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Introduction Générale en français

L’aorte est la plus grande artère et joue un rôle essentiel dans le système cardio-
vasculaire grâce à l’effet Windkessel [1]. L’aorte absorbe la colonne de sang éjectée
par le ventricule gauche en se déformant élastiquement, puis en se rétractant pour
faire avancer le sang dans le système artériel et ainsi fournir de l’oxygène et des
nutriments aux organes. Avec le temps, l’aorte peut éventuellement changer de
structure comme d’autres tissus vivants. Ces changements ont pour but de main-
tenir le bon fonctionnement de l’aorte malgré les effets du vieillissement et sont
provoqués par la régénération des tissus ou par des changements dans l’environ-
nement de l’aorte. Les adaptations tissulaires sont contrôlées par les cellules qui
y sont intégrées et qui sont capables d’exécuter une fonction mécanosensible pour
évaluer l’état mécanique de la paroi aortique [2], [3]. Avec l’âge ou une maladie
congénitale, les cellules peuvent avoir des difficultés à évaluer leur environnement,
ce qui entraîne des inadaptations. Cela peut aboutir au développement de mala-
dies telles que les anévrismes (AA) pouvant conduire à des dissections aortiques
(AD) [4], [5].
Les AD sont en fait une cause de mortalité importante dans les pays développés. En
effet, 1-2% de la population mondiale est susceptible d’être atteinte par un AA.
Les anévrismes dans l’aorte abdominale sont les plus fréquents et leur rupture
est responsable de 1-2% des décès dans le monde occidental. En plus, l’incidence
des AD se situe entre 2-4/100 000 par an, identifiée après le décès pour plus
de 20% des patients [4], [5]. Leurs causes, leur évolution et leur rupture ne sont
pas complètement comprises. Cependant, les chercheurs s’accordent à dire que la
progression de ces maladies est liée à la dégénérescence de la structure de la paroi
aortique et aux difficultés des cellules à maintenir une stabilité mécanobiologique
(homéostasie) [2]-[4]. En outre, pour les anévrismes de l’aorte thoracique (TAA),
il est impératif de réparer l’aorte thoracique avant la rupture ou la dissection, le
critère utilisé pour les prévenir étant la chirurgie à un diamètre de 50-mm à 55-
mm. Malheureusement, de nombreux patients peuvent subir une rupture avant ce
seuil, ou certains patients peuvent survivre avec des TAA plus grands que ce seuil
[5], [6]. Le chirurgien a donc besoin d’un critère mécanique complémentaire qui
puisse être adapté à chaque patient.
L’homéostasie de l’aorte est liée à un état préféré du tissu dans lequel les cellules
maintiennent la stabilité mécanobiologique de l’aorte [7], [8]. L’état préféré peut
être mesuré en termes de quantité mécanique, par exemple, la contrainte. Si un
stimulus est donné, la contrainte peut changer, mais les cellules produiront des
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molécules pour modifier la structure de la paroi afin de retrouver sa contrainte
préférée [2], [3]. Cependant, avec l’âge, les cellules peuvent cibler une mauvaise
contrainte préférée, ce qui entraîne la dégénérescence. Un autre problème pourrait
être l’impossibilité pour les cellules de maintenir leur environnement en raison de
leur difficultés à restructurer la matrice extracellulaire [3], [9].
Afin de modéliser les adaptations des tissus vivants (l’aorte) dans un contexte mé-
canique, des modèles de croissance et de remodelage (G&R) ont été développés.
Généralement, la G&R est utilisée pour analyser le développement des anévrismes
dans les artères intracrâniennes [10], [11], l’aorte abdominale [12]-[16] et thora-
cique [17], [18]. Également ces modèles sont utilisés pour déterminer la contrainte
résiduelle dans la paroi artérielle [19]-[21]. Depuis les années 1990, plusieurs mo-
dèles G&R ont été proposés, mais ils sont basés sur des hypothèses diverses et
présentent des limitations en termes de prédictions et de performance de calcul
[22], [23]. Les modèles sont appliqués dans des codes d’éléments finis pour leurs
calculs. Les premiers modèles G&R ont été développés pour des membranes axisy-
métriques [10], [12], [24], [25], d’autres pour des coques tridimensionnelles [15] et
finalement pour des modèles tridimensionnels [14], [17], [26]. Néanmoins, les mo-
dèles axisymétriques ne permettent pas de simuler des géométries spécifiques au
patient comme peuvent le faire les modèles tridimensionnels. Même si les modèles
de coque tridimensionnels peuvent simuler une géométrie personnalisée d’artère
[15], ils sont moins réalistes en raison des hypothèses de paroi mince et des dif-
ficultés liées à la mise en œuvre d’une paroi artérielle multicouche. Car la paroi
artérielle est composée de trois couches (l’intima, la media et l’adventice) [1], [4],
[5], mais il y a des modèles qui considèrent l’artère comme une couche homogène
[12], [24], des modèles qui considèrent les trois couches [16] et des modèles qui
considèrent deux couches en négligeant les effets mécaniques de l’intima [17], [26].
Dans la littérature, la G&R est généralement déclenchée par des changements
de masse [12], [27], mais il y a quelques cas où la G&R est déclenchée par des
changements de chargement dans l’artère, tels que l’hypertension [28], [29].
Étant donné ce contexte, notre travail vise à proposer un modèle pour l’évolution
de l’aorte à partir du concept d’homéostasie dans la G&R. Cet modèle devrait
à long terme fournir un nouvel outil pour décider si un patient doit être opéré
ou non, en se basant sur des quantités mécaniques telles que la contrainte, la
rigidité et la déformation de l’aorte. Il est également prévu que le modèle soit
capable de prédire les modifications à l’échelle du tissu dans des modèles d’aortes
personnalisées.
Afin d’analyser l’évolution des tissus dans les modèles d’aortes spécifiques aux
patients, les objectifs de recherche suivants ont été fixés pour ce travail:

• l’implémentation de la G&R dans un code d’éléments finis et sa vérification;

• l’identification de la structure de l’aorte et son application dans les modèles
numériques;

• l’analyse de l’homéostasie de l’aorte à travers le modèle G&R;
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• l’analyse des effets de la précontrainte sur différents modèles d’aorte;

• l’analyse de l’adaptation mécanobiologique des modèles de l’aorte sous dif-
férents stimuli, par exemple la dégradation de masse ou des changements de
chargement;

Au début de ce travail, plusieurs difficultés sont apparues lors de l’implémenta-
tion du modèle G&R dans un solveur d’éléments finis (EF) tridimensionnel, tel
qu’ABAQUS. À ce moment-là, il était également difficile de comprendre toute la
portée de la G&R en trois dimensions. Il a donc été décidé de travailler dans un
code bidimensionnel dans le but de mieux comprendre les effets de la G&R dans
les artères en effectuant plusieurs simplifications dans le modèle. Cela a abouti à
l’écriture d’un code FORTRAN pour les coques axisymétriques. Le développement de
ce code a permis de réduire l’analyse des quantités tensorielles à leurs directions
principales et de réduire le temps de calcul pour les simulations de G&R dans
les artères cylindriques. Après la mise en œuvre réussie du code bidimensionnel,
l’étape suivante de ce travail a consisté à développer un solveur d’éléments finis
tridimensionnel pour le G&R. Dans ce cas, le modèle G&R a été implémenté dans
un solveur EF open-source disponible sur GitHub [30].
Pour atteindre les objectifs et de raconter l’histoire de ce recherche, le travail
présenté ci-après est divisé en plusieurs chapitres:
Le chapitre 1 rassemble l’état de l’art en matière d’anatomie et de physiologie
de l’aorte, son histologie et ses maladies. En outre, est présenté le concept d’ho-
méostasie appliqué à l’aorte. Vient ensuite une introduction à la mécanique des
milieux continus avec les quantités nécessaires à l’analyse du comportement de
l’aorte et utilisées ensuite pour établir des modèles de G&R pour les adaptations
mécanobiologiques des tissus vivants.
Le chapitre 2 contient la méthodologie développée pour la résolution du pro-
blème mécanique de G&R avec une procédure générale valable pour des solutions
analytiques et pour des solutions numériques. Il présente la loi de comportement
élastique pour le comportement de l’aorte avec plusieurs consitituants. Nous pré-
sentons également le principe des travaux virtuels avec son application à la mé-
thode des éléments finis. Ensuite, le modèle de coque axisymétrique et le modèle
épais tridimensionnel sont introduits avec les détails de leur mise en œuvre dans
des codes développé ex nihilo.
Le chapitre 3 correspond à un article publié avec les résultats obtenus à partir des
simulations effectuées avec le code de coque axisymétrique présenté au chapitre 2.
Dans les simulations, la G&R dans l’artère est déclenchée par la dégradation de
l’élastine dans la paroi artérielle et par le déploiement d’une endoprothèse.
Le chapitre 4 correspond à un article soumis (en révision) avec les résultats
obtenus à partir des simulations réalisées avec le code tridimensionnel par éléments
finis décrit au chapitre 2. Il contient des simulations sur des formes cylindriques
et toriques ainsi que des géométries spécifiques aux patients. Les cas toriques
et spécifiques aux patients s’avèrent être un défi et les simulations doivent être
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effectuées avec la mise en place d’une pré-contrainte non uniforme pour l’état
homéostatique de l’aorte.
Le chapitre 5 contient la formulation développée pour l’étude de l’évolution des
tissus après une dissection de l’aorte. Une simulation test est présentée dans ce
chapitre pour montrer les capacités du modèle de dissection proposé ici.
Enfin, une conclusion est présentée mettant en évidence les principaux résultats
de ce travail avec les contributions et les perspectives. En outre, les limites des
modèles G&R et de l’approche développée ici pour la prédiction de la progression
des maladies de l’aorte sont présentées.
Ce travail a été financé par le Conseil européen de la recherche avec la subvention
ERC-2014-CoG BIOLOCHANICS et par l’Agencia Nacional de Investigación y
Desarrollo du Chili. Le projet a été réalisé au CIS (Centre Ingénierie et Santé
de Mines Saint-Étienne), en particulier au sein du groupe STBio (Soft Tissue
Biomechanics), dans l’unité mixte de recherche SAINBIOSE.
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General Introduction

The aorta is the largest artery and plays an essential role in the cardiovascular
system thanks to the Windkessel effect [1]. The aorta absorbes the column of blood
pushed by the left ventricle by deforming elastically, and subsequently recoiling
to push the blood forward in the system, providing oxigen and nutriments to
the organs. With time the aorta could eventually change its structure as other
living tissues. Such changes are motivated by the regeneration of tissue or due to
changes in the environment of the aorta. The tissue adaptations are modulated by
the cells embeded in it. The cells are able to execute a mechano-sensitive function
to assess the mechanical state of the aortic wall [2], [3]. Eventually with age or
congenital disease the cells can present problems in assessing their environment
and consequently leading to maladaptations. This could end up in the development
of diseases such as aortic aneurysms (AA) or dissections (AD) [4], [5].
Cardiovascular diseases are one of the main causes of mortality in developed coun-
tries. It is estimated that 1-2% of the world’s population has an AA. Aneurysms
in the abdominal aorta are the most frequent and their rupture is responsible for
1-2% of deaths in the Western world. Moreover, the incidence of the AD is between
2-4/100,000 per year, and it is identified in more than 20% of patients after death
[4], [5]. Their causes and evolution are not completely understood. However, re-
searchers agree that the progression of the diseases are related to the degeneration
of the aortic wall structure and difficulties of the cells to maintain mechanobiolog-
ical stability [2]–[4]. In addition, for ascending thoracic aortic aneurysms (TAAs),
it is imperative to remove the thoracic aorta before rupture or dissection, with the
criterion being surgery at a diameter of 50-mm to 55-mm. Unfortunately, many
patients may experience rupture below this threshold, or some patients may sur-
vive with TAAs larger than this threshold [5], [6]. Therefore, the surgeon needs a
new mechanical criterion that can be customised to each patient.
Homeostasis in the aorta can be related to a preferred state of the tissue in which
the cells maintain the mechanobiological stability of the aorta [7], [8]. The pre-
ferred state can be measured in terms of a mechanical quantity, for instance, the
stress. Eventually if some stimulus alters the stress applied on the aorta, the cells
would produce molecules to add new material in the wall or change the structure
of the extant material to recover its preferred stress [2], [3]. However with age
the cells may experience issues for sensing their environment correctly and con-
sequently target a wrong preferred stress and lead to maladaptations. Another
problem could be the impossibility for the cells to maintain their surrounding en-
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vironment due to difficulties in producing new molecules and restructuring the
extracellular matrix [3], [9].
In order to model the adaptations of living tissues (the aorta) in a mechanical
context, Growth and Remodeling (G&R) models have been developed. Typically
G&R was used to analyse the development of aneurysms in intracranial arteries
[10], [11], abdominal [12]–[16] and thoracic [17], [18] aortas. Moreover, the models
are used to determine the residual stress in the arterial wall [19]–[21]. Since the
1990s, several G&R models have been proposed, where they are based on differ-
ent assumptions and present different limitations with respect to accuracy and
computational performance [22], [23]. The models have been applied in finite-
element codes for their calculations. The first G&R models were developed for
axisymmetric membranes [10], [12], [24], [25], others for three-dimensional shells
[15] and ultimately for three-dimensional thick models [14], [17], [26]. Although
three-dimensional shell models can simulate patient-specific aortas [15], they are
less realistic because of the thin-wall assumptions and difficulties associated with
the implementation of a multi-layer arterial wall. Indeed the arterial wall is com-
posed of three layers (intima, media and adventitia) [1], [4], [5]. However, there
are models that consider the artery as an homogeneous layer [12], [24], models
that consider all three layers [16] and models that consider two layers [17], [26],
neglecting the mechanical effects of the intima. In the literature, the G&R is usu-
ally triggered by mass density changes [12], [27], but there are few cases in which
G&R is triggered by changes in load in the artery, such as hypertension [28], [29].
Given this state of the art, this thesis intends to propose a model for the evolution
of the aorta, based on the concept of homeostasis within G&R. This model should
in the long term provide a new tool to decide whether a patient needs surgery
or not, based on mechanical quantities, such as stress, stiffness and deformation
of the aorta. It is also expected that the model is able to predict tissue scale
modifications for patient-specific aortas.
In order to analyse the tissue evolution in patient-specific aortas, the following
research objectives were set for this work:

• implementation of G&R in a finite element code and its verification;

• identification of the structure of the aorta and its application in computa-
tional models;

• analysis of the homeostasis of the aorta throughout the G&R model;

• analysis of the effects of prestress on different models of the aorta;

• analysis of the evolution of the aorta under different stimuli, e.g. mass
removal or load changes.

We solved several challenges related to the implementation of the hCM model
in a three-dimensional finite-element (FE) solver. We first worked on a two-
dimensional code with the aim to embrace the G&R effects in arteries by per-
forming several simplifications in the model. This ended up in writing a FORTRAN
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code from scratch for the axisymmetric shell elements. The development of this
code allowed to reduce the analysis of the tensorial quantities to their principal
directions and reduce the computation time for G&R simulations in cylindrical
arteries. We also developed a three-dimensional FE solver for G&R. In this case
the G&R model was implemented within an open-source FE solver available in
GitHub [30].
In order to reach the objectives, this thesis is divided in 5 chapters:
Chapter 1 presents the state of the art about the anatomy and physiology of the
aorta, its histology and diseases. Moreover we introduce the concept of homeosta-
sis applied to the aorta. Then follows an introduction to continuum mechanics
with the quantities needed for the behavior of the aorta and subsequently used to
establish G&R models.
Chapter 2 presents extensively the methodology developed in this thesis for
solving the mechanical problem of G&R analytically and numerically. It includes
the elastic constitutive model for the aortic behavior with several constituents.
We also present the principle of virtual work with its application to finite-element
analyses in an axisymmetric shell model and a three-dimensional thick-wall model.
All details about their implementation in an in-house code are provided.
Chapter 3 corresponds to a published paper about the results obtained with the
axisymmetric shell code of Chapter 2. In the simulations, G&R in the artery is
triggered by elastin degradation in the arterial wall and by deployment of a stent.
Chapter 4 corresponds to a paper currently in revision, presenting the results
obtained with the three-dimensional finite-element code of Chapter 2. It contains
simulations in cylindric and toric shapes along with patient-specific geometries.
The toric and patient-specific cases prove to be challenging and the simulations
have to be carried out with non-uniform prestretch for the homeostatic state of
the aorta.
Chapter 5 introduces a formulation for studying tissue evolution after an aortic
dissection. A test simulation is presented in this chapter as a proof of concept.
Finally, a conclusion is presented to highlight the main findings of this work with
contributions and future work. Moreover, limitations of the G&R models are
discussed for the prediction of disease progression in aortas.
This work was funded by the European Research Council with the grant ERC-
2014-CoG BIOLOCHANICS and by Agencia Nacional de Investigación y Desar-
rollo of Chile. The project was carried out at CIS (Centre Ingénierie et Santé of
Mines Saint-Étienne) in particular the STBio (Soft Tissue Biomechanics) group
in the SAINBIOSE research unit.
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1.1 Résumé du chapitre en français

L’aorte est le plus gros vaisseau du système cardiovasculaire et sa tâche est de
recevoir le sang expulsé du cœur et de l’acheminer vers les artères mineures, pour
enfin fournir aux organes du corps du sang oxygéné et des nutriments. Pour que
l’aorte satisfasse à de telles fonctions, sa structure est extrêmement importante,
car l’aorte subit une expansion élastique pendant la systole et un retour élastique
pendant la diastole pour pousser le sang vers l’avant. La structure de l’aorte,
comme les autres vaisseaux sanguins, est divisée en trois couches, l’intima, la
media et l’adventice. À travers les couches, des cellules évaluent les conditions de
l’environnement et synthétisent des protéines et d’autres molécules pour maintenir
ou modifier la matrice extracellulaire dans laquelle elles sont intégrées, la matrice
extracellulaire fournissant une structure pour les cellules. Malheureusement, cette
structure n’est pas exempte de troubles liés à une rupture du tissu due à des charges
élevées, au vieillissement du matériau ou à des problèmes des cellules pour sentir
et contrôler la cohésion du tissu conjonctif.
Le processus par lequel les cellules maintiennent la structure de la matrice extracel-
lulaire est appelé homéostasie et c’est une activité importante dans les systèmes
biologiques pour maintenir leur stabilité. Habituellement, ce processus permet
l’élimination et le renouvellement de cellules et de protéines. Mais sous certaines
conditions exceptionnelles un nouveau tissu conjonctif peut être créé et produire
des cellules qui peuvent migrer pour cibler les nouveaux besoins, conduisant à
une adaptation du système ou éventuellement à une inadaptation dans le cas de
certaines maladies. Les modèles mathématiques de Croissance et de Remodelage
développés depuis les années 90 visent à donner une représentation mathématique
et à comprendre les différents aspects et mécanismes de l’homéostasie dans les
tissus vivants. Ils sont basés sur les changements de masse ayant lieu à l’échelle
du tissu et la modification des liens dans la structure.

1.2 Summary of the chapter

The aorta is the largest vessel in the cardiovascular system and its task is to receive
the blood expelled from the heart and deliver it to minor arteries to finally provide
the organs of the body with oxigenated blood and nutriments. In order to satisfy
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such functions its structure is tremendously important, as the aorta experiences
an elastic expansion during systole and an elastic recoil during diastole, permitting
to push the blood forward. The structure of the aorta, like other blood vessels,
is divided within three layers, intima, media and adventitia. Through the layers
there are cells able to assess the conditions of the environment and to synthesize
proteins and other molecules to maintain the extracellular matrix in which they
are embedded, providing a structure for the cells. Unfortunately, this structure is
not free of disorders related with disruption of the tissue due to high loads, aging
or problems of the cells to sense and control the cohesion of the connective tissue.
The process in which the cells assess and manage the structure of the extracellular
matrix is denominated as homeostasis and it is an important activity in the bio-
logical systems to keep their stability. Usually this process is just in charge of the
removal and production of cells and proteins. But under exceptional changes or
disruption of the structure, the homeostasis can lead to building new connective
tissue and to cell migration to target the new requirements. This could end up
in adaptations of the system or eventually in maladaptations with disease pro-
gression. Growth and Remodeling models developed since the 90s aim to give
a mathematical representation and understand the differents aspects and mech-
anisms of homeostasis in living tissues. Such aspects are based on mass changes
taking place at the tissue scale and the modification of the tissue structure.

1.3 Arterial System

The human body is composed of many systems and organs with specific tasks
to remain alive. However, the distance between the organs leads to the need
of an efficient transport which is provided by the blood. The blood is in charge
of transporting mass (nutriments, hormons, oxygen, carbon dioxide and wastes),
momentum (pressure) and energy (heat) and it moves through a large network
of pipes, called blood vessels. At the core of this piping system there is a pump
generating the potential (pressure), called the heart.
The heart is a double pump, one pushing the blood without oxygen to the pul-
monary circulation, and the other, pumping the blood rich in oxygen to the body
in the systemic circulation through the aorta. The heart contracts to push the
blood in a process referred to as systole, then it has a period of recoil where it
fills again, referred to as diastole [1]. The heart collects blood from the veins and
expells the blood through the arteries (Fig. 1.1), where the latter are the down-
stream piping system working at high pressure. Most vessels share the same wall
structure to contain the blood inside.
As the heart pumps the blood in a pulsated fashion, the arteries have to be elastic
in order to expand and recoil and to push the blood forward continuously, atten-
uating the pulsating waves. To manage the high pressure at the opening of the
aortic valve and the lower pressure at the closed position, arteries are either elastic
or muscular. Elastic arteries –rich in elastic fibres– dilate when they receive the

3



Chapter 1. Background

Figure 1.1 – Schematic representation of the arteries in the human body with
the aorta in the center of the system [1].
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blood at systole and recoil at diastole, hence pushing the blood forward. Down-
stream we find the muscular arteries –having a higher fraction of smooth muscle–.
They play an important role with contractions and dilatations managed by the
smooth muscle cells (SMCs), controlling the flow and guiding the blood to the
places of major needs [1], [31].

1.4 The aorta

The aorta was called "the greatest artery" by the ancients [4], it is the largest
blood vessel in the human body and it is connected to the heart. It makes its way
in the thorax and abdomen. Its branches constitute the major arteries distributing
blood to the head, arms, organs and legs. The aorta is cyclically loaded by the
pulsed pressures due to the opening and closing of the aortic valve, which reflects
in the dilation and contraction of the arterial wall induced by heart beats. During
the dilation, energy is stored in an elastic form, which is then released by the recoil
of the aorta. This effect helps to maintain a continuous blood flow. This is called
the Windkessel effect [1].

Figure 1.2 – Aortic trunk with the definition of its segments [4].

The thoracic aorta is divided into four segments, Fig. 1.2. The aortic root is
the most proximal segment, extending from the annulus of the aortic valve and
extending to the sinotubular junction; the aortic root is composed of the right,
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left, and noncoronary sinuses of Valsalva. The ascending aorta is tubular and
extends from the sinotubular junction to the innominate (brachiocephalic) artery.
Both the aortic root and ascending aorta lie within the pericardial space, which
means that the ascending aorta can be surrounded by pericardial fluid in the
setting of an effusion; it also means that rupture of the ascending thoracic aorta
(ATA) can cause cardiac tamponade. The aortic arch extends from the innominate
artery to just beyond the left subclavian artery. The aortic arch gives rise to
the innominate artery, left common carotid, and left subclavian arteries. The
descending aorta begins just after the origin of the left subclavian artery and
extends to the aortic bifurcation. At the diaphragm the aorta is divided between
the descending thoracic aorta above the diaphragm and the abdominal aorta below
[32], Fig. 1.2.

1.5 Histology of the aortic wall

The wall of the aorta is organized in three layers: the intima, the media and the
adventitia (Fig. 1.3). This structure comprises cells able to sense the environment,
modify the structure, and relax or contract the aorta; such cells are embedded in
a viscoelastic structure named the extracellular matrix (ECM) [33]. At the same
time, the ECM is maintained by the cells. The ECM supports the stresses induced
by the blood pressure. The aorta is abundant in elastic fibres. More details are
presented in Table 1.1.

Thoracic Aorta Abdominal Aorta
Luminal diameter(mm) 32 – 36 12 – 15
Thickness(mm) 1.6 – 2.3 1.4 – 1.5
Intima/Media/Adventitia(%) 6/76/18 20/47/33
Elastin(%) 22 – 33 23 – 30
Collagen(%) 18 – 31 36 – 45
SMCs(%) – ≈ 23

Table 1.1 – Aortic dimensions and composition [6], [34]–[36].

1.5.1 Tunica intima

The intima is the inner most layer in contact with the blood flow. It consists
of a single layer of endothelial cells with no important structural significance.
However, this layer modulates the permeability of cells (e.g. lymphocytes) and
nutrients from the flow into the wall, it helps to control vasoconstriction through
communication with the SMCs of the media, it also facilitates the formation of
new blood vessels via angiogenesis. It provides a smooth non-thombogenic surface
for blood flow, important in the formation of atherosclerotic plaques [4]. Recent
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Figure 1.3 – Schematic diagram of the arterial wall structure showing the layers
and their composition. [1].

studies showed that the novel COVID-19 disease may affect the functionality of
endothelial cells [37].

1.5.2 Tunica media

The media is the middle layer, it contains SMCs circumferentially oriented wrapped
in a thin layer of collagen. These concentric arrangements are separated by elastic
laminas, composed mainly of elastin. It differentiates from the intima and adven-
titia at the two fenestrated elastic laminas. Due to the abundant elastic fibres,
this layer has the important function of storing elastic energy (reservoir) during
systole and use it to recoil during diastole to keep the blood flow forward. This
function is particularly important for the aorta.

1.5.3 Tunica adventitia

The outer layer is the adventitia, it contains mainly collagen supporting fibroblasts
and nerves, with some elastin. It provides a mechanical support to the vascular
wall, preventing acute overdistention of the more vulnerable elastic fibres and
SMCs of the media [3]. It also contains small blood vessels, the vasa vasorum, [1],
[3]. The adventitia is around 10% to 50% of the arterial wall for the elastic and
muscular kind, respectively [33]
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1.5.4 Elastin

Elastin is a protein mainly present in arteries and it is the most abundant in the
ECM, being around 50% of the dry weight. It allows arteries to distend elastically
during systole and recoil during diastole, which is an essential function of the aorta.
It has a half-life in the order of decades. It is mainly produced during the fetal life
and infancy period by the SMCs. Elastin is the main constituent of elastic fibres
(90% approx). Elastic fibres assemble into the elastic laminas, which are disposed
as concentric arrangement with SMCs. With age, calcium may be deposited in
the elastic lamina, inducing stiffer properties, which alters the elastic function of
large arteries [3], [38]. Elastin is one of the most resistant, both chemically and
thermally, of all proteins; it is very distensible, it can withstand up to 150% stretch
without breaking [33], [39].

1.5.5 Collagen

Collagen is a fibrous protein present in the three layers of the aorta. At high
intraluminal pressures collagen becomes very stiff, limiting vascular distensibility,
due to its significant stiffness and strength. The half-life of collagen is in order of
only a few weeks or months with a considerable turnover in response to increased
mechanical loading. An excessive deposition of collagen may produce fibrosis in
the vessel and increase the stiffness. The deposition and removal of collagen is
regulated by fibroblasts in the adventitia and by SMCs in the media [1], [3], [38].
Collagen fibres are wavy when they are not stretched. They are oriented heli-
cally around the artery [39]. Cross-linking of collagen increases with age, resulting
in larger stiffness. The maintenance of collagen relies on a delicate balance be-
tween synthesis and degradation. When they are straigthened, collagen fibres can
withstand up to 10% stretch without breaking [33].

1.5.6 Smooth muscle cells

Actually, in the arterial wall, there are three different kinds of cells: the endothelial
cells in the intima, SMCs in the media and fibroblasts in the adventitia. Although
each cell is in charge of the maintenance of the ECM in its respective layer [33],
they also share many cross-communication pathways in order to complete this
function and to manage the contractions and relaxation of the artery.
Maybe the most important cells in the arterial wall are the SMCs. Their cyto-
plasm contains dense bodies and bands, which are linked by actin and myosin
filaments along the axis of the cell, and by intermediate filaments to form the
cytoskeleton (the internal structure that gives the cell shape). The dense bodies
interact with the ECM through the integrins, which allow the cells to assess their
environment [1], and regulate the production and degradation of proteins and
molecules. They exhibit synthetic and contractile functions [3] with the capability
to alter the tone of the artery [39]. SMCs have a preferred length of work and
their contraction/relaxation depend on the concentration of Ca2+ [33].
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1.6 Diseases in the aorta

Despite regulations by the cells, the wall of the aorta is not inmune against fa-
tigue or disruption of the structure under perturbations. The difference between
adaptation and maladaptation of the tissue lies in the cells ability to sense and
maintain the aorta. In this work we are interested by the regulation done by the
cells in response to the tissue changes after a perturbation, such as, age or an in-
sult related to structural disruptions, geometrical modifications or load variations.
Such disturbance in homeostasis of the aorta could end up in the development of
diseases such as aneurysm and/or dissection. Diseases in the aorta are usually
related to the degeneration of the media involving SMCs loss or inflammation and
elastic fibres fragmentation [40]. Some risk factors that accelerate degeneration of
the aortic wall are related to hypertension, smoking and genetic disorders [32].

1.6.1 Aging

Aging is a natural process in the human body since the early life, but it starts
to be more significant during adulthood [4]. This is due to the accumulation of
load cycles producing diffuse fragmentations of the elastic fibres. As SMCs do not
synthesize elastin during adulthood, their lack is compensated by collagen. This
replacement produces a loss of elasticity and a stiffness increase, which affects the
elastic recoil of the aorta and increases the pulse wave velocity.
The new tissue structure of the arterial wall may produce disproportional dilata-
tion of the artery increasing the lumen diameter and length over 3% and 12%
per decade, respectively. This deformation may even produce a tortuous aorta
[41]. Between the second and sixth decade, the luminal pressure increases, the
inner surface of the aorta doubles, the aortic diameter increases –especially in
the ascending aorta and to a lesser extent in the abdominal aorta–[42]. Further-
more with age there is an hyperplasia where the intimal thickness increases due
to atherosclerosis. This is related to infiltration of lymphocytes and accumulation
of fat, collagen and calcium in the intima [4], [39].

1.6.2 Aneurysm

An aneurysm in an asymptomatic disease that generally develops in major vessels
such as the aorta. There are also cases of aneurysms in minor vessels such as
the intracranial [10] or carotid arteries [43]. An aneurysm is a localized or diffuse
dilatation of the vessel wall with a diameter 1.5 times larger than its normal
caliber or greater than 45-mm in the case of the ascending aorta and aortic root.
An aneurysm in the aorta primarily involves one segment. Aortic aneurysms
are important causes of morbidity and mortality in developed countries where 1–
2% of the population is concerned, with a prevalence of 10% in elderly [4], [32].
Aneurysms may be classified by shape in saccular or fusiform. Moreover, they
may be classified as true (lined by attenuated media) or false (lined by adjacent
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Figure 1.4 – Picture representing the size of young and old aortas [41]. This
shows the effects of aging.

fibrous tissue) and as dissecting or nondissecting, Fig. 1.5. Abdominal areurysms
are more common than thoracic aneurysms [4], [32], [39].
It is widely accepted that the origin of aneurysms is due to disruptions in the me-
dia related to death and atrophy of the cells with fragmentation of elastic fibres
and accumulation of collagen with proteoglycans [4], [5]. Such medial degeneration
may be a consequence of the normal aging process accelerated by conditions such
as hypertension and specific genetic conditions. Indeed, Ascending Thoracic Aor-
tic Aneurysms (ATAA) are primarily associated with cystic medial degeneration
(CMD) and Abdominal Aortic Aneurysms (AAA) are generally associated with
atherosclerosis [4], [5]. CMD is characterized by fragmentation and loss of elastic
lamina, pools of proteglycans, appearance of cyst-like structures and necrosis in
the media; patients with inherited connective tissue disorders are at greatest risk
of CMD. Atherosclerosis produces accumulation of inflammatory cells, which in
the long term may produce SMCs atrophy with disruption of elastic fibre trans-
lated into attenuation and fragmentation of the media with fibrosis. Atheroscle-
rotic plaques may also exist at the initiation of ATAAs but less often. However,
aneurysms may also occur from chronic dissection, trauma, aortic surgery, false
aneurysm, noninfectious aortitis, syphylis or other infections [4].
If the aneurysm is left untreated it may lead to aortic dissection or rupture with
high mortality risks. The expansion of the aneurysm could be fixed by surgical
repair, the latter is indicated for aneurysms diameters larger than 55-mm or fast
growing rates (over 0.15cm/year) [44]. Surgical repair can be endovascular for de-
scending thoracic and abdominal aortas. Endovascular aneurysm repair (EVAR)
consists in the insertion of a synthetic stent-graft into the aorta where the main
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idea is to block or diminish the leak of blood within the aneurysm [4], [39], [45]. On
the other hand a complete replacement is advised for ATAAs [32]. The main com-
plications are dissections, degenerative aneurysms, penetrating ulcers, traumatic
injuries or leaking [4]. Open surgical repair is the standard of care for treating
the thoracic aortic aneurysms (TAAs) but EVAR is an increasingly important
technique that is being continually refined [4], [5], [45].

Figure 1.5 – The picture shows the different shapes of the types of aortic
aneurysms and it compares them against a normal aorta [32].

1.6.3 Dissections

Aortic dissection is a disease which produces division along the arterial layers leav-
ing a gap for blood invasion. An aortic dissection may be produced by a tear or
ulcer in the intima, by the rupture of the vasa vasorum, or even by aortic ma-
nipulations [4], [32], [46]. The surface of dissection is usually located between the
inner two-third and the outer one-third of the aortic media, or less commonly at
the junction between the media and adventitia. This gap within the arterial wall
is filled with blood and is denominated false lumen while the original arterial lu-
men is denominated true lumen. In several cases the false lumen becomes greater
than the true lumen. This can induce ischemia in some organs due to the lack
of oxygenated blood in the downstream. Actually the main complications are the
false lumen rupture and the compression of the true lumen or arterial branches.
Moreover aortic dissections have been related to aortic regurgitation and aneurys-
mal dilatation in the elderly population. Dissections may be produced by other
diseases such as the giant cell aortitis, Takayasu and syphilis. Aortic dissections
are also six times more common in people with the Turner syndrome than in the
general population [4].
Aortic dissections (ADs) are classified into acute and chronic types depending
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on the duration of the disease, where the threshold is between two weeks or two
months [47], [48]. Moreover there are two classifications depending on the exten-
sion of the aorta affected by the dissection, the DeBakey and Stanford systems.
The DeBakey system is based upon the site of tear and divides ADs into three ma-
jor groups: type I dissections, in which the intimal tear is located in the ascending
aorta, with dissections extending into the descending aorta; type II dissections, in
which the intimal tear is also located in the ascending aorta, but the dissection
is limited to the ascending aorta; type III dissections, which differ fundamentally
from the other types, because the intimal tear is in the descending or the aortic
arch, usually in the distal arch or proximal descending aorta. Type III dissections
are further divided into type IIIa –retrograde dissection extending into the ascend-
ing aorta– and type IIIb –dissection confined to the aortic arch or the descending
aorta–. The Stanford classification is categorized into type A and B. Type A
means that the dissection involves the ascending aorta irrespectively of the site of
origin, and type B means that the dissection does not involve the ascending aorta
and is restricted to the descending aorta. The two types have different clinical
implications, as the incidence of in-hospital complications is higher for type A
than for type B. Dissections involving the ascending aorta need open surgery and
have higher mortality rates than dissection involving just the descending aorta
and/or the aortic arch, which can be mitigated with therapy and endovascular
interventions [4].

Figure 1.6 – Dissection classification. [4]
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1.7 Homeostasis

Biological systems have a self-regulating process referred to as homeostasis that
tends to maintain stability in the system while adapting to conditions that are
optimal for survival [7]. This gives the aorta the natural ability to continually
modify its own structure to keep its functionality or adapt under some chemical
or mechanical stimuli. Either homeostasis is successful and the aorta does not
experience macroscopic changes; or it is unsuccessful and the aorta experiences
maladaptation with disease consequences. This depends on the mechano-sensitive
and mechano-regulation functions of the cells within the arterial wall, that are
in charge to assess the conditions of the ECM to synthesize and reorganize the
connective tissue. The mechanical assessment of the ECM relies on the integrins
of the cells which connects the cytoskeleton (inside the cell) with the extracellular
matrix, Fig. 1.7. As a result, the cells produce proteins and/or molecules to
modify the ECM [2], [3], [9]. Eventually, if the cells do not work properly or if
they are dead, there is no sufficient maintenance of the cross-links in the ECM
and disease may arise in the aorta.

1.7.1 Mechanical Homeostasis

Arteries are able to self-regulate the stress sensed from the aortic wall [2], [3], [8],
[28]. The stress is an important measure in biomechanics as it is a force intensity
having units of force per unit area (e.g. N/m2). Therefore, taking into considera-
tion that an artery can be modeled as a straight thin-walled tube, given the inner
pressure P and axial load f , the artery will be under the stress state showed in
figure 1.7 with radial, circumferential and longitudinal stresses. Moreover under
normal conditions of pressure, the circumferential stress in the artery would be
approximately between 100-kPa and 150-kPa [2]. In a small portion of the aor-
tic wall, the stress through the ECM is ultimately applied onto the cells (SMCs,
fibroblasts and endothelial cells). Additionally it has been observed that the in-
tramural cells target some preferred state of stress, for instance, contractile SMCs
generate stresses of 100-kPa approximately and synthetic SMCs with fibroblasts
seek stresses between 5-kPa to 10-kPa [2]. Thus, stress variations in the ECM,
result in different biological pathways where the cells modify the stiffness of the
ECM to restore their preferred stress.

1.7.2 Turnover

Turnover is the mechanism of homeostasis related to the activity of cells in re-
organizing the ECM and adapting its stiffness, which incorporates the combined
effects of production/removal of structural proteins and the remodeling of tissue.
Due to the half-life of the extracellular components and the life-spans of the cells,
the stiffness is constantly changing and deviates from the preferred one, making
turnover a continuous tissue maintenance process. For instance arterial collagen
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Figure 1.7 – Stress in a thin-walled tube and prestress generated by the cells.
Radial σr, circumferential σθ and longitudinal σz stresses. And the prestress gen-
erated by the cell σpre. [2].

has a half-life in the order of 60-70 days while arterial elastin has a half-life in the
order of 25-70 years. Therefore, compared to the time scale of pulsatile waves this
mechanism (growth and remodeling) occurs in long time scales (synthesizing new
proteins and cross-linking extant proteins). Eventually, turnover can consist in
replacing the cross-links in the connective tissue or creating new cross-links in re-
sponse to external stimuli. In the latter the artery may undergo maladaptation and
facilitate the progression of pathologies, such as fibrosis or atrophy/hypertrophy
of the cells [2], [3], [9].

1.7.3 Prestress or prestretch

As indicated before, the intramural cells have a preferred stress and they may
produce all the changes needed to recover that mechanical state. Such preferred
stress seems essential to generate a prestressed extracellular matrix, as it seems
to be the only way to reach the preferred tensional homeostasis. It is achieved
through the deposition of prestressed matrix. In other words, the newly deposited
and extant fibres, if they were stress-free or under-stressed, would extend until the
in vivo level of stress [9].
The prestress of the tissue is distributed amongst the cells and the extracellular
matrix, with the cells taking only a small part and the matrix schielding them
from the largest part of the stress, Fig. 1.7. Nevertheless the stress distribution
within the tissue must respect the linear momentum balance, and eventually the
prestress can spatially depend on the in vivo loads and on the shape of the vessel
[21], [49]. Accordingly, the continual prestress incorporation balance the external
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loads and reduce the stress directly experienced by the cells. This stress shielding
effect seems mechanically favorable for the mechano-sensitive activity of the cells
to monitor the turnover and maintain the tissue [9].

1.8 Mechanical framework

Herein the goal is to relate the biological and mechanical aspects of the aortic wall
and its homeostasis in a general mathematical framework based on continuum me-
chanics [50], [51]. Therefore, in this section, we review the mechanical background
for modeling mechanical homeostasis in the aorta.

1.8.1 Kinematics

Let us assume that the motion of a continuum body (living tissue) in the Euclidean
space can be described by a continuous function χ : ΩR × R+ → R3 mapping the
displacement of a reference particle P to a current particle p with xxxp = χ(XXXP , t),
where XXXP is a particle in the body ΩR ⊂ R3 –the Lagrangian or reference con-
figuration– and the xxxp is a particle in the body Ωt ⊂ R3 –the Eulerian or spatial
configuration– at time t ≥ 0, Fig. 1.8.
The function χ allows to measure the motion of the particles in a body from its
reference ΩR to its current Ωt frame. For instance, from the function χ we define
the following material quantities: displacement field, velocity field and acceleration
field,

UUU(XXX, t) = xxx(XXX, t)−XXX, (1.1)

VVV (XXX, t) =
∂χ(XXX, t)

∂t
, (1.2)

AAA(XXX, t) =
∂2χ(XXX, t)

∂t2
, (1.3)

respectively. If χ is assumed to be a uniquely invertible function, such as XXX =

χ−1(xxx, t), it is possible to define the quantities in terms of the spatial coordinates
[52],

uuu(xxx, t) = xxx−XXX(xxx, t), (1.4)

vvv(xxx, t) = VVV (χ−1(xxx, t), t), (1.5)

aaa(xxx, t) = AAA(χ−1(xxx, t), t). (1.6)

The function χ describes well the motion of a particle in the body ΩR. Neverthe-
less, the motion of the particle might not be enough to describe the behavior of
the whole body, because, the reference body ΩR in motion may deform. Thus, a
reference vector dXXX = XXXQ −XXXP between the two particles Q and P is mapped
by χ to the current vector dxxx = xxxq − xxxp to measure the deformation and rota-
tions of the body. When the distance between the particles P and Q becomes
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XXXP xxxp

ΩR

Ωt

χ

X1, x1

X2, x2

X3, x3

Time=0
Time=t

XXXQ xxxq

Reference
configuration

Current
configuration

Figure 1.8 – A configuration or frame represents a state of the body. As the
body moves, a new configuration is obtained, dependeing on time t. The refer-
ence configuration is also called material or Lagrangian configuration, while the
current configuration is also called spatial, deformed or Eulerian configuration.
Additionally, the figure defines the material vector dXXX = XXXP −XXXQ and spatial
vector dxxx = xxxp − xxxq.
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infinitesimally small the ratio of the spatial and reference coordintes defines the
derivative,

FFF =
∂χ(XXX, t)

∂XXX
, (1.7)

which is the second-order deformation gradient tensor that transforms the La-
grangian vector dXXX into the Eulerian vector dxxx by the relation, dxxx = FFFdXXX. Then
this tensor is a linear transformation from the Lagrangian to the Eulerian con-
figuration. This formulation is possible due to the continuity of the domains ΩR

and Ωt [51], [53]. That means the bodies are a continuum of particles perfectly
assembled.
The deformation gradient can have an unique polar decomposition, such as, one
tensor contains the rigid body rotations and the other contains the stretch in the
body,

FFF = RRRUUU = VVVRRR, (1.8)

where RRR is a rotation tensor, UUU is the right stretch tensor and VVV is the left stretch
tensor, which should not be confused with the material displacements and veloc-
ities (Eqs. 1.1 and 1.2). The new tensors have some important properties, for
instance, the rotation tensor is orthogonal (RRRTRRR = III) and the stretch tensors (UUU
and VVV ) are symmetric.
The deformation gradient expresses the change of an infinitesimal volume between
its reference (dV ) and current (dv) frames by,

dv = J(XXX, t)dV (1.9)

with J = det(FFF ). J is known as the volume ratio or Jacobian determinant. If it
is assumed that the deformation gradient is invertible, the volume ratio must be
strictly positive, J > 0. J = 1 means the motion of the particles keeps the volume
of the body (isochoric deformation).
Additionally, taking the vectors dXXX and dxxx in material and deformed frames,
respectively, the change of an infinitesimally small material area dAAA to a deformed
area daaa can be related through equation 1.9 as,

dv = daaa · dxxx = JdAAA · dXXX, (1.10)

where dxxx = FFFdXXX gives the relationship between the areas, known as the Nanson’s
formula [50], [51],

daaa = JFFF−TdAAA. (1.11)

Furthermore, the strain of the body can be measured by the difference of the
squared lengths of the material and current vectors, with the material length
dX2 = dXXX ·dXXX and spatial length dx2 = dxxx·dxxx, see Fig. 1.8. However there are two
possible ways to define the strain either in the reference or current configuration,

dx2 − dX2 = dXXX · (CCC − III)dXXX = 2dXXX ·EEEdXXX, (1.12)

dx2 − dX2 = dxxx · (III − bbb−1)dxxx = 2dxxx · eeedxxx. (1.13)
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From these equations results the Lagrangian strain tensorEEE with its right Cauchy-
Green deformation tensor CCC = FFF TFFF and the Eulerian strain tensor eee with its left
Cauchy-Green deformation tensor bbb = FFFFFF T . By using the polar decomposition of
FFF (Eq. 1.8), CCC = UUU2 and bbb = VVV 2. Ultimately, the strain tensors are related by
the push-forward and pull-back operations [50], [51],

eee = FFF−TEEEFFF−1 , push-forward, (1.14)

EEE = FFF TeeeFFF , pull-back. (1.15)

Given a scalar or tensor of a material quantity G = G(XXX, t) and of a spatial
quantity g = g(xxx, t), by using the chain rule of derivatives, their material time
derivatives are defined as,

Ġ =
DG(XXX, t)

Dt
=
∂G(XXX, t)

∂t
, (1.16)

ġ =
Dg(xxx, t)

Dt
=
∂g(xxx, t)

∂t
+
∂g(xxx, t)

∂xxx

∂χ(XXX, t)

∂t
, (1.17)

where the first term on the right-hand side in equation 1.17 denotes the spatial
time derivative and the second term is the convective rate of change of g.
With the latter definition and equation 1.2 it is possible to perform the material
time derivative of the deformation gradient, which is a function of the material
coordinates,

ḞFF =
∂

∂t

(
∂χ(XXX, t)

∂XXX

)
=

∂

∂XXX

(
∂χ(XXX, t)

∂t

)
=
∂VVV (XXX, t)

∂XXX
. (1.18)

If equation 1.5 is used to define the velocity in term of the spatial coordinates in
addition to the chain rule, we obtain

ḞFF =
∂vvv(xxx, t)

∂XXX
=
∂vvv(xxx, t)

∂xxx

∂χ(XXX, t)

∂XXX
= LLLFFF, (1.19)

where LLL is the velocity gradient tensor, written as LLL = ḞFFFFF−1.
Furthermore, if we apply the material time derivative onto the Lagrangian strain
tensor, we obtain the material strain rate tensor, such as

ĖEE =
1

2
ĊCC =

1

2
(ḞFF

T
FFF +FFF T ḞFF ) =

1

2
FFF T (LLLT +LLL)FFF = FFF TdddFFF , (1.20)

where ddd is the rate of deformation tensor (Eulerian quantity). Equation 1.20
(compared to the equation 1.15) shows that tensor ĖEE is the pull-back of ddd [50],
[51].

1.8.2 Stress

As it has been indicated before (section 1.7) the stress is a major quantity in
biomechanics as it is the intensity of a force fff on an infinitesimal area daaa or dAAA,
such as,

dfff = σσσ · daaa = PPP · dAAA (1.21)
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where σσσ is the Cauchy stress tensor, PPP is the first Piola-Kirchhoff stress tensor
and dfff is a differential portion of the force applied on the infinitesimal area. Using
the relation between the areas (Eq. 1.11) into equation 1.21 results into the next
relationship between the stresses,

PPP = JσσσFFF−T . (1.22)

Another widely used stress tensor is the Kirchhoff stress tensor τττ = Jσσσ. The
Cauchy stress tensor is symmetric and measured the stress in the deformed con-
figuration (true stress), however, the first Piola-Kirchhoff is an unsymmetric and
two-point tensor (as the deformation gradient) and consequently, it is not com-
pletely related to the material configuration. To overcome this problem, we intro-
duce a symmetric and totally material stress tensor, the second Piola-Kirchhoff
stress tensor,

SSS = JFFF−1σσσFFF−T . (1.23)

If a rigid body motion is assumed, in the polar decomposition of FFF the stretch will
be the identity and the deformation gradient becomes FFF = RRR with J = 1. Thus,
the second Piola-Kirchhoff stress can be interpreted as the co-rotated Cauchy stress
tensor [50], [51],

σσσR = RRRTσσσRRR. (1.24)

1.8.3 Balance principles

In addition to the mechanical quantities introduced so far, there is a need to
examine that the deformations produced by the stresses on the tissue together
with tissue adaptations are mechanically possible and consequently such changes
do not transgress physical laws as the conservation of mass and of the linear
momentum. The full analysis of energy conservation and of dissipation effects (or
entropy) is beyond the study of growth and remodeling for now, so they are not
mentioned here, but they are well explained in [53], [54].
The conservation of mass indicates that the mass variations in the body should
produce the same variation in the Lagrangian and Eulerian frames, however, the
infinitesimal volume where the mass is contained does not necessarily remain equal.
Therefore the mass densities of the reference (%R(XXX, t)) and current (%(xxx, t)) con-
figurations may evolve in time due to the mass and geometrical changes, where a
mass dm of an infinitesimal volume (dV or dv, Eq. 1.9) in the body is,

dm = %RdV = %dv, (1.25)

assuming that the reference volume dV does not change. Applying the total time
derivative onto Eq. 1.25, using Eq. 1.9 and J̇ = Jdiv(vvv), the equation for the
conservation of mass results in [51], [53],

D%R
Dt

=
D

Dt
(J%)→ ∂%R

∂t
= J

(
∂%

∂t
+ div(%vvv)

)
. (1.26)
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The conservation of the linear momentum establishes that the forces in the body,
either external fff (e.g. the gravity, fff = %ggg) or internal, would change the inertial
state of the body, such as,

D

Dt
(%vvv) = div(σσσ) + fff, (1.27)

where div(σσσ) is the divergence of the Cauchy stress σσσ related to internal forces
and %vvv is the linear momentum of the body. Additionally, if G&R effects are
considered for a living tissue, such adaptation occurs in long time scales (section
1.7) and it can be assumed as a quasi-static equilibrium that shifts the linear
momentum variations to zero [27].

1.8.4 Strain Energy function

Living tissues are usually assumed to be hyperelastic materials due to their ca-
pability to reach high stretches elastically. It is postulated that an hyperelastic
material has a free-energy function W and such function must be polyconvex and
solely depend on the deformation state (W = W (FFF ) = W (EEE)). Additionally, if
the material is perfectly elastic, the deformations are reversible and there is not
internal dissipation Dint or entropy generation in the material [50], [54],

Dint = SSS : ĖEE − Ẇ =

(
SSS − ∂W (EEE)

∂EEE

)
: ĖEE = 0, (1.28)

where : is the double contraction. From equation 1.28 results that the stress-power
(SSS : ĖEE) equals the rate of internal energy of the material if there are no thermal
effects (isothermal and isentropic process). Accordingly the second Piola-Kirchhoff
stress is defined as,

SSS =
∂W

∂EEE
. (1.29)

Traditionally living tissues are considered to have a non-linear behavior between
strain and stress. Therefore, to eventually solve equilibrium for such non-linear
problems, it is necessary to linearize the stress,

∆SSS = C : ∆EEE with C =
∂SSS

∂EEE
=
∂2W

∂EEE2
. (1.30)

In continuum solid mechanics the stress and elasticity tensors are computed in
terms of the Lagrangian configuration (SSS,C). Nevertheless, the system of equation
1.27 can be solved in terms of the Lagrangian or Eulerian quantities, the latter
introducing the balance principles of this work. Consequently, the stress can be
pushed-forward through equation 1.23 and the elasticity tensor through,

c =
1

J
FFFFFFCFFF TFFF T . (1.31)
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1.9 Growth and Remodeling

Living tissues must be understood as a whole biological system that seeks stability.
Consequently, the tissue has the exceptional attribute to adapt under some stimuli.
As our goal is to model the aortic wall behavior, its homeostasis may be seen as a
process to keep mechanobiological stability by performing changes in the material
[8], [28]. Moreover, G&R models have been developed to capture such adaptability
in a mechanical framework [22], [23]. G&R models considers inelastic deformations
due to mass changes and stress in the material. They are sorted into two major
approaches to compute the evolution of mechanical properties and mass in the
tissue, Kinematic Growth (KG) models [23] and Constrained Mixture (CM) [22]
models.

1.9.1 Kinematic Growth models

KG models for soft tissues were proposed by Rodriguez et al [23]. Those ideas
were initially used to understand the residual stresses in the tissue, eventually
produced by some permanent inelastic deformation, see Fig 1.9. Accordingly, the
deformation gradient is decomposed such as,

FFF = FFF eFFF g, (1.32)

where (FFF e) is the elastic deformation gradient tensor and (FFF g) is the inelastic
deformation gradient tensor. This is similar to plasticity models for finite defor-
mations [55], [56]. The inelastic deformation is related to the changes in size and
shape due to growth. The changes are assumed to take place in a local (infinites-
imal volume) stress-free configuration. FFF e contains the elastic deformations due
to the loads on the body and the elastic deformations needed to assembly all the
stress-free infinitesimal volumes.'

&

$

%

REMARK: When there is a decomposition of the deformation gradient, an
intermediate fictitious configuration is defined and introduced between the
reference and current configuration. The intermediate configuration is defined
locally and consequently it is not compatible with its neighboring intermediate
configurations, and an elastic deformation is needed to assembly it with the
other neighboring intemediate configurations. As a result the elastic as well
as the inelastic tensors cannot be defined in terms of a derivative like the
deformation gradient tensor [51], Eq. 1.7.

The deformation due to growth represents permanent deformation. In other words,
the inelastic deformation produces a mechanically irreversible system and the in-
ternal dissipation of the material is not zero anymore, see Eq. 1.28. To overcome
this problem the strain energy density function of the material must be written
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in terms of elastic deformations, which are reversible and produces zero internal
dissipation. The strain energy density of the material results in,

W (t) = W (FFF e(t)). (1.33)

Equation 1.33 gives a constitutive model to relate the elastic material behavior
with the external forces in the mechanical equilibrium (Eq. 1.27). However, there
is still a need to find a constitutive relation for the inelastic behavior of the body.
The growth in the tissue can be modeled such as,

FFF g = β(t)BBB (1.34)

where, BBB is a second order tensor defining the growth directions and β defines the
magnitude of growth. The growth direction is often assumed to be isotropicBBB = III

where III is the identity tensor. If anisotropic, the growth may be written such as
BBB = aaa⊥ ⊗ aaa⊥ + (III − aaa⊥ ⊗ aaa⊥) –where the symbol ⊗ denotes the tensor product–.
Recalling the homeostasis in living tissues (section 1.7), the growth magnitude β
would be measured from the difference of some mechanical quantity, GGG, respect to
its value GGGh in the preferred state of the tissue, denominated from now on as the
homeostatic state.
In the KG models, it is often assumed that the Eulerian density remains constant
during elastic deformation –due to near incompressiblity– and even during G&R.
Taking this into account in the conservation of mass (Eq. 1.26), results into the
next relationship for the evolving mass in the body,

%̇R(t) = %
DJg
Dt

(1.35)

where it has been assumed that the Eulerian density is homogeneous in the body.
J = JeJg = Jg is the elastic deformation. Je = det(FFF e) = 1 due to incompress-
ibility. Having in mind that Jg = det(FFF g), J̇g = Jgdiv(vvv) and %R = J%, the
relationship for mass density evolution can be established as [23],

%̇R(t) = %R(t)kkkσ : (GGG−GGGh), (1.36)

where the divergence of the velocity has been related to the deviation of the
mechanical quantity GGG from its homeostatic value, such as, div(vvv) = kkkσ : ∆GGG,
with kkkσ as gain-type tensor. This is ultimatelly related to β in the equation 1.34.
KG models are used for their simplicity and low computational costs, and they
are conceptually similar to well-known plasticity models. But they are limited by
the arbitrariness of the direction BBB and magnitude β of growth together with the
mechanical quantity GGG which is usually taken as stress equivalent in the body.
Moreover, the models are mechanobiologically limited as they do not capture the
in vivo stressed configuration of living tissues along with production, removal and
remodeling of different constituents at different rates and with different prestresses.
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Figure 1.9 – Constrained Mixture versus Kinematic Growth [9].

1.9.2 Constrained Mixture models

Another approach has been proposed for the G&R of soft tissues by Humphrey
and Rajagopal [22]. In these models it is assumed that in each infinitesimal volume
element there is a mixture of n constituents that are allowed to be deposited within
the body at each time τ ∈ [0, t], Fig. 1.9. The newly deposited constituent at time
τ has its particular natural (stress-free) configuration and yet deforms together
with the whole mixture. Moreover, it is incorporated in the extant mixture with
an elastic prestretch FFF

j(τ)
pre , relative to the stress-free configuration of the mass

increment at time τ , see Fig. 1.9. The deformation of the whole mixture from
the in vivo reference configuration to the time τ is FFF (τ) and to the time t is FFF (t).
Then the elastic deformation at time t experienced by a prestressed constituent
deposited at time τ is [26],

FFF j(τ)
e (t) = FFF (t)FFF−1(τ)FFF j(τ)

pre . (1.37)

In this model each jth constituent has a mass density %jR(t) per unit reference
volume and may increase its mass by a mass production rate %̇jR+(t) > 0 per unit
reference volume. Additionally the deposited mass has a finite half-life, degrading
over time. Thus, the fraction of mass existing at time 0 and still surviving at
time t is Qj(t) ∈ [0, 1], and the fraction of mass deposited at time τ and still
surviving at time t is qj(t− τ). Hence, the mass density of the jth constituent in
the constrained mixture at time t is [12], [26]

%jR(t) = %jR(0)Qj(t) +

∫ t

0

%̇jR+(τ)qj(t− τ)dτ (1.38)
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with survival functions [12],

Qj(t) = exp
(
− t

T j

)
and qj(t− τ) = exp

(
−(t− τ)

T j

)
, (1.39)

and mass density, %R =
∑n

j %
j
R for the whole mixture. In the same way the strain

energy for the constrained mixture is the sum of all particular energy functions of
the constituents [12], [28],

W (t) =
n∑
j

W j(t) (1.40)

and the energy of the jth constituent is [12], [26],

W j(t) =
%jR(0)

%R(t)
Qj(t)Ψj

(
FFF j(0)
e (t)

)
+

∫ s

0

%̇jR+(τ)

%R(t)
qj(t− τ)Ψj

(
FFF j(τ)
e (t)

)
dτ (1.41)

with standard energy function Ψj(FFF
j(τ)
e (t)) such as neo-Hookean or Fung-type

exponentials, depending on the elastic deformations to ensure zero internal dissi-
pation of equation 1.28.
During homeostasis, there are two main cases of net mass production rate, which
are the steady replacement of constituent mass due to the half-life time and the
deposition/removal of mass due to changes in the stress state of the body. The
former would mean that the deposition and removal of mass are equal and are
characterized by the half-life time T j and the extant mass %jR(s) of the constituent
j [8],

%̇jR−(s) = %̇jR+(s) =
%jR(s)

T j
. (1.42)

The latter can be produced by some alteration in the loads or material struc-
ture of the body which ultimately produces changes in the stress state of the
body. Consequently homeostasis will work over the difference of stress between
the homeostatic state and the current state at time τ [10], [12],

%̇jR+(τ) = %jR

[
1

T j
+ kkkjσ : (σσσ(τ)− σσσh)

]
. (1.43)

Moreover in CM models the net mass production is understood as the difference
between the mass production %̇jR+ > 0 and degradation %̇jR− > 0 rates as [8]

%̇jR = %̇jR+ − %̇
j
R− (1.44)

and using equations 1.42 and 1.43 along with the assumption of constant mass
removal rate, the net mass production rate of the constituent j is [8], [9]

%̇jR(τ) = %jRkkk
j
σ : (σσσ(τ)− σσσh) (1.45)

which is similar to equation 1.36 in the KG models, where the mechanical quantity
GGG = σσσ, usually the co-rotated Cauchy stress, Eq. 1.24.
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CM models, unlike KG models, account for multiple constituents with different
turnover. However, the model has to track the configuration of the constituents
at the time of their deposition. This mean high computational costs and imple-
mentation efforts, which is the main disadvantage compared to the KG models.
As a result, new hybrid models were developed such as the Recruitment Stretch
model [57], [58], the homogenized Constrained Mixture (hCM) model [17], [27],
[28] and the rate-independent pseudoelastic framework [59], [60]. The approach
used further in the developments of this thesis is the hCM model.

1.9.3 Homogenized Constrained Mixture Model

In this work a hybrid approach was developed based on the hCM, with the aim
to model continuous mass depositions and changes of structure due to the home-
ostasis, see section 1.7. This model is selected by its capability to perform tissue
changes from a mechanobiological reference and consider the material as a mixture
of several constituents with their turnover and arrangement. Despite this, it still
requires lower computational efforts and costs than the original CM models due to
the homogenization of the temporal deposition of the constituents, see Fig. 1.10.
In the hCM model, it is again assumed that a body ΩR is a mixture of several
constituents that deform together, and each constituent has a particular natural
(stress-free) configuration. The constituents would update their respective mass
in the natural configuration and be remodeled there, see Fig. 1.10. Consequently,
there is no an intermediate time state (Ωτ ) where the constituent is deposited,
there are just reference and current frames. Instead of depositing/removing mass
with different prestretch from different time depositions, each constituent changes
its mass and its prestretch at every time.
Furthermore, the deformation gradient of the mixture is decomposed in elastic
and inelastic parts as in KG models, but such elastic and inelastic deformation
are specific to each constituent. For example, it is similar to a system of paral-
lel springs that deform together but where each spring has its specific stiffness
and natural length. Hence, the multiplicative decomposition of the deformation
gradient for finite deformations in living tissue is [24],

FFF = FFF j
eFFF

j
gr, (1.46)

where FFF j
e represents the elastic deformations from the assembly of the incompat-

ible local natural configurations (Ωj
n(t)) and from possible load applied on the

body. The inelastic deformation FFF j
gr relates the traction-free with the jth natural

configuration (Fig. 1.10) and captures the turnover of the consituent j (section
1.7), with its rearrangement and deposition in the tissue, e.g. changes in the nat-
ural length and stiffness in a spring. Indeed two sub-inelastic deformations are
included within the inelastic deformation, such as [27],

FFF j
gr = FFF j

rFFF
j
g. (1.47)

The remodeling FFF j
r is related to the preferred state of the constituent j and can be

interpreted as a prestretch (prestress). It can experience time evolutions depending
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on mass addition and change of the stress state. The growth FFF j
g is related to the

changes in shape and volume of the body –as in KG models– due to the net mass
production. Ultimately, variations in the inelastic deformations (FFF j

gr) produce
variations in the natural state (Ωj

n(t)), Fig. 1.10.
As in CM models the density of the mixture is again the sum of the densities of
the constituents, %R =

∑n
j %

j
R, all in terms of reference volume units. And in the

same way the strain energy of the mixture (per unit reference volume) is the sum
of the strain energy of the constituents, as in equation 1.40,

W (t) =
n∑
j

%jRΨj(CCCj
e(t)) (1.48)

where Ψj is the strain energy density function of the constituent j, per unit refer-
ence mass. CCCj

e is the elastic right Cauchy-Green tensor for the constituent j,

CCCj
e = FFF j

e

T
FFF j
e = FFF j

gr

−T
CCCFFF j

gr

−1
, (1.49)

where CCC is the right Cauchy-Green tensor of the mixture (Eq. 1.12) and CCCj
gr =

FFF j
gr
T
FFF j
gr is the inelastic right Cauchy-Green tensor. Again the strain energy of

each constituent depends only on its specific elastic deformations to ensure zero
internal dissipation, see Eq. 1.28. From the energy function of the mixture (Eq.
1.48), the chain rule and equations 1.29 and 1.49, the second Piola-Kirchhoff stress
for the mixture is derived such as,

SSS =
n∑
j

%jR
∂Ψj(CCCj

e)

∂EEE
= 2

n∑
j

%jR
∂Ψj(CCCj

e)

∂CCCj
e

:
∂CCCj

e

∂CCC
. (1.50)

From equation 1.50 the second Piola-Kirchhoff of the jth constituent may be
written such as,

SSSj =
%jR
φj
∂Ψj(CCCj

e)

∂EEE
. (1.51)

with SSS =
∑
φjSSSj. The push-forward of SSSj renders the Cauchy stress of the jth

constituent from equation 1.23.
The equilibrium of a body Ωt under G&R is determined by the conservation of
mass (Eq. 1.26) and conservation of linear momentum (Eq. 1.27), without thermal
effects. In the former, the assumptions are Lagrangian mass density evolving in
time and Eulerian mass density constant and homogeneous, as in KG models. In
the latter, the equilibrium can be solved if the energy (Ψj), reference mass densities
(%jR) and inelastic deformations (FFF j

gr) of the constituents are known. The strain
energy densities can be neo-Hookean and Fung exponential functions, [51], [53].
The constitutive relations for time evolutions of the mass densities and inelastic
deformation are now introduced for this framework.

1.9.3.1 Net mass production

The net mass production (i.e. the difference between mass production and degra-
dation) in each constituent is represented by its rate of mass change %̇jR. This
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Figure 1.10 – Schematic of the hCM model, showing the different configurations.
The reference configuration ΩR at time zero is without external loads and without
prestretch [FFF j

gr]
−1 in the jth constituent. Fictitious traction-free configuration Ωtf

is defined at time t, without external loads and without prestretch. The in vivo
reference homeostatic configuration at time zero Ωh = Ω0 with homeostatic re-
modeling and external loads, and the current in vivo configuration Ωt after G&R.
The neighborhood dXXX of an arbitrary point in ΩR is related to Ωt by the trans-
formation dxxx = FFFdXXX. At time zero is Ωt = Ω0 and dxxx0 = FFFdXXX. Similarly, the
relationship between Ωt and the natural configuration is dxxx = FFF j

edxxx
j
n, and the nat-

ural configuration and ΩR are related by the inelastic deformation dxxxjn = FFF j
grdXXX

where the inelastic deformation evolves with time. The natural configurations can
only be defined locally but are not compatible.
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includes mass replacement due to the half-life of each constituent (Eq. 1.42) and
mass update due to some alteration that changes the stress state of the mixture
(Eq. 1.43). Then the net mass production is again determined by [27],

%̇jR(t) = %jR(t)kkkjσ : (σσσjR − σσσ
j
h) + Ḋj(t). (1.52)

The term kkkjσ is a gain-type second order tensor which can consider normal stress
and shear stress, again similar to equation 1.36 –the shear stress is assumed to
be irrelevant for the development of this work–. The term Ḋj is a general rate
function for additional production or degradation of mass independently of the
tensional state. σσσjh is the Cauchy stress in the jth constituent at its preferred
state or homeostatic state, section 1.7, and σσσjR is the co-rotated Cauchy stress,
Eq. 1.24. Rodriguez et al [23] wrote that a co-rotational form of the Cauchy
stress is needed to ensure that both stress quantities need to be expressed in the
same frame of reference. Nevertheless, in some articles authors have not used a
co-rotated form of the Cauchy stress [8], [24], [28] and in others it is just written
that a convenient stress metric is needed [12], [61].
Equation 1.52 can be reduced to a one-dimensional form when it is applied on
fibres (the case of SMC and collagen). So, the stress is measured in the direction
of the fibre aaaj0 and turn the co-rotated stress tensor in a scalar stress in the direction
of the fibre (σj = aaaj0 ·σσσ

j
Raaa

j
0) and kjσ = σjhaaa

j
0 · kkkjσaaa

j
0. Therefore equation 1.52 can be

rewritten as,

%̇jR(t) = %jR(t)kjσ
σj − σjh
σjh

+ Ḋj(t). (1.53)

1.9.3.2 Growth

As the mass occupies a space (volume), eventually, a given volume would experi-
ence changes due to the deposition or degradation of mass in the mixture. Such
volume changes in size and shape are captured by the growth deformation (FFF j

g).
Because all the constituents share an infinitesimal volume in the mixture, the in-
crease of mass in one of them would produce a generalized volume variation in all
constituents, resulting in Jg = J1

g = ... = Jng or FFF g = FFF 1
g = ... = FFF n

g .
From the multiplicative decomposition of the gradient deformation (Eqs. 1.46
and 1.47), the Jacobian of the mixture results in the Jacobian of the growth, may
be written such asJ = J jeJ

j
rJg = Jg, if the elastic and remodeling deformations

are isochoric and assuming that all the constituents experience the same growth.
Inserting this relation in the conservation of mass (Eq. 1.26), it is possible to
establish that (as in KG models, Eq. 1.35),

%̇R = %
DJg
Dt
→ det(FFF g) =

%R(t)

%R(0)
, (1.54)

where % is the current density, with % = %R(0). The equation at the right hand
side is the integration of the equation at the left hand side.
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The direction of growth can be chosen as isotropic,

FFF g =

(
%R(t)

%R(0)

)1/3

III (1.55)

or anisotropic, as for instance, in the direction of the thickness aaa⊥0 ,

FFF g =
%R(t)

%R(0)
aaa⊥0 ⊗ aaa⊥0 +

(
III − aaa⊥0 ⊗ aaa⊥0

)
. (1.56)

1.9.3.3 Remodeling

Remodeling is understood as a modification in the arrangements between the
constitutents in the tissue, newly deposited or extant. In the turnover (section
1.7) remodeling is related to the formation of new cross-links in the constituents
of the mixture. The cross-links are modified by the cells to achieve a preferred
stress state and balance the external loads by changing the stress and stiffness
in the mixture. However, the new cross-links provide such changes just if they
are deposited with a certain prestress. In hCM models the formation of the new
cross-links is modeled by the complete removal of the non cross-linked constituents
and the production of the same mass quantity of cross-linked constituent to target
the load conditions.
Herein we postulate that within a mixture, the constituents experience a variation
of stress (σ̇σσj) due to the deposition of mass %jR+, where this mass is deposited with
a prestress σσσjpre in the extant mass %jR with stress σσσj. This process suppose to take
place with a constant total deformation and growth deformation, FFF ,FFF j

g = const,
that leads to FFF j

eFFF
j
r = const (Eqs. 1.46 and 1.47). Due to the latter statement,

the stress would vary with the rate of the elastic deformations (ĊCC
j

e), such as [24],

%̇jR+

%jR

(
σσσj − σσσjpre

)
=

(
∂σσσj

∂CCCj
e

:
(
CCCj
eLLL

j
r +LLLjr

T
CCCj
e

))
FFF ,FFF jg=const

, (1.57)

where LLLjr = ḞFF
j

rFFF
j
r
−1 is the remodeling velocity gradient. Cyron et al [24] proposed

the Cauchy and second Piola-Kirchhoff tensors as stress metrics for the remodeling
evolution. Additionally, equation 1.57 can be simplified to the one-dimensional
fibre case along direction aaaj0,

λ̇jr =
%̇jR+

%jR

λj

(λje)2

(
∂σj

∂λje

)−1

×
(
σj − σjpre

)
. (1.58)

with σj = aaaj0 · σσσjaaa
j
0, λj =

√
aaaj0 ·CCCaaa

j
0, λjr = ||FFF j

graaa
j
0|| and λje = λ

λjr
.

1.10 Overview and objectives

The background presented in this chapter has permitted to review the structure
and composition of the aortic wall with its impact in aging or in the develop-
ment and progression of diseases such as aneurysms and dissections. It has been
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observed that the progression of aortic diseases may be induced by tissue degen-
eration in the media layer. Such degeneration is usually related to elastic fibre
disruption, cell death or inflammation. However, the artery, as other biological
systems, has the ability to heal by performing a series of changes in the tissue
related to cell migration and production of proteins to keep the aortic structure.
But due to the impossibility of elastin synthesis after youth, the cells compensate
the lack of elastin with collagen –a stiffer material– inducing deformations and
stiffening that could end up with altered functions of the aorta or even rupture.
The process in which the aorta modifies its own structure to reach optimal condi-
tions for survival is referred to as homeostasis. Modifications are executed by cells
onto the ECM and affect the stiffness, stress and strain of the aortic wall. So the
main aspects of the mechanical homeostasis are related to the preferred stress in
which the cells execute well their function, to the turnover related to the deposi-
tion/removal of mass and to the prestress at which the new mass is deposited in
the tissue to protect and ensure normal mechano-sensitive activity in the cells.
With the aim to develop a mechanical model for the adaptations of the aorta
throughout age and diseases, it is possible to establish some assumptions for the
aorta:

• the deformations are large,

• the tissue is a composite material with several constituents,

• modifications are performed to reach a preferred state,

• there is deposition and removal of mass,

• the new mass is deposited with a prestress or prestretch.

In this work the assumtions and requirements for the tissue adaptations are ad-
dressed by the Growth and Remodeling models within the theory of Continuum
Mechanics. Within this framework the balance principles are fulfiled: conservation
of mass, conservation of linear momentum and zero internal dissipation or entropy
production.
Some G&R models were presented to understand the mechanical adaptations tak-
ing place in the aortic tissue. KG models comprise a multiplicative decomposition
of the deformation between the elastic and growth deformations. This induces
that the elastic deformations must keep zero internal dissipation and consequently
be modeled by a strain energy density function, while the new growth deforma-
tion needs a new constitutive model established throughout the conservation of
mass equation. Unfortunately, the KG model considers the existence of one ho-
mogeneous material for the aorta. Conversely, the CM models were developed to
consider the tissue as a mixture of several constituents to emulate the composi-
tion or histology of the aortic wall which is at least composed by elastin, collagen
and SMCs. The CM model is an accurate model by considering the survival and
deposition of different constituent at different frames of evolution of the mixture.
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The price to pay is a heavy computational cost to keep a record of the mass den-
sities and constitutive functions of the different constituents produced at different
frames. Finally we showed that a good trade-off is a hybrid model of G&R with
a multiplicative decomposition as in the KG model but with a mixture made of
several constituents as in the CM model. The use of this approach in this work is
justified by the reduced implementation efforts and computational resources con-
sumption and by the accuracy. Eventually such G&R models are able to perform
simulations of stable homeostasis and maladaptations leading to disease progres-
sion such as, aneurysm, aging and dissection.
Several simulations have been performed under G&R models to analyse the pro-
gression of aneurysms in models of intracranial arteries [10], abdominal aorta [12]–
[16], [57], [61], [62] and thoracic aorta [17], [18], [21]. Nevertheless, there is a lack
of validation with experimental data, such as the diameter and geometry of the
diseased arteries. The challenge in this topic is the need of monitoring a cohort of
patients for a period of at least 10 years. Mousavi et al [18] have tried to overcome
this problem with the use of a statistical model for the evolution of the diameter
in aneurysms, but still lack model validation. Moreover, the simulations need to
solve the equilibrium several times for each time step when the computational
model need to reach convergence. This again lengthens simulations and increases
the consumption of computational resources, not mentioning the production of
heavy data for postprocessing. With complex meshes –needed for patient-specific
geometries– the situation is even more critical. Other limitations lie in the inelas-
tic constitutive equations and the arbitrariness of their choice, where usually the
stress is considered as a convenient metric for the evolutions but it could be the
stiffness or the strain too. Such constitutive equations have several parameters
that need to be calibrated from experiments. This may produce a lack of phys-
ical interpretation of some parameters. The way in how the preferred stress is
defined as a reference for further adaptations in the aortic tissue is also arbitrary
because of the assumptions that have to be taken to define it. Furthermore, it is
usually assumed that the progression of aneurysms in arteries is triggered by the
degradation of elastin but potential cell death or even dysfunction in the mechano-
sensitive activity of the cells should also be considered. From a biological point
of view it has also been observed that the pressure may change in long periods,
which should also be taken into account [18], [63].
The G&R models reviewed in this chapter need the definition of a reference state
based on the concepts of mechanical homeostasis. This reference is usually estab-
lished by assuming normal conditions of pressure [2], [12] for a given artery. The
latter is related to the geometry obtained from a picture of the artery. However,
there is incertitude on the actual state of the artery in the frame the picture is
taken, as there is the possibility the artery is in the development of a disease.
The latter means that the assumed homeostatic state for the model could be a
non-homeostatic or non-healthy frame of the artery.
This work intends to contribute in the area by proposing an efficient computational
implementation of G&R, first with axisymmetric shell elements, and then with full
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3D models opening the possibility of non-uniform prestretch for the preferred state
and opening the exploration of the G&R in dissected arteries. Three-dimensional
implementations bring some new challenges, such as the definition of the tensional
homeostasis in the artery. Thus the main novelty of this work will be that prestress
or prestretch may not be uniform in the body. Based on this principle, it is
intended to apply the G&R models in chronic aortic dissections.
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Chapter 2. Materials and Methods

2.1 Résumé du chapitre en français

La croissance et le remodelage (G&R) des tissus vivants impliquent un prob-
lème mécanique nécessitant de résoudre les équations d’équilibre présentés dans
le chapitre précédent. Cependant, les principes d’équilibre ont été utilisés dans la
présentation de G&R pour établir les relations constitutives laissant l’équation de
la quantité de mouvement linéaire sans contraintes. La conservation de la quan-
tité de mouvement linéaire est à nouveau présentée dans ce chapitre et elle est
abordée comme le problème à résoudre en introduisant des conditions spatiales et
temporelles dans l’équation. Il est certain que la résolution du système d’équations
différentielles ainsi obtenu, en utilisant des méthodes analytiques, n’est pas une
stratégie efficace, et l’application aux aortes personnalisées augmente la complex-
ité du problème mathématique. Nous avons résolu ce problème en introduisant
une forme faible de l’équilibre mécanique. Cette formulation faible est basée sur
le principe du travail virtuel et peut être utilisée dans des méthodes numériques
telles que les éléments finis (EF).
Parce que cette thèse vise à modéliser l’évolution des aortes des patient, nous
avons implémenté deux codes EF avec l’approche Homogenized Constrained Mix-
ture (hCM). Le premier code est fondé sur des éléments de coque axisymétriques
et a été écrit entièrement dans cette thèse. Ce code a permis d’analyser la progres-
sion de l’anévrisme dans les artères et le déploiement des endoprothèses. Ce nouvel
outil de simulation de G&R est efficace mais limité aux géométries axisymétriques.
Le deuxième code est fondé sur un solveur élément-finis open-source, avec des mod-
ifications supplémentaires apportées dans cete thèse pour les vaisseaux sanguins
et les simulations G&R. Cette nouvelle implémentation est tridimensionnelle, ce
qui permet de prendre en compte la progression de l’anévrisme dans les aortes
personnalisées. Cette dernière étape ouvre la voie à la configuration d’un outil de
calcul robuste capable d’aider à l’analyse de la progression des anévrismes.

2.2 Abstract

Growth and remodeling (G&R) of living tissues implies a mechanical problem in
which it is necessary to solve the balance principles presented in the previous chap-
ter. However, the balance principles were used to set the constitutive relationships
leaving the equation of linear momentum without constraints. The conservation
of linear momentum is again presented in this chapter and it is addressed as the
problem to solve by introducing spatial and temporal conditions to the equation.
It is not an efficient strategy to solve the resulting system of differential equations
by analytical methods, as the application to patient-specific aortas increases the
complexity of the mathematical problem. We overcome this issue by introducing
a weak form of the mechanical equilibrium. The weak form is based in the prin-
ciple of virtual work and it can be further used in numerical methods such as the
Finite-Element (FE) method.
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As this thesis aims to model the evolution of patient-specific aortas, we have
implemented two FE codes with the Homogenized Constrained Mixture (hCM)
approach. The first code is based on axisymmetric shell elements and it was writ-
ten from scratch. This code permitted to analyse aneurysm progression in arteries
and stent-graft deployment. This new G&R framework is efficient but limited to
axisymmetric geometries. The second code is based on an open-source FE solver in
which we implemented all the needed routines for blood vessels and G&R simula-
tions. This new implemetation is three-dimensional allowing to consider aneurysm
progression in patient-specific aortas. This last step opens the path to a robust
computational framework for the prediction of aneurysm progression.

2.3 Definition of the mechanical problem

A body (or artery) Ωt in the current configuration must satisfy the conservation
of mass, linear momentum and energy. The conservation of mass was considered
in the growth models introduced at the previous chapter. The analysis of the
conservation of energy is usually beyond the studies about G&R for soft tissues.
The entropy of the body has been partially analysed to establish the reversibility
of the elastic deformations and its relation with the strain energy density function.
However, the conservation of linear momentum introduced at equation 1.27 was
not solved in the review of the constitutive relationships of G&R and it represents
the challenge of this chapter. This equation of mechanical equilibrium can be
rewritten such as

div(σσσ) + fff = 0 in Ωt, (2.1)

where it is supposed that the equilibrium is quasi-static because the tissue changes
take place across long times-scales and the deformations due to mass deposi-
tion/removal do not produce major accelerations.
Eventually, the displacements of the body can be constrained to some reference
system (a fixed point in the space). The constraints can be given either by a
traction field ttt at the boundaries of the body (∂Ωt) or by a displacement field uuu
on the body. These conditions are represented by

uuu(xxx, t) = uuu∗(t) on ∂Ωt, (2.2)

ttt(xxx, t) = ttt∗(t) on ∂Ωt, (2.3)

where the quantities uuu∗ and ttt∗ are prescribed displacements and tractions, respec-
tively. Additionally, G&R is a temporal process captured by constitutive equations
and inelastic deformations in the homogenized Constrained Mixture (hCM) mod-
els. Such constitutive equations are given in terms of the rates of G&R quantities:
mass density, remodeling and growth. Consequently, to obtain them for a given
time t it is needed to define the initial (or reference) conditions for such quantities,

%jR(xxx, t) = %jR
∗
(xxx) at t = 0, (2.4)

FFF j
r(xxx, t) = FFF j

r

∗
(xxx) at t = 0, (2.5)

FFF j
g(xxx, t) = FFF j

g

∗
(xxx) at t = 0. (2.6)
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Ωt

uuu∗

ttt∗

ttt∗

Figure 2.1 – A general representation of the equilibrium of a body Ωt under
surface forces ttt∗ and restricted to the displacements uuu∗.

With the definition of the boundary and initial conditions it is now possible to
solve the equilibrium (Eq. 2.1) to find the current frame of the body Ωt at time t
within the hCM models. However, in the equilibrium equation (Eq. 2.1) the stress
σσσ is related to the tractions applied on the boundaries (ttt(xxx, t)) and to the elastic
behavior of the material of the body. The elastic behavior of the constituents of
the material mixture (W (CCC)) depends on the inelastic quantities in the current
frame at time t, see section 2.4. The inelastic quantities (current natural state
of a constituent) of the tissue can be computed through the inelastic constitutive
equations provided by the hCM models. As seen in section 1.9 the inelastic con-
stitutive equations depend on the homeostatic state and its stress σσσjh. Generally,
the homeostatic state is defined by the initial conditions of the inelastic quantities
and its stress can be found from the corresponding initial equilibrium. A diagram
of this general procedure is introduced in Figure 2.2.

For G&R the definition of the homeostatic state is essential. However it is not
completely understood how to measure and choose this reference. Some authors
have provided some experimental method to determine the homeostatic state for
some constituents in the mixture [64] but always reinforced with numerical meth-
ods [12], [65]. With those methods it is assumed that the average stress in normal
function (in vivo) of the artery may be between 90 to 150-kPa [2], [10], [12]. Ad-
ditionally, patient-specific arterial geometries are obtained from a scan of the in
vivo artery, meaning that the obtained geometry is loaded and stressed. Under the
assumption of normal pressure (load), and assuming that the homeostatic state
corresponds to the stress in the in vivo geometry, it is possible to find the inelas-
tic deformations if the displacements of the body Ωt are near zero (uuu ≈ 0), after
applying all the conditions [49].

In conclusion, the evolution of a patient-specific artery is given by the solution of
the mechanical equilibrium (Eq. 2.1) at time t. However, the equilibrium is a dif-
ferential equation complicated to solve by analytical methods and a FE strategy is
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yes
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Figure 2.2 – Procedure to obtain the current state of a living tissue with G&R
models. First, the initial inelastic conditions are used to define the elastic behavior
of the material which is then used to compute its stress. After the equilibrium
under the given boundary conditions, an homeostatic stress σσσjh can be obtained
as a reference for the inelastic constitutive equations of the hCM models. Second,
the inelastic constitutive equations and the reference state are used to define the
new elastic behavior of the material, which is again used to compute the stress
for the equilibrium under the given boundary conditions. Once the equilibrium is
solved, the current state of the living tissue is known at time t. The procedure is
run until some time threshold of interest (tf ) is reached.
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needed for its solution. Therefore, in this work two FE analyses were implemented
to achieve G&R of arteries for aneurysm progression. First, an axisymmetric shell
element code was written from scratch to simulate aneurysm progression in cylin-
ders and stent-graft deployment. Second, a three-dimensional analysis of G&R was
implemented in a FE solver (Florence, written in C++ and Python) [66], [67]. In
the latter it was finally possible to perform simulations of G&R in patient-specific
aortas by taking a new approach in the application of the initial conditions (pre-
stretch or initial remodeling). The new 3D FE analysis also permitted the first
applications of this G&R model to the evolution of chronic aortic dissections.

2.4 Elastic constitutive model

Figure 2.2 shows our approach to solve the linear momentum. First we need the
elastic behavior of the material mixture as it is a fundamental part of the stress
σσσ. It is remarked that just the elastic deformations are assumed reversible and
their dissipation must be zero, as introduced in Eq. 1.28. Therefore, the strain
energy W (CCC) of the mixture (per unit reference volume) is the addition of the
strain energies Ψj(CCCj

e) of each constituent (per unit reference mass), such as,

W (CCC) = %eR(Ψe
vol(J

e
e ) + Ψe

iso(CCC
e
e)) + %mR (Ψm

act(CCC
m
e ) + Ψm

pas(CCC
m
e )) +

4∑
i=1

%ciRΨci(CCCci
e ),

(2.7)
where %jR is the reference mass density of the jth constituent within the mix-
ture. Moreover, it is considered that the mixture is composed by three relevant
constituents, for instance, elastin (e), smooth muscle cells (m) and four collagen
fibres families (ci) [22], [26]. The smooth muscle cells (SMCs) behavior is further
split between passive (Ψm

pas) and active (Ψm
act) parts [25], due to the active contrac-

tile behavior of the cells. The elastin is included in an isotropic matrix material
that can undergo volume changes due to the compressibility. Furthermore, if the
mixture is considered incompressible, full incompressibility of the material could
produce numerical instabilities in a FE analysis [55]. Therefore, the isotropic ma-
terial needs to be decomposed into volumetric (Ψe

vol) and isochoric (Ψe
iso) parts

[27].
In the hCM models the strain energy densities of the constituents are represented
as functions of some invariants of the elastic deformation, such as

J je = det(FFF j
e) =

√
det(CCCj

e) , Ij1 = tr(CCCj
e) , Īj1 = tr(C̄CCj

e) , Ij4 = aaajgr ·CCCj
eaaa
j
gr, (2.8)

where J je is the invariant related to the volumetric changes due to the elastic de-
formations; Ij1 is the first invariant of the deformation; Īj1 is the modified first
invariant for isochoric elastic deformations with C̄CC

j
e = J je

−2/3
CCCj
e that produces

det(C̄CCj
e) = 1 [51]; and the fourth invariant is actually the square of the elastic

stretch (Ij4 = λje
2) in the direction of the inelastic deformed intermediate config-

uration aaajgr = FFF j
graaa

j
0/||FFF j

graaa
j
0|| with aaa

j
0 the direction of the fibre in the reference

configuration.
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The strain energy densities of the constituents in terms of the invariants are in-
troduced as,

Ψe
vol(J

e
e ) =

1

2
κe(Jee − 1)2 (2.9)

Ψe
iso(CCC

e
e) =

1

2
µe(tr(C̄CCe

e)− 3) (2.10)

Ψm
pas(CCC

m
e ) =

km1
2km2

(exp(km2 (λme
2 − 1)2)− 1) (2.11)

Ψm
act(CCC

m
e ) =

σactmax
%R(0)

(
λact +

(λm − λact)3

3(λm − λ0)2

)
(2.12)

Ψci(CCCci
e ) =

kci1
2kci2

(exp(kci2 (λcie
2 − 1)2)− 1) (2.13)

where κe is the bulk modulus related to the compressibility of the material; µe is the
shear stiffness of the elastin; km1 with km2 are stress-like and dimensionless material
parameters of the SMCs, respectively; σactmax is the maximal active Cauchy stress,
λact is the active stretch in the fibre direction, λ0 and λmax are the zero and
maximum active stretches, respectively; in the collagen kci1 with kci2 are stress-like
and dimensionless material parameters, respectively.
The Cauchy stress tensor σσσ is determined from the push-forward operation (Eq.
1.23) onto the second Piola-Kirchhoff stress tensor, as introduced in Eq. 1.50. The
derivation of the second Piola-Kirchhoff stress is presented in the appendix A.1.
The Cauchy stress tensor is represented by

σσσ = φe(σσσevol + σσσeiso) + φm(σσσmact + σσσmpas) +
4∑
i=1

φciσσσci , (2.14)

where again the Cauchy stress of the mixture is defined as the addition of the
stress of the constituents times the mass per unit volume of the constituent in
the mixture, which it is now represented by the volume fraction of the constituent
(Eq. 1.51). The Cauchy stresses are more specifically

σσσevol = κeJee (Jee − 1)III (2.15)

σσσeiso = µeJee
−2/3

(
bbbee −

1

3
tr(bbbee)III

)
(2.16)

σσσmpas = 2km1 (λme
2 − 1)exp(km2 (λme

2 − 1)2)
FFFaaam0 ⊗FFFaaam0
||FFFm

graaa
m
0 ||

2 (2.17)

σσσmact =
σactmax
%R(0)λ

(
1− (λm − λact)2

(λm − λ0)2

)
FFFaaam0 ⊗FFFaaam0 (2.18)

σσσci = 2kci1 (λcie
2 − 1)exp(kci2 (λcie

2 − 1)2)
FFFaaaci0 ⊗FFFaaa

ci
0

||FFF ci
graaa

ci
0 ||

2 (2.19)

where bbbee is the elastic left Cauchy-Green stretch tensor.
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NOTE: The volumetric stress introduced in equation 2.15 is a penalization
approach for nearly incompressible materials to avoid numerical issues such
as, locking. This model is suitable for the three-dimensional implementation.
However, in the shell analysis we can consider the additional constraint of
radial stress nearly zero (σr ≈ 0) and assume a full incompressible behavior
of the material through the Lagrange multiplier p where the volumetric stress
is σσσevol = pIII. This approach applied in shells does not produce volumetric
locking as in a three-dimensional analysis.

To find the stress from the strain energy density functions, we used the derivatives
of the invariants and the derivatives of the elastic right Cauchy-Green stretch ten-
sor. Such derivatives are now introduced to understand how the stress quantities
are obtained,

∂CCCj
e

∂CCC
= FFF j

gr

−T �FFF j
gr

−1 ,
∂J je
∂CCC

=
1

2
J jeCCC

−1 ,
∂Ij1
∂CCC

= CCCj
gr

−1
, (2.20)

∂Īj1
∂CCC

= J je
−2/3

(CCCj
gr

−1 − 1

3
tr(CCCj

e)CCC
−1) ,

∂Ij4
∂CCC

=
aaaj0 ⊗ aaa

j
0

||FFF j
graaa

j
0||

2 . (2.21)

The symbol � is a special tensor product defined in index notation as

(AAA�BBB)ijkl =
1

2
(AAAikBBBjl +AAAjkBBBil). (2.22)

Finally, mechanical equilibrium (Eq. 2.1) of the body Ωt can be solved through
the Cauchy stress to find the stretch and stress of the body. Nevertheless, the
equation resulting from applying the divergence over the Cauchy stress is non-
linear and tremendously complex. Consequently, it might not be possible to reach
static equilibrium (Eq. 2.1) analytically. Consequently, it is necessary to apply an
iterative method to find the solution, as for instance, a Newton-Raphson scheme.
The obstacle here is to find the equilibrium for all the particles in the body. This
is usually overcome by solving the equilibrium just in some particles of interest.
This can be achieved in the strong form (directly from equation 2.1) or by the
weak form through the principle of virtual work.

2.5 Principle of virtual work

The deformation that satisfies static equilibrium (Eq. 2.1) of the body Ωt is usually
found after writing the weak formulation of the equation. The weak formulation is
produced by the multiplication of the static equilibrium equation with an arbitrary
virtual displacement δuuu. This produces a virtual work per unit volume, which after
integration of all infinitesimal volume elements dv results in the virtual work of
the whole body Ωt, such as

δW(xxx, δuuu) =

∫
Ωt

(div(σσσ) + fff) · δuuudv = 0. (2.23)
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By considering the divergence of vector σσσδuuu

div(σσσδuuu) = div(σσσ) · δuuu+ σσσ : grad(δuuu), (2.24)

and by using the divergence theorem∫
Ωt

div(σσσδuuu)dv =

∫
∂Ωt

nnn · σσσδuuuda, (2.25)

the relation between the gradient of the virtual displacement, the virtual Eulerian
strain (Eq. 1.13)

δeee =
1

2
(gradT δuuu+ gradδuuu), (2.26)

and the tension vector ttt = σσσnnn, the total virtual work (Eq. 2.23) may be written

δW(xxx, δuuu) =

∫
Ωt

σσσ : δeeedv︸ ︷︷ ︸
δWint

−
∫

Ωt

fff · δuuudv −
∫
∂Ωt

ttt · δuuuda︸ ︷︷ ︸
δWext

= 0 (2.27)

where the first term is the internal virtual work performed by the material δWint.
The second term is the virtual work of external forces and the third term is the
virtual work of tractions on the boundary. Their sum is the external virtual work
of the forces working on the body δWext.
Unfortunatelly, the virtual work principle still provides a non-linear equation for
the mechanical equilibrium. Consequently to find the displacements that solves
the virtual work (Eq. 2.27) with the Newton-Raphson iterative method, we had
to linearize the virtual work equation. Making the variation or linearization in
terms of the displacement field of the particles of the body we obtained,

∆δW(xxx, δuuu) ·∆uuu+ δW(xxx, δuuu) ≈ 0. (2.28)

In the next subsections we present the linearization of the internal and external
virtual work.

2.5.1 Internal virtual work

When the internal virtual work is linearized, increments in displacements, in stress
and in strain need to be considered. Such considerations end up in a linearization of
the internal work with an elastic stiffness from the elastic behavior of the material
and a geometric stiffness due to the virtual strain increments, such as

∆δWint(xxx, δuuu) ·∆uuu =

∫
Ω

δeee : c : ∆eeedv +

∫
Ω

σσσ : ∆δeeedv (2.29)

The geometric stiffness appears due to the finite deformations in the body that
allows increments in the virtual Eulerian strain,

∆δeee =
1

2

(
gradT δuuu grad∆uuu+ gradδuuu gradT∆uuu

)
, (2.30)
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while the elastic stiffness is produced by the increments of stress due to increments
in strain, ∆σσσ = c : ∆eee. The elasticity tensor c in the current configuration is the
push-forward of the elasticity tensor C of the reference configuration, where the
latter is the derivative of the second Piola-Kirchhoff stress tensor with respect to
the Lagrangian strain, as shown in Eq. 1.30. Then the current elasticity tensors
for the constituents in the mixture are

c = φe(cevol + ceiso) + φm(cmact + cmpas) +
4∑
i=1

φcicci (2.31)

cevol = κeJee ((2Jee − 1)III ⊗ III − 2(Jee − 1)III � III) (2.32)

ceiso =
2

3
µeJee

−2/3

(
tr(bbbee)III � III +

1

3
tr(bbbee)III ⊗ III − bbbee ⊗ III − III ⊗ bbbee

)
(2.33)

cmpas = 4km1 (1 + 2km2 (λme
2 − 1)

2
)exp(km2 (λme

2 − 1)2)
FFFaaam0 ⊗FFFaaam0 ⊗FFFaaam0 ⊗FFFaaam0

||FFFm
graaa

m
0 ||

4

(2.34)

cmact =
−2σactmax
%R(0)λ2

(
1− (λm − λact)2

(λm − λ0)2

)
FFFaaam0 ⊗FFFaaam0 ⊗FFFaaam0 ⊗FFFaaam0 (2.35)

cci = 4kci1 (1+2kci2 (λcie
2 − 1)

2
)exp(kci2 (λcie

2−1)2)
FFFaaaci0 ⊗FFFaaa

ci
0 ⊗FFFaaa

ci
0 ⊗FFFaaa

ci
0

||FFF ci
graaa

ci
0 ||

4 (2.36)

The computation of the material elasticity tensor C used to obtain the current
elasticity tensor c is detailed in appendix A.1.

2.5.2 External virtual work

Usually the external forces are not linearized because they do not experience in-
crements with the displacement increments, such is the case of the Neumann
boundary conditions, which represent an imposed traction ttt∗ with constant direc-
tion and magnitude. However, in the analysis of blood vessels the forces in the
surface may depend of the displacement of the body Ωt, such is the case of the
lumen pressure and the elastic resistance of the surroundings of the vessel. These
deformation-dependent loads are denominated as Robin boundary conditions with
the tractions changing with the displacements, such as

ttt = pnnn+ kuuu, (2.37)

where p is a pressure applied on a surface with normal vector nnn and k is the
stiffness of the elastic boundary. Note that viscoelastic boundary conditions are
not considered in the scope of this work. By multiplying the traction vector ttt with
the virtual displacements and integrating on the surface of the body Ωt we obtain
the virtual work of the external forces due to the Robin boundary conditions, such
as

δWR
ext(xxx, δuuu) =

∫
∂Ωt

δuuu · pnnnda︸ ︷︷ ︸
δWp

ext

+

∫
∂Ωt

δuuu · kuuuda︸ ︷︷ ︸
δWk

ext

. (2.38)
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In the elastic force the dependence to the displacement uuu is explicit but in the
pressure the dependence is less evident. The current normal vector nnn to the surface
may change direction due to the displacements. In both cases the differential
surface da depend on the spatial coordinates. Thus, the forces may experience
increments when the displacement increments are applied to the body,

∆δWR
ext(xxx, δuuu) ·∆uuu =

∫
∂Ωt

δuuu ·∆(pnnnda)︸ ︷︷ ︸
∆δWp

ext

+

∫
∂Ωt

δuuu · k∆uuuda︸ ︷︷ ︸
∆δWk

ext

. (2.39)

In ∆(pnnnda) the pressure is constant and it can be pulled-out from the increment,
leaving just the differential surface to vary in direction and size. The elastic force
experiences variations due to the incremental displacements.
The virtual work of the residual forces (internal minus external forces) vary point-
wisely within the body Ωt. Thus, the analysis of G&R in the tissue would be
represented by some points of interest, due to the difficulties to reproduce a dis-
placement function across the whole domain. This obstacle is overcome in the
finite-element (FE) method, which provides a discretization of the body of inter-
est Ωt. Thus, in the next sections two FE approaches are reviewed and adapted
to the specific case of G&R in arteries.

2.6 Axisymmetric shell elements approach

We employed shell elements because they eventually produce simplifications for
arteries in the resolution of mechanical equilibrium and of their evolution due to
the tissue changes. Despite the simplifications in the implementation of this kind of
elements, this approach is limited by the bending locking and by the axisymmetric
constraints that only allow simulations in axisymmetric shapes. Complementary
information about shell elements can be found in the books of Wriggers [55],
Zienkiewicz [68] and out article [69].
In this section we introduce the whole mathematical background of the axisym-
metric shell element code. This documentation may facilitate further work or
development in the code available in GitHub [70].

2.6.1 Kinematics

Before developing the discretized approach based on shell elements we established
kinematics measures for continuous shell bodies. This begins with a reduction of
the coordinates to a plane.
The shell is assumed to be a thin layer and it is relevant for bodies where the
thickness changes are negligible compared to the displacements of the body. For
this reason we considered coordinates related to the position of the neutral axis
of the shell, represented by XXXM in the reference configuration and by xxxM in the
deformed configuration. The neutral axis is also denominated as the shell mid–
surface. An arbitrary point in the shell will be described by the XXX and by xxx in
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Z, z

R, r

XXX

XXXM

NNN

θ

xxx

xxxM

ddd
β

u

w

Figure 2.3 – Schematic diagram representing the kinematic variables of the shell
axisymmetric element. Derived from the Reissner-Mindlin plate.

reference and deformed coordinates, respectively. Such vectors are written as

XXX =

[
Z

R

]
︸ ︷︷ ︸
XXXM

+ξ

[
− cos θ

sin θ

]
︸ ︷︷ ︸

NNN

(2.40)

xxx =

[
Z + u sin θ − w cos θ

R + u cos θ + w sin θ

]
︸ ︷︷ ︸

xxxM

+ξ

[
− cos(θ − β)

sin(θ − β)

]
︸ ︷︷ ︸

ddd

(2.41)

where NNN is a unit normal vector in the reference configuration and ddd is a vector
describing the rotation of the cross section with respect to the mid–surface. The
parameter ξ provides a local thickness coordinate and its domain is [−h0/2, h0/2],
where h0 is the thickness of the shell, as shown in Fig. 2.3.
By application of Eq. Eq. 1.12 for Lagrangian strains, with dX2 = dXXX · dXXX and
dx2 = dxxx · dxxx, and by assuming θ as the direction of the mid–surface reference
vector, Z = s sin θ and R = s cos θ, we defined the Lagrangian strains in the shell
in terms of the arch-length (s) and thickness (ξ) parametrization (second order
terms in the thickness are neglected),

dx2 − dX2 = 2Ezds
2 + 2Ezrdsdξ, (2.42)

where Ez is the Lagrangian strain in the arch-length direction s of the shell and
Ezr is the shear strain between the s and r directions, such as

Ez = u,s +
1

2
(u,2s +w,2s )− ξ((1 + u,s ) cos β + w,s sin β)β,s (2.43)

Ezr = −(1 + u,s ) sin β + w,s cos β. (2.44)
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The notation (•),s represents the derivative d(•)/ds. Herein the displacements
u and w are expressed with respect to the local coordinate system and β is the
rotation angle which describes the rotation of the normal vector ddd in the plane.
An extra relation is needed to constraint the displacement to an axial symmetry.
Thus, by taking the radial components of the reference (Xr) and current (xr)
vectors of the shell we defined the axisymmetric constraint with the tangential
strain Eθ (direction perpendicular to the sheet), such as

Eθ =
x2
r −X2

r

2R2
= eθ +

1

2
e2
θ + ξ

1

R
((1 + eθ) sin(θ − β)− sin θ) (2.45)

Moreover, by using equation 1.12 for the relation between the stretch tensor and
the strain tensor (E = (λ2 − 1)/2) we defined the stretches of the shell such as,

λz =
√

(1 + u,s )2 + w,2s −2ξ((1 + u,s ) cos β + w,s sin β)β,s (2.46)

λθ =

√
(1 + eθ)2 + 2ξ((1 + eθ) sin(θ − β)− sin θ)

1

R
, (2.47)

where the stretches are expressed in the principal axes of the shell and the de-
formation gradient is then a diagonal second-order tensor, by assuming the shear
strain is zero (Ezr = 0). Moreover, the plane stress assumption was considered
due to the negligible stress in the radial direction (σr = Sr ≈ 0). Accordingly,

FFF =

[
Fzz Fzθ

Fθz Fθθ

]
=

[
λz 0

0 λθ

]
. (2.48)

The current thickness is such,

h =
h0

λzλθ
. (2.49)

We assumed a fully incompressible behavior and used the Lagrange multiplier
approach. Moreover, we applied the Voigt’s notation [55] to reduce the stress,
strain and elasticity tensors to

SSS =

[
Sz

Sθ

]
, EEE =

[
Ez

Eθ

]
, C =

[
Czz Czθ

Cθz Cθθ

]
(2.50)

Sz = 2
∂W

∂λz
2 + pλz

−2 , Sθ = 2
∂W

∂λθ
2 + pλθ

−2 , Sr = 2
∂W

∂λr
2 + pλr

−2 (2.51)

2.6.2 Virtual work of shell elements

An special approach was taken for the thickness of the shell here. It was further
divided in two layers representing, for example, the media and the adventitia.
Accordingly, the thickness of the inner layer is ξ ∈ [−h0/2, h

∗] and the thickness
of the outer layer is ξ ∈]h∗, h0/2], where ξ is the thickness paremeter varying in
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[−h0/2, h0/2]. Additionally, if the shell has a total arch-length L and the geometry
has axial symmetry, the internal virtual work of the body is

δWint(xxx, δuuu) = 2π

∫
L

(∫ h∗

−h0/2
SSS · δEEERdξ +

∫ h0/2

h∗
SSS · δEEERdξ + εh0EzrδEzrR

)
ds,

(2.52)
where the differential reference volume is dV = 2πRdξds. Moreover, the third
term is a penalty to constraint the shear strain in the shell (Ezr = 0 assumption)
and ensure the continuity of the displacements in the domain [71].
The internal virtual work was further linearized to apply an iterative method and
find the displacement that satisfies equilibrium of the body,

∆δWint(xxx, δuuu) ·∆uuu = 2π
∫
L

(∫ h∗
−h0/2 (δEEE · C ·∆EEE +SSS ·∆δEEE)Rdξ

+
∫ h0/2
h∗

(δEEE · C ·∆EEE +SSS ·∆δEEE)Rdξ

+ εh0 (δEzr∆Ezr + Ezr∆δEzr)R) ds. (2.53)

2.6.3 Virtual work of external forces in shell

We considered just the pressure from the Robin boundary conditions. This was
jutified as all displacement-dependent forces were applied perpendicularly to the
surface of the shell. Therefore, the inner pressure in a blood vessel and the elastic
load performed by a stent can be modeled similarly here. The load of the stent is
then a pressure applied on the arterial wall depending on the stiffness of the stent
and the displacement from the original radius of the stent. The "stent pressure"
may produce increments in the pressure with the displacement increments. The
virtual work of the external force corresponding to the Robin boundary conditions
is then,

δWR
ext(xxx, δuuu) = 2π

∫
L

δuuu · p(−eeeθ × xxx,s )rds, (2.54)

and its respective linearization for the iterative method of solution is

∆δWR
ext(uuu, δuuu) ·∆uuu = 2π

∫
L

δuuu · (∆p(−eeeθ × xxx,s )r − p(eeeθ ×∆uuu,s )r

− p(eeeθ × xxx,s )∆w) ds. (2.55)

In equations 2.54 and 2.55 we used the deformed surface da = 2π|| −eeeθ×xxx,s ||rds
and the normal vector,

nnn =
−eeeθ × xxx,s
|| − eeeθ × xxx,s ||

with eeeθ × xxx,s =

[
r,s

z,s

]
(2.56)

where eventually the normal vector and the pressure are updated incrementally
such as,

eeeθ ×∆uuu,s =

[
∆w,s

∆u,s

]
and ∆p = p,u ∆u+ p,w ∆w. (2.57)
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The increments of the normal vector are related to rotations around the vector
perpendicularly to the sheet. And the pressure increments are related to incre-
ments in the longitudinal and normal displacements of the shell. However, in the
case of the luminal pressure p̂ there are no increments and in the case of stent
pressure there are increments just in the normal direction,

p =

{
p̂ ⇒ ∆p = 0 if pressure,

CN(d− w) ⇒ ∆p = −CN∆w if stent
. (2.58)

The stent is modeled by springs with stiffness CN and natural length (or original
radius) d which is the oversizing of the stent respect to the radius of the vessel.

2.6.4 Spatial discretization

After establishing the kinematics and the virtual work for the shells, the next
step is to discretize the domain of the body Ωt or ΩR (current and reference
configurations, respectively). Herein, a formulation for the elements resulting
from the splitting of the geometry is proposed. The quantities in the domain will
be further interpolated with linear functions between the points resulting from the
discretization. For example, the displacements (uuu = [u,w, β]T ) in a shell element
(Fig. 2.4) can be interpolated by the functions Na,

uuu =
2∑

a=1

Nauuua and uuu,s =
2∑

a=1

Na,suuua, (2.59)

with uuu,s the derivative of the displacements, as the displacement suppose to be
continuous in the domain. Additionally, the functions have to satisfy the condition
of uuu = uuu1 in the local node 1 and uuu = uuu2 in the local node 2. The local linear
interpolation functions that satisfy such conditions are

N1 =
1− ζ

2
and N2 =

1 + ζ

2
, (2.60)

where ζ is the local parameter in the arch length of the element, ζ ∈ [−1, 1]. So
its parametrization respect to the arch length s is

ζ =
2

Le
(s− s1)− 1 and ζ,s =

2

Le
(2.61)

where s1 is the arch length at the local node 1 of the element, Le is the length of the
element. Moreover, the derivatives of the quantities in the domain can be derived
respect to the arch length parameter (Eq. 2.59(b)) through the interpolation
functions by the chain rule,

N1,ζ = −1

2
and N2,ζ =

1

2
and Na,s = Na,ζ ζ,s (2.62)

By applying the new interpolation function in the displacements and subsequently
in the strain vector (Eqs. 2.50(b) with 2.43 and 2.45) and in the shear strain (Eq.
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Figure 2.4 – Schematic diagram representing the parametrization of the shell
axisymmetric element

2.44) we can obtaine the discretization of the virtual strains,

δEEE =
2∑

a=1

BBBmb
a δuuua , δEzr =

2∑
a=1

BBBpen
a δuuua. (2.63)

where the matrices BBBmb
a and BBBpen

a are membrane-bending and penalization inter-
polation of the virtual displacements of the node a, respectively. The components
of these matrices are introduced in the appendix A.2.
If the discretized virtual strains are replaced in the internal virtual work (Eq. 2.52)
can be obtained a discretized internal virtual work for the element e,

δWe
int(xxx, δuuu) = 2π

2∑
a=1

δuuuTa

∫ +1

−1

∫ +1

−1

(
BBBmb
a

T
SSS + εBBBpen

a
TEzr

)
R
Le
2

h0

2
dξ̂dζ. (2.64)

And applying the same concepts of discretization to the displacement increments
are obtained the incremental strain and incremental virtual strains are obtained,

∆EEE =
2∑

a=1

BBBmb
a ∆uuua ∆δEz =

2∑
a=1

2∑
b=1

δuuuTaGGG
z
ab∆uuub (2.65)

∆δEθ =
2∑

a=1

2∑
b=1

δuuuTaGGG
θ
ab∆uuub ∆δEzr =

2∑
a=1

2∑
b=1

δuuuTaGGG
pen
ab ∆uuub (2.66)

By using the increments just defined in the linearization of the internal virtual
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work,

∆δWe
int(xxx, δuuu) ·∆uuu = 2π

2∑
a=1

2∑
b=1

δuuuTa

∫ +1

−1

∫ +1

−1

(
BBBmb
a

TCBBBmb
b + SzGGG

z
ab + SθGGG

θ
ab

+ ε(BBBpen
a

TBBBpen
b + EzrGGG

pen
ab )
)
R
Le
2

h0

2
dξ̂dζ∆uuua (2.67)

Eventually, the virtual work of the pressure can be discretized too and it is repre-
sented as,

δWp
ext(xxx, δuuu) =

π

6

[
r1 − r2

z2 − z1

]
(δuuu1(3p1r1 + p1r2 + p2r1 + p2r2)

+δuuu2(p1r1 + p1r2 + p2r1 + 3p2r2)) (2.68)

and its linearized form due to the dependece on the displacements is

∆δWp
ext(xxx, δuuu) ·∆uuu =

π

6
(δuuu1KKK

p
11∆uuu1 + δuuu1KKK

p
12∆uuu2

+δuuu2KKK
p
21∆uuu1 + δuuu2KKK

p
22∆uuu2) (2.69)�

�

�

�
In this work, the shell finite element formulation is made from the work de-
veloped by Wagner (1990) [71].

2.6.5 Time integration method

After finding the displacement that satisfy the mechanical equilibrium and obtain
the current stress state (homeostatic state in the reference step) there is the need
to define the inelastic quantities for the time of interest (t+ ∆t) from the inelastic
constitutive equations given by the hCM model, Eqs. 1.53, 1.58, 1.54. As the
law for the mass density, remodeling and growth are given in rates it is needed
to use a time integration scheme, and in this work is used the forward Euler
method. Remark, stability issues in this integration method are avoided by using
∆t ≈ T j/10, where T j is the smallest turnover time of any constituent. Therefore,
the G&R quantities at time t+∆t are determined by their constitutive model and
the integration as

%jR(t+∆t) = %jR(t) + %̇jR(%jR, t)∆t (2.70)

λjr(t+∆t) = λjr(t) + λ̇jr(λ
j
r, t)∆t (2.71)

det(FFF g)(t+∆t) =
%R(t+∆t)

%R(0)

(2.72)

Moreover, if we consider an anisotropic growth and more specifically in the thick-
ness direction, the thickness would be now defined by the deformation (Eq. 2.49)
in the shell and by the growth (Eq. 2.72),

h =
h0

λzλθ

%R(t+∆t)

%R(0)

. (2.73)
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2.6.6 Overview of the program

The shell elements were implemented in a Fortran 90 code to solve the G&R
problem for axisymmetric geometries (e.g. cylinders or cones). A tree of the
program structure for shell elements is presented in the figure 2.5:

• main.f90 is he main script. It calls the routines openfi, datainp, initial_comp_0
and computation.

• openfi is the routine to open the input file with the necessary data for the
simulation.

• datainp read all the block of the input file for the control, mesh, materials,
sections and the time steps with its boundary conditions and loads.

• initial_comp_0 initialize the variables to be use during computation, allo-
cate memory and pointers and store the reference configuration of the shell.

• computation is the heart of the code, it is where the G&R computations
are performed in a time loop until arrives to the end of the interval of study.
Within this routine the total displacements of the body are updated accord-
ing to the boundary conditions or loads in initial_comp_t.

• gauscheb compute the interpolation fuctions, their derivatives and the Gauss
points for integration.

• iteration apply the Newthon-Raphson method to find the displacements
that satisfy the equilibrium.

• gauss_to_nodes interpolate or extrapolate the values in the Gauss point
back to the nodes to prepare the data for the output which organize the
data in matrices that can be wirtten in VTK format for paraview.

To perform the iterations the assembler routine perform the assembly of the local
element stiffness matrices (shell2d_elem and loads_elem) into a global stiffness
matrix. Moreover, the quadrature rule within the element is set at the gauscheb
routine, the quadrature rules provide the interpolation functions and the quadra-
ture points (Gauss points) for space integration. Then, at each Gauss point is
computed the stretch and the matrices needed for the formulation, additionally,
the elastic and inelastic constitutive relation are computed in constitutive rou-
tine.
The bi-layer approach for the arterial wall is implemented within the routine
shell2d_elem where additional Gauss points are used in the thickness. More
Gauss point in the thickness allow to use an interpolation function for each layer of
the artery. With this expansion in integration points it is possible to configure two
groups of points for a further selection of layer (’MEDIA’ and ’ADVEN’). This last
selection permit to model each layer independently and use different constitutive
relations in each of them, Fig. 2.6.
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Figure 2.5 – Tree of the program for shell elements.
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MODULE shell2d_mod
...
CONTAINS
SUBROUTINE shell2d_elem(...)
...
DO igaus=1,ngaus !Gauss integration along element
!Gauss integration along thickness MEDIA/ADVENTITIA
DO jgaus=1,2*ngaus
IF (jgaus>ngaus) THEN
jgaux = jgaus - ngaus
ELSE
jgaux = jgaus
END IF
CALL shell2d_gauss(...)
....
END DO !along thickness MADIA/ADVENTITIA
....
END DO !along element
END SUBROUTINE shell2d_elem

SUBROUTINE shell2d_gauss(...)
...
!Select layer
IF (jgaus>ngaus) THEN
LAYER = ’ADVEN’
zet = (hA0/2.d0)*(zeta+h0/hA0-1.d0)
Dthick = hA0/2.d0
ELSE
LAYER = ’MEDIA’
zet = (hM0/2.d0)*(zeta-h0/hM0+1.d0)
Dthick = hM0/2.d0
END IF
...
END SUBROUTINE shell2d_gauss
...
END MODULE shell2d_mod

Figure 2.6 – Integration along the thickness.

52



Joan D. Laubrie Soto

2.7 Three-dimensional approach

Furthermore, a three-dimensional framework is needed to eventually perform G&R
simulations in non-symmetric geometries, for example, patient-specific geometries
obtained from CT scans. For this reason we selected a three-dimensional FE
open-source library available for python [66], [67]. Within the library further
modifications were made in the code to adapt it for blood vessels simulations, as
for instance the addition of deformation-dependent loads due to the pressure, for
example. The most significative modification for this work was the addition of a
G&R routine in the code for the simulations of adaptations in living tissues, based
on the homogenized constrained mixture model. Additionally, we implemented a
multiphase (or multiset) approach to consider a bi-layer model as in the shell
implementation.
The mathematical presentation of the virtual work of external forces and its dis-
cretization are presented in this chapter to facilitate further development in the
three-dimensional code, available in GitHub [30], [72].

2.7.1 External forces

In the FE library, Dirichlet and Neumann boundary conditions are already well
implemented. However Robin boundary conditions are not considered there, so an
extension of the code is developed to include the loads from the Robin conditions.
Following the equation 2.38, two forces produce work. First, the pressure,

δWp
ext(xxx, δuuu) =

∫
Aξ

pδuuu ·
(
∂xxx

∂ξ
× ∂xxx

∂η

)
dξdη (2.74)

where ξ and η are the parametrization of the surface where the pressure is ap-
plied. The derivative of the current position respect to the parameters gives two
tangential vectors in the surface da and their cross product produces the normal
to the surface,

nnn =

∂xxx
∂ξ
× ∂xxx

∂η∣∣∣∣∣∣∂xxx∂ξ × ∂xxx
∂η

∣∣∣∣∣∣ with da =

∣∣∣∣∣∣∣∣∂xxx∂ξ × ∂xxx

∂η

∣∣∣∣∣∣∣∣ dξdη. (2.75)

A detailed presentation of the virtual work of pressure can be found in [51]. Second,
the elastic forces in the boundary

δWk
ext(xxx, δuuu) =

∫
∂Ωt

δuuu · kuuuda, (2.76)

where k is the elastic stiffness of the boundary. Furthermore, the forces represented
here are displacement-depenedent and consequently experience increments due to
displacement increments. Thus, the virtual work of the Robin boundary conditions
must be linearized in order to add its incremental form to the iterative method
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for solution,

∆δWp
ext(xxx, δuuu) ·∆uuu =

1

2

∫
Aξ

p
∂xxx

∂ξ
·
(
∂δuuu

∂η
×∆uuu− δuuu× ∂∆uuu

∂η

)
dξdη

−1

2

∫
Aξ

p
∂xxx

∂η
·
(
∂δuuu

∂ξ
×∆uuu− δuuu× ∂∆uuu

∂ξ

)
dξdη (2.77)

∆δWk
ext(xxx, δuuu) ·∆uuu =

∫
∂Ωt

δuuu · k∆uuuda (2.78)

The reason the area da is not linearized for the elastic boundary conditions will
be given in the discretization section.

2.7.2 Spatial discretization

In the FE library it is possible to use high order interpolation function for the dis-
placements and coordinates. Therefore, the interpolation functions are presented
in a general way, as they can be linear, quadratic or more, and the functions can
be applied to tetrahedra or hexahedra elements, with several n nodes. So the
interpolated coordinates and displacement in the element are

xxx =
n∑
a=1

Naxxxa , uuu =
n∑
a=1

Nauuua, (2.79)

where Na is the interpolation function in the node a. By applying the new inter-
polations within the virtual work for Robin conditions (Eq. 2.74 and 2.76), we
obtain

δWpe
ext(xxx, δuuu) = δuuua ·

∫
Aξ

pNa

(
∂xxx

∂ξ
× ∂xxx

∂η

)
dηdξ, (2.80)

δWk
ext(xxx, δuuu) =

∑
a

δuuua · kuuu, (2.81)

and subsequently applying the interpolation functions to the linearization of the
external virtual work of the Robin conditions (Eq. 2.77 and 2.78), it results,

∆δWpe
ext(xxx, δuuu) ·∆uuu = (δuuua ×∆uuub) ·KKKp

ab, (2.82)

KKKp
ab =

1

2

∫
Aξ

p
∂xxx

∂ξ

(
∂Na

∂η
Nb −Na

∂Nb

∂η

)
dξdη

−1

2

∫
Aξ

p
∂xxx

∂η

(
∂Na

∂ξ
Nb −Na

∂Nb

∂ξ

)
dξdη, (2.83)

∆δWk
ext(xxx, δuuu) ·∆uuu =

∑
a,b

δuuua ·KKKk
ab∆uuub, (2.84)

KKKk
ab = k, (2.85)

where the elastic forces are applied in the nodes of the discretized body. This
means that its surface integral is replaced by the sum of the elastic forces applied
to the nodes of the constrained surface.
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2.7.3 Time integration method

Again as indicated by the mechanical problem, the inelastic quantities are com-
puted after finding the equilibrium. The computation of the density, remodeling
and growth is obtained through the inelastic constitutive relations provided by the
hCM model which are presented in a rate form. Then, for density and remodeling
is applied the forward Euler method to obtain the quantities at time t+ ∆t from
the time t, the growth is obtained from the addition of the constituent densities
into the total density of the mixture,

%jR(t+∆t) = %jR(t) + %̇jR(%jR, t)∆t, (2.86)

λjr(t+∆t) = λjr(t) + λ̇jr(λ
j
r, t)∆t, (2.87)

FFF j
g(t+∆t)

=
%R(t+∆t)

%R(0)

aaa⊥0 ⊗ aaa⊥0 + (III − aaa⊥0 ⊗ aaa⊥0 ), (2.88)

The remodeling is again simplified to the fibre direction because the elastin is
not pruduced anymore and there is remodeling just in the fibres (collagen and
SMCs). Additionally, the growth is related to the tensor aaa⊥0 , a vector in the
thickness direction, because the growth is assumed anisotropic, having place in
the thickness direction.

2.7.4 Overview of the program

A simulation in with the FE library is managed by a master python script where
some basic instances are declared to perform G&R simulations:

• Mesh contains the geometry, nodes and elements to be used in the simulation.

• BoundaryCondition sets the conditions for the nodes in the boundaries ac-
cording to the kind of conditions, either Dirichlet, Neumann or Robin.

• Material initializes the appropiate elastic constitutive model with its pa-
rameters

• GrowthRemodeling establishes the G&R parameters and prepares the time
integration scheme for the inelastic quantities.

• Formulation calls the variational principle with the interpolation function
and quadrature rules.

• FEMSolver carries out the simulation which in first place sets the iterative
criteria and controls.

Moreover, in the master script we difined the functions Sets and Directions for
multiphase materials and for anisotropic fibre directions, respectively (Fig. 2.7).
The instance FEMSolver runs the simulations by its function Solve, Fig. 2.8.
Indeed that function computes the displacements needed to solve the equilibrium
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Mesh

Material

GrowthRemodeling

BoundaryCondition

Formulation

FEMSolver

Sets

Directions

Figure 2.7 – Structure of the python master script for the FE library.

equation. For this purpose it is checked that all the data is correctly initialized,
after the boundary conditions are computed with the first assembly of the stiffness
matrix, Fig. 2.9. Just after this first assembly the incremental method is called for
the simulation. Where the incremental method can be either time-independent or
time-dependent. The time-independent increments are used to calibrate the home-
ostatic state. While G&R works under time-dependent increments, within these
increments the inelastic constitutive relations, the Robin forces, the quantities
needed for the hCM model, are computed and updated in the iterative scheme.
In figures 2.8 and 2.9, the routines in gray boxes were created originally in this
thesis and the routines surrounded by a black border are routines modified from
the original code. The other routines remain without changes from the original
Florence code to the modified Kuru code.

2.8 Verification

The codes developed in this work are further tested. The test is over a benchmark
case of a cylinder with internal pressure. The test aims to compare the results
given by the codes implemented here against the analytical solution of a thin-
walled tube. In this manner we seek to measure the error produced by the FE
framework and conclude if the code gives realistic results. Consequently, some
test are performed over the same problem with different elastic materials and we
register their results, Tables 2.1 and 2.2.
In this section is also noted that the analytical response and the axisymmetric
code are under incompressibility assumptions. However, the three-dimensional
code use the penalization approach for nearly incompressible materials, where the
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FEMS.Solve

FEMS.__checkdata__

BC.GetDirichletBoundaryCondition

BC.ComputeNeumannForces
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FEMS.__makeoutput__

Figure 2.8 – Tree of the program for Kuru.
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Assemble

VP.GetElementalMatrices

material.MappingStateVariables

VP.GetLocalStiffness

material.Hessian

material.CauchyStress

VP.ConstitutiveStiffnessIntegrand

VP.GeometricStiffnessIntegrand

Figure 2.9 – Assemblage of the program for Kuru.
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bulk modulus κ, the shear stiffness µ and the Poisson’s ratio ν are related by

κ = µ
2

3

(
1 + ν

1− 2ν

)
, (2.89)

where ν=0.5 is a singular value for the equation and also means incompressible
behavior of the material. It is remarked that the bulk modulus does not apply for
incompressible behavior.
The first test (Table 2.1) is performed in a body made of a homogeneous material
modeled by the Neo-Hookean elastic law, where µ=151.2-kPa,

W (CCC) =
1

2
κ(J − 1)2 +

µ

2
(Ī1 − 3). (2.90)

Platform Displacement[mm] Error (abs) Error (%) Compressibility
Analytical 2.781 - - Incompressible
Axisymmetric 2.781 9.005× 10−4 0.032 Incompressible
Florence 2.887 1.050× 10−1 3.774 ν = 0.485

Florence 2.801 1.950× 10−2 0.701 ν = 0.495

Table 2.1 – Verification of the FE frameworks against the analytical thin-walled
tube. Simulations performed with a Neo-Hookean elastic model.

The second test (Table 2.2) is also focus in the analysis of the new anisotropic
model implemented in the three-dimensional code. The anisotropic model taken
is the Fung-quadratic elastic law

W (CCC) =
1

2
κ(J − 1)2 +

µ

2
(Ī1 − 3) +

2∑ k1

2k2

[
exp(k2(I4 − 1)2)− 1

]
(2.91)

where µ=37.8-kPa, k1=298.2-kPa, k2=11.2 and the material behavior include two
fibre families in diagonal direction {−π

4
, π

4
}.

Platform Displacement[mm] Error (abs) Error (%) Compressibility
Analitical 1.111 - - Incompressible
Axisymmetric 1.109 1.997× 10−3 0.180 Incompressible
Florence 1.099 1.188× 10−2 1.069 ν = 0.485

Florence 1.098 1.240× 10−2 1.116 ν = 0.495

Table 2.2 – Verification of the FE frameworks against the analytical thin-walled
tube. Simulations performed with a Fung Quadratic elastic model.

Finally, the low error given by the simulations executed within the codes written
in this thesis allow to conclude their good perfomance for isotropic and anisotropic
materials with the application of Robin boundary conditions in the body (internal
pressure). Furthermore, this establish the FE workbenches needed for the devel-
opment of this work and it is now possible to use a material mixture approach for
the material and perform further G&R simulations with the confidence that the
codes give realistic results.
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2.9 Conclusion

As most of the balance principles are used in the construction of the constitu-
tive relationships, only the linear momentum remains to be solved in G&R. The
challenge was the complexity of the system of differential equations produced by
equation 2.1. With the goal to solve the equilibrium of a body Ωt and follow
its evolution during G&R, we developed two FE workbenches ables to simulate
aneurysm progression in arteries. The results given by the codes have been com-
pared against the response of a thin-walled tube with errors low enough to conclude
the positive reliability of the new frameworks. The axisymmetric shell code per-
mitted to simulate aneurysm growing in cylinders from mass degradation and to
simulate stent-graft deployment. The three-dimensional framework permitted to
introduce patient-specific aortas in the G&R simulations and predict aneurysm
progression after mass degradation in the arterial model.
The results achieved with the FE frameworks developed in this chapter are pre-
sented in the following chapters. The next chapter shows simulations of aneurysm
progression and stent-graft deployment in axisymmetric arterial models. The sub-
sequent chapter introduce simulations of aneurysm progression in three-dimensional
idealized and patient-specific arterial models.
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3.1 Résumé du chapitre en français

L’objectif de cet article est d’étudier numériquement comment les vaisseaux san-
guins s’adaptent lorsqu’ils sont exposés à un stimulus mécanobiologique, à savoir
un changement soudain de leurs conditions biomécaniques comme des blessures
protéolytiques ou une implantation. L’adaptation se produit par la croissance et
le remodelage (G&R), consistant en la production ou l’élimination de protéines
structurelles, telles que le collagène, jusqu’au rétablissement des conditions biomé-
caniques homéostatiques initiales. Dans certaines circonstances, les artères évolu-
ent vers des conditions pathologiques instables, comme les anévrismes, qui sont
responsables d’une morbidité et d’une mortalité importantes. Par conséquent, les
prédictions numériques de G&R dans différentes circonstances peuvent être utiles
pour comprendre fondamentalement comment les pathologies artérielles évoluent.
Pour cela, nous avons développé un modèle de coque axisymétrique 2D par élé-
ments finis (FEM) à faible coût et open-source de la paroi artérielle. Les lois de
comportement et la réponse G&R sont exprimées dans le cadre de la théorie des
mélanges homogénéisés contraints. L’originalité est d’intégrer dans le modèle le
comportement spécifique des deux couches artérielles (média et adventice). En
considérant différentes stimuli mécanobiologiques, nos résultats montrent que la
dilatation artérielle résultante est fortement corrélée à l’épaisseur de la média. La
simulation de l’implantation d’endoprothèses est particulièrement intéressante. Un
oversizing du stent trop grand peut provoquer une dilatation définitive alors que la
dilatation se stabilise après une période transitoire pour des rapports d’oversizing
plus modérés. Nous montrons également que l’implantation d’une endoprothèse
induit une réponse différente dans un anévrisme ou dans une artère saine, cette
dernière donnant lieu à une G&R plus instable. En résumé, notre modèle G&R
peut prédire efficacement, avec un coût de calcul très faible, les aspects fondamen-
taux de l’adaptation artérielle induite par les procédures cliniques.

3.2 Abstract of the chapter

The goal of this paper is to study computationally how blood vessels adapt when
they are exposed to a mechanobiological insult, namely a sudden change of their
biomechanical conditions such as proteolytic injuries or implantation. Adaptation
occurs through growth and remodeling (G&R), consisting in mass production or
removal of structural proteins, such as collagen, until restoring the initial homeo-
static biomechanical conditions. In some circumstances, the initial conditions can
never be recovered and arteries evolve towards unstable pathological conditions,
such as aneurysms, which are responsible for significant morbidity and mortal-
ity. Therefore, computational predictions of G&R under different circumstances
can be helpful in understanding fundamentally how arterial pathologies progress.
For that we have developed a low-cost open-source finite-element 2D axisymmet-
ric shell model (FEM) of the arterial wall. The constitutive equations for static
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equilibrium used to model the stress-strain behavior and the G&R response are
expressed within the homogenized constrained mixture theory. The originality is
to integrate the layer-specific behavior of both arterial layers (media and adven-
titia) into the model. Considering different mechanobiological insults, our results
show that the resulting arterial dilatation is strongly correlated with the media
thickness. The adaptation to stent implantation is particularly interesting. For
large stent over-sizing ratios, the artery cannot recover from the mechanobiological
insult and dilates forever, whereas dilatation stabilizes after a transient period for
more moderate oversizing ratios. We also show that stent implantation induces
a different response in an aneurysm or in a healthy artery, the latter yielding
more unstable G&R. Finally, our G&R model can efficiently predict, with very
low computational cost, fundamental aspects of arterial adaptation induced by
clinical procedures.

3.3 Introduction

Vascular tissues, as other biological tissues, commonly maintain homeostatic con-
ditions during routine function and therefore, they continually adapt to any me-
chanical and biochemical alteration in their surrounding. Any factor disturbing
the preferred homeostatic state of arterial wall, such as permanent hypertension
or disruption of elastin fibers [73], may induce vascular growth and remodeling
(G&R) which is a vital process to maintain vessel function. At the tissue scale,
this manifests through continuous mass changes of the existent components in the
extracellular matrix (ECM) such as collagen, elastin and proteoglycans [22], [24].
When the arterial wall is unable to recover its homeostatic conditions through
G&R, arterial dysfunction may arise and end up with, for instance, an aneurysm,
which is a permanent, degenerative and localized expansion of the arterial diam-
eter. An aneurysm can lead to a wall dissection and rupture and potentially be a
life-threatening condition.
In the past two decades, different computational approaches were developed to
model G&R of load–bearing soft tissues. These methods can be grouped in two
major mathematical theories: a constrained mixture theory (CMT) determining
the rates of mass removal and production of individual constituents within stressed
configurations or a kinematic theory specifying an evolution equation for the stress-
free configuration of the tissue as a whole. Although the latter is popular and
conceptually more simple, it relies largely on heuristic definitions of growth [24].
Kinematic growth theories commonly split multiplicatively the total deformation
gradient into elastic and inelastic parts, where the inelastic one is related to growth
[23]. This theory has been widely used for single-constituent solid continuum
[74], [75] as well as for homogenized [24], [27] and non–homogenized [14], [26],
[76], [77] constrained mixture models (CMMs). For example, Valentín et al [26],
[78] modelled arterial wall adaptation and maladaptation to different cases, such
as loss of smooth muscle cells (SMCs), elastin degradation and changes in fiber
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orientations and quantities. Watton et al [13], [57] quantified the interaction
between collagen microstructure and mechanical stretch to model the growth of an
abdominal aortic aneurysm (AAA). They introduced variables for the recruitment
of collagen fibers to account for microstructural changes leading to the formation
of an aneurysm. Watton et al [57] introduced the first bi-layered G&R approach
using a membrane model. Cyron et al [28] employed the CMT to capture G&R of
soft tissues due to altered mechanobiological stimuli. Moreover, Wilson et al [61]
investigated the effects of collagen turnover and elastin loss on the formation of
AAAs in a parametric study. Their results showed that a number of variables play
a substantial role on radial dilatation and axial expansion of AAAs, including wall
thickness, fiber stretch, maximum wall stress and evolving material properties.
Despite extensive endeavor to establish G&R models, significant efforts are still
needed to develop reliable models of aneurysm evolution. Moreover, adaptation
after endovascular aneurysm repair has never been modelled so far. Therefore,
there is still an important potential for G&R models to understand the adaptation
of arteries before or after different clinical treatments.
In this work, our contribution was twofold. First, it was computational: we im-
plemented an original layer-specific homogenized CMT-based finite element (FE)
shell model to study transient G&R effects of different clinically-relevant cases
related to aneurysm growth and repair. Second it was physiological: we predicted
the adaptation of an artery after stent implantation and showed the major effect
of oversizing on the post-surgery outcomes.

3.4 Material and methods

3.4.1 Strain Energy Function

The homogenized CMT was employed as an hybrid approach to consider G&R
in the arterial wall [22]. Let us assume a material point of a mixture in the Ωr

domain, represented by its position vector X in the reference configuration and by
its position vector x = χ(X) in the deformed configuration. The total deformation
gradient tensor can be defined by

FFF = ∇xxx (3.1)

where ∇ is the gradient operator. For a bi-layered shell element without any
shear in cylindrical coordinates the total deformation gradient can be written as
F = diag[λz λθ λr]. Noting that λz, λθ and λr are the total stretches in axial,
circumferential and radial directions, respectively.
Based on the CMT, we split the strain energy function of the wall, W , into contri-
butions of elastin, collagen fiber families and SMCs. We assumed that SMCs are
present only in the media layer and are aligned along the circumferential direction.
They have both an active, (•)act, and a passive, (•)pas, behavior. We modeled the
collagen by four fiber families aligned in circumferential, longitudinal and two di-
agonal directions respectively. We assumed the same strain energy functions for
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each constituent in the media and in the adventitia while their mass fraction were
different in each layer and even between each collagen fiber family. Assuming Ψj,
j ∈ {e,m, ci}, is the strain energy density function per unit mass of each
constituent, the total strain energy density function per unit reference
volume in the media, WM , and in the adventitia, WA, layers were respectively
calculated by

WM = %R(t)(φeMΨe + φmM(Ψm
pas + Ψm

act) +
4∑
i=1

φciMΨci) (3.2)

WA = %R(t)(φeAΨe + φmA (Ψm
pas + Ψm

act) +
4∑
i=1

φciAΨci) (3.3)

where %R(t) is the total density and φjM and φjA denote mass fractions of each
jth constituent in the media and in the adventitia, respectively. For each compo-
nent, we assumed a strain energy density function to represent the corresponding
hyperelastic behavior. We modeled the elastin behavior with a Neo-Hookean hy-
perelastic model as in [65], [79]

Ψe =
Ce

2

(
λez

2 + λeθ
2 + λer

2 − 3
)

(3.4)

where Ce is a stress-like material parameter while λez, λeθ and λer are stretches of
the elastin component in axial, circumferential and radial directions, respectively.
In the CMT, these stretches are calculated by considering the elastin deposition
stretch, GGGe

h = diag[Ge
hz G

e
hθG

e
hr], such as [65], [79]

λez = Ge
hzλz , λ

e
θ = Ge

hθλθ , λ
e
r = Ge

hrλr (3.5)

we modeled the Collagen fiber families by an anisotropic exponential function [50]
such as

Ψci =
Cci

1

4Cci
2

(
exp(Cci

2 (λcie
2 − 1)2)− 1

)
(3.6)

where Cci
1 and Cci

2 are a stress–like and dimensionless material parameters, respec-
tively, while λcie is the elastic contribution of the collagen fiber stretch obtained
as

λcie =
λci

λcir
withλci = Gci

h

√
λ2
z cos2 αci + λ2

θ sin2 αci (3.7)

where λci , λcir , G
ci
h and αci are the total stretch, remodeling stretch (cf. 4.1),

deposition stretches and orientation angles of the different collagen fiber families,
respectively. We also modeled the passive behavior of SMCs by an anisotropic
exponential function [50] such as

Ψm
pas =

Cm
1

4Cm
2

(
exp(Cm

2 (λme
2 − 1)2)− 1

)
(3.8)

while we modeled its active behavior according to Braeu et al [27],

Ψm
act =

σactmax
%R(0)

(
λact +

(λmmax − λact)3

3(λmmax − λm0 )2

)
(3.9)
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where Cm
1 and Cm

2 are stress–like and dimension–less material parameters, respec-
tively, σactmax is the maximal active Cauchy stress, λact is the active stretch in the
fiber direction, λm0 and λmmax are the zero and maximum active stretches and %R(0)

denotes the total mixture density in the reference configuration; λme is the elastic
contribution of SMCs calculated such as

λme =
λm

λmr
withλm = Gm

h

√
λ2
z cos2 αm + λ2

θ sin2 αm (3.10)

where λm, λmr and Gm
h are the total stretch, remodeling stretch (cf. 4.1), deposition

stretch and orientation angle of SMCs, respectively.
Given the strain energy function, the second Piola-Kirchoff stress tensor and the
fourth order elasticity tensor of the mixture were obtained as

SSS = 2
∂W

∂CCC
= SSSe +SSSmpas +SSSmact +

4∑
i=1

SSSci (3.11)

C = 2
∂SSS

∂CCC
= Ce + Cm

pas + Cm
act +

4∑
i=1

Cci (3.12)

where we included the penalty term of incompressibility into the expressions of
stress and elasticity tensor of elastin. We considered a bi-layer arterial wall assum-
ing that the media is mainly occupied by elastin and SMCs while the adventitia
is mainly composed of collagen fibers.

3.4.2 Growth and remodeling

Similarly to classical G&R studies [23], [24], we split the total deformation gradient
of each constituent into an elastic FFF j

e and an inelastic FFF j
gr contribution such as

FFF j = FFF j
eFFF

j
gr. (3.13)

The idea of the homogenized CMT is to pool all the sequential mass additions
within one single constituent using temporal homogenization. To do so, three
assumptions are made: (i) the mechanical properties are changed by G&R, (ii)
survival mass (mass turnover) functions are exponential and (iii) inelastic de-
formations, FFF j

gr = FFF j
gFFF

j
r, are in turn decomposed into growth-related, FFF j

g, and
remodeling-related (turnover-related), FFF j

r, contributions. In this model, a single
average inelastic deformation gradient FFF j

gr is defined. The growth-based part cap-
tures the changes of the differential volume element due to mass variations. The
model can handle isotropic or anisotropic growth, the latter being more relevant
for arteries and manifesting with thickening or thinning effects [80].
We assumed that G&R is a stress mediated process which tends to minimize de-
viations between the current stresses and a reference stress metrics named home-
ostatic stress. Therefore, the rate of mass degradation and deposition at time t
for the jth constituent were expressed as

%̇jR(t) = %jR(t)kjσ
σjt − σ

j
h

σjh
+ Ḋj (3.14)
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where %jR(t) is the mass density of the jth constituent at time t and kjσ denotes
a growth parameter while σjt and σjh (σjh = (aaaj0 ⊗ aaa

j
0) : σσσjh) are the current and

homeostatic stresses, respectively. Ḋj includes any additional mass deposition or
degradation governed by non-mechanical effects (for instance effect of a drug). A
more general form of this equation is presented by Braeu et al [27], using a tensorial
representation and possibly considering wall shear stress stimuli [25], [81]. The
wall shear stress effects induced by the blood flow are neglected in our work here.
Therefore, due to continuous mass deposition and removal, the traction–free con-
figuration changed during G&R, even if there is a balance between mass deposition
and removal (%̇jR(t) = 0). Mass deposition or removal occurred with a prestress
which is different from the current stress at which mass is removed. Altogether
this leads to changes of tissue microstructure referred as remodeling. Therefore,
assuming that remodeling occurs at a constant volume, the evolution of the inelas-
tic remodeling deformation gradient of the jth constituent at time t was expressed
such as [24](

%̇jR(t)

%jR(t)
+

1

T j

)(
SSSj(t)−SSSjpre

)
=

(
∂SSSj

∂CCCj
e

: (CCCj
eLLL

j
r +LLLjr

T
CCCj
e)

)
(3.15)

where LLLjr = ḞFF
j

rFFF
j
r
−1 and SSSj is the second Piola–Kirchhoff while subscript "pre"

indicates prestress. LLLjr denotes the remodeling velocity gradient and T j is the
average turnover time during which old mass increment is degraded and replaced
by a new mass increment. Prestress σipre is equal to the homeostatic stress σih,
according to proposition 1 from Cyron and Humphrey [8]. On the other hand,
the growth deformation gradient captures any local change of volume induced
by mass variations of each constituent. Following Braeu et al [27], we assumed
that all components of the mixture shared the same growth deformation gradient:
FFF j
g = FFF g obtained by summing the growth rate of each constituent: ĠGG =

∑n
j=1 ĠGG

j
,

where n is number of constituents in the mixture. Following [27] the mass density
in the current spatial configuration was related to the mass density in the reference
configuration by

det(FFF g) =
%R(t)

%R(0)
(3.16)

Differentiating both sides and recalling that J = det(FFF ) = det(FFF j
e) det(FFF j

r) det(FFF j
g) =

det(FFF j
g), after some arrangement the rate of the growth deformation gradient for

the jth constituent was obtained by

ĠGG
j

=
%̇jR(t)

%R(t)FFF j
g
−T

: BBBj
BBBj (3.17)

where the second-order tensorBBBj defines the growth direction and it is normalized
such that tr(BBBj) = 1.
Note here that GGGj is the growth rate tensor and it should not be confused with
GGGj
h which is the deposition stretch tensor.

Assuming anisotropic growth normal to the arterial wall and to fibers (thinning
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or thickening effects, BBBj = aaa⊥0 ⊗ aaa⊥0 ) and considering the through-thickness ho-
mogenization (J = λzλθλr, with λr = h

h0
), the current thickness (h) was derived

as
h =

h0

λθλz

%R(t)

%R(0)
(3.18)

where h0 is the initial thickness, λθ and λz are the circumferential and axial
stretches, %R(t) and %R(0) are the time density and the initial density. Also we
simplified the equations for remodeling 3.15 and growth 3.17 to the following ex-
pressions

λ̇jr =

(
%̇jR(t)

%jR(t)
+

1

T j

)
λj

(λje)2

1

%R(t)φj

(
∂Ψj

∂λje
+ λje

∂2Ψj

(∂λje)2

)−1

×
(
σjt − σjpre

)
(3.19)

Ġj
r =

%̇jR(t)

%R(t)
(3.20)

where the remodeling stretch (λjr) was along the fiber direction (aaaj0), growth (ĠGG
j
)

is along the thickness direction (eeer), and σj is the Cauchy stress. Then, we wrote
the following expressions for inelastic deformation gradients FFF j

r and FFF j
g,

FFF j
r = λjraaa

j
0 ⊗ aaa

j
0 +

1√
λjr

(III − aaaj0 ⊗ aaa
j
0) (3.21)

FFF j
g = III +

%R(t)

%R(0)
aaa⊥0 ⊗ aaa⊥0 − aaa⊥0 ⊗ aaa⊥0 (3.22)

where III is the identity second order tensor, aaaj0 are vectors of the fiber directions
and aaaj⊥0 are the vectors normal to the fibers (thickness direction). Finally, the
inelastic deformation gradient was derived from 3.21 and 3.22, yielding

FFF j
gr = λjraaa

j
0⊗aaa

j
0 +

1√
λjr

(III−aaaj0⊗aaa
j
0 +

%R(t)

%R(0)
aaa⊥0 ⊗aaa⊥0 −aaa⊥0 ⊗aaa⊥0 ) =⇒ FFF j

gr ·aaa
j
0 = λjraaa

j
0

(3.23)
To calculate the G&R deformation gradient over time we solved the system com-
posed of Eqs. 3.14, 3.15 and 3.17 by performing explicit temporal integration. It
was assumed that elastin cannot be produced during adulthood, it even under-
goes a slow degradation with a half–life time of several decades. Therefore, elastin
evolution was basically calculated based on its degradation rate. Moreover, it was
assumed that SMCs do not experience any mass turnover, however they undergo
remodeling due to collagen and elastin mass evolutions.

3.4.3 Adaptation to axisymmetric shell formulation

In the current work, we implemented the G&R model described in the previous
subsection in axisymmetric shell elements. This subsection introduces the ax-
isymmetric shell element with an overview of its kinematics and of the principle
of virtual work (for more details we suggest [55], [68]).
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z

r

XXX

XXXM

NNN

θ

xxx

xxxM

ddd
β

u

w

Figure 3.1 – Schematics representing the kinematic variables of the shell ax-
isymmetric element

Consistently with the kinematics of axisymmetric shell elements, we assumed that
coordinates of a material point in the reference configuraton, denoted XXX in the
shell space, can be expressed by the position of the shell mid–surface, XXXM , and
by their local thickness parametric coordinate ξ as

XXX =

[
Z

R

]
︸ ︷︷ ︸
XXXM

+ξ

[
− cos θ

sin θ

]
︸ ︷︷ ︸

NNN

(3.24)

where NNN is a unit normal vector, Fig. 3.1. Similarly for the position in the
deformed configuration, denoted xxx, it can be written

xxx =

[
Z + u sin θ − w cos θ

R + u cos θ + w sin θ

]
︸ ︷︷ ︸

xxxM

+ξ

[
cos(θ − β)

sin(θ − β)

]
︸ ︷︷ ︸

ddd

(3.25)

with xxxM being the position of the deformed shell mid–surface and ddd being a vec-
tor describing the rotation of the cross section with respect to the mid–surface.
Assuming plane stress, the deformation gradient is reduced to

FFF =

[
λz 0

0 λθ

]
(3.26)

With the aim to solve the mechanical equilibrium by the principle of virtual work,
the work due to the intenal and external forces is developed here. The internal
virtual work is split along the shell thickness to define different properties for
the media and the adventitia layers (bi-layered arterial wall). Let h0 and h∗ be
the total wall thickness and the media thickness, respectively. ξ being the radial
position, inequalities −h0/2 ≤ ξ ≤ h∗ and h∗ ≤ ξ ≤ h0/2 define the media and
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the adventitia layers, respectively. The radial integral was derived by applying the
principle of virtual work such as

δWint(uuu, δuuu) = 2π

∫
L

(∫ h∗

−h0/2
SSS · δEEERdξ +

∫ h0/2

h∗
SSS · δEEERdξ + εh0EzrδEzrR

)
ds

(3.27)
Then it is linearized as

∆δWint(uuu, δuuu) ·∆uuu = 2π

∫
L

(∫ h∗

−h0/2
(δEEE · C ·∆EEE +SSS ·∆δEEE)Rdξ

+

∫ h0/2

h∗
(δEEE · C ·∆EEE +SSS ·∆δEEE)Rdξ

+ εh0 (δEzr∆Ezr + Ezr∆δEzr)R) ds (3.28)

where ε is a penalty related to the shear strain Ezr constraining the rotation of
the cross section [71].
The external virtual work comes from a follower load. In this case the load could
be an internal pressure due to the blood in the artery or a force due to the stent
pushing onto the artery.

δWext(uuu, δuuu) = 2π

∫ +1

−1

δuuu · p̂(−eeeθ × xxx,ξ )rdη (3.29)

Then it is linearized as

∆δWext(uuu, δuuu)·∆uuu = 2π

∫ +1

−1

δuuu·{∆p̂(−eeeθ × xxx,ξ )r − p̂(eeeθ ×∆uuu,ξ )r − p̂(eeeθ × xxx,ξ )∆w} dη

(3.30)
where p̂ is the load due to an internal pressure p̂ = Pi or a stent (Fig. 2) p̂ = CNδ.
∆p̂ is the variation of the load along the element, ∆p̂ = 0 for blood pressure
or ∆p̂ = −CN∆w for the stent. In equation 3.30 we consider the term ∆p̂ for
possible variations of the load, in order to incorporate the force of the stent onto
the arterial wall.
Finally, the Newton’s method is used to solve the mechanical equilibrium, yielding
the following system

(∆δWint −∆δWext) ·∆uuu+ (δWint − δWext) = 0 (3.31)

Following Voigt’s notation [55] we reduced the order of stress, strain and elasticity
tensors as below

SSS =

[
Sz

Sθ

]
, EEE =

[
Ez

Eθ

]
, C =

[
Cz Czθ

Cθz Cθ

]
(3.32)

3.4.4 Finite element implementation

The model was implemented in an in-house code for axisymmetric shell elements
(section 2.3) using FORTRAN programming language along with implementation
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of the homogenized CMT of G&R. A simplified arterial model was defined as a
shell cylinder (thin-walled) of length L = 100[mm], mean radius R = 10[mm]

and wall thickness h0 = 1.41[mm]. The cylinder was discretized with 2-node shell
elements in 35 elements along the axial direction. A luminal reference pressure
Pi = 100[mm] was assigned. In some cases we considered a stent into the artery
with length Ls = 40[mm], as shown in Fig. 2. The long time term problem was
solved by a forward Euler time integration scheme with a time step of 30 days.
The spatial and time discretization was chosen based in a convergence study.

3.5 Numerical experiments

3.5.1 Comparison with an existing G&R model

First we considered an axisymmetric single-layer cylindrical shell wall as previ-
ously studied by Cyron et al [24]. Using the algorithm presented by Mousavi and
Avril [65], the reference configuration was defined in such a way to ensure that
the circumferential component of elastin deposition stretch was mechanically in
equilibrium with the reference pressure. Following the first example of Braeu et
al [27], the arterial wall underwent elastin degradation varying temporally and
spatially across the arterial wall with the following rate:

Ḋe(XXX, t) = −%
e
R(XXX, t)

T e
− Dmax

tdam
%eR(XXX, 0)e

−0.5
(

Z
Ldam

)2
− t
tdam (3.33)

where tdam and Ldam are the temporal and the spatial damage distribution pa-
rameters, respectively. Z is the material position in the axial direction of the
cylinder and Dmax is the maximum damage. The first term in Eq. 3.33 refers to
a normal elastin degradation by age while the second one is related to a sudden
and abnormal local damage starting at t = 0 with maximum value at the center
of the cylinder (Z = 0) and fading at Z = L

2
. The results obtained with the

present model were compared with the corresponding results of Cyron et al [24]
for different growth parameters, kcjσ . Material parameters are listed in Table 3.2.

3.5.2 Applications of the model

After verification of the model on a single layer arterial wall, three different G&R
cases were considered for a bi-layered cylindrical artery:

1. a benchmark case was considered first with a regional and sharp degradation
rate of elastin in the arterial wall to develop an aneurysm (case I).

2. a stent of length Ls was deployed in the artery as shown in Fig. 3.2 and the
induced G&R undergone by the artery was predicted (case II).

3. after developing an aneurysm for several months due to elastin degradation
(as in the first case), the implantation of a stent graft of length Ls was
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modeled and the induced G&R undergone by the artery was predicted (case
III).

Z=0

R=0

stent segment

stent edge segment a

R = 10mm

L = 100mm

Ls = 40mm

p̂ = 100mmHg
z

r

b

Figure 3.2 – Geometrical characteristics of the artery model with symmetric
conditions at Z = 0 and Z = L. L, R, Ls and p̂ denote the arterial length,
arterial radius, stent length and the internal pressure, respectively. a: Schematic
representation of a real stent deployed in an artery with its media and adventitia,
and the square shows the domain over which the simulations are performed (as-
suming symmetries). b: Simple geometrical model and its boundary conditions in
a cylindrical coordinate system.

The geometrical characteristics and boundary conditions of the different cases are
shown in Fig. 3.2 and material parameters are summarized in Table 3.2. For each
case, we performed different sensitivity analyses on parameters such as the effect of
the G&R rate, the penalty in the shell element formulation, the media thickness,
the stent over-sizing ratio (ratio between the radius of the stent at equilibrium
stress-free conditions and the radius of the artery just before stent implantation)
and the normal and tangential friction coefficient between the stent and the arterial
wall. Those parameters are reported in Table 3.1.

3.6 Results

3.6.1 Comparison with an existing G&R model

Aneurysm growth predicted by our model was compared against the corresponding
results from Cyron et al [24] in Fig. 3.3. As expected, the single-layer cylindrical
artery underwent excessive and unstable dilatation for small growth parameters
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Parameter Values Case
Gain parameter {0.01; 0.02; 0.03; 0.04} 1○ 2○ 3○
Over-sizing {5%; 10%; 15%; 20%} 2○ 3○
Media thickness ratio {0.15; 0.50; 0.85} 1○ 2○ 3○
Shell penalty {105; 107; 109} 1○ 2○ 3○
Normal Coefficient {25MPa; 50MPa; 75MPa} 2○ 3○

Table 3.1 – Sensitivity Analysis

while it recovered its stability after a transient period of growth for larger growth
parameters. Elastin loss is responsible for altering the stress field, leading subse-
quently to the deposition of new collagen fibers. Therefore, stability (large kcσ) or
instability (small kcσ) of the aneurysm growth is governed by the balance between
elastin loss and new collagen production.

0 20 40 60 80 100 120 140 160 180
Time [months]

10

15

20

25

30

R
a
d
iu

s 
[m

m
]

kσ=0.05/T
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kσ=0.15/T

Figure 3.3 – Changes of the radius in the center of arterial wall with maximum
elastin degradation rate (Z = 0). Solid lines are the results obtained by the shell
model and dashed lines are the results of [24].

3.6.2 Case I: benchmark case of a bi-layer arterial wall

The degradation of elastin changed the stiffness at the center (Z = 0). From
this imbalance, the G&R model predicted an adaptation of the artery by collagen
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Material parameters
Ce elastin neo-hookean parameter 72[J/kg]

Cci
1 Collagen: Fung exponential parameters 1136[J/kg]

Cci
2 11.2

Cm
1 Smooth muscle: passive contribution 15.2[J/kg]

Cm
2 11.4

Sactmax Smooth muscle: active contribution 54[kPa]

λm0 0.8

λmmax 1.4

λact 1.0

%R(0) Total initial density 1050[kg/m3]

Media fraction mass
φeM Elastin 40%

φmM Smooth muscle 40%

φc1M Collagen: axial 1%

φc4M Collagen: circumferential 18%

φc2M = φc3M Collagen: diagonal 0.5%

Adventitia fraction mass
φeA Elastin 5%

φmA Smooth muscle 0%

φc1A Collagen: axial 10%

φc4A Collagen: circumferential 5%

φc2A = φc3A Collagen: diagonal 40%

Deposition Stretch
Ge
hz Elastin: axial 1.25

Ge
hθ Elastin: circumferential 1.34

Gm
h Smooth muscle 1.1

Gci
h Collagen 1.062

Growth and Remodeling parameters
T ci = Tm Collagen/Smooth muscle: turnover time 101[days]

T e Elastin: mean life time 101[years]

Table 3.2 – Material parameters
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deposition, until reaching equilibrium again, 3.14. The turnover of collagen was
directly proportional to the gain parameter (kcσ), so for small gain parameters
the arterial wall did not recover homeostasis (stability) and a bulge grew from
this instabiblity as shown in Fig. 3.4 and 3.5 a. Herein the simulation with kcσ =

0.01/T c lead to a 18.2mm radius whereas the simulation with kcσ = 0.04/T c lead
to a 13.4mm radius after 200 months of G&R.
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Figure 3.4 – Effects of gain parameters on the aneurysm growth after elastin
loss. a, b and c are plotted in the center of the arterial wall (Z = 0) versus time.
d, e and f are plotted for the last time step (after 199 months) along the arterial
axial direction.

The turnover of collagen also depended on the previous amount of collagen as
shown in equation 3.14. Then for arteries with less initial collagen, it was difficult
to recover homeostasis. A similar effect was observed with arteries having a thick
media, see for instance the case with 85% media shown in Fig. 3.5 b. Penalties also
had some effect (Fig. 3.5 c) with smaller radius reached for ε = 1× 109 (Fig. B.1
in appendix B).

3.6.3 Case II: adaptation after stent implantation

In this case, the mechanobiological insult applied to the artery was the radial force
of a stent. The stent also stretched the artery during its deployment as shown in
Fig. 3.6 b, depending on the over-sizing ratio. But the stress decreased quickly
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Figure 3.5 – Sensitivity analysis on the radius at Z = 0 after 200 months of
elastin degradation. a: Effect of different gain parameters. b: Effect of the media
thickness. c: Effect of the penalty.
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during the first 30 months due to G&R, until reaching nearly homeostasis. The
time to recover homeostasis was shorter for 5% over-sizing than for 20% over-sizing,
kcσ = 0.02/T c (Fig. 3.6 c).
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Figure 3.6 – Effect of the stent over-sizing on G&R of the arterial wall. a, b and
c are plotted in the center of the arterial wall (Z = 0) versus time. d, e and f are
plotted for the last time step (after 180 months) along the arterial axial direction.

However, homeostasis was never reached everywhere along the artery. A residual
radius increase was systematically obtained at the edge of the stent. This dilata-
tion was bigger for small gain parameters as shown in Fig. B.3 (appendix B), for
larger over-sizing ratios, for large stent stiffness (Fig. 3.7) and for thicker media
(Fig. B.5).

3.6.4 Case III: stent implantation after several years of aneurysm
development G&R

In this case, the central radius obtained after several months of adaptation did
not depend either on the gain parameters or on the media thickness (Fig. 3.8 a
and b). The stent over-sizing and the stent stiffness had a small but significant
effect (Fig. 3.8 c and d).
However the major effects were on the stress obtained in the wall, which depended
significantly on the gain parameters as shown in Fig. 3.9 b and c, Fig. B.10. After
stent implantation, the artery had a fast adaptation (20 months) in the stent

77



Chapter 3. Axisymmetric model

0.01/T 0.02/T 0.03/T 0.04/T
Gain

0

5

10

15

20

R
a
d
iu

s 
[m

m
]

a

0.15 0.50 0.85
Media-Adventitia Ratio

0

5

10

15

20

R
a
d
iu

s 
[m

m
]

b

5% 10% 15% 20%
Over-sizing

0

5

10

15

20

R
a
d
iu

s 
[m

m
]

c

25[MPa] 50[MPa] 75[MPa]
Normal Coefficient

0

5

10

15

20

R
a
d
iu

s 
[m

m
]

d

Figure 3.7 – Sensitivity analysis on the at Z = 0 after 180 months following
stent implantation. a: Effect of different gain parameters. b: Effect of the media
thickness. c: Effect of stent over-sizing. d: Effect of the stent stiffness.
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Figure 3.8 – Sensitivity analysis on the radius at Z = 0 after 100 months
following stent implantation preceded by 80 months of aneurysm growth. a: Effect
of different gain parameters. b: Effect of the media thickness. c: Effect of stent
over-sizing. d: Effect of the stent stiffness.
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segment. As in case II, a residual radius increase developed at the edge of the
stent, with significant effects of the gain and of the media thickness (Figs. B.10
and B.12).
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Figure 3.9 – Effect of gain parameters and stent over-sizing on the behavior of
the arterial wall after stent implantation for an arterial wall undergoing several
years of G&R. a, b and c are plotted at the center of the arterial wall (Z = 0) versus
time. d, e and f are plotted just before stent implantation (t=80 months) along
the arterial axial direction. g, h and i are plotted just after stent implantation
(t=80 months) along the arterial axial direction. j, k and l are plotted after 100
months following stent implantation along the arterial axial direction.

3.6.5 Computational details

The simulations were performed in a Workstation Dell Precision 3620 (Intel Core
i5-7500 3.40GHz, 16.4 GB RAM) with Linux OS. The code was compiled with
GNU gfortran compiler on same machine. The time spent by simulation are
shown in Table 3.3.

3.7 Discussion

In this work, a new open-source FE model of vascular adaptation, with low com-
putational cost, was introduced and applied to model aneurysm growth and stent
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CPU Time [s] Clock Time [s]
Case I (200 G&R steps) 0.972 0.977
Case I (180 G&R steps) 0.872 0.877
Case II (180 G&R steps) 0.876 0.885
Case III (80 G&R steps and 100 G&R steps) 1.088 1.108

Table 3.3 – Computational costs time of every simulation.

implantation. We used a layer-specific shell model for the arterial wall. Although
previous simulations used membrane models [10], [13], [15], [24], [61] and hexae-
dra elements [14], [27], shell models appear as very well adapted to modeling the
deformations of the aorta and its G&R behavior [13]. Moreover, the ratio between
thickness and diameter, which has to be at least of 1 to 10 for a shell, evolves
favorably as the aneurysm grows. On top of that, remodeling tends to naturally
maintain a uniform stress field across the thickness.
A 2D axisymmetric membrane model has two degrees of freedom (DOF), while a
shell model has at least three DOF, depending on the number of extra constraints
[55], [68]. In our model, the third DOF is the bending angle where we added
the shear strain as an extra constraint. Thanks to the latter, we used a penalty
(ε) [71] to zero the through-thickness shear strain. Our simulations showed that
high penalty coefficients, ε = 1 × 109, can affect arterial adaptation and even
induce instabilities in G&R due to shear locking effects [55]. We found that the
optimal penalty factor was ε = 1×105, as it permitted a good compromise between
shear strains, and displacements. However, after tuning the different parameters,
differences remain between our results and the results from Cyron et al [24]. These
differences may be attributed to the contribution of the bending behavior in our
model, whereas Cyron et al [24] used membrane elements. The main argument
for this interpretation is that the differences depend significantly on the penalty
factor we use in our model to account for the through-thickness shear stiffness of
the shell.
The simplification we have done in the fibre families enforce incompressiblity for
elastic and remodeling deformation gradients and reduces the amount of unknowns
to be solved at each time step. The assumption of anisotropic growth was shown to
be more relevant to model adaptation after elastin degradation [27], [58]. Eriksson
[58] even showed that inapropriate growth models could possibly induce counter-
expected results such as arterial diameter shrinking.
An interesting feature of our model is the layer-specific implementation which
allow to use different mass of constituents (elastin, collagen and SMC) in the
mixture by layer and employ the G&R separately. Indeed, there are mechanical
differences between the media and the adventitia in the arterial wall due to the
amount of constituents in each layer [3]. Then, it was assumed that homeostatic
stresses are different in the media and in the adventitia, as they harbor different
cell phenotypes (contractile smooth muscle cells in the media and fibroblasts in
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the adventitia). For instance, Bellini et al [19] also considered different stress
distributions in the media and in the adventitia and showed that their model is well
suited to predict the results of open angle experiments. The first bi-layered models
of arterial wall in finite elasticity were proposed by Von Maltzahn et al [82] who
reported discontinuous circumferential and axial stresses at the interface between
the media and the adventitia. Different material parameters for the media and the
adventitia permitted to reach nearly uniform, layer-specific circumferential stresses
under physiologic conditions of pressure and axial stretch. Latorre and Humphrey
[59] proposed a bi-layered model with a time-independent CMT approach. G&R
simulations with bi-layered models were performed using time-independent Rachev
[83] and time-dependent Taber and Humphrey [20] approach. Both were based on
the assumption that circumferential stress should be restored to their normal initial
value. Taber and Humphrey [20] suggested that transmural differences in material
properties were needed to predict the same opening angles as the ones observed
experimentally. Finally this heterogeneity of material properties contributed to
reach more uniform transmural distributions of stresses and to account for residual
stresses. Herein, we proposed a bi-layered model for time-dependent G&R. We
defined layer-specific mass fractions of each constituent. Even if in both layers
each constituent has the same strain energy density (per unit mass), each layer
has a different strain energy density (per unit volume) due to the different mass
fractions.
Following Wilson et al [12] and Braeu et al [27], elastin degradation was assumed
to be the mechanobiological insult initiating G&R simulations. Consistently with
Wilson et al [61], it appeared that collagen production tends to compensate for
the loss of elastin. Results demonstrated that the gain parameter, kσ, has a
key effect on collagen production and expansion rate, (Fig. 3.3) consistently with
other studies [10], [24]. Nonetheless, the gain parameter was assumed to be fixed
during the evolution of aneurysm in our model, whereas in an actual aneurysms
gain may change during aneurysm growth due to pathological changes [15] af-
fecting mechanosensing and mechanotransduction. The simulation showed that
kσ = 0.09 provides almost a linear growth. With kσ < 0.05 the lesion enlarged
continuously implying that the stress-mediated collagen turnover was not enough
to return to the homeostatic stress. Another important factor in collagen produc-
tion is the existing mass of collagen [61]. The initial collagen mass related to the
initial thickness of adventitia, which has the larger mass fraction of collagen [84].
Simulations showed that only small dilatation were reached in 200 months (16.5
years) for hM = 0.15h0 , whereas large lesions were obtained with hM = 0.85h0,
due to the insufficient collagen turnover.
Aortic aneurysms can be repaired using stent-grafts [32], [85]. The stress distri-
bution obtained after implanting a stent (we neglected the mechanical effect of
the graft) in a bi-layer arterial wall has been studied extensively using the finite-
element method [86]. However, the further adaptation had never been simulated
using the CMT approach. Our results showed that G&R induced an effect on the
arterial wall similar to a stress relaxation effect at the long term [24]. This stress
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relaxation was dependent on the over-sizing ratio, see Fig. 3.6, with a possible
instability occurring at the edge of the stent. The relaxation also affected the
radius, see Fig. 3.9(c,f,i) and Fig. 3.6(c). Turnover (gain and existing mass) of
collagen had no significant transient effects along the stent segment, see Fig. B.3
and Fig. B.5, but was responsible for the dilatation developed at the stent edge.
We also showed in case III that the aneurysm diameter decreased after stent-graft
implantation.
Furthermore, clinical evidence suggests the existence of issues after stenting, such
as restenosis, stent thrombosis and arterial injuries. Kitahara et al [87] studied
the impact of stent oversizing, concluding that aggressive oversizing may not lead
to vascular injuries at the stent edge, as arteries with siginificant stent oversizing
reach better apposition without increasing the amount of dissection at the stent
egde. However, Chamie et al [88] concluded that the overstretching of the arterial
wall due to an oversized stent was an important factor of dissection at stent edges.
They also observed that the arterial wall responds to the injury through neointimal
proliferation and vessel remodeling, then leading to restenosis around the stent.
Finally, García-García [89] reported expansive vascular remodeling at the stent
edge, which is also in agreement with our model prediction.
Finally, we emphasize that the model considered herein only simulates fusiform
aneurysms as proposed by Baek et al [10] and Wilson et al [12]. Other limitations
of this work are related to the contact between the artery and the stent, which is
simply modeled by springs pushing the shell elements at its nodes. Additionally,
intraluminal thrombus [12], [15], which often has an important role in the growth
of aortic aneurysm, was neglected in our models. Further extension of our shell
formulation to 3D is expected to address these limitations.

3.8 Conclusions

In this work, we implemented a low-cost open-source finite-element 2D axisym-
metric shell model (FEM) of the arterial wall for simulating layer-specific growth
and remodeling using the homogenized constrained mixture theory. After testing
the reliability of the implementation, we used the model to evaluate the long-term
mechanobiological adaptation after stent implantation. Two types of regime were
found: either the artery recovered its initial homeostatic stress state after some
months of adaptation (stable regime), or the artery dilated locally at the edge
of the stent without recovering homeostasis (unstable regime). The main results
are that the ratio between the media and the adventitia thicknesses and the gain
parameters are the major parameters determining the type of adaptation regime
undergone by the aorta after stent implantation. It will be essential to estimate
their patient-specific values for real patient-specific applications.
Although our model was limited to axisymmetric examples with 2D shell elements,
its main advantage was the computational time, which was extremely low, while
still capturing the main aspects of G&R. Further extension to 3D geometries of
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this shell formulation is expected to address more realistic cases.
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4.1 Résumé du chapitre en français

L’évolution des propriétés mécaniques et structurelles de l’aorte thoracique ascen-
dante est le résultat de processus mécanobiologiques complexes. Dans ce travail,
nous relevons certains défis numériques afin d’élaborer des modèles de calcul de
ces processus. Pour cela, nous étendons l’état de l’art des modèles de mélange con-
traint homogénéisé (hCM). Dans ces modèles, des pré-étirements sont appliqués
aux constituants du mélange afin d’assurer un équilibre mécanique local au niveau
macroscopique, et de maintenir un niveau homéostatique de tension dans les fi-
bres de collagène au niveau microscopique. Bien que les pré-étirements initiaux
aient été supposés homogènes dans des tubes droits idéalisés, des distributions
de pré-étirement plus élaborées doivent être prises en compte pour les modèles
géométriques courbes tels que l’ATA de patients. Par conséquent, nous intro-
duisons des pré-étirements ayant un gradient tridimensionnel à travers la géométrie
de l’ATA dans l’état de référence homéostatique. Nous testons différents schémas
dans le but de garantir la stabilité des simulations de croissance et de remodelage
(G&R) sur des vaisseaux courbes spécifiques aux patients. Dans ces simulations, la
progression de l’anévrisme est déclenchée par des changements tissulaires dans les
constituants tels que la dégradation massive de l’élastine intramurale. Les résul-
tats montrent que les pré-étirements initiaux ne sont pas seulement critiques pour
la stabilité des simulations numériques, mais qu’ils affectent également la réponse
G&R. Enfin, nous concluons que les conditions initiales requises pour les simula-
tions G&R doivent être identifiées au niveau local pour garantir des prédictions
réalistes de la progression de l’anévrisme, spécifiques au patient.

4.2 Abstract of the chapter

Evolution of mechanical and structural properties in the Ascending Thoracic Aorta
(ATA) are the results of complex mechanobiological processes. In this work, we
address some numerical challenges in order to elaborate computational models of
these processes. For that, we extend the state of the art of Homogenized Con-
strained Mixture (hCM) models. In these models, prestretches are assigned to the
mixed constituents in order to ensure local mechanical equilibrium macroscopi-
cally, and to maintain a homeostatic level of tension in collagen fibers microscopi-
cally. Although the initial prestretches were assumed as homogeneous in idealized
straight tubes, more elaborate prestretch distributions need to be considered for
curved geometrical models such as patient-specific ATA. Therefore, we introduce
prestretches having a three-dimensional gradient across the ATA geometry in the
homeostatic reference state. We test different schemes with the objective to en-
sure stable growth and remodeling (G&R) simulations on patient-specific curved
vessels. In these simulations, aneurysm progression is triggered by tissue changes
in the constituents such as mass degradation of intramural elastin. The results
show that the initial prestretches are not only critical for the stability of numerical
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simulations, but they also affect the G&R response. Eventually, we submit that
initial conditions required for G&R simulations need to be identified regionally for
ensuring realistic patient-specific predictions of aneurysm progression.

4.3 Introduction

The Ascending Thoracic Aorta (ATA) plays an essential role for the function
of the cardiovascular system thanks to the Windkessel effect [33]. Similarly to
other biological tissues, the ATA continuously adapts its structure and shape to
accommodate aging effects [41] and possible physiopathological changes, which in
the long-term can unfortunately lead to diseases such as aneurysms [5].
Such structural changes can be computationally predicted by Growth and Re-
modeling (G&R) models. These models date back from the mid 1990s when [23]
introduced the Kinematics Growth (KG) model, which is based on a multiplicative
decomposition of the deformation gradient into elastic and inelastic contributions.
Some years after, [22] proposed the Constrained Mixture (CM) model, which is
based on the assumption that soft tissues are composite materials. In arteries, the
main constituents of this composite material are elastin, collagen and smooth mus-
cle cells (SMCs). Based on CM models, G&R explicitly simulates continuous mass
deposition/removal of each constituent. Due to the high implementation efforts
and computation resources required by CM models, some authors proposed hybrid
models such as the Evolving Recruitment Stretch model [57], [58], the Homoge-
nized Constrained Mixture (hCM) model [17], [27], [28] or the rate-independent
pseudoelastic framework [59], [60].
Generally, geometries of organs and tissues that are considered to set-up numerical
models are acquired in vivo and consequently the reference configuration cannot be
assumed as stress-free [19]. A prestretch, i.e. a stretch that exists in the reference
configuration of the body of interest [49], needs to be introduced. As most G&R
computational models rely on the paradigm of tensional homeostasis, which states
that a biological system produces and removes mass to reach a target stress metrics
[8], [28], the prestretch can contribute significantly to the G&R response of the
system. Therefore, inclusion of prestretch is needed in G&R computational models
of biological tissues to obtain reasonable predictions of tissue mechanics. In CM
models, the prestretch is specific to each constituent [19], [65].
Regional variations of prestretch in G&R models have been rarely investigated
as most of previous work about vascular mechanobiology was achieved in quasi-
straight patient-specific tubes [15] or in idealized straight arteries representing
either the abdominal aorta [12], [16], [25], [26], [69] or brain arteries [10]. Nev-
ertheless, [21] found regionally varying prestretches in a torus –representing an
idealized aortic arch– after G&R simulations. More recently, [17] performed G&R
simulations in a torus again, and, for the first time ever, in patient-specific ATA
geometries. They assigned spatially uniform prestretches for each constituent,
named deposition stretches. As uniform prestretches do not guarantee global
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equilibrium of the ATA structure, [17] resorted to radial rollers, which were used
to assign a supplemental kinematic constraint to each point of the model. Al-
though their G&R simulations showed very realistic predictions of ATA aneurysm
progression, the radial rollers represent a limitation as they do not represent a
physical reality.
In the current work, we investigate G&R models for patient-specific ATA. As
ATA is a curved artery, this makes the task of assigning initial prestretches quite
challenging. Previous work on this topic is rather scarce. Therefore, our objective
is to find the prestretch conditions permitting G&R simulations in ATA curved
geometries without resorting to the radial rollers. In order to accomplish this, we
propose to use non-uniform prestretches in order to define the initial homeostatic
state within the hCM model.
The manuscript is organized as follows: in section 4.4, we give details about the
G&R background, estimation of the prestretch gradient and the numerical imple-
mentation of our approach with its respective verification. At the end of section
4.4, in subsection 4.4.6, we describe the numerical tests used to demonstrate the
robustness of our G&R implementation. After showing the obtained results in sec-
tion 4.5, we eventually propose, in section 4.6, a discussion about the significance
of prestretches in G&R patient-specific models.

4.4 Materials and methods

4.4.1 Background on homogenized constrained mixture me-
chanics

Let us consider an unloaded body ΩR, made of a mixture of several constituents.
These constituents are smooth muscle cells (m), extracellular matrix containing
collagen fiber families (ci) and the remaining matrix (l) composed of elastin, fi-
bronectin, laminin, vitronectin and glycosaminoglycans [2], [3]. Each constituent
of the mixture is denoted with letter j as in Figure 4.1. When the mixture under-
goes a deformation from the reference configuration (ΩR) to a deformed configura-
tion (Ωt), all the constituents of the mixture have the same deformation gradient
FFF at a given position. In the hCM model, this deformation gradient is split into
an inelastic and an elastic part, both being specific to each constituent. Then, it
may be written at any time t,

FFF (XXX, t) = FFF j
e(XXX, t)FFF

j
gr(XXX, t), (4.1)

where FFF j
e is the elastic part of the deformation gradient in the jth constituent

and FFF j
gr is the inelastic part of the deformation gradient in the jth constituent.

The stresses, related to the elastic part, satisfy equilibrium equations whereas the
inelastic part relates to the permanent deformations resulting from G&R [23], [24],
[27] (for more details, see the Appendix C, sections C.1 and C.3).
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Figure 4.1 – Schematic of the hCM model, showing the different configurations.
The reference configuration ΩR is reconstructed from the actual in vivo geometry
of the artery. The configuration Ω0 is obtained by applying the initial boundary
conditions and by assigning initial prestretches [FFF j

gr]
−1 to each constituent of ΩR.

ΩR and Ω0 should be the same as there should be equilibrium between the ef-
fects of the initial boundary conditions and the effects of the initial prestretches
in the reference configuration. However, both are represented separately in the
figure as the initial prestretches providing this equilibrium are found iteratively
in our approach. The fictitious traction-free configuration Ωtf is defined as a fic-
titious configuration at time t, without the effects of boundary conditions and of
prestretches. The current configuration Ωt is obtained after equilibrium between
the effects of the current boundary conditions and the effects of the updated pre-
stretches obtained after growth and remodeling. The neighborhood dXXX of an
arbitrary point in ΩR is related to Ωt by the transformation dxxx = FFFdXXX. At time
zero, Ωt = Ω0 and dxxx0 = FFFdXXX. Similarly, the relationship between Ωt and the
natural configuration is dxxx = FFF j

edxxx
j
n, and the natural configuration and ΩR are

related by the inelastic deformation dxxxjn = FFF j
grdXXX where the inelastic deformation

evolves with time. The natural configurations Ωi
n(t) can only be defined locally

but are not compatible.
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The constituents are assumed to be hyperelastic. The strain energy density func-
tion W (per unit reference volume) of the mixture of n constituents is defined
as

W (CCC) =
n∑
j

%jRΨj(CCCj
e) =

n∑
j

%jRΨj
(
FFF j
gr

−T
CCC FFF j

gr

−1
)
, (4.2)

where CCC = FFF TFFF is the right Cauchy-Green stretch tensor, CCCj
e = FFF j

e
T
FFF j
e is the

elastic part of the right Cauchy-Green stretch tensor, Ψj is the jth constituent
strain energy function (per unit reference mass), which depends only on CCCj

e, %
j
R

is the mass density (per unit reference volume), in the jth constituent. Complete
details about of the hyperelastic constitutive models can be found in Appendix C,
section C.2. Then we can derive the stress and tangent stiffness tensors, which are
needed in our finite-element implementation, and which are written respectively
as

SSS =
n∑
j

%jR
∂Ψj(CCCj

e)

∂CCC
and C =

n∑
j

%jR
∂2Ψj(CCCj

e)

∂CCC2
, (4.3)

where SSS is the second Piola-Kirchhoff and C is the elasticity tensor for the material
stiffness.

4.4.2 Growth and remodeling based on homogenized con-
strained mixture models

G&R considers temporal evolutions related to the mass changes of the different
constituents of the mixture. The idea of the hCM models is to use temporal ho-
mogenization in order to pool all the sequential changes within one single inelastic
deformation gradient for each constituent (Fig. 4.1). As G&R is a stress mediated
process, we assumed that mass can be added or removed to minimize deviations
between a convenient stress equivalent in the current state and a reference home-
ostatic stress value. This requires a continuous update of FFF j

gr(XXX, t) in order to
account for the changes of tissue microstructure, which are referred as remodeling,
and which result from this continuous mass deposition and removal. Indeed, due
to the ongoing mass deposition and removal, the natural configuration of each
constituent continuously changes during G&R (Fig. 4.1), even when there is a
balance between mass deposition and removal (%̇jR = 0). More details about the
numerical implementation of G&R are given in Appendix C, section C.3.

4.4.3 Assigning non uniform initial prestretches

4.4.3.1 General statements about initial prestretches

As shown in Fig. 4.1, we can define the following configurations:

• ΩR is the reference configuration. ΩR is reconstructed from the actual in
vivo geometry of the artery.
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• Ω0 is the configuration obtained by applying the initial boundary conditions
and by assigning initial prestretches to each constituent of ΩR. ΩR and Ω0

should be the same as there should be equilibrium between the effects of the
initial boundary conditions and the effects of the initial prestretches in the
reference configuration. Therefore, all points of the body are at position XXX
at time t0 and we consider small neighborhoods as dXXX in this configuration.

• Ωt is the spatial configuration of the body, defined with positions xxx(XXX, t)

deformed from the reference coordinates under the effects of the current
boundary conditions and the current prestretches. The deformed neighbor-
hood is dxxx(XXX, t) = FFF (XXX, t)dXXX

• Ωj
n(t) are the local natural stress-free configurations of the jth constituents of

the mixture, defined with positions xxxjn(XXX, t) such as the local and incompati-
ble neighborhoods of each constituent are given by dxxxjn(XXX, t) = FFF j

gr(XXX, t)dXXX.
Those local neighborhoods can be re-assembled in the spatial configuration
by a new deformation such as dxxx(XXX, t) = FFF j

e(XXX, t)dxxx
j
n(t), where the resulting

relationship FFF j
e = FFF [FFF j

gr]
−1 may be seen as a prestretch and is sometimes

called deposition stretch, as collagen fibers or smooth muscle cells are natu-
rally under tension when they are deposited at homeostasis [19].

A major characteristic of hCM models is that, at a chosen reference time t0,
FFF j
gr(XXX, t0) 6= III for each constituent. Assuming homeostatic conditions at t0, the

prestress tensor of collagen fibers and of smooth muscle cells satisfy σσσjh(XXX, t0) =

σjh aaa
j
0 ⊗ aaa

j
0, where aaaj0 is the vector indicating the direction of the main axis of

collagen fibers or smooth muscle cells at t0 [24]. The elastic models for collagen
and SMCs are presented in Appendix C, section C.2.
Then, the prestretch tensors of collagen fibers and of smooth muscle cells, FFF ci

e and
FFFm
e respectively, satisfy

FFF j
e(XXX, t0) = λjhaaa

j
0 ⊗ aaa

j
0 +

1√
λjh

(III − aaaj0 ⊗ aaa
j
0), (4.4)

where λjh is the prestretch of fibre j at homeostasis. This deposition stretch can
be determined experimentaly [19].
The prestretch of the extracellular matrix is partially defined with the collagen
prestretch. However, the remaining matrix (composed mainly of elastin but also
of a ground substance comprising fibronectin, laminin, or glycosaminoglycans [2],
[3]), which is further denoted with letter l, should also be assigned a prestretch
tensor FFF l

e. As Neo-Hookean (Appendix C, section C.2), the Cauchy stress of this
constituent should satisfy

σσσl(XXX, t0) =
ρlR
J
µl
(
J le
)−2/3

(
b̄bb
l

e −
1

3
tr
(
b̄bb
l

e

)
III

)
+
ρlR
J
κlJ le

(
J le − 1

)
III, (4.5)

where b̄bble = F̄FF
l
e

[
F̄FF
l
e

]T
is the modified left Cauchy-Green stretch tensor and J le =

91



Chapter 4. Non-uniform prestretch

det(FFF l
e). F̄FF

l
e is the isochoric elastic deformation, its determinant is det(F̄FF l

e) = 1

and it is defined as F̄FF l
e = J le

−1/3
FFF l
e.

Unlike collagen and smooth muscle cells, this constituent is not bound to satisfy
homeostatic conditions. However, FFF l

e should ensure the mechanical equilibrium of
the mixture (Appendix C.3) when a external force fff is applied on the body, which
may be written such as

div

(
σσσl +

m,ci∑
j

σjh aaa
j
0 ⊗ aaa

j
0

)
+ fff = 0. (4.6)

In order to perfectly define the initial conditions, we have to solve Eq. 4.6 and find
FFF l
e(t0) (prestretch of the matrix, surrounding collagen fibers and smooth muscle

cells) such as,
dxxx0 = FFF l

edxxx
l
n = dXXX. (4.7)

The resolution of this problem is only possible if we know the tractions applied
on the whole boundary of Ω0. When Ω0 is a segment of artery in vivo, these
tractions are usually unknown at both cross-sectional ends. Indeed if we keep
the ends of the segment constrained and free from the external loads (pressure for
instance), the obtained configuration will not be stress-free and there will be elastic
deformations (cf. Eq. (1) in [24]). We can also imagine to split the body into
several small parts, where each part has just one constituent, but their assembly
is not necessarily geometrically compatible. As a consequence, it is not possible
to use FFF l

e = ∂xxx0/∂xxx
l
n as a valid definition for the prestretch [51].

4.4.3.2 Assigning FFF l
e(XXX, t0) in a perfectly cylindrical straight tube

The problem can be easily overcome when ΩR is a perfectly cylindrical straight
tube. It can be assumed that the prestretch is a diagonal tensor within the cylin-
drical (XXX = X1eeeZ +X2eeeR +X3eeeΘ, Fig. 4.2a) reference frame, such as,

FFF l
e(XXX, t0) = diag

(
λlhZ , λ

l
hR, λ

l
hΘ

)
, (4.8)

where {λlhZ , λlhR, λlhΘ} are the elastic prestretches in the radial, circumferential
and longitudinal direction, respectively.
Then, λlhZ(XXX, t0) is fixed to an arbitrary value, which is equal to the supposed
in vivo axial stretch of the artery, denoted λiv (known averagely for the human
aorta [90]) and assumed to be uniform in all directions. Eventually, λlhΘ and
λlhR, which are assumed to be uniform across the cylinder, are directly obtained
by solving Eq. 4.6 in the radial and tangential directions and by satisfying the
incompressibility condition.

4.4.3.3 Assigning FFF l
e(XXX, t0) in a perfectly toric tube

Things become more complex for non-cylindrical shapes. We found that, when
ΩR is a perfectly toric tube (torus slice), compatibility equations could still be
satisfied if we assumed that FFF l

e(XXX, t0) is a diagonal tensor within the local toric
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Figure 4.2 – (a) Lateral view of a cylinder with its diameter d and the cylin-
drical system (eeeZ , eeeR, eeeΘ) with eeeΘ perpendicular to the sheet. (b) Lateral and
cross-sectional views of the idealized toric ATA model, where the luminal diam-
eter is d = ROC − RIC , the arch radius is R (middle curvature) and the total
wall thickness is t. IC=inner curvature and OC=outer curvature of the arch; a
linear gradient is assigned for the axial (λlhΦ) and circumferential (λlhΘ) prestretch
of elastin in the reference homeostatic state. The torus is represented with the
spherical coordinate system (eeeΦ, eeeR, eeeΘ) with eeeΘ perpendicular to the sheet. (c)
Schematic of the boundary conditions, with springs at the proximal (kpro) and at
the distal (kdis) ends; the circle (with radius Ldam) indicates the insult zone where
a localized degradation of elastin is applied; the diameter d and the thickness
along the same line are used to assess the initial distortions and displacements
during the simulations. (d) Reconstructed geometry of the patient-specific aorta
from the CT scan. In (a) and (b), the media is filled with north west lines and
the adventitia with north east lines, in (c) the media is filled with dots and the
adventitia with vertical black thick lines.
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(XXX = X1eeeΦ + X2eeeR + X3eeeΘ) reference frame (where eeeΘ refers to the poloidal or
circumferential direction, and eeeΦ refers to the toroidal or longitudinal direction),
Fig. 4.2b. However, it is necessary to consider regional variations of λlhΦ(XXX, t0),
λlhΘ(XXX, t0) and λlhR(XXX, t0). For that, we assumed λlhΦ(XXX, t0) only varying along
the radial direction from the inner curvature to the outer curvature (Fig. 4.2b)
such as

λlhΦ(R, t0) = λlhΦ−IC + (λlhΦ−OC − λlhΦ−IC)
R−RIC

d
, (4.9)

where d is the diameter of the tube and R ∈ [RIC , ROC ]. Additionaly, the max-
imum λlhΦ is set at the outer curvature (λlhΦ−OC) and is equal to the supposed
in vivo axial stretch λiv, while the minimum stretch is updated iteratively at the
inner curvature (λlhΦ−IC).
Therefore the circumferential prestretch, λlhΘ(R, t0), satisfies a similar expression
and the radial prestretch is assigned to satisfy the local incompressibility condition,
yielding

λlhΘ(R, t0) = λlhΘ−IC + (λlhΘ−OC − λlhΘ−IC)
R−RIC

d
, (4.10)

and
λlhR(R, t0) = (λlhΘλ

l
hΦ)−1. (4.11)

Then, the two parameters λlhΘ−IC and λlhΘ−OC are found by solving Eq. 4.6 pro-
jected along the radial direction of the torus.

4.4.3.4 Assigning FFF l
e(XXX, t0) in a patient-specific aortic arch

When ΩR is not a perfectly toric tube, compatibility equations are not satisfied
anymore if we assume that FFF l

e(XXX, t0) is a diagonal tensor. However, the torus is
still a first approximation of the aortic arch. Therefore, for patient-specific ge-
ometries, we developed an iterative approach starting from the solution of Eq. 4.9,
and thereafter updating it iteratively to address the distortions induced by the
incompatibility of the assigned prestretch. This consisted in updating the axial
prestretch at the inner curvature (λlhΦ−IC), improving its values iteratively by re-
ducing the thickness distortion (under the tolerance εt=3%), and then in updating
the circumferential prestretch at the outer and inner curvatures (λlhΘ−OC λ

l
hΘ−IC ,

respectively) reducing the distortion of the diameter (under εd=6%), Fig. 4.3.

4.4.3.5 Time evolutions of FFF j
gr(XXX, t0)

The prestretch FFF j
e(XXX, t0) at t0 equals the inelastic deformation gradient FFF j

gr(XXX, t0)

of the constituents. This inelastic deformation gradient relates the natural stress-
free configuration with an hypothetical traction-free configuration, which at t0 is
the reference configuration. During G&R the natural stress-free configuration con-
tinuously evolves due to the mass turnover and structure changes, see Appendix
C, section C.3. Therefore, the inelastic deformation is continuously changing ac-
cording to

FFF j
gr(t) = FFF j

gr(t0) +

∫ t

t0

ḞFF
j

gr(τ)dτ. (4.12)

94



Joan D. Laubrie Soto

λlhΘ−IC = 1, λlhΘ−OC = 1,
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δt < εt?λlhΦ−IC = λlhΦ−IC + ∆λlhΦ
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Figure 4.3 – Flowchart for the homeostatic prestretch algorithm, showing how
the prestretch gradient is found iteratively by solving forward FE problems suc-
cessively. In the forward FE model, the prestretch gradient is held constant. After
each forward analysis, the axial prestretch gradient (∇λlhΦ) is updated if the thick-
ness distortion (δt) is larger than the thickness tolerance (εt), or the circumferential
prestretch gradient (∇λlhΘ) is updated if the diameter distortion (δd) is larger than
the diameter tolerance (εd) [49].
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4.4.4 Numerical implementation

The hCM model of G&R was implemented in an in-house research Finite-Element
(FE) code based on Florence [66], [67] (written in Python/C++). We implemented
new routines for the code and further modified existing Florence routines. At the
core, a forward Euler (explicit) time integration scheme was created for the hCM,
according to the formulation presented in Appendix C.3. Another new routine
was developed to assign an assembly of multiple mixture materials in one body,
as for instance a bi-layer arterial wall. We also developed routines to assign Robin
elastic boundary conditions at both ends of the tube, as explained in Appendix
C, section C.1. The meshes were generated using GMSH [91].

4.4.5 Verification

A simulation was performed on a cylinder. An insult was applied, corresponding to
the same elastin degradation as the one considered previously by other authors [12],
[24], [27], further written in Eq. 4.13. The purpose of this simulation was to verify
our model, as reference results were previously published for such problem [27].
The geometry, load, mechanical properties, densities, initial prestrain and mass
turnover are reported in Table 4.1. Different mass-gain parameters were tested
(kciσ ={0.05, 0.09, 0.11, 0.15}/T ci) as in the reference results, the mass-parameters
part of the G&R model introduced in detail in Appendix C.3. The mesh was hex-
aedral and composed of 2×15×60 elements (thickness×circumferential×length) in
a quarter cylinder.
The temporal evolutions of the maximum radius predicted by our model were in
good agreement with the reference results of [27], as shown in Fig. 4.4. In Fig. 4.4a,
the comparison was performed against the three dimensional model of [27]. The
relative error is between 3% and 9%. In Fig. 4.4b, the comparison was performed
against the membrane model of [27]. The relative error is even lower, ranging
between 1% to 4%. The error is estimated 15 years after the original insult. In
Table 4.2, we also compare the stress and normalized reference mass density of
collagen, showing a good agreement between [27] and our model.

4.4.6 Applications

Our new model was then applied to simulate G&R in different types of ATA
geometries. For each case, we predicted temporal evolutions of the lumen diameter
and of the wall thickness, as defined in Figure 4.2, following an initial insult. The
material properties and initial densities were assigned as described in Appendix
C, section C.4.

4.4.6.1 Initial insult for G&R

The G&R in the arterial model is triggered by either an initial insult consisting
in a sharp spatial-temporal degradation of elastin (Eq. 4.13) or by the half-life
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Symbol Value
Geometry and load

radius r 10−mm
length l 90−mm
thickness t 1.41−mm
pressure p 100−mmHg

Mechanical properties
neo-Hookean µl 72− J/kg
bulk-modulus κl 100× 72− J/kg
Fung-quadratic, collagen kci1 568− J/kg

kci2 11.2

passive, SMC km1 7.6− J/kg
km2 11.4

active, SMC σactmax 54− kPa
λm0 0.8

λmmax 1.4

λact 1.0

Density
elastin %lR0 241.5− kg/m3

SMC %mR0 157.5− kg/m3

collagen(0 and π/2) %c1R0 = %c4R0 65.1− kg/m3

collagen(−π/4 and π/4) %c2R0 = %c3R0 241.5− kg/m3

Initial remodeling (prestrain)
elastin longitudinal λlrz(t = 0) 1.25−1

elastin circumferential λlrθ(t = 0) 1.34−1

SMC λmr (t = 0) 1.1−1

collagen λcir (t = 0) 1.062−1

Turnover period
collagen and SMC T ci = Tm 101− days
elastin T l 101− years

Table 4.1 – Mechanical parameters used to verify our model against the results
of [27] for the development of an aneurysm in an idealized cylindrical geometry.
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Table 4.2 – Comparison of our results with results from [27] for the development
of an aneurysm in an idealized cylindrical geometry following an initial insult
(localized elastin degradation). Gain-parameter kσ = kmσ = kciσ and turnover time
T = Tm = T ci from the equation of rate mass degradation and deposition (details
in Appendix C, section C.3).
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Figure 4.4 – Evolution of the maximum radius for the cylinder benchmark case.
4.4a comparison between the radius predicted by our model (solid lines) with
the three-dimensional model (dashed lines) of Braeu et al [27]. 4.4b comparison
between the radius predicted by our model (solid lines) with the membrane hCM
model of Braeu et al [27]

degradation of elastin (Eq. 4.14), such as,

%lR(t) = %lR0 exp

(
−t
T l

)
+ %lR0

Dmax

tdam
exp

(
−0.5

[
Xd

Ldam

]2
)

tdamT
l

tdam − T l

[
exp

(
−t
T l

)
− exp

(
−t
tdam

)]
(4.13)

or
%lR(t) = %lR0 exp

(
−t
T l

)
, (4.14)

whereDmax=0.5, Ldam=10-mm, and tdam=40-days are parameters related to elastin
evolution, T l is the half-life time of elastin, %lR and %lR0 are the time and the initial
elastin densities (per unit reference volume), respectively, and where the degrada-
tion in Eq. 4.13 is based on the distance Xd between a given position (~Px) and the
central degradation position (~P0), according to

Xd =


||~Px − ~P0|| in the radial direction,

(~Px − ~P0) · ~v in the axial direction,
(4.15)

In this work, the G&R simulations are analysed with a forward Euler time in-
tegration scheme. To apply such method a discretization of time is needed, and
with the purpose to keep stable evolution of the tissue we have taken equal time
steps ten times smaller than the smallest turnover time (T j), ∆t = T j/10.

4.4.6.2 Idealized ATA model

An idealized bi-layer model of an ATA, similar to the ones in [21] and [17], was
defined as a first test case for the sake of simplicity, given the symmetries. The
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model is bi-layered by equal distribution of the arterial tickness. The geometry was
an eighth of a torus (φ = π/2) of diameter d=36-mm and arch radius R=65-mm,
Fig. 4.2b. Radial rollers with springs were used to ensure appropriate boundary
conditions at both ends, as shown in Fig. 4.2c. This model is discretized in hexahe-
dral elements with 4×12×48 (thickness×circumferential×length), two elements in
media and adventitia tickness. The pressure, mechanical parameters and densities
are reported in Tab. 4.3 with β = 40.

4.4.6.3 Patient-specific ATA model

A patient-specific geometry of an ATA was reconstructed from the CT scan of
a patient harboring an aneurysm [17], as shown in Fig. 4.2d. Two layers were
defined across the thickness, namely the media (0.5t) and the adventitia (0.5t).
The boundary conditions at the proximal and distal ends were the same as for the
idealized ATA, with radial rollers and springs, Fig. 4.2c. This model is discretized
in hexahedral elements with 4×12×48 (thickness×circumferential×length), two
elements in the thickness of media and adventitia. The pressure, mechanical pa-
rameters and densities are reported in Tab. 4.3, with β = 20.
Moreover, we also tested that our computational framework is capable to keep
the homeostatic condition when there is no elastin degradation. The test was
performed on the patient-specific geometry over a duration of 6000 days. The
change of diameter was lower than 0.02%.

4.5 Results

4.5.1 Idealized ATA model

An initial prestretch was assigned for the elastin-matrix component as shown in
Fig. 4.2b, with λlhΦ−IC = 0.75, λlhΦ−OC = 1.3 and λlhΘ−IC = 1.45, λlhΘ−OC = 1.3.
The initial prestretch followed a linear distribution between the inner and the
outer curvature. This permitted to reduce distortions below 2% in the diameter
and 3% in the thickness, respect to the metrics shown in figure 4.2b. The stiffness
of elastic boundaries, which also contribute significantly to reduce distortions, were
set to 1-Pa/m and 0.2-Pa/m at the proximal and distal ends, respectively. These
initial conditions eventually permitted to achieve G&R simulations for more than
10-years in this idealized ATA geometry.
In Figs. 4.5a and 4.5c, we show the influence of the gain-parameter on the rate
of aneurysm growth obtained with this model. The lower the gain parameter
values, the faster the diameter changes. Such parameter has also an influence on
the thickness evolutions, as shown in Fig. 4.5b and 4.5d. The lower the gain
parameter values, the faster the thickness decreases. When the gain-parameter
values become too low, the G&R becomes unstable. In that case, the lumen
diameter grows above 65-mm or 70-mm. The effect is amplified when G&R follows
a localized lesion, as shown in Fig. 4.5c).
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Symbol Value
Geometry and load

thickness t 2.38−mm
pressure p 80−mmHg

Mechanical properties
neo-hookean µl 80− J/kg
bulk modulus κl β × 80− J/kg
Fung-quadratic, collagen kci1 292.0− J/kg

kci2 5.6

passive, SMC km1 13.8− J/kg
km2 6.0

Density media
elastin %lR0 169.0− kg/m3

SMC %mR0 735.0− kg/m3

collagen (0 and π/2) %c1R0 = %c4R0 14.6− kg/m3

collagen (−π/4 and π/4) %c2R0 = %c3R0 58.4− kg/m3

Density adventitia
elastin %lR0 565.0− kg/m3

SMC %mR0 0.0− kg/m3

collagen (0 and π/2) %c1R0 = %c4R0 48.5− kg/m3

collagen (−π/4 and π/4) %c2R0 = %c3R0 194.0− kg/m3

Initial remodeling (prestretch)
SMC λmr (t = 0) 1.1−1

collagen λcir (t = 0) 1.1−1

Turnover period
collagen and SMC T ci = Tm 101− days
elastin T l 101− years

Table 4.3 – Material parameters used in our models to simulate G&R in an
idealized toric aortic arch and in a patient-specific ATA geometry. The parameters
are introduced with their respective models in the Appendix C.2.
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Figure 4.5 – Diameter (a) and thickness (b) evolution in the idealized ATA
geometry in response to half-life elastin degradation. Diameter (c) and thickness
(d) evolution of the idealized ATA in response to an initial insult (sharp elastin
degradation).
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Figs. 4.6a and 4.6b show the von Mises stress field for the two cases of elastin
degradation (aging and insult, respectively). The stresses are higher for the lo-
calized elastin loss than for the long-term elastin degradation. There is still a
similar stress distribution for both cases, as the larger stresses are in the IC of
the arch and in the adventitia while the media does not exhibit major changes of
stress distribution. The story is slightly different for the total collagen distribu-
tion, where the largest production of collagen occurs at the OC of the arch and in
the adventitia, as shown in Fig. 4.6c and 4.6d.

4.5.2 Patient-specific ATA model

The initial prestretch of elastin was distributed with a linear gradient as shown
in Fig. 4.2b with λlhΦ−IC = 0.75, λlhΦ−OC = 1.3 and λlhΘ−IC = 1.5, λlhΘ−OC = 1.0.
Distortions lower than 6% were obtained in the diameter metric and below 3% in
the thickness at IC and OC –the distortions are measured respect to the metrics
shown in figure 4.2c–. We allowed more distortion in the homeostatic diameter as
a trade-off between distortions and stability. Indeed, reducing initial distortions
implied applying larger pre-tensions in the initial homeostatic state. Such large
pre-tensions were systematically responsible for further instability in the G&R
simulations. For instance, average stress values above 200 kPa for the homeostatic
state were systematically responsible for a divergence of the FE analysis after
100 days of G&R. Spring stiffness values of 10 Pa/m and 0.5 Pa/m were assigned
at the proximal and distal boundaries, respectively.

As the patient already harbored an ATA aneurysm, the reference homeostatic
lumen diameter was 48 mm. Further diameter evolutions predicted by the model
are shown in Figs. 4.7a and 4.7c. As for the idealized ATA, these evolutions depend
on the gain parameter and on the type of insult (acute or long-term elastin loss).
When the gain-parameter values become too low, the G&R becomes unstable after
60 mm diameter. Differences with respect to the idealized case are visible in the
thickness evolution, as shown in Figs. 4.7b and 4.7d. For long-term elastin loss,
the thickness decreases more slowly than with the acute insult, the latter showing
a sharp decrease in the first year due to the acute elastin loss.

The stress distribution for the patient-specific ATA model shows a pattern of high
stresses in the axial direction in both layers (media and adventitia). The largest
stress values are found in the adventitia for both cases, as shown in Figs 4.8a and
4.8b. A very large stress concentration is obtained in the adventitia at the OC near
the proximal edge. Despite the stress pattern and stress concentrations, collagen
accumulates mainly in the adventitia at the OC and far from the boundaries for
the long-term elastin loss, whereas collagen concentration is more pronounced in
the elastin degradation zone for the acute insult, as shown in Figs. 4.8c and 4.8d.
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a b

c d

Figure 4.6 – Von Mises stress (σVM) evolution in response to half-life elastin
degradation (a) and in response to an initial insult (sharp elastin degradation) (b)
for the idealized ATA geometry. Normalized total collagen density (ρc) evolution
in response to long-term elastin degradation (c) and localized elastin loss (d) for
the idealized ATA geometry. Simulations were achieved with kσ = 0.09/T
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Figure 4.7 – Diameter (a) and thickness (b) evolution in the patient-specific ATA
geometry in response to half-life elastin degradation. Diameter (c) and thickness
(d) evolution of the patient-specific ATA in response to an initial insult (sharp
elastin degradation).
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a b

c d

Figure 4.8 – Von Mises stress (σVM) evolution in response to half-life elastin
degradation (a) and in response to an initial insult (sharp elastin degradation)
(b) for the patient-specific ATA geometry. Normalized total collagen density (ρc)
evolution in response to long-term elastin degradation (c) and localized elastin
loss (d) for the patient-specific ATA geometry. Simulations were achieved with
k = 0.09/T
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4.6 Discussion

Mechanoregulation of collagen tension in soft tissues is essential in the progression
of aortic aneurysms. In this work, we established a numerical model to simulate
these effects in the thoracic aorta. The model is based on the constrained mixture
theory, which requires that prestretches are assigned to each microstructural com-
ponent of the arterial tissue. Although these prestretches actually exist even in
the initial reference configuration, they have never been measured accurately and
we need to make assumptions in order to assign them in computational models.
They were previously assumed as homogeneous in idealized straight tubes, but
in the present study, we investigated more elaborate prestretch distributions for
curved arteries, with a special focus on a patient-specific ATA geometry.
We proposed to assign a prestretch gradient from the inner to the outer ATA cur-
vature. This permitted to establish a compatible initial homeostatic state and to
produce stable and long (above 10-years) simulations using our 3D FE implemen-
tation of G&R. This gradient was needed to compensate the different effects of the
lumen pressure at the IC and OC in a curved vessel (Fig. 4.2c). This non-uniform
prestretch is in agreement with the previous study of [21], who already considered
a different axial prestretch at the IC and at the OC of an idealized toric aortic
arch. Outside this study, the homeostatic deposition stretch of elastin was usually
assigned as uniform in previously CM models dedicated to straight geometries
[14], [16], [26]. Although a linear distribution of longitudinal and circumferential
prestretches gives stability to G&R simulations, this remains a simplification for
the sake of computational analyses. The current work suggests for the first time
the existence of these spatial variations of prestretches in ATAs. However, the
spatial distribution of prestretches could be more complex. For example, other
distributions based on polynomial expressions could be defined to ATAs and op-
timized through sensitivity analyses [29]. Furthermore, the linear assumption has
not been experimentally validated. Experimental investigations could consist in
measuring the shortening of ATAs in the inner and outer curvature after exci-
sion. Nevertheless, [21] highlighted the difficulties to measure residual stresses.
Therefore, the actual distribution of prestretches remains an open problem.
In addition to initial prestretches, other factors appeared to be critical to perform
stable G&R simulations in curved arterial geometries. One of these factors is the
boundary condition at the proximal and distal borders. We used radial rollers, as
shown in Fig. 4.2c, and as detailed in Appendix C, section C.1. These boundary
conditions are consistent with the actual conditions of an ATA, which is tethered
elastically in the body, for instance to the heart. The elastic radial rollers also
helped to reduce stress concentration at the proximal border in the patient-specific
ATA simulations. Similar boundary conditions were previously used by [92] and
[93] to model the external tissue support of the aorta (e.g. the surrounding organs),
but our study is the first one dedicated to G&R.
Although we ensured that mechanical equilibrium was satisfied in the reference
homeostatic configuration, our choice of the longitudinal prestretch remained ar-
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bitrary [17], as it has never been characterized in human ATA. Even the linear
gradient of prestretch in the radial direction and the parameters of Robin boundary
conditions were chosen mostly for the sake of keeping stability in the simulations.
There are always many constitutive parameters in G&R models, and more experi-
mental data –especially on humans– are still necessary to set the parameter values
more accurately.

Different models were previously used for the elastin in G&R simulations based on
the CM model. We used a three-dimensional neo-Hookean nearly incompressible
model, as detailed in Appendix C.2. This is a major difference with the model
proposed by [27], where a combination of two- and three-dimensional formula-
tions was implemented to ensure numerical stability. Although our model omitted
the 2D part, we obtained still a very good agreement with their results in the
verification case.

Our model captured aneurysm progression in the ATA, either with an idealized
toric geometry or in a patient-specific geometry. For low gain parameters (kjσ <
0.1/T j), the diameter reached 55 mm (Figs. 4.5 and 4.7), which is the threshold at
which surgical repair is recommended, along with growing rates above 1.5 mm/year
[44]. However, the respective von Mises stress values shown in Figs. 4.6b and
4.8b remained below 500 kPa [44], [94], [95]. Moreover, high gain parameters
(kjσ > 0.1/T j) induced less pronounced dilatations, with dimaters remaining below
the 55 mm threshold and stabilization of aneurysm evolution.

In the patient-specific simulation modeling the aging effect, the gain parameters
kjσ = {0.11, 0.15}/T j produced dilatation of 1.2-mm(3.7%) and 1.8-mm(2.5%) in
the first decade, respectively. Such ATA diameter increases are in good agreement
with previous observations made by [42] and [96], with progressions of 1.1-mm and
3% per decade, respectively. Aging is related with elastin fragmentation and pos-
sible fibrosis causing stiffening of the arterial wall [41], [63]. Our aging simulations
captured well such effects by taking into account the half-life time of elastin in Eq.
4.14. Elastin degradation induced an accumulation of collagen, especially in the
adventitia, which could be responsible for fibrosis and ATA stiffening. Unfortu-
nately, we did not consider possible pressure increase due to hypertension that can
be indirectly caused by the increased stiffness [42], [63]. Other effects remained
neglected in our work, such as aortic unfolding, which is the natural increase of
radius of curvature of the aortic arch with age [42]. Including this effect in the
model would require updating the boundary conditions with time, especially at
the aortic root. There is still a lack of knowledge about these effects and they
should be investigated further in the future.

In the definition of the prestretch, we assumed a uniform wall thickness in the
reference configuration [17]. Although the thickness of the aorta is not uniform,
it is not possible to measure it accurately with currently available in vivo imaging
modalities. [97] proposed a methodology for optimizing the thickness in the defi-
nition of the homeostatic state. Such optimization could be considered in a future
work.
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4.7 Conclusions

In this work, we implemented the homogenized constrained mixture model in a
three-dimensional FE framework and we used this framework to simulate aneurysm
development and progression in a patient-specific ATA, assuming that G&R works
at maintaining a homeostatic level of tension in collagen fibers. We especially mod-
elled aneurysm progression following localized elastin degradation in the ATA. As
ATAs are curved arteries, heterogeneous initial prestretches had to be initially
assigned to the constituents of the constrained mixture in order to satisfy equi-
librium and set initial homeostatic conditions preceding the initial insult. It was
critical to initiate G&R simulations with homeostatic conditions but these con-
ditions also determine further aneurysm progression. This work highlighted the
complexity of prestretches in FE models simulating G&R of the ATA based on
tensional homeostasis. Such prestretches should actually reflect all the develop-
mental history of each individual and future work will focus on identifying these
prestretches in vivo.
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5.1 Résumé du chapitre en français

La dissection aortique est une maladie grave qui peut conduire à la rupture de
l’aorte. Par conséquent, le présent chapitre vise à développer un cadre mécanique
pour les changements tissulaires qui se produisent dans une aorte disséquée. À
cette fin, la dissection est analysée comme un problème mécanique où la paroi
aortique est au moins composée de deux corps assemblés qui se désengagent dans
le temps, selon un modèle de propagation de la fissure. L’idée est d’appliquer
continuellement la théorie de la G&R sur le tissu aortique pour réaliser les adap-
tations dues aux charges et aux conditions changeantes. Cependant, le milieu doit
initialement se comporter comme un seul corps unique. Pour cela, une condition
spéciale est formulée pour maintenir les deux couches aortiques ensemble. Cette
condition spéciale est gérée en interne par le code pour permettre la propagation
de la dissection. Enfin, cette formulation est mise en œuvre dans le code tridi-
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mensionnel par éléments finis présenté précédemment et une simulation test est
finalement présentée pour cette nouvelle approche.

5.2 Abstract of the chapter

The aortic dissection is a catastrophic disease that could lead to the rupture
of the aorta. Following this, the present chapter aims to develop a mechanical
framework for tissue changes occuring in a chronic aortic dissection. For this
purpose, the dissection is analysed as a mechanical problem where the aortic wall is
at least composed of two assembled layers that separate after some time according
to a model of dissection. The idea is to apply growth and remodeling on the
aortic tissue to simulate the adaptations due to the changing loads and conditions.
However, the assembly of the two layers needs to initially behave as a single
body. Therefore, we formulated a special condition to keep two aortic layers tied
together. This special condition was implemented in the three-dimensional finite-
element code presented before in this thesis and a test simulation was eventually
performed for the proof of concept.

5.3 The mechanical problem

We have already introduced aortic dissections in the background chapter (section
1.6.3). We described dissections as a disease originated by a tear in the intima that
allows the blood to penetrate in the media and subsequently generate a fracture
splitting the arterial wall, leaving an external wall (generally made of the external
third of the media and of the adventitia), while the inner wall is then denominated
as flap (which includes the inner two thirds of the media and the intima layer).
This flap divides the arterial lumen in a true lumen and a false lumen. If the false
lumen experiences big dilatation it may compromise the blood flow in the true
lumen and the oxigenation to downstream organs.
The aortic dissection is usually produced in a matter of second or minutes and is
further classified in acute or chronic due to the time the patient can hold it. The
former does not present a real interest for the development of this work as it leads
to death if emergency surgery is not achieved. The latter becomes more interesting
for the present work as the patient can harbor the dissection for a longer period
allowing the aorta to evolve and adapt to this new mechanobiologic conditions.
In this chapter we aim to establish a mechanical framework for the formation
and subsequent progression of patient-specific chronic aortic dissections. In con-
sequence, assumptions need to be taken for the model. An initial aortic wall is
composed of two perfectly connected bodies, where the connection is lost during
the formation of the dissection, Fig. 5.1. Additionally, where the connection is
lost, a pressure can be applied. The initial aortic wall is assumed to be healthy and
in its preferred state. Accordingly, it can be used as reference in the application of
the growth and remodeling (G&R) models. Connectors are placed in the interface
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Figure 5.1 – The dissection model comprises two continuum bodies ΩM
t and ΩS

t ,
called the master and slave, respectively. Each body can have its own bound-
ary conditions such as, pressure tttp∗, displacement impedance tttk∗ or imposed dis-
placements uuu∗. However, the two bodies share a special condition tttc∗ due to the
connectors that keep the structure together.

between the two bodies (e.g. media and adventitia) and their failure produces a
free surface where new pressure can be applied. A limitation is though that with
those conditions the dissection plane is predefined.
Let ΩM

t and ΩS
t be two continuum bodies in the space R3, Fig. 5.1. The two

bodies are connected by springs with a tension tttc∗. If the stiffness of the connectors
(springs) is high enough the displacement of one body will be transmitted to the
other body with low distortions. Additionally, if connectors are removed, the
interaction of the two bodies will be partially lost, weakening the whole structure.
The surface where connectors are removed is now free of interaction and other
conditions can be assigned there, for example, a tension due to pressure tttp∗. The
removal of the connectors would produce a change in the mechanical state of the
structure composed by the two bodies. Such change can be considered as an
alteration to perform further adaptations in the structure with G&R models.

5.4 Formulation of the interaction between layers

In the present work the connection of the two bodies is modeled by springs which
are similar to the Robin boundary conditions. The difference lies in displacements
of the spring. In the Robin boundary conditions, the displacement is assessed
between the current and reference coordinates, while in the connector the spring
displacement is assessed as the relative displacement between the slave and master
bodies. The displacement of the master surface is uuuM and the displacement of
the slave surface is uuuS, with the current displacement defined in equation 1.4.
Thereupon the virtual work in the connectors will be similar to the virtual work
of the elastic Robin boundary conditions with the new relative displacement of
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the spring,

δWc
ext(xxx, δuuu) =

∫
∂Ωt

δ(uuuS − uuuM) · k(uuuS − uuuM)da (5.1)

with the linearization of its virtual work due to the displacement increments,

∆δWc
ext(xxx, δuuu) ·∆uuu =

∫
∂Ωt

δ(uuuS − uuuM) · k∆(uuuS − uuuM)da. (5.2)

If a finite-element (FE) method is considered, the domain of the continuum bodies
is discretized. The discretization generates nodes and elements for the numerical
resolution. Thereafter when the integral surface in the virtual work or its lin-
earization (Eqs. 5.1 and 5.2, respectively) is computed, it is possible to perform
the computation either in the faces of the elements (surface) or in the nodes of the
interacting surfaces. Our approach does it in the nodes of the interactig surfaces
for the sake of simplicity of the formulation. Therefore, the integrals become sums
on the connectors, where each connector is defined by two nodes, one in the slave
and another in the master surface. Let a denote the nodes of the connector. The
displacement of the connector, its virtual work and the linearization of the virtual
work are

uuuS − uuuM = uuuSa − uuuMa , (5.3)

δWce
ext(xxx, δuuu) =

∑
a

δ(uuuSa − uuuMa ) · k(uuuS − uuuM), (5.4)

∆δWce
ext(xxx, δuuu) ·∆uuu = δ(uuuSa − uuuMa ) · k∆(uuuSb − uuuMb ). (5.5)

The springs between the interacting surfaces are denominated connectors because
they connect the nodes of the master surface with the slave surface one to one. This
requires to predefine the corresponding nodes with the shortest distance between
the slave and master surfaces. The formulation was developed in order to avoid
using contact algorithms that could demand high implementing efforts and high
computational resources.

5.5 Implementation

The interaction of the two bodies for the dissection model was implemented within
the code of the Robin boundary conditions, Fig. 5.2. The computation of the con-
nector tension was developed additionally to the computation of the tensions due
to pressure and elastic boundaries. Accordingly, all the displacement-dependent
tensions were managed in the same part of the code. Furthermore, the connectors
implementation worked with "flags" on the faces of the interacting surfaces to
assign the nodes with connectors and eventually remove the connector if needed.
The computations for the connector forces and stiffness are managed in the rou-
tine StaticConnectorAssmebler. The procedure followed by this routine is rep-
resented in figure 5.3. The routine gives a global force vector assembled from the
slave and master forces, fffS and fffM ; and a global stiffness matrix (KKK) assembled
from the stiffness of the connector element in its correspondent nodes a and b.
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Figure 5.2 – Connector forces implementation within the Robin boundary con-
ditions.

'

&

$

%

? Loop on the connectors elements
• Assign the stiffnes k to the connector
• Find master and slave points in the connector
xxxM and xxxS

• Compute displacement of the connector
uuuS − uuuM

• Compute local forces in the slave and master points
fffS = k(uuuS − uuuM) for δuuuSa
fffM = −k(uuuS − uuuM) for δuuuMa

• Compute the local stiffness matrix
kkkSSab = k for (δuuuSa ,∆uuu

S
b )

kkkSMab = −k for (δuuuSa ,∆uuu
M
b )

kkkMS
ab = −k for (δuuuMa ,∆uuu

S
b )

kkkMM
ab = k for (δuuuMa ,∆uuu

M
b )

? Assemble global forces and stiffness
fffS, fffM → fff

kkkSSab , kkk
SM
ab , kkk

MS
ab , kkk

MM
ab →KKK

Figure 5.3 – Connector assembler.

115



Chapter 5. Extension of the model to chronic aortic dissections

'
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%

? Feed the routine with dissection spread parameters
dmax and Tdis maximum spread and time threshold, respectively

? Compute the speed of spread of the dissection
vdis = dmax/Tdis

? Assign the spread of the dissection
ddis = vdis × t, if t < Tdis
ddis = dmax, if t ≥ Tdis

? Loop on connector elements
• If xz < ddis
∗ Vanish connector
∗ Activate pressure in the faces containing the node

Figure 5.4 – Connector assembler.

Additionally, within the G&R time integrator we included a routine to manage the
propagation of the dissection in the arterial model, called ComputeDissectionSpread.
Basically this routine shifts the "flags" of the connector and pressure in the Robin
boundary conditions to remove connectors and assign pressure in the new free
faces, Fig. 5.4.

5.6 Simulations

A test simulation was performed for the dissection problem. The artery was rep-
resented by two concentric cylinders with different inner radii. The inner cylinder
has an inner radius of 10-mm and a thickness of 0.705-mm, while the outer cylinder
has an inner radius of 10.715-mm and a thickness of 0.705-mm. The inner cylin-
der represents the media and the outer cylinder represents the adventitia. The
dissection surface is defined between the surfaces generated by the outer radius
of the media and the inner radius of the adventitia, and initially the two layers
are completely connected at this surface. The dissection is then produced up to
10-mm in the axial direction within 40-days. A pressure of 80-mmHg is applied
on the newly created surfaces, while in the true lumen the pressure is always kept
as 100-mmHg. The mechanical properties used for the arterial wall are the same
ones as Braeu et al [27].

Figures 5.5 and 5.6 show the planes XZ and XY of the dissection in the cylinder
after 100-days of mechanobiological adaptation. The two layers disengage accord-
ing to the dissection parameters while G&R of the tissue is still effective. The
new conditions produce a reduction of the diameter of the media in the dissected
zone, and the increase of the diameter of the adventitia.
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Figure 5.5 – View of the XZ plane of the dissected cylinder.

Figure 5.6 – View of the XY plane of the dissected cylinder.
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5.7 Conclusion

The formulation presented in this chapter allowed to simulate the evolutions of
the aortic wall after the propagation of a dissection. Eventually this approach
could help to estimate the dimensional changes occurring in a dissected aorta and
consequently evaluate the risks for a given patient.
The model of the artery was made of two concentric cylinders representing the
media and adventitia, given the mechanical relevance of these two layers. The
two cylinders have initially a small gap but behave as a single layer with reduced
distortions. The two cylinders are connected through special conditions applied
between the two surfaces.
This formulation permitted to avoid contact elements between the two surfaces.
This avoided the nonlinearities and the long resolution times due to the search of
interacting nodes in the contact. Consequently this method offered a simple inter-
action of the two arterial layers, which are assumed to be perfectly tied in healthy
conditions. Moreover, the connectors were uni-dimensional elements (springs or
bars) with high stiffness to reduce the distortions between the two layers. The
connector could be seen as a penalty method penalizing the motion of one layer
with respect to another.
In the approach developed here, the dissection propagated along an assigned sur-
face and it was managed by a temporal function. Eventually this work could be
completed with cohesive fracture models [98]–[100] in an attempt to relate the
stress with the propagation of the dissection.
The dissection surface was initially defined. This may represent a major limitation
if one would like to predict the dissection process. But our goal here was to
simulate the evolution of a chronic dissection at the long term. Nevertheless,
future challenges will be to enhance this model with cohesive fracture for the initial
development of the dissection [98], [100]. Moreover, our implementation could be
coupled with extended FE using energy dissipation [101], [102]. Such model would
allow to propagate the dissection without the limitation of predefining the fracture
surface.
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Synthèse

La paroi aortique a une structure et une composition complexes, elle est composée
de la matrice extracellulaire (ECM) et des cellules qui y sont intégrées. L’ECM est
une structure qui maintient les cellules en place, mais de la même manière, l’ECM
est entretenue par les cellules, qui évaluent et synthétisent les protéines de l’ECM.
De plus, les cellules et l’ECM sont organisées en différentes couches dans l’artère,
avec des fonctions spécifiques. Dans ce travail, la paroi aortique a été abordée en
incluant deux couches ou phases mécaniques pertinentes: la média et l’adventice.
L’intima est négligée car elle n’a pas de pertinence mécanique. On considère que
chaque phase est composée de cellules et d’ECM, l’ECM étant constitué d’élastine
(supposée isotrope) et de fibres de collagène. Dans le cadre de la mécanique des
milieux continus, on suppose que tous les matériaux (cellules, élastine et collagène)
de la paroi aortique sont parfaitement mélangés en chaque point.
En outre, les adaptations du tissu aortique ont été modélisées par les modèles de
croissance et de remodelage (G&R). Dans ce travail, on utilise spécifiquement le
modèle de mélange contraint homogénéisé (hCM) pour ses facilités d’implémenta-
tion et sa consommation réduite en ressources de calcul, par rapport aux modèles
de mélange contraint classique. La sélection de ce modèle permet de modéliser
les déformations inélastiques en référence à l’état homéostatique, lié à l’état pré-
férentiel du tissu. En effet, les modèles constitutifs des déformations inélastiques
dépendent de la différence entre la contrainte actuelle et la contrainte homéosta-
tique. Néanmoins, les déformations inélastiques peuvent également être induites
par des variations des contraintes ou de la rigidité, par exemple dans le cas des
modèles d’étirement de recrutement pour la G&R.
Au début du travail de mise en œuvre, plusieurs complications sont apparues
lors de l’implémentation du modèle hCM dans un solveur d’éléments finis (FE)
tridimensionnel, tel qu’ABAQUS. À ce moment-là, il était également difficile de
comprendre toute la portée de la G&R appliquée aux trois dimensions. Il a donc
été décidé de laisser de côté ABAQUS pendant un certain temps et de travailler
dans un code bidimensionnel dans le but de mieux comprendre les effets de la
G&R dans les artères en effectuant plusieurs simplifications dans le modèle. Cela
a abouti à l’écriture d’un code FORTRAN pour les éléments de coque axisymétriques.
Le développement de ce code permet de réduire l’analyse des quantités tensorielles
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à leurs directions principales et de réduire le temps de calcul pour les simulations
de G&R dans les artères cylindriques.
Avec le code axisymétrique développé dans cette thèse, il a été possible d’exécuter
trois cas de simulation, par exemple, l’élargissement de l’anévrisme, le déploiement
d’une endoprothèse et l’élargissement de l’anévrisme avec la pose ultérieure d’une
endoprothèse. L’agrandissement de l’anévrisme est l’analyse typique réalisée avec
les modèles G&R. Elle commence par une dégradation brutale de l’élastine dans
la paroi artérielle qui, à moyen terme, entraîne la croissance d’un anévrisme. Pour
la première fois, les effets G&R produits dans une artère après la pose d’une endo-
prothèse ont été étudiés. Le surdimensionnement du stent augmente la contrainte
dans la longeur du segment de l’endoprothèse et à son bord, ce qui provoque un
remodelage de l’artère. Le dernier cas analysé correspond à l’élargissement d’un
anévrisme dans l’aorte dû à une forte dégradation initiale de l’élastine avec la
pose d’une endoprothèse après quelques années de développement de l’anévrisme.
L’endoprothèse modifie les charges sur l’artère et réduit finalement la taille de
l’anévrisme comme prévu. Enfin, après la mise en place d’une endoprothèse, le
modèle tend à relâcher la contrainte dans l’artère, en fonction de paramètres G&R
adéquats, tels que le taux d’ajout de collagène.
De toute évidence, après la mise en œuvre réussie du code bidimensionnel, l’étape
suivante de ce travail a consisté à développer un solveur d’éléments finis tridi-
mensionnel pour le G&R. Dans ce cas, le modèle hCM a été implémenté dans
un solveur FE open-source disponible sur GitHub [30] et développé à l’université
de Swansea [66], [67]. Le programme est écrit en Python et C++ et ses routines
sont clairement commentées ce qui permet une compréhension facile du code et
facilite les modifications ultérieures. Les modifications apportées à ce code ont
pour objectif l’implémentation de la G&R pour l’analyse vasculaire. Par consé-
quent, les routines ont été construites pour le modèle hCM et pour le matériau de
mélange pour la paroi artérielle, de plus, il était nécessaire de créer les routines
pour les charges dépendantes des déformations, telles que, la pression et les limites
élastiques des conditions limites de Robin.
Avec cette dernière implémentation de G&R dans le solveur FE tridimensionnel,
il a été possible d’exécuter des simulations dans des formes cylindriques, toriques
et spécifiques au patient. Une fois encore, la forme cylindrique est la simulation
de référence pour l’implémentation des modèles G&R avec une forte dégradation
initiale de l’élastine ; elle est utilisée pour comparer les résultats fournis par le
code développé ici avec les résultats de la littérature [27]. Par la suite, les simu-
lations pour le tore et la forme spécifique du patient ont représenté une difficulté
supplémentaire, car nous avons constaté que la mise en place de la configuration
homéostatique nécessite une attention particulière dans ce type de formes. La mise
en place de la configuration homéostatique a été résolue par l’utilisation d’un pré-
étirement non uniforme pour réduire les distorsions par rapport à la configuration
de référence. En fin de compte, cette approche permet de maintenir les contraintes
homéostatiques dans la plage des contraintes normales pour une artère in vivo. Sa
dernière conséquence est la stabilisation des simulations G&R dans les géométries
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courbes et permet une longue durée de simulation (+10 ans).
Enfin, la dissection aortique s’est révélée être une application intéressante du mo-
dèle G&R développé dans ce travail. Le travail a commencé avec des modèles
d’artères disséquées, mais comme une artère disséquée pourrait ne pas être consi-
dérée comme un état homéostatique nous avons commencé à mettre en œuvre un
modèle de propagation de la dissection dans le solveur EF. Il n’a pas été pos-
sible d’aller plus loin dans ce projet en raison de contraintes temporelles liées au
développement de cette thèse. Ainsi, le modèle de propagation et de G&R subsé-
quent dans la dissection aortique est simplement implémenté dans le solveur et les
applications plus poussées à des géométries spécifiques au patient font l’objet de
travaux futurs.

Limites

L’une des premières limites du travail présenté ici est que la pression luminale aug-
mente avec l’âge en l’espace de quelques décennies dans l’aorte. Cependant, de tels
effets ont été négligés dans ce travail, bien que les simulations aient été effectuées
sur des échelles de temps de l’ordre d’une ou deux décennies. En fait, il s’agit d’un
élément qui peut être ajouté à la simulation de la G&R. Dans la littérature [63],
cette augmentation de la pression dans les artères est attribuée à l’augmentation
de la rigidité de la paroi artérielle avec le changement des dimensions de l’aorte
qui, à terme, nécessiterait des efforts plus importants de la part du cœur pour
pousser le sang dans tout le système.
Dans ce travail, la présence de l’intima dans le modèle aortique a été négligée. En
effet, l’intima est généralement supposée ne pas avoir d’effets mécaniques impor-
tants sur l’ensemble de la structure. Ainsi, dans les simulations effectuées dans
ce travail, on a généralement supposé que la paroi aortique ne comportait que la
média et l’adventice. En outre, chaque couche comporte plusieurs types de cellules
et de protéines qui composent l’ensemble du tissu. Au moins ici, on a supposé que
les modèles contiennent de l’élastine, du collagène et des cellules musculaires lisses
comme constituants les plus appréciables. Malgré cela, il existe d’autres matériaux
intégrés dans la structure qui sont ici considérés comme faisant partie de la struc-
ture de l’élastine. L’élastine est considérée comme un matériau isotrope malgré son
organisation en fibres élastiques organisées en lamines élastiques concentriques. De
plus, dans le modèle hCM, les constituants sont réduits à un point infiniment petit
où ils sont parfaitement mélangés ; néanmoins, dans une paroi aortique réelle, le
milieu est organisé en couches concentriques successives de lamelles élastiques et
de cellules musculaires lisses, sans mélange parfait des constituants dans un espace
plus petit que les cellules.
Ce que l’on appelle l’état homéostatique est lié à l’état préféré (généralement
mesuré par le stress) dans lequel les cellules sont à l’aise pour leur fonction, sans
qu’il y ait de définition rigoureuse. Normalement, l’état homéostatique est défini à
partir d’une contrainte moyenne comprise entre 100 kPa et 150 kPa, qui correspond
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à la contrainte dans une artère dans des conditions normales de pression (80 mmHg
à 120 mmHg) et des conditions normales du tissu artériel. Malheureusement, la
pression et le tissu changent dans le temps et il serait difficile de sélectionner
un âge de référence pour la géométrie, la structure du tissu et les conditions de
charge. Enfin, dans le cas de géométries spécifiques au patient (obtenues à partir
du scanner), on suppose que l’image actuelle du patient se trouve dans un état
homéostatique et que la G&R est effectuée à partir de ce point, indépendamment
du fait que le patient soit déjà porteur d’une maladie. Cet obstacle serait plus
clair dans le cas du scanner d’une aorte disséquée où la configuration de l’aorte
avant la dissection est totalement inconnue et où l’image du scanner ne peut pas
être considérée comme la cible homéostatique des adaptations dans le cadre de la
G&R.
Il a été prouvé que les modèles de la G&R capturent la régénération du tissu dans
la paroi aortique. Néanmoins, le modèle hCM comprend trois modèles constitu-
tifs pour la déformation inélastique (remodelage et croissance) et les densités, et
chaque équation a ses propres paramètres à définir. Le taux net de densité de
masse est principalement contrôlé par le paramètre de gain qui contrôle la vitesse
à laquelle un constituant est déposé dans le tissu et il est particulier à chaque
constituant. Le remodelage utilise la demi-vie du constituant comme paramètre
et il est également particulier à chaque constituant. La mesure de ces paramètres
peut être compliquée à obtenir car la demi-vie et la vitesse à laquelle les matériaux
sont déposés peuvent être particulières à chaque patient et il peut être difficile de
les mesurer chez un patient vivant. On dispose de quelques données sur la demi-vie
des constituants de la paroi aortique, mais elles se situent dans une fourchette très
large [2], [12].
Les programmes développés dans ce travail contiennent encore quelques problèmes.
Par exemple, le code de coque axisymétrique n’a pas réussi la comparaison avec le
cas de référence pour les modèles G&R, mais dans ce cas particulier, cela est dû à
la mise à jour des densités constitutives. Cela a été réglé dans la dernière version du
code publiée. Les simulations tridimensionnelles présentent des problèmes liés au
module de masse (κe) pour l’incompressibilité de l’élastine qui doit être faible pour
assurer la convergence du modèle, ce problème peut être attribué à la croissance
due aux changements de volume et de forme. Un autre problème survient dans
le cas spécifique d’un patient où il y a une concentration de contraintes dans une
limite qui peut être attribuée à la géométrie irrégulière obtenue du patient ou à
la nature des conditions aux limites, en fait, les conditions aux limites appliquées
dans ce cas sont la réaction élastique parce qu’elle réduit la contrainte dans cette
limite par rapport aux rouleaux radiaux ou aux conditions d’encastrement.

Contributions

Les contributions de ce travail par rapport à la littérature sont listées ici:

• un code de coque axisymétrique a été écrit à partir de zéro pour résoudre
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G&R pour les artères cylindriques, qui peut fournir des résultats rapides
après avoir pris en compte plusieurs simplifications [70] ;

• avec le modèle de coque bidimensionnel ont été calculés pour la toute pre-
mière fois les effets du déploiement d’un stent dans une artère et l’évolution
du tissu autour;

• un code tridimensionnel plus général a été modifié pour inclure la G&R pour
les problèmes de mécanique vasculaire et il est open-source et disponible dans
GitHub [30] ;

• dans ce travail ont été effectuées des simulations G&R dans un patient spé-
cifique obtenu à partir du scanner, même si cela est dans la littérature, les
simulations ici sont moins contraintes pour assurer la convergence;

• la G&R dans le cas spécifique du patient a été possible à travers un pré-
étirement non uniforme dans la direction longitudinale et circonférentielle
pour trouver un état homéostatique compatible;

• il est proposé ici une formulation pour la propagation de la dissection aor-
tique et pour la première fois un modèle G&R est appliqué sur une dissection
chronique;

• premier auteur de l’article "A new finite element shell model for arterial
growth and remodeling after stent implantation", publié dans Internatial
Journal for Numerical Methods in Biomedical Engineerging [69] ;

• co-auteur d’article "3D finite-element modelling of vascular adaptation af-
ter endovascular aneurysm repair", accepté dans International Journal for
Numerical Methods in Biomedical Engineering [103] ;

• premier auteur de l’article "About prestretch in homogenized constrained
mixture models: simulating growth and remodeling in patient-specific aortic
geometries", accepté dans Biomechanics and Modeling in Mechanobiology,
maintenant en révision [104].

Perspectives

Malgré les nombreuses simulations de G&R présentées dans cette thèse, la vali-
dation expérimentale des modèles fait toujours défaut. Car jusqu’à présent, les
modèles G&R ont été utilisés pour analyser le développement d’anévrismes dans
des modèles d’artères [16] et pour étudier le concept de stabilité mécanobiolo-
gique lié à l’homéostasie [8]. En outre, Mousavi et al [18] ont comparé les résultats
de G&R avec un modèle statistique pour la croissance des anévrismes. De plus,
dans ce travail, il a été possible d’appliquer un modèle G&R à une géométrie
spécifique au patient. Par conséquent, il pourrait être possible de suivre les aortes
d’une cohorte de patients pendant plusieurs années (10 ans environ) pour recueillir
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des données expérimentales sur l’élargissement des anévrismes qui pourraient être
comparées aux résultats donnés par les modèles G&R, et finalement ajuster les
paramètres liés à la demi-vie et aux taux de renouvellement des constituants du
tissu.
Des données expérimentales peuvent également être recueillies pour les dissections
aortiques. À partir du modèle de dissection, on peut suivre la propagation de la
dissection dans l’artère. Et avec le modèle de G&R, il est possible de modéliser
les adaptations des tissus après la dissection, puis de comparer l’évolution du
modèle avec les images temporelles de l’aorte disséquée du patient pour ajuster
les paramètres du moèdel de G&R. Au final, cela permettrait de proposer un outil
pour estimer les changements géométriques, ainsi que le stress et la rigidité de
l’aorte, qui pourrait être utilisé pour prendre des décisions concernant l’application
ou non de la chirurgie chez un patient. Il s’agit d’un travail pourquivi par Shaojie
Zhang, actuellement post au laboratoire.
Dans la simulation de l’aorte thoracique ascendante spécifique à un patient, il a
été déduit que la pré-tension peut être non uniforme dans l’état homéostatique
afin de répondre aux exigences de compatibilité pour la G&R et de maintenir
les contraintes dans une plage "normale" (entre 100-kPa et 150-kPa). Cependant,
cette hypothèse doit être prouvée expérimentalement en mesurant les déformations
entre les configurations in vivo et ex vivo de l’aorte. Cela peut présenter plusieurs
difficultés en raison de la nécessité d’effectuer des mesures sur le patient vivant
et d’autres mesures une fois que l’aorte n’est plus dans le patient (par exemple
lors d’une intervention chirurgicale). Une autre option pourrait être le développe-
ment d’une méthode dans laquelle les mesures in vivo peuvent fournir toutes les
informations nécessaires au calcul de l’étirement ou de la précontrainte.
Une analyse supplémentaire peut être proposée pour les simulations de déploie-
ment de stent réalisées dans cette thèse. Après l’implémentation du solveur tridi-
mensionnel, l’analyse du stent peut être étendue à la paroi artérielle épaisse. Le
stent peut être modélisé en évitant les modèles de contact en utilisant une ap-
proche similaire à celle utilisée ici dans le modèle bidimensionnel. Un bon point de
départ serait d’écrire quelques modifications dans les routines pour les conditions
aux limites élastiques afin d’imiter le placement du stent. En fait, cette recherche
correspond au travail entrepris par Shaojie Zhang, post-doc au laboratoire, et elle
a conduit à la publication d’un article.
Aujourd’hui, les modèles G&R ont trouvé un autre domaine de développement
dans la conception de matériaux d’ingénierie tissulaire pour les prothèses dans
les vaisseaux sanguins (artères et veines) ou les valves cardiaques. Le matériau
d’ingénierie tissulaire peut être ajouté à la bibliothèque du code tridimensionnel
avec sa formulation correspondante adaptée au modèle G&R. De cette manière, le
modèle hCM mis en œuvre dans le code peut modifier le matériau en fonction des
adaptations qui se produisent dans le tissu sur une longue échelle de temps. Cette
ligne correspond également à une recherche entreprise dans le projet SimInSitu
(http://www.siminsitu.eu/), dans le cadre duquel Felipe Sempertegui a démarré
un post-doc au laboratoire pour poursuivre les développements.
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Un problème artériel généralement négligé dans le développement de la maladie
est la formation de la plaque d’athérome (collée à l’intima). Cela qui peut être
implémenté dans le solveur tridimensionnel avec l’écriture d’un nouveau matériau
qui considère les propriétés de la plaque dans le mélange. Il pourrait être nécessaire
de supposer un modèle à trois couches pour la paroi artérielle, de sorte que les
propriétés de la plaque soient simplement attribuées à d’intima. De plus, dans le
modèle, on peut considérer la contrainte de cisaillement pariétal due au flux san-
guin comme une entrée pour une fonction qui détermine les régions avec formation
de plaque.
Enfin, le code tridimensionnel prend encore beaucoup de temps pour réaliser des
simulations dans une géométrie spécifique au patient. Pour le travail futur dans le
code, les routines pourraient être améliorée pour rendre les calculs plus rapides ; le
passage de certaines routines –comme la routine de croissance et de remodelage–
d’un langage de haut niveau à un langage de bas niveau pour diminuer le temps
de calcul. Enfin, l’adaptation des routines au calcul parallèle, permettrait que le
code utilise toute la performance d’un ordinateur multi-tâches.
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Overview

The aortic wall has a complex structure and composition, it is composed by the
extracellular matrix (ECM) and cells embedded in it. The ECM is a scaffold that
keeps the cells in place and simultaneously the ECM is maintained by the cells,
which assess their environment and synthesize proteins to modify it. Additionally
the cells and the ECM are organized in different layers within the artery with
specific functions. In order to model these evolutions in the aorta, it is necessary
to develop a model distinguishing the layers as a composite material. In this
work, the aortic wall was modelled including two relevant mechanical layers or
phases, the media and adventitia, whereas the intima was neglected. The tissue
was modelled as a mixture made of cells and of the ECM, the ECM comprising an
isotropic matrix (which includes the contribution of elastin) reinforced by collagen
fibres. We assumed that these different components of the tissue (cells, elastin and
collagen) are perfectly mixed together.
Furthermore, the aortic tissue adaptations were modeled with the Growth and
Remodeling (G&R) theory. More specifically in this work, we used the homoge-
nized Constrained Mixture (hCM) model for the reduced computational resources
needed, compared to the traditional Constrained Mixture models. The selection
of this approach permitted to model the inelastic deformations with reference to
the homeostatic state, which is introduced as the preferred state of the tissue. In-
deed the constitutive models of the inelastic deformations depend on the difference
between the current stress and the homeostatic stress.
We solved several challenges related to the implementation of the hCM model
in a three-dimensional finite-element (FE) solver. We first worked on a two-
dimensional code with the aim to embrace the G&R effects in arteries by per-
forming several simplifications in the model. This ended up in writing a FORTRAN
code from scratch for the axisymmetric shell elements. The development of this
code allowed to reduce the analysis of the tensorial quantities to their principal
directions and reduce the computation time for G&R simulations in cylindrical
arteries.
With this code, it was possible to execute three simulation cases, namely, aneurysm
enlargement, stent-graft deployment, and aneurysm enlargement with subsequent
stent-graft placement. The aneurysm enlargement is a typical analysis performed
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with G&R models [12], [16], [27], starting with a sharp degradation of elastin in
the arterial wall (insult) that in the long term induces aneurysm growth. For the
first time ever, the G&R effects produced in an artery after the placement of a
stent-graft were simulated numerically. We showed that the oversizing of the stent-
graft can provoke remodeling in the artery. Regarding aneurysm enlargement due
to initial sharp elastin degradation, we showed also that it can be stopped after
placing the stent-graft as the stress in the aortic wall are eventually decreased.
We also developed a thee-dimensional FE solver for G&R. In this case the hCM
model was implemented within an open-source FE solver available in GitHub [30]
and developed initialy at Swansea University [66], [67]. The program is written
in Python and C++ and its routines are clearly commented which allows an easy
understanding of the code and facilitate further modifications. The modifications
done in this code were the implementation of G&R for vascular analysis. For
that, we built the routines for the hCM model and for the mixture material of the
arterial wall. Moreover, we created routines for deformations-dependent boundary
conditions, such as, the pressure and elastic boundaries from the Robin boundary
conditions.
With the latter G&R implementation in the three-dimensional FE solver, it was
possible to execute simulations in cylindrical, toric and patient-specific aortic mod-
els. Again the cylindrical shape is the benchmark simulation for G&R models im-
plementation. It was used to compare our results against previous results of the
literature [27]. Thereafter, the simulations for the torus and patient-specific aortic
models had to overcome another challenge related to assigning the homeostatic
configuration. The setup of the homeostatic configuration was solved with the use
of non-uniform prestretch to reduce the distortions with respect to the reference
configuration. Ultimately this approach keeps the homeostatic stresses within the
range of normal stresses for an in vivo artery. Another positive consequence is the
stabilization of the G&R simulations in curved geometries for long simulations
(>10 years).
Finally, the aortic dissection emerged as an interesting application to the G&R
model developed in this work. As a dissected artery might not be considered as
the homeostatic state, we started the implementation of a dissection propagation
model within the FE solver. The model for propagation and subsequent G&R in
aortic dissections has just been implemented in the solver and further applications
to patient-specific geometries are in progress.

Limitations

One of the first limitations of the work presented here is that the average luminal
pressure changes with age in the aorta. However such effects were neglected in
this work. This is something that can be added to the G&R simulations in the
future. In the literature [63] this change of pressure in the arteries is attributed
to the increasing stiffness of the arterial wall and to the change of dimensions of
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the aorta, requiring increasingly higher efforts from the heart to pump the blood
into the system.
In this work we neglected the presence of the intima in the aortic model, as the in-
tima is usually assumed to have marginal mechanical effects in the whole structure.
We assumed that the aortic wall can be modeled with 2 layers, the media and the
adventitia. Furthermore, each layer has a different structure with different cells
and proteins composing the tissue. We assumed that the tissue comprises elastin,
collagen and smooth muscle cells as the constituents with the most significant con-
tribution to the mechanical behaviour. Other constituents such as proteoglycans
embedded in the structure have been omitted. The elastin was modeled as embed-
ded in an isotropic material despite its fibrous organization in concentric laminas.
Additionally, in the hCM model the constituents are reduced to a infinitesimally
small point where they are perfectly mixed. This may not be the case in an actual
aortic wall where the media is organized in subsequent concentric layers of elastic
lamina and smooth muscle cells, which is actually not a perfect mixture.
The so called homeostatic state related to the preferred state (usually expressed
with a preferred stress) in which the cells are comfortable for their function lack of
a rigorous definition. Normally the homeostatic state is defined from an average
circumferential stress between 100-kPa to 150-kPa, which is the circumferential
stress in an artery under normal conditions of pressure (80-mmHg to 120-mmHg)
and normal conditions of the arterial tissue. Unfortunatelly the pressure and the
tissue change in time and it would be difficult to select an age for the reference
of the geometry, tissue structure and loading conditions. Finally in the case of
patient-specific geometries (obtained from CT scans) it is assumed that the patient
is in the homeostatic state. The G&R is intialized from this point on, indepen-
dently if the patient is already harboring a disease. This problem is exacerbated
for dissected aorta where the configuration of the aorta before dissection is com-
pletly unknown and the CT scan cannot be considered as the homeostatic target
of the adaptations under G&R.
The G&R models have proved to be useful in the modeling of tissue regenera-
tion [9]. Nonetheless, the hCM model includes three constitutive models for the
inelastic deformation (remodeling and growth) and densities, and each equation
have its own parameters to define. The net rate of mass density is mainly con-
troled by the gain parameter that controls the speed in which some constituent
is deposited in the tissue and it is particular to each constituent. The remodeling
uses the half-life of the constituent as a parameter and it is also particular to each
constituent. The measurement of such parameters can be challenging to obtain
as the half-life and the speed at which the materials are deposited. They can be
specific to each patient and they may be difficult to measure. There are some data
available related to the half-life of the constituents in the aortic wall but they are
in a very wide range [2], [12].
In this work the production of collagen depends on the extant collagen and on the
difference between current and homeostatic stresses. Nonetheless, in the arterial
wall the production of collagen is controlled by the cells (SMCs and fibroblasts),
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this establish a dependence of the rate of collagen production with the amount of
cells in the neighborhood. Hence, the production of collagen might also depend on
the amount of cells to represent feasible values that an actual artery can handle.

In this work, it has been taken an homogenized approach for the increments of
mass of the constituents in the tissue. Such homogenization of the mass increments
produce a perfect combination of the newly produced collagen with the extant
collagen, this is, after the addition, the collagen is one material with averaged
properties. Hence the model does not distinguish the newly produced collagen
from the extant one. The homogenized model is then not able to have increments of
collagen produced at different times with different properties, for instance, different
prestretch. Another limitation due to the non-differentiation of collagen is the lack
of a description for the aging of the newly produced collagen. By not having a
description of the aging of collagen, the model is neglecting changes on the stiffness
of each increment of collagen in time.

By having a thrombus attached to the arterial wall, it already means non-healthy
conditions. In this case the artery may not be considered in a stable state and
such conditions does not suit to the definition of homoestasis. Consequently,
some assumptions of the shape and state of the artery previous to the thrombus
formation might be needed, unfortunately, such state would be fictitious.

In an actual arterial wall the production of collagen is driven by the SMCs with
synthetic function. However, in this work the production of collagen has not been
related to the amount of synthetic SMCs present in the neighborhood and the
SMCs has been considered with its passive behavior, active behavior of SMCs was
just considered for the cylinder case. Consequently, in this work the mechanical
model does not distinguish synthetic cells from contractile cells. Furthermore, the
production of collagen have not dependence on the amount of SMCs for this model.
This is then different from the process of production of collagen in the arterial wall
and it may represent a limitation with the feasible levels of collagen production in
an artery and the actual stress in the cells. Furthermore, by assuming a switch of
the cells in their phenotypes, there will be a continuous evolution of the feasible
levels of collagen production and active stress in the artery.

The codes developed in this work can still be improved. For example the ax-
isymmetric shell code did not agree accurately with the benchmark case for G&R
models, but this was due to the update of constituent densities. The bug was
fixed in the latest version of the code. The three-dimensional simulations had is-
sues related to the bulk modulus (κe) for incompressibility of elastin, which has to
remain low enough in order to ensure the convergence of the model. This problem
was attributed to the changes in volume and shape. Another problem arose in the
patient-specific case where there was a concentration of stress in one boundary.
This may be attributed to the irregular geometry obtained from the patient or
from the nature of the boundary conditions. Actually, the boundary conditions
applied in this case were the elastic reactions as this reduced the stress in such
boundary with respect to radial rollers or clamping conditions.
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Contributions

The contributions of this work with respect to the state of the art are listed here:

• an axisymmetric shell code was written from scratch to solve G&R for cylin-
drical arteries, which can provide fast results after taking into account several
simplifications [70];

• with the two-dimensional shell model we computed for first time ever the
effects of stent-graft deployment on the evolution of the aneurysm;

• a more general three-dimensional FE code was modified to include G&R for
vascular mechanics problems. It is open-source and available in GitHub [30];

• in this work we performed G&R simulations in a patient-specific aortic ge-
ometry obtained from a CT scan;

• G&R in the patient-specific case was possible after introducing non-uniform
prestretches in the longitudinal and circumferential directions to find a com-
patible homeostatic state;

• we proposed a formulation for the propagation of aortic dissections and a
G&R model was applied for the first time to simulate the evolution of a
chronic dissection;

• first author of the article "A new finite element shell model for arterial
growth and remodeling after stent implantation", published in Internatial
Journal for Numerical Methods in Biomedical Engineerging [69];

• co-author of the article "3D finite-element modelling of vascular adaptation
after endovascular aneurysm repair", accepted in International Journal for
Numerical Methods in Biomedical Engineering [103];

• first author of the article "About prestretch in constrained mixture models:
simulating growth and remodeling in patient-specific aortic geometries", cur-
rently in review in Biomechanics and Modeling in Mechanobiology [104];

Future work

One of the major challenge for future work is related to the experimental vali-
dation of the models. Until this point the G&R models have been used to anal-
yse the development of aneurysms in models of arteries [16] and the concept of
mechanobiological stability related to homeostasis [8]. Furthermore, Mousavi et al
[18] compared G&R results with a statistical model for the growth of aneurysms.
Moreover, in this work it was possible to apply a G&R model to a patient-specific
geometry. Consequently, it might be possible to follow up the aortas of a cohort
of patients for several years (10 approximately) to collect experimental data for
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the enlargement of aneurysms that can be compared with the results given by the
G&R models, and ultimately identify parameters such as the half-life and the rate
of constituents turnover.
Experimental data can also be collected for aortic dissections, for instance by
tracking the evolution of the dissected aorta of the patient to fit the G&R param-
eters. Eventually this would enable to estimate geometrical changes along with
stress and stiffness in the aorta. The work on aortic dissections is still on going
with Shaojie Zhang, currently post-doc in our group.
In the simulation of patient-specific Ascending Thoracic Aorta we deduced that the
prestretch can be non-uniform in the homeostatic state to meet the compatibility
requirements for G&R and keep the stresses in a normal range (between 100-kPa to
150-kPa). However, this hypothesis should be proved experimentally by measuring
the deformations between the in vivo and ex vivo configurations of the aorta. This
may represent several challenges due to the need to carry out measurements into
a living patient before collecting the aorta, for instance after a surgery.
A further analysis can be proposed for stent-graft deployment after the simulations
performed in this thesis. After the implementation of the three-dimensional solver
the analysis of the stent-graft can be extended to thick arterial walls. The stent
can be modeled avoiding contact models by using a similar approach as the one
introduced in chapter 3. A good starting point would be to write some modification
in the routines for elastic boundary conditions to model the stent placement.
Actually this research has been undertaken by Shaojie Zhang, who is a post-doc
in our group, and it has been published recently.
Nowadays, G&R models have also found another area of development in the design
of tissue engineered materials for prosthesis in blood vessels (arteries and veins)
or heart valves. The tissue engineered material can be added to the library of the
three-dimensional code with its adequate formulation adapted to G&R. Like this
the hCM model implemented in the code can simulate the changes in the material
according to the adaptations taking place in the tissue in the long time scale.
This is the aim of the SimInSitu project (http://www.siminsitu.eu/), funded by
the EU. Currently, Felipe Sempertegui who is a post-doc in our group, is working
on this project.
An arterial issue which is usually neglected in the development of disease is the
atherosclerotic plaque between the intima and the media. This is something that
can be eventually implemented within our three-dimensional solver by introducing
of a new material that considers the properties of the plaque in the mixture. It
might be needed to set up a three-layer model for the wall of atherosclerotic
arteries. Moreover, the wall shear stress induced by the blood flow could be
introduced as an input for plaque formation.
Another feature to include in future work is the discretization of time employed in
the G&R simulations. Eventually with the use of adaptative time step methods
is possible to reduce the computation time of the simulations. Given the nature
of the G&R model employed in this work, an appropiate measure to perform the
time step adaptation is the difference between the current stress and the reference
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homeostatic stress (∆σσσ) used to drive the turnover of mass and the remodeling.
Finally it is still a challenge to speed up the computations. Switching some rou-
tines from high level language to low level language should diminish the time of
computation. Based in the experience of switching the order of the material mod-
els which reduces the computation time in 10 times. Moreover, parallel computing
is another option to increase the performance of our code.
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A.1 Reference configuration tensors

In this section are introduced the second Piola-Kirchhoff stress tensor and the
reference elasticity tensor produced by the linearization of the stress, ∆SSS = C :

∆EEE.

SSS = 2
∂W

∂CCC
= φe(SSSevol +SSSeiso) + φm(SSSmact +SSSmpas) +

4∑
i=1

φciSSSci (A.1)

SSSevol = κeJee (Jee − 1)CCC−1 (A.2)

SSSeiso = µeJee
−2/3

(
CCCe
gr
−1 − 1

3
tr(CCCe

e)CCC
−1

)
(A.3)

SSSmpas = 2km1 (λme
2 − 1)exp(km2 (λme

2 − 1)2)
aaam0 ⊗ aaam0
||FFFm

graaa
m
0 ||

2 (A.4)

SSSmact =
σactmax
%R(0)λ

(
1− (λm − λact)2

(λm − λ0)2

)
aaam0 ⊗ aaam0 (A.5)

SSSci = 2kci1 (λcie
2 − 1)exp(kci2 (λcie

2 − 1)2)
aaaci0 ⊗ aaa

ci
0

||FFF ci
graaa

ci
0 ||

2 (A.6)

C = 2
∂SSS

∂CCC
= φe(Ce

vol + Ce
iso) + φm(Cm

act + Cm
pas) +

4∑
i=1

φciCci (A.7)

Ce
vol = κeJee ((2Jee − 1)CCC−1 ⊗CCC−1 − 2(Jee − 1)CCC−1 �CCC−1) (A.8)
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Ce
iso = 2

3
µeJee

−2/3
(
tr(CCCe

e)CCC
−1 �CCC−1 + 1

3
tr(CCCe

e)CCC
−1 ⊗CCC−1

−CCCe
gr
−1 ⊗CCC−1 −CCC−1 ⊗CCCe

gr
−1
)

(A.9)

Cm
pas = 4km1 (1 + 2km2 (λme

2 − 1)
2
)exp(km2 (λme

2 − 1)2)
aaam0 ⊗ aaam0 ⊗ aaam0 ⊗ aaam0

||FFFm
graaa

m
0 ||

4 (A.10)

Cm
act =

−2σactmax
%R(0)λ2

(
1− (λm − λact)2

(λm − λ0)2

)
aaam0 ⊗ aaam0 ⊗ aaam0 ⊗ aaam0 (A.11)

Cci = 4kci1 (1 + 2kci2 (λcie
2 − 1)

2
)exp(kci2 (λcie

2 − 1)2)
aaaci0 ⊗ aaa

ci
0 ⊗ aaa

ci
0 ⊗ aaa

ci
0

||FFF ci
graaa

ci
0 ||

4 (A.12)

A.2 Matrices for shell elements formulation

In this section are introduced the matrices for the virtual work and its linearization
after discretization in the implementation of the shell elements framework, section
2.6. Where BBBmb is the membrane-bending matrix, BBBpen is the penalization matrix
for the virtual shear strain, GGGz results from the linearization of the longitudinal
virtual strain, GGGθ results from the linearization of the tangential virtual strain,
GGGpen results from the linearization of the shear virtual strain and KKKp

ab are the
stiffness matrices at nodes a and b due to the incremental forces for incremental
displacements.

Bmb
11 = ((1 + u,s )− ξβ,s cos β)Na,s

Bmb
12 = (w,s−ξβ,s sin β)Na,s

Bmb
13 = ξ(((1 + u,s ) sin β − w,s cos β)β,sNa − ((1 + u,s ) cos β + w,s sin β)Na,s )

Bmb
21 =

1

R
((1 + eθ) cos θ + ξ

1

R
cos θ sin(θ − β))Na

Bmb
22 =

1

R
((1 + eθ) sin θ + ξ

1

R
sin θ sin(θ − β))Na

Bmb
23 = −ξ 1

R
(1 + eθ) cos(θ − β)Na

Bpen
1 = − sin βNa,s

Bpen
2 = cos βNa,s

Bpen
3 = −((1 + u,s ) cos β + w,s sin β)Na
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Gz
11 = Na,sNb,s

Gz
12 = 0

Gz
13 = ξ(Na,sNbβ,s sin β −Na,sNb,s cos β)

Gz
21 = 0

Gz
22 = Na,sNb,s

Gz
23 = −ξ(Na,sNbβ,s cos β +Na,sNb,s sin β)

Gz
31 = ξ(NaNb,s β,s sin β −Na,sNb,s cos β)

Gz
32 = −ξ(NaNb,s β,s cos β +Na,sNb,s sin β)

Gz
33 = ξ(NaNb(1 + u,s )β,s cos β +NaNbw,s β,s sin β +NaNb,s (1 + u,s ) sin β

−NaNb,sw,s cos β +Na,sNb(1 + u,s ) sin β −Na,sNbw,s cos β)

Gθ
11 =

1

R2
NaNb cos2 θ

Gθ
12 =

1

R2
NaNb cos θ sin θ

Gθ
13 = −ξ 1

R2
NaNb cos θ cos(θ − β)

Gθ
21 =

1

R2
NaNb cos θ sin θ

Gθ
22 =

1

R2
NaNb sin2 θ

Gθ
23 = −ξ 1

R2
NaNb sin θ cos(θ − β)

Gθ
31 = −ξ 1

R2
NaNb cos θ cos(θ − β)

Gθ
32 = −ξ 1

R2
NaNb sin θ cos(θ − β)

Gθ
33 = −ξ 1

R
NaNb(1 + eθ) sin(θ − β)

Gpen
11 = 0

Gpen
12 = 0

Gpen
13 = −Na,sNb cos β

Gpen
21 = 0

Gpen
22 = 0

Gpen
23 = −Na,sNb sin β

Gpen
31 = −NaNb,s cos β

Gpen
32 = −NaNb,s sin β

Gpen
33 = −(1 + u,s )NaNb sin β − w,sNaNb cos β
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KKKp
11 =

[
0 2r1(3p1 + p2)− 2r2p1

−r1(3p1 + p2)− r2(p1 + p2) (z2 − z1)(3p1 + p2)

]

+

[
(r1 − r2)(3r1 + r2)p,u (r1 − r2)(3r1 + r2)p,w

(z2 − z1)(3r1 + r2)p,u (z2 − z1)(3r1 + r2)p,w

]
(A.13)

KKKp
12 =

[
0 −2r1p1 − 2r2(p1 + p2)

r1(3p1 + p2) + r2(p1 + p2) (z2 − z1)(p1 + p2)

]

+

[
(r1 − r2)(r1 + r2)p,u (r1 − r2)(r1 + r2)p,w

(z2 − z1)(r1 + r2)p,u (z2 − z1)(r1 + r2)p,w

]
(A.14)

KKKp
21 =

[
0 2r1(p1 + p2) + 2r2p2

−r1(p1 + p2)− r2(p1 + p2) (z2 − z1)(p1 + p2)

]

+

[
(r1 − r2)(r1 + r2)p,u (r1 − r2)(r1 + r2)p,w

(z2 − z1)(r1 + r2)p,u (z2 − z1)(r1 + r2)p,w

]
(A.15)

KKKp
22 =

[
0 2r1p2 − 2r2(p1 + 3p2)

r1(p1 + p2) + r2(p1 + 3p2) (z2 − z1)(p1 + 3p2)

]

+

[
(r1 − r2)(r1 + 3r2)p,u (r1 − r2)(r1 + 3r2)p,w

(z2 − z1)(r1 + 3r2)p,u (z2 − z1)(r1 + 3r2)p,w

]
(A.16)
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Figure B.1 – Effects of different penalties on the aneurysm development of ar-
terial wall due to elastin loss. a, b and c are plotted in the center of the arterial
wall (Z = 0) versus the time. d, e and f are plotted for the last time step (after
199 months) along the arterial axial direction.
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Figure B.2 – Effects of different media-adventitia ratio on the aneurysm devel-
opment of arterial wall due to elastin loss. a, b and c are plotted in the center of
the arterial wall (Z = 0) versus the time. d, e and f are plotted for the last time
step (after 199 months) along the arterial axial direction.
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Figure B.3 – Effects of gain parameters on the arterial wall G&R due to stent
deployment. a, b and c are plotted in the center of the arterial wall (Z = 0) versus
the time. d, e and f are plotted for the last time step (after 180 months) along
the arterial axial direction.
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Figure B.4 – Effects of different penalties on the arterial wall G&R due to stent
deployment. a, b and c are plotted in the center of the arterial wall (Z = 0) versus
the time. d, e and f are plotted for the last time step (after 180 months) along
the arterial axial direction.
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Figure B.5 – Effects of media-adventitia ratios on the arterial wall G&R due to
stent deployment. a, b and c are plotted in the center of the arterial wall (Z = 0)
versus the time. d, e and f are plotted for the last time step (after 180 months)
along the arterial axial direction.
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Figure B.6 – The effect of the stent stiffness on the G&R of the arterial wall. a,
b and c are plotted in the center of the arterial wall (Z = 0) versus the time. d, e
and f are plotted for the last time step (after 180 months) along the arterial axial
direction.
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Figure B.7 – The effect of the stent tangential coefficients on the G&R of the
arterial wall. a, b and c are plotted in the center of the arterial wall (Z = 0)
versus the time. d, e and f are plotted for the last time step (after 180 months)
along the arterial axial direction.
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Figure B.8 – The effect of the stent over-sizing and gain parameters on the G&R
of the arterial wall. a, b and c are plotted in the center of the arterial wall (Z = 0)
versus the time. d, e and f are plotted for the last time step (after 180 months)
along the arterial axial direction.
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Figure B.9 – The effect of the stent stiffness and gain parameters on the G&R
of the arterial wall. a, b and c are plotted in the center of the arterial wall (Z = 0)
versus the time. d, e and f are plotted for the last time step (after 180 months)
along the arterial axial direction.
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Figure B.10 – The effect of gain parameters on the behavior of the arterial wall
before and after stent deployment for an arterial wall undergone several years of
G&R. a, b and c are plotted in the center of the arterial wall (Z = 0) versus the
time. d, e and f are plotted for the instant just before stent deployment (t=80
months) along the arterial axial direction. g, h and i are plotted for the instant
just after stent deployment (t=80 months) along the arterial axial direction. j, k
and l are plotted after 100 months of the stent deployment along the arterial axial
direction.
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Figure B.11 – The effect of different penalties on the behavior of the arterial
wall before and after stent deployment for an arterial wall undergone several years
of G&R. a, b and c are plotted in the center of the arterial wall (Z = 0) versus
the time. d, e and f are plotted for the instant just before stent deployment (t=80
months) along the arterial axial direction. g, h and i are plotted for the instant
just after stent deployment (t=80 months) along the arterial axial direction. j, k
and l are plotted after 100 months of the stent deployment along the arterial axial
direction.
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Figure B.12 – The effect of media-adventitia ratios on the behavior of the arterial
wall before and after stent deployment for an arterial wall undergone several years
of G&R. a, b and c are plotted in the center of the arterial wall (Z = 0) versus
the time. d, e and f are plotted for the instant just before stent deployment (t=80
months) along the arterial axial direction. g, h and i are plotted for the instant
just after stent deployment (t=80 months) along the arterial axial direction. j, k
and l are plotted after 100 months of the stent deployment along the arterial axial
direction.
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Figure B.13 – The effect of stent over-sizing on the behavior of the arterial wall
before and after stent deployment for an arterial wall undergone several years of
G&R. a, b and c are plotted in the center of the arterial wall (Z = 0) versus the
time. d, e and f are plotted for the instant just before stent deployment (t=80
months) along the arterial axial direction. g, h and i are plotted for the instant
just after stent deployment (t=80 months) along the arterial axial direction. j, k
and l are plotted after 100 months of the stent deployment along the arterial axial
direction.
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Figure B.14 – The effect of stent normal coefficient on the behavior of the arterial
wall after stent deployment for an arterial wall undergone several years of G&R.
a, b and c are plotted in the center of the arterial wall (Z = 0) versus the time.
d, e and f are plotted for the instant just before stent deployment (t=80 months)
along the arterial axial direction. g, h and i are plotted for the instant just after
stent deployment (t=80 months) along the arterial axial direction. j, k and l are
plotted after 100 months of the stent deployment along the arterial axial direction.
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Figure B.15 – The effect of stent tangential coefficient on the behavior of the
arterial wall after stent deployment for an arterial wall undergone several years of
G&R. a, b and c are plotted in the center of the arterial wall (Z = 0) versus the
time. d, e and f are plotted for the instant just before stent deployment (t=80
months) along the arterial axial direction. g, h and i are plotted for the instant
just after stent deployment (t=80 months) along the arterial axial direction. j, k
and l are plotted after 100 months of the stent deployment along the arterial axial
direction.
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Figure B.16 – The effect of gain parameters and stent stiffness on the behavior of
the arterial wall after stent deployment for an arterial wall undergone several years
of G&R. a, b and c are plotted in the center of the arterial wall (Z = 0) versus
the time. d, e and f are plotted for the instant just before stent deployment (t=80
months) along the arterial axial direction. g, h and i are plotted for the instant
just after stent deployment (t=80 months) along the arterial axial direction. j, k
and l are plotted after 100 months of the stent deployment along the arterial axial
direction.
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C.1 Theoretical framework

Let us consider a material mixture composed by several constituents (j = 1, 2, ..., n)
in its hypothetical traction-free reference configuration ΩΩΩR ⊂ R3 and subsequently
deformed into a loaded configuration ΩΩΩt ⊂ R3 at time t ≥ 0 (Fig. 4.1). The de-
formation map χ : R+ ×ΩΩΩR → R3 which maps a material point XXX ∈ ΩΩΩR to the
corresponding spatial point xxx = χ(XXX, t) ∈ ΩΩΩt produces a deformation gradient of
the mixture defined as

FFF =
∂xxx

∂XXX
, (C.1)

where this total deformation incorporate an elastic and inelastic deformation for
each jth constituent in the mixture, equation 1.
It is assumed that the material mixture is hyperelastic and depends only on the
elastic deformation of each constituent, i.e. on the elastic Cauchy-Green tensor

CCCj
e = [FFF j

gr]
−TCCC[FFF j

gr]
−1, (C.2)

where CCC = FFF TFFF is the Cauchy-Green tensor related to the deformation gradient
defined in Eq. 1. Thus, from the equations 3 and C.2 is possible to define stress
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in the jth constituent as,

SSSj = 2
%jR
φj
∂Ψj

∂CCC
(C.3)

where the sum of the all individual stresses give the second Piola-Kirchhoff stress
of the whole mixture (

∑n
j φ

jSSSj), with the constituent mass fraction φj =
%jR
%R

and
the density of the mixture (%R =

∑n
j %

j
R). The SSSj can be mapped to the spatial

configuration by the push-forward transformation

σσσj =
1

J
FSFSFSjFFF T (C.4)

with J = detFFF .
During G&R the tissue is continously adapting and consequently is changing
its structure with depositon/removal of mass of the constituents, for instance,
elastin degradation, SMCs apoptosis/proliferation or collagen production by fi-
broblasts/SMCs. The mass changes in the mixture can be written like,

ṁ =
D

Dt
(%RV ) =

D

Dt
(%v), (C.5)

where ṁ is the depositon/removal of mass in the mixture, %RV is the density
times the volume in reference configuration, %v is the density times the volume
in spatial configuration. The reference volume V does nont change, the spatial
density is constant in time and homogeneous, and with the relation between the
volumes v = JV (%R = %J), we can write the mass changes in reference and spatial
configurations as it follows [23],

∂%R
∂t

= J%divvvv, (C.6)

then, the reference density (per unit reference volume) change over time %R = %R(t)

[24], [27]. Furthermore, G&R occurs at slow time scales, then it can be assumed
that it is quasi-static and the linear momentum balance equals zero,

D

Dt
(%vvv) = divσσσ + fff = 0 (C.7)

where vvv is the velocity of the system, divσσσ is the diveregence of the mixture Cauchy
stress σσσ and the force fff , in the spatial configuration.
At the surface of the body the conditions can be, given deformations (Dirichlet),
external loads applied on the body surface (Neumann) or deformation-dependent
forces (Robin, [92], [93]). The Robin boundary conditions are introduced by the
following expression:

σσσ · nnn = pnnn+ kuuu, (C.8)

where p denotes the pressure, nnn the normal to the surface, the elastic forces with
stiffness k and displacement uuu. This forces are appropriate for the modelization
of the lumen pressure in blood vessels due to the blood flow, and the elastic forces
are usefull to give flexible and stable boundary displacements.
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C.2 Constitutive Models

At the equation 2 is assumed that the mixture strain energy W per unit reference
volume is the sum of the constituents strain energies Ψj per unit mass. Therefore,
we consider our material to be vascular tissue composed by three constituents such
as, elastin, SMCs and collagen. The elastin is assumed to be isotropic; the smooth
muscle have an active, (•)act, and a passive ,(•)pas, behavior; and the collagen is
composed by four fibre families aligned in circumferential, longitudinal and two
diagonal directions, respectively. The total strain energy may be written such as

W = %lRΨl + %mR (Ψm
pas + Ψm

act) +
4∑
i=1

%ciRΨci , (C.9)

for each component we assumed a strain energy to represent the corresponding
hyperelastic behavior. We modeled the elastin with a Neo-Hookean hyperelastic
model as in [65], [79]

Ψl =
µl

2

(
III : C̄CC

l
e − 3

)
+
κl

2

(
J le − 1

)2 (C.10)

where µl and κl are stress-like material parameters (shear and bulk modulus),
while C̄CC l

e and J le are the elastic isochoric right Cauchy-Green tensor and the elastic
jacobian of elastin, respectively. The isochoric right Cauchy-Green tensor is related
to the right Cauchy-Green tensor by C̄CC l

e = (J le)
2/3CCC l

e and the elastin elastic jacobian
is J le = det(FFF l

e).
We modeled the collagen fibre families by an anisotropic Fung-type exponential
function such as

Ψci =
kci1
2kci2

(
exp(kci2 (λcie

2 − 1)2)− 1
)

(C.11)

where kci1 and kci2 are a stress–like and dimensionless material parameters, respec-
tively, while λcie is the elastic stretch contribution of the collagen fibre obtained
as

λcie =
λci

λcir
withλci =

√
CCC : (aaaci0 ⊗ aaa

ci
0 ) andλcir = ‖FFF ci

gr · aaa
ci
0 ‖ (C.12)

where λci and λcir are the total and remodeling stretch (cf. 1) of the fibre, respec-
tively. We also modeled the passive behavior of SMCs by an anisotropic Fung-type
exponential function such as

Ψm
pas =

km1
2km2

(
exp(km2 (λme

2 − 1)2)− 1
)

(C.13)

where km1 and km2 are stress–like and dimensionless material parameters, respec-
tively, λme is the elastic contribution of SMCs calculated such as

λme =
λm

λmr
withλm =

√
CCC : (aaam0 ⊗ aaam0 ) andλmr = ‖FFFm

gr · aaam0 ‖ (C.14)
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where λm and λmr are the total and remodeling stretch (cf. 1) of the fibre, respec-
tively. While we modeled its active behavior according to Braeu et al [27],

Ψm
act =

σactmax
%R0

(
λact +

(λmmax − λact)3

3(λmmax − λm0 )2

)
(C.15)

with σactmax the maximal active Cauchy stress, λact is the active stretch in the
fibre direction, λm0 and λmmax are the zero and maximum active stretches and %R0

denotes the total mixture density in the homeostatic reference configuration.

C.3 Growth and Remodeling

The idea of the hCM models is to pool all the sequential mass additions within one
single change using temporal homogenization (Fig. 1). To do so, three assump-
tions are made: (i) the mechanical properties are changed by G&R, (ii) survival
mass (mass turnover) functions are exponential and (iii) inelastic deformations,
FFF j
gr = FFF j

gFFF
j
r, are in turn decomposed into growth-related, FFF j

g, and remodeling-
related (turnover-related), FFF j

r, contributions. In this model a single local average
inelastic deformation gradient FFF j

gr is defined by constituent. The model can han-
dle isotropic or anisotropic growth, the latter being more relevant for arteries and
manifesting with thickening or thinning effects [80].
We assumed that G&R is a stress mediated process which tends to minimize devi-
ations between the current stress and a reference stress metrics named homeostatic
stress (σσσh). Therefore, the rate of mass degradation and deposition at time t for
the jth constituent is expressed as

%̇jR = %jRk
j
σ

σj − σjh
σjh

+ Ḋj (C.16)

where %jR is the mass density (per unit reference volume) of the jth constituent
at time t, kjσ denotes a mass-gain parameter, σj is the spatial stress along the
fibre (σj = (aaaj0 ⊗ aaa

j
0) : σσσj, cf C.4), Ḋj includes any additional mass deposition or

degradation governed by non-mechanical effects (for instance the effect of a drug).
Equation C.16 is related to the equation C.6 through the addition of constituents
mass

∑
j %

j
R = %R. A more general form of this equation is presented by Braeu et

al [27], using a tensorial representation and possibly considering wall shear stress
stimuli [25], [81]. The wall shear stress effects induced by the blood flow are
neglected in our work here.
Braeu et al [27] assumed that growth captures local change of volume induced by
mass variations of each constituent, and that all components of the mixture share
the same growth deformation: FFF j

g = FFF g. Then, the growth is measured from the
changes of the reference mass density (%R) respect to the initial (t0 = 0) reference
mass density (%R0) through

det(FFF g) =
%R
%R0

, (C.17)
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noting that the mixture volume changes are measured by the determinant of the
deformation gradient J = det(FFF ) and assuming the elastic and remodeling pro-
cesses are isochoric (det(FFF j

e) = det(FFF j
r) = 1), so, the mixture volume changes re-

mains equal to the growth J = det(FFF g). If the growth is assumed to be anisotropic
and along the thickness direction (aaa⊥0 ), can be expressed in tensorial form as

FFF g = III +
%R
%R0

aaa⊥0 ⊗ aaa⊥0 − aaa⊥0 ⊗ aaa⊥0 (C.18)

where III is the identity second order tensor. Therefore, due to the continuous
mass deposition and removal, the traction-free configuration change during G&R
(Fig. 1), even if there is a balance between mass deposition and removal (%̇jR = 0),
this occur with a prestress which is different from the current stress at which mass
is removed or deposited. Altogether leads to changes of tissue microstructure
referred as remodeling. Therefore, assuming that remodeling occurs at a constant
volume and along a fibre in the direction aaaj0, the evolution of the remodeling of
the jth constituent at time t is expressed such as [24]

λ̇jr =

(
%̇jR
%jR

+
1

T j

)
λj

(λje)2

(
∂σj

∂λje

)−1

×
(
σj − σjpre

)
. (C.19)

where subscript "pre" indicates prestress, λ̇jr denotes the remodeling velocity and
T j is the average turnover time during which old mass increment is degraded
and replaced by a new mass increment. According to proposition 1 from Cyron
and Humphrey [8], the prestress σipre is equal to the homeostatic stress σih. The
remodeling of the fibre can be represented in tensorial form as

FFF j
r = λjraaa

j
0 ⊗ aaa

j
0 +

1√
λjr

(III − aaaj0 ⊗ aaa
j
0), (C.20)

finally, from equations C.18 and C.20 is possible to get the inelastic deformation
tensor or growth and remodeling for a fibre as

FFF j
gr = λjraaa

j
0⊗aaa

j
0 +

1√
λjr

(III −aaaj0⊗aaa
j
0 +

%R
%R0

aaa⊥0 ⊗aaa⊥0 −aaa⊥0 ⊗aaa⊥0 ) =⇒ FFF j
gr ·aaa

j
0 = λjraaa

j
0.

(C.21)
To calculate the G&R deformation gradient over time we solved the system com-
posed of Eqs. C.16, C.17 and C.19 by performing temporal integration, this is
applied in a precedure to carry-out G&R simulation within a FE code, figure C.1.

C.4 Material properties

The mechanical properties of the patient-specific model are fitted from data avail-
able in the literature [79] (bulge test). For this issue we assume that the material
in the bulge have bi-tangential deformation (FFF = diag[λθ1 λθ2 λr]) and it is incom-
pressible (detFFF = 1). The computation of the experimental measures as stretch
and stress are made in base of the formulation presented in [105], from where we
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'

&

$

%

? Initialize state variables
%jR(0) and FFF j

gr(0)

? Set boundary conditions
? Assemble the internal stiffness matrix KKKint

? Let the time flow n years
• If t 6= 0. Update state variables (G&R) and internal stiffness matrix

KKKint

%jR(t+ 1) = %jR(t) + %̇jR∆t and FFF j
gr(t+ 1) = FFF j

gr(t) + ḞFF
j

gr∆t

%̇jR = %̇jR(σj, σjh) and ḞFF
j

gr = ḞFF
j

gr(FFF ,FFF
j
e, σ

j, σjh)

• Update external forces FFFext and residual RRR
RRR = −FFFext

• Newton-Raphson loop, until RRR ≈ 0

∗ Solve the equilibrium system, if first iteration KKK = KKKint

KKK ·∆∆∆ = RRR
∗ Compute current coordinates
xxx(t+ 1) = xxx(t) + ∆∆∆

∗ Compute internal stiffness matrix KKKint and internal forces TTTint

∗ Compute external stiffness matrix KKKext and external forces FFFext
∗ Update stiffness matrix KKK and residual RRR

KKK = KKKint +KKKext and RRR = TTTint −FFFext
• Update total displacements
δδδ(t+ 1) = xxx(t+ 1)−XXX

• Compute CMM measures
σj(t+ 1) = σσσj : (aaaj0 ⊗ aaa

j
0)

• If t = 0. Stock constituent measures. t = 0 is the homeostatic step
σjh = σj(t = 0)

Figure C.1 – Implemented algorithm of the hCM model with forward Euler
integration. Time t = 0 is the homestatic step and defines its constituent stress
metrics for the G&R evolution.
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Figure C.2 – Patient axial and circumferential stress-stretch curves fitted from
data available in the literature [79] (bulge test). The tangential stress (σb) dis-
tributed within the layers, with σM and σA the media and adventitia stress, re-
spectively, and α is the media thickness ratio in the total arterial wall.

distribute the tangential stress σb within the specific-layer stresses σM and σA,
media and adventitia, respectively, with α as the media thickness ratio, Fig. C.2.
The definition of the constituent densities is made in base of the histological ob-
servation showed in [34], where the thoracic aorta is composed by 35% of SMCs,
35% of elastin and 30% of collagen, according to our approach of three constituent
in the arterial wall. After we place the constituents ratios in a unit square (left
square in Fig. C.3), and from the new constituent rectangles is possible to get
their vertical and horizontal dimensions. The next step is to draw two new unit
squares subjected to the media/adventitia (50%/50%) ratio; so the media gets
70% of muscle, 16.2% of elastin and 13.8% of collagen; while the adventitia gets
53.8% of elastin and 46.2% of collagen. Finally, the constituent areas (or pro-
portion) are multiplied by the mixture density, for instance, %R0 = 1050[kg/m3],
which either correspond to the whole arterial wall or to each layer, Fig. C.3.
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Figure C.3 – The first unit square at the left represents the whole arterial
wall divided in the mixture constituents, which is split into two new unit squares
according to the media/adventitia ratio, each one with its corresponding mixture
constituents.
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Abstract

The aortic wall as other biological systems have adaptations with the pur-
pose to maintain its stability. This stability depends on the cell assessing the
state of the aorta. Eventually a disturbed activity of the cells may lead to mal-
adaptations and progression of diseases. Thus, the objective of this thesis is to
implement a mechanical approach for the adaptations in a numerical solver and
apply it to patient-specific aortas. First, the mechanical approach is included
in a two-dimensional axisymmetric shell method. Where the growth and re-
modeling (G&R) of the tissue is triggered from mass removal or load changes.
The load changes are produced by the placement of a stent into the artery and
produce further remodeling in it. Second, the G&R model is included within a
three-dimensional thick solver. In the new code the adaptation is triggered from
mass removal, but in this case the simulations are performed on cylinder, torus
and patient-specific shapes. From those simulation is deduced the need for non-
uniform prestretch in non-cylindrical geometries. Third, in the three-dimensional
solver is included a routine for the analysis of aortic dissection propagation under
G&R.
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Résumé

La paroi aortique, comme d’autres systèmes biologiques, présente des adap-
tations visant à maintenir sa stabilité. Cette stabilité dépend de l’évaluation de
l’état de l’aorte par la cellule. A terme, une activité perturbée de les cellules peut
conduire à des inadaptations et à la progression de maladies. Ainsi, l’objectif de
cette thèse est d’implémenter une approche mécanique des adaptations dans un
solveur numérique et de l’appliquer à des aortes spécifiques aux patients. Tout
d’abord, l’approche mécanique est incluse dans une méthode de coque axisy-
métrique bidimensionnelle. La croissance et le remodelage (G&R) du tissu sont
déclenchés par l’élimination de la masse ou les changements de charge. Les chan-
gements de charge sont produits par le placement d’un stent dans l’artère et
produisent un remodelage supplémentaire de celle-ci. Deuxièmement, le modèle
G&R est inclus dans un solveur épais tridimensionnel. Dans le nouveau code,
l’adaptation est déclenchée à partir de la suppression de la masse, mais dans ce
cas, les simulations sont effectuées sur des formes cylindriques, toriques et spéci-
fiques au patient. De ces simulations, on déduit la nécessité d’un pré-étirement
non uniforme dans les géométries non cylindriques. Troisièmement, le solveur
tridimensionnel comprend une routine pour l’analyse de la propagation d’une
dissection aortique dans le cadre de G&R.
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