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Abstract

Dynamic balancing is an important field of study in high-speed robotics and spatial robots.

Taking into account robot dynamic balancing performance for robot design leads to low base vibra-

tions, high precision and short cycle times. With the aim to develop a comprehensive robot design

for dynamic balancing, structural topology optimization is studied in this research work as a tool

for designing dynamically balanced robots, also called reactionless robots.

Classical dynamic balancing techniques do not consider the linkage elastic performance, which

is of the utmost importance. This research deals with a novel approach that overcomes this short-

coming through topology optimization, which is used to perform an optimal robot link design.

Topology optimization is a mathematical method that aims to redistribute the material into an ini-

tial domain taking into account design specifications. In our research, the links are treated as

three-dimensional flexible bodies, and the optimization process is performed for all the bodies si-

multaneously, while the dynamic balancing conditions are fulfilled.

Considering the robot as a flexible multibody system allows to obtain an optimized design

based on the structural performance indices while dynamic balancing conditions are considered.

These structural performance indices can be the natural vibration response, static deformations and

robot stiffness, among others. Topology optimization of multibody systems, in some cases, leads

to face large-scale analysis requiring huge computational effort. Therefore a parallel computational

platform was specifically developed in order to optimize flexible multibody systems under dynamic

balancing constraints.

The suitability of the proposed methodology is confirmed by accomplishing an optimized de-

sign of a reactionless four-bar linkage and the partial dynamic balancing of five-bar robotic mecha-

nism. The significance of the dynamically balanced four-bar linkage is related to the possibility to

exploit this optimized linkage as a special leg for building reactionless robots. Besides, the five-bar

robot is very important due to its industrial applications, where it is typically used in pick-and-place

operations. Even if the five-bar mechanism is partially balanced, the shaking force elimination and

the shaking moment reduction can impact positively in the mechanism diminishing the vibrations

and increasing the position accuracy.
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Numerical validations of the optimized linkage properties were carried out using commercial

software. The dynamic balancing performance of the optimized mechanisms was numerically val-

idated using ADAMS. Besides, ANSYS software was used to evaluate the optimized structural

properties.

Finally, it is important to mention that a prototype of the optimized reactionless four-bar linkage

was built in order to verify the feasibility of the proposed methodology for dynamic balancing. The

prototype was used to conduct experimental tests to evaluate its dynamic balancing performance.

Keywords: dynamic balancing, reactionless robots, multibody topology optimization, reactionless

four-bar linkage, partial dynamic balancing of five-bar mechanism.



Résumé

L’équilibrage dynamique est un domaine d’étude important en robotique à grande vitesse et

pour la robotique spatiale. La prise en compte des performances d’équilibrage dynamique des

robots lors de leur conception permet de réduire les vibrations du bâti, une meilleure précision

et des temps de cycle réduits. Dans le but de développer une méthode de conception de robot

équilibrés dynamiquement, l’optimisation topologique structurelle est étudiée dans ce travail de

recherche en tant qu’outil pour concevoir des robots équilibrés dynamiquement, c’est à dire un

robot ne transmettant pas de réaction sur le châssis.

Les techniques classiques d’équilibrage dynamique ne tiennent pas compte de l’élasticité des

corps, ce qui est crucial pour les performances en robotique. Cette recherche porte sur une nouvelle

approche qui permet de surmonter cette lacune grâce à l’optimisation topologique, qui est utilisée

pour concevoir de manière optimale les corps du robot. L’optimisation topologique est une méthode

qui vise à redistribuer la matière dans un espace de recherche donné en tenant compte des spécifi-

cations de conception. Dans notre étude, les corps du robot sont traités comme des corps flexibles

tridimensionnels, et le processus d’optimisation est effectué pour tous les corps simultanément, tout

en respectant les conditions d’équilibre dynamique.

Considérer le robot comme un système multi-corps flexible permet de réaliser une concep-

tion optimisée basée sur des indices de performance structurelle tout en respectant les conditions

d’équilibre dynamique. Ces indices de performance structurelle peuvent être, entre autres, la

réponse aux vibrations, ou les déformations statiques du robot. L’optimisation topologique des

systèmes multi-corps nécessite souvent un effort de calcul considérable. C’est pourquoi une plate-

forme de calcul parallèle a été spécifiquement développée pour réaliser ces optimisations de la

conception.

La pertinence de la méthodologie proposée est confirmée par la réalisation d’une conception

optimisée d’un mécanisme à quatre barres équilibré dynamiquement et l’équilibrage dynamique

partiel d’un mécanisme à cinq barres. L’importance de la conception d’un mécanisme à quatre bar-

res équilibré dynamiquement est liée à la possibilité d’exploiter ce mécanisme optimisé comme un

module utile à la conception de robots équilibrés dynamiquement. Le mécanisme à cinq barres a

iii



une importance toute particulière en raison de ses applications industrielles, où il est généralement

utilisé dans des opérations de prise et de dépose. Même si le mécanisme à cinq barres est partielle-

ment équilibré, l’élimination des forces et moments dynamiques peuvent avoir un impact positif

sur le mécanisme car ils permettent la diminution des vibrations et l’augmentation de la précision.

Des validations numériques des propriétés des corps optimisés ont été effectuées à l’aide de

logiciels de simulations. La performance d’équilibrage dynamique des mécanismes optimisés a été

validée numériquement en utilisant ADAMS. En outre, le logiciel ANSYS a été utilisé pour évaluer

les propriétés élastiques.

Enfin, il est important de mentionner qu’un prototype du mécanisme optimisé à quatre barres

équilibré dynamiquement a été construit afin de vérifier la faisabilité de la méthodologie proposée

pour l’équilibrage dynamique. Le prototype a été utilisé pour effectuer des tests expérimentaux afin

d’évaluer ses performances d’équilibrage dynamique.

Mots-clés: équilibrage dynamique, robots équilibré dynamiquement, optimisation topologique

multi-corps, mécanisme à quatre barres équilibré dynamiquement, équilibrage dynamique partiel

d’un mécanisme à cinq barres.



Resumen

El balanceo dinámico es un campo de estudio muy importante en aplicaciones de robots de

alta velocidad y robots espaciales. Considerar el balanceo dinámico en el diseño de los robots nos

conduce a reducir las vibraciones en la base, incrementar la precisión y reducir los ciclos de trabajo.

Con el objetivo de realizar un diseño integral para el balanceo dinámico de robots, en este trabajo

de investigación la optimización topológica estructural es estudiada como una herramienta para

el diseño de robots dinámicamente balanceados, los cuales no transmiten ninguna carga reactiva

desbalanceada sobre su base.

Las técnicas clásicas de balanceo dinámico no consideran el desempeño elástico de los mecanis-

mos, lo que es de gran importancia. Esta investigación trata con un enfoque novedoso que atiende

este problema a través de la optimización topológica, la cual es utilizada para realizar el diseño

óptimo de los eslabones del robot. La optimización topológica es un método matemático cuyo ob-

jetivo es la distribución óptima de material dentro de un espacio inicial, tomando en cuenta especi-

ficaciones de diseño. En nuestra investigación, los eslabones son tratados como cuerpos flexibles

tridimensionales y el proceso de optimización se realiza de manera simultánea en todos los cuerpos,

mientras las condiciones de balanceo dinámico se cumplen.

Considerar al robot como un sistema flexible multicuerpo permite obtener un diseño optimizado

con base en índices de desempeño estructural, tomando en cuenta la condiciones de balanceo

dinámico. Estos índices de desempeño estructural pueden ser la frecuencias naturales, las defor-

maciones estáticas y la rigidez del robot, entre otras más. La optimización topológica de sistemas

multicuerpo, en algunos casos, nos lleva a enfrentar análisis de gran escala los cuales requieren de

un enorme esfuerzo computacional. Por esta razón, se desarrolló una plataforma computacional

basada en cómputo paralelo, específicamente diseñada para la optimización de sistemas flexibles

multicuerpo considerando restricciones de balanceo dinámico.

La idoneidad de la metodología propuesta es confirmada mediante la el diseño óptimo del

mecanismo de cuatro barras sin reacción y el balanceo dinámico parcial del mecanismo de cinco
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barras. La importancia del mecanismo de cuatro barras reside en la posibilidad de utilizar este

mecanismo como una cadena cinemática especial para construir robots sin reacción. El mecanismo

de cinco barras es muy importante debido a sus aplicaciones industriales, el cual típicamente es

utilizado para operaciones de pick-and-place. A pesar de que el mecanismo de cinco barras se

balancea parcialmente, la elimininación de las fuerzas resultantes desbalanceadas y la reducción de

los momentos resultantes desbalanceados tienen un efecto positivo en el mecanismo, reduciendo

las vibraciones e incrementando la precisión de posicionamiento.

Se realizaron validaciones numéricas de los mecanismos optimizados utilizando software

comercial. El desempeño del balanceo dinámico de los mecanismo optimizados fue numéricamente

validado utilizando ADAMS. Por otro lado, ANSYS fue empleado para evaluar las propiedades es-

tructurales que fueron optimizadas.

Finalmente, es importante mencionar que se construyó un prototipo del mecanismo de cuatro

barras dinámicamente balanceado y optimizado, ésto con el objetivo de probar la aplicación prác-

tica de la metodología propuesta para el balanceo dinámico. El prototipo fue utilizado para realizar

pruebas experimentales dónde se evaluó el desempeño de este mecanismo respecto al balanceo

dinámico.

Palabras clave: balanceo dinámico, robots dinámicamente balanceados, optimización topológica

multicuerpo, mecanismo de cuatro barras sin reacción, balanceo dinámico parcial del mecanismo

de cinco barras.
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Introduction

Context of the thesis

Robots have become standard elements in the automated industrial processes. The robot mechan-

ical structure (mechanical system) is constituted by several bodies interconnected between them

with the aim to transmit motion and loads. The human nature pursues to improve the performance

of any type of systems, as much as possible or as far as the frontiers of knowledge allow. Hence,

the search of new improvements on the robots performance have been a very active research area in

the last decades. These areas of study in the field of robotics are vast, but among the diverse topics

which concern to robotics, the unbalanced inertial loads generated at the base of the robot during

its operation, and the way to reduce or eliminate them, is the problem that concerns this thesis.

The mechanical design of the robot structure and its optimization is part of our interest. As can

be seen in Fig. 1, the design process starts with the identification of the need, and culminated with

the satisfactory solution, obtained by an exhaustive iterative process. In the definition of problem,

the design specifications are established. Then, in the synthesis, the invention of the concept or

concept design is how the need will be satisfied (Budynas and Nisbett, 2015). The synthesis stage

involves to fulfill requirements or performance criteria in terms of the geometric performance, kine-

matics, dynamics and structural behavior. After that, the proposed design is assessed in order to

determine if its performance is satisfactory; subsequently the potential solutions are optimized.

The optimization stage can be a complex labor which implies, in some cases, to fulfill antagonistic

requirements. Indeed, performing design optimization considering all the performance criteria si-

multaneously is a very complex task. Therefore, it is usual to conduct design optimization focusing

in a subset ot the performance criteria. Thereby, this thesis is focused on the dynamic balancing of

robotic mechanisms taking into account their structural optimization. In our proposal, mechanism

links are optimized based on the structural response of the flexible multibody system in addition

with the dynamic balancing properties.

At its early days, the structural design was driven by trial and error, but it was time consuming,
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Identification of need

Definition of problem

Synthesis

Analysis and optimization

Evaluation

Presentation

Iteration

Figure 1: The phases in design (Budynas and Nisbett, 2015).

expensive and prone to errors. Moreover, the design success depended on the experience of the

designer, without the possibility to systematize the process. Nowadays, virtual prototyping enhance

the evaluation stage, easing the hard labor of physical realization until the proposed design is

well assessed. Once the successful design is obtained, the physical prototype can be built for a

further evaluation. The technological development made possible the access to computer programs

which allow to develop virtual prototypes where the definition of problem, synthesis, analysis and

optimization can be conducted in the same software environment. Although optimization has been

a complex task, currently structural optimization is commonly used in high-tech aerospace and

automotive industry (Cavazzuti et al., 2011, Zhu et al., 2016) to design functional systems obtained

as result of the rigorous optimization process. Nevertheless, the general purpose software cannot

be useful in all cases, and it happens when a novel methodology is under study. In that case, it

is necessary to develop its own computational framework with the aim to evaluate the proposed

methodology. Then, in order to verify the correctness of the obtained results, these should be

validated by the specialized software if possible, this is usually known as numerical validation.

The dynamic balancing of robots is a fundamental topic in high-speed robots and also for free-

floating space robots. Hence, the dynamic balancing is desirable in order to reduce vibrations,

noise and wear. Moreover, positive effects of dynamic balancing are the increment of manipulator

accuracy and cycle time reduction. When a mechanism is in motion, it produces inertia forces

(shaking forces) and inertial moments (shaking moments), which generates dynamic reactions at

its base due to the mass unbalance of the moving elements. When these dynamic reactions are

canceled by a suitable dynamic balancing technique, the mechanism does not exert any unbalanced
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reaction at its base, and it is called a reactionless mechanism.

The design of reactionless mechanisms has focused on traditional directions, such as the use

of counterweights and counter-rotations, as well as the addition of an auxiliary mechanism with

the aim to produce dynamic balancing. Other researchers have proposed innovative alternatives,

which include dynamic balancing via optimal motions of robot moving links, and the design of

reactionless robots based on the dynamically balanced four-bar linkage (without counter-rotations).

The major drawbacks of the classical balancing techniques are: (a) the total mass in the system is

increased, (b) when auxiliary structures are used, the resultant mechanism is formed by a complex

arrangements of bodies, and (c) all dynamics balancing design procedures lead to the design of

links which do not take into account the elastic behavior of the links or the mechanism. Indeed,

balancing a mechanism under elastic behavior constraints is a very complicated task.

In order to take into account the elastic behavior of the links, in this thesis we propose to

use structural Topology Optimization (TO) as a tool for robot dynamic balancing. The proposed

approach makes it possible to perform an optimal link design under balancing conditions. Con-

sequently, we addressed the design of reactionless mechanisms as flexible mechanical systems,

without attaching additional masses or using external mechanical elements. The methodology al-

lows to perform an optimal design since the initial stage based on performance indices, which can

be static deformations or structural vibration response, among others.

Scope of the doctoral thesis

The goal of this thesis is the study of topology optimization as a tool for the dynamic balancing of

robotic mechanisms.

The specific objectives are the following:

1. Development of a computational platform capable of performing multibody topology opti-

mization for dynamic balancing.

2. Carry out dynamic balancing of four-bar linkage using topology optimization.

3. Experimental validation of the dynamically balanced four-bar linkage.

4. To conduct the partial dynamic balancing of five-bar linkage using topology optimization.

5. Numerical validation of the optimized linkages.

In the following section a brief summary of thesis constributions is addressed.
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Contributions of the thesis

The main contributions of this research work are described below:

• Development of parallel computational platform for topology optimization of multibody

systems. Based on the formulation for topology optimization of multibody systems, a paral-

lel computational platform was developed. It is specifically designed for the optimal design of

flexible multibody systems, and it is used to perform dynamic balancing of mechanisms.

• Optimal design of mechanisms using topology optimization as a tool for dynamic balancing.

In order to evaluate the feasibility of the proposed methodology, two linkages were optimized

taking into account their balancing conditions. The first case study is the four-bar linkage, which

has one degree of freedom (DOF), but once it is dynamically balanced, it can be used as a module

to build dynamically balanced planar and spatial parallel robots. In the second case it is the planar

five-bar mechanism, which is very important due to its industrial applications: it is typically

used in pick-and-place operations. Even if the mechanism is partially balanced, the shaking

force elimination and shaking moment reduction can impact positively in reducing vibrations

and increasing the position accuracy.

• Numerical validation of the optimized mechanisms by commercial software. In order to

prove the accuracy of the proposed methodology, numerical validations of the optimized mecha-

nisms were carried out. The optimization of the four-bar and five-bar mechanisms was focused

on different performance indices alongside the balancing conditions. These optimized properties

and the dynamic balancing were validated numerically using commercial software. The structural

properties were validated with ANSYS and the dynamic balancing performance with ADAMS.

In all cases the results shows a low error between the optimized values and the values obtained

with commercial package.

• Experimental validation of the optimized four-bar linkage designed by the proposed ap-

proach. In the case of the four-bar linkage, a prototype was created in order to accomplish an

experimental validation of its dynamic balancing. For this experiment, the base of the optimized

linkage is suspended from a fixed structure with four cables, thus the linkage can moves freely

in the case of an unbalanced reactive force is generated at its base. A direct current motor was

used to provide oscillating movement. The unbalanced effects are embodied as translations and

rotations of the suspended platform, these displacements are evaluated using video processing.

The results of the experiment shows a satisfactory dynamic balancing behavior.
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Thesis structure

The manuscript is structure as follows. The thesis begins with a review of the classical balancing

methods for shaking force and moment balancing, where the advantage and drawbacks of these

methods are enlisted. Moreover topology optimization and its applications to flexible multibody

systems and dynamic balancing were introduced in Chapter 1. Chapter 2 presents the complete

mathematical formulation for modeling flexible multibody systems using topology optimization.

In addition, it is described the computational platform where this methodology is implemented.

Besides, the proposed approach for the solution of the dynamic balancing problem is then applied

in the design of the four-bar and five-bar mechanisms. Chapter 3 presents an optimized design

of a reactionless four-bar linkage, where the linkage stiffness is maximized constrained by the dy-

namic balancing conditions. The optimized properties of the mechanism are validated numerically

and experimentally. The optimization of five-bar mechanism for partial dynamic balancing is stud-

ied in Chapter 4. In this case, the fundamental frequency of the mechanism is optimized while

the shaking force balancing conditions are fulfilled. Furthermore the mechanism compliance is

optimized, and shaking moment reduction is obtained by constraining the mechanism inertial prop-

erties. The numerical validation of these optimized properties is also reported. Finally, in Chapter 5

the conclusions of this research work are presented, highlighting the most important achievements.

Additionally, the perspectives of future research work are pointed out.

With the aim of enriching the work presented in the chapters, two appendices are included.

Appendix A is devoted to the dynamic balancing analysis of the five-bar linkage, and Appendix B

consists in some comments on the manufacturing issues that can be faced during prototyping of

dynamically balanced systems.
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Chapter 1

State of the art

El trabajo aleja el vicio, el fastidio y la miseria.

“El amigo Pancho”, Radio announcer.

D
YNAMIC balancing of robotic mechanism is of utmost importance for a comprehensive

mechanical design. Mechanism balancing has been studied for a long time, and despite

this there are still new contributions to the field. It happens largely, due to new challen-

ges arising from the extensive use of robots for high-speed tasks. These new contributions for

dynamic balancing are ranging from control approaches to optimum design and structural topology

optimization. In such way that this topic continues being a very active field of research. In this

chapter the state-of-the-art of dynamic balancing techniques for robotic mechanisms are described

and analyzed. In addition, topology optimization is introduced, as well as its applications to the

optimization of multibody systems and dynamic balancing of mechanisms.
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1.5 Dynamic balancing using topology optimization . . . . . . . . . . . . . . . . 21

1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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1.1. INTRODUCTION

1.1 Introduction

During high-speed tasks, large accelerations of mechanisms and robots lead to the generation of

high inertial forces and moments, which are transmitted to the ground, causing the so-called shak-

ing forces and shaking moments. These fluctuating loads are a significant source of vibration

excitation, and lead to noise, fatigue and wear (Lowen and Berkof, 1968). However, they can be

canceled or reduced by suitable dynamic balancing techniques. Thus, if a mechanism does not

exert any unbalanced reaction at its base it is called a reactionless or a dynamically balanced mech-

anism. Dynamic balancing is desirable to reduce vibrations, noise and wear (Lowen and Berkof,

1968). Moreover, positive effects of dynamic balancing are the increment of manipulator accuracy

and cycle time reduction (Raaijmakers, 2007).

1.2 Classical dynamic balancing techniques

Shaking forces and moments can be reduced or eliminated using specific mechanism design, and

proper inertia parameters. Moreover, there are different self-balanced systems generated by du-

plicating the original mechanism and other types of mechanical arrangements, examples of these

auxiliary structures can be found in (Arakelian and Briot, 2015, Bagci, 1982, Hilpert, 1968), how-

ever those mechanism are not considered in this work. There are several literature reviews which

present the achievements and trends on classical dynamic balancing techniques (Arakelian, 2017,

Arakelian and Smith, 2005, Lowen and Berkof, 1968, Lowen et al., 1983, Wei and Zhang, 2021).

In addition, a detailed review of the classical balancing techniques can be found in the text-

book (Arakelian and Briot, 2015). In general, the dynamic balancing techniques are divided in

two main groups: shaking force balancing (SFB) and shaking moment balancing (SMB), either

to eliminate or to reduce the unbalanced reaction loads. The following sections are dedicated to

describe these methods.

1.2.1 Shaking force balancing techniques

The methods for shaking force balancing relies on keeping the mechanism center of mass (COM)

stationary, and they can be classified in the following subgroups (Arakelian, 2017):

(a) Shaking force balancing by adding counterweights (Berkof and Lowen, 1969, Fisher, 1902,

F.R.E. Crossley, 1954). These methods use counterweights, attached to the movable links of

the mechanism, in order to keep the linkage COM stationary. The drawback is the addition

of mass, which decreases the mechanism’s natural frequencies and enlarges the efforts in the

7



1.2. CLASSICAL DYNAMIC BALANCING TECHNIQUES

(a) Unbalanced four-bar linkage. (b) Balanced four-bar linkage.

Figure 1.1: Shaking force balancing by adding counterweights.

(a) SFB by auxiliary structures (Agrawal and Fattah,
2004).

(b) SFB by auxiliary structures (Fattah and Agrawal,
2006).

Figure 1.2: Shaking force balancing by adding auxiliary structures.

joints. Figure 1.1 shows a schematic diagram of a four-bar linkage which has been balanced

by adding counterweights.

(b) Shaking force balancing by adding auxiliary structures (Agrawal and Fattah, 2004, Arakelian,

2006, Kamenskii, 1968, Van der Wijk and Herder, 2009). These methods are based on the use

of an axially symmetric duplicate mechanism in order to make the combined center of mass

stationary. Theses approaches imply to have a more complex linkage arrangement, with an

increase in the total mass of the system. Figure 1.2 present two examples of this approach.

In Fig. 1.2a an auxiliary parallelogram was added in order to suitably locate the center of

mass. In Fig. 1.2b a 3-DOF planar parallel mechanism is force balanced by using an auxiliary

structure.

(c) Shaking force balancing by adjustment of kinematic parameters (AKP) (Ouyang et al., 2003,

Ouyang and Zhang, 2004, Yu et al., 2022). For this method, the mass of the links is deter-

mined a priori, and the length and mass center of the links are computed in order to perform
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(a) Unbalanced four-bar linkage. (b) SFB by adjusting kinematic parameters.

Figure 1.3: Shaking force balancing by adjustment of kinematic parameters.

the shaking force balancing. The problem is that the method changes the linkage kinematic

parameters. As a result, after the shaking force balancing, the balanced linkage has different

kinematic properties. An illustration of this balancing technique is given in Fig. 1.3, where

the unbalanced four-bar linkage (Fig 1.3a) is force balanced and depicted in Fig. 1.3b.

(d) Shaking force minimization via center of mass acceleration control (Briot et al., 2012, 2010,

Geng et al., 2020). This alternative does not require mass redistribution of the moving links.

The technique consists in planning the displacements of the total COM of the moving links,

in order to minimize the center of mass acceleration. However, this implies to follow some

specific trajectories which may not be the desired ones by the user.

Besides, strictly speaking, the force balancing by using elastic compo-

nents (Alici and Shirinzadeh, 2003) cannot be considered as a technique for shaking force

balancing. The elastic elements connected to the driving links only affect the gravitational forces

and the input torques, but they do not have any influence on the shaking force.

1.2.2 Shaking moment balancing techniques

On the other hand, the methods for shaking moment balancing can be classified in the next sub-

groups:

(e) Shaking moment balancing by counter-rotation (Arakelian and Smith, 2008, Berestov, L.V.,

1977, Kochev, 2000, van der Wijk et al., 2012). This technique enables the balancing of planar

linkages by adding a system which generates a counter-rotation with proportional angular

acceleration. Thus the system will supply an equal and opposite balancing moment. This

technique has the disadvantage of increasing the linkage total mass, which leads to higher

9
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Gears with external teetha
(a) Gears with external teeth. b
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Gears with internal teeth(b) SMB by Gears with internal teeth .

Figure 1.4: Shaking moment balancing by counter-rotation (and counterweight) (Herder and Gosselin,
2004).

Figure 1.5: Full dynamic balancing of a 3-DOF planar parallel robot using counterweights and inertial fly-
wheel (Arakelian and Smith, 2008).

input torque requirements. The most common way to generate counter-rotations is by using

gears, as can be seen in Fig. 1.4.

(f) Shaking moment balancing by adding an inertia flywheel rotating with a prescribed angular ve-

locity (Arakelian and Smith, 2008, Van der Wijk and Herder, 2009, van der Wijk and Herder,

2010). This method is based on the fact that, after performing shaking force balancing, the

resultant shaking moment for a given linkage configuration has the same value for any location

on the ground (Berkof and Lowen, 1971). Thus, any planar linkage can be balanced adding an

inertia flywheel rotating with a prescribed angular velocity. Nevertheless, the main issue with

this technique is how to generate precisely the required input motion. An illustrative scheme of

this technique appears in Fig. 1.5, where the a 3-DOF planar parallel robot is shaking moment

balanced using an inertial flywheel.

(g) Shaking moment balancing by generating optimal trajectories of moving links (He and Lu,

10
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Planar 2-dof mechanism [Gosselin et al.,
(a) Reactionless planar 2-DOF mechanism based on

the dynamically balanced four-bar linkage.

2004]a

b Planar 3-dof mechanism [Gosselin et al., 2004]

(b) Planar 3-DOF mechanism built with four-bar dy-
namic balanced modules.

Figure 1.6: Reactionless planar 3-DOF parallel robot (Gosselin et al., 2004).

2006, Papadopoulos and Abu-Abed, 1994). Once the shaking force is solved, then the shaking

moment balancing can be achieved by planning the linkage optimal motions. Again, this

implies to follow some specific trajectories which may be different from the desired ones.

In addition to the described solutions for shaking force and moment balancing, there are other

approaches which use a dynamically balanced four-bar linkage as a leg to building reactionless

robots. The dynamic balancing conditions to design a reactionless four-bar linkage without counter-

rotations were described in (Ricard and Gosselin, 2000), where the authors pointed out the viabil-

ity of building reactionless robots using this mechanism. Subsequently, in (Gosselin et al., 2004,

Wu and Gosselin, 2004) the design of planar and spatial robots was reported, proving the viability

of the proposed strategy. In Fig. 1.6 is shown the designed 3-DOF reactionless planar parallel robot

based on the reactionless four-bar linkage. This approach is very attractive because of the simple

design of the reactionless four-bar mechanism. In (Foucault and Gosselin, 2004) the authors pre-

sented a similar approach addressing the dynamic balancing of a planar 3-DOF parallel mechanism,

but the building leg is based on the five-bar parallelogram linkage, which require counter-rotations

in order to be fully dynamically balanced, thus resulting in a more complex linkage arrangement.

Alternatively, there are some works which explore the optimization of the external links shape

in order to minimize the inertial forces and moments. The resultant shape is generated by means

of optimal mass distribution which minimizes the shaking force and moment. Some of these works

are described in the following section.
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B
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Figure 1.7: Dynamic optimization of the planar four-bar linkage (Feng et al., 2002).

1.2.3 Shape optimization for inertial loads minimization

A shape optimization procedure for dynamic design of planar linkages is reported in (Feng et al.,

2002), where the authors performed dynamic optimization of the planar four-bar linkage controlling

the changes in the joint forces while the joint clearances are considered. In addition a technique

called “small element superposing method” was proposed in the same paper, in order to generate

the external link shape, based on the optimized link parameters. This technique does not include

the elasticity of the links in its formulation. The resultant optimized four-bar linkage is presented

in Fig. 1.7.

Another optimization framework approach to optimize linkages was proposed

in (Chaudhary and Chaudhary, 2015a,b), where the authors used shape optimization based

on the rigid body dynamics for optimizing the external link shape (only) of some linkages. Figure

1.8 presents the results of this methodology, where the initial linkage is drawn by a dashed line, and

the optimized linkage is represented by the solid line. Since the approach is based on rigid body

formulation, the deformations of the link cannot be considered during the optimization process.

Moreover, there is no possibility of modifying the internal link shape (including some voids, for

instance).

After having exposed all the aforementioned works for dynamic balancing, it becomes clear that

the linkage elastic performances are never optimized, despite them being of the utmost importance

in robot design. Therefore, it is concluded that all the methods presented above have some major

drawbacks: (1) the total mass in the system is increased, (2) when auxiliary structures / counter-

rotations are used, the resultant mechanism is formed by a complex arrangements of bodies, and

(3) typical dynamic balancing design procedures lead to the design of links which do not take into

account the elastic behavior of the links or the mechanism. Although the linkage dynamic balancing

under elastic behavior constraints is very complicated task, it is an important matter in high-speed

robot design.

There are few research works which studied the dynamic balancing conditions when flexible
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(a) Optimized shapes of four-bar linkage. (b) Optimized shapes of five-bar linkage.

Figure 1.8: Shape optimization of planar four-bar and five-bar linkages for dynamic balancing
(Chaudhary and Chaudhary, 2015a). Initial linkage is drawn by a dashed line and the optimized
linkage by solid line.

members are considered. In (Kalas, 2016) the author considered the inclusion of flexible links in

the five-bar linkage, thus the flexible links are modeled as pseudorigid bodies (Edwards et al., 1999,

Howell, 2013) and then the author presents some strategies in order to improve the shaking force

balancing under these conditions. More recently Meijaard and van der Wijk (2022) have presented

the dynamic balancing of flexible mechanisms considering two approaches, the symilarity and

modal balancing. However, considering the direct effects on the dynamic balancing conditions due

to the flexibility of the links are out of the scope of this research work.

On that account, in order to consider the elastic behavior of the links, the structural topology

optimization (TO) (Bendsøe and Sigmund, 2004) is introduced as a potential tool that can be used

to overcome the aforementioned problems. The next section is devoted to present a topology opti-

mization overview.

1.3 Topology optimization

Since Bendsøe and Kikuchi (1988) introduced a method for material distribution, topology op-

timization has been a very active research field, ranging from structural topology optimization,

microstructure design, acoustics, and fluids, among others. Topology optimization is a powerful

mathematical method which aims to redistribute the material into an initial domain taking into ac-

count design specifications (Bendsøe and Sigmund, 2004). The optimization process is based on

the structural response, typically computed by the Finite Element Method (FEM). Topology opti-

mization considers the whole domain of the structure, instead of the shape (external) or size of the
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structural members.

Topology optimization can be formulated as a problem with continuous or discrete design

variables. Topology optimization formulated with continuous design variables can be solved

by different approaches such as density-based (Bendsøe, 1989, Zhou and Rozvany, 1991), topo-

logical derivatives (Novotny and Sokołowski, 2013, Sokolowski and Zochowski, 1999), level set

(Allaire et al., 2002, 2004) or phase field method (Bourdin and Chambolle, 2003). Despite

of the variety of topology optimization approaches, there are small differences between them

(Sigmund and Maute, 2013), but the most well known and mature is the density-based approach.

The density-based approach can be modeled using a material interpolation scheme called Simpli-

fied Isotropic Material with Penalization (SIMP), which was initially proposed in (Bendsøe, 1989),

and later on a modified SIMP scheme was defined in (Sigmund, 2007). However, there are other

material interpolation methods such as RAMP (Stolpe and Svanberg, 2001), but SIMP method is

one of the approaches used in industrial software (Rozvany, 2009).

The SIMP scheme is a method of topology optimization based on the Finite Element (FE)

formulation, thereby, the design domain is divided (discretized) into many small pieces (finite ele-

ments), then each element is associated with an artificial density ρe, which is the design variable

bounded to take values between 0 and 1. Using the density of each element its Young’s modulus Ee

can be defined, and the modified SIMP scheme (Sigmund, 2007) is used to penalize intermediate

density values, thus it is expressed as follows:

Ee = Emin +ρ p
e (E0 −Emin) , with ρe ∈ [0, 1]. (1.1)

where p is the penalization power (usually p = 3, for elasticity problems), Emin is the stiffness at

ρe = 0 (Emin is different from 0 in order to avoid singularity of the stiffness matrix), and E0 is the

Young’s modulus of the material. Hence, the stiffness matrix of each element is given by:

Ke(ρe) = Ee(ρe)K
0
e (1.2)

where K0
e is a constant stiffness matrix for an element with Young’s modulus equal to one. Besides,

the global stiffness matrix can be obtained by a standard assembly procedure. Consequently, the

optimization problem modeled by the SIMP scheme has the standard form of a nonlinear program:

min
ρρρ∈[0,1]

: f (ρρρ)

subject to :g(ρρρ)≤ 0 (1.3)

:h(ρρρ) = 0
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Figure 1.9: Typical process of structural topology optimization.

where f (ρρρ) is the objective function, while g(ρρρ) and h(ρρρ) are the inequality and equality con-

straints, respectively. The vector ρρρ contains decision variables, and each component of this vector

represents the density of a given element. The objective function typically models a performance

criteria, and the constraints describe restrictions on the structure.

The formulation given in (1.3) is the so-called nested approach, where the equilibrium equations

coming from the FE model must be satisfied for each optimization step. Therefore a suitable

linear solver for the solution of the FE model is necessary. The schematic process of topology

optimization for a single body is described in Fig. 1.9. The optimizer, gradients, and filtering are

described in the following sections.

Other popular TO formulations are developed for discrete design variables, they are the evolu-

tionary approaches usually known as Evolutionary Structural Optimization (ESO) (Xie and Steven,

1993) and Bidirectional Evolutionary Structural Optimization (BESO) (Querin et al., 1998,

Yang et al., 1999). In their early days these techniques were criticized for their heuristic approach,

and the difficulty for assess convergence qualities (Rozvany, 2009). Afterwards, they were consid-

ered as the discrete version of the standard SIMP scheme (Sigmund and Maute, 2013). Nowa-

days evolutionary approaches are still being improved (Huang and Xie, 2010) and are part of

several commercial software due to their simplicity to be utilized with finite element software

(Deaton and Grandhi, 2014).
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1.3.1 Optimizer

The optimization problem described in Eq. (1.3) represents a smooth and differentiable prob-

lem which can be efficiently solved by well-establish gradient-based optimization methods

(Sigmund and Maute, 2013) such as Optimality Criteria (OC) and the Method of Moving Asymp-

totes (MMA) (Svanberg, 1987). These gradient-based methods require the analytical description of

the first order derivatives of the objective function and of the constraints with respect to the design

variables. The derivatives are commonly called gradients and also sensitivities, thus it is usual to

designate the computation of the derivatives as a sensitivity analysis.

The gradients provide useful information to the gradient-based optimizer, which is used for

the algorithm to converge more efficiently. Hence, the computation of the gradients is a funda-

mental part of these types of optimizers. In some cases since the gradients cannot be computed

analytically, some approximations to the gradient should be computed. Among these approxima-

tion techniques are the finite-difference methods, which are popular because of their simplicity,

but these techniques are neither accurate nor computationally efficient (Martins and Hwang, 2013,

Martins and Ning, 2021). Indeed, when possible, analytical gradients are preferred instead of nu-

merical approximations, because the analytical gradients are evaluated instead of computed in each

optimization step.

Besides, in topology optimization literature some optimizer known as Non-Gradient Topology

Optimization schemes (NGTO) appears as an alternative to the Gradient-based Topology Optimiza-

tions (GTO) methods. In (Sigmund, 2011) the strengths of GTO methods were described, compared

with those NGTO alternative methods, such as Genetic Algorithms (GA), simulated annealing, etc.

The author pointed out that those NGTO methods should be used in very special cases due to their

higher computational time required to find a satisfactory solution for small-scale problems. In gen-

eral, the GTO methods are much better option than NGTO methods, because the gradient provides

important information on where the material or void is needed (Sigmund, 2011).

On the other side, Neural Networks (NN) or Machine Learning (ML) techniques are com-

monly used as accelerators in topology optimization by data-driven training (Banga et al.,

2018, Sosnovik and Oseledets, 2019, Ulu et al., 2016), obtaining interesting results in terms of

computational time reduction, but these papers discuss simple benchmarks problems, mostly

with coarse mesh. However, in latest studies conducted by Xue et al. (2021), more complex

problems are analyzed and finer meshes are used, obtaining promising results. In addition,

Chandrasekhar and Suresh (2021) propose to execute directly (instead of using as a training or

accelerator tool) topology optimization using NN. The results show that the proposed methodol-

ogy generates optimized designs by twice more the computational cost of the typical optimization
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(a) Optimized beam without filter. (b) Optimized beam filtered with sensitivity filter.

Figure 1.10: Optimized MBB beam for minimum compliance constrained by the 40% of material.

formulation given in (Andreassen et al., 2011).

Therefore, an efficient approach for topology optimization relies on a gradient-based optimiza-

tion procedure alongside the analytic derivation of the gradients. For structural design the most

natural choice are the gradient-based optimization methods, and the problem faced in this thesis is

well suited for these methods. In addition, the problem we treat is characterized by a high number

of variables. Hence, in order to solve the optimization problem it is necessary to use an optimizer,

able to handle large number of variables, as well as multiple constraints. Thus, the method of

moving asymptotes introduced in (Svanberg, 1987) is the optimizer used for this research work.

It is able to handle multiple inequality and equality constraints, and is the most accepted opti-

mizer in the structural optimization community because of its excellent convergence properties

(Bendsøe and Sigmund, 2004).

1.3.2 Numerical problems in topology optimization

For density-based topology optimization formulation there are some issues that affect the com-

putational results. The common numerical problems that appears in TO when no regulariza-

tion scheme is applied are: a) checkerboard pattern, b) mesh dependency, and c) local minima

(Sigmund and Petersson, 1998). In order to overcome checkerboard patterns and mesh dependency

it is necessary to use restriction methods (Sigmund, 2007), which operate as filters. The classical

approach is the application of a filter to modify either the sensitivities or densities. Local minima

are mainly generated by the optimizer used to solve the problem. Topology optimization problems

have many local minima, even more for those problems with many intermediate density values.

Therefore, by using a method to avoid mesh-dependency it is possible to prevent local minima

(Sigmund, 1997).

The checkerboard patterns appear as regions with alternating solid and void elements resem-

bling a checkerboard. It is due to a wrong numerical solution of the FE model, where there appears

artificially high stiffness in the elements (Diaz and Sigmund, 1995). Checkerboard problem can be
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avoided partially by using higher order elements or it can be avoided by using restriction methods

(Lazarov and Sigmund, 2011, Sigmund and Petersson, 1998). Among these restriction methods are

the filtering schemes that ensure mesh independence. Mesh dependence refers to the problem of

obtaining qualitatively different solutions for different mesh discretizations (Bendsøe and Sigmund,

2004). Thus, when a mesh is refined it is expected to obtain qualitatively the same optimal struc-

ture not a different structure, but when mesh-dependency appears, the mesh density controls the

solution, which is a undesirable effect.

Therefore, in order to prevent mesh-dependence and checkboard patterns some restriction meth-

ods should be used, where the most extended approach is the use of filters applied to the sensitivities

(Sigmund, 1994, 1997) or the densities (Bourdin, 2001, Bruns and Tortorelli, 2001). The sensitiv-

ity filter modifies the sensitivities of the objective function, while the density filter modifies the

objective function and the constraints. Figure 1.10 represents the solution of a typical benchmark

problem (MBB beam) for TO, where the compliance is minimized and it is constrained by the

amount of material. The optimized result without use a filter is shown in Fig. 1.10a, where the

checkboard patter is clearly present. When the sensitivity filter is used, a more regular design is

obtained, as it can be appreciated in Fig. 1.10b.

Some applications of topology optimization in the field of Multibody Systems (MBS) are de-

scribed in the following section. TO has been used to generate optimized single bodies, nevertheless

there are relatively few research works which study Multibody Topology Optimization (MTO).

1.4 Topology optimization of flexible multibody systems

The design of flexible multibody systems based on structural optimization has attracted the attention

of some researchers. One of the first attempts to face the structural optimization of multibody sys-

tems was described in (Brüls et al., 2011), where the authors considered the bodies of the system

like truss structures (defined a priori), and minimized the compliance of the truss members con-

strained by a predefined amount of material. Nevertheless this approach is very restrictive because

the general shapes of the bodies cannot be taken into account. The inclusion of structural topology

optimization in multibody systems begins with the optimization of isolated parts which are com-

ponents of the whole system (Albers et al., 2006, 2007, Lohmeier et al., 2006, 2009). After that,

some studies were conducted considering the whole multibody system for structural topology op-

timization (density-based approach). Seifried and Held (2012) performed shape optimization and

topology optimization of a 3-DOF planar robotic manipulator, based on the dynamic simulation of

the flexible multibody system for a set of displacements fields. They conducted TO for compliance

minimization while tracking errors were reduced for only one arm of the mechanism. The robotic
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(a) Schematic diagram of the robotic manipulator. (b) Optimized arm.

Figure 1.11: Topology optimization of robotic manipulator for tracking error reduction (Seifried and Held,
2012).

mechanism and the optimized arm can be seen in Fig. 1.11. On the other side, in (Ghandriz et al.,

2017) the authors presented an algorithm for topology optimization of multibody systems, based on

the dynamic (time dependent) behavior of the entire multibody system, which is focused on planar

systems with large rotational and translational motions. The initial mechanism and the optimized

one are shown in Fig. 1.12. The approaches described in (Ghandriz et al., 2017, Seifried and Held,

2012) deal with the relevant loads on the flexible multibody system, trying to capture the global dy-

namic behavior. Nevertheless both works reported numerical difficulties for the sensitivity analysis.

These issues were overcome assuming independence between the compliance (objective function)

and the dynamic loads, which resembles the static problem.

As a matter of fact, it is still a challenge to develop an efficient methodology capable to cap-

ture the complete dynamic behavior of the multibody system while it is optimized using topology

optimization. For that reason alternative methodologies have been proposed to solve this prob-

lem assuming specific conditions, but with satisfactory results (Jang et al., 2012, Kang et al., 2005,

Moghadasi et al., 2018). For instance, in (Kim et al., 2016) the authors performed topology opti-

mization of industrial robots using part-level metamodels on a commercial software. It implies to

solve the problem by isolating each body from the rest of the system, but the metamodel incor-

porates the corresponding information of the entire system (system-level). The researchers mini-

mized the strain energy constraining the robot mass and also solved the problem by considering

dynamic loads, but they obtained only a close-to-optimum due to part-level metamodels. Figure

1.13 presents the results of this optimization procedure.

Typically, structural topology optimization is employed for energy efficiency purposes. Hence,
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(a) Initial mechanism. (b) Optimized mechanism.

Figure 1.12: Topology optimization of multibody system for compliance minimization (Ghandriz et al.,
2017).

Figure 1.13: Topology optimization of the upper frame of a painting robot (Kim et al., 2016).

almost all the research works deal with the objective to generate lightweight design by means of

mass reduction while the stiffness is maximized. There are few research works which attempt to

solve more general problems in the field of multibody topology optimization. Additionally, as it has

been mentioned, due to the high computational cost and the complexity of this type of problems, it

is imperative to find an adequate trade-off between the complexity in the problem formulation and

the accuracy of the results.

As a consequence, a detailed methodology to design industrial robots using topology optimiza-

tion was presented in (Briot and Goldsztejn, 2018b). The authors described the mathematical for-

mulation of the optimization problem as a flexible multibody system. Besides, they proposed to

use model reduction techniques in order to decrease the computational effort in the analysis. The

authors presented the optimal design of a planar 2-DOF robot, and they analyzed two cases: in the

first case the links are treated as planar bodies and for the second case they are considered as three-

dimensional bodies. In both cases the optimization was performed for all bodies simultaneously,

and it was based on the full system response for a set of critical trajectories in order to enforce the

global optimization. The results of the two cases are given in Fig. 1.14.

Typical problems in multibody topology optimization deal with minimum compliance and mass

reduction in order to generate lightweight design and energy-efficient robots. Nevertheless, it is

difficult to use the compliance value (solely) as a design parameter, and also there are other criteria

which can affect the performance of the robots. Therefore, Briot and Goldsztejn (2018b) proposed

some technology-oriented performance indices which are easy to understand when the structure

of the robot is designed, as it is the case of the static deformations, energy consumption and the

natural frequencies. An schematic description of the proposed topology optimization for multibody
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(a) Two dimensional model. (b) Three dimensional model.

Figure 1.14: Topology optimization of five-bar mechanism considering technology-oriented performance
indices (Briot and Goldsztejn, 2018b).

Figure 1.15: Structural topology optimization process for flexible multibody systems.

systems is shown in Fig. 1.15, where unlike the TO for a single body, in this case it is proposed

to model the entire multibody system and apply model reduction techniques in order to reduce the

computational effort.

1.5 Dynamic balancing using topology optimization

The current literature shows that there are just a few research works which attempt to solve the dy-

namic balancing of flexible multibody systems. The optimal design based on TO for a reactionless

four-bar linkage was reported in (Briot and Goldsztejn, 2018a), which is based on the methodology

described in (Briot and Goldsztejn, 2018b). In (Briot and Goldsztejn, 2018a) the links are treated

as a two-dimensional (2D) bodies, the first natural frequency of the four-bar linkage is maximized,

and the mechanism compliance is constrained while ensuring the balancing conditions for rigid-
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body mechanisms. These dynamic balancing conditions were obtained from (Ricard and Gosselin,

2000), whose advantage is that they not require the use of counter-rotations in order to achieve the

full dynamic balancing. In addition, these conditions were rewritten in terms of the design variables

in order to include them as constraints in the topology optimization formulation. These optimized

links of the four-bar linkage are presented in Fig. 1.16. In contrast to typical dynamic balancing,

the resultant optimized bodies can have a different shape (internal/external) depending on the load

system, but the dynamic balancing conditions must be fulfilled.

The results obtained by Briot and Goldsztejn (2018a) reveal the potential of topology optimiza-

tion as a valuable tool for linkage design under dynamic balancing constraints. Nevertheless, the

optimized properties were not validated, and the links of four-bar linkage were considered as a pla-

nar bodies. This avoids the possibility of considering the link bending in all directions, and restricts

the optimal design for planar loads systems.

The design approach reported in the present thesis introduces several advantages with respect to

previously published researches, related to dynamic balancing of flexible multibody systems using

topology optimization. With respect to (Briot and Goldsztejn, 2018a), at first, the links are treated

as three-dimensional (3D) flexible bodies, being thus possible to optimize the links for a general

load system. Secondly, in order to validate the reliability of our solution proposal, numerical valida-

tion of the optimized properties were realized using specialized software (ADAMS and ANSYS). In

third place, the optimization is performed considering the experimental evaluation of the dynamic

balancing, thus the optimization includes the inertia of axes and bearings. Thereby, a prototype was

built in order to carry out an experimental evaluation of the linkage dynamic balancing behavior.

Additionally, in this thesis the topology optimization of the five-bar mechanism is conducted

in order to accomplish its partial dynamic balancing. To the best of our knowledge, this is the first

time that TO is used for this purpose. The five-bar mechanism is a robotic architecture of 2-DOF

used typically for pick-and-place industrial operations, because this mechanism has the possibility

to move its end-effector on a plane.

The formulation for multibody topology optimization used in this thesis is based on

(Briot and Goldsztejn, 2018b). Nonetheless, even if the model reduction techniques were suc-

cessfully applied, the computational cost for solving the problem was high, even more for the

three dimensional case, where in some cases the use of a fine discretization becomes prohibitive.

Thus, in this thesis a computational platform is specifically developed for the efficient computa-

tion of multibody topology optimization using parallel processing and the scientific programming

language C++.

The used formulation for multibody topology optimization allows to optimize the system by

considering the response of the entire system. In addition, the optimization can be conducted for
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(a) Optimal design of body 1. (b) Optimal design of body 2. (c) Optimal design of body 3.

Figure 1.16: Topology optimization of four-bar linkage under balancing constraints (Briot and Goldsztejn,
2018a).

a set of trajectories. Nevertheless, in order to reduce the computational complexity and due to

the numerical instabilities generated during the trajectory optimization, for this research work the

mechanisms are analyzed for one configuration. This assumption does not affect the main objective

of the thesis, because the shaking force balancing is independent of the mechanism configuration.

Regarding to the shaking moment balancing, it is minimized using the inertial mechanism param-

eters, which also do not depend on the configuration. Indeed, the structural performance of the

mechanism is optimized only for the selected configuration.

In addition to the dynamic balancing techniques, there are some important numerical and exper-

imental investigations related to the effects of mass-balancing on the elastodynaic performance of

the balanced mechanisms (Martini et al., 2009, 2013). For instance Martini et al. (2013) conducted

an experimental evaluation of the elastodynamic effects of a mass-balanced four-bar linkage, where

the authors concluded that the use of counter-weights on the four-bar linkage generates a deterio-

rate dynamic operation at low/medium speed. Besides the authors suggest that these conclusions

should considered in general for closed-loop mechanisms. In our studies we do not considered

the dynamic effects of the mass-redistribution in the optimized linkages, however we optimize the

stiffness of the whole linkage (while dynamic balancing conditions are fulfilled) assuming that

this feature have a positive impact on the mechanism dynamic performance (Thompson and Sung,

1986). Nevertheless we envisage that further investigations should be conducted in this research

direction.

1.6 Summary

This Chapter presented an overview of the classical balancing methods related to mechanisms and

robots. These methods have the main disadvantage of being formulated for the analysis of rigid

bodies, therefore they do not consider the elastic behavior of the mechanisms, which is an important

consideration for comprehensive design, mainly in high-speed robot design.

Classical methods propose to include additional components in order to mitigate or eliminate

the effects of the inertial loads, but the use of counter-weights and counter-rotations, and even more
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auxiliary structures increase the total mass of the system and its complexity. Thereby, it is more

appealing to conceive solutions which do not need additional components, as it is the case of the

self-balanced four-bar linkage, which does not require counter-rotations. Therefore, for this thesis

the inclusion of additional components is not considered in order to perform dynamic balancing.

There are some works which solve the partial dynamic balancing problem by means of shape

optimization. These works are based on the optimization of the mass distribution, wherewith the

external shape is defined. Nevertheless, these formulations do not take into account the elastic

behavior of the links and the shape optimization makes impossible to modify the internal link

shape. A more general formulation is the TO, where the material is redistributed within a design

domain subjected to specific constrains.

A brief introduction in the field of topology optimization was presented. For the problem for-

mulation the density-based approach and the SIMP scheme were selected, which implies to model

the system by the FEM. Because of the nature of the problem faced in this thesis, the best approach

to solve the optimization problem are the gradient-based methods. Additionally, due to the high

number of variables and the use of several constraints, the most suitable method for this endeavor

is the MMA. One important stage in topology optimization is the solution of the equilibrium equa-

tions belonging to the FE model. Due to the large-scale model generated in multibody analysis, the

solution of these equations should be carried out using an efficient iterative solver.

In order to model the mechanisms as flexible multibody systems it is proposed to use multibody

topology optimization. The proposed methodology makes possible to take into account the linkage

elastic behavior, while dynamic balancing conditions are satisfied within an optimization process,

based on the whole system response. Besides, the high computational cost of the MTO forced us

to propose the use of parallel computing in order to achieve results in a reasonable amount of time

by efficiently exploiting the resources of the hardware.

Therefore, in this thesis a general methodology for reactionless robot design based on multibody

topology optimization is proposed. Then, this methodology is applied to the design of a reactionless

four-bar linkage and the partial dynamic balancing of the five-bar mechanism. The relevance of the

reactionless four-bar linkage is based on the possibility of using this linkage as modular leg to

building reactionless robots. Regarding to the five-bar mechanism, its industrial application gives

it enough importance. In addition, the proposed optimization process allows to include structural

performance indices in order to conduct an integrated optimization at an early stage of the design

process.
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Chapter 2

Problem formulation for multibody

topology optimization

There is nothing noble in being superior to your fellow man; true nobility is being superior to your

former self.

Ernest Hemingway.

T
HE mathematical model for topology optimization of multibody systems is described in

this chapter. Topology optimization uses the finite element method to modeling the body

elastic behavior. The optimization problem of any multibody system involves the com-

plete finite element model of n bodies, connected by kinematic joints under boundary conditions

(Géradin and Cardona, 2001, Shabana, 2005). This problem generates a large model, which re-

quires an efficient problem formulation and suitable computational tools in order to find a solution

in a reasonable amount of time.
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2.1. INTRODUCTION

Figure 2.1: General scheme of the body Bi.
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2.1 Introduction

In the next sections, the elastostatic and elastodynamic models of single body and multibody sys-

tems are exposed. The proposed methodology uses finite element formalism to model the individual

bodies which are connected by ideal rigid joints. Additionally, model reduction techniques are em-

ployed in order to reduce the computational cost of solving the multibody model. This approach

is based on (Briot and Goldsztejn, 2018b), where the authors address the multibody topology opti-

mization problem.

2.2 Elastostatic model

2.2.1 Elastostatic model of a single body

Usually the topology optimization problem is formulated for a single body, but in our case it is

necessary to model a system composed for multiple bodies connected by kinematic joints. In order

to describe the multibody system, we use subscripts to identify the element and the body. Thus

the element j of the body i is defined by the subscript i j. Figure 2.1 is used to represent a general

body Bi, from where we can notice that the body has its own reference frame Oixiyizi, and it is

discretized in a regular mesh with Ni elements.

Standard topology optimization is based on the finite element method, and it uses finite elements

of regular shape, where each element is associated with an artificial density, which is the design

variable. The design variable is bound to take values between 0 and 1, however in order to avoid

optimization results with several intermediate material densities, it is necessary to use a material

interpolation scheme (Bendsøe and Sigmund, 2004). In this case, we use the modified simplified

isotropic material with penalization (SIMP) interpolation scheme (Sigmund, 2007). This method

consists in assigning to each finite element a density ρi j that determines its Young’s modulus Ei j.
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2.2. ELASTOSTATIC MODEL

Therefore the modulus of elasticity for element j belonging to body Bi is given by:

Ei j = Emin +ρ p
i j (E0 −Emin) , with ρi j ∈ [0, 1]. (2.1)

where p is the penalization power (usually p = 3, for elasticity problems), Emin is the stiffness at

ρi j = 0 (Emin is different from 0 in order to avoid singularity of the stiffness matrix), and E0 is the

Young’s modulus of the material.

By using finite element discretization, and resorting to the theory of linear elasticity, the stiff-

ness matrix Ki j(ρi j) of a single element is written under the SIMP scheme as follows:

Ki j = Ei jK
(0)
i j =

(

Emin +ρ p
i j (E0 −Emin)

)

K
(0)
i j (2.2)

where K
(0)
i j is a constant stiffness matrix for an element with Young’s modulus equal to one.

Therefore, the potential elastic energy (strain energy) of the element i j is:

Uei j
=

1
2

uT
i jKi jui j (2.3)

where ui j is the vector of the element i j nodal displacements. Hence, the total potential elastic

energy of the body Bi is equal to:

Uei
=

Ni

∑
j=1

Uei j
=

1
2

Ni

∑
j=1

uT
i jKi jui j =

1
2

uT
itotKitotuitot (2.4)

where:

• uitot =
[

uT
i1 . . .u

T
iNi

]T
, and it is the vector of nodal displacements of the body Bi.

• Kitot is a block-diagonal matrix stacking on its diagonal all elementary stiffness matrices as

follows:

Kitot =















Ki1 0

. . .

0 KiNi















(2.5)

Accordingly, the stiffness matrix Ki of the body Bi can be obtained by taking into account the

fact that the nodal displacements of the element i j are equal to the nodal displacements of its adja-

cent elements, as it is usual in standard methods for assembling finite elements (Zienkiewicz et al.,
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2013). The expression of the vector uitot can be obtained from a reduced set of independent coordi-

nates ui:

uitot = Aiui (2.6)

where Ai is a constant matrix, and it is the matrix which generates the assembled stiffness matrix

Ki. Introducing (2.6) into (2.4) we obtain:

Uei
=

1
2

uT
i Kiui (2.7)

with matrix Ki defined as follows:

Ki = AT
i KitotAi (2.8)

Thus, Ki is the body stiffness matrix which relates the nodal displacements ui to the forces fi

exerted on the nodes by the relation (Shabana, 2005):

fi =
∂Uei

∂ui
= Kiui (2.9)

Equation (2.9) shows an explicit relation between the external loads acting in a single body and its

nodal displacements. Normally, the nodal displacements are the variables to be computed, and the

accuracy of the displacements relies upon body discretization. Nonetheless, the size of the stiffness

matrix Ki depends on the number of elements in which the body is discretized: the larger the size,

the longer the computation time. Thereby it is important to define the best trade-off between the

mesh resolution and the computational cost.

The complete elastostatic model of the MBS can be derived using the body stiffness model

given in Eq. (2.9). Nevertheless, if the formulation is used in this basic form, it generates a

very large MBS stiffness matrix (in our case studies the dimension of Ki is typically greater than

105 × 105). Therefore, the use of a classical approach is not adequate for efficient computations,

and it is necessary to apply a model reduction technique.

2.2.2 Model reduction technique: static condensation

Using a model reduction technique (Qu, 2004) is possible to reduce the computational cost of

solving the elastostatic model. The reduction technique uses interface nodes: they are artificial

nodes which control the surrounding nodes, in our case by a rigid connection. Basically, the rigid
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Figure 2.2: Interface nodes for
bodies connection.
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connection implies that the translations and rotations of the interface node are transmitted directly

to its surrounding nodes.

The use of interface nodes allows to connect several bodies. In Fig. 2.2 it is shown the schematic

representation of the interface nodes used for bodies connection. Each interface node has 3 DOFs in

the planar case (two Cartesian translations and one rotation), and 6 DOFs for the three-dimensional

case (three Cartesian translations and three rotations). Moreover, since the MBS under study has

bodies connected only in two locations, each body will have two interface nodes. The vector of

interface nodes for body Bi can be expressed as a concatenation of each individual joint:

uil =







u
(1)
il

u
(2)
il






(2.10)

where the superscript indicates the body joint. For the planar case uil has size of (6× 1), and its

size is (12×1) for the spatial case.

In order to include the interface nodes vector uil as part of the independent set of coordinates,

ui, the augmented set of independent coordinates vector is defined as follows:

uai
=







ui

uil






(2.11)

Hence, the relation between the interface nodes and its surrounding nodes, as well as the indepen-

dent set of coordinates, is defined by the following expression:

uai
= Ji uci

(2.12)

29



2.2. ELASTOSTATIC MODEL

where vector uci
is the condensed independent coordinates vector, and it is given by:

uci
=







ui f

uil






(2.13)

where ui f is the vector of nodes on which no force or displacement is imposed and it has a size of

(a×1). Vector ui f is a subset of ui, and it excludes the nodes which surround the interface nodes.

The size of interface nodes vector uil is defined as (b×1), and usually a ≫ b.

The matrix Ji in Eq. (2.12), is a transformation matrix given by:

Ji =







J
(11)
i J

(12)
i

0 I






(2.14)

where:

• J
(11)
i is the matrix which relates the nodes ui f with the nodes from ui. Its size is (d × a),

where d is the size of the independent nodes vector ui.

• J
(12)
i is the matrix which relates the interface nodes uil with their connected nodes from ui.

Its size is (d×b).

• 0 is the matrix zero, because the interface nodes uil are independent from ui f , this matrix has

a size of (b×a).

• I is an identity matrix. It represents a direct relation between the interface nodes, and its size

is (b×b).

In order to compute the potential elastic energy of body Bi based the augmented set of indepen-

dent coordinates vector given in Eq. (2.11), we have to rewrite the body stiffness matrix Ki coming

from Eq. (2.9). For this purpose we define matrix Kai
, which is the matrix Ki rewritten as follows:

Kai
=







Ki(d×d) 0(d×b)

0(b×d) 0(b×b)






(2.15)

Hence, the potential elastic energy of body Bi based on the model reduction technique is given as:

Uei
=

1
2

uT
ai

Kai
uai

(2.16)
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Introducing (2.11) in (2.16) we obtain the following expression:

Uei
=

1
2

uT
ci

Kci
uci

(2.17)

where matrix Kci
is the condensed body stiffness matrix, and it is given by Kci

= JT
i Kai

Ji. This

matrix is obtained by the following computations, and it can be rewritten as a block matrix:

Kci
=



















[

J
(11)
i

T
KiJ

(11)
i

]

(a×a)

[

J
(11)
i

T
KiJ

(12)
i

]

(a×b)
[

J
(12)
i

T
KiJ

(11)
i

]

(b×a)

[

J
(12)
i

T
KiJ

(12)
i

]

(b×b)



















=







K
(11)
ci

K
(12)
ci

K
(21)
ci

K
(22)
ci






(2.18)

On the other hand, the arrangement of the condensed body stiffness matrix affects the vector fi.

Thus, considering the absence of external loads and displacement on the nodal coordinates ui f , the

loads vector is rewritten as:

fci
=







0

fil






(2.19)

in which 0 is a zero vector of size (a×1), which represents the absence of interaction between the

environment and the nodes parameterized by ui f . The size of fil is (b×1).

Taking into account the model reduction technique that we have described, the relation between

the nodal displacements uci
to the forces fci

, is given by:

fci
=

∂Uei

∂uci

= Kci
uci

(2.20)

In order to solve the condensed body stiffness model, the linear system fci
= Kci

uci
given in Eq.

(2.20), it can be written as:







0

fil






=







K
(11)
ci

K
(12)
ci

K
(21)
ci

K
(22)
ci













ui f

uil






(2.21)

from where two equations can be obtained:

0a×1 = K
(11)
ci

ui f +K
(12)
ci

uil (2.22)
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fil = K
(21)
ci

ui f +K
(22)
ci

uil (2.23)

Solving Eq. (2.22) for ui f we get:

ui f = ΦΦΦsiuil (2.24)

where, ΦΦΦsi is a matrix whose size is (a × b) and, it is the matrix of the static modes

(Craig and Bampton, 1968) given by:

ΦΦΦsi =−
(

K
(11)
ci

)−1
K

(12)
ci

(2.25)

The force exerted on the interface nodes is obtained by combining Eq. (2.23) and (2.24), thus:

fil = Kred
i uil (2.26)

where Kred
i is the reduced body stiffness matrix with size of (b×b) and it is given by:

Kred
i = K

(21)
ci

ΦΦΦsi +K
(22)
ci

(2.27)

Besides, the body potential elastic energy from Eq. (2.7) can be rewritten as:

Uei
=

1
2

uil
T Kred

i uil. (2.28)

from which can be realized that:

• Kred
i is the reduced stiffness matrix associated with the displacements of the interface nodes

of the body Bi.

• Kred
i has dimensions of (6×6) for 2D and (12×12) for 3D, and it does not depend on the

MBS configuration.

• The most time consuming process is related to the computation of matrix ΦΦΦsi, Eq. (2.25):

ΦΦΦsi =−
(

K
(11)
ci

)−1
K

(12)
ci

which requires either the inversion of the matrix K
(11)
ci

or solving the linear system of equa-

tions
(

K
(11)
ci

)

ΦΦΦsi =−K
(12)
ci

.
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If the size of K
(11)
ci

is small, the matrix of the static modes can be computed using a direct

solver. When K
(11)
ci

is large, as is usual in topology optimization of three-dimensional bodies, the

computation of this matrix must be done using a iterative solver alongside a suitable preconditioner

(Borrvall and Petersson, 2001).

The advantage of using the model reduction technique is quite remarkable. The typical body

stiffness matrix usually has a considerable size which depends on the discretization mesh, then it

is compacted into the reduced body stiffness matrix Kred
i with standard size of (6×6) for 2D and

(12× 12) for 3D, thus leading to a small stiffness matrix for the assembled MBS. Moreover, the

computation of the matrices ΦΦΦsi, which is intensive (computationally speaking), can be made in

parallel in order to save computational time.

2.2.3 Elastostatic model of the MBS

Once the elastostatic model for single body is computed it is possible to compute the MBS elasto-

static multibody model. This multibody model considers the MBS configuration, and the boundary

conditions.

In order to take into account the MBS configuration, the orientation of each body should be

considered. Since the reduced body stiffness matrix Kred
i is expressed in its own local reference

frame, it must be expressed in the global frame, which is done using the coordinates transformation.

Coordinate transformation is performed by using a block-diagonal matrix Qi:

Qi =















Ri 0

. . .

0 Ri















(2.29)

where Ri is a rotation matrix with size of (3× 3), which represents the body orientation, and it

comes from the solution of MBS kinematics. Certainly Ri depends on the MBS configuration q,

but not on nodal displacements (assuming small perturbations). Usually the matrix Qi has size of

(6×6) when the bodies are considered as planar ones, and (12×12) when the bodies are modeled

as three-dimensional (if two interface nodes per body are used).

Therefore, the reduced body stiffness matrix is expressed in the global coordinate system as

follows:
(

Kred
i

)

0
= QiK

red
i QT

i . (2.30)

Considering a MBS made of n bodies, as seen in the Fig. 2.2, the full potential elastic energy
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of the system is given by:

Ue =
n

∑
i=1

Uei
=

1
2

n

∑
i=1

(uil)
T
0

(

Kred
i

)

0
(uil)0 =

1
2

ured
tot

T
Kred

tot ured
tot (2.31)

where:

• ured
tot =

[

(uil)
T
0 . . .(unl)

T
0

]T

is the vector of interface nodes displacements for all n bodies in

the global frame.

• Kred
tot is a block-diagonal matrix stacking on its diagonal all bodies stiffness matrices as fol-

lows:

Kred
tot =















(

Kred
i

)

0 0

. . .

0
(

Kred
n

)

0















. (2.32)

The MBS stiffness matrix Kr can be obtained by taking into account the fact that the bodies are

connected altogether through the interface nodes. As a result, the expression of the vector ured
tot can

be obtained from a reduced set of independent coordinates ur, as follows:

ured
tot = Jrur (2.33)

where Jr depends on how the bodies of the MBS are connected, namely their kinematic pairs.

The kinematic relations between the interface nodes depend on the joint type. In the case of the

revolute joint, and considering a rigid connection, all displacements are constrained to be the same,

and only the rotation about the joint axis is independent. Thus, considering two adjacent bodies,

Bi and B(i+1) as we see in Fig. 2.2, we have:

ured
tot =

[

uil u(i+1)l
]T

=
[

u
(1)
il u

(2)
il u

(1)
(i+1)l u

(2)
(i+1)l

]T

(2.34)

If these two bodies are connected by the joints u
(2)
il and u

(1)
(i+1)l , and choosing u

(1)
(i+1)l as the depen-

dent coordinates set, the reduced set of independent coordinates is given by:

ur =
[

u
(1)
il u

(2)
il θ(i+1)r u

(2)
(i+1)l

]T

(2.35)

where θ(i+1)r is the independent coordinate associated with body B(i+1) rotation. Furthermore,

the boundary conditions related to the MBS supports can be defined using the remaining interface

nodes in the reduced set of independent coordinates vector.
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Introducing (2.33) into (2.31), the potential elastic energy of the MBS can be computed by:

Ue =
1
2

uT
r Krur (2.36)

where the MBS stiffness matrix Kr is:

Kr = JT
r Kred

tot Jr (2.37)

Moreover, the relation between the nodal displacements ur and external forces fr exerted on the

considered nodes is given by:

fr =
∂Ue

∂ur
= Krur (2.38)

For a MBS with n bodies, the size of Kr is lower than (6n×6n) in the 2D case, and for 3D case

the size is lower than (12n×12n).

Equation (2.38) describes the relation between the external loads acting on the MBS and its

joint displacements. By solving this model it is possible to compute the joint displacements in the

MBS when it is subjected to external loads. As it is usual, this linear system is solved by applying

the boundary conditions defined by the supports of the multibody system. This structural response

is used in the optimization process.

2.2.4 Computing the nodal displacements for the elastostatic model

Equation (2.38) represents a linear system from where the vector ur is computed. Then, it is

necessary to compute the complete vector of the reduced set of interface nodes using the relation

given in (2.33), namely ured
tot = Jrur.

Since the vector of the reduced set of interface nodes ured
tot =

[

(uil)
T
0 . . .(unl)

T
0

]T

, is formed by

all the interface nodes of each body Bi, it is necessary to split the vector on its corresponding

interface nodes vectors (uil)0. These vectors are described in the global reference frame, thus it is

necessary to express them in their local frames. This is done using the block-diagonal matrix Qi:

uil = QT
i (uil)0 (2.39)

Then, with the body interface displacements uil defined in its local reference frame, it is possible to

compute the complete nodal displacements of the body by means of Eq. (2.24), namely ui f =ΦΦΦsiuil .
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Thus, the condensed independent coordinates vector uci
is given as follows:

uci
=







ui f

uil






=







ΦΦΦsuil

uil






(2.40)

Besides, the augmented set of independent coordinates vector is given by the Eq. (2.11), uai
= Jiuci

,

therefore:







ui

uil






=







J
(11)
i J

(12)
i

0 1













ΦΦΦsuil

uil







=







J
(11)
i ΦΦΦsuil +J

(12)
i uil

uil






(2.41)

Finally, the independent body nodal displacements for the elastostatic model is given by:

ui = J
(11)
i ΦΦΦsuil +J

(12)
i uil. (2.42)

The vector displacements given in Eq. (2.42) is a computationally efficient expression based on

the model reduction technique.

2.3 Elastodynamic model

2.3.1 Elastodynamic model of a single body

The body dynamic response related to natural frequencies is important because these frequencies

are associated with the highest level of energy due to vibrations. The following sections describe

the methodology to compute natural frequencies.

For the elastodynamic model the mass matrix associated with the element i j is given by:

Mi j = ρi jM
0
i j (2.43)

where M0
i j is the consistent mass matrix of a single element computed for a density equal to 1. Thus,
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the kinetic energy of the element due to elastic oscillations is:

Tei j
=

1
2

u̇T
i jMi ju̇i j (2.44)

being u̇i j the vector of the nodal velocities. Hence, the total kinetic energy of the body Bi is equal

to:

Tei
=

Ni

∑
j=1

Tei j
=

1
2

Ni

∑
j=1

u̇T
i jMi ju̇i j =

1
2

u̇T
itotMitot u̇itot (2.45)

where Mitot is a block-diagonal matrix stacking on its diagonal all elementary mass matrices as

follows:

Mitot =















Mi1 0

. . .

0 MiNi















(2.46)

Besides, differentiating (2.6) with respect to time (matrix Ai is constant) the following expression

is obtained:

u̇itot = Aiu̇i (2.47)

Introducing (2.47) into (2.45), we obtain:

Tei
=

1
2

u̇T
i Miu̇i (2.48)

where Mi = AT
i MitotAi is the mass matrix of body Bi.

As can be noticed in Eq. (2.43), the material interpolation scheme used for the mass matrix is a

linear approach, which is the natural physical option for the mass matrix.

The elastodynamic model for the MBS can be generated directly form the results already de-

scribed, but this model can be of considerable size. In consequence a model reduction technique

is required in order to reduce the computational effort associated to the solution of the complete

elastodynamic model for the MBS.
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2.3.2 Model reduction technique: dynamic condensation

In order to reduce the computational cost associated with the MBS natural frequencies, and be-

cause of deformations remain small, the dynamic substructuring scheme or Craig-Bampton model

reduction technique is used. The Craig-Bampton model reduction technique is based on the as-

sumption that body nodal coordinates ui f can be expressed as a function of the nodal coordinates

uil , corresponding to the interface nodes plus a term characterizing their vibratory free behavior, as

follows:

ui f = ΦΦΦsiuil +ΦΦΦdiµµµ i (2.49)

where the term ΦΦΦsiuil comes from (2.24) and it characterizes the node static displacements, and the

term ΦΦΦdiµµµ i is an additional term characterizing the body oscillatory behavior.

Classically, matrix ΦΦΦdi has the following form:

ΦΦΦdi =
[

u
(1)
i f · · ·u

(s)
i f

]

(2.50)

where the vector u
(k)
i f is the k-th eigenmode associated with the equation:

M
(11)
ci

üi f +K
(11)
ci

ui f = 0 (2.51)

in which matrix K
(11)
ci

is defined in (2.18). Matrix M
(11)
ci

is obtained following a procedure similar

that the used to obtain the condensed body stiffness matrix. With Ji given in Eq. (2.14), the

condensed body mass matrix is given by:

Mci
=



















[

J
(11)
i

T
MiJ

(11)
i

]

(a×a)

[

J
(11)
i

T
MiJ

(12)
i

]

(a×b)
[

J
(12)
i

T
MiJ

(11)
i

]

(b×a)

[

J
(12)
i

T
MiJ

(12)
i

]

(b×b)



















=







M
(11)
ci

M
(12)
ci

M
(21)
ci

M
(22)
ci






(2.52)

The dimension of matrix M
(11)
ci

is (a× a). The matrix ΦΦΦdi is formed using s vectors, chosen

among the a eigenmodes associated with (2.51). Usually, s< a (in our examples, s is lower than 10).

Similarly as in the elastostatic mode, most of the computational cost is due to the computation of

the matrix ΦΦΦdi. Nevertheless, for a multibody system, the computation of this matrix is independent

for each body.

Now, using (2.49) the condensed nodal displacement vector, u
f req
ci

, for the oscillatory free vi-
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bration is given by:

u f req
ci

=







ui f

uil






= Bidi, Bi =







ΦΦΦsi ΦΦΦdi

Ib 0b×s






, di =







uil

µµµ i






. (2.53)

in which Ib is the identity matrix of dimension (b× b). Taking into account once again that ma-

trix Bi does not depend on the MBS configuration or the link deformation (hypothesis of small

perturbations), the derivative of Eq. (2.53) with respect to time leads to:

u̇ f req
ci

= Biḋi (2.54)

By using these transformation of coordinates, the body potential and kinetic elastic energies

given at (2.7) and (2.48) becomes:

Uei
=

1
2

dT
i

(

K
f req
i

)

di (2.55)

Tei
=

1
2

ḋT
i

(

M
f req
i

)

ḋi (2.56)

where the reduced body stiffness matrix is:

K
f req
i = BT

i (Kci
)Bi, (2.57)

and the reduced body mass matrix is:

M
f req
i = BT

i (Mci
)Bi. (2.58)

The reduced body stiffness and mass matrices are usually of small dimension. Typically their

sizes are {(6+ s)× (6+ s)} for the planar case, and {(12+ s)× (12+ s)} for spatial case, where s

is the number of chosen eigenmodes. These matrices not depend on the MBS configuration, which

is a great advantage because they must be computed only once at each step of the optimization

algorithm, whatever the number of tested configurations for the MBS.

Moreover, after simplifying the computations of the reduced body stiffness matrix given by

(2.57), we obtain (Géradin and Cardona, 2001):

K
f req
i =







K
(21)
ci

ΦΦΦsi +K
(22)
ci

0

0 ΦΦΦT
diK

(11)
ci

ΦΦΦdi






(2.59)
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Conversely, the reduced body mass matrix given by (2.58), can be simplified as:

M
f req
i =







(

M
(21)
ci

+ΦΦΦT
siM

(11)
ci

)

ΦΦΦsi +M
(22)
ci

+ΦΦΦT
siM

(12)
ci

(

M
(21)
ci

+ΦΦΦT
siM

(11)
ci

)

ΦΦΦdi

ΦΦΦT
di

(

M
(12)
ci

+M
(11)
ci

ΦΦΦT
si

)

ΦΦΦT
diM

(11)
ci

ΦΦΦdi






(2.60)

where the block reduced body mass matrix M
f req
i

(21)
is the transpose of the block matrix M

f req
i

(12)
.

Equations (2.59) and (2.60) are explicit expression, useful for an efficient computation of the re-

duced body matrices.

2.3.3 Elastodynamic model of the MBS

In order to define the multibody elastodynamic model of a system, it is necessary to take into

account the orientation of each body, it means the multibody system configuration. It can be

performed using the matrix Q
f req
i , which is a block-diagonal matrix generated by staking on its

diagonal the rotation matrix Ri(3×3) which represents the body Bi orientation, and it comes from

the solution of MBS kinematics:

Q
f req
i =























Ri . . . 0

...
. . .

...

Ri

0 . . . I(s×s)























(2.61)

where I(s×s) is an identity matrix.

Usually the matrix Q
f req
i has size of {(6+ s)× (6+ s)} for the planar case, and {(12+ s)×

(12+ s)} for spatial case, where s is the number of chosen eigenmodes. For a single configuration

there is only one matrix Q
f req
i for each body, but for a set of trajectories there will be as many as

configurations the MBS reaches. Thus, Q
f req
i depends on the MBS configuration q but not on the

nodal displacements u
f req
i (assumption of small perturbations).

In order to take into account the configuration of the multibody system, the orientation of each

body must be considered. In case of a link with a planar motion, this is accomplished by the

following matrix transformations:

(

K
f req
i

)

0
= Q

f req
i K

f req
i

(

Q
f req
i

)T

(2.62)
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(

M
f req
i

)

0
= Q

f req
i M

f req
i

(

Q
f req
i

)T

(2.63)

Considering now a MBS composed of n bodies, the full potential and kinetic energies of the

system are given by the summation of individual energies from Eq. (2.55) and Eq. (2.56), then:

Ue =
n

∑
i=1

Uei
=

1
2

n

∑
i=1

(di)
T
0

(

K
f req
i

)

0
(di)0 =

1
2

(

u
f req
tot

)T

K
f req
tot u

f req
tot (2.64)

Te =
n

∑
i=1

Tei
=

1
2

n

∑
i=1

(

ḋi

)T

0

(

M
f req
i

)

0

(

ḋi

)

0 =
1
2

(

u̇
f req
tot

)T

M
f req
tot u̇

f req
tot (2.65)

where:

• u
f req
tot =

[(

dT
1

)

0 . . .
(

dT
n

)

0

]T is the vector composed of vectors (di)0 for all n MBS bodies,

defined in the global frame.

• K
f req
tot and M

f req
tot are block-diagonal matrices stacking on their diagonal all bodies stiffness

and mass matrices as follows:

K
f req
tot =















(

K
f req
1

)

0
0

. . .

0
(

K
f req
n

)

0















, M
f req
tot =















(

M
f req
1

)

0
0

. . .

0
(

M
f req
n

)

0















. (2.66)

The reduced elastodynamic model of the MBS can be obtained by taking into account the fact

that the bodies are connected through the interface nodes. As a result, the expression of the vector

u
f req
tot can be obtained from the MBS reduced set of independent coordinates ud as follows

u
f req
tot = Jdud (2.67)

Moreover, for the analysis of the oscillatory free behavior, the matrix Jd is constant and it depends

on the MBS kinematic relations, thus:

u̇
f req
tot = Jdu̇d (2.68)

Introducing (2.67) and (2.68) into (2.64) and (2.65), we get

Ue =
1
2

uT
d Kdud , Te =

1
2

u̇T
d Md u̇d (2.69)
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where the reduced MBS stiffness matrix, Kd , and the reduced MBS mass matrix, Md , are computed

as follows:

Kd = JT
d K

f req
tot Jd, Md = JT

d M
f req
tot Jd (2.70)

Using the Lagrange equations, in absence of external efforts, we can express:

d

dt

(

∂L

∂ u̇

)

−
∂L

∂u
= 0 (2.71)

where L = Te −Ue, the reduced dynamic equation characterizing the MBS free oscillations is:

Md üd +Kdud = 0 (2.72)

A solution udk of this equation satisfies:

(

ω2
k Md −Kd

)

ud k = 0 (2.73)

where the pulsation ωk of the MBS is equal to ωk = 2π fk. Besides, fk is the natural frequency

associated with the k-th natural mode of vibrations, and ud k is its associated eigenvector. Indeed,

for the solution of the Eq. (2.73) the boundary conditions must be applied, affecting both matrices

Md and Kd .

For a 2D problem, the typical size of matrices Kd and Md is lower than {(6+ s)n× (6+ s)n},

being n the number of bodies in the MBS, and s the number of chosen eigenmodes. Besides, for 3D

problems the size is given by: {(12+s)n×(12+s)n}. The resolution of Eq. (2.73) is considerably

more efficient than the classical solutions due to the applied model reduction techniques.

2.3.4 Computing the nodal displacements for the elastodynamic model

Once the associated vibration mode is computed, the resultant eigenvector ud,1 is used in order to

compute the displacements due to the first natural vibration.

u
f req
tot = Jdudk (2.74)

The vector u
f req
tot , defined in Eq. (2.64), contains all the joints displacements of the multibody

system. Therefore, this vector must be splitted in their corresponding displacements bodies, thus

each vector (di)0 corresponds to the joint displacement of the body Bi. Moreover, since the vector

(di)0 is expressed in the global reference frame, it is necessary to express it in the local frame, this
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is performed using the block-diagonal matrix Q
f req
i :

di =
(

Q
f req
i

)T

(di)0 (2.75)

thus the vector di is expressed in its local reference frame. Besides, the independent condensed

displacement vector is computed as u
f req
ci

= Bidi, hence:

u f req
ci

=







ΦΦΦsi ΦΦΦdi

Ib 0b×s













uil

µµµ i






=







ΦΦΦsiuil +ΦΦΦdiµµµ i

uil






(2.76)

The vector u
f req
ci

corresponds to the independent nodes in the body Bi, then the augmented nodal

displacements it is computed as:

u f req
ai

= Jiu
f req
ci

(2.77)

=







J
(11)
i J

(12)
i

0 I













ΦΦΦsiuil +ΦΦΦdiµµµ i

uil






(2.78)

=







J
(11)
i (ΦΦΦsiuil +ΦΦΦdiµµµ i)+J

(12)
i uil

uil






(2.79)

The body nodal displacements due to the mode of vibration udk is given by:

u
f req
i = J

(11)
i (ΦΦΦsiuil +ΦΦΦdiµµµ i)+J

(12)
i uil (2.80)

Usually the first natural frequency is used as a performance index, and the eigenvector ud1,

associated to this frequency is used as initial displacement for the modal analysis.

Topology optimization based on SIMP scheme is prone to numerical problems such as mesh-

dependence and checkerboard patterns, which are well documented and successful solutions have

been applied (Diaz and Sigmund, 1995, Sigmund, 2007, Sigmund and Petersson, 1998). In order

to overcome these undesired effects it is essential to use restriction methods, which are usually

applied as a filters. Thereby, among the broad options of filters, we decided to use one of the most

used types of density filters, which is described below.
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2.4 Density filter

Density filtering was introduced in (Bruns and Tortorelli, 2001) and the mathematical proof of the

solution existence was reported in (Bourdin, 2001). This filter transforms the original densities ρi j

as follows:

ρ̃i j =
∑k∈Ne

Hekρik

∑k∈Ne
Hek

(2.81)

where Ne is the set of elements k for which the center-to-center distance D(i j, k) to element i j is

smaller than the filter radius rmin and Hek is a weight factor defined as:

Hek = max(0,rmin −D(i j, k)) (2.82)

where the value of the filter radius rmin in our problems is from 2 to 3 times the element size.

Besides, usually the original densities ρi j are referred to as the design variables, and the filtered

densities ρ̃i j are referred to as the physical densities.

When a density filter is applied, the original densities ρi j do not have any physical meaning

(Sigmund, 2007). Therefore, the filtered density field ρ̃i j should be always presented rather than the

original density field ρi j as the solution to the optimization problem. Additionally, the sensitivities

of the objective function f (ρρρ) and constraints functions must be modified replacing the variable

ρi j with ρ̃i j. The sensitivities with respect to the design variables ρi j are obtained by means of

the chain rule. Moreover, as it was pointed out by Sigmund (2007), it is necessary to have special

treatment for the boundaries of the structure. Therefore the supported boundaries are specified as

solid elements (region) in order to obtain adequate filtering.

In the previous sections the formulation for multibody topology optimization was developed.

The multibody system was described in terms of the design variables, but the inertial properties of

the individual bodies must be also rewritten in terms of the design variables. Hence, those inertial

parameters can be properly incorporated into the topology optimization formulation as it is shown

in the next section.

2.5 Inertial parameters of an individual body

Each body of the MBS can be characterized by its inertial parameters such as its mass, the first

moments of inertia (also known as the static moments), the second moments of inertia, and the

products of inertia. The inertia parameters are defined in a local frame rigidly attached to a body,
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Figure 2.3: The finite element i j of the body Bi.
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and they do not depend on the MBS configuration.

From (Khalil and Dombre, 2002), we have the formulas for the computation of the body inertial

parameters. Nevertheless, these formulas must be rewritten as a function of the design variables,

i.e., the element density ρi j. Because of the bodies are modeled using finite elements, each body

Bi is discretized in a total of Ni elements, and the element j of the body i is defined by the subscript

i j. The mass of the element i j is defined as mi j, and xi j, yi j and zi j are the positon of the origin Mi j

of this element in its local frame (Oi, xi, yi, zi) attached to the body Bi. In Fig. 2.3 the schematic

description of the finite element i j in the body Bi is represented. As a consequence, considering a

linear relation between the mass and the design variables, the following expressions for the inertial

parameters of body Bi are obtained:

Body’s mass: mi =
Ni

∑
j=1

mi jρi j (2.83a)

Static moments: Ixi =
Ni

∑
j=1

mi jxi jρi j, Iyi
=

Ni

∑
j=1

mi jyi jρi j, Izi =
Ni

∑
j=1

mi jzi jρi j (2.83b)

Moments of inertia: Ixxi =
Ni

∑
j=1

mi j

(

y2
i j + z2

i j

)

ρi j, Iyyi
=

Ni

∑
j=1

mi j

(

x2
i j + z2

i j

)

ρi j,

Izzi =
Ni

∑
j=1

mi j

(

x2
i j + y2

i j

)

ρi j (2.83c)

Products of inertia: Ixyi
=

Ni

∑
j=1

mi jxi jyi jρi j, Ixzi =
Ni

∑
j=1

mi jxi jzi jρi j,

Iyzi =
Ni

∑
j=1

mi jyi jzi jρi j (2.83d)

where Eq. (2.83a) gives the total mass of the body, while Eqs. (2.83b), (2.83c) and (2.83d) are the

corresponding static moments, the moments of inertia and the products of inertia, respectively.

Once the formulation of the multibody topology optimization problem has been properly de-
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rived, the next stage is its resolution. In this thesis, the optimization problem is solved by the

MMA optimizer in all the study cases. Considering the MBS compliance and its natural frequency

as important performance indices, the analytical expression of the gradients of these functions are

derived in the following sections.

2.6 Optimizer and sensitivity analysis

The problem we face is characterized by a high number of variables. In order to solve the optimiza-

tion problem it is necessary to use an optimization solver, able to handle large number of variables,

as well as multiple constraints. Thus, the MMA algorithm introduced in (Svanberg, 1987) is the

optimizer used for this research work. It is able to handle multiple inequalities and equalities con-

straints, and it is the most accepted optimizer in the structural optimization community because of

its excellent convergence properties (Bendsøe and Sigmund, 2004). A special attention is paid to

the equality constraints, which can be converted into two inequality constraints as it is shown in

the section below. In addition, this method is a first-order gradient-based algorithm which requires

the derivatives of the objective function and of the constraints with respect to the design variables,

therefore a sensitivity analysis is conducted.

2.6.1 Equality constraints

As it is usual in the constrained optimization problem, the constraints can be defined as inequality

or equality constraints. Equality constraints can be transformed into inequalities without loss of

generality, in order to avoid a very restrictive optimization scheme. It is done by replacing the

equality constraint hi(ρρρ) = 0, with two inequality constraints, hi(ρρρ)− ε ≤ 0 and −hi(ρρρ)+ ε ≤ 0,

where ε is usually a small number called relaxation parameter.

The parameter ε can be defined as a constant value, or it can be considered as a variable pa-

rameter able to change throughout the optimization process. The way to define the value of this

parameter, is typically based on a heuristic approach. In our case we decided to use ε as a de-

creasing parameter in order to be closer to the equality constraint at each iteration step. In order to

update the relaxation parameter we use an asymptotic function defined by:

ε =
ε0

(κ +10)β
(2.84)

where κ is the iteration number, and β is a parameter defined by the user, as well as ε0. In our case

we define ε0 = 0.9 and β = 3.5 This relaxation parameter is used for all the cases analyzed in the
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thesis.

2.6.2 Sensitivity analysis

Sensitivity analysis or gradient computation is the centerpiece of the gradient-based optimization

methods. Hence, in the ideal case the analytical expression of the gradients are preferred instead

of the numerical approximations. Commonly, the numerical methods, such as finite differences (or

more robust methods) are used when the analytical expressions are not available. The problem with

the numerical methods is the high computational cost. Nevertheless, for the problems we face in

this thesis, the gradients of the performance indices, such as the MBS compliance and its natural

frequency can be computed analytically and they are derived in the sections below.

With respect to the body’s inertial parameters, the gradients computation is simple because of

the linear relation between the inertial parameters and the design variables. Thus, the gradients can

be easily computed analytically.

2.6.2.1 Compliance

A standard objective function or performance index in topology optimization is the compliance

(Bendsøe and Sigmund, 2004), which usually is considered as the inverse of the stiffness. The

compliance as it is defined in (Sigmund, 1994) can be considered as twice the strain energy (poten-

tial elastic energy), or also as the dot product of the nodal wrenches by the nodal displacements.

This performance index will be used in this work and its gradient will be derived. Because of the

displacements computed using the static condensation are completely equivalent to those values

computed using the full elastic model, the compliance gradient can be derived from the general

elastostatic model of the MBS, without involving the model reduction technique. Consequently,

the compliance function based on the full model for the MBS is given by:

c(ρρρ) = uT
mbsKmbsumbs (2.85)

where:

• umbs =
[

uT
1 . . .uT

n

]

is the vector stacking all nodal displacements for all n bodies, and each

vector ui can be computed using the expression shown in (2.42).
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• Kmbs is a block-diagonal matrix stacking on its diagonal all bodies stiffness matrices:

Kmbs =
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Therefore, the compliance gradient is given by:

∂c(ρρρ)

∂ρρρ
= uT

mbs

(

∂Kmbs

∂ρi j

)

umbs (2.87)

where the partial derivative of Kmbs is:
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(2.88)

where the expression for Ki is defined in (2.8).

2.6.2.2 Natural frequency

Other important performance indices to be optimized in multibody systems are the natural fre-

quencies, which are significant in order to avoid serious vibrations when the system is affected by

dynamic loads that are close to these natural frequencies. Therefore, usually the first natural fre-

quency or fundamental frequency is maximized in order to prevent this undesirable situations. In

fact, optimize the fundamental frequency wont reduce the dynamic unbalance in a MBS by itself,

but optimizing this frequency when shaking force balancing by mass redistribution is applied, will

be beneficial (de Jong et al., 2019).

The first natural frequency of the MBS is given as follows:

f (ρρρ) = f1 =
ω1

2π
(2.89)
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where ω1 is the first natural pulsation obtained from the solution of Eq. (2.73):
(

ω2
1 Md −Kd

)

ud 1 = 0. Moreover, the natural frequency and the pulsation are related by ω1 = 2π f1.

Briot and Goldsztejn (2018b) derived the gradient of the MBS natural frequency, and it is given as

follows:

∂ f1

∂ρi j
=

1

4πω1uT
d 1Mdud 1

(

uT
all

(

∂Kall

∂ρi j

)

uall −ω2
1 uT

all

(

∂Mall

∂ρi j

)

uall

)

(2.90)

where the involved terms are:
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with K
(0)
i j and M

(0)
i j defined in (2.2) and (2.43), respectively. In addition, matrix Md was derived in

(2.70). Furthermore, the vector uall stacks all nodal displacements for all elements in the multibody

system, and it is given by:

uall =
[

uT
1tot . . .u

T
ntot

]T
(2.93)

being uitot = Aiu
f req
i , with Ai defined in (2.6), and u

f req
i given in (2.80).

Topology optimization for three dimensional multibody systems leads to large-scale analysis,

which makes imperative to solve the problem using a suitable computational tool. Indeed, an
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efficient modeling formulation is also necessary to reduce the computational effort. For that reason

model reduction techniques have been proposed in Section 2.2.2 and 2.3.2. These strategies by

themselves are not enough to reduce the high computational cost associated to the solution of

the problem. Therefore, in order to solve the problem at hand in a reasonable amount of time,

a computational platform for fully parallel processing is developed. In the following Section is

presented an overview of the computational platform.

2.7 Computational platform

The structural topology optimization is based on finite element method. The solution of equi-

librium equations coming from the finite element model is the most time-consuming stage.

Borrvall and Petersson (2001) report that 97% of the computational time is used in the solution

of the resulting linear system.

Topology optimization problems involves a large amount of design variables, and when a three

dimensional multibody topology optimization problem is considered, the computational effort re-

quired to solve the problem increases drastically. On the other hand, the mesh size has an important

role on the accuracy of results, usually a fine mesh is desired to get more realistic designs. Due to

these conditions, the optimization problem to be solved implies a large-scale analysis. For reaction-

less robot design, in order to fulfill balancing conditions accurately, a fine mesh is always desired,

since the results can be affected by the mesh discretization.

Even though MatLab is an excellent software for develop and test algorithms, the problems of

medium or large size require specialized programming languages for a better management of the

computational resources. A suitable programming language using with the appropriate comput-

ing paradigm can exploit the full potential of the given computational system. As a consequence,

a computational platform was developed specifically for the solution of multibody topology opti-

mization problems. It is programmed in C++ language, using the object oriented paradigm and the

distributed memory model for parallel computing. It is based on the Portable, Extensible Toolkit for

Scientific Computation (PETSc) (Balay et al., 2021), and the platform incorporates some classes

provided in (Aage et al., 2015). The computational platform for multibody topology optimization

(MUBOTO) is not software dependent, and it is designed to solve large scale problems. The plat-

form was tested in a desktop computer with a processor AMD Ryzen 9 3900X, using the OS Ubuntu

20.04 64 bits, and PETSc 3.16.0.

50



2.7. COMPUTATIONAL PLATFORM

2.7.1 Codes for topology optimization

There are several computational codes for topology optimization. Some of the most popular are

those written in MatLab (Andreassen et al., 2011, Liu and Tovar, 2014, Sigmund, 2001). These

programs have an educational purpose, are written for a single body analysis, and they solve clas-

sical benchmarks for TO. With respect to multibody topology optimization Briot and Goldsztejn

(2018b) describe the optimization of five-bar mechanism using MatLab. The authors report some

computational issues when the number of elements in the FE model start to increase, mainly for

a 3D model. In this case the computational cost is increased, and they refer the necessity of spe-

cific solver (preconditioned conjugate gradient) for a better performance. Even more, the solution

of the eigenvalue problem for the 3D model took several days for a relatively small size problem.

Thus, for this scenario MatLab is not practical, since it limits the optimization size, and becomes

prohibitive for systems of bigger size.

The preferred software to develop educational codes for TO is MatLab (Zhu et al., 2020). It is

because MatLab has an easy to use programming language, and has highly optimized algorithms

and executes some of them in parallel1. Nevertheless, when the problem turns into large-scale anal-

ysis MatLab is not the best option, and then it is necessary to use standard scientific programming

languages such as Fortran or C/C++, in conjunction with parallel processing techniques.

2.7.2 An overview of parallel computing

Parallel computing is the simultaneous use of multiple processors resources to solve a computa-

tional problem (Pacheco, 2011), it implies to execute multiples computations at the same time.

In contrast, in the serial execution the operations are executed one-at-a-time. Today, most of the

desktop computers are build using processors of multiple cores, thus basically we have parallel

computers in our homes. In contrast, the first personal computers were packaged with a single

Central Processing Unit (CPU) or core.

Traditionally, software has been written for serial computation, designed for a single processor

computer. In a typical serial program, instructions are executed sequentially one after another and

only one instruction may execute at any moment in time. In fact, nowadays serial programming is

still very common, even if the programs are running in multiprocessor desktops. It happens because

of the complexity of parallel programming.

In the last years, multiprocessor computers have been available, from personal computers to

High Performance Computing (HPC) centers (Eijkhout et al., 2014). Hence, in order to exploit

1In specific cases, the function mldivide automatically execute multiple threads, without requiring the user
specification (MatLab, 2022).
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the hardware resources, the serial programming has been replaced by parallel programming. Par-

allel computing paradigm is a natural response for the efficient use of multiprocessor hardware.

Generally in a parallel program, the problem is broken into discrete parts that can be solved con-

currently. Each part is further broken down to a series of instructions, these instructions from each

part execute simultaneously on different processors.

Parallel computing requires some additional features in order to exploit the parallel hardware

capabilities. In this case there are some parallel programming models, but the most used are the

share-memory and distributed-memory models. Parallel programming models exist as an abstrac-

tion above hardware and memory architectures. Commonly the share-memory approach is pro-

grammed using the standard Open Multiprocessing (OpenMP). For the distributed-memory model,

the standard is Message Passing Interface (MPI). It is common to find many different implemen-

tations of these standards, which depends on the hardware vendors. OpenMP is an Application

Program Interface (API), which is an explicit (not automatic) programming model, and supports

C/C++ and Fortran on a wide variety of architectures. This standard is included in many compilers

and provides a portable and scalable model for developers of shared memory parallel applications,

it uses the multi-thread concept under the fork-join model. Sometimes this API is called master-

worker approach because the thread-based coding.

Despite of the different models, the industrial standard for high performance computing is MPI.

This library allows to use the real parallel hardware capacities, because it is designed specifically

for distribute-memory systems, additionally it is possible to use multi-thread implementations in

the same code, alike it supports C/C++ and Fortran programming languages. Additionally, this

standard can be executed in a share memory system, such as desktop computer.

Some researcher choose the OpenMP to develop their computational platforms, and usually

it is because its simplicity at implementation level. Sometimes they need to use sequential code

previously written, and it can be easily modified using OpenMP directives (Paris et al., 2013). Nev-

ertheless, the codes developed based on MPI offers the best scalability and true high performance,

but their use requires a bigger effort in order to develop the complete code in parallel.

2.7.2.1 Message passing interface

Originally, the MPI library (not a language) was designed for distributed memory architectures.

Today, MPI runs on virtually any hardware platform, either distributed-memory, shared-memory

or hybrid hardware. The real power of MPI is in being able to use multiple computers. The MPI

library is the de facto tool for large scale parallelism as it is used in engineering sciences.

The Message-passing is a communication paradigm in which processes communicate by ex-
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changing messages via communication channels. The processes is a task executing on a given

processor at a given time. The Operating System (OS) treats each process as an independent entity

and schedules it to run on system resources. Each process maintains its own virtual address space,

which the OS maps into physical memory. In MPI model there are always multiple processes active.

It is possible to start a large number of MPI processes, even on a laptop. In MPI all parallelism

is explicit. The programmer is responsible for correctly identifying parallelism and implementing

parallel algorithms using MPI constructs. MPI defines their own data-type to produce a portable

application. Thus, depending on the system, MPI cast the data to fitting the datatype of the host sys-

tem. The basic model of MPI is Single Program Multiple Data (SPMD). It means that each process

is an instance of the same program, each process operates on its own data. The synchronization

between the MPI processes is done through explicit send and receive calls. In MPI applications

there is no master process, all processes are equal, start and end at the same time, this property is

called symmetry.

2.7.2.2 Libraries for parallel programming

Use a parallel programming paradigm implies that all tools must be compatible within them. Hence,

there are some libraries written for parallel processing which provides capabilities for linear algebra

computations and data management. Some functions of these libraries are developed on OpenMP

or MPI, and in some cases for both. Commonly, for economical reasons and flexibility, the open-

source or free libraries are preferred, and many of them have an excellent performance.

Some classical libraries for linear algebra operations, which also provide parallel func-

tionality based on share-memory model are Eigen (Guennebaud et al., 2022) and Armadillo

(Sanderson and Curtin, 2016). Examples of libraries which support distribute-memory (and also

share-memory) are Elemental (Poulson et al., 2013), PETSc (Balay et al., 2021) and Trillinos

(Heroux et al., 2005). Additionally, there are libraries specifically focused on the solution of large

linear systems of equations (linear solvers), as is the case of PARDISO (Kourounis et al., 2018),

MUMPS (Amestoy et al., 2001), and HYPRE (Falgout and Yang, 2002). On the other hand, in

many cases the results from large-scale parallel processing must be treated with suitable tools.

These tools must be able to display or process huge amount of data. Some packages which pro-

vides these benefits are VisIt (Childs et al., 2012), TecPlot Software and ParaView (Ahrens et al.,

2005). Besides, because of the use of the FEM, the need for a meshing tool capable to have a good

intregration with the processing libraries is important. It is possible to find some libraries such as

LibMesh (Kirk et al., 2006) and Gmsh (Geuzaine and Remacle, 2009) which provide several tools

for mesh generation and usually are compatible with the most used solvers.

In recent years, the HPC has been improved by the use of accelerator-based architectures like
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Graphics Processing Units (GPU) and Field Programmable Gate Arrays (FPGA), among others.

These architectures has the purpose to accelerate the computations, but their use is not straight-

forward and depends on the type of application. In general, because of the differences in their

architectures each device uses its own programming language, producing a complicated integration

between them.

2.7.3 Improving the performance for multibody topology optimization analysis

In order to increase the performance in large-scale topology optimization problems, the researchers

typically focus on the numerical algorithms and computational tools. These two approaches have

a strong interaction and dependence.

The algorithms can be improved, or new ones can be developed in order to reach a better per-

formance. Some approaches attempt to apply a combination of different algorithms with the aim of

increasing the computational efficiency (Liao et al., 2019). Other promising strategies reside on the

time reduction by solving the nested analysis problem using multigrid methods (Amir et al., 2014).

A recent survey of the different strategies for speed-up the solution of the topology optimization

problems is presented by Mukherjee et al. (2021).

In the case of computational tools, the key aspects are the programming models and hardware

features. When the algorithms are adequate and well designed, the computational time depends on

the programming model and hardware capability. For these reasons, parallel computing opens the

gates to increase the computational efficiency for the problem under study.

In the last years, several works have been focused on topology optimization for a single

body using parallel computing on CPUs such as (Aage et al., 2015, Aage and Lazarov, 2013,

Aage et al., 2008, Borrvall and Petersson, 2001, Evgrafov et al., 2008, Kim et al., 2004, Liu et al.,

2019, Mahdavi et al., 2006, Vemaganti and Laurence, 2005). Moreover, parallel processing

on GPUs is another vibrant area of interest (Challis et al., 2013, Martínez-Frutos et al., 2017,

Schmidt and Schulz, 2011, Wadbro and Berggren, 2009, Zegard and Paulino, 2013). Among these

trends, parallel computing on CPU remains as the dominant one. Regarding to multibody topology

optimization for large-scale, there are few works on this topic, an example of this is the work done

in the doctoral thesis presented by Moghadasi (2019).

2.7.3.1 The PETSc library for large-scale topology optimization

In (Aage et al., 2015) the authors present a public and flexible framework for parallel topology

optimization in CPU. The code is written in C++ using object oriented programming, and it is
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based on PETSc. The default version of this program solves the minimum compliance of cantilever

beam problem, and it includes a parallel version of important algorithms such as the method of

moving asymptotes, and filters. Besides, in (Aage et al., 2017) the authors report a giga-voxel

analysis for morphogenesis in structural desing, where the methodology was implemented using

the PETSc library. These examples evidence the suitability of PETSc for large-scale problems in

topology optimization.

The use of libraries like PETSc eliminates the need to write from scratch all the low-level math

libraries and specialized algorithms for parallel processing. PETSc is a collection of parallelized

libraries for linear algebra operations, which includes several types of solvers, methods for partition

domain, and it is freely available. Its implementation is in parallel and scalable to thousands of

cores, and it is portable to the most popular operating systems.

In order to solve the problem at hand in a reasonable amount of time, a suitable computational

platform for multibody topology optimization is developed for parallel processing in this thesis.

The platform it is written in C++ programming language, using the object oriented paradigm, it

is not software dependent, and it is designed to solve large scale problems. The computational

platform is based on PETSc. The next sections are dedicated to provide an overview of the parallel

framework for multibody topology optimization.

2.7.4 MUBOTO framework

The code of the computational framework is written based on the object oriented paradigm, there-

fore the MUBOTO structure relies on the class concept, which are conceived as modular units

allowing their operation independently. The mathematical formulation to modeling multibody sys-

tems based on topology optimization is described in the Sections 2.2 and 2.3. These algorithms are

encapsulate in three classes: Body, Multibody and Optimization.

The layout of MUBOTO framework is presented in Fig. 2.4. The first level represents the most

general classes or libraries which do not need modifications when the problem changes (different

mechanism). The second level presents those classes which are general and they are independent

of the application, but need some modifications when the problem is different. In the upper level

there are classes which must be adapted in order to analyze the multibody system under study. In

the main file is where the entire process of MUBOTO is managed.

The PETSc library forms the basis of the entire application, then SLEPc and SUPERLU_DIST

are libraries of specialized solvers. Moreover, three useful classes are taken from Aage et al. (2015):

the MMA class which contains a fully parallelized implementation of the MMA algorithm, the

MPIIO class capable of dumping arbitrary field data into a single binary file, and the Filter class,
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Figure 2.4: MUBOTO framework.

which contains sensitivity and density filters. The remaining classes comprising the framework are:

• Body: In this class the geometry, mesh, material properties, joints and the interface nodes are

defined. The class contains methods for the computation of the matrix of static modes and

also to solve the natural frequency analysis. The proposed methodology is based on the finite

element formulation, thus the first step is the discretization of bodies. The mesh of each link

is generated using structured grids handled by distributed arrays DMDA provided by PETSc.

The DMDA object manages the parallel communication required while working with data

stored in regular arrays.

• Multibody: It contains information related to the multibody model, such as the type of

multibody system, number of bodies, and boundary conditions. This class solves the reduced

multibody FE models by means of the SUPERLU_DIST solver. In this class the kinematic

connections of the multibody system are considered.

• Optimization: This class works as a manager between the Body and Multibody classes. It

includes the definition of the objective function, constraints and their gradients. In our case

the gradients are computed analytically and they are evaluated instead of being approximated.

The results obtained with MUBOTO can be visualized in ParaView (Ahrens et al., 2005), which

is a specialized package for display results from large-scale analysis. Besides, the computation

of the matrix of static modes (Eq. (2.25)) and the solution of the natural frequency analysis (Eq.
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(2.50)) are the more demanding computations in MUBOTO, therefore they are solved using specific

solvers, which are described in the following section.

2.7.5 Linear solvers and eigenvalue solvers

Computing the matrix of static modes implies to solve a large sparse linear system, which are the

equilibrium equations of the FE model. This computation is accomplished for each body of the

mechanical system, generating a high computational effort. In order to solve these linear systems

there are two types of solvers: direct solvers (factorization of the stiffness matrix), and iterative

solvers. Iterative solvers are the best option for large-scale problems because they are faster than

direct solvers, use less memory, and they are well suited for parallelization, since these solvers

requires less computations and memory resources (Bendsøe and Sigmund, 2004).

Since MUBOTO is based on PETSc, several linear solvers and preconditioners are available

throughout the object KSP (Krylov methods). In addition, PETSc interfaces to other specialized

high-performance libraries of linear solvers such as HYPRE (Falgout and Yang, 2002), and Su-

perLU_DIST (Li and Demmel, 2003), among others. The static modes computations are performed

by a iterative solver due to the size of the problem. Thus, we use the KSPCR solver (provided by

PETSc), which implements the conjugate residual method. It is an iterative Krylov subspace nu-

meric method used for solving systems of linear equations, and it is very similar to the popular

conjugate gradient method. The preconditioner used is PCJACOBI, which is a diagonal scaling

preconditioning. The solution of the reduced linear systems whose size is small (reduced mod-

els), is performed by a direct solver provided by SuperLU_DIST, which is a parallel direct solver

package for LU factorization.

On the other hand, in order to solve the free vibration problem, we use the Scalable Library

for Eigenvalue Problem Computations (SLEPc) (Hernandez et al., 2005). This library is a software

for the solution of large-scale sparse eigenvalue problems, it is an extension of PETSc. In our case

the Generalized Davidson method is selected to solve the eigenvalue problem. This is an iterative

method which can be useful to solve any type of problem (Generalized Hermitian, Generalized Non-

Hermitian, etc.), and this method has the possibility to computing different number of eigenvalues.

2.8 Summary

In this Chapter the general formulation for multibody topology optimization was described. The

methodology is based on the density-based SIMP approach, thereby the finite element method is

used in order to model the multibody system. The elastostatic and elastodynamic models of the
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MBS were formulated based on the SIMP scheme in order to capture the MBS elastic behavior.

In addition, the optimization is performed simultaneously in all the bodies based on the structural

response of the entire system. Besides, with the purpose of reduce the computational cost associated

to the solution of MBS models, the static and dynamic condensation were exploited. These model

reduction techniques leads to reduced matrices which are used to build computationally efficient

elastic models of the MBS.

In topology optimization typically appears numerical problems such as mesh-dependence and

checkerboard pattern. These issues are solved by means of restriction methods which operate as

a filters, in our case it is done by filtering the densities. Regarding the optimization problem res-

olution, it was concluded that due to the type of problem faced on this thesis, the best option for

solving the TO problem is a gradient-based algorithm. Moreover in the view of the optimization

problem involves a high number of variables, multiple and different types of constraints, thus the

MMA optimizer is the most suitable tool for this situation. With respect to the equality constraints,

it is proposed to convert them into inequality constraints in order to avoid a very restrictive opti-

mization scheme. On the other hand, the gradient-based optimizer requires the availability of the

gradient of each function involved in the optimization process. These gradients or sensitivities

can be computed analytically or numerically, being preferred the analytical expression. Hence, the

analytical gradients of the compliance and natural frequency of the MBS were computed.

The mathematical model described in this Chapter was implemented in a computational plat-

form specifically developed for this research work, which is called MUBOTO. Topology optimiza-

tion for three dimensional multibody systems leads to large models. Therefore, in order to solve

the model in a reasonable amount of time, a computational platform for fully parallel processing

was developed in C++ programming language. It uses the object oriented paradigm and the dis-

tributed memory model for parallel computing, which implies that all algorithms must be written

for parallel processing. Moreover, since the platform is developed based on PETSc library, and its

complementary package SLEPc, there are available high-performance iterative solvers for linear

systems and for eigenvalue problems. As a result, these libraries make possible take the advantage

of parallel computing and exploit efficiently the hardware resources.

The computational platform MUBOTO can be used to model the MBS as a flexible systems.

Therefore, using this formulation it can be possible to perform structural topology optimization of

the whole multibody system while the other constraints are considered.
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Chapter 3

Topology optimization for dynamic

balancing of four-bar linkage

... la derrota tiene una dignidad que la ruidosa victoria no merece ...

Jorge Luis Borges, La Cifra 1981.

H
ISTORICALLY the four-bar linkage has been an object of study for a long time. This

linkage is a common component in many mechanical systems, being the simplest 1-

DOF linkage. Therefore, the research works which treat different engineering topics

on this mechanism are vast. The dynamic balancing is no exception, and in this chapter it is

presented as a new approach for the optimum design of a reactionless four-bar linkage relied on

multibody topology optimization. The reliability of the proposed approach is validated numerically

with commercial software, and a prototype was built for experimental validation of its dynamic

balancing performance.
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Figure 3.1: Scheme of the four-bar linkage.
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3.1 Introduction

A general scheme of the four-bar linkage is given in Fig. 3.1. This mechanism has 1-DOF, and it

is composed of three moving bodies Bi, i = 1, . . .3, and one fixed body, B0. The mass of body Bi

is mi, and its length is defined as ℓi. The center of mass Si of the moving bodies is represented by

distances r1, r2, r3 and constant angles ψ1, ψ2, and ψ3, which have been defined in a local frame

rigidly attached to the respective moving body. Furthermore, θ1 is the angular position of body B1

with respect to the X0 axis.

The dynamic balancing of the four-bar linkage has been the object of study in many re-

searches. These works can be classified as those which perform (i) shaking force balanc-

ing (Artobolevskii and Edelshtein, 1935, Berkof and Lowen, 1969, Fisher, 1902, F.R.E. Crossley,

1954, G.L. Talbourdet and P.R. Shepler, 1941, Hilpert, 1968, Smith and Maunder, 1967), (ii) the

complete shaking force and partial shaking moment balancing (Arakelian and Dahan, 2001,

Arakelian et al., 2001, Berkof and Lowen, 1971, Carson, 1978, Elliott and Tesar, 1977, Haines,

1981, Lowen and Berkof, 1971, Shchepetilnikov, 1968, Wiederrich and Roth, 1976), and the

(iii) complete shaking force and shaking moment balancing (Arakelian and Smith, 1999, 2005,

Bagci, 1982, Berestov, L.V., 1977, Berkof, 1973, Briot and Arakelian, 2012, Dresig et al., 1994,

Esat and Bahai, 1999, Feng, 1991, Kamenskii, 1968, Ye and Smith, 1994), where the complete

shaking moment balancing is achieved using additional components. As can be concluded, the

shaking force balancing of the four-bar linkages is usually addressed by employing counterweights,

and there are well known solutions with the disadvantage of increasing the total mass. However, the

shaking moment balancing of the four-bar linkage is more challenging, and it is generally carried

out using counter-rotations.
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fixed base

actuated joints
(a) Reactionless spatial 3-DOF mechanism. (b) Reactionless spatial 6-DOF parallel robot.

Figure 3.2: Design of reactionless robot using a reactionless four-bar linkage as a building leg
(Wu and Gosselin, 2004). The reactionless spatial 3-DOF mechanism is used as a building leg
in order to design the 6-DOF parallel robot.

On the other hand, to avoid the increase of the moving masses and of the input torques, several

works use optimization techniques in order to minimize some unbalanced reaction loads of the

four-bar linkage (Berkof and Lowen, 1971, Chaudhary and Saha, 2007, Demeulenaere et al., 2006,

Farmani et al., 2011, Orvañanos-Guerrero et al., 2019, Qi and Pennestrí, 1991, Zhang and Jihong,

1995). Usually these works solves the dynamic balancing problem as an optimization problem, in

which the shaking force and moment are used as functions to be minimized or constrained.

In order to avoid the addition of counter-rotations for the shaking moment cancellation, it was

shown by Ricard and Gosselin (2000) that four-bar linkages can be fully balanced without the ad-

dition of counter-rotations or any auxiliary linkages by forcing a combination of geometric rela-

tionships and proper mass distributions. Three different types of reactionless four-bar linkages,

characterized by their link lengths have been found.

Additionally, it is possible to exploit this self-balanced linkage as a special module for building

reactionless robots. For instance, in (Gosselin et al., 2004), the authors present the synthesis of a

planar and spatial 3-degrees-of-freedom reactionless mechanism, using the dynamically balanced

four-bar linkage without counter-rotations, while in (Wu and Gosselin, 2004) this approach is ex-

tended to the synthesis of spatial 3-DOF and 6-DOF reactionless mechanism, as can be seen in

Fig. 3.2. This strategy represents one of the best alternatives in order to obtain reactionless robots

while reducing their design complexity, because it does not require supplementary components for

shaking moment balancing.

For robot design purposes, obtaining reactionless four-bar linkage is of interest, but is usually

necessary to optimize other performances in parallel. In particular, in (Jiang and Gosselin, 2010),

it is shown that the linkage input torque is mainly affected by the mass of the links to be balanced.
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Therefore, in order to optimize the self-balanced four-bar linkage, and to take into account the

elastic behavior of the links, in this research work we propose to use structural topology optimiza-

tion as a tool for the design of a reactionless four-bar linkage. This approach allows to perform a

complete shaking force and moment balancing, because the mass redistribution is constrained by

the dynamic balancing conditions included in the optimization problem, and at the same time the

elastic behavior of the links is taken into account.

3.2 Dynamic balancing conditions of the four-bar linkage

The balancing conditions to achieve a full dynamic balancing of the four-bar linkage without

counter-rotations were settled down in the seminal paper of Ricard and Gosselin (2000). These

balancing conditions are based on a set of geometric relations and constraints on the inertial param-

eters of the links.

Indeed, there are three families of this reactionless four-bar linkage, characterized by their

links lengths, which are: S1: ℓ1 = ℓ4 and ℓ2 = ℓ3, S2: ℓ1 = ℓ3 and ℓ2 = ℓ4, and S3: ℓ1 = ℓ2

and ℓ3 = ℓ4 (Ricard and Gosselin, 2000), which lead to the full dynamic balancing without the

use of any counter-rotations. These families are schematically represented in Fig. 3.3, where the

parameter xi is the location of Si along the straight line between the joints of the body Bi (see Fig.

3.1).

The second set of link lengths has proven to be an effective option for design reactionless

parallel mechanisms (Gosselin et al., 2004, Wu and Gosselin, 2004). Therefore, we decided to

focus our work on this particular linkage, which is depicted in Fig. 3.3b.

The dynamic balancing conditions, given in (Ricard and Gosselin, 2000) for the second set of

link lengths, are expressed in terms of bodies inertial parameters (Section 2.5) in order to take into

account the elastic model for topology optimization. Following (Briot and Goldsztejn, 2018a), the

dynamic balancing conditions are given by:

Iy1 = 0, Iy2 = 0, Iy3 = 0 (3.1a)

Ix1

ℓ1
+m2 −

Ix2

ℓ2
= 0 (3.1b)

Ix3

ℓ3
+

Ix2

ℓ2
= 0 (3.1c)

Izz1 − Ix1ℓ1 + Izz2 − Ix2ℓ2 = 0 (3.1d)

Izz3 − Ix3ℓ3 + Izz2 − Ix2ℓ2 = 0 (3.1e)
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(c) Set S3: ℓ1 = ℓ2 and ℓ3 = ℓ4.

Figure 3.3: The three kinds of dynamically balanced four-bar linkage.

Equations (3.1a) are included in order to simplify the link design and keep its center of mass

along the longitudinal link axis. Based on Fig. 3.1, these equations are formulated when ψ1 =

ψ3 = π and ψ2 = 0.

The following sections present a formulation intended to optimize the four-bar linkage taking

into account its elastic behavior, while dynamic balancing conditions are satisfied.

3.3 Topology optimization for dynamic balancing

In this section we report the optimal design of the reactionless four-bar linkage using multibody

topology optimization. In previous sections we described the methodology for linkage modeling,

and we presented the dynamic balancing conditions. The following section is dedicated to the

definition of the optimization problem and its resolution.
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(a) Initial design domain of bodies B1 and B3. Thickness of 32 mm.
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(b) Initial design domain of body B2. Thickness of 10 mm.

Figure 3.4: Initial design domain of four-bar links. All dimensions are in millimeters.

All the following analyzes were carried out using the MUBOTO framework running on a com-

puter with a processor AMD Ryzen 9 3900X, using the OS Ubuntu 20.04 64 bits, and PETSc 3.16.0,

while the results are visualized with ParaView.

3.3.1 Optimization problem

The four-bar linkage under study was presented in Fig. 3.3b, and the following assumptions are

referred to this scheme. The link lengths selected for our studies are: ℓ1 = ℓ3 = 60 mm, and

ℓ2 = ℓ4 = 200 mm, which are proposed in (Briot and Goldsztejn, 2018a). The initial design domain

for the movable links is presented in Fig. 3.4. Each link has two joints, which are represented by

holes of 4 mm of diameter. Bodies B1 and B3 have the same dimensions and thickness of 32 mm,

while body B2 has 10 mm of thickness. The initial dimensions of the links were defined after

several simulations, choosing the design/solution with less material between the joints, but with a

meaningful design. This implies to have links with bigger thickness. Performing specific analysis

in order to select the dimensions of these initial guesses can be a particular topic of study, which is

out of the scope of our research work.
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The assembled linkage is subject to external loads which are applied, with respect of the global

frame, as follows (see Fig. 3.3b): at O2 and O′
2 a force equal to f= [10, 10, 10]T N, applied along the

x, y and z global axes. Additionally a moment at O3 of 1 Nm is applied around z-axis. These loads

were defined arbitrarily. Besides, the linkage was optimized with the joint O1 fixed at θ1 = π/2.

The approach consists of generating a mesh for each body, and then analyze the bodies as

a multibody system under a set of loads and boundary conditions, such as it was described in

Chapter 2. The mesh is generated as a structured 3D grid using 8-node linear hexahedral elements.

The finite element (FE) analysis is assumed linear elastic, and a penalization factor for the SIMP

scheme equal to p = 3. The element size is equal to 2 mm for all bodies and each node has three

degree of freedom for Cartesian displacements. Hence, the four-bar linkage is modeled using a

total of 116,789 elements and it generates a FE model with 362,700 degrees of freedom.

In order to model a link we use passive and active elements. Both types of elements are consid-

ered in the finite element analysis, but only the active ones are included in the optimization process.

It is important to mention that the density of passive elements never changes, and their initial state

can be zero or one (void or solid).

In our case, we use passive elements with the purpose of modeling the link joints. A void region

is used to create the hole in the joint, and the solid region represents the material required to create

the joint. This solid region is considered in the computation of inertial parameters.

As usual in topology optimization problems, we apply a filtering procedure in order to obtain

a layout without checkerboard problem. This filter modifies the density variables based on the

density of their neighborhoods, it is know as density filter and was proposed in (Bourdin, 2001).

Additionally, we study how materials combination with different densities affects the mecha-

nism footprint. For this purpose, we consider to include in links B1 and B3 a cylinder made of

steel, while the link is made of material with lower density. Thus, using the cylinder of steel the link

footprint will be smaller compared whit a link made of the same material but without the cylinder.

Hence, we performed four optimization processes for different links materials, and they are as

follow:

• Case I: All the links are made of nylon.

• Case II: All the links are made of aluminium.

• Case III: All the links are made of nylon and bodies B1 and B3 includes a cylinder of steel.

• Case IV: All the links are made of aluminium and bodies B1 and B3 includes a cylinder of

steel.

For case III and IV, the bodies B1 and B3 have a hole to contain a cylinder, as can be seen in
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Figure 3.5: Initial design domain of bodies B1 and B3 (thickness of 32 mm) when the cylinder is included.
All dimensions are in millimeters.

Table 3.1: Material properties.

Material Density [kg/m3] Young’s modulus [GPa] Poisson ratio

Nylon (PA66) 1150 2.76 0.39

Aluminium 2700 68.9 0.33

Steel 7800 210 0.3

Fig. 3.5. The cylinder has diameter of 18 mm and it length is 32 mm, thus its mass is 63.5 g.

The cylinder of steel only affects the inertial parameters and the total mass of the links, and

it is not included in the optimization process. Thus, we propose a practical approach where the

links are analyzed with a hole instead of multimaterial model. The material properties used for the

optimization process are summarized in Table 3.1.

3.3.2 Definition of the optimization problem

In order to prevent negative effects due to excessive deformations, such as wear, low accuracy, and

even vibrations, we decide to optimize the linkage stiffness. Stiffness can be defined as a linkage

property to sustain loads without excessive deformations, and its reciprocal is know as compliance.

Therefore, compliance is established as the objective function, and it is minimized while constant

load is applied, under the dynamic balancing constraints of the four-bar linkage. In the following

sections the objective function and its constraints are defined as well as their gradients.
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3.3.2.1 Objective function

With the purpose to design a stiff linkage, we decide to minimize the compliance which is twice the

strain energy stored in the structure under a given loading. In essence, minimize the compliance is

equivalent to maximize the stiffness. Hence, the compliance of the four-bar linkage can be defined

by means of the strain energy stored in the linkage (Eq. (2.36)), and it is defined as follows:

f (ρρρ) = uT
r Krur (3.2)

where the compliance is computed using the linkage stiffness matrix Kr defined in Eq. (2.37), and

ur is the reduced set of independent coordinates, Eq. (2.33). The gradient of this objective function

is computed analytically and it was presented in Section 2.6.2.1.

3.3.2.2 Constraints

The set of balancing conditions given in Eq. (3.1) are essentially equality constraints, but they are

transformed into inequalities as it was described in Section 2.6.1. Hence, the inequality balanc-

ing conditions written in terms of the body inertial parameters (Section 2.5) are expressed in the

following form:

g1,2(ρρρ) =±
N1

∑
j=1

m1 jy1 jρ1 j ∓ ε ≤ 0 (3.3a)

g3,4(ρρρ) =±
N2

∑
j=1

m2 jy2 jρ2 j ∓ ε ≤ 0 (3.3b)

g5,6(ρρρ) =±
N3

∑
j=1

m3 jy3 jρ3 j ∓ ε ≤ 0 (3.3c)

g7,8(ρρρ) =±

{

1
ℓ1

N1

∑
j=1

m1 jx1 jρ1 j +
N2

∑
j=1

m2 jρ2 j −
1
ℓ2

N2

∑
j=1

m2 jx2 jρ2 j

}

∓ ε ≤ 0 (3.3d)

g9,10(ρρρ) =±

{

1
ℓ3

N3

∑
j=1

m3 jx3 jρ3 j +
1
ℓ2

N2

∑
j=1

m2 jx2 jρ2 j

}

∓ ε ≤ 0 (3.3e)

g11,12(ρρρ) =±

{

N1

∑
j=1

m1 j

(

x2
1 j + y2

1 j

)

ρ1 j − ℓ1

N1

∑
j=1

m1 jx1 jρ1 j +
N2

∑
j=1

m2 j

(

x2
2 j + y2

2 j

)

ρ2 j

−ℓ2

N2

∑
j=1

m2 jx2 jρ2 j

}

∓ ε ≤ 0 (3.3f)
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g13,14(ρρρ) =±

{

N3

∑
j=1

m3 j

(

x2
3 j + y2

3 j

)

ρ3 j − ℓ3

N3

∑
j=1

m3 jx3 jρ3 j +
N2

∑
j=1

m2 j

(

x2
2 j + y2

2 j

)

ρ2 j

−ℓ2

N2

∑
j=1

m2 jx2 jρ2 j

}

∓ ε ≤ 0 (3.3g)

where ε is the relaxation parameter defined in Eq. (2.84), and after generating the inequalities we

have twice number of restriction equations. If we consider only the dynamic balancing conditions,

then will have fourteen constraints. Besides, the corresponding gradients of the constraint functions

are computed assuming a linear relation between the design variables and the inertial properties,

thus:

∂g1,2(ρρρ)

∂ρρρ
=±

N1

∑
j=1

m1 jy1 j (3.4a)

∂g3,4(ρρρ)

∂ρρρ
=±

N2

∑
j=1

m2 jy2 j (3.4b)

∂g5,6(ρρρ)

∂ρρρ
=±

N3

∑
j=1

m3 jy3 j (3.4c)

∂g7,8(ρρρ)

∂ρρρ
=±

{

1
ℓ1

N1

∑
j=1

m1 jx1 j +
N2

∑
j=1

m2 j −
1
ℓ2

N2

∑
j=1

m2 jx2 j

}

(3.4d)

∂g9,10(ρρρ)

∂ρρρ
=±

{

1
ℓ3

N3

∑
j=1

m3 jx3 j +
1
ℓ2

N2

∑
j=1

m2 jx2 j

}

(3.4e)

∂g11,12(ρρρ)

∂ρρρ
=±

{

N1

∑
j=1

m1 j

(

x2
1 j + y2

1 j

)

− ℓ1

N1

∑
j=1

m1 jx1 j +
N2

∑
j=1

m2 j

(

x2
2 j + y2

2 j

)

−ℓ2

N2

∑
j=1

m2 jx2 j

}

(3.4f)

∂g13,14(ρρρ)

∂ρρρ
=±

{

N3

∑
j=1

m3 j

(

x2
3 j + y2

3 j

)

− ℓ3

N3

∑
j=1

m3 jx3 j +
N2

∑
j=1

m2 j

(

x2
2 j + y2

2 j

)

−ℓ2

N2

∑
j=1

m2 jx2 j

}

(3.4g)

Consequently, the mathematical formulation of the optimization problem for the optimum de-

sign of the reactionless four-bar linkage is expressed as:

min
ρρρ∈[0,1]

: f (ρρρ) = uT
r Krur (3.5)
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Table 3.2: Optimization results.

Case Time [h] Max. const. violation [%] f (ρρρ)

I 23.63 6.64 ·10−4 1.24

II 20.91 1.09 ·10−4 1.16

III 23.05 1.69 ·10−4 1.13

IV 20.94 1.13 ·10−4 1.13

subject to :g(ρρρ)≤ 0,

where g(ρρρ) is the set of the dynamic balancing constraints given in (3.3). Besides, the objective

function and the constraints are normalized using their values computed for the first iteration, ex-

cluding Eq. (3.1a) whose initial values are null.

Furthermore, the optimization problem presented in this Chapeter is solved using the gradient-

based MMA optimizer (Svanberg, 1987), because it is able to handle large number of variables,

as well as multiple constraints, and has excellent convergence properties (Bendsøe and Sigmund,

2004). Since MMA is a first-order optimizer, the analytical gradients of the objective function and

constrains are derived in order to improve the computational performance of the optimizer. The

dynamic balancing conditions, used as a constraints, are linear with respect to the decision variable,

which simplify the gradient computation.

3.3.3 Numerical results

In our case, constraint violation is defined as an index intended to evaluate the fulfillment of the

dynamic balancing conditions. Hence, because the optimization problem behavior is monotonic

when approaching convergence, the stopping criteria (convergence criterion) is defined based on

the number of iterations. Whereby the optimization process was run for each case until it reached

1000 iterations, in such a way that it is ensured a lowest constraints violation. The constraints

are normalized using their values for the initial design, thus the constraint violation percentage is

computed based on the initial and final values of the constraints.

The optimization results are summarized in Table 3.2, where the computation time, maximum

constraint violation and objective function values are displayed for each case. The values of the

constraint violation shows that the constraints are properly satisfied. Besides, the objective function

evolution is shown in Fig. 3.6 for the four cases. It worth to mention that, because of the optimiza-

tion process removes material, the strain energy (compliance) increases. Then the optimization

algorithm find the optimum material distribution based on the given constraints. This is a typical
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Figure 3.6: Compliance evolution for the four cases.

behavior in structural topology optimization problems.

The next section provides the results after perform the multibody topology optimization for

the dynamic balancing of the four-bar linkage. The finite element model, loads, boundary condi-

tions, objective function, and constraints are the same for all study cases, the only difference is the

material used in each case.

3.4 Results and discussion

The results from our topology optimization procedures are essentially structured meshes, where

all the elements are hexahedral of the same size, as shown in Fig. 3.7. These type of results are

know as a voxel-based results. Figure 3.7a shows a density field which ranging from 0 to 1, and

its corresponding colors are blue and red, respectively. A section view of the link is presented in

order to visualize the internal part of the link, which can be seen in Fig. 3.7b. Finally, Fig. 3.7c was

generated after applying a filter to remove the elements with density below 0.95.

In the following sections we examine the linkage footprint reduction comparing the four de-

scribed cases. Then, we describe and analyze the linkage optimized properties focusing on the

results of Case I. Numerical validations corresponding to the linkage compliance and dynamic

balancing were carried out using commercial specialized software.

Considering the results from Case I, we built a prototype in order to evaluate by an experiment

the dynamic balancing of the optimized linkage. Details on the manufacturing process and experi-
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(a) Full density field of body B1,
ranging from 0 to 1. (b) Internal section view.

(c) Elements with a density higher
than 0.95.

Figure 3.7: Voxel-based results of body B1 for Case I.

mental setup are described at the end of the section. Besides, the audiovisual material is provided

alongside the manuscript.

It is worth mentioning that the links shape obtained for the optimization problems that we define

are valid only for those particular problems. While the optimized dynamic balancing properties are

valid for the general linkage configuration, the structural properties are optimized for the given

linkage configuration.

3.4.1 Linkage footprint reduction

Based on the optimization results, we can consider, for a practical point of view, that the optimized

bodies can generate a bulky mechanism. Thus, in order to reduce the footprint of the mechanism,

we carried out the optimization process for different material combinations, described as a Case I,

Case II, Case III, and Case IV.

We decide to use the volume of the bodies as an index to evaluate the linkage footprint reduction.

The volume of each body is computed from the voxel-based results of the optimization process, it

means that we evaluate the volume of the body taking into account the elements with a density

higher than 0.95. The results of the optimization cases are presented in Fig. 3.8. In these figures

we show only body B1 for all optimization cases, but the volumetric reduction is computed for the

entire linkage.

Figure 3.8a shows the optimized body B1 from Case I. If we analyze the same problem, but

including now a cylinder of steel (Case III), then we obtain the body shown in Fig. 3.8b. In addition,

in order to compare the differences of using a material with higher density, the overlapping meshes

are presented in Fig. 3.8c. The volumetric reduction when Case I and Case III (including the

cylinder hole) are compared is 11.21%.

With respect to Fig. 3.8d, the results presented correspond to the optimized body B1 when the

71



3.4. RESULTS AND DISCUSSION

(a) Case I: Optimized body B1.
(b) Case III: Optimized body B1 with

cylinder.
(c) Overlapping of results: Case I and

III.

(d) Case II: Optimized body B1.
(e) Case IV: Optimized body B1 with

cylinder.
(f) Overlapping of results: Case II and

IV.

Figure 3.8: Linkage footprint reduction.

(a) Optimized body represented by
structured mesh.

(b) Optimized body represented by tri-
angular mesh. (c) Optimized body in CAD software.

Figure 3.9: Post-processing of the optimized body B1 for Case I.

material is aluminium. The material combination of aluminium with the cylinder of steel is shown

in Fig. 3.8e. Therefore, the overlapping results are given in Fig. 3.8f. The volumetric reduction

when Case II and Case IV (including the cylinder hole) are compared is 7.44%.

From the described results, we can conclude that the cylinder works as a counterweight, and

at the same time, due to its high density less material is required to achieve dynamic balancing

in bodies B1 and B3. Indeed, the location of the cylinder should be optimized for an optimum

footprint reduction. For our examples, we define this location performing several simulations,

choosing the location that produced best results.
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Table 3.3: Properties of the optimized reactionless four-bar linkage (Case I).

Body mass (kg) length (m) xi (m)

1 0.134808 0.06 -0.012414

2 0.044840 0.2 0.102785

3 0.133670 0.06 -0.012179

3.4.2 Numerical validations

The optimization results that have been presented, can not be treated as a solid object in standard

computer-aided design (CAD) software. In order to have an editable CAD file, it is mandatory to

perform the body-fitted post-processing, i.e., convert the voxel-based results to a smooth design

suitable for a CAD software. Using Paraview we apply some filters in order to generate a triangular

mesh which can be exported to STL file. The STL format usually can be read by any standard CAD

package, and then the CAD program converts the STL file into its native format. In Fig. 3.9, the

conversion process of the optimized body B1, from voxel-based results to CAD format is depicted.

Editable CAD files are necessary to make changes in the optimized bodies, as it it shown in

Fig. 3.9c, where the link joints where modified. These changes are necessary in order to create an

adequate CAD model for the physical prototype and numerical validations.

The optimized properties of the four-bar linkage are the compliance an dynamic balancing.

Hence, in order to validate these properties, the compliance is evaluated using ANSYS, and the

dynamic balancing of the linkage is analyzed with ADAMS. For this purpose the results from Case

I are considered. In Table 3.3 the properties of the optimized reactionless four-bar linkage are

presented, as well as the mass, link length and the location of the center of mass given by xi.

3.4.2.1 Compliance validation

The objective function was defined as the compliance, and it was minimized in order to ensure the

stiffest linkage design. With the aim to verify the results obtained with the proposed approach, we

perform a numerical validation of the linkage compliance using ANSYS.

The numerical validation with ANSYS is based on the static structural analysis of the linkage.

It was carried out using the conditions described in the optimization problem definition. Since the

compliance is twice the strain energy, considering the strain energy computed with ANSYS, the

compliance can be obtained by adding up the strain energy of all elements. In the optimization

process we normalize the objective function, but in order to compare the values, a non-normalized

compliance value is used. The compliance value from the optimization procedure is 1.8346 ·10−3 J,
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3.4. RESULTS AND DISCUSSION

Figure 3.10: Numerical validation of total deformations using ANSYS.

and the ANSYS compliance value is 1.8469 ·10−3 J, based on these results we obtain a small error

of 0.6704%.

Even though the aim of this work is not to perform an intensive linkage structural analysis, it is

necessary to verify the structural integrity of the linkage for the described conditions. Thus, the total

deformations were analyzed in ANSYS, having a maximum total deformation of 5.37 ·10−5 m. The

total deformation plot is shown in Fig. 3.10, where deformations are scale excessively for display

purposes.

Besides, Table 3.4 summarizes the computed joint deformations using ANSYS and the corre-

sponding deformations obtained with the optimization framework. From Table 3.4, and considering

the ANSYS results, the maximum joint displacement occurs at the joint O′
2. The linkage has a less

stiff behavior when is analyzed in ANSYS, nevertheless the comparative error for the joints defor-

mation is very low, having a value of 2.96 % for joint O2, and 1.94 % for joint O′
2. In general, these

results agree with the compliance validation, the higher strain energy is due to larger deformations

when a constant load is applied.

Differences in the comparative analyses arise form the particularities in each finite element

model. In ANSYS, we use the CAD model obtained after file format conversions, and the mesh

is generated by using the hex dominant method with the option of low order elements (linear hex-

ahedral), but due to the complex shape of the links, in some regions tetrahedral elements appears.

In our optimization program we use structured mesh with hexahedral elements. Thus, we do not

expect to have equal values, but very similar ones as they are shown.
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3.4. RESULTS AND DISCUSSION

Table 3.4: Joint deformations. All quantities are in meters.

Joint
ANSYS

X Y Z Norm

O2 4.3685 ·10−5 2.5500 ·10−9 8.8538 ·10−6 4.4573 ·10−5

O′
2 3.6929 ·10−5 −2.5008 ·10−5 4.4942 ·10−6 4.4826 ·10−5

MUBOTO

X Y Z Norm

O2 4.3097 ·10−5 2.4891 ·10−9 4.1009 ·10−6 4.3292 ·10−5

O′
2 3.6673 ·10−5 −2.3787 ·10−5 4.7843 ·10−6 4.3973 ·10−5

Table 3.5: Reaction loads comparison using their RMS values.

Reaction load (magnitude) Unbalanced linkage Reactionless linkage Reduction (%)

Shaking force [N] 0.0951 0.0026 97.26

Shaking moment [Nm] 0.0083 8.46 ·10−5 98.98

3.4.2.2 Validation of dynamic balancing

Numerical validation of the dynamic balancing was carryout using the ADAMS software. In order

to analyze the results, the optimized model is compared with an unbalanced four-bar linkage. This

unbalanced linkage has been modeled with the same links length and mass as the optimized links,

but with the center of mass placed between joints for each link.

The reactions loads on the base, for the balanced and unbalanced linkages, have been simulated

for arbitrary motions. The input angular velocity in the body B3 is a sinusoidal function equal to

0.37sin(πt), and the gravity is not considered. In Fig. 3.11 the corresponding results of balanced

and unbalanced models are presented. Figure 3.11a shows the corresponding reaction force of

balanced and unbalanced linkages. With respect to the shaking moments, the reaction moment for

the dynamic balanced linkage and unbalanced one is shown in Fig. 3.11b. The computed reaction

forces and moments clearly demonstrate the dynamic balancing of the four-bar linkage.

In addition, in Table 3.5 we present a comparison between the balanced and unbalanced link-

ages, taking into account the RMS of the reaction loads. The format conversion from structured

mesh to CAD format produces some numerical errors, which generate this very small unbalance in

the linkage. Using a finer mesh can be reduced these numerical errors, but finer mesh leads to a

huge computational cost, which is not justified in our case due to the small error.
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Figure 3.11: Numerical validation of dynamic balancing using ADAMS.

3.5 Experimental validation

Because of the complex shapes generated with topology optimization, the best option to fabricate

the optimized bodies is the Additive Manufacturing (AM) technique. Nevertheless, there are some

situations where the optimization parameters generates some particular shapes, which can be fabri-

cated with traditional manufacturing techniques.

In our optimization problems, the applied loads affect considerably the resultant shapes. If the

applied load in Case I is replaced with a force equal to f = [1, 1, 1]T N (ten times smaller than

the original), some cavities begin to emerge in the optimized bodies, what makes impossible to

fabricate the links with traditional manufacturing techniques. In Fig. 3.12, the optimization results

based on this modified Case I are presented, and as we can appreciate in Fig. 3.12b, the body has

cavities.
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3.5. EXPERIMENTAL VALIDATION

(a) Optimized body.

Internal hole

(b) Section view with cavities.

Figure 3.12: Cavities in an optimized body.

(a) CAD model. (b) Physical prototype.

Figure 3.13: Prototype of the optimized reactionless four-bar linkage.

For the load conditions that we define in our optimization problems, the resultant shapes do

not present internal hollows. Thus, the prototype presented in this work was fabricated with a

CNC milling machine, using the optimal solution of the Case I. The CAD model and the physical

prototype are shown in Fig. 3.13. For the physical realization, the body B2 was divided in two

parts (not for numerical validations) in order to allow the motion without interference with the other

bodies, and at the same time the bodies disposition keeps the center of mass of all the bodies in the

same plane.

3.5.1 Experimental setup

In order to verify the dynamic balancing of the optimized linkage, experimental tests were carried

out. The purpose is to evaluate the effects of the residual shaking force and moment in the case of

the dynamically balanced linkage. The usual experimental setup for the performance evaluation of

a dynamically balanced mechanisms includes force/torque sensors (Laliberté and Gosselin, 2016,

Martini et al., 2013, van der Wijk et al., 2013, Zomerdijk and van der Wijk, 2022), moreover the

prototype and the remaining electronic components are industrial grade devices, which is totally

reasonable and they are the best option to conduct this type of experimental evaluations. Never-

theless, we are proposing an affordable and simple alternative technique to evaluate the dynamic
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Figure 3.14: Experimental setup for the dynamically balanced four-bar linkage.
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(a) Dynamically balanced four-bar linkage.
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(b) Four-bar linkage with additional mass.

Figure 3.15: The four-bar linkage in its home position for the two scenarios.

balancing of the optimized four-bar linkage by means of video-processing.

The experimental setup consists in a fixed structure, the linkage base and the cables. Hence,

the base of the linkage was suspended from the fixed structure with four cables, as it can be seen

in Fig. 3.14. This arrangement allows the linkage to move freely in the presence of unbalanced

reaction loads. We use a direct current motor to provides oscillating movement in the linkage,

which is attached to body B3. With the aim of studying the prototype performance, we record

with a camera the location of its suspended based during its motion, and the resultant oscillatory

motion is analyzed using video processing1. Indeed, the amplitude of the oscillatory motion of the

platform is directly related to the amplitude of the shaking force and shaking moment exerted by

the moving linkage: the smaller the motion, the smaller the unbalance effects. For this task, we

1A movie of the camera records is available here:
https://uncloud.univ-nantes.fr/index.php/s/xfzrJMipy6zJAYN
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3.5. EXPERIMENTAL VALIDATION

use the open source software called Tracker (Brown, 2008), which is an image and video analysis

package. Besides, in order to compute the linkage base displacements, it is fundamental to define

an inertial reference frame, calibrate the video scale, and designate the feature to be tracked. The

video scale is the ratio of a real dimension to an image dimension in pixels between two points, and

it is computed providing the real dimension of an object in the video.

As can been seen in Fig. 3.14, the linkage is recorded from the top-view. The home position is

defined by the reference frame XY shown in Fig. 3.15, and it remains fixed while the mechanism

is in motion. We define the bearing on the joint O1 as the feature of interest, this feature will

be tracked in the video during the motion of the linkage. Therefore, using the position of the

tracked feature based on the reference frame, the linkage translations were determined. Besides,

the platform rotation is computed around the Z-axis, using the translation of two features belonging

to the linkage.

The experiments were performed for two scenarios, as we can see in Fig. 3.15. In the first

scenario, we use the optimized linkage to observe its behavior, Fig. 3.15a. Then, for the second

scenario we attach an extra mass (46.5 g) on the body B2 in order to induce an unbalance. This

mass is placed near to the joint O2, see Fig. 3.15b. For the two scenarios we use the same input

motion equals to cos(1.6πt), which is generated by the DC motor attached to body B3.

3.5.2 Prototype performance

In Fig. 3.16 we present a comparative evolution of the computed displacements for the first and

second scenarios. In Fig. 3.16a, the magnitude of the displacements for the balanced linkage are

presented, and the corresponding displacements for the unbalanced case are given in Fig. 3.16b.

The platform rotation is shown in Fig. 3.16c for the balanced linkage, and the Fig. 3.16d shows the

respective platform rotation for the unbalanced linkage.

From the experimental results, we can observe small translations and rotations in the case of

the balanced linkage, which implies that there are residual unbalanced reaction loads. These unbal-

anced reaction loads can be the consequence of numerical errors, generated when the file format

conversions were made, and of course due to the errors generated for the manufacturing process,

and because of the quality of the mechanical components. Nonetheless, if we compare the first and

second scenarios, the transnational displacement reduction based on their RMS values is 85.48%,

having a maximum translation of 1.16 ·10−3 m for balanced case, and 6.77 ·10−3 m for unbalanced

one. Regarding to the platform rotation, we can find a maximum absolute value of 0.42 deg when

the mechanism is dynamically balanced, and a maximum rotation of 3.36 deg for the unbalanced

case, these results lead to a reduction of 89.26 % with respect of their RMS values.
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(a) Balanced four-bar linkage translations on XY

plane.
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(b) Unbalanced four-bar linkage translations on XY

plane.
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(c) Balanced four-bar linkage rotation around the Z
axis.

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

0 10 20 30 40 50 60 70 80 90

P
la

tf
o
rm

ro
ta

ti
o
n

[d
eg

]

Time [s]

(d) Unbalanced four-bar linkage rotation around the
Z axis.

Figure 3.16: Experimental platform displacements for the balanced and unbalanced four-bar linkages.

All these results show that, by using TO, we were able to design a reactionless four-bar linkage

while its elastic behavior is taken into account during the design process. Note that a movie showing

the frame’s motion for the balanced and unbalanced cases is provided in the attached multimedia

content.

3.6 Summary

The dynamic balancing of the four-bar linkage was addressed by means of topology optimization.

Through this approach the mass of the links is redistributed, based on a optimization procedure, in

order to fulfill the dynamic balancing conditions (without counter-rotations). The proposed method-

ology makes possible to model the four-bar linkage as flexible MBS in order to take into account

the elastic behavior of the linkage. Even more, the linkage optimization can be performed based on

the entire linkage response and considering structural performance indices. Thus, dynamic balanc-

ing conditions can be fulfilled while the link elasticity is considered. The proposed methodology
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was implemented in the computational framework MUBOTO, which has been specially designed

for the large-scale multibody topology optimization analysis.

The dynamically balanced four-bar linkages was numerically validated using ADAMS software.

This optimized linkage evinced an excellent dynamic balancing performance since the unbalanced

reaction loads were almost canceled. The residual shaking forces and moments which appear in the

ADAMS simulation were generated because of the body-fitted post-processing, but this unbalance

was almost negligible. Besides, the optimized four-bar linkage was compared with an unbalanced

linkage. The comparison shown a shaking force and moment reduction of 97.26% and 98.98%,

respectively.

Even if our main objective was not to perform an intensive structural design, in order to take into

account the link elasticity, we optimized the linkage stiffness through minimizing the compliance.

In this way, we avoided excessive deformations, which are source of low accuracy, wear and even

vibrations. The linkage compliance was validated with the commercial software ANSYS. The

comparison between the optimized compliance value and the compliance obtained with ANSYS

by structural analysis has an error of 0.6704%. This small error indicated that the optimization was

successfully performed.

Furthermore, with the aim to reduce the linkage footprint, it was proposed a practical approach.

Using a cylinder of steel in the bodies B1 and B3 it acts as a counterweight and because of its high

density less material is required in the links. This method was applied for two different material

combinations, obtaining the maximum linkage footprint reduction of 11.21%.

On the other hand, it was proposed to use video processing as an affordable technique for

experimental dynamic balancing evaluation. For the experimental setup the linkage was mounted

on a platform which is hanged by four cables attached to a fixed base. In this way free motion of

the platform is allowed when an unbalanced load is generated during the linkage operation (driven

by a DC motor). A prototype was built, and its dynamic balancing performance was analyzed by

means of this experimental approach using video processing, wherewith the effects of the residual

shaking force and moment were evaluated. These effects are embodied as translations and rotations

on the base of the optimized linkage, which were computed and measured with an unbalanced

linkage. The experimental displacements of the optimized linkage, compared with the unbalanced

one, are clearly smaller. Hence, comparing the balanced and unbalanced scenarios, the translational

displacement reduction based on their RMS values is 85.48%, while the reduction in the platform

rotation is 89.26%. This simple, but enlightening experiment, allowed to evaluate the dynamic

balance of the optimized linkage beyond a numerical validation.
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Chapter 4

Topology optimization for partial dynamic

balancing of five-bar mechanism

Inspiration most often strikes those who are hard at work.

Anonymous.

I
N this chapter partial dynamic balancing of the five-bar robotic mechanism is conducted using

topology optimization. The optimization problem is addressed by maximizing the mechanism

first natural frequency, while it is constrained by: (a) shaking force balancing conditions,

(b) mechanism inertial properties, and (c) mechanism compliance. Constraining the mechanism

inertial properties, the shaking moment generated at the frame is reduced. Furthermore, in order to

obtain meaningful designs for the natural frequency optimization, partial penalization scheme was

applied to the shaking force balancing constraints and also to the mechanism inertial parameters.
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4.1. INTRODUCTION

Figure 4.1: Scheme of the five-bar mechanism.
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4.1 Introduction

The five-bar mechanism is a two degree of freedom parallel robotic mechanism, composed of five

revolute joints with parallel axes. Its schematic representation is shown in Fig. 4.1. This mechanism

is able to position its end-effector, located at point C with coordinates (x, y), in a plane. The joints

located in A and E are usually the active ones, and they are in gray color to represent the actuated

joints.

It is usual that the bodies between joints A−B, and E −D are denoted as proximal links, and

the bodies between joints B−C and D−C are called distal links. Besides, the five-bar linkage can

be analyzed as a mechanism embodied by two “legs”, being the left leg the kinematic chain formed

by the bodies between the joints A−B−C, and the right leg that formed by joints E −D−C.

4.2 Dynamic balancing conditions of five-bar mechanism

The partial and complete dynamic balancing of the five-bar linkage has been studied by several re-

searchers such as Alici and Shirinzadeh (2006), Ilia and Sinatra (2009), Jean and Gosselin (1996),

Lecours and Gosselin (2010), van der Wijk (2014) and Acevedo (2015), among others. All these

papers agree that for this mechanism, the shaking force balancing can be fully accomplished by

relocating the center of mass of the links. Nevertheless, the complete shaking moment balancing is

only possible with the addition of external components.
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Figure 4.2: Five-bar mechanism with bodies of generic shape.

4.2.1 Shaking force balancing conditions

For the sake of completeness, in Appendix A are derived the shaking force balancing conditions.

These conditions allow to cancel the unbalanced forces at the base of the five-bar mechanism,

keeping the linkage center of mass stationary. Hence, based on the mechanism parametrization

shown in Fig. 4.2, the general shaking force balancing conditions are written as follows:

m1r1 cosψ1 +

(

ℓ1

ℓ3

)

m3r3 cosψ3 +m2ℓ1 = 0 (4.1a)

m1r1 sinψ1 +

(

ℓ1

ℓ3

)

m3r3 sinψ3 = 0 (4.1b)

m2r2 cosψ2 +

(

ℓ2

ℓ3

)

m3r3 cosψ3 = 0 (4.1c)

m2r2 sinψ2 +

(

ℓ2

ℓ3

)

m3r3 sinψ3 = 0 (4.1d)

m4r4 cosψ4 −

(

ℓ4

ℓ3

)

m3r3 cosψ3 +m3ℓ4 = 0 (4.1e)

m4r4 sinψ4 −

(

ℓ4

ℓ3

)

m3r3 sinψ3 = 0 (4.1f)

where mi and ℓi are the total mass and length of body Bi, respectively. Besides, the location of the

center of mass Si of body Bi, is described by the distance ri and the constant angle ψi.

For practical purposes, the balancing conditions given in Eq. (4.1) can be simplified. Thus, the

following considerations are assumed:

• angles ψ1 = π and ψ4 = π ,
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• the center of mass S2 is located on B, and S3 on D, which implies that r2 = r3 = 0,

• all links are of equal lengths: ℓ1 = ℓ2 = ℓ3 = ℓ4.

Therefore, the simplified shaking force balancing conditions are given by:

−m1r1 +m2ℓ1 = 0 (4.2a)

−m4r4 +m3ℓ4 = 0 (4.2b)

m2r2 cosψ2 = 0 (4.2c)

m3r3 cosψ3 = 0 (4.2d)

where Eqs. (4.2c) and (4.2d) are the necessary conditions to locate the COM of bodies B2 and B3

on joints B and D respectively, and they are derived from Eq. (4.1c).

Considering links of equal lengths makes possible to impose that the leg A−B−C is symmet-

rical to the leg E −D−C. It means that, both proximal links and both distal links, should have

the same shape and the optimization problem can be solved using symmetry, i.e., the mechanism

is analyzed for only one leg (but the whole system is considered). When the problem is analyzed

using symmetry, the optimization problem is solved only for one leg of the mechanism, but the

structural response takes into account the whole system. It is possible because the symmetrical leg

is obtained by reflecting the optimized leg, and thus the results involve the entire linkage. Thus, by

applying conditions of symmetry is possible to reduce the computational time in the optimization

process because of the considered design variables are the half of the total.

In addition, defining the same length for all links makes possible to avoid holes on the five-bar

mechanism workspace (Figielski et al., 2007). Furthermore, this condition allows a symmetrical

distribution of the mechanism performance in the dextrous workspace1 with respect to the Y0-axis

(Briot and Goldsztejn, 2018b). After these considerations, the resultant shaking force balancing

conditions described in terms of their inertial parameters, are given by the following expressions:

Iy1 = 0, Iy4 = 0 (4.3a)

Iy2 = 0, Iy3 = 0 (4.3b)

Ix2 = 0, Ix3 = 0 (4.3c)

−Ix1 +m2ℓ1 = 0, −Ix4 +m3ℓ4 = 0 (4.3d)

where Eq. (4.3a) and (4.3b) are necessary in order to constraint the center of mass of each link along

1The dextrous workspace is the set of locations of the end-effector for which any orientations can be reached
(Merlet, 2006).
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Figure 4.3: Shaking force balanced five-bar mechanism.

the longitudinal axis. Using these balancing conditions it will be generated a five-bar mechanism

with the characteristics shown in Fig. 4.3.

4.2.2 Inertial properties of the five-bar mechanism

In this section the angular momentum of the linakge is studied in order to identify the inertial

parameters which produce a lower shaking moment at the base of the linkage. In Appendix A, the

general expression of the angular momentum was derived, and it is replicated here:

hAz
=
{

IS1 +m1r2
1 +m2ℓ

2
1 +m2ℓ1r2 cos(θ1 −θ2 −ψ2)

}

θ̇1+
{

IS2 +m2r2
2 +m2ℓ1r2 cos(θ1 −θ2 −ψ2)

}

θ̇2+
{

IS3 +m3r2
3 +m3ℓ4r3 cos(θ3 −θ4 −ψ3)+m3dr3 cos(θ3 −ψ3)

}

θ̇3+
{

IS4 +m4r2
4 +m3ℓ

2
4 +m3ℓ4r3 cos(θ3 −θ4 −ψ3)+m4dr4 cos(θ4 −ψ4)+m3dℓ4 cos(θ4)

}

θ̇4

(4.4)

where the parameters mi, and ℓi are the mass and length of the link Bi, respectively. The constant

angle ψi and the distance ri describes the location of the COM of the body Bi, while the angle

θi defines the orientation of the i-th body with respect to an horizontal axis, and θ̇i is its time-

derivative. ISi
is the moment of inertia of the moving body Bi around an axis perpendicular to the

plane of motion.

Analyzing Eq. (4.4), it can be noticed that the angular momentum of the five-bar linkage is not

constant, since it depends on the angular velocities of the bodies. Therefore, in order to eliminate

the shaking moment it is mandatory to include external components. Nevertheless, instead of

eliminating the shaking moment by external components, the constant factors can be constrained
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to be lower than a given threshold, with the aim to reduce the angular momentum effects.

Considering a fully force balanced linkage, the angular momentum given in Eq. (4.4) can be

simplified applying the shaking force balancing conditions, namely ψ1 = ψ4 = π , r2 = r3 = 0, and

equal links lengths. In consequence, the angular momentum of a force balanced linkage is defined

as follows:

hAz
=
{

IS1 +m1r2
1 +m2ℓ

2
1

}

θ̇1 +
{

IS2 +m2r2
2

}

θ̇2 +
{

IS3 +m3r2
3

}

θ̇3 +
{

IS4 +m4r2
4 +m3ℓ

2
4

}

θ̇4

(4.5)

which revels the well known fact: the angular momentum of a force balanced linkage is independent

of the reference point (Berkof and Lowen, 1971).

Because in our analyses we use symmetry, the angular momentum is considered as:

hAz
=2
{

IS1 +m1r2
1 +m2ℓ

2
1

}

θ̇1 +2
{

IS2 +m2r2
2

}

θ̇2 (4.6)

The angular momentum given in Eq. (4.6), can be expressed in terms of the moment of inertia of

the bodies with respect to their axis of rotation, i.e., Izz1 = IS1 +m1r2
1 and Izz2 = IS2 +m2r2

2, thereby

it is given as follows:

hAz
=2
(

Izz1 +m2ℓ
2
1

)

θ̇1 +2Izz2θ̇2 (4.7)

From Eq. (4.7) can be visualized that, in order to reduce the shaking moment without use external

components, the best approach is to constrain or minimize the moment of inertia of body B1, and

also to constrain or minimize the mass and moment of inertia of body B2.

In the following section the optimization procedure for the partial dynamic balancing is de-

scribed. The shaking force balancing conditions give in Eq. (4.3) are used as a constraints in the

optimization problem, along with the corresponding constraints on the moment of inertia of body

B1, and the mass and moment of inertia of body B2.

4.3 Topology optimization for partial dynamic balancing

In this section the optimization problem for partial dynamic balancing of the five-bar mechanism

is defined. The optimization solver used in this work requires the computation of the gradients of

all the involved functions, and they are computed using an analytical approach.

The numerical solution of the optimization problem was carried out using the computational

platform MUBOTO. All the following analyzes were performed on a computer with a processor
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(a) Initial design domain of body B1. Thickness of 50 mm.
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(b) Initial design domain of body B2. Thickness of 20 mm.

Figure 4.4: Initial design domain of five-bar links. The figures have different scales, and all dimensions are
in millimeters.

AMD Ryzen 9 3900X, using the OS Ubuntu 20.04 64 bits, and PETSc 3.16.0, while the results are

visualized with ParaView.

4.3.1 Optimization problem

The link lengths defined for our studies are ℓi = 90 mm, with i = 1 . . .4, and the dimension between

the fixed joints A and E is d = 112 mm. The initial design domain for the links is show in Fig. 4.4.

Each link has two joints denoted by the holes of 10 mm of diameter.

The problem formulation includes external loads applied to the joint C. These loads are equal

to f = [10, 10, 10]T N, applied along the x, y and z global axes, in addition a moment of 0.1 Nm is

applied at the same point around z-axis. The end-effector of the linkage is placed in the center of
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the regular dextrous workspace. This workspace is defined as a rectangle centered in (0, 110) mm

of width equal to 120 mm and height equal to 40 mm.

The material of the bodies is defined as steel, with a density of 7800 kg/m3, Young’s modulus

of 2.1 ·1011 Pa and a Poisson ration of 0.3. The bodies are meshed with a structured 3D grid using

8-node linear hexahedral elements. The finite element model is considered as linear elastic model,

and the penalization factor for the SIMP scheme is equal to p = 3. The element size is equal to

2.5 mm for all bodies and each node has three degree of freedom for Cartesian displacement. In

order to modeling the bodies, passive and active elements are used. The passive elements are used

to model the link joints. Moreover, since the analysis relies on the symmetry approach, the size of

the optimization problem is reduced in a half. Therefore the five-bar mechanism is modeled using

a total of 162,560 elements and it generates a FE model with 532,926 degrees of freedom. Besides,

in order to avoid the checkerboard and mesh-dependence problems, the density filter was applied.

The shaking force balancing of the five-bar linkage is accomplished keeping stationary the

center of mass of the entire mechanism. Thus, because the shaking force balancing conditions

are derived for generic mechanism configuration, the optimization solution for one configuration

guarantees a shaking force balancing for any mechanism configuration, unlike the shaking moment

which depends on the joint variables. Indeed, the structural performance can be different depending

on the mechanism configuration.

For multibody systems subjected to dynamic loads, frequency optimization is of great impor-

tance in order to avoid severe vibration. This excessive vibration occurs when the frequency of the

dynamic loading is close to the natural frequencies of the MBS, therefore is important to maximize

the first natural frequency. In this case study the objective function is defined as the first natural

frequency and it is maximized. Additionally, in order to perform partial dynamic balancing, the

optimization problem is constrained by: (a) shaking force balancing conditions, (b) mechanism

inertial properties, and (c) mechanism compliance. The latter ensures the mechanism capability to

support loads adequately. In the following sections the objective function and the constraints are

defined as well as their gradients.

4.3.2 Objective function

The first natural frequency or fundamental frequency is associated with the highest level of en-

ergy due to vibrations and at this frequency appears the displacements with the highest amplitude

(Briot et al., 2009). Maximizing the fundamental frequency allows a better control of the mech-

anism vibration response. Consequently, the objective function, defined as the fundamental fre-
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quency of the mechanism, is given as follows:

f (ρρρ) = f1 =
ω1

2π
(4.8)

where ω1 is the first natural pulsation obtained from the solution of Eq. (2.73):
(

ω2
1 Md −Kd

)

ud 1 =

0. Moreover, the natural frequency and the pulsation are related by ω1 = 2π f1. The gradient of

this objective function is computed analytically and it is presented in Section 2.6.2.2. Topology op-

timization for frequency optimization is more computationally expensive than compliance analysis

and it is especially challenging to apply to multibody topology optimization problems. Therefore,

the methodology takes advantage of dynamic condensation as was described in Section 2.3.2. In

our problem formulation we define s = 6, therefore the first six eigenmodes associated with the Eq.

(2.51) are computed.

4.3.3 Constraints

The optimization problem is constrained by three different types of functions. These constraints

and their gradients are derived in the following sections.

4.3.3.1 Shaking force balancing conditions

The shaking force balancing conditions are given in Eq. (4.3), nevertheless because of the use of

symmetry, only the set of balancing conditions corresponding to body B1 and B2 are considered.

These equations are equality constraints, but they can be written as inequality constrains without

loss of generality as it was reported in Section 2.6.1. Writing the balancing conditions in terms of

the body inertial parameters (Section 2.5), and converting the equality conditions into inequalities,

the following constraints are obtained:

g1(ρρρ) =
N1

∑
j=1

y1 jm1 jρ1 j − ε ≤ 0 (4.9a)

g2(ρρρ) =−
N1

∑
j=1

y1 jm1 jρ1 j + ε ≤ 0 (4.9b)

g3(ρρρ) =
N2

∑
j=1

y2 jm2 jρ2 j − ε ≤ 0 (4.9c)

g4(ρρρ) =−
N2

∑
j=1

y2 jm2 jρ2 j + ε ≤ 0 (4.9d)
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g5(ρρρ) =
N2

∑
j=1

x2 jm2 jρ2 j − ε ≤ 0 (4.9e)

g6(ρρρ) =−
N2

∑
j=1

x2 jm2 jρ2 j + ε ≤ 0 (4.9f)

g7(ρρρ) =
N1

∑
j=1

x1 jm1 jρ1 j + ℓ1

N2

∑
j=1

m2 jρ2 j − ε ≤ 0 (4.9g)

g8(ρρρ) =−

(

N1

∑
j=1

x1 jm1 jρ1 j + ℓ1

N2

∑
j=1

m2 jρ2 j

)

+ ε ≤ 0 (4.9h)

where ε is the relaxation parameter given in Eq. (2.84).

Considering a linear relation between the decision variables and the inertia parameters, the

gradients of these constraints are computed as follows:

∂g1(ρρρ)

∂ρρρ
=

N1

∑
j=1

y1 jm1 j (4.10a)

∂g2(ρρρ)

∂ρρρ
=−

N1

∑
j=1

y1 jm1 j (4.10b)

∂g3(ρρρ)

∂ρρρ
=

N2

∑
j=1

y2 jm2 j (4.10c)

∂g4(ρρρ)

∂ρρρ
=−

N2

∑
j=1

y2 jm2 j (4.10d)

∂g5(ρρρ)

∂ρρρ
=

N2

∑
j=1

x2 jm2 j (4.10e)

∂g6(ρρρ)

∂ρρρ
=−

N2

∑
j=1

x2 jm2 j (4.10f)

∂g7(ρρρ)

∂ρρρ
=

N1

∑
j=1

x1 jm1 j + ℓ1

N2

∑
j=1

m2 j (4.10g)

∂g8(ρρρ)

∂ρρρ
=−

(

N1

∑
j=1

x1 jm1 j + ℓ1

N2

∑
j=1

m2 j

)

(4.10h)

In this case, the analytical gradient computation is straightforward due to the linear relation

between the design variables and the functions.
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4.3.3.2 Compliance

Compliance is twice the strain energy stored in a mechanical system when it is subjected to external

loads, and minimizing the compliance is equivalent to maximizing the stiffness of the system. In

order to prevent excessive deformations in the mechanism, the compliance is defined as a constraint

function, and it is obtained from the strain energy of the MBS given in Eq. (2.36). Therefore, the

constraint function based on the mechanism compliance must be lower than a given threshold, and

it is expressed as:

g9(ρρρ) = uT
r Krur − c0 ≤ 0 (4.11)

where mechanism stiffness matrix Kr is given in Eq. (2.37), and the vector of reduced set of

independent coordinates ur is defined in Eq. (2.33). The constant parameter c0 is computed as

a fraction of the compliance obtained at the first iteration, and its values is c0 = 1.1 in our case

study. It should be noted that because the optimization process removes material, the strain energy

(compliance) increases.

4.3.3.3 Mechanism inertial properties

In Section 4.2.2 the angular momentum of the five-bar mechanism was studied. There it is con-

cluded that in order to reduce the shaking moment, the constant terms of the angular momentum

(Izz1 +m2ℓ
2
1) and (Izz2) should be constrained to a given threshold.

Considering the first constant term of the angular momentum (Izz1 +m2ℓ
2
1), it can be written in

the following form:

Izz1 +m2ℓ
2
1− Ith1 ≤ 0 (4.12)

where Ith1 is the threshold based on the percentage of the initial function value. In our case study

this threshold is defined as Ith1 = 0.15.

On the other hand, the body B2 is divided in two parts, the right-side and left-side, taking as a

reference the vertical line which passing by the interior link joint in Fig. 4.4b (joint B in Fig. 4.1).

Hence, the second constant term of the angular momentum, Izz2, can be written in the following

form:

Izz2 = Izz2L + Izz2R (4.13)

with Izz2L as the moment of inertial generated by the corresponding elements on the left-side, while
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the Izz2R is the moment of inertial of the right-side. Because of Izz2R is generated for the elements

in the right-side of the link, which is the side that supports the loads, thus the most simple approach

is to define the following condition:

Izz2L = Izz2R (4.14)

where it should be considered that the left-side of the links is used for balancing purposes. There-

fore, the constraints are given as follows:

Izz1 +m2ℓ
2
1 − Ith1 ≤ 0, (4.15)

Izz2L − Izz2R = 0. (4.16)

Besides, because of Eq. (4.16) is a equality constraint, this must be written as inequality. Therefore

the constraints related to the mechanism inertial parameters can be written in the following form:

g10(ρρρ) =
N1

∑
j=1

m1 j

(

x2
1 j + y2

1 j

)

ρ1 j + ℓ2
1

N2

∑
j=1

m2 jρ2 j − Ith1 ≤ 0 (4.17a)

g11(ρρρ) =

{

N2

∑
j=1

m2 j

(

x2
2 j + y2

2 j

)

ρ2 j

}

L

−

{

N2

∑
j=1

m2 j

(

x2
2 j + y2

2 j

)

ρ2 j

}

R

+ ε ≤ 0 (4.17b)

g12(ρρρ) =−

{

N2

∑
j=1

m2 j

(

x2
2 j + y2

2 j

)

ρ2 j

}

L

+

{

N2

∑
j=1

m2 j

(

x2
2 j + y2

2 j

)

ρ2 j

}

R

− ε ≤ 0 (4.17c)

where ε is the relaxation parameter given in Eq. (2.84). Consequently, the gradients of these

constraints are given as follows:

∂g10(ρρρ)

∂ρρρ
=

N1

∑
j=1

m1 j

(

x2
1 j + y2

1 j

)

+ ℓ2
1

N2

∑
j=1

m2 j (4.18a)

∂g11(ρρρ)

∂ρρρ
=

N2

∑
j=1

m2 j

(

x2
2 j + y2

2 j

)

,
∂g12(ρρρ)

∂ρρρ
=−

N2

∑
j=1

m2 j

(

x2
2 j + y2

2 j

)

(4.18b)

notice that the last two equations are written for the whole body B2.

4.3.4 Definition of the optimization problem

The optimization problem is defined as maximizing the first natural frequency of the five-bar mech-

anism, constrained by the shaking force balancing conditions, mechanism compliance and mecha-
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Figure 4.5: Full density field of body B1 without partial penalization.

Joint 2

Joint 1

Left Right

Figure 4.6: Body division for partial penalization.

nism inertial parameters. The mathematical formulation is given as:

min
ρρρ∈[0,1]

: f (ρρρ) =− f1(ρρρ) (4.19a)

subject to :gi(ρρρ)≤ 0, i = 1 . . .8. Shaking force balancing conditions (4.19b)

g9 (ρρρ)≤ 0, Mechanism compliance (4.19c)

gi (ρρρ)≤ 0, i = 10 . . .12. Mechanism inertial parameters (4.19d)

Solving the optimization problem in the manner that was defined in Eq. (4.19) produces results that

show a high number of elements with intermediate density, which is a undesirable behavior. Figure

4.5 shows an example of this issue, which occurs mainly in the left-side of the body.

Therefore, it is necessary to apply partial penalization to some constraints in order to reduce

the elements with intermediate density (Briot and Goldsztejn, 2018a). Partial penalization consists

in divided the link in two parts, the left-side and the right-side, where the division is done in the

first joint, such as it is shown in Fig. 4.6. Then, the densities of the elements on the left-side are

penalized in order to force a binary density field (elements with 0 or 1 density values). This pro-

cedure is done for those bodies which present high number of elements with intermediate density,

in our case it happens in the left-side of all the links. Hence, the constraints which are penalized

are the shaking force balancing conditions (Eqs. 4.9) and the inertial mechanism parameters (Eqs.
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4.17). These functions are linear with respect to the decision variable, therefore taking into account

all the bodies, these constraints can be written in the following matrix form:

Pρρρ = PLρρρL +PRρρρR = 0 (4.20)

where Pρρρ is the expression of the shaking force balancing conditions and the inertial mechanism

parameters under a matrix form. Besides ρρρ is the full design vector. In consequence, PL is a

sub-matrix of P, which corresponds to the design variables in the left-side of the links, thereby ρρρL

contains the design variables corresponding to the elements on the left-side of the links. Regarding

to PR and ρρρR, they are arranged in the same way already described, corresponding to the right-side

of the links.

With the aim to reduce the elements with intermediary density values in the left-side of the

links, it is necessary to force the values of ρρρL to be only 0 or 1, thus the densities in the left-side of

Eq. (4.20) are penalized as follows:

PLρρρ
q
L +PRρρρR = 0 (4.21)

where q is the partial penalization parameter, which should be q ≥ 1. In our case study, the value

of the partial penalization parameter is defined as q = 2 in order to obtain binary results.

4.3.5 Numerical results

The convergence criterion was defined based on the change of the objective function. The opti-

mization is performed while the computed value in the k-th iteration is greater than the previous

one. Thus, while f (ρρρk)> f (ρρρk−1) the optimization is running, otherwise the algorithm stops. The

optimization process achieve an optimum solution in 94 iterations and it takes 8.78 h. The value of

the objective function was 681.28 Hz, and the maximum constraint violation was 1 · 10−3, which

happens for the constraint (4.3d). The evolution of the objective function is shown in Fig. 4.7.

In the following section, the numerical results are transformed into structured mesh which are

post-processed in order to generate a proper CAD solids. Using the post-processed bodies, the

optimized properties of the linkage are validated using commercial software.

4.4 Results and discussion

The results from topology optimization problems are post-processed in order to generate a editable

CAD file. Then, the reactive loads at the base of the optimized five-bar mechanism are verified
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Figure 4.7: Evolution of the fundamental frequency for the optimization of five-bar mechanism.

Table 4.1: Properties of the optimized five-bar mechanism.

Body mass [kg] length [m] ri [m]

1 6.1923 0.09 -0.01931

2 1.2912 0.09 -0.0004

3 1.2912 0.09 -0.0004

4 6.1923 0.09 -0.01931

using ADAMS software, while the natural frequency, compliance and joint displacements are ana-

lyzed through ANSYS.

4.4.1 Post-processing

In Fig. 4.8 the voxel-based results of the optimized bodies B1 and B2 are presented. From these

results, one may observe that the partial penalization allows to generate binary results. Besides, the

body B1 in Fig. 4.8b shows a hollow, which can be better appreciated in the Fig. 4.9. This cavity

has a volume of 34.36 cm3 (3.436 ·10−5 m3), representing the 4.32% of the total body volume.

The voxel-based results are post-processing by a body-fitted procedure, the process for proximal

and distal links is depicted in Fig. 4.10. Therefore, the complete CAD model of the optimized five-

bar linkage is shown in Fig. 4.11, where the right-leg is generated reflecting the left-leg with respect

to the Y -axis (see Fig. 4.1). In Table 4.1, the mass and the COM (ri) of each body of the optimized

five-bar mechanism are presented.
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(a) Full density field of body B1 rang-
ing from 0 to 1.

(b) Internal section view of body B1.

(c) Elements with a density higher
than 0.95 in body B1.

(d) Full density field of body B2 rang-
ing from 0 to 1. (e) Internal section view of body B2.

(f) Elements with a density higher
than 0.95 in body B2.

Figure 4.8: Voxel-based results of bodies B1 and B2.

(a) Top view of body B1.
(b) Perspective view of body B1.

(c) Front view of body B1. (d) Right view of body B1.

Figure 4.9: Description of the cavity in body B1. The body is represented by a wireframe for visual pur-
poses.
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(a) Optimized body B1 represented
by structured mesh.

(b) Optimized body B1 represented
by triangular mesh.

(c) Optimized body B1 in CAD soft-
ware.

(d) Optimized body B2 represented
by structured mesh.

(e) Optimized body B2 represented
by triangular mesh.

(f) Optimized body B2 in CAD soft-
ware.

Figure 4.10: Post-processing of the optimized bodies B1 and B2.

Figure 4.11: CAD model of optimized five-bar linkage.

98



4.4. RESULTS AND DISCUSSION

Figure 4.12: Total deformation for the first natural frequency.

4.4.2 Fundamental frequency validation

The first property to be validated is the mechanism fundamental frequency. Figure 4.12 shows the

solution of the modal analysis performed in ANSYS. For this case, we are interested in the value

of the first natural frequency, which is computed as f1ANSY S = 666.77 Hz. Besides, the value of the

first natural frequency obtained from the optimization process is f1 = 681.28 Hz.

Therefore, by comparing the values from ANSYS and the computational platform, the error is

2.17%. This error can be attributed to the post-processing and also due to the differences with the

mesh type. In the computational platform all the elements are linear hexahedral, while in ANSYS

due to the geometry some elements are thetrahedral, making less stiff the bodies.

4.4.3 Compliance validation

The compliance is a index of how stiff is a system. In this case, the compliance of the linkage is

computed using ANSYS performing a static structural analysis, and this value is compared with

that obtained in the optimization process.

The total compliance of the whole system computed with ANSYS is 6.21 ·10−6 J, and the opti-

mized compliance is 6.58 ·10−6 J, therefore the error is 5.62%. It is an expected result because of

the mesh type used in ANSYS. In ANSYS some regions are modeled using thetrahedrons, therefore

these elements reduce slightly the total compliance due to they are less stiff than the hexahedrons

used in MUBOTO.
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Figure 4.13: Total deformation for static structural analysis.

Table 4.2: Joint C deformations. All quantities are in meters.

X Y Z Norm

ANSYS 3.65 ·10−8 4.71 ·10−7 1.28 ·10−7 4.89 ·10−7

MUBOTO 3.43 ·10−8 4.67 ·10−7 1.05 ·10−7 4.79 ·10−7

In addition, the displacements at the joint C are computed using ANSYS, and they are compared

with the values obtained with the computational platform. Table 4.2 shows the displacements on

the joint C evaluated with ANSYS and those computed by the computational platform. From this

table can be observed that the joint deformations are very similar, and comparing the 2-norm of

these displacements we obtain a 2.04% of error.

4.4.4 Dynamic validation

In order to evaluate the dynamic performance of the optimized five-bar linkage, the shaking force

of the mechanism is evaluated at its base using ADAMS. For this endeavor, a zigzag trajectory

was selected in order to move the end-effector inside of its regular workspace. The trajectory is

defined in such way that it sweeps the regular workspace of the five-bar linkage as it is shown in

Fig. 4.14. Besides, Fig. 4.15 shows the magnitude of translational velocity and acceleration of the

end-effector, while Fig. 4.16 presents the corresponding angular velocity and acceleration of the

motors.
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Figure 4.14: Trajectory for the dynamic balancing evaluation. The workspace of the five-bar mechanism is
a rectangle centered in (0, 110) mm of width equal to 120 mm and height equal to 40 mm.

The shaking force of the opitmized linkage is presented in Fig. 4.17. This plot shows a very

small values of shaking force acting at the base of the linkage, hence the shaking force balancing

is validated satisfactorily.

The optimized linkage is compared with an unbalanced linkage, which has links with the same

mass as the optimized links, but with their COM located at the geometric center of the link. The

resultant reaction loads of the optimized linkage and unbalanced linkage are plotted in Fig. 4.18.

Using the RMS values of the shaking force for the optimal and unbalanced five-bar mechanism

presented in Fig. 4.18a, the shaking force reduction is 99.26%.

Regarding to the shaking moment, a considerable difference between the optimized and unbal-

anced linkages is obtained, as it can be seen in Fig. 4.18b. Even if the methodology described in

this work does not deal directly with the shaking moment minimization, the proposed strategy of

constrain the mechanism inertia parameters reduce the shaking moment by 28.35%, based on their

RMS values.

Moreover, because of the largest values of the mechanism acceleration take place at the begin-

ning and at the end of the motion, higher values of shaking force and moment arise there. Hence,

considering the highest mechanism acceleration which occur at the beginning of the motion, the

peak value of the shaking force is 0.0209 N, while for the unbalanced case the peak values is 2.7 N,

thus it means a reduction of 99.22% for the shaking force. Likewise, the peak value of the shaking

moment for the optimized mechanism is 0.239 Nm, and the peak value for the unbalanced case is

0.321 Nm obtaining a reduction of 25.54% with respect to the shaking moment.
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Figure 4.15: Translational velocity and acceleration of the end-effector.
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(b) Motors angular acceleration.

Figure 4.16: Motors angular velocity and acceleration for the zig-zag trajectory.

4.5 Summary

In this chapter the partial dynamic balancing of five-bar robotic mechanism is conducted using

multibody topology optimization. The methodology used allows to take into account the entire

mechanism elastic behavior in order to conduct its dynamic balancing. The optimization problem

is defined as maximizing the mechanism fundamental frequency, constrained by the shaking force

balancing conditions, mechanism inertial parameters and the mechanism compliance. The fulfill-

ment of the shaking force balancing conditions ensures a complete force balanced mechanism. In

addition, the shaking moment is reduced by constraining the mechanism inertial parameters. On the

other hand, the problem formulation requires to use a partial penalization scheme in order to obtain

meaningful designs in the case of the natural frequency optimization. This problem formulation
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Figure 4.17: Shaking force at the base of the optimized five-bar mechanism.
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(b) Comparative shaking moment.

Figure 4.18: Comparative shaking force and moment at the base of the optimized and unbalanced five-bar
mechanisms.

was implemented and solved in the MUBOTO computational framework.

In order to prove the feasibility of the proposed approach, numerical validations of the opti-

mized properties were carried out. The results of these numerical validations showed a low error

for all the optimized properties. These results demonstrate that the proposed approach is suitable

for a comprehensive mechanical design of robotic mechanisms, taking into account its elastic be-

havior and dynamic balancing. The structural properties were evaluated using ANSYS and the

dynamic balancing performance was assessed by ADAMS.

The computed value of the fundamental frequency using ANSYS is 666.77 Hz, while the opti-

mized value obtained with MUBOTO is 681.28 Hz, thereby the percentage error is 2.17%. With

respect to the compliance, the obtained error between the model analyzed in ANSYS and the values

obtained by MUBOTO is 5.62%. As it was pointed out, these differences can be generated by the
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post-processing and due to the element type used in the ANSYS analysis. These errors are very low

and are acceptable in both cases. In addition, the end-effector displacement was evaluated using

ANSYS and the 2-norm displacement value obtained is 4.89 · 10−7 m, which compared with the

computed one with MUBOTO it is obtained a 2.04% of error. Hence, the displacement value is

considered low and the error is small.

The dynamic balancing of the five-bar mechanism was evaluated using ADAMS. Thus, the

mechanism is evaluated moving its end-effector with a predefined trajectory inside of its regular

workspace. Then, the shaking force and moment are computed and compared with an unbalanced

mechanism. The latter is formed by links with the same mass and inertial parameters like the opti-

mized ones, but with the center of mass between its joints. Therefore, the RMS value of the shaking

force magnitude is computed for the optimized mechanism and compared with the unbalanced one,

thus obtaining a reduction of 99.56%. Moreover, since the optimization problem deals with the

shaking force elimination by proper mass redistribution, the expected value is zero, and the com-

puted RMS value is 0.0089 N. These former results are acceptable (and can be neglected) since the

post-processing step can generate numerical errors during the body-fitting operation. Regarding

to the shaking moment, the corresponding shaking moment reduction via RMS values is 28.35%.

Based on the results described above, the proposed approach for dynamic balancing using multi-

body topology optimization has shown to be a feasible approach in order to design dynamically

balanced robotic mechanism, while the mechanism elastic behavior is considered.
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Chapter 5

Conclusions

5.1 Summary

The Chapter 1 presents the state-of-the-art related to this thesis. The main topics exposed are the

classical balancing techniques, topology optimization and its applications to structural design of

flexible multibody system and dynamic balancing of mechanisms. Analyzing the main drawbacks

of the classical balancing technique we found that the elastic behavior of the links were never taken

into account, which is an important consideration for advanced robot design. Therefore, structural

topology optimization for multibody systems arise as an option to overcome this challenging prob-

lem. In the literature review, very few works that faced the dynamic balancing of mechanism by

means of a multibody topology optimization approach were found. Therefore in this thesis this

problem is studied in depth.

The mathematical formulation for multibody topology optimization was described in Chapter

2. The topology optimization formulation is based on SIMP (density-based) scheme, thus the FE

method is used to model the flexibility of the multibody system. Therefore, in order to reduce

the computational cost of solving the complete model, static and dynamic condensation techniques

were included. Regardless, when the bodies are considered as three-dimensional ones, the com-

putational cost increases drastically, leading us to develop a computational platform (MUBOTO)

based on parallel computing where the proposed methodology was implemented.

In order to verify the suitability of the proposed methodology, two mechanism were optimized.

In Chapter 3 a reactionless four-bar linkage was optimized: the linkage compliance was minimized

while the dynamic balancing constraints where fulfilled. The numerical validation with commercial

software of the optimized four-bar linkage exhibits an excellent performance in terms of dynamic

balancing and linkage stiffness. The linkage compliance was properly optimized and the dynamic

unbalanced loads at the base of the linkages were almost null. Besides, the experimental validation
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of the dynamic performance was conducted by mounting the linkage prototype in a platform which

is hanged by four cables attached to a fixed frame. In this way, the platform can moves freely,

and the unbalanced effects are visible as translations and rotations of the linkage platform when the

mechanism is operating: the higher the unbalance, the largest the displacements. The displacements

of the linkage platform were computed by video processing and compared with an unbalanced case.

After analyzing these results it was concluded that the dynamic performance of the prototype was

satisfactory.

The partial dynamic balancing of the five-bar robotic mechanism was conducted in Chapter 4.

This mechanism was optimized maximizing its fundamental frequency while it was constrained by

the dynamic balancing conditions, the mechanism compliance and its inertial parameters. In this

case, the corresponding numerical validations with ADAMS and ANSYS were carried out, obtain-

ing very low error percentages when the results of the proposed approach are compared against the

results obtained with the corresponding simulation. The five-bar mechanism can be fully force bal-

anced, but the shaking moment can only be reduced. Otherwise, in order to eliminate the shaking

moment additional components are necessary, which in our case is not desirable. Thereby the re-

sultant shaking force in the optimized mechanism was almost negligible, and the shaking moment

was reduced by constraining the mechanism inertial parameters. With respect to the structural

optimization, the fundamental frequency was increased more than twice the initial value, and the

compliance was properly constrained. Moreover, when these optimized properties are compared

with the ANSYS values, the resultant percentage of error is very low, which reveals the correctness

of the problem formulation.

It is worth to clarify that the presented results were obtained in a computational framework

specially designed for the multibody topology optimization problem, which we named MUBOTO.

This framework is software independent, written in C++ programming language using the object

oriented paradigm, and it is based on the distributed memory model for parallel computing. In

consequence, this computational platform has the potential to solve large-scale problems, despite

the fact that the results presented here were obtained on a desktop computer. The computational

platform is designed to optimize multibody systems in general by means of topology optimization.

Therefore this platform can be used not only for dynamic balancing, but it can be used in order to

explore the best design (shape and material distribution) of multibody systems taking into account

structural performance indices.

In this research work we studied the possibility to use topology optimization as a tool for re-

actionless robot design. The optimum designs of the four-bar and five-bar mechanisms were con-

ducted considering them as flexible multibody systems, optimizing structural performance indices

while their dynamic balancing conditions were constrained. Comparisons with numerical cross
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validations showed excellent performances with respect to the shaking force and moment cancella-

tion/reduction, as well as with respect to the defined elastic constraints and objectives. Moreover,

the experimental results showed the efficiency of the approach. Therefore, based on the results

presented in this work it can be concluded that topology optimization is a suitable and reliable tool

for robot design under dynamic balancing constraints.

As it is usual in the research activity, the answers to the main question generate new paths to

be explored. Several research directions appear during these years of scientific work, and they are

worth to be mentioned in this chapter. The second section is devoted to them.

5.2 Perspectives of future research work

The dynamic balancing of MBS using topology optimization is a novel approach, which has several

potential directions to be explored. The research work presented in this report covers four fields of

study which can be expanded and/or improved. These fields are the followings:

• Extend the formulation of multibody topology optimization.

• Dynamic balancing of different robots: planar and spatial.

• Computational platform and efficient methods.

• Post-processing and physical realization.

These research directions are detailed in the following sections.

5.2.1 Extend the formulation of multibody topology optimization

Although the shaking force balancing conditions are completely independent of the robot configu-

ration, the shaking moment can be a function of the joint variables in some cases, but even more,

the structural performance depends on the robot configuration in general. With the aim of conduct-

ing a comprehensive structural optimization, the mathematical formulation of multibody topology

optimization must be expanded to consider multiple robot configurations.

Besides, the optimization problems described in this thesis are focused on the use of two phases

of the same material, i.e., solid and void. Nevertheless in some circumstances it should be helpful

to have the possibility to use different materials, namely with the aim to reduce the mechanism

footprint by considering materials of different properties (higher density or strength). A first prac-

tical attempt was conducted in Chapter 3, where a cylinder of steel was incorporated into the link
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2004]a

b Planar 3-dof mechanism [Gosselin et al., 2004]

Figure 5.1: Reactionless planar parallel robot of 3-DOFs (Gosselin et al., 2004).

in order to reduce the link footprint. This cylinder worked as a counterweight, acting as a sepa-

rated body and its elasticity was not considered. Thereby, a more general formulation is required

to incorporate different materials (for SIMP scheme) in multibody topology optimization for dy-

namic balancing. Additionally, functionally-graded materials (FGMs) could be used to achieve the

desired structural performance, without forgetting the challenges that result from this formulation.

Considering different performance indices for a MBS optimization could be an important ap-

proach. Thus, optimize a mechanisms for a target stiffness could be an interesting research activity.

Furthermore a multi-objective optimization could be tackle in order to optimize the total material

cost or even to include some manufacturing constraints.

5.2.2 Dynamic balancing of different robots: planar and spatial

For a comprehensive study of topology optimization as a tool for dynamic balancing of robots, it

is necessary to extend the analysis towards planar mechanisms with more than 2-DOFs and spatial

mechanism.

5.2.2.1 Dynamic balancing of planar robots with 3-DOFs

An remarkable case study is the design of the dynamically balanced 3R planar parallel robot with

3-DOFs. For this case, the optimized reactionless four-bar linkage can be used as a leg for building

reactionless robots as it was described in (Gosselin et al., 2004, Ricard and Gosselin, 2000). In

Fig. 5.1 a schematic representation of the reactionless robot designed with modules of reactionless

four-bar linkages is depicted.

Following the same premise, in (Wu and Gosselin, 2004) the authors present the synthesis of

reactionless spatial 3-DOF and 6-DOF mechanisms using the dynamically balanced four-bar link-
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Figure 5.2: Force balanced Delta robot (Van der Wijk and Herder, 2009).

ages. Exploring the design of these mechanisms using topology optimization could be an attractive

complementary work.

5.2.2.2 Dynamic balancing of spatial robots

In case of spatial robots, an interesting case study is the Delta robot (Clavel, 1990), which is typ-

ically used for high-speed operations mainly pick-and-place tasks. The kinematic architecture de-

picted in Fig. 5.2 is a simplified version of the Delta robot, which allows to perform spatial motions

due to the three translational DOFs. This figure represents a proposal for force balancing of the

Delta robot (Van der Wijk and Herder, 2009), with the pink balls representing counterweights.

Using the proposed methodology, an optimized design of the Delta robot under shaking force

balancing conditions can be conducted. Because of the three legs are equal, the optimization should

be performed for only one leg, but taking into account the whole structure.

5.2.3 Computational platform and efficient methods

The computational platform developed for this project is implement for large-scale analysis. Nev-

ertheless, there was no opportunity to test the platform in a High Performance Computing (HPC)

center. Analyze large-scale models allows to generate high-quality realistic designs, owing to the

mesh size that can be use. Therefore, conduct a large-scale analysis in a HPC center, of any of the

study cases described in the thesis is an appealing task.

Regarding the computational methods, it is worth exploring the possibility of including the

multigrid method (MG) in the solution of equilibrium equations arising from the FEM. The MG

method should reduce the computational time (Amir et al., 2014), but it must be adequate to the

model reduction techniques (static/dynamic condensation) used in this work.
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Besides, it would be interesting to examine the Linearization Method (LM), used as optimizer

for the topology optimization problem in (Briot and Goldsztejn, 2018b). This motivation arises

because of Briot and Goldsztejn (2018b) indicated that the linearization method is less complex in

its implementation than the MMA optimizer, and the results obtained with LM are competitive with

respect to MMA results, in terms of convergence time. In this case, precise studies of the results

obtained with LM and MMA should be conducted with the aim to perform a proper comparison

between these optimizers, mainly in parallel computing applications.

It will be significant to analyze which are the most time consuming processes of the proposed

methodology in order to define which is the best approach to speed up the optimization. In this

manner it is possible to define if it is worth to use a different hardware (GPU) or alternative algo-

rithms. Other important direction to be explored is the use of methods based on data-driven training

to accelerate the optimization process, mainly Neural Networks and more broadly Machine Learn-

ing.

5.2.4 Post-processing and physical realization

Post-processing implies to convert the voxel-based results obtained with topology optimization to a

smooth design suitable for a CAD software. Because the optimized shape is defined in voxel-based

the smooth design is not exactly the same as the one optimized. In (Liu et al., 2018) the authors

propose a method for post-processing and physical realization of structures coming from TO, but

they do no evaluate the optimized properties and the examples are for 2D problems. Thereby,

even if we already conduct successful post-processing procedure, comprehensive studies should

be carried out in order to define the most appropriated scheme to generate the lowest error in the

mesh conversion process. These studies should be done with the aim of preserving the optimized

properties within an acceptable error range, at least for the simulation stage.

As it is described in Appendix B, when the aim is to build a functional prototype of dynamically

balanced linkage, the designer must choose printing solid1 3D parts. Otherwise, the center of mass

is modified due to the material distribution during the printing process. Therefore, it would be

interesting to study the possibility to develop a tool for 3D printing which allows to print non-solid

(infill percentage lower than 100%) objects, while the total mass and the location of the COM of

the designed/optimized body is preserved. Of course, the structural performance will be different,

but the dynamic balancing will be maintained.

1Usually for 3D printing by fused deposition modeling the amount of material of the printed part is controlled by
an infill percentage, where 100% generates a solid object. Commonly this parameter is used below of 60%.
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Appendix A

Balancing conditions of the five-bar

mechanism

This Appendix presents a formulation to obtain the shaking force and moment balancing conditions

of the five-bar mechanism. The shaking force balancing conditions make zero the resultant force on

the base of the linkage for any arbitrary trajectory. Nevertheless, for the case of shaking moment

it is not possible to obtain balancing conditions which produce zero unbalanced moment on the

linkage base. Thus, shaking moment balancing is only possible using external components.

The five-bar linkage is a two degree of freedom mechanism, composed of five revolute joints

of parallel axes. A general schematic representation of the five-bar mechanism is depicted in Fig.

A.1a, where angle θi describes the orientation of each body Bi with respect to the X0-axis of the

fixed frame. The parameters required to describe the center of mass of each link are shown in Fig.

A.1b. The points Si represent the COM of each link and mi is the total mass of the link. The location

of the center of mass Si is defined by the distance ri and the constant angle ψi.

A.1 Kinematic analysis

In order to compute the linear momentum and angular momentum, the kinematic analysis of the

five-bar linkage is conducted, and it involves the position and velocity analysis. The complete kine-

matic solution of the five-bar linkage is expressed as a function of independent variables, namely

θ1, θ2 and its angular velocities θ̇1 and θ̇2.
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Figure A.1: Schematics of the five-bar linkage.

A.1.1 Position analysis

From the linkage geometry described in Fig. A.1a, the loop-closure equation is obtained as follows:

rB/A + rC/B = rE/A + rD/E + rC/D (A.1)

where the position vector ri/ j represents the location of point i with respect to point j. Then, using

this expression the following two scalar equations derived:

ℓ1 cosθ1 + ℓ2 cosθ2 − ℓ3 cosθ3 − ℓ4 cosθ4 −d = 0 (A.2)

ℓ1 sinθ1 + ℓ2 sinθ2 − ℓ3 sinθ3 − ℓ4 sinθ4 = 0 (A.3)

With the aim to express the angular variables as a function of the independent parameters Eq. (A.3)

is solved for sinθ3, and Eq. (A.2) for cosθ3, therefore their corresponding equations are obtained:

cosθ3 =
ℓ1 cosθ1 + ℓ2 cosθ2 − ℓ4 cosθ4 −d

ℓ3
(A.4)

sinθ3 =
ℓ1 sinθ1 + ℓ2 sinθ2 − ℓ4 sinθ4

ℓ3
(A.5)

Equations (A.4) and (A.5) are function of the dependent variable θ2. In order to find a solution for

cosθ2 and sinθ2, it is necessary to use the trigonometric identity sinθ 2
3 + cosθ 2

3 = 1, which leads

to an equation of the form ∆1 cosθ2 +∆2 sinθ2 = ∆3. The analytic solution of the latter equation is
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given as follows:

cosθ2 =
∆1∆3 ±∆2

√

∆2
1 +∆2

2 −∆2
3

∆2
1 +∆2

2

(A.6)

sinθ2 =
∆2∆3 ±∆1

√

∆2
1 +∆2

2 −∆2
3

∆2
1 +∆2

2

(A.7)

where:

∆1 =2ℓ1ℓ2 cosθ1 −2ℓ2ℓ4 cosθ4 −2ℓ2d (A.8)

∆2 =2ℓ1ℓ2 sinθ1 −2ℓ2ℓ4 sinθ4 (A.9)

∆3 =ℓ2
1+ ℓ2

2 + ℓ2
4 − ℓ2

3 +d2 −2ℓ1ℓ4 cos(θ1 −θ4)+2d(ℓ4 cosθ4 − ℓ1 cosθ1) (A.10)

It should be noted that the terms ∆i are function only of the independent variables and constant

parameters. The sign of the square root will define the assembly mode of the linkage.

Besides, once the position analysis is completed, from Fig. A.1 we can define the position

vectors of the center of mass of each link:

rS1/A =







r1 cos(θ1 +ψ1)

r1 sin(θ1 +ψ1)






, rS2/A =







ℓ1 cosθ1 + r2 cos(θ2 +ψ2)

ℓ1 sinθ1 + r2 sin(θ2+ψ2)







rS3/A =







d+ ℓ4 cosθ4 + r3 cos(θ3 +ψ3)

ℓ4 sinθ4 + r3 sin(θ3 +ψ3)






, rS4/A =







d + r4 cos(θ4 +ψ4)

r4 sin(θ4 +ψ4)






, (A.11)

which can be readily computed.

A.1.2 Velocity analysis

The velocity analysis is carried out by differentiating with respect to time the loop-closure equation

defined in Eq. (A.2) and (A.3). Thereby the following is obtained:

−θ̇1ℓ1 sinθ1 − θ̇2ℓ2 sinθ2 + θ̇3ℓ3 sinθ3 + θ̇4ℓ4 sinθ4 = 0 (A.12)

θ̇1ℓ1 cosθ1 + θ̇2ℓ2 cosθ2 − θ̇3ℓ3 cosθ3 − θ̇4ℓ4 cosθ4 = 0 (A.13)

130



A.2. SHAKING FORCE FORMULATION

Solving the latter equations for θ̇2 and θ̇3, the following equations are obtained:

θ̇2 =−

{

sin(θ3 −θ1)

sin(θ3 −θ2)

}{

ℓ1

ℓ2

}

θ̇1 −

{

sin(θ4 −θ3)

sin(θ3 −θ2)

}{

ℓ4

ℓ2

}

θ̇4 (A.14)

θ̇3 =−

{

sin(θ2 −θ1)

sin(θ3 −θ2)

}{

ℓ1

ℓ3

}

θ̇1 −

{

sin(θ4 −θ2)

sin(θ3 −θ2)

}{

ℓ4

ℓ3

}

θ̇4 (A.15)

where the dependent angular velocities are expressed as function of the velocities of the actuated

joints, namely θ̇1 and θ̇4.

On the other hand, in order to compute the velocities of the COM of each body, Eqs. (A.5) and

(A.4) are substituted into the vector rS3/A (Eq. A.11) with the purpose to reduce one dependent

variable. Hence, computing the time derivatives of the position vectors given in the resultant Eq.

(A.11), we obtain the velocities of the COM of each link:

vS1/A ≡ ṙS1/A =







−r1 sin(θ1 +ψ1)θ̇1

r1 cos(θ1 +ψ1)θ̇1






, vS2/A ≡ ṙS2/A =







−θ̇1ℓ1 sinθ1 − θ̇2r2 sin(θ2 +ψ2)

θ̇1ℓ1 cosθ1 + θ̇2r2 cos(θ2 +ψ2)







vS3/A ≡ ṙS3/A = θ̇1

(

ℓ1r3

ℓ3

)







−sin(θ1 +ψ3)

cos(θ1 +ψ3)






+ θ̇2

(

ℓ2r3

ℓ3

)







−sin(θ2 +ψ3)

cos(θ2 +ψ3)






+

+θ̇4

(

ℓ4

ℓ3

)







−ℓ3 sinθ4 + r3 sin(θ4 +ψ3)

ℓ3 cosθ4 − r3 cos(θ4 +ψ3)







vS4/A ≡ ṙS4/A =







−θ̇4r4 sin(θ4 +ψ4)

θ̇4r4 cos(θ4 +ψ4)






.

(A.16)

A.2 Shaking force formulation

The shaking force balancing conditions require to keep the linkage center of mass stationary during

the linkage operation. The shaking force
(

fsh
)

generated at the base of the mechanism is computed

as the time rate of its linear momentum, thus:

fsh =
dp

dt
(A.17)
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When the linear momentum of the system is constant for any trajectory, the resultant reaction forces

at the linkage base sum up to zero. The linkage is composed of four moving bodies, thus its linear

momentum computed with respect to point A is given by:

p = m1vS1/A +m2vS2/A +m3vS3/A +m4vS4/A (A.18)

where vSi/A is the velocity of the link’s COM given by Si, and it is defined with respect to the

origin of the reference system, point O. Therefore, the time-derivative of the linear momentum is

expressed as:

dp

dt
= m1v̇S1/A +m2v̇S2/A +m3v̇S3/A +m4v̇S4/A (A.19)

with v̇Si/A as the acceleration of the link’s COM. Therefore, in order to obtain the shaking force

balancing conditions, the following equation must be fulfilled:

fsh =
dp

dt
= 0 (A.20)

In the next sections, a detailed computation of the linear momentum is described, as well as the

derivation of the shaking force balancing conditions.

A.2.1 Shaking force balancing conditions

The analytical expression of the linear momentum of the five-bar linkage is given as follows:

p = m1θ̇1







−r1 sin(θ1 +ψ1)

r1 cos(θ1 +ψ1)






+m2θ̇1







−ℓ1 sinθ1

ℓ1 cosθ1






+m2θ̇2







−r2 sin(θ2 +ψ2)

r2 cos(θ2 +ψ2)






+

+m3θ̇1

(

ℓ1r3

ℓ3

)







−sin(θ1 +ψ3)

cos(θ1 +ψ3)






+m3θ̇2

(

ℓ2r3

ℓ3

)







−sin(θ2 +ψ3)

cos(θ2 +ψ3)






+

+m3θ̇4

(

ℓ4

ℓ3

)







−ℓ3 sinθ4 + r3 sin(θ4 +ψ3)

ℓ3 cosθ4 − r3 cos(θ4 +ψ3)






+m4θ̇4







−r4 sin(θ4 +ψ4)

r4 cos(θ4 +ψ4)






(A.21)

In order to obtain the shaking force balancing conditions without superfluous constraints, the ex-

pression for the linear momentum must include only independent variables and their derivatives.

Thus, the angular velocity θ̇2 computed in Eq. (A.14) is substituted in Eq. (A.21). Afterwards, a
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compact expression for the linear momentum is formed by grouping similar terms and substituting

the trigonometric identities in Eq. (A.21). The resultant expression is written in the following form:

p =







a1 b1 a2λ12 b2λ12 a2λ42 b2λ42 a3 b3

b1 −a1 b2λ12 −a2λ12 b2λ42 −a2λ42 b3 −a3






ΩΩΩ, (A.22)

with λ12 = ℓ1/ℓ2 and λ42 = ℓ4/ℓ2. Besides, the vector ΩΩΩ is composed as:

ΩΩΩ =
[

θ̇1 sinθ1 θ̇1 cosθ1 θ̇1k1 sinθ2 θ̇1k1 cosθ2

θ̇4k2 sinθ2 θ̇4k2 cosθ2 θ̇4 sinθ4 θ̇4 cosθ4
]T

, (A.23)

and the parameters ki are given by:

k1 =
sin(θ3−θ1)

sin(θ3−θ2)
, k2 =

sin(θ4 −θ3)

sin(θ3 −θ2)
. (A.24)

Therefore, the vector ΩΩΩ is expressed as a function of the input angular velocities θ̇1 and θ̇4, and the

dependent angular variables are already defined in Section A.1.1. As a consequence, the terms ai

and bi which appear in Eq. (A.22) are constant coefficients and they are give by:

a1 =−

{

m1r1 cosψ1 +m2ℓ1 +

(

ℓ1

ℓ3

)

m3r3 cosψ3

}

, b1 =−

{

m1r1 sinψ1 +

(

ℓ1

ℓ3

)

m3r3 sinψ3

}

a2 =

{

m2r2 cosψ2 +

(

ℓ2

ℓ3

)

m3r3 cosψ3

}

, b2 =

{

m2r2 sinψ2 +

(

ℓ2

ℓ3

)

m3r3 sinψ3

}

a3 =−

{

m4r4 cosψ4 −

(

ℓ4

ℓ3

)

m3r3 cosψ3 +m3ℓ4

}

, b3 =−

{

m4r4 sinψ4 −

(

ℓ4

ℓ3

)

m3r3 sinψ3

}

(A.25)

Consequently, because of vector ΩΩΩ (Eq. A.23) depends on the angular velocities and joint variables,

the linear momentum given by Eq. (A.22) cannot generate a constant value for any arbitrary mech-

anism motion. Hence, in order to fulfill the requirement for shaking force balancing dp/dt = 0, the

constant coefficients of Eq. (A.22) must be zero (with λ1 6= 0 and λ2 6= 0). Thereby, taking into

account this condition, the general shaking force balancing conditions are obtained:

m1r1 cosψ1 +

(

ℓ1

ℓ3

)

m3r3 cosψ3 +m2ℓ1 = 0 (A.26)

m1r1 sinψ1 +

(

ℓ1

ℓ3

)

m3r3 sinψ3 = 0 (A.27)
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m2r2 cosψ2 +

(

ℓ2

ℓ3

)

m3r3 cosψ3 = 0 (A.28)

m2r2 sinψ2 +

(

ℓ2

ℓ3

)

m3r3 sinψ3 = 0 (A.29)

m4r4 cosψ4 −

(

ℓ4

ℓ3

)

m3r3 cosψ3 +m3ℓ4 = 0 (A.30)

m4r4 sinψ4 −

(

ℓ4

ℓ3

)

m3r3 sinψ3 = 0 (A.31)

When the five-bar linkage is considered as a “in-line” linkage (i.e., the angles ψi only takes

values of 0 or π), the resultant shaking force balancing conditions are:

m1r1 cosψ1 +

(

ℓ1

ℓ3

)

m3r3 cosψ3 +m2ℓ1 = 0 (A.32)

m2r2 cosψ2 +

(

ℓ2

ℓ3

)

m3r3 cosψ3 = 0 (A.33)

m4r4 cosψ4 −

(

ℓ4

ℓ3

)

m3r3 cosψ3 +m3ℓ4 = 0 (A.34)

Moreover, if we choose a linkage with equal link lengths, we obtain:

m1r1 cosψ1 +m3r3 cosψ3 +m2ℓ1 = 0 (A.35)

m2r2 cosψ2 +m3r3 cosψ3 = 0 (A.36)

m4r4 cosψ4 −m3r3 cosψ3 +m3ℓ4 = 0 (A.37)

Using the shaking force balancing conditions derived in this section, different types of force bal-

anced linkages can be designed.

A.3 Shaking moment formulation

The shaking moment is computed as the time-derivative of the total angular momentum of the

system. The angular momentum is computed with respect to the reference point A, which coincides

with the origin of the reference frame. Hence, the angular momentum hA of the five-bar linkage is

given by:

hA = h1/A +h2/A +h3/A +h4/A (A.38)

134



A.3. SHAKING MOMENT FORMULATION

where hi/ j defines the angular momentum of each moving body, identified by the body number i

and its reference point j. The angular momentum for each body is expressed as follows:

h1/A = hS1 + rS1/A ×m1vS1/A (A.39)

h2/A = hS2 + rS2/A ×m2vS2/A (A.40)

h3/A = hS3 + rS3/A ×m3vS3/A (A.41)

h4/A = hS4 + rS4/A ×m4vS4/A (A.42)

Where the angular momentum of each body, hSi
, is defined with respect to its center of mass, and

it is given as follows:

hS1 = IS1ωωω1/0, hS2 = IS2ωωω2/0, hS3 = IS3ωωω3/0 and hS4 = IS4ωωω4/0 (A.43)

where ISi
is the moment of inertia of the moving body Bi, around its centroidal axis, which is

perpendicular to the plane of motion. Besides, the absolute angular velocity of each body is given

by:

ωωω1/0 = θ̇1n, ωωω2/0 = θ̇2n, ωωω3/0 = θ̇3n, ωωω4/0 = θ̇4n, (A.44)

where vector n is a unit vector, normal to the plane of motion.

The shaking moment generated at the base of the mechanism, msh, is computed as the time-

derivative of the angular momentum, thus it is give by:

msh =
dhA

dt
(A.45)

Hence, in order to design a shaking moment balanced mechanism, the requirement is to have a

constant angular momentum or zero shaking moment at the base, thus the following equation must

be fulfilled:

msh =
dhA

dt
= 0 (A.46)

In the following section the angular momentum is studied in order to determine if a suitable set

of shaking moment balancing conditions can be derived from this equation.
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A.3.1 Angular momentum of the five-bar mechanism

Using the results of the kinematic analysis of the five-bar linkage, and considering a planar motion

normal to the z-axis, the total angular momentum is computed, resulting in the following scalar

equation:

hAz
=
{

IS1 +m1r2
1 +m2ℓ

2
1 +m2ℓ1r2 cos(θ1 −θ2 −ψ2)

}

θ̇1+
{

IS2 +m2r2
2 +m2ℓ1r2 cos(θ1 −θ2 −ψ2)

}

θ̇2+
{

IS3 +m3r2
3 +m3ℓ4r3 cos(θ4 −θ3 −ψ3)+m3dr3 cos(θ3 +ψ3)

}

θ̇3+
{

IS4 +m4r2
4 +m3ℓ

2
4 +m3ℓ4r3 cos(θ4 −θ3 −ψ3)+m4dr4 cos(θ4 +ψ4)+m3dℓ4 cos(θ4)

}

θ̇4

(A.47)

where can be notice that the angular velocities θ̇2 and θ̇3 appears, and these are functions of the

independent velocities θ̇1 and θ̇4, as can be seen in Eqs. (A.14) and (A.15).

Inspecting the angular momentum of the linkage given in Eq. (A.47), it is reveled that it cannot

be constant, because it depends on the linkage angular velocities. The only possibility is to operate

the linkage with a constant angular velocities, and at the same time have a constant or zero value

for the remaining variable terms. These conditions are almost impossible for practical applications.

Therefore, the complete shaking moment balancing cannot be achieved by mass redistribution, it is

necessary to use external components like counter-rotations.
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Appendix B

Notes on the manufacture of dynamically

balanced mechanisms

This Appendix has the purpose to describe some insights for the manufacturing process of the

optimized bodies coming from the dynamically balanced linkages using topology optimization.

These notes are result of the prototyping phase, when several questions arise and they are described

here.

As it is natural for topology optimization, the first manufacturing technology to be considered

is Additive Manufacturing (AM). In our case, we describe Fused Deposition Modeling (FDM),

because it is the most widely used and affordable technique for AM.

Indeed, a prototype built using AM based on FDM technology has the aim to validate only the

dynamic balancing performance. The structural performance is more challenging to evaluate using

3D printed parts. The FE model for the optimization problem is considered as an isotropic elastic

model, while the 3D printing process generates orthotropic properties in the printed part. In general,

due to AM is generated by printing layer by layer, the mechanical properties of the printed parts

are affected, presenting anisotropy, porosity and residual stress (Meng et al., 2020).

B.1 Additive manufacturing based on FDM

There are different AM technologies, among them is the fused deposition modeling. The FDM

process consist in generating a part layer by layer until a three-dimensional object is created. These

layers are produced by heating thermoplastic in filament form and then deposited onto a surface.

The most common thermoplastic filament are Acrylonitrile Butadiene Styrene (ABS) and Polylactic

Acid (PLA).
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High density region

Low density region

Figure B.1: Material distribution for 3D printed part.

In the FDM process the exterior surface is generated ensuring the dimensionality of the part,

but the interior of part can be printed completely solid or with a specific patterns which basically

generate void spaces. The control of this property is called infill percentage, and it is representative

of the FDM technology. The infill is used to reduce the printing time, the used material and also to

reduce the weight of the printed part.

Even if there are more AM technologies, the most accessible is the FDM due to wide availability

of 3D printers at low cost for personal use. In addition, the materials used for these machines are

also affordable.

B.2 Limitations of the AM based on FDM for dynamically balanced bodies

The 3D printers for personal use are not generally designed to printing for a long time, therefore

print a solid object can be prohibitive or impractical. Thus, printing time can be one of the most

limiting factors, and it can be the main source of the printed part cost. The printing time depends on

the size of the part, but for instance, the time required for printing one link of the four-bar linkage

as a solid object was 24 h, which generate overheating and malfunction in a personal 3D printer.

Thus, if a personal 3D printer based on FDM technology is used, the infill percentage should be

lower than 100%.

Considering the optimized four-bar linkage, where the objective function is the compliance

and it is constrained by the balancing conditions. If the links are printed with an infill percentage

different from 100%, the optimized compliance will be affected, and the center of mass of the

links cannot be preserved. Thus, a link of the four-bar linkage is studied with an infill of 40%
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using a grid pattern, with its internal material distribution depicted in Fig. B.1. As a result the

material distribution is not homogeneous and it generates a COM in the printed part different from

the optimized one.

Therefore, the main problem is the impossibility to generate a uniform material distribution

using an infill percentage different from 100%. The algorithms are designed to generate proper

external shape, while the internal shape is generated by specific patterns with the aim of influence

in the strength of the printed part. Nevertheless, usually these algorithms do not preserve the inertial

properties of the designed object. Obviously, the most straightforward solution is printing with a

full infill, but it can no be a practical solution.

Consequently, one solution relies on the algorithms for path planing of the 3D printing machine.

It will be necessary to include a new constraints on the material distribution algorithm, forcing to

keep the total mass and the center of mass in the printed part equal to the designed part. This

constraint must ensure the printability of the optimum mechanism. Prévost et al. (2013) developed

a semi-automatic software for balancing printed objects by modifying the internal shape and the

total volume, while keeping some features of the external shape. In our case, the external shape

should be preserved or some metrics should be defined in order to produce a functional prototype.

B.3 Traditional manufacturing process

When the shapes of the optimized bodies do not have hollows, and for specific curvatures, the

traditional manufacturing process are useful. The viability of the traditional Computerized Numer-

ical Control (CNC) manufacturing should be verified by Computer-Aided Manufacturing (CAM)

software. Nevertheless, because some intricate features on the part can be complex but able to be

machined, the realization of the part will depend on the expertise of the workshop technician, and

the features of the CNC machine.

In the case of the four-bar linkage, due to the loading conditions, the optimized bodies do not

present hollows, thus the they were able to manufacture using a CNC machine. Besides, the parts

created with the traditional manufacturing process using isotropic materials, has the advantage to be

able for structural validation, since the FE model and the machined part have the same mechanical

properties.
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Titre : Optimisation de la topologie des robots dynamiquement équilibrés

Mot clés : équilibrage dynamique, robots équilibré dynamiquement, optimisation topologique

multi-corps, mécanisme à quatre barres équilibré dynamiquement, équilibrage dynamique par-

tiel d’un mécanisme à cinq barres

Résumé : L’équilibrage dynamique est un
domaine d’étude important en robotique à
grande vitesse et pour la robotique spatiale.
La prise en compte des performances d’équi-
librage dynamique des robots lors de leur
conception permet de réduire les vibrations
du bâti, une meilleure précision et des temps
de cycle réduits. Dans le but de développer
une méthode de conception de robot équi-
librés dynamiquement, l’optimisation topolo-
gique structurelle est étudiée dans ce travail
de recherche en tant qu’outil pour concevoir
des robots équilibrés dynamiquement, c’est à
dire un robot ne transmettant pas de réaction
sur le châssis.

La pertinence de la méthodologie propo-
sée est confirmée par la réalisation d’une
conception optimisée d’un mécanisme à
quatre barres équilibré dynamiquement et
l’équilibrage dynamique partiel d’un méca-
nisme à cinq barres. L’importance de la
conception d’un mécanisme à quatre barres
équilibré dynamiquement est liée à la possibi-
lité d’exploiter ce mécanisme optimisé comme
un module utile à la conception de robots équi-
librés dynamiquement. Le mécanisme à cinq
barres a une importance toute particulière en
raison de ses applications industrielles, où il
est généralement utilisé dans des opérations
de prise et de dépose.

Title: Topology optimization of reactionless robots

Keywords: dynamic balancing, reactionless robots, multibody topology optimization, reaction-

less four-bar linkage, partial dynamic balancing of five-bar mechanism

Abstract: Dynamic balancing is an impor-
tant field of study in high-speed robotics and
spatial robots. Taking into account robot dy-
namic balancing performance for robot design
leads to low base vibrations, high precision
and short cycle times. With the aim to develop
a comprehensive robot design for dynamic
balancing, structural topology optimization is
studied in this research work as a tool for
designing dynamically balanced robots, also
called reactionless robots.

The suitability of the proposed methodol-

ogy is confirmed by accomplishing an opti-
mized design of a reactionless four-bar linkage
and the partial dynamic balancing of five-bar
robotic mechanism. The significance of the dy-
namically balanced four-bar linkage is related
to the possibility to exploit this optimized link-
age as a special leg for building reactionless
robots. Besides, the five-bar robot is very im-
portant due to its industrial applications, where
it is typically used in pick-and-place opera-
tions.
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