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2 Introduction

The exploration of the oceans becomes more and more reachable thanks to still more
performing robots. Research in underwater robotics has already made possible the development
of efficient unmanned underwater vehicles. The purpose of this thesis comes within the scope of
this still active research field. Mainly, two different problems are studied to deal with underwater
exploration.

Firstly, the control of a deported vehicle allows acquiring accurate data from quickly per-
turbable sensors. As an example, a magnetometer is a sensor that measures the local magnetic
field. By using such a sensor, it is possible to build a magnetic map of the explored area, allowing
to spot out submarine communications cable, some wrecks, or geological anomalies. It requires
to be deported from the main vehicle in order to avoid perturbations from the engines. Thus the
strategy consists in towing the sensor while controlling its trajectory.

Secondly, the reliable localization of an underwater system is crucial for exploiting the
gathered information. Indeed, when scanning an area, it is necessary to have enough accurate
localization to be sure the scan is complete. In addition, the localization allows placing the made
measurements on a map to be sure one can find attractive targets back.

Finally, among the profuse mysteries to discover in the seas, wrecks hold parts of the unknown
past of our ancestors. Therefore, searching wrecks is the primary motivation of the presented
works.

1.1 Underwater archaeology

1.1.1 Humankind history through shipwrecks

Writing was invented for the first time between 3400 and 3100 BCE in Mesopotamia. However,
it had also been developed independently in three other ancient civilizations: in Egypt, around
3250 BCE [129], in China, around 1200 BCE [13] and in lowland areas of Southern Mexico
and Guatemala, around 500 BCE [52]. Before this time, it is prehistory. Therefore, there are
no texts to narrate the development of humankind during this era, except for rare undeciphered
symbols. Even after this invention, writings are scarce in many historical periods. Thus, there
is still much unknown, and the only means to learn more about these ancient times is to find
time-linked artifacts. That is the role of archaeology.

Archaeology is a discipline that requires various skills: history knowledge, exploration,
chemistry aptitudes, to name a few. That is why it has been divided into several sub-disciplines
whose focus can be, for instance, a specific material, a particular period, or a geographical place.
Some of these sub-disciplines characterized by a thematic concern became academic disciplines
in the 1970s, as maritime and nautical archaeology [20]. We can mention the formation of the
NAS (Nautical Archaeology Society) in 1972 which published a guide to underwater archaeology
in 1992 [34]. In underwater environments, we can find remains of boats, ships, and other vessels
as expected. There are also wrecks of aircraft and many other objects or buildings, either linked
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with the water or lost offshore. Plenty of such sites of interest have already been discovered such
as ancient settlements, harbor vestiges, or warships from different ages [35, 138, 101].

An example of a model of an underwater shipwreck site located in southern Brazil is given
in Figure 1.1. This image has been obtained using photogrammetry techniques. It consists of
taking several pictures of a site and merging all these pictures into a unique figure, which is in
three dimensions.

Figure 1.1: Photogrammetric model of the Lagoa do Peixe. Credit: R. Torres [166].

The discoveries of these ancient vestiges often help to bring answers to the lifestyle of our
ancestries. However, finding a wreck or other remains underwater is rare, difficult, and often
very expensive. Robots are already used for this task and have several advantages: they reduce
human life risks, they can go in deeper water, they can work for several days autonomously, and
they can be remotely operated for sensitive tasks. An example of an Autonomous Underwater
Vehicle (AUV) used for deep-water archaeology is given in [12]. Another project with several
robots for archaeology purposes can be found in [2].

The interests of robotics in underwater archaeology are twofold. On the one hand, robots are
extremely useful in this unknown and dangerous environment as they can work longer and deeper
than divers. On the other hand, the tasks of archaeological surveys raise robotic challenges
whose solutions can have applications in multiple fields.

This thesis is incorporated within the framework of the exploration and search of the location
of such archaeological sites. Most of the time, this task consists in scanning an area where we
assume that there are objects of archaeological interest. The most commonly used sensor is the
side-scan sonar, either towed by a boat or embedded on an underwater robot. It can give an
acoustic image of the seabed with enough precision to spot out wrecks or other artifacts [138,
Chap. 39]. An example of a wreck perceived by a side-scan sonar is given in Figure 1.2.

However, this sensor is insufficient when relics are covered with sediments or even wholly
buried under sand or mud. The reason is that their acoustic frequency is too high (hundreds of
kiloHertz) to get a great image resolution and consequently does not enter sediment sub-layers
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Figure 1.2: The Swansea Vale wreck perceived by the Klein 5400, a side-scan sonar, in high-
resolution mode. Credit: DGA-TN Brest.

[105]. In that case, archaeologists must carry out subsurface surveys, which consist in probing
the sediment sub-layers. They can use a sub-bottom profiler or a magnetometer when there
are ferromagnetic materials. The former is a sounder that penetrates below the seabed surface
by using low frequency, mainly used to examine sedimentary layers. Thus it can detect buried
objects [58]. However, it seems that this sensor had never genuinely led to the discovery of
a buried wreck [62, Chap. 3]. A magnetometer is a sensor that measures the intensity or the
direction of a magnetic field. So it can detect the perturbation due to an iron shipwreck or any
sufficiently ferromagnetic objects like anchors or canons. It has already been used for finding
wrecks, firstly by treasure hunters, and then during archaeological surveys as in [3], once it has
been shown to be efficient for this task [66]. The interpretation of the marine magnetic data to
distinguish shipwrecks and debris is not an easy task [20, Chap. 4]. A magnetometer is a highly
sensitive sensor and can detect plenty of local anomalies in some areas, with a low proportion
of artifacts of interest. Finally, this sensor has a low resolution, and it is not easy to locate the
detected targets with respect to the magnetometer.

The method of the survey itself comes with a bundle of issues. Indeed, the carrier of the
magnetometer can highly perturb its measurements. It is typically due to the ship’s motors. So
the sensor is generally towed behind its carrier, at a rough estimate of 10 meters behind minimum.
The intensity of a magnetic perturbation decreases with the cube of the distance. It is thus usually
desirable to drag the sensor the closest to the seabed as possible. However, it is also hard to know
precisely its actual depth, neither the local bathymetry.

1.1.2 Marie-la-Cordelière

This thesis comes within the scope of the search for the Marie-la-Cordelière, or simply Cordelière.
The Cordelière was a Breton (French) ship of 600 tons built between 1494 and 1496. It was
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armed with 200 canons and could embark on until 1000 people. It sunk in the Bay of Brest,
West of France, on the 10th, August 1512, during a battle against English ships (see Figure 1.3).
Archaeological researches have been carried out to try to find the ship’s wreck in 1997 and 2001.
New research campaigns have been conducted in 2018 and 2019 by the French Département

des Recherches Archéologiques Subaquatiques et Sous-Marines (Department of underwater
archaeological research) (DRASSM). The difficulty of this objective comes from several factors:
the search area is huge (11× 6 km), and the wreck is probably highly deteriorated and covered
by sediments [63]. Thus, acoustic methods do not seem to be suitable for such a buried wreck.
Only the magnetic research has been envisioned [64].

Figure 1.3: Le combat de la Cordelière by Pierre-Julien Gilbert in 1838. Painting of the battle of
the Cordelière against an English fleet, in 1512, off the coast of Saint-Mathieu.

1.2 Robotic challenges

Searching wrecks is a challenging task for robotics. Indeed, the final goal is to scan a whole
underwater area with the dedicated sensor and locate the detected targets. For instance, with
the magnetometer, the objective is to build a magnetic map of the search area. It raises issues
linked to sea exploration. The two following main challenges can be spotted out and are studied
through this thesis:

1. Design a controller to make the sensor perform a proper scan safely;

2. Localize the robot during the scan to situate the measurements.
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These challenges are rather complementary. We detail them more precisely in the next section,
with special care on robotics-related issues.

1.2.1 Navigation and control

Problem statement

In the scope of the search for the Cordelière, only the magnetic survey is considered. Nevertheless,
a magnetometer has to be deported to ensure not to interfere with measurements. Since then, the
task becomes more complex: the robot should follow a trajectory such that the deported sensor
follows the desired scanning pattern.

Thus, the robotic problem involves designing a non-linear controller and a navigation algo-
rithm for a robot towing a deported system. The controller can only act on the robot as the sensor
is not actuated. However, it is the trajectory of the deported system that matters: the sensor must
scan a complete area. Even if the robot reaches a perfect scan, there is no guarantee that the
towed system also reaches the perfect scan. Indeed, when acting on the robot, the effects on the
deported system’s dynamics come with a slight delay. It can be compared to the behavior of a
trailer towed by a car. For instance, the trailer will cut corners. Therefore, the controller should
anticipate this behavior to make the sensor do a proper scan.

Ensuring the accuracy and the safety of the navigation

In addition, we want some guarantee on the actual probed area and the safety of the system.
Indeed, we want to be sure that the whole area has been scanned and that any potential target
cannot have be missed. Besides, the volume taken by the system being significant, the risks of
collision are higher. Thus we also need some guarantee on that issue.

These guarantees should be checked before starting a mission. They can take the form of
constraints to be satisfied all through the mission. Indeed, it would be regrettable to send the
robot and realize afterward that the scan of the area contains gaps. Even worse, we want to avoid
losing it because of a collision, even though we could have predicted the crash. Therefore, some
constraints are defined to translate the guarantees of the scan and the safety issues.

1.2.2 The underwater localization problem

Lack of information

Electromagnetic radiation constitutes the primary support for information-carrying in air. In
particular, it includes visible light and radio waves which can efficiently serve to provide data on
the environment and communicating between remote systems.

However, these electromagnetic waves are absorbed by water, avoiding their propagation
underwater. Thus, it makes the use of a whole class of sensors unsuitable for underwater robots.
They are deprived of Global Navigation Satellite System (GNSS), which can provide precious
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information on localization. Note that the unavailability of GNSS has also to be handled by
ground and aerial robots in indoor environments [57, 70]. Nevertheless, indoor robots still have
access to light and radio sensors to gather enough information for accurate localization. The
underwater localization problem is much more complex. Depending on the turbidity of the water,
light can travel up to several tens of meters, but in most places, it is not more than a few meters.
Additionally, colors are altered depending on the distance, see e.g. [6].

In order to obtain an estimation of speed and orientation, the dynamical model of the robot
may be used, making the state of the robot estimated over time with respect to the inputs sent to
the actuators. Yet, this approach is generally not efficient at all, as the dynamical model is an
approximation that introduces errors, and the external perturbations are not taken into account
(especially the currents).

Dead reckoning approach

Another approach consists in measuring the different forces acting on the robot. Then these forces
are integrated to obtain an estimation of a position change between two measurements. This
method is called dead reckoning. In this scope, many proprioceptive sensors exist, with varying
quality and price depending on the embedded technology. Accelerometers and gyroscopes are
inertial sensors that measure linear acceleration and rate of rotation, respectively. Magnetic
sensors return the north direction but are sensitive to local perturbations, either due to the
robot itself or any magnetized elements in the environment. These three types of sensors,
accelerometers, gyroscopes, and magnetometers (or gyrocompass), are usually combined to
obtain an estimation of the 3D orientation of the system. A non-linear estimation algorithm,
which is often an Extended Kalman Filter (EKF), is also run on these data to compute the
orientation. This whole system is called an Attitude and Heading Reference System (AHRS).

The fusion of sensor data allows for minimizing the errors, delaying when cumulated errors
are too significant. Complete systems computing the estimations of the position, the velocity,
and the orientation constitute Inertial Navigation Systems (INSs) and include, besides the same
sensors as for an AHRS, some electronics, and a navigation computer.

Another sensor is also commonly used to help to limit the growth of the cumulative errors:
Doppler Velocity Loggers (DVLs) can directly give an estimation of the speed over the ground of
the vehicle, using acoustic waves and the Doppler effect. When data from a DVL are combined
with an INS, we talk about Aided Inertial Navigation System (AINS). It can limit the growth of
the errors to approximately 0.02% of the distance traveled, according to [120]. For more details
on performances, a state-of-the-art of AUV positioning is given in [7], with an application to
bathymetric surveys. Note that water speed sensors may be used instead of DVLs. However,
although cheaper, they cannot measure the vehicle velocity component relative to the seabed due
to the ocean currents, making them unsuitable for most underwater areas.

The use of high-quality INS is bulky and is thus not suitable for small-sized robots. In
addition, it is very expensive. A DVL requires to be close enough (less than 500 m at 150 kHz
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[99]) to either the seabed or the surface to get accurate measurements. So a DVL could be used
in the scope of the search of wrecks. It is pretty expensive but relevant as the robot is supposed
to be close enough to the seabed. Note that problems can still occur in a shallow water context
due to acoustic sources of errors such as noise, multipath, or reverberation. Indeed, when the
water level is low, an acoustic ray can be reflected by the seabed and the water surface several
times, blurring the received data [26].

Finally, the dead reckoning approach provides a localization relative to an initial point.
However, independently of the sensors’ quality, this approach leads to an unbounded growing
error on the estimated position. Thus, dead reckoning is relevant only for short missions or
combined with another absolute localization system. An example of a dead-reckoning approach
using intervals is given in [95] where some communications and ranging help to bound the errors.
In [130], an Extended Kalman Filter (EKF) is used to track the position of an agricultural vehicle
with the odometry when the GNSS signal is lost. An EKF is also used in [17] on an underwater
vehicle, using data from a DVL. The errors stay bounded thanks to a sonar acquisition.

Finding an external reference

The unavailability of the GNSS causes the absence of absolute external reference, which can
bound the error of localization over time. The first solution to this issue is to resurface from time
to time, such that the access to GNSS remains partially available, making the errors bounded.
However, even if it can be envisioned in shallow waters, most of the time, it is not desirable as it
is energy costly and unconceivable for deep-water missions. Thus, it is possible to use acoustic
beacons, either linked to the surface with an absolute reference or fixed underwater, to retrieve
an alternative external reference. These beacons are localized and can communicate with the
robot to give its relative range or bearing. Then the robot can calculate its position applying
triangulation or trilateration. The two central used systems are Long Baseline (LBL) and Ultra
Short Baseline (USBL) using several, or only one, beacon, respectively. The latter requires
a transceiver on the robot that contains several receiving elements to compute the bearing of
the coming information. So these systems seem to handle the issue but still come with their
drawbacks: it is expensive, requires a complex setup which can cause problems, and implies
either a limited area (less than 10 km2) or a surface vessel in the case of non-deep-water missions
[99]. Study and use case are given in [114] for example.

In the context of the search of a wreck such as the Cordelière, surface vessels should be
avoided, making systems such as USBL unsuitable. In addition, the search area is too vast for
systems such as LBL. Finally, to avoid the cost and the complexity of LBL or USBL systems,
and also too expensive proprioceptive sensors as high-quality INS, other approaches should be
studied.
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Exploring the environment with acoustics

The only way to bound errors drifting when performing dead reckoning is to obtain an absolute
position reference regularly. We have seen that resurfacing to make a GNSS fix is generally
undesirable. The idea is to obtain another exteroceptive information.

Luckily, acoustic waves can propagate energy on very long distances in water, making the
use of acoustic sensors perfectly appropriate for underwater robots. The travel distance depends
on the transmitted frequency [105]. Thus, it is possible to communicate with surface or other
underwater systems. However, the throughput of information with acoustic support is low. It is
also possible to use acoustic signals to measure ranges to targets as the seabed, surface, rocks, or
other obstacles.

Finally, acoustic sensors provide the required information for reaching an underwater local-
ization. Nevertheless, processing this data is far from being straightforward.

The first strategy is called map-based navigation. It requires the knowledge of the local
map but provides interesting results [123]. It can be based on a bathymetric map, a magnetic
field, gravitational anomalies, or other geophysical parameters. The only condition is that the
navigation’s area variates sufficiently in the measured parameters to allow localization. However,
it requires an a priori knowledge of the map. This issue motivates research on Simultaneous
Localization And Mapping (SLAM) methods [144].

In any case, data from the environment have to be acquired but naturally contain errors: noise
and outliers. For instance, echo sounders can measure distances. However, the measurement
is sensitive to the sound speed, which varies with the depth and other physical parameters. In
addition, acoustic scattering effects cause more errors and outliers. Rejecting outliers when
dealing with acoustic data is thus crucial and has already been addressed in [157] for example.

More generally, when collecting data in the underwater environment, the difficulty relies
upon extracting reliable information. There are a lot of outliers, uncertainties, and unknown
parameters. Finally, the objective is to use relatively cheap sensors and still manage to bring
reliable information out.

1.3 Research approach

The two challenges mentioned above have been studied in a specific context. Indeed, the issues
are pretty general, and different approaches can be envisioned. We present now in more detail
the objectives and the choices made for each challenge.
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1.3.1 Control a towed sensor

Modelization of a car-trailer system

In order to design a satisfying controller for a system, we usually want to understand the dynamics
of this system. A modelization using differential equations is then proposed to approximate the
behavior of the system.

Concerning the magnetometer towed by a robot, the modelization of the rope between the
two systems is complex. The management of such a cable constitutes a whole topic of research,
especially in the scope of the umbilical of a ROV [154, 104, 92, 159]. To keep it simple, we
chose to model it by a rigid link. This assumption makes sense in our context as the rope is
almost always taut: when scanning an area, a robot should have a constant speed and move
straight most of the time. In this way, the measurements are made at a constant chosen frequency.

Besides, although the controller should handle a 3D context in an underwater environment,
the depth of the system can be regulated independently. Thus, we can only consider the problem
in the 2D-horizontal plane.

With these two assumptions gathered, the system can be modelized more easily. The
behavior can be related to the one of a car towing a trailer. At last, a non-neglectable advantage
of considering the car-trailer system is that developed approaches can be tested with much more
ease. Indeed, the process to carry out experimentations is more intricate when it requires to go at
sea, without forgetting the dependence on weather and sea conditions.

Boatbot: the automatized boat of ENSTA Bretagne

The final objective is to scan an area at sea. In the context of the search for the Cordelière, the
DRASSM carries out wrecks search with its research vessel: the André Malraux. This vessel has
been designed and equipped especially for underwater archaeological exploration. However, as
it has an important draft, it cannot easily lead research in shallow water, and there are shallow
waters in the survey area of the Cordelière, close to the shore. So one objective is to imagine a
system able to drag a magnetometer in shallow waters. In a second phase, the goal is to make
this system entirely immersible to avoid perturbating or being perturbed by the marine traffic,
which is significant in this area.

So the first developed system was an inflatable boat towing a magnetometer. This boat has
been automatized, using an electrical engine behind the helm. A differential Global Navigation
Satellite System (GNSS) and an Inertial Measurement Unit (IMU) with magnetometers are
used to localize and access the boat’s orientation. Thus, the automatized boat, named Boatbot,
became autonomous in direction and is able to follow survey lines accurately, even with wind
and currents [152]. The speed has also been automatized to obtain a constant speed during
the measurements, independent of currents and other perturbations. Figure 1.4 shows Boatbot
towing a kayak, and the magnetometer is immerged below the kayak. The kayak was a surface
intermediary to ensure the rope could not be cut by the motor’s propellers.
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Figure 1.4: Boatbot towing a kayak and a magnetometer, Bay of Brest, July 2018.

The system Boatbot-magnetometer, which can be viewed as a surface vehicle towing an
immerged fish, presents different issues. Indeed, even if the surface vehicle is fully autonomous,
it requires someone aboard for safety (and legal) reasons. Boatbot could be replaced by an
Autonomous Surface Vehicle (ASV), but there are still other issues. Indeed, the position of
the fish is uncertain and hard to control (especially the depth) as we have no information on it.
This uncertainty grows with the length of the cable, which should be long enough to have the
magnetometer close to the seabed. So the idea is to use an AUV instead of the surface robot:
it can be less concerned by the marine traffic, and it can measure and control its immersion at
any time. Thus we can hope to have better control of the position of the magnetometer due to
a shorter cable, and it is possible to envision missions in deep waters. However, this solution
leaves the system without any link to the surface, and therefore to any GNSS. As a result, the
localization of the system, especially the magnetometer, becomes much more complex in the
horizontal plane.

Constraints satisfaction

Last but not least, we want some guarantees on the control of the deported sensor. Indeed, the
presented challenge mentioned a “proper” scan, and the notion of safety is brought up. These
additional requirements can be expressed in the form of constraints. Then, the objective is to
validate the system in the sense that the constraints are always satisfied.

The Constraint Satisfaction Problems (CSPs) can describe many search problems and have
thus been studied in various contexts. For instance, a problem of estimation is solved with a
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maximum constraints satisfaction approach, using genetic algorithms, in [119].
Concepts behind CSPs are described in [156], and a survey of existing algorithms is proposed

in [88]. Set-membership approaches have also proved to be suitable to address these problems,
as in [71], where the SLAM problem is handled.

Sometimes, several constraints are involved, and they cannot be satisfied simultaneously
at the same time. Then a CSP can be turned into a Constraint Optimization Problem (COP)
where a maximum of constraints should be satisfied. The notion of soft constraints can also
be introduced: a soft constraint is a non-mandatory constraint. An example is given in [140]
with fuzzy constraints, i.e., constraints that are partially satisfied; the degree of satisfaction being
represented by a value included within 0 and 1.

In this thesis, set-membership approaches have been selected to address CSPs because they
provide guaranteed results, and also because they allow dealing with strong non-linearities with
ease.

1.3.2 Localization in pool

Underwater localization based on acoustic data

The underwater localization problem is both complex and crucial. The objective is to manage
to estimate the position of an underwater robot by processing acoustic data from its environ-
ment. These data contain much noise and outliers. Thus their interpretation is far from being
straightforward.

Firstly, in order to handle this intricate problem and ease the tests, the context has been chosen
as follows. The objective is to localize an underwater robot in a pool using an echosounder. In
this way, we can focus on the data interpretation part by considering a controlled environment.
In addition, it is easy to carry out experimentations with data acquisition and test the different
approaches.

Representing information

The underwater localization problem highly depends on the type, the quality, and the quantity of
collected data. For instance, with an accurate LBL system correctly deployed in good conditions,
the robot has direct and frequent access to its relative position with good precision. Then the
information is not handled in the same way as with a low-cost echosounder merged with a
pressure sensor that approximates the local water level compared to a water level reference.
There are much more uncertainties and a more complex representation of the information in the
latter case.

So, the objective is to find an estimation of the position of the robot. Usually, probabilistic
approaches are used for estimation problems. These methods compute a unique solution that
represents the estimated position. This solution comes with covariance matrices to represent the
uncertainties [121]. We can mention the well-known Kalman filter [82], which has been proved to
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be efficient in linear and Gaussian contexts. Extensions to this filter have been primarily studied,
with linearization, Gaussian mixtures, and other Bayes filters to deal with non-linearities and
multitarget [106, 160]. In the non-linear case, stochastic methods have also been largely studied
and provide relevant results [151]. For instance, solutions to the SLAM problem have been dealt
with [50, 4, 147]. There are also examples of underwater localization using bathymetry, as in
[5]. However, these approaches may fail from the moment there are strong non-linearities or not
enough reliable data. The latter example of bathymetric SLAM requires the use of a multibeam
echosounder, which is an expensive sensor that gives many data. The obtained results may be
incorrect as soon as this sensor is substituted for an inexpensive echosounder. Regardless, there
are very few studies of underwater localization using a single-beam echosounder and a Digital
Elevation Model (DEM): [29], or [149] with multiple cooperative vehicles. We can also mention
a bathymetric SLAM approach using sparse data (see [11]).

Set-membership approaches have shown to be particularly adapted to deal with strong non-
linearities and considerable uncertainties. Thus, the estimation problem can be solved as soon as
the uncertainties are bounded by known values, such that the actual value is guaranteed to belong
within these bounds. Instead of computing a unique solution with covariance matrices, like with
probabilistic approaches, the result consists of a solution set that contains the actual solution
[161, 158, 107]. So this solution set contains all the feasible solutions, and the computations are
guaranteed never to remove such a possible solution. The drawbacks of this approach are that
an infinite number of solutions are considered, some pessimism can be introduced due to the
guarantee’s property, and less information on the values is considered compared to probabilistic
approaches: the probability distributions used to represent the values are no longer considered.
Another difference between a probabilistic and a set-membership approach is the determinism
of the latter. The obtained result is always the same, which is not guaranteed when using a
probabilistic approach.

Among the drawbacks of the set-membership approaches, the lack of probability distribution
is often pointed out. Actually, it would not be a probability distribution, but a possibility

distribution, as all computations are deterministic. This distribution is completely binary: an
element either belongs to the solution set or does not belong to it. Its membership is either equal
to 1 or 0. There is no notion of partial belonging, or possible belonging. An answer to this
issue is given by the fuzzy logic approaches. The principle is precisely to break this binarity by
choosing a possibility distribution to represent a value. Thus, instead of considering two bounds
that contain the possible values, a fuzzy set is defined such that the membership of a given value
can be within 0 and 1.

1.3.3 Contributions and outlines

This thesis comes within the scope of the search for the Cordelière. Therefore, the main
contributions are linked to the exploration of the seabed with a deported sensor, namely a
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magnetometer, and especially its control, safety, and localization.
Firstly, Chapter 2 introduces some tools from dynamical systems and non-linear control

theory to handle control issues. The feedback linearization is mainly studied. Then, the set-
membership approach is presented with interval analysis. Finally, the fuzzy logic is also studied
to complete the interval analysis approach. These tools are directly illustrated with some basic
examples. They will be used through the following chapters with applications linked to the
challenges.

Afterward, Chapter 3 uses the presented tools from non-linear control theory to deal with the
problem of the car with a trailer. Notions of controllability and flatness are first introduced, and
the approach is illustrated on a Van der Pol vector field. A controller for the trailer is designed.
The follow set notion is also defined. It represents the set of all the states in which the robot can
be without violating some constraints. The previously designed controller is validated under
these constraints by characterizing its follow set using interval analysis.

In Chapter 4, we address the localization problem. We present how acoustic data are collected
and how they can be processed. Intervals are used to handle them, and different examples are
given dealing with the localization of a robot in a pool. An approach by constraints is proposed,
with particular care on the reliability of the chosen constraints. New contractors are designed for
this purpose.

In order to go further, Chapter 5 also handles the localization problem but brings tools from
fuzzy logic to propose a new approach. It consists in combining sets, allowing to deal finely
with estimation problems. The principle is to use a constraints approach and provide a means to
prioritize the constraints so that as many constraints as possible are satisfied. Interval analysis is
used to characterize the different α-cuts of the fuzzy set,and thus obtain the values that possibly

belong to the solution set. This possibility is represented by α, which can be chosen lower or
higher depending on degree of membership we want, which can translate a degree of accuracy or
guarantee for example. The interest in the new fuzzy tools is illustrated on an actual robot in a
pool.

Finally, Chapter 6 concludes this document by summarizing the contributions and detailing
some prospects.
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2.1 Introduction

In order to handle the mentioned robotic challenges, some theoretical tools require to be presented.
The first challenge is about the control of a deported sensor. Thus, tools from the control theory
field need to be introduced to deal with the design of a controller. More precisely, the dynamics
of a towed object being non-linear, these tools belong to non-linear control theory, and we focus
on the feedback linearization approach. This theory goes along with the study of dynamical
systems, whose fundamentals are recalled beforehand.

In a second part, the theory and concepts of interval analysis are presented. Tools from
this field are necessary to develop our approaches for both challenges. Indeed, the control of
the deported sensor and the localization problem raise non-linear problems. On top of that, we
would like some guarantee on the analysis and the results of the proposed approaches. Therefore,
tools from interval analysis are perfectly adapted to handle non-linearities and lead computations
while keeping a guarantee on the result. Especially, contractors are introduced and studied as
they will be used all through this document. They are operators allowing to reduce the domains
of the studied variables while keeping all the feasible solutions. They can be used for solving
various problems with a set-membership approach.

Finally, intervals are exploited to deal with uncertainties: they provide a result that is reliable
as soon as the uncertainties have been bounded in the intervals representing the studied variables.
This point is significant in our context where we want reliable results and where noise is
omnipresent and non-neglectable. Thus, in order to go into uncertainty representation in-depth,
fuzzy logic is introduced. This other branch of mathematics provides the tools to deal with fuzzy
sets, more flexible and appropriate than intervals to represent uncertainties. Interval analysis can
still be used to carry out the computations and thus keep guaranteed results.

Therefore, this chapter starts with notions of dynamical systems and non-linear control theory
with some basic examples. Especially, feedback linearization is introduced. Then, an introduction
to intervals is proposed. The essential elements are presented, especially the contractors, which
are powerful and very useful tools. Finally, fuzzy logic concepts are depicted, and their benefits
are underlined on the same examples as for interval analysis.

2.2 Non-linear control theory

Control theory began in the 19th century. Its purpose is the control of dynamical systems. We
can divide it into two branches: linear control and non-linear control theories. The first branch
proposes general techniques to study and solve linear systems [89]. Concerning non-linear
control theory, existing approaches often offer solutions to specific classes of problems, so
two systems may be studied with two different methods, depending on their stability properties.
Nevertheless, this field has been widely studied, and various tools are available today, as presented
in [143, 69, 85], among other books. Many applications in robotics can be found as in [145, 32,
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59, 53]. Sometimes, only solutions near a stable point are searched for, and the system can then
be linearized in the neighborhood of this point. It means that the system is approximated by a
linear system, and thus techniques from the first branch can be used. As linear techniques are
well-known and efficient, we often want to find a way to linearize non-linear systems. That is the
case with the feedback linearization approach, which consists of making a change of variables in
order to obtain an equivalent linear system.

2.2.1 Dynamical systems

First of all, the formalism of dynamical systems is quickly presented as it is fundamental for
dealing with control theory.

A robot, or any mechanical system, can be modeled by state equations. These equations
represent the dynamics of the system with its inputs and outputs. Most of the time, for real
systems, it is (strongly) non-linear. Such systems are described as follow:

ẋ(t) = f (x(t)) + g (x(t)) · u(t) (evolution equation) (2.1)

y(t) = h (x(t)) (output equation) (2.2)

where x is the state of the system and ẋ its derivate with respect to time. Its dimension is denoted
by n. The vector u(t) is the input, and y(t) the output of the system. The functions f , g and
h are assumed to be smooth. Each of these variables depends on the continuous-time variable
t. For the sake of clarity, we will not always write the time dependence in the following. For
instance, we shall write x for x(t).

The evolution equation describes the dynamics of the system: it is a differential equation
that corresponds to physical behavior. It can be obtained using the laws of physics or any other
means to model these dynamics.

In this section, we are interested in finding a way to control such systems. The output y(t)
is used for obtaining an estimation of the current state of the system x̂(t). This estimation is
made from measurements and is more or less uncertain, depending on whether the state is easily
and precisely measurable: x̂(t) ≈ x(t). A state observer is the name of the tool that returns the
state estimation from the output. Depending on the outputs, its design can be a complex task,
requiring the use of the least-squares approach [9], a Kalman filter [82, 146] or a Bayes Filter
[160]. Interval analysis can also be used for this task as in [51, 128, 127].

However, the design of a state observer is not really the topic of control theory. To keep it
simple, we assume that we have a perfect observer, such that we know the state of the system:
x̂(t) = x(t). It means that y(t) corresponds directly to the variables to be controlled. This
perfect observer simplification does not make what follows less general, as the method used
requires the state’s knowledge anyhow and is independent of the state observer. Thus, in the
following, we assume that the state is known at any time: we study a state feedback controller.
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2.2.2 Feedback linearization

In order to take on non-linear dynamical systems and give an intuition on how feedback lin-
earization works, we start straight away with a small example.

Lotka–Volterra equations

This example is not taken from a robotics application. Another simple example with a robotic
system is given further, and the whole study of a complex robotic system is the purpose of
Section 3.3.

The Lotka–Volterra equations [10], or predator-prey equations, form a non-linear system that
can be used to represent the dynamics of the populations of two species: a predator and its prey.
The populations evolve with respect to these differential equations:

ẋ1 = αx1 − βx1x2

ẋ2 = δx1x2 − γx2,
(2.3)

where x1 and x2 represent the population (in thousands) of preys and predators, respectively,
over time t (in years). The constants α, β, δ, γ are parameters depicting the birth and death rates
for each species.

Let consider the following values for parameters:

α = 1

β = 1
5

δ = 1
3

γ = 1

(2.4)

An input u, which depends on time, is also introduced for adding or removing some preys in
the system. This latter variable allows us to control the system: we can choose its value over
time to act on the system. Then, finding the control law that makes the system converge to the
desired state amounts to find an expression for u. Finally, the system is described by

ẋ1 = x1 −
1
5x1x2 + u

ẋ2 = 1
3x1x2 − x2.

(2.5)

A simulation of 20 years of the system with the initial state of ten thousand preys and

two thousand predators

10
2

 and with no command (u = 0 on [0, 20]) gives the evolution

represented in Figure 2.1. It is called an open-loop control because it does not take into account
the output of the system. It can give a first overview of the stability of the system, especially
with the representation in the (x1, x2)-plane that shows a stable cycle.



20 Theoretical tools

Finding a control law

The objective is to find an expression of u to control the number of preys over time. We assume
that x1 and x2 are known at any time.

By choosing u such that

u = −x1 + 1
5x1x2 + v (2.6)

and replacing it in the first equation of (2.5), we obtain the following linear equation:

ẋ1 = v. (2.7)

Here we have made a change of variable that leads to a linear equation and whose new input
is v. That is how we obtain a feedback linearization.

Now we can use standard linear methods to regulate the system. Thus, if we want the
population x1 to follow a dynamics Ψ, we can use a proportional-derivative controller:

v = Ψ− x1 + Ψ̇ (2.8)

which leads to:
ẋ1 = Ψ− x1 + Ψ̇. (2.9)

So it means that the error e = Ψ− x1 between the value of x1 and the set-point is solution to the
differential equation:

ė+ e = 0. (2.10)

This differential equation guarantees that the error converges exponentially towards 0, and this is
precisely the expected behavior for an error.

The control law u can then be written as

u = −2x1 + 1
5x1x2 + Ψ + Ψ̇. (2.11)

For instance, if we want the number of thousands of preys to oscillate around 3 over time, it
means that we want x1(t) to be equal to sin( t2) + 3. It yields

Ψ(t) = sin( t2) + 3 (2.12)

e(t) = sin( t2) + 3− x1(t). (2.13)

The wanted expression for u is thus

u = −2x1 + 1
5x1x2 + sin( t2) + t

2 cos( t2) + 3. (2.14)

We remark that the knowledge of x1 and x2 is indeed required to compute u. If these values
were not precisely known, then the obtained control law may not work as expected. Now, if we
implement this expression in the simulation, we obtain the Figure 2.2, with the number of prey
converging towards a sine curve shifted around ordinate 3.
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Note that the controller depends on time and is not linear. Although a linearization has been
done to find the controller, no approximation has been introduced. It is more advantageous to
use this method, contrary to a linearization near a stable point which adds approximation errors.

Finally, we have succeeded in finding a control law that makes our system converge towards
the desired dynamics. The method used here is called feedback linearization and consists in
computing the successive derivatives of the expression of the error until it depends on the input.
In the example, only one derivative had to be calculated, but if the new objective is to regulate
the number of predators, instead of preys, then the second derivative has to be computed, to
make u appear in the analytical expression.

This example gives an intuition on this method and broadly shows the assumptions and the
different steps. In the following, we enter more into details and present the mathematical tools
used behind this approach.



22 Theoretical tools

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

t (time)

(x
1,
x

2)
(n

um
be

ro
fi

nd
iv

id
ua

l)
Number of prey and predator over time

x1 (number of prey)
x2 (number of predator)

0 1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

12

14

16

18

x1 (number of prey)

x
2

(n
um

be
ro

fp
re

da
to

r)

Number of predator with respect to number of prey (representation in the (x1, x2)-plane)

Figure 2.1: Simulation of the evolution of the populations of prey and predator without input.
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Figure 2.2: Simulation of the evolution of the populations of prey and predator. The input has
been designed to make the number of preys converge towards a sine curve around ordinate 3
(identified by the dashed line).
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2.2.3 Differential geometry

Let us tackle the mathematical concepts hidden behind feedback linearization. In order to control
a dynamical system, described by (2.1), we usually need to study the output equation (2.2) and,
more especially, its dynamics. It means that the successive derivatives of the output y have to
be computed. This task is relatively easy and immediate on simple systems. However, most of
the time, dynamical systems used to model real mechanical systems are complex. It leads to
intricate computations, and this is why we use tools from differential geometry to abstract these
computations and automatize this step.

Let introduce these tools without defining too many concepts to keep it simple (see [143,
Chapter 6] for more details). The evolution function f : Rn → Rn described in (2.1) is actually
named a vector field to match the terminology of differential geometry. Its dimension is n.

Note that we use here the Rn space as, in our applications, all the state variables are real.
However, in differential geometry, we work in a more general topological space named manifold.
In the following, M denotes an n-dimensional manifold. Then, we usually defined a coordinate

patch denoted by P which is a connected, open set around a point in the manifold M. This patch
allows to define a coordinate system and finally to define tools as Lie derivatives properly.

The state x of the robot evolves on the vector field f , which corresponds to its dynamics.
In other words, at a time t, the robot is in a state x(t), and since the robot obeys to laws of
physics, the evolution of the state is determined by the vector field f , modeling these laws. So
the derivative (with respect to time) of y = h(x) is the rate of change of h on the vector flow
(trajectory on the vector field f ) at the point x(t). It is named a Lie derivative and is denoted by
Lf (h) or simply Lfh.

More formally, we have

Lfh = ∇h · f , (2.15)

where∇h denotes the gradient of h: ∇h = dh
dx .

Now if we consider once again the equation of (2.2), when we derive y, we get:

ẏ = dh
dx

(x) · ẋ

(2.1)= (f(x) + g(x) · u) · dh
dx

(x)

= dh
dx

(x) · f(x)︸ ︷︷ ︸
=Lf (h)(x)

+ dh
dx

(x) · g(x)︸ ︷︷ ︸
=Lg(h)(x)

· u.

(2.16)

We can see that we are using Lie derivatives as soon as we want to derive an expression
depending on a state variable. We can now define the successive Lie derivatives recursively: the
ith derivative is

L(i)
f h(x) = LfL(i−1)

f h(x) =
d
(
L(i−1)

f h(x)
)

dx
· f(x). (2.17)
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The feedback linearization method consists in deriving the output of the system until the
input u appears in the equation. The number of derivatives needed to be computed depends on
the system and is called the relative degree. It is denoted by r, and it is the smallest integer such
that

∀i ∈ {0, . . . , r − 1}, LgL(i)
f (h(x)) 6= 0. (2.18)

In addition we necessarily have r ≤ n.
So, for each non-linear system that is feedback linearizable [85, p. 508], these tools can be

directly used to find a control law.

2.3 Interval analysis

Notions of non-linear control that have been presented above will be used later to design a
controller of a towed sensor. Another theoretical tool that is presented now will help to validate
such a controller under some constraints. This tool is interval analysis, and it will also be used to
deal with localization and, more generally, set estimation.

Interval analysis is a branch of mathematics that provides tools to handle various problems.
The first issue, which was one of the main motivations to carry out researches on intervals, was
guaranteeing numerical computations despite rounding errors due to the finite representation
of numbers in machines [125]. Since then, numerous applications have been found and have
developed a new interest in this field. In robotics, we can mention relevant uses of this approach
in localization [39, 133], control [112], or planning [65, 123], to name a few.

Intervals are specially adapted to deal with uncertainties. These uncertainties can barely be
ignored, and different tools have already been designed to address them. Apart from interval
analysis, we can mention Bayesian approaches, which are widely used and have no more need
to prove their efficiency. Concerning robotics, the article [150] can give a first overview and
references. The fuzzy logic field should also be mentioned, as it brings one additional point of
view on representing these uncertainties.

For now, let us focus on intervals. Concretely, instead of considering a real number x for
representing a value, we consider an interval [a, b] that contains x: x ∈ [a, b], with a, b ∈ R. This
interval is denoted by [x]. The variables a and b are called the lower bound and the upper bound

of the interval, respectively, and are often denoted by x− and x+.

2.3.1 Definitions

Intervals

More formally, an interval is a connected subset of R. Call IR the set of all intervals, and [x] an
element of this set. The interval [x] is defined by its lower and upper bounds, denoted by x− and
x+, respectively:

[x] =
{
x ∈ R | x− ≤ x ≤ x+

}
. (2.19)
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[x]

[y]

[x] ∩ [y]

[x] t [y]

Figure 2.3: Example of operations on two boxes [x] and [y].

For example, [2, 4], [−1
3 , 10], [−π,

√
2] are intervals. Intervals can also be degenerate, when

x− = x+. For instance, [1, 1] = {1} is a degenerate interval. We can mention two more examples
of special intervals: the empty set ∅ and [−∞,+∞].

As an interval is a set, set operators can be extended to intervals. The intersection of two
intervals [a] and [b] is

[a] ∩ [b] =
{
x ∈ R | max(a−, b−) ≤ x ≤ min(a+, b+)

}
. (2.20)

The only subtlety is for the union of intervals: the interval hull operator, denoted by t, is
used to keep the integrity of intervals. Indeed, the union of two intervals can be a non-connected
set – it is not any more an interval. That leads to the definition

[x] t [y] =
{
x ∈ R | min(x−, y−) ≤ x ≤ max(x+, y+)

}
. (2.21)

For example, [−3,−1] ∪ [17, 42] is not an interval, but [−3,−1] t [17, 42] = [−3, 42] is one.
Now we can define interval vectors as the cartesian product of intervals, to extend the

definitions to multiple dimensions. For instance, a two-dimensional interval vector is the cartesian
product of two intervals: [x] = [0, 1]× [−1, 2]. It is also called a box or a two-dimensional box

(2D-box).
Set operators are also well defined on interval vectors, with the same operations as for

(1D-)intervals applied on each dimension. Figure 2.3 gives an illustrative example.
Besides, as an interval represents a value as a real, all the arithmetics operations are also

extended to intervals. All the implementation details of arithmetics are not presented in this
document, but the principle is to carry out the computations using each boundary of the intervals.
The reader may refer to [41] for further information. For instance, the addition of two intervals
[x] and [y] is defined by

[x] + [y] = [x− + y−, x+ + y+]. (2.22)

The subtraction of two intervals is defined similarly. The multiplication and division operations
should be applied with care, especially when 0 is included in one of the terms. More complex
operations are also defined, as trigonometric functions (cos, sin, etc), exponential, minimum,
and so on. Note that computations with intervals are thus non-limited to linear operations. Since
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then, an essential advantage of interval analysis is to deal with strong non-linear problems still
guaranteeing the result.

In the same way, this arithmetic is also extended to interval vectors.

Constraint satisfaction problem

Many problems can be formalized into a Constraint Satisfaction Problem (CSP). Constraint

Programming (CP) is a field of research that addresses these CSPs. Details of this field can be
found in [136], for example. Note that we can also speak of Constraint Networks (CN) [98]. The
formalism is described in [139, Chapter 6] as follows.

A CSP is a triple 〈X ,D, C〉 where each set is: the set of variables, the set of domains

associated with these variables, and the set of constraints, respectively. An element of the latter
is a constraint and is defined by a pair 〈scope, rel〉 where scope is the domains of the variables
involved in the constraint, and rel is the relation between these variables constraining their
possible values.

In this document, we use a function to represent the constraints set. The formalism becomes
as follows.

Proposition 2.3.1. Fix x ∈ Rn and h : Rn → Rm where m is the number of constraints. Then,

a CSPH is described by

H :

 x ∈ [x]

h(x) = 0.
(2.23)

Proof. Indeed, we can find back the original formalism by defining the triple 〈X ,D, C〉 such
that:

• x is the vector of all elements of X ;

• [x] = D;

• C is a set of m elements such that the ith element is defined by the pair

〈scope, rel〉 = 〈domain(hi), {hi(x) = 0}〉 ,

with hi the function that returns only the ith output of the function h.

Therefore, we have a CSP.

Example 2.3.1. For instance, for n = 3, assume that we have the following constraints (m = 2):

 x1 − x2 = 1

x1 cos(x3) ≤ 0,
(2.24)

with [x] = R× R× [−π, π].
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Let show that it is a CSP. In order to match the formalism, an additional variable is introduced
in the following equivalent system of equations: x1 − x2 = 1

x1 cos(x3) + x4 = 0,
(2.25)

with x4 > 0 (so now [x] = R × R × [−π, π] × [0,+∞]). In this way, all the constraints are
expressed as equalities, and we thus have a definition for the function h:

h : R4 → R2
x1

x2

x3

x4

 7→

 x1 − x2 − 1
x1 cos(x3) + x4

 . (2.26)

Such a CSP is associated to a solution set S which is defined by

S = {x ∈ [x] | h(x) = 0}. (2.27)

The solution set of this class of problems can be computed in a reasonable time using heuristic
combinations or combinatorial optimization. Otherwise, in general, this is an NP-hard problem;
that is, there is no available algorithm able to compute the result with a polynomial complexity in
the number of variables. Interval analysis also brings methods to solve these problems efficiently,
with the advantage of offering a guarantee on the result. Indeed, intervals are particularly adapted
to address set membership problems, even in a non-linear context.

2.3.2 Contractors

Definition

A method using interval analysis is presented to solve CSPs. A contractor [23] is an operator
that contracts the box [x] into a smaller box [x′] that still satisfies the constraints [80]. In other
words, we have

[x′] ⊂ [x], (2.28)

and
S ∩ [x] = S ∩ [x′]. (2.29)

So [x′] is a better approximation of the researched solution set S.
An example is given in Figure 2.4 with a contractor C that is associated with a set S. It means

we can rewrite (2.29) with

∀[x] ∈ IRn,S ∩ [x] = S ∩ C([x]). (2.30)

Note that this contractor is minimal. It means that it returns the smallest box that wraps the set
without eliminating any of the solution points [38].
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[x]C([x])

S

Figure 2.4: Example of a (minimal) contraction of the box [x] with the contractor C associated
with the set S.

More formally, a contractor C is defined by the three following properties:

(i) ∀[x] ∈ IRn, C([x]) ⊂ [x] (contractance)

(ii) [x] ∩ S ⊂ C([x]) (consistancy)

(iii) [x] ⊂ [y] =⇒ C([x]) ⊂ C([y]). (monotonicity)

(2.31)

The first property is the contractance property. It guarantees that no candidate from outside
the input box can be considered.

The second one is the consistency property. It is equivalent to (2.30) and guarantees that no
solution point can be eliminated.

The last one is the monotonicity property. It is not strictly required to define a contractor, but
here we use only monotonic contractors. Keeping this property allows having some guarantees
on the convergence time, as described in [24].

In order to obtain a better approximation of the solution set, it is possible to create a pavage
composed of non-overlapping sub-boxes covering the initial box [x0]. Indeed, the solution set is
rarely a box, so the over-approximation is often too pessimistic, especially for non-convex sets.
The idea is to use smaller boxes to get closer to the researched set. Figure 2.5 gives an example
on the same set S as for the contraction example.

Separators

When using contractors, we can obtain an approximation of the outer of the solution set S. It
means that we have the guarantee that none of the solutions are removed by the contractor.
An idea to better characterize the solution set is to compute its complementary set using the
complementary contractor, which is independent of the first one. This second contractor gives
the approximation of the outer of the complementary solution. It is thus guaranteed that the result
set contains every non-solutions (and often some solutions). It is used to remove points inside
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Initial box [x0]
Sub-box [x]
Contracted sub-box

S

Figure 2.5: Paving of the box [x0] with the contractor C associated with the set S. The contraction
of one sub-box is illustrated as example.

the solution set. In this way, it allows for computing an inner approximation of the solution set.
This pair of contractors is then called a separator [74].

Concretely, a separator takes as input a box [x] and returns as output two sub-boxes [xin] and
[xout] such that

([x] \ [xin]) ⊂ S (2.32)

([x] \ [xout]) ∩ S = ∅. (2.33)

An example of an inner contractor is given in Figure 2.6 with a contractor Cin that is associated
with a set S. It is equivalent to the contractor Cout that is associated with the complementary set
S̄. It means we have ∀[x] ∈ IRn, [x] \ C([x]) ⊂ S.

[x] [xin] = Cin([x])

S

Figure 2.6: Example of an inner contraction of the box [x] with the contractor Cin associated
with the set S.

Besides, contractors (and by extension separators) can be easily combined to create more
complex contractors. For instance, we may have different constraints for the same problem.
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Then each contractor associated with each of these constraints can be defined. A combination of
these contractors is made of unions and intersections of these contractors. A union (respectively
an intersection) of contractors is the union (intersection) of the contracted boxes.

2.3.3 Combining sets

Set inversion problem

In many situations, not only in robotics, we have access to the effects, and we want to characterize
the cause that produced them. Indeed, the effects can often be measured with sensors. More
formally, it amounts to find the preimage set X knowing the image set Y of a function f such
that f(X) = Y. The researched set is then X = {x ∈ Rn | f(x) ∈ Y}. For example, CSPs
belong to set inversion problems: the solution set is a preimage of a function representing the
constraints. So interval analysis is particularly adapted to solve this kind of problem, even
with strong non-linearities, as in [111], where the localization of a robot in a known structured
environment is dealt with. Using separators and an algorithm of set inversion, outer and inner
approximations wrapping the researched set are computed.

The Set Inversion Via Interval Analysis (SIVIA) algorithm [76] fulfills these tasks: it returns
subpavings enclosing the set to be characterized, and an indeterminate subpaving corresponding
to the boundary between the two first subpavings. Its operation is similar to the one already
described for the paving (in Section 2.3.2): it consists of bisecting boxes until each sub-boxes is
either small enough to entirely belong to one approximation set (inner or outer), or too small to
continue computations and then belong to the indeterminate set. This second case depends on a
factor ε: the smaller, the closer the approximation. However, naturally, the number of calls to the
separator depends on this factor, so choosing a smaller ε leads to a longer computation time. So
all the sub-boxes too small to belong to one of the two approximation sets belong to the third
indeterminate set: the boundary. This set is the boundary between the two others, and it contains
all the values on which we have no information. In a context where we want a guarantee on
the result (at the risk of adding pessimism), this boundary should be considered as we can not
conclude on the belonging of its elements.

This approach may be compared to a gridding approach. Indeed, it is precisely the same
reasoning, but instead of taking boxes, the gridding method proposes to take points covering the
space and then to compute the belonging of these points. The more significant difference is the
guarantee linked to interval analysis, which is not approached by a gridding algorithm due to the
finite precision of machines.

Relaxed intersection

In the scope of estimation problems, sets most often have a physical signification. A set can
represent the state (or part of the state) of a system, an estimation of its parameters, or some
measurements. Depending on the strategy used, we can rapidly have a significant number of
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sets to manage. This number is all the more critical when the sensors return a lot of valuable
data. Combining these sets means using arithmetic and set operations to satisfy some constraints
and thus reduce the uncertainties as much as possible. In other words, the problem amounts
to characterizing a physical value (a state variable or a model parameter) from different data
(coming from sensors or constraints). These data represent the most often partial pieces of
knowledge of the researched set, sullied with uncertainty, hence the need to combine them.
They are represented by sets Zi that are called granules to underline the fact that they represent
granules of knowledge.

When these granules are intervals, we have seen that we can use contractors to combine them
and compute the researched set. A restriction that comes relatively quickly with this approach is
that implemented constraints are assumed to be undeniably and always true. When inputting
data from sensors, there are often a few outliers, that is, aberrant data. Only one occurrence of
such an outlier and the associated constraint becomes incompatible with the other measurements.
When using contractors, it often results in a contraction to the empty set, which is an undesired
situation.

To handle this pitfall and robustify the approach, an algorithm has been developped to
compute the relaxed intersection, or q-intersection [75]. This operator is denoted by

⋂{q}, and is

such that for the granules Zi, i ∈ [1,m], and q ∈ [0,m] the set

X =
m⋂
i=1

{q}Zi (2.34)

is the set of all x that belong to all the Zi except q of them. An illustrative example is given
Figure 2.7 with 5 sets including 2 outliers. A classical intersection would have resulted in an
empty set, whereas a 2- or 3-intersection, respectively painted red and yellow gives exploitable
information.

Z1

Z2

Z3

Z4

Z5

5⋂
i=1
{3} Zi

5⋂
i=1
{2} Zi

Figure 2.7: Examples of relaxed intersections on 5 sets including 2 outliers: Z1 and Z5.

We can notice the three following trivial cases that reduce the actual scope of q to [1,m− 2]:
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• if q = 0, then it amounts to a classical intersection;

• if q = m− 1, then it amounts to a classical union;

• if q = m, then it amounts to the universal set.

So the relaxed intersection allows further robustness to outliers, assuming that the number
of outliers is known. Indeed, the setting of the parameter q is not always obvious and can
be a complex task. To handle the latter issue, one can compute the relaxed intersection for
different values of q with the idea to find the smallest q such that the q-intersection is not empty.
This idea has already been studied, and estimators have been developed as the Outlier Minimal
Number Estimator (OMNE) [91], or the guaranteed version Guaranteed Outlier Minimal Number
Estimator (GOMNE) applied in localization [78].

Example 2.3.2. To illustrate the approach, suppose that we have four ring-shaped granules,
Z1,Z2,Z3,Z4, corresponding to the position for a robot consistent with some measured distances
dj to different landmarks m(j) = (m1(j),m2(j)). More precisely, we have

Zj =
{
x ∈ R2 |

√
(x1 −m1(j))2 + (x2 −m2(j))2 ∈ [dj]

}
, (2.35)

where the intervals [dj] and the landmark coordinates m(j) are given by the Table 2.1.

j 1 2 3 4
[dj] [2.2, 4.2] [4.4, 6.4] [7.1, 9.1] [4.1, 6.1]

m(j) (−1, 3) (5, 2) (8,−1) (1,−5)

Table 2.1: Measured distances and coordinates of the landmarks.

We associate a separator for representing each granule. Then we can easily combine these
granules by characterizing their union, intersection, or relaxed intersection. The results of these
operations are represented in Figure 2.8. In both figures, the union of the rings is represented
in green. On the left (Figure 2.8a), the intersection is painted red and is not empty as there is
no outlier. On the right (Figure 2.8b), the granule Z3 is an outlier: the interval [d3] is equal to
[11.1, 13.1], which does not include the actual range to the third landmark. Then, the intersection
of all the granules would be the empty set. Thus, the relaxed 1-intersection is computed and
depicted in orange: the outlier has been rejected.

Figure 2.8 has been obtained by using the SIVIA algorithm. The visible boxes are due to the
interval method, which bisects and tests interval values for x1 and x2.

2.4 Fuzzy logic

Fuzzy logic is a branch of fuzzy mathematics where a logical variable, instead of taking values
only in the set {0, 1} (as a boolean variable: {false, true}), can take any values in the interval



34 Theoretical tools

(a) without outlier

(outlier)

(b) with one outlier (Z3)

Figure 2.8: Representation of different combinations of the four ring-shaped granules, with no
outlier (left) or one outlier (right).

[0, 1]. It means that a logical variable is not binary anymore and can be partially true. Fuzzy
logic had been studied since the 1920s as infinite-valued logic, and then had been widely studied
primarily by Lotfi Zadeh since 1965 [168, 167].

2.4.1 Representing uncertainties

Uncertainties in estimation problems

Localization problems, and more generally, estimation problems, consist in computing some val-
ues such that they are the closest as possible to the actual value they represent. Concretely, when
considering a system, we have access to the outputs of this system resulting from measurements,
and we also generally have a model that gives its dynamics. Then the objective is to estimate
either some parameters intrinsic to the system or state variables like the position.

Since then, several questions can be raised. On the one hand, the measurements provided
by the sensors are the basis for working. Consequently, their interpretation is crucial for the
following. They contain uncertainties and, sometimes, can even be outliers, i.e. completely
wrong. How to represent these uncertainties, how to properly reject the outliers, how to divide
the influence of each data on the result; all are issues for which different approaches exist.

On the other hand, the result of an estimation algorithm should precisely represent its
uncertainty. Thus, some questions deserve to be studied, especially about the balance between
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reliability and precision. Indeed, depending on the application of the result, two extremes can
be envisioned. Either the result should be imperatively guaranteed. In that case, the lesser
uncertainty should be taken into account, leading to a potentially unprecise result but totally
reliable. Otherwise, the result is directly used to take a concrete decision, and a choice must be
made: only one value is kept. The most probable or possible value is taken, but there is no more
guarantee on it.

In order to address all these issues, several approaches exist with their own strength. However,
when uncertainties are significant and when outliers occur frequently, fuzzy logic seems to suit
particularly. This chapter starts with a small comparison of the different approaches to handle
uncertainties and introduces the fuzzy set theory. Tools to deal with fuzzy sets are presented with
some arithmetics.

Approaches overview

When dealing with real robots, or more generally real systems, we need to handle uncertainties.
These uncertainties come from different sources: external perturbations as weather parameters
(such as wind and temperature), environment as uneven ground with unknown grip, or internal
perturbations as sensors sensibility or motors efficiency. Well-representing uncertainties allow to
finer understand the system and its dynamics, and thus better controlling or observing it.

The mainstream approaches are based on probability theory [151], with many efficient
probabilistic estimators [162, 82] to characterize the system state, even in non-linear context
as in [81]. However, these methods require a complete representation of the errors, and this
is rarely possible. Hence some assumptions are made, more or less realistic, to define and
characterize the posterior density function of the parameters to be estimated. For instance, the
dependence between errors deeply complexifies probabilistic representation and thus is often
ignored. Although results are often the expected ones, especially when data abound, they can
lack integrity; the computed confidence region is then over-optimistic and even may be far from
the actual system’s state. When expecting some reliability and guarantee on the results, we can
consider moving towards other approaches, more flexible concerning the strict requirements on
the statistical properties of the manipulated data that are not always verified in practice.

In previous section, set membership methods have been presented with the interval analysis
tools. It is particularly adapted when the representation of uncertainties and the correlations
between them are unknown [56, 122, 110]. Instead of considering a density function, the
approach consists in considering intervals [115] to represent uncertainties. It benefits from
contractor programming [23, 133] to characterize the set of all parameters that are consistent
with all the data. The corresponding interval estimators have been shown to be very reliable on
many different types of localization problems [31, 96, 135, 38, 131]. It can address insufficient
data and allow more flexible manipulations in complex and non-linear computations by avoiding
strict statistical requirements, [90, 1, 77, 60, 30].
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Nevertheless, it can be seen as less specific than probabilistic methods. Figure 2.9 shows dif-
ferent representations for the same measurement with the two different approaches. It illustrates
the fact that interval representation lacks specificity. Indeed, the vertical dimension is not used at
all. Either a point belongs to the interval or not, it is binary. So the probabilistic approach has this
advantage: a point can have a probability to belong to the set within [0, 1]. To remedy this lack
of specificity of set membership methods, we can envision: fuzzy sets [49], possibility theory
[47] or belief theory [36, 37]. They all add this vertical dimension, allowing them to manage
the distribution of the variables. These distributions are possibility distributions, contrary to
probability distribution with the probabilistic approach. So the objective is not limited to extend
the set membership approach to probabilistic context as in [73]: the convenience of fuzzy sets
combined with tools from interval analysis can handle various contexts.

0
0 2

1

(a) Using probabilistic representation

0
0 2

1

(b) Using interval representation

Figure 2.9: Example of representations for the measurement of a distance of 2 meters.

These conceivable approaches, fuzzy sets, possibility theory or belief theory, mainly been
used when the variables are discrete, are particularly suited to deal with estimation problems
where the uncertainty cannot be completely modeled. Moreover, when the variables are contin-
uous, as vectors of Rn, interval methods can still be used with a graduality: see for instance,
[116] in the context of belief functions, [14, 16, 15] for fuzzy estimation, [46] in the context of
possibility theory or [117, 43] when combined with probabilistic methods.

2.4.2 Fuzzy sets

Definitions

A fuzzy set is a set such that an element x can belong to this set only partially. We thus introduce
the concept of grade of membership, or degree of membership, which is a real number of the unit
interval [0, 1]. Then, when x is not included (at all) in the fuzzy set, its grade is equal to 0, when
x is (fully) included in the set, its grade is equal to 1, and x is said to be partially included in the
set when its grade is in ]0, 1[.

From now on, we differentiate fuzzy sets with crisp sets that is the name given to classical
sets. A crisp set is a particular case of a fuzzy set, with grades of membership only equals to 0 or
1 (respectively, non-belonging and belonging). To define properly such a set, we need to extend
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the definition of a characteristic function. As a recall, for a crisp set X included in a reference set
(or universal set) Ω, a membership function χX is classically defined as follow:

χX : Ω→ {0, 1}

x 7→

1 if x ∈ X

0 otherwise.

(2.36)

Similarly, for a fuzzy set, we define the membership function µX : Ω→ [0, 1] which returns the
grade of membership of its input, that is, any real between 0 and 1.

An α-cut is the set defined by a threshold α ∈]0, 1] and such that

Xα = {x ∈ Ω | µX(x) ≥ α} . (2.37)

We also define the set core(X) = X1 as the biggest set such that

∀x ∈ core(X), µX(x) = 1 (2.38)

and the set support(X) = X0+ as the biggest set such that

∀x ∈ support(X), µX(x) > 0. (2.39)

Figure 2.10 illustrates these notions on a one-dimensional fuzzy set.
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support(X) = X0+

core(X) = X1

Xα

α

Figure 2.10: Representation of the fuzzy membership function of a one-dimensional fuzzy set.

So a fuzzy set X is defined by its µ-function µX with the following “nested” property. Note
that we consider only convex fuzzy sets.

∀(α1, α2) ∈ [0, 1]2, α1 < α2 =⇒ Xα1 ⊇ Xα2 . (2.40)

Especially:
core(X) ⊆ support(X). (2.41)

Note that we have the following proposition.

Proposition 2.4.1. Let X be a fuzzy set defined by its µ-function µX. Then, we have

core(X) = support(X) ⇐⇒ ∀α ∈]0, 1],Xα = core(X) ⇐⇒ X is a crisp set.
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Proof. =⇒ : Assume that core(A) = support(A). Fix α ∈]0, 1]. We have 0 < α ≤ 1 and then
(A)1 ⊂ (A)α ⊂ (A)0. Yet (A)1 = (A)0 = core(A). So (A)α = core(A).
⇐= : Assume that ∀α ∈]0, 1] (A)α = core(A). Especially, (A)0+ = core(A).

So intervals are particular cases of fuzzy sets. Every α-cuts are all equals. The fuzzy
membership function of an interval is represented in Figure 2.11.

x

µ[x](x)

0

1

x− x+

r

Figure 2.11: Representation of the fuzzy membership function of a classical interval [x], or crisp
set, with a radius of r.

Example 2.4.1. To give a first intuition of the interest of such fuzzy sets, let take a very simple
example. Consider the harvest of apples in an orchard. Let take a fuzzy set representing the
number of red apples harvested among all the apples. It is a fuzzy set because the notion of “red”
for apple is fuzzy, and we choose here to accept that an apple can be only 50% red, for example.
So we can represent the µ-function of this fuzzy set, as in Figure 2.12.

n (red apples)

µX(n)

050 13070

1

Figure 2.12: Fuzzy set representing the number of “red” apples harvested.

This fuzzy set indicates that 70 apples are undeniably red. However, there are 60 (130− 70)
other apples that are more or less red and whose “more or less”, which is a fuzzy quantifier, is
represented by the grade value. Naturally, all this information contained in the fuzzy set could
not have been represented by a probabilistic approach neither by an interval.

Operations on fuzzy sets

There are three basic operations on crisp sets: the complement, the intersection, and the union.
These operations can be extended to fuzzy sets by the standard fuzzy set operations1, presented
in [48, 87] among others.

1As there are several ways to generalize these operations, the word standard denotes the usual way. In the
following, as only standard operations are considered, the word standard will be omitted.
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Let X and Y be two fuzzy subsets of the reference set Ω. Their associated fuzzy membership
functions are denoted by µX and µY respectively. Let x be an element of Ω. The complement of
X is denoted by X̄, and its membership function is defined by

µX̄(x) = 1− µX(x) (complement) (2.42)

The intersection and the union of X and Y are denoted by X∩Y and X∪Y respectively, and
their membership functions are defined by

µX∩Y(x) = min (µX(x), µY(x)) (intersection) (2.43)

µX∪Y(x) = max (µX(x), µY(x)) (union) (2.44)

Note that we can easily check the consistency of these definitions on crisp sets. Assume
that codomains of µX and µY are restricted to the set {0, 1}. Thus X and Y are crisp sets, as an
element x either belongs or not to these sets. There is no more fuzzy consideration. Table 2.2
shows that the definitions of each fuzzy set operations coincide with the truth table of crisp set
operations, associating the digit 0 to false and 1 to true.

µX(x) µY(x) µX̄(x) µX∩Y(x) µX∪Y(x)
1 1 0 1 1
1 0 0 0 1
0 1 1 0 1
0 0 1 0 0

Table 2.2: Values of the µ-function for the different fuzzy set operations on two crisp sets. The
results are the same as for crisp set operations.

Example 2.4.2. Figure 2.13 illustrates these operations on two given fuzzy sets X and Y. The
last example is a combination of two of these operations.

Remark. The union and complementary operations can define non-convex fuzzy sets, as in the
two last examples. To keep the convexity through these operations, we can extend the square
union (t) as defined on intervals, and use the same approach with the complementary operation.

Arithmetic on fuzzy sets

As fuzzy sets can represent a value or a vector of values, as it was the case for intervals, we want
to define some arithmetical operations. For example, what if we want to compute the sum of two
fuzzy sets, like to obtain the fuzzy set representing the number of red apples plus the number
of green apples. Different approaches are described in [49, 83, 67]. The basic concept is the
following.
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x0

1 µX(x)
µY(x)

(a) Representation of the membership functions of the one-dimensional fuzzy sets X
and Y.

x0

1
µX∩Y(x)

(b) Representation of the membership function of the intersection X∩Y. It is the min-
imum of the two membership functions: ∀x ∈ Ω, µX∩Y(x) = min (µX(x), µY(x)).

x0

1
µX∪Y(x)

(c) Representation of the membership function of the union X∪Y. It is the maximum
of the two membership functions: ∀x ∈ Ω, µX∪Y(x) = max (µX(x), µY(x)).

x0

1
µX∪Ȳ(x)

(d) Representation of the membership function of the fuzzy set µX∪Ȳ(x). It is a
combination of two operations: ∀x ∈ Ω, µX∪Ȳ(x) = max (µX(x), 1− µY(x)).

Figure 2.13: Example of the operations on two fuzzy sets.

Set x ∈ Ω. To compute the fuzzy set Y resulting of the binary operation (denoted by ♦) of
two fuzzy sets X1,X2, its membership function is defined as

∀(x1,x2) ∈ Ω2, µY(x) = sup
x=x1♦x2

min (µX1(x1), µX2(x2)) . (2.45)

However, this definition cannot be directly implemented, as there are generally an infinite number
of combinations of x1,x2 such that x1♦x2 = x. One approach to address this implementation
issue is actually to use the interval analysis, as studied in [83]. Indeed, a fuzzy set can be viewed
as a sequence of α-cuts:

∀x ∈ Ω, µX(x) = sup
α∈[0,1]

α · µXα(x), (2.46)
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where µXα is the membership function of the α-cut of the set X. This function thus represents
a crisp set: it is equal to the characteristic function of Xα. With the convexity of fuzzy sets
assumption, Xα is then an interval. A fuzzy set is then fully represented by its successive
α-cut, and the arithmetic can be implemented using the one from interval analysis on each α-cut.
Naturally, it works only when the number of α-cuts is finite. When there is an infinite number
of α-cuts, which is the general case since α ∈ [0, 1], we can still achieve the representation of a
fuzzy set by subdividing the segment [0, 1] in m intervals and carrying the computations on each
of these intervals.

That said, in the general case, we do not need to compute every α-cuts anyhow. It can serve
to provide a graphical representation of the studied set, but most of the time, for estimation
problems, only a few α-cuts are used at the end.

Score function

The relaxed intersection and the estimators as OMNE allow a parameters estimation particularly
robust to outliers. However, the limits of these tools can be reached, and a more general
estimator is sometimes needed. This is the case, for example, when the outlier occurrences are
interdependent or when the combination of the sets requires weighting them differently. For
instance, granules can come from different sensors, and we may have more trust in one sensor
than the other ones. So we may want to give more weight to data from this sensor.

The idea of the approach is to use the fuzzy set theory to combine the granules of knowl-
edge. The combination is described by a score function, which allows great flexibility in this
combination.

Formally, a score function σ is a mapping from {0, 1}m to [0, 1] with the following properties:

(i) σ(0, . . . , 0) = 0;

(ii) σ(1, . . . , 1) = 1;

(iii) ∀i ∈ [0,m], ai ≤ bi =⇒ σ(a1, . . . , am) ≤ σ(b1, . . . , bm) (monotonicity).

(2.47)

The score function takes as inputs the memberships of a vector to the granules, and returns the
(fuzzy) belonging of this vector to a fuzzy set. In other words, this function becomes the frame
of the membership function of the wanted fuzzy set X from the granules Z1, . . . ,Zm:

µX : Ω→ [0, 1]

x 7→ σ
(
ζ1(x), . . . , ζm(x)

)
,

(2.48)

with ζj the characteristic functions of the granule Zj: ζj(x) = χZj(x) for j ∈ [1,m]. Note that µ
is a piecewise constant function, so the number of α-cuts is finite and lower than 2m, the number
of values that can be taken by the vector (ζ1(x), . . . , ζm(x)).
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Example 2.4.3. To illustrate the approach, let us take once again the four ring-shaped granules,
Z1,Z2,Z3,Z4, corresponding to the position for a robot consistent with some measured distances
dj to different landmarks m(j) = (m1(j),m2(j)) (see Example 2.3.2). More precisely, we still
have

Zj =
{
x ∈ R2 |

√
(x1 −m1(j))2 + (x2 −m2(j))2 ∈ [dj]

}
, (2.49)

where the intervals [dj] and the landmark coordinates m(j) are given by the Table 2.1.
We define the fuzzy set X by its set membership function

µX(x) = ζ1(x) + 2ζ2(x) + ζ3(x) + ζ4(x)
5 , (2.50)

where ζj(x) are the characteristic functions of the granules Zj . The expression for µX(x)
translates the fact that the position of the robot should satisfy the measured distance intervals
such as the confidence or the reliability associated with x ∈ Z2 is twice the reliability of
x ∈ Zj, j 6= 2. The fuzzy set X can be represented by its α-cuts Xα, α ∈ {1

5 ,
2
5 ,

3
5 ,

4
5 , 1} as

illustrated by Figure 2.14.

(a) Top view with α going from green to
red

(b) 3D view

Figure 2.14: Representation of the fuzzy set X with its vertical dimension. (a): The value of α
goes from 1

5 (green) to 1 (red). (b): 3D view of X in the (x1, x2, α)-space.

Figure 2.14 has been obtained by using the SIVIA algorithm that is described in Section 2.3.3.
We observe that the function µ is made with plateaus due to the specific form of our function µ.
The boxes that are visible in Figure 2.14, left, is due to the interval method, which bisects and
tests interval values for x1 and x2.

The corresponding Python program can be downloaded and executed online at the following
link:

https://replit.com/@TilletJ/Alpha-cut-characterization.

https://replit.com/@TilletJ/Alpha-cut-characterization
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Finally, some links can be made with the evidence theory. Evidence theory, or belief theory,
or Dempster-Shafer theory [141] can be viewed as an interconnection between probability theory,
possibility theory, and fuzzy theory [102]. For instance, the score function we have defined could
be interpreted as a combination function in the evidence theory in the case where we define every
mass of the granules to 1. In our formalism, the masses can be directly set in the coefficients of
the score function.

2.5 Conclusion

In this chapter, different theoretical tools from three mathematical fields have been introduced.
Firstly, notions from non-linear control theory can be applied to a large range of systems. These
notions will mainly be used in the next chapter, allowing to deal with controlling a robot towing
a subsystem using the feedback linearization method.

Then, the interval analysis field has been presented, focusing on resolving Constraint Sat-
isfaction Problem with contractors. Many problems can be formalized such that it amounts to
a CSP, and thus be solved by an interval analysis method. This set-membership approach is
applicable even when strong non-linearities are involved, and allow keeping a guarantee on the
results in spite of uncertainties and outliers.

Fuzzy logic is the last mathematical tool studied in this chapter. It provides a formalism
totally adapted to handle uncertainties and outliers in any form whatsoever. Thus, fuzzy sets
can be seen as a generalization of intervals. α-cuts are intervals on whose all tools from interval
analysis can be applied, and the vertical dimension of fuzzy sets allows to do without the strict
binarity of intervals.
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3.1 Introduction

Nowadays, mobile robotics is mature enough to be used in a very large variety of contexts
and environments. To give a quick overview, we can name examples from tiny robots, with
microrobots primarily used in medical applications as in [33], to huge ones, as work class
Remotely Operated underwater Vehicles (ROVs) as described in [28, Chapter 1]. We can also
mention humanoid robots with NAOs from Aldebaran-Robotics [61], rovers such as Discovery

[54] or autonomous sailboats like VAIMOS [94]. So the applications are multiple. But if we take
a step back, plenty of these applications consist in embedding a payload, either composed by a
packet to deliver, or a sensor to collect data or even both. Sometimes, there is no choice: this
payload must be deported. Indeed, towing a packet can simplify the delivery, and some kinds of
sensors are sensitive to the robot itself. The latter reason is the motivation for looking at these
kinds of systems.

If we consider using a magnetometer, like in the research of buried wrecks, it requires to
deport the sensor far from every source of perturbation. Actually, a magnetometer measures
the variations in the magnetic field, and a mobile robot is composed of motors, batteries, and
other ferromagnetic materials whose magnetometers are sensitive. This is the case with Boatbot,
presented in Section 1.3.1.

In order to deal with such a context, the robotic system’s design must obey this constraint. The
solution of the deported sensor seems mechanically appropriate and straightforward. However,
from an automatic point of view, it brings some new complexifications: the control of the system
should make the sensor follow the desired trajectory, as this is the position of the sensor that is
important in the context of a survey.

The purpose of this chapter is to apply tools from non-linear control theory in the scope of
such a context. These tools have been introduced in Section 2.2.2. They are applied to a car
towing a trailer, whose behavior is close to a deported vehicle. Thus, the design of a controller
for a trailer-car system is proposed, knowing that it will be applied to a maritime system. The
other advantage of considering this system as an application is that it is easy to model and thus
simulate. Experiments on a real system can also be carried out more quickly.

Finally, the objective is to find a controller for this car to make the trailer follow a specific
trajectory. Nevertheless, the safety of the system requires to be taken into account. Therefore,
we want to validate the designed controller with respect to some state constraints defined to
guarantee the system’s safety. This is why we need to deal with follow sets which depict the safe
areas for our robot with the dedicated controller.

This chapter begins with an introduction to concepts of controllability and flatness. They
allow handling the problem of the control of the car-trailer system. A controller is then proposed
and tested in simulation and on a real robot. Finally, the interval analysis is used to characterize
the desired follow sets for the system’s safety.
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3.2 Controllability and flatness

Before applying the feedback linearization method and find a control law, we can check if
the system is differentially flat. It is the non-linear equivalent of the controllability of linear
dynamical systems [55]. Flatness theory brings valuable tools for this task, helping to understand
better the physical meaning and links between the variables of the studied system. The interests
are twofold. On the one hand, the flatness property assures that we can find a controller that
stabilizes the system at a desired state. On the other hand, a flat system has a flat output which
can be used to express the whole state analytically with respect to this output and its derivatives.
This last point is essential for us as it allows the analysis of the controller. It will be used to
express the follow sets.

3.2.1 Theory

Consider once again the non-linear system given by the general equations (2.1) and (2.2). The
first step is to draw the graph of differential delays. This tool quickly shows the variables linked
by a differential delay and those linked by an analytical non-differential relation. The objective
is to understand the differential delays existing between the inputs and the outputs. It is crucial
to obtain an intuition on the potential dynamics of the inputs on the outputs, i.e. the observed
state of the system.

In this way, the relative degrees of each output can be easily read. Finally, the sum of these
relative degrees gives an intuition on the system’s controllability. It is in the same manner as the
rank of the controllability matrix in a linear context. If this sum is lower than the dimension of
the system, then a feedback-based linearization method leaves some state variables without any
control. That is generally not wanted unless the system is stable and the result leads to correct
behavior anyhow. When the sum is equal to the dimension of the system, we are sure that the
system is controllable, and the output is then called a flat output.

This flat output corresponds to the output with the following additional property: the whole
state of the system can be expressed with respect to this output and its successive derivatives. In
other words, there exists a function φ such that φ(y, ẏ, . . . ,y(r)) = x. Note that all the inputs
can also be expressed with the same manner.

3.2.2 Cart example

Dubins’ car model

In order to illustrate these notions, an example is now proposed with a robotic application. The
cart model [45], also called the Dubins’ car model, is a classic example of a mobile robotic
system. The control of the heading of this system is proposed to see the application of the
feedback linearization method. Figure 3.1 gives the physical correspondence of each variable.
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x1

x2

x3

Figure 3.1: Model of the Dubins’ car with the representation of state variables.

The system is described by the following state equations:




ẋ1

ẋ2

ẋ3

 =


cos(x3)

sin(x3)

u


y = x3

(3.1)

with (x1, x2) the position of the car, and x3 its heading. The speed of the car is assumed to
be constant and equal to 1 m.s−1. The output is the heading, and the input acts directly on its
derivative: ẏ = ẋ3 = u. The latter relation is the only one that would appear in the graph of
differential delays. Nevertheless, the dimension of the system is 3. So it means that at most
2 variables are let without any control. Indeed, as the speed is stuck at the constant value 1,
the position is not controllable, and only the heading x3 is. So this is not a flat system. It
is not possible to find back the whole state of the car (especially its position) with only the
output x3 and its derivatives. However, we can still find a controller for the heading using the
feedback linearization method, as the position cannot make the heading unstable even if it is not
controllable.

Now if we consider choosing the control

u = −x3, (3.2)

then we have

ẏ = −x3 (3.3)

and

ẏ + y = 0. (3.4)

This last differential equation implies that y = x3 will follow the dynamics given by the solution
of the differential equation which is

y(t) = y(0) · e−t. (3.5)

It means that this control law leads the car to follow the heading 0, as we have y(t) →
t→∞

0.
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More generally, let say we want the heading to follow a specific dynamics Ψ(t) with Ψ a
smooth and derivable function. So the objective is to find a controller u(t) such that Y (t) =
y(t)−Ψ(t) →

t→∞
0.

We have
Ẏ (t) = u(t)− Ψ̇(t) (3.6)

and we want to find u such that

Ẏ (t) + Y (t) = 0

ẏ(t)︸︷︷︸
u(t)

− Ψ̇(t) + y(t)−Ψ(t) = 0. (3.7)

to make Y (t) converges towards 0.
So the expression for the controller is

u(t) = −x3(t) + Ψ̇(t) + Ψ(t). (3.8)

For instance, if we take
Ψ(t) = t+ cos(t), (3.9)

then the controller is
u(t) = −x3(t)− sin(t) + cos(t) + t+ 1. (3.10)

Moreover, the system converges exponentially towards the desired dynamics in a few seconds.

Control the speed

This example was very immediate, so we can further consider the same car with a controllable
speed. The previous system was a SISO (Single-Input and Single-Output) system, and now we
deal with a MIMO (Mulitple-Input and Multiple-Output) system. The state equations describing
this new system are 



ẋ1

ẋ2

ẋ3

ẋ4


=



x4 cos(x3)

x4 sin(x3)

u1

u2


y =

x1

x2


(3.11)

We introduce the new state variable x4, which corresponds to the speed of the car. The input

vector u =
u1

u2

 is now of dimension 2, as the output, which is now the (2D-)position of the

car.
The graph of differential delays is drawn in Figure 3.2. The output happens to be a flat output:

the sum of the relative degrees (2 + 2) is equal to the dimension of the system (i.e. 4). The
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system is therefore controllable, and it means that knowing the position and its derivatives, we
are able to compute the whole system state (that is the heading and the speed, respectively the
arc-tangent and the norm of the derivative of the position).

u1 x3 x1

u2 x4 x2

y1

y2

Figure 3.2: Graph of the differential delays for the new system. Dashed lines represent a
non-differential relation between two nodes, and the red color is associated with the output.

When we study the output by computing its derivatives, we obtain

ẏ =
x4 cos(x3)
x4 sin(x3)

 (3.12)

ÿ =
u2 cos(x3)− u1x4 sin(x3)
u2 sin(x3) + u1x4 cos(x3)

 (3.13)

=
−x4 sin(x3) cos(x3)
x4 cos(x3) sin(x3)


︸ ︷︷ ︸

A

u1

u2

 (3.14)

If we assume that x4 6= 0, that is, the speed is not null, then the matrix A is invertible. We
can now make the change of variable

u = A−1 · v. (3.15)

Then we have

ÿ = A · u (3.15)= AA−1 · v = v, (3.16)

with v the new input of the linearized system. Now standard linear techniques can be used to
stabilize and control the system.

3.2.3 Implementation

Symbolic computation

In the previous example, we had to compute two successive Lie derivatives of the output. It
has been done by hand in (3.12) and (3.13). This computation by hand of Lie derivatives was
quite immediate but can quickly become intricate. It can make the feedback linearization method
a long and complex task. The idea here is to present a means to compute these derivatives
automatically, avoiding loss of time and possible human calculus errors. Classically, there are
two main approaches to obtain derivatives: automatic differentiation and symbolic computation.
Each one has its advantages and drawbacks. Automatic differentiation consists more or less of
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computing approximations of the solution on some discretized points. See [126] for more details
on this method.

We choose to use symbolic computation because we need to keep symbolic variables to com-
pute the relative degrees of the outputs. In addition, we do not want to introduce approximations.
Indeed, the feedback linearization method is sensitive to approximations, so we rather stay with
the symbolic computation approach, although it can be slower. Another advantage of using
symbolic computation is that it can solve the equation at the end, giving the analytical expression
of the controller u. Every step is thus automatized, and the output of the symbolic computation
can be directly implemented in the system. Finally, one last advantage of symbolic computation
for our application is that the full symbolic expression can be used to compute some conditions
on desired constraints. However, the latter point will be the object of Section 3.4.

Tools from differential geometry presented in Section 2.2.3 give the formalism to implement
feedback linearization method into algorithms, using only symbolic computation [148]. For
instance, the SymPy library [113] implements these tools for the Python language.

Example

We propose an example to illustrate how it can be helpful with the last studied system: the cart
with speed input described by (3.11). Table 3.1 provides the Python program that computes the
two inputs that lead to linearized feedback. The code is explained hereinbelow.

In a first while, we define every SymPy objects required to compute Lie derivatives for our
system.

• Lines 5 to 11: the evolution function f of the system is defined using (3.11). The input is
the state X, composed by x1, x2, x3, x4, and the output is the derivative Ẋ.

• Line 13: we search to compute both inputs u1 and u2. We thus define the associated
symbols to make them appear in the equations while not knowing their expressions. They
are symbolic variables.

• Line 15: we define the manifold, which is the topological space in which we work. Its
dimension is 4 as the number of state variables of our studied system.

• Line 16: on the defined manifold, we can now introduce a coordinate patch P which is
required to establish a coordinate system.

• Lines 17 to 18: the coordinate system is constituted by the four state variables x1 to x4.

• Line 19: the variable X stores the vector of state variables.

• Line 22: the vector field associated with the evolution function is denoted by f_vf and is
the dynamics defined by the function f on the patch P.

Then, we apply the feedback linearization method:
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• Line 24: we define the arrays y_1 and y_2 to store the outputs and their (Lie) derivatives.

• Line 25: we check that the last computed derivative of y_1 is not dependant of the input
(u1 or u2). Otherwise, the algorithm directly jumps to line 27.

• Line 26: we compute the next Lie derivative of y_1 and store it at the end of the array y_1.
Then, the algorithm executes line 25 again.

• Lines 27-28: it is the same as lines 25-26, but for y_2.

• Lines 29-30: when these lines are executed, the arrays y_1, y_2 both contain the list of
the successive derivatives of each output of the system, with the input involved in the last
computed derivative. Thus, the length of these arrays is equal to the relative degree of each
output.

• Line 31: we introduce two new symbolic variables v1 and v2 which will be the new inputs
of our linearized system.

• Line 32: we ask SymPy to solve the system of two equations where u1 and u2 are the
unknown variables.

The returned expressions for u1 and u2 are
u1 = −v1 sin (x3) + v2 cos (x3)

x4

u2 = v1 cos (x3) + v2 sin (x3)
(3.17)

which gives ÿ = v. Then an expression for v can be straightforwardly found with usual linear
control methods.

Link with interval analysis

The interest in using SymPy to compute Lie derivatives is undeniable. It is of precious help for
applying the feedback linearization method. Nevertheless, the library can be used further: when
building symbolic expressions, SymPy creates a syntax tree to store expressions. This syntax
tree can be reclaimed to be used with other libraries. The goal is to separate the symbolic part,
which corresponds to the formalization of the problem, and the computation part, which can be
done with several approaches.

In our context, we may like to use interval analysis for the computation part and thus obtain
guaranteed numerical results. It is possible by getting the syntax tree of the wanted expression
and then injecting it into an interval library like Ibex. For instance, Ibex can take an expression
of a constraint as input and define the associated contractor.

As an example, this approach is used in Section 3.4 to validate the controller.
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1 from sympy import Matrix, symbols, cos, sin, solve
2 from sympy.diffgeom import Manifold, Patch, CoordSystem, LieDerivative
3 from sympy.matrices import matrix_multiply_elementwise
4

5 # Evolution function
6 def f(X):
7 x1, x2, x3, x4 = X
8 return Matrix([x4*cos(x3),
9 x4*sin(x3),

10 u1,
11 u2])
12

13 u1, u2 = symbols('u_1 u_2') # command u
14

15 M = Manifold('M', 4) # State space of dimension 4
16 P = Patch('P', M)
17 coord = CoordSystem('coord', P, ['x_1', 'x_2', 'x_3', 'x_4'])
18 x1, x2, x3, x4 = coord.coord_functions() # state variables
19 X = Matrix([x1, x2, x3, x4]) # state vector
20

21 # vector field of the function f
22 f_vf = sum(matrix_multiply_elementwise(f(X), Matrix(coord.base_vectors())))
23

24 y1, y2 = [x1], [x2] # output y and its derivatives
25 while {u1, u2}.isdisjoint(y1[-1].atoms()):
26 y1.append(LieDerivative(f_vf, y1[-1]))
27 while {u1, u2}.isdisjoint(y2[-1].atoms()):
28 y2.append(LieDerivative(f_vf, y2[-1]))
29 print("Relative degree for y1:", len(y1))
30 print("Relative degree for y2:", len(y2))
31

32 v1, v2 = symbols('v_1 v_2') # command v for the linearized system
33 command = solve([y1[-1] - v1, y2[-1] - v2], (u1, u2))
34 # command contains the expressions of u1 and u2
35 # with respect to state variables, v1 and v2

Table 3.1: Example of a Python program using SymPy to find the linearized feedback of a
system.
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3.3 Application: trailer command

We propose here a concrete robotic application using all the notions that have been presented. In
the context of finding buried wrecks, like the Cordelière’s one that was presented in Section 1.1.2,
we would like to use magnetometers. Indeed, it is the only kind of sensor to our knowledge that
is able to detect a relatively deep (a few meters) buried object in the sea, assuming that it contains
ferromagnetic parts. The drawback of this sensor is that it is sensitive to the robot itself, as the
robot contains ferromagnetic materials and often perturbates the local magnetic field. A simple
solution to avoid these perturbations is to move the magnetometer a little further from the robot
and tow it with a rope. The goal is to control such a system in order to make the magnetometer
follow the desired path.

3.3.1 Robotic system for searching of wrecks

Figure 3.3 illustrates the system with the deported magnetometer.

sea surface

seabed

magnetometer

Figure 3.3: Schema of a robotic system using a deported magnetometer to search wrecks.

Therefore, the control law becomes a little more complex. Indeed, the objective is to realize
a magnetic map of the researched area. So the idea is to make the sensor scan the whole area and
associate data to their localization. However, the trajectory of the towed sensor can be relatively
different from the trajectory of the robot itself, especially when the distance between the two is
significant and when the robot makes turns. In that way, we want to find a control law that makes
the towed system follow a specific trajectory, knowing that we can only act on the towing robot.

To avoid complexifying too much the problem, we choose to make the following assumption:
the rope between the two vehicles is always taut. Therefore, we avoid modelizing the complex
behavior of a rope in the water. This assumption becomes wrong as soon as the robot makes
too tight turns or when it slows down too quickly. Nevertheless, both of these conditions can
be avoided. We can choose a scanning trajectory without too tight turns, and the objective is to
have a constant speed for the robot in order to obtain the desired frequency of measurements.
This assumption makes possible to identify the system to a car-trailer system: the car tows the
trailer with a rigid link. There is another simplification with this identification: the problem is
considered as a two-dimensional one, although there is a third dimension in the context of the
underwater systems. However, the problem of regulating the magnetometer to the correct depth
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can be treated independently to the horizontal one and is thus not addressed in this document,
even if the same approach could be used.

3.3.2 Formalism of the car-trailer system

Let consider the car-trailer system. It is described by these equations:



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5


=



x5 cos(x3)

x5 sin(x3)

0

x5 sin(x3 − x4)

0


︸ ︷︷ ︸

f(x)

+



0

0

u1

0

u2


︸ ︷︷ ︸
g(x)·u

y =

x1 − cosx4

x2 − sin x4



(3.18)

The variables’ correspondences are shown in Figure 3.4. The chosen output is the heading of
the trailer center’s position, which can be computed from state variables.

y

L

x1

x2

x5

x3x4

Figure 3.4: Model of the car-trailer system with a representation of state variables. The variables
x1, x2, x3 have the same meaning as for the Dubins’ car. The heading of the trailer is denoted by
x4, and the speed of the car is the variable x5.

3.3.3 Flattened feedback

Graph of differential delays

As presented in Section 3.2, the first step for applying the feedback linearization method to a
system is to draw its graph of differential delays. It has been done in Figure 3.5. The relative
degrees of the two outputs can be read by counting the (minimal) number of continuous arcs
separating them from the inputs. Here it is 2 for both outputs. The sum of the relative degrees
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is thus equal to 4. However, the system is of dimension 5. So we cannot conclude on the
controllability of the system.

u1 x3 x1

u2 x5 x2

x4

y1

y2

Figure 3.5: Graph of the differential delays of the car-trailer system, described by (3.18).

A feedback-based linearization method would leave one state variable without any control.
If we are lucky, this floating state variable is stable, and the resulting behavior is correct. Now,
if we push the method up to the simulation, we observe that for our system, the floating state
variable is unstable. This instability makes the approach inappropriate.

New modelization

However, it is possible to change the system’s modelization to find flattened feedback for the
robot. The following theorem, illustrated by Figure 3.6, provides this flattened feedback. This
modelization is taken from [137] where further details can be found. In the paper, the trailer is
controlled to follow a specific trajectory. The difference here is that we want the output to follow
particular dynamics. The proposed modelization means that the sum of the relative degrees
corresponds to the dimension of the system.

Theorem 3.3.1. Consider the controller

v̇1 = a1

u = A−1(x) ·
 v1

a2

− b(x)
 , (3.19)

where

A(x) =
 −x5 sin(x3 − x4) cos(x3 − x4)

x5 cos(x3 − x4) sin(x3 − x4)


and

b(x) =
 x2

5 sin2(x3 − x4)
−x2

5 sin(x3 − x4) cos(x3 − x4)

 .
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In the new coordinate system given by

z =



z1

z2

z3

z4

z5

z6


=



x1 − cosx4

x2 − sin x4

x5 cos(x3 − x4)
v1

x4

x5 sin(x3 − x4)


︸ ︷︷ ︸

ϕ(x,v1)

(3.20)

we get the closed-loop system:

ż1

ż2

ż3

ż4

ż5

ż6


=



z3 cos z5

z3 sin z5

z4

a1

z6

a2


= fz(z) + gz(z) · a

 y1

y2

 =
 z1

z2

 = hz(z).

(3.21)

Remark. This theorem suggests a better coordinate system to represent the state: (y1, y2) is
the center of the trailer, z5 the heading of the trailer, (z3, z6) the speed vector of the front car
expressed in the trailer frame. It also suggests controlling the acceleration of the trailer (via a1)
and its rotation rate (via a2) directly.

Proof. We have
ẏ = Lfh(x) + Lgh(x)︸ ︷︷ ︸

=0

· u

= x5 cos(x3 − x4)
 cosx4

sin x4


(3.20)= z3

 cos z5

sin z5

 .
(3.22)

Moreover, we can write  ż3 = Lfz3 + Lgz3 · u
z̈5 = L2

f z5 + LgLfz5 · u
or equivalently  ż3

z̈5

 = A(x) ·
 u1

u2

+ b(x), (3.23)

where

A(x) =
 Lg1z3 Lg2z3

Lg1Lfz5 Lg2Lfz5


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Figure 3.6: The two systems in the magenta boxes are equivalent.

and

b(x) =
 Lfz3

L2
f z5

 .
It is trivial to check that A(x) and b(x) are the matrices given in the theorem. The matrix

A(x) is singular if and only if x5 = 0, that is if the speed is zero. If we take the linearizing
feedback

u = A−1(x) (v− b(x)) ,

then (3.23) becomes  ż3

z̈5

 =
 v1

v2

 . (3.24)
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Finally, we have

ż1
(3.22)= z3 cos z5

ż2
(3.22)= z3 sin z5

ż3
(3.24)= v1

ż4
(3.20)= v̇1

(3.19)= a1

ż5
(3.20)= ẋ4

(3.18)= x5 sin(x3 − x4) (3.20)= z6

ż6 = z̈5
(3.24)= v1,

which corresponds to (3.21).

As illustrated by Figure 3.7, the sum of the relative degrees of each output (3 + 3) is now
equal to the dimension of the system (i.e. 6).

a1 z4 z3 z1

a2 z6 z5 z2

y1

y2

Figure 3.7: Graph of the differential delays of the flattened system, described by (3.21).

3.3.4 Simulation and experimentation

Van der Pol vector field

Now that the model of the system has its flat output, we can control it. We choose here to make
the trailer follow a specific dynamics: the Van der Pol vector field. This theoretical application
has several advantages. It allows verifying that the controller behaves as expected on a quite
complex vector field. Indeed, although the equations of this vector field are simple to implement,
the resulting dynamic is complex, with strong non-linearities. Besides, this vector field admits a
limit cycle, so it is simple to check whether the followed trajectory matches the vector field, and
this limit cycle has no analytical expression, so it is not possible to use it in the controller. This
vector field is illustrated Figure 3.8, with some flows (trajectories following the vector field) to
make the limit cycle evident.

We consider the flattened system defined by (3.21) ż = fz(z) + gz(z) · a

y = hz(z).
(3.25)

We want y to follow a desired dynamics ẏ = Ψ(y), which is, in this application, the Van der
Pol equation given by  ẏ1

ẏ2

 =
 y2

− (y2
1 − 1) y2 − y1


︸ ︷︷ ︸

Ψ(y)

. (3.26)
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1
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3

y2

Figure 3.8: Different flows, in green, on the Van der Pol vector field. They all converge to the
limit cycle.

The error e that we want to cancel is the difference between the course of the trailer and the
direction given by the vector field:

e(z) = ẏ−Ψ(y)
= Lfzhz(z)−Ψ(hz(z))

=
 z3 cos z5 − z2

z3 sin z5 + (0.01 · z2
1 − 1)z2 + z1

 . (3.27)

We have

ė(z) = L2
fzhz(z)− L1

fzΨ(hz(z))

=
 −z3z6 sin z5 − z3 sin z5 + z4 cos z5

(z6 + z1z2
50 + 1)z3 cos z5 + ( z

2
1z3
100 − z3 + z4) sin z5

 (3.28)
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and

ë(z) = L3
fzhz(z) + (LgzL

2
fzhz(z)) · a − L2

fzΨ(hz(z)). (3.29)

We do not give the full expressions of all quantities with respect to the zi’s for the sake of
clarity, and as these expressions are automatically computed using symbolic computation. We
have deg(e1) = deg(e2) = 2, this is why the dependency with respect to a occurs only at the
second derivative ë. Let us choose the error equation

ë + 2ė + e = 0 (3.30)

that makes e converge to zero. We get

L3
fzhz(z) + (LgzL2

fzhz(z)) · a − L2
fzΨ(hz(z))︸ ︷︷ ︸

ë(z)

+

2(L2
fzhz(z)− L1

fzΨ(hz(z)))︸ ︷︷ ︸
ė(z)

+

Lfzhz(z)−Ψ(hz(z))︸ ︷︷ ︸
e(z)

= 0

(3.31)

or equivalently

a = β(z)
= −

(
LgzL2

fzhz(z)
)−1
·
(
L3

fzhz(z)− L2
fzΨ(hz(z)) + 2ė(z) + e(z)

)
.

(3.32)

Combining this expression with the controller (3.19), as illustrated by Figure 3.9, we get the
trailer center following exactly the required vector field. Figure 3.10 illustrates the behavior of
the controller.

The feedback linearization method leads to a successful controller of the car-trailer system.
The latter system stays relatively simple compared to huge mechanical systems involving complex
dynamics or multiple subsystems. Nevertheless, the equations are already barely readable. That
is why the formalism of this method brings a genuine interest, allowing the use of symbolic
computation.

The flattening operation of the output has also shown its interest by helping to understand
the links between the inputs and the outputs and, especially, by ensuring the controllability of a
system’s modeling. The other interest of having a flat output is the property that allows to find
back the whole state just from the output and its derivatives. That is what will be used later in
Section 3.4 to validate the controller under state constraints using interval analysis.

Experimentations

After validating the behavior of the controller on simulation, the next step is to test it on real
robots. Firstly, it was more convenient to implement it on a ground robot towing a sled. A picture
of this experimentation is shown in Figure 3.11. A magnetometer was placed into the sled, which
was following a boustrophedon to realize a magnetic map of the field. The result of this practical
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Figure 3.9: With the designed controller, the output y follows exactly the Van der Pol dynamics.

work is given in Figure 3.12. It is part of the “Magmap” project carried out by students of the
robotic engineering training program [124]. A video of the robot towing the sled is also available
at https://youtu.be/yrC3tHgXiOo.

Then, some tests have been carried out in the scope of the search for the Cordelière. The
magnetometer was towed by Boatbot and followed isobaths to avoid regulating the depth of the
sensor. A picture of the immerged magnetometer is proposed in Figure 3.13.

https://youtu.be/yrC3tHgXiOo
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2

1

0
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Figure 3.10: Simulation of the tank-trailer system following the Van der Pol vector field, using
the designed controller. The trajectory followed by the trailer is depicted green and converges to
the limit cycle, as expected.

Figure 3.11: The green sled is towed by Saturne, an Unmanned Ground Vehicle (UGV).
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Figure 3.12: Magnetic map of the field of ENSTA Bretagne.

Figure 3.13: The magnetometer is immerged a dizain of meters behind Boatbot.
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3.4 Validating the trajectory of the trailer with follow

sets

In the previous section, the control of a car-trailer system has been studied. We propose now to
guarantee the safety of the system by defining state constraints and verifying that these constraints
are never violated while using the previously designed controller.

Thus, the objective is to take into account a state constraint. This task amounts to solving
non-linear inequality constraints mixed with non-linear differential equations. Even if planning
methods [93, Part IV] have provided some interesting results, the problem can still be considered
as open as soon as some guarantee is required.

Let consider the car-trailer system again. We have already proposed a controller such that the
output follows exactly the desired vector field in Section 3.3.

Now we would like to study issues related to the safety of the robot. To ensure its safety, we
define some constraints on the state of the system. Indeed, there are some states either physically
impossible or too hazardous to be considered. For instance, the angle between a car and its trailer
should remain within an interval to avoid a self-collision. These constraints can also express the
fact that the robot should not move into an obstacle. Thus, the objective is to find the follow

set, the set containing all the “safe” positions, with respect to a given controller. In other words,
knowing the controller and the dynamics of the robot, it is possible to predict the state of the
robot for each position, and thus know whether the constraints are violated.

3.4.1 Follow set

Observability

In order to properly define a follow set, we introduce the notion of observability. A system is
said to be observable [42] if there exist a function Φ and integers r1, . . . , rm such that

x = Φ (y1, ẏ1, . . . , y
r1
1 , . . . , ym, ẏm, . . . , y

rm
m ) . (3.33)

The integers ri generally correspond to the relative degrees of derivation for the outputs yi,
i = 1, . . . ,m, but this is not mandatory. This assumption is valid for many systems as soon as it
is flat with the output y, which is then called a flat output. We have seen that we do have a flat
output for the proposed model of the car-trailer system in Section 3.3.3. So in what follows, we
can assume that we have an observable system, and thus the function Φ is available.

Defining follow sets

In the case where y follows exactly the dynamics Ψ, we can write

y
(i)
j = LiΨyj, (3.34)
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using once again the Lie derivatives.
We define the follow set Y as

Y = γ−1 (X) , (3.35)

where

γ : Rm → Rn

y 7→ Φ(y1,LΨy1, . . . ,Lρ1
Ψy1, . . . , ym,LΨym, . . . ,LρmΨ ym)

and X is the set of state constraints that should be satisfied for the state x. The set Y corresponds
to the set of all y such that if y follows the dynamics Ψ, then all state constraints are satisfied.
Most of the time, the set Y cannot be computed exactly because of the non-linearities between
the output y and the state vector. So, using a set inversion approach, an inner and an outer
approximation for Y can be obtained using the Set Inversion Via Interval Analysis (SIVIA)
algorithm, as introduced in Section 2.3.3. Finally, the exact solution set is bracketed between the
obtained inner and the outer approximation.

Once this follow set has been computed, a reachability analysis could be performed to find
viable domains in Y [97]. Thus, all found y is such that all state constraints are always satisfied
as long as the dynamics Ψ is followed.

Formalism with the car-trailer system

Consider the car-trailer system, which is controlled so that y follows the dynamics Ψ. If we
know y1, y2, ẏ1, ẏ2, ÿ1, ÿ2 then we can find the corresponding x. This is illustrated by Figure 3.14
where we can understand that to follow the desired trajectory properly in the y space, there exists
a unique possibility for x(t). The following proposition clarifies this point.

Proposition 3.4.1. For the car-trailer system, we have x = Φ (y1, ẏ1, ÿ1, y2, ẏ2, ÿ2) as given by

Figure 3.15.

Proof. We have ẏ1

ẏ2

 = Lf (y) =
x5 cos(x3 − x4) cosx4

x5 cos(x3 − x4) sin x4

 . (3.36)

Thus
x4 = atan2(ẏ2, ẏ1) (3.37)

and from (3.18), we get x1

x2

 =
y1

y2

−
cosx4

sin x4

 . (3.38)

Moreover, differentiating (3.37), we obtain

ẋ4 = ẏ1ÿ2 − ÿ1ẏ2

ẏ2
1 + ẏ2

2
. (3.39)
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x2

x1

y2

y1

x3 x4

•

•

Figure 3.14: From y and its derivatives, we can find x.

Figure 3.15: Expression of Φ (y1, ẏ1, ÿ1, y2, ẏ2, ÿ2).

Thus ẋ1

ẋ2

 =
ẏ1

ẏ2

+ ẋ4

 sin x4

− cosx4

 (3.40)

and

x3 = atan2(ẋ2, ẋ1) (3.41)

x5 =
√
ẋ2

1 + ẋ2
2. (3.42)
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Finally, from the flat output of the system, it is possible to compute the whole state and
validate the respect of the constraints. With the example of the car-trailer system, the output
is the trailer position. Therefore, it is possible to know every place the robot can go safely by
validating these places for the constraints.

3.4.2 Applications on the safety of the car-trailer system

We propose now to characterize different follow sets to illustrate the approach. We consider the
trailer is following the Van der Pol vector field with the controller designed in Section 3.3.

We need to define constraints relevant to the safety of the system. Probably, the most critical
state constraints are collisions. Figure 3.16 illustrates two types of collisions: external and
internal.

Figure 3.16: Since a implies an internal collision and c corresponds to a collision with the
polygon, a and c are not in the follow set Y.

External collision Assume that there exists a polygonal obstacle to be avoided (purple in
Figure 3.17). The orange area is the place where the trailer center cannot go safely with the
required dynamics. In the green area, the output y can safely follow the cycle with the guarantee
that the robot never collides with the obstacle. The follow set has been computed with the
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Figure 3.17: The purple polygon is the obstacle the car must not collide with. The follow set is
painted green. This Figure has been obtained in less than 90 seconds on a basic laptop (with a
processor of 1.7GHz).

algorithm SIVIA based on interval analysis. The polygonal assumption for the obstacle is not a
limitation of the method. Any obstacle with a known shape could have been considered as well.

Internal collision Assume that if a maximum angle of 70° exists between the trailer and the
tank, an internal collision occurs. The set of all proper trailer positions is painted green in
Figure 3.18, assuming that the robot follows the required dynamics. Again, we have validated
the painted trajectory and the limit cycle since it remains in the follow set.

An illustrating video is given at the following link: https://youtu.be/892_by8LVEw.

The computed follow set is an inner approximation (and the orange area the complementary
of the outer approximation), so it is a little smaller than the exact one to guarantee safe behavior.

https://youtu.be/892_by8LVEw
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Figure 3.18: The green area corresponds to the follow set associated with an internal collision.
In the orange area, the controller will lead to a state with an angle x4 − x3 too strong and the
non-collision constraint will be violated. This Figure has been obtained in 2 minutes.
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We do not want to include a position corresponding to a risky state in our follow set.

3.5 Conclusion

In this chapter, we have seen how the feedback linearization method can be used to propose the
control of a non-linear system. Notions of controllability and flatness have been presented, and a
robotic application is finally studied, dealing with the car-trailer system. The latter system has
been chosen because its modelization can be used to handle the deported magnetometer in the
context of searching wrecks.

Intervals are used to validate the trajectory of a robot when state constraints exist. The follow
set, which is a subset of the output space, is defined and computed using an inner and outer
approximation. The application with the car-trailer system has been shown as an example, where
internal and external collisions should be avoided.

This problem can really show interest in the case of cumbersome articulated robots such as
marine robots where sensors have to be towed in an environment with many obstacles, including
rocks, islands, or other boats. It can also easily be extended to ground robots towing trailers for
delivery purposes, for example.

Now that we have handled the first challenge, which is the safe control of the deported sensor,
we will focus on the localization problem. Indeed, in this chapter, we assumed that we knew
the state of the studied system. Nevertheless, access to the position of an underwater vehicle is
a complex problem that constitutes the second challenge. It will be addressed in the following
chapters.
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4.1 Introduction

When dealing with underwater robots, the localization problem can barely be neglected for
almost any kind of mission. In our context, the objective is to find a wreck with a magnetometer.
The magnetometer will provide several possible targets, but without an accurate localization of
the sensor, we will not be able to associate a location to the targets. In addition, to ensure that
we cannot miss the wreck, the localization must be accurate enough to allow a proper scan and
guarantee that the trajectory of the sensor covers the whole area. Therefore, we have to address
this localization issue.

The underwater environment is a very challenging place for localization problems. Electro-
magnetic waves are wholly absorbed by the water within a few meters, making the use of GNSS
unsuitable. Different solutions have been developed when dealing with the absence of GNSS,
especially providing localization methods for indoor environments like buildings. However, the
parallel between underwater and inside environments stops quickly. The turbidity of water and
the lack of light in deep water often highly complexifies or makes pointless the usage of vision
sensors for long and mid-range information intake. On top of that, oceans are vast and unknown,
and the seascape contains only sparse elements, rarefying possible natural seamarks. Finally, the
only ways to get its bearings in this environment are proprioceptive sensors and, mainly, acoustic
probing.

Concerning proprioceptive sensors, they make it possible to perform dead reckoning, also
called inertial navigation. It requires to have an initial known position, typically taken from
a GNSS data at the surface, before the beginning of the mission. Then, the current position
of the robot is computed at any time by integrating the estimations of speed and orientation.
However, errors are cumulative, making this approach suitable for only short missions and when
the localization does not need to be too accurate. The notions of short and accurate directly
depend on the quality of the sensors used, obviously depending on the price.

This chapter firstly presents the issues linked to the process of acoustic data in the scope of
underwater localization. The scanning sonar, or Mechanically Scanned Imaging Sonar (MSIS),
is mainly considered to apprehend acoustic-linked problematics. Different approaches using this
sensor are envisioned to reach a localization in known environments, such as pools or harbors.
The main difficulty is based on the extraction of reliable information among the outliers. A
method using constraints is thus proposed.

4.2 Processing acoustic data

By acquiring information on its surrounding environments, algorithms can be developed to
localize a robot, and eventually, simultaneously build a local map. Therefore, different sensors
have been designed to gather data on distances as lidar and sonar, using light and sound waves,
respectively. Lidars are widely used on aerial and ground robots, as they return many reliable
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data. Unfortunately, underwater the light is quickly absorbed, depending on the turbidity of the
water. It makes lidars barely suitable. Thus, the best choice is to use sonars. We now give an
overview of the main issues when handling acoustic data.

4.2.1 Context

Using sound

Basically, a lidar and a sonar work the same way. They send a pulse in a given direction and
measure the time elapsed before the reception of the same but reflected pulse. Then, from this
elapsed time t and the celerity c, which is the speed of propagation of the wave, the range to the
obstacle d can be computed using the simple formula:

d = ct

2 . (4.1)

With the speed of light being much higher than the sound one, much more data can be collected.
On top of that, light beams are considered to propagate in straight lines without scattering,
making returned data quite reliable. However, the behavior of sound waves is far from being
straightforward, leading to noisy and unclear data. Firstly, acoustic data are very noisy due to
ambient noise, embedded electronics, propagation. Propagation noises are linked to the variations
of the local celerity, which depends on pressure, temperature, and salinity. So the local celerity
must be estimated, causing a slight error and reducing the obtained resolution.

An acoustic beam does not just propagate in a straight line. It is characterized by its
beamwidth: it propagates more like the shape of a cone. After emitting a pulse, the received
acoustic level is recorded by the sonar with respect to the range, computed with formula (4.1).
Figure 4.1 gives an example of how a pulse propagates and the shape of the associated collected
data in an ideal scenario.

t4t0 t1 t2 t3

t0 t1 t2 t3 t4

Figure 4.1: Received data from sonar after a ping emission in an ideal scenario.

The peaks in the graph correspond to targets in reality. After the emission, at t0, a signal is
received: it corresponds to the noise linked to the emission itself. This phenomenon is called
cross-talk. Then at t1, a tiny target (a fish) creates a small peak. At t2, the seabed reflects some
sound. The rock is detected at t3, causing a significant peak. This graph is very approximately
the one expected. It misses plenty of noises that largely complexify the received signal.
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An example of a real received signal is given in Figure 4.2. So the detection of the targets
within such a signal is not evident at all. The presence of outliers, i.e. peaks in the signal that
do not correspond to actual targets makes the interpretation of gathered data intricate. Indeed,
the returned data of an acoustic beam can be a complete outlier due to other acoustic sources or
unexpected obstacles like other robots or fishes.

Another phenomenon that creates outliers is multipath. Natural surfaces never being perfectly
smooth, a beam encountering an obstacle is reflected in different directions. Some of these
directions make parts of the beam return to the sonar, either by the most direct way or through
multipath. The latter means that the beam is reflected by several surfaces before being received
by the sonar. Thus, the used path is longer than the direct one, and the associated peak is still
received but too late. An illustration of this phenomenon is proposed in Figure 4.3, where
acoustic beams are reflected by the seabed (magenta ray) and by the surface (red ray). The
effects on the received signal are depicted in the graph using the same colors. Thus, several
peaks correspond to the same target: the rock.
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Figure 4.2: Example of the raw data returned by a sonar. The received acoustic level is represented
according to the computed range using formula (4.1).

In addition, the drawn beam only corresponds to the main lobe. However, the beam pattern
also has undesired side lobes and even back radiations [28, Chap. 14], causing more potential
multipath.

The last phenomenon that mainly occurs in pools and harbors due to the walls is multiple
echoes. The principle is simple: the beam travels from the sonar to the target then is reflected
back. The sonar detects it, but it is not all. The beam is once again reflected by the sonar and can
make the same path a new time. Thus, if a target is detected at t1 and multiple echoes happen,
then peaks appear in the signal at t1, 2t1, 3t1, and so on until the energy is totally dissipated. It
especially happens when dealing with walls or rigid and flat bodies, as most of the energy is
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well-reflected, but this phenomenon can also be observed in shallow water between the surface
and the seabed.

Thus, instead of directly returning a distance associated with measurement, a sonar generally
provides the received acoustic level according to time. These data consist of a list of the received
levels over time. On the example of real data given in Figure 4.2, several peaks can be spotted
out. It leaves ambiguity in target detection and prevents from deducting a distance to an obstacle.

sea surface

t4t0 t1 t2 t3

t0 t1 t2 t3 t4

Figure 4.3: The beam is reflected through multipath, causing an outliers in the received signal.

By using such acoustic sensors, it is possible to obtain an overview of the environment
through distances and bearing measurements to the seabed, obstacles, or anything that reflects
acoustic waves. Many types of sonars exist, like single-beam directional sonar, scanning sonar,
side-scan sonar, multibeam sonar, to name the principal. More details on these sensors can be
found in [27, Sec. 25.4.3]. All of them are naturally concerned by the issues linked to acoustic
signal propagation. It is all the more problematic on cheaper sonars as they gather less data, so
outliers are more disturbing.

Scanning sonar in a known environment

A scanning sonar consists of a single-beam sonar mounted on a rotor, such that data are collected
all around the sensor. Gathered data give information on all the obstacles in the plane orthogonal
to the axis of rotation of the rotor. Thus, arrays of data such as the one of the Figure 4.2 are
acquired. By representing the intensities with respect to a color bar, with lighter colors for higher
intensities, we can plot together each of these arrays with respect to the bearing of measurement.
For instance, Figure 4.4 represents data from a scanning sonar placed horizontally in a pool, such
that it detects the walls and two gates. The map of the basin is given on the right of the Figure.

Other examples are given in Figure 4.5, with different pools of various sizes. Note that two
different sonars are used; the Miniking is an older version of the Micron, but the acquired data
are close.

Every image of the Figure 4.5 has been generated with a Mechanically Scanned Imaging
Sonar (MSIS) (or scanning sonar) which was immobile during the scan. For each bearing, the



78 Localization using intervals

Figure 4.4: On the left, sonar data are represented with light color for high level of received
signal. On the right are depicted the positions of the sonar, the walls, and two gates.

sonar emits a pulse and then listens to eventual feedback. The intensity of the received sound
is collected with the associated time after emission. By knowing the speed of the sound in the
water (about 1,500 m.s−1), the distance is straightforwardly computed using the formula (4.1).
For each bearing, each of these intensities is represented by a colored point, lighter for higher
intensity, at its estimated position relative to the sonar.

For each example, the shape of the pool was either a rectangle or a “U-shape”, i.e. an open
rectangle looking like t and communicating with the sea. Finding back the walls of the different
pools is far from being immediate. Sometimes, there is much noise inside the pool, multipath
occurs regularly, and the walls are barely just a straight line and can be discontinuous.

Algorithms

Underwater localization using such a MSIS has been already studied, using different approaches.
We detail hereinbelow three interesting methods: peaks identification, SLAM, and image pro-
cessing.

Peaks identification: The first localization approach assumes that the local map is known.
Then, the idea is to identify peaks on sonar data to the obstacles of the map like walls, rocks,
pillars. Thus, the suitable positions for the robot are reduced until the actual one is found. This
approach is studied in Section 4.3 using interval analysis tools. The localization of a robot in a
pool with a MSIS has already been studied in [72], also using interval analysis tools. A study,
[134], merits to be mentioned even if it is a side-scan sonar that is used. The map contains
information on indistinguishable landmarks (rocks on the seabed). The identification is based on
a set-membership approach too.
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(a) Data taken in La Spezia,
Italia, with a Tritech Miniking.

(b) Data taken in La Spezia,
Italia, with a Tritech Miniking.

(c) Data taken in CINVESTAV,
Mexico, with a Tritech Micron.

(d) Data taken in CINVESTAV,
Mexico, with a Tritech Micron.

(e) Data taken in La Spezia,
Italia, with a Tritech Miniking.

(f) Data taken in ENSTA Bre-
tagne, Brest, France, with a
Tritech Miniking.

Figure 4.5: Examples of data collected by a scanning sonar in different pools. The position of
the sonar is always at the center of the picture. The objective is to find back the orientation and
the relative position of the pool.

SLAM: With no assumption on the prior knowledge of the local map, SLAM algorithms are
often very convincing. They are mostly based on probabilistic methods [151]. Thus, probabilistic
filters such as EKFs or particle filters are used to match the different landmarks, or features,
between the different views, as in [100]. However, it is often computationally not efficient, and
the initial position is required, which is a problem for deep-water missions. Examples of different
approaches for an archaeological application are given in [164]. A ROV is used to explore
cisterns. A dynamic model of the ROV is used to predict the current state from a previous one
and the control input. This method cannot provide precise results when external perturbations
occur. Here, there are no currents, and the influence of the tether is taken into account, but it
would not be suitable for an open sea environment.

With a scanning sonar, the main used method seems to consist of a probabilistic scan
matching and an EKF to perform dead reckoning [108, 132, 18]. However, it requires a DVL
to estimate the speed with enough accuracy for the dead reckoning part. In [163], no inertial
or odometry is assumed. Only the data from the sonar are used to perform a SLAM based on
features registration. This approach requires enough data to delimit clusters and can fail whether
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clusters are too close. Finally, by using two scanning sonars, one horizontally and one vertically,
a 3D map can be obtained as in [109] with cave exploration.

Note that the SLAM problem can also be solved with a set-membership approach. It is the
case in [71], where an underwater robot is localized using a side-scan sonar.

Nevertheless, in the scope of this thesis, the SLAM problem is not handled. The map is
assumed to be known, and the focus is on the interpretation of the acquired data.

Images processing approach: Another possible approach is to consider the images resulting
from a whole turn of the sonar as in Figure 4.5 instead of each data separately. The advantages are
that we can use well-established algorithms from image processing and that the 2D representation
helps to spot out the walls more easily than by processing 1D bytes of data one by one. The
method consists of correlating an image of the map (named the template) with the image obtained
from the sonar. The template, which is smaller than the sonar image, is moved on each possible
position on the sonar image, and a correlation score is computed each time. Then the position
giving the highest score should correspond to the translation between the origin of the map and
the estimated position of the robot. Naturally, this method requires having rotated the sonar
image with respect to the heading of the robot in order to have the same orientation between the
template and the sonar image.

There exist different scan matching algorithms. Two are compared in [68] with an application
to image localization with MSIS data. This method has the advantage of taking an image as a
map, so any structured or even unstructured map can be used. In addition, image algorithms
have been highly optimized, so they are very fast. However, they require to wait for a 360◦ scan
of the sonar to complete the image, which can be long, especially if the robot itself is rotating. If
the sonar turns too fast, the obtained image becomes illegible. Enough data must be collected
to obtain enough information in the image. Finally, multipath can mislead these algorithms
because they can make appear several times the map in the sonar image, as in Figure 4.8d. An
idea to improve this approach is to use interval analysis. Indeed, the score of each correlation
between the template and the sonar image can be plotted in a new image with lighter points for
higher scores. The position of these points corresponds to the possible relative localization of the
robot with respect to the map. Instead of taking only the lighter point (the highest score), boxes
wrapping every enough light points can be defined. These boxes are more susceptible to contain
the actual position of the robot.

4.2.2 Constraints approach

Interpreting data

Acoustic data require to be interpreted with particular care. Otherwise, it can quickly lead to a
wrong way. When dealing with underwater vehicles, one first priority is hardly always being
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sure not to lose the expensive robot. So some guarantees on safety issues are very expected, and
these guarantees directly depend on the correct interpretation of the data.

For instance, if we consider once again the Figure 4.2, the second peak probably corresponds
to an obstacle. However, it would be daring to consider only this assumption which might
be wrong. There is other information in this data that can be taken into account to increase
the reliability of the process. The approach amounts to spot out and exploit the inliers while
eliminating the outliers. So the goal is to extract as much as possible useful information from
the data. Thus, inliers are most likely not to be forgotten. For example, each detected peak in
the data could be considered with the assumption that at least one of them corresponds to an
obstacle.

The relaxed intersection presented in Section 2.4.2 can be considered first. Then the assump-
tion of one inlier among all the peaks can be implemented by taking the number of potential
outliers q equal to the number of peaks detected minus one.

This reasoning that consists of proposing assumptions from the interpretation of the data
leads to a constraints programming approach. The difficulties remain in formalizing correct
constraints and handle outliers. Indeed, the chosen constraints must always be valid to guarantee
the correctness of the result. But they should also be restrictive enough to converge in time to
a satisfying result. Finally, a constraint that satisfies these two properties is called a relevant

constraint.

Finding relevant constraints

It is intricate to find a relevant constraint. A single counterexample is enough to discredit a
constraint candidate. For instance, the constraint “at least one of the peak corresponds to an
inlier” may be misleading when dealing with an open pool (U-shape pool).

Finally, what emerged out of the thought is that the most reliable pieces of information lie
in the silence, i.e. where there is no peak. Indeed, a peak can either be an inlier or an outlier,
whereas silence almost always corresponds to the absence of obstacles. There is still a little
doubt, hence the presence of the almost word in the previous sentence. There are some cases
where a wall can be completely missed by the sonar. It happens when the direction of the emitted
pulse is close to being parallel to the wall. In that case, the acoustic beam is nearly not reflected
back by the wall, and a multipath phenomenon occurs. For instance, let consider the Figure 4.6
which is the Figure 4.5f in big, with the actual position of the pool drawn on it. Then, Figure 4.7
shows an example of a beam that is not reflected by the closest wall, but by another wall through
multipath.

So this last example shows that a silence does not always mean that there is no obstacle.
We cannot choose this constraint. However, it is relatively close to an actual reliable constraint.
Indeed, after analyzing different data from sonar, we came to the following conclusion: when
a ping is emitted perpendicularly to a wall, a silence always corresponds to the absence of
obstacles.
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Figure 4.6: Data from a scanning sonar in a pool. The positions of the sonar and the pool are
depicted in white.

The latter constraint corresponds to the reliable constraint we were searching for: it is always
verified and still brings enough information to improve the localization. Figure 4.8 illustrates
what is a silence in a sonar data and how it is interpreted for the localization of the robot. The
three subfigures on the left represent incoming data from the sonar (the same as in Figure 4.2). A
threshold (depicted in magenta on Figure 4.8) is used to separate the peaks from the silences.
Note that we may have used other more complex algorithms to define these separations. However,
it is the following step that matters here. The first detected silence is approximately between
0.4 m and 2 m (Figure 4.8c). In the known map of the pool, this information can be transcripted
into silence areas (Figure 4.8d). A contractor is used to remove these silence areas from the
possible positions of the robot. Indeed, if the received data were obtained from a position within
a silence area, it would have meant that an echo sent perpendicularly to a wall would not have
created a peak in the data, i.e. the constraint would have been violated. Finally, the other silences
in the incoming data can also be taken into account to remove more impossible positions. It is
illustrated in Figures 4.8e and 4.8f.

The design of such a contractor is done using a geometric approach. The following section
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Emitted pulse
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Figure 4.7: Multipath effect for a beam in a sonar image making parts of walls hardly detectable.

presents this step in depth.



84 Localization using intervals

0 2 4 6 8 10
0

50

100

(a) Data from one ping from a sonar. A thresh-
old is used to isolate peaks.

x

y

(b) A robot is in a polygonal pool. Its sonar
sends a ping to the east.

0 2 4 6 8 10
0

50

100

Silence

(c) The first silence in the data is extracted.

x

y

Silence

(d) The information of silence is used to
eliminate some positions in the pool.

0 2 4 6 8 10
0

50

100

Silence

(e) Every silences in the data are identified.

x

y

Silence

(f) The information of silences are used to
eliminate other positions in the pool.

Figure 4.8: Illustration of the information intake from silence.
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4.3 Designing new contractors

This section studies the design of new contractors. The objective is to start from a constraint,
based on a geometric approach, to define a set in the position space. This set is the searched one,
and the contractor must characterize it. It amounts to solve a set inversion problem, and this is
the purpose of the new contractor. Finally, the use of this contractor is shown in the context of
robot localization, using some exteroceptive measurements.

4.3.1 Geometric approach

Localization with distance measurement

As presented in Section 2.3.2, a contractor is a tool used to approximate a set by outer approach.
In localization context, the searched set is generally the state, or, more particularly, the position
of the robot. Clues of this position can come from exteroceptive sensors, which can give absolute
information. However, to achieve a successful localization, these measurements must be well
interpreted. For instance, by using lidar, a robot can measure its distance to a wall. However, the
distance returned by the sensor can be wrong: it can correspond to another wall, to a person, or
any other obstacle. Moreover, even if the right wall is detected, the returned distance is often
uncertain: a more or less significant error is added to the actual distance from the wall.

In this context, the proposed interval analysis approach consists in representing the position
of the robot by a box [x], which is very large at the beginning as there is no information on the
starting position. The idea is that this box always contains the actual position of the robot. Thus,
the represented information is always reliable and guaranteed. Nevertheless, we also want this
box to be as smaller as possible to obtain a more accurate localization. To reduce the size of
the box, we use contractors. Each time the robot receives a new measure from its sensors, the
data can be translated into a constraint, and therefore a contractor. This contractor is directly
associated with the set of possible positions that match the new measurement.

Now we will detail how measurement can be translated into a constraint, with the example of
the distance to a wall. We assume that the robot knows the absolute position of the wall and that
the measurement returned by the sensor, although uncertain, is correct. Figure 4.9 summarizes
the situation.

We also assume that the robot knows its heading and the bearing of its measurement. Finally,
the absolute angle of the measurement is known and denoted by ψ. Thus, this measurement
brings information about the localization: the following constraint describes the compatible
positions of the robot.

This constraint amounts to find the distance from a point to a segment with a specific angle.
So there are two cases: either the ray crosses the segment, then the distance can be computed, or
the ray does not cross the segment, and the distance is equal to infinity. Note that both cases are
a relevant information for the localization. To know in which case we are, we compute some



86 Localization using intervals

A

B

wall

x

y

M
?

?

d

#»u ψ

Figure 4.9: A robot (the red triangle, at M ) is measuring its distance d to a wall represented by
the blue segment [A,B].

determinants as follow:

z1 = det( #     »

MA, #»u ) (4.2)

z2 = det( #»u ,
#      »

MB) (4.3)

z3 = det( #     »

MA,
#    »

AB) (4.4)

z4 = det( #»u ,
#    »

AB). (4.5)

Thus, we consider walls as vectors, which means that walls are oriented. If a wall is upside
down, it is considered transparent. It is taken into account only if it is oriented counterclockwise.
Note that it is not restrictive as it is possible to consider both cases, with the wall oriented in the
two different configurations, if necessary. The three first scalar values (z1, z2, z3) are all positive
if and only if the ray from M along vector #»u crosses the wall [A,B]. So the condition to separate
the two cases is whether the sign of the minimum of these three values is positive or negative (it
is positive if and only if all the three values are positive). Finally, when this sign is positive, the
ψ-oriented distance between the robot and the wall is equal to the quotient of z3 and z4.

Thus for one possible positionM , measuring a distance [dmes], the constraint can be expressed
as follows:

Cdist_wall :

∞ ∈ [dmes] if min(z1, z2, z3) < 0,
z3
z4
∈ [dmes] otherwise.

(4.6)

Associated contractor

Afterward, this constraint is translated into a contractor. The method used to realize this task is a
forward/backward contractor, also called HC4-revise [8]. The principle is as follow: the input is
the box [x] representing the approximation of the position. The goal is to contract this box to
affine the knowledge of the position. It is impossible to straightforwardly contract the box, as the
constraint coming from the measurement does not directly correspond to the position. It could be
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as immediate with data from a perfect GNSS, for example. Here we can only contract an interval
concerning the distance. So the forward step consists in computing this interval from the initial
position box. Knowing the position of the wall (by way of the positions of the two extremity
points: [A,B]) and the direction ψ of the measurement, we can compute the values z1 to z4 and
thus the interval representing the distance between the current estimated position and the wall.
This interval is then contracted according to the constraint. Concretely, it is the intersection of
this interval and the measurement [dmes] which is calculated. If this intersection is empty, then an
empty box is returned: the initially given box does not fit with the measurement. Otherwise, the
contraction is propagated backward: this is the backward step. In other words, the new smaller
(if the contraction was proper) interval is used to compute back the position box, which may
be smaller. In this way, the algorithm returns the same, but contracted, box [x], giving a better
approximation of the actual position of the robot. Figure 4.10 illustrates the different steps of
this method.

Note that some pessimism may be introduced in such contractions: the magenta box of
Figure 4.10 corresponding to the measurement contains some impossible values in the top left
and bottom right corners. That is because boxes are aligned with plan axes. In this particular
case, the resulting contraction brings no pessimism as these corners are not used at the end.
However, it was only because the initial box [x] was already small enough. Pessimism would
have also been introduced if the wall was not perfectly vertical, as the distance set associated
would be tilted and therefore non-representable with axis-aligned boxes.

For the sake of clarity, in this example, the value of ψ was known precisely. In reality, this is
not the case: this value is obtained using the robot’s heading, which is never entirely sure. This
uncertainty is easily taken into account by bounding it inside an interval. Some pessimism is
then added again, but everything works in the same way.

4.3.2 Localization example

Context

In order to illustrate how all these notions can be used, an example of localization is now
presented. We will see that the formalization of the problem can lead to a set inversion problem,
and then how we can use the contractor Cdist_wall to solve it. The approach can be compared
with [142], where the localization problem is also translated into a CSP with a set-membership
resolution.

So, take again a robot measuring its distance to a wall. This time, we assume that several
walls are forming a polygon. This polygon is not necessarily convex. We limit the example to
polygons, as only the contractor associated with the distance to segments has been presented.
However, it is entirely conceivable to extend the application to other geometric shapes using
associated contractors. On the other hand, a new step has to be reached to deal with unstructured
environments, but this is not the topic. This approach would also work with open shapes,
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(a) The robot at M measures the distance dmes depicted in magenta. Its current
estimated position is the brown box [x]. The associated distance interval is computed
(forward step), and is represented in brown by dbox.
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(b) The interval dbox is contracted with dmes, and this new interval (equal to dmes
in this case) is used to compute back a position box (backward step), painted in
magenta.
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(c) Finally, the initial box [x] is contracted using the magenta box, giving the red box
C([x]) as result.

Figure 4.10: The different steps of a robot contracting its position using the distance [dmes] to a
wall represented by the segment [A,B].

assuming that we can detect when the distance sensor returns the equivalent of an infinity
distance (or equivalently, no obstacle). Then, another contractor may be associated with such a
constraint: not detecting an obstacle can constitute a piece of information for localization.

The objective is to localize the robot in this known and structured environment. Once again,
we assume the robot to measure its heading. Actually, it is possible to find back this angle
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in addition to the position with this approach, as in [86]. For the moment, we only search to
characterize the robot’s position in the horizontal plan, constituted by two variables: x and y.
Figure 4.11 summarizes the situation.

W2

W3

W4
W5

W6

W1

x

y

M

?

? θ

Figure 4.11: A robot in a structured environment is localizing itself.

This kind of problem has already been widely studied, and different approaches are possible,
as in [44, 100]. However, here, we make one additional assumption that makes some approaches
unfit: sensors return only a few measurements, four at maximum (one in each direction of the
robot).

Formalization

If we now formalize the problem, we need to find a link between the measurements and the
unknown variables (the position of the robot). It is much easier to express the expected measure-
ments from the position rather than the inverse. The reason for that is the non-injectiveness of
the function f that returns the distance to a wall from the position of the robot. Indeed, there is
only one possible distance to a wall (with a given direction) from one position. The inverse is not
valid: in most cases, knowing that the robot is at a distance of one meter to a wall is not enough
to know where the robot is; there are several possibilities, even an infinity of possibilities. The
function f is of the form:

f : R2 → R
(x, y) 7→ dist((x, y),wall).

Thus, the problem is a set inversion problem: from an image set obtained by measurements
(distances), we want to know the associated antecedent set by the function f . These measurements
can be seen as constraints on the position of the robot. Each new measurement brings new
information that allows characterizing more precisely the position set.

To complete the localization of the robot, the contractor Cdist_wall is used. It is a little more
complex than the example with one wall (as in Figure 4.10) because here, we cannot know which
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wall has been detected by the sensor. For instance, if the sensor was oriented east, there are four
walls likely to match (W1 to W4). So there is no choice to iterate over the walls and create a
subcontractor for each one. These subcontractors are associated with the distances to each wall.
Then, a possibility is to take the union of all these subcontractors. It consists of computing the
solution set for each wall and then returning the union of all these sets. It works well, and the
found solution is correct.

However, in some specific cases, it is possible to do better. Indeed, if there are several walls
in front of the sensor, one behind the other, then all the walls are considered, whereas only
the closer is detectable. Figure 4.12 gives an example of this particular case. The distance
measured by the robot is the one to the wall W2, but there may have ambiguity with the wall
W4. It happens because the solution set of the wall W4 is computed independently, without
considering the existence of the other walls. In order to remove these supplementary solutions,
the other possibility is not to create each subcontractor, but just one which is associated with
the minimum of the distances to each wall. In this way, when a wall hides another, only the
closer is taken into account as the associated distance is the smallest. Specifically, still in the
example of the Figure 4.12, the wrong solution which is represented transparent is removed: the
minimum distance associated with this position is the one to the wall W2 (and not W4), which is
not compatible with the measured distance d.

W1

W2
W3

W4

x

y

M d

M? d

Figure 4.12: With walls in a sawtooth shape, some impossible solutions can be kept.

Examples

Finally, we can give the possible positions for the robot from a list of walls and one distance
measurement. An example with a distance measurement to the east of the robot is given in
Figure 4.13. Note that possible positions that are outside the room have been removed as we
know the robot is in the room.

To go further, we may want to consider several measurements that ideally come from different
directions to have a more refined localization. In this case, to combine the different solution
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Figure 4.13: Localization using a distance measurement to the east. The compatible positions
are in red.

sets, a quick way is to take the intersection of all these sets. If the robot has not moved, and
if all the distances are correct, then the result will be satisfying, as in Figure 4.14 where only
two range measurements have been used. However, the risk of using an intersection is that as
soon as one returned distance is wrong, the localization may fail due to an empty solution set.
These potential wrong measurements that can mislead a whole approach are called outliers. This
problem has already been addressed, as in [79], especially using the relaxed intersection, which
is particularly robust to outliers. The latter have been detailed in Section 2.3.3.
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Figure 4.14: Localization using both a distance measurement to the east and to the north. The
red area shows that the robot is well localized.

Silence contractor: test case

The silence contractor presented in Section 4.2.2 has been designed similarly. Then it has been
tested in simulation and with an actual robot in a pool. The sonar used is a Tritech Micron
(MSIS) fixed on a BlueROV2 of BlueRobotics (see Figure 4.15). This sonar is rather small: less
than 8 cm in height and 7 cm in diameter. It has a vertical beamwidth of 35◦ and was set for a
range of 6 meters. The IMU integrated into the flight controller (Pixhawk) returns the heading.
The shape of the pool is a rectangle of approximately 5.5 x 2.75 meters. It is not a rigid pool, so
the map cannot be absolutely exact. On top of that, the water level is very low (less than 1 m).
The lack of depth creates more multipath coming from both the surface and the bottom of the
pool. A picture of the experimentation is shown in Figure 4.16.
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Figure 4.15: Picture of the Tritech Micron mechanical scanning sonar (MSIS) fixed on the robot.

In the beginning, the robot only knows it is in the pool (the initial box covers the whole pool).
Then each information that comes from a beam sent perpendicularly to a wall is used to contract
the current estimation of the robot’s position. After a sonar turn, we obtain the estimation of the
localization presented in Figure 4.17. The map of the pool is the green rectangle. The orange one
is the contracted box corresponding to the estimation of the position. Sonar data are represented
in gray level, with only the used ones, which are those perpendicular to walls. They are in the
frame centered in the estimated position box. Note that this choice is only for the display, the
whole box must be considered as a result, and there is no information on which position within
the box is the closest to the actual one. This result is convincing concerning reliability since the
actual position of the robot is never removed from possible positions. However, the precision is
questionable, especially in the x axis.

Finally, even if our constraint based on the silence gives us the expected reliability, we would
like to have a more precise result. Indeed, the data of Figure 4.17 seems to be sufficient for better
localization. Therefore, the silence constraint is not hard enough, and we have to consider other
constraints. It is possible using the fuzzy approach presented in the next chapter.

4.4 Conclusion

In this chapter, intuition on the behavior of acoustic beams has been given. An interval analysis
approach has been then studied to deal with uncertainties and outliers. Thus, a reliable constraint
should be found: the absence of received signal when emitting perpendicularly to a wall seems
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Figure 4.16: Picture of the ROV equipped with the sonar in the pool of ENSTA Bretagne.

to correspond to the absence of an obstacle. So the idea is to use the absence of signal as reliable
information. A set-membership approach is perfectly adapted to consider this constraint.

The design of a contractor has been then given with examples of simulated robot localization.
The contractor using the silence approach has been tested on real data, leading to a guaranteed
localization. The interests of using intervals in the context of a localization problem are multiple.
Indeed, intervals can efficiently deal with non-linearities and represent uncertainties. No approx-
imations nor linearizations are necessary contrary to usual methods such as the Kalman filter.
Interval analysis perfectly suits the constraint programming approach, providing a guarantee of
the results. On top of that, it also provides tools to handle outliers that frequently occur with real
data.

Finally, localization problems are crucial for many applications, and the issue can still be
considered open as soon as no external reference like a Global Navigation Satellite System
is available. Mainly, it concerns indoor and underwater environments, where hazardous and
sensitive tasks can be required. The underwater environment is especially subject to uncertainties
and outliers. In front of both of these sources of errors and the cost of underwater vehicles, the
interest of interval analysis approaches’ reliability takes on its full meaning.

Nevertheless, we can still reproach interval analysis for lacking suppleness: it is not possible
to consider soft constraints, i.e. constraints that are not always true. Sometimes, we would like
to add some granularity to the approach such that the result can be more accurate at the risk
of violating a soft constraint. The next chapter will go further in the localization approach by
considering fuzzy sets, which can deal with this desired granularity.
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Figure 4.17: Result of the localization in the pool using silence contractor. After acquiring data
from every side, the robot is localized without good precision, but the actual position (in red) is
well included in the estimated position box (in orange).
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5.1 Introduction

This chapter shows a new localization approach using fuzzy logic to go further than the previous
chapter. Fuzzy logic, and especially fuzzy sets, bring the lacking granularity of the previous
method. Indeed, fuzzy sets allow for dealing with a more complex representation and combination
of the acquired granules of knowledge. Thus, soft constraints can be considered and weighted
with respect to the significance we want to put on them. It allows prioritizing the constraints to
maximize the number of satisfied ones.

The principle is to use the score function presented in Section 2.4.2 to combine the granules.
The obtained fuzzy set is then characterized by its α-cuts, independently computed with interval
analysis. These α-cuts are different levels of representation of the result.

Therefore, after presenting this new α-cut approach, this chapter addresses the localization
problem to show the benefits of the new method. Simulations and experiments will illustrate the
consistency of the process.

5.2 α-cut approach

The proposed approach consists in handling fuzzy sets that represent our desired combination of
granules. Fuzzy sets are built with the score function. A score function provides much freedom
to combine granules. It facilitates the implementation of complex combinations and allows
giving different weights to each granule.

Once this score function is defined, it describes a fuzzy set representing the result of the
combination of the granules. Then, when we want to access the information they contain, the
objective is to characterize their α-cuts to approximate the researched set using interval analysis.

5.2.1 A new formulation of the α-cut principle

Link between score function and α-cut

Using score functions defined in Section 2.4.2, an α-cut of a fuzzy set X is a crisp set which is
defined by

Xα = {x ∈ Ω | µX(x) ≥ α}

=
{
x ∈ Ω | σ

(
ζ1(x), . . . , ζm(x)

)
≥ α

}
.

(5.1)

Therefore, as it is a set inversion problem, an inner and outer approximation of this set can be
computed using interval analysis. The following example illustrates how we can define score
functions and threshold α to combine granules.

Example 5.2.1. Table 5.1 provides some examples of membership functions, thresholds α and
the corresponding α-cuts.
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µX(x) α Xα

(i) ζ1(x)+ζ2(x)
2 1 Z1 ∩ Z2

(ii) ζ1(x)+ζ2(x)
2 0.5 Z1 ∪ Z2

(iii) ζ1(x)+2ζ2(x)+ζ3(x)+ζ4(x)
5 0.5 (Z1 ∩ Z2) ∪ (Z2 ∩ Z3) ∪ (Z2 ∩ Z4) ∪ (Z1 ∩ Z3 ∩ Z4)

(iv) 1
m

m∑
j=1

ζj(x) 1− q
m

m⋂
j=1
{q} Zj

(v) min
(
ζ1(x), 1

m

∑
j
ζj(x)

)
1− q

m
Z1 ∩

m⋂
j=1
{q} Zj

Table 5.1: Examples of membership functions with thresholds α and their corresponding α-cuts.

Line (i) should be understood as follows:

ζ1(x) + ζ2(x)
2 ≥ 1 ⇐⇒ ζ1(x) = 1 and ζ2(x) = 1

⇐⇒ x ∈ Z1 and x ∈ Z2

⇐⇒ x ∈ Z1 ∩ Z2.

To understand the case (iii), the idea is to compute all grades of membership for all possible
vectors (ζ1(x), . . . , ζ4(x)). There are 24 = 16 possibilities, and we represent them in Table 5.2.

Z1Z2

Z3
Z4

00 01 11 10

00

01

11

10

0 2/5 1/53/5

1/5 3/5 2/54/5

1/5 3/5 2/54/5

2/5 4/5 3/51

µX(x) = ζ1(x)+2ζ2(x)+ζ3(x)+ζ4(x)
5

Table 5.2: Grades of membership of all the possible vectors of granule to the fuzzy set described
by the membership function of the case (iii).

In this table, each pair of binary digits indicates the considered belonging of a vector x to the
associated sets. For instance, in the column “01” under the “Z1Z2” heading, we have ζ1(x) = 0
and ζ2(x) = 1. Thus, for each case of the table, we have the result of the different values for
µX(x). We choose this representation since when computing the associated α-cut table, it directly
corresponds to a Karnaugh table.

An example is given in Table 5.3 for α ≥ 0.5. This table is the same as the previous one, but
the threshold α = 0.5 has been used to binarize the results; this is why it contains only 0 and 1.
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It is called a Karnaugh table, which is a graphical method to find the logical function associated
with a given truth table. The method is the following: the adjacent 1s are grouped by squared
or rectangular boxes, such that the number of grouped values is equal to a power of 2. These
groups are represented in color in the table. The goal is to minimize the number of groups to
obtain the most straightforward logical expression. Finally, the logical function is the union of
each group, and each group is the intersection of the shared variables. For instance, the green
box groups Z2 and Z4 (in both concerned columns, we have ζ2(x) = 1 and in both concerned
lines, we have ζ4(x) = 1). Finally, we find back the expression written in Table 5.1:

Xα = (Z1 ∩ Z2)︸ ︷︷ ︸
blue box

∪ (Z2 ∩ Z3)︸ ︷︷ ︸
yellow box

∪ (Z2 ∩ Z4)︸ ︷︷ ︸
green box

∪ (Z1 ∩ Z3 ∩ Z4)︸ ︷︷ ︸
red box

. (5.2)

Z1Z2

Z3
Z4

00 01 11 10

00

01

11

10

0 0 0

0 0

0

0 0

1

1 1

1 1

1 11

µX(x) ≥ 0.5

Table 5.3: Karnaugh table associated to the constraint µX(x) ≥ 0.5 of the case (iii).

The obtained expression is called the Disjunctive Normal Form (DNF). Note that this is not
the only possibility; some factorizations could yield a shorter expression as

Xα = (Z2 ∩ (Z1 ∪ Z3 ∪ Z4)) ∪ (Z1 ∩ Z3 ∩ Z4) . (5.3)

This method, using the Karnaugh table, may yield an expression with a length that is
exponential in m even after factorization routines, depending on µX(x). This is why we prefer
here to work directly on the expression of µX(x) instead of the set expression. Since the
expression for µ admits more symbols (+,−, exp, sin,max,min, . . .) than for the expression for
Xα (∪,∩, ), we limit the combinatorial length and the corresponding evaluation.

Complementary of an α-cut

The score function allows us to combine the granules as wanted and create a fuzzy set whose
α-cuts represent the logical expression we want to characterize. So we want to find an approxi-
mation of these α-cuts, and tools from interval analysis are actually adapted. However, to obtain
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the inner approximation in addition to the outer one, to obtain bracketing of the solution set, we
need to compute the complementary of the studied α-cut. Obtaining the inner approximation is
also essential to obtain an efficient interval algorithm. It allows to reduce the number of required
bisections and, thus, boxes in comparison with only the outer approximation.

So the objective is to find the expression of the piecewise constant membership function such
that it defines the complementary of α-cuts of an other similar membership function.

Theorem 5.2.1 (De Morgan rule). The complementary set of the α-cut

Xα
(5.1)=

{
x | σ

(
ζ1(x), . . . , ζm(x)

)
≥ α

}
is the α-cut defined by

X̄α =
{
x | σ̄

(
ζ̄1(x), . . . , ζ̄m(x)

)
> ᾱ

}
, (5.4)

where
ζ̄j = 1− ζj

σ̄ (a1, . . . , am) = 1− σ (1− a1, . . . , 1− am)

ᾱ = 1− α.

(5.5)

Proof. First, let us note that since the function σ̄ takes only a finite number of values, the
strict inequality (>) can always be transformed into a non-strict inequality (≥). Since Xα =
{x | σ (ζ1(x), . . . , ζm(x)) ≥ α}, we have

x ∈ X̄α ⇐⇒ σ
(
ζ1(x), . . . , ζm(x)

)
< α

⇐⇒ 1− σ
(
ζ1(x), . . . , ζm(x)

)
> 1− α

⇐⇒ 1− σ
(
1− ζ̄1(x), . . . , 1− ζ̄m(x)

)
> ᾱ

⇐⇒ σ̄
(
ζ̄1(x), . . . , ζ̄m(x)

)
> ᾱ.

We now have to check that σ̄ is a membership function, i.e. with the form of (2.48).
(i) We have σ̄ (0, . . . , 0) = 1− σ (1− 0, . . . , 1− 0) = 0.
(ii) We have σ̄ (1, . . . , 1) = 1− σ (1− 1, . . . , 1− 1) = 1.
(iii) We now check the monotonicity of σ̄:

(a1, . . . , am) ≤ (b1, . . . , bm) =⇒ (1− a1, . . . , 1− am) ≥ (1− b1, . . . , 1− bm)

=⇒ σ (1− a1, . . . , 1− am) ≥ σ (1− b1, . . . , 1− bm)

⇐⇒ 1− σ (1− a1, . . . , 1− am) ≤ 1− σ (1− b1, . . . , 1− bm)

⇐⇒ σ̄ (a1, . . . , am) ≤ σ̄ (b1, . . . , bm) .
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Example 5.2.2. Consider again the set Xα = Z2 ∩ (Z1 ∪ Z3 ∪ Z4) ∪ (Z1 ∩ Z3 ∩ Z4) presented
in (5.3), and defined by

ζ1(x) + 2ζ2(x) + ζ3(x) + ζ4(x)
5 ≥ 0.5. (5.6)

Note that the corresponding score function is the same as in Example 2.4.3. The complementary
set X̄α is defined by

1−
1− ζ̄1(x) + 2

(
1− ζ̄2(x)

)
+ 1− ζ̄3(x) + 1− ζ̄4(x)

5 > 1− 0.5

⇐⇒ 5− 1 + ζ̄1(x)− 2 + 2ζ̄2(x)− 1 + ζ̄3(x)− 1 + ζ̄4(x)
5 > 0.5

⇐⇒ ζ̄1(x) + 2ζ̄2(x) + ζ̄3(x) + ζ̄4(x)
5 ≥ 0.5.

The following example illustrates a situation where the relaxed intersection is involved.

Example 5.2.3. Consider again the set Z1 ∩
m⋂
j=1
{q} Zj presented in Example 5.2.1 and defined

by

min
ζ1(x), 1

m

m∑
j=1

ζj(x)
 ≥ 1− q

m
. (5.7)

The complementary set is defined by

1−min
1− ζ̄1(x), 1

m

m∑
j=1

(
1− ζ̄j(x)

) > 1−
(

1− q

m

)

⇐⇒ 1−min
1− ζ̄1(x), 1− 1

m

m∑
j=1

ζ̄j(x)
 >

q

m

⇐⇒ 1 + max
−1 + ζ̄1(x),−1 + 1

m

m∑
j=1

ζ̄j(x)
 >

q

m

⇐⇒ max
ζ̄1(x), 1

m

m∑
j=1

ζ̄j(x)
 ≥ q + 1

m
.

Finally, from a score function and characteristic functions of granules, we can define a specific
class of fuzzy sets whose α-cuts and their complementaries are characterized by inequalities.
Then, it is possible to approximate these α-cuts using interval analysis tools, with an inner and
an outer set. The contractors used for this task are presented in the next section.

5.2.2 Resolution using interval contractors

We recall here the expression of an α-cut of the fuzzy set X, as introduced in (5.1):

Xα = {x ∈ Ω | µX(x) ≥ α}

=
{
x ∈ Ω | σ

(
ζ1(x), . . . , ζm(x)

)
≥ α

}
,
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where σ is a score function and ζj is the characteristic function of the granule Zj . We consider the
problem of finding an efficient contractor for Xα. This problem is firstly addressed in the specific
simpler case where granules Zj are intervals, denoted by [z](j). Then, the Zj are considered to
be boxes, denoted by [z](j). Finally, the general case will be handled where the granules are any
subset of Rn, with the assumption that a contractor for each of these granules is available.

Interval-based α-cuts

So firstly, we consider only the case where granules are intervals. We want to compute the
smallest interval, which encloses all x ∈ [x] such that x ∈ Xα. Note that computing this smallest
interval amounts to finding the optimal contractor for the set Xα. We denote this contractor by
C interval
σ,α since the score function σ and the scalar α are sufficient to define the set Xα, from the

knowledge of characteristic functions ζj . We now describe a procedure (taken from [103]) that
solves the problem with a complexity of m2. In what follows, [z](1 : m) denotes the list of
intervals {[z](1), . . . , [z](m)}, which are the granules. Algorithm 1 describes this procedure.

Algorithm 1: Contractor C interval
σ,α

Result: Contract the interval [x] for the constraint σ (ζ1(x), . . . , ζm(x)) ≥ α
Input: [x], [z](1 : m)
Output: [x]

1 Store all endpoints of [z](1), . . . , [z](m) and [x] inside a list L
2 Remove elements of L that are not inside [x]
3 Sort L in ascending order
4 Take the smallest element a of L such that σ(ζ1(a), . . . , ζm(a)) ≥ α
5 if no a has been found then
6 return ∅
7 Take the greatest element b of L such that σ(ζ1(b), . . . , ζm(b)) ≥ α
8 return [a, b]

Here are comments on each line of this algorithm:

Step 1. The algorithm first puts all endpoints of the [z](j)’s into a list L (that is lower and upper
bounds). It also stores the endpoints of [x]. At this step, the list L has 2m+ 2 elements.

Step 2. Each element that is not in [x] does not influence the result and thus is removed.

Step 3. The list L is sorted in an ascending manner. We thus get a sorted sequence `1 ≤ `2 ≤
· · · ≤ `η where `1 = x− and `η = x+.

Step 4. The first `k such that σ(ζ1(a), . . . , ζm(a)) ≥ α corresponds to the lower bound of X.

Step 5. If no such an a exists, then X is empty.

Step 6. In that case, the algorithm returns an empty interval.
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Step 7. The upper bound of X is computed similarly.

Step 8. The interval hull of X is returned.

As shown in [103], it is possible to get a complexity of O(n log(n)).

Box-based α-cuts

We have now a procedure for the case where granules are intervals. We can extend it for finding
a contractor for Xα in the case where granules are boxes and are denoted by [z](j). Finding the
optimal contractor for Xα is known to be an NP-hard problem [103]. In order to build a good
contractor denoted by Cbox

σ,α, we project the problem with respect to each of the n axis and then
call n times the contractor C interval

σ,α described in the previous subsection. The procedure is based
on the following theorem.

Theorem 5.2.2. Consider m boxes [z](1), . . . , [z](m) such that [z](j) = [z1](j)× · · · × [zn](j).

Fix x = (x1, . . . , xn). If σ is a score function and i ∈ {1, . . . , n}, we have

σ
(
ζ1(x), . . . , ζm(x)

)
≤ σ

(
ζ1
i (xi), . . . , ζmi (xi)

)
, (5.8)

where ζj and ζji are the characteristic functions of [z](j) and [zi](j), respectively.

Proof. Consider a vector x = (x1, . . . , xn) and a box [z] = [z1]× · · ·× [zn] with a characteristic
function ζ . We have

ζ(x) = ζ1(x1) · ζ2(x2) · . . . · ζn(xn) (5.9)

and for all i, ζi(xi) ∈ [0, 1]; thus, we have ζ(x) ≤ ζi(xi). Since σ is monotonic, we get the
inequality to be proved.

An illustrative example is now proposed to understand this theorem better.

Example 5.2.4. Consider the situation of Figure 5.1 where the membership function is

µX(x) = σ
(
ζ1(x), ζ2(x), ζ3(x)

)
= 1

3

3∑
j=1

ζj(x). (5.10)

For the three points a,b, c, we obtain the results given by Table 5.4.

a b c

σ(ζ1, ζ2, ζ3) 2/3 0 1/3
σ(ζ1

1 , ζ
2
1 , ζ

3
1 ) 2/3 1/3 2/3

σ(ζ1
2 , ζ

2
2 , ζ

3
2 ) 2/3 2/3 2/3

Table 5.4: Score values for the three points a,b, c.

For instance, the last cell of the table is the result of σ (ζ1
2 (c), ζ2

2 (c), ζ3
2 (c)). The subscript

on functions ζ2 indicates that we study only the second dimension. So in the Figure 5.1 it is the
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0 1

1

2

2

3

3

4

4

5

5

6

6 [z](1)

[z](2)

[z](3)

•a

•
b

•c

Figure 5.1: Only a belongs to at least two of the three boxes.

ordinate axis. Then we check if the ordinate of c (denoted by c2) belongs to the ordinates of
the three different boxes, that is if c2 ∈ [z2](j), for j ∈ {1, 2, 3}. It amounts to project the point
c and the three boxes onto the ordinate axis. Here c2 belongs to [z2](1) and [z2](2), but not to
[z2](3). We thus have ζ1

2 (c) = ζ2
2 (c) = 1 and ζ3

2 (c) = 0. As the membership function is the sum
of these three terms divided by three, the result is well 2/3.

We can observe that the inequality (5.8) is always satisfied, but equality is not.

Theorem 5.2.3. The operator

Cbox
σ,α ([z](1 : m), [x]) = C interval

σ,α ([z1](1 : m), [x1])× · · · × C interval
σ,α ([zn](1 : m), [xn]) (5.11)

is a contractor for the set Xα defined by (5.1), in the case where the Zj are boxes [z](j).

Proof. We have to check that Cbox
σ,α ([x]) satisfies the properties of (2.31). Since all components

[xi] of [x] are contracted by the contractor C interval
σ,α ([zi] (1 : m), [xi]), we get the contractance

property. Let us show the consistency:

Xα =
{
x ∈ [x] | σ

(
ζ1(x), . . . , ζm(x)

)
≥ α

}
(see (5.1))

⊂
{
x ∈ [x] | ∀i, σ

(
ζ1
i (xi), . . . , ζmi (xi)

)
≥ α

}
(see (5.8))

=
⋂
i

{
x ∈ [x] | σ

(
ζ1
i (xi), . . . , ζmi (xi)

)
≥ α

}
=
{
x1 ∈ [x1] | σ

(
ζ1

1 (x1), . . . , ζm1 (x1)
)
≥ α

}
× . . .

· · · ×
{
xn ∈ [xn] | σ

(
ζ1
n(xn), . . . , ζmn (xn)

)
≥ α

}
.

Finally, the monotonicity is a consequence of the fact that the Cartesian product is a monotonic
operator.
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Algorithm 2: Contractor Cbox
σ,α

Result: Contract the box [x] for the constraint σ (ζ1(x), . . . , ζm(x)) ≥ α
Input: [x], z(1 : m)
Output: [x]

1 for i = 0 to n do
2 [xi] = C interval

σ,α ([zi](1 : m), [xi])
3 return [x1]× · · · × [xn]

Algorithm 2 thus implements a contractor for Xα.

Here are comments on each line of this algorithm:

Step 1. This loop allows a decomposition with respect to each axis of x.

Step 2. We call the contractor C interval
σ,α that has been developed in Algorithm 1 for the scalar case.

Step 3. The Cartesian product of all contracted intervals is returned.

General case

Finally, now that we have a contractor for boxes, we can address the general case. We assume
that the granules Zj are any subset of Rn and that a contractor for each of these granules is
available. The following theorem gives a definition for the searched contractor Cset

σ,α.

Theorem 5.2.4. Assume that we have contractors CZj , for the Zj . The operator

Cset
σ,α (Z1:m, [x]) = Cbox

σ,α ((CZ1([x]), . . . , CZm([x])), [x]) (5.12)

is a contractor for the set Xα defined by (5.1), in the case where the Zj are any subsets of Rn.

Proof. We have to check that Cset
σ,α ([x]) satisfies the properties of (2.31). For the contractance

property, since the CZj has the contractance property, and Cbox
σ,α has the monotonicity property, we

have:

Cset
σ,α (Z1:m, [x]) ⊂ Cbox

σ,α (([x], . . . , [x])), [x]) . (5.13)

In addition,

Cbox
σ,α (([x], . . . , [x])), [x]) = C interval

σ,α (([x1], . . . , [x1])), [x1])× · · · × C interval
σ,α (([xn], . . . , [xn])), [xn])

= [x1]× · · · × [xn]

= [x],

hence

Cset
σ,α (Z1:m, [x]) ⊂ [x]. (5.14)
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Let us show the consistency:

Xα =
{
x ∈ [x] | σ

(
ζ1(x), . . . , ζm(x)

)
≥ α

}
(see (5.1))

= {x ∈ [x] | σ (χZ1(x), . . . , χZm(x)) ≥ α}

=
{
x ∈ [x] | σ

(
χZ1∩[x](x), . . . , χZm∩[x](x)

)
≥ α

}
⊂
{
x ∈ [x] | σ

(
χCZ1 ([x])(x), . . . , χCZm ([x])(x)

)
≥ α

}
⊂ Cbox

σ,α ((CZ1([x]), . . . , CZm([x])), [x]) .

Finally, the monotonicity property directly comes from the monotonicity of the contractors Cset
σ,α

and the CZj .

Algorithm 3 thus implements a contractor for Xα.

Algorithm 3: Contractor Cset
σ,α

Result: Contract the box [x] for the constraint σ (ζ1(x), . . . , ζm(x)) ≥ α
Input: [x], {CZ1 , . . . , CZm}
Output: [x]

1 for j = 1 to m do
2 [z](j) = CZj ([x])
3 [x] = Cbox

σ,α ([z](1 : m), [x])
4 return [x]

Here are comments on each line of this algorithm:

Step 1. This loop allows to browse the contractors CZj .

Step 2. We create a list of boxes corresponding to the granules Zj .

Step 3. We call the contractor Cbox
σ,α that has been developed in Algorithm 2 for the box case, on the

created list of boxes.

Step 4. The contracted box is returned.

5.2.3 Characterization of α-cuts

Separator for α-cuts

Now that we have described all the tools required to obtain a characterization of α-cuts using
interval analysis, we summarize the assumptions and the final approach to obtain a result as the
Figure 2.14 of Example 2.4.3.

Consider we have some granules of knowledge represented by the sets Zj . We assume that
we have available contractors CZj for the Zj , and also contractors CZ̄j for the complementary sets
Z̄j . In other words, we have all the tools to fully characterize the granules, with an inner and an
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outer approximation, since a contractor and its complementary allow us to build the associated
separator. We want to compute an inner and an outer approximation for Xα, the α-cut of the
fuzzy set described by the granules Zj , and a score function σ distributing the confidence we
have in each granule. We have seen that a contractor for Xα, denoted by CXα , can be obtained
using Algorithm 3:

CXα([x]) = Cset
σ,α (CZ1 , . . . , CZm , [x]) . (5.15)

Similarly, as we have access to the contractors of the complementary granules, we define a
contractor for X̄α, denoted by CX̄α:

CX̄α([x]) = Cset
σ̄,ᾱ

(
CZ̄1 , . . . , CZ̄m , [x]

)
, (5.16)

where (see (5.5) in Theorem 5.2.1)

σ̄(a1, . . . , am) = 1− σ(1− a1, . . . , 1− am)

ᾱ = 1− α.

The pair CXα , CX̄α forms a separator for Xα. Using a set inversion algorithm as SIVIA, inner
and outer approximations can be obtained. This algorithm can be applied for the different α-cuts
of X, and in this way, we can obtain a complete representation of the fuzzy set, as in Figure 2.14.

Localization example

To illustrate once again the approach, let us take another example of localization. Consider a
robot in a room with a shape as in Figure 5.2. There is a pillar constituting an obstacle and a
beacon A (in red) whith which the robot can measure the distance dA. Finally, the robot also
measures its distance dwall to the closest wall in front of him. Note that the sensor that produces
the latter measurement should detect the pillar. However, in this purely theoretical example, we
assume that it ignores the pillar for the sake of simplicity.

In this situation, we have different information that constitutes our granules of knowledge:

1. Zroom, which is the set of all positions in the room;

2. Zpillar, which is the set of all positions in the pillar;

3. ZdA , which is the set of all positions compatible with the measured distance between the
robot and the beacon, including uncertainties;

4. Zdwall , which is the set of all positions compatible with the measured distance between the
robot and the closest wall in front of the robot, including uncertainties.
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pillar

A

d
A

dwall

Figure 5.2: A robot is in a room.

Thus, we can define constraints on the position of the robot x ∈ R2:

x ∈ Zroom ↔ The robot is in the room.

x /∈ Zpillar ↔ The robot is not in the pillar.

x ∈ ZdA ↔ The robot is at a distance dA to the beacon A.

x ∈ Zdwall ↔ The robot is at a distance dwall to a wall.

(5.17)

For each granules, we have a separator associated:

1. SZroom is built using a polygon separator, which is a boundary-based separator, as described
in [40, Chap. 2];

2. SZpillar is built using a forward-backward separator on the distance to the center of the pillar;

3. SZdA
is built using a forward-backward separator on the distance to the beacon A;

4. SZdwall
is built using the contractor Cdist_wall described in Section 4.3 and its associated inner

contractor Cdist_wall built in the same way with the opposite constraint.

Concerning the second separator, related to the pillar, it is associated with the set representing
the pillar. However we want the complementary of this set: x /∈ Zpillar. In the separator algebra,
the complement of a separator S is well defined and is denoted by S̄ [74]. Basically, it consists
in switching the inner and the outer approximations to characterize the complementary set. So
we will use the separator S̄Zpillar to characterize the second granule.

Remark. When we have access to a separator S that characterizes the complement of a desired
granule Z̄, it is not possible to consider the complement of the associated characteristic function
with our approach. Indeed, the function that returns 1− ζ Z̄ is well associated with the desired set
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¯̄Z = Z, but it is not a score function as it is not equal to 0 in 0 and to 1 in 1. So the solution is to
take the complement of the separator, S̄.

Now we have all the required assumptions to use the fuzzy approach. We want to construct
the fuzzy sets Xα for different values of α, representing the possible positions for the robot,
according to the available granules. For each granule, we have its associated characteristic
function: ζj(x) = 1 ⇐⇒ x ∈ Zj . We write ζpillar(x) for the characteristic function associated
with Z̄pillar. We can now define the score function σ to combine and prioritize the granules, for
instance:

σ
(
ζ room(x), ζpillar(x), ζdA(x), ζdwall(x)

)
= min

(
ζ room(x), ζpillar(x), ζ

dA(x) + ζdwall(x)
2

)
,

(5.18)
which gives us the following correspondences:

X1 = Zroom ∩ Z̄pillar ∩ ZdA ∩ Zdwall (5.19)

X0.5 = Zroom ∩ Z̄pillar ∩ (ZdA ∪ Zdwall) . (5.20)

The function σ is a score function as it satisfies the three conditions defined in (2.47) (the
min function is monotonic). The four granules are represented in Figure 5.3. The resulting
fuzzy set defined with this score function is represented in Figure 5.4, where the orange area
corresponds to the 0.5-cut and the red one to X1. A 3D view is also given. Naturally, each area
painted in red is also painted in orange, as X1 ⊂ X0.5.

Assume now that the sensor measuring the distance to walls can rotate to acquire m mea-
surements from all around it. Thus, we no longer have a unique granule Zdwall , but a family
of m granules {Zθ1,dwall , . . . ,Zθm,dwall}. It makes us define a new score function involving the
new associated characteristic function ζθk,dwall for k in 1, . . . ,m. We know that among these
measurements, we will encounter outliers, so we can use a relaxed intersection for these data:

σ
(
ζ room(x), ζpillar(x), ζdA(x),

{
ζθk,dwall(x)

}
k∈[1,...,m]

)
= min

(
ζ room(x), ζpillar(x), 1

2

(
ζdA(x) + 1

m

m∑
k=1

ζθk,dwall(x)
))

. (5.21)

Once again, we check that the function σ is a score function as it satisfies the three conditions
defined in (2.47). Here we have the following correspondences, where q is the number of
expected outliers among m measurements:

X1 = Zroom ∩ Z̄pillar ∩ ZdA ∩
m⋂
k=1

Zθk,dwall (5.22)

X1− q
2m

= Zroom ∩ Z̄pillar ∩ ZdA ∩
m⋂
k=1

{q}Zθk,dwall (5.23)

X0.5 = Zroom ∩ Z̄pillar ∩ (ZdA ∪ Zdwall) (5.24)

X0.5− q
2m

= Zroom ∩ Z̄pillar ∩
(
ZdA ∪

m⋂
k=1

{q}Zθk,dwall

)
. (5.25)
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To go further, this score function can be finely adjusted depending on the confidence of each
granule. For instance, if the reliability of the sensor that returns the distance to the walls depends
on θk (it is more reliable when the wall is perpendicular to the direction of the acquisition), it is
possible to implement a special relaxed intersection that takes into account this new information:

σ
(
ζ room(x), ζpillar(x), ζdA(x),

{
ζθk,dwall(x)

}
k∈[1,...,m]

)
= min

(
ζ room(x), ζpillar(x), 1

2

(
ζdA(x) + 1

m

m∑
k=1

ς(θk)ζθk,dwall(x)
))

, (5.26)

where ς(θk) returns a scalar between 0 and 1 such that we have
m∑
k=1

ς(θk) = m in order to ensure

that the σ function remains a score function. Thus, ς allows to adjust the influence of each
granule depending on the direction it is associated with.

(a) Zroom (b) Zpillar

(c) ZdA (d) Zdwall

Figure 5.3: Representation of the granules Z1 to Z4.
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(a) Top view of the fuzzy set. Orange area cor-
responds to the 0.5-cut, and the red one to the
1-cut (the core of the fuzzy set).

(b) 3D-view of the fuzzy set.

Figure 5.4: Representation of the fuzzy set X.

Dealing with fuzzy granules

Until now, the granules were always supposed to be crisp sets. They represented partial knowl-
edge, and fuzzy logic was used to combine them into a fuzzy set that gave the different pos-
sibilities for the searched set. However, one can desire to deal with fuzzy granules. Indeed,
these granules are usually defined either with the sensor data or some constraints. The former
can justify fuzzy granules: perhaps a returned measurement would be better represented by
a gaussian bell-shaped curve or by a trapezium-shaped curve, for instance. The latter barely
requires a fuzzy representation; as an example, the constraint “the robot is in the room” is not
fuzzy at all (except if the positions of the room’s walls are uncertain). We could define fuzzy

constraints, which are constraints that can be violated sometimes or that are defined on imprecise
information.

For instance, we take once again the previous example with the robot in the room, but we
define the granule ZdA with a fuzzy set such that the distance to the beacon A is represented by
a trapezium-shaped membership function, as in Figure 5.5.

dist(x)

µZdA
(dist(x))

0

1

Figure 5.5: Trapezium-shaped membership function for the measured distance to the beacon A
with respect to the distance to a position x.

Now if we choose the same score function (5.18) as in Figures 5.4, we obtain Figure 5.6.
Note that the value of α is discretized for the representation of the fuzzy set, as the method used
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cannot compute the approximations of an infinite number of α-cuts. This is why the trapezium
shape has some pixelation (stairs shape). Regardless, the result is still wrapping the fuzzy set as
the discretization of the α keeps the guarantee that no solution is removed. It is possible because
of the nested property of the α-cuts.

Figure 5.6: Representation of the fuzzy set X when the granule for the distance to the beacon A
is a fuzzy set.

Concretely, to compute approximations of α-cuts of a fuzzy set X defined by the composition
of granules when these granules can be fuzzy sets, we need the contractors for the α-cuts of the
fuzzy granules. So, Algorithm 3 can be used to compute these α-cuts, and then the Algorithm 2
can approximate the resulting α-cut of the researched fuzzy set. Finally, the researched fuzzy
set can be characterized by its different α-cuts, discretizing the possible values for α when
membership functions of the fuzzy granules are continuous.

5.3 Application to localization with scanning sonar

In Chapter 4, a first approach to the localization of an underwater robot using a scanning sonar
has been presented. To obtain a better precision in localization, we need to take a little more risk
in the choice of constraints. Indeed, some constraints seemed relevant, so we would like to use
them even if sometimes it is misleading. The fuzzy approach presented in this chapter brings
the perfect tool for this kind of situation. From the sonar data, we obtain multiple information,
which would be our granules. We cannot trust the same way each one of these granules. The
fuzzy method allows giving more or less weight, so some risk can be taken by associating a
lower weight to the hazardous granules.
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For instance, a peak in sonar data does not always correspond to a wall. However, we can
be closer to reality by adjusting the weights we give to each peak. We know that the first peak
after the cross-talk one more likely corresponds to an obstacle. In addition, perhaps it would be
relevant to give more weight to higher and more prominent peaks.

This section shows the suitability of this approach on the localization of a ROV in a pool.

5.3.1 Formalism and simulation

Formalism

Consider an underwater robot moving in a pool equipped with a directional sonar, a compass and
a pressure sensor. We assume that the robot is static and that the pool is made with w̄ vertical
walls W (w) , w ∈ {1, . . . , w̄}. Since the pressure sensor provides the depth and the compass
returns the heading, the localization problem amounts to finding a point x = (x1, x2)T inside a
horizontal plane from the distances returned by the sonar. The directional sonar rotates and emits
k̄ ultrasonic sounds (or pings) toward different directions θ1, . . . , θk̄. For the kth ping, several
echoes are returned. Each of them can be represented by a distance interval [dk,`]. Only one is
significant for us: the echo ` which corresponds to the nearest wall W (w) reached by the sound
emitted toward to the direction θk. The 3-uple (k, w, `) is then an inlier. For non significant
echoes, (k, w, `) is an outlier.

Figure 5.7 shows a typical echo signal that could have been collected just after the kth ping.
The first echo [dk,1] may correspond to an echo from the surface of the water or any unmapped
object. The second echo is the inlier (it corresponds to the echo returned by the nearest wall). The
corresponding interval [dk,2] contains the true distance dk. The last echo [dk,3] may correspond
to a multipath or to a noise emitted by another robot. The first and the third echoes correspond to
outliers.

Figure 5.7: The signal collected by the sonar just after the ping emission.
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Define the set

Zk,w,` = {x ∈ R2 | ∃d ∈ [dk,`],
∃w ∈ {1, . . . , w̄} ,
∃m = (m1,m2) ∈W(w),
m1 = x1 + d cos θk,
m2 = x2 + d sin θk },

(5.27)

as illustrated by Figure 5.8. We also define the set Z0, corresponding to all x that are in the pool.
The set Zk,w,` should contain the position x of the robot if (k, w, `) corresponds to an inlier.

Figure 5.8: Zk,w,` is the set of all positions for the robot consistent with the fact that the `th echo
of the kth ping corresponds to the wth wall W(w).

An optimal contractor can easily be built for Zk,w,` [38]. We introduce the fuzzy set X
represented by the membership function

µX(x) = 1
k̄

∑
k∈{1,...,k̄}

max
`∈{1,...,¯̀(k)}

max
w∈{1,...,w̄}

min
(
ζk,w,`(x), ζ0(x)

)
, (5.28)

where ζk,w,` and ζ0 are the characteristic functions for Zk,w,` and Z0, respectively. Note that we
have the following equivalence

max
`∈{1,...,¯̀(k)}

max
w∈{1,...,w̄}

min
(
ζk,w,`(x), ζ0(x)

)
= 1

⇐⇒ ∃` ∈
{

1, . . . , ¯̀(k)
}
,∃w ∈ {1, . . . , w̄} ,x ∈ Zk,w,` ∩ Z0, (5.29)

i.e., there exists (`, w) such that the `th echo and the wth wall W (w) are consistent with the
position x of the robot and the fact that x is in the pool. Note also that µX(x) ≥ α when at least
k̄ · α pings are consistent.
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Simulation

In order to illustrate the approach, we now propose an example of a robot simulated in a pool as
in Figure 5.9.

robot

Figure 5.9: Simulation of a robot (in green) in a pool (in blue). Red lines correspond to simulated
echoes received by the robot.

In this example, there are three pings with one inlier per ping. The first echo of each ping is
an outlier: it comes from the surface of the water. The strategy consisting in using the relaxed
intersection reaches its limits here. Indeed, there exist other possible localizations for the robot
that give more inliers, as in Figure 5.10. By using more shrewdly the relaxed intersection, it is
possible to define the limit of one inlier per ping and avoid misinterpretation. In this way, the
two possible localizations are equivalent from the point of view of the algorithm, and it is not
possible to go further with this strategy.

Now, using the fuzzy approach, we can give scores to each echo. For this application, we
may want to classify the echoes by their distances: the first echo (the closer to the sonar) often
corresponds to the surface but can also be a wall, the second one is probably a wall, and the
other ones are less often inliers. By implementing these scores (respectively 0.8, 0.9, 0.5 in
this example), the ambiguity is lifted, and the robot is well localized. Note that scores can be
defined as finely as wanted. For instance, it is possible to take into account the shape of each
peak, knowing that a flat wall will give a more explicit echo than the surface.

Figure 5.11 presents the result of the localization with the relaxed intersection. The solution
found in the first case is misleading as several echoes of one ping are considered as inliers (5.11a).
This issue is solved in the second case, and the localization of the robot is correct but imprecise
(5.11b).
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robot

!

!

Figure 5.10: Another possible localization for the robot, where two outliers happen on the walls
(represented by !).

Using a contractor associated with the µ function, we are able to go further for localizing the
robot. Each echo receives a score depending on its position in the ping. By doing this weighting,
it is possible to obtain a more precise localization as presented in Figure 5.12.

By increasing the α value, we have better precision, whereas by decreasing this score value,
we become more robust to outliers, increasing the reliability of the result.

Presented figures have the following color coding: the blue is the outside of the researched
set, and it corresponds to where the robot cannot be; the green is the interior of the set, where the
robot can be; and finally, the yellow is the frontier, and the computation has been stopped before
determining the membership of this too tiny area. Note that sometimes, as in Figure 5.12a, a
green area is adjacent to a blue one, without any yellow frontier. This may happen when minimal
contractors are used.

So the choice of the α value should be made wisely. Moreover, having the result for different
values of α can be necessary sometimes. It may happen when we want both a reliable and precise
result. That is why the computation of a 3D representation with α on the z-axis, as in Figure 5.13,
can have some interest.

5.3.2 Experimentation

Our approach has been tested with a real robot in a pool. The sonar is still a Tritech Micron
(mechanical scanning sonar) fixed on a BlueROV2 of BlueRobotics. The parameters have not
been changed: the vertical beamwidth is 35◦ and the range 6 meters. We still have access to the
heading returned by the IMU. Nevertheless, this time, the pool is rigid and has the shape of a
rectangle of 3 x 4 meters. A picture of the experimentation is shown in Figure 5.14.

A picture of data received from the sonar is presented in Figure 5.15. A peak detection
algorithm is used to generate the interval data. The score function has been adapted to give
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(a) A naive relaxed intersection converges to
a unique solution whereas this solution is not
more relevant than other ones.

(b) Still using relaxed intersection, it is possible
to specify that there is always a unique inlier
per ping. Although correct, the result obtained
can not distinguish the different possibilities of
localization.

Figure 5.11: Example of localization with a relaxed intersection. The pool is drawn in white.
The red lines correspond to the echoes given to the algorithm.

more importance to the first echo and less to the second one. In addition, the score is drastically
reduced for echoes that are not directed perpendicularly to the walls. Indeed, it has been observed
that such echoes are often less relevant (fewer chances to have an echo corresponding to a wall,
as presented in Section 4.2.2).

We propose to take as a set-membership estimator the α̂-cut Xα̂ of the fuzzy set X where

α̂ = max {α | Xα 6= ∅} . (5.30)

The corresponding estimator can be interpreted as a generalization of the Outlier Minimal
Number Estimator (OMNE) presented in [91]. In OMNE, the score function σ is a simple sum.

Our estimator generates a set Xα̂ which contains the true position of the robot in the pool. As
for most acoustic localization systems in a pool, many outliers exist. This is why we observe a
small maximal score: α̂ = 0.15. Figure 5.16 depicts the set X. When the robot is moving, the
procedure is called each time the sonar makes a turn. The localization takes less than 0.1 seconds
on a standard computer and is therefore suitable for real-time application.

5.4 Conclusion

In this chapter, a fuzzy approach has been presented in order to propose a different way to
represent uncertainties and deal with estimation problems. The proposed formulation is close to
the priority approach to soft constraints presented in [21]. The main idea is that when we cannot
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(a) Using the fuzzy approach, and by choos-
ing α = 0.3, the result is the same as the one
obtained with the relaxed intersection.

(b) However, the fuzzy approach allows to give
scores to each echo, and therefore going further
in the localization. Here α = 0.4 and the robot
is localized without any ambiguity.

Figure 5.12: The same localization example with different α with the fuzzy approach. Using
scores on the echoes, it is possible to get a thinner localization.

satisfy all the constraints, we should at least satisfy as many as possible, and a natural approach
is to prioritize these constraints, from the absolutely required to the less required.

The principle is to combine some granules of knowledge into a fuzzy set, thus prioritizing the
constraints. From the absolutely required constraint to the less important, they are all represented
in the resulting fuzzy set. The score function enables defining the influence of each of these
constraints. The different α-cuts allow choosing the number of constraints that should be satisfied.

The combination of these granules, which is described by the score function, allows a
complex composition without combinatorial explosion. This approach is more general than
the relaxed intersection, as some weights can be used depending on the confidence we have in
each granule. The α-cuts characterizing the researched fuzzy set are efficiently computed using
interval analysis.

The granules, coming from sensors or constraints, are crisp sets representing a partial knowl-
edge of a given researched value. This partial knowledge can contain unknown uncertainties,
and if needed, it is possible to deal with fuzzy granules to represent better the partial knowledge
we want to consider.

Finally, the interests of this approach can be summarized by the following points.

• The formulation allows to combine contractors, in a more general way than what has been
proposed in [155, 19, 22] since it allows the different weights in the constraints.

• Using the formulation based on the set-membership function, instead of the combination
of contractors, we obtained an algorithm that is more efficient, requires fewer bisections,
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Figure 5.13: 3D view of the result with α on the z-axis. The color code is similar as previously:
the interior is green, the frontier is in very transparent yellow, and the outside is not represented.
The highest point corresponds to the position with the highest score, in other words, the position
for the robot that fits the most the assumptions made on the sonar data.

and is simpler to implement.

• We proposed an estimator which is more general than OMNE proposed in [91] since it
allows us to deal with more complex situations where outlier occurrences are interdepen-
dent.

The method has been validated on a real underwater robot for its localization using sonar data.
Acoustic sensors, used in underwater environments, provide precious but hidden information.
By exploiting them, it is possible to localize a robot without cumulating errors in the estimated
position. Nevertheless, the data should be interpreted with particular care to avoid being misled.

The fuzzy approach we propose for the resolution of localization problems is reliable even
if we have partial knowledge of the uncertainties. In this context, it is more adapted than the
classical Bayesian approach due to the difficulty we have in extracting important data.

We have shown good robustness to outliers and localization with a high degree of integrity.
The fuzzy approach brought us the possibility to fine-tune the influence of each sonar data with
respect to the degree of confidence we have in the measurements.

The presented approach can be compared to some works made with belief functions, in
evidence theory [141]. For instance, in [116], the author also deals with vehicle localization but
uses belief functions to handle uncertainties. This other method allows representing both what is
known and what remains unknown. Then the fusion of information is given by Dempster’s rule
[36], using basic belief assignements, or masses. Thus, it is possible to manage the confidence
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Figure 5.14: Picture of the BlueRobotics ROV in the pool localizing itself. The robot floats on
the surface of the water, and the sonar is placed under the robot at the red cross position.

put in each source of information, as in [25]. The main difference relies on the combination
of granules, which can be computed more efficiently using the score function. Indeed, the
combination of belief functions requires considering the dependence between the data sources,
leading to more complex algorithms to compute the basic belief assignments of the studied
information.
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Figure 5.15: Representation of the data collected from the sonar. The red dot corresponds to the
position of the robot.
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6.1 Context

The two challenges presented in the introduction of this document were about the safe control
and the localization of a deported sensor. The leading light application was the search of wrecks
in underwater environments with a magnetometer. Searching wrecks is a vast subject with many
similarities to sea exploration. It concerns various fields as history, oceanography, hydrography,
acoustic, magnetism, to name a few.

We chose to study solutions for the two mentioned challenges in the scope of proposing an
efficient robotic system for the search of wrecks. Robotics can bring undeniable advantages for
such missions, like reducing human life hazards and human errors or increasing working time.

Nevertheless, underwater environments are challenging places for robots, and developing a
robotic system to find the searched wreck is far from being straightforward. The solution that
has been chosen consists of a deported magnetometer towed close to the seabed. Then, the two
challenges have been studied independently in specific contexts to facilitate the approach and
focus on the main difficulties. Thus, they consist in:

1. Finding a controller that makes the magnetometer follow the desired trajectory and validate
this controller with respect to state constraints. This first challenge raised control issues
that have been handled in Chapter 3. The problem is reduced to a 2D problem, with an
application to a car towing a trailer modeling the behavior of a deported sensor. The safety
issue is dealt with interval analysis by computing a follow set that contains every position
where the wanted constraints are not violated.

2. Proposing a method to localize the robot reliably without communicating with external
systems. This second challenge is complex: the environment is scanned using acoustic
sensors, making us dealing with uncertain data and managing abundant outliers. Solutions
have been studied firstly in Chapter 4 using tools from interval analysis. A particular
effort is made to understand the basics of acoustics and find out which reliable information
can be used. Then Chapter 5 has been gone further by using the fuzzy approach to
manipulate more complex representations of the acquired granules of knowledge. Thus,
soft constraints can be considered. By defining a score function, the constraints are
prioritized to satisfy the more as possible and the more critical first.

In order to fulfill these two objectives, some required theoretical tools have been presented
in Chapter 2 with, mainly, non-linear control, interval analysis, and fuzzy logic. Finally, the
proposed approaches have been tested in simulation and on real robots to show the consistency
of the methods.

6.2 Contributions

The main contributions in this thesis are presented in the following.
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The design of a suitable controller to answer the first challenge has been studied, mainly
using a feedback linearization approach. Theorem 3.3.1 describes the found modelization. An
approach based on interval analysis to characterize follow sets has also been proposed and used to
validate the designed controller. It has been the subject of a publication in a robotic conference:

Joris Tillet, Luc Jaulin, and Fabrice Le Bars. “Non-linear control under state
constraints with validated trajectories for a mobile robot towing a trailer”. In: 2020

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,
Oct. 2020.

The presented contributions should help to address the problem of searching wrecks with a
magnetometer. More generally, this work may be used to control any towed vehicle and to
validate any controller with respect to state constraints.

Then the localization problem has been studied. The fuzzy logic has been used to develop a
new fuzzy set estimation. Fuzzy sets are built with granules of knowledge and a score function
to combine them. The approach consisting in using interval analysis to characterize α-cuts of a
fuzzy set has been submitted in the IEEE Transactions on Fuzzy Systems journal. The application
to underwater localization is proposed at the end of the paper.

The fuzzy approach seems particularly adapted to deal with underwater data. Nevertheless, it
may lead to different applications and can be applied as soon as constraints should be prioritized
or when incoming data should have a complex representation of their uncertainties.

6.3 Prospects

Naturally, much work can be envisioned to go into these approaches more deeply. There are
several trails to improve them and find new applications.

Validation of a controller. The proposed method to characterize the follow set can be used to
compute every safe point in the output space. Nevertheless, some points can belong to the follow
set but lead to a hazardous state. The study of the reachability analysis could be performed to
find viable domains in the output space. For instance, reachability analysis has already been
studied using interval analysis in [97]. Then the viable follow set could be characterized: it
would contain every point of the follow set such that from these points, the system stays in the
viable follow set forever.

Handle the uncertainties in the design of the controller. The proposed approach to localize
the robot leads to an uncertain position, represented by a fuzzy set. Then, this fuzzy set should
be used as an input for the controller. Fuzzy control systems were first introduced by Lofti Zadeh
[168] and have successfully been employed in robotic applications [118, 84]. In [165], different
classes of fuzzy logic control are presented, with applications to marine robots.
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Localize the deported sensor. Another improvement would be to estimate the position of the
deported sensor without measuring its heading. It would be possible by studying the dynamics
of the angle between the robot and the sensor, with the assumption of the taut rope. Then, an
interval integration can wrap this angle and allows to approximate the position of the sensor.

Otherwise, an echosounder could be placed on the robot and directed toward the sensor. An
echo should be detected. Then the fuzzy set estimation approach can deal with uncertainties and
outliers. In addition, with the assumption of the taut rope and knowing the length of the rope, a
strong constraint can be defined to help the localization of the sensor.

Fuzzy set estimation. The approach can constitute a base for any combination of granules.
However, the score function should be defined by experts of the studied domain in order to define
the priorities of each constraint properly. Thus, to show the relevance of the approach, different
applications should be studied. Therefore the software project should be shared and makes the
object of a contribution in the Codac library:

https://codac.io/.

This library already contains many tools for constraint programming and is mainly based on
interval analysis.

https://codac.io/
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Titre : Localisation et contrôle sûrs d’un capteur tracté

Mots-clés : Localisation Sous-marine, Contrôle Non Linéaire, Analyse par Intervalles, Logique
Floue, Estimation d’Ensemble Flou, Capteur Tracté

Résumé : L’exploration des océans devient
de plus en plus accessible, notamment grâce
aux avancées en robotique. Les applications
pour les robots sous-marins sont nombreuses.
Dans cette thèse, on s’intéresse particulière-
ment à la recherche d’épaves, telle que celle
de La Cordelière, qui a coulé dans la Rade de
Brest en 1512.
Le système robotique proposé consiste à trac-
ter un magnétomètre susceptible de détecter
les matériaux ferromagnétiques de l’épave. Le
capteur ne peut pas être directement embar-
qué car il est sensible aux perturbations du ro-
bot. C’est pourquoi il est déporté.
Deux problématiques sont alors étudiées pour
appréhender ce système.
La première est liée au contrôle de la posi-
tion du magnétomètre alors que l’on ne peut

agir que sur le robot tractant. Une méthode
de linéarisation par bouclage est alors utilisée
pour construire un contrôleur. Ce contrôleur
est ensuite validé sous certaines contraintes
d’état en utilisant des outils d’analyse par in-
tervalles.
La seconde problématique concerne la locali-
sation sous l’eau de manière fiable. Sont alors
étudiés des moyens d’appréhender les incer-
titudes et les données aberrantes collectées
par un capteur acoustique. L’analyse par inter-
valles permet d’obtenir des premiers résultats,
et la logique floue vient compléter l’approche
en donnant plus de souplesse dans la priori-
sation des contraintes. Finalement, des expé-
rimentations sont présentées avec différents
robots, et notamment la localisation d’un ROV
dans une piscine.

Title: Safe localization and control of a towed sensor

Keywords: Underwater Localization, Non-linear Control, Interval Analysis, Fuzzy Logic, Fuzzy
Set Estimation, Towed Sensor

Abstract: The oceans’ exploration becomes
more and more reachable, especially thanks
to robotics progress. Applications for under-
water robots are plentiful. In this thesis, we
particularly focus on the search of wrecks, as
the Cordelière, which sank in the Bay of Brest
(France) in 1512.
The proposed robotic system consists of tow-
ing a magnetometer likely to detect the fer-
romagnetic materials of the wreck. The sen-
sor cannot be directly embedded because it is
sensitive to the perturbations from the robot.
This is why it is deported.
Two issues are studied to approach this sys-
tem.
The first one is linked to the control of the mag-
netometer’s position, whereas we can only act

on the towing robot. A feedback linearization
method is used to design a controller. Then,
this controller is validated under some state
constraints by using tools from interval anal-
ysis.
The second issue relates to underwater local-
ization in a reliable manner. Ways to approach
uncertainties and outliers gathered by acous-
tic sensors are studied. The interval analy-
sis allows to obtain first results, and the fuzzy
logic completes the approach by giving more
suppleness in the prioritization of the con-
straints.
Finally, some expérimentations are presented
with different robots, and especially the local-
ization of an ROV in a pool.
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