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Elasticity is a property in the bodies having densely popu-
lated elemental parts; when sheared by deforming forces, it
helps the body recover its original state.

Sridhara Acharya (870 CE - 930 CE)

. . . dass zwei elastiche isotrope Körper sich in einem
sehr kleinen Theil ihrer Oberfläche benuhren, und durch
disen Their einen endlichen Druch der eine anf den an-
dern ausüben . . . Die Fragen, deren Beantwortung uns
naturgemäss zunächst obleigt, sind . . . die Frage nach der
Form und absoluten Grösse der Druckfigur.

. . . the case of two elastic isotropic bodies which touch each
other over a very small part of their surface and exert upon
each other a finite pressure, distributed over the common
area of contact. . . . The questions that we first seek answers
to are . . . What is the form and the absolute magnitude of
the curve of pressure ?

Heinrich Hertz (1857-1894)
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José as an advisor during my early stages of my research career, as his mentorship has
given me the confidence necessary to be a researcher. Technical discussions with him
were certainly an enjoyable and enriching experience. Complementing the mentorship of
Jose, was Luisa and Yves who shared invaluable knowledge and ideas during the course
of the thesis. Last but not the least, I am thankful to each one of them for their support
during the peak of the pandemic.

Certainly, I would not have been in a position to begin my research career with-
out the support of my family. Since my high school days, my parents have always
been supportive of my career choices at every stage, while also bearing the pain of me
being far away from home. I would like to thank my family for their all love and support.

Life in a far away country would not have been easy without good company. For
that, I would like to thank my colleagues and friends in the famous T building of ECN,
who were a great support group during the last couple of years. In particular, I will never
forget the support that received from a special few, namely, Alexia, Manisha, Paris and
Ramiro (in no particular order). Moreover, my thanks to a lovely couple, Cécile and
Domenique, who made me feel city of Nantes as a second home while also helping me
with my transition to a semi-francophone.





Contents

List of Figures v

List of Algorithms vii

List of Tables ix

Nomenclature xi

Abstract 1

Introduction 3

1 State of the Art 5

1.1 Overview of Contact Mechanics . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Parametrized contact mechanics problems . . . . . . . . . . . . . . 6

1.1.2 Contact Formulations . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.2.1 Lagrange Multiplier Method . . . . . . . . . . . . . . . . 8

1.1.2.2 Penalty Method . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.2.3 Augmented Lagrange Multiplier Method . . . . . . . . . 9

1.1.3 Discrete Formulations . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.3.1 Contact Detection and Pairing . . . . . . . . . . . . . . . 10

1.1.3.2 Discretization using Finite Elements . . . . . . . . . . . . 11

1.1.4 Resolution schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.4.1 Fixed point method . . . . . . . . . . . . . . . . . . . . . 13

1.1.4.2 Newton-Raphson . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Reduced Order Modelling for parametric problems . . . . . . . . . . . . . 15

1.2.1 Low-rank methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.1.1 Proper Orthogonal Decomposition . . . . . . . . . . . . . 18

1.2.1.2 Reduced Basis Methods . . . . . . . . . . . . . . . . . . . 19

1.2.1.3 Computation of non-linear terms . . . . . . . . . . . . . . 19

1.3 ROMs for parametrized contact mechanics problems . . . . . . . . . . . . 20



ii CONTENTS

1.3.1 Low-rank approach for contact problems . . . . . . . . . . . . . . . 22

1.4 Scope of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Limitations of low-rank approach to contact problems 27

2.1 Low-rank contact problem using active set method . . . . . . . . . . . . . 28

2.2 Illustrative case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Metrics for low-rank methods . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 Hertz problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.2 Ironing problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Conclusions and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Dictionary approach in contact mechanics problems 43

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Sparse methods with over-complete dictionaries . . . . . . . . . . . . . . . 44

3.2.1 Sparse regression in data approximation problems . . . . . . . . . 45

3.2.2 Application of sparse methods to unconstrained resolution problems 48

3.2.2.1 Diffusion-reaction problem . . . . . . . . . . . . . . . . . 49

3.3 Dictionary methods for contact problems . . . . . . . . . . . . . . . . . . 50

3.3.1 A greedy active-set method for dual dictionary element selection . 52

3.3.1.1 Application to the Hertz problem . . . . . . . . . . . . . 54

3.3.1.2 Application to the Ironing problem . . . . . . . . . . . . 57

3.3.2 A non-penetrating convex hull approach for monolithic dictionaries 63

3.3.2.1 Illustrative example: elastic rope-obstacle problem . . . . 66

3.3.2.2 Demonstration on over-complete dictionaries of the Hertz
problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.2.3 The non-convex case of the Ironing problem . . . . . . . 69

3.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.1 Efficient construction of constraints . . . . . . . . . . . . . . . . . 73

3.5.2 Application of sketching methods to dictionary-based approximation 73

3.5.3 Smart snapshot selection for Convex hull explorations . . . . . . . 74

4 Exploring the contact pressure manifold 75

4.1 Linear Subspaces vs. Low-dimensional Manifolds . . . . . . . . . . . . . . 75

4.1.1 Contact pressure as a non-linear manifold . . . . . . . . . . . . . . 77

4.2 Dimension warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1 Dynamic Time Warping . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.2 Interpolating in warped space . . . . . . . . . . . . . . . . . . . . . 81

4.3 DTW-based enrichments for contact mechanics . . . . . . . . . . . . . . . 85

4.3.1 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5 Persepctives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.1 The 3D case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



CONTENTS iii

4.5.2 Efficient evaluation of non-linear terms . . . . . . . . . . . . . . . . 91
4.5.3 Non-linear interpolations of primal dictionary . . . . . . . . . . . . 92

Conclusions and Perspectives 93

A Spurious penetrations 97

Bibliography 99





List of Figures

I Decision-making process using numerical simulations. . . . . . . . . . . . . 4

1.1 Kinematic description of mechanical problems with possibility of contact . 6
1.2 Schematic of node-to-node contact pairing for conforming surface meshes 10
1.3 Schematics of node-to-segment methods for finding contact pairs . . . . . 11

2.1 Sample snapshots for elastic rope-obstacle problem . . . . . . . . . . . . . 30
2.2 Primal reconstruction (H1) errors for points in and outside the training

set for the rope-obstacle problem. . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Decay of singular values for the training set of the elastic rope-obstacle

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Sparsity pattern of dual snapshots for the rope-obstacle problem. . . . . . 32
2.5 Hertz problem: two half cylinders loaded against each other and the re-

sulting contact pressure snapshots. . . . . . . . . . . . . . . . . . . . . . . 34
2.6 Primal reconstruction (H1) errors for the Hertz problem. . . . . . . . . . . 36
2.7 Sparsity pattern of dual snapshots for Hertz problem . . . . . . . . . . . . 36
2.8 Compactness of reduced bases for Hertz problem . . . . . . . . . . . . . . 36
2.9 Validation metrics for Hertz problem. . . . . . . . . . . . . . . . . . . . . 37
2.10 Ironing problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.11 Sample snapshots of contact pressure for ironing problem . . . . . . . . . 38
2.12 A typical sparsity pattern of dual snapshots for ironing problem . . . . . . 39
2.13 Compactness for reduced bases of ironing problem. . . . . . . . . . . . . . 39
2.14 Projection error of nested level n+ 1 snapshots on dual RB of level n. . . 40
2.15 Validation metrics for the ironing problem. . . . . . . . . . . . . . . . . . 40

3.1 Illustration of low-rank vs. dictionary-based approximation . . . . . . . . 45
3.2 Two-dimensional domain for the transport problem (3.4) . . . . . . . . . . 50
3.3 Snapshots of the transport problem (3.4) for randomly sampled paramet-

ric values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Reconstruction errors of the transport problem using dictionary-based

approximations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5 A spy pattern of dual dictionary with 30 elements for the Hertz problem. 56



vi LIST OF FIGURES

3.6 Greedy active-set reconstruction of contact pressure for certain parametric
instances of the Hertz problem . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Reconstruction errors, primal rank, number of iterations and computation
time vs. training set size for the Hertz problem . . . . . . . . . . . . . . . 58

3.8 Detailed primal and dual reconstruction errors for the Hertz problem . . . 59
3.9 Sparsity of dual reduced dofs for the validation set of Hertz problem . . . 60
3.10 Greedy active-set reconstruction of contact pressure for certain parametric

instances of the ironing problem. . . . . . . . . . . . . . . . . . . . . . . . 61
3.11 Sparsity of dual reduced dofs selected by greedy active-set method for the

ironing problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.12 Reconstruction errors, primal rank, number of iterations, and computa-

tion time vs. training set size for the Ironing problem . . . . . . . . . . . . 62
3.13 Illustration of non-penetrating property of convex hull . . . . . . . . . . . 64
3.14 Illustration of the convex subset hypothesis test with a point mass moving

in a convex feasible region. . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.15 Testing the convex subset hypothesis for the elastic rope-obstacle problem 68
3.16 Convex hull reconstruction errors for elastic rope-obstacle problem. . . . . 68
3.17 Testing the convex subset hypothesis for the Hertz problem . . . . . . . . 69
3.18 Convex hull reconstruction errors for the Hertz problem. . . . . . . . . . . 70
3.19 Mean number of iterations and computation times for Hertz problem using

convex hull exploration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.20 Demonstration of the non-convex nature of the ironing problem. . . . . . 72

4.1 Visualization of contact pressure non-linearity in ironing problem . . . . . 77
4.2 DTW illustration: Vectors λ1 and λ2 and their DTW alignments . . . . . 80
4.3 DTW illustration: λ̃ and x̃ vs. warped coordinate ζ . . . . . . . . . . . . 80
4.4 Alignments and warped snapshots computed by DTW between two con-

tact pressure snapshots of ironing problem . . . . . . . . . . . . . . . . . . 81
4.5 Interpolation along DTW alignments and in warped space . . . . . . . . . 82
4.6 Interpolations of the illustrative example for α = 0.5 in the spatial indices

(corresponding to x) and the warped space ζ . . . . . . . . . . . . . . . . 84
4.7 Linear and DTW-based interpolations of contact pressure for the elastic

rope-obstacle problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.8 Linear and DTW-based interpolations of contact pressure for the Hertz

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.9 Interpolation of contact pressure snapshots using DTW for the ironing

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.10 Comparison of the compactness for original and warped snapshots . . . . 87
4.11 Projection error of nested level n+ 1 snapshots on dictionary of level n . 88
4.12 Comparison of reconstruction error for the Hertz and ironing problem

using the original dual dictionary and DTW-adapted dual dictionary . . . 91

A.1 Reconstruction instance with spurious snapshot selection by the greedy-
active set algorithm if non-penetration condition is applied “hardly” . . . 97



List of Algorithms

2.1 Online phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1 FOCUSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Greedy active-set algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1 dtw interp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 adapt dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3 DTW powered greedy active-set method . . . . . . . . . . . . . . . . . . . 89





List of Tables

2.1 Truncation tolerances and ranks for both bases for the rope-obstacle prob-
lem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Truncation tolerances and ranks for both bases for Hertz problem. . . . . 35

3.1 Characteristics of the two dictionary-based approximation methods for
contact mechanics problems . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Observed values of various compliances for the elastic rope-obstacle prob-
lem with parameter γ1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Input variables values and the observed DTW alignments for the illustra-
tive example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79





Nomenclature

u, v Continuous/Discretized Displacement

λ, η,λ,η Continuous/Discretized Lagrange Multiplier (Contact pressure)

K Feasible region of an inequality constrained problem

L Lagrangian functional

V , W+ Displacement solution space and Contact pressure solution cone

a, f Bilinear and Linear forms of energy functional

b, d Bilinear and Linear forms of distance function in weak form

k, g Distance functions

P Parametric space

µ Parameter

N , M Displacement and contact pressure shape functions

r(·) Residual of a discretized problem

〈·〉h Discrete version of the entity 〈·〉

C, g Discretized operators of bilinear and linear terms k and g

K, f Discretized operators of bilinear and linear terms a and f

Kmono Operator to generate the residual with monolithic dictionary

Nh
u , N

h
λ Number of FE dofs for u and λ

(x, x̄) Contact pairs

A, I Active sets



xii NOMENCLATURE

Ac, Ic Complements of active sets

Γ Potential contact surface

Γc, Γ/c Surface in contact, and out of contact (gap)

d, d̃ Element in a dictionary, Leave-one-out candidate in a dictionary

〈·〉r Reduced space of 〈·〉

B An orthogonal basis of a given snapshot matrix or its randomized combi-
nation

D Dictionary, Monolithic Dictionary

R Matrix containing random entries between [0, 1]

Str Training set snapshots

N r
u, N

r
λ Number of reduced dofs for u and λ

Π◦ Projection operator on the subspace/subcone of basis ◦

Dp, Dd Primal and Dual Dictionaries

Φ, Θ Primal and Dual reduced bases

φ, θ Primal and Dual reduced bases vectors/functions

〈̂·〉 Reduced operators and dofs

εCHLS Convex hull least square error for the test of convex subset hypothesis

εCrPen Cross penetration error in convexity test of the feasible region

C(m) Compactness of rank-m

G(m) Generalization ability of rank-m basis

H(n) Nested error between n-th and n+ 1-th level nested training set

S(m) Specificity of rank-m basis

α, γ Coefficient vector multiplying with columns of a matrix/basis/dictionary

x Vector/Signal to be approximated

α Parameter for interpolating in high-dimensional space

◦int Quantity ◦ interpolated in warped space

D
adapt
p Dictionary adapted/enriched using non-linear interpolations



NOMENCLATURE xiii

ϕ Non-linear transformation to a higher-dimensional warped space/domain

ζ Co-ordinate in the warped space

〈̃·〉 Quantity 〈·〉 in warped space

Ik DTW alignments computed for a vector λk

0, 1 Matrix or Vector consisting of zeros or ones of appropriate size

◦[:, S], ◦[S] Slicing of a vector/matrix ◦ using indices in set S (Python style)

δ Truncation tolerance for an orthogonal basis

ε Machine precision, Tolerance on residual

(z)− z if z < 0, 0 otherwise

(z)+,τ z if z > τ , 0 otherwise

〈·〉† Moore-Penrose pseudo-inverse





Abstract

Non-conformance decision-making processes in high-precision manufacturing of engi-
neering structures are often delayed due to numerical simulations that are needed for
analyzing the defective parts and assemblies. Various engineering assemblies often in-
volve interfaces between parts that can only be simulated using the modeling of contact.
Therefore, efficient parametric reduced order models (ROMs) are necessary for perform-
ing contact mechanics simulations in near real-time scenarios.

Typical strategies for reducing the computational cost of contact mechanics mod-
els use low-rank approximations. The underlying hypothesis is the existence of a low-
dimensional subspace for the displacement field and a low-dimensional subcone for the
contact pressure, as a result of non-negativity constraints. However, the contact pres-
sure exhibits a local nature, as the position of contact can vary with parameters like
loading or geometry. In this thesis, the adequacy of low-rank approximations for contact
mechanics is investigated and alternative routes based on sparse regression techniques
are explored.

It is shown that the local nature leads to loss of linear separability of contact pressure,
thereby limiting the reconstruction accuracy of low-rank methods. The applicability of
the low-rank assumption to contact pressure is analyzed using three different criteria,
namely compactness, generalization and specificity.

Subsequently, the use of over-complete dictionaries containing a large number of
snapshots to mitigate the inseparability issues is investigated. Two strategies to solve
the dictionary-based approximation problem are devised: one based on a greedy active-
set method where the elements from the contact pressure dictionary are selected greedily
and another approach based on convex hull approximations eliminating the need to
explicitly enforce non-penetration constraints in convex problems.

Lastly, Dynamic Time Warping (DTW) is studied as a possible non-linear interpo-
lation method that permits the exploration of the non-linear manifold. This allows the
synthesis of snapshots not computed in the training set with low complexity, thereby
reducing the burden of creating over-complete dictionaries in the offline phase.





Introduction

In the manufacturing of engineering structures, process variabilities often lead to devi-
ations from the tolerance specifications on the features of a part or an assembly. These
deviations can influence the stresses at the contact interfaces in the assembly, potentially
leading to reduced performance or even failure of the assembled structure. Economic
constraints often provide the motivation to salvage the “non-conforming” hardware. De-
pending on the nature of the deviations, a non-conforming part or assembly can be either:
accepted, reworked to improve compliance or rejected. The decision is usually based on
further analyses or tests on the non-conforming part. Naturally, our understanding of
the mechanics of the contact interfaces in assemblies is crucial in this decision-making
process.

Analytical and empirical solutions are usually not available for complex mechani-
cal/structural configurations, while experimental testing is cost-prohibitive. Therefore,
numerical modelling is often the most practical route to aid the decision-making pro-
cess. However, the numerical simulations consume a significant amount of time and
computational resources in building the model and subsequent resolution, especially for
assemblies that include dynamic contacts generating additional complexities. Also, the
communication delay between the shop floor and the simulation team adds to the delays.
These bottlenecks have been schematically described in Fig. I. Therefore, it is necessary
to accelerate assembly simulations in order to comply with desired decision times in the
manufacturing cycle.

Real-time simulation tools have been of interest in various decision-making processes
across fields like design and health-monitoring, among others. In such applications, fast
simulations need to be performed for parametric values that are fed to the simulator in
real-time. However, the complexity of a model usually increases exponentially with the
number of parameters in the model. Therefore, high-fidelity models are often replaced
with surrogate models that offer fast simulations, sometimes referred to as digital twins.
Reduced Order Modelling (ROM) a.k.a. Model Order Reduction, is a well-known frame-
work to create such models. ROMs are generally built to efficiently solve a parametric
problem in a multi-query context. Therefore, ROM is a promising framework for moving
towards efficient simulations of non-conforming engineering hardware.

For a real-time simulation of non-conforming assemblies, the task is two-fold. First is
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Figure I: Decision-making process using numerical simulations. Additional time delays can
be caused by communication and simulation. In an ideal situation: Communication delay +
Simulation time � Manufacturing time

the modelling of geometric variabilities in individual parts. Shape parametrized ROMs
have been explored [1–3] which can be used for parametrizing geometric variabilities. The
second, and more challenging, is the application of ROM approach to contact mechan-
ics. As contact mechanics deals with multi-body problems with interaction between the
boundaries of each body, it introduces geometric non-linearities. These non-linearities
are different in nature compared to, say, non-linear material behaviour or loading condi-
tions which have been widely studied by the ROM community. Therefore, contact ROMs
still need extensive research before they can be used in industrial real-time applications,
such as the acceleration of the decision-making process discussed previously.

Therefore, in this thesis, the current limitations of contact ROMs have been inves-
tigated and corresponding mitigation strategies have been proposed. The thesis begins
with an introduction to contact mechanics and the state of the art in ROMs applied to
contact mechanics (Chapter 1). Then, the limitations of the so-called low-rank approach
are investigated (Chapter 2). Strategies to counter these limitations are developed using
over-complete dictionaries (Chapter 3) and non-linear interpolations (Chapter 4).



1 | State of the Art

In this chapter, an overview of concepts and state of the art related to contact me-
chanics and reduced order modelling are presented. Ideas in contact mechanics are first
introduced using a two-body problem where inequality constraints apply to the energy
minimization statement of the standard mechanics problem. Some of the classical meth-
ods to solve inequality constrained problems are discussed. As one of the principal
sources of complexity in such problems is contact detection, some methods applicable to
contacts between one-dimensional boundaries are introduced. In the second part of the
chapter, the concept of Reduced Order Modelling and its application on unconstrained
problems is discussed. In the final part of the chapter, the two elements are combined,
where the developments in reduced models of contact mechanics are presented.

1.1 Overview of Contact Mechanics

Many computational mechanics problems involve interaction between multiple bodies
with various types of physics, say thermal or mechanical, where each kind of physical
interaction adds a challenge to the modelling process. Contact mechanics, the field that
considers mechanical interaction in multi-body problems, finds applications in a wide
variety of fields as almost all mechanical system, natural or man-made, displays some
sort of contact phenomena. A few examples that fall in this category include: foundation
studies in civil engineering, human joints in biomechanics, roller joints in mechanisms,
adhesive and frictional contacts in tribology and crash simulations in automotive indus-
try.

Historical works in contact mechanics include studies by that of Hertz [4] on ana-
lytical solutions of contact between spherical frictionless surfaces of elastic bodies, that
of Coulomb [5] on frictional contact, and many more. However, the work by Signorini
[6] on the contact problems with elastic bodies, which consisted of the Boundary Value
problem with non-penetration constraints, is central to approach of contact mechanics
in the computational field. The problem was titled “problems with ambiguous bound-
ary conditions.” by Signorini, aptly describing the nature of the problem. Analytical
solutions to certain contact problems have been computed in [7–9].
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(a) Type 1: Body-obstacle problem (b) Type 2: Two-body problem

Figure 1.1: Kinematic description of mechanical problems with possibility of contact. Points
x2 will possibly come into contact with point x̄1, and hence considered as a contact pair. The
distance between the two points in the initial and deformed configuration is given by g(µ,v)(x2)
and

(
g(µ,v)(x2)− k(µ,v;v)(x2)

)
respectively

1.1.1 Parametrized contact mechanics problems

Usually, an engineering problem is described as parametrized if a parametric solution is
sought i.e. the solution of the problem is sought for a range of parameter values. For
a mechanical problem, the parameters can be any attribute of the mechanical system
such as material properties, geometry, loading or boundary conditions, etc. Parametric
solutions usually find applications in design optimization, real-time monitoring and in-
verse problems (see Section 1.2). In this section, parametric mechanical problems with
non-penetration constraints on displacement field are discussed. Linear elastic and small
deformation problems are considered, keeping the evaluation of internal energy straight-
forward. The inequality constraints may be a result of the presence of either an obstacle
or a second body in the domain, with possibility of contact between different surfaces in
the deformed configuration.

For convenience, the contact problems will be referred to as Type-1, referring to a
problem involving a deformable body and an immovable obstacle, and Type-2 referring
to problems involving two deformable bodies. A schematic of the two types of contact
problems is shown in Fig. 1.1. Contact phenomena like friction and adhesiveness are
neglected. The resolution of contact mechanics problems depends on computing the
distance between surface of bodies involved. As evaluation of distance is not a trivial
task because of dynamic contact pairing, different strategies exist based on underlying
simplifications. The details to these approaches can be found in [10–12].

The generic weak form of a mechanical problem with a parameter µ involving con-
tacts (for both Type-1 and Type-2) is described by the following inequality constrained
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minimization problem:

u = arg min
v∈V

1

2
a(µ;v,v)− f(µ;v)

s.t. k(µ,v;v)(x) ≤ g(µ,v)(x) on Γ2

(1.1)

where

• a(µ;v,v) is strain energy function and f(µ;v) is the work contribution by the
external forces. The operators are defined ∀v ∈ V and ∀µ ∈ P, where V be an
appropriate function space for displacement v and P is the parametric space for
the parameter µ. Such problems with parametric dependence are usually referred
to as parametrized problems. Note that µ may not be necessarily a scalar and the
parametric space P can be possibly multidimensional.

• k(µ,v;v)(x) and g(µ,v)(x) are the distance functions that indicate separation
between bodies, defined conveniently on surface Γ2. The first term indicates the
contribution of displacement field v to the distance and the second term indicates
the distance in the undeformed configuration. For a Type-2 problem, the distance
functions can be expressed as:

k(µ,v;v)(x) =
[
v2(x2)− v1(x̄1)

]
· n

g(µ,v)(x) =
[
x2 − x̄1

]
· n

(1.2)

The pair (x2, x̄1) and the normal n are determined on the discrete domain using
various methods, some of which are given in upcoming Section 1.1.3.1. For a
Type-1 problem, the displacement field of the obstacle v1 vanishes.

Notation 1.1 :

Notations to distinguish strong and weak forms are adopted from [13]. Linear and
bilinear operators that appear in weak formulations are expressed in the format
o(·; ·, ·), where the non-linear dependencies and linear dependencies are separated
by the semi-colon ’;’ . On the other hand, strong form functions are expressed in
the format o(·; ·, ·)(·), distinguished from weak forms using an additional argument
which is the geometric position. The same applies to linear forms expressed as o(·; ·)
and o(·; ·)(·), where the linear dependency is on the second argument.

1.1.2 Contact Formulations

To treat the contact problem (1.1) numerically, the contribution of contact to the total
energy of the system is computed. This additional energy term is defined differently in
each contact formulation, however, the basic idea is to introduce contact forces, directly
or indirectly, that will prevent penetrations of contact surfaces. Among numerous formu-
lations available, three of them are introduced in this section. Two of them are based on
introducing the Lagrange Multiplier, which computes the contact forces directly, while
the other method penalizes the penetrations.
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1.1.2.1 Lagrange Multiplier Method

One of classical methods is an attempt to accurately satisfy the inequality constraints of
the contact problem (or any minimization problem) is the Lagrange Multiplier Method
(LMM). The resulting optimization problem can be expressed as a saddle point problem
of the Lagrangian functional:

(u, λ) = arg minmax
v∈V,η∈W+

L(v, η) (1.3)

where

L(v, η) =
1

2
a(µ;v,v)− f(µ;v) + b(µ,u; η,u)− d(µ,u; η) (1.4)

where the distance function is expressed by following weak forms:

b(µ,u; η,u) =

∫

Γ2

η k(µ,u;u)(x) ∂Γ

d(µ,u; η) =

∫

Γ2

η g(µ,u)(x) ∂Γ

(1.5)

where W+ is an appropriate non-negative function cone for contact pressure defined on
the surface Γ2. The inequality λ ≥ 0 admits a physical meaning because λ is equivalent to
contact pressure. A negative contact pressure implies traction, in other words, adhesion
between contact surfaces which contradicts the simplifying assumptions.
The KKT conditions associated to the optimizer (u, λ) ∈ V × W+ of (1.3) can be
expressed as follows:

a(µ;v,u)− f(µ;v) + b(µ,u;λ,u) = 0, v ∈ V (1.6a)

b(µ,u; η,u)− d(µ,u; η) ≤ 0, η ∈ W+ (1.6b)

b(µ,u;λ,u)− d(µ,u;λ) = 0 (1.6c)

Notice that the last KKT conditions (1.6c) implies that contribution of contact energy
term will be zero at the solution. This makes sense because the non-penetration con-
straint can prevent the system from reaching the true minima of the energy functional,
but it cannot add energy to the system.

1.1.2.2 Penalty Method

To constrain the solution in the feasible region defined by the inequality constraints,
violations of inequality constraints can be penalized by adding a penalty term to the
energy of the system. The resulting system is an unconstrained problem, unlike the
LMM problem.

u = arg min
v∈V

1

2
a(µ;v,v)− f(µ;v) +

∫

Γ2

τ
[
(k(µ,v;v)(x)− g(µ,v)(x))+]2 ∂Γ (1.7)
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where (z)+ :=

{
z if z > 0
0 otherwise

The solution of (1.7) may not necessarily satisfy the inequality constraints exactly,
but may be nearly compliant for sufficiently large values of the penalty parameter τ . For
very large values of τ , the penalty solution should approach the LMM solution, however,
the numerical system are ill-conditioned in this regime of τ .

The penalty parameter τ can be interpreted as a linear spring that resists penetration.
Therefore, a natural variation of the penalty method can be built by using a non-linear
penalty function where the penetration and the resultant contact pressure have a non-
linear relation. This approach is useful to reduce the penetration effects, but also in cases
where a constitutive law relating contact pressure and penetration is known. However,
the problem of ill-conditioning still persists when the constitutive law enters a highly
stiff regime [10, Chapter 5, 6].

1.1.2.3 Augmented Lagrange Multiplier Method

To circumvent the ill-conditioning problems of penalty method, Augmented Lagrange
Multiplier Method [14] problems have been developed. This class of method use a com-
bination of penalty and LMM. The basic idea is to establish contact forces using the
penalty method and then transfer these forces, in multiple steps, into the Lagrange Mul-
tiplier, thereby reducing illegal penetrations. The advantage of using this method is that
the solution will have high compliance to the constraints irrespective of the magnitude
of the penalty parameter. At a given step k, the following problem is minimized:

uk = arg min
v∈V

1

2
a(µ;v,v)− f(µ;v) +

∫

Γ2

τ
[
(k(µ,v;v)(x)− g(µ,v)(x))+]2 ∂Γ

+ b(µ,v;λk,v)− d(µ,v;λk)

with the update step:

λk+1(x) = λk(x) + τ
[
(k(µ,v;v)(x)− g(µ,v)(x))+]

and initial conditions:

λ0(x) = 0

As λk does not contain the true Lagrange Multiplier during the intermediate steps, this
method still allows some penetration. However, as the Lagrange Multipliers are updated
with new contact pressure forces, the penetration reduces in the subsequent steps. With
sufficient number of steps, penetration diminishes to very low-levels and the solution
approaches that of the LMM solution.
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1.1.3 Discrete Formulations

In this section, the usual discretization strategies based on Finite Element (FE) are
briefly introduced. One of the foremost problems in contact mechanics is the detection
of contact pairs. For large-scale problems, this step can prove to be expensive. Then
comes the part of building the finite element (FE) operators that can be used to enforce
or verify the constraints. As the contact problems in upcoming chapters will be solved
by using the LMM approach, the discussion on discretization schemes will be limited to
this method. Discretization of the penalty and Augmented LMM can be carried out in
a similar manner. Details of all approaches can be found in [10, 12].

1.1.3.1 Contact Detection and Pairing

Establishing the region of contact between two bodies is one of the primary challenges
in contact problem. In simplified cases of small displacement, conforming meshes can be
used, thereby allowing the use of node-to-node contacts. In this case, both points in the
contact pair x2 and x̄1 are nodes over respective surfaces, as shown in Fig. 1.2. Naturally,
the contact pair can be predetermined based on the discretization. Obviously, the use
of conforming mesh limits the applicability of this method. For example, it cannot be
applied to sliding surfaces.

Figure 1.2: Schematic of node-to-node contact pairing for conforming surface meshes

Node-to-segment method is used in cases of non-conforming meshes with 1D bound-
aries, for e.g., 2D problems with possibility of contact on the edges of bodies. The
contact pairings (x2, x̄1) are not straightforward to compute as it was in node-to-node
method. The contact pair evaluation is one of the sources of complexities in contact
problems, especially for large displacement problems as contact pairs can be a strong
function of displacement field. Established methods of computing contact pairs include:

• Closest Point Projection: For each node x2 on Γ2, the closest point x̄1 on Γ1 is
chosen as the pair [15]. Naturally, the distance functions are evaluated using (1.2)
with n = n̄1, the normal at the point x̄1. A limitation of this method is the
possibility of non-unique closest point in certain geometries [12, Chapter 2].
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• Ray Tracing: At each node x2 of Γ2, the local normal n2 is extended to intersect
Γ1 at x̄1 [16]. Hence, distance functions are evaluated using n = −n2 for this
method. This method may not find the nearest point, but avoids the problems of
non-uniqueness and projecting on irregular points.

The two methods are shown in Fig. 1.3. The normals n1 and n2 are evaluated in
deformed configuration. The pairing (x̄1, x2) is hence dependent on the displacement
field in both methods. This forces the distance function k to have an implicit non-linear
dependence on displacement, apart from the explicit linear dependence that is evident
in the expression.

(a) Closest point projection (b) Ray tracing

Figure 1.3: Schematics of node-to-segment methods for finding contact pairs

1.1.3.2 Discretization using Finite Elements

The discrete equivalent of the Lagrangian functional in (1.4) can be derived by intro-
ducing finite element spaces Vh ⊂ V and Wh

+ ⊂ W+:

Lh(v,η) =
1

2
vTK(µ)v − vTf(µ) + ηT [C(µ,v)v − g(µ,v)] (1.8)

where v ∈ RNh
u and η ∈ RNh

λ . Here, Nh
u and Nh

λ indicate the number of respective finite
element degrees of freedoms (dofs). Also, note that the notation u and v are used for
both continuous and discrete versions of displacement fields.

Let {N1,N2 . . .NNh
u
} and {M1,M2 . . .MNh

λ
} denote the basis for the FE space Vh

and cone Wh
+ respectively. Here, for a system with n displacement dofs per node,

Ni : Ω→ Rn and Mj : Γ→ R. The discrete operators K(µ) and C(µ,v) can be defined
as:

K(µ)ij = a(µ;Ni,Nj)

C(µ,v)ij = b(µ,v;Mi,Nj)
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and the vectors f and g are defined as:

f(µ)i = f(µ;Ni)

g(µ,v)i = d(µ,v;Mi)

The bilinear and linear terms b and d are non-linear w.r.t. the displacement field v and
the parameter µ, which is reflected in discrete form as C(µ,v) and g(µ,v) respectively.
Using the above operators, the discrete form of the KKT conditions in (1.6) for the

optimal solution (u,λ) ∈ RNh
u × RNh

λ can be written as:

K(µ)u− f(µ) + CT (µ,u)λ = 0 (1.9a)

λ ≥ 0 (1.9b)

C(µ,u)u− g(µ,u) ≤ 0 (1.9c)

λT [C(µ,u)u− g(µ,u)] = 0 (1.9d)

Apart from the non-linearity of the constraint operators C and g, additional non-
linearities appear because the regions where the inequality constraints are active and
inactive are unknown. Active regions correspond to the regions where contact is es-
tablished, or in other words, constraints satisfy the equality. These non-linearities are
potential contributors to the overall computational complexity.

Stability of the saddle point problem: The stability conditions of mixed formula-
tions usually appear in the form of an inf-sup condition. The inf-sup constant of the
bilinear operator b in (1.4) must be positive for every pair of test functions in the two
solution spaces. Not every combination of finite-element spaces Vh andWh

+ satisfies the
stability condition. In this thesis, linear elements for displacement and node-centered
zero order (piecewise-constant) shape functions for contact pressure are used (based on
Reference [13]), which generates smooth solutions for two-dimensional problems. More
details on inf-sup stability of contact problems can be found in [10, 17].

1.1.4 Resolution schemes

Even for contact problems involving small deformations with linear elastic constitutive
law, geometric non-linearities can still occur if large displacements are involved. This is
because the contact pairs change with the displacement field. Even for small displace-
ment problems where contact pairs can be approximately precomputed in the reference
configuration, the region of contact cannot be predetermined. Linearization schemes are
needed to solve the discrete problem, that resolve both the contact region and the con-
tact pairs in an iterative manner. Two such schemes: Fixed-point and Newton-Raphson
iterations are described here. Python notation is used to indicate slicing operations.
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1.1.4.1 Fixed point method

Fixed point schemes are used to find solutions to non-linear equations by posing them in
the fixed-point form x = f(x), leading to a fairly simple iterative form xp+1 = f(xp). For
a discrete system with multiple dofs, the linearized form usually looks like A(xp)xp+1 =
b(xp). These linearized forms can be iterated until convergence, without computing
derivatives or gradients of the non-linear equation.

Fixed point methods for an inequality constrained problem can be implemented using
active set approach [18, 19], in which the constraints are divided into active and inactive
sets. For the discretized contact problem, the balance form (1.9a) can be used in the
fixed-point method:

K(µ)u+ CT (µ,u)λ = f(µ) (1.10)

Given the current estimate of active set A, the activation state of the inequality con-
straints can be written as:

λ[Ac]← 0 (1.11a)

CA(µ,u)u− gA(µ,u) = 0 (1.11b)

where

CA(µ,up) = C(µ,up)[A, :]
gA(µ,up) = g(µ,up)[A]

and Ac is the complement of set A.

These conditions apply because each entry of the vectors C(µ,u)u − g(µ,v) and
λ correspond to a nodal constraint and a nodal Lagrange Multiplier respectively. As
the active set contains the list of active nodes, it can be used for filtering the entries of
constraint operators and enforcing the equality conditions i.e., where contact between
bodies is established. The displacement field and the active Lagrange multipliers at
iterative level p+1 can be obtained using the linear system obtained from the equilibrium
condition (1.10) and the active constraint (1.11b)

[
K(µ) CT

A(µ,up)
CA(µ,up) 0

] [
up+1

λp+1
A

]
=

[
f(µ)

gA(µ,up)

]
(1.12)

and the discrete contact pressure can be updated as:

λp+1[A]← λp+1
A

λp+1[Ac]← 0
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The sign of entries in the expression C(µ,u)u−g(µ,v) and in the vector λ correspond
to satisfaction or violation of inequality constraints at the respective node’s support. The
active set for the next iteration is obtained by verifying the constraints:

Ai ←
{
i
∣∣(C(µ,up)up+1 − g(µ,up)

)
i
≥ 0 and λi > 0

}
(1.13)

Moreover, the contact pairs are also be updated using the latest displacement field and
the new operators C(µ,up+1) and g(µ,up+1) are computed. This process is continued
until convergence.

1.1.4.2 Newton-Raphson

The Newton-Raphson iterative method (a.k.a. Newton’s method) is a derivative-based
iterative method for root finding and optimization problems. For finding the roots of an
equation f(x) = 0, the Newton-Raphson update at an iterative level p can be written

as ∆xp+1 = − f(xp)
f ′(xp) , where ∆xp+1 = xp+1 − xp. For a discrete system with residual

b(x)−A(x)x, the Newton-Raphson update step can be written as:

AT (x)∆xp+1 = b(xp)−A(xp)xp

where AT (x) is the tangent matrix of the residual.

The Newton-Raphson method for contact problems is based on computing the tan-
gent matrix Kc

T of the residual of equilibrium equation (1.10) and then computing incre-
mental updates. The contribution to the tangent matrix KT comes from of the contact
part of the energy functional or the equilibrium equation. It consists of the second order
terms that appear due to variations in contact pairing. The computation of tangent
matrix for the non-linear system is quite detailed and can be found in Reference [10,
Chapter 9, 10]. The iterative update at a level p+ 1 can be written as:

[
K(µ) + Kc

T (µ,up) CT
A(µ,up)

CA(µ,up) 0

] [
∆up+1

∆λp+1
A

]

=

[
f(µ)

gA(µ,up)

]
−
[

K CT
A(µ,up)

CA(µ,up) 0

] [
up

λpA

]

The stiffness matrix K(µ) appears in addition to the contact tangent matrix because
the stiffness matrix is the tangent of the elastic energy functional. After computing the
increment, the state vector can be updated as:

[
up+1

λp+1
A

]
=

[
up

λpA

]
+

[
∆up+1

∆λp+1
A

]

This is followed by the active set update in (1.13).
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1.2 Reduced Order Modelling for parametric problems

In recent applications of numerical methods to engineering design, decision-making pro-
cesses are increasingly dependent on simulation results [20–23]. Various configurations
of the product can be explored and compared by optimization algorithms to develop
an optimal configuration using modern simulation tools [24–26]. For the integration of
simulation tools into the decision-making process, simulation time for each configuration
becomes a primary factor in determining the swiftness of the process. In this context
of multi-query simulations, a high computational complexity of traditional simulation
methods might discourage comprehensive exploration of the design space for economic
reasons.

Traditional methods of simulations were restricted to the design phase of engineer-
ing developments due to the heavy computational costs. On the other hand, modern
simulation tools capable of real-time simulations have promising applications not only
in the design phase but also during the life-cycle of engineering products, for example,
for operations and maintenance [27]. The idea behind such applications is to create
real-time simulations whose predictions can be used to initiate corrective or preventive
actions. At the heart of the development of real-time simulations lies the approach of
Reduced Order Modelling (ROM).

Real-time simulators need to mimic the relevant physics of the system being studied
taking into account the parameters that are fed to the simulator in real-time. High-
fidelity numerical methods usually have very high computational complexity for such
applications. The real-time query can be addressed by solving a high-dimensional prob-
lem, in which the real-time parameters are treated as coordinates of the problem (like
space and time). Such a numerical model is usually referred to as a parametrized model
and is usually very expensive to resolve using standard numerical methods. ROM is a
framework for reducing the complexity of high-dimensional problems. ROMs have found
successful applications in a wide variety of problems such as design optimization [28],
uncertainty quantification [29], inverse problems [30], optimal control [31], real-time
monitoring [21], and others.

Various methodologies have been adopted to create ROMs to address different bot-
tlenecks. Some are based on reducing the number of dofs of the system, whereas others
focus on the efficient evaluation of integrals over a small part of the domain. However,
a common feature among most ROM methods has been the computation of a training
set of snapshots i.e. a set of high-fidelity solutions based on which a reduced model is
built. A brief description of a few classes of reduction methods is given here:

• Low-rank methods: These methods primarily focus on finding a low-rank solution
subspace. Usually, this is done by computing the basis of the subspace using Sin-
gular Value Decomposition (SVD) or Proper Orthogonal Decomposition (POD).
Low-rank methods are further detailed in Section 1.2.1.

• Hyper-reduction methods: Primary aim of hyper-reduction methods is to reduce
the number of unknowns as well as quadrature points to compute weak form terms
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by generating a reduced integration domain (RID), which is generated by selecting
appropriate dofs [32]. This feature of hyper-reduction is used in [33] to reduce the
effort in the computation of internal variables of non-linear constitutive models,
where the RID is made up of regions containing maximum energy of POD basis
vectors. On the other hand, the quadrature rules for RID in Reference [34], are
computed using the least-square procedure so that all training samples are exactly
integrated. Cheaper evaluation of weak forms over the RID leads to an efficient
model for non-linear problems.

• Non-intrusive methods: Some methods have been developed that do not need
access and modification of the high-fidelity source codes, and are termed as non-
intrusive methods. These are highly useful if proprietary source codes or complex
constitutive models are used. Also, it can be applied to different kind of physics
without changing the non-intrusive framework. As the numerical model and its
operators are not accessible, many non-intrusive methods rely on fitting an in-
terpolation in the parametric domain. Radial basis functions (RBF) have been
popularly used in this context. In these works, a POD-based solution subspace
is computed and an RBF-based interpolation for the reduced coefficients is devel-
oped for the POD subspace [35–37]. Another approach is that of sparse subspace
learning where a predefined set of hierarchical parametric basis functions with
special quasi-interpolative properties, allowing enrichment of the reduced model
at minimal cost [38]. The CUR decomposition method takes a different approach
for generating the parametric interpolation. A set of selected spatial and tem-
poral snapshots are used to build a surrogate model with coefficients that fit the
snapshots in the training set [39].

• Projection-based a priori method : The Proper Generalized Decomposition (PGD)
treats the parameters of the problem as coordinates and yet circumvents the curse
of dimensionality by using separated representations for solving the PDE [40].
This is accomplished by means of a greedy approach, where the current solution
is updated a with rank-1 tensor product of separated functions in each step. The
rank-1 updates are computing using the separated form of PDE, one direction
at a time, where each direction corresponds to one or more coordinates of the
problem, for instance, position, time, or a parameter, or a combination of these.
This is described as an a priori method because a parametric solution is built and
stored, resulting in quick accessibility of the solution. Efficient computation of
separated form of non-linear terms has been implemented in the PGD framework
using cross-approximations [41].

Even though these approach have different names and methodologies, all of them,
directly or indirectly, assume the low-rank hypothesis. In the next section, low-rank
methods are described for generic unconstrained problems.
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1.2.1 Low-rank methods

In many numerical problems, the underlying structure lies in a subspace whose dimen-
sionality is quite small compared to the full dimensionality of the solution space used in
the numerical model. Examples include thermal problems, transport problems, elasticity
and fluid flows among many others [42, 43]. Low-rank methods can be used to reduce
the complexity of such problems. The idea behind low-rank ROMs is to split the cost of
computation into two stages.

• The offline stage, where most of the computational complexity is resolved, consists
of computing a set of solutions in the parametric space i.e. the training set, and
then computing the reduced subspace that defines the span of training set. The
idea is that space spanned by the training set snapshots is a good approximation
to the true solution subspace. This is usually done by computing a reduced basis
(RB) corresponding to the span of the training set. This step is typically performed
only once to create the reduced model.

• The online step is performed every time a new query is submitted, in which the on-
demand solution is computed using the reduced model which is cheaper to evaluate
than the high-fidelity model.

Using notation from the previous section, let the high-fidelity (FE) solution space
be denoted by Vh and the reduced subspace be denoted by Vr = span(Φ), where Φ
denotes the corresponding RB. In online stage, solutions in the subspace Vr are sought
to approximate the high-fidelity solution. In discrete sense, Φ is a matrix with each
column corresponding to a basis vector. Then, the approximation in the subspace can
be expressed as:

u ≈ Φû û ∈ RN
r
u

All reduced degrees of freedom and reduced operators will be indicated by a hat ·̂
For constructing the RB Φ in offline stage, a finite subset of the parametric space

Ptr ∈ P is explored and an approximate subspace Vr is extracted from the set of high-
fidelity snapshots from the training set. The number of degrees of freedom associated
to the reconstruction problem in online stage is same as the cardinality of basis Φ, and
it influences the efficiency of online phase. This is the key to low-rank methods, as it
is based on the assumption that the intrinsic structure of the system behaviour lies in
a low-rank subspace. If this assumption does not hold, it may be difficult to generate a
RB that approximates well the system behaviour in the entire parametric space.

Next, two well known methods of finding the low-rank subspace: the Proper Or-
thogonal Decomposition and the Reduced Basis Methods are described briefly, as these
methods form the backbone of many reduced models [42, 43]. This is followed by the
necessity and tools for efficient computation of terms that are non-linear w.r.t. the pa-
rameter and/or the solution.
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1.2.1.1 Proper Orthogonal Decomposition

In Proper Orthogonal Decomposition (POD) framework, high-fidelity snapshots are gen-
erated over the training set Ptr are collected and arranged as columns of a matrix. Let
Str = {us}NSs=1 ∈ RNh

u×NS be a matrix containing the training set snapshots. Here,
NS is the number of snapshots and Nh

u is the number of finite element dofs. Typically,
NS � Nh

u for two reasons: first is that the snapshot computation can be expensive and
second is the fact that discovery of a low rank subspace only needs a relatively small
number of snapshots well distributed in the parametric domain. The RB can generated
using the Singular Value Decomposition (SVD) or the Principal Component Analysis
(PCA) methods. The SVD can be expressed as:

Str = ΦΣΨT

where Φ ∈ RNh
u×NS and Ψ ∈ RNS×NS are unitary matrices containing orthonormal

vectors. Σ ∈ RNS×NS is a diagonal matrix containing singular values.
The decomposition given by the SVD has many interesting properties. The columns

of Φ form a orthonormal basis for column-space of Str and therefore can be used to
approximate the solution subspace. Moreover, the columns of Φ, called as singular
vectors, are arranged in the decreasing order of contribution to the total energy in Str.
Their contribution is indicated by the singular values in Σ, which can be used to truncate
the basis Φ. In fact, the singular values {σi}NSi=1 are arranged in decreasing order, where
σi is the i-th diagonal value of Σ, exhibit many interesting properties in relation to the
matrix Str, some of which are listed below:

• The square of singular values sum up to the total energy in the snapshot matrix,
i.e. ||Str||F =

∑Ns
i=1 σ

2
i

• The energy contribution by first n singular vectors to the snapshot matrix is given
by
∑n

i=1 σ
2
i .

• If Φ
′

and Ψ
′

contain the first n columns of Φ and Ψ, and also Σ
′ ∈ Rn×n contains

the first n singular vectors {σi}ni=1 in its diagonal; then the approximation

Str ≈ Φ
′
Σ
′
Ψ
′T

is the best n-rank approximation in the sense of Frobenius-norm, with an approx-
imation error

∑NS
i=n+1 σ

2
i . A related property is that Φ

′
and Ψ

′
form the best

n-rank subspaces of the column and row space, respectively, of the matrix Str in
sense of Frobenius-norm.

The above properties can be used for truncation of the basis Φ by applying a tolerance
δ to the fraction of energy contribution of first n singular vectors. The first n singular
vectors of Φ that contribute more 1− δ fraction of energy are kept. This number n can
be calculated using:

min
n

1−
∑n

i=1 σ
2
i∑Ns

i=1 σ
2
i

< δ
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The truncation leads to a subspace of the full solution space, whose rank is a function
of tolerance δ. This allows us to regulate the dimensionality but at the cost of losing
diminished accuracy. Generation of the reduced model using the reduced basis Φ will
be shown in Section 1.3.1.

1.2.1.2 Reduced Basis Methods

Even though POD methods offer a robust technique to compute the RB, they do not
offer a strategy to sample the parametric space. On the other hand, the Reduced Basis
Methods (RBM) are usually equipped with error estimators that allow greedy sampling
of the parametric space [44, 45]. The idea of greedy methods is to arrive at the objective
by using the locally best way forward at each step, which is typically done by solving
a minimization problem. An error estimator ∆(µ) is an analytical error bound for the
true reconstruction error as follows:

||u(µ)−Φû(µ)||2 ≤ ∆(µ) ∀µ ∈ P

The error estimator is computed using the discrete residual rh) of the high-fidelity sys-
tem. For an unconstrained discrete problem with the residual:

rh(u, µ) = f(µ)−K(µ)u

the error bound ∆(µ) can be expressed as:

∆(µ) =
∣∣∣∣K−1(µ)rh(u,Φû(µ))

∣∣∣∣
2

≤
∣∣∣∣K−1(µ)

∣∣∣∣
2
||rh(u,Φû(µ))||2

=
1

σmin(K(µ))
||rh(u,Φû(µ))||2

Further details pertaining to efficient computation of the residual norm and the least
singular value can be found in [42, Chapter 3]. The error estimator has negligible cost
of evaluation compared to the true error, as the true numerical solution u is unknown.
Therefore, at given greedy level k, the estimated best value of the parameter to be added
is given by µk+1 = arg max ∆(µ) and is cheaper to compute. Thus, the training step
is enriched with a new snapshot u(µk+1) and the RB Φ is updated using methods like
Gram-Schmidt process. This avoids the computation of the basis from scratch at each
step k. The process can be stopped when max ∆(µ) is under a certain tolerance. The
RBMs are advantageous in terms of reliability and efficiency of the reduction process,
though the performance of the process, of course, depends closeness of the error estimator
with the true error (see [42, Chapter 7]).

1.2.1.3 Computation of non-linear terms

Operators such as K(µ) and f(µ) can be a non-linear function of µ and therefore, their
computation in each iterative step of a linearized reduced problem can prove to be expen-
sive. Despite the introduction of low dimensional spaces Vr, the complexity of computing
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these operators depends on the number of dofs in high-fidelity model. Commonly used
methods to efficiently compute non-linear terms include the computation of affine de-
composition using the Empirical Interpolation Method (EIM) and the computation of
an reduced integration domain (RID) using hyper reduction methods.

The affine decompositions of the non-linear terms can be written as:

K(µ) ≈
NK∑

i=1

αKi (µ)Ki

f(µ) ≈
Nf∑

i=1

αfi (µ)fi

where the scalar values
{
αKi
}

and
{
αfi
}

are the only quantities dependent on µ. There-
fore, the cost of online computation for each query of µ is reduced to the cost of com-
puting these scalar values.

It is possible that simple dependencies on µ admit affine decompositions that are eas-
ier to compute (see elastic energy computation in [13]). However, this is not the case in
general and also there are many cases where operators show dependence on the solution
u itself, for e.g. large deformation problems. In such cases, an affine decomposition is
even more valuable as the resolution of the reduced problem will involve an iterative pro-
cedure demanding evaluation of non-linear terms in each iterative step. Usually, the EIM
framework is used for computing the affine decomposition in such cases [46]. EIM based
affine decomposition is also equipped with so-called magic points in the non-parametric
domain. Evaluation of the non-linear term only at the magic points is sufficient for com-
puting the coefficients

{
αKi
}

and
{
αfi
}

. The cost of computation is reduced drastically
as the parameter independent modes Ki and fi can be computed offline. For further
details on computation of EIM based affine forms, see [42, Chapter 10].

Similar reduction in computation cost can also be achieved by hyper-reduction meth-
ods, where the non-linear terms are evaluated only a selected subset of the quadrature
points in the entire integration domain. Recalling the property of standard Galerkin ap-
proach in finite elements, each row in matrix K(µ) (and each entry in f(µ)) corresponds
to integration over the local support of a particular node. The hyper-reduced evaluation
of non-linear operators can be written as PK(µ) (and Pf(µ)). The rectangular matrix
P each row containing only one non-zero entry equal to 1, at a position corresponding
to a node in the RID [33]. In other words, weak forms are computed only on supports
surrounding the nodes in the RID. The RID has be constructed by selecting specific
dofs or quadrature points in the entire domain. Various methods have been applied to
this end, including free energy indicators [33], optimized cubature methods [34, 47], and
Discrete Empirical Interpolation Method [48].

1.3 ROMs for parametrized contact mechanics problems

ROMs have been applied extensively to unconstrained problems such as thermal and
mechanics problems [42, 43] and also to mixed problems with equality constraints such
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as the incompressibility condition in Stokes and Navier-Stokes flow problems [49]. Appli-
cation of ROMs to variational problems with inequality constraints (also referred to as
variational inequalities) has been more recent [13, 48, 50–53]. Inequality constraints ap-
pear in mechanical problems with obstacles or multi-body mechanical problems where
there is a possibility of contact between bodies and obstacles, or with other bodies.
Moreover, the region of contact is unknown a priori. Although the scope of this thesis
is limited to contact mechanics, several other applications of variational inequalities are
found in porous media flow problems [54], cavitation problems in lubrication systems [55],
anti-plane frictional problems [56] and even in financial trading problems [53].

As seen in the Section 1.1.2, inequality constraint problems are often posed in mixed
form with the KKT conditions that force the Lagrange Multipliers to be non-negative.
Enforcing this condition in ROMs is non-trivial as traditional methods of computing
RBs do not preserve the non-negative nature of the input information.

One of the first works on reducing the contact mechanics problem [50], proposed the
idea of using the contact pressure snapshots directly to define a non-negative subcone.
Both displacement and contact pressure snapshots were generated in a greedy fashion us-
ing error estimators. Fundamental aspects of the reduced problem, such as the existence
and uniqueness of the solution and inf-sup stability were also explored.

Compression of snapshots to create a reduced basis was studied in [51], where Non-
Negative Matrix Factorization (NNMF) was used to compute a basis with user-specified
cardinality but does not provide any means to specify truncation tolerance for the re-
duced basis. Also, error estimators for greedy sampling of parametric space are devel-
oped.

Algorithms to sort a precomputed set of snapshots in order of importance to create
a compact basis are explored using projection methods in [53] and [13], using an Angle-
Greedy and Cone-Projected Greedy (CPG) procedures respectively. The former does
not take into account non-negative restrictions, whereas the latter uses a cone projection
involving non-negative coefficients. This makes CPG more efficient in capturing the
contact pressure subcone.

The hyper-reduction approach in [48] defines a subdomain of the contact problem
containing the most important points. The reduction is achieved with the usage of a
POD basis for displacement and resolution of the weak form on the reduced integra-
tion domain. Reconstruction of displacement solution on the full domain is relatively
straightforward using the POD basis. On the other hand, the reconstruction of contact
pressure involves solving a non-negative least square problem using the snapshots.

A Craig-Bampton based resolution of the contact problem was discussed in [57] where
the reduction of the displacement field was achieved using the Krylov subspace method.
The Lagrange Multiplier method was not reduced under the assumption that the number
of contact dofs remains small.

All of these works are based on Lagrange Multiplier approach to solve the inequality
constrained reduced problem. An exception to this trend is [52] where penalty approach
is used. Instead, EIM is used for efficient computation of barrier functions that are used
to restrict the solution in the feasible domain.
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Most contributions build reduced models on problems with static contact pairs,
meaning contact pairs do not change with the state of the system. However, [13] con-
siders dynamic contact pairs, with node-to-segment formulation. To efficiently evaluate
non-linearities due to dynamic pairing, they use Empirical Interpolation Method to de-
fine an affine decomposition of distance functions.

1.3.1 Low-rank approach for contact problems

As seen above, many of the ROM approach to contact mechanics are based on the
low-rank approach. As the validity of low-rank hypothesis will be discussed in detail
in Chapter 2, a generic low-rank approach is detailed here, based on ideas of [13, 51].
The reduction of the displacement and contact pressure fields is discussed, followed by
defining the reduced problem using the reduced spaces for the two fields. As the contact
problem is a mixed problem, the displacement and contact pressure field will also be
referred to as primal and dual fields

Reduction of displacement: The displacement field u for a contact mechanics does
not need any special treatment. Any methods that can be applied for reducing a me-
chanics problem without contacts can also be used for the displacement. Left singular
vectors of displacement snapshots were used in many references in ROMs of contact
mechanics. The same will be the case in this thesis unless specified, and the primal RB
will be derived using POD.

Reduction of contact pressure: Computing the dual basis is more complicated than
the primal basis. The dual field i.e. the Lagrange multiplier must satisfy the non-
negativity constraints. In case of the contact problems without adhesive and cohesive
surfaces, this constraint admits a physical meaning as negative contact pressure cannot
be admitted, as discussed in Section 1.1.3.2. An orthogonal basis generated using pro-
jection based methods cannot satisfy such constraints, as it is surely bound to contain
negative entries. To ensure such constraints, one way is to define a subcone for the dual
field instead of a subspace. A function cone, unlike a function space, is spanned by a
set of non-negative basis functions and non-negative coefficients. In fact, W+ and Wh

+

in Section 1.1.3 are also cones. By extension, a subcone, unlike a subspace, must be
equipped by a non-negative RB and must be spanned by non-negative coefficients.

Wr
+ = span+(Θ) =

N∑

i=1

λ̂iθi , λ̂i ≥ 0

where Θ and {θi}Ni=1 are the dual RB and dual RB functions. λ̂is are the dual reduced
dofs.

Once the reduced subspace Vr and subcone Wr
+ are available, the reduced problem can

be generated from (1.6), replacing the continuous spaces V and W+ with the reduced
spaces Vr and Wr

+. The reduced KKT conditions on the solution (û, λ̂) ∈ RNr
u × RNr

u

can be expressed as:
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K̂(µ)v̂ − v̂T f̂(µ) + ĈT (µ, v̂)λ̂ = 0 (1.14a)

λ̂ ≥ 0 (1.14b)

Ĉ(µ, û)û− ĝ(µ, û) ≤ 0 (1.14c)

λ̂T (Ĉ(µ, û)û− ĝ(µ, û)) = 0 (1.14d)

where the discrete reduced operators are built by introducing the reduced basis functions
φ and θ

K̂(µ)ij = a(µ;φi,φj)

Ĉ(µ, v̂)ij = b(µ,vr; θi,φj)

f̂(µ)i = f(µ;φi)

ĝ(µ, v̂)i = d(µ,vr; θi)

with

vr = Φv̂

It is evident that the reduced form (1.14) has the same structure as the discrete form
generated using finite elements in (1.9), as both equations are built using a Galerkin for-
mulation and by introducing discrete solution spaces, albeit of different dimensionality.

Non-negative nature of the dual RB Θ forbids the use of orthogonal decompositions
of Lagrange Multiplier snapshot matrix Λ. To this end, non-negativity preserving de-
compositions have been explored by various authors. Non-negative matrix factorization
(NNMF) method [58] can be used to decompose a non-negative matrix, such as Λ into
two low-rank non-negative matrices W, H, such that Λ ≈WH. The left-hand matrix
W is used as the dual RB in [51].

Another possibility is to directly use the snapshot vectors as the basis vectors, in-
stead of computing the NNMF. This was the approach of [50], where the possibility
of non-unique dual solution is also discussed, as snapshot vectors are not guaranteed
to be linearly independent. Also, the number of dual dofs increases with the number
of snapshots, preventing optimal reduction of the system. A greedy snapshot selection
method based on the criteria of maximizing the volume of the reduced cone, namely the
Cone-Projected Greedy (CPG) algorithm, was proposed in [13]. This algorithm creates a
dual RB by greedily selecting snapshots from the snapshot matrix, attempting to create
a more compact basis in comparison to using the full snapshot matrix. The algorithm
is based on projection ΠΘ of a vector λ on a vector cone Θ,

ΠΘ(λ) :≈ Θα , where α is arg min
γ

||λ−Θγ|| ∀γ ≥ 0 (1.15)

The greedy algorithm evaluates the error between each snapshot and its projection on
the cone spanned by previously selected snapshots, and then adds that snapshot with
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maximum cone projection error. The process continues until the cone projection error
is within a set tolerance. [53] had also proposed a similar algorithm called Angle-Greedy
algorithm, but the projection error is calculated based on computation of the angle
between the candidate snapshot vector and the space, and not the cone, spanned by
the previously selected snapshots i.e. it does not place non-negativity constrain on the
coefficients γ in (1.15). This is not the best way of selecting snapshots for variational
inequality problems since solutions must be sought in the reduced cone, and not the
entire reduced space.

Remark 1.1 : Constraint satisfying primal subspace in flow problems

If we shift our gaze to other types of constrained ROMs, an interesting treatment
of the mixed problems appears in incompressible flow problems. In such problems,
the velocity snapshots are divergence-free and the divergence operator in the mass
conservation equation is linear; offering the possibility to compute a divergence-free
subspace for the velocity field. Consequently, the reduced incompressible flow prob-
lem is as an unconstrained problem, as all candidates in velocity subspace naturally
satisfy the constraints [59, 60]. Apart from naturally satisfying the constraints, some
elegant properties of vector algebraa result in disappearance of bilinear term that
includes pressure.

Unfortunately, it is not straightforward to extend the same idea to contact me-
chanics problems (or variational inequalities), i.e. to compute a primal subspace
that satisfies the non-penetration (or the inequality) constraints. This is because
linear combinations of non-penetrating snapshots do not satisfy the non-penetration
condition in general. As a consequence, the inequality constraints need be enforced
explicitly while solving the reduced problem, in general.

aThe product of a divergence-free velocity field and the gradient of pressure vanishes due to the
orthogonality of the solenoidal and irrotational vector fields

Construction of non-linear operators: For an efficient ROM, the construction of
nonlinear operators must also be cheap. The construction of operators C(µ, û) and
g(µ, û) in each iterative step can prove expensive. Affine decompositions of the nonlinear
constraint operators using the EIM are discussed in [13]. The affine form was achieved
by computing the EIM based interpolation of the distance functions k(µ,v, ·)(x) and
g(µ,v)(x) (recall Notation 1.1):

k(µ,v; ·)(x) ≈
Nk∑

p=1

αkp(µ,v)κp(·)(x)

g(µ,v)(x) ≈
Ng∑

q=1

αgq(µ,v)γq(x)

where the interpolation is exact at the set of magic points {xki } and {xgi }. Note that κp
is linear w.r.t. its argument which can be any member in V . Therefore, the coefficients
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can be computed so that they satisfy the following conditions:

k(µ,v; ·)(xkm) =

Nk∑

i=1

αkp(µ,v)κp(·)(xkm) ∀m = {1, 2, . . . Nk}

g(µ,v)(xgn) =

Ng∑

q=1

αgq(µ,v)γq(x
k
n) ∀n = {1, 2, . . . Ng}

(1.16)

Therefore, the distance function needs to be evaluated at most Nk +Ng points, instead
of the whole contact surface. Also, κi(·) and γi are computed just once using the training
set and the corresponding discrete operators can also be built during the offline stage
using the definition of weak forms in (1.5).

Ĉp
ij =

∫

Γ2

θiκp(φj)(x) ∂Γ

ĝqi =

∫

Γ2

θiγq(x) ∂Γ

(1.17)

where bp and dq correspond to the weak forms of individual EIM modes κp and γq that
are independent of the state of the system. Thus, during the online stage, the non-linear
operators can be approximated as:

Ĉ(µ,v) =

Nk∑

p=1

αkp(µ,v)Ĉp

ĝ(µ,v) =

Ng∑

q=1

αgq(µ,v)ĝq

where only αkp and αgq are evaluated efficiently in online stage using (1.16).

Another approach for efficient computation of non-linear operators is the hyper-
reduction approach [48]. In this approach, a small subset of the full domain ΩA ⊂
Ω1 ∪Ω2 is computed that serves as the reduced integration domain (RID). The RID ΩA

consists of the most “important” integration points computed by performing EIM on
the displacement RB. Then, integration of the operators Ĉ(µ,v) and ĝ(µ,v) is carried
out on a subset of the potential contact surface, computed using the intersection of the
RID and the contact surface ΩA ∩ Γ2. Thus, the distance functions are computed only
on a small subset of the contact surface.

1.4 Scope of the thesis

The current literature consists of various methodologies to reduce the contact mechanics
problem, especially to the Lagrange Multiplier approach. In this thesis, the following
contributions are made:
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• As seen in this chapter, the reducibility of contact problems has not been suffi-
ciently investigated in current literature. This is particularly important as contact
mechanics problems exhibit a local nature in terms of the contact zone. As the
region of contact is dynamic for many contact problems, significant changes in the
contact zone can prove consequential to reducibility. Therefore, in Chapter 2, we
explore the validity of so-called low-rank hypothesis and robustness of the reduced
models using various metrics. The chapter concludes that the contact pressure
field lacks linear separability, an essential feature for reducibility.

• The lack of low-rank structure implies that the offline phase might be expensive as
small training sets will be unable to explore the underlying structure sufficiently.
Even if the user is willing to compute large training sets, it is still not possible to
compute a robust low-rank subspace for the contact pressure. In Chapter 3, we
focus on algorithms to handle dictionaries containing a large number of snapshots
using ideas from sparse regression methods.

• As the linear inseparability of contact pressure field is established, we explore the
idea of non-linear interpolations between contact pressure snapshots in Chapter 4.
Interpolation is done in a warped space generated using Dynamic Time Warping
algorithm. We show that reconstructions of contact pressure can be more reliably
performed with smaller training sets, demonstrating the potential of non-linear
dimensionality reduction methods for contact mechanics problems.



2 | Limitations of low-rank
approach to contact
problems

Strategies for reducing complex numerical models to facilitate building parametric mod-
els requires the acquisition of underlying physics using precomputed data. A brief
overview of these methods was given in Section 1.2. Commonly used ROM meth-
ods are based on the paradigm of the so-called linear dimensionality reduction. The
foundation of this framework rests on the low-rank hypothesis, which states that for a
high-dimensional quantity of interest, often a representative low-dimensional space exists
and can be extracted using using linear transformations. The successful applications of
ROM methods like POD, based on linear dimensionality reduction methods like PCA, to
many parametric models can be attributed to the underlying low-dimensional behaviour
of these systems.

In Sections 1.2 and 1.3, the wide variety of low-rank applications were mentioned,
including constrained problems such as incompressible flows and contact mechanics prob-
lems. Reduced models for contact mechanics are important because the inequality con-
straints are geometrically non-linear, thereby introducing additional computational chal-
lenges (see Sections 1.1.2 to 1.1.3). However, the assumption of low-rank behaviour has
implications on reduced models of contact mechanics problems, which are a class of
variational inequality problems.

This chapter focuses on applicability of the low-rank hypothesis to the variational
inequality problems, specifically contact mechanics problems. The effect of this hypoth-
esis on various contact mechanics problems are demonstrated. A generic methodology of
low-rank approach in contact mechanics problems was discussed in Section 1.3. In this
chapter, the limitation of low-rank approach will be demonstrated on reduced models of
various contact problems. It will be shown that the contact pressure field is linearly in-
separable and therefore does not satisfy low-rank hypothesis. To endorse this argument
quantitatively, the so-called validation metrics will be introduced to used to endorse the
arguments about linear inseparability using specific numerical examples. Finally, con-
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cluding arguments about linear inseparability and a few perspectives on circumventing
the limitations due to lack of low-rank structure are given.

2.1 Low-rank contact problem using active set method

The non-linear reduced problem in (1.14) is based on the low-rank hypothesis, as it
introduces the low-rank primal and dual bases. This approach is similar to [13, 50, 51].
Two sources of non-linearities exist in this problem: the resolution of active/inactive
constraints and the dynamic contact pairs. Irrespective of the linearization algorithm
utilized, both non-linearities depend on the current estimate of the displacement field at
a given linearization step.

Here, (1.14) is solved using the fixed-point iterations and the active-set method ap-
plied to the reduced constraints. The linearized problem at a fixed-point iteration level
p can be expressed as follows:

[
K̂ ĈT

A(µ, ûp)

ĈA(µ, ûp) 0

] [
ûp+1

λ̂p+1
A

]
=

[
f̂

ĝA(µ,up)

]
(2.1)

The subscript A indicates the active set of reduced contact constraints, i.e. the con-
straints that satisfy the equality and force the solution to lie on the boundary of the
feasible region. Note that (2.1) is similar to the fixed-point system in (1.12). The fixed
point algorithm stated in Alg. 2.1, was implemented in Python using NumPy pack-
age [61] for vectorial operations.

Construction of operators: The implication of dynamic contact pairing between
two bodies of a contact problem is that the non-linear operators that enforce the non-
penetration constraint must be updated for each new estimate of displacement field. On
the other hand, for generating an efficient ROM, the construction of nonlinear operators
must be inexpensive. This is not the case in Alg. 2.1, where the full order operators
C(µ, û) and g(µ, û) are constructed in each iteration (Step 5). Affine decompositions of
the nonlinear constraint operators using the EIM are discussed in [13]. EIM decomposi-
tion of the constraint operators further splits computational complexity into offline and
online stages, by selecting the so-called “magic points” that are a small subset of all po-
tential contact nodes where the nonlinear terms are evaluated in the online phase. The
hyper-reduction method also permits computation of operators using fewer points [48].
This is crucial to solve problems where the contact pairs are strongly dependent on the
displacement field. However, the efficient construction of constraint operators is not
covered in this work, and the focus is maintained on the non-negative dual space and its
low-rank approximation.
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Algorithm 2.1 Online phase

1: Input: Queried value of parameter µ
2: Given: Primal basis Φ and dual basis Θ

Reduced operators K̂, f̂ (possible to build offline)
3: Initiate boolean array A with one random element set to True.
4: while û not converge do
5: Build constraint operators C(µ, ûp), g(µ, ûp) using FEM
6: Project constraint operators on RBs

Ĉ(µ, ûp) = ΘTC(µ, ûp)Φ
ĝ(µ, ûp) = ΘTg(µ, ûp)

7: Filter-out rows that are not in active set:
ĈA(µ, ûp) = Ĉ(µ, ûp)[A, :]
ĝA(µ, ûp) = ĝ(µ, ûp)[A]

8: Solve system (2.1)
9: Set λ̂p+1[A]← λ̂p+1

A and λ̂p+1[Ac]← 0
10: Update active constraints set

A[i] =

{
False if λ̂p+1

i < 0

True if (Ĉûp+1 − ĝ ≥ 0)i
. violations of (1.14b)

and (1.14c)
11: end while
12: Reconstruct u = Φû and λ = Θλ̂
13: Output: u,λ

2.2 Illustrative case

In this section, the Type-1 problem of a 1D elastic rope-obstacle problem from [50–52] is
considered. The geometry of the problem enjoys further simplification of static contact
pairs. In other words, each point on the elastic rope can come in contact with a unique
point on the obstacle, thereby stripping the distance functions k and g of their non-linear
dependence on the displacement field u.

The parametrized model of the elastic rope with obstacle function can be expressed
as:

ν∇2u(x) = f on x ∈ [0, 1]

u(0) = u(1) = 0

u(x) ≥ g(x, γ) on γ ∈ [−0.5, 0.5]

(2.2)

where the parameterized obstacle function is defined as:

g(x, γ) = −0.2(sin(πx)− sin(3πx))− 0.5 + γx (2.3)

and the quantities ν = 30 and f = 250 are independent of the parameter γ.
Snapshots are generated in the training set, Ptr ∈ P consisting of 10 equidistant

points in the parametric space P defined in (2.3). The deformation and contact pressure
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snapshots are shown in Fig. 2.1. The primal RB is built using the POD approach and
dual RB is created using the cone-projected greedy algorithm of [13].
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Figure 2.1: Sample snapshots for elastic rope-obstacle problem with γ ∈ Ptr ⊂ [−0.5, 0.5].

The reconstruction errors are shown in Fig. 2.2 for the two cases of full and truncated
dual RB. As expected, the points in the training set show very low reconstruction error,
and the points outside the training set show a moderate error. The only exception at
γ = −0.35 where reconstruction with full RB is highly accurate because the contact area
does not change in the regime γ ∈ [−0.4,−0.3] and the training set has two snapshots
in this region. When dual RB is truncated, some points in the training set achieve the
same error level as that of points outside the training set. These points correspond to
the same dual snapshots that were eliminated by the truncation procedure of the CPG
algorithm. Another relevant observation is that the number of active dofs of the reduced
dual solution λ̂ is small for all reconstruction cases. For points in the training set, λ̂ has
exactly 1 active dof, whereas for the points outside the training set, it has a maximum
of 2 active dofs. This is due to the fact that the dual basis is composed primarily of
snapshots and does not undergo any compression like in the case of the primal basis
generated by POD.

Primal basis Dual basis
(POD) (CP-greedy)

Full
Tolerance ε ε
Rank 11 11

Truncated
Tolerance ε 2× 10−1

Rank 11 7

Table 2.1: Truncation tolerances and ranks for both bases for the rope-obstacle problem. ε
indicates numerical precision
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(a) Full rank (b) Full rank primal and truncated dual RB

Figure 2.2: Primal reconstruction (H1) errors for points in and outside the training set for the
rope-obstacle problem.

In general, any efficiently generated reduced basis has its vectors arranged in order
of importance. In case the basis consists of left singular vectors, generated by SVD,
the decreasing importance of basis vectors is indicated by the singular values. This is
a very useful indication of the rank of the subspace. Even though the dual basis is not
computed using SVD, it can still be useful to compute singular values and assess their
decay. This evolution of singular values, seen in Fig. 2.3, shows that the decay is slow
compared to the primal variable.
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Figure 2.3: Decay of singular values (cumulative and normalized) for the training set of the
elastic rope-obstacle problem. A similar figure is also given in Reference [48, Figure 4]

Also, the discussions in previous sections highlight the fact that dual basis Θ cannot
be truncated without a significant loss of accuracy. This is also evident from Table 2.1,
even a truncation tolerance as high as 0.2 leads to truncation of just four vectors in dual
RB.
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The above observations are explainable by the hypothesis that the dual snapshots
are highly “inseparable” and do not lie in a low-dimensional subcone. Each contact
pressure snapshot in Fig. 2.1 is linearly independent of the other due to difference in
the contact area. Hence, if any snapshot is picked randomly from this figure, it cannot
be reasonably approximated by any linear combination of the rest of the snapshots. In
other words, each snapshot vanishes outside the contact zone, and this zone is almost
“unique” for each snapshot. For a particular snapshot to be reasonably approximated,
other snapshots with similar contact zones are needed. Therefore, the elimination of
snapshots from the dual basis leads to a drastic increase in the reconstruction error for
the corresponding parametric values in the training set. The dual variable, therefore,
not only needs special treatment due to its positivity constraints but is also highly
inseparable because of sensitivity to contact position and area. The inseparability is
also evident in the non-zero pattern (“spy” plot) of dual snapshots visualized in Fig. 2.4,
where most rows have an almost unique sparsity pattern. It is unlikely that a subspace
whose members show varying sparsity patterns will admit a low-dimensional behaviour.
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Figure 2.4: Sparsity pattern of dual snapshots for the rope-obstacle problem. Each row corre-
sponds to a snapshot

More numerical examples are explored to study the lack of low-rank behaviour in
the Section 2.4.

2.3 Metrics for low-rank methods

In this section, we introduce the validation metrics [62], that provide a quantitative
evaluation of the robustness of low-rank models. Validation metrics defined in [62]
identify three different measures for this purpose:

• Compactness: As the name suggests, this metric is a measure of dimensionality
of the reduced space. Reference [62] defines compactness as the squared sum of
the first m singular values of the snapshot matrix. This metric is similar to the
decay of singular values studied in the previous section in Fig. 2.3. However,
an alternative definition given by (2.4) is used here. The new definition allows
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extending the concept of compactness to CPG reduced bases, where equivalents of
singular values are undefined. Also, in case of an orthogonal basis, this definition
is equivalent to the normalized singular values used in Fig. 2.3.

C(m) :=

∣∣∣∣Str −ΠΨ[:m](Str)
∣∣∣∣
F

||Str||F
(2.4)

where Str is a matrix containing (either primal or dual) snapshots in Ptr arranged
column-wise. ΠΨ[:m](Str) is a projection operators that projects each column in
Str on the first m vectors of the basis Ψ (indicated in Python notation by Ψ[: m]).
The snapshot matrix Str, projection operator Π and the basis Ψ are generic sym-
bols and are used in the following combinations, indicated by the following labels:

Label in figures Snapshots in Str Projection operator Π Basis Ψ

primal orth Primal Orthogonal POD primal basis Φ
dual orth Dual Orthogonal POD dual basis Υ
dual cone Dual Cone CPG dual basis Θ

The Frobenius norm is chosen in (2.4), because it is a natural choice for a POD/SVD
basis that contains the best rank-wise approximations in the sense of Frobenius
norm, but other norms can be also be used. This is actually equivalent to the
original definition of compactness in [62], because in the case Ψ consists of the left
singular vectors, compactness corresponds to cumulative energy of singular values.

For the dual field, the metric is given using two kinds of projections: orthogonal and
CPG. Though the dual CPG metric is more relevant to the inequality constrained
problems, the dual orthogonal metric is also included as it is more intuitive due to
correspondence with the singular values.

• Generalization Ability : This metric measures the ability of the reduced basis to
approximate parametric instances that are not in the training set. It is computed
by using a leave-one-out approach on the training set to generate a m-rank ba-
sis. Then, the reconstruction error of the eliminated snapshot is used to compute
generalization ability as given by (2.5),

G(m) =
1

N

N∑

i=1

∣∣∣∣si −ΠΨ(Str\si)[:m](si)
∣∣∣∣

||si||
(2.5)

where Ψ(Str\si) is the basis created using the snapshot subset Str with si removed
(i.e. Str \ si). The symbols Str, Π and Ψ follow the definition in (2.4).

• Specificity : The subspace spanned by the reduced basis is expected to contain
elements similar to that of the training set. This metric measures the extent of
dissimilarity between randomly picked elements from the subspace and the snap-
shots in the training set. To compute specificity, a set of random shapes in the
associated subspace are generated using random coefficients R = {Ψαi}Ni=1, where
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each vector αi is drawn randomly within a predefined range, and compared to the
closest snapshot in the training set. The mean value of this error is defined as
Specificity.

S(m) =
1

N

N∑

i=1

min
sj∈Str

||sj −Ψ[: m]αi||
||sj ||

(2.6)

The vectors {αi | αi ∈ Rm} are drawn randomly in the range defined by µα±σα ⊂
Rm. The vectors µα and σα contain the element-wise mean and standard deviation
of vectors {γk}mk=1, where γk is the reduced coordinate of the training set snapshot
k. (e.g. if Ψ is an orthogonal basis, the vectors γk are the columns of matrix
Γ := ΨTStr). In the specific case where the basis Ψ is the Θ, the CPG basis, only
non-negative entries are allowed in {αi}. The symbols Str, Ψ follows the definition
in (2.4).

2.4 Numerical Examples

2.4.1 Hertz problem

This section deals with the reduced model of a Type-2 contact problem, namely the
Hertz contact problem, of two half-cylinders loaded against each other, as shown in
Fig. 2.5a. A loading parametrization problem is solved, where the imposed displacement
d ∈ (0, 0.3) is the parametric space, with R1 = R2 = 1.0. The contact pressure snapshots
for various imposed displacement values are shown in Fig. 2.5b.

(a) Hertz problem
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(b) Contact pressure snapshots

Figure 2.5: Hertz problem: two half cylinders loaded against each other and the resulting
contact pressure snapshots. Displacement d, imposed on the top cylinder, is treated as parameter
in the reduced model.

High-fidelity model: A finite element model of the geometry in Fig. 2.5a is created
using a quad mesh. Each half-cylinder has 513 nodes and 466 elements of which 78
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elements lie of the potential contact surface i.e. the semi-circular edges. Linear shape
functions are used to discretize the displacement field, while contact pressure is dis-
cretized using piece-wise constant shape functions centred at the surface nodes of the
quad mesh (collocation method, as described in [13]). For surface integrals, a single-point
gauss quadrature centred on the node is used. This formulation gives mostly smooth
contact pressure profiles, except near the peak pressure.

Reduced Model: Snapshots are generated in the training set, Ptr ∈ P consisting of 12
equidistant points in the parametric space. The full rank and truncated dual RB (using
CPG) is considered, as given in Table 2.2, whereas the primal RB is not truncated. The
full RB has 12 basis vectors for both primal and dual fields, whereas the truncated dual
RB has 8 vectors. Note that dual RB truncates only 4 out of 12 basis vectors for a high
truncation tolerance of 0.05.

The reconstruction errors are shown in Fig. 2.6 for full and truncated dual RBs. As
expected, the points in the training set show very low reconstruction error, and the points
outside the training set show a relatively high error. When the dual RB is truncated,
points corresponding to truncated dual snapshots have a high error level, in the same
order of error for points outside the training set. Like the illustrative case in Section 2.2,
the non-zero pattern in snapshots in Fig. 2.7 also show a unique sparsity pattern for
each snapshot. Also, the comptactness shown in Fig. 2.8 displays a slow decay of the
dual orth and dual cone, indicating a high-rank behaviour of the dual variable. The
slightly slower dual cone curve than the dual orth was expected because of the non-
negativity constraint that appears in approximation using the cone of the dual basis.
These observations again reinforce the proposition that the dual basis does not admit a
low-rank behaviour.

Primal basis Dual basis
(POD) (CP-greedy)

Full
Tolerance ε ε
Rank 12 12

Truncated
Tolerance ε 5× 10−2

Rank 12 8

Table 2.2: Truncation tolerances and ranks for both bases for Hertz problem. ε indicates
numerical precision

Generalization ability and Specificity metrics introduced in Section 2.3 are plotted
in Fig. 2.9. The generalization ability for primal field is much better than the dual
field, another reflection of separability issues with the dual field. On the other hand,
primal and dual specificity are about the same order, though the primal specificity is
consistently lower.
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Figure 2.6: Primal reconstruction (H1) errors for the Hertz problem.
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Figure 2.7: Sparsity pattern of dual snapshots for Hertz problem
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Figure 2.8: Compactness of reduced bases for Hertz problem

2.4.2 Ironing problem

A Type-2 problem where the contact area changes quite significantly, namely the ironing
problem [11], is considered. The ironing problem consists of an iron block pressed against
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Figure 2.9: Validation metrics for Hertz problem. The bars indicate ±1σ interval of corre-
sponding metrics

a flat slab and moved along the length of the slab (Fig. 2.10). The problem is simplified
with two more assumptions: the first is that iron moves slowly enough that the problem
can be considered to be quasi-static and the second is that surfaces are frictionless. The
horizontal position dx of the iron is taken as the parameter for the reduced model. In
this problem, as the potential contact surface on the slab is quite larger than the actual
position of contact, the contact pressure snapshots display large changes in contact
position, shown in Fig. 2.11. The same is reflected in spy pattern of the contact pressure
snapshot matrix, shown in Fig. 2.12

Details of FE model: A finite element model of the ironing problem is created using
a structured quad mesh for both the iron and the slab. Like the Hertz problem, the dis-
placement field is approximated using linear shape functions and contact pressure using
piecewise-constant shape functions centred at the surface nodes. To better demonstrate
the inseparability issues, two meshes: coarse and fine, are considered for iron and slab.

Iron Slab

Coarse Mesh 30× 30 20× 100
Fine Mesh 60× 60 40× 200

The compactness metric, which is equivalent to decay of truncation error as discussed
before, is shown in Fig. 2.13 for a coarse and fine mesh, created using 128 snapshots.
The contrasting part of the two graphs is the green curve representing the dual orth
compactness, as this curve vanishes at rank 100 for the coarse mesh, but not for the
fine mesh. This is natural, since coarse mesh has only 100 nodes on the surface of the
slab and thus allowing a maximum rank of 100, whereas the fine mesh has around 200
nodes. Since the orthogonally computed dual (dual orth) compactness is also a measure
for determining the true rank of the snapshot matrix, the green curve naturally vanishes
at a rank of 100. However, the most interesting part of this figure is the blue curve
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Figure 2.10: Ironing problem: Iron block is pressed against the flat slab by a displacement dy
and moved horizontally. The horizontal displacement of the iron block dx ∈ [0, L] is treated as
the parameter in the reduced model
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Figure 2.11: Sample snapshots of contact pressure for ironing problem

representing the truncation computed using cone-projection. Even for the coarse mesh,
whose true rank is bounded by the number of surface nodes, i.e. 100, the dual cone
compactness doesn’t decay well beyond this rank. This is another interesting behaviour
of the low-rank approach since the dual solution is sought in a subcone that involves
positivity constraints, further degrading compactness.

Apart from compactness, another way to demonstrate the dimensionality of the dual
subcone is by using the projection error of nested training sets, which will be referred to
as nested error subsequently. To compute the nested error, snapshots are computed in
a nested set of points in the parametric space, so that n-th level training set is a subset
of the (n + 1)-th level training set. In each nested level, 2n + 1 points are uniformly
distributed in the parametric space [0, L]. This means, every alternate point in (n+1)-th
level is the mid-point of two consecutive points in n-th level. The nested error H(n) can
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Figure 2.12: A typical sparsity pattern of dual snapshots for ironing problem

then be defined as:

H(n) =

∣∣∣∣Sn+1
tr −ΠΨn(Sn+1

tr )
∣∣∣∣
F∣∣∣∣Sn+1

tr

∣∣∣∣
F

(2.7)

where the symbols Ψ and Str carry same meaning defined in Section 2.3. ||·||F indicates
the Frobenius norm. The RB computed using the n-th level training set is indicated
by Ψn, and snapshot matrix for (n + 1)-th level is indicated by Sn+1

tr . Nested training
sets where each level contains nearly twice the number of points compared to previous
level are created and the dual RB for each level is computed. The slope of nested
errors computed using orthogonal and cone projections indicate that the offline stage
will require a very large number of snapshots to explore the dual subcone, which is
another indication of its high-dimensionality, as shown in Fig. 2.14. The effects of mesh
size are similar to those seen in compactness, as nested error using dual cone projection
does not decay even after training set is full rank in case of coarse mesh.
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Figure 2.13: Compactness for reduced bases of ironing problem.
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Figure 2.14: Projection error of nested level n+ 1 snapshots on dual RB of level n.

Generalization ability and Specificity metrics are plotted in Fig. 2.15. The general-
ization ability shows a similar trend as that of nested error, as they are similar quantities
measuring reconstruction errors outside the training set. The primal basis outperforms
its dual counterparts in this metric, as expected. The specificity metric is quite higher
for dual quantities than the primal ones, which is because random shapes generated
using the RB are quite different.
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Figure 2.15: Validation metrics for the ironing problem (for fine mesh). The fill regions indicate
±1σ interval of corresponding metrics.

2.5 Conclusions and Perspectives

In this chapter, the limitations of low-rank ROMs to contact mechanics problems were
discussed. Demonstrations of this approach show moderate reconstruction errors for
parametric points outside the training set. To explore the possible sources of this error,
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we focus on the key assumption of the low-rank hypothesis i.e. the solution subspace is
low-dimensional. It turns out that the Lagrange Multiplier associated with the inequality
constraints, i.e. the contact pressure, does not admit a low-rank subspace. Qualitative
and quantitative assessments are provided to support this argument. The linear in-
separability of dual subspace/subcone is demonstrated using various metrics that show
high-dimensionality of contact pressure compared to the relatively low-dimensionality of
the displacement field.

To circumvent the limitations due to the lack of low-rank structure, several poten-
tial approaches need to be explored. One possibility is the usage of dictionary-based
approximation with a relatively large number of snapshots spanning the dual subspace
efficiently. Another possibility is resorting to either a non-linear transformation; po-
tentially transforming the dual snapshots in a way that they lie in a low-dimensional
subspace.





3 | Dictionary approach in
contact mechanics problems

3.1 Motivation

The contact mechanics problem has a feature, the contact zone, that exhibits a local
nature. The contact zone is a function of the state of the system, and hence, may
strongly depend on the loading, geometry, and other physical parameters. In general, for
variational inequalities, only a subset of the constraints are usually active. An inequality
constraint is referred to as active only if the current state of the problem satisfies the
equality. Due to the last KKT condition in (1.14d), the Lagrange multipliers λ assume
a non-zero value only for active constraints i.e. the part of surface where contact is
established. The strong dependence of the active zone on the state of the system leads to
the linear inseparability of the Lagrange multiplier field. It has been shown in Chapter 2,
that the local characteristics of contact pressure can render subspace learning ineffective
and cause difficulties in creating efficient reduced models of contact problems. The
separability issues may cause the following problems:

1. Complexity of subspace learning: It is desirable to keep the complexity of the
offline stage at affordable levels. Usually, this is achievable because a relatively
low number of snapshots compared to the dofs of the high-fidelity problem are
sufficient to create a reliable reduced basis, thanks to the low-rank nature of many
resolution problems. However, given the inseparability of the contact pressure
field, a large training set may be necessary to discover the entire solution subspace
to a reasonable accuracy.

2. Lack of low-rank subspace: Discovery of a low-rank subspace is key to creating
a low-cost reduced model, as the number of reduced dofs scales with the rank of the
discovered solution subspace. While low-rank methods for contact problems [13,
51] define a contact pressure subcone, it is shown in Chapter 2 using various metrics
that compression of contact pressure data into a low-rank subcone or subspace leads
to loss of useful information. Therefore, despite the creation of a large training
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set, as mentioned in the previous point, extracting a low-rank subspace might not
be possible.

The degree of these effects depends on the nature of the contact problem. In this
chapter, the approximation using a dictionary instead of a low-rank subcone is explored,
addressing the second point as the dictionary is made of snapshots without applying
any compression, like NNMF or CPG. In effect, the high complexity of the offline stage
is accepted as a compromise for creating a reliable reduced model. The ideas behind
over-complete dictionaries are expanded in the coming sections.

3.2 Sparse methods with over-complete dictionaries

The primary motivation for using a dictionary-based approximation is to mitigate the
limitations due to linear inseparability, discussed in Section 3.1. The word “mitigate”
is explicitly used here to indicate that the strategy developed in this chapter does not
resolve the inseparability issue at a fundamental level, rather it attempts to limit the
effects of inseparability. The intention is to accommodate the cost of computing snap-
shots over a large training set and focus mainly on addressing the point 2 of Section 3.1
using an algorithm that can handle large dictionaries efficiently. A matrix containing
the large set of snapshots is referred to as an over-complete dictionary D. The term
“over-complete” is used loosely in this context, as it is impossible to sufficiently sample
a truly inseparable subspace for a given approximation error target and is simply used
to imply that the dictionary has numerous snapshots, possibly larger than the number
of contact dofs in the high-fidelity problem.

The dictionary-based approximation can be visualized in an abstract n-dimensional
space in Fig. 3.1. Typically, in cases where low-rank hypothesis is not satisfied, the
underlying physics of the problem assume a manifold structure. A manifold can be
thought of as a low-dimensional entity that does not satisfy the properties of a linear
space. The idea expressed in this figure is that a manifold, like a hypersurface with
non-zero curvature, can be approximated better using a large cloud of points lying on
it. If the point cloud is rich enough, it is more likely that this approximation will be
better than than low-dimensional subspace which is a hyperplane1. It is this large cloud
of points that is referred to as over-complete dictionary in this chapter.

In dictionary-based approximation, unlike the low-rank approach [13, 51], no com-
pression of the contact pressure snapshots is applied. The dual solution can simply be
restricted to the column-cone2 of the dictionary D, which might be reasonably rich to
approximate the true contact pressure subcone. In the online phase, only a few snapshots
will be selected to estimate the contact pressure field. This is justified because not all
information in the dictionary is necessary for the reconstruction of a particular instance
and hence, the dual reduced dofs will admit a sparse solution. This feature is also seen

1The terms hyperplane and hypersurface refer to a plane and surface in dimensions higher than 3
respectively.

2column-cone is the subset of the column-space restricted to non-negative coefficients.
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Low-dimensional subspace

Training set snapshots

True solution of queried point

Dictionary-based approximation

Low-rank approximation

Figure 3.1: Illustration of low-rank vs. dictionary-based approximation. Snapshots (circles)
in an n-dimensional system lie on a manifold of dimension lower than n. The low-dimensional
subspace computed using low-rank methods has a dimension � n. A dictionary-based approxi-
mation of the queried point (star-shaped) can be computed as linear combination of the nearest
snapshots (shown by a line connecting the nearest candidates). The low-rank approximation is
simply the projection of the queried point on the low-dimensional subspace.

in case of the low-rank model generated using snapshots selected by CPG. Therefore,
enough motivation exists to use sparsity enforcing methods to choose a few columns of
a dictionary D to approximate the dual solution. Keeping these ideas in mind, sparse
regression techniques are briefly introduced at this stage and a few of these methods from
current literature are discussed. Following this, their application to resolution problems
will be briefly discussed.

3.2.1 Sparse regression in data approximation problems

Sparse regression techniques have been under development in recent decades across var-
ious fields, especially in signal processing and statistics. The main idea behind these
techniques is to approximate a signal with the few most suitable elements of a precom-
puted dictionary of signals [63], or to develop the simplest predictive model [64]. A
typical sparse regression can be written as the following optimization statement:

min||α||p
s.t.||x−Dα|| < ε

(3.1)

where x is the signal being approximated, D could either be a dictionary of signals or a
basis that possibly admits sparse representation, ||·||p is a sparsity inducing norm, and
ε is the tolerance on the approximation error. It is also possible to write other forms
of sparse regression problems where the approximation error is minimized and p-norm
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term is constrained to stay under a specific tolerance of sparsity, or the minimization of
a penalty form with a weighted sum of the two terms.

It is common knowledge in the communities using sparse regression methods that
the `0-norm is a measure of cardinality, hence (3.1) with p = 0 is the natural choice in
a theoretical sense. However, this problem is NP-hard in general, and therefore, it is
more common to use `p-norm with p ∈]0, 1]. A detailed explanation of sparsity inducing
properties of `p-norms with p ∈]0, 1] is given in [65]. A few sparse regression methods
are briefly detailed here:

1. LASSO [66]: The specific case of (3.1) with p = 1 is known as the LASSO is
one of the most widely known sparse regression methods. The `1-norm, even
though not a true measure of cardinality, has a constant “driving force” or more
technically speaking, a gradient towards the origin that is constant in magnitude
everywhere. This drives many entries of α to zero, unlike the `2 norm that can
reduce the magnitude of α entries, but not set them to zero. Also, the `1-norm
allows solving (3.1) in polynomial time.

2. Dantzig Selector [67]: This method allows selection of a sparse α using a mod-
ified version of (3.1), that can be converted into a linear programming problem
after with algebraic manipulations. This is achieved with p = 1 and the `∞ norm
for the residual. (3.1) is recast as:

min||α||1
s.t.
∣∣∣∣DT (x−Dα)

∣∣∣∣
∞ < ε

which can be expressed in a linear programming form as:

min
∑

i

γi

s.t.− γ < α < γ

− ε1 < DT (x−Dα) < ε1

where γ is a dummy variable obtained by opening the absolute operator ‖α‖.

3. Orthogonal Matching Pursuit [68]: The OMP method aims to approximate
the solution of (3.1) with p = 0 using a greedy technique. At each greedy step
k, the OMP algorithm searches for the column of dictionary D that is the least
orthogonal to the current residual (x − Dαk−1) and adds to the set of indices
previously selected. This process is carried out until the residual is below the
tolerance ε. This is done by projecting the residual vector on each column and
selecting the largest projection.

I ← I ∪ arg max
j

∣∣∣D[:, j]T (x−Dαk−1)
∣∣∣
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where I is the current set of selected indices and columns of dictionary D are
normalized. Then the new set of coefficients αk are computed using the least
square solution:

αkI = (DT
IDI)

−1DT
Ix

with αI = α[I] and DI = D[:, I].

Update of I is locally optimal, but the above least-square update of αk, the OMP
solution is optimal w.r.t to the currently selected subset DI of the dictionary. This
is in contrast to the predecessor of OMP, the Matching Pursuit [69], which used
locally optimal updates for αk at the current iteration.

4. FOCUSS [70]: The FOCUSS method finds a sparse approximation using an it-
erative process that starts from a fully dense solution and progresses towards “lo-
calized energy solutions”. The FOCUSS method is broadly based on the following
ideas:

• For a full rank dictionary of size, say m× n (m < n), the system Dα = x is
under-determined. For such a system, the closed form solution for (3.1) with
p = 2 is given by α = D†x, where D† is the Moore-Penrose pseudo-inverse.
Note that this solution is not sparse in general, as `2-norm does not have
sparsity inducing properties.

• A modified minimization problem can be defined by replacing the ||α||2 with
a weighted norm

∣∣∣∣W−1α
∣∣∣∣

2
, or more generically

∣∣∣∣W†α
∣∣∣∣

2
if W is singular.

The authors of [70] argue that by changing W, every possible solution of the
under-determined system Dα = x can be obtained.

• The basis of the algorithm lies in iterating towards a sparse solution using a
weight Wk which induces sparsity. For the iteration k, the weight is chosen
as Wk = diag(αk−1). The trick lies in the fact that algorithm ends up
minimizing the following weighted norm:

∣∣∣
∣∣∣W†

kα
∣∣∣
∣∣∣
2

2
=
∑

i

(
αki
αk−1
i

)2

due to which smaller entries of αk−1 tend to diminish further.

On combining these ideas, the FOCUSS algorithm ends up with quite a simple
implementation, given in Alg. 3.1. Usually, the algorithm is initialized with the
α0 containing all non-zeros. In [70], the ||α||2 minimizing solution α0 = D†x was
used for initialization.
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Algorithm 3.1 FOCUSS

1: Inputs: D,x, α0

2: Initialize k = 1
3: while α not converge do
4: Wk = diag(αk−1)
5: αk = Wk(DWk)†x
6: k ← k + 1
7: end while

3.2.2 Application of sparse methods to unconstrained resolution prob-
lems

Sparse regression methods, though originally developed for application on pure data
approximation or data compression problems, have seen recent interest in applications
towards physics problems [64, 71, 72]. The methods that have been discussed previously
are also meant for data approximation. At this point, application of such methods on
unconstrained resolution problems is discussed. A resolution problem can be framed
as residual minimization problem in order to use dictionary-based approximation and
sparse regression. Consider a discretized resolution problem with the state vector v and
residual r(v). The basic idea is to approximate the solution v ≈ Dv̂ using the elements
of dictionary such that the residual of the numerical model r(Dv̂) is below a certain
tolerance, while minimizing the `p-norm of coefficient vector, as shown in (3.2). Sparsity
is imposed on the coefficients of the dictionary, meaning that only a few dictionary
columns are selected.

min||v̂||p
s.t. ||r(Dv̂)|| < ε

(3.2)

Dictionary-based sparse approximation for resolution problems has been discussed
in [73], where the solution space is set to the span of dictionary columns. They also
discuss the application of random sketching to residual evaluation, which provides an
efficient way of solving the minimization problem. This is similar to the approach of ran-
domized SVD proposed in [74]. The idea is to project the residual on a low-dimensional
subspace in colsp(D).3 The matrix B, containing a basis corresponding to a random
combination of dictionary columns, is used for this projection in (3.3). This essentially
reduces the complexity of enforcing the residual constraint. Given a dictionary D of size
m × n, a smaller matrix that has information from all columns of D can be generated
by multiplying a matrix R of size n× L with L� min (m,n). After orthogonalization,

3colsp indicates column-space
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this matrix B can be used for projecting the residual r.

min||v̂||p (3.3a)

s.t.
∣∣∣∣BTr(Dv̂)

∣∣∣∣ < ε (3.3b)

where B = orth(DR) , R ∈ Un×L[0,1] (3.3c)

The number L can be tuned to not only control the complexity of the minimization
problem, but also to crudely constrain sparsity of the solution. For L� n, colsp(B) ⊂
colsp(D) is low-dimensional and hence, the projection BTr is a “weaker” evaluation of
r, which allows for a sparser v̂ at the price of permitting residuals orthogonal to B.

Another related approach in which snapshots are directly used for reducing the model
without any explicit compression is the CUR decomposition [39]. In this method, not
only columns, but also rows from the snapshot matrix are used for developing a para-
metric regression. It works by algorithmically selecting a column and row subset from
the snapshot matrix, and using them for developing a regression model. A contrast-
ing feature of the CUR approach is the use of regression without invoking the partial
differential equation or its weak form, resulting in a non-intrusive method.

3.2.2.1 Diffusion-reaction problem

A transport problem of a quantity v with two-dimensional domain of size 3 × 3 units,
divided into a grid with cells of size 1×1 is considered. The cells have a piecewise uniform
diffusivity value. A three-dimensional parametrization is considered with diffusivity
values ν1, ν2 and ν3, as shown in Fig. 3.2. The reaction coefficient σ is considered to be
uniform across all sectors.

−ν(x, y)∇2v(x, y) + σv(x, y) = f

v(x, 0) = 0

v(x, 3) = 0

v(0, y) = 0

v(3, y) = 1

(3.4)

where ν(x, y) describes the piecewise uniform diffusivity values.

The 2D domain is discretized into a structured 15 × 15 mesh. The diffusivity of
each block νi ∈ (1, 150) is considered for the parametric model. The reaction coefficient
is chosen as σ = 10. The reaction is included mainly to add some local effects to an
otherwise globally diffusive problem. A dictionary of 320 snapshots is created using
randomly sampled diffusivity values. Fig. 3.3 shows some sample snapshots from the
training set.

Fig. 3.4 shows reconstruction errors using the dictionary-based approximation meth-
ods using (3.3). FOCUSS and OMP are used for sparse regression. As expected, the
training set snapshots are almost accurately reconstructed with a single non-zero coef-
ficient. In the validation set, reconstruction errors are observed in the order of 10−2 to
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Figure 3.2: Two-dimensional domain for the transport problem (3.4)

10−1 for sparsity target L = 10 and errors improve about an two orders for L = 30.
The outcome of sparsity for each L, shown using a cross (×), is almost the same as the
parameter L for the validation set. This is due to the algorithm trying to select as many
vectors permitted by the user.

Now that the dictionary methods have been demonstrated on unconstrained methods,
we would like to extend these methods to inequality-constrained problems. However, it
is not straightforward to apply random sketching to problems involving inequality con-
straints. The projection of inequality constraints on a randomized matrix like B creates
linear combinations of constraints, which makes it harder to identify which constraints
are being violated and which are not. In upcoming sections, two dictionary-based ap-
proximation schemes will be studied, but the projection of residual on B is applied in
only one of them.

3.3 Dictionary methods for contact problems

Now that the feasibility of dictionary-based approximations have been established in
an unconstrained problem, we move towards inequality constrained problems. To this
end, two dictionary-based approximation methods for contact mechanics problems have
been formulated, namely the greedy active-set approach and convex-hull approximation
approach. To provide a broad overview of the features of these methods, Table 3.1 gives
a list of features of these methods. The important differences between the two methods
are bases types and the manner of enforcing constraint. These details will be discussed
along with their formulations and application to contact problems are discussed in this
section.
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Figure 3.3: Snapshots of the transport problem (3.4) for randomly sampled parametric values
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(a) FOCUSS

(b) OMP

Figure 3.4: Reconstruction errors (bars) of the transport problem using dictionary-based ap-
proximations and number of non-zero entries (×) on training and validation sets. L indicates the
target sparsity

3.3.1 A greedy active-set method for dual dictionary element selection

To solve the contact problem using a dictionary of contact pressure snapshots, a greedy
method inspired from the OMP and active set method is devised. From this point
onwards, Dd indicates a dictionary of dual snapshots of the contact problem. Consider
the following sparse problem:

min
∣∣∣
∣∣∣λ̂
∣∣∣
∣∣∣
0

(3.5a)

s.t.

[
ΦTKΦ ΦTCTDd,I
DT
d,ICΦ 0

] [
û

λ̂I

]
=

[
ΦTf
DT
d,Ig

]
(3.5b)

and DT
d (CΦû− g) ≤ τ (3.5c)

λ̂ ≥ 0 (3.5d)

where I indicates the active set and Dd,I = Dd[:, I]
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Greedy active-set
Convex hull approxima-
tion

Primal Basis type Truncated low-rank Dictionary

Dual Basis type Dictionary Dictionary

Monolithic dictionary No Yes

Iteration method Fixed point Fixed point

Constraint enforcement Active-set
Convex combinations
of non-penetrating
snapshots

Sparsity induction
Greedy activation and
disactivation of dual
dofs

Non-negative FOCUSS

Additional assumptions None
Convexity of the feasible
region

Table 3.1: Characteristics of the two dictionary-based approximation methods for contact
mechanics problems

(3.5b), (3.5c) and (3.5d) are based on the same principle as the reduced KKT con-
ditions (1.14), but applied over a dictionary Dd rather than a low-rank dual basis.
Comparing (3.5) with the generic form of sparse regression statement (3.2), the balance
equation is imposed as an equality constraint, instead of an inequality constraint where
the residual norm is limited to certain tolerance. Imposing limits on the residual norm
is usually more relevant when using random sketching, like in (3.3) when the system
is under-determined. Also, it is not straightforward to use standard sparse regression
algorithms in presence of the KKT inequality constraints (3.5c) and (3.5d). Equality
constraint can be used as long as the system is determined, which is currently the case
in (3.5b). In (3.5c), τ indicates a small penetration that has been permitted in the
algorithm, which is necessary to ignore spurious penetrations created by the low-rank
displacement basis Φ. Unless specified, the τ is set to a value in the same order of
truncation tolerance δ (see Appendix A).

The primary notion behind greedy algorithms is to enrich the approximation by a
rank-1 term in each step. For standard sparse regression problems like (3.2), the OMP
algorithm starts with an empty coefficient vector and adds a single non-zero entry in
one step. The position of the new non-zero entry is chosen by searching the vector
in the dictionary with the highest correlation to the residual. The greedy active-set
algorithm devised here performs the greedy enrichment in an almost similar way but with
a modification, i.e. the orthogonality with the violation of inequality constraint (3.5c) is
used instead of the residual of system (3.5b). More precisely, the algorithm starts with
a zero λ̂ and in each enrichment step, the dictionary column with highest correlation to
the violations of the non-penetration condition is added in the greedy enrichment. Thus,
enrichment index of the dictionary padd can be computed as:
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padd := arg max
p

Dd[:, p]
T
(
CΦûk − g

)+,τ
(3.6)

where (z)+,τ
i :=

{
zi if zi > τ
0 otherwise

, which is a hard-thresholding operator.

(3.6) can be computed more efficiently using the reduced operators Ĉ(µ, ûk−1) and
ĝ(µ, ûk−1):

padd := arg max
p

(
Ĉûk − ĝ

)+,τ
[p] (3.7)

where

Ĉ(µ, ûk−1) = DT
dC(µ, ûk−1)Φ

ĝ(µ, ûk−1) = DT
d g(µ, ûk−1)

However, to ensure that inequality constraints (3.5d) that prohibits non-negative
pressures, it is necessary to not only enrich but also to eliminate terms that violate the
constraints in each greedy step, which is simply done by eliminating the largest negative
λ̂ i.e. setting the largest negative entry to zero. The elimination index prem is computed
as:

prem = arg min
p

(
λ̂k
)−

[p] (3.8)

where (z)−i :=

{
zi if zi < 0
0 otherwise

Though the motivation for this algorithm was based on the OMP to perform the dual
dictionary element selection, the greedy active-set algorithm ends up being quite similar
to the fixed-point active-set method. In this approach, only a maximum of one vector
is activated in a given iteration thereby maintaining a small active set in intermediate
iterations. The algorithm is given in Alg. 3.2, where Steps 8 to 10 contain the enrichment
and the elimination process. In each iterative step, only one of the two operations is
performed. Due to the architecture of the algorithm, the only steps that scale with the
size of the dictionary are enrichment/elimination Steps 8 to 10. The size of mixed system
in Step 6 is not significantly influenced by the size of active set during the intermediate
iterations, thanks to the small sizes of active set I which is closely related to the sparsity
of λ̂.

3.3.1.1 Application to the Hertz problem

This section deals with the implementation of the greedy active-set algorithm for the
Hertz contact problem discussed in Section 2.4.1 of previous chapter (Fig. 2.5a). The
parametrization also remains same, i.e. the imposed displacement on the top cylinder
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Algorithm 3.2 Greedy active-set algorithm

1: Input: Queried value of parameter µ
2: Given: Primal basis Φ and dual Dictionary Dd

Reduced operators ΦTKΦ and ΦTf . can be built offline
3: Initialize: k = 0, I = ∅
4: while û and I not converge do
5: Build reduced constraint operators Ĉ(µ, ûk−1) and ĝ(µ, ûk−1)
6: Solve the linear system (3.5b)
7: Set λ̂[I]← λ̂I and λ̂[Ic]← 0 . Ic is the complementary set

Compute the largest constraint violations and enrich/eliminate accordingly:
8: if λ̂k ≥ 0 : then

padd = arg maxp

(
ĈΦûk − ĝ

)+,τ

I ← I ∪ {padd}
9: else:

prem = arg minp

(
λ̂k
)−

[p]

I ← I \ {prem}
10: end if
11: k ← k + 1
12: end while
13: Reconstruct u = Φû and λ = Ddλ̂
14: Output: u,λ

d ∈ (0, 0.3). The finite element model also remains the same.

Reduced model: Primal and dual snapshots on three training sets of sizes 12, 30,
60 and 120 are computed in the offline stage. The parametric points in each training
set Ptr are distributed uniformly in parametric space P =]0, 0.3]. The primal basis is
computed using SVD and truncated using cumulatively normalized singular values using
a tolerance δ. For the dual variable, a dictionary consisting contact pressure snapshots
is used instead of a reduced basis. A spy plot of the dual dictionary for the training set
of size 30 is shown in Fig. 3.5 for visualization purposes. A validation set Pval with 119
points, which are the mid-points of the 4th training set is used to compute reconstruction
errors.

Two instances of contact pressure reconstructions by the greedy active-set algorithm
for parametric points outside the training set are shown in Fig. 3.6. The dictionary
snapshots selected by the algorithm for the reconstruction are also shown. As expected,
only a few dictionary elements, two in this case, are selected. The two selected snap-
shots are the ones whose contact position is similar to the required contact position for
the specific instance. It indicates the greedy enrichment and elimination algorithm is
selecting the correct snapshots for reconstruction.
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Figure 3.5: A spy pattern of dual dictionary with 30 elements for the Hertz problem. The
number of rows, 79, is same as the number of dofs on the potential contact surface. The dictionary
columns are arranged in the increasing order of loading parameter d.
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Figure 3.6: Greedy active-set reconstruction of contact pressure for certain parametric instances
outside the training set of the Hertz problem. The elements of dictionary chosen by the algorithm
are shown and the reconstruction errors are given. Dictionary of size 12 is used in these examples.

Mean reconstruction errors over the validation set vs. size of the training set are
shown in Fig. 3.7a, along with the rank of primal basis. The reconstruction errors
improve by more than an order of magnitude as dictionary size is increased from 12 to
120 for the case δ = 10−10. However, such gains with over-complete dictionaries diminish
for the case δ = 10−6, especially the primal error improves only slightly. This is probably
because at δ = 10−6, the primal truncation starts to become dominant source of error,
rather than just the linear inseparability of contact pressure which seems to the case for
δ = 10−10.

The computational time is computed as the total time taken for computation of
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Alg. 3.2, excluding the time taken in Step 5. The operator construction time is excluded
because their efficient construction is not a part of this work. Mean computational time
on the validation set (Fig. 3.7c) shows an initial increase with the dictionary size, but
later settles down, but it is evident that the computational time is mostly influenced
primarily by the number of iterations (Fig. 3.7b). This can also be seen in Fig. 3.7d,
where the computational time per iteration is more or less flat w.r.t. the size of dictionary.
The small increases in computational time per iteration with dictionary size can be
explained due to the increase in the dimension of primal basis Φ, especially the case of
δ = 10−10 where the primal rank is strongly dependent on the training set size.

Detailed plots of reconstruction errors over the validation set Pval are shown in
Fig. 3.8 for primal truncation tolerance δ ∈ {10−10, 10−8, 10−6}. Each curve corresponds
to one of the training sets. Naturally, a larger training set is expected to have a lower
(or at least the same) reconstruction error level. This anticipation is marginally satisfied
in the case of δ = 10−10, but not in the case of δ = 10−6, where there are certain regions
where the dual error for larger training sets is higher than a smaller training set. This
happens due to the spurious penetrations discussed previously (and in Appendix A) and
implies that even after relaxing the constraint by value of τ (see (3.5c)), some spurious
selections are still possible for higher values of δ. Also, for all cases, the errors tend to
be larger in general near d = 0.0, as the contact is sensitive to the parameter d around
this region.

Sparsity pattern of the dual reduced dofs λ̂ (i.e. the coefficients of the dual dictionary
Dd) resulting from the greedy active-set approach for the training set of size 30 is shown
in Fig. 3.9. As the snapshots in Dd are arranged in increasing order of d, most of
the columns of the sparsity pattern have two close non-zeros, indicating that nearest
two snapshots to the targeted reconstruction were chosen by the algorithm. Spurious
selections are seen in some rows, but the values of corresponding coefficients are quite
small and do not have significant impact on solution.

3.3.1.2 Application to the Ironing problem

Unlike the Hertz problem, other contact problems might exhibit larger changes in the
contact zone, like the ironing problem from Section 2.4.2 (Fig. 2.10). The effects of the
strong variations of contact zone on the inseparability of the contact pressure were also
discussed. Therefore, over-complete dictionaries might be more significant in generating
an effective reduced model.

The parametrization of the horizontal displacement dx of the iron over the slab is
considered for the reduced model. The vertical displacement dy = 0.3 is a fixed value.
Given length of the slab L, the parametric space is defined by P := {dx | 0 ≤ dx ≤ L}.
To study the influence of size of training sets on the reconstruction quality, training sets
Ptr are built in a nested manner which allows studying the evolution of reconstruction
errors as a function of training set size i.e. size of the over-complete dictionary. Each
nested level has uniformly distributed points over the parametric space P. The number
of points is nearly doubled in the next nested level which also contain the points from
the current level. Therefore, at the n-th nested level, 2n + 1 snapshots are computed,
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Figure 3.7: Evolution of (a) Mean reconstruction (relative) errors and primal rank, (b) Mean
number of iterations, (c) Mean computation time and (d) Mean computation time per iteration
with training set size for the Hertz problem. The mean reconstruction error is computed by taking
mean of reconstruction errors over the validation set Pval. Primal and dual errors are computed
using H1 and L2 norm, respectively. Curves correspond to different truncation tolerance δ for
the primal basis, for values 10−6, 10−8 and 10−10. Note that computation time excludes time
for construction of non-linear operators.
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(b) Primal and dual errors for δ = 10−8
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Figure 3.8: Detailed primal and Dual reconstruction errors for the Hertz problem using the
training sets 1,2 and 3. Validation set is common to all curves, consisting of 60 equispaced
points in P. Each subfigure corresponds to a different truncation tolerance δ for the primal
basis. Primal and dual errors are computed using H1 and L2 norm, respectively. Cross-marks ×
indicate points where the greedy active-set algorithm did not converge to the defined tolerance
10−5
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Figure 3.9: Sparsity of dual reduced dofs λ̂ selected by greedy active-set method for recon-
structions in validation set of the Hertz problem using dual dictionary of size 30. Dots indicate
the non-zero positions.

and the contact pressure snapshots constitute the dual dictionary Dd. The primal basis,
however, is truncated by filtering the singular values by a fixed tolerance δ, and therefore
its rank must be less than 2n. Training sets of nested levels n = 3 to n = 7 are used to
build the primal RB and the dual dictionary. The validation set Pval contains all points
from nested level n = 8 that are not present in level n = 7.

Fig. 3.10 shows two instances of reconstruction of contact pressure along with the
dictionary elements that were chosen by the algorithm. The algorithm selects snapshots
that are closest to the required contact position. This can also be seen in Fig. 3.11, where
the sparsity of dual dofs shows a clear selection pattern. Unlike the sparsity pattern
of Hertz problem (Fig. 3.9), the ironing problem does not display spurious snapshot
selections; possibly due to the stronger dependence of contact position of the ironing
problem; unlike Hertz problem where contact pressure curves were centered around the
same position. Therefore, the activation process is less ambiguous and less sensitive to
primal truncations for the case of ironing problem.

Fig. 3.12 shows the evolution of reconstruction (relative) errors, primal basis rank,
number of iterations and computation time over the validation set Pval vs. training
set nested levels (log2(#Ptr)). Means of the reconstruction related quantities over the
validation set is shown for primal truncation tolerances of 10−6, 10−8 and 10−10. The
dual error improves, although slowly, with increasing size of dictionary, but the primal
error shows signs of stagnation near level 6 and 7 and even earlier for the case of δ = 10−6.
Errors for δ = 10−8 and 10−10 are almost the same, possibly because the inseparability
of contact pressure and the finite size of dual dictionary are important sources of error.
Conversely, in case δ = 10−6, the primal truncation seems to have more influence as
primal error stagnates early, similar to the observations in case of the Hertz problem.

Moreover, the number of iterations and consequently the computation time seems to
increase significantly with the dictionary size, in contrast to the Hertz problem where
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this relation was comparatively flat. A possible explanation for this behaviour could
be that the larger dictionaries of the ironing problem, coupled with stronger parametric
dependence of contact pairs, forces the greedy active-set to perform more iterations to
find the appropriate dual dictionary candidates and contact pairs. Mean computation
time per iteration shows trends that are a bit similar to the primal rank i.e. both
primal rank and computational time per iteration are flat for δ = 10−6, whereas both
are monotonically increasing for δ = 10−10. This was an expected observation since a
large part of the system (3.5b) is related to the dimensionality of the primal basis Φ.
The size of the dual dictionary, even though not truncated, does not seem to have any
significant influence on the computation time per iteration.
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Figure 3.10: Greedy active-set reconstruction of contact pressure for certain parametric in-
stances of the ironing problem. The dictionary nested level, dictionary elements chosen by the
algorithm and the reconstruction errors are also shown.
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Figure 3.11: Sparsity of dual reduced dofs λ̂ selected by greedy active-set method for various
reconstructions of ironing problem using dual dictionary of nested level 5
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Figure 3.12: Evolution of (a) mean reconstruction (relative) errors and rank of primal basis
(b) mean number of iterations, (c) mean computation time and (d) mean computation time
per iteration with training set size for the Ironing problem. The mean reconstruction error is
computed by taking mean of reconstruction errors over the validation set Pval. Primal and
dual errors are computed using H1 and L2 norm, respectively. Curves correspond to different
truncation tolerance δ for primal basis, for values 106, 10−8 and 10−10. Note that computation
time excludes time for construction of non-linear operators.
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3.3.2 A non-penetrating convex hull approach for monolithic dictio-
naries

As discussed in Remark 1.1, an interesting feature of mixed ROMs for incompressible
flow problems is the computation of divergence-free RB. The advantage of this feature
is that incompressibility constraint does not need to be explicitly enforced in the re-
duced problem. Moreover, orthogonality of a divergence-free velocity subspace and the
irrotational pressure gradient term causes the pressure terms in the reduced problem to
completely vanish (see [59, 60] for details). Computation of a divergence-free RB does
not require any special treatment, as the divergence-free property of the training set
snapshots is easily preserved in the resulting reduced subspace.

In this section, we attempt to extend a similar notion of constraint satisfying solu-
tion space to contact mechanics. But the approach is quite different compared to the
incompressible flow problem because the nature of constraint is different. The incom-
pressibility constraint, an equality constraint, applies globally over the domain; whereas
the non-penetration constraint, an inequality constraint, applies locally on the contact
surfaces and can be either active or inactive locally. Also, the displacement and contact
pressure do not possess any special mathematical properties that cause the pressure term
to vanish, as in the case of incompressible flow. In fact, the approach presented in this
section, a reduced solution “space” is defined that naturally satisfies the non-penetration
condition, but does not result in elimination of the contact pressure.

Unlike the greedy active-set algorithm previously explored which used POD basis
for displacement and a dictionary for contact pressure, the following approach utilises a
monolithic dictionary whose columns are snapshots consisting of both displacement and
contact pressure. The reason for using a monolithic dictionary will be become evident
in the formulation of this approach. Moreover, this method allows the residual to be
projected on a low-dimensional space like it was done in the unconstrained problem in
Section 3.2.2. It also permits the utilisation of sparse regression methods discussed in
Section 3.2.1, provided the non-negativity constraint can be enforced. In this work, the
non-negative version of the FOCUSS algorithm is used.

Consider a contact problem where the contact pairs are constant and independent
of the parameter of the problem. The discrete inequality constraint can be expressed
using matrices that do not change with the displacement field. The feasible region K in
the displacement solution space can be defined as:

K := {u ∈ V | Cu− g ≤ 0} (3.9)

As the operators C and g are linear, it is easy to demonstrate the convexity of K. This
would mean that a convex combination4 of non-penetrating snapshots would naturally
satisfy the inequality constraint. The implication here is that if the reduced model
explores the convex hull5 of the training set snapshots, the inequality constraint need

4A convex combination is a linear combination with non-negative coefficients that sum up to unity
5Convex hull of a set of points (or snapshots) is the set containing all convex combinations of the

points. In other words, it is also the smallest convex set that envelopes the set of points.
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convex feasible
zone

obstacle convex hull

snapshots

Figure 3.13: Illustration of non-penetrating property of convex hull. The non-penetration
constraint in (3.9) is linear, convex and is made of segments corresponding to each element of
the constraints Cu = g. In a high-dimensional problem, each segment of the constraint can be
thought of as a hyperplane. The convex hull, which is simply a convex enclosure of snapshots,
can also be thought of as a high-dimensional set.

not be explicitly enforced. This notion is visually shown in Fig. 3.13, where the convex
hull of training set snapshots does not violate the convex non-penetration constraint.
This property of convexity can be exploited to build efficient reduced models, if the
following hypothesis holds:

Hypothesis 3.1 : Convex Subset hypothesis

Given a parametrized high-dimensional inequality-constrained problem with a con-
vex feasible set K, its solutions lie in a low-dimensional convex subset inside K.

The Convex Subset hypothesis is an extension of the idea behind the low-rank hy-
pothesis to inequality-constrained problems with convex feasible regions. This hypothesis
allows us to explore a solution set limited to the convex hull defined by the snapshots
without worrying about the non-penetration conditions. Note that the convexity of
feasible region assures that any solution in the convex hull of displacement snapshots
still lie inside the feasible region, independent of the Hypothesis 3.1. Therefore, in this
approach based on the convex hull of the dictionary, the displacement field candidates
built using convex combinations of the primal dictionary Dp will be explored:

u ≈ Dpû

s.t. 1T û = 1

û ≥ 0

As the non-penetration constraint will be satisfied naturally by all candidates in the
convex hull of dictionary snapshots, a dictionary-based approximation can be computed
using coefficients û that satisfy equilibrium equations. Therefore, the objective is to
minimize the following residual:

r(û, λ̂) = K(µ)Dpû+ CT (µ,u)Ddλ̂− f(µ)
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As mentioned before, a monolithic dictionary will be used in this problem, in which each
column consists of contact pressure snapshot stacked under the displacement snapshot.
This means the coefficients û and λ̂ will be same and will be denoted by α here onwards.
Use of monolithic dictionary not only reduces the number of unknowns, but also makes
the problem of minimizing the residual ||r(α,α)|| well-defined. Moreover, the residual
can be projected on a low-dimensional subspace of the colsp(Dp), described by the
matrix B containing its basis, while also adding sparsity constraints to the unknown α,
like in (3.3). Thus, the problem can be stated as:

min ||α||p (3.10a)

s.t.
∣∣∣∣BTr(α,α)

∣∣∣∣ < ε (3.10b)

1Tα = 1 (3.10c)

α ≥ 0 (3.10d)

As the constraint (1.9c) is not imposed directly in this approach, the non-penetration
condition is satisfied only because of the convexity of the feasible region. Thus, the equal-
ity condition CA(µ,u)u = gA(µ,u) for active constraints is also not imposed explicitly.
Consequently, the complementary slackness KKT condition (1.9d) may not be satisfied
exactly. This will be seen in the upcoming numerical examples.

The nnFOCUSS Algorithm: To solve the convex hull approximation problem (3.10),
the non-negative version of the FOCUSS, the nnFOCUSS algorithm [47, 75] is used. The
nnFOCUSS algorithm works by computing an appropriate relaxation parameter for each
iterative update that maintains non-negativity. After computation of new coefficients
at Step 5 of the Alg. 3.1, the relaxation step of nnFOCUSS algorithm is performed as
follows:

if min(αk) < 0 then
∆α = −(αk −αk−1)−

αk ← αk−1 + min
(
αk−1

∆α

)
∆α . Element wise division

end if

The algorithm must be initialized using a non-negative coefficients α0, which is computed
using the non-negative least squares [76] solution (which is not sparse, in general). The
rest of the algorithm is same as standard FOCUSS. The problem (3.10) can be solved
by plugging the following inputs in the nnFOCUSS algorithm:

D =

[
BTKmono

1T

]
, x =

[
BTf(µ)

1

]
, α0 = nnls(D,x)

where Kmono is the operator for the monolithic residual r(α,α):

Kmono = K(µ)Dp + CT (µ,u)Dd
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nnls indicates the non-negative least squares. An open source implementation of nnls

provided in SciPy package [77] is used.
In this thesis, analytical validation for the convexity of feasible set and Hypothesis 3.1

will not be given. Instead, the following tests, that apply the leave-one-out approach
on the training set snapshots, are proposed to analyze if these conditions hold within a
reasonable error:

Test A. Even if the operators C(µ,u) and g(µ,u) are non-linear and the feasible region
K(µ) shows a dependence on the parameter µ, it may be reasonable to assume
a nearly convex feasible set if the contact pairs do not change drastically. For
such cases, the convexity of feasible set can be checked numerically using the
training set snapshots and the corresponding non-linear operators. Given the
constraint, C(µ,u)u − g(µ,u) ≤ 0, the cross penetration (CrPen) error of the
k-th dictionary element d across all constraints encountered in training set is
computed as follows:

εCrPen[k] = max [C(µ, d̃)d− g(µ, d̃)]+,0 ∀d̃ ∈ D̃p (3.11)

with d = Dp[:, k] and D̃p = Dp\d. If all values of εCrPen are sufficiently small, it
would be reasonable to assume the feasible set K(µ) to be convex. The notation
[·]+,0 has the same meaning as in (3.6).

Test B. The Hypothesis 3.1 can be verified by approximating the left out snapshot with
the convex hull of the rest of the snapshots using least-square criteria. The ap-
proximation error, referred to here as the convex hull least square (CHLS) error,
of the leave-one-out approach can be used to assess the existence of hypothetical
low-dimensional convex set. Each dictionary element d is approximated using
the convex hull of D̃p and the error is recorded:

εCHLS[k] = min
α

∣∣∣
∣∣∣D̃pα− d

∣∣∣
∣∣∣
2

||d||2
s.t.1Tα = 1

(3.12)

A high value of εCHLS might occur due to lack of low-dimensional convexity
or due to scattered training set data. The εCHLS can be visualized using a low-
dimensional problem shown in Fig. 3.14, where a point mass moves is permitted
to move between a V-shaped obstacle. When leave-one-out approach is applied
to a set of five snapshots, εCHLS is high when the snapshot in the corner is left out.
On the other hand, a low value of εCHLS assures that it is possible to reconstruct
reasonably using convex hull of the dictionary.

3.3.2.1 Illustrative example: elastic rope-obstacle problem

The convex hull approximation is first demonstrated in a problem where constraint
operators are constant, so that convexity of feasible space is assured. The elastic rope-
obstacle problem form Section 2.2 is considered, but with a different parametrization.
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Figure 3.14: Illustration of the Test B with a point mass moving in a V-shaped obstacle forming
a convex feasible region. Two leave-one-out instances and the convex hull of the corresponding

D̃p are shown. εCHLS is a measure of distance between the left out snapshot and the convex hull

of D̃p. The leave-one-out instance 1 has a higher εCHLS than the instance 2.

In this case, the elasticity ν(x) of the rope is a function of parameter γ1.

ν(x)∇2u(x) = f on x ∈ [0, 1]

u(0) = u(1) = 0

u(x) ≥ −0.2(sin(πx)− sin(3πx))− 0.5

where

ν(x) =

{
γ1 if x < 0.5
30 otherwise

on γ1 ∈ [10, 50]

(3.13)

Training set: γ1 ∈ Ptr = {10, 15, 20 . . . 45, 50}
Validation set: γ1 ∈ Pval = {12.5, 17.5, 22.5 . . . 42.5, 47.5}

The monolithic dictionary with 9 snapshots corresponding to training set defined
above is computed in offline stage. The constraint is linear and independent of the
parameter, and therefore, the feasible region is convex, which eliminates the necessity of
Test A. Hence, only the Hypothesis 3.1 is tested using leave-one-out approach (Test B).
The test results are shown in Fig. 3.15, indicating that hypothesis holds to a reasonable
level.

The low-rank matrix B on which the residual will be projected is computed using
left singular vectors of the truncated SVD B ← svd(Dp, δ), with tolerance δ = 10−7.
The reconstruction errors and resultant sparsity of the solution in the training set and
a validation set is shown in Fig. 3.16. The training set is reconstructed within near
numerical precision. In the validation set, the algorithm chooses the training set points
that are nearest to γ1 to create the best possible reconstruction with the given dictionary.

As discussed earlier, the KKT conditions, except the non-negativity of contact pres-
sure, is not explicitly imposed. However, in this particular case with perfectly convex
feasible region, one would expect that at least the non-penetration would be satisfied
accurately. However, the linear combinations are not perfectly convex as the condi-
tion (3.10c) is satisfied only to a certain precision. The observed orders of these quanti-
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Figure 3.15: Test B: testing the Hypothesis 3.1 for the given training set of elastic rope-obstacle
problem (3.13). Test A for convexity of feasible set is not necessary as the constraints are linear.

ties during reconstruction are given in Table 3.2. The validation set reconstructions in
fact show penetration and non-zero complementary slack in the order similar as that of
the deviation from convex combinations i.e. |1Tα− 1|.

γ1 ∈ Ptr γ1 ∈ Pval
|1Tα− 1| O(10−13) O(10−3)

Penetration O(10−16) O(10−4)

Complementary Slack O(10−15) O(10−3)

Table 3.2: Observed values of various compliances for the elastic rope-obstacle problem with
parameter γ1.
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Figure 3.16: Convex hull reconstruction errors for elastic rope-obstacle problem with parameter
γ1 using B ← svd(Dp, δ = 10−7). Crosses × indicate achieved sparsity (w.r.t. right y-axis).
Primal and dual sparsity are naturally equal as the dictionary is monolithic.
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3.3.2.2 Demonstration on over-complete dictionaries of the Hertz problem

Hertz problem with same parametrization and training sets from Section 3.3.1.1 is solved
using the convex hull approximation. For projecting the residual on a low-rank subspace,
the matrix B is computed in two different ways:

B← svd(Dp, δ) or B← orth(DpR)

where R is a matrix with random entries from a uniform distribution (3.3c). As discussed
in Section 3.2.2, this matrix is used to create a smaller matrix by randomly combining
dictionary columns.

As the constraint operators C and g show non-linear dependence w.r.t. u, it is
necessary to test the convexity of the feasible set K(µ) (Test A). All CrPen errors (εCrPen)
were found to be quite small, in the order of O(10−7) for all combinations of d and
d̃ in (3.11). Test B is performed to check the Hypothesis 3.1, with results shown in
Fig. 3.17. The reconstruction errors for the reduced model can be expected to be more
than the εCHLS shown in the figure.
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Figure 3.17: Test B: testing the Hypothesis 3.1 for the various training sets of the Hertz
problem

For large dictionaries, it makes sense to compare the performance of the method
using various δ and sizes of R. The mean reconstruction errors over the validation set
vs size of dictionaries can be seen in Fig. 3.18. The use of randomized matrices R
naturally generates more error than truncated SVD, as the truncated SVD selects the
best representative subspace for the given training set. Similar to the greedy active-set
method of Alg. 3.2, the improvement in error flattens out for large dictionaries. On
the other hand, the number of iterations and computation time seems to be nearly
independent of the dictionary size.

3.3.2.3 The non-convex case of the Ironing problem

The convexity test for the feasible set (Test A) is performed on the Ironing problem.
Since, the contact zone changes significantly, the test performed using the training set
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Figure 3.18: Convex hull reconstruction errors for the Hertz problem using different dimensions
of B. The penetration in all reconstruction cases is observed to be in order of 10−8. The case
of rank(B) = 15 and #Ptr is not possible, hence not shown in (b). Primal and dual errors are
computed using H1 and L2 norm, respectively.

snapshots fails as expected. The CrPen error was found in O(10−1). Therefore, the
ironing problem cannot be solved using the current formulation of convex hull approach.
The non-convexity can also be demonstrated by a convex combination that violates
the non-penetration condition significantly, as shown in Fig. 3.20. For the two snapshots
shown in this figure, the slab surface is deformed at different positions. The convex com-
bination where the two displacement field snapshots were equally weighted, generated a
deformed configuration with the slab being deformed at the two locations corresponding
to each of the snapshots. But no deformation was generated at the position of the iron,
causing penetration at that position. In this case, local behaviour of the displacement
field leads to the non-convexity of the ironing problem.
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(a) Num. iterations, B← svd(Dp, δ)
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(c) Comp. Time, B← svd(Dp, δ)
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Figure 3.19: Mean number of iterations and computation times for Hertz problem using convex
hull exploration with different dimensions of B. Note that computation time excludes time for
construction of non-linear operators.

3.4 Discussions

The application of dictionary methods was proposed to mitigate the challenges posed by
linear inseparability of the contact pressure. As the lack of local information prevents
the creation of a robust RB, over-complete dictionaries have the potential to preserving
local information computed in the offline stage, thereby providing a better chance at
resolving the position of contact more effectively. The same is demonstrated by building
reasonably accurate reconstructions using dictionary methods.

For the reconstructions of Hertz problem using the greedy active-set algorithm, the
reconstruction errors decay consistently when richer training sets are used, and the
computational time per iteration seems to be fairly constant, but change slightly with
the primal rank.

The case of ironing problem where the contact position changes significantly is also
considered. However, the decay of reconstruction errors vs. size of dictionary curves were
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(a) Snapshot A (b) Snapshot B

(c) A convex combination of snapshots A
and B

Figure 3.20: Demonstration of the non-convex nature of the ironing problem. Two snapshots
from training set of the ironing problem and a convex combination of the snapshots that violates
the non-penetration condition

found to be flatter compared to the Hertz problem. This is probably due to stronger
dependence of contact position on the parameter of the problem. Though the dictio-
nary size didn’t have any significant influence on the computational time per iteration,
the number of iterations increased significantly for larger dictionaries in case of ironing
problem.

Comparing the two dictionary methods: the greedy active-set algorithm and the
convex hull approximations, the reconstruction errors of the Hertz problem were better
using the greedy active-set algorithm (see Figs. 3.7a and 3.18). This observation can
be possibly attributed to the use of the monolithic dictionary in case of the convex hull
approximations; which forced common interpolation coefficients for the displacement as
well as contact pressure. In particular, the convex hull approach shows large errors for
small training sets, as the convex hull of a small set of snapshots might be a very small
subregion in the entire solution space.

Another possible source of error in convex hull approximations is that the snapshots
in the dictionary may not be the best ones to explore the low-dimensional convex subset.
On the other hand, the computational time (and number of iterations) for the convex
hull approach seems to be more independent of dictionary size, compared to the greedy
active-set algorithm (see Figs. 3.7b, 3.7c and 3.19), thanks to the elimination of active
set selection process.

In case of the convex hull approach, the reconstruction error seems to be more sen-
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sitive to the size of dictionary than the truncation tolerance/rank of the orthogonal
basis B. Also, for the greedy active-set method, the sensitivity to truncation seems to
be low between 10−10 and 10−8. Moreover, in both approaches, the computational time
per iteration is nearly flat when the rank is low. Thus, one can infer that that large
dictionaries and moderate truncation tolerances / rank of B are an optimal choice.

One could argue that the number of iterations increases significantly with size of
dictionary in case of the ironing problem solved using the greedy active-set method
(Figs. 3.12b and 3.12c), however, this is related to the inherent non-linearity of the
contact problem. The number of iterations could possibly be reduced by using smarter
initialization of the contact pairs according to the queried parametric value rather than
the initializing with reference state. For the convex hull approach, the primary disad-
vantage is the assumption of convexity of the feasible region, limiting the applicability
to convex problems. The non-convex nature of ironing problem meant that convex hull
approximation method could not be used in this case.

3.5 Perspectives

3.5.1 Efficient construction of constraints

In the Alg. 3.2, Step 5 can be the most expensive step if full operators are built from
scratch and then projected on the reduced bases. The constraint operators Ĉ and ĝ show
non-linear dependence on the displacement field û and therefore must be reconstructed
in every iteration. An efficient construction of the constraint operators for low-rank
methods is discussed in [13] using the Empirical Interpolation Method (EIM), where
affine decompositions of the distance functions are computed offline. This enables effi-
cient construction of constraint operators in online phase by sampling distance functions
at a few points on the contact surface, followed by computing the coefficients of the
affine form.

The distance function k(µ,v,v) of (1.2) when expressed in discrete form (as discussed
in [13]) turns out to be a sparse vector. The spy pattern of this vector can be a strong
function of the parameter when contact area changes significantly. This is caused by the
dependence of the distance function on the contact pairs established using the current
configuration. Hence, it is bound to exhibit some form of linear inseparability just like
contact pressure. Therefore, it is possible that linear inseparability issues might also
appear in generating an effective affine decomposition.

3.5.2 Application of sketching methods to dictionary-based approxi-
mation

As discussed briefly in Section 3.2.2 and in detail in [73], random sketching can be used
to project the residual of a dictionary-based approximation problem on a randomly sam-
pled subspace of the dictionary. By controlling the size of the subspace, one can control
the cost of solving the dictionary-based approximation problem, relatively independent
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of the dictionary size. The difficulties in applying these techniques to contact pres-
sure dictionary appear due to the inequality constraints. If random sketching methods
are applied, the inequality constraints are linearly combined in random fashion leading
to loss of information on violation (penetration) and satisfaction (non-penetration) of
constraints.

3.5.3 Smart snapshot selection for Convex hull explorations

RB methods equipped with error estimators sample the parametric space efficiently. Sim-
ilarly, it might be possible to extend the same notion to efficiently sampling the convex
feasible set. The convex hull approximations might be more robust if the snapshots lie
on the edges/vertices of the low-dimensional convex subset presumed in Hypothesis 3.1.
For e.g. convex hull approximation for the low-dimensional problem in Fig. 3.14, it is
important to include the snapshot near the corner of the feasible region in the training
set for a robust reconstruction. However, deducing the corners in a high-dimensional
problem may not be geometrically intuitive as the low-dimensional problem in the figure.
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pressure manifold

In Section 3.1, the philosophy of dictionary-based approximation methods for contact
problems was discussed. The principal argument in favour of over-complete dictionaries
was the lack of low-rank structure due to linear inseparability of the contact pressure
field, which has two consequences: (a) a large number of snapshots might be necessary to
truly discover the underlying structure of the contact pressure field, and (b) linear model
order reduction methods cannot capture local effects of contact pressure in a low-rank
subspace. The focus of Chapter 3 was on efficient handling large dictionaries of contact
pressure snapshots in the online phase, but does not address the high offline cost of
creating such dictionaries. This chapter focuses on the use of non-linear dimensionality
reduction methods as means to improve reconstruction errors without paying the large
computational cost of creating over-complete dictionaries.

4.1 Linear Subspaces vs. Low-dimensional Manifolds

Many of the dimensionality reduction methods work on the principal assumption that the
underlying physics occupies a subset of the solution space defined in the full model. At
this point, the question arises about the nature of the aforementioned subset of solution
space. Low-rank methods assume that this subset is a low-dimensional linear subspace1

of the full solution space. The assumption that such a low-dimensional subspace exists
implies that the solution of any point in the particular parametric space may be approx-
imated using a linear combination of a limited number of precomputed basis vectors
that naturally lie in this subspace. As seen in Chapter 1, methods like Proper Orthogo-
nal Decomposition (POD) are capable of extracting a basis for the linear subspace that
describes the underlying physics.

However, in some problems the parametric solutions occupy a low-dimensional mani-
fold, but not necessarily linear subspace. Consequently, it is not possible to compute a
robust low-rank basis, as shown for the contact pressure field in Chapter 2. Nonetheless,

1usually the term “linear” is dropped in unambiguous cases
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there exists a paradigm called non-linear dimensionality reduction that aims at comput-
ing the underlying structure by finding the associated non-linear behaviour. A subclass
of non-linear dimensionality reduction known as manifold learning is quite extensively
used in the analysis and visualisation of high dimensional datasets [78, 79]. The fun-
damental idea behind manifold learning is similar to low-rank methods and is known
as the manifold hypothesis [80]. Roughly speaking, a manifold can be described as an
n-dimensional space that is globally non-linear in general but locally resembles a linear
vector space.

The manifold hypothesis assumes that high-dimensional data sourced from practical
applications often lie in low-dimensional manifolds. The low-rank hypothesis is a special
case of the manifold hypothesis involving the assumption of the low-dimensional manifold
being a linear subspace. Manifold learning methods rely on finding the non-linear low-
dimensional manifold within the high-dimensional data. A well-known application of
manifold learning is the case of a data set containing gray-scale images of an object
rotated by various angles. Linear interpolation methods like PCA fail to reduce this
type of data, but manifold learning methods can extract the inherent one-dimensional
space [78, 79].

To better approximate the manifold structure of a parametrized problem, partition-
ing of the parametric domain [81] and a local reduced basis methods [82] have been
explored. Interpolation in the tangent space to the Grassmann manifold structure have
been used to construct reduced models with a wide parametric range [83].

One of the most commonly applied non-linear dimensionality reduction techniques
in the parametrized ROMs is the kernel methods [84–86]. Kernel interpolation methods
along with greedy algorithms to create nested training sets to create efficient surrogate
models are discussed in [84]. The kernel-PCA (kPCA) approach can also be used for the
computation of intrinsic parameters that are not explicitly included in the mathematical
model [85]. An application of kPOD to an advection-diffusion problem with inseparable
nature can be found in [86], where the effectiveness of kernel-based method is shown
using the higher concentration of variance in the first singular values of kPOD compared
to the case of linear POD.

A known drawback of kernel-based methods and some other manifold learning tech-
niques is that backward mapping, i.e. reconstruction of a high-dimensional entity from
low-dimensional data is not as trivial as it is done in linear dimensionality reduction
methods such as PCA. Usual the reconstruction is an approximation to the local tan-
gent space of the manifold, computed using a linear combination of snapshots with
weights computed by employing a minimization of a discrepancy functional criteria [87].
An improved approximation based on a quadratic tangent space is discussed in [86].

Hyperbolic systems are often associated with moving discontinuities, which also leads
to lack of a linear subspace. An approach involving the transformation of the physical
variable has been used in such problems to separate the discontinuous and continuous
behaviour [88]. A related approach aimed at generating transformed snapshots thereby
aligning the discontinuities has been demonstrated on Burger’s equation [89]. As it will
be seen, the ideas given in this chapter have similar motivations of aligning the contact
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pressure snapshots, but without transforming the physical variable.

4.1.1 Contact pressure as a non-linear manifold

In Chapter 2, qualitative and quantitative arguments about the linear inseparability of
contact pressure have been made. The lack of low-dimensional linear subspace, i.e. a
low-rank subspace for contact pressure was demonstrated. In this section, we discuss
the idea of contact pressure lying in a low-dimensional non-linear manifold. Looking
back at Fig. 2.5b and Fig. 2.11, the snapshots in respective figures have similarities that
are evident intuitively. Given these similarities, there is a strong possibility that these
snapshots exist in a low-dimensional non-linear manifold.

This intuitive hypothesis can be supported by Fig. 4.1. Contact pressure snapshots
of the ironing problem are shown by the lines as a function of the parameter d (the
horizontal displacement of the iron), and the green translucent surface is generated
using the surface plot of the same data. One can intuitively see that the contact pressure
is a non-linear function of just one parameter, which happens to be also the physical
parameter d in this case. The fallacy of low-rank methods is that they attempt to perform
a linear interpolation in direction d, when in fact the relationship is non-linear. The idea
that will be exploited in this chapter is that an appropriate non-linear transformation
applied on this surface in a way that allows interpolation along the “aligned” direction
shown in the figure. This will possibly improve the linear separability and reducibility.

Figure 4.1: Visualization of contact pressure non-linearity in ironing problem. The dimension
x ∈ Γ is the coordinate on contact surface, and d ∈ P is the coordinate on the parametric
domain. The arrow shown in the figure points to a direction in which snapshots are “aligned”
along which the snapshots are, possibly, linearly separable.
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4.2 Dimension warping

The core idea in manifold learning methods (such as kPCA) is that linearly inseparable
data can be appropriately mapped into a higher dimension where it is relatively more
separable. The mapping to high-dimensional space has to be essentially non-linear, since
a linear mapping will not resolve the inseparability issues.

Consider a non-linear mapping from the spatial domain of contact surface Γ to a
warped domain Γ̃. The warped domain Γ̃ need not admit a physical interpretation.

ϕ(µ, ·) : Γ 7→ Γ̃

ζ ← ϕ(µ, x)
(4.1)

where ζ is a coordinate in Γ̃. The notation x̃(µ, ζ) is used to indicate x that maps to ζ.

A qualitative argument can be made regarding an effective linear behaviour in Γ̃
space. The mapping ϕ must warp the spatial dimension so that the regions with non-
zero contact pressure must be mapped to a common warped region, and the gap (non-
contact) regions must be mapped to other regions in warped space. In other words, let
the warped space be a union of disjoint sets, Γ̃ = Γ̃c ∪ Γ̃/c, then for every pair (x, ζ) the
mapping ϕ must satisfy the following:

ϕ(µ, ·) : Γ 7→ Γ̃
∣∣
{
ζ ∈ Γ̃c if λ(µ, x) > 0

ζ ∈ Γ̃/c if λ(µ, x) = 0
(4.2)

where Γ̃c and Γ̃/c are the regions where contact and no-contact zones are mapped re-

spectively. Any function f defined on Γ has an equivalent f̃ defined on Γ̃ domain and
can be related to each other with the following relation:

f̃(ζ) = f(x)

Remark 4.1 : Preserving the split of contact and gap zones

Extending the above qualitative argument to the case where the contact pressure
snapshots have multiple disjoint regions of contact and gap zones, each subregion
should be mapped to corresponding subregions in warped space. For e.g., in the
ironing problem, each snapshot can be split into three zones: one contact zone
and two gap zones. Thus, there should be three disjoint zones in warped space
corresponding to each zone of the original space.

4.2.1 Dynamic Time Warping

It is not straightforward to compute the mapping ϕ(µ, ·) and the warped space Γ̃ with
the desired properties discussed in the previous section. Algorithms that identify regions
of similarities between two signals can prove to be useful to generate mappings that
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improve separability. One such method, known as Dynamic Time Warping (DTW), is
an algorithm built to measure similarity between two discrete signals containing similar
but displaced features. The algorithm is named so because it was built for measuring
similarities in temporal sequences involving speech or motion [90, 91]. Other methods
exist that deals with sequence similarities, such as elastic matching [92]; but they are not
studied in this thesis. In this section, we illustrate the application of DTW to generate
mappings that satisfy the conditions specified in (4.2).2 Though only unidimensional
DTW has been explored here, it is extendable to higher dimensions [93].

The DTW algorithm works on two given signals and computes similarities based on
distances between pairs of points. It matches each point on the first signal to at least
one point on the second, and vice-versa. A detailed explanation of DTW can be found
in [90] and Python implementations can be found in the dtw module [94]. The mapping
ϕ(µ1, x) and ϕ(µ2, x) generated by DTW is described by indices of the discretization of
the coordinate x. This is illustrated using a simplified example.

An illustration of DTW: Consider a set of n discrete points x in [0, 1] and two discrete
vectors λk ∈ Rn, k ∈ {1, 2}. For a simple illustration, the vectors are chosen such that
each has a peak (with value 1.0) at different positions surrounded by vanishing areas
(values are given in Table 4.1a). The DTW alignments (computed using [94]) are given
by indices Ik ∈ Rñ. The index at I1[m] is matched to the index at I2[m] of respective
λ vectors (in Python notation). Usually ñ ≥ n, where the equality holds if alignment
happens to be a one-to-one mapping.

The alignments are given in Table 4.1b and are shown graphically in Fig. 4.2. One
can see that the alignments connect not only the peaks of the two vectors, but also the
vanishing areas on the either sides as well. The alignments Ik are equivalent to ϕ(µk, ·)
of (4.3), the mapping to warped coordinate ζ. The warped snapshots λ̃k = λk[Ik] and
the warped spatial coordinate x̃k = x[Ik] of dimension ñ are shown in Fig. 4.3. The
DTW warped coordinate ζ can be simply expressed as set of indices {1, 2 . . . ñ}.

Variables Input Values

x [0, 0.25, 0.5, 0.75, 1]

λ1 [0, 1.0, 0, 0, 0]

λ2 [0, 0, 0, 1.0, 0]

(a) Data

Alignments Observed values

I1 [1, 1, 1, 2, 3, 4, 5]

I2 [1, 2, 3, 4, 5, 5, 5]

(b) DTW alignments

Table 4.1: Input variables values and the observed DTW alignments for the illustrative example

Though a detailed explanation of the DTW algorithm is beyond the scope of this thesis,
the major features of uni-dimensional DTW are listed here:

1. The first (and the last) points of the two input vectors are always connected, even

2Though the DTW algorithm was originally intended for temporal data, here it will be used to warp
spatial dimension.
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Figure 4.2: DTW illustration: Vectors λ1 and λ2 and their DTW alignments (dotted). Note
that the vectors are offset in y-direction for illustration purposes.
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Figure 4.3: DTW illustration: λ̃ and x̃ vs. warped coordinate ζ

if they are connected to other points. In other words, Ik[1] = 0 and Ik [ñ] = n for
any inputs.

2. The alignments give indices in a monotonically non-decreasing manner i.e. Ik[j +
1] ≥ Ik[j], meaning that the alignments shown in Fig. 4.2 never cross each other.

3. Roughly speaking, the alignments are generated such that the distance between
warped vectors λ̃1 and λ̃2 is minimized. This is evident in the alignments and the
warped vectors shown in Fig. 4.2 and Fig. 4.3.

Now, the application of DTW algorithm to the contact pressure curves of the ironing
problem is considered. The alignments for two snapshots corresponding to parametric
values d1 and d2 are shown in Fig. 4.4a and the warped contact pressure curves are
shown in Fig. 4.4b. Notice that the alignments were able to connect respective contact
and no-contact zones of both curves. Also, in the warped spatial dimension, respective
contact and no-contact zones of both the warped snapshots are the same. In other words,
condition (4.2) is satisfied. Also, looking back at the “aligned” direction in Fig. 4.1, we
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can say that the warping has rendered this direction orthogonal to the warped coordinate
ζ, thereby making linear combinations useful.

(a)
(b)

Figure 4.4: (a) Alignments and (b) warped snapshots computed by DTW between two contact
pressure snapshots of ironing problem for parametric values µ1 = d1 and µ2 = d2. Notice that
alignments in original space are not bijective. y-offset between the two curves is given only for
illustrative purpose. Values on ζ axis are not given as they do not carry a physical significance,
and also because DTW computes warped space on indices of the discretization rather than
physical dimension.

Remark 4.2 : Non-linear nature of DTW mapping

The mapping generated by DTW is linear w.r.t. individual snapshots. However, the
mapping is not only different for each snapshot, it depends on the pair of snapshots
taken into account. These properties mean that the mapping is essentially non-
linear.

4.2.2 Interpolating in warped space

Although the DTW algorithm is built to compute similarities between signals, we in-
tend to use it as an interpolation tool. Interpolations using DTW have been previously
performed to reconstruct missing frames in fast motion detection [95]. The objective
of performing DTW on pairs of contact pressure snapshots is to use the DTW align-
ments and warped space for exploring the contact pressure manifold without generating
intermediate snapshots directly with FE solver.

Fig. 4.5 shows a demonstration of an interpolation in the original and the warped
spatial dimension. Though interpolating along the alignments in the original dimension
looks intuitive (Fig. 4.5a), only the interpolation in warped space is a straightforward
linear operation (Fig. 4.5b). Coefficients α and 1 − α are used as weights for each



82 Exploring the contact pressure manifold

snapshot in this operation, and the case for α = 0.5 is shown in the figure. In principle,
the value of the parameter µ that corresponds to the interpolated snapshot is not known.

As interpolation is performed in the warped dimension, it means that a backward
mapping is also needed to transform the interpolated curve back into the original spatial
dimension. However, the mapping ϕ(µ, ·) is a function of the parameter and the mapping
for the interpolated curve needs to be computed.

(a)
(b)

Figure 4.5: Interpolation along (a) DTW alignments and (b) interpolation in warped space,
for parametric values µ1 = d1 and µ2 = d2. Notice that unlike in (a), the interpolation in (b) is
a linear operation.

Formally, the interpolations on the two snapshots, and the mappings for parametric
values µ1 and µ2 can be written as:

λ̃int(α, ζ) := αλ̃(µ1, ζ) + (1− α)λ̃(µ2, ζ) (4.3a)

x̃int(α, ζ) := αx̃(µ1, ζ) + (1− α)x̃(µ2, ζ) (4.3b)

ϕint(α, x) := αϕ(µ1, x) + (1− α)ϕ(µ2, x) (4.3c)

where λint and ϕint are interpolated contact pressure and mapping respectively and
α is the linear interpolation parameter between the two snapshots. The interpolated
contact pressure in original and warped space can be related as:

λint(α, x) = λint(α,ϕ
−1
int(α, ζ)) = λ̃int(α, ζ) (4.4)

Once DTW alignments are available, (4.3) and (4.4) can be easily implemented in a
short routine dtw interp to perform the interpolation.

Notation 4.1 :

There is a slight abuse of notation in (4.3), (4.4) and in interpolated quantities here
onwards. The first argument of quantities ◦int(·, ·) is the interpolation parameter
α and not the physical parameter µ.
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Notation 4.2 :

Interpolated quantities ◦int(·, ·) also depend implicitly on µ1 and µ2, which are not
shown in the arguments to simplify the notation.

dtw interp is given in Alg. 4.1. It takes two discrete contact pressure snapshots λk ∈
Rn, k ∈ {1, 2} and the corresponding spatial coordinate x ∈ Rn i.e. there are n discrete
dofs on the contact surface. The DTW package computes alignments and a warped
space of dimension ñ. Indices Ik provide the mapping to the warped space for respective
λk. The warped vectors λ̃k ∈ Rñ can be linearly combined to create the interpolated
vector λ̃int ∈ Rñ and the corresponding spatial coordinate x̃int ∈ Rñ. The interp1d

function in Step 5 is borrowed from the Python module scipy.interpolate [77]. This
function is used for changing the discretization from x̃int to x using linear piecewise
interpolations. Steps 3 and 4 corresponds to (4.3a) and (4.3b) and Step 5 corresponds
to (4.4).

Algorithm 4.1 dtw interp

1: Input: x,λ1,λ2, α
2: I1, I2 = dtw(λ1,λ2) . I1 and I2 map indices to warped dimension
3: λ̃int = αλ1[I1] + (1− α)λ2[I2] . λj [Ij ] is the warped vector λ̃j
4: x̃int = αx[I1] + (1− α)x[I2] . interpolating in warped spatial coordinate
5: λint ← interp1d(λ̃int, x̃int)(x) . linear interpolation from x̃ to x
6: Output: λint

The application of dtw interp is demonstrated on the illustrative example of Table 4.1
in Section 4.2.1. The interpolated quantities for this example are shown in Fig. 4.6.

Remark 4.3 : Interpolation using the alignments Ik

In Alg. 4.1, the computation of λint from λ̃int can be implemented in an alternate
way. The interpolation of the mapping (4.3c) can be computed by interpolating
between I1 and I2 to generate a set of interpolated indices. The steps would read
as:

Iint = b(αI1 + (1− α)I2) +
1

2
c

λint[Iint]← λ̃int . same as applying inverse mapping ϕ−1
int

involving a round off operation to the nearest integer, expressed here using the
greatest integer function b·c and the offset of 1

2 . This is equivalent to using the inverse
mapping ϕ−1 in (4.4). However, this is approach is not followed in Alg. 4.1, as the
round off operation is sensitive to truncation at machine precision level, especially
for α = 0.5, leading to improper interpolation. Instead, x̃int that corresponds to
the warped coordinate ζ is used for interpolating back to x. Also, the resulting Iint
contains non-unique entries, leading to non-injective inverse map ϕ−1

int.
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Figure 4.6: Interpolations of the illustrative example for α = 0.5 in the spatial indices (corre-
sponding to x) and the warped space ζ

The quality of interpolation using DTW on the ironing problem is quite good as
the snapshots have a similar contact pressure profile, with only the contact zone being
translated in the x-direction. DTW-based interpolations of the elastic rope-obstacle
problem and the Hertz problem are also shown in Figs. 4.7 and 4.8. In these cases
contact zone does not translate but magnifies. DTW is able to interpolate the contact
zone correctly, but the interpolated pressure profile has some aberrations near the peak
pressure of the Hertz case. This is explained by the concentration of the DTW alignments
near the peak i.e., many points from λ(µ2) are mapped to the peak of λ(µ1).
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Figure 4.7: Linear and DTW-based interpolations of contact pressure for the elastic rope-
obstacle problem.
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(a) Linear interpolation
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Figure 4.8: (a) Linear and (b) DTW-based interpolations of contact pressure for the Hertz
problem. To explain distorted interpolation, DTW alignments is also shown in (c).

4.3 DTW-based enrichments for contact mechanics

As mentioned at the beginning of the chapter, the idea is to use manifold exploration to
reduce the offline cost. Since the main cause of linear inseparability is the geometrically
local nature of contact pressure field, the ability to scale and translate local effects
across the domain of interest seems promising. Also, the displacement field does not
have linear separability issues and a robust linear subspace seems to be readily available
(Fig. 2.14) even if parametric space is relatively unexplored in offline stage. In an
optimistic scenario, if the warped interpolations can reduce the size of training set to
the same level necessary for capturing the displacement field, the bottleneck posed by
linear inseparability will be effectively removed.

We propose the use of DTW as a warped interpolation tool that can generate in-
termediate contact pressures that haven’t been explored in the offline stage. This is an
inexpensive way of enriching the contact pressure dictionary; since the computation cost
of warped interpolations is negligible compared to generating proper snapshots. Fig. 4.9
shows a demonstration of such an interpolation for three different values of α. It is no-
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ticeable that the peak position of contact pressure of the interpolated curves relative to
the peaks of the original snapshots seem to have a nearly linear relation with α, though
this is a particular feature of the ironing problem and may not apply in general.
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Figure 4.9: Interpolation of contact pressure snapshots using DTW for the ironing problem.
Interpolated curves for α ∈ {0.25, 0.5, 0.75} are shown

For an effective enrichment, the interpolation should not be done on every pair
of contact pressure curves. Rather, each pair of curves should be reasonably similar
in some sense. Similarity can be computed using a measure of distance which can
be either the L2 norm of the difference or the distance measure defined by the DTW
algorithm. Snapshots that can be considered similar according to the distance measure
will be referred to as neighbours here onwards. For each pair of neighbours, the DTW
alignments are computed and interpolations are performed with a set of M parameter
values {αm}Mm=1. This process is shown in Alg. 4.2, where neighbours of currently active
vectors are computed using the distances between vectors of the dual dictionary in a
matrix Dist. The entry Dist[i, j] has the distance between Dd[:, i] and Dd[:, j], and
hence, Dist is a symmetric matrix with main diagonal containing only zeros.

The effectiveness of DTW-based enrichments can be shown using the compactness
metric. Recall that the “dual cone” compactness metric defined in Section 2.3 can be
used for as a measure of linear separability. The comparison of this metric for the original
and enriched CPG dual basis is shown in Fig. 4.10. The compactness of the enriched basis
was computed by performing 19 equispaced DTW interpolations (i.e. with αm = 0.05m
and M = 19 as input for Alg. 4.2) between each pair of neighbours in the original dual
basis. The compactness of the enriched basis is considerably lower than the original,
indicating that DTW enrichment has introduced the information that was missing in
the cone of the original basis.
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Algorithm 4.2 adapt dictionary

1: Input: Dd, I, {αm}Mm=1 . αm ∈ ]0, 1[
2: Parameters: Dist, N
3: Initialize: D

adapt
d = Dd[:, I], i = 0, j = 0 . I is the current active set

4: for i ∈ I do
5: nbrs← indices of the least N positive entries of Dist[i, :]
6: Initialize Dint

d = {·}
7: for j ∈ nbrs do . nbrs contains neighbouring indices
8: if pair (i, j) is not repeated then . (i, j) is an unordered pair

9: Dint
d ← Dint

d ∪
[

M⋃

m=1

dtw interp(Dd[:, j],Dd[:, i], αm)

]
. Alg. 4.1

10: end if
11: end for
12: D

adapt
d ← D

adapt
d ∪Dd[:, nbrs] ∪Dint

d

13: end for
14: Output: D

adapt
d
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Figure 4.10: Comparison of the compactness for original and warped snapshots. Note that the
curve labelled “dual cone” are the same curves from Figs. 2.8 and 2.13b, respectively. Curves
labelled “dual cone dtw” show the compactness of the enriched basis.

Remark 4.4 : Indefiniteness of the DTW kernel

A more appropriate way of testing the separability of given data in warped space is
by observing the decay of singular values (equivalent to the dual orth compactness
in Chapter 2). However, computation of singular values requires that the DTW
mapping generates a symmetric positive definite (SPD) Gramian matrix Gij =〈
λ̃i, λ̃j

〉
, where each entry of G contains an inner product of a pair of warped

snapshots. Such a comparison would have been possible if SPD kernels are used
for computation of the Gramian matrix, as done in [86] for an advection-diffusion
problem. However, instances of Gramian matrix computed using DTW kernel being
indefinite are known [96]. The Gramian matrix computed for this case also resulted
in negative eigenvalues, hence the dual orth compactness cannot be compared.
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The richness of D
adapt
d w.r.t Dd can also be compared using the nested errors defined

for the ironing problem (see Section 2.4.2, Fig. 2.14). Let us recall that the nested
error (2.7) was defined as the projection error of (n + 1)-th level basis on n-th level
basis. The comparison of nested errors with and without DTW interpolation is shown
in Fig. 4.11. For each level n, the dictionary neighbours are interpolated using Alg. 4.2
with I = {1, 2, 3, . . .#Ptr}, N = 2, M = 1 and α1 = 0.5. The ironing problem has a
peculiar property where the position of contact pressure peak is more or less same as the
parameter d. Therefore, the chosen N,M and α1 form a near best case scenario of the
approximation because it suits the distribution of nested training set points i.e. (n+1)-th
level contain mid-points of the points in n-th level. Thus, a considerable decrease in the
nested errors is seen for smaller training sets. Naturally, the gains in dual orth error due
to DTW decreases as the training set becomes larger, as the snapshots in large training
sets are closer to the target solutions.

3 4 5 6 7

Nested level n

10−2

10−1

H
(n

)

dual orth

dual cone

original

DTW adapted

Figure 4.11: Projection error of nested level n + 1 snapshots on dictionary of level n. Note
that solid dual orth and dual cone lines are similar to the ones in Fig. 2.14. The dual orth points
not seen in the figure drop to the order of 10−14 (nearly machine precision)

However, in a general scenario, the value of an optimum α may not be trivial. There-
fore, to arrive at an appropriate value of α, it is necessary to explore multiple DTW-based
interpolations corresponding to different α’s. This is the reason a set of M values {αm}
is supplied to Alg. 4.2. The enrichment process can be strategised in two different ways:

• Number of interpolation points (M): For a given set of snapshots generated in
offline phase, warped interpolation is performed between every pair of neighbouring
snapshots with a certain resolution of in ]0, 1[. For a uniformly distributed points,
αm = m/(M + 1). The interpolations in Fig. 4.9 is such a case with M = 3.

• Number of enrichment levels (L): It is possible to continue the enrichment
process further by creating multiple levels of interpolated vectors. Suppose, the
original dictionary contains two vectors λ1 and λ2 and interpolation is performed
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with M = 1 and α1 = 0.5. Thus, an interpolated vector, let us call it λ1.5, can
be computed using DTW interpolation in the first level. In a second level, further
interpolation can be performed on the pairs {λ1,λ1.5} and {λ1.5,λ2} to generate
λ1.25 and λ1.75.

Further, these enrichments can be done during either the online or offline stage, depend-
ing on the desired distribution of the computational cost. If done in the offline stage,
warped interpolations between every possible pair of neighbours need to be computed.
On the other hand, in the online stage, interpolations can computed on a smaller set
of vectors, i.e. the active dictionary vectors and their neighbours. In this thesis, the
enrichment in the online stage is studied, as the focus is on the enhancement of the
reconstruction accuracy using DTW and the study of computational cost is reserved
for future study. However, a preliminary comment can be made in this aspect, that
the DTW-based enrichment is not a computationally intensive task. As the Alg. 3.2
generates a small active set, the number of interpolations performed is not large. The
resulting algorithm is given in Alg. 4.3, with a parameter L denoting the number of
enrichment levels. In the numerical results that follow, the parameters used are L = 5
and M = 4 with the interpolation points {0.2, 0.4, 0.6, 0.8}Mm=1.

Algorithm 4.3 DTW powered greedy active-set method

1: Input : Queried value of parameter µ
2: Parameters : {αm}Mm=1, L
3: Given: Primal basis Φ and dual Dictionary Dd

Reduced operators ΦTKΦ and ΦTf
4: Initialize: l = 0, I = {·}, λ = 0
5: while λ not converge and l ≤ L do
6: Compute û, λ̂, I using current dictionary Dd . Steps 4 to 12 of Alg. 3.2
7: Reconstruct λ = Ddλ̂
8: Dd ← adapt dictionary(Dd, I, {αm}) . Alg. 4.2
9: I = {·} . Reset active set after adapting Dd

10: l← l + 1
11: end while
12: Reconstruct u = Φû
13: Output: u,λ

4.3.1 Numerical results

For the Hertz problem and the ironing problem training sets defined in Chapter 3,
reconstruction errors with enriched dual dictionaries using Alg. 4.3 are shown in Fig. 4.12.
For the ironing problem (Fig. 4.12b), the DTW-based interpolation improves the quality
of reconstruction for smaller training sets. The improvement asymptotically dampens
out as the training set size increases. This is natural as snapshots come quite close in
large training sets and DTW-based interpolations do not generate any useful information.
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Moreover, the improvement in reconstruction is seen more in the dual field rather than
the primal. This is an expected observation as any improvement in primal reconstruction
due to dual dictionary enrichments is caused indirectly through the mixed system (3.5b).

On the other hand, there is no improvement in the reconstruction of Hertz problem
(Fig. 4.12a). One likely reason could have been that the contact pressure snapshots are
relatively close, unlike the ironing problem, and therefore the DTW-based interpolations
are unable to offer any significant new information. However, this contradicts the ob-
servations in Fig. 4.10a where improvements in dual cone compactness is observed. A
more likely reason could be, that to improve in reconstruction of Hertz problem, the
primal dictionary also needs enrichment rather than just the dual dictionary. However,
artificial enrichment could not be applied to the primal dictionary (as it needs a mul-
tidimensional DTW implementation), and the dual dictionary enrichments alone are
ineffective at improving the errors. This reasoning is more consistent with observation
that reconstruction error improves only with increase in training set size and not with
DTW-based enrichments. Another possible source of error is the distorted DTW-based
interpolation of the contact pressure snapshots, as shown in Fig. 4.8. Though, in reality,
the distortion is not as pronounced as shown in the figure, since the interpolation done
in Alg. 4.3 is carried out between snapshots that are closer.

4.4 Conclusions

The DTW enrichments proved to be useful in improving contact pressure reconstructions
for a problem with higher variations in contact area (ironing problem), especially when
the dictionary is not rich enough to resolve the local effects. The improvements obtained
using DTW diminish with increasing training set size, as the local information related
to contact pressure start appearing in the dictionary directly. For problems with less
variations in contact pressure (Hertz problem), DTW does not provide any improvements
in reconstruction errors.

Overall, it is fair to say that non-linear interpolations can prove useful to train models
for problems with large variability in contact positions, especially if the complexity of
high-fidelity problem makes it difficult to compute a large training set. This is a strong
motivator to test other non-linear reduction techniques such as kPOD on such problems.
However, whether it is trivial to enforce inequality constraints in non-linear frameworks
or not is yet to be explored.

4.5 Persepctives

4.5.1 The 3D case

Extension of DTW based interpolation to 3D problems (with 2D contact surfaces) may
not be straightforward. Though the DTW algorithm was originally built for a 1D sig-
nals, but a 2D version has been developed [93]. However, the 2D DTW is limited to
structured meshes, thereby limiting its application. Even if the geometry of the contact
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Figure 4.12: Comparison of reconstruction error for the Hertz and ironing problem using
the original dual dictionary Dd and DTW-adapted dual dictionary D

adapt
d . Reconstructions

performed using Alg. 3.2 and Alg. 4.3 for respective dictionaries. DTW enrichments seem to be
more impactful in the ironing problem than Hertz problem. Primal and dual errors are computed
using H1 and L2 norm, respectively.

surfaces allow discretization using a structured mesh, it may not be the optimal mesh
for generating the snapshots using finite elements. It may however, be possible to com-
pute the FE snapshots using a generic mesh and then interpolating the solution on a
structured mesh during a post-processing, thereby making it suitable for DTW-based
interpolations.

4.5.2 Efficient evaluation of non-linear terms

To solve the contact problem using the dictionary method, it is necessary to compute
the operators Ĉ and ĝ, which are dependent on the dual dictionary Dd. However, if
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DTW based interpolation is used, the dictionary Dd is dynamic. This can create addi-
tional difficulties in devising affine decompositions of these operators. If EIM approach
from [13] is used, computation of the independent terms Ĉp and ĝq in (1.17) becomes
dependent on the dual basis/dictionary. An efficient way of handling such situations is
necessary. A straightforward but less efficient way might be to build an affine decom-
position of high-fidelity operators C and g, and update the reduced operators whenever
the operators or the dictionary is updated.

4.5.3 Non-linear interpolations of primal dictionary

As seen in the case of Hertz problem, the dual dictionary enrichment is not effective
at improving reconstruction errors. Also, in case of the ironing problem, mainly the
dual reconstruction errors show improvement than the primal one. This observation
opens up the possibility of enriching the primal dictionary using non-linear methods.
This will also be useful to generate enriched monolithic dictionary for convex hull based
approximation.
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Conclusions

In Chapter 2, the robustness of low-rank hypothesis in the context of contact mechanics
was analyzed. The premise of this analysis was based on the local nature of the contact
pressure field which leads to an inherent lack of linear separability. As the underlying
physics exhibited a high intrinsic dimensionality, reconstructions performed using ROMs
had a moderate error, as expected. The robustness of contact pressure reduced bases
computed using SVD and CPG methods were shown to have a slower decay of error
(i.e. higher values of compactness) than the displacement field. The lack of low-rank
structure had also negatively influenced the generalization ability of the reduced basis.

The linear inseparability of the contact pressure makes it harder to find a robust low-
dimensional structure in the framework of linear dimensionality reduction. In Chapter 3,
it is shown that a large number of snapshots can provide some improvements to the ap-
proximate solution subspace that is exploited by reduced models. This is achieved by
using large dictionaries of snapshots, and the reconstructed solution is restricted to a
sparse linear combination of these snapshots. It is seen that dictionary-based approxi-
mations are quite useful for contact problems with large changes in contact position like
the ironing problem, as local effects are quite significant in these problems.

Two dictionary-based approximation strategies were devised. The first is based on
the active-set approach implemented greedily, and the second is based on exploring
the convex-hull of the snapshots to reconstruct the solution under the condition that the
feasible (non-penetrative) region of the displacement space is convex. The computational
time for these methods seems to be primarily dependent on the number of iterations for
convergence, which may or may not change significantly with the size of the dictionary
depending on the contact problem. In terms of reconstruction accuracy, the greedy
active-set approach with separate dictionaries for displacement and contact pressure
outperforms the convex-hull approximations with monolithic dictionaries. Moreover,
the convex-hull approximations could not be applied to non-convex problems such as
the ironing problem.

Non-linear dimensionality reduction aspects are particularly interesting for a problem
lacking low-rank structure and are explored in Chapter 4. As the computational costs of
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generating a large dictionary of snapshots can be very expensive, non-linear methods are
used to reduce the need for a large number of contact pressure snapshots. Dynamic Time
Warping (DTW) based non-linear interpolations were used to synthesize snapshots that
were not present in the training set, thereby enriching the dictionary without paying the
large cost of full simulations. This is found to be beneficial in cases of large variations
in contact position.

Perspectives

1. The problems arising from linear inseparability of contact pressure have been ad-
dressed using over-complete dictionaries and DTW-based enrichments in this the-
sis. However, distance functions that are used to compute the non-penetration
conditions (i.e. the inequality constraints) are likely to have similar local effects
and consequent linear inseparability issues. Also, the current methods of comput-
ing affine decompositions of distance functions (like EIM) are based on low-rank
approximations requiring linear separability. Therefore, similar strategies might
be required for the efficient construction of the reduced inequality constraint op-
erators.

2. Random sketching methods were applied only to the convex hull approach as the
method was free of inequality constraints. It would be interesting if the random
sketching could be applied to other dictionary-based strategies as well, including
the greedy active-set method.

3. The dictionary method based on the convex hull approach is currently built for
monolithic dictionaries, which forces the reduced coefficients to be the same for
both primal and dual variables. An approach with two uncoupled dictionaries
must be explored for potential improvements in reconstruction quality. Also, an
efficient sampling strategy for the offline phase is necessary, where snapshots placed
at corners and edges of the presumed low-dimensional convex subset are sampled
with priority.

4. As DTW-based non-linear interpolation was found useful in particular cases with
large variations of contact positions, application of other non-linear methods like
kPCA/kPOD should be explored. These methods might be more relevant for three-
dimensional contact problems with two-dimensional contact surfaces, as multidi-
mensional DTW is limited to structured meshes.

5. Currently, non-linear interpolation is only applied to contact pressure. It would
be interesting to see if non-linear interpolation of displacement snapshots provides
any advantages. DTW-based enrichment of displacement snapshots, along with
the contact pressure, might be beneficial for creating monolithic dictionaries which
need the same number of primal and dual snapshots.
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6. When the dual dictionary is updated using DTW-based enrichments, a fresh com-
putation of the reduced inequality constraint operators is required. This will not
be tenable if the DTW-based enrichments are to be deployed in a real-life applica-
tion of the contact ROM. A strategy for efficient computation of these operators
for an updated dictionary is necessary.





A | Spurious penetrations

In the greedy active-set method, the snapshots of the dual dictionary are selected based
on the violations of the non-penetration constraints. The dictionary vector with the
highest correlation with the current state of penetration is chosen. However, instead of
zero penetration, a small value of penetration τ is allowed (see (3.5c) and (3.6)). This is
done to avoid spurious selection of dictionary elements, which happens due to a truncated
primal basis. Such a reconstruction example of Hertz problem for parameter value
d = 0.25 is shown in Fig. A.1, where a spurious peak in the contact pressure is evident.
In this case, a dual dictionary of size 30 and primal basis truncated at 10−6 are used. The
algorithm selected the appropriate snapshots from the dual dictionary, but also selected
some unnecessary snapshots: the first (Dd[1]) and twelfth (Dd[12]) dictionary vectors.
Importantly, the Dd[1] vector contributes to large error in reconstruction as evident in
the figure. The false selection of this snapshot is linked to the truncation of primal basis,
and therefore, can be avoided by setting the value of τ same as δ.
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Figure A.1: Reconstruction instance of Hertz problem with d = 0.25 using #Ptr = 30 and
primal basis truncated at δ = 10−6, where few dictionary snapshots were spuriously selected
by the greedy active-set algorithm if non-penetration condition is applied “hardly”. The falsely
selected snapshots are indicated by their index in the dual dictionary. The snapshot which
contributes to most of the error is Dd[1], corresponds to loading parameter d = 0.01
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Titre : Approximations parcimonieuses et de rang faible pour la mécanique des contacts

Mot clés : modèles d’ordre réduit, mécanique des contacts, approximations dictionnaires, ré-
duction non-linéaire de dimensions

Résumé : Les stratégies typiques de modéli-
sation réduite de la mécanique des contacts uti-
lisent des approximations de rang inférieur. L’hy-
pothèse sous-jacente est l’existence d’un sous-
espace et d’un sous-cône de faible dimension
pour les champs de déplacement et de pression
de contact, respectivement. Cependant, la pres-
sion de contact présente un caractère local, car
la zone de contact peut varier en fonction de pa-
ramètres tels que le chargement ou la géomé-
trie.
Dans cette thèse, la pertinence des approxi-
mations de rang faible pour la mécanique des
contacts est étudiée et des voies alternatives
fondées sur des techniques de régression par-
cimonieuses sont explorées. Il est montré que la
nature locale de la pression de contact conduit à
une perte de la séparabilité, limitant ainsi la pré-

cision des méthodes de rang faible.
Par la suite et pour atténuer les problèmes d’in-
séparabilité, les approximations utilisant des dic-
tionnaires contenant un grand nombre d’atomes
sont étudiées. Deux stratégies sont établies à
l’aide de méthodes d’approximation parcimo-
nieuses. L’une est fondée sur une approche
d’ensemble actif où les éléments du dictionnaire
sont sélectionnés de manière gloutone, et l’autre
sur des approximations d’enveloppes convexes
qui éliminent le besoin d’appliquer explicitement
des contraintes de non-pénétration.
Enfin, les méthodes de réduction non linéaires
sont explorées. Elles permettent d’enrichir le
dictionnaire en utilisant des interpolations non-
linéaires, réduisant ainsi le coût de calcul as-
socié à la construction du dictionnaire dans la
phase hors-ligne.

Title: Low-rank and sparse approximations for contact mechanics

Keywords: model order reduction, contact mechanics, dictionary-based approximation, non-
linear dimensionality reduction

Abstract: Typical strategies for reduced mod-
elling of contact mechanics use low-rank ap-
proximations. The underlying hypothesis is the
existence of low-dimensional subspace and sub-
cone for the displacement and contact pressure
fields, respectively. However, the contact pres-
sure exhibits a local nature, as the contact po-
sition can vary with parameters like loading or
geometry.
The adequacy of low-rank approximations for
contact mechanics is studied and alternative
routes based on sparse regression techniques
are explored. It is shown that the local nature of
contact pressure leads to a loss in linear sepa-
rability, thereby limiting the accuracy of low-rank
methods.

Subsequently, approximations using overcom-
plete dictionaries to mitigate the inseparability
issues is investigated. Two strategies are de-
vised using sparse approximation methods. One
is based on an active-set approach where the
dictionary elements are selected greedily, and
another is based on convex hull approximations
where the non-penetration constraints need not
be explicitly enforced.
Lastly, the non-linear dimensionality reduction
framework is explored. The snapshot set com-
puted in the training phase is enriched at a
low complexity using non-linear interpolations,
thereby reducing the burden of creating over-
complete dictionaries in the offline phase.
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