from the liquid to the solid state, which leads 

to strong partitioning between the liquid and the solid, and gas evolution in the liquid phase 

[12][16], with formation of porosity. It was shown that these pores are formed at the early 

stage of solidification or even possibly in the complete liquid state. They have spherical or 

ellipsoidal shapes [14][15]. Finally, it should be mentioned that the rolling and forging 

operations allow the elimination of these porosities [17]. For cast parts, as there is no rolling 

or forging operation, the porosity is not suppressed. 

 

Figure 4: Hydrogen solubility in pure iron as a function of temperature. Hydrogen content is 
expressed in wt% [18]. 
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I.1.3 Hydrogen sources 

Hydrogen is introduced in steel either at the manufacturing process or/and in service 

when exposed to hydrogen-containing environments [19]. In the first case, hydrogen is 

absorbed mainly during melting, as hydrogen solubility is very high in the liquid state as 

presented earlier in Figure 4. In fact, there are numerous sources of hydrogen. The primary 

main source of hydrogen lies in the water vapor (humidity) in furnace atmosphere [20][21], 

which can be reduced into hydrogen at the molten steel surface according to the chemical 

reaction presented in Eq.(1). Another potential source is wet refractories [22]. Furthermore, 

hydrated lime and humid ferroalloys can induce hydrogen in the molten steel [23]. For this 

reason, a special care must be taken to the storage of lime, ferroalloys and raw materials in 

order to keep them dry as much as possible. 

 H2O → H2 + O (1)  

 

I.2 Hydrogen interaction with steels 

I.2.1 Chemical potential and hydrogen fugacity 

The chemical potential is a thermodynamic concept that was first introduced by Gibbs in 

the late 1800s [24]. Its typical definition is: “the chemical potential of a given species i is 

defined as the rate of increase in the Gibbs free energy of the system with respect to the 

increase in the number of moles of species i under constant entropy, constant volume, and 

constant number of moles for all species except species i”[24]. Chemical potentials are very 

useful to describe phase equilibrium. For instance, when a component is under two phases 

(solid and gas), the equilibrium is reached when the chemical potential of the component in 

the solid phase is equal to that in the gaseous phase. Furthermore, it is possible to define 

diffusion fluxes using the gradient of chemical potentials. 

The fugacity of a chemical element (usually noted f) is a thermodynamic function that 

represents its tendency to escape from a given phase to another [25][26]. It is a measure of 

its chemical potential [27]. For example, the relationship between the chemical potential of 

hydrogen (µ) and hydrogen fugacity (f) at a constant temperature is:  
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 µ =  µ0 + RT. ln (
f

f 0
) (2)  

 

where µ0 is the chemical potential of hydrogen at the reference pressure (generally 1 atm) 

and f0 is hydrogen fugacity at the reference pressure. 

The concept of fugacity was first introduced by G.N.Lewis in the early 1900s [28]. It has the 

same dimension as pressure and it can be described as an adjusted pressure for real gases (at 

low pressures, the fugacity is equal to the pressure but it deviates at high pressures due to the 

non-ideal behavior of gases). 

By using and combining thermodynamic relationships, San Marchi et al. provided a simple 

expression (Eq.(3)) that relates hydrogen fugacity to the pressure [29]. 

 ln (
f

P
) = ∫ (

v

RT
−

1

P
) dP

P

0

 
(3) 

 

where P is the pressure, v represents the molar volume, R is the universal gas constant and T 

is the temperature. 

I.2.2 Sieverts’ law 

In 1929, Adolf Sieverts presented a relationship that describes the equilibrium for the 

dissolution of diatomic gases in metals [30][31]. This relationship is known as Sieverts’ law. 

For hydrogen, the expression is given in Eq.(4) [32]: 

 C = KH√fH2
 (4)  

 

where C represents the concentration of atomic hydrogen dissolved in the material, KH is the 

Sieverts constant (hydrogen solubility) and fH2
 is hydrogen fugacity. In this study, we refer to 

KH as “Sieverts constant” or “hydrogen solubility“ indifferently. It is important to point out that 

hydrogen solubility is dependent on temperature. It increases as the temperature increases 

as illustrated in Figure 4. 
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Sieverts‘ law can be easily demonstrated by expressing equilibrium between the respective 

chemical potentials of hydrogen in the solid phase (HSolid) and the gaseous phase (H2). Eq.(5) 

represents the chemical reaction of the dissociation H2 into hydrogen atoms. 

 
H2 ↔ 2H𝑆𝑜𝑙𝑖𝑑 

 

(5) 
 

The first step is to calculate the chemical potentials of hydrogen in the system. In our case, 

the chemical potential of atomic hydrogen in the solid phase can be expressed as follows: 

 
µH

Solid =  µH
0 + RT ln (

C

  C0
) 

 

(6) 
 

where µH
0  is the standard chemical potential, C is the H concentration and C0 is the H 

concentration at the standard state. In the same way, it is possible to define the chemical 

potential of molecular hydrogen: 

 
µH2

=  µH2

0 + RT ln (
fH2

fH2

0 ) 

 

(7) 

 

where µH2

0  is the standard chemical potential of molecular hydrogen, fH2 represents the 

hydrogen fugacity and fH2

0  is the hydrogen fugacity at the standard state. Since the chemical 

potential of the atomic hydrogen at the gaseous phase is equal to the half of the chemical 

potential of the molecular hydrogen (µH
gas

=  
1

2
µH2

), we can express the chemical potential of 

atomic hydrogen inside the gas as: 

 
µH

gas
=

1

2
µH2

0 + RT ln √
fH2

fH2

0  

 

(8) 

 

At equilibrium, the chemical potential of hydrogen in the solid is equal to the chemical 

potential of hydrogen in the gas, which leads us to the following expression: 

 µH
0 + RT ln (

C

  C0
) =

1

2
µH2

0 + RT ln √
fH2

fH2

0  
(9) 
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Thus, the equilibrium hydrogen concentration in the solid phase can be expressed as: 

 
C =

  C0

√fH2

0

× exp (

1

2
µH2

0 − µH
0

RT
) × √fH2

 

 

(10) 

 

which is the same expression as the one presented at the beginning in Eq.(4), with 

KH =  
  C0

√fH2
0

×  exp (
1

2
µH2

0 −µH
0

RT
) which represents hydrogen solubility. As it can be seen from the 

expression, this solubility is dependent on the temperature. It increases with increasing the 

temperature. Figure 5 shows the evolution of hydrogen solubility as a function of the 

temperature. Hydrogen solubility is higher in the austenitic phase (ϒ) than in the ferritic phase 

(α) but this difference decreases at high temperature. Furthermore, hydrogen solubility in the 

16MND5 steel is higher than in pure iron because this is an “apparent” solubility, which takes 

into account hydrogen trapping in the different microstructural defects.  

 

Figure 5: The evolution of hydrogen solubility as a function of temperature for the ferritic phase (α) 
and the austenitic phase (ϒ) of a 16MND5 steel. The dashed lines correspond to an adjusted 

composition representing segregated bands. For more details see reference [33]. 
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I.2.3 Hydrogen diffusion and trapping 

Hydrogen atom has the smallest atomic radius which facilitates its diffusion in solid 

solution. In body-centered cubic metals, hydrogen occupies tetrahedral sites whereas it 

occupies octahedral sites in the face-centered cubic metals [34][35]. In general, hydrogen 

diffusion from one interstitial site to another, also called lattice diffusion, is governed by 

Fick’s laws [36]: 

 𝐽 = −D∇C (11)  

    

 

∂C

∂t
= ∇(D∇C) 

 

(12) 

 

where J is the hydrogen flux, D is the diffusion coefficient, C is the hydrogen concentration 

and t represents the time. However, in reality, hydrogen diffusivity is highly affected by 

microstructural defects such as dislocations, voids, grain boundaries and precipitates [34] 

known as hydrogen traps. Figure 6 presents a compilation of the hydrogen diffusion 

coefficients taken from several works [4][33][35]. It shows that the diffusion coefficient 

increases with increasing the temperature. In addition, it shows that the diffusion coefficient 

varies from one microstructure to another, which can be explained by the interaction of 

hydrogen with the different phases and defects in the microstructure. In fact, these sites are 

called traps because their potential well is deeper than that of the interstitial sites and as a 

result, hydrogen atom stays in the trap for a longer time than in the interstitial site [35]. At a 

given temperature, these traps can be categorized in two groups based on the energy required 

to escape the trap: reversible traps and irreversible traps as illustrated in Figure 7. However, 

the limit between the two types of traps is arbitrary [35]. For instance, Lee suggested that the 

energy limit is situated at 26.4 kJ/mol [37] whereas, it was mentioned in other works 

[38][39][40] that this limit is about 60 kJ/mol. It can also be mentioned from the data 

presented in Figure 6 that hydrogen diffusion is much faster in the ferrite (BCC) than in the 

austenitic (FCC), although the difference tends to decrease at high temperature. 
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Figure 6: Compilation of the evolution of hydrogen diffusion coefficients as a function of the 
temperature. (a) for iron and steel [4]. (b) for carbon steels and low-alloy steels [35]. Note that D is 
presented in mm²/s. (c) for 16MND5 steel. The dashed lines correspond to an adjusted composition 

representing segregated bands. For more details see reference [33]. 
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Figure 7: A schematic illustration of the potential energy for the lattice diffusion with activation 
energy Ea, and trapping site with binding energy Eb and activation energy Et. The activation energy 

depends on the nature of the trap. The figure is extracted from Turnbull work [35]. 

In ferritic-pearlitic steels, some studies [41-45] have demonstrated that the interfaces in 

pearlite act as trapping sites for hydrogen. For instance, Chan et al. [41] have studied hydrogen 

trapping by performing a series of experiments on Fe-C alloys in which they increased the 

pearlite-ferrite interface density by varying the carbon content in the alloy. They have shown 

that hydrogen diffusivity decreases with increasing the pearlite-ferrite interface density. 

Moreover, it was reported, in other studies [42][43], that the interfaces in pearlite correspond 

to irreversible hydrogen trapping sites at room temperature and that the trapping energy is 

about 65 kJ/mol. 

I.2.4 Modelling of hydrogen diffusion and trapping 

As mentioned earlier, hydrogen can be trapped by the defects present in the steel and as 

a result, the diffusion behavior is affected. Through the years, several theoretical models were 

developed to describe hydrogen diffusion and trapping. For instance, McNabb and Foster 

developed a general mathematical model that took into consideration the trapping effect in 

the hydrogen diffusion process [46][47]. This model describes the hydrogen diffusion behavior 

in steel where trap sites are uniformly distributed. It is important to point out that no 
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assumption was made about the nature of the traps. They succeeded to incorporate this 

trapping effect by integrating a trapping term in the second Fick’s law. Then, Oriani 

reformulated their work and provided simpler equations that are based on the assumption of 

local equilibrium between lattice and trapped hydrogen [48]. He has shown that the hydrogen 

apparent diffusion coefficient depends on the trap sites density and the trapping energy. 

Later, Turnbull et al. established a model that is not only able to treat the case of high trapping 

occupancy but also gives the possibility to treat irreversible traps as well as reversible traps 

[49]. In fact, it seems that Leblond and Dubois [50] were the first ones to treat this issue 

(combination of reversible and irreversible traps) but they only treated the case of low 

trapping occupancy. More recent works [51-56] have been made in the last decade in order 

to simulate the hydrogen diffusion process with the presence of traps. These studies have 

permitted to increase our knowledge of the effect of different traps on hydrogen behavior. In 

the present work, the focus was set on one specific trap, which is the porosity (i.e. voids). This 

porosity can store molecular hydrogen as explained by the hydrogen pressure theory 

proposed by Zappfe [57]. It assumes that atomic hydrogen H diffuses through the material 

and recombines as molecular hydrogen H2 inside the cavities. Several studies [58-64] were 

carried out on this specific topic. In his work [64], J.G Sezgin introduced a refined equation of 

state (EOS) for gas hydrogen based on the National Institute of Standards and Technology 

(NIST) database. This EOS describes the real behavior of hydrogen better than the other EOS 

do. This point is discussed in details in the next section. In this study, this EOS was used in two 

different numerical models. 

I.2.5 Hydrogen and porosity 

I.2.5.1 State of hydrogen trapped in porosity 

In this work, the main objective is to study the interaction between hydrogen and porosity. 

Little work has been done in existing literature on the effect of porosities on hydrogen 

diffusion and trapping. These few studies [37][65-70] mentioned that voids act as trapping 

sites for hydrogen. For instance, Choo [70] worked with pure iron samples that have different 

densities (obtained by cold drawing) and he showed that, after hydrogen charging, the 

amount of hydrogen trapped in voids increases with increasing the voids volume fraction as 

illustrated in Figure 8. He also determined a trapping energy of 35.2 kJ/mol for the microvoids 

based on these measurements [70]. Some studies mentioned that voids are reversible traps 
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for hydrogen [68][69] while others considered them as irreversible traps [37][65-67]. Lee et 

al. studied hydrogen trapping in porosities in pure iron and in nickel. For pure iron [37], they 

developed a mathematical model for hydrogen retrapping which was verified using 

experimental data. The specimens used in their study were cold-drawn in order to create 

microvoids. Then, these specimens were thermally charged with hydrogen followed by a rapid 

quench to room temperature. After quenching, the specimens were analyzed by the gas 

chromatography technique to determine the amount of trapped hydrogen. The microvoids 

trapping energy was estimated to be 40 kJ/mol. Furthermore, they mentioned that this energy 

was equal to 56 kJ/mol for an AISI 4340 steel [66]. Finally, they concluded that microvoids act 

as irreversible traps for hydrogen. The same authors investigated the effect of voids on 

hydrogen trapping in nickel [65] and they came to the same conclusion that voids are strong 

trapping sites for hydrogen. In addition, Padhy [67] carried out a literature review on the 

different aspects of hydrogen in steel weldments and he classified the voids as irreversible 

traps too. As can be understood from this literature review, the reversible or irreversible 

nature of voids is not entirely clear. For this reason, this point is discussed in details in this 

study for the case of cast steels. Finally, it should be noted that no information about the size 

of these microvoids was given in the references mentioned above. 

 

Figure 8: TDS curves for pure iron samples charged with hydrogen. The samples have different 
relative density (R.D) achieved by cold drawing. Heating rate: 2.6 K/min. The peak height 

corresponding to microvoids (peak 2) increases with increasing the volume fraction of voids [70]. 
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Another question can be raised about the physical state of hydrogen in the voids: it can be 

either in the atomic state, adsorbed on the internal surfaces of the voids or inside the voids 

as H2 molecules, i.e. gaseous. From literature, the exact state of hydrogen in voids is not 

completely clear. It depends on various parameters such as the pressure inside the voids, the 

volume fraction of porosity, the temperature… Figure 9 presents the ratio of hydrogen 

between the adsorbed and the gaseous form as a function of the void radius for different 

pressures (1, 100 and 10 000 atmospheres). These results are based on theoretical 

calculations obtained by Wong [71] in iron. It shows that the amount of adsorbed hydrogen 

increases with decreasing the void size for a given pressure. In the case of 1 atmosphere and 

a void radius of 10-6 cm, the majority of hydrogen is under the atomic form. However, for high 

pressures the amount of adsorbed hydrogen tends to be negligible compared to the amount 

of molecular hydrogen. For our case, this ratio will be discussed later based on experimental 

and theoretical calculations.  
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Figure 9: The ratio of adsorbed to gaseous hydrogen with respect to the void radius for three 
different pressures: 1, 100 and 10 000 atmospheres [71]. 

I.2.5.2 Equation of state of gaseous hydrogen 

An equation of state (EOS) is an equation that relates the state variables of a system in 

order to give a description of its thermodynamic state. There are many EOS and each one is 

only valid under certain conditions [72]. 

Under low pressures, gases behave according to the ideal gas law presented in the following 

equation: 

 
Pv = RT 

 

(13) 
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where P is the pressure, v represents the molar volume, n is the number of moles, R is the 

universal gas constant and T is the temperature. However, at high pressures, the gas behavior 

deviates from the ideal gas law. At high pressures, the volume occupied by the molecules 

(co-volume) becomes important compared to the total volume and as a result it has to be 

considered in calculations. In addition, at low temperatures, the kinetic energy of gas 

molecules decreases significantly, which promotes the interaction between the molecules. For 

hydrogen gas, this latter effect can be neglected for temperatures above 200 K [64]. There is 

in fact a number of different EOS that can be applied to hydrogen: Van-der-Waals, Hemmes, 

Able-Noble… and each EOS is only valid in a certain range of temperature and pressure. For 

instance, Eq.(14) corresponds to the Able-Noble EOS, which is equivalent to Van-der-Waals 

EOS at room temperature. 

 
Pv =  RT + Pb 

 

(14) 
 

where, b represents the co-volume (1.584×10-5 m3.mol-1) [29]. In this study, we needed a 

consistent EOS that gives an accurate description of hydrogen especially at high pressures. 

Therefore, a new EOS, which has been developed by Sezgin [64][73], was used (see Eq.(15)). 

In his work, Sezgin proposed a new EOS based on Abel-Noble model and on thermodynamic 

data from the National Institute of Standards and Technology (NIST), which relates hydrogen 

density to pressure. This new EOS is referred to as “NIST” in this study. The model is valid for 

temperatures above 200 K and pressures up to 2000 MPa. 

 
Pv =  RT + Pb0 − 1.955 × 10−15 × P2 

 

(15) 
 

where b0 is a constant (1.4598×10-5 m3.mol-1). For a given EOS, the relationship between 

hydrogen pressure and hydrogen fugacity can be obtained from Eq.(3). Figure 10 [64] presents 

the relationship between hydrogen fugacity and hydrogen pressure at room temperature 

plotted using the EOS of Able-Noble, Van-der-Waals and the NIST data. As it can be seen, the 

same results were found until 300 MPa then, for a given fugacity, the NIST pressure is higher. 

In fact, this difference is due to the pressure dependency of the co-volume, which is included 

in the NIST data whereas the co-volume was a constant for the two other EOS. These findings 

motivated J.G Sezgin to develop the new EOS in order to overcome this problem. 
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Figure 10: Hydrogen fugacity as a function of the pressure at room temperature for three different 
EOS. The blue curve corresponds to the EOS developed by J.G Sezgin. The red and black curves 

correspond to the Abel-Noble and Van-der-Waals model, respectively [64]. Note that the fugacity 
values are presented on a logarithmic scale. 

I.2.5.3 Distribution of hydrogen in a steel containing porosities 

At room temperature 

In order to have a better understanding of the effect of the EOS on the hydrogen behavior, 

a comparison between hydrogen as a real gas (by using the NIST EOS) and as an ideal gas is 

made. We consider a case where a steel sample has a porosity fraction equals to 0.1% and the 

hydrogen solubility is equal to 0.18 mol/(m3×bar0.5). The solubility value used here is obtained 

from the experimental data that are presented in chapter 3. In addition, we assume that 

hydrogen is only distributed between the bulk and the porosity and that there is no exchange 

with the environment. Therefore, the total hydrogen concentration in the sample is the sum 

of hydrogen in the porosity and in the bulk as described in Eq.(16). 

 
CTotal =  CB + CP 

 

(16) 
 

where CTotal is the total hydrogen concentration in the sample, CB represents the hydrogen 

concentration in the bulk and CP is the hydrogen concentration in the porosity. The calculation 

results of hydrogen distribution are presented in Figure 11. These results are obtained by the 

resolution of a system of equations composed of the following equations {(3), (4), (13), (15) 
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and (16)}. Furthermore, all calculations were performed at room temperature. It should be 

mentioned that the temperature has a significant effect on the hydrogen distribution between 

the bulk and the porosity. A detailed description of this effect is provided in in the next section. 

Figure 11 (a) shows the evolution of the equilibrium hydrogen pressure in the pores as a 

function of the total hydrogen concentration inside the sample for the two EOS. The pressure 

in the two cases increases similarly with increasing the total amount of hydrogen until 1 wt 

ppm. Then, the hydrogen pressure calculated using the real gas EOS becomes higher than that 

of the ideal gas until 60 ppm. This increase is a consequence of the co-volume, which becomes 

more significant at high pressures. Above 60 wt ppm, the pressure calculated using the real 

gas EOS becomes smaller than that of the ideal gas. Actually, the pressure increase becomes 

slower and slower for the real gas compared to the ideal gas. This is a direct result of the 

fugacity, which tends to increase significantly the hydrogen concentration in the bulk 

(Sieverts’ law in Eq.(4)) especially when the pressure is high. Figure 11 (b) represents the 

distribution of hydrogen between the bulk (CB) and the porosity (CP) as function of the total 

hydrogen concentration. In both cases, CP is lower than CB for CTotal below 0.2 wt ppm. Then, 

above this concentration, CP becomes higher than CB for the ideal gas. However, for the real 

gas, CP is higher than CB for CTotal from 0.2 wt ppm until approximately 10 wt ppm and then 

above 10 wt ppm, CB becomes higher again. This is due to the fugacity effect as explained 

previously, which tends to increase significantly the amount of hydrogen in the bulk when the 

pressure becomes high. As it can be seen, the two EOS give the same distribution of 

concentrations between the bulk and the porosity until 1 wt ppm. Then, for CTotal above 1 wt 

ppm, CB of the real gas becomes higher than CB of the ideal gas and CP of the real gas becomes 

lower than CP of the ideal gas. This is a result of the co-volume and the fugacity. Another 

interesting result of the real gas behavior can be seen in the same figure. For instance, for a 

CTotal equals to 20 wt ppm, the pressure is about 371 MPa and 645 MPa for the ideal gas and 

the real gas respectively which represents an increase of 74%. However, CP is equal to 18.4 wt 

ppm and 7.8 wt ppm for the ideal gas and the real gas, respectively. This represents a 58% 

decrease in the hydrogen concentration in the porosity. To sum up, the pressure of hydrogen 

inside the porosity was higher for the real gas compared to the ideal gas even though the 

hydrogen amount in the porosity was lower in the case of the real gas. Finally, it is important 

to recall that these results of course vary with the input parameters used in these calculations 

such as the porosity fraction and temperature. 
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Figure 11: Comparison between the ideal gas EOS and the real gas EOS. (a) The pressure evolution in 
porosities as a function of the total hydrogen concentration. (b) Hydrogen distribution between the 

bulk and the porosity as a function of the total concentration. Porosity fraction: 0.1%. Solubility 
coefficient: 0.18 mol/(m3×bar0.5). 

At high temperatures 

In this section, the effect of temperature on the amount of hydrogen in the porosity and 

in the bulk is discussed. As mentioned in the first chapter, hydrogen solubility increases with 
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temperature (see Figure 4). Thus, for the same total hydrogen concentration, the amount of 

hydrogen in the porosity and in the bulk vary with temperature. Figure 12 represents the 

results of calculations based on the values of hydrogen solubility taken from the work of Sezgin 

[63] (presented in Figure 5). The calculations were performed considering a steel sample 

containing 1 wt ppm of total hydrogen and a porosity fraction of 0.1%. The results are obtained 

by the resolution of a system of equations composed of Eq.(3), (4), (15) and (16). It indicates 

that, for the same total hydrogen concentration, the amount of hydrogen in the bulk increases 

with increasing the temperature, which leads automatically to decrease the amount of 

hydrogen in the porosity. This is a direct consequence of the increase of hydrogen solubility 

with temperature. As it can be seen, at low temperatures the majority of hydrogen is located 

in the porosity while, at high temperatures, it is the opposite. As a consequence, it is expected 

that the trapping of hydrogen by porosities becomes negligible above a certain temperature. 

 

Figure 12: Hydrogen distribution between the porosity and the bulk as a function of the temperature. 
Hydrogen solubility values used in these calculations are extracted from Sezgin work [63]. Total 

hydrogen concentration: 1wt ppm. Porosity volume fraction: 0.1%. 
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I.2.5.4 Hydrogen diffusion coefficient in steel containing porosity 

Chew has proposed a model for hydrogen diffusion in a steel containing voids [69][74]. 

The model was developed first for ideal gas and then he extended his work for high hydrogen 

pressures in the voids (up to 1000 atm) and for temperatures below 200°C. The model was 

built on the assumption of a constant local equilibrium between the molecular hydrogen 

trapped in the voids and the surrounding hydrogen in the bulk. Finally, under the assumption 

of ideal gas, Chew obtained the following expression of the apparent diffusion coefficient at 

low hydrogen pressures in the voids: 

 
Dapp =

DL

(1 +
2XP

RTKH
√P)

 

 

(17) 

 

where Dapp is the apparent hydrogen diffusion coefficient, DL is the lattice hydrogen diffusion 

coefficient, XP represents the volume fraction of porosity, R is the universal gas constant, T is 

the temperature, KH corresponds to the hydrogen solubility and P is the hydrogen pressure in 

the voids. As it can seen from Eq.(17), Dapp decreases with increasing the porosity fraction and 

the pressure. In the other hand, the Dapp increases with increasing the solubility coefficient. In 

order to give a visual description of these effects, the curves of Dapp as a function of these 

three parameters are presented in Figure 13. The lattice diffusion coefficient (DL) used in these 

calculations is equal to 7×10-9 m²/s which represents the hydrogen diffusion coefficient in pure 

iron determined at 298 K [75]. Figure 13 (a) corresponds to the influence of the porosity 

fraction on the apparent diffusion coefficient for three different values of solubility. The same 

behavior was found in the three cases. The Dapp decreases with increasing the porosity 

fraction, which means that the trapping effect of voids increases with increasing the porosity 

fraction. In the other hand, the Dapp tends to DL , when the porosity fraction becomes low. For 

high values of the porosity fraction, the slope is equal to one, which means that Dapp varies 

linearly with XP. Figure 13 (b) shows the effect of hydrogen pressure on the Dapp. As it can be 

seen, the Dapp decreases with increasing the pressure. In addition, Dapp tends also to DL when 

the pressure is very low. For high values of pressures, the slope is equal to ½, which means 

that Dapp varies as √𝑃. Finally, Figure 13 (c) presents the influence of the solubility coefficient 

on Dapp. Dapp increases with increasing the solubility. This can be interpreted as reducing the 

trapping effect of the voids because when the solubility is high, the voids tends to trap a 
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smaller fraction of hydrogen. For low values of solubility, the slope is equal to one, which 

means that Dapp varies linearly with KH. As it can be understood, the Dapp expression is a useful 

tool to interpret hydrogen diffusion under different configurations. In addition, it could be 

used in the diffusion equation to simulate permeation tests for example. However, several 

limitations have to be considered: 

 In a permeation experiment, the hydrogen pressure in the voids is 

space-and-time-dependent, so Dapp is not a constant. Numerical solving of the diffusion 

equation is thus needed. 

 Eq.(17) is valid only for ideal gas, i.e. in a limited range of pressure. 

The modelling approaches developed in this work are not based on the concept of the 

apparent diffusion coefficient, as shown later. 
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Figure 13: The apparent hydrogen diffusion coefficient proposed by Chew calculated using Eq.(17) as 
a function of (a) the porosity fraction (b) the hydrogen pressure and (c) the solubility coefficient. 
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I.3 Hydrogen embrittlement 

I.3.1 Hydrogen embrittlement mechanisms 

In the literature, several mechanisms have been proposed in order to explain HE in metals. 

In general, it is possible to classify these mechanisms in three main groups: hydride-induced 

embrittlement, Hydrogen Enhanced DEcohesion mechanism (HEDE) and plasticity localization 

failure (Hydrogen Enhanced Local Plasticity: HELP, and Adsorption-Induced Dislocation 

Emission: AIDE). 

 The hydride formation associated to an oversaturation of hydrogen can lead to the 

degradation and the failure of metals [76][77][78]. This mechanism was first 

introduced by Westlake [76] who argued that the cracking can be initiated near 

the crack tips by the formation of hydride precipitations. He indicated that the 

formation of hydrides could be enhanced by the hydrostatic stress in the crack tip 

region. 

 The HEDE mechanism was first discussed by Troiano [79] and then was improved 

by Oriani [80][81]. This mechanism is based on the following assumption: the 

dissolved hydrogen lowers the cohesion forces between the atoms of the alloy. In 

this case, the interatomic bond breaks when the local stress exceeds the 

hydrogen-lowered forces. It was reported that the HEDE mechanism can occur 

along cleavage planes, interfaces and grain boundaries [81]. 

 The third group is composed of two mechanisms based on the 

hydrogen-dislocation interactions. The HELP mechanism was first proposed by 

Beachem [82][83] who suggested that the presence of a sufficient amount of 

dissolved hydrogen facilitates the mobility of dislocations. This leads to the 

increase of the local plastic deformation and as a result reduces the local stress 

needed to initiate cracks. The other mechanism (AIDE) is based on the decrease of 

the energy required to create dislocations at the crack surfaces caused by the 

adsorbed hydrogen [84][85]. Once the cracks are created, the dislocations move 

away from the crack tip. In this mechanism, the cracking is a result of a 

combination of a localized plastic deformation due to the dislocations and the 

nucleation and growth of micro-voids at the crack tip. 
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I.3.2 Hydrogen embrittlement in ferritic-pearlitic steels 

Several researchers have studied the HE of low-alloy steels. In particular, the HE of 

ferritic-pearlitic steels [41][86-90]. In terms of mechanical behavior, it was found that 

hydrogen did not affect greatly the yield strength and the ultimate tensile strength of the 

steel, while it influenced significantly its ductility (total elongation) [41][86][87] as illustrated 

in Figure 14. However, Zhang et al. [91] found that there is a difference in the yield strength 

between uncharged and H-charged specimens. They mentioned that the yield strength could 

decrease with increasing hydrogen concentration. Moro et al.[86] have also performed tensile 

tests on a X80 steel under hydrogen gaseous charging. Their results indicated that the HE 

increases with increasing the hydrogen pressure (until 10 MPa) and with decreasing the strain 

rate. 
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Figure 14: Stress-strain curves for uncharged and H-charged specimens. (a) High-strength steel 
charged in 20 wt% NH4SCN solution heated at 50°C for different times (strain rate = 5×10-7 s-1) [42]. 

(b) X80 steel charged by applying a 300 bar hydrogen pressure (strain rate = 5×10-5 s-1) [86]. 

It was reported, especially in the case of ferrite-pearlite banded structures, that the 

ferrite-pearlite interfaces represent HE crack nucleation sites [86][88-90] because hydrogen 

can accumulate at the interfaces and promotes the weakening of cohesion (HEDE) of the steel 

along these interfaces [86][89]. In these works, the study of the fracture surfaces of the 

hydrogen charged specimens showed, in general, the presence of a mix of ductile and brittle 

areas. However, no occurrence of brittle areas was found on the fracture surface of hydrogen 

charged tensile specimens in several works [42][92-94]. For instance, T.Neeraj et al. [93][94] 

conducted tensile tests on hydrogen pre-charged specimens of a ferritic-pearlitic steel (X65) 

and found a general reduction in the total elongation by 30%. They reported that the fracture 

https://www.sciencedirect.com/science/article/pii/S135964541200376X#!
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surface did not show any brittle area, as illustrated in Figure 15, and that there was evidence 

for hydrogen-enhanced plastic flow localization. Consequently, it can be understood that the 

fracture mode does not depend only on the presence of hydrogen inside the specimens. 

 

Figure 15: Fracture surfaces of the X65 steel after tensile testing showing a ductile failure. (a) 
Uncharged specimen. (b) H-charged specimen (total hydrogen content = 4 wt ppm) [93]. 

I.3.3 Fish eyes 

As mentioned earlier in the introduction, the industrial partner encountered in some cases 

fish-eyes defects on the fracture surfaces of tensile test specimens. These fish-eyes present a 

round shape brittle area centered on a defect as presented in Figure 16, which is usually a 

non-metallic inclusion or a void. Several studies [95-101] were performed in order to highlight 

the nature and the formation mechanism of fish-eyes. For instance, Möser and Schmidt [95] 

assumed that the fish-eye defect is a result of the high pressure of hydrogen inside a void or 

at the matrix-inclusion interface as explained by the pressure theory presented by Zapffe et 

al. [57]. They mentioned that the fish-eye formation could occur with or without external load. 

In the other hand, Cialone and Asaro found that the internal pressure mechanism was unlikely 

to occur in their case because of the low pressure inside the voids. Instead, they explained the 

fish-eye formation by the loss of cohesion due to hydrogen during tensile testing [96]. Vibrans 

[97] also found the same defect with the same features as the authors mentioned previously 

(Möser and Schmidt). He produced hydrogen-induced fractures by performing tensile tests on 

hydrogen pre-charged specimens. The fracture surfaces showed the presence of fish-eyes 

which are centered on inclusions. Finally, he suggested that the brittleness of the material 

does not depend only on its strength but also on the additions of alloying elements and voids 

because they modify hydrogen solubility and diffusivity. Sojka et al. [98] studied the formation 

conditions of fish-eyes in two different low-alloy steels (A508.3 and 18MND5). They 
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performed tensile tests on hydrogen charged specimens (the hydrogen concentration was 

between 4.8 and 7.2 wt ppm). They concluded that a high hydrogen concentration and large 

non-metallic inclusions are necessary to form fish-eyes. In addition, they mentioned that fish-

eyes grow predominantly in the necking region. Merson et al. [100][101] found fish-eyes on 

the fracture surfaces of tensile test specimens after hydrogen charging (2 wt ppm) for a low-

carbon steel. The same morphology was observed as the previous authors. It appears also that 

the fish-eyes are centered on the non-metallic inclusions. 
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Figure 16: A compilation of fish-eye defects obtained from different studies. (a) Möser and Schmidt 
[95]. (b) Cialone and Asaro [102]. (c) Sojka et al. [98].
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II Chapter 2: Material and Methods
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II.1 Material and heat treatments 

The raw material provided for this study was an ingot of low-alloy cast steel G20MN5 

(presented in Figure 17). The alloy had been elaborated in an electric arc furnace and then the 

molten steel was poured in a sand mold. After slowly cooling to room temperature, the ingot 

was removed from the mold. The dimensions were approximately 300x120x100 mm. The 

chemical composition of this steel is provided in Table 1. Finally, it is worth noting that no heat 

treatments were performed on this material until this point. 

 

Figure 17: The low alloy cast-steel ingot used for this study. 

Table 1: Chemical composition of the material used in this study. 

Element C Mn Si S P Ni Cr Mo V 

% mass 0.187 1.120 0.410 0.009 0.008 0.230 0.150 0.020 0.001 

 

The ingot was sectioned along the length axis into two halves and then, each half was cut 

into parts of 250x52x45 mm. The bars from the first half were forged at 1000°C and their final 

dimensions were 300x26x26 mm. The forging ratio was around 3.5. This ratio is defined as the 

initial cross section divided by the cross section after forging. The aim of the forging step was 

to close cavities in order to get a non-porous material. The other bars were machined to obtain 

the same dimensions as the forged bars. In this way, the heat transfer behavior during 

subsequent heat treatments and quenching will be the same for the raw bars and the forged 
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bars. Finally, in an attempt to have the same microstructure, all bars were normalized at 880°C 

for 60 minutes and then air cooled to room temperature. Forging and heat treatment 

parameters are shown in Figure 18. 

In the following sections, for convenience purposes, the term ‘’forged’’ is used for the 

material “forged and normalized”, and the term “cast” is used for the “cast and normalized” 

material. 

 

Figure 18: Forging and normalizing treatments. The normalizing treatment is the same for the forged 
and the cast bars in order to obtain the same microstructure. 

II.2 Hydrostatic weighing technique 

Hydrostatic weighing is a technique that has been widely used for the determination of 

the density of different solid materials [103]. This technique is based on Archimedes’ principle. 

Figure 19 shows a schematic representation of the equipment. 
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Figure 19: Schematic setup of the hydrostatic weighing equipment. 

The procedure consists in weighing a sample in air and then in a liquid of well-known density. 

The weight in air represents the true weight of the sample and the weight in the liquid permits 

to determine the volume of the sample Vsample (see Eq.(18)). Then, the sample density can be 

obtained from ρ  sample  =  m in  air / Vsample. 

 Vsample =
min air − mimmersed

ρliquid
 (18)  

 

where Vsample is the volume of the sample, m in air is the weight of the sample measured in air, 

m immersed represents the weight of the sample after immersion and ρliquid is the density of the 

liquid. 

In our study, the density of the forged sample is considered as the real density of the material 

because the forged material does not contain voids in contrast of the cast sample. Therefore, 

the volume fraction of porosity Xp in a cast sample can be determined from: 

 Xp =
VP

Vcast
=

Vcast −
mcast

ρforged

Vcast
 (19)  

 

where VP is the volume of porosity, Vcast is the volume of the cast sample (calculated using 

Eq.(18)), mcast is the weight of the cast sample measured in air and ρforged is the density of the 

forged material. 
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In this study, the liquid used was pure ethanol (99.5%) and the resolution of the digital balance 

was 0.1 mg. Each measurement was performed 3 times. The temperature of the ethanol was 

determined in order to obtain its true density. Considering the average mass of the specimens 

used in this study (4 g), the measurement uncertainty on the porosity fraction was estimated 

at ± 0.02%. 

II.3 X-ray tomography 

X-ray tomography is a non-destructive technique used to reveal the internal features of 

materials. It is widely used in several fields especially in medical and material sciences [104]. 

It is based on the absorption of X-rays that pass through a specimen. The specimen is rotated 

during the scanning in order to collect 2-D images at different angles. Using a reconstruction 

algorithm, this technique permits to generate a virtual volume of the scanned object, which 

allows to obtain certain useful characteristics (porosity, defects size, distribution, 

identification of different phases such as corrosion layers [105]…). However, like all 

techniques, X-ray tomography has its own limitations. Actually, samples that have high density 

or large thickness are difficult to scan, because of high X-ray absorption. Furthermore, some 

features like voids can be overlooked due to their small size compared to the scanning 

resolution. In addition, it is recommended to perform the scan on cylindrical samples (rather 

than samples with rectangular cross sections) in order to establish a uniform transmissivity of 

X-rays across all projections and avoid severe change in contrast [106][107][108].  

In this study, a Nanotom Phoenix X-ray tomograph was used in order to verify the 

presence of cavities in the cast samples and the absence of cavities in the forged samples. The 

samples were small cylinders of 2 mm in diameter and 6 mm in height as presented in Figure 

20. The X-ray source was a tungsten target. Incident X-rays having an energy of 60 keV were 

obtained by applying a 160 kV voltage and a 30 µA current. A 0.5 mm copper filter resulting in 

a pixel size of 1.5 µm was used. 1600 projections were recorded for each scan and the 

collected data were then analyzed and visualized using Avizo software. 
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Figure 20: Photograph of the sample used in the X-ray tomography analysis. 

In order to remove artefacts and especially to reduce the “salt and pepper” noise, a 

pre-treatment was performed on the collected data by applying different filters. The first step 

was to set a threshold, based on a scan of a cast sample, which permits to identify the voids, 

which appear as dark particles. Figure 21 (a) shows a cross section from the cast sample as 

captured with X-ray tomography. The voids (dark grey areas) are easily recognizable due to 

the difference in contrast. Figure 21 (b) presents the same cross-section but after applying the 

chosen threshold. As it can be seen, the voids are now colored in blue. Then, the same 

threshold was applied on a forged sample as shown in Figure 21 (c). The forged sample is 

considered as a material without porosities because of the forging operation at high 

temperature as explained earlier. Therefore, the tomography of the forged sample should not 

show any porosities. However, a closer look showed that several particles with an equivalent 

diameter inferior to 4 µm were detected as illustrated in Figure 21 (d). We assume that these 

particles do not correspond to voids but are most probably a result of the salt and pepper 

noise. 
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Figure 21: Cross sectional view obtained by X-ray tomography of (a) a cast sample as captured 
showing the presence of voids and (b) the same cast sample after the thresholding. The blue area 

represent the detected voids by Avizo software. (c) A cross section of a forged sample after applying 
the same threshold as for the cast sample. (d) A zoom into an area of the forged cross section 

showing the presence of small particles (blue dots) because of the salt and pepper noise. 

In order to confirm this assumption, another material was investigated using X-ray 

tomography. It was a 25CrMo4 commercial steel (0.22% C, 0.6%Mn,0.9% Cr,0.3% Mo) 

elaborated and forged industrially. Figure 22 (a) shows the result of the X-ray scanning of the 

25CrMo4 material. Once again, particles with an equivalent diameter inferior to 4 µm were 

found in this material in which no void should exist. 

It is clear then that these particles are not voids but are a result of the noise. To resolve this 

problem, different filters were applied on the 25CrMo4 sample until most of the particles were 

removed. The first filter was a median filter used for smoothing noisy images. It is very 
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effective on salt and pepper noise as described in Avizo user’s guide [109]. Unfortunately, this 

filter was not enough to reduce completely the noise effect, thus a further filtering was 

performed. A second filter called “Remove small spots” was used which consists in removing 

particles that are composed of a number of pixels inferior to a certain value defined by the 

user. In our case, the value was set at 12 pixels because it permitted to reduce significantly 

the number of detected particles (6000 particles for the as captured data and only three 

particles after applying the two filters). Figure 22 (b) shows the scanning result after the 

filtering process for the 25CrMo4 sample. 

 

Figure 22: Visualization of the “voids” in the 25CrMo4 sample based on X-ray tomography analysis (a) 
As captured and without any filters. It shows a large number of particles due to the noise effect. (b) 
The same sample after applying the two filters. The number of particles is very low (only 3 particles 

were detected). 

In summary, based on X ray-tomography scans, the particles detected in the forged 

sample and the 25CrMo4 sample do not correspond to porosity. They are a result of the salt 

and pepper noise and in order to avoid this problem, tomography data need to be filtered 

before studying them. In our work, the filtering procedure consisted of two filtering steps as 

explained earlier. This procedure was applied automatically on all the samples to reduce the 

effect of the noise on the results. Finally, it is very important to take into consideration the 

possibility of losing some information because of the limited resolution and the filtering 

procedure. For a sample that contains voids, it is possible that the very small voids will be not 

detected due to the limited resolution of the scanning (1.5 µm). Additionally, a part of these 

small voids, even if they were detected, still can be deleted from the final data because of the 

filtering procedure. For instance, in our case, the total volume of voids measured in the cast 

specimens decreased on average by 12% after filtering. 
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II.4 Electrochemical permeation (EP) 

This method was presented by Devanathan and Stachurski [110] to investigate hydrogen 

permeation behavior in metals [111]. In this study, electrochemical permeation tests were 

performed in order to study hydrogen diffusion and hydrogen trapping in cast and forged 

samples. 

The permeation experiment consists in introducing hydrogen into a sample from one side 

(charging cell) and detecting hydrogen atoms (hydrogen flux) that desorb from the other side 

(detection cell). The permeation experiment is composed of two steps, the charging phase 

and the discharging phase. Figure 23 shows the typical hydrogen flux curve measured at the 

detection side in a permeation test. The hydrogen flux (current density) on the exit side is 

constantly recorded. During the first step, hydrogen is continuously introduced from the 

charging side. At the beginning, there is no flux at the exit side and then, when hydrogen 

reaches the detection side, the flux rises until reaching a steady state. At this point, the 

hydrogen charging is stopped and the discharging step starts. The hydrogen flux continues to 

decrease until there is no more diffusible hydrogen inside the sample (flux equals to zero). 

 

Figure 23: Typical flux curve obtained during a permeation experiment. 

The experimental setup used in this study is presented in Figure 24. It is composed of two 

compartments: the charging cell and the detection cell. In order to describe in details these 

two compartments, a scheme is also presented in Figure 25. Each compartment was equipped 

with a saturated calomel reference electrode (SCE), a platinum auxiliary electrode and a 

Charging Discharging

Steady state
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common working electrode which was the studied sample. The working electrode was placed 

between the two cells and the contact surface was a circular area of 0.785 cm2. Each 

compartment was filled with a 0.1 M NaOH aqueous solution which was constantly 

deoxygenated by nitrogen bubbling (oxygen content is around 8 ppb). The solution was in 

constant circulation for the entire duration of the test. Without any dissolved oxygen in the 

solution, hydrogen reaction is the only electrochemical process happening during the 

experiment [112]. 

 

Figure 24: The hydrogen permeation experimental setup used in this study. 
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Figure 25: Schematic representation of the electrochemical permeation set-up used in this study. 

All permeation specimens were obtained from the normalized bars. They were ground on 

the two sides using emery paper up to 2500 grits followed by polishing with a 3 µm and then 

1 µm diamond paste. Just before mounting the specimen in the setup, they were cleaned in 

acetone and ethanol. The final thickness of the specimen ranges from 1 .80 mm to 1.96 mm. 

All permeation tests were performed at room temperature and PGP201 potentiostats 

were used. At first, a polarization test was done on a cast and a forged sample in a 0.1 M NaOH 

solution with a scan rate of 1 mV/s from -100 mV/SCE to -1700 mV/SCE. Figure 26 shows the 

polarization curves for the forged and the cast samples. It shows that the two samples have 

approximately the same behavior. Based on these findings, the entry side was 

galvanostatically polarized at -800 µA/cm² corresponding approximately to a cathodic 

potential of -1200 mV/SCE to introduce hydrogen. An anodic potential of – 300 mV/SCE, 

corresponding to +50 mV/OCP (Open Circuit Potential) was applied on the exit side to oxidize 

hydrogen atoms reaching the exit surface. The oxidation of hydrogen atoms on the exit side 

is registered as the evolution of the current density as a function of time. However, not all the 

diffused hydrogen will be oxidized because some hydrogen will recombine into molecular 

hydrogen [113]. Before starting permeation experiments, the detection side was maintained 

at -300mV/SCE in order to determine the background current. It was stabilized 

at ~ -120 nA/cm² after 2 hours. This operation is called the passivation step used to produce 

a stable iron-oxide layer. Then, when the charging step is over, i.e. when the steady state is 

reached, the current density that was applied on the entry side is set to zero in order to start 
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the desorption step. The apparent diffusion coefficient, Dapp (m2/s) calculated in this work are 

determined using the time lag method from the permeation rise transient [114]: 

 Dapp =
e2

6tl
  (20) 

 

where e is the sample thickness (m) and 𝑡𝑙  (s) represents the time when the current density 

at the exit side is equal to 0.63 of the steady-state current density. 

 

 

Figure 26: Polarization curves of the cast and the forged materials performed in a deoxygenated 
0.1 M NaOH solution at room temperature. The scan rate was 1 mV/s. The two samples present the 

same behavior. 

II.5 Chemical charging technique 

Hydrogen can be introduced into samples by using a chemical charging method. It consists 

in immersing samples in an ammonium thiocyanate (NH4SCN) aqueous solution heated at 

50°C. This method is largely used to evaluate HE susceptibility of prestressed concrete steels 

[115]. The amount of absorbed hydrogen can be modified by varying the NH4SCN 

concentration of the solution. 

In this study, rectangular plate samples (11x26x1.9 mm) were used for chemical charging 

and subsequent TDS measurements. These samples were first cut from the forged and the 
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cast bars and were then ground with SiC paper up to 1200 grit. Finally, they were cleaned with 

acetone just before the immersion in the NH4SCN aqueous solution. It should be mentioned 

that only one sample at a time was immersed in the NH4SCN aqueous solution (80 ml of 

volume) and that the solution was used only one time. After charging, the samples were 

ground once again with 1200 SiC paper and cleaned with acetone. In fact, during the 

immersion, there is formation of a corrosion film. Consequently, it is very important to remove 

this layer before starting the TDS measurement in order to have trustworthy results because 

this layer can be a source of contamination. Finally, since the oxide layer was manually 

removed using SiC paper, the final thickness of the samples was not always the same. It ranged 

between 1.70 mm and 1.85 mm. 

Figure 27 presents the weight loss due to corrosion during chemical hydrogen charging 

for a cast sample as a function of the immersion time in two NH4SCN aqueous solutions with 

different NH4SCN concentrations (5 wt% and 20 wt%). An increase of weight loss with 

immersion time is observed, especially after 24 h of immersion where the rate of weight loss 

is higher. It also could be noticed that the 20 wt% solution is more corrosive than the 5 wt% 

solution. For 24 h of immersion, the weight loss in the 20 wt% solution is three times higher 

than in the 5 wt% solution. In addition, after immersion, the sample has to be polished in order 

to remove the corrosion film, as mentioned earlier. This grinding step implies an additional 

reduction of weight by 0.2% for the 5 wt% solution and 0.8% for the 20 wt% solution. This 

difference is due to the thickness of the corrosion film. However, the total weight loss does 

not exceed 4% in any case, which is acceptable. 
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Figure 27: Weight loss of a steel specimen as a function of the immersion time in two different 
NH4SCN solutions (5 wt% and 20 wt% concentrations) at 50°C. 

II.6 Thermal desorption spectroscopy (TDS) 

TDS is commonly used to study gas desorption from metals [116][117]. It permits to 

determine the hydrogen trapping energies for different traps (grain boundaries, interfaces, 

dislocations…) as well as the hydrogen concentration in the analyzed samples [118][119]. In 

this work, all the TDS measurements were performed using a Pfeiffer QMG 220 PrismaPlus 

quadrupole mass spectrometer. The experimental setup used in this study is presented in 

Figure 28. The experiment consists in measuring the amount of desorbed hydrogen from a 

charged steel sample while a continuous heating is applied by means of a tubular furnace. The 

furnace used in this work can reach a heating rate of 100°C/min and a maximum temperature 

of 1000°C. The TDS measurement output is a spectrum in which the intensity (number of ions) 

is plotted as a function of time (or temperature). The quantity of the desorbed hydrogen can 

be estimated after calibrating the mass spectrometer signal. This point will be discussed in 

details later. It should be mentioned that for hydrogen spectra, the mass 2 was monitored 

here. Figure 29 gives a schematic illustration of the TDS apparatus. First, it should be 

mentioned that the measurement stage is kept constantly under high vacuum (10-8 mbar) by 

means of a rotary pump first and then a turbo pump. For this reason, the valve A must be kept 

close all the time except when the measurement starts. At the beginning of the experiment, 

the sample is loaded inside the quartz tube and then the pumping down from atmospheric 

pressure in the preparation stage starts (rotary pump first and then the turbo pump). The 
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duration of the pumping is discussed later. At this point, the user ascends the furnace until 

the sample is completely covered. When the pumping step is finished, the user closes valve B 

and opens valve A. Now, it is possible to start the measurement. In this case, the user launches 

the measurement using the computer (by means of Quadera software). Once the 

measurement is finished, the user closes valve A first and then opens valve B. He must wait 

until the furnace has cooled down to room temperature before starting a second 

measurement. In order to extract the sample and insert a new one, the user opens valve C to 

introduce an inert gas (Argon) inside the preparation stage to break the vacuum. It should be 

mentioned that the valves next to the turbo pump and the rotary pump must be closed to 

avoid degradation. Finally, the user is able to remove the sample from the quartz tube. 

 

Figure 28: TDS experimental setup used in this study. 
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Figure 29: Schematic illustration of the TDS equipment used in this study. 

An important point in TDS measurements is the effect of the adsorbed water on the sample 

surfaces and the quartz tube. This problem has been reported in several studies 

[120][121][122] and authors concluded that peaks of hydrogen, related to the dissociation of 

adsorbed water on the sample surfaces, can appear after exposing the sample to the 

atmosphere even for a short period [121][122]. For this reason and before interpreting the 

results, the interfering effect of the adsorbed water was thoroughly investigated in order to 

separate the hydrogen coming from inside the sample and the hydrogen related to the 

adsorbed water. Figure 30 shows the results of TDS measurements performed on five different 

samples without any hydrogen charging. The pumping time was 15 minutes (time between 

the sample introduction and the beginning of the heating) and the samples were heated up 

to 900°C with a heating rate of 10°C/min. First, by comparing the different spectra, 

approximately the same profile is observed with several peaks above 500°C. No peak was 

detected below 500°C. The samples used in this experiment were not charged with hydrogen, 

thus it is most likely that these high temperature peaks are due mainly to the adsorbed water 

on the sample surfaces as mentioned in the literature [120][121][122]. However, even if it is 

less probable, these peaks could be related to the hydrogen that could be irreversibly trapped 
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during the manufacturing process of the material. Therefore, in order to clarify this issue, one 

sample was analyzed four times under different situations. Figure 31 summarizes the four 

measurements that were performed on this sample without hydrogen charging and with a 

heating rate of 10°C/min. The first measurement (dark blue curve) was performed directly 

after 15 minutes of pumping. The result shows a profile similar to the profiles obtained from 

the measurements of the previous samples (see Figure 30). It shows several peaks located 

above 550°C. In addition, no peak was detected below 500°C as before. After this first 

measurement, all hydrogen (if any) and water should be entirely desorbed from the sample. 

In order to verify this assumption, the same sample was kept inside the TDS equipment during 

cooling back to room temperature, before launching a second measurement (i.e. the sample 

was not exposed to the atmosphere). This second measurement (curve in sky blue), in contrast 

to the first one, does not show any peaks below or beyond 500°C. This confirms that the 

sample does not contain any hydrogen nor adsorbed water. However, it should be mentioned 

that the obtained signal rises slowly at high temperatures (from 600°C). We assume that this 

increase is due to the hydrogen (or water) that is still adsorbed on the quartz tube and the 

other parts of the equipment that connect the quartz tube to the mass spectrometer. After 

that, the sample was unloaded from the TDS, exposed to the atmosphere for two minutes (to 

allow re-adsorption of water) and then reanalyzed. As it can be seen from Figure 31, a similar 

profile to the first experiment was found, which contains high temperatures peaks. Therefore, 

this measurement proves that the peaks detected at high temperatures do not correspond to 

hydrogen coming from inside the sample because all hydrogen (if any) was desorbed during 

the two first measurements. Instead, it is associated to the decomposition of the water on the 

sample surfaces. More precisely, it is a result of the catalytic decomposition that took place at 

the sample surfaces as described in Venezuela’s work [121]. Furthermore, it should be 

mentioned that the height of the peaks in this case was smaller than the first measurement. 

This difference could be associated to the exposure time to the atmosphere, because for the 

first measurement, the sample was exposed for days, whereas for the second measurement, 

the sample was exposed to the atmosphere for two minutes only. Finally, the last experiment 

consisted in keeping the sample inside the TDS equipment without unloading for an additional 

24 h (under high vacuum) before starting the measurement. The result of this measurement 

(red curve) shows no peak at all and no increase in the signal at high temperatures unlike the 
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increase that was found in the second measurement. In this case, we assume that the 24 h 

pumping was largely enough to remove all the adsorbed compounds from the instrument. 

To summarize, the peaks that were detected at high temperatures for all the samples (without 

any hydrogen charging) are mainly associated with the decomposition of the water on the 

sample surfaces, which produces evidently hydrogen. This water can come from the specimen 

surface itself, or, more probably, from the setup (quartz tube, equipment parts…). As showed 

earlier, even a small exposure time to the atmosphere is capable to interfere considerably 

with the measurement. In our case, hydrogen peaks coming from adsorbed water start to 

appear only beyond 500°C for a heating rate of 10°C/min. In addition, no peak was detected 

for temperatures inferior to 500°C. Therefore, all TDS measurements presented in this work 

were limited to a temperature of 500°C in order to avoid the problem of the adsorbed water 

on the sample surfaces. 

 

Figure 30: Hydrogen TDS spectra of five different samples without hydrogen charging. The samples 
were rectangular plates (11x26x1.9 mm). The heating rate is 10°C/min. 
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Figure 31: Hydrogen TDS spectra of the same sample (without hydrogen charging) performed under 
different situations. The 1st measurement was performed directly after 15 minutes of pumping. The 
sample was exposed to the atmosphere for days. The 2nd measurement was performed on the same 
sample without re-exposure to the atmosphere. The 3rd measurement was conducted after exposing 

the sample to the atmosphere for 2 minutes and the 4th measurement was done after 24 h under 
high vacuum without re-exposure to the atmosphere. 

Interestingly, another artefact was found during TDS analysis. A sample was analyzed four 

times without any hydrogen charging. The measurements were performed under the same 

conditions: the pumping time was 15 minutes and the heating rate was 10°C/min up to 900°C. 

The first time (P1200*), the sample was ground up to P1200 using P240, P600 and P1200 

abrasive paper. The second time (P1200), the sample was ground using only P1200 abrasive 

paper. The third time (P4000), the sample was ground up to P4000 using three different 

abrasive papers: P1200, P2500 and P4000. In these three cases, the measurements were 

performed directly after grinding. In the fourth time (P4000*), the sample was ground exactly 

as in the third time (P1200, P2500 and P4000) but the measurement was performed after 

24 h. During this time, the sample was stored in a small plastic bag. It should be mentioned 

that the grinding step was performed using water and that the samples were cleaned with 

acetone and dried with hot air after grinding. The TDS results are presented in Figure 32. First, 

as it can be seen, the four TDS spectra have high temperature peaks. These peaks were 

discussed in the previous section. In the temperature range between 0 and 500°C, no peak 

was detected in the case of P1200 grinding (light blue curve) and the P4000* grinding where 
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the measurement was performed 24 h after grinding (blue curve). However, a peak was found 

in the other measurements and it is located around 250°C. Since the sample was not charged 

with hydrogen, this peak can only be explained by the surface contamination during grinding. 

Actually, the grinding operation was performed using water; therefore, it is possible that some 

hydrogen containing compounds (such as hydroxyls) were formed on the sample surface 

during the grinding. In addition, it looks like this peak is related to the grinding time (time in 

contact with water) because the peak was only found in the case of P1200* grinding and 

P4000 grinding where the grinding operation took a “long” time. In fact, the P1200* and the 

P4000 grindings took about 3 minutes while the grinding with P1200 only took 30 seconds. It 

can be seen also that this peak disappeared when the sample was stored for 24 h after the 

P4000 grinding. It is possible that the hydrogen containing compounds formed on the sample 

surface during grinding decomposed during the 24 h storage, thus no peak was found. As this 

is not one of the objectives of this study, no further investigations were made to fully 

understand the origin of this artefact. However, even though the peak height is low compared 

to those observed on H charged samples (see next chapter), all the samples were only ground 

with P1200 abrasive paper for approximately 30 s to avoid any contribution of this peak in the 

total hydrogen signal. 
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Figure 32: Hydrogen TDS spectra of the same sample after different grindings. The sample was 
rectangular plate (11x26x1.9 mm). The heating rate was 10°C/min and the pumping time was 15 

minutes. The sample was cleaned with acetone and dried with hot air after each grinding. The first 
three measurements (red, light blue and black curves) were performed directly after grinding. The 

blue curve corresponds to a TDS measurement performed after a storage time of 24 h. The TDS 
spectra show a peak at 250°C which is attributed to the surface contamination during grinding. The 

high temperature peaks are related to the adsorbed water on the sample surface. 

Before starting the TDS measurement, it is necessary to launch the pumping operation first in 

order to reach high vacuum (≈10-8 mbar) which is required for operating mass spectrometers. 

Once the sample is inserted in the instrument, it takes time to reach a good level of vacuum 

inside the equipment. It should be mentioned also that the pumping time can highly affect the 

quality of the measurement. Figure 33 shows the TDS spectra for two different pumping times. 

The two experiments were performed with a heating rate of 10°C/min and without inserting 

any sample (only the empty quartz tube was analyzed). The black and red curves represent 

the background TDS signal for the 15 minutes and 60 minutes pumping experiments, 

respectively. It is clear that the signal obtained with 15 minutes of pumping is much higher 

than that with 60 minutes of pumping. With increasing the pumping time, the background 

signal becomes lower. Therefore, the pumping operation is considered a very important step 

in TDS analysis. Meanwhile, during the pumping operation, a part of the hydrogen called 
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“diffusible hydrogen” can escape from the sample especially in the case of certain materials 

where hydrogen is very mobile [123]. This feature must be taken into consideration when 

interpreting TDS data. In this study, for all the TDS measurements presented later, a pumping 

time of 60 minutes was used because it presents a good compromise between a low 

background signal and a reasonable loss of hydrogen from the samples (around 10% of loss). 

 Finally, it should be noted that all TDS samples were charged chemically (the charging 

operation is explained in the previous section) and that the time between the end of the 

hydrogen charging operation and the beginning of the TDS measurement is about 75 minutes. 

This time includes the specimen preparation (the removal of the oxide layer that was formed 

during the charging step and the introduction of the specimen into the TDS instrument) and a 

pumping time (around 60 minutes) to reach a high vacuum in the TDS instrument.  

 

Figure 33: The influence of pumping time on the TDS background signal. Hydrogen TDS spectra 
obtained after 60 minutes (red curve) and after 15 minutes (black curve) of pumping. The 

measurements were performed on an empty quartz tube (without any sample). 

The TDS instrument used in this study was calibrated using commercial hydrogen standards 

(titanium pins and steel pins) purchased from LECO France. Titanium standards have an 

average mass of 0.12 g and a certified hydrogen concentration of 103 ± 7 wt ppm, which 

represents a hydrogen mass of 12.4×10-6 g, whereas steel standards have a nominal mass of 
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1 g and a hydrogen concentration of 8.1 ± 0.8 wt ppm, which corresponds to a hydrogen mass 

of 8.1×10-6 g. In our calibration procedure, the standards were analyzed with a heating rate of 

10°C/min up to 900°C with an additional holding at 900°C for 30 minutes in order to be sure 

that all the hydrogen desorbed from these standards. However, as proved earlier, there is a 

possible contribution of the adsorbed water on the specimen and/or the quartz tube to the 

TDS signal above 500°C. Consequently, it is important to subtract the possible signal 

associated to the adsorbed water from the total TDS signal. Figure 34 presents the TDS spectra 

for a steel standard analyzed in the as-received state (dark blue curve), analyzed again without 

re-exposure to atmosphere after 24 h in high vacuum (light blue curve). The same standard 

was also analyzed again after re-exposure to atmosphere (red curve). It can be seen that there 

is a slight contribution from the instrument background (light blue curve) at high temperatures 

and also a slight contribution from the adsorbed water too although much smaller than that 

observed on the G20MN5 steel specimens in Figure 31. The red curve in Figure 34 is a 

combination of the instrument background and the adsorbed water on the sample. Thus, this 

combined contribution should be deducted from the measurement of the standard in the 

as-received state. As mentioned earlier, the TDS measurements on steel specimens presented 

in this study are limited to 500°C, thus there is no contribution from the adsorbed water on 

the sample surface nor from the instrument background.  
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Figure 34: TDS spectra for a steel calibration standard analyzed as-received (blue curve), re-analyzed 
without exposure to atmosphere (light blue curve) and then re-analyzed after re-exposure to the 

atmosphere (red curve). Heating to 900°C at 10°C/min and then holding at 900°C for 30 minutes. It 
shows a slight contribution of the adsorbed water in TDS measurements at high temperatures. 

Figure 35 summarizes the TDS measurements performed on several titanium and steel 

standards. These standards were heated with a heating rate of 10°C/min up to 900°C and with 

an additional holding at 900°C for 30 minutes. The spectra were obtained after deduction of 

the contribution of the adsorbed water obtained from a TDS measurement conducted on the 

same standard specimen after re-exposure to atmoshpere. The area under the titanium 

standard curve represents a hydrogen mass of 12.4×10-6 g and the area under the steel 

standard curve represents 8.1×10-6 g of hydrogen. This data permitted to plot the calibration 

curve presented in Figure 36. It represents the relationship between the integrated area and 

hydrogen concentration. The error bars represent the statistical error of the hydrogen 

concentration in the standards (103 ± 7 wt ppm for the titanium standards and 8.1 ± 0.8 wt 

ppm for the steel standards). The linear relation of Figure 36 was used to determine hydrogen 

concentration values in all the TDS analysis presented later in this study. It should be 

mentioned that the hydrogen mass of the H charged samples used in this work was between 
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0.5×10-6 g and 7×10-6 g. Finally, as it can be seen in Figure 36, the linear relation did not fit the 

experimental points perfectly. Therefore, in order to give more accurate results in the future, 

we should use other standards with a hydrogen mass below 8×10-6 g. 

 

 

Figure 35: TDS spectra of the hydrogen calibration standards after deduction of the contribution of 
the adsorbed water. Heating rate = 10°C/min up to 900°C + 30 minutes holding at 900°C. The steel 

standards are presented in blue (nominal mass of the standard = 1 g, hydrogen content = 8.1 ± 0.8 wt 
ppm, hydrogen mass = 8.1×10-6 g) and the titanium standards are presented in red (nominal mass of 

the standard = 0.12 g, hydrogen content = 103 ± 7 wt ppm, hydrogen mass = 12.4×10-6 g). 
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Figure 36: The relationship between the TDS peak integrated area and the hydrogen content in the 
calibration standards. 

II.7 Specimens and tensile tests configuration 

Tensile test specimens used in this study were obtained from the forged and the cast bars. 

It is important to recall that the forged and the cast bars were obtained from the same 

material and they have the same microstructure. The only difference lies in the porosity. The 

specimen shape and dimensions are presented in Figure 37 (a). The initial thickness was 2.1 

mm but after grinding and polishing up to 1 µm using diamond paste (see Figure 37 (b)), the 

final thickness was between 1.9 and 2 mm. It should be mentioned that the specimens were 

chemically charged in a NH4SCN aqueous solution heated at 50°C as explained previously. 

Before hydrogen charging, the volume fraction of porosity of each specimen was determined 

by hydrostatic weighing technique as explained earlier.  
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Figure 37: (a) The geometry of the tensile test specimen used in this study in mm. (b) The specimen 
after polishing up to 1 µm. The final thickness is between 1.9 mm and 2 mm. 

The tensile testing machine used in this study was of type SCHENCK coupled with Wavematrix 

software. The recorded parameters are the load, the specimen displacement (using an 

extensometer) and the crosshead displacement. The stress was calculated by dividing the load 

by the minimum initial cross-section perpendicular to the load axis. All the tests were 

conducted at room temperature and the applied strain rate was 3×10-4 s-1. The tests were 

performed on uncharged and on H-pre-charged specimens. After hydrogen charging, the 

specimen was dried and then installed on the tensile testing machine. The time needed to 

install the specimen was 7 minutes and the time to run the tensile test was around 18 minutes. 

This total time of 25 minutes is not long enough to offer the possibility to hydrogen to quit the 

specimen in significant amount. Usually, the specimen deformation is obtained by the 

extensometer displacement but unfortunately, in this case, the extensometer could not cover 

the entire length of the specimen as presented in Figure 38. Therefore, a correction of the 

displacement data (measured by the extensometer) was needed in order to obtain the correct 

deformation especially in the case when the failure occurred outside the lower and the upper 

arms of the extensometer. 
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Figure 38: The specimen was placed in the tensile machine first and then the extensometer was 
installed on the specimen. The extensometer does not cover the whole length of the specimen. 

The correction procedure is composed of two steps. The first step consists in considering the 

elongation values that were measured by the extensometer from the start of the test until the 

point where the stress is equal to 95% of the ultimate tensile strength (UTS). Then, the second 

step consists in replacing the elongation values measured using the extensometer by 

elongation values deduced from the crosshead movement from 95% of UTS until failure 

occurs. Figure 39 (a) shows the stress-strain curves plotted based on the extensometer 

measurement (red curve) and the crosshead movement (black curve). The corrected curve is 

a combination of the elongation measured by the extensometer (until 95% UTS) and the 

elongation deduced from the crosshead movement as illustrated in Figure 39 (b). Actually, the 

deformation spreads uniformly across the length of the specimen until UTS and then the 

deformation becomes non-uniform. When necking starts to occur at UTS, the deformation is 

concentrated in the necking region. Then, when this region is outside the extensometer arms, 

the deformation is underestimated by the extensometer measurement. Thus, in this case, the 

elongation beyond UTS was deduced from the crosshead movement. It is important to note 

that the crosshead displacement includes the specimen elongation and the device elastic 

deformation (fixing systems, grips). After the UTS, the load decreases which leads to the 

decrease of the elastic deformation of the device. This results in slightly underestimating the 

specimen deformation. However, the final elongation values given by the corrected curve are 
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close to the real specimen elongation measured manually after fracture, as shown Figure 

39 (b). 
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Figure 39: The correction operation used to plot the stress-strain curve (a) the stress-strain curves 
based on the extensometer data (blue curve) and the crosshead movement (black curve). (b) the 

stress-strain curve after correction using a combination of the extensometer data and the crosshead 
movement.
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III Chapter 3: Hydrogen trapping and diffusion
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III.1 Introduction 

As already mentioned in the first chapter, it has been well proved that hydrogen 

represents a harmful element for steels because it leads to a serious decrease in mechanical 

properties, especially loss of ductility [3][4][62]. Thus, in order to increase HE resistance and 

prevent brutal failures, it is crucial to investigate hydrogen behavior in steels and more 

precisely in cast steels for our case. The particularity of these cast steels lies in the porosity as 

explained previously. Therefore, it is important to study the effect of porosities on hydrogen 

diffusion and trapping. In this chapter, a comparative study between forged and cast samples 

is made based on EP and TDS experiments. This comparison will help us to understand better 

the interaction between hydrogen and porosity and will provide some answers about the 

contradictory conclusions found in the literature such as the reversible or irreversible nature 

of hydrogen trapping in porosity. 

First, the microstructure of the forged and the cast materials are characterized in order to 

verify if there are major differences. In addition, the porosity is investigated for both material 

using X-ray tomography. Then, a series of EP tests are performed on several samples with 

different porosity fraction. Both charging and discharging phases are studied. After that, TDS 

measurements are conducted on forged and cast samples after hydrogen charging. Different 

aspects are explored such as the effect of the porosity fraction on the amount of trapped 

hydrogen and the physical state of this trapped hydrogen (atomic adsorbed on the internal 

surfaces of the porosities or gaseous hydrogen H2). These two techniques are complementary 

and the results are used to highlight the influence of porosity on the hydrogen diffusion and 

trapping processes. Finally, from the TDS data a method is proposed in order to calculate 

hydrogen fugacity of the charging solution used, as well as the hydrogen solubility (Sieverts 

constant) of the studied material.  
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III.2 Results and discussions 

III.2.1 Material characterization 

III.2.1.1 Porosity characterization 

A forged sample and a cast sample were scanned using X-ray tomography in order to 

characterize the porosity. The same procedure that was explained in details in the previous 

chapter was used. In addition, the same thresholding was applied on all the samples in order 

to identify the voids inside the material. Figure 40 (a) and (b) present cross section images of 

a cast sample and a forged sample, respectively. The absence of porosity has been established 

for the forged sample studied here, whereas, the presence of cavities in the cast sample is 

clearly evidenced. 

 

Figure 40: Cross sectional views of (a) a cast sample (b) a forged sample based on X-ray tomography 
data, showing a few cavities in the cast sample and the absence of porosity in the forged sample. 

The X-ray reconstructed volume for the cast sample is presented in Figure 41. It shows 

clearly the presence of cavities (blue particles). In general, it appears that the cavities are 
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evenly distributed over the sample. However, the size and the shape are different from one 

pore to another. This 3D volume reconstruction is a very useful tool to obtain relevant 

statistical information on the porosity inside the sample. 

 

Figure 41: 3D volume rendering of a cast sample based on X-ray tomography, showing the 
distribution of the cavities. 

This 3D volume was investigated in order to quantify and to characterize the porosity in 

the cast material. Figure 42 shows the distribution of porosities based on their equivalent 

diameter. The equivalent diameter of a particle is defined as the diameter of a sphere that has 

the same volume as the measured particle. The histogram shows that the majority of cavities 

(nearly 96%) have an equivalent diameter inferior to 20 µm and that the maximum equivalent 

diameter is equal to 68 µm. Table 2 gives additional information on the porosity features. In 

this specimen, the average equivalent diameter of cavities is 7.6 µm and the volume of voids 

represents 0.05 % of the total volume of the sample. 
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Figure 42: The distribution of the cavities based on their equivalent diameter obtained from X-ray 
tomography. Most of cavities have an equivalent diameter inferior to 20 µm. 

Table 2: Porosity features in a cast sample obtained using X-ray tomography. 

Total number of 
cavities 

Average 
equivalent 

diameter (µm) 

Cavity density 
(mm-3) 

Inter-cavity 
distance (µm) 

Porosity 
fraction (%) 

923 7.6 380 138 0.05 

 

In this work, it was not possible to obtain the porosity fraction of EP samples (26x20x1.9 

mm) and TDS samples (11x26x1.9 mm) by X-tomography scans because of constraints on the 

specimens’ size and shape. Therefore, the hydrostatic weighing technique was used to 

determine the porosity volume fraction for EP and TDS specimens. 

The reference density was that of the forged material as it was shown earlier that this 

material has no porosity. The cast samples were taken from different zones in the ingot in 

order to have different porosity fraction from one sample to another. Table 3 summarizes the 

results of the hydrostatic weighing technique performed on the cast samples. The uncertainty 

of these results is around 0.02%.  
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Table 3: The volume fraction of porosity for different cast samples determined by the hydrostatic 
weighing technique. 

 
EP samples TDS samples 

1 2 1 2 3 4 5 

Volume 
fraction of 

porosity (%) 
0.04 0.07 0.13 0.18 0.20 0.25 0.27 

 

Finally, we should mention that the terms: porosity, cavity, microvoid and void are used 

interchangeably in this work and they all refer to microporosity. 

III.2.1.2 Microstructural characterization 

As in the previous chapter, the cast and forged bars were normalized at 880°C for 60 

minutes. Forged and cast samples were ground and polished to 1 µm, then they were etched 

using a 5% Nital solution (ethanol + nitric acid). Figure 43 (a) and (b) present optical 

micrographs of the cast and forged materials, respectively. A typical ferrite–pearlite 

microstructure is observed in both cases. The fraction of pearlite was determined using ImageJ 

software. This fraction is equal to 29 ± 2% and 32 ± 3% for the cast material and the forged 

material, respectively. The ferrite grain size is about 12.6 ± 1.2 µm for the cast sample and 

11.6 ± 1.0 µm for the forged sample. 

Several metallographic observations, at different places of the samples, showed a similar 

microstructure in both materials. Thus, if a significant difference in hydrogen behavior is found 

between a forged sample and a cast sample, it should be related to a difference in porosity, 

not in microstructure. 
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Figure 43: Optical micrographs of etched (a) cast sample and (b) forged sample showing a ferritic-pearlitic 

microstructure. 

III.2.2 Hydrogen electrochemical permeation 

The permeation experiments were performed at room temperature. Three samples (1 

forged sample + 2 cast samples) have been tested under the same conditions. Hydrogen 

permeation results are expressed in normalized current density (J/Jmax, with Jmax the steady 

state-current), as a function of the normalized time (t/e², with t the time in seconds and e the 

specimen thickness in meter). This normalization was made to remove the dependence of 

results on sample thickness. The values of the current density at the steady state (Jmax) are 

displayed in Table 4. 

Table 4: Samples characteristics and hydrogen permeation results. Jmax is the hydrogen flux at the 
steady state, Dapp is the apparent diffusion coefficient calculated using the time-lag method based on 

the flux of the final steady state and D1 is the apparent diffusion coefficient calculated using the 
time-lag method based on the flux of the pseudo-steady state. 

Sample 
Porosity 

fraction(%) 
Thickness 

(mm) 
Jmax 

(nA/cm²) 
Dapp 

(m²/s) 
D1 

 (m²/s) 

Forged 0 1.96 1220 7.8x10-12 2.4x10-10 

Cast 1 0.07 ± 0.02 1.96 1180 3.3x10-12 2.5x10-10 

Cast 2 0.04 ± 0.02 1.83 1375 3.8x10-12 2.4x10-10 
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Liu et al. studied the influence of the microstructure on hydrogen permeation and 

trapping in steels [124]. The materials used in their study were pure iron and two 

ferritic-pearlitic steels (AISI 1018 and AISI 4340) that have a similar chemical composition and 

a similar microstructure to our material. The results of their study revealed that there are 

mainly two types of trapping sites. The first type include ferrite grain boundaries and 

dislocations and the second type corresponds to the ferrite-cementite interfaces. Thus, we 

assume that our material should contain the same trapping sites due to the close similarity of 

the microstructures and the chemical compositions. 

The aim of this section is to compare the hydrogen permeation results between the 

forged and the cast samples to reveal the role of porosity in the hydrogen trapping and 

diffusion phenomena. As explained earlier, the only difference between the samples was the 

porosity. Therefore, if any significant variation in the permeation behavior will occur, it is 

beyond all doubt due to the cavities. 

Figure 44 (a) presents the permeation rising transients for the three samples. The results 

show that the forged sample reaches the steady state faster than the two cast samples. The 

apparent diffusion coefficients were calculated using the time-lag method (Eq.(20)). The 

diffusion coefficient is equal to 7.8x10-12 m²/s for the forged sample, 3.7x10-12 m²/s for the 

cast sample with a porosity fraction of 0.04% and 3.3x10-12 m²/s for the cast sample with a 

porosity fraction of 0.07%. In general, the decrease in hydrogen mobility is linked to the 

trapping sites because they absorb hydrogen, which leads to the decrease of the diffusion 

rate. In our case, the only difference between the forged sample and the cast samples is the 

porosity thus, it is clear that cavities act as hydrogen traps. The equilibrium is described by 

Sieverts’ law which indicates that the lattice hydrogen concentration at a given depth of the 

permeation specimen is proportional to the square root of the pressure inside the cavity, or 

more precisely proportional to the square root of the fugacity [30]. It is then expected that, at 

any time, the amount of hydrogen stored in the cavities is proportional to the porosity 

fraction, which implies that the time needed to reach steady state should increase with 

increasing porosity fraction. 

The hydrogen apparent diffusion coefficient (obtained using the 63% time-lag method) of 

the two cast samples is practically the same (3.7x10-12 m²/s and 3.3x10-12 m²/s), although there 

is almost a factor of two between their respective porosity fraction. More surprisingly, the 
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first part of the rising transient is even faster for the specimen with the highest porosity 

fraction. However, it should be kept in mind that porosity is not the only microstructural 

feature affecting the rising transient, as discussed later. In addition, it is to be reminded that 

the uncertainty on the porosity fraction is relatively high (± 0.02%), so the actual difference 

between the two fractions measured may be less than a factor of two. 

Figure 44 (b) shows the same permeation results presented using a logarithmic time scale 

and Figure 45 shows a closer view of the beginning of the permeation curves. It is remarkable 

that the permeation curves obtained in this study show a double regime rising transient. At 

the beginning, there is no hydrogen flux (current density) at the exit side, then, when hydrogen 

atoms reach the detection side, a first rise is observed. It is noticeable that for the three 

samples, the hydrogen flux starts to rise approximately at the same moment (t/e² ≈ 3x108 

s/m²). Then, well before reaching the final steady state, a pseudo-steady state is reached for 

the three samples at about t/e² ≈ 1.5x109 s/m². Then, for t/e² > 1010 s/m², the hydrogen flux 

starts to rise again until reaching the final steady-state. It is remarkable that the existence of 

this pseudo steady-state is not related to porosity as it exists in the forged specimen. It is thus 

inferred that it is related to the microstructure of the material, not to porosity. 

The apparent diffusion coefficients were calculated for the first transient using the 

time-lag method. We found approximately the same value in the three experiments (D1 = 

2.4x10-10 m²/s), which is higher by about two orders of magnitude than the diffusion 

coefficients determined previously, ranging from 3.3 to 7.8x10-12 m²/s. This shows that part of 

the hydrogen was able to diffuse across the specimen by following fast diffusion paths. Most 

probably, hydrogen diffused through the percolated ferrite corridors, without interacting too 

much with the porosities and/or the pearlite where hydrogen mobility can be affected [41] 

(because of the high trapping energy of the interfaces in pearlite, which is about 65 kJ/mol 

[42][43]). However, a detailed description of this mechanism would require more research 

and it is beyond the scope of this work that focuses on the effect of porosities. 
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Figure 44: Electrochemical hydrogen permeation results for a forged sample (red curve), a cast 
sample with a porosity fraction of 0.07% (blue curve) and a cast sample with a porosity fraction of 

0.04% (green curve). Permeation experiments were performed under the same conditions in a 0.1M 
NaOH aqueous solution at room temperature. (a) and (b) normalized rising transients, (c) and (d) 

normalized decaying transients. 

 

Figure 45: Normalized permeation rising transients for the three samples with a zoom on the 
beginning of the curves showing a plateau. 
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The effect of the porosity is also very clear during the decaying transient as illustrated in 

Figure 44 (c) and (d). The area under each curve reflects the quantity of hydrogen that 

desorbed through the detection side. Comparing the decaying transients, a significant 

difference in the amount of desorbed hydrogen can be noticed between the forged sample 

and the cast samples. Since the main distinction between the samples is the porosity, this 

difference in the desorbed hydrogen can only correspond to the hydrogen stored in the 

porosity. In addition, the comparison between the two cast samples shows that the amount 

of the desorbed hydrogen from the sample with a porosity fraction of 0.07% is almost twice 

the amount of the desorbed hydrogen from the cast sample with a porosity fraction of 0.04%. 

This suggests that the amount of absorbed hydrogen increases proportionally with increasing 

porosity fraction. 

The hydrogen that desorbs at room temperature during the permeation decaying transient is 

a combination of lattice hydrogen and reversibly trapped hydrogen. The irreversibly trapped 

hydrogen, if any, could not desorb at room temperature. Consequently, it is safe to conclude 

that the porosity acts as a reversible trap for hydrogen at room temperature. 

Figure 46 shows the decay transients for the forged sample and the cast sample with a 

porosity fraction of 0.07%. The hatched area (area between the two curves) represents the 

difference in the amount of desorbed hydrogen between the cast sample and the forged 

sample, which is the hydrogen trapped in the porosity. This hydrogen is about 85% of the total 

amount of the desorbed hydrogen from the cast sample. It should be noted that this 

percentage is probably underestimated, as the decaying transient of the cast specimen had 

not reached zero yet when the experiment was stopped. 

To sum up, EP results showed that porosity plays an important role in hydrogen trapping 

and diffusion. The rising transients indicate that hydrogen diffusion rate is lower in the case 

of the cast samples compared to a sample without porosity. The decaying transients proved 

that the majority of hydrogen is located at the porosity and that this porosity acts as a 

reversible trap for hydrogen. 
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Figure 46: Decay transients for the forged sample (red curve) and the cast sample with a porosity 
fraction of 0.07% (blue curve).The area between the two curves represents the hydrogen trapped in 

the porosity. It corresponds to 85% of the total desorbed hydrogen. 

III.2.3 Hydrogen thermal desorption spectroscopy 

III.2.3.1 Hydrogen chemical charging 

Before presenting the TDS results, a few points about the hydrogen chemical charging are 

discussed in this section. The charging temperature of 50°C was chosen to increase the 

hydrogen mobility and consequently decrease the charging time compared to charging at 

20°C. In order to estimate the apparent diffusion coefficients at 50°C, we used the diffusion 

coefficients from our permeation tests (presented in the EP results section, these tests were 

performed at 20°C) and data from Sezgin et al. [63] and Husby at al. [125]. In their studies, 

they were able to obtain values of hydrogen diffusion coefficient at different temperatures 

for a material similar to ours. First, using the data from Sezgin et al., we calculated the ratio 

between the diffusion coefficients at 50°C and at 20°C (D50°C/D20°C). Similarly, using the data 

from Husby et al., we calculated the ratio between the diffusion coefficients at 45°C and at 

15°C. We found that these ratios ranged between 1.9 and 2.6. Finally, we multiplied our 

diffusion coefficients, obtained from permeation at room temperature, by a factor of 2 in 

order to obtain an estimation of our apparent diffusion coefficients at 50°C. The results are 
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presented in Table 5. For the cast material, a diffusion coefficient of 3.3x10-12 m²/s at room 

temperature was considered here. 

Table 5: The apparent diffusion coefficients obtained by the time-lag method based on 
electrochemical permeation tests and the estimated values of these coefficients at 50°C.  

Dapp[m2/s] Forged Cast 

at 20°C (permeation test) 7.8 x 10-12 3.3 x 10-12 

at 50°C (estimation) 1.6 x 10-11 6.6 x 10-12 

 

Numerical simulations of hydrogen charging were performed using the estimated apparent 

diffusion coefficients at 50°C. These simulations were obtained using a simple resolution of 

the diffusion equation (Eq.(12)). Figure 47 (a) and (b) present the time-dependence of the 

concentration profiles for a cast sample and a forged sample, respectively. For a forged 

sample, 24 h of charging should be enough to reach a homogenous concentration inside the 

sample, within 98%. However, for a cast sample, it appears that after 24 h the hydrogen 

distribution is not homogenous (the average concentration inside the sample is about 83% of 

the subsurface concentration after 24 h and it is 95% after 40 h). It should be mentioned 

however that the simulated concentration profile is only an approximation as the diffusion 

coefficient used in the simulation is not accurately known. Indeed this apparent diffusion 

coefficient is expected to depend on the porosity fraction, which can significantly vary from 

one specimen to another, as shown later. 

Increasing the charging time would certainly ensure a more homogeneous hydrogen 

distribution inside the sample but for practical reasons we limited the charging time to 24 h. 

The effect of the charging time on hydrogen content will be discussed later. Another way to 

ensure a more homogenous hydrogen distribution is by decreasing the specimen thickness. 

Unfortunately, this solution is not recommended in our study because this decrease will lead 

to a much higher uncertainty in the determination of the volume fraction of porosity. 
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Figure 47: Concentration profiles of hydrogen at various times estimated by numerical simulation of 
the charging operation at 50°C. The thickness, in both simulations, is 1.9 mm. (a) cast sample with an 

apparent diffusion coefficient of 6.6 x 10-12 m²/s. (b) forged sample with an apparent diffusion 
coefficient of 1.6 x 10-11 m²/s. 

III.2.3.2 Solution concentration and hydrogen content 

In order to highlight the effect of the NH4SCN concentration of the charging solution on 

the amount of hydrogen absorbed in the material, the same cast sample was analyzed by TDS 

several times. At each time, the sample was immersed in an aqueous solution with a specific 

mass concentration of NH4SCN (0%, 1%, 2%, 5% and 20%) for 24 h. The solution was 

continuously heated at 50°C. Then, the TDS measurements were performed with a heating 

rate of 10°C/min up to 500°C. After the last measurement, the microstructure was 

investigated under optical microscope to ensure that the repetitive heating to 500°C had no 

impact on the microstructure. 

The desorption spectra for the different NH4SCN concentrations are shown in Figure 48 (a). 

The hydrogen concentrations indicated in the legend were obtained by integration of each 

curve. These results indicate that the amount of hydrogen absorbed in the material increases 

when the NH4SCN solution concentration is increased. For instance, with the increase of the 

NH4SCN mass fraction from 1% to 5%, the hydrogen content has doubled from 0.60 wt ppm 

to 1.22 wt ppm. A similar trend was found by Takagi et al.[126]. Figure 48 (b) presents the 

influence of the NH4SCN concentration on the hydrogen content. The hydrogen content is 

plateauing for NH4SCN concentrations above 5%: the increase in hydrogen content is of 0.24 

wt ppm (19%) only when the NH4SCN concentration is increased from 5 wt% to 20 wt%. 
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Finally, a hydrogen peak is clearly evidenced on the TDS spectrum after immersion in pure 

water, which corresponds to a hydrogen content of 0.07 wt ppm. It is assumed that corrosion 

reactions take place even in pure water at the specimen surface, which results in hydrogen 

absorption.  

 

Figure 48: The effect of the NH4SCN solution concentration on the hydrogen content for a cast 
sample after 24h of immersion (a) TDS spectra; heating rate = 10°C/min (b) Hydrogen content as a 

function of the charging solution concentration. The hydrogen content was evaluated from TDS peak 
integration. The same sample was used for all the experiments. 
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III.2.3.3 Charging time and hydrogen content 

The aim of this section is to investigate the influence of the charging time on hydrogen 

content. Four charging operations were performed on the same cast sample and after each 

charging operation the hydrogen content was measured using TDS. Charging was conducted 

in a NH4SCN aqueous solution heated at 50°C for two different durations and two NH4SCN 

concentrations. Figure 49 (a) shows the TDS results (heating rate 10°C/min) for the four 

charging conditions. The hydrogen content increases with increasing the solution 

concentration as explained earlier for both charging times. Figure 49 (b) illustrates the 

evolution of the amount of absorbed hydrogen as a function of the charging time. For both 

concentrations, the increase of hydrogen content from 24 h to 40 h of charging is relatively 

small, especially for the 5 wt% solution where the difference is only 0.15 wt ppm, which 

represents 12% of increase. This increase is similar to what has been obtained earlier by 

numerical simulations (see Figure 47). The numerical results showed an increase of 14% 

between 24 h and 40 h of charging. 

To sum up, since 40 h of charging, for both solution concentrations, do not increase 

significantly the final hydrogen content, 24 h of charging was considered more adequate. 
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Figure 49: The influence of the immersion time on the amount of absorbed hydrogen for two 
different NH4SCN concentrations (5 wt% solution and 20 wt% solution) (a) TDS spectra; 

heating rate = 10°C/min (b) Hydrogen content as a function of immersion time for two charging 
solution concentrations. The hydrogen content was evaluated from TDS peak integration. The same 

sample was used for all the experiments. 

III.2.3.4 The role of porosity in the hydrogen trapping process 

In order to investigate the role of porosity in the hydrogen trapping process, two samples 

were chemically charged for 24 h under the same conditions as described earlier. The first 

sample was a cast one (thickness = 1.82 mm) with a volume fraction of porosity of 0.27%. The 

second was a forged sample (thickness = 1.85 mm). After charging, TDS measurements were 

performed with a heating rate of 10°C/min up to 500°C. The results are presented in Figure 

50. An additional non-charged cast specimen was studied as well to ensure the absence of 
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hydrogen in the initial state (grey curve in Figure 50). When comparing the TDS spectra, it can 

be observed from the area under the curve that there is a huge difference in the amount of 

desorbed hydrogen between the cast and the forged specimens. For the cast sample (blue 

curve), the desorption peak maximum is located at 340°C and the amount of the desorbed 

hydrogen is 1.50 wt ppm. For the forged sample (red curve), the peak maximum is at about 

260°C and the amount of hydrogen is only 0.16 wt ppm, which is very low compared to the 

cast sample. This significant difference corresponds to the amount of hydrogen trapped in the 

cavities (hatched area) because, as explained earlier, the only difference between the two 

samples lies in the porosity. Therefore, it can be concluded that cavities are traps for 

hydrogen. Furthermore, another interesting conclusion can be made which is that the 

absorbed hydrogen is essentially located at cavities (90% in this case, calculated by dividing 

hydrogen content inside the cavities by the total hydrogen content of the cast sample). Finally, 

these findings confirm the conclusions made earlier based on the permeation tests that 

indicate that the porosity is a trap for hydrogen and that most of the absorbed hydrogen is in 

the cavities. 

 

Figure 50: TDS spectra for a cast sample without charging, a charged cast sample and a charged 
forged sample. The charging was performed in a 5 wt% NH4SCN aqueous solution for 24 h charging. 

The heating rate was 10°C/min. The cast sample has a volume fraction of porosity of 0.27%. 
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A comment is due here on the state of hydrogen present in cavities. Based on the results 

of Figure 50, 1.34 wt ppm of hydrogen, obtained by subtracting the concentrations measured 

in the cast and forged specimens respectively, was trapped in the cavities. Considering the 

mass of the specimen used (4.3 g), this corresponds to 5.8x10-6 moles of H atoms. It can be 

questioned whether this hydrogen is under the molecular form (gas) and/or under the atomic 

form adsorbed on the internal surfaces of the cavities. Assuming that the cavities are spherical 

and they have a diameter of 7.6 µm (based on the X-ray tomography results presented earlier 

in Table 2), we need 6.38x106 cavities in order to achieve the volume fraction of porosity for 

this sample, which is 0.27%. This represents an internal surface area of 1.16x10-3 m². In order 

to estimate the amount of hydrogen than can be adsorbed on such an area, a hydrogen 

adsorption site density of 2.85x10-5 mol/m² will be considered, which corresponds to that of 

a (110) surface plane of iron [127]. If all the adsorption sites of the internal surfaces of cavities 

were occupied, the maximum amount of adsorbed hydrogen would be 3.3x10-8 moles. This is 

inferior to 1% of the total amount of trapped hydrogen in the cavities (5.8x10-6 moles). 

Consequently, this calculation, based on experimental data, demonstrates that the hydrogen 

is mainly under the gaseous form in this case. In a general way, for a given porosity fraction, 

the distribution of hydrogen between the adsorbed and gaseous states depends on the size 

of cavities and the pressure inside them. This point was discussed in the first chapter based 

on the work of Wong [71] (see Figure 9). 

To sum up, these measurements permitted to identify the contribution of the porosity in 

the hydrogen trapping process. It indicates that the porosity acts as trap for hydrogen in which 

a large amount of hydrogen can be stored. In addition, in our case, this hydrogen is mostly 

under the molecular form. However, the question that remains is whether the porosity is a 

reversible or irreversible trap at room temperature. A more detailed discussion is presented 

in the next section. 

III.2.3.5 Hydrogen desorption at room temperature 

Figure 51 (a) summaries TDS measurements that were performed on the same charged 

cast sample after different times spent at room temperature. The same sample, with a 

porosity volume fraction of 0.13%, was charged five times under the same conditions (in a 5 

wt% NH4SCN solution at 50°C). After each charging operation, it was stored at room 

temperature for a certain period before starting the TDS measurement. The analyses were 
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done after 75 minutes, 6 h, 24 h, 3 days and 7 days. The corresponding amounts of hydrogen 

extracted from the TDS data are respectively: 1.01 wt ppm, 0.74 wt ppm, 0.42 wt ppm, 0.16 

wt ppm and 0.02 wt ppm. The first value represents the hydrogen content 75 minutes after 

the end of charging, 75 minutes being the minimum time necessary for preparing the 

specimen and pumping the TDS instrument. The other values represent the amount of 

hydrogen remaining in the sample after a certain time spent at room temperature. After seven 

days, TDS data did not show any hydrogen peak up to 500°C. This indicates that the absorbed 

hydrogen that was measured immediately after charging (red curve) was able to desorb 

completely from the sample at room temperature. Figure 51 (b) presents the simulated 

concentration profiles after different times of desorption at room temperature using the 

apparent diffusion coefficient determined by EP for the cast sample (3.3x10-12 m²/s). Figure 

51 (c) shows the evolution of the remaining hydrogen content as a function of the desorption 

time at room temperature. The blue dashed curve represents the result of a simulation using 

the apparent diffusion coefficient determined by EP for the cast sample (3.3x10-12 m²/s), the 

cross marks correspond to the TDS measurements. The red dotted curve is the result of a 

simulation using an adjusted diffusion coefficient (2.7x10-12 m²/s) in order to fit best to the 

experimental data. This adjusted diffusion coefficient is slightly lower than the apparent 

diffusion coefficient obtained by EP, which is expected because the porosity fraction of the 

TDS sample (0.13 ± 0.02%) is relatively higher than that of the EP sample (0.07± 0.02%). These 

data indicate that the hydrogen concentration decreases with increasing the desorption time 

until reaching almost zero after seven days. In conclusion, this absorbed hydrogen was able 

to quit the sample at room temperature and at the same time, it corresponds mainly to the 

hydrogen trapped in the cavities as demonstrated in the previous section. Therefore, the 

porosity can be considered as a reversible trap for hydrogen at room temperature. This 

conclusion is the same as that found using EP.  
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Figure 51: The effect of the desorption time at room temperature on the hydrogen content for a cast 
sample (a) TDS spectra after hydrogen charging followed by different times of desorption at room 

temperature; heating rate = 10°C/min. (b) The evolution of hydrogen concentration profile as a 
function of time at room temperature based on numerical simulations. (c) Hydrogen content 

evolution as a function of desorption time. The dashed curve corresponds to the numerical results. 
The points correspond to hydrogen contents determined from TDS peak integration. The same cast 

sample (volume fraction of porosity = 0.13%) was used for all the experiments. Charging was 
performed in a 5 wt% NH4SCN aqueous solution for 24 h at 50°C. 

III.2.3.6 Hydrogen content and porosity fraction 

The aim of this section was to investigate the correlation between the amount of 

absorbed hydrogen and the volume fraction of porosity. Therefore, one forged sample and 

five cast samples were used. The cast samples were taken from different zones in the ingot in 

order to have different porosity fractions from one sample to another. The samples were 

charged for 24 h in a 5 wt% NH4SCN solution heated at 50°C. Then, TDS measurements were 

performed with the same heating rate as the previous measurements (10°C/min). Figure 52 

(a) shows hydrogen thermal desorption spectrum for each sample. The desorption peak 
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maximum is around 350°C for the five cast samples and around 230°C for the forged sample. 

As can be seen, the hydrogen content is different from one sample to another, especially 

between the forged sample and the cast samples. The amount of absorbed hydrogen 

increases linearly with increasing porosity fraction as illustrated in Figure 52 (b). This proves, 

as can be expected, that a higher volume fraction of porosity leads to a larger hydrogen 

uptake. In fact, if we charged different cast samples in the same conditions, cavities in all the 

samples should reach the same pressure at equilibrium and a linear relation between porosity 

fraction and hydrogen content is expected.  

It should be mentioned that the hydrogen concentrations presented in Figure 52 include 

gaseous hydrogen in the cavities, as well as hydrogen “dissolved” in the metal, the latter being 

about 0.16 wt ppm as measured on the forged specimen. More precisely, this “dissolved” 

hydrogen most probably corresponds to hydrogen shallowly trapped in the microstructure.  
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Figure 52: The relationship between the amount of absorbed hydrogen and the volume fraction of 
porosity (a) TDS spectra; heating rate = 10°C/min (b) The evolution of hydrogen content as a function 
of the volume fraction of porosity. The hydrogen content was determined from TDS peak integration. 
All samples were charged in a 5 wt% NH4SCN aqueous solution for 24 h. The error bars represent an 

uncertainty of 0.02% for the volume fraction of porosity. 

III.2.3.7 Determination of hydrogen fugacity and solubility 

In the following, a method is proposed to determine hydrogen fugacity and hydrogen 

solubility (Sieverts constant) in the studied material.   
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Table 6 shows the hydrogen concentration measured using TDS in five cast specimens 

with different porosity fractions. A correction factor of 1.16 was applied to take account of 

the hydrogen loss during the period between the end of charging and the beginning of the 

TDS measurement (approximatively 75 minutes). This correction factor was obtained using 

numerical simulation of hydrogen desorption at room temperature (with Dapp = 3.3x10-12 m²/s) 

for 75 minutes. For each specimen, the concentration of hydrogen inside the cavities can be 

easily obtained from the difference between the total hydrogen concentration and the 

concentration of hydrogen dissolved in the metal, that is known from the TDS measurement 

conducted on the forged material containing no porosity (it is equal to 0.2 wt ppm after 

correction using a Dapp = 7.8x10-12 m²/s for the numerical simulation of desorption at room 

temperature for 75 minutes). 

Knowing the void volume and the hydrogen amount inside the cavities for each sample, 

the pressure can be calculated using Eq.(21). This expression is based on Abel-Noble equation 

of state (Eq.(14)). 

 P =
ncRT

2(V − ncb)
 (21) 

 

with P is the pressure (Pa), nc represents the amount of atomic hydrogen inside the 

cavities (mol), R is the universal gas constant (8.31477 J.mol-1 K-1), T is the temperature (K), V 

is the void volume (m3) and b is a constant (1.4598x10-5 m3/mol [64] ). The fugacity was then 

evaluated using Eq.(22) [29], which represents the relationship between the fugacity and the 

pressure for an Abel-Noble gas. The hydrogen pressure and fugacity obtained in the different 

specimens are shown in Table 6. 

 f = P exp (
Pb

RT
) (22)  
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Table 6: Hydrogen contents, hydrogen pressure and fugacity in the cavities calculated from 
Abel-Noble equations for five cast samples with different volume fractions of porosity. 

Volume fraction of 
porosity (%) 

0.13 0.18 0.20 0.25 0.27 

Hydrogen content 
(wt ppm) 

1.01 1.36 1.40 1.43 1.50 

Hydrogen content 
after correction (wt 
ppm) 

1.18 1.57 1.62 1.66 1.74 

Pressure (bar) 83 84 78 64 62 

Fugacity (bar) 87 88 82 66 65 

 

Figure 53 shows the fugacity obtained in the five different samples as a function of the 

volume fraction of porosity. For the three specimens with a porosity fraction not higher than 

0.2%, similar values of hydrogen fugacity are obtained (85 ± 3 bar). On the other hand, 

fugacities measured for the two specimens with the highest porosity fractions are significantly 

lower (65-66 bar). However, as the samples were all charged in the same conditions, hydrogen 

fugacity should be the same at equilibrium. This decrease in fugacity for the highest porosity 

fractions can be associated to the non-equilibrium state of the hydrogen inside the samples. 

It is clear that the samples with a higher void volume need more hydrogen to reach the same 

pressure (fugacity) as the samples with smaller void volume. Consequently, the charging time, 

for the samples with higher void volume, should be superior to the others in order to reach 

equilibrium. The charging time used in this study (24 h) was apparently not long enough for 

the specimens with the highest porosity fractions. On this basis, we will keep the fugacity value 

of 85 ± 3 bar obtained using only the three specimens with the lowest porosity fractions. This 

fugacity can also be considered as the equivalent hydrogen fugacity of the charging 

environment (5 wt % NH4SCN aqueous solution at 50°C). 
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Figure 53: The plot of hydrogen fugacity as a function of the volume fraction of porosity. The fugacity 
values were calculated based on the equation of Abel-Noble. 

The equilibrium between hydrogen dissolved in the metal and gaseous hydrogen in the 

cavities can be described by the Sieverts’ law [128] as explained previously. The expression is 

reminded in Eq.(23). 

 C = KH√fH2
 (23) 

 

where C represents the concentration of atomic hydrogen dissolved in the material, KH is the 

Sieverts constant (hydrogen solubility) and fH2
 is the fugacity of gaseous hydrogen in cavities. 

The Sieverts’ law can be obtained by equating the chemical potential of hydrogen dissolved in 

the metal and that of the gaseous hydrogen in cavities. As shown in Appendix, it is possible to 

include in C term, not only interstitial hydrogen, but also trapped hydrogen, provided that the 

trap occupancy is low. It is assumed here that this C term in Eq.(23) corresponds to the 

hydrogen concentration measured using TDS in the forged specimen (0.2 wt ppm after 

correction). As the hydrogen fugacity is known from the analysis shown previously (85 bar), 

the Sieverts constant of the steel can be determined from Eq.(23). It should be mentioned 

that this value applies at 50°C, which is the hydrogen charging temperature chosen in this 

study. The value obtained (Eq.(24)) is in good agreement with that obtained by Sezgin et al. 

on a similar material [63]. 



 

98 

 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓KH = (2.2 ±  0.6) × 10−2  × 10−2 wt ppm. bar−1/2 (24)  

= 0.180 ±  0.045 mol. m−3. bar−1/2 

III.3 Conclusions 

In this work, the influence of porosity in the hydrogen diffusion and trapping processes 

has been studied for a low-alloy cast steel by means of electrochemical permeation and 

thermal desorption spectroscopy. Material characterization showed that the only difference 

between the forged material and the cast material lies in the porosity. The hydrogen was 

chemically introduced in thermal desorption spectrometry samples using a NH4SCN aqueous 

solution heated at 50°C. 

In summary, the most significant findings of this study are: 

 Electrochemical permeation experiments showed that hydrogen diffusion in the cast 

samples was slower than in the forged sample. This is due to the porosity, which acts 

as trap sites that delay hydrogen diffusion. 

 The comparison of the decay transients between the forged and the cast samples 

showed a significant effect of porosity in the trapping process: the majority of 

hydrogen (over 85% of the total desorbed hydrogen) was located in cavities. The same 

conclusion was found based on thermal desorption spectrometry results. 

 Hydrogen in cavities was in the gaseous form. Hydrogen adsorbed on internal surfaces 

of cavities was shown negligible. 

 Electrochemical permeation and thermal desorption spectrometry experiments have 

clearly shown that the hydrogen trapped in cavities desorbed spontaneously at room 

temperature, over some tens of hours for thicknesses of about two millimeters. This 

proves that the porosity acts as reversible traps for hydrogen at room temperature. 

 Thermal desorption spectrometry measurements, performed on samples with 

different volume fraction of porosity, indicated that hydrogen concentration increased 

linearly with the increase of the volume fraction of porosity. 

 A method was proposed to determine hydrogen fugacity and solubility (Sieverts’ 

constant of the steel) from thermal desorption spectrometry data. In the hydrogen 
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charging conditions used before thermal desorption spectrometry, the hydrogen 

fugacity and solubility were estimated to 85 bar and 2.2x10-2 wt ppm.bar-1/2, 

respectively. 
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IV Chapter 4: Modelling of hydrogen diffusion in a steel containing 
porosities
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IV.1 Introduction 

In the previous chapter, experimental data showed that the porosity acts as a reversible 

trap for hydrogen and as a result, it reduces hydrogen diffusivity. This latter conclusion was 

made based on the comparison between the electrochemical permeation results of the forged 

and the cast samples. The aim in this chapter is to develop a numerical model for hydrogen 

diffusion in a steel containing porosity. Two numerical models have been developed based on 

two different approaches to take into account the trapping of gaseous hydrogen in porosity. 

The first model is a 3D finite element model based on a non-equilibrium approach and the 

second is a 1D model based on a local equilibrium approach. These two models are used in 

order to simulate hydrogen permeation transients. The gaseous hydrogen behavior inside the 

porosities is described using the NIST EOS (Eq.(15)) and the pressure-fugacity relationship 

(Eq.(3)) as presented in the first chapter. The use of such equations permits to cover wide 

range of pressure (up to 2000 MPa) in contrast to ideal gas or Abel-Noble equations where 

the pressure range is limited. 

In the current chapter, a full description of the two models is given. For the non-equilibrium 

model, a hydrogen reaction flux at the bulk-cavity interface is defined first and then a detailed 

study based on a simulation with one cavity is performed. This study is very useful to highlight 

the role of porosity and to understand the evolution of several parameters such as hydrogen 

pressure and hydrogen concentration during the permeation test. After that, the effect of the 

number of cavities on the hydrogen permeation behavior is discussed. In addition, the 

simulations results of the non-equilibrium model are compared to that of the local equilibrium 

model. Afterwards, a parametric study is conducted using the local equilibrium model to 

explore the effect of various parameters such as hydrogen fugacity and porosity fraction on 

the hydrogen diffusion behavior. Then the results are compared to the permeation 

experimental data presented in the previous chapter. Finally, it should be mentioned that the 

mechanical effect of hydrogen pressure inside the cavity was not discussed in this study; the 

focus was only set on the diffusion and the trapping of hydrogen. 
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IV.2 Non-equilibrium model 

In order to simulate hydrogen permeation tests through a cast steel membrane, the FEM 

(Finite Element Method) approach was used. The simulations were performed on a 3D 

geometry as presented in Figure 54 (a) where one of the simulation boxes used in this work is 

shown. It represents a steel specimen with one cavity placed in the center. Figure 54 (b) shows 

a cross-section view. The boundary conditions associated with this model are detailed as 

follows: on the right side of the box a zero concentration was imposed, which corresponds to 

the detection side. On the opposite side (i.e. the left side) a constant fugacity was imposed. 

This side corresponds to the charging side in the permeation test. Finally, a periodic boundary 

condition consisting of a zero hydrogen flux was imposed along the lateral sides. 

 

Figure 54: Simulation box containing one cavity in the center (a) in 3D and (b) cross-section view with 
the boundary conditions. 

At the bulk-cavity interface atomic hydrogen can recombine into molecular hydrogen 

according to the following chemical reaction 

 
2H ↔ H2 

 

(25) 
 

The key of this model lies in defining the hydrogen flux at the bulk-cavity interface. In our case, 

it is possible to define this flux using the expression given in Eq.(26). which was developed by 

Pekar [129]. It represents a general expression of the flux (reaction rate) of a chemical reaction 

between two components A and B based on a non-equilibrium thermodynamics approach: 

 J = 𝑘1 × exp (−
µA

0

RT
) × [exp (

µA

RT
) − exp (

µB

RT
)] (26) 
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where J represents the reaction flux, k1 is a kinetic factor, µA and µB are the chemical potential 

of component A and B respectively and µA
0  is the standard chemical potential of the 

component A. In order to use this expression, we must first calculate the chemical potentials 

of hydrogen in the system. In our case, the chemical potential of atomic hydrogen at the bulk-

cavity interface can be expressed as follows: 

 µH
bulk =  µH

0 + RT ln (
CI

  C0
)  (27)  

 

where µH
0  is the standard chemical potential, CI is the H concentration at the interface and C0 

is the H concentration in the standard state. In the same way, it possible to define the chemical 

potential of the molecular hydrogen inside the cavity 

 µH2
=  µH2

0 + RT ln (
fH2

fH2

0 ) (28) 
 

where µH2

0  is the standard chemical potential of molecular hydrogen, fH2 represents the 

hydrogen fugacity inside the cavity and fH2

0  is the hydrogen fugacity in the standard state. 

Since the chemical potential of the atomic hydrogen inside the cavity is equal to the half of 

the chemical potential of the molecular hydrogen (µH
cavity

=  
1

2
µH2

), we can express the 

chemical potential of atomic hydrogen inside the cavity as: 

 µH
cavity

=
1

2
µH2

0 + RT ln √
fH2

fH2

0  (29)  

Now, in order to define the hydrogen flux at the bulk-cavity interface, we use Eq.(26) and we 

substitute µA by µH
bulk (Eq.(27)), and µB by µH

cavity
 (Eq.(29)). Consequently, the flux at the 

interface can be expressed as 

 

JI = k1 × exp (

1

2
µH2

0 − µH
0

RT
) × [exp (

µH
0 −

1

2
µH2

0

RT
) ×

CI

C0
− √

fH2

fH2

0 ] 

= k1 [
CI

C0
− exp (

1

2
µH2

0 − µH
0

RT
) × √

fH2

fH2

0 ] 

(30) 
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The final expression can be written in the form 

 JI = Q × [C𝐼 − KH × √fH2
] (31)  

 

where KH represents the hydrogen solubility as explained earlier with KH =

  C0

√fH2
0

×  exp (
1

2
µH2

0 −µH
0

RT
) and Q = k1/C0. In Eq.(31), the term in brackets is a concentration 

(mol/m3) and Q is a speed (m/s). From the expression above, it can be understood that the 

orientation of the hydrogen flux at the bulk-cavity interface (inward or outward) depends on 

the hydrogen concentration at the interface and the hydrogen fugacity inside the cavity. If the 

chemical potential of the hydrogen at the interface is higher than the chemical potential inside 

the cavity (i.e. CI > KH × √fH2
), hydrogen from the bulk will enter the cavity and recombine into 

molecular hydrogen. In the opposite case (CI < KH × √fH2
), hydrogen will quit the cavity and 

diffuse to the bulk. Finally, at equilibrium (CI = KH × √fH2
), the flux is equal to zero. This 

expression assumes that the porosity act as a reversible trap, i.e. that hydrogen can quit 

without providing any additional energy from outside the system. This assumption is justified 

by the experimental data presented in the previous chapter. 

Figure 55 shows the flowchart of the FEM calculations, conducted using Comsol software. It 

explains the working mechanism of this model. First, the module of transport of diluted 

species provided by Comsol was used to handle the process of hydrogen diffusion in the bulk. 

This module permits to study the mass transport phenomenon of the chemical species due to 

diffusion (our case) and/or due to a flow field or an electric field [130]. In our case, we just 

used the classical diffusion governed by Fick’s law: 

 
∂C𝐵

∂t
= ∇(D∇C𝐵) (32)  

 

where CB is the bulk hydrogen concentration, t represents the time and D is the bulk hydrogen 

diffusion coefficient. This coefficient was considered equal to the apparent diffusion 

coefficient determined in the previous chapter from permeation experiments for the forged 

material, i.e. the material containing no porosity. Then, the amount of the molecular hydrogen 

inside the cavity (number of moles n) was calculated in two steps. First, we calculate the 

integral of the flux JI over the time and then we calculate the spatial integral of the first 
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integration along the cavity surfaces (S) as illustrated in Eq.(33). The temporal integration was 

done by adding an Ordinary Differential Equation (of type a
∂²y

∂t²
+ b

∂y

∂t
= JI, with a = 0 and b = 

1) to the model. On the other hand, the spatial integral was evaluated by adding “a component 

coupling operator” of type integration to the numerical model provided by Comsol software. 

This feature permits to evaluate the space integral of a variable during the calculation. Finally, 

it should be mentioned that the ½ factor in Eq.(33) is a stoichiometric coefficient issued from 

the chemical reaction in Eq.(25).  

 n =
1

2
∫ ∫ 𝐽𝐼  dt dS 

tS

 (33) 
 

 

Once the amount of the molecular hydrogen inside the cavity is determined, it is possible now 

to calculate the pressure inside the cavity by using the expression presented in Eq.(34). This 

expression represents one of the two zeros of Eq.(15). Note that only this solution is accepted 

because the other one is negative. 

 P =
(b0 − v) + √(b0 − v)2 + 7.82 × 10−15 RT

3.91 × 10−15
 

(34) 
 

 

The next step in the calculations is to determine the hydrogen fugacity inside the cavity 

because it is necessary in order to calculate the new flux at the bulk-cavity interface. 

Therefore, the integral of Eq.(3) was evaluated after substituting the molar volume (v) by the 

expression of the molar volume from the EOS described earlier (see Eq.(15)). We obtained the 

following expression of fugacity, which is a simple function of the pressure when the 

temperature is constant: 

 f = P × exp (
Pb0 − 9.775 × 10−16 P²

RT
) (35) 

 

 

Finally, the new hydrogen flux at the bulk-cavity interface can be calculated using Eq.(31). The 

simulation ends when the simulation time reaches the final time fixed by the user. 
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Figure 55: The flowchart of the simulation procedure used in the non-equilibrium model. 

In this study, hydrogen permeation simulations were performed on 3D geometries. One 

of the simulation boxes is presented in Figure 56 (a). It was meshed by tetrahedral elements 

generated automatically by Comsol software. In order to verify the convergence of the 

numerical results, the hydrogen permeation flux is plotted as a function of the mesh size in 

Figure 56 (b). The elements size and the total number of elements are also presented in the 

same figure which shows that no effect of the mesh size is observed. Furthermore, other 

simulations were performed by varying the cavity radius (from 4 µm to 100 µm) and no 

significant effect was noticed either. Finally, it should be mentioned that we opted for a “Fine” 

mesh and that the numerical simulations were performed using a computing cluster in order 

to reduce the calculation time. 
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Figure 56: (a) Example of a simulation box used in this study. The sphere represents the cavity. 
(b) Comparison between the permeation curves obtained using different mesh sizes. 

IV.3 Equilibrium model 

A simpler 1D model based on an equilibrium hypothesis was developed in order to 

simulate permeation tests in shorter computation times. Figure 57 shows a schematic 

representation of the simulation box used in this work. The sample was split along the 

thickness into n equivalent elements. This model relies on the following assumptions. First, 

the porosity fraction in each element is the same and it is equal to the porosity fraction of the 

sample. Second, in each element, the bulk hydrogen concentration is constantly in equilibrium 

with the hydrogen fugacity trapped in the cavities as described by Sieverts’ law. Third, this 

equilibrium is instantly established and finally only bulk hydrogen is able to diffuse from one 
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element to another. Note that the total hydrogen concentration (CTotal) in each element is the 

sum of bulk hydrogen concentration (CB) and hydrogen concentration in the porosity (CP) as 

expressed in Eq.(36). The boundary conditions are presented in Figure 57. The first element 

corresponds to the charging side where the fugacity inside the porosity is equal to the fugacity 

of the charging medium and the bulk concentration is deduced from Sieverts’ law Eq.(4). The 

last element represents the detection side where the concentration was set to zero. These 

boundary conditions were maintained during the whole simulation. In addition, the initial 

hydrogen concentration was set to zero in elements 2 to n-1. 

 

 

Figure 57: Schematic representation of the simulation box used in the equilibrium model. 

 CTotal =  CB + CP (36)  

 

Figure 58 shows the flowchart of the calculations used in the simulations. It is composed 

mainly of two parts, the diffusion step and the re-equilibration step. For the first step, the 

hydrogen diffusion, in each element and at each time step, was calculated using Fick’s law:  

 
∂CTotal

∂t
= D

∂2CB

∂x²
 (37) 
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where Ctotal represents the total hydrogen concentration, D is the bulk diffusion coefficient 

and CB corresponds to the concentration of the hydrogen in the bulk. Notice that in the second 

term of the equation, it is written CB instead of CTotal; this is because, as mentioned earlier, 

only bulk hydrogen (CB) is able to diffuse. 

Once the new CTotal at (t+Δt) was calculated, the re-equilibration step is then used to calculate 

the new CB at (t+Δt) to ensure equilibrium between the bulk hydrogen and the hydrogen 

trapped in the cavities. This step is also necessary to avoid creating hydrogen and 

consequently ensure mass conservation in the system. In order to calculate the new CB, one 

has to resolve a system of equations composed of Eq.(3), (4), (15) and (36). It appeared that 

numerical solving of that system of equations was very time consuming. In addition, multiple 

zeros were obtained and the zero selection process was not easy to automate. For these 

reasons, we have opted for a pre-calculated table of solutions which is composed of CTotal and 

the corresponding CB and CP for a given porosity fraction. In fact, at equilibrium there is only 

one possible value of CB for a given CP. This table was created by fixing a pressure first which 

permits to calculate at the same time CP and hydrogen fugacity using Eq.(15) and Eq.(3), 

respectively. Then, the hydrogen fugacity was used to deduce CB using Eq.(4) and finally, CTotal 

can be obtained by Eq.(36). The values of the total concentration (CTotal) inserted in the table 

before the simulation starts, are chosen by the user and they cover the range of 

concentrations needed for running the simulation from 0 to CTotal at the entry side. The values 

of CB and CP corresponding to a given total concentration are extracted from the table of 

solutions using linear interpolation. 

It should be mentioned that the exit permeation flux corresponds to the flux calculated at the 

interface of the (n-1) element and the (n) element. All the simulations based on the 

equilibrium model were performed using Matlab software. Finally, it is may be useful to 

mention that the diffusion equation (Eq.(37)) was solved by using the function ode15s 

provided by Matlab. 
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Figure 58: The flowchart of the simulation procedure used in the equilibrium model. 

IV.4 Results and discussion 

The input parameters used in the numerical simulations conducted using the two models 

are presented in table 1. It is important to mention that the value of the fugacity was 

estimated using the work of Venezuela [121], which gives a relationship between hydrogen 

fugacity and the electrochemical over-potential for a 3.5NiCrMoV steel charged in a 

0.1 M NaOH aqueous solution. In our electrochemical permeation tests, presented in the 

previous chapter, the over-potential was equal to -1.1 V, which corresponds to a fugacity of 

600 atm. Furthermore, the hydrogen diffusion coefficient used in the simulations is the 

apparent diffusion coefficient of the forged sample calculated using the time-lag method 

based on the electrochemical permeation results (see the previous chapter for more details). 

The solubility coefficients are also taken from the previous chapter and from literature as 

stated in Table 7. It should also be mentioned that for the non-equilibrium model it was 
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necessary to define a certain concentration in the bulk and a certain pressure inside the 

cavities in the initial state in order to avoid numerical problems. It is shown later that the 

values are very low and do not affect the simulation results. 

Table 7: List of the parameters used in the numerical simulations. 

Parameter Values 

Solubility (mol/(m3 x bar0.5) in the range of [7.8 × 10-3 [63]- 0.225  (1)] 

Hydrogen fugacity of the charging medium (bar) 600 atm 

Bulk diffusion coefficient of hydrogen (m²/s) 7.8 × 10-12  (1) 

Initial bulk H concentration (mol/m3) 0.01 (2) 

Initial cavity pressure (MPa) 0.1 (2) 

Membrane thickness (mm) 2 

Temperature (°C) 20 

Porosity volume fraction (%) 0.02 - 0.4 

 

IV.4.1 Non-equilibrium model 

IV.4.1.1 Effect of the kinetic factor 

The aim of the first simulations was to understand the effect of the kinetic factor Q on the 

permeation behavior. This factor affects directly the flux of the hydrogen at the bulk-cavity 

interface. Physically, it affects the reaction rate of the recombination of atomic hydrogen into 

molecular hydrogen. Figure 59 (a) summarizes five different simulations performed under the 

same conditions as described before. The same simulation box was used in all the simulations 

(see Figure 54). The porosity fraction represents 0.04% (cavity radius is equal to 78 µm) and 

the solubility coefficient is 0.18 mol/(m3×bar0.5). Each simulation was performed with a 

different value of Q. As it can be seen, all hydrogen fluxes start to rise at the same moment (≈ 

2×104 s) and have the same behavior until ≈ 7×104 s. After 7×104 s, the flux obtained using Q 

= 10-7 m/s increases slightly faster than the others but finally they all reach the same steady 

state. Figure 59 (b) shows the time evolution of the pressure inside the cavity. All the 

simulations show almost the same behavior except for the simulation with Q = 10-7 m/s. 

                                                      
1 Value from the previous chapter 
2 Used only in the non-equilibrium model simulations 
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Actually, increasing Q tends to increase the hydrogen flux at the interface of the cavity-bulk 

and as a result, increases the amount of hydrogen entering the cavity (i.e. the pressure) 

quicker compared to a situation with a lower value of Q. In these cases (Q ≥ 10-6 m/s), the 

permeation behavior is being governed by the hydrogen diffusion and not the interface 

reaction. This means that all hydrogen atoms reaching the cavity are “instantly” recombined 

into molecular hydrogen. In this study, we have chosen to conduct the simulations in the 

regime where hydrogen diffusion is the limiting step. As a result, all the simulations presented 

later were performed with Q = 10-4 m/s. 
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Figure 59: The influence of the kinetic factor Q on (a) the permeation flux and (b) the evolution in 
time of the pressure inside the cavity. All the simulations were performed under the same 

conditions. The simulation box contained one cavity placed in the center. Solubility coefficient: 0.18 
mol/(m3×bar0.5). Porosity fraction: 0.04%. Simulations with Q ≥ 10-6 m/s provide similar fluxes and 

similar hydrogen pressures inside the cavity as well. 
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IV.4.1.2 Mass balance 

Before going any further in the simulations, it is important first to verify that the mass 

balance is respected. For this reason, the amount of hydrogen in the simulation with 

Q = 10-4 m/s was monitored during the whole simulation. Figure 60 presents the time 

evolution of the amount of hydrogen of the system. It shows that the hydrogen entering the 

system from the charging side (red curve) is equal to the sum of the hydrogen in the bulk, in 

the cavity and the hydrogen reaching the detection side (blue dashed curve). Consequently, it 

is safe to conclude that the mass balance is verified during the simulation. 

 

Figure 60: The distribution of hydrogen amount in the simulation box as a function of time for a 
simulation with one cavity and a kinetic factor Q = 10-4 m/s. Solubility coefficient: 0.18 

mol/(m3×bar0.5). Porosity fraction: 0.04%. At every instant, the amount of hydrogen that entered the 
system (red curve) is equal to the sum of the hydrogen in the cavity, in the bulk and the hydrogen 

that reached the detection side. The mass balance was respected during the whole simulation. 

IV.4.1.3 One cavity case 

Figure 61 (a) presents the simulation results of a permeation test for a sample without cavities 

(black curve) and a sample with one cavity (red curve). The cavity has a diameter of 156 µm 

(porosity fraction of 0.04%) and the solubility used in this simulation was equal to 0.18 

mol/(m3×bar0.5). The initial and boundary conditions are identical in both cases. The 
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simulation box has a thickness of 2 mm as mentioned earlier. The fluxes of the two simulations 

started to rise at the same time (≈ 2×104 s) and they reach the same steady state. However, 

the 1 cavity simulation reaches the steady state later. Actually, the simulation with no cavities 

reaches the steady state approximately at 2.5×105 s whereas the 1 cavity simulation reaches 

it at 5.5×106 s. This difference is obviously related to the hydrogen-cavity interaction because 

the only difference between the two simulations lies in the presence of the cavity. In order to 

understand the root of this difference, a third simulation was performed. It is identical to the 

1 cavity simulation except for the condition applied at the bulk-cavity interface. In this 

simulation (1 Cavity*), the hydrogen concentration at the bulk-cavity interface was set to zero 

through the whole simulation. The obtained result (blue dashed curve) is presented in the 

same figure (Figure 61 (a)) that contains the two previous results. The two simulations (1 cavity 

and 1 Cavity*) are identical until 1×105 s then, the 1 Cavity* simulation is plateauing at a low 

steady state flux, while the other continues to rise until reaching a higher steady state (the 

same steady state of the simulation with no cavities). In fact, the 1 cavity* flux, at the steady 

state, was smaller because hydrogen atoms that pass near the cavity are being constantly 

absorbed by the cavity. This is due to the zero concentration applied at the bulk-cavity 

interface. In contrast, the concentration at the interface for the 1 Cavity simulation increases 

with time until reaching the equilibrium concentration as presented in Figure 61 (b). At this 

point, no additional hydrogen can be trapped by the cavity and consequently, hydrogen 

continues to diffuse to the detection side. Actually, the increase of hydrogen concentration at 

the interface leads to reduce the concentration gradient at the interface and as a result 

decreases the hydrogen flux JI entering the cavity. The temporal evolution of the pressure 

during the simulation is plotted in Figure 61 (c) on a logarithmic scale. The pressure (i.e. the 

amount of hydrogen) inside the cavity stays very low until 3×104 s and then, when hydrogen 

atoms reach the cavity the pressure starts to rise. The pressure continues to increase with 

time as more hydrogen is being trapped by the cavity. Finally, the pressure reaches a constant 

value of 13.8 MPa. This pressure represents the local equilibrium pressure, as described by 

Sieverts’ law, reached when the steady state is established. 

Figure 62 (a) shows the concentration profiles of the 1 cavity sample at different times. The 

discontinuity in the profiles corresponds to the cavity where the hydrogen concentration 

cannot be defined. As it can be seen, the concentration increases with permeation time until 



 

118 

reaching a linear profile. The first two profiles show that hydrogen concentration increases in 

the region close to the charging side whereas the concentration is very low at the bulk-cavity 

interface because hydrogen did not yet reach the cavity. Then, when hydrogen reaches the 

cavity, the concentration starts to rise at the interface until reaching a constant concentration 

(light blue curve). This concentration corresponds to the local equilibrium concentration as 

described by Sieverts’ law (Eq.(4)), which indicates that the chemical potential of the hydrogen 

at the interface is in equilibrium with the chemical potential of the hydrogen inside the cavity. 

It is important also to underline that the hydrogen concentration is linearly distributed along 

the sample thickness at the steady state. Figure 62 (b) represents the maps of hydrogen 

concentration at different times. It shows clearly the increase of hydrogen concentration 

during the simulation. The plotted lines represent the hydrogen fluxes inside the sample. A 

part of the hydrogen (near the upper and the lower sides) diffuses without being trapped by 

the cavity whereas the other part (close to the cavity) is being trapped. 

The numerical permeation curve of the 1 cavity sample in Figure 61 (a) can be divided into 3 

main domains. First, a classical (domain 1) transient regime where hydrogen diffuses through 

the sample until reaching the detection side and, as a result, the exit hydrogen flux starts to 

rise. The hydrogen flux in the 1 cavity case at 6×104 s is the same flux as for the simulation 

without cavities. This flux represents the maximum of hydrogen that was able to diffuse 

without being trapped in the cavity. Second, from 6×104 s, the hydrogen flux continues to 

increase slower than before as the slope decreases significantly compared to the simulation 

without cavities. This decrease in the slope is due to the trapping of hydrogen inside the cavity. 

In fact, a part of the hydrogen is being absorbed by the cavity instead of continuing to diffuse 

and reaching the detection side. As more hydrogen is being trapped inside the cavity, the 

cavity pressure (domain 2) and interface concentration increase. This increase in the hydrogen 

concentration at the bulk-cavity interface reduces the flux entering the cavity, which results 

in the cavity trapping less hydrogen. As a result, more hydrogen is available to diffuse and to 

reach the detection side without being trapped. Thus, the hydrogen flux continues to rise. 

Finally, domain 3 is the steady state. This occurs when hydrogen fugacity in the cavity is in 

equilibrium with the local bulk concentration.  
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Figure 61: (a) Comparison of the hydrogen permeation flux obtained by numerical simulations for a 
case without cavity (black curve), a case with one cavity (red curve) and a case with one cavity with a 
zero concentration imposed on the bulk-cavity interface. Solubility coefficient: 0.18 mol/(m3×bar0.5). 

Porosity fraction: 0.04%. The simulation without cavity reaches the steady state before the 
simulation with one cavity. The delay in the permeation curve is associated to the hydrogen trapping 

in the cavity. (b) Hydrogen concentration at the bulk-cavity interface. (c) Time evolution of the 
pressure inside the cavity.  
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Figure 62: The time evolution of the hydrogen concentration along the sample. The solubility 
coefficient: 0.18 mol/(m3×bar0.5). Porosity fraction: 0.04%. (a) Hydrogen concentration profiles along 

the thickness at different times. The concentration at the bulk-cavity interface increases with 
permeation time until reaching the local equilibrium concentration (described by Sieverts’ law). At 
the steady state, the concentration is linearly distributed and the chemical potential of hydrogen in 

the bulk is locally equal to the chemical potential of hydrogen inside the cavity. (b) The maps of 
hydrogen concentration at different times. The concentration increases (from left to right) with 

permeation time. The lines represent the local hydrogen fluxes, showing the trapping effect of the 
cavity. 

IV.4.1.4 Multiple cavity case 

All the results presented earlier were based on simulations performed on a box with just 

one cavity. In this section, the results were obtained from several simulations performed on 

boxes that have different numbers of cavities. The aim was to highlight the effect of number 

of cavities on the permeation behavior. It should be noted that the porosity fraction was 



 

121 

maintained constant at the same value (0.04%) for all the simulations in order to exclude the 

effect of the porosity fraction on the results (this point is discussed in details in section 

IV.4.3.1). Therefore, the box size, the side length to be more accurate, had to be modified in 

order to maintain the same porosity fraction (the thickness was kept the same 2 mm). Table 

8 summarizes the geometric parameters and the different characteristics of the simulation 

boxes used in this work. 

Figure 63 shows two simulation boxes. The first one (Figure 63 (a)) corresponds to the 

simulation box with one cavity and the second one (Figure 63 (b)) represents a simulation box 

containing 5 cavities of the same radius. 

Table 8: The characteristics and the geometric parameters of the 3D simulation boxes. 

  

Number of cavities 0 1 2 5 10 20 

Inter-cavity distance (mm) - - 1 0.4 0.2 0.1 

Cavity radius (µm) - 78 39 16 8 4 

Specimen thickness (mm) 2 2 2 2 2 2 

Side length (mm) 1 1 0.5 0.2 0.1 0.05 

Porosity fraction (%) 0.04 0.04 0.04 0.04 0.04 0.04 
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Figure 63: Examples of the 3D simulation boxes used in this study. The porosity fraction is equal to 
0.04% and the specimen thickness is equal to 2 mm (a) Simulation box with one cavity placed in the 
center. (b) Simulation box with 5 cavities of the same radius. Periodic boundary condition consisting 

of a zero hydrogen flux was imposed along the lateral sides. 

All the numerical simulations were performed using the same solubility coefficient (0.18 

mol/(m3×bar0.5)). Figure 64 shows the influence of the number of cavities on the permeation 

flux. The hydrogen flux for all the simulations starts to rise at 2×104 s and then the increase of 

the flux becomes different from one case to another. The flux of the simulation without cavity 

increases faster than the others and it reaches the steady state first (around 3×105 s) because 

hydrogen diffuses without being trapped whereas, in the other cases, hydrogen was trapped 

in the cavities. By comparing the different curves, it is obvious, until 5×105 s approximately, 

that their slope decreases with increasing the number of cavities. Actually, the increase of 

number of cavities can be seen as increasing the probability of hydrogen trapping in the 

cavities: the more cavities there are, the more probable it is that hydrogen can be trapped. 

Thus, less hydrogen is available to diffuse and reach the detection side, which explains the 

slower increase in the hydrogen flux. This is related to the increase of bulk-cavity interface 

area when the number of cavities is increased. However, it was found that the number of 

cavities has no more effect on the permeation behavior for simulations with 10 cavities or 

more. On the other hand, after 4×105 s, there is a change in the permeation behavior. The 

simulation with one cavity reaches the steady state last. Again, this difference is obviously 

related to the interaction between cavities and hydrogen. In fact, the amount of hydrogen 

required to reach local equilibrium in the one cavity simulation is higher than that in the others 

cases simply because the cavity volume is larger. Consequently, more time was needed in 

order to fill the cavity and as a result, the steady state was delayed. Figure 65 shows the time 
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evolution of the pressure inside the cavities for the simulation with 10 cavities. It is important 

to recall that all cavities have the same radius. The pressure stays very low at the beginning 

and then when hydrogen atoms reach each cavity, the pressure starts to rise, but at different 

moment depending on the cavity position. The cavity near the charging side has the highest 

pressure and the cavity near the detection side has the lowest as it can be expected. It is 

remarkable that the pressure inside each cavity reaches the local equilibrium pressure at the 

same time as the others do. 

 

Figure 64: The effect of the number of cavities on the hydrogen permeation flux. Solubility 
coefficient: 0.18 mol/(m3×bar0.5). Porosity fraction: 0.04%. For the simulations with 10 cavities and 

20 cavities, the same curves were obtained. 
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Figure 65: Time evolution of the pressure inside the cavities. Solubility coefficient: 0.18 
mol/(m3×bar0.5). Porosity fraction: 0.04%. The pressure inside each cavity reaches the local 

equilibrium pressure at the same time. 

IV.4.2 Comparison between the two models 

Firstly, we should recall that the same parameters and the same conditions were used in 

the simulations using the non-equilibrium model and the equilibrium model as well. The 

results presented previously in Figure 64 shows clearly that the simulations performed using 

the non-equilibrium model with a number of cavities of 10 or more (with the same porosity 

fraction) produce the same permeation behavior. In the present section, the simulations 

obtained earlier (Figure 64) will be compared to the simulation results of the equilibrium 

model. Figure 66 (a) presents the obtained permeation fluxes as a function of time using the 

two models. The porosity fraction was 0.04% and the solubility was 0.18 mol/(m3×bar0.5). The 

red dashed curve corresponds to the result of the non-equilibrium model with 10 cavities and 

the black curve corresponds to the result of the equilibrium model simulation. Interestingly, 

the same permeation behavior was found in the two cases: the fluxes rise at the same time 
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and reach the same steady state flux at the same moment. This shows that the two models 

are equivalents when the non-equilibrium model is used with a sufficiently high number of 

cavities. For further confirmation of this conclusion, the pressure profiles across the specimen 

were also compared for the two models. Figure 66 (b) presents the pressure profiles at 

steady-state for the non-equilibrium (red dots) and the equilibrium (black curve) models. The 

same values of pressure are obtained, which confirms the equivalence between the two 

models when a large number of cavities is used in the non-equilibrium model. This is made 

possible by the larger bulk-cavity interface area and the smaller cavity volume, which 

facilitates the establishment of local equilibrium. This equivalence is an important point 

because the equilibrium model is easier and simpler than the non-equilibrium model. In 

particular, the calculation time is incomparable. The simulation takes only a few minutes to 

run for the equilibrium model whereas it takes hours for the non-equilibrium model using the 

same machine. 

 

Figure 66: Comparison between the non-equilibrium model and the equilibrium model. Solubility 
coefficient: 0.18 mol/(m3×bar0.5). Porosity fraction: 0.04%. (a) The hydrogen permeation flux as a 

function of time and (b) steady state pressure profile in the cavities across the specimen thickness. 
The obtained results point out that the two models are equivalents in the case of simulations with 10 

cavities or more for the non-equilibrium model. 

IV.4.3 Parametric study using the equilibrium model 

The equilibrium model presented in this work makes it easier to study the effect of 

different parameters on the hydrogen permeation behavior compared to the non-equilibrium 
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model, which requires a 3D FEM resolution. In the following sections, the equilibrium model 

was used to study the influence of the porosity fraction, the solubility coefficient and the 

fugacity of the charging medium on the permeation behavior. 

IV.4.3.1 Porosity fraction effect 

Figure 67 (a) summarizes the results of various simulations performed with different 

porosity fractions. The porosity fraction vary from 0% to 0.4%. The computed results showed 

that not only the time needed to reach the steady state increases with increasing the porosity 

fraction but also the time needed for the first hydrogen atoms to reach the detection side 

increases. For the simulation without porosity, the steady state was reached faster because 

hydrogen diffuses without being trapped. For the other simulations, the increase of the 

porosity fraction means an increase of the amount of trapped hydrogen. Consequently, less 

hydrogen is available to diffuse to the detection side without being trapped and therefore 

hydrogen flux increases more slowly. In Figure 67 (b), the time needed to reach Jmax / 2 is 

correlated to the porosity fraction. It shows that, under the conditions tested here, the 

diffusion time increases linearly with increasing the porosity fraction, which is in agreement 

with the expression of the apparent diffusion coefficient (Dapp) presented in Eq.(17). 
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Figure 67: The influence of the porosity fraction on the hydrogen permeation flux. Simulations were 
performed using the equilibrium model. Solubility coefficient: 0.18 mol/(m3×bar0.5). (a) The simulated 

permeation curves. (b) The time to reach Jmax /2 as a function of the porosity fraction. The 
permeation time increases linearly with increasing the porosity fraction. 
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IV.4.3.2 Hydrogen solubility effect 

Four different calculations have been performed in order to determine the influence of the 

solubility on the permeation behavior. Figure 68 (a) provides the results of these simulations, 

performed under identical conditions but with different solubility coefficients. The porosity 

fraction was also the same in the four simulations and it was equal to 0.04%. It should be 

mentioned that the hydrogen concentration on the charging side was different from one case 

to another. Actually, as mentioned earlier, a constant fugacity of 600 atm was applied on the 

charging side, thus the hydrogen concentration varies when varying the solubility coefficient. 

As a result, the steady state flux was not the same for all the simulations. In order to make the 

comparison easier, the normalized flux (J/Jmax) is plotted in Figure 68 (b). First, note that the 

orange curve corresponds to a simulation based on a solubility coefficient found in literature 

[63] while the blue, red and light blue curves were simulated using the solubility coefficient 

calculated in the previous chapter (0.180 ± 0.045 mol.m-3.bar-1/2). The results showed that 

increasing the solubility tends to decrease the permeation time. As already shown, increasing 

hydrogen solubility reduces the trapping effect of the porosity. Therefore, the hydrogen flux 

increases faster. In Figure 68 (c), the time to reach the Jmax / 2 is plotted with respect to the 

solubility coefficient. It indicates that the permeation time and the solubility coefficient have 

an inverse relationship, which is in agreement with Eq.(17). 
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Figure 68: The effect of the solubility coefficient on the hydrogen permeation flux. Simulations were 
performed using the equilibrium model. Porosity fraction: 0.04%. (a) The simulated permeation 

curves before normalization. (b) The simulated permeation curves after normalization. (c) The time 
needed to reach Jmax /2 as a function of the solubility coefficient. The permeation time is inversely 

proportional to the solubility coefficient. 
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IV.4.3.3 Hydrogen fugacity effect 

In this section, the influence of hydrogen fugacity of the charging medium, i.e. at the entry 

side, on the permeation behavior was discussed. For all the simulations, the porosity fraction 

was equal to 0.04% and the solubility coefficient was equal to 0.18 mol/(m3×bar0.5). Figure 69 

(a) shows the normalized permeation curves for different hydrogen fugacities. As it can be 

seen, the hydrogen flux rises faster and reaches the steady state earlier in the case of low 

fugacities compared to high fugacities. In order to better visualize this effect, the relationship 

between the time needed to reach Jmax / 2 and hydrogen fugacity is presented in Figure 69 (b). 

The relationship indicates that the permeation time increases approximately as the square 

root of hydrogen fugacity. Once again, this conclusion is in concordance with the expression 

given in Eq.(17). 
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Figure 69: The influence of hydrogen fugacity at the entry side on the permeation behavior. Porosity 
fraction: 0.04%. Solubility coefficient: 0.18 mol/(m3×bar0.5). (a) Simulated permeation curves. (b) The 

time needed to reach Jmax /2 as a function of hydrogen fugacity. The permeation time increases as 
the square root of fugacity. 
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IV.4.4 Comparison to the experimental data 

In the previous chapter, electrochemical permeation tests were conducted on a cast 

sample with a porosity fraction of 0.04 ± 0.02% and a forged sample in order to highlight the 

effect of the porosity in hydrogen diffusion and trapping. Furthermore, hydrogen solubility in 

the forged material was determined and it was found equal to 0.18 ± 0.045 mol/(m3×bar0.5). 

X-ray tomography measurements presented in the previous chapter (Table 2) have shown that 

the average inter-cavity distance is of 138 µm. This means that there are approximately 15 

cavities along the thickness of the permeation specimen (2 mm). Considering the equivalence 

between the equilibrium and non-equilibrium models for “large” numbers of cavities (> 10 in 

this case), only the equilibrium model was used here. In the current section, a comparison was 

made between the experimental and the numerical permeation curves in order to estimate 

the model predictivity. Figure 70 shows the obtained permeation curves: the solid curves 

represent the experimental data from electrochemical permeation and the dashed curves 

represent the simulations. The red and blue curves correspond to the forged (without cavities) 

and the cast (with a porosity fraction of 0.04%) samples, respectively. It should be recalled 

that the diffusion coefficient used in the numerical simulations is the apparent diffusion 

coefficient of the forged sample obtained from the experimental curve by the time-lag 

method (see Table 7). The zone colored in light blue corresponds to the uncertainty zone for 

the computed curve considering the uncertainty of the porosity fraction and the solubility 

coefficient. It ranges between two extreme cases: the first case (the upper limit) is a simulation 

with a porosity fraction 0.06% and a solubility coefficient of 0.135 mol/(m3×bar0.5). The second 

case (the lower limit) is a simulation with a porosity fraction 0.02% and a solubility coefficient 

of 0.225 mol/(m3×bar0.5). First, it is important to mention that the increase of the flux at the 

beginning of the test (t ≈ 103 s) for the experimental data was explained in the previous 

chapter by a microstructure effect and that this point is not discussed here. Then, in both 

cases, experimental and simulated, the forged sample reaches the steady state before the cast 

sample because of the hydrogen trapping in the cavities as explained previously. The 

simulation result of the forged material is close to the experimental curve especially at Jmax/2, 

which can be totally expected because the simulation was performed using the apparent 

diffusion coefficient extracted from this particular experimental curve. Based on the 

experimental curves, the cast material needed almost twice the time to reach Jmax/2 compared 
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to the forged one. This same factor is around 2.3 for the numerical simulations. Accordingly, 

it is safe to conclude that the delaying effect of porosity is reasonably predicted by the 

numerical model. Moreover, it is important to note that the numerical results were obtained 

without any parameter adjustment. However, as it can be seen in Figure 70, the slope is 

different between the simulated and the experimental curves especially in the case of the cast 

sample, the experimental slope being steeper. This difference in the slope could be explained 

by the hydrogen interaction with microstructural defects [131][132]. This was not considered 

in the proposed model that focuses on the effect of porosity only. 

 

Figure 70: Comparison between the experimental and simulated permeation curves. The red color 
corresponds to the forged material (without cavities) and the blue color corresponds to the cast 
material (porosity fraction is equal to 0.04%). The solid curves: experimental; the dashed curves: 
simulated. The solubility coefficient was 0.18 mol/(m3×bar0.5) for the blue dashed simulation. The 
light blue zone represents the uncertainty zone and it was defined based on two simulations: the 

lower limit simulation using a porosity fraction of 0.02% and a solubility coefficient of 0.225 
mol/(m3×bar0.5) and the upper limit simulation using a porosity fraction of 0.06% and a solubility 

coefficient of 0.135 mol/(m3×bar0.5). 
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IV.5 Conclusions 

In this study, two numerical models have been proposed in order to simulate hydrogen 

permeation for a steel containing porosity. These two models take into account the trapping 

of gaseous hydrogen in cavities. They are based on two different approaches: the first model 

is based on a non-equilibrium approach, where a reaction flux is considered at the bulk-cavity 

interface and the second model is based on a local equilibrium approach, between hydrogen 

dissolved in the bulk and gaseous hydrogen in the cavities. It should be mentioned that the 

second model is simpler and less time consuming compared to the first model. The numerical 

models were discussed in details first and then the results were compared to the permeation 

experimental data presented in the previous chapter. It is important to note that the two 

models were developed based on a refined EOS, which permits to perform simulations on a 

wide range of pressure [0, 2000 MPa]. The following main conclusions can be drawn: 

 For the non-equilibrium model, an expression of hydrogen flux due to the 

recombination reaction of atomic hydrogen into molecular hydrogen at the 

bulk-cavity interface was developed based on a non-equilibrium approach. The flux 

orientation (inward or outward) is controlled by the hydrogen concentration at the 

interface and hydrogen fugacity inside the cavity. A choice was made in this study to 

work in a diffusion-limited regime instead of an interface reaction-limited regime. 

 The permeation behavior across a simulation box containing one single cavity was 

studied in details. The time evolution of cavity pressure, bulk-cavity interface 

concentration and permeation flux was found consistent. 

 The effect of the number of cavities in the simulation box was studied. For a given 

porosity fraction, increasing the number of cavities results in larger bulk-cavity 

interface area and lower cavity volume, which facilitates local equilibrium. When the 

number of cavities is large enough, the non-equilibrium model gives the same results 

as the equilibrium model. 

 A parametric study using the equilibrium model was conducted. The permeation time 

was found to vary linearly with XP and 
1

KH
 where XP is the porosity fraction in the 

specimen and KH is the hydrogen solubility in the bulk material (Sieverts’ constant). 
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In addition, it was found that the permeation time increases as the square root of 

hydrogen fugacity (fH2) at the entry side. 

 Finally, a comparison between permeation experiments and simulations was made 

and showed a good agreement, although no input parameter was adjusted. However, 

the numerical models need further refinement (other type of traps should be 

included) in order to improve their predictivity. 
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V Chapter 5: Hydrogen embrittlement
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V.1 Introduction 

The issue of Hydrogen Embrittlement (HE) has been extensively studied for more than a 

century starting from the early 1870s [83]. Since then, it has been well proven that hydrogen 

induces degradation in the mechanical properties of steels [133][134][135]. However, it is still 

difficult to clearly identify which HE mechanism is responsible for a given failure. As 

demonstrated previously, cast steels have porosities and these porosities represent reversible 

trap sites for hydrogen. Furthermore, the majority of trapped hydrogen is located at the 

porosity. For these reasons, the focus was set in in this chapter on the combined effect of 

hydrogen and porosity on the mechanical properties of the studied materials. As mentioned 

in the general introduction, previous investigations made by the industrial partner showed the 

presence of a special defect on the fracture surface of some tensile specimens related to 

hydrogen known as “fish-eyes”. These fish-eyes present a round shape brittle area centered 

on a defect, which is usually a non-metallic inclusion or a void. The few studies that were 

performed on this topic were detailed in the first chapter. Some of these studies assumed that 

the fish-eye defect is a result of the high pressure of hydrogen inside a void or at the 

matrix-inclusion interface. They mentioned also that the fish-eye formation could occur with 

or without external load. 

In this work, several tensile tests were performed on uncharged forged and cast 

specimens first in order to determine their mechanical properties before hydrogen charging. 

Then, tensile tests were performed on hydrogen pre-charged specimens. The hydrogen 

charging was conducted in a NH4SCN solution heated at 50°C. At this point, it is important to 

recall that the pressure inside the voids, after charging in a 5% NH4SCN solution, was 

estimated to be around 8 MPa (Table 6), which is far below the mechanical strength of the 

material. Therefore, it is not possible, in our case, to explain the fish-eye formation (if found) 

by the internal pressure theory. After that, the fractured pre-charged and uncharged 

specimens were observed using scanning electron microscopy (SEM) in order to investigate 

the fracture surface and try to correlate porosity and hydrogen to the failure behavior. Finally, 

a mechanism of fish-eye formation was proposed in our case. 
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V.2 Results and discussions 

V.2.1 Uncharged specimens 

Figure 71 shows the engineering stress-strain curves for three forged specimens and six 

cast specimens without any hydrogen charging. The tensile properties of both materials are 

given in Table 9. As it can be seen, the forged and the cast specimens exhibit almost the same 

yield strength and the same UTS. However, the total elongation of the forged material (19.9 ± 

0.3%) is higher than that of the cast material (18 ± 1.1%), which is probably due to the porosity. 

The dispersion of the total elongation for the cast specimens is not only related to the volume 

fraction of porosity but also to the shape of voids. Unfortunately, these two informations are 

not available for the tensile specimens used here. That is why no detailed discussion was 

undertaken here about the relationship between the elongation values and the porosity. 

 

Figure 71: Stress-strain curves for forged (red curves) and cast (blue curves) specimens without 
hydrogen charging. The strain rate was 3×10-4 s-1. The total elongation of the cast specimens is more 

widely distributed than that of the forged specimens due to porosity.  
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Table 9: Mechanical properties of the forged and the cast materials obtained from the tensile curves 
of Figure 71. 

 Forged Cast 

Yield strength (MPa) 365 ± 18 360 ± 13 

UTS (MPa) 553 ± 36 551 ± 9 

Total elongation (%) 19.9 ± 0.3 18.0 ± 1.1 

 

V.2.2 Pre-charged specimens 

In order to explore the effect of voids and hydrogen on the mechanical properties of the 

cast material, especially the loss of ductility, tensile tests were performed on hydrogen 

pre-charged specimens. It is worth noting that all tensile tests were conducted under the same 

conditions (at room temperature and with a strain rate equals to 3×10-4 s-1). Two forged and 

three cast specimens were charged in a 5% NH4SCN solution heated at 50°C while two other 

cast specimens were charged in a 1% NH4SCN solution heated also at 50°C. The aim of using 

two solutions with different NH4SCN concentrations is to modify the hydrogen content in the 

specimens. This will permit to investigate the effect of hydrogen concentration on the 

mechanical properties of the cast material. Before hydrogen charging, the porosity fraction 

was measured for each cast sample using hydrostatic weighing. The results are given in Table 

10.  

Table 10: The volume fraction of porosity for six different cast specimens. The uncertainty of the 
porosity fraction is estimated at ± 0.01%. 

Specimen  C1 C2 C3 C4 C5 

Porosity fraction (%) 0.16 0.13 0.16 0.16 0.17 

 

Figure 72 shows the engineering stress-strain curves for the pre-charged specimens. In 

addition, the stress-strain curves of a forged specimen and a cast specimen without hydrogen 

charging were plotted in the same graph to facilitate the comparison. These two curves 

represent the median curve for each material (forged and cast) based on the dataset 

presented in Figure 71. The tensile properties of the different specimens are given in Table 11. 

There is no remarkable change in the yield strength nor the ultimate strength values for both 
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materials whereas, for the forged specimens and for the cast specimens as well, hydrogen 

reduces the total elongation. A similar result was found in others works [41][86][87] as 

mentioned in the first chapter. To better visualize the effect of hydrogen on the material 

ductility, the total elongation (elongation to fracture) for each specimen are presented in 

Figure 73. For the forged specimens, the total elongation of the uncharged specimen is 20% 

whereas it is equal to 17.8% on average for the H-pre-charged specimens. For the cast 

material, the specimens that were charged in the 5% NH4SCN solution lost 25% of the initial 

elongation (from 18.4% to an average of 13.8%). However, the ones charged in the 1% NH4SCN 

solution lost only 4% (from 18.4% to an average of 17.7%). Hydrogen content in the different 

specimens was deduced from the TDS measurements that were performed in the previous 

chapter. In fact, it is possible to estimate the hydrogen content in these specimens based on 

the relationship between the hydrogen content and the porosity fraction presented in Figure 

52. In addition, the graph of Figure 48 that shows the influence of the NH4SCN concentration 

on the hydrogen content helps to deduce an approximation of hydrogen content in the 1% 

NH4SCN charging (see Figure 48). Based on these findings, the total hydrogen content (CTotal) 

is around 0.2 wt ppm for the forged specimens whereas, it is about 1.1 wt ppm and 0.5 wt 

ppm for the cast specimens charged the 5% and 1% NH4SCN solutions, respectively. At this 

point, it is important to recall that the only difference between the two materials lies in the 

porosity and that CTotal is the sum of bulk hydrogen CB (lattice hydrogen + hydrogen in the 

reversible traps besides the porosity) and hydrogen in the porosity CP . Therefore, CTotal is equal 

to CB for the forged specimens (no porosity in the forged material). In addition, CB is the same 

for the forged and the cast specimens (0.2 wt ppm) that were charged in the 5% NH4SCN 

solution (same microstructure). Finally, CB for the cast specimens charged in the 1% NH4SCN 

solution was not determined at this point but it is certainly inferior to 0.2 wt ppm. 
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Figure 72: Tensile tests of charged and uncharged specimens. The strain rate was 3×10-4 s-1. (a) A 
comparison between the forged and the cast material. The specimens (forged and cast) were 

charged in a 5% NH4SCN solution. (b) A comparison between cast specimens pre-charged in two 
different NH4SCN solutions. The presence of hydrogen reduces the total elongation for both material. 
For the cast specimens, the higher the NH4SCN concentration in the H-charging solution, the higher 

the loss of ductility.  
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Table 11: Porosity fraction and mechanical properties of the charged and the uncharged specimens. 

  Porosity 
fraction (%) 

Yield strength 
(MPa) 

UTS 
(MPa) 

Total elongation 
(%) 

Fo
rg

ed
 Uncharged forged - 367 552 20.0 

F1 (5% NH4SCN) 0 370 550 16.8 

F2 (5% NH4SCN) 0 371 560 18.7 

C
as

t 

Uncharged cast - 360 549 18.4 

C1 (5% NH4SCN) 0.16 384 560 13.0 

C2 (5% NH4SCN) 0.13 373 554 13.9 

C3 (5% NH4SCN) 0.16 375 548 14.5 

C4 (1% NH4SCN) 0.16 378 565 17.1 

C5 (1% NH4SCN) 0.17 382 566 18.2 
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Figure 73: The total elongation for the uncharged and pre-charged specimens. The tensile tests were 
performed with a strain rate of 3×10-4 s-1. Hydrogen decreases the total elongation for both 

materials. For the cast specimens, the loss of ductility increases with increasing hydrogen content. 
CTotal represents the total hydrogen content obtained from TDS measurements. CTotal is the sum of 

bulk hydrogen CB (lattice hydrogen + hydrogen in the reversible traps besides the porosity) and 
hydrogen in the porosity CP.  

One of the ways to evaluate the susceptibility of a material to HE is the embrittlement 

index (EI). This index can be defined as: 

 EI =
A in air − A H

A in air
 (38) 

 

where A in air is the total elongation of the specimen without hydrogen charging and A H 

corresponds to the total elongation of the hydrogen pre-charged specimen. If after hydrogen 

charging, the specimen becomes very brittle and breaks without any elongation (0%), the EI is 

equal to 1. In the other case where hydrogen does not have any effect on the total elongation, 

the EI is equal to zero. Thus, a higher EI means that the material is more susceptible to HE. 

Figure 74 summarizes the calculated EI for all the specimens. It is to be noted first that the 

average EI for the forged specimens is 0.12. This is definitely above the measurement error, 

which shows that hydrogen has a detrimental effect even in the absence of porosities. As it 
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can be seen, the EI of the cast specimens that were charged in the 5% NH4SCN solution (EI = 

0.25 on average) is higher than that of the cast specimens charged in the 1% NH4SCN solution 

(EI = 0.04 on average). This is in concordance with their respective hydrogen contents (1.1 and 

0.5 wt ppm). Consequently, the susceptibility of cast steels to HE increases with increasing the 

hydrogen content. On the other hand, the forged specimens charged in the 5% NH4SCN 

solution (CTotal = 0.2 wt ppm) have an EI of 0.12 on average, which is three times higher than 

that of the cast specimens charged in a 1% NH4SCN solution (CTotal = 0.5 wt ppm) despite the 

fact that the forged material has in total less hydrogen. This illustrates that there is in general 

no direct relationship between the EI and the total H content. In fact, this difference in 

hydrogen concentration is due to the hydrogen stored in the porosity as demonstrated in the 

third chapter (see Figure 50). It seems that the EI correlates better with the hydrogen 

concentration in the bulk (CB). This concentration is equal to 0.2 wt ppm for the forged 

material, which is higher than that of the cast material charged in 1% NH4SCN solution. 

We now compare the forged and cast specimens charged in the 5% NH4SCN solution. As 

mentioned earlier, CB is the same in both cases. Furthermore, the cast specimens have a higher 

EI than the forged ones for a 5% NH4SCN charging. Therefore, the loss of ductility for the cast 

specimens charged in the 5% NH4SCN is caused by a combination of the hydrogen in the bulk 

and the hydrogen trapped in the porosity which had a significant role in this case in contrast 

to the case with 1% NH4SCN charging. 
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Figure 74: Hydrogen embrittlement index for the pre-charged (forged and cast) specimens calculated 
using Eq.(38). The tensile tests were performed with a strain rate of 3×10-4 s-1. CTotal represents the 

total hydrogen content obtained from TDS measurements. CTotal is the sum of bulk hydrogen CB 
(lattice hydrogen + hydrogen in the reversible traps besides the porosity) and hydrogen in the 

porosity CP. 

V.2.3 Fracture surface analysis 

To evaluate the effect of hydrogen on the fracture behavior of the forged and the cast 

specimens, the fractured specimens were investigated using a scanning electron microscope 

(SEM). Figure 75 summarizes the fracture surfaces of five different specimens. It is important 

to mention that all tensile tests were performed under the same conditions (at room 

temperature and with a strain rate of 3×10-4 s-1). The fracture surfaces are presented in Figure 

75. For the uncharged specimens (Figure 75 (a) and (b)), the fractographs show a typical 

ductile failure mode. These surfaces are characterized by the presence of dimples as shown in 

the higher magnification observations of Figure 76 (a) and (b). In addition, no significant 

difference in dimple shape or size were observed between the uncharged cast and forged 

specimens. The fracture surface of the H-precharged forged specimen (Figure 75 (c)) is close 

to that of the uncharged specimens (cast and forged). The same ductile appearance is 
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observed at higher magnification in Figure 76 (c). No occurrence of brittle areas was observed 

on the fracture surface despite the fact that the material was embrittled by hydrogen as 

discussed in the previous section. A similar result was found in the work of T.Neeraj et al. 

[93][94] who observed the absence of brittle areas on the fracture surface of hydrogen 

pre-charged specimens, showing 30% of reduction in elongation. The material used in their 

study was a ferritic-pearlitic steel (X65), which is close to our material. The authors stated that 

there was evidence for hydrogen-enhanced plastic flow localization in the pre-charged tensile 

specimens, which explains the decrease in the total elongation. Liang et al. have investigated 

the hydrogen effect on local plastic instabilities and they showed that hydrogen can promote 

localized shear band formation through the HELP mechanism [136]. It is important to mention 

that, for the uncharged specimens (forged and cast) and for the pre-charged forged 

specimens, large zones of the fracture surfaces make a 45° angle with the tensile axis, which 

reflects the importance of the shear stress in the failure process. 

A similar fracture surface morphology was found for the cast specimens charged in the 5% 

and the 1% NH4SCN solutions (Figure 75 (d) and (e)). It is composed of large ductile zones with 

dimples and small brittle zones located around voids. These brittle zones (inside the red 

circles) represent a special defect known as “fish-eyes” [95]. Some of these fish-eyes are 

located in the central part of the specimens while others are detected near the surface. 

Furthermore, it seems that the number of fish-eyes does not depend only on hydrogen 

concentration because we found 5 fish-eyes in the case of 5% NH4SCN charging while 9 

fish-eyes were detected in the case of 1% NH4SCN charging. In our case, we assume that the 

number of fish-eyes depends also on the number of voids present in the necking region. 

Interestingly, all the detected fisheyes in the two cases are perpendicular to the load axis, 

which indicates that, in our case, the formation of fish-eyes is due to the external tensile load. 

If the internal cavity pressure did trigger the formation of the fish-eyes, more random 

orientation of fish-eyes planes would be expected, which is not the case here. Our observation 

that the formation of fish-eyes is related to the external tensile load is also consistent with the 

low cavity pressure in our material (8 MPa), i.e. well below the material strength. Figure 77 

presents a closer view of the fish-eye morphology. It shows the defect in the center, the void 

in our case, serving as initiation site and a circular zone around the void that has been 

https://www.sciencedirect.com/science/article/pii/S135964541200376X#!
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fractured in a quasi-cleavage mode due to hydrogen, while the outer region presents a ductile 

fracture mode. 

In summary, the SEM observations showed the presence of fish-eyes in the cast material (for 

both hydrogen concentrations) and its absence in the forged material. Moreover, the number 

of fish-eyes was higher for the specimens charged in the 1% NH4SCN solution than the ones 

charged in the 5% NH4SCN solution. However, the loss of ductility was higher in the case of 

the 5% NH4SCN solution. Hence, it can be concluded that the loss of ductility is not related 

only to fish-eye formation. In parallel, the contribution of the hydrogen trapped in the porosity 

was insignificant in terms of loss of ductility for the cast specimens that were pre-charged in 

a 1% NH4SCN solution compared to the ones pre-charged in the 5% NH4SCN solution. In fact, 

there was apparently a considerable contribution of the hydrogen trapped in the porosity in 

the case of the 5% NH4SCN charging. We assume that the loss of ductility here was due to two 

distinct contributions: on one hand, the localization of plastic flow due to bulk hydrogen (as 

in the case of the H-pre-charged forged material) and on the other hand, the interaction 

between hydrogen and voids (fish-eyes included). 
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Figure 75: Fracture surfaces after tensile tests at a strain rate of 3×10-4 s-1. (a) uncharged forged 
specimen (b) uncharged cast specimen (c) forged specimen pre-charged in a 5% NH4SCN solution 

heated at 50°C. These three fractographs shows a typical ductile fracture. (d) cast specimen 
pre-charged in a 5% NH4SCN solution heated at 50°C and (e) cast specimen pre-charged in a 1% 

NH4SCN solution heated at 50°C. The red circles present the detected fish-eyes. 
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Figure 76: Fracture surface under higher magnification showing a typical ductile fracture. (a) 
uncharged forged specimen (b) uncharged cast specimen and (c) forged specimen pre-charged in a 

5% NH4SCN solution. 



 

152 

 

Figure 77: (a) Fracture surface of a cast specimen pre-charged in a 5% NH4SCN solution after tensile 
testing. (b) The morphology of the fish-eye defect. The void is located at the center and the brittle 

zone around it. The outer region presents a ductile fracture. 

V.2.4 Fish-eye formation at low pressures 

Firstly, it is important to point out that no fish-eye was detected in the case of the 

uncharged cast specimens. Therefore, the fish-eye formation requires hydrogen. Secondly, for 

the pre-charged specimens in 5% NH4SCN solution, the pressure inside the voids was around 

8 MPa as already demonstrated previously. For this reason, it is not possible that the fish-eyes 

were formed due to the high cavity pressure of hydrogen as proposed in the study of Möser 

and Schmidt [95]. For this reason, an external load was needed, in our case, to initiate the 

crack. Furthermore, the detected fish-eyes were centered on the voids and not elsewhere. In 

fact, these voids present a sink for hydrogen where a huge amount of hydrogen can segregate 

in the gaseous form as demonstrated in the previous chapters. This means that the formation 

of fish-eyes requires a certain amount of hydrogen localized at a defect. Figure 78 (a) presents 

a sequence of events of a possible scenario for fish-eye formation during the tensile testing. 

At the start of the test, the specimen is already charged with hydrogen, which is stored mainly 
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in the voids as H2 gas and adsorbed atomic hydrogen. Then, since voids present a favorable 

site of crack initiation because of the stress concentration, a crack will initiate when the stress 

exceed a certain threshold. We assume that the adsorbed hydrogen promotes the initiation 

and the growth of the crack. After the initiation, hydrogen, supplied by the void, is now 

adsorbed on the surfaces of the new crack, which should facilitate the propagation of the 

crack in a brittle manner as the load continues to increase. The exact mechanism responsible 

for the crack propagation was not entirely clarified in this work, but the HEDE (Hydrogen 

Decohesion) is a possibility as presented in Cialone and Asaro’s work [96]. Figure 78 (b) shows 

a schematic representation of the fracture surface after the tensile test showing a typical 

morphology of a fish-eye. It shows the void at the center where a huge amount of hydrogen 

can be stored locally compared to the amount in the bulk, a brittle zone around the void, 

which is the result of crack propagation in a brittle manner and an outer region characterized 

by a ductile fracture. In summary, in the process of fish-eye formation, the porosity here 

behaves (1) as a stress concentration site and (2) a reservoir of available hydrogen. Both these 

effects will facilitate crack initiation and propagation. It is to be mentioned however that an 

external load is needed in our case, as the pressure inside the porosity (8 MPa) is far below 

the material strength. 
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Figure 78: (a) schematic representation of the fish-eye formation during the tensile test. (b) top view 
of the fracture surface after tensile test. 
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V.3 Conclusions 

In this chapter, the susceptibility to HE of the forged and the cast material was studied. 

The comparison between the two materials permitted to understand the combined effect of 

hydrogen and voids on the mechanical properties. In addition, the fracture surface 

investigations performed on the pre-charged cast specimens showed the presence of a defect 

related to hydrogen known as “fish-eyes”. The major conclusions are summarized as follows: 

 Tensile tests showed no significant change in the yield strength or the UTS for the 

pre-charged specimens (forged and cast). However, the total elongation was 

affected by hydrogen. 

 It was found that hydrogen did embrittle the forged specimens charged in 5% 

NH4SCN solution despite the low hydrogen content (0.2 wt ppm). However, no 

brittle area was found on the fracture surface. We assume that the embrittlement 

is due the HELP mechanism. 

 For the cast specimens charged in the 5% NH4SCN solution, it seems that the loss 

of ductility is a result of combination between the hydrogen in the bulk through 

the HELP mechanism and the hydrogen trapped in the cavities, which led to 

fish-eyes formation. 

 No direct relationship was found between HE and the different hydrogen 

concentrations (HTotal, HBulk and HPorosity). Nevertheless, the HE was a combination 

of the plastic localization induced by the hydrogen in the bulk and the fish-eyes 

created by the hydrogen in the porosity. 

 In the case of hydrogen charging at low pressures, a mechanism of fish-eye 

formation was proposed. The formation of this defect requires an external load 

and a preferential crack initiation site where a high amount of hydrogen is 

available. 
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VI Conclusions and prospects
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Conclusions 

In the present work, the aim was to increase our knowledge about the phenomenon of 

hydrogen embrittlement for low-alloy cast steels. As cast steels usually have porosity defects 

for different reasons as explained in the first chapter, the interaction between hydrogen and 

porosity was particularly investigated. A literature review was conducted about this 

interaction but the findings were not completely clear and contradictory in some cases. For 

instance, no firm conclusion about the nature of hydrogen trapping (reversible or irreversible) 

in the porosity was reached. In order to clarify this point and to investigate other issues, a 

comparative study was made between two states of the same material: a porous state (cast) 

and a non-porous state (forged). This comparison was very useful to highlight the role of 

porosity in hydrogen diffusion and trapping. 

First, material characterization, using optical microscopy and X-ray tomography, confirmed 

that the only difference between the forged and the cast material was lying in the porosity. 

Then, the influence of porosity in the hydrogen diffusion and trapping processes has been 

studied by means of electrochemical permeation (EP) and thermal desorption spectroscopy 

(TDS). It is important to point out that a TDS measurement methodology was carefully 

developed (chapter 2) in order to provide reliable results and especially to avoid the 

contribution of the adsorbed water on the sample surfaces to the TDS signal. In fact, it was 

found that even a small exposure time of the sample to the atmosphere is capable to interfere 

with the measurement. It produces hydrogen peaks, in our case, at high temperatures even 

for samples without hydrogen charging. It was demonstrated that these peaks are mainly 

associated with the decomposition of water on the sample surfaces. Finally, it should be 

mentioned that the hydrogen was chemically introduced in TDS samples using a NH4SCN 

aqueous solution heated at 50°C. 

EP tests have shown that the diffusivity of hydrogen in the cast samples was lower than in the 

forged samples. This was due to the porosity, which acts as trap sites. In addition, the 

comparison of the decay transients between the forged and the cast samples showed that the 

majority of the absorbed hydrogen was trapped in voids. The same conclusion was made 

through TDS measurements. Furthermore, EP and TDS experiments have clearly shown that 

the hydrogen trapped in voids desorbed spontaneously at room temperature. This proves that 
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the porosity acts as a reversible trap for hydrogen at room temperature. Moreover, TDS 

measurements, performed on samples with different volume fraction of porosity, indicated 

that the total hydrogen content increases linearly with the increase of the volume fraction of 

porosity. Based on these findings, a method was proposed to calculate the hydrogen fugacity 

of the charging solution and the hydrogen solubility of the steel (Sieverts’ constant) at 50°C. It 

was found that the hydrogen fugacity and solubility were estimated to 85 bar and 2.2x10-2 wt 

ppm.bar-1/2, respectively. Finally, it was shown that hydrogen was mainly trapped in voids 

under the gaseous form in our case. 

In parallel, two numerical models have been proposed in order to simulate hydrogen 

permeation for a steel containing porosity. These two models take into account the trapping 

of gaseous hydrogen in voids. It is important to note that the two models were developed 

based on a refined EOS, which permits to perform simulations on a wide range of pressure 

[0, 2000 MPa]. The models are based on two different approaches: the first model is based on 

a non-equilibrium approach, where a reaction flux is considered at the bulk-cavity interface 

and the second model is based on a local equilibrium approach, between hydrogen dissolved 

in the bulk and gaseous hydrogen in the voids. It should be mentioned that the second model 

is simpler and less time consuming than the first one. First, an expression of hydrogen flux due 

to the recombination reaction of atomic hydrogen into molecular hydrogen at the bulk-cavity 

interface was developed based on a non-equilibrium approach. In addition, a choice was made 

in this study to work in a diffusion-limited regime instead of an interface reaction-limited 

regime for the non-equilibrium model. Then, the effect of the number of cavities in the 

simulation box was studied and it was shown that for a given porosity fraction, increasing the 

number of cavities results in larger bulk-cavity interface area and lower cavity volume, which 

facilitates local equilibrium. Thus, when the number of cavities is large enough, the 

non-equilibrium model gives the same results as the equilibrium model. It was deduced that 

the equilibrium model is appropriate to simulate permeation in our specimens, containing 

numerous voids across the thickness. A parametric study using the equilibrium model was 

conducted and the simulations showed that permeation time varies linearly with the porosity 

fraction and the inverse of hydrogen solubility (Sieverts’ constant). It was found also that the 

permeation time increases as the square root of hydrogen fugacity at the entry side. Finally, a 
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comparison between permeation experiments and simulations was made and showed a 

reasonable agreement, considering that no input parameter was adjusted. 

This thesis also discussed the susceptibility to HE of the forged and the cast material. In fact, 

the comparison between the two materials permitted to understand the combined effect of 

hydrogen and voids on the mechanical properties. Tensile tests showed no significant change 

in the yield strength or the UTS for the pre-charged specimens (forged and cast). However, 

the total elongation was affected by hydrogen. SEM fractography of the pre-charged cast 

specimens has shown the presence of a defect related to hydrogen known as “fish-eyes”. First, 

it is important to mention that no direct relationship was found between HE and the different 

hydrogen concentrations (HTotal, HBulk and HPorosity). In addition, no brittle area was found on 

the fracture surface of the forged specimens charged in 5% NH4SCN solution (0.2 wt ppm) 

despite the reduction in the total elongation. It seems that the HE for the cast specimens was 

a combination of the plastic localization induced by the hydrogen in the bulk and the fish-eyes 

initiated by the hydrogen in the porosity. Finally, a possible mechanism of fish-eye formation 

was proposed for the case of hydrogen charging at low pressures. In this condition, it appears 

that the formation of this defect requires an external load and a preferential crack initiation 

site, where a high amount of hydrogen can be trapped. 
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Future works 

As mentioned earlier, there is a lack of studies about the issue of HE for cast steels. 

Therefore, we think that more work has to be done on this topic and especially to explore 

further the interaction between hydrogen and porosity. The following suggestions, also 

including possible improvements of the experimental methods, are provided for future works: 

Improvement of experimental methods: 

 The TDS calibration curve presented in chapter 2 was not perfectly linear. This 

non-linearity should be confirmed and explained. It is also recommended to use 

other standards with a hydrogen mass below 8×10-6 g, i.e. closer to the hydrogen 

mass observed in the specimens, in order to provide more accurate results. 

 The contribution of the adsorbed water in the TDS signal has been well established 

in this work. A systematic determination of the background signal (the same 

sample without hydrogen charging) has to be done in order to avoid biased results. 

Scientific perspectives: 

 Samples with significant difference in the porosity fraction should be used for the 

EP experiments in order to confirm that the permeation time increases linearly 

with the porosity fraction, which is predicted by the simulations 

 Additional tensile tests should be performed with a lower strain rate to investigate 

further the role of hydrogen trapped in the porosity. In this manner, hydrogen will 

have more time to diffuse in the specimen, and this can affect the embrittlement 

observed. 

 It would also be interesting to investigate the formation of fish-eyes at high 

hydrogen pressures to verify if they can be created “spontaneously”, i.e. without 

any external load or not. This would require charging the specimens at higher 

hydrogen fugacity, using for example cathodic charging, instead of chemical 

charging. 

 Interrupted tensile tests coupled with SEM and EBSD (Electron Backscatter 

Diffraction) investigations can be performed on H-precharged specimens in order 
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to understand better the formation of fish-eyes. This can provide information 

about the crack initiation and propagation. 

 In our numerical models, we only considered the trapping effect of porosity. 

However, as discussed earlier, other traps are present in the studied material. 

Therefore, it would be interesting to take in consideration the other traps in order 

improve the predictivity of our models in particular concerning the slope of the 

permeation rising transients. 

 It would be also interesting to use the models developed in this study to fit the 

experimental TDS curves. This can help us to determine the temperature 

dependence of the hydrogen diffusion coefficient and possibly hydrogen solubility.  

Industrial perspectives: 

 Hydrogen degassing treatment (known as “baking”) is one of the important tool 

used in the industry to decrease hydrogen concentration in the product below a 

certain threshold. However, baking time can be very long especially for products 

with high thickness. Thus, it would be very useful to simulate these operations in 

order to estimate the baking time needed. For this purpose, it is possible to use 

the local equilibrium model presented in this work, or even possibly a simple 

diffusion model (it was demonstrated that at high temperatures the majority of 

hydrogen is in the bulk), to simulate baking operations. However, hydrogen 

diffusivity data at high temperatures are needed.  This data can be extracted from 

literature (however, there are very few studies) or from a fit procedure of our TDS 

measurements as explained previously. 
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The chemical potential of lattice hydrogen can be written as: 

 µL =  µL
0 + RT ln 

θL

1 − θL
 (39) 

 

where µ𝐋
𝟎 is the chemical potential of lattice hydrogen in a reference state and θL represents 

the occupancy of lattice sites, θL = CL NL⁄  where CL is the volume concentration of lattice 

hydrogen (m-3) and NL is the number of lattice sites per unit volume (m-3). It is possible also 

to define the chemical potential of molecular hydrogen inside the voids 

 µH2
=  µH2

0 + RT ln fH2
 (40)  

where µH2

0  is the chemical potential of molecular hydrogen in a reference state and fH2
is the 

fugacity of molecular hydrogen. At equilibrium, the chemical potential of hydrogen in lattice 

sites is equal to the chemical potential of hydrogen in the voids 

 µL
0 + RT ln 

θL

1 − θL
=  

1

2
µH2

0 +
1

2
RT ln fH2

 (41) 
 

and since the occupancy of lattice sites is very low (θL ≪ 1), Eq.(41) can be simplified to 

 µL
0 + RT ln θL =  

1

2
µH2

0 +
1

2
RT ln fH2

 (42)  

 

The hydrogen concentration in lattice sites is obtained by substituting θL = CL NL⁄  in Eq.(42) 

 CL = KL√fH2
 (43) 

 

where KL =  NL exp (
1

2
µH2

0 −µL
0

RT
). This expression represents the Sieverts’ law. 

In addition, the chemical potential of atomic hydrogen in trap sites (besides the voids) can be 

expressed as follows 

 µT =  µT
0 + RT ln 

θT

1 − θT
 (44) 

 

where µ𝑻
𝟎 is the chemical potential of trapped hydrogen in a reference state and θT is the 

occupancy of trap sites θT = CT NT⁄  with CT is the volume concentration of hydrogen in trap 

sites (m-3) and NT is the number of trap sites per unit volume (m-3). In the same way, at 

equilibrium, the chemical potential of hydrogen inside the voids must be equal to the chemical 
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potential of hydrogen in traps (
1

2
µH2

= µT) and assuming that θT ≪ 1, we obtain a similar 

equation to Eq.(43) 

 CT = KT√fH2
 (45) 

 

where 𝑆𝑇 =  𝑁𝑇 𝑒𝑥𝑝 (
1

2
µ𝐻2

0 −µ𝑇
0

𝑅𝑇
). It has to be mentioned that this equation is only valid in cases 

where the occupancy of trap sites is low. 

Finally, considering that the “dissolved” hydrogen in the bulk is a combination of lattice and 

trapped hydrogen (CB = CL + CT), it is possible to express the concentration of the 

“dissolved” hydrogen by combining Eq.(43) and Eq.(45) 

 CB = KH√fH2
 (46) 

 

where 𝐾𝐻 = 𝐾𝐿 + 𝐾𝑇. Again an equation similar to Sieverts’ law is obtained, provided that 

the trap occupancy is low. 
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Abstract : 

The interaction between hydrogen and porosity is a key factor to understand the issue of 

hydrogen embrittlement in cast steels. In this work, the focus was set on the effect of porosity 

on hydrogen diffusion and trapping for a low-alloy cast steel. To do so, two main techniques 

were used: electrochemical permeation and thermal desorption spectrometry. This study is 

based on a comparison between porous and non-porous samples obtained from the same 

material. 

First, it was shown that the porosity has a delaying effect on hydrogen diffusion and that the 

absorbed hydrogen was mainly located in porosity, which behaves as a reversible trap at room 

temperature. In addition, a method was proposed to estimate the hydrogen fugacity of the 

charging solution and the hydrogen solubility of the material. In parallel, two numerical models 

have been developed in order to simulate hydrogen permeation for a porous material. These 

two models are based on two different approaches (a non-equilibrium approach and a local 

equilibrium one) and take into account the trapping of gaseous hydrogen in porosity. 

Furthermore, a parametric study was conducted in order to investigate the role of various 

parameters on hydrogen diffusion. Moreover, a comparison between permeation experiments 

and simulations was made and a reasonable agreement was found. Then, hydrogen 

embrittlement was studied using H-precharged specimens, which allowed to highlight the 

combined effect of hydrogen and porosity on the elongation to fracture. Finally, fracture surface 

investigations performed on H-pre-charged porous specimens showed the presence of a special 

defect related to hydrogen known as “fish-eyes”. The formation of this defect was discussed in 

the case of low hydrogen pressures and a possible mechanism was proposed.
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Résumé : 

L'interaction hydrogène-porosité représente un facteur clé pour comprendre la problématique 

de fragilisation par l'hydrogène des aciers moulés. Dans ce travail, une étude comparative, entre 

des échantillons poreux et des échantillons non poreux du même matériau, basée 

principalement sur deux techniques, la perméation électrochimique et la spectroscopie de 

thérmodesorption, a permis de mieux comprendre l’effet de la porosité dans la diffusion et le 

piégeage de l’hydrogène. 

D’abord, il a été démontré que la porosité a un effet retardateur sur la diffusion de l'hydrogène 

et que l'hydrogène absorbé est principalement localisé dans la porosité, qui constitue un piège 

réversible à température ambiante. De plus, une méthode a été proposée pour calculer la 

fugacité du milieu de chargement et la solubilité de l'hydrogène dans le matériau. Ensuite, deux 

modèles numériques ont été développés afin de simuler la perméation de l'hydrogène dans un 

matériau poreux. Ces modèles, basés sur deux approches différentes, permettent de prendre 

compte le piégeage de l'hydrogène gazeux dans la porosité. Une étude paramétrique a été menée 

afin d’évaluer l’effet de certains paramètres sur la diffusion. Un accord raisonnable a été obtenu 

entre les expériences de perméation et les simulations numériques. Enfin, des essais de traction 

sur des éprouvettes pré-chargées en hydrogène ont permis d’évaluer l'effet combiné de 

l’hydrogène et des porosités sur la fragilisation. Ils ont aussi montré la présence 

d’« œil de poisson » sur les faciès de rupture du matériau poreux. Finalement, un mécanisme 

de formation des « yeux de poisson » a été proposé dans le cas de basses pressions d’hydrogène. 


