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Abstract

The understanding of the uncertainties in the retrieval of the aerosol and surface prop-
erties is very important for an adequate characterization of the processes that occur
in the atmosphere. However, the reliable characterization of the error budget of the
retrieval products is a very challenging aspect that currently remains not fully resolved
in most remote sensing approaches. The level of uncertainties for the majority of the
remote sensing products relies mostly on post-processing validations and inter com-
parisons with other data while the dynamic errors are rarely provided. This study
describes, discuses and evaluates a concept realized in GRASP (Generalized Retrieval
of Atmosphere and Surface Properties) algorithm for providing the dynamic estimates
of uncertainties for retrieved parameter. The approach employs rigorous concept of
statistical optimization for estimating the effects of measurement uncertainties propa-
gation to the retrieval results. The approach accounts for the effect of both random and
systematic uncertainties in the initial data and provides error estimates both for directly
retrieved parameters included in the retrieval state vector and for the characteristics
derived from these parameters. The efficiency of realized error estimation concept is
extensively analyzed for GRASP applications for aerosol retrieval from ground-based
observations by sun/sky photometer and lidar. The diverse aspects of the generations
and evaluations of the error estimates are discussed and illustrated. The evaluation
of the error estimates was realized using the series of comprehensive sensitivity tests
when simulated sun/sky photometer measurements and lidar data are perturbed by
random and systematic errors and inverted. The results of the retrievals and their
error estimations obtained in the tests are analyzed and evaluated. The tests are
conducted for the different observations of several types of aerosols including biomass
burning, urban, dust and their mixtures. The study considers popular observations by
AERONET sun/sky radiometer at 440, 675, 870 and 1020 nm and multi-wavelength
elastic lidar at 355, 532 and 1064 nm. The sun/sky radiometer data are inverted alone
or together with lidar data. The analysis shows that the generated error estimates
overall satisfactory of the uncertainties of different retrieved aerosol characteristics in-
cluding aerosol size distribution, complex refractive index, single scattering albedo,
lidar ratios, aerosol vertical profiles, etc. Also, the analysis shows that the main ob-
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served error dynamic agrees well with the errors tendencies commonly known from
the retrieval experience. For example, the serious retrieval accuracy limitations for
all aerosol types are associated with the situations with low optical depth. Also, for
observations of multi-component aerosol mixtures, the reliable characterization of each
component is possible only in limited situations, for example from radiometric data
obtained for low solar zenith angle observations or from a combination of radiometric
and lidar data. At the same time, total optical properties of aerosol mixtures tend to
be always retrieved satisfactorily. In addition, the study includes the analysis of the
detailed structure of correlation matrices for the retrieval errors of mono- and multi-
component aerosols. The conducted analysis of error correlation appears to be a useful
approach for optimizing observations schemes and retrieval setups. The illustration of
the developed approach application to real data is provided for co-located observations
of sun/sky photometer and lidar over Buenos Aires. Furthermore, the preliminary re-
sults for utilizing the error estimates for the retrieval of aerosol from satellite data are
provided.
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Résumé

La compréhension des incertitudes dans la restitution des propriétés des aérosols et
des surfaces est très importante pour une caractérisation adéquate des processus qui se
produisent dans l’atmosphère. Cependant, la caractérisation fiable du budget d’erreur
des produits de restitution est un aspect complexe qui n’est pas encore entièrement
résolu dans la plupart des approches de la télédétection. Le niveau d’incertitude pour
la majorité des produits de télédétection repose principalement sur des validations
post-traitement et des comparaisons avec d’autres données, alors que les erreurs dy-
namiques sont rarement fournies. Cette étude décrit, analyse et évalue un concept
réalisé dans l’algorithme GRASP (Generalized Retrieval of Atmosphere and Surface
Properties) qui a pour objectif de fournir les estimations dynamiques des incertitudes
pour les paramètres restitués. L’approche utilise un concept rigoureux d’optimisation
statistique pour estimer les effets de la propagation des incertitudes de mesure sur les
résultats de la restitution. L’approche tient compte de l’effet des incertitudes aléa-
toires et systématiques dans les données initiales et fournit des estimations d’erreurs
tant pour les paramètres directement restitués inclus dans le vecteur d’état de resti-
tution, que pour les caractéristiques dérivées de ces paramètres. L’efficacité du con-
cept d’estimation des erreurs réalisées est analysée en profondeur pour les applications
GRASP pour la restitution d’aérosols à partir d’observations depuis le sol par le pho-
tomètre et le lidar.

Les divers aspects des générations et des évaluations des estimations d’erreurs sont
discutés et illustrés. L’évaluation des estimations d’erreurs a été réalisée à l’aide de
la série exhaustive de tests de sensibilité lorsque des mesures photométriques solaires
simulées et des données lidar sont perturbées par des erreurs aléatoires et systématiques
et inversées. Les résultats des restitutions et leurs estimations d’erreurs obtenues dans
les tests sont analysés et évalués. Les essais sont effectués pour les différentes obser-
vations de plusieurs types d’aérosols, issus de la combustion de biomasse, urbains, de
poussières et leurs mélanges. L’étude tient compte des observations faites par les pho-
tomètres solaires AERONET effectuées à 440, 675, 870 et 1020 nm et lidar élastique
multi-longueurs d’onde à 355, 532 et 1064 nm. Les données du photomètre solaire sont
inversées seules ou avec les données lidar. L’analyse montre que l’erreur générée estime
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globalement de façon satisfaisante les incertitudes des différentes caractéristiques des
aérosols restitués, y compris la distribution en taille des aérosols, l’indice de réfrac-
tion complexe, l’albédo à diffusion simple, les rapports du lidar, les profils verticaux
des aérosols, etc. En outre, l’analyse montre que les principales erreurs dynamiques
observées concorde bien avec les tendances d’erreurs communément connues par les ex-
périences de restitution. Par exemple, les limites de précision de restitution pour tous
les types d’aérosols sont associées aux situations de faible épaisseur optique. En outre,
pour les observations de mélanges d’aérosols multi-composants, la caractérisation fiable
de chaque composant n’est possible que dans des situations limitées, par exemple à par-
tir de données radiométriques obtenues pour des observations à faible angle zénithal
solaire ou à partir d’une combinaison de données radiométriques et lidar. Dans le
même temps, les propriétés optiques totales des mélanges d’aérosols ont tendance à
être toujours restituées de manière satisfaisante. En outre, l’étude comprend l’analyse
de la structure détaillée des matrices de corrélation pour les erreurs de restitution des
aérosols mono et multi-composants. L’analyse de la corrélation des erreurs semble
être une approche utile pour optimiser les schémas d’observations et les configurations
de récupération. L’illustration de l’application de l’approche développée aux données
réelles est fournie pour les observations co-localisées du photomètre solaire et du lidar
au-dessus de Buenos Aires. De plus, les résultats préliminaires de l’utilisation des esti-
mations d’erreurs pour la restitution des aérosols à partir des données satellitaires sont
fournis.
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Resumen

La comprensión de las incertidumbres para el cálculo de las propiedades de los aerosoles
y de la superficie es de suma importancia para una adecuada caracterización de los pro-
cesos que ocurren en la atmósfera. Sin embargo, una caracterización confiable de la
estimación de los errores totales de los productos obtenidos es un aspecto muy desafi-
ante que actualmente no está totalmente resuelto en la mayoría de los enfoques de
teledetección. El nivel de incertidumbre provisto por la mayoría de los productos de
teledetección está basado principalmente en validaciones posteriores al procesamiento
y en intercomparaciones con otros datos, mientras que los errores dinámicos rara vez
son suministrados. Este estudio describe, discute y evalúa un concepto realizado en
el algoritmo GRASP (Generalized Retrieval of Atmosphere and Surface Properties)
para proporcionar las estimaciones dinámicas de las incertidumbres de los parámet-
ros obtenidos. Este enfoque emplea un riguroso concepto de optimización estadística
para estimar los efectos de la propagación de las incertidumbres de la medición a los
resultados calculados. Además, tiene en cuenta el efecto de las incertidumbres tanto
aleatorias como sistemáticas de los datos iniciales y proporciona estimaciones de error
tanto para los parámetros calculados directamente, incluidos en el vector de estado de
recuperación, como para las características derivadas a partir de estos parámetros. La
eficiencia del concepto de estimación de errores realizado es analizado extensamente
para las aplicaciones de GRASP para la recuperación de aerosoles a partir de obser-
vaciones terrestres mediante el uso de fotómetro solar y lidar. También se discuten e
ilustran los diversos aspectos de las generaciones y evaluaciones de las estimaciones de
error. La evaluación de las estimaciones de error se llevó a cabo mediante una serie ex-
haustiva de pruebas de sensibilidad en las cuales las mediciones simuladas del fotómetro
solar y los datos del lidar fueron perturbadas por errores aleatorios y sistemáticos para
luego invertirlas. A continuación se analizaron y evaluaron los resultados de las inver-
siones y las estimaciones de error obtenidas en las pruebas realizadas. Las mismas se
realizaron para las diferentes observaciones de varios tipos de aerosoles, incluyendo los
de quema de biomasa, urbanos, polvo y la mezcla entre ambos. El estudio considera
las observaciones del fotómetro solar de AERONET a 440, 675, 870 y 1020 nm y el
lidar elástico de múltiples longitudes de onda a 355, 532 y 1064 nm. Los datos del
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fotómetro solar se invirtieron solos o junto con los datos del lidar. El análisis muestra
que las estimaciones del error generado estima en general de forma satisfactoria las
incertidumbres de las características de los distintos aerosoles calculados, incluyendo
la distribución del tamaño de los aerosoles, el índice de refracción complejo, el albedo
de dispersión simple, la razón lidar, los perfiles verticales de los aerosoles, etc. Por otro
lado, el análisis muestra que los principales errores dinámicos observados coinciden con
las tendencias de error comúnmente conocidas por la experiencia en los parámetros
calculados. Por ejemplo, las mayores limitaciones en la precisión de las propiedades
obtenidas a partir de la inversión para todos los tipos de aerosoles, están asociadas a
condiciones de observación con bajos espesores ópticos de los aerosoles. Además, para
las observaciones de mezclas de múltiples componentes de aerosoles, la caracterización
fiable de cada componente sólo es posible en un limitado número de casos, por ejem-
plo, cuando se cuenta con datos radiométricos obtenidos durante observaciones de bajo
ángulo cenital solar o a partir de e una combinación de datos radiométricos combina-
dos con observaciones lidar. Al mismo tiempo, las propiedades ópticas totales de las
mezclas de aerosoles tienden a recuperarse siempre de forma satisfactoria. El estudio
incluye el análisis de la estructura detallada de las matrices de correlación para los
errores calculados de los aerosoles monocomponentes y multicomponentes. El análisis
realizado de la correlación de errores parece ser un enfoque útil para optimizar los es-
quemas de observación y las configuraciones para las inversiones. La ilustración de la
aplicación del enfoque desarrollado a los datos reales es provista para las observaciones
co-localizadas del fotómetro solar y el lidar sobre Buenos Aires. Finalmente, se presen-
tan los resultados preliminares del uso de las estimaciones de error de las propiedades
de los aerosoles obtenidas a partir de datos satelitales.
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Chapter 1

Introduction

1.1 Importance of studying aerosols and cloud in
the atmosphere and motivations of the thesis

Atmospheric aerosols have an important influence on the radiative balance and the
climate due to their loading and their different physical, chemical and optical proper-
ties. However, according to the Intergovernmental Panel on Climate Change (IPCC)
assessments (Boucher et al. (2013), Masson-Delmotte et al. (2021)), the uncertainties
in understanding aerosol radiative and climate effects are high and remain among the
largest contributors to the overall uncertainties in understating the climate change ef-
fects. The main limitations in aerosol characterization are related to the challenges to
provide accurate monitoring at global scale of a highly complex aerosol microphysical
and optical properties that have generally higher temporal and spatial heterogeneity
compared to greenhouse gases.

Remote sensing is a major tool for studying the interactions of solar radiation with
the atmosphere and the surface, and their influences on the Earth’s radiative balance.
Over the past five decades, the radiances measured by satellite sensors, from airborne
instruments or from the surface ( Holben et al. (1998);King et al. (1999); Takamura
(2004); Nakajima et al. (2007); Li et al. (2009b); Bréon et al. (2011); Tanré et al.
(2011); Kokhanovsky et al. (2015); Dubovik et al. (2019)), have been successfully used
to characterize the radiative properties of the Earth, the oceans, atmospheric gases,
aerosols, clouds, etc. One of the challenges in implementing remote sensing is the
development of a reliable inversion algorithm required to derive information about the
atmospheric or surface component interaction with the measured radiation. Therefore,
in recent years, a significant progress in the development of reliable inversion methods
has been made as part of overall evolution of remote sensing technique as discussed
in several studies, such us Kokhanovsky and Leeuw (2009); Lenoble et al. (2013). At
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the same time, there is still a significant need to further advance in several aspects of
the retrieval algorithms (e.g. see Dubovik et al. (2021); Dubovik et al. (2019)). One
of the most challenging and important aspect, while underdeveloped, is the evaluation
of the errors in the retrieval products. For example, the review by Sayer et al. (2020)
emphasises that the quality of the retrieval uncertainty estimates has not been routinely
assessed in most aerosol satellite retrievals.

There are two most common approaches to provide the uncertainties of retrieved
parameters. The first one is based on conducting different sensitivity tests and vali-
dations and estimating the potential effects of different possible uncertainties in the
measurements or used models. For example, the estimation of the retrieval uncer-
tainties in AERONET Version 3 (Giles et al. (2019), Sinyuk et al. (2020)) and LiRIC
(Lidar and Radiometer Inversion Code, Chaikovsky et al. (2016)) algorithms are based
on the analysis of the influence of the possible measurements perturbations or retrieval
assumptions (mainly in measurements) on the retrieval results. However, modeling all
the factors and circumstances that can affect the retrieval in all situations is theoret-
ically impossible, and practically difficult, within the limited series of perturbed runs
especially for the situations when a large number of parameters is retrieved. Indeed,
a large number of factors affect the retrievals, whose variation is complex and non-
linear and addressing them adequately in a concise series of perturbation test is very
challenging. In these regards, the error propagations approaches based on statistical
estimation theory and described in numerous textbooks (e.g., Fourgeaud and Fuchs
(1967); Edie et al. (1971); Rodgers (2000), etc.) provide asymptotically comprehensive
estimates for random retrieval errors. At the same time, it should be noted that both
the result of perturbation tests and statistical estimates of propagated error rely on the
forward model employed may not fully represent inaccuracies related to the limitations
of this model. Some additional evaluations and considerations are always desirable for
accessing the adequacy of chosen forward model and its potential limitations.

In this respect, the studies in the scope of thesis are focused on the analysis and
evaluation of the approach realized for the estimating of the errors of the retrieved
parameters in framework of the GRASP (Generalized Retrieval of Atmosphere and
Surface Properties, Dubovik et al. (2011, 2014, 2021)). The approach employed in
GRASP relies on rigorously realized concept of statistical estimations and designed to
account for the propagation of both random and systematic errors. Therefore, in this
thesis the performance of the GRASP error estimates for aerosol parameters retrieved
from mainly ground-based observations is evaluated. Moreover, GRASP generates the
full covariance matrices that are used to provide error bars for retrieved parameters
and also an interesting inside for understanding retrieval tendencies. Therefore, this
study evaluates not only the quantitative reliability of the obtained standard deviations
of retrieval error (provided by diagonal elements of covariance matrices) but it also
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provides an analysis of the structure of the correlation coefficients of covariance matrices
which often reveal important retrieval tendencies that can be used for optimization of
the algorithms.

Finally, it is important to mention that, in a contrast with common practices when
the algorithms are mainly designed for specific missions (Kokhanovsky and Leeuw
(2009); Lenoble et al. (2013); Dubovik et al. (2019)), GRASP is highly versatile
algorithms based on several generalized principles (e.g., see Dubovik et al. (2021)).
Therefore, most of the results obtained in current study provide useful information for
methodological and practical point of view of wide diversity of remote sensing appli-
cations.

1.2 Objectives and thesis outline

The goal of this PhD aims to realize in depth analysis the evaluation and optimization
of the retrieval error estimation approach which has been implemented in the GRASP
algorithm with the final objective of providing a solid concept for generation of dynamic
estimates of uncertainties in practical remote sensing applications.

This PhD thesis includes three logical complementary parts. The first part of the
study provides the detailed formal mathematical description and a depth analysis of
the methodology employed for calculations of error estimates. This formal description
is focused on discussing the calculation of the full covariance matrix, as the base step
in the generations of the error estimates with the particular emphasis on the evaluation
of the diagonal elements and the analysis of correlation coefficients structure. Indeed,
the diagonal elements of this matrix include the variances of uncertainties that are
commonly used in practice to determine the standard deviations and the error bars
for the retrieved parameters. At the same time, the non-diagonal elements of the
covariance matrix reveal the structure of correlation coefficients between the different
parameters. The analysis of these non-diagonal elements, which will be demonstrated
in this work, is very useful for identifying unobvious retrieval tendencies. This can
be useful for optimizing observation schemes and retrieval setups in remote sensing
applications.

The second part of the study is devoted to the evaluation of the developed er-
ror estimates. With that purpose we carry out a series of numerical experiments in
which synthetic observations are inverted after perturbing the data by adding diverse
random and systematic errors. The resulting deviations in the solution are compared
to the theoretical error estimates produced by GRASP. The synthetic observations in
those tests are generated using the aerosol models from the climatological analysis by
Dubovik et al. (2002b). These models seem to represent the optical properties of main
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aerosol types and they have been often used in previous sensitivity studies, for exam-
ple it was used for analyzing different aspects of aerosol retrievals from sunphotometer
measurements (Torres et al. (2014, 2017)) and by Lopatin et al. (2013, 2021) from
sunphotometer and lidar measurements. Therefore, using these models enables us to
revisit some previous results and align our analysis with known conclusions. Particu-
larly, in this thesis, major efforts have been dedicated to analyze the cases of retrievals
including measurements coming from sun-photometer only and also in combination
with lidar. A deep description of the associated synthetic tests and main results are
shown in chapter 4. The methodology developed for ground-based measurements has
been applied in chapter 6 for a set of preliminary tests including satellite data.

The third part of the thesis is focused on the application of the developed error
estimate approach in the real measurements. Specifically, we generate and validate
the dynamic error estimates provided by GRASP for the different aerosol properties
retrieved from real-data collected by ground-based radiometers and lidars. The main
results are presented and analyzed in chapter 5. Finally, and again as preliminary
results, the application of the developed error estimate approach is also presented for
real data coming from satellite instruments, in particular, for data of the multi-angular
polarimeter PARASOL.

1.3 Structure of the thesis

This PhD thesis is structured in seven chapters:

• This first introduction chapter provides an overview about the importance of
studying the properties of atmospheric aerosol and explains the main motivations
to carry out this work, outlines the objectives of the thesis and describes the
layout of the manuscript.

• The second chapter discusses the microphysical and optical properties and ground-
based and satellite remote sensing approaches used for aerosol characterization.

• The third chapter will provide a detailed description of theoretical formalism used
in the GRASP algorithm to estimates retrieval errors. The description overviews
the principles of retrieval concept used in GRASP and focuses on calculations
of full error covariance matrices of the retrieved parameters as well as the char-
acteristics that are not directly retrieved, but can be calculated based on the
retrieved parameters. The chapter also introduces GRASP and describes its two
main modules: the forward model and the numerical inversion.

• The fourth chapter describes the evaluation of the error estimates through differ-
ent numerical tests using synthetic ground-based observations. At the beginning,
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this chapter presents the concept of the numerical test and the methodology em-
ployed for evaluation of the accuracy of the estimates produced for the diagonal
elements of covariance matrices. Specifically, it discusses the selection of the
observations for tests, the assumptions used for the generation of the synthetic
observations, the random and systematic errors, etc. Then, the chapter illustrates
and discusses the results of the evaluation of error estimates for all the numerical
tests which will include random and systematic errors. The effects of random
and systematic errors are analyzed for all considered situations. Finally, based
on the test results, an universal estimate accounting for both effects of random
and systematic uncertainties is recommended to use in practice. Additionally,
the chapter also includes the analysis of the error correlations structure using the
estimates of the non-diagonal elements of the covariance matrix.

• The fifth chapter demonstrates the application of the developed error estimate
methodology in practical applications. The GRASP code is used to retrieve
aerosol properties from the synergetic co-incident real observations of different
aerosols over Buenos Aires (Argentina) by lidar and sun/sky photometer. The
error estimates for the different retrieved parameters are illustrated and discussed.

• The sixth chapter presents the preliminary results of using GRASP error es-
timates to characterize aerosol properties retrieved from satellite observations.
The aerosol and surface retrievals from POLDER/PARASOL observations over
Mongu and Banizoumbou AEROENT stations are specifically considered. First,
the GRASP generated errors are analyzed using synthetic observations. The
performance of GRASP error estimates in the retrieved aerosol and surface pa-
rameters including AOD, SSA and BRDF were evaluated for the full 2008 year
of real POLDER/PARASOL observations.

• The last chapter contains the general conclusions and discusses the perspectives
of the overall study.
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Chapter 2

Remote Sensing and Aerosols

The study and understanding of atmospheric aerosols is of great importance due to
different factors. For instance, high aerosol concentrations produce a negative impact
on human health (Lelieveld et al. (2015)), on agricultural activity, as well as air traffic
(Kienle et al. (1990)) and tourism. Moreover, aerosols play an important role in the
atmosphere, thus one of the main reasons for aerosols interest is their influence on the
Earth’s climate.

This chapter provides a description of the atmospheric aerosols and some remote
sensing instruments used to monitor the atmosphere. The first part of the chapter
provides an overview of the types, sources, and effects of aerosols. It also includes an
introduction concerning the bases of light-matter interactions (scattering, absorption)
which allows to obtain information about optical and microphysical aerosol properties.
The second part of this chapter reviews the main instruments used along this thesis
and their physical principles: sun-photometer, lidar and satellite.

2.1 Aerosol Properties

Aerosols are the solid and liquid particles suspended in the atmosphere (Seinfeld and
Pandis (2006)). They are a very complex component of the atmosphere whose influence
depends not only on their loading, but also on their different physical, chemical and op-
tical properties. Aerosols can be classified according to different criteria. For example,
from their origin, they can be classified as natural (windborne dust, sea salt parti-
cles, volcanic emissions, biomass burning, etc) or anthropogenic (industrial emissions,
transportation sources, etc). According to the mechanisms of their formation, aerosol
particles are classified as primary, those which are emitted or injected directly into the
atmosphere, e.g. from the volcanoes, oceans, arid regions; and secondary, those are
formed through chemical reactions of gases or compounds present in the atmosphere.

On the other hand, the shape of aerosol particles is quite variable and may be
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irregular as shown at the top of Figure 2.1; but also their size distribution presents
high variability. Actually, aerosol size is also used as a property for aerosol classification,
since aerosols can be found from a few nanometers to several hundreds of micrometers
in the atmosphere. The aerosol size distributions are characterized by different size
modes (Fig. 2.1), considering the sources and their different transformation:

• Nuclei mode, whose particle diameter ranges from a few nanometers to 0.1 µm. It
includes combustion particles emitted directly into the atmosphere and particles
formed in the atmosphere by gas-to-particle conversion.

• Accumulation mode, which ranges between 0.1 µm and 2 − 2.5 µm, consists of
small particles that coagulate too slowly to reach the coarse mode. They are
combustion particles, smoke particles and coagulated nuclei mode particles.

• Coarse mode, whose particle diameter ranging from 2 − 2.5 µm. These particles
consist of windblown dust, large sea salt particles from sea spray and mechanically
generated anthropogenic particles such as those from agriculture and surface
mining. Because of their large size, the coarse particles readily settle out or
impact on surface, so their lifetime in the atmosphere is short (http://aerosol.
ees.ufl.edu/atmos_aerosol/section04-1.html)

Atmospheric aerosols play an important role in the Earth-atmosphere radiative
budget, affecting the climate through three well-known mechanisms splitted into three
different categories (King et al. (1999)). The first one is the direct radiative forc-
ing, whereby aerosols scatter and absorb the radiation altering the radiative balance
of the Earth-atmosphere system or, equivalently, the planetary albedo (Haywood and
Boucher (2000)). The second is the indirect radiative forcing, by which aerosols modify
the microphysical and hence the radiative properties and lifetime of clouds. This effect
could be separated in two groups: i) Twomey effect (Twomey (1975, 1977)), in which
the aerosol influences cloud formation by providing additional nuclei for droplet of ice
crystals growth (Boucher (1999)); and ii) Albrecht effect (Albrecht (1989)), in which
the aerosol effects change cloud lifetime and other cloud properties like liquid water
content and cloud top height. Finally, the indirect effects of aerosols on heterogeneous
atmospheric chemistry is characterized by aerosol particles that could modify the at-
mospheric temperature profile by absorbing aerosols, and then affecting the presence
of clouds. Detailed description of these definitions about aerosol climate effects can be
found in Haywood and Boucher (2000).

As a result of these processes and due to the large spatial and temporal variability of
aerosols in the atmosphere, aerosols constitute a key component of climate change and
a challenge to quantify, not only locally, but also in the global and annual mean. Its
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2.1. Aerosol Properties

Figure 2.1: Schematic graphic of size ranges of aerosols, given in function of their particle
diameter [µm], with their sources and particle formation and removal mechanisms from Zieger
(2011).

effects continue to be the factor that most contributes to generating uncertainty in the
climate radiative forcing according to the evaluations of the Intergovernmental Panel
on Climate Change (IPCC) (Boucher et al. (2013), Masson-Delmotte et al. (2021)).
Recent studies indicate that the effective radiative forcing of the aerosol is between −2.0
and −0.4 W/m2 with a likelihood of 90% (Bellouin et al. (2020)). This uncertainty is
still high, and therefore, the complete understanding of climate change would require a
better assessment of aerosol-cloud-radiation interactions. To this end, an improvement
of global observations from space and Earth in addition to better radiative models are
still needed.

Beyond the aerosol classification briefly presented in this introduction, the main
aerosol properties will be described in the next subsections since they are essential
to understand the aerosol role in the atmosphere. These properties can be separated
in two main groups: optical properties, which characterize the interaction particle-
radiation, and microphysical properties, which describe the morphology of the aerosols
such as size and shape.
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Figure 2.2: Schematic diagram with the different radiative mechanisms associated with
cloud effects taken from Haywood and Boucher (2000).

2.1.1 Microphysical Properties

As mentioned above, a description of aerosol morphology is possible from their shape
and size. In particular, atmospheric aerosols have shapes that are highly variable and
irregular. Few aerosol examples with quite different shapes are shown in Figure 2.3. A
brief description about the implementations used in GRASP algorithm will be provided
in the Chapter 3.

The size of the aerosol is also highly variable from different aerosol types. In Section
2.1, we have described the different size ranges and an overview of the processes that
generate particles in those ranges. It should be noted here that in normal conditions,
the aerosols we found in the atmospheric column are polydisperse; that is, they present
a wide range of sizes and may have quite different origins. To represent this variability
as a mathematical expression (mainly for the purpose of modeling) the so-called size
distribution is defined as:

n(r) = dN(r)
dr

(2.1)

where N(r) represents the number of particles in the atmospheric column whose
radius (or average radius for non-spherical particles) are between r and r + dr. In the
literature, the numerical size distribution is normally found in its logarithmic repre-
sentation n(lnr) = dN(r)

dr
.

Early aerosol studies showed that aerosol size distribution could be approximated
by the so-called Junge power function distribution (Junge (1955)). More recent analysis
showed that lognormal functions (Deshler et al. (1993); Jäger and Hofmann (1991))
could well characterize most of the observed real size distributions. The number of
particles n(r) in a lognormal distribution is represented as:
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Figure 2.3: Scanning electron microscope image of ambient air aerosols (extracted from
Benavent-Oltra (2019)).

n(r) = dN

d ln(r) = N0√
2π

1
ln σ0

exp

(
−(ln(r) − ln(r0))2

2 ln2 σ0

)
(2.2)

where r0 is the mode radius, σ0 is the standard deviation of the natural logarithm
of the radius and N0 is the total number of particles.

The more recent works have shown that the usage of both the volume of the par-
ticle (instead of number) and logarithmic scale in binning of the size distribution -
dV (r)/d ln r - helps to optimize the aerosol retrieval (e.g. Nakajima et al. (1996);
Dubovik and King (2000); Dubovik et al. (2011)). The volume distribution is chosen
since the light scattering by an ensemble of small particles depends on the particle
surface or volume rather on the number concentration. At the same time, the cross
sections show much smoother variability for equal relative steps ∆r/r (i.e. for equal
logarithmic steps, dr/r = dln(r)) than for equal absolute steps.

The volume size distribution of a lognormal distribution can be easy derived from
equation 2.2, and it takes the form:

v(r) = dV

d ln(r) = V0√
2π

1
ln σv

exp

(
−(ln(r) − ln(rv))2

2 ln2 σv

)
(2.3)

where V0 is the total aerosol volume per unit volume of the atmosphere, rv is the
mode radius for the volume size distribution and σv is the geometric standard deviation.
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More often the size distribution is defined as a sum of two components, bimodal size
distribution. Thus, from the mentioned above definitions it is also possible to represent
the multi-mode distribution by a sum of several lognormal distributions.

2.1.2 Optical Properties

When solar radiation enters the atmosphere, there is a process of absorption and scat-
tering due to the different atmospheric components that are suspended in it, such as
aerosol particles, water vapor and other atmospheric gases in greater or lesser per-
centages (ozone molecules, CO2, nitrogen oxides, etc.). Then, we can distinguish two
components in the radiation that reaches the earth’s surface, the direct component and
the diffuse component (the sum of both is called global radiation). The first follows
the direction of the sun, and only undergoes the process of attenuation or extinction
in that direction, and the diffuse one that comes from the scattering process of the
radiation with the components of the atmosphere and arrives from all directions in
space.

While absorption and scattering produced by gases are in general pretty well de-
scribed (Rayleigh scattering and absorption gases bands are well described and charac-
terized), there still remain some uncertainties concerning aerosol effects, as commented
in the introduction. To reduce these uncertainties, a better characterization of aerosol
optical properties would be needed since they are the main parameters which describe
aerosol absorption and scattering.

Note that aerosol absorption and scattering process are not completely indepen-
dent and they vary according to the optical and also microphysical characteristics of
the suspended particles. Both effects are mainly characterized by the the so-called
scattering efficiency factor (Qs) and absorption efficiency factor (Qa). In the case of
spherical particles1, both parameters are obtained directly from Mie’s theory and they
depend on the radius r of the particle, the refractive index m2 and the wavelength λ

of the incident beam. The sum of both gives the extinction efficiency factor:

Qe(r, m, λ) = Qa(r, m, λ) + Qs(r, m, λ) (2.4)

Then, the extinction, absorption and scattering cross section of a given particle are
represented as follows:

1For the case of non-spherical particles, Mie’s theory can not be directly applied and other tech-
niques such as T-Matrix are use to derive the corresponding cross sections (see for instance Mishchenko
et al. (2007))

2The complex refractive index is defined as m = n + ik, where, the real part n defines the speed
propagation of the electromagnetic wave in the medium, and the imaginary part k is related to the
aerosol absorption ability. Thus, the real refractive index can take values between 1.35 to 1.6 for the
visible and near-infrared, whereas the imaginary refractive index varies from values nearly to 0 to 0.1
(Kovalev and Eichinger (2004)).
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C(a)
e (r, m, λ) = πr2Qe(r, m, λ)

C(a)
a (r, m, λ) = πr2Qe(r, m, λ)

C(a)
s (r, m, λ) = πr2Qs(r, m, λ)

(2.5)

where superscript (a) denotes aerosol.
For N particles of the same refractive index with n(r) size distribution the extinction,

absorption and scattering cross sections (or also named directly as aerosol extinction,
absorption and scattering coefficients) are defined as follows:

σ(a)
e (m, λ) =

∫ ∞

0
πr2Qe(r, m, λ)n(r)dr

σ(a)
a (m, λ) =

∫ ∞

0
πr2Qe(r, m, λ)n(r)dr

σ(a)
s (m, λ) =

∫ ∞

0
πr2Qs(r, m, λ)n(r)dr

(2.6)

The relation between scattering and extinction coefficient is called the single scat-
tering albedo (SSA),

ω0 = σ(a)
s

σ
(a)
e

= σ(a)
s

σ
(a)
a + σ

(a)
s

(2.7)

The single scattering albedo is a key parameter for the estimation of the direct
radiative impact of the aerosols since it is a measure of the fraction of aerosol total light
extinction due to scattering and provides information about the absorption properties
of the aerosols. Therefore, it is a very important parameter to quantify the impact of
aerosols on climate. Purely scattering particles (e.g. sulphates, sea salt) exhibit values
∼ 1, while very strong absorbers (e.g. black carbon) can have values ∼ 0.2 (Dubovik
et al. (2002b); Schnaiter et al. (2003)).

On the other hand, we can define the aerosol optical thickness of an atmospheric
layer between the heights z1 and z2 as:

τ (a)
layer

(λ) =
∫ z2

z1
σ(a)

e (z, λ)dz (2.8)

with σe(z, λ) the value of the extinction coefficient at height z. If we refer to the
entire column atmospheric, then, the total aerosol optical depth, or just aerosol optical
depth (AOD), can be defined as the integration of the aerosol extinction coefficient of
the layers from the ground to the top of the atmosphere (TOA):

τ (a)(λ) = τa(λ) =
∫ T OA

0
σ(a)

e (z, λ)dz (2.9)

13



2. Remote Sensing and Aerosols

A parameter relating the spectral AOD to the particle size distribution, is the
Angstrom exponent:

α =
ln τa(λ1)

τa(λ2)

ln(λ1
λ2

)
(2.10)

calculated typically between 440 nm and 870 nm. It is a measure of differences of
AOD at different wavelengths. It tends to be inversely dependent on particle size;
higher values are generally associated with smaller aerosol particles. For example,
values larger than 1.5 indicate presence of fine particles, e.g. smoke particles and
sulphate, and smaller values (tends to 0) indicate the presence of coarse particles, e.g.,
desert dust.

The radiative effect of the rest of atmospheric components can be also characterized
through their extinction, absorption and scattering cross sections. Thus, the relation-
ship between the energy of the radiation field before and after the beam passes through
the atmosphere, taking into account the conservation of energy, can be described by
the total extinction coefficient (σ(total)

e or just σe). In this way, the variation in the in-
tensity of the radiation field dI for the atmosphere, after a light beam passed through
the medium without considering emissivity, is given by:

dI = −σem0Idz (2.11)

where dz is the infinitesimal thickness of the horizontal layer, I the intensity [Wm−2]
of the light beam and m0 is the optical mass of the incident beam which in the plane
parallel approximation can be considered as 1/ cos θ, where θ is the zenith angle corre-
sponding to the given path if θ < 75◦ (exact formulation for θ > 75◦ can be found in
Kasten and Young (1989)).

Solving this last equation, it is observed that this interaction is represented as an
exponential extinction or loss of energy as light propagates through the atmosphere
according to Beer-Bouguer-Lambert law:

I(z, λ) = I0e
−
∫ z2

z1
σem0dz (2.12)

where I0 is the intensity in z = z1, I is the intensity in z = z2, λ is the wavelength.
Similarly as we did it only for aerosols, we can define the total optical thickness as

follows

τ(λ) =
∫ z2

z1
σe(z, λ)dz (2.13)

And then we obtain that:

14



2.1. Aerosol Properties

I(z, λ) = I0e
−τm0 (2.14)

As we has aforementioned, the optical depth is affected by the contribution of
aerosols, molecules, gases. Thus, the corresponding values of aerosol optical depth
under cloud free conditions can be obtained by subtracting the contribution due to
Rayleigh scattering (τray) and gas absorption contribution (τabs), where:

τa = τ − τray − τabs (2.15)

Finally, note the scattering process modifies the state of polarization of the radiation
incident on a molecule or a particle. Thus, the amount of monochromatic radiative
power scattered by an elementary volume dV of the scattering medium into a solid
angle dΩ around the direction Θ is given by:

dĨ = σsF(Θ)IdV dΩ/4π (2.16)

where, F(Θ) is the 4x4 so-called normalized Stokes scattering matrix and it can be
represented as follow:

F(Θ) =



F11(Θ) F12(Θ) 0 0
F12(Θ) F22(Θ) 0 0

0 0 F33(Θ) F34(Θ)
0 0 F34(Θ) F44(Θ)


(2.17)

the element F11(Θ) = P11(Θ) is the well known phase function and expresses the
probability to have the scattered radiation to be distributed in any direction. This is
the simplified structure for i) an ensemble of randomly oriented particles each of which
has a plane of symmetry; ii) an ensemble containing an equal number of particles
in random orientation and iii) a group of randomly oriented particles with an equal
number of mirror particles (Lenoble et al. (2013)).

Note that I is the so called Stokes vector defined as:

I =



I

Q

U

V


= ε0c

2



ElE
∗
l + ErE

∗
r

ElE
∗
l − ErE

∗
r

ElE
∗
r + ErE

∗
l

iElE
∗
r − iErE

∗
l


(2.18)

where ε0 is the dielectric constant of vacuum, c is the speed of light in the vacuum,
the asterisk denote a complex conjugate value and l and r denote the parallel and
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perpendicular components to a reference plane, respectively. Moreover, the first Stokes
parameter I is the intensity; Q and U represent the linear polarization, and V describe
the circular polarization.

2.2 Remote Sensing Instruments

Remote sensing techniques offer the capability to continuously and automatically mon-
itor the atmosphere from the ground and space. The combination of these instruments
is also possible to take full advantage of the synergies; while satellites remote sensing
have demonstrated the potential of high spatial coverage and resolution, ground-based
aerosol remote sensing has the benefit of a higher accuracy since it provides wide an-
gular and spectral measurements of solar and sky radiation in key locations.

These instruments can also be classified as active or passive. The active remote
sensing instruments emit the energy and then it is collected after interacting with the
atmospheric particles. On the other hand, passive remote sensing instruments consist
of a detection system of natural light (for instance, the Sun or the Moon) that is
transmitted and scattered by aerosols in the atmosphere or reflected from the surface.

Remote sensing by ground-based sensors generally can provide accurate informa-
tion for aerosol characterization (Dubovik and King (2000)) but they provide aerosol
properties at local scale. In this regard, different networks have been deployed in the
world with the aim of providing global coverage. They are generally based on using the
same instruments and with established protocols for the measurements. Among the
most known ground-based networks are AERONET (Aerosol Robotic Network; Hol-
ben et al. (1998)) and SKYNET (Sky Radiometer Network, Nakajima et al. (2020)) of
ground-based photometric observations that provide aerosol column-integrated prop-
erties with high temporal resolution. On the other hand, some examples of lidar net-
works are MPLNET (Micro-Pulse Lidar NETwork, Welton et al. (2001)), EARLINET
(European Aerosol Research Lidar Network, Pappalardo et al. (2014)) and LALINET
(Latin American LIdar NETwork; Guerrero-Rascado et al. (2016); Antuña-Marrero
et al. (2017)) that provide information about aerosol vertical distribution. Particu-
larly, MPLNET and LALINET generally have also sun/sky photometers collocated to
provide complementary information. Thus, these networks provide valuable informa-
tion about aerosol properties which are commonly used to validate satellite observations
(for example as in Chen et al. (2020)).

On the other hand, satellite remote sensing provide global monitoring of aerosol
properties (Dubovik et al. (2019); Sayer et al. (2020)) showing improvements and rapid
and extensive developments in the last decades. An overview of single-view instruments
and those with multi-viewing capabilities will be described in a section below.
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Figure 2.4: AERONET available sites in the world taken from https://aeronet.gsfc.
nasa.gov/

The following sections provide a review about the sunphotometer, lidar and satellite
observations that have been used in this work.

2.2.1 Sunphotometer/AERONET network

As mentioned above, there are different ground-based networks that characterize tro-
pospheric aerosols. Particularly, the sun/sky photometer measurements provided by
AERONET are described in this section since this thesis involves the sunphotometric
observations within this network.

AERONET (AERosol RObotic NETwork, Holben et al. (1998)) is a federal network
that provides measurements of columnar AOD and aerosol properties for more than
25 years in more than 600 stations distributed in the worldwide (Figure 2.4). From
its beginnings in 1980, AERONET was established by NASA (Goddard Space Flight
Center, GSFC) (Holben et al. (1998)), and the University of Lille (PHOtometrie pour
le Traitement Operationnel de Normalisation Satellitaire - PHOTONS) (Goloub et al.
(2008)), and it continues to grow thanks to the efforts and collaborations from different
national agencies, institutes, universities, individual scientists, and partners.

The network relies on the standardization of its instrumentation, the specific cali-
bration and the free available data and retrieved products (https://aeronet.gsfc.
nasa.gov/). The standardized instrument is the Sun-sky photometer CE-318 cre-
ated by Cimel Electronique (some sites include the most recent model Sun Sky Lunar
CE318-T) which perform sun collimated direct beam irradiance measurements and di-
rectional sky radiance measurements at least within the spectral channels of 440, 670,
870 and 1020 nm.
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Moreover, AERONET provides different data quality levels: 1.0, 1.5 and 2.0. In the
previous AERONET Version 2 (operating from 2006-2019), Level 1.0 was defined as
prescreened data and Level 1.5 represented near-real-time automatically cloud-screened
data. After the calibration post-deployment, the data were reprocessed (assuming lin-
ear change rate in the calibration coefficients) and manually inspected, following a set of
criteria (http://aeronet.gsfc.nasa.gov/new_web/PDF/AERONETcriteria_final1.
pdf). If the data fulfill the criteria, they were raised to the Level 2.0 (quality assured
data). Since 2019 the new AERONET Version 3 (Giles et al. (2019); Sinyuk et al.
(2020)) is operational in the network. The main changes are: a) several modifications
in the cloud screening process (Level 1.5, see differences with Version 2 in Table 2.1) and
b) a fully automatic cloud screening and instrument anomaly quality controls which
eliminates the need for manual quality control by an analyst and increases the timeli-
ness of quality-assured data (https://aeronet.gsfc.nasa.gov/cgi-bin/draw_map_
display_inv_v3).

The data are distributed through the AERONET website, with a clear data policy
that must be accepted by the user before downloading data. The unique source of
data ensures that the latest version of the data processing is used. It must be noted
that AERONET remarks that only Level 2.0 data are quality assured for scientific
research. However this data level is only available when the instrument is returned to
the calibration facility after an operation period, therefore it may take months to have
it available. Applications that need near-real time data may use Level 1.0 or Level 1.5
data, but those need to be handled with care.
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2.2. Remote Sensing Instruments

Table 2.1: Summary of cloud-screening-related quality control changes from Version 2 to
Version 3 (extracted from Giles et al. (2019)).
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2.2.1.1 AERONET measurements:

AERONET measurements consist of direct sun measurements and sky radiances at
different wavelengths and in selected directions.

The direct solar radiation at the Earth’s surface is obtained pointing the sunpho-
tometer to the Sun. Thus, the monochromatic direct solar flux density (irradiance) at
each wavelength measured is described by the Beer-Bouguer-Lambert law (as shown
in the Eq. 2.14, and here integrated for the whole atmospheric column):

I0(λ) = I0(λ)e−m0τ [Wm2µm−1] (2.19)

where I0 is the solar irradiance incident on the top of the atmosphere, m0 is the
atmospheric air mass, a function of solar zenith angle θ given by m0 = 1/ cos θ, and τ

is the total optical thickness.
The direct sun measurements are performed at different wavelengths: 340, 380, 440,

500, 675, 870, 940, 1020 nm and 1640 nm which 940 nm channel is used to retrieve
precipitable water. These measurements are made every ∼ 5 to 15 minutes. Note that
1640 nm channel is only available in the so-called extended instruments.

AERONET also provides sky radiances in different scenarios: the almucantar and
principal plane geometries (Figure 2.5) (Holben et al. (1998); Kaufman et al. (2002);
Olmo et al. (2008)) and newest instruments also perform hybrid scan measurements
(Sinyuk et al. (2020)).

The sky radiances in the almucantar geometry are at 440, 675, 870 and 1020 nm
(nominal wavelengths with 380, 500 and 1640 nm added in newer instruments). These
measurements are made at optical air masses of 4, 3, 2 and 1.7 (solar zenith angle of
75, 70, 60, 54◦, respectively) in the morning and in the afternoon, and once an hour in
between as is explained by Sinyuk et al. (2020). This scan is performed at fixed view
zenith angle equal to the SZA with a varying azimuth angle ranging from ±3.50◦ to
±180◦, including sweeps in both directions from the Sun position. The average of the
radiances in these both sides allow the elimination of contaminated data by clouds, i.e.
when differences in radiances are more than 20% the data is not taken into account.

In the principal plane geometry the measurements are made at constant azimuth
angle while the zenith angle varies (in the solar principal plane) and the range of
scattering angles equal to the sum of the SZA and maximum view zenith angle, which is
set to 75◦, corresponding to a 15◦ elevation angle. Unlike the almucantar measurements,
the principal plane geometry does not present any symmetry with respect to the solar
position and, therefore, it is not easy to find a criterion to identify and detect sky
inhomogeneities. Moreover, this geometry is more strongly affected by assumptions
about aerosol vertical distributions than in almucantar geometry as was shown by
Torres et al. (2014).
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Figure 2.5: Almucantar (left) and principal plane (right) illustration geometries performed
in the AERONET network for the measurements of the sky radiances (extracted from Torres
et al. (2014).

An important aspect to mention is the relation between the scattering angle Θ,
the solar zenith angle θs and the observation angles θa and φp for almucantar and
principal plane, respectively. For almucantar measurements the scattering angle can
be expressed as cos(Θ) = cos2(θs) + sin2(θs) cos(φa − φs) and for the principal plane is
provided by cos (Θ) = cos (θp ∓ θs) (Nakajima et al. (1996)). As a consequence, the
maximum scattering angle that can be reached in almucantar geometries is ΘM = 2θs

and in the principal plane ΘM = θs + 90◦. Consequently, the information contained in
the radiance measurement critically depends on the geometry selected, especially for
small values of the solar zenith angle (Nakajima et al. (1996); Torres et al. (2014)).
In order to benefit of both geometries, the newest instruments have the capability to
perform the hybrid scan measurements of directional sky radiances. It allows additional
retrievals below 50◦ to 25◦ of SZA. More details can be found in Sinyuk et al. (2020).

AERONET provides from these measurements, optical and microphysical proper-
ties by the inversion algorithm (Dubovik and King (2000). Furthermore, it is important
to note that some improvements are expected in AERONET data accuracy since some
changes have been adapted with the new Version 3 processing algorithm (Giles et al.
(2019) and Sinyuk et al. (2020)).

2.2.2 Lidar measurements

In the previous section, the ground-based sunphotometer measurementes were de-
scribed which were capable of providing information of columnar aerosol properties.
This section presents some general aspects of the Lidar technique and its measurements,
which allows obtaining details height-resolved aerosols and cloud distributions.

Lidar is an acronym for LIght Detection And Ranging and consist in an active
instrument that has the ability to provide routinary range-resolved observations of
aerosols and their characteristics in the low-to-middle atmosphere from the return sig-
nal. Lidar systems operate on similar principles to those of RADAR (Radio Detection
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Figure 2.6: Illustration of monostatic lidar system scheme. (extracted from Lopatin (2013)).

And Ranging) but in the case of lidar, a laser pulse is emitted towards the atmosphere
in the ultraviolet, visible and near or middle infrared range.

Lidar systems consist in two mainly parts: receiver and transmitter. Figure 2.6
illustrates the scheme of the lidar system. It is described from a transmission system
that consists of a pulsed laser source that emits radiation into the atmosphere, a system
to receive scattered radiation by the atmosphere, based on a telescope, and, finally, a
spectral selector and detection system radiation received.

The emitted radiation from the beam interacts with the molecules and particles
suspended in the atmosphere as explained in previous section. The radiation is partly
scattered in all directions and absorbed from the atmospheric constituents. A portion
of the light is scattered back toward the lidar system which is collected by a telescope
and directed to a photodetector that measures the amount of backscattered light as
a function of distance from the lidar. The mathematical equation that represent the
scattered light collected after the interaction between the laser with the atmospheric
constituents is known as lidar equation:

P (λ, h) = P0(λ) A/h2 c∆t/2 η O(h) β(λ, h) exp

(
−2

∫ h

0
σe(λ, h′)dh′

)
(2.20)

where P is the received backscattered power at time t, with t being the time it takes
for the laser pulse to propagate at the speed of light c to a height h (with t = 2h/c). P0

is the emitted laser power, A is the receiver effective area and A/h2 is the solid angle
into which photons are backscattered. ∆t is the laser pulse duration and c∆t/2 is the
effective pulse length, η is the efficiency system, O(h) is the overlap factor that describe
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2.2. Remote Sensing Instruments

the fraction of the signal covered between the transmission and reception channels,
β(λ, h) = βa(λ, h) + βg(λ, h) is the backscatter coefficient of the atmospheric layer at
altitude h, and σe(λ, h) = σ(a)

e (λ, h) + σ(g)
e (λ, h) is the spectral extinction coefficient,

where σ(a)
e , σ(g)

e and βa, βg are the coefficients of aerosol and molecular extinction and
backscatter correspondingly. Note that equation 2.20 is valid under single-scattering
approximations, i.e, when time of light interaction with the media is small as well as
duration of the sounding pulse, and both these periods are smaller than time between
two sequential scatter acts.

From equation 2.20, we may define the lidar constant as:

C = P0 η c∆t/2 A (2.21)

which describes the lidar operational capabilities, which contains the laser pulse,
the qualities of the receiving optics, and any signal losses or gain over time.

An useful expression in lidar applications is the so-called range corrected signal
(RCS), defined as:

RCS(λ, h) = P (λ, h)h2 (2.22)

generally used to visualize the vertical structure of the atmosphere in the measure-
ment time.

Finally, a property widely used in the field of lidar measurements is the aerosol
Lidar Ratio (LR), which is defined as:

LR(z) = σ(a)
e (z)
βa(z) = 4π

ω0 P11(π) (2.23)

where P11(π) is the phase function at 180 degrees. LR depends on the type of
aerosols and may vary with the altitude due to aerosol variability at different heights.
The value of the lidar ratio may be different for the several types of aerosols (e.g. Evans
(1988); Ackermann (1998); Barnaba and Gobbi (2001, 2004)). Even these values can
change for the same type of aerosol according to the variation of the atmospheric
properties such as, the dimension, the refractive index, shape, chemical composition
and humidity content (Barnaba and Gobbi (2001)).

2.2.3 Satellite remote sensing

In addition to ground-based instruments, which provide very high-resolution informa-
tion in a local scale, the study of the atmosphere and its dynamics is widely studied
from remote sensing from space. In this section we introduce some generalities about
satellite observations and their progress over time and a brief description of POLDER
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Figure 2.7: Spatial distribution of 0.1◦x0.1◦ seasonal AOD (550 nm) from PARASOL
(GRASP/HP) products. DJF: December-January-February; MAM: March-April-May; JJA:
June-July-August; SON: September-October-November (extracted from Chen et al. (2020)).

since they are the observations used in this work.
The use of satellites to monitor aerosols is an important tool for improving our

understanding of aerosol properties as it has the advantage of providing routine mea-
surements on a global scale. For example, Figure 2.7 shows the seasonal AOD product
provided by GRASP algorithm for a global coverage from PARASOL, which was ex-
tracted from Chen et al. (2020).

Monitoring aerosols from space has been performed for over the past decades. A
number of passive satellite instruments have been used to retrieve global distributions
of tropospheric aerosol properties (King et al. (1999)). For example, since 1978 the
AVHRR (Advanced Very High Resolution Radiometer) instrument has been operating
on the NOAA POES platforms, which is one of the most used for aerosol optical
thickness retrieval. TOMS (Total Ozone Mapping Spectrometer), initially launched
in 1978, which has two channels sensitive to ultraviolet light, it is especially sensitive
to absorbing aerosol particles, both over land and ocean (Hsu et al. (2000); Torres
et al. (2002)). Moreover, GOME (Torricella et al. (1999); Carboni (2006)) was an
atmospheric chemistry sensor, some of their objectives were the measurement of total
column amounts, and stratospheric and tropospheric profiles of ozone on a daily basis
as the investigation about the distribution of atmospheric aerosols and clouds-plus-
surface spectral reflectance. Another instrument was the SeaWiFS (Sea-viewing Wide
Field-of-View Sensor, Wang et al. (2000)), launched in August 1997, optimized for
ocean color measurements which had 8 spectral bands from 412 to 865 nm. The first
sensor designed for aerosol retrievals was POLDER (Polarization and Directionality of
the Earth’s Reflectances, Deschamps et al. (1994)) which will be further developed in
more detail below.

Furthermore, on the TERRA satellite two instruments measure global aerosol con-
centrations and properties since 2000: MODIS (Moderate-resolution Imaging Spectro-
radiometer, King et al. (2003)) and MISR (Multi-angle Imaging SpectroRadiometer,
Diner et al. (1998)). The first of these instruments, MODIS, consist in a 36-band spec-
troradiometer with moderate spatial resolution (250 − 1000 m) which adopted eight
channels to retrieve aerosol properties in cloud-free pixels with appropriate surface fea-
tures (Martins et al. (2002); Li et al. (2005); Remer et al. (2005); Hsu et al. (2006)).
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2.2. Remote Sensing Instruments

Table 2.2: Summary of major satellite measurements currently available for the aerosol
products.

Moreover, due of the simplicity of the dark ocean surface, and wide spectral range, it has
the capability of retrieving AOD with a relative high accuracy of ±0.03 ± 0.05 accord-
ing to evaluation with AERONET (Chu et al. (2002); Remer et al. (2002, 2005); Levy
et al. (2010)). The second one, MISR, has a wide range of along-track view angles that
allow more accurate evaluation for the surface contribution to the TOA radiances. It
detects the reflected light by the surface at different viewing angles along the satellite’s
track in a narrower spectral range (0.44−0.86 mm). Additionally, ATSR (Along Track
Scanning Radiometer) uses a mixed approach between viewing directions, as mentioned
before in MISR, but also a wider spectral range (0.55 − 1.65 mm) to derive the aerosol
concentration and type (Veefkind et al. (2000); Grey et al. (2006)). An instrument
that continues the TOMS record for total ozone and other atmospheric parameters
related to ozone chemistry and climate is OMI (Ozone Monitoring Instrument, Torres
et al. (2002)). It is a hyper-spectral instrument with spectral bands extending from
270 to 500 nm frequently used to characterize aerosol transport (Moulin and Chiapello
(2004); Li et al. (2009a); Yu et al. (2012, 2013)). SCIAMACHY (SCanning Imaging
Absorption spectroMeter for Atmospheric CHartographY, Gottwald et al. (2006)) is an
spectrometer that operated in the wavelength range between 240 and 2380 nm, whose
primary objective was the global measurement of various trace gases in the troposphere
and stratosphere. Their large wavelength range is useful for the observation of clouds
and aerosols (https://www.sciamachy.org/).

A summary of some of the major passive satellite measurements available for the
tropospheric aerosol characterization are provided in Table 2.2.
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As a result of these efforts several global climatologies are provided (Mishchenko
et al. (1999); Higurashi et al. (2000); Ignatov and Stowe (2000); Torres et al. (2002);
Kahn et al. (2005); Remer et al. (2005)) whose represent generally the same aerosol
characteristics such as optical thickness and particle size.

It is clear that over the past decade, satellite aerosol retrievals have become increas-
ingly sophisticated and they provide several improvements. Spaceborne instruments
measure the angular dependence of radiance and polarization at multiple wavelengths
from UV to the infrared (IR) at fine spatial resolution. Thus, information about par-
ticle size properties, over both ocean and land, has been provided in addition to the
AOD. Furthermore, some works, such as Remer et al. (2005) and Kahn et al. (2005),
show that the accuracy for AOD measurements from these sensors is about 0.05 or 20%
of AOD and somewhat better over dark water. Unlike AOD, the aerosol microphysical
properties (as aerosol mass types) generally present low accuracy.

2.2.3.1 POLDER/PARASOL observations

POLDER is a radiometer with wide field of view imaging that provides systematic
measurements of spectral, directional and polarized properties of the solar radiation re-
flected by the Earth/atmosphere system (https://www.icare.univ-lille.fr/parasol/
mission/). This instrument is on board of the PARASOL (Polarization and Anisotropy
of Reflectances for Atmospheric science coupled with Observations from a Lidar) micro-
satellite which is part of A-Train formation.

POLDER/PARASOL observations consist of spectral information of angular dis-
tribution of both reflected total radiances, I, and polarized components, of the Stoke
vector Q and U , representing the solar radiation reflected to space. These total radi-
ance are provided in 6 windows channels (0.44, 0.49, 0.565, 0.675, 0.87 and 1.02 µm)
and the polarized components in three of these channels (0.49, 0.675 and 0.87 µm).
The observations are made in up to 16 viewing directions, that may cover the range of
scattering angle Θ from 80 to 180 degrees. In the polarized channels, besides the total
reflected radiance, I, the measurements provide the Stokes parameters Q and U referred
to axes perpendicular and parallel to the local meridian plane, i.e. Q = Ip cos (2α) and
U = Ip sin (2α) where Ip is the polarized component of reflected radiance and is the
angle between the meridian plane and the polarization direction.

The set of all these observations provides a very interesting basis for a better char-
acterization of aerosols on a global scale. Therefore, for the interpretation of this
information it is necessary to use different methodologies such as look-up table based
algorithms or inversion algorithms. For example, the POLDER / PARASOL retrieval
algorithm based in look-up tables, use the total and polarized radiances at 670 and
865 nm to retrieve total AOD (Deuzé et al. (1999)) over ocean. On the other hand,
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over land (Deuzé et al. (2001)) the operational aerosol retrieval is based only on the
polarized measurements at the same two wavelengths.

This methodology has provided aerosol retrievals from POLDER observations, but
one of its shortcomings is that it does not use all the available information. In this
regard, GRASP algorithm has been developed and adapted to use the complete set
of POLDER/PARASOL observations for operational processing. It use both total
radiances and linear polarization in all the spectral channels (when it is available)
and it has the capability to retrieve a large number of parameters (Dubovik et al.
(2011, 2014)). The retrieved products can be founded in http://www.grasp-open.
com/products/ and their evaluation and validation was provided by Chen et al. (2020).

2.3 Conclusions

In this chapter the basic theoretical concepts necessary in this thesis were described.
A first part presents the different types of aerosols, their effects and the associated
radiative mechanisms since they are the most variable component of the atmosphere
that affect air quality and climate change. However, to understand the aerosol it is
important to know not only the aerosol classifications but also their properties. This
chapter has presented and described these characteristics: optical, which characterize
the interaction particle-radiation, and microphysics, which describes the morphology
of the aerosols such as size and shape.

Furthermore, in order to study these aerosols suspended in the atmosphere, different
remote sensing techniques were presented. Ground-based measurements, like sun/sky
photometer measurements and lidar which provide information in high resolution at
local scale. Moreover, satellite measurements were described which provide information
at global scale. All these remote sensing techniques make use of the result of the
particle-radiation interaction allowing us to have valuable information to improve the
understanding about the atmosphere.
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Chapter 3

Inverse Modeling and Error
Estimates in GRASP

One of the key challenges in implementing remote sensing is the development of the
retrieval algorithms which have significantly advanced during the last decades. While a
significant need led to a further advance, there are still various aspects of the retrieval
algorithms to be studied. One of the most challenging and important tasks is the
evaluation of the errors in the retrieval products.

Different algorithms provide aerosol properties, but in most of them the quality of
the retrieval uncertainty estimates has not been routinely assessed (Sayer et al. (2020)).
GRASP (Generalized Retrieved Atmosphere and Surface Properties) algorithm is one
of the first algorithms to provide dynamic error estimates for the retrieved properties
using several instruments based on statistical optimization approach of LSM.

Therefore, a brief description of the physical and mathematical bases of GRASP
is presented in this chapter in order to get a better understanding of the algorithm.
GRASP code is characterized by two main modules: forward model and numerical
inversion. The chapter will mainly focus in the numerical inversion, since it provides
the mathematical theory necessary for understanding error estimates.

The last part of this chapter describes the formal error propagation technique im-
plemented in GRASP algorithm as a part of this thesis. This section begins by citing
the state of the art of error estimates for aerosol properties, referencing some different
methodologies developed up to now, and presenting their advantages and disadvan-
tages.

3.1 Overview of GRASP

GRASP (Generalized Retrieval of Atmosphere and Surface Properties) algorithm is
a rigorous, versatile and open-source algorithm capable of providing information of
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the aerosol properties from measurements of different instruments and dynamic error
estimates (Dubovik et al. (2011, 2014, 2021)). It is a flexible, generalized algorithm
that relies on two independent modules: the forward model and the numerical inver-
sion. The forward model contains the full description of the physical model including
various interactions of electromagnetic solar radiations, such as aerosol scattering, sur-
face reflectance and gaseous absorption. The multiple scattering interactions in the
atmosphere are accounted by solving the vector of radiative transfer equation. Thus,
GRASP forward model is capable of simulating diverse measurements in laboratory and
atmosphere remote sensing including passive and active observation from space and
ground. On the other hand, numerical inversion is not directly related to any physical
problem and realizes formal inversion of the measurements using statistical estimation
approach. Specifically, GRASP employs the Multi-term Least Square Method (LSM)
that allows for a flexible utilization of multiple a priori constraints. This approach is
very convenient for designing diverse remote sensing retrievals as discussed in details
by Dubovik et al. (2011) and as will be described in next section.

The retrieval error estimates in GRASP are calculated by modelling propagation
of measurement errors based on statistical estimation approach. In addition, the for-
mulation used for estimating errors account for some contribution of systematic errors.
These could be originated from biases in the measurement or from some modifica-
tions implemented in the algorithm for improving retrieval convergence of non-linear
solutions.

In the following sections there is a description of the used forward model in GRASP,
of the numerical inversion and of the overall concept and specific key implementations
of the errors estimates in GRASP algorithm.

3.1.1 Forward model in GRASP

The forward model in GRASP algorithm is developed in a rather universal way and
contains all the necessary elements for the simulation of the inverted remote sensing
observations. It consists from several distinct modules such as multiple scattering,
aerosol single scattering columnar/volume properties, aerosol vertical profile, surface
reflectance and gas absorption calculations; which have been described in different
works (e.g., Dubovik et al. (2011); Lopatin et al. (2013); Dubovik et al. (2021); Lopatin
et al. (2021); Derimian et al. (2016); Torres et al. (2017), etc.) for diverse applications,
and particularly Dubovik et al. (2021) and Lopatin et al. (2021) explain in detail. In
this section, some general aspects are described about radiative transfer, modeling of
aerosol properties and surface in GRASP.
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3.1. Overview of GRASP

Figure 3.1: Main modules of the forward model and its connection with the numerical
inversion in the GRASP algorithm (extracted from Dubovik et al. (2021)).

3.1.1.1 Radiative Transfer vector

This module is the responsible to resolve the complex problem of the interaction of
radiation field with scattering-absorbing-emitting medium, where the photons are sub-
mitted to multiple scattering.

In GRASP, the multiple scattering effects are estimated by the successive order of
scattering radiative transfer algorithm as is described in Lenoble et al. (2007). As was
shown by Hansen (1971) the radiation properties measured by passive remote sensing
exhibit negligible circular polarization of the electromagnetic field. Thus, assuming
plane-parallel atmosphere the code provide full information about the radiative field
including I, Q and U Stokes parameters.

This code allow the calculation of the radiance for several aerosol components which
are described by defined vertical profile of spectral extinction and altitude independent
phase matrix and single scattering albedo. The vertically invariant for both phase ma-
trix and single scattering albedo are driven by: the size distribution giving the aerosol
particle volume in the total atmospheric column per unit of surface area [µm3/µm2];
the complex refractive index n(λ) and k(λ); and the fraction of the spherical par-
ticles Csph. Moreover, to account for the vertical variability of aerosol extinction is
used the vertical distribution of aerosol concentration c(h) as an additional normalized
functional characteristic.

Details about the implementations in radiative transfer code such as the reduction
of computation time without any significant loss of retrieval accuracy can be founded
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in Dubovik et al. (2011) and Dubovik et al. (2021).

3.1.1.2 Aerosol Single Scattering

One of the most elaborate modules in GRASP is the aerosol single scattering. This
allows modeling the optical properties of aerosols from different possibilities.

The atmospheric aerosols can be modeled as a mixture of small polydisperse parti-
cles of different shapes and composition (Dubovik et al. (2006)) for all remote sensing
applications. Specifically, the optical properties of homogeneous layer of aerosol are
defined by layer scattering and extinction optical thickness and by the elements of the
scattering matrix Pii′(λ; Θ; h) that can be modeled with one or several aerosol compo-
nents using the microphysical properties of each component (Dubovik et al. (2021)).

For the different applications, aerosol in GRASP is usually modelled as external
mixture of k aerosol components. Thus, the main equations that provide the aerosol
radiative properties in a particular atmospheric layer (defined between hmin and hmax)
is given by:

τscat/ext(λ) =
K∑

k=1

 hmax∫
hmin

ln εmax∫
ln εmin

ln rmax∫
ln rmin

C
(a)
s/e(nk(λ); kk(λ); h; ε; r)

V (r)

dVk(h)
dh

dNk(ε)
d ln ε

dVk(r)
d ln r

dh d ln ε d ln r

) (3.1)

and

τscatPij(λ; Θ) =
K∑

k=1

 hmax∫
hmin

ln εmax∫
ln εmin

ln rmax∫
ln rmin

Cij(nk(λ); kk(λ); h; ε; r; Θ)
V (r)

dVk(h)
dh

dNk(ε)
d ln ε

dVk(r)
d ln r

dh d ln ε d ln r

) (3.2)

where τscat/ext is the aerosol scattering/extinction optical depth of the layer, λ de-
notes wavelength, Θ denotes scattering angle, ε denotes axis ratios of spheroid (ε = a/b,
a - axis of spheroid rotational symmetry, b - axis perpendicular to the axis of spheroid
rotational symmetry) and r is the radius of the equivalent sphere. V (r) is the volume
of particle with radius r and Cs/e(nk(λ); kk(λ); h; ε; r), Cij(nk(λ); kk(λ); h; ε; r; Θ) are
cross sections of scattering/extinction and directional scattering corresponding to ma-
trix elements Pij(Θ) of an aerosol particle. Each of kth aerosol components may have
different size distribution dVk(r)

d ln r
, shape distribution dNk(ε)

d ln ε
, real refractive index nk(λ),

imaginary refractive index kk(λ) and vertical profile dVk(h)
dh

.
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All these characteristics that defined each aerosol component, mentioned in the
equations 3.1 and 3.2, can be modeled using different approaches. We will comment
these ideas in the following paragraphs

Complex refractive index: One important property obtained in different GRASP
applications is the complex refractive index that can be defined from different strategies.
For example, the spectral values nk(λ) and kk(λ) are retrieved for each wavelength in
similar way as it is realized for AERONET (Dubovik and King (2000) and POLDER
(Dubovik et al. (2011)) retrievals; another possibility is a utilization of modeling of n(λ)
and k(λ) by assuming aerosol as a mixture of several K components mixed internally
as is described by Li et al. (2019). Also, another possibility is assumed the complex
refractive index and fixed it for each aerosol component.

Volume size distribution: The most general representation of size distribution is a
superposition of several base functions:

dVk(r)
d ln r

=
Nr∑
i=1

ck
i vi(r) (3.3)

where vi(r) are fixed functions (so-called ’bins’) and ck
i are the weights of corre-

sponding bins that are retrieved. These fixed functions can be represented as a super-
position of triangular bins, or log-normal bins, also it can be represented as a bi-modal
log-normal approximation of the size distribution or using the fixed shape of size distri-
bution. These base functions can vary depending on the situation. For example, if we
compare between AERONET retrievals or satellite retrievals, in the first case there is
a rather high information content regarding the size distribution, which uses 22 bines
(Dubovik and King (2000)), while in the satellite retrievals the information content of
reflected radiation is lower and therefore a smaller number of bins is used (Dubovik
et al. (2011)).

Vertical profile of volume concentration: The double integral concerning the volume
respect the radius and the height in equations 3.1 and 3.2 should give the total volume
concentration for each aerosol component. The aerosol parametrization in GRASP
considers that the volume size distribution is independent on the height and, typically
normalized to the total volume concentration for each aerosol component (i.e. sum
of all ck

i vi(r) defined in equation 3.3 equal to the total volume concentration for each
aerosol component). Therefore, the function dVk(h)

dh
in equation 3.1 and equation 3.2 is

implicitly a normalized function:

hT OA∫
hBOA

dVk(h)
dh

dh = 1 (3.4)

The function can be defined in different ways: exponential profile, Gaussian profile
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or as a superposition of triangular bins. For computation purposes, it can also be
discretized in layers, with the same ∆ h1, where the volume concentration in each layer
is considered constant:

hj+1∫
hj

dVk(h)
dh

∼ Ck,j
v (3.5)

And therefore, the normalization that has been fore-mentioned in equation 3.4 takes
the form:

hT OA∫
hBOA

dVk(h)
dh

dh ∼ ∆h
H∑

j=1
Ck,j

v = 1 (3.6)

where H means the total number of layers considered and superscript j refers to
a certain layer. We insist in the idea that even if the concentration may change from
one layer to another, the rest of aerosol properties of the component, which includes
refractive indices and size distribution, remains constant.

Aerosol shape distribution: In the equations 3.1 and 3.1, the aerosols are approx-
imated as spheroids (Mishchenko et al., 2002). As discussed by Mishchenko et al.
(1997), the usage of r and ε is convenient for separating the effect of particle shape
and size in analysis of aerosol mixture light scattering. Then the functions dV (r)

d ln(r) and
dn(ε)
d ln(ε) denotes the volume distribution of the spheroids and the number particle shape
(axis ratio) distribution accordingly. On the other hand, Dubovik et al. (2006) have
demonstrated that the particle shape distribution

(
dn(ε)
d ln(ε)

)
for the non-spherical frac-

tion of any tropospheric aerosol can be approximated as constant over the particle size
distribution. Thus, the shape distribution is represented by two components of purely
spherical particles and not spherical with an assumed shape distribution as described
in detail by Dubovik et al. (2006). This assumption simplifies equation 3.1 and the
aerosol extinction is calculated for the retrieval as a mixture of spherical and non-
spherical fractions. Moreover, in order to perform fast and accurate calculations, and
using the consideration of volume distribution in equation 3.3, and the considerations
concerning the volume concentration variation with height in equation 3.6, the inte-
grals are replaced by sums of pre-calculated kernels. The aerosol optical depth due to
the k component at the layer j can be obtained as follows:

1The code also allows to use a logarithmic scale for the altitude. In that case, the discretization
defines layers where ∆ ln (h) is constant. This approach is quite interesting since we obtain a better
description of lower layers when typically we have more accurate information. In order to synthesise,
in this thesis we have only done the mathematical developments in natural scale and supposing that
concentration are constant in layers with the same ∆ h. The developments using logarithmic scale
can be gained in Lopatin et al. (2013) and Dubovik et al. (2021).
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τ k,j
a (λ) =τ k,j

sph(λ) + τ k,j
nons(λ) =

∑
i=1,...,Nr

(
Ck

sphKsph
τ (λ, k, n, ri)

+(1 − Ck
sph)Knons

τ (λ, k, n, ri)
)
·ck

i vi(r) · Ck,j
v

(3.7)

where Nr is the number of bins used to represent the size distribution, Csph is the
fraction of the spherical particles and Ksph

τ and Knons
τ are the kernels for spherical

and non-spherical particles respectively. The total aerosol optical depth due to all the
components in the whole column is obtained by the sum:

τa =
K∑

k=1

H∑
h=1

τ k,j
a (3.8)

where the τ k,j
a are be defined as:

τ k,j
a = τ k

a Ck,j
v ∆h (3.9)

and then the optical depth of a layer would correspond to:

τ j
a =

K∑
k=1

τ k
a Ck,j

v ∆h (3.10)

The complete information about the forward model and the detailed calculation of
the kernels can be gained in Dubovik et al. (2006, 2011).

Note that so far we have intentionally done the whole description by layers instead
of just limiting our developments to the estimation of aerosol properties integrated in
the column. This effort has been done to show that several characteristics provided
from different lidar observations can be easily modeled in GRASP. For example, the
expression for the aerosol component of extinction σa(λ) of a certain layer is obtained
by:

σ(a)
e (λ; hj) = 1

∆h

K∑
k=1

τ k,j
a =

K∑
k=1

τ k
a (λ)Ck,j

v (3.11)

where hj refers to the average altitude of the layer j and ∆h the height of the layer.

Equally the backscatter profiles βa(λ) can be calculated as:
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βa(λ, hj) = 1
4π

σ(a)
s (λ; hj)P k

11(λ; 180◦)

= 1
4π∆h

K∑
k=1

τ k,j
sca(λ)P k

11(λ; 180◦)

= 1
4π

K∑
k=1

τa(λ)kωk
0Ck,j

v P k
11(λ; 180◦)

(3.12)

Moreover, the profile of the lidar ration could be obtained as:

Sa(λ; hj) = σ(a)
e

βa
=

4π
K∑

k=1
τa(λ)kCk,j

v

K∑
k=1

τa(λ)kωk
0Ck,j

v P k
11(λ; 180◦)

(3.13)

3.1.1.3 Surface Reflectance

In GRASP code is also modeled the surface reflectance characteristics. A bidirectional
reflectance distribution function (BRDF) and bidirectional polarization distribution
function (BPDF) are used to model the effects of surface reflectance.

There are different models to calculate these characteristics. For example, the Cox
and Munk model (Cox and Munk (1954)) is implemented for the reflective properties
of ocean surface which estimate the Fresnel reflection on the agitated sea surface.

On the other hand, because refelctance over land can vary from one location to
another, a key aspect is the correct determination of appropriate surface reflectance
model and appropriate parameters. There are different models to study the effect of the
directionality of land surface reflectance, for example: the semi-empirical Ross-Li model
(Ross (1981); Li et al. (1992); Roujean et al. (1992); Wanner et al. (1995)), Rahman-
Pinty-Vestarte (RPV) model (Rahman et al. (1993)), physically-based models for bare
soil and vegetated surfaces (Litvinov et al. (2012)) as well as physically-based models
for snow and ice (Kokhanovsky and Zege (2004); Kokhanovsky and Breon (2012)).

In GRASP algorithm the included BRDF and BPDF models are capable to re-
produce reasonably the surface total and polarized reflectance (Maignan et al. (2004,
2009); Litvinov et al. (2011a,b)). The implemented models in GRASP have been used
with different purposes, for example, for interpreting observations by MISR, MODIS,
POLDER and other instruments as is shown by Justice et al. (1998), Martonchik et al.
(1998), Govaerts et al. (2010) and Wagner et al. (2010).

Furthermore, for global processing of different remote sensing measurements (PARA-
SOL, MERIS, OLCI, S5p/TROPOMI and other), GRASP has been used the combi-
nation of Ross-Li sparse BRDF model (Ross (1981); Li et al. (1992); Wanner et al.
(1995)) and one parametric Maignon-Breon model (Maignan et al. (2009)). These have
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3.2. GRASP numerical inversion

allowed an optimal balance between speed, accuracy linearity and number of parame-
ters. Nevertheless, other possible combinations of different BRDF and BPDF models
are possible in GRASP algorithm and are always the subject of the studies on increasing
retrieval performance.

3.2 GRASP numerical inversion

As it has been seen in Chapter 2, remote sensing measurements have been increasing
over the last decades. There are several instruments and physical models capable
of providing different information about, for example, the aerosol suspended in the
atmosphere. Thus, numerical inversion methods provide mathematical tools that allow
estimating the parameters which characterize a physical system from observed data and
a priori information.

However, the theory of the inversion problem allows to estimate more than just the
parameters of the model. It can be used to estimate the quality of their retrievals, to
establish which parameters, or which combination of them is the best suitable (consid-
ering the information contain), as well as give the basis to provide error estimates of
the retrieved parameters.

The inversion is particularly crucial and demanding for interpreting high complexity
measurements where many unknowns should be derived simultaneously. Moreover,
there are different important aspects of inversion optimization such as accounting for
errors in the data used, inverting multi-source data with different levels of accuracy,
accounting for a priori and ancillary information, estimating retrieval errors, clarifying
potential of employing different mathematical inverse operations.

Thus, in the following sections are described some general aspects about numerical
inversion in GRASP algorithm.

3.2.1 Introduction to numerical inversion based on statistical
optimization concept

By using measurements of remote sensing instruments, commonly the number of mea-
surements (Nf ) are greater than the number of parameters to be calculated (Na),
i.e. the amount of physical information increases. This redundancy of information
(Nf > Na) allows the use of optimization methods to find the solution to the problem,
i.e. those methods that allow us to minimize uncertainties in the presence of random
noise in the measurements.

The Multi-term LSM employed in GRASP searches for the solution using statisti-
cally optimized fitting under multiple a priori constraints (Dubovik (2004);
Dubovik et al. (2011, 2021)). It considers both measurements and a priori data in
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similar manner considering them as a data from different and independent data sources
i.e.:

f∗
k = fk(a) + ∆f∗

k (3.14)

where k denotes different data sets, f∗
k is a vector of the measurements, fk(a) is a

physical model, a is a vector of unknowns parameters and ∆f∗
k is a vector of uncertain-

ties associated to the measurements (i.e. ∆f∗
k = f∗

k − f real
k ). This vector of error may

have two components, systematic and random according to whether they are constant
between consecutive measurements, or vary randomly:

< ∆f∗
k rand >= 0 and < ∆f∗

k sys >= bk (3.15)

where bk is the average systematic error or so-called bias.
Thus, it is possible to apply the statistical properties of the random errors charac-

terized by the Probability Density Function P (∆f∗
k ) (PDF) to improve the solution â.

Then, considering an adequate physical model f∗
k real = fk(areal), it is possible to write:

∆f̂∗
k = f∗

k − fk(â) (3.16)

where ∆f∗
k ≈ ∆f̂∗

k if â ≈ areal.
If a known probability distribution is assumed, it is possible to obtain the informa-

tion of the statistical properties and the best solution will be the most probable error
realization, i.e. PDF maximum:

P (∆f̂∗
k ) = P (f(â) − f∗) = P (f(â)|f∗) = max (3.17)

that is the known Method of Maximum Likelihood, which provides statistically
the best solutions in many senses (Edie et al. (1971)). The approach is useful for
optimum data combination, optimum use of a priori information, continuous solution
space, rigorous error estimates, etc. Thus, as is explained by Dubovik et al. (2000) and
Dubovik et al. (2021), focusing the features of method of maximum likelihood (MML),
the solution is:

• asymptotically non-biased < â >→ areal;

• asymptotically consistent â → areal;

• asymptotically efficient, i.e. variance of â converges to the smallest possible value;

• and â has asymptotically normal distribution âN −→N→∞ N
(
areal, I−1

â

)
where

Iâ is a Fisher information matrix.
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3.2. GRASP numerical inversion

Equation 3.14 show the different k data set that are not correlated and may have
different levels of uncertainties described by different covariance matrices Ck. Such
explicit differentiation of the input data makes the retrieval more transparent because
it clearly identifies the different used data sets. Correspondingly joint probability
density function (PDF) of independent data sets f∗

1 , f∗
2 , ·, f∗

K can be obtained by the
simple multiplication of the PDFs of data from all K sources:

P(f(a)|f∗) = P(f1(a), . . . , fk(a)|f∗
1 , . . . , f∗

k )

=
K∏

k=1
P(fk(a)|f∗

k )

≈ exp

(
−1

2

K∑
k=1

(fk(a) − f∗
k )T C−1

k (fk(a) − f∗
k )
) (3.18)

where Ck is the covariance matrix of the vector f∗
k and T denotes the matrix trans-

position.

It can be noted that Eq. 3.14 not assume any relations between forward models
fk(a), i.e. forward models fk(a) can be the same or different. In the frame of LSM
approach, i.e. under the assumptions of a normal PDF of the error ∆f∗

k , the solution
of the Eq. 3.14 corresponds to the minimum of the following functional (i.e. maximize
Eq. 3.18):

Ψ(a) = 1
2

K∑
k=1

(fk(a) − f∗
k )T C−1

k (fk(a) − f∗
k ) = min (3.19)

For the general case, of non-linear functions fk(a) the solution of Eq. 3.19 is sought
iteratively:

ap+1 = ap − ∆ap (3.20)

where ∆ap is the solution that can be found by solving the system of so-called
normal equations, i.e.:

(
K∑

k=1
KT

k,p(Ck)−1Kk,p

)
∆ap =

K∑
k=1

KT
k,p(Ck)−1∆fp

k (3.21)

where ∆fp = f(ap)−f∗, and Kp is Jacobean matrix at p-th iteration of the functions
fk(a) in the vicinity of ap with the elements {Kk,p}j,i = ∂fk,j(a)

∂ai

∣∣∣
a=ap

.

The asymptotic limit of the minimized quadratic form, for most applications, can
be written as:
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2Ψ(a) = min →
K∑

k=1
Nk − n (3.22)

It should be noted that the LSM solution defined by Eq. 3.19 corresponds to the
minimum of quadratic form Ψ̂(a) and does not depend in any way from the value of
this minimum. Considering this fact, in practical application is often convenient to
renormalize the minimized quadratic Ψ̂(a), in situations when only one data set is
inverted it is convenient to weighting matrix W = C/ε2

1 and minimize the quadratic
form Ψ′(a) = ε2

1Ψ(a). In such approach one does not need to know the exact value of
ε2

1. Moreover, ε2
1 can be estimated from asymptotic LSM expectations provided by Eq.

3.22.
In frame of Multi-term approach the use of weighting matrices additionally allows

for making more explicit the contribution of different data sources. Indeed, using the
weighting matrices Wk instead of covariance matrices Ck the Eq. 3.21 can be written
as:

(
K∑

k=1
γkKT

k (Wk)−1Kk

)
∆ap =

K∑
k=1

γkKT
k (Wk)−1∆fp

k (3.23)

In this formulation the relative contribution of the data from different data sources
are scaled by the corresponding Lagrange parameters γi, defined as:

Wi = 1
ε2

i

Ci and γi = ε2
1

ε2
i

(3.24)

where ε2
i is the first diagonal element of Ci, i.e. ε2

i = Ci11 and γi is the ratio
of the variances of scattered radiances and variances of the corresponding data set.
Evidently, that γ1 = 1 as discussed by Dubovik and King (2000); Dubovik (2004);
Dubovik et al. (2011), etc. This renormalization strategy is especially convenient on
Multi-term LSM approach once some of data sets correspond to a priori information. In
addition, the renormalized definition of the minimized quadratic function (or residual)
as Ψ′(a) = ε2

1Ψ(a), the measurement error ε2
1 can be estimated from the residual of

the fit. Indeed, once the weighting matrices used in the solution, Eq. 3.23 minimizes
quadratic with the limit depending on ε2

1:

2Ψ′(a) = 2 ε2
1 Ψ(a) = min → ε2

1

(
K∑

k=1
Nk − n

)
and ε̂2

1 ≈ 2Ψ′(ap)∑
k=1,...,K(Nfi

) − Na
(3.25)

The use of the weight matrix makes evident the relative contribution of the data
from different data sources, it allows rather transparent interpretation of lagrange
multipliers γ- parameters determining the contributions of a priori terms into solution.

40



3.2. GRASP numerical inversion

Figure 3.2: Concept of single and multi-pixel in GRASP algorithm Dubovik et al. (2014).

3.2.2 A priori constraints in Multi-term LSM approach and
in GRASP algorithm

As discussed in detail by Dubovik et al. (2021) the Multi-term LSM concept has been
proposed as methodologically convenient approach for integrating different types of a
priori constraints in remote sensing applications (Dubovik (2004); Dubovik and King
(2000); Dubovik et al. (1995, 2000, 2008, 2011)). In the Multi-term LSM a priori
estimates are considered to be ’equivalent’ to the measurements, i.e. characterized by
their PDF and treated equivalently to the actual measurements. In these regards, Eqs.
(3.14-3.21) do not show any distinction between different fk(a). At the same time, in
practice there are always two different types of data sets: measurements and a priori
constraint on the unknowns a.

In the GRASP algorithm there are two types of a priori limitations: the single pixel
and multi pixel constraints (Fig. 3.2). The single pixel, is a conventional approach that
considers each single pixel is inverted completely independently. On the other hand,
multi-pixel retrieval is the approach that considers a group of pixels are inverted simul-
taneously and extra a priori constraints on the inter-pixel variability of the retrieved
parameters can be applied.
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3. Inverse Modeling and Error Estimates in GRASP

3.2.2.1 Single-pixel constraints used in GRASP

In the practice there are always two different types of data sets: measurements and
a priori constraint on the unknowns a. Therefore, the vector of the measurement
(f∗)T = (f∗

1 , f∗
2 , ·, f∗

k )T can be written as:

(f∗)T = (f∗
1 , f∗

2 , ·, f∗
k , fa

1 , fa
2 , ·, fa

k )T (3.26)

where f∗
i = f∗

i (a) represent directly measured characteristics and fa
i = fa

i (a) repre-
sent a priori known characteristics of unknowns a. Correspondingly the right side of
Eq. 3.18 can be formally split in two groups:

P (f(a)|f∗) =
K∏

k=1
P (fk(a)|f∗

k )
N∏

n=1
P (fa

n(a)|fa
n) (3.27)

Therefore, the Eq. 3.23 can also be formally arranged to identify the contribution
of measurements and a priori terms:

(
K∑

k=1
γkKT

k,p(Wk)−1Kk,p +
N∑

n=1
γa,nKT

a,n,p(Wa,n)−1Ka,n,p

)
∆ap =

=
K∑

k=1
γkKT

k,p(Wk)−1∆f∗,p
k +

N∑
n=1

γa,nKT
a,n,p(Wa,n)−1∆fa∗,p

n

(3.28)

where two groups of the terms in left and right parts of the equation represent the
contributions of the set of K measured characteristics fk(a) and the set of N a priori
fa
n(a) characteristics, and the Lagrange parameters are defined as:

γk = ε2
k=1
ε2

k

andγa,n = ε2
n=1

ε2
a,n

(3.29)

As discussed by Dubovik (2004) and Dubovik et al. (2021) the Multi-term approach
is a simple rearranging the base LSM formulation, while the resulting Eq. 3.23 pro-
vides a solid basis for unifying many known formulas of constrained inversion in a
single formalism and practically convenient and efficient for developing remote sensing
algorithms using diverse complimentary observations and a priori constrains.

While, the Multi-term LSM concept allows flexible utilizations of nearly arbitrary
a priori constraints, GRASP algorithm is fully adapted for using the most popular and
physically transparent a priori constraints such as direct a priori estimates of unknowns
a and, smoothness constraints in situations, when the unknown vector a or any group of
unknowns included in this vector, represent continuous smooth function. For example,
if vector a represents aerosol size distribution, that is known to be rather smooth, the
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system given by Eq. 3.14 can be explicitly written as follows:


f∗
k=1 = f∗

k=1(a) + ∆f∗
k=1

fa,∗
n=1 = fa,∗

n=1(a) + ∆fa,∗
n=1

fa,∗
n=2 = fa,∗

n=2(a) + ∆fa,∗
n=2

=


f∗
1 = f∗

k=1(a) + ∆f∗
1

fa,∗
1 = fa,∗

1 (a) + ∆fa,∗
1

fa,∗
2 = fa,∗

2 (a) + ∆fa,∗
2

=


f∗
1 = f∗

k=1(a) + ∆f∗
1

a∗ = a + ∆a∗

0∗ = Ga
m + ∆g∗

(3.30)

The a priori constraints defined by the second line a∗ = a + ∆a∗ represents the
most common of constraints of solution by direct a priori estimates of unknowns a∗,
where ∆a∗ are the uncertainties of the estimates a∗ and are generally considered to be
unbiased random errors within the covariance matrix Ca∗ . These constraints can be
easily included in Eq. 3.28 by defining: Ka = 1- unity matrix; i.e. KT

a W−1
a Ka = W−1

a

and KT
a W−1

a fa,∗
1 = W−1

a a. Utilization of a priori estimates a∗ was introduced in the
pioneering studies by Twomey (1963) and later evolved and discussed in detail in the
Rodgers (2000) textbook on inversion. The third line represents another common
type of a priori constraint known as smoothness constraints that limit the variability
of retrieved functions by using a priori knowledge about limitations on derivatives
of those functions. For example, a priori knowledge limits high frequency variations
of continuous functions v(x) , such as the aerosol size distribution. In GRASP, the
smoothness constraints are related to a priori known limited values of the derivatives,
i.e. with their m-th derivative deviations from zero:

∂mv(x)
∂xm

≈ 0 (3.31)

For the vector of unknowns a = (a1, a2, ·, an)T that contains discrete elements de-
scribing the continuous function v(x), the knowledge on the smoothness of function v(x)
can be defined using a vector-matrix linear system (e.g. see Dubovik et al. (2021)):
0∗ = Ga

m + ∆g∗ , where Gm is the Jacobean matrix of the matrix of the m-th deriva-
tives. In practice, these are often approximated by matrices of the m-th finite difference
estimated in point a. The errors ∆g∗ reflect the uncertainty in the knowledge of the
deviations of y(x) from the assumed constant (m = 1), straight line (m = 2), parabola
(m = 3), and so on. Under assumption that the ∆g∗ have a normal distribution,
with the unbiased covariance matrix Cg, these constraints can be easily included in
Eq. 3.28 by defining: Ka,2 = Gm and fa,∗

2 = 0∗, i.e. KT
a W−1

a Ka = GT
mW−1

∆gGT
m

and KT
2 W−1

2 ∆fa,∗
2 = GT

mW−1
∆g(ap − 0∗) = GT

mW−1
∆gap. Utilization of such smoothness

constraints was suggested by one of the first formulations of constrained inversion by
Phillips (1962) and was also considered in article by Tikhonov (1963) and Tikhonov’s
later studies.

Thus, for a case where only a direct a priori estimates and smoothness constraints
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are used, Eq. 3.28 can be explicitly written via weighting matrices as:

(
KT W−1

f K + γaW−1
a + γgΩm

)
∆ap = KT W−1

f ∆fp+γaW−1
a (ap−a∗)+γgΩmap (3.32)

where Ωm denotes the smoothness matrix defined as:

GT
mW−1

∆gGT
m = Ωm (3.33)

the explicit formulation of Ωm can be found in the paper by Dubovik et al. (2011).
The Eq. 3.30 generalizes the commonly used base equations of constrained inversion by
Phillips (1962), Twomey (1975, 1977), Tikhonov (1963) and Rodgers (1976, 1990, 2000).
It should be noted that Eq. 3.30 is written for the simplest situation when the vector
a represents only one continues function v(x), while in many GRASP applications the
vector of unknowns includes several components aT = (aT

sd, aT
n(λ), aT

k(λ), aT
h , ...)T , where

each component is relevant to continues functions representing such physical charac-
teristics as aerosol particle size distribution (asd), spectral dependence of real (an(λ))
and complex (ak(λ)) parts of refractive index, vertical distribution (ah), etc. Each of
those characteristics is continues function and therefore in retrieval the smoothness
constraints can be applied on each of corresponding component of the vector of un-
knowns. Evidently, direct a priori constraints can be applied to each single element of
the vector a, while from practical view point separating outlining the contribution of a
priori estimates for each component, e.g. (a∗)T = ((a∗

sd)T , (a∗
n(λ))T , (a∗

k(λ))T , (a∗
h)T , ...)T .

Similarly, the inverted measurements may come from different sources and therefore
have different levels of accuracy and different weighting matrices. As a result, in prac-
tice, all the first, second and third terms in Eq. 3.30 may have many quite different
components, and therefore actual formulation of the solution can be significantly more
complex. Some of explicit equations can be found in the paper by Dubovik et al.
(2011).

The realization of the inversion in GRASP, in principle, is based on general Eq.
3.23, while for used convenience there is a logical separation as indicated in Eq. 3.28
into actual measurements and a priori constraints. For each measurement data set f∗

k

two types of errors can be set: relative or absolute and the magnitude of the errors is
defined by the standard deviation and a weighting matrix Wi. The standard deviation
is used inside of the code to calculate corresponding Lagrange parameters γi. The
weighting matrix Wi is assumed as the unity matrix by default, while it can also be
set diagonal with different values at the diagonal, as well, in more general way with
non-zero non-diagonal values too. For applying the a priori constraints, as discussed
above, there are two main possibilities: using direct a priori constraints or applying
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Figure 3.3: Effect of the smoothness constraints limiting the derivatives of different order
(m = 1, m = 2 and m = 3, respectively) in the solution (Dubovik et al. (2021))

smoothness constraints for the parameters that define continues functions.
The direct a priori estimates a∗

i for each of value ai in the vector of unknows a =
(a1, a2, ..., an)T can be provided with the corresponding Lagrange parameters γai

. There
is also a possibility to assume a vector a∗ of a priori estimates for all the retrieved
parameters or for selected groups (e.g. parameters describing size distribution) with
common Lagrange parameter γa. In this case weighting matrix Wa is also provided
that is assumed as the unity matrix by default, or can be set diagonal with different
values at the diagonal or in more general way with non-zero non-diagonal values.

The smoothness a priori constraints can be applied for each group of parameters
describing a continuous function (e.g., aT

sd, aT
n(λ), aT

k(λ), aT
h , ..., etc) by defining the order

m of limited derivatives (m = 0 is a constant; m = 1 is a straight line; m = 2 is
a parabola, etc.) and the strength of the applied a priori smoothness constraints is
defined by Lagrange parameters γn. The smoothness matrix Ωm is defined as in Eq.
3.31 where weighting matrix W∆g is unity matrix by default and be set diagonal with
different values on the diagonal in case if the retrieved continues function has different
level of variability for different ordinates. Figure 3.3 illustrates the effect of different
order of the smoothness constraints described above.

3.2.2.2 Multi-pixel constraints used in GRASP

The multi-pixel approach is mostly used for satellite inversions since the information
content in the reflected radiation from a single pixel is generally insufficient for a unique
characterisation of all retrieved parameters. In this context, the use of the multi-pixel
approach comes to improves the stability of the retrieval. Moreover, the recent work
by Lopatin et al. (2021) demonstrate also the application for simultaneous inversion
of collocated but not fully coincident backscatter profiles registered by advanced lidar
systems or radiosondes and radiation measured by the Sun photometer.

The implementation of multi-pixel fitting allows to use it as one aditional contraint.
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This multi-pixel constraints limit variability for unknowns in different groups of similar
parameters when several such groups of unknowns are retrieved simultaneously from
coordinated but not fully co-incident or not fully co-located observations. For example,
a priori constraints about known limited inter-pixel variability of retrieved parameters
can be realized by using a priori knowledge about limitations on derivatives on time or
spatial variability of parameters retrieved from observations in different pixels. It can be
provided from the neighboring pixels to the observed pixel in the satellite observations.
In principle, the variability of each physical parameter ai can be considered as a value
of continues function ai = ai(x, y, z, ..., t). Therefore, the limitation on the variability of
every parameter in time and space that can be used as additional constraints. Similar
to Eq. 3.31, inter-pixel variability constraints are related with limited values of the
derivatives, i.e. with their m-th derivatives deviations from zero. At present, the time-
and spatial - variation of each parameter in GRASP can be limited using the following
a priori assumptions:

∂mai(x, y, z, t, ...)
∂xm

≈ 0,
∂mai(x, y, z, t, ...)

∂ym
≈ 0,

∂mai(x, y, z, t, ...)
∂zm

≈ 0 and ∂mai(x, y, z, t, ...)
∂tm

≈ 0
(3.34)

that can be presented in matrix form similarly to Eq. 3.23 written for a single-pixel
case as:



fa,*
2 = fa,*

2 (a) + ∆fa,*
2

fa,*
3 = fa,*

3 (a) + ∆fa,*
3

fa,*
4 = fa,*

4 (a) + ∆fa,*
4

fa,*
5 = fa,*

5 (a) + ∆fa,*
5

→



0∗
x = Gx,mxa + ∆∗

x

0∗
y = Gy,mya + ∆∗

y

0∗
z = Gz,mza + ∆∗

z

0∗
t = Gt,mta + ∆∗

t

(3.35)

Then, for the solution for multi-pixel fitting equivalent of Eq. 3.32, written for a
single-pixel case, can be presented as:



A1,p 0 ... 0

0 A2,p ... 0

+Ωinter

... ... ... ...

0 0 ... AN,p


∆ap =



Ψ1(ap
1)

Ψ2(ap
2)

...

ΨN(ap
N)


+ Ωinterap (3.36)

where Ai,p and Ψi(ap
i ) refer to the left and right parts of Eq. 3.23 defined for

i-th single pixel, so that Eq. 3.23 can be denoted compactly as Ai,p∆ap
i = Ψi(ap

i ).
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The matrix Ωinter of multi-pixel constraints is defined via smoothness matrices for the
spatial and temporal variability of each retrieved parameter as:

Ωinter = γxΩx,mx + γyΩy,my + γzΩz,mz + γtΩt,mt (3.37)

The detailed description of multi-pixel constraints and their application is provided
in the paper by Dubovik et al. (2011). Specifically, Dubovik et al. (2011) provide
explicit expressions for Ωx,mx , Ωy,my and Ωt,mt , as well as corresponding Lagrange
parameters γx, γy and γt. Note, the equations are fully implemented in GRASP code
with the exception of Ωz,mz and γz in Eqs. 3.34-3.35 that are not yet implemented
in the same way since in the practice there are almost no fully independent vertical
observations.

3.2.3 Non-linear inversion in GRASP and used Levenberg-
Marquardt optimization

Since most of atmospheric remote sensing applications are strongly non-linear, the
Levenberg-Marquardt optimization (Press et al. (1992); Ortega and Rheinboldt (1970))
is realized to optimize convergence of GRASP solutions. Specifically, as described by
Dubovik et al. (2021) in GRASP it is assumed that the correction of the solution
at p-th iteration ∆ap should be limited, especially at the initial iterations when the
linearization error is the largest. For such cases, in GRASP, for the determination
of ∆ap in the iterative procedure an additional constrained on the correction ∆ap is
added at each iteration:

∆ap,∗ = 0∗ + ∆a (3.38)

Correspondingly, using this additional requirement, an additional term will be in-
troduced in Eq. 3.23:

(
K∑

k=1
γkKT

k (Wk)−1Kk + Dp
∆a

)
∆ap =

K∑
k=1

γkKT
k (Wk)−1∆fp

k (3.39)

where matrix D∆a is diagonal matrix with the elements:

D∆aii = γ∆ai
= ε2

1
ε2

∆ai

(3.40)

The variance ε2
∆ai

can be determined, for example, assuming that whole known
range of each parameter ai variability should be covered by 3ε2

∆ai
, i.e. ai,max − ai,min ≈

3ε∆ai
.

Also, following common Levenberg-Marquardt procedure the impact of the correc-
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tion ∆ap is always scaled by a factor tp in Eq. 3.20 as follows:

ap+1 = ap − tp∆ap (3.41)

where tp is in the range 0 < tp ≤ 1. It is selected empirically to provide convergence,
by decreasing tp = tp/2 until decrease of the residual Ψ′(ap) ≤ Ψ′(ap−1) is achieved
(see Dubovik et al. (2011)).

Thus, in case of non-linear fk(a) and/or fa
i (a) the inversion in GRASP includes

Levenberg-Marquardt like optimizations and implemented in the frame of Eqs. 3.20
and 3.21. While this optimization certainly helps to achieve successful convergence
of the solution in practice, it also should be considered as one of possible sources of
uncertainties, as pointed by Dubovik et al. (2021) and will be discussed below.

3.3 Error estimates in GRASP

The least-squares fitting procedures, described in the last sections, are commonly used
in data analysis and they are extensively discussed in the literature. Particularly,
GRASP algorithm has a rather general and rigorous numerical inversion that allows
transparency and flexibility to retrieve unknown parameters from several instruments
and synergies. However, the proper assessment of errors resulting from such fits has
received relatively little attention.

The error analysis consists in the sensitivity of the retrieval to all of the sources
of error, including noise in the measurement, error in the non-retrieved parameters
and in the retrieval parameters, and the effect of modelling the true physics of the
measurement by some forward model, if needed.

This chapter contains the formal mathematical descriptions of the implemented
error estimates as part of this thesis, in the GRASP algorithm. It starts introduc-
ing the state of the art of error estimates in the frame of aerosol properties briefly
describing different methodologies employed in several works and the differences with
the GRASP approach. Then this chapter is focused in the formalized equations of the
errors estimates of the retrieved and derived parameters from the use of the statistical
optimization approach of multi-term LSM. Moreover, in this chapter is presented the
advantages of obtaining a full covariance matrix of the retrieved parameters focusing
in the correlation matrix. Some important aspects of this matrix and their interpreta-
tion are described since the analysis of the full covariance matrix will help to identify
characteristics of retrievals that can be optimised, and it is in any case an essential
part of the documentation of any retrieved data set. It can be argued that a retrieval
method without an error analysis and characterisation is of little value.
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Table 3.1: AOD and extinction data sets providing prognostic (predictive) uncertainty
estimates and their associated key references for uncertainty estimate calculation. When it is
applicable, algorithm names are given first with instrument names in parentheses. (Extracted
from Sayer et al. (2020)).

3.3.1 State of the art of error estimates for aerosol properties

The study of error estimates is a great challenge in recent times. As mentioned above,
over the years, the installation of different remote sensing instruments has advanced,
such as the development of algorithms for retrieving different aerosol and atmospheric
properties. However, the estimation of the uncertainties of the retrieved properties still
remains as one of the most important open questions to be resolved.

There are different ways to estimate the error of the retrieved and derived proper-
ties using several observations. For example, some authors do it from validation with
data-sets from other instruments (for example, retrieval of AOD from satellite measure-
ments validated with AOD directly measured from ground based sun-photometers) or
perturbing some input parameters and analysing the retrieved properties. These stud-
ies are useful to identify general tendencies of bias or loss of sensitivity under different
conditions and to evaluate possible ways to improve them (Sayer et al. (2020)). Nev-
ertheless, there are also algorithms that consist of formal error propagation techniques
or more empirical methods. For example, some of these algorithms used from satellite
data are presented in Table 3.1 extracted from Sayer et al. (2020).

In recent years, the inclusion of different formal techniques for uncertainty esti-
mates within the satellite AOD data sets has increased. However, more studies are
still necessary since they are conditioned by several factors. Some of them consist to
have an appropriated forward model, capable of providing unbiased estimates of the
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observations; suitable covariance matrices; verify that the retrievals converge around a
global minimum and not a local minimum, etc.

In parallel with the recent advances in the satellite remote sensing techniques
ground-based observations, the algorithms associated (for the retrievals of atmospheric
properties) and the error estimates analysis (of the retrieved properties) have experi-
mented an important growing in the last years.

As was mentioned in previous chapter, one of the most visible data sets of ground-
based radiometric observations is provided by AERONET (AErosol RObotic NETwork,
Holben et al. (1998)), network of more than 500 (according to Sinyuk et al. (2020))
operational sites distributed over the world. Different studies were performed the
AERONET retrieval errors. First, Dubovik et al. (2000) has provided a rather compre-
hensive analysis of retrieval uncertainties caused by both random measurements errors
and systematic errors originated from potential biases in the measurements and imper-
fections in the modeling aerosol properties. This analysis was revisited by Torres et al.
(2014) studies that overall confirmed most of the uncertainty tendencies revealed by
Dubovik et al. (2000). Recently, Sinyuk et al. (2020) published a concept for aerosol re-
trieval error estimates that have been adapted in Version 3 aerosol operational product
of AERONET (Giles et al. (2019)). In this approach, the uncertainties are estimated
using the spread of the retrieved parameters generated by 27 distinct combinations
of retrievals obtained by perturbations in the input data (AOD, sky radiances, solar
spectral irradiances and surface reflectances). A scheme of this implemented approach
is shown in Figure 3.4.

Somehow a similar concept for error estimates was earlier employed in the LiRIC
(Lidar and Radiometer Inversion Code) approach for the synergy processing of co-
located lidar and AERONET radiometric observations (Chaikovsky et al. (2016)).
LiRIC provided some uncertainties obtained by a series of retrievals perturbing the
input data.

There are numerous advantages and disadvantages between the methods described
so far. For example, one advantage of the method used in AERONET is that is
logistically clear; but on the contrary, its implementation is awkward since each per-
turbed input parameter is separately inverted. On the other hand, several factors
affect retrievals and they are difficult to model theoretically, so we are interested in
error propagation models. Those techniques are based on the statistical optimization
approach (e.g., Edie et al. (1971); Fourgeaud and Fuchs (1967); Rodgers (2000), etc)
which provide asymptotically comprehensive estimates for random retrieval errors. At
the same time, it should be noted that both the result of perturbation tests and statis-
tical estimates of propagated error rely on the employed forward model. In this sense,
the inaccuracies related to the limitations of the selected forward model may not be
fully represented. Some additional evaluations and considerations are always desirable
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Figure 3.4: Scheme of error estimates approach implemented in the new AERONET version
3.

for assessing the adequacy of the chosen forward model and its potential limitations.
Therefore, this thesis focuses on the study of the errors obtained by the GRASP

algorithm, whose technique and formalized equations will be described in the next sec-
tions. This algorithm is based on the rather general and rigorous forward modeling
and inversion approaches, and in addition to the retrieved parameters, it provides dy-
namic error estimates. Specifically, the great advantage is the capability of generating
full covariance matrices that include both random and systematic components which
allows a complete study of the error estimates.

3.3.2 Theoretical developments in GRASP

As part of the numerical inversion, GRASP algorithm provides dynamic error estimates
for directly retrieved parameters and for derived parameters. After understanding the
numerical inversion methods and the employed equations in the last sections, an im-
portant step to obtain the error estimates in the fitting procedure is the understanding
of the formalized equations of error estimates under the assumptions of statistical
optimization approach. It is based on fundamental principles where the retrieval is
based on consideration of probability density function (PDF) of both measurements
and retrieved values. Thus, this strategy presents the advantage of allowing the easy
characterization of uncertainties since the idea of the optimal retrieval is mainly based
on getting a PDF as narrow as possible which can be used almost straightforwardly to
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characterize errors. Therefore, the key in this study consists in obtaining the covariance
matrix of the retrieved and derived parameters which will allow subsequent studies of
the error estimates.

In the Section 3.2 we assumed the normal distribution of ∆f∗. Consequently, the
error in the retrieved parameters ∆â also will be normally distributed and will have
two components, random and systematic:

∆â = ∆ârand + ∆âsys (3.42)

Their variance is defined as following:

< (∆â)2 >=< (∆ârand)2 > + < (∆âsys)2 > (3.43)

where â is the logarithm of the retrieved parameter.
These variances correspond to the diagonal elements of the full covariance matrix,

Câ provided by GRASP algorithm. Thus, from covariance definition and using Eq.
3.42, Câ can be calculated as:

Câ = < ∆â∆âT >

= < (∆âran + ∆âsys)(∆âran + ∆âsys)T >

= < (∆âran + ∆âsys)(∆âT
ran + ∆âT

sys) >

= < (∆âran∆âT
ran) + (∆âT

sys∆âran) + (∆âT
ran∆âsys) + (∆âsys∆âT

sys) >

= < ∆âran∆âT
ran > + < ∆âT

sys∆âran > + < ∆âT
ran∆âsys > + < ∆âsys∆âT

sys >

= C∆âran + âsysâT
sys

(3.44)

Equation 3.44 clearly shows the covariance matrix of the errors have also two com-
ponents, random and systematic. In the case of multi-term LSM and applying the
definition of covariance for ∆âran (Dubovik (2004)), the covariance matrix of random
errors (∆âran) can be estimated in the linear approximation as:

C∆âran =
(

K∑
k=1

γkKT
k W−1

k Kk

)−1

ε̂2
0

= A−1
p ε̂2

0

(3.45)

where Ap is a Fisher matrix and the variance ε̂2
0 is estimated from the general

residual fitting as:
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ε̂2
0 ∼ Ψ(âp)

(Nmeas − Na − Naprior)
(3.46)

where Nmeas and Naprior are the respective numbers of measurements and a priori
data, and Na is the number of retrieved parameters. This equation has an impor-
tant characteristic: it is obtained from Cramer-Rao inequality since the solution to
minimizing the equation 3.23 has the smallest errors, it means the optimality of LSM
estimates. Thus, if all assumptions about noise in both the measurements and the
a priori terms are correct, the minimum value of the above quadratic form can be
theoretically estimated from χ2 distribution, whose mean is given by:

⟨(2Ψ(â))min⟩ =
〈

2
∑

i=1,...,3
Ψ(â)

〉
=
〈(

f̂ − f∗
)T

W−1
(
f̂ − f∗

)
+ γ∆âT Ωmâ + γa∗ âT W−1

a∗ â
〉

=
 ∑

i=1,...,3
Nfi

− Na

 ε2
0 = (Nf∗ + N∆∗ + Na∗ − Na)ε2

0 = (Nf∗ + Na − m)ε2
0

(3.47)

where N∆∗ = Na − m and Na∗ = Na. Then, from this equation can be estimated ε2
0

from a minimum value of the residual Ψ(â). Therefore, this expression can be used to
verify the consistency of the retrieval. The estimation of Eq. 3.46 should be close to the
assumed. A significant increase of the estimated value over expected can be considered
as an indication of unaccounted biases and/or inadequate assumptions about random
errors in measurements or a priori data sets.

A clear tendency is observed from Eq. 3.45, the smaller random errors occur when
higher contribution of the a priori. It means, the use of more a priori constraints leads
to less random errors of the retrieval. However, the incorrect use of these a priori
constraints could contribute to the introduction of some systematic uncertainties, i.e.,
bias. Therefore, for an adequate evaluation of retrieval uncertainties is important to
estimate the contribution of bias, especially when multiple a priori constraints are used.

On the other hand, the systematic component of the error ∆âsys is defined as the
correction calculated at the last iteration (as in the Eq. 3.23) in the process to invert
the Eq. 3.21:

∆âsys = ∆âp (3.48)

and is estimated as following:

âsys =
(

K∑
k=1

γk

(
KT

k W−1
k Kk

))−1 ( K∑
k=1

γk

(
KT

k W−1
k b∗

k

))
(3.49)
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where b∗
k represent the bias vector in the k − th data set fk.

The estimation of not only random retrieval error but also error retrieval bias ∆asys

is important for the adequate evaluation of retrieval uncertainty, especially in the case
when multiple a priori constraints are used. For example, for the case of the retrieval
given by Eq. 3.30 C∆âran is expressed as:

C∆âran ≈
(
KT W−1K + γaW−1

a + γgΩm

)−1
ε̂2

0 (3.50)

A rather obvious tendency can be seen from the analysis of this equation: the
higher the contributions of the second and the third terms the smaller the random
errors are, i.e. the stronger a priori constraints are used the lower the random er-
rors of the retrieval. However, in practice a priori constraints can be unintentionally
inadequate and therefore introduce some systematic uncertainties, i.e. biases. In prin-
ciple, there is no guaranteed approach for detecting those biases unless comprehensive
analysis and validation of the retrievals have been done. Nonetheless, some biases
can manifest themselves via misfit of measurements ∆f sys

k = fk(asolution) − f∗
k or misfit

of a priori constraints. For example, for Eq. 3.30 the bias can be introduced by a
priori estimate a∗

sys = asolution − a∗ or unsmooth features in the retrieved solution:
asmooth

sys = Ωmasolution ̸= 0. Correspondingly, the bias for single-pixel retrieval is esti-
mated as:

âsys ≈
(
KT W−1K + γaW−1

a + γgΩm
)−1 (

KT W−1∆f sys + γaW−1
a a∗

sys + γgΩmasmooth
sys

)
(3.51)

In this equation the contribution of a priori estimates to bias is probably the most
significant in many applications since it is never possible to have fully accurate a priori
values (widely used in optimum estimation approaches) for constraining. In a similar
way, the a priori biases are estimated in the case when multi-pixel a priori constraints
are used.

The Levenberg-Marquardt optimization of the convergence, discussed in Section
3.2.3 may also introduce a bias. Indeed, this optimization makes the iterations con-
verge from given initial guess to fit the data even if the basic linear system is singular.
Therefore, once Levenberg-Marquardt optimization is used there is an evident depen-
dence on the initial guess that can bias the solution. In order to take this into account
the Eqs. 3.45 and 3.49 are modified as the following:

C∆âran ≈
(

K∑
k=1

γkKT
k W−1

K Kk + Dp
∆a

)−1

ε̂2
0 (3.52)

and
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âsys =
(

K∑
k=1

γkKT
k W−1

K Kk + Dp
∆a

)−1 ( K∑
k=1

γkKT
k W−1

K b∗
k + Dp

∆a(asolution − ap=0)
)

(3.53)
These equations allow to obtain the error estimates for the retrieved parameters.

That is, for example when the configuration is from sun photometer and lidar mea-
surements, the expected retrieved parameters are dV/dln(r), real and imaginary part
of refractive index, sphericity fraction and aerosol volume concentration vertically dis-
tributed.

Also, in the practice the users may not need directly the retrieved parameters â
but their functions m(â) that can be calculated from the retrieved parameters. For
example, GRASP retrieves parameters of aerosol microphysics (particle sizes, refractive
indices, etc.) but users need aerosol optical depth, AOD. For such situation, GRASP
provides a set of such diverse indirect characteristics with the possibilities of providing
the uncertainties calculated as:

C∆m̂ ≈ M
(
C∆âran + âsysâT

sys

)
MT

= MC∆âranMT + Mâsys(Mâsys)T

= C∆m̂ran + m̂sysm̂T
sys

(3.54)

where M- is the is the matrix of first derivatives Mji = ∂mj

∂ai

∣∣∣
asolution

Finally, the effect of biases in the measurements on the solution bias âsys is ac-
counted for in Eq. 3.51 based on the assumption that the presence of biases is man-
ifested in the non-zero misfits ∆f sys

k . Indeed, in many cases when systematic errors
are present in the inverted measurements or the accurate fit of inverted data can’t be
achieved (e.g. see illustrations provided by numerical sensitivity tests for AERONET
retrievals by Dubovik et al. (2000)). At the same time, there are many situations
when biases in the measurements may not significantly affect the residual (Eq. 3.25)
and the misfits ∆f sys

k . For example, the retrievals of aerosol SSA from AERONET
ground-based measurements are highly sensitive to the calibration biases in the direct
Sun measurements, while the fitting of these direct measurements is always quite accu-
rate (see discussion by Dubovik et al. (2000)). The effects of such measurement biases
can be estimated by implementing proxy numerical tests applied to the measurements
perturbed by possible biases. For example, the recent approach for evaluation retrieval
errors of AERONET operational products is estimated using a series of ∼27 numerical
proxy inversion tests with the sets of perturbations in both input measurements and
auxiliary input parameters (Sinyuk et al. (2020)). Similar strategy can be used for eval-
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uation of potential effects of undetected biases. Specifically, the bias term (âsys)(âsys)T

in Eq. 3.44 can be estimated as:

(âsys)(âsys)T →
〈
(âsys)(âsys)T

〉
bias proxy set

(3.55)

where the values of the retrieval biases are estimated as an average effect from a
preselected set of possible biases in measurements and auxiliary inputs. Therefore, if
we assume positive and negative bias in the equation for systematic component the
contribution to Eq. 3.51 can be written as follow:

âsys ≈
(
KT W−1K + γaW−1

a + γgΩm
)−1 (

KT W−1bfsys + γaW−1
a a∗

sys + γgΩmasmooth
sys

)
(3.56)

where the vectors bfsys represent the new bias related to the measurement.
In addition, in this work we also study the structure of the covariance matrix for

different aerosols and configurations. Apparently, such matrix provides interesting
information about the error estimates (focusing in the diagonal elements) and the
relation between the retrieval parameters (from the covariance values, i.e. non-diagonal
elements). The representation of the covariance matrix for the parameters has the
following structure:

Cov(a) =



σ2
1 σ1σ2ρ12 σ1σ3ρ13 · · ·

σ2σ1ρ21 σ2
2 σ2σ3ρ23 · · ·

σ3σ1ρ31 σ3σ2ρ32 σ2
3 · · ·

... ... ... . . .


(3.57)

where in the diagonal are the variance of each element and the non-diagonal el-
ements represent the covariance of each retrieved element ai with the others. The
variances, i.e. diagonal elements are always used for estimating retrieval errors and
providing the error bars. The non-diagonal elements are rarely considered, while they
provide the very interesting and non-obvious information about error correlations.

In order to study the error correlation structure of the error, the following correla-
tion matrix will be considered in this work, that can be obtained from the covariance
matrix (Eq. 3.57):

Corr(a) =



1 ρ12 ρ13 · · ·

ρ21 1 ρ23 · · ·

ρ31 ρ32 1 · · ·
... ... ... . . .


(3.58)
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where each diagonal element corresponds to the correlation with itself which is equal
to 1 and the non-diagonal elements are the correlations related to each parameter that
can vary between -1 and 1.

3.3.3 Interpretation of correlation matrix

As we have seen in Section 3.3.2 GRASP has the capability to provide the full covari-
ance matrix of the retrieved and derived parameters. These matrices are a source of
information and provide interesting information about the error estimates, since we
can obtain from the elements of the diagonal, i.e. variances, estimation of errors; but
also from the non-diagonals elements, important information can be obtained since
they contain the correlation coefficients between the retrieved parameters.

In this section the correlation matrix is described. As already mentioned, one of
its main advantages is that we can identify from its different tendencies and they can
help to improve the configurations of inversions.

From the normalization of the covariance matrix (Eq.3.57) can be obtained the
correlation matrix, which represents the correlation between the retrieved parameters,
as following:

Corr(a) =



1 ρ12 ρ13 · · ·

ρ21 1 ρ23 · · ·

ρ31 ρ32 1 · · ·
... ... ... . . .


(3.59)

where each diagonal element corresponds to the correlation with itself which is equal
to 1 and the non-diagonal elements are the correlations related to each parameter that
can vary between −1 and 1.

The latter elements provide extra information since it presents the correlation be-
tween the different retrieved parameters. The values close to zero indicate that the
retrieved parameters are not correlated between them which is associated with inde-
pendent and stable solutions. On the other hand, values close to ±1 indicate strong
dependency between the retrieved parameters. Moreover, these cases may induce large
errors on the parameters through correlations effects (Eq.3.57). In the cases of solutions
with correlated parameters, different combinations of them can be found quite close in
a local (or absolute) minimum which may difficult the retrieval and increase the errors
associated. Finally, it should be noted that a priori constraints can induce correlations
between the parameters. For instance, imposed smoothness constraints in size distri-
butions will create correlations between adjacent bins. These type correlations, which
are not originated by the nature of the measurements, can be positively considered and
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make the retrieval more robust. Thus, the analysis of these non-diagonal elements are
very useful for identifying unobvious retrieval tendencies. Therefore, it can be a useful
methodology for optimizing observation schemes and retrieval setups.

Figure 3.5: On the left, is the illustration of correlation matrix in the simulated case of
biomass burning, and on the right side two examples from Torres et al. (2014) and Dubovik
et al. (2002b), show the correlation between small particles and RRI at shorter wavelengths.

In the next chapter, several correlation matrices will be analyzed and described
for different configurations. At this stage, we would like just to show one first exam-
ple in order to illustrate the power of this tool. The example deals with the quite
known correlation between the small particles and the real refractive index for some
retrieval configurations, and more specifically, sun-photometer applications when the
scattering information is reduced. The issue was previously shown by Dubovik et al.
(2002b) and Torres et al. (2014) and it is summarized on the right part of Figure 3.5.
Both authors shows that for an almucantar geometry when the solar zenith angle is
reduced (at middle part of the day) and consequently the maximum scattering angle
with available measurements, the concentration of fine particles and the real refractive
index artificially increases and decreases, respectively. The effects start to be visible
when Θmax < 90◦ and they clearly indicate an anticorrelation between these two pa-
rameters. In those studies, the analysis of the correlation matrices could have foreseen
this anticorrelation.

This analysis is done here in the left part of Figure 3.5, where the correlation
matrix for a sun-photometer retrieval with similar characteristics of the previous works
(fine mode predominate and moderate absorbing aerosol) is represented as a colormap.
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Figure 3.6: On the top, are illustrated the correlation matrix in a simulated case of biomass
burning applying low values of a priori constraints for size distribution. The bottom pan-
els show their respective size distributions. On the right side is shown the example using
smoothness constraints for size distribution 1000 times lower than on the left side.

The density of the colors indicates values of the correlation coefficients changing from
dense red with value equal to 1 to blue -1. Low correlations, values close to zero, are
represented with white colors. The figure shows that the volume concentrations of fine
particles are strongly negative correlated with RI, especially at shorter wavelengths.

Taking advantage of this fist example, another interesting effect that was afore-
mentioned can be shown. Thus, it is possible to see that, in general, size distribution
concentration show rather low correlation values between them except for neighbours
pixels. The use of the typical smoothness constraint rises this correlation for the pa-
rameters of the size distribution in the vicinity of the diagonal (adjacent bins in Fig.
3.5). Thus, an important question can be formulated: how do this correlation matrix
and also their retrieved parameters change if the values of the smothness constraints
decrease?

Left part of figure 3.6 shows the retrieved size distribution and correlation matrix
for the example presented in figure 3.5, which has been obtained using the typical
smoothness constraints for size distribution. In the right part of the figure, both the
retrieved size distribution and the corresponding correlation matrix can be seen when
lower assumptions of smoothness constraints are used. The first thing that we can get
from Figure 3.6 is that the correlations of the matrices change with the variation of
the smoothness constraints. It is easy to see that the figure on the right shows lower
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correlations between the adjacent points in the vicinity of the diagonal of the matrix
for the size distribution part. However, the solution becomes unstable (big different
between true and solution obtained by the code), and moreover, the retrieval errors
become larger due to uncertainty of the inverse operator as can be seen in the shadowed
area presented in bottom panels.

In an extreme case, if all the constraints are removed, the values of the covariance
matrix tend to infinity. Thus, in this way, it is not possible to have solutions. The
case of an inversion without applying constraints becomes unrealistic because we will
not be able to obtain an appropriate solution. Although in principle, the lower the
correlations, the better for the solutions, in this case the problem is the determinant
of the inverse operator tends to zero. Thus, we will be in the situation of an ill-posed
problem and due to the relation of this operator with the covariance matrix, errors are
also affected. The relation is shown by the following equation:

Caii ∼
{(

KT C−1K
)−1

}
ii

→ ∞ for det(KT C−1K) → 0 (3.60)
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3.4 Conclusions

Chapter 3 has provided the mathematical formulation of the error estimation imple-
mented in the GRASP algorithm, which is the main subject of study in this thesis.
For a better understanding of these equations, the chapter begins by presenting this
algorithm.

GRASP is a flexible, generalized algorithm that relies on two independent modules:
the forward model and the numerical inversion.

The forward model is developed in a rather universal way to simulate all the in-
verted remote sensing observations. It consists from several distinct modules such
as multiple scattering, aerosol single scattering columnar/volume properties, aerosol
vertical profile, surface reflectance and gas absorption calculation.

The aerosol in GRASP retrieval can be represented as rather sophisticated mixture
of one or several aerosol components that can differ by particle size distribution, shape
distribution, vertical profile and complex index of refraction. All these characteristics
can be either assumed and fixed or retrieved. The complexity of modeling each of these
characteristics depends on the information content of observations used in each specific
GRASP application.

On the other hand, this chapter presents the numerical inversion method in GRASP.
It is an important part since it provides the mathematical tools that allow estimating
the parameters which characterize a physical system from observed data and a priori
information.

GRASP numerical inversion is based in the rigorous statistical optimization ap-
proach. It allows the use of multiple a priori constraints in the frame of multi-term
of LSM. Moreover, since most of atmospheric remote sensing applications are strongly
non-linear, GRASP use the Levenberg-Marquardt method to optimize the convergence
of the solutions.

In addition to the retrieved parameters GRASP provides dynamics error estimates.
In this chapter was provided the description of the overall concept and specific key
implementations of the errors estimation in GRASP. The retrieval error estimates in
GRASP are calculated by modeling propagation of measurement errors based on sta-
tistical estimation approach. In addition, the formulation used for estimating errors
account for some contribution of systematic errors that could be originated from biases
in the measurement or some modifications implemented in the algorithm for improving
retrieval convergence of non-linear solutions. Furthermore, it can generate full covari-
ances matrix that include both random and systematic components. The diagonal
elements of the covariance matrix provide the error bars of the retrieved and derived
parameters. However, the full covariance matrix has an important source of informa-
tion since the non-diagonal elements present the correlation coefficients between the
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different retrieved parameters. The analysis of these non-diagonal elements is very
useful for identify un-obvious tendencies and contribute to improve the observations
schemes and/or retrievals setups.
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Chapter 4

Error estimates for synthetic
ground-based observations

The present chapter focuses on the validations of the errors through numerical tests.
Synthetic data, which will include random and systematic errors, will be inverted and
the retrievals will be analyzed. It will allow us to assess the error estimates produced
by GRASP algorithm.

Thus, the previous Chapter 3 presented the complete formulation used by GRASP
algorithm to provide the errors in the retrieved parameters. However, the practical
evaluation of developed error formalism and possible tuning is desirable for compre-
hensive evaluating of the approach and gaining full confidence in the practical efficiency
of the approach. In this regard, one can probably state that the error estimates always
tend to be less accurate than the retrievals themselves. Indeed, in remote sensing,
the retrieval relies on formalism of electromagnetic light interaction theory that is fun-
damentally very accurate and well established while the factors contributing to the
uncertainties can be very diverse, not fully formalized and often not even fully under-
stood. For example, the forward model is non-linear, while the error propagations are
usually (and in this work specifically) estimated in linear approximations. As com-
mented in the previous chapter, the retrieval can be affected by not fully predicted
biases in the measurements or by imperceptible biases in aerosols or surface models (in
our applications). Therefore, the second important step for establishing error estimates
is their evaluation and validation.

This chapter presents the results of the error data evaluation from synthetic ground-
based measurements. First, it starts describing the design of the numerical experiment
which includes: a) the retrieval scenarios used, b) the description of the overall experi-
ment, c) the assumed atmospheric properties which cover different interesting situations
and d) the methodology of error analysis (how the validation is carried out). Finally,
the results for the different scenarios are presented in the following sections.
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4.1 Aerosol retrieval approaches considered

This section describes the two widely known, and probably the most popular, retrieval
scenarios used to derive detailed aerosol optical properties on which this work is focused:

• Retrieval of columnar properties of aerosol from the measurements by ground-
based sun/sky-scanning radiometer alone;

• Simultaneous retrieval of both columnar aerosol properties and their vertical
distribution from the combined observations by Sun/sky-scanning radiometer
and multi-wavelength lidar.

4.1.1 Aerosol retrieval from Sun/sky radiometer alone

The detailed aerosol properties in the total atmospheric column provided by AERONET
inversion of Sun/sky-scanning radiometers has been widely recognized as rather unique
reliable data. For example, AERONET retrievals provided first reliable data about
aerosol spectral absorption and other detailed aerosol optical characteristics (e.g., see
Dubovik et al. (2002a); Giles et al. (2012), etc.). These detailed data are of vital im-
portance for evaluating the impact of aerosol on such important aspects as a climate
change and diverse pollution effects, and can be reliable estimated nearly uniquely
from remote sensing observations (Kaufman et al. (2002)). Therefore, this retrieved
aerosol information has been proven to be very useful for assessment of climate change
dynamics in IPCC reports (Boucher et al. (2013); Masson-Delmotte et al. (2021)) and
other high profiles analyses.

As was already mentioned the evaluations of the accuracy of retrieved aerosol pa-
rameters was mainly relied on extensive sensitivity studies by Dubovik et al. (2000).
The results were used for providing quality assurance criteria and expected accuracy
estimation (see Dubovik et al. (2002a); Holben et al. (2006)). Sinyuk et al. (2020)
recently presented the approach to estimate retrieval uncertainties used in AERONET
Version 3 data.

All the tests and analyses in the present study include the spectral observations
by the ground-based Sun/sky-scanning radiometers. The set of the aerosol parame-
ters retrieved by GRASP in this configuration are the same as the ones obtained by
AERONET standard operational processing and they are shown in Table 4.1. Even
though GRASP algorithm can provide the error calculations for any radiance geom-
etry, we have focused on retrieval in Solar almucantar only, since for many years has
been the only available retrieval of AERONET network. The assessments concerning
the recently incorporated hybrid observational geometry (Sinyuk et al. (2020)) may be
analysed in future works

64



4.1. Aerosol retrieval approaches considered

Thus, the present study uses the direct sun measurements and sky radiances both
at 4 different wavelengths 440 nm, 675 nm, 870 nm and 1020 nm for the inversion
tests. These sky radiances measurements are measured in the Solar almucantar (fixed
view zenith angle equal to the solar zenith angle, SZA) with a varying azimuth angle
ranging from ±3.5 degrees to ±180 degrees (Table 4.1).

4.1.2 Aerosol retrieval from a combination of Sun/sky ra-
diometer and lidar data

The inversion of co-located observation by Sun/sky radiometer and lidar is another
popular retrieval approach in aerosol community. Indeed, radiometer direct Sun and
multi-angular polarimetric observations of diffuse Sun radiation transmitted through
the atmosphere have significant sensitivity to the atmospheric aerosol amount, its par-
ticles size, shape and morphology; however, they have practically no sensitivity to the
vertical variability of aerosols. The lidar observations on the other hand provide the
information about vertical distribution of aerosol while their sensitivity to other aerosol
properties is more limited compare to radiometer observations. Therefore, the infor-
mation from collocated photometric measurements and lidar systems is complementary
and always desirable for enhanced characterization of aerosol properties. As was men-
tioned before, GRASP retrieval has been successfully adapted by Lopatin et al. (2013)
for processing such combined observations which was used in numerous studies.

Moreover, GRASP has been adapted to integrated all type of lidar measurements,
including Raman channels and polarized channels. Therefore, the use of GRASP con-
cerning the synergy between lidar and photometer includes a vast quantity of different
approaches since the lidars of the GRASP users have quite different channels and pos-
sibilities. The information contain of each inversion would be related to the type of
lidar used, and the analyses of the error estimates would be different for every single
application. Particularly in this thesis, we have considered as input data the synergy
of sun/sky radiometer and lidar measurements in solar almucantar at four wavelengths
combined with the correlative range corrected signal (RCS) values, at 355 nm, 532 nm
and 1064 nm. This is the former combination used in the analysis of Lopatin et al.
(2013) and still one of the most used today within GRASP users. On the other hand,
the lidar signal provided in GRASP as input data is normalized at 60 log-spaced bins
at different heights, as in Lopatin et al. (2013, 2021), giving a minimum and maximum
heights. The main reason of this election is because all lidars provide observations
within a certain distance range, which varies from instrument to instrument and it is
limited by emitter/receiver field of view overlap in the lower part as well as by the
signal-to-noise ratio in the upper part. In addition to columnar aerosol properties
provided from radiometer only inversion, the combined GRASP retrieval derives the
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vertical profile of aerosol concentration. Moreover, the retrieval seems to be sensitive
to separate optical properties of fine and coarse mode (Lopatin et al., 2013) and aerosol
can be considered as an external mixture of fine and coarse aerosol components. Thus,
all retrieved parameters are provided for both aerosol modes as shown in the Table 4.1.

Table 4.1 summarizes the used input data in both schemes and the retrieved prop-
erties, which are provided also with their error estimates, in each of the cases.

Table 4.1: Summary of general input data and the set of parameters retrieved by GRASP
algorithm used in this work for two configurations: Sun/sky radiometer only and Sun/sky
radiometer plus lidar.

Sun/sky radiometer Only Sun/sky radiometer plus lidar

Input: Input:
Sun/sky-radiometer data:

- AOD∗ - AOD∗

- Calibrated radiances∗ - Calibrated radiances∗

Lidar data:
- Range corrected profiles (RCS∗∗) normalized

∗ at 440 nm, 675 nm, 870 nm and 1020 nm at 60 log-spaced bins at different heights
∗∗ at 355 nm, 532 nm and 1064 nm

Retrieved aerosol properties in the total Retrieved aerosol properties (Column-integrated
atmospheric column: and vertical distributions):

- dV (ri)/d ln ri - dV (ri)/d ln ri (in total atmospheric column)
- Csph - Csph (in total atmospheric column)
- n(λi) - n(λi) (in total atmospheric column)
- k(λi) - k(λi) (in total atmospheric column)

- CV (h) (vertical distribution)
Retrievals provided for total, fine and Retrievals provided for total, fine and
coarse modes. coarse modes.

∗ Azimuth angles, for sky radiances in the almucantar geometry, relative to sun (in degrees): 3.0, 3.5,
4.0, 5.0, 6.0, 7.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0, 60.0, 70.0,
80.0, 90.0, 100.0, 110.0, 120.0, 140.0, 160.0, 180.
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4.2 Structure of different error parameters analysis

As was already mentioned, GRASP has the capability to provide the full covariance
matrix of the retrieval errors and this study is aimed to evaluate and illustrate the
efficiency of these estimated covariance matrices. At the same time, retrieval error
evaluations in most practical applications rely on consideration of mainly diagonal ele-
ments of the covariance matrices while non-diagonal elements of covariance matrices are
much less used. Indeed, in spite of the fact that non-diagonal elements of covariance
matrices provide valuable and interesting information about retrieval errors correla-
tions, these non-diagonal elements are not often available in practice and the analysis
of error correlations requires more sophisticated considerations compare to straight-
forward analysis diagonal elements only, and therefore it is less popular. Considering
these aspects, in this thesis, as a first step, a more detailed and extensive analysis of the
error variances is carried out, as a second step, the usefulness of obtained non-diagonal
elements is illustrated.

The performance of GRASP error variances estimated provided by Eqs. 3.52-3.53
is studied using a series of numerical tests. Figure 4.1 illustrates the general scheme of
these tests organization.

Figure 4.1: General scheme for the validation of the error estimates.

First, as showed in Fig. 4.1, the parameters aassumed for assumed detailed aerosol
properties (dV (ri)/d ln ri, n(λi), k(λi), Csph and CV (h) in the case of lidar) are used to
obtain the synthetic observations using the GRASP forward model. These synthetic
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observations include the spectral AOD, sky radiances and range corrected signals (RCS)
of lidar. These data are used then in the inversion tests where the aerosol parameters
and their errors are estimated from these synthetic observations using GRASP algo-
rithm. In order to study the effects of the different uncertainties both random and
systematic errors are added to the synthetic measurements before the inversion, then
the retrieved parameters âretr are compares with aassumed (see Fig. 4.1)). Therefore,
from the retrieved parameters, the retrieval errors provided by GRASP algorithm and
‘actual’ retrieval errors can be compared. Thus, these actual errors are calculated
comparing aassumed and âretr as follow:


∆âabs = âretr − aassumed

∆ârel = ∆âabs

aassumed

· 100%
(4.1)

where âretr is the retrieved parameter by GRASP algorithm and aassumed is the pa-
rameter assumed in the input data for generation of the synthetic observation. Equa-
tion 4.1 is used for each retrieved parameter including the size distribution value at
each size bin, the values of complex refractive index at each wavelength, the values of
aerosol vertical profile at each altitude and the values of spherical particle fraction. We
also implemented the evaluations of the errors for aerosol SSA, and other parameters,
that are not part of the directly retrieved parameter while a function of the retrieved
parameters and it is estimated based on âretr. Thus, the retrieval error variances es-
timated by GRASP can be compared with the calculated actual retrieval errors. It
should be noted here that we have always verified that the errors of the retrieval re-
alized by GRASP from the ‘error free’ synthetic data (i.e. with no error specifically
added) are negligibly small.

GRASP generated variances of the retrieval errors are evaluated in the presence
of random errors and analyzed using a series on the numerical tests conducted for
statistically representative set of random error realizations. These results are then
summarized for the whole series of the tests by figures and tables. The tests with
added systematic errors are discussed for most of separate systematic error type while
some overall summaries are also provided.

As was mention before, in addition to the standard deviation the non-diagonal ele-
ments of covariance matrices provide additional important inside about retrieval qual-
ity. This additional information mainly relates with non-zero correlation coefficients.
Therefore, in order to illustrate the correlation structure, in this work is also analyzed
the correlation matrix that contains the covariance matrix elements normalized by the
respective variances as shown by Eq. 3.59. This study attempts to provide several
demonstrations of how the structure of the correlation matrix may help to understand
several interesting observations in existing retrieval experience.

68



4.3. Aerosols models and realizations used in the tests

4.3 Aerosols models and realizations used in the
tests

The synthetic tests were performed for several preselected realizations of aerosol in
the atmosphere. These realizations were selected based on extensive experience with
aerosol retrieval from Sun/sky radiometer data and their combination with co-located
lidar data. It is expected that the selected aerosol realization scenarios are representa-
tive of the majority of distinct actual observations of atmospheric aerosols.

Two main observational scenarios are considered:

• single aerosol, such as biomass burning (BB), urban and dust for different aerosol
loads τ(440) = 0.3, 0.6 and 0.9; and

• the mixture of dust with BB and with urban (BB-Dust and Urban-Dust). For
each mixture, we have selected nine different scenarios that correspond to three
different aerosol loads, τ(440) = 0.2, 0.5 and 1.0, where the different cases of
partition between fine and coarse mode were: τf/τc = 4.0, τf/τc = 1 and τf/τc =
0.25.

The single aerosol and aerosol mixture observational scenarios are used in gener-
ation of synthetic tests with sun/sky photometer-only observations. By considering
both single and two aerosol types, in this work is evaluated how the accuracy of the re-
trieved evolve once larger number of parameters are derived from the same information
content. In a contrast, the retrieval based on the synergy between lidar and sun/sky
photometer is aimed for the retrieval of the properties of two fine and coarse mode
aerosol components, therefore the numerical tests for this type of the retrieval rely
on mixed aerosol observation scenario. At the same time, the error estimation is also
checked in the case when the joint radiometer and lidar observation of single aerosol
are analyzed. The properties of each aerosol type were modeled using the climatology
of aerosol retrievals from AERONET observations described by Dubovik et al. (2002b)
and Torres et al. (2017). The dynamic climatological model from Mongu (Zambia)
was used for BB aerosol, model from GSFC (Maryland, USA) for urban aerosol and
model from Solar Village (Saudi Arabia) for dust aerosol. The real refractive index
(RRI) and imaginary refractive index (IRI) for λ = 355 nm, 532 nm and 1064 nm (lidar
measurements) were obtained by the extrapolation of the values from Dubovik et al.
(2002b) as was suggested by Torres et al. (2017). All the scenarios were simulated
assuming a solar zenith angle (SZA) equal to 75 degrees.

The retrieval settings were used similar to those that conventionally used in re-
trieval of aerosol from AERONET Sun/sky-radiometer observations by Dubovik and
King (2000) and from combined observations by Sun/sky-radiometer and lidar by
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Lopatin et al. (2013, 2021). Specifically, in the retrievals from Sun/sky-radiometer
only observations the size distribution (SD) was simulated using 22 logarithmically
equidistant size bins between 0.05 to 15 µm. In retrieval of aerosol mixture from com-
bined observations by Sun/sky-radiometer the size distribution is modelled using 10
logarithmically equidistant bins between 0.05 and 0.58 µm for the fine mode and 15
logarithmically equidistant bins between 0.33 and 15 µm for the coarse mode. Similar
approach was employed in the retrieval from Sun/sky-radiometer only observations in
attempt when bi-component aerosol model was retrieved.

4.4 Test results

Several tests were realized to evaluate the error estimates reliability and usefulness
in the presence of both random and systematic uncertainties for aerosol retrievals
from the observations of Sun/sky-radiometer alone and in a combination with lidar.
In this section are presented the results for two scenarios: (i) as simpler case when
only one type of aerosol present and (ii) more complex case then when two distinct
types of aerosol present at the same time. Moreover, the correlation matrices for both
scenarios are estimated and their usefulness for understanding retrieval error tendencies
optimizing retrieval approach are illustrated in this section.

4.4.1 Random error analysis

In series of these tests, to all inverted the synthetic measurements, we added random
noise with standard deviation of ε∆τ (λ) = 0.01 for AOD, ε∆I

I
(λ) = 5% for radiances

in order to model realistic uncertainties of AERONET observations (Holben et al.
(1998); Eck et al. (1999); Dubovik et al. (2000); Sinyuk et al. (2020)), and ε355 = 0.2,
ε532 = 0.15 and ε1064 = 0.1 for lidar attenuation measurements that vary with the
altitude as explained by Lopatin et al. (2013, 2021).

4.4.1.1 Retrieval of single aerosol component from radiometer measure-
ments

This section describes the evaluation of the error estimates assuming presence of only
one type of aerosol: BB, urban or dust. As we mentioned before, the retrieval aerosol
properties under assumption of the presence of single aerosol type composed by ho-
mogeneous particles is well-established approach for deriving detailed aerosol proper-
ties from ground-based observations by Sun/sky-radiometer that is adapted in opera-
tional AERONET retrievals by Dubovik and King (2000). The detailed error analysis
of AERONET inversion aerosol product was provided by Dubovik et al. (2000),
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Torres et al. (2017) and by the recent study of Sinyuk et al. (2020) that described the
uncertainty approach adapted in for AERONET Version 3 retrieval products.

Figures 4.2 - 4.4 illustrate the error variances estimated by GRASP for all retrieved
aerosol parameters in the selected synthetic tests for observation of BB, urban and
dust with different aerosol loads: τ(440) = 0.3, 0.6 and 0.9. The displayed error bars
standard deviation are calculated from the diagonal elements of the covariance matrix
(Eq. 3.57). Some tendencies can be seen from these illustrations. For example, the
errors of SD in the extremes (for the largest and smallest particles) are the biggest.
This is an expected tendency since these particles have typically a lower contribution
to the measured signal (radiances and aerosol optical depths) compared to the particles
of intermediate radius.

(a) (b) (c)

Figure 4.2: Aerosol properties retrieved from simulated sun/sky photometer data with
random noise added for BB aerosol for τ(440) = 0.3, 0.6 and 0.9 (left to right). The dashed
lines are the simulated properties (SD, RRI, IRI and SSA), the solid lines are the retrieved
parameters. The shaded area indicates error estimated by GRASP algorithm.

The retrievals improve and the error decrease when the aerosol load increases,
specially for IRI and SSA (absorption information). For BB and urban, SSA error
increases with the wavelength. On the other hand, SSA error decreases with the
wavelength for dust. This is an expected behavior since the scattering efficiency is more
pronounced at short wavelengths for small particles while it is somewhat increasing
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with wavelength for large particles. Furthermore, as shown in Fig. 4.2a, the observed
underestimation in the SD fine mode seems to be related with an overestimation in
RRI.

(a) (b) (c)

Figure 4.3: Aerosol properties retrieved from simulated sun/sky photometer data with
random noise added for urban aerosol for τ(440) = 0.3, 0.6 and 0.9 (left to right). The
dashed lines are the simulated properties (SD, RRI, IRI and SSA), the solid lines are the
retrieved parameters. The shaded area indicates error estimated by GRASP algorithm.

To evaluate the error estimates in presence of random noise, a set of the simulations
for 300 different realizations of noise modelled using random numbers generator has
been analyzed in this work. The results of such numerical tests conducted with statis-
tically representative set of random errors which are summarized and illustrated using
boxplots of the errors as demonstrated in Fig. 4.5 for SSA(675) values. In the upper
part of the figure, the box represents 50% of the data with the whiskers representing
5th and 95th percentiles of the data, the solid line in the boxplot representing the
median and the points are the mean values.

Figure 4.6 shows the distributions of the error estimates provided by GRASP (in
red) and the calculated errors (in blue) for the cases when τ(440) = 0.6 and the
following convergence criteria are satisfied: ∆τ ≤ 0.01 and ∆I/I ≤ 5%. It can be
seen that overall the error estimates provided by GRASP show a capture quite well the
‘actual’ error tendencies with some overestimation of their values. Thus, the retrieved
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(a) (b) (c)

Figure 4.4: Aerosol properties retrieved from simulated sun/sky photometer data with
random noise added for dust aerosol for τ(440) = 0.3, 0.6 and 0.9 (left to right). The dashed
lines are the simulated properties (SD, RRI, IRI and SSA), the solid lines are the retrieved
parameters. The shaded area indicates error estimated by GRASP algorithm.

errors can be considered as upper estimates of actual errors. This observed general
overestimation can be, at least partially, explained by the fact that the error estimates
by Eqs. 3.52 and 3.53 rely on linear approximation. In this respect it is known from
practice that non-linear effects often lead to some saturation while that cannot be
captured by linear estimates. Some interesting tendencies can be appreciated in the
obtained illustrations. For example, errors in SSA increase with the wavelength for BB
and urban, and decreases for dust.

On the other hand, the RRI errors to be similar at the different wavelengths. This is
likely related to the fact that spectrally RRI retrievals rely on rather strong smoothness
constraints on spectral variability of RRI (e.g. Dubovik and King (2000)). In contrast
to the RRI, a large variability of the calculated errors is observed in the distribution
of the errors for the IRI. Indeed, in order to capture possible real spectral variability
of IRI as that of dust (e.g. see Dubovik et al. (2002b)) the IRI is retrieved under
milder smoothness constraints on spectral variability (see Dubovik and King (2000)).
Some of the fore-mentioned and other tendencies in the retrieval errors will be further
discussed and evaluated in the section which deals with error correlation matrices
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Figure 4.5: The comparison of the variance SSA(675) values estimated by GRASP algorithm
with actual errors obtained for extensive tests with randomly added modeled errors. Upper
panel: the box represents 50% of the data with the whiskers representing 5th and 95th
percentiles of the data and the solid line in the boxplot representing the median value.

(Section 4.4.3.1).

Table 4.2 summarizes the evaluation of the error estimates represented in the box-
plots. It provides the mean values for each parameter (RRI, IRI and SSA) at different
wavelengths. These values correspond to the situation with a solar zenith angle equal
to 75 degrees. The obtained estimates compare reasonably with the corresponding
values provided by the Table 4 of the paper by Dubovik et al. (2006). Specifically,
RRI error at 440 nm provided by GRASP for BB is 0.079 (0.04), where the values in
parenthesis are from Dubovik et al. (2000) and for urban it is 0.056. The IRI error at
440 nm is 24% (30%) for BB, 54.1% for urban and 24.4% (50%) for dust. The values of
the SSA errors 0.028 (0.03) for BB, 0.013 for urban and 0.014 (0.03) for dust. At the
same time, RRI error at 440 nm provided by GRASP for dust it is 0.201 (0.04) is quite
different, though Dubovik et al. (2000) considered only spherical particles. Moreover,
the error estimates for SSA are consistent with the U27 estimates provided by Sinyuk
et al. (2020). For example, at 440 nm for AOD = 0.6 the corresponding value for GSFC
is 0.017 while grasp provides values of 0.013; for Mongu is 0.023 while grasp provides
error of 0.028.
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Figure 4.6: The comparison of estimated and actual error distributions for spectrally de-
pendent aerosol parameters retrieved from sun/sky photometer simulated measurements (a
case with τ(440) = 0.6). The distributions were obtained using 300 realizations of added
random errors. The median values of the errors are shown by a line in the boxplot along
with the 25 − 75th percentiles indicate by a box and 5 − 95th percentiles indicated using
whiskers. The red color shows the error estimates provided by GRASP and the blue shows
the calculated actual errors (Eq. 4.1).

4.4.1.2 Retrieval of mixed aerosol properties from measurements of ra-
diometer only

As it was already mentioned, most conventional aerosol retrievals from ground-based
radiometer measurements (e.g., Dubovik and King (2000); Nakajima et al. (2020)) as-
sumes that aerosol is represented by homogeneous polydisperse particles with the size
independent refractive index. At the same time, this condition is not always correct
in reality. Moreover, it is likely somewhat incorrect in majority of the cases. Dubovik
et al. (2000) showed in that cases the retrieval assuming homogeneous particles would
provide effective index of refraction that allows to reproduce the scattering proper-
ties of mixed aerosol rather adequately. Nonetheless, the assumption of homogeneous
particles is often questioned and revisited (Xu et al. (2015)), therefore considerations
of aerosol inhomogeneity is included in present studies also. In this regard, while the
retrieval of the multi-component aerosol is not a part of the standard AERONET inver-
sion, GRASP algorithm allows the retrieval of several aerosol components from diverse
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Table 4.2: Errors provided by GRASP for the RRI, IRI and SSA are represented by the
mean values of each boxplot for their respective wavelength. Absolute errors are given for RRI
and SSA, and relative errors for IRI. Mean values of actual errors are provided in parenthesis.

BB Urban Dust

RRI IRI[%] SSA RRI IRI[%] SSA RRI IRI[%] SSA

440 0.079 24.0 0.028 0.056 54.1 0.013 0.201 24.4 0.014
(0.014) (6.66) (0.005) (0.016) (17.6) (0.004) (0.03) (11.52) (0.006)

675 0.082 10.9 0.033 0.053 33.3 0.014 0.17 24.2 0.008
(0.018) (7.8) (0.005) (0.015) (19.8) (0.005) (0.013) (11.36) (0.004)

870 0.084 11.29 0.042 0.051 31.55 0.017 0.17 28.2 0.008
(0.019) (11.61) (0.009) (0.015) (28.57) (0.009) (0.011) (14.3) (0.003)

1020 0.081 13.17 0.043 0.052 35.1 0.021 0.167 30.4 0.007
(0.017) (13.52) (0.014) (0.015) (27.3) (0.011) (0.011) (11.7) (0.002)

remote sensing observations including the case of aerosol retrieval from radiometer
measurements only.

At the same time, since the retrieval of multi-component aerosol from radiome-
ter only is not often used and not employed for operational retrievals, the tests in
this section are limited only to several illustrations and no statistical evaluation is
performed. The illustrations are produced for the observations of a mixture of Urban-
Dust and BB-Dust (see Section 4.3) for three cases of total τ(440) = 0.2, 0.5 and 1.0.
In particular, we illustrate the case for τ(440) = 1.0, with τf = 0.8 and τc = 0.2,
τf = τc = 0.5 and τf = 0.2 and τc = 0.8, anticipating more potential for adequate
retrieval of multi-component aerosol since the effect of AOD errors decreases for higher
AOD. The analysis is focused on possibilities of the differentiation between the prop-
erties of fine and coarse aerosol mode parameters such as complex refractive indices,
size distributions, single scattering albedo.

Figures 4.7 and 4.8 illustrate results of bi-component retrievals and their error
estimates from observations of Sun/sky-radiometer of mixed aerosol. In the same
figures, we also show a zoomed plot for the effective RRI and IRI and the total SSA
with their errors. Several retrieval tendencies are evident from the figures. For example,
in the presence of one mode dominated in optical thickness, the retrievals and error
estimates of dominating component are more accurate. For example, in Fig. 4.7c for
τf = 0.2 and τc = 0.8, the retrievals of the coarse mode properties are more accurate.
An opposite behavior can be seen in Fig. 4.7a for τf = 0.8 and τc = 0.2 when the
predominance is in the fine mode. The clear trend can be observed in spectral dynamic
of the error values for SSA: the error increases with the wavelengths in the fine mode
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and decreases for the coarse mode.

The most obvious difficulties in the separation of modes are evident when the
properties of each mode are not very different. For example, the such situation can
be seen for IRI of Urban-Dust mixture (Fig. 4.7) and for RRI of BB-Dust mixture
(Fig. 4.8). In such situations the error variances of each parameter are large and likely
correlated (more details provided in discussion of covariance matrices). However, it
is very important to note that while the discrimination of some parameters of each
component separately is not evident, most of the total and effective properties (zoomed
plots) can be estimated rather accurately.

Urban and Dust

τf = 0.8 τc = 0.2 τf = 0.5 τc = 0.5 τf = 0.2 τc = 0.8

(a) (b) (c)

Figure 4.7: Aerosol properties retrieved from simulated sun/sky photometer data with
random noise added for a mixture of Urban-Dust aerosols. The dashed lines indicate the
simulated properties (SD, RRI, IRI and SSA), the solid lines are the retrieved parameters.
The shaded areas indicate error estimated by GRASP algorithm. The zoomed plots represent
the effective refractive index and total SSA.
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BB and Dust

τf = 0.8 τc = 0.2 τf = 0.5 τc = 0.5 τf = 0.2 τc = 0.8

(a) (b) (c)

Figure 4.8: Aerosol properties retrieved from simulated sun/sky photometer data with ran-
dom noise added for a mixture of BB-Dust aerosols. The dashed lines indicate the simulated
properties (SD, RRI, IRI and SSA), the solid lines are the retrieved parameters. The shaded
areas indicate error estimated by GRASP algorithm. The zoomed plots represent the effec-
tive refractive index and total SSA.

4.4.1.3 Retrieval of mixed aerosol properties from measurements of ra-
diometer in combination with lidar

The GRASP aerosol retrieval from were combined Sun/sky radiometer and lidar ob-
servations were always designed for retrieval of bi-component aerosol (Lopatin et al.
(2013) and the approach is employed for operation processing in frame of ACTRIS
activities. Therefore, the evaluation of the random error effect in the aerosol retrieval
from radiometer and lidar observations of aerosol mixtures include both analysis of the
selected illustrations and the statistically representative series of numerical tests with
random errors. The considered synthetic data include synthetic observations produced
for the same examples of aerosols mixture (Urban-Dust and BB-Dust) as used in the
Section 4.4.1.2.

Figures 4.9 to 4.12 illustrate the retrievals and their error estimates obtained for
aerosol properties of both fine and coarse aerosol modes. The good agreement of
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actually retrieved parameters (solid lines) with the assumed values (dashed lines) can be
seen for all cases. From comparison of Figs. 4.7-4.8 with Figs. 4.9-4.10, it is easy to see
that the retrieval error estimate is lower when lidar data also used. The improvements
(compared to the results from radiometer only retrievals) are especially evident in the
separation of the retrieved aerosols properties, especially when the contribution of the
aerosol load is lower (this will be shown in Section 4.4.2 when also bias is assumed). At
the same time, the total properties are accurately estimated in both retrieval scenarios.

Urban and Dust

τf = 0.8 τc = 0.2 τf = 0.5 τc = 0.5 τf = 0.2 τc = 0.8

(a) (b) (c)

Figure 4.9: Aerosol properties retrieved from simulated sun/sky photometer and lidar data
with random noise added for a mixture of Urban-Dust aerosols. The dashed lines indicate the
simulated properties (SD, RRI, IRI and SSA), the solid lines are the retrieved parameters.
The shaded areas indicate error estimated by GRASP algorithm. The zoomed plots represent
the effective refractive index and total SSA.

Figure 4.11 shows the lidar ratio of fine mode, coarse mode and total aerosol for
the three cases aforementioned. In general, good agreements of retrieved and assumed
values are obtained, specially for the total LR. However, there are some discrepancies
at short wavelengths for fine mode lidar ratios.

Figure 4.12 illustrates the retrieval of aerosol vertical profile for each case. The
agreement between retrieved and assumed values of vertical profiles is good mainly
for the coarse mode at the altitudes where it has maximum and dominates. At the
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BB and Dust

τf = 0.8 τc = 0.2 τf = 0.5 τc = 0.5 τf = 0.2 τc = 0.8

(a) (b) (c)

Figure 4.10: Aerosol properties retrieved from simulated sun/sky photometer and lidar data
with random noise added for a mixture of BB-Dust aerosols. The dashed lines indicate the
simulated properties (SD, RRI, IRI and SSA), the solid lines are the retrieved parameters.
The shaded areas indicate error estimated by GRASP algorithm. The zoomed plots represent
the effective refractive index and total SSA.

altitudes where there is a superposition of aerosol layers with comparable presence of
both aerosols the retrieval struggles to discriminate the contribution of both modes
and a clear overestimation of fine mode (and a consequently underestimation of coarse
mode) can be seen.

In order to evaluate the error estimates in presence of random errors, a set of
simulations with adding 300 realization of random noise values is analyzed. Figures
4.13 to 4.20 show the comparisons of all retrieved aerosol parameters separately for fine
and coarse aerosol modes. In addition, the retrieval of total SSA and LR are shown.
The case for total τ(440) = 1.0 is shown more extensively, as in previous Section, due
to the interest the retrieval in the situation with higher aerosol loads. The main result
that can be gained from illustrations is that GRASP error estimates are typically higher
than actual errors; this same result was obtained for the retrieval of only photometer
data.
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Urban and Dust

τf = 0.8 τc = 0.2 τf = 0.5 τc = 0.5 τf = 0.2 τc = 0.8

BB and Dust

τf = 0.8 τc = 0.2 τf = 0.5 τc = 0.5 τf = 0.2 τc = 0.8

Figure 4.11: The aerosol lidar ratio (LR) retrieved from simulated sun/sky photometer
and lidar data with random noise added for a mixture Urban-Dust aerosols (above) and BB-
Dust (below). The dashed lines indicate the simulated properties (SD, RRI, IRI and SSA),
the solid lines are the retrieved parameters. The shaded areas indicate error estimated by
GRASP algorithm. The zoomed plots represent the results for total LR retrievals.

Figures 4.13 and 4.14 illustrate the comparisons of distributions of the GRASP
error estimates and actual errors for RRI and IRI of fine and coarse aerosol modes for
situations when mixtures of Urban-Dust and BB-Dust are observed. It can be seen that
the accuracy of the refractive index retrievals for each mode depends strongly on the
contribution of the mode to the signal, as was observed by Lopatin et al. (2013). For
example, if we analyse the performance of the fine mode, the higher the contribution
of fine optical thickness, the better the accuracy in the retrievals of fine mode aerosol
parameters.

Figures 4.15 and 4.16 show the situation for error distribution for SSA of fine mode,
coarse mode and total. Similarly as observed in earlier tests, for the retrieval of fine
mode parameter, the errors increase with the wavelength while for the retrieval of the
coarse mode parameters the errors decrease with the wavelengths. Also, the results
show the error in the total SSA are rather small even if the SSA of fine and coarse
modes are quite high.

The error evaluation for LR is represented in the Figs. 4.17 and 4.18. In most
of the cases we see good agreements between the error estimations and actual error.
The only exception is the errors of LR of fine mode at short wavelengths where the
actual errors are higher than the errors provided by GRASP. This tendency seems to
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Urban and Dust

τf = 0.8 τc = 0.2 τf = 0.5 τc = 0.5 τf = 0.2 τc = 0.8

BB and Dust

τf = 0.8 τc = 0.2 τf = 0.5 τc = 0.5 τf = 0.2 τc = 0.8

Figure 4.12: The aerosol AVP retrieved from simulated sun/sky photometer and lidar data
with random noise added for a mixture of Urban-Dust aerosols (above) and BB-Dust (below).
The dashed lines indicate the simulated properties (AVP), the solid lines are the retrieved
parameters. The shaded areas indicate error estimated by GRASP algorithm.

be anticorrelated with the results found for the coarse mode LR error estimates, where
the GRASP error estimates are notably higher than actual values.

The results illustrated by the figures are summarized in Tables 4.3 to 4.5. These
tables show the mean values of the GRASP error estimates for the cases when the
total τ(440) = 1.0 and τf = τc = 0.5, i.e. when there is no predominance of either
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Urban and Dust

τf = 0.8 τc = 0.2 τf = 0.5 τc = 0.5 τf = 0.2 τc = 0.8

Figure 4.13: The comparison of estimated and actual error distributions for spectrally
dependent aerosol parameters retrieved from measurements by sun/sky photometer simulated
and lidar for a mixture of Urban-Dust aerosol. The distributions were obtained using 300
realizations of added random errors. The median values of the errors are shown by a line in
the boxplot along with the 25 − 75th percentiles indicate by a box and 5 − 95th percentiles
indicated using whiskers. The red color shows the error estimates provided by GRASP and
the blue shows the calculated actual errors (Eq. 4.1).

modes. The values are provided for the aerosol parameter considered at different
wavelengths both for simulation of Urban-Dust and BB-Dust observations calculated
for a case of the SZA= 75 degrees. For retrieval error of fine mode in the case of urban
aerosol parameters, the median values for RRI are around 0.05, and the values do not
present much variability with the wavelength. For retrieval of IRI, the mean values
of the GRASP retrieval errors are at the level of around 73%, showing a pronounced
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BB and Dust

τf = 0.8 τc = 0.2 τf = 0.5 τc = 0.5 τf = 0.2 τc = 0.8

Figure 4.14: The comparison of estimated and actual error distributions for spectrally
dependent aerosol parameters retrieved from measurements by sun/sky photometer simulated
and lidar for a mixture of BB-Dust aerosol. The distributions were obtained using 300
realizations of added random errors. The median values of the errors are shown by a line in
the boxplot along with the 25 − 75th percentiles indicate by a box and 5 − 95th percentiles
indicated using whiskers. The red color shows the error estimates provided by GRASP and
the blue shows the calculated actual errors (Eq. 4.1).

underestimation respect to the actual error, at short wavelengths. With respect to
SSA errors provided by GRASP a clear tendency is observed: the error increases
with the wavelengths from 0.024 to 0.061. Finally, the mean values of LR errors
provided by GRASP decrease with the wavelength between 15% to 10%, with notable
underestimations respect to the actual errors at short wavelengths. In the case of the
retrieval of fine mode BB parameters, mean values for RRI errors provided by GRASP

84



4.4. Test results

Urban and Dust

τf = 0.8 τc = 0.2 τf = 0.5 τc = 0.5 τf = 0.2 τc = 0.8

Figure 4.15: The comparison of estimated and actual error distributions for aerosol SSA
retrieved from measurements by sun/sky photometer simulated and lidar for a mixture of
Urban-Dust aerosols. The distributions were obtained using 300 realizations of added random
errors. The median values of the errors are shown by a line in the boxplot along with the
25−75th percentiles indicate by a box and 5−95th percentiles indicated using whiskers. The
red color shows the error estimates provided by GRASP and the blue shows the calculated
actual errors (Eq. 4.1).

are around 0.05. Some underestimations respect to the actual errors are observed at
short wavelengths. The mean values for IRI errors are around 60% and the errors
for SSA show a clear tendency to increase with the wavelengths between 0.04 to 0.09.
Mean values of LR errors provided by GRASP decrease with the wavelength between
18% to 14%.

The mean values of error estimates provided by GRASP for dust present good
agreement in case of both mixtures. In general, the mean values for RRI error estimates
vary between 0.07 to 0.09 and they do not present much variability with the wavelength,
while the smaller values of errors are seen for Urban-Dust mixture case. The mean
values of IRI error estimates are around 50%, while for BB-Dust mixture we observe
some underestimations of actual errors by GRASP calculations. The errors of SSA
show a clear tendency that decrease with the wavelengths between 0.04 to 0.009. The
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BB and Dust

τf = 0.8 τc = 0.2 τf = 0.5 τc = 0.5 τf = 0.2 τc = 0.8

Figure 4.16: The comparison of estimated and actual error distributions for aerosol SSA
retrieved from measurements by sun/sky photometer simulated and lidar for a mixture of
BB-Dust aerosols. The distributions were obtained using 300 realizations of added random
errors. The mean values are represented by the black dot and the median values of the errors
are shown by a line in the boxplot along with the 25 − 75th percentiles indicate by a box
and 5 − 95th percentiles indicated using whiskers. The red color shows the error estimates
provided by GRASP and the blue shows the calculated actual errors (Eq. 4.1).

mean values for LR retrievals increase with the wavelength from 37% to 60%, with
bigger errors observed for BB-Dust mixture.

Once again, it is important to note that the errors of the parameters characterizing
total aerosol are generally accurately estimated. For both cases of Urban-Dust and
BB-Dust mixtures, the mean values of total SSA error estimates vary between 0.02 to
0.009 and the mean values of total LR error estimates are in the range of 23% to 55%.

Figures 4.19 and 4.20 show the relative errors of AVP retrievals for fine and coarse
aerosol modes for Urban-Dust and BB-Dust aerosols mixture. The errors estimated
by GRASP are a bit higher that the errors obtained by simulations of random errors,
correspondingly the GRASP errors can be safely used as upper estimates of actual
retrieval uncertainties. Table 4.5 summarizes the evaluation of the errors estimates for
all the scenarios discussed above. The GRASP estimates of the retrieval errors for both
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Urban and Dust

τf = 0.8 τc = 0.2 τf = 0.5 τc = 0.5 τf = 0.2 τc = 0.8

Figure 4.17: The comparison of estimated and actual error distributions for aerosol LR
retrieved from measurements by sun/sky photometer simulated and lidar for a mixture of
Urban-Dust aerosols. The distributions were obtained using 300 realizations of added random
errors. The mean values are represented by the black dot and the median values of the errors
are shown by a line in the boxplot along with the 25 − 75th percentiles indicate by a box
and 5 − 95th percentiles indicated using whiskers. The red color shows the error estimates
provided by GRASP and the blue shows the calculated actual errors (Eq. 4.1).

mixtures are between 50 − 70% for the fine mode and 50 − 57% for the coarse mode.
Finally, a lower sensitivity to the retrieval of fine mode properties can be observed

as a clear tendency in the evaluation of the retrieval errors for the cases when mixed
aerosols are analyzed. In particular, quite high errors were obtained for the complex
refractive index. Then, these errors consequently propagate to the errors of other
optical properties such as SSA of fine mode, as was found in the earlier study by
Lopatin et al. (2013).
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BB and Dust

τf = 0.8 τc = 0.2 τf = 0.5 τc = 0.5 τf = 0.2 τc = 0.8

Figure 4.18: The comparison of estimated and actual error distributions for aerosol LR
retrieved from measurements by sun/sky photometer simulated and lidar for a mixture of
BB-Dust aerosols. The distributions were obtained using 300 realizations of added random
errors. The mean values are represented by the black dot and the median values of the errors
are shown by a line in the boxplot along with the 25 − 75th percentiles indicate by a box
and 5 − 95th percentiles indicated using whiskers. The red color shows the error estimates
provided by GRASP and the blue shows the calculated actual errors (Eq. 4.1).
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Urban and Dust

τf = 0.5 τc = 0.5

Figure 4.19: The comparison of estimated and actual error distributions for AVP retrieved
from measurements by sun/sky photometer simulated and lidar for a mixture of Urban-Dust
aerosols. The distributions were obtained using 300 realizations of added random errors. The
mean values are represented by the black dot and the median values of the errors are shown
by a line in the boxplot along with the 25 − 75th percentiles indicate by a box and 5 − 95th
percentiles indicated using whiskers. The red color shows the error estimates provided by
GRASP and the blue shows the calculated actual errors (Eq. 4.1).

BB and Dust

τf = 0.5 τc = 0.5

Figure 4.20: The comparison of estimated and actual error distributions for AVP retrieved
from measurements by sun/sky photometer simulated and lidar for a mixture of BB-Dust
aerosols. The distributions were obtained using 300 realizations of added random errors. The
mean values are represented by the black dot and the median values of the errors are shown
by a line in the boxplot along with the 25 − 75th percentiles indicate by a box and 5 − 95th
percentiles indicated using whiskers. The red color shows the error estimates provided by
GRASP and the blue shows the calculated actual errors (Eq. 4.1).
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Table 4.3: The mean values of RRI, IRI, SSA and LR retrieval errors estimated by GRASP
for the synthetic test for a mixture of Urban-Dust aerosol mixture. The mean values represent
distributions obtained using 300 realizations of added random errors for the situation with
total τ(440) = 1.0 with τf = τc = 0.5 and SZA = 75◦. The absolute errors are provided
for RRI and SSA, and relative errors for IRI and LR. Mean values for the actual errors are
provided in parenthesis.

Urban-Dust

355 nm 440 nm 532 nm 675 nm 870 nm 1020 nm 1064 nm

RRIf 0.050 0.049 0.048 0.045 0.045 0.045 0.045
(0.033) (0.030) (0.029) (0.031) (0.036) (0.036) (0.036)

RRIc 0.076 0.073 0.071 0.080 0.085 0.086 0.086
(0.028) (0.028) (0.028) (0.021) (0.017) (0.015) (0.015)

IRIf [%] 73.31 71.18 70.67 70.33 71.34 72.18 72.26
(103.03) (103.4) (94.19) (81.46) (76.62) (76.78) (76.79)

IRIc[%] 50.59 45.00 44.58 45.12 49.01 51.22 51.51
(36.17) (26.45) (22.32) (18.50) (18.23) (17.92) (17.89)

SSAf 0.024 0.026 0.029 0.033 0.045 0.057 0.061
(0.017) (0.019) (0.020) (0.022) (0.027) (0.034) (0.037)

SSAc 0.039 0.031 0.024 0.015 0.011 0.009 0.009
(0.042) (0.025) (0.014) (0.007) (0.004) (0.003) (0.003)

SSAT 0.017 0.015 0.014 0.010 0.008 0.008 0.008
(0.009) (0.004) (0.004) (0.005) (0.004) (0.003) (0.003)

LRf [%] 14.93 12.11 10.41 8.88 8.92 9.79 9.96
(40.45) (29.39) (15.37) (7.58) (8.44) (8.96) (8.63)

LRc[%] 37.04 35.71 35.23 42.39 47.77 48.99 49.32
(17.42) (12.01) (9.48) (11.81) (14.90) (15.17) (14.99)

LRT [%] 23.31 26.46 28.21 35.61 41.45 43.36 43.97
(9.01) (7.48) (6.85) (9.71) (13.3) (13.9) (13.9)
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Table 4.4: The mean values of RRI, IRI, SSA and LR retrieval errors estimated by GRASP
for the synthetic test for a mixture of BB-Dust aerosol mixture. The mean values represent
distributions obtained using 300 realizations of added random errors for the situation with
total τ(440) = 1.0 with τf = τc = 0.5 and SZA = 75◦. The absolute errors are provided
for RRI and SSA, and relative errors for IRI and LR. Mean values for the actual errors are
provided in parenthesis.

BB-Dust

355 nm 440 nm 532 nm 675 nm 870 nm 1020 nm 1064 nm

RRIf 0.052 0.050 0.048 0.044 0.045 0.046 0.046
(0.064) (0.067) (0.061) (0.052) (0.046) (0.047) (0.047)

RRIc 0.084 0.083 0.079 0.085 0.089 0.091 0.091
(0.019) (0.019) (0.019) (0.017) (0.016) (0.014) (0.014)

IRIf [%] 60.51 57.61 57.91 58.17 60.33 61.48 61.59
(35.65) (35.40) (37.56) (41.63) (43.74) (44.14) (44.13)

IRIc[%] 48.75 44.57 43.81 43.89 47.43 49.56 49.87
(33.75) (41.39) (48.20) (60.36) (62.61) (55.55) (55.44)

SSAf 0.041 0.044 0.048 0.052 0.067 0.085 0.089
(0.031) (0.031) (0.033) (0.040) (0.050) (0.057) (0.059)

SSAc 0.049 0.040 0.032 0.021 0.015 0.013 0.013
(0.032) (0.031) (0.027) (0.019) (0.013) (0.010) (0.009)

SSAT 0.022 0.016 0.016 0.011 0.010 0.009 0.009
(0.011) (0.004) (0.005) (0.004) (0.003) (0.003) (0.003)

LRf [%] 17.99 15.17 12.53 10.74 11.75 13.48 13.82
(33.43) (16.46) (11.29) (18.05) (21.76) (21.43) (21.30)

LRc[%] 49.38 48.73 47.91 54.82 58.57 59.54 59.76
(17.24) (13.65) (11.60) (15.04) (19.94) (22.16) (22.23)

LRT [%] 30.30 34.11 36.09 44.35 50.82 53.51 54.18
(8.83) (9.03) (10.52) (15.65) (20.38) (22.13) (22.14)
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Table 4.5: The mean values of AVP retrieval errors estimated by GRASP for the synthetic
test for a mixture of Urban-Dust aerosol mixture. The mean values represent distributions
obtained using 300 realizations of added random errors for the situation with total τ(440) =
1.0 with τf = τc = 0.5 and SZA = 75◦. The shown relative errors for AVP [1/km] are
represented by the mean values for three layers. Mean values for the actual errors are provided
in parenthesis.

until 1.5 km 1.5-3.5 km above 3.5 km

AVPf [%] 61.91 66.90 59.95
Urban-Dust (25.79) (27.73) (22.06)

AVPc [%] 57.25 54.91 56.34
(14.43) (4.11) (23.51)

AVPf [%] 61.46 68.50 59.17
BB-Dust (25.80) (30.53) (22.28)

AVPc [%] 55.74 53.90 55.30
(14.36) (4.08) (22.91)
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4.4.2 The analysis of the retrieval in presence of the system-
atic uncertainties

In the Section 4.4.1 was presented the evaluation and validation of the errors of the
different aerosol properties considering propagation of the random noise from measure-
ments into retrieval. The analysis confirmed rather satisfactory performance of the
approach adapted in GRASP for the estimation of retrieval errors in the presence of
random noise. This section discusses the approach for estimating possible contribu-
tions of the systematic errors in the retrieval uncertainties. In principle, each retrieval
methodology assumes that there is no systematic uncertainties neither in measure-
ments nor in the used forward model. If any systematic bias is identified it is corrected
in measurements or in their interpretation. However, in practice the systematic un-
certainties may remain unidentified and make significant contribution in the retrieval
uncertainties.

As mentioned above, in Eq. 3.53 the apparent misfit was used as an indicator of
bias, however in real situations not all biases can be seen from the misfit. Thus, in
this section the results are presented considering a possible solution to this problem.
Therefore, commonly the contribution of potential bias is included in the estimation of
the retrieval errors (e.g. see Dubovik et al. (2000), Sinyuk et al. (2020)). Using similar
logic, in the present methodology was added an extra term, Eq. 3.56, that accounts for
propagation of possible bias from the measurements. The propagation is accounted for
linear approximation in similar manner as the systematic term in Eq. 3.53 accounts
for bias from misfit. Thus, this section analyses the potential effect of realistic biases
and their overall importance for reliable estimations of the retrieval errors in practice.

The potential effect of the systematic errors is analyzed in series of the numerical
tests with possible assumed systematic errors. Following previous studies by Dubovik
et al. (2000), Torres et al. (2017) and Sinyuk et al. (2020), in ground-based photometric
and radiometric data, we consider two types of potential main biases in measured AOD
and sky-radiances. These biases could be originated from miss-calibrations of direct
Sun or diffuse sky sensors (Eck et al. (1999)). The biases are assumed wavelength
independent, since spectral systematic deviations are easier to identify in direct analysis
of observation, they are likely to be manifested in misfit and may compensate each
other influence on the retrievals. Specifically, two possible levels of biases nominal and
maximum are considered as follows:

• in AOD, nominal bias of ±0.01 and maximum bias of ±0.02, and

• in radiances nominal bias of ±3% and maximum bias of ±5%.

To evaluate the effects of biases, the above values were added to synthetic direct
measurements of AOD and sky-radiance by AERONET like ground-based radiome-
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ter. These data were inverted by GRASP code and the retrieved values of aerosol
parameters were compared to the values assumed in synthetic simulation as a ‘truth’.
In addition, the deviations of retrieved values from the ‘true’ ones are compared to
the errors estimates generated by GRASP based on Eq. 3.56 using known values of
added biases. In similar manner, the influence of the potential systematic errors in
aerosol retrieval from combined observations of ground-based radiometer and lidar was
analyzed. In these tests, the biases in lidar attenuation measurements were assumed
for each wavelength following the studies by Lopatin et al. (2013, 2021): ε355 = ±0.2,
ε532 = ±0.15 and ε1064 = ±0.1. It should be noted that conducted synthetic tests
not only allow to verify the accuracy of the systematic error estimates by GRASP and
also to analyze the effects of biases on the retrievals for different retrieval scenarios in
diverse situations.

4.4.2.1 Effects of measurement bias in retrieval of single aerosol component
from radiometer measurements

In this section the study is focused on the analysis of the effects of the biases and on
estimating contribution of systematic errors in retrievals of aerosol from ground-based
observation by radiometer. In similar manner as in the analysis of random errors, first
was consider the observations dominated by two types of aerosols: BB and dust. The
effect of measurement biases is expected to be manifested in the situations with low
and moderate aerosol loading, therefore, the analysis is focused on the scenarios with
AOD(440) = 0.1, 0.3 and 0.6.

Two situations were considered:

• when a single bias in AOD or radiances is present;

• when the biases can be present in both AOD and radiances simultaneously. In
this case, the different combinations of positive and negative biases in AOD and
radiances are considered.

The estimations of the errors introduced by the biases were calculated as:

σ2
bias = σ2

lm + σ2
misfit + 1

N

N∑
k=1

σ2
k (4.2)

where σ2
lm corresponds to contributions from systematic errors introduced by the

Levenberg-Marquardt procedure and σ2
misfit are the errors manifested by the miss-fit

estimated by Eq.3.49, and each σ2
k is the contribution adding + bias and − bias in the

measurements.
Figures 4.21 to 4.24 illustrate the results of the analysis for the different retrieved

properties for situation with bias of ±0.01 and ±0.02 in AOD only. These results show
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specific effects from AOD bias. The figures have two blocks: on the left the retrievals
with added positive bias in AOD and on the right retrievals with negative bias are
illustrated. In both cases, the error bars represent the systematic component adding
the positive or negative bias respectively. In all the figures, the solid lines show the
assumed value of the parameters in the simulation, the dotted lines show the retrieved
values and the magnitudes of the estimated bias are shown by the shaded areas. It
should be noted that for the case of BB with AOD(440) = 0.1, the results with negative
bias are not shown. This is because, the AOD for BB decreases very strongly with the
wavelength and for the case of AOD(440) = 0.1, the AOD at 1020 nm is ∼ 0.01.

Figure 4.21: Aerosol properties retrieved from simulated sunsky photometer data with
assumed bias in AOD simulated data for BB aerosol for τ(440) = 0.1, 0.3 and 0.6 (left to
right). Retrievals after adding positive bias +0.01 are represented in the block on the left and
negative bias −0.01 in the block on the right. The solid lines are the simulated properties
(SD, RRI, IRI and SSA), the dashed lines are the retrieved parameters. The shaded area
indicates systematic errors estimated by GRASP algorithm.

The figures show different and clear tendencies which are in agreement with general
expectations and with the tendencies already observed in previous studies by Dubovik
et al. (2000) and Torres et al. (2014). For example, it can be seen that bias in AOD
most strongly affects the estimate of the parameters characterizing aerosol absorption
such as imaginary part of the refractive index and single scattering absorption. This is
an anticorrelation: the positive bias results in overestimation of absorption (higher RRI
and lower SSA) and the negative in underestimation absorption (lower RRI and higher
SSA) respectively. The result was quite expected since radiance values in this first
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Figure 4.22: Aerosol properties retrieved from simulated sun/sky photometer data with
assumed bias in AOD simulated data for BB aerosol for τ(440) = 0.1, 0.3 and 0.6 (left to
right). Retrievals after adding positive bias +0.02 are represented in the block on the left and
negative bias −0.02 in the block on the right. The solid lines are the simulated properties
(SD, RRI, IRI and SSA), the dashed lines are the retrieved parameters. The shaded area
indicates systematic errors estimated by GRASP algorithm.

experience do not vary. Thus, if we keep the scattering component (which is derived
from radiances) but we enlarge the extinction component (by enlarging the AOD),
necessary the retrieval understands that the absorption should be larger (imaginary
part of the refractive index). Conversely, if we reduce the value of extinction the
retrieval would reduce the value of absorption. Also, the strongest effect is observed
for optically thin situations when a small absolute error in optical thickness becomes
comparable with the magnitude of aerosol optical thickness. This is especially clear
for BB observations where AOD(1020) is always rather small as earlier discussed also
by Dubovik et al. (2000). For observations of dust aerosol, the effect of biases in AOD
are significantly smaller than for BB. It can be explained since dust has a small value
of Ångstrom exponent and therefore larger values of AOD at longer wavelengths. For
the retrieval of the size distribution, the bias in AOD has rather minor effect, though
we found a general overestimation for positive BIAS values and underestimation for
negative values.

Overall, the estimated systematic error agrees well with actual manifestations of the
bias in the retrieval. The quantitative estimations are also quite convincing and shown
in Figs. 4.21 and 4.23 for biases of ±0.01. In some cases, some underestimations of the
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Figure 4.23: Aerosol properties retrieved from simulated sun/sky photometer data with
assumed bias in AOD simulated data for dust aerosol for τ(440) = 0.1, 0.3 and 0.6 (left to
right). Retrievals after adding positive bias +0.01 are represented in the block on the left and
negative bias −0.01 in the block on the right. The solid lines are the simulated properties
(SD, RRI, IRI and SSA), the dashed lines are the retrieved parameters. The shaded area
indicates systematic errors estimated by GRASP algorithm.

bias effects can be observed. For example, the largest differences are identified for the
case of higher value of bias (±0.02) shown in Figs. 4.22 and 4.24 while a significant
increase in the systematic component of the retrieved error is also well captured by the
error estimates.

It can be seen that among all considered aerosol parameters, the main differences
between the bias effects and the obtained error estimates are observed for Real part of
Refractive Index (RRI). In these cases, the bias is not fully covered by the systematic
component of the retrieved error results. Similarly, apparent underestimation of RRI
errors was also seen by Sinyuk et al. (2020), who attributed these underestimations to
different factors as, for example, the effect of not accounted pointing bias. In the present
simulations, there is no pointing bias considered, and discrepancy is likely coming from
the fact that Eqs. 3.49 and 3.56 relies on the derivatives estimated in the vicinity of the
solution and based on linear approximation. Indeed, the dependence of both AOD and
radiances scattered by aerosol is very complex and non-linear. Therefore, both taking
the derivatives in the vicinity of obtained solution instead of vicinity of ‘true values’,
as well as, non-liner character of AOD and radiances may explain the differences. At
the same time, it is important to note that, as can be seen from analysis of the random
component of RRI error (Section 4.4.1) the random error effect is likely to dominate
over effect of AOD bias, and therefore, the estimation of the total error (described
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Figure 4.24: Aerosol properties retrieved from simulated sun/sky photometer data with
assumed bias in AOD simulated data for dust aerosol for τ(440) = 0.1, 0.3 and 0.6 (left to
right). Retrievals after adding positive bias +0.02 are represented in the block on the left and
negative bias −0.02 in the block on the right. The solid lines are the simulated properties
(SD, RRI, IRI and SSA), the dashed lines are the retrieved parameters. The shaded area
indicates systematic errors estimated by GRASP algorithm.

below in this section) seems to allow us to make an objective and complete observation
on this parameter.

Figures 4.25 to 4.28 show the effects of the biases in the radiances of two magnitudes
of ±3% and ±5% for the observations of BB and dust. In general, it can be seen from
the results that in both cases, BB and dust, the retrievals are less affected by bias in
radiances than by the biases in the AOD, even when the bias in radiances is ±5%.
Similar tendency was also reported in studies by Dubovik et al. (2000), Torres et al.
(2014) and Sinyuk et al. (2020). At the same time, it should be noted that the present
analysis is focused on measurement configuration corresponding to solar almucantar the
SZA is 75 degrees (see Table 4.1) when the measurements include are taken in a wide
range of scattering angles. In this respect, Dubovik et al. (2000) showed that the effect
of sky radiance bias increases when the range of observed scattering angles is limited,
i.e. in almucantar observation corresponding to SZA less than 60 degrees. Moreover,
according to recent tendencies in observational practices, the use of such measurements
is limited and most analyses are focused on observational scenarios with sufficient range
of observed scattering angles. For example, AERONET start to establish so-called
‘hybrid’ observational scenario during high SZA times (Giles et al. (2019)). In regard
to the performance of the error estimation, the effect of the bias in the sky radiances
seems to be well captured by the GRASP error estimates.
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Figure 4.25: Aerosol properties retrieved from simulated sun/sky photometer data with
assumed bias in RAD simulated data for BB aerosol for τ(440) = 0.1, 0.3 and 0.6 (left to
right). Retrievals after adding positive bias +3% are represented in the block on the left and
negative bias −3% in the block on the right. The solid lines are the simulated properties
(SD, RRI, IRI and SSA), the dashed lines are the retrieved parameters. The shaded area
indicates systematic errors estimated by GRASP algorithm.

It should be also noted that we observe an anticorrelation between the radiances
BIAS and the retrieval of the imaginary part of the refractive index. This effect is
opposite to the one observe in the case of AOD and with differences significantly
smaller. Thus, when the BIAS are positive (+3% and +5%) there is a decrease in
the imaginary part of the refractive index. The fact that the value of AOD remains
the same and there is an increase in the value of the scattering is interpreted by the
code as a decrease of the aerosol absorption. Conversely, the negative BIAS in the
radiances produce an increase in the imaginary part of the refractive index which can
be explained by the same reason.

Figure 4.29 shows the results of the analysis of the situation when the systematic
biases present in both AOD and radiances are simultaneously assumed. The results
for BB are on the left and for Dust on the right. The illustrations are shown for the
specific situation with two positive biases: +0.01 in AOD and +5% in radiances. It
should be noted, that the tests were produced for both the situations with the biases
of the same and opposite signs. This case with the biases of the same signs showed the
most interesting results with the strongest manifestation of bias effects and therefore
they are presented here. In the situation with biases of opposite signs effects on the
retrievals are rather minor due to internal compensations of the influences of the biases.
Additionally, the misfit of observations is more pronounced that helps to identify the
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Figure 4.26: Aerosol properties retrieved from simulated sun-photometer data with assumed
bias in RAD simulated data for BB aerosol for τ(440) = 0.1, 0.3 and 0.6 (left to right).
Retrievals after adding positive bias +5% are represented in the block on the left and negative
bias −5% in the block on the right. The solid lines are the simulated properties (SD, RRI,
IRI and SSA), the dashed lines are the retrieved parameters. The shaded area indicates
systematic errors estimated by GRASP algorithm.

Figure 4.27: Aerosol properties retrieved from simulated sun/sky photometer data with
assumed bias in RAD simulated data for Dust aerosol for τ(440) = 0.1, 0.3 and 0.6 (left to
right). Retrievals after adding positive bias +3% are represented in the block on the left and
negative bias −3% in the block on the right. The solid lines are the simulated properties
(SD, RRI, IRI and SSA), the dashed lines are the retrieved parameters. The shaded area
indicates systematic errors estimated by GRASP algorithm.
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Figure 4.28: Aerosol properties retrieved from simulated sun/sky photometer data with
assumed bias in RAD simulated data for Dust aerosol for τ(440) = 0.1, 0.3 and 0.6 (left to
right). Retrievals after adding positive bias +5% are represented in the block on the left and
negative bias −5% in the block on the right. The solid lines are the simulated properties
(SD, RRI, IRI and SSA), the dashed lines are the retrieved parameters. The shaded area
indicates systematic errors estimated by GRASP algorithm.

issues and account for the biases in the error estimates. Also, the analysis here is
focused on the simultaneous biases of moderate values (±0.01 in AOD and ±5% in
radiances), since the appearance of simultaneous biases, of the highest bias values (i.e.,
±0.02 in the AOD and ±5% in radiancies), lead to very strong effects in the retrievals.
Those situations can be easily seen and screen out by quality filters (e.g., by high value
of misfit). Also, it is quite unlikely to have such strong systematic errors in practical
observations as those by AERONET.

As can be seen from Fig. 4.29 the biggest differences and highest bias values in
the retrieval are found for low AOD (0.1). As seen earlier for this situation the errors
for the RRI remain notably underestimated. As already mentioned, the situation is
expected to be improved once the effects of both random and systematic errors are
considered.

Figure 4.30 illustrate such situation for the retrieval of BB and dust for the three
different aerosol loads (0.1, 0.3 and 0.6) when total error estimate includes both random
and systematic components as:

σtot =
√

σ2
ran + σ2

bias (4.3)

where σ2
bias is calculated as was indicated in Eq. 4.2.
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Figure 4.29: Aerosol properties retrieved from simulated sun/sky photometer data with
assumed bias in AOD and radiances simulated data for BB (left) and Dust (right) aerosol
for τ(440) = 0.1, 0.3 and 0.6 (left to right). Retrievals after adding positive bias +0.01 in
AOD and +5% in radiances in both cases. The solid lines are the simulated properties (SD,
RRI, IRI and SSA), the dashed lines are the retrieved parameters. The shaded area indicates
systematic error estimated by GRASP algorithm.

It can be seen that the total error estimates capture the deviations for all param-
eters in the presence of random and systematic noises. These results confirm that the
estimations using Eq. 3.56 based on the additional assumptions of potential presence
of bias in the measurements improve the results of error estimated compare to the
approach discussed in Section 4.4.1 when the effects of biased were taken into account
only based on the value of the observation misfit. The observed tendencies in the ef-
fects of biases on the retrieval are consistent with all the results previously described
in earlier studies. The obtained results are expected to be representative for most of
practical situations, while some additional tests and analysis could certainly be use-
ful. Therefore, in the examples presented below and for the real cases analyzed, the
total error will be used as described in Eq.4.3. It means, the representation of the
error will take into account the contribution of the random and systematic component.
This last component contains the contribution of Levenberg-Marquardt and the misfit
and the measurements, in which the contributions of ± bias added in the measure-
ments are considered (Eq.4.2). These values of the assumed biases in our applications
are consistent with AERONET as was aforementioned: ±0.01 in AOD and ±5% in
radiances.
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Figure 4.30: Aerosol properties retrieved from simulated sun/sky photometer data with
assumed random noise and bias in AOD and radiances simulated data for BB (left) and dust
(right) aerosol for τ(440) = 0.1, 0.3 and 0.6 (left to right). Retrievals after adding positive
bias +0.01 in AOD and +5% in radiances in both cases. The solid lines are the simulated
properties (SD, RRI, IRI and SSA), the dashed lines are the retrieved parameters. The
shaded area indicates total errors provided by GRASP algorithm.

4.4.2.2 Effects of measurement bias in retrieval of mixed aerosol properties
from measurements of radiometer only

The present section tries to understand how the bias affects when inhomogeneous
aerosol are observed. The example is not commonly considered in practical application,
e.g. in AERONET operational processing. At the same time, since GRASP can
consider this type of bi-component inversion that are fundamentally of high interest,
we are analyzing this situation in the presence of biases. In the Section 4.4.2.1 we
have shown different examples, considering bias in each measurement separately, and
we have also illustrated the complete example with presence of both random errors
and bias in all the measurements. Here we illustrate directly the results considering
the presence of both random and bias in all the measurements since this is complete
situation that is most close to the most practical situation.

Different tests were performed for this study. In particular, we focus on the case of
BB-Dust since the Section 4.4.2.1 has already demonstrated the bias affects when each
type of aerosols is observed separately. The effects of each bias separately were analyzed
while the corresponding illustrations are not shown since the results presented similar
tendencies to those previously discussed are observed for observation of each type of
aerosol separately in the last section. Figure 4.31 illustrates the examples of BB-Dust
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when τ(440) = 1.0, for different aerosol loads (τf = 0.8 and τc = 0.2, τf = τc = 0.5 and
τf = 0.2 and τc = 0.8) assuming bias and random noises. The shaded areas represent
the estimated total errors, as shown in Equation 4.3. An important observation is
that the error estimates for all retrieved and derived parameters well characterize the
actual errors. As it can be gained from the figure, the retrieval of the properties of
minor component appears as the most challenging. As a matter of fact, the biggest
errors in the retrieval are observed for the fine mode properties, particularly, in the
case of τf = 0.2 and τc = 0.8. The largest discrepancies of estimated errors with the
actual ones are observed in this situation. On the other hand, the properties of coarse
mode are well represented in almost all cases showing a good accuracy compared to
the properties of the fine mode even in the most challenging cases with the smallest
presence of coarse mode. This can probably be explained by the fact that desert dust
AOD has rather moderate spectral changes.

On the other hand, in this section are also provided some illustrations for the lidar
ratio in order to demonstrate how the retrievals and the error estimates are affected by
the bias in the measurements. Figure 4.31 illustrates the lidar ratios in this situation of
mixed aerosol. The retrieval results and estimation of LR errors are rather satisfactory,
with exceptions of low AOD cases, mainly in the case where the fine mode has only
very minor presence (of τf = 0.2 and τc = 0.8). Also, it should be emphasize that
the error estimated for total SSA and RI are rather adequate while in the Section
4.4.1, where only random errors were considered, the results showed some apparent
underestimations.

4.4.2.3 Effects of measurement bias in retrieval of mixed aerosol properties
from observations of radiometer in combination with lidar

This section considers the same example as in Section 4.4.2.2 and analyses the effects
of measurement biases in the synergy retrieval using co-incident measurements sun/sky
photometer and lidar measurements. At the same time, the results are presented for
most practical situation when both random and biased are present in measurements
and accounted in the error estimates.

Figure 4.32 shows the results for the example of BB-Dust described in the previous
section for τ(440) = 1.0 and assuming the presence of both bias and random noises in
all the synthetic measurements for AOD, radiometer and lidar. As can be seen, the
results of these different tests illustrate the positive influence of using radiometer and
lidar synergy. The error estimates seem to be rather accurate too. For example, the
most notable enhancement is in the lidar ratio accuracy especially when the mode fine
is the smallest, i.e. for the case with: τf = 0.2 and τc = 0.8. This behavior was also
seen by Lopatin et al. (2013) who explained that these were expected results since lidar
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Figure 4.31: Aerosol properties retrieved from simulated sun/sky photometer data with
assumed random noise and bias in AOD and radiances simulated data for BB-Dust for
τ(440) = 1.0. Retrievals after adding positive bias +0.01 in AOD and +5% in RAD in
both cases. The solid lines are the simulated properties (SD, RRI, IRI, SSA and LR), the
dashed lines are the retrieved parameters. The shaded area indicates total errors provided
by GRASP algorithm.

105



4. Error estimates for synthetic ground-based observations

ratio has a high sensitivity to lidar signal. Nevertheless, we can see some improvements
in retrieval of complex refractive index using both lidar and photometer data.

Figure 4.32: Aerosol properties retrieved from simulated sun/sky photometer and lidar
data with assumed random noise and bias in AOD, radiances and lidar simulated data for
BB-Dust for τ(440) = 1.0. Retrievals after adding positive bias +0.01 in AOD, +5% in RAD
and +0.2, +0.15 and 0.1 for each lidar wavelength: 355 nm, 532 nm and 1064 nm respectively.
The solid lines are the simulated properties (SD, RRI, IRI, SSA and LR), the dashed lines
are the retrieved parameters. The shaded area indicates total errors estimated by GRASP
algorithm.

In regard to the accuracy of the error estimation, in the Section 4.4.1, we have
illustrated the retrieval of error estimates for LR and showed some apparent underesti-
mation when only random errors were considered. Figure 4.32 illustrates an important
improvement in the estimation of the errors, once both random noise and bias consid-
ered and Eq. 3.56 were used for accounting the effect of the systematic component.

Thus, using the synergy of both instruments can provide more accurate retrievals of
LR and the error can be estimated rather accurately using the developed methodology
for both aerosol components even for aerosol mode with the lower presence. Figure
4.33 illustrates the retrievals of the vertical aerosol profile in all three cases. The results
show similar tendencies as in Section 4.4.1.

4.4.3 Illustration and description of the correlation matrices

As introduced in section 3.3.3, the values of non-diagonal elements of covariance provide
important and interesting information about the retrieved parameters. For example,

106



4.4. Test results

Figure 4.33: Aerosol vertical profiles (AVP) from simulated sun/sky photometer and lidar
data with assumed random noise and bias in AOD, radiances and lidar simulated data for
BB-Dust for τ(440) = 1.0. Retrievals after adding positive bias +0.01 in AOD, +5% in RAD
and +0.2, +0.15 and 0.1 for each lidar wavelength: 355 nm, 532 nm and 1064 nm respectively.
The solid lines are the simulated properties (SD, RRI, IRI, SSA and LR), the dashed lines
are the retrieved parameters. The shaded area indicates total errors estimated by GRASP
algorithm.

if the values ρii′ ̸= 0 are close to ±1 the similitude of the influences of the parameters
ai and ai′ on the inverted measurements f∗ may explain the large variances of the
retrieval error for these parameters. Also, knowledge about ρii′ ̸= 0 is highly useful for
the situation when several parameters from a set simultaneously retrieved parameters
ai need be jointly used in the applications. This can be easily seen from Eq.3.54. For
example, let us consider the estimates of two parameters a1 and a2 which have errors
∆a1 and ∆a2 characterized by covariance matrix:

C∆ =

 σ2
1 σ1σ2ρ12

σ1σ2ρ12 σ2
2

 (4.4)

where a is a vector defined as a = (a1, a2)T . Correspondingly if in applications one
needs to use the characteristics m that is a liner function of m = K1a1 + K2a2, the
variance σ2

m can be obtained from Eq. 3.54 as:
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σ2
m = KC∆aKT =

(
K1 K2

) σ2
1 σ1σ2ρ12

σ1σ2ρ12 σ2
2


K1

K2


= K2

1σ2
1 + K2

2σ2
2 + 2K1K2σ1σ2ρ12

(4.5)

From this equation, the importance of the correlation coefficient ρ12 is quite evident.
Specifically, if ρ12 = 0 then the variance σ2

m is just a simple sum K2
1σ2

1 + K2
2σ2

2. There-
fore, the error propagation from ∆ai to ∆m is straightforward, and namely only the
values of sensitivities K2

i determine the contribution of ∆ai (decreasing or increasing)
to ∆m.

When ρ12 = 0 the situation is more complex. However, the estimation of main
tendencies can be simplified in some cases. For instance:

if σ2
1 = σ2

2 and K1 = K2, then σ2
m = 2K2

1σ2
1(1 + ρ12) (4.6)

or

if σ2
1 = σ2

2 and K1 = −K2, then σ2
m = 2K2

1σ2
1(1 − ρ12) (4.7)

From these equations, it can be seen that if correlation coefficient ρ12 → 1 or
ρ12 → (−1) then depending on the case in Eqs. 4.6 and 4.7 σ2

m can be close to zero or
up 4K2

1σ2
1. Therefore, the knowledge about the non-zero correlation coefficients ρii′ ̸= 0

is very important to understand how the error is propagated to derived parameters
obtained from the primary set a.

In practical cases, when the derived parameter m is a function of a large number
parameters ai, the contributions to σ2

m become increasingly very complex with the
increase of the number of involved parameter ai. Therefore, unfortunately, the general
qualitative analysis, similarly to the one demonstrated by Eqs. 4.5-4.7, becomes very
difficult and often practically impossible. Nonetheless, as it will be shown below the
visualization of the correlation matrices Eq. 3.59 can be very useful for analysis of the
retrieval tendencies.

4.4.3.1 Retrieval of single aerosol component from radiometer measure-
ments

Figure 4.34 shows the correlation matrices of random retrieval errors for BB (spherical
particles) and dust (non-spherical particles) for conventional AERONET-like inversion.
The first 22 parameters (22x22) represent the SD. It is followed by two blocks of
4x4. These two blocks are related to the RRI and IRI for 4 wavelengths (440 nm to
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1020 nm). The last parameter is the sphericity fraction (1 x 1). The colors represent
the values of correlation coefficients, where the red color denotes positive correlations,
blue color indicates negative correlations. The density of the colors indicates values of
the correlation coefficients changing from zero (the white color) to dense red or blue
colors corresponding to values 1 and −1 accordingly.

The correlation for biomass burning case is shown in Fig. 4.34a. As it can be seen,
in general size bins retrievals have rather moderate correlation between them, though
large positive correlations between the retrieval errors of neighbours can be observed.
This is more evident for size bins at the smallest and largest particle sizes. This indi-
cates that size distribution values for those size have tendency to be overestimated or
underestimated together, which can be mostly explained by the use of typical smooth-
ness constraints imposed to the size distributions as explained in section 3.3.3. The
errors of RRI and IRI are negatively correlated with the SD parameters. The correla-
tions seem especially pronounced between RRI and values of size distribution for the
fine mode. Correspondingly the overestimations of size distribution values may tend to
be accompanied by underestimation of RRI and vice versa. The errors of the fraction
of spherical particle seem to show positive correlation with the SD retrieval errors.
This correlation is more evident when there is a fine mode dominated aerosol, since
scattering of fine mode particles has a quite similar shape for sphere and spheroids.
Therefore when there is fine mode domination is more difficult to differentiate between
sphere or spheroids. The positive sign of correlataion can be explained by the fact
that extinction cross sections for the equivalent radii are a bit higher for spheroids.
Thus, a higher percentage of spheres can be optically compensated by an increase in
the volume concentration, without a big impact in the total residual. The fraction of
spherical particle shows a negative strong correlation with the errors of the refractive
index. Strong positive correlations can be seen between spectral values of RRI. The
positive correlation are presents but lower between spectral values of IRI. As notice al-
ready this likely relates with the use of rather strong smoothness constraint of spectral
variability of RRI and weaker constraint of spectral variability of IRI in the retrieval
(Dubovik and King (2000)). The essential positive correlation can be noticed also
between errors of RRI and IRI.

Figure 4.34b shows the correlation matrix for retrieval of dust aerosol. The structure
of the correlation for SD exhibits some differences compare to the BB case. Specifically,
the positive correlations between neighboring size bins for the smallest and largest
particle sizes are even more pronounced. Also, somewhat stronger negative correlations
can be seen the intermediate sized. The strong negative correlation between RRI and
SD retrieval errors remains only between concentrations of very small particles and
values of RRI at shortest wavelengths. The notable positive correlation presents only
between spectral values of RRI at the shortest wavelengths and between spectral values
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Figure 4.34: Correlation matrices of the estimated errors for aerosol retrieval from Sun/sky-
radiometer observations a) for biomass burning aerosols, and b) for desert dust using GRASP
algorithm. The values close to 1 or −1 mean stronger correlations between the properties,
positive or negative, respectively.

of RRI at the longest wavelengths. At the same time, overall the correlation of retrieval
errors of both RRI and IRI between themselves and with other parameters decreases
compared to the case of BB. The errors of the fraction of spherical particle for dust case
correlate much less with the errors of the other parameter compared to BB case. This
can be explained by the fact the light scattering of large particles is significantly more
sensitive to deviation of aerosol particles from spheres compared to spheroids, than
the light scattering of fine fraction particles (Dubovik et al. (2006)). Therefore, when
coarse particles dominate the discrimination between spheres and spheroids becomes
more evident.

Thus, the analysis of the correlation matrices itself provide very useful inside that
helps to understand and interpret retrieval results. For example, such artifacts as ap-
pearance of ‘tails’ (unrealistically high concentrations) at extremes of size distribution
has been noticed and widely discussed (Dubovik et al. (2002b, 2006); Torres et al.
(2014), etc.). Such retrieval artifacts as underestimation RRI accompanied by overes-
timation size distribution of very fine particles has been widely discussed in studies by
Dubovik et al. (2000, 2002a,b). These artifacts were strongly reduced by accounting
for particle non-sphericity of desert dust particles (Dubovik et al. (2002a, 2006)), but
nonetheless the less pronounced appearance of such artifacts remains in AERONET
like retrieval (Torres et al. (2014, 2017)). These artifacts are clearly related with the
observed above presence of strong negative correlation between values of RRI and
size distribution of very fine particles. It should be noted that the presence of high
correlations is an indication that adding information about one of the correlated pa-
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rameters should improve retrieval not only the constrained parameter itself but also
the parameters that strongly correlated with this parameter. For example, addition of
polarimetric observations to the traditional set of AERONET observations results in
clear improvement in the retrieval of RRI and size distribution of very fine particles
(Li et al. (2009b); Fedarenka et al. (2016)). Indeed, the degree of linear polarization is
known to be very sensitive to amount and especially the RRI of fine particles (Dubovik
et al. (2006)). This is why, the addition of polarimetric observations help to reduce the
correlations between the errors of RRI and size distribution of fine particles that helps
to the overall improvement of the retrieval accuracy of these particles.

4.4.3.2 Retrieval of mixed aerosol component from measurements of ra-
diometer only

In this section, the correlation matrix for bi-component aerosol retrieved from synthetic
observations of sun/sky radiometer of two aerosol mixtures is illustrated : BB-dust and
Urban-dust. The structure of this matrix consists in 25 parameters related to the SD
that are separated into two blocks: 10 parameters for fine mode and 15 parameters
for coarse mode. The following 4 blocks of 4x4 are related to the RRI and IRI of fine
and coarse modes at 4 wavelengths. These blocks are followed by a single value of the
sphericity fraction.

The area of the correlation matrix that contains SD, RRI, IRI and sphericity fraction
is quite similar to the correlation matrix obtained for aerosol AERONET like retrieval.
The main difference is the separation into two modes since strong negative correlations
can be observed between the corresponding parameters of fine and coarse mode. For
example, strong negative correlations can be observed between IRI fine and coarse.
These correlations mean that overestimating the amount or absorption of one aerosol
mode is likely compensated by underestimation of the amount or absorption of another
aerosol mode. Another interesting anticorrelation can be observed for the last three
bins of SD fine mode and the first three bins of SD coarse mode. Actually, both
volume distributions have these three bins in common. This overlap zone is never easy
to properly separate for the code but at the same time, it coincides to a local minimum
value of most size distributions found in the real retrievals.

4.4.3.3 Retrieval of mixed aerosol properties from measurements of ra-
diometer in combination with lidar

Figure 4.36 shows the correlation matrix for the case when bi-component aerosol re-
trieved from synthetic observations sun/sky photometer and lidar of aerosol mixtures.
In the figure the different blocks are identified. The first 25 parameters represent the
SD that are separated into two blocks: 10 parameters for fine mode and 15 parameters
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Figure 4.35: Correlation matrices of the estimated errors for mixed aerosol retrieval from
Sun/sky-radiometer observations a) for the mixture of biomass burning and dust aerosols, and
b) for the mixture of urban and dust aerosols using GRASP algorithm. The values close to 1
or −1 mean stronger correlations between the properties, positive or negative, respectively.

for coarse mode. The following 4 blocks of 7x7 are related to the RRI and IRI of fine
and coarse modes at 7 wavelengths. These blocks are followed by a single value of the
sphericity fraction. Two last and largest blocks of 60x60 parameters each correspond
to the AVP values of two modes given at 60 different altitudes.

The area of correlation matrix that contains SD, RRI, IRI and sphericity fraction
is quite similar to the correlation matrix described in previous section considered the
aerosol mixture retrieval from AERONET like observation only.

As it could be expected, the block of the correlations of AVP retrieval shows strong
negative correlations between errors of the retrieved parameters of fine and coarse
mode. Thus, an overestimation of one mode is higly correlated with an underesti-
mation of another AVP mode. Furthermore, an strong positive correlations can be
observed between AVP values corresponding to the same fine or coarse mode; i.e. the
AVP values of each mode have tendency to be simultaneously overestimated or under-
estimated. This is related to the limited sensitivity of used lidar data for distinguishing
the contributions of different modes, and also, to the use of smoothness constraints on
vertical variations of AVP of each fraction. On the other hand, nearly zero correlation
can be seen for AVP parameters at the altitudes with significant presence of one or
both aerosol components. Correspondingly, there is a high sensitivity of both lidar and
radiometer observation to the aerosol parameters at those altitudes. It should be noted
that all above discussed retrieval suggested from the analysis of correlation matrices
where actually observed in the retrievals from real data as discussion by Lopatin et al.
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Figure 4.36: Correlation matrices of the estimated errors for aerosol retrieval from joint
Sun/sky-radiometer and lidar observations for a mixture of urban and desert dust using
GRASP algorithm. The values close to 1 or −1 mean stronger correlations between the
properties, positive or negative, respectively.

(2013, 2021).

4.5 Conclusions

In this chapter has been evaluated the performance of the GRASP error estimates for
aerosol parameters retrieved from ground-based observations. In order to achieve the
results, AERONET like retrievals form observations by Sun/sky-scanning radiometer
and GRASP synergy aerosol retrieval from joint observations by radiometer and lidar
have been considered. Moreover, the capability of GRASP to generates the full covari-
ance matrices has shown, which are used to provide the error bars for retrieved param-
eters and also an interesting inside for understanding retrieval tendencies. Therefore,
the quantitative reliability of the obtained covariance diagonal elements and analyzed
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the structure of correlation coefficient of covariance matrices have been studied.
The performance of GRASP estimates of error variances in presence of random

errors was evaluated in series of numerical tests and illustrated the capabilities of
GRASP algorithm to provide rigorous estimates of dynamic retrieval errors. In frame
of these tests the synthetic proxy observations perturbed by 300 random noise gener-
ated realization were inverted using GRASP algorithm. Then, retrieved parameters
were compared the those used for generation of the synthetic data and the obtained
error estimates were compared with actual deviations of the retrieved parameters from
assumed values. This analysis was realized for synthetic observations for three different
types of aerosols, as well as, for the mixture of them. Observations of desert Dust were
modeled using AERONET retrieval climatology at Solar Village (Saudi Arabia) site.
The AERONET retrieval climatologies from African savanna (Zambia) and the GSFC
(Maryland, USA) were used simulating Urban and BB aerosol observations respec-
tively. The Urban-Dust aerosols and BB-Dust mixture were considered for modeling
properties of mixed aerosols. For each observed aerosol type or mixture of them differ-
ent aerosol loads were tested. First, the observation of aerosols of only one type aerosol
for τ(440) = 0.3, 0.6 and 0.9 was modelled. For aerosol mixtures was also considered
scenarios with different aerosol loads, while are presented most of the illustrations for
the situation with the large aerosol load (τ(440) = 1.0, combining different aerosol
loads for each mode τf = 0.2 and τc = 0.8, τf = τc = 0.5 and τf = 0.8 and τc = 0.2).
The data were perturbed by random noise before applying the retrieval algorithm. For
all these simulations it was used the SZA at 75 degrees.

The tests evaluated the situations when only radiometer data were inverted and
then radiometer data were inverted jointly with co-incident lidar data. Two GRASP
retrieval set ups were tested: (i) then the retrieval assumes that aerosol is composed
by homogeneous particles and parameters of only one aerosol component are retrieved
and (ii) then the aerosol is assumed as external mixture of two aerosol components
and parameters of each component are retrieved separately. In case the when lidar
data were used the vertical profiles of concentration were also retrieved for each aerosol
component. The illustrations for aerosol retrieval from all simulated data sets were
provided using both approaches. However, the full statistical analysis was provided
only on the two conventional retrieval scenarios: - AERONET like single component
retrieval from radiometric observations and - GRASP bi-component aerosol retrieval
from combinations of radiometer and lidar data.

The results of the tests showed that the complete set of aerosol parameters for
each aerosol component can be robustly derived with acceptable accuracy in almost all
considered situations. The retrieval of bi-component aerosol was evaluated using ra-
diometer only simulated measurements and then by adding lidar observations. These
tests allowed us to observe that by using the synergy of two instruments, some im-
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provements were achieved in the retrieval of aerosol properties of each component of
observed aerosol mixture and in the estimations of the retrieval errors. The test for
selected cases with different presence of different aerosol components (τf = 0.2, τc = 0.8
and τf = 0.8, τc = 0.2) showed that optical properties of the dominant mode can be
retrieved significantly more accurately as can be expected. It is interesting to note that
in all situation using only a radiometer data or adding lidar simulated measurements,
such properties as total SSA and effective refractive index can be retrieved rather ac-
curately, even in cases where the retrieval of properties of each mode separately is
questionable.

The results of the statistical tests with randomly generated noise showed that
GRASP error estimates in most cases are comparable or exceed the actual errors by
the 20 to 30% and therefore can be safely used for assuring uncertainties of actual
retrieval products. In addition, the observation of typical error values was summarized
for different situations and retrieval scenarios. Namely, the study confirmed that the
detailed properties of aerosol mixtures can be rather reliably retrieved from a combi-
nation of radiometer and lidar data provided that there is sufficient amount of both
aerosol components. For example, for the case when total τ(440) = 1.0 with compara-
ble presence of both components τf (440) = τc(440) = 0.5, and SZA is 75 degrees, the
mean values for RRI errors are ∼ 0.05 for BB and Urban and vary between 0.073 to
0.083 for Dust, IRI errors are around 58% for BB, 72% for Urban and 45% for Dust.
SSA errors vary between 0.024 to 0.061 for Urban, 0.041 to 0.089 for BB and 0.04 to
0.009 for Dust, showing a clear tendency to increase with the wavelengths for values of
fine mode and decrease for coarse mode. However, even for this case the separation of
the LR values for both modes showed high uncertainties at short wavelengths in par-
ticular for the fine mode, while the values of the total LR errors were found reasonable
in the range of 20% to 55%. The relative error estimates for AVP for both aerosol
mixtures (Urban-Dust and BB-Dust) cases where ranging for fine mode vary between
50 − 70% and for coarse Dust mode between 50 − 55%.

The effects of the systematic errors on the retrievals were also analyzed in a series
of limited dedicated numerical tests. As was mentioned, the apparent misfit was used
as an indicator of bias in the GRASP algorithm. However, in the real situations not all
biases can be seen from the misfit. Thus, this chapter has been presented the results
considering a possible solution to this problem. Therefore, the contribution of potential
bias was included in the estimation of the retrieval errors. In this regard , an extra term
in the equation of the systematic errors was added which accounts for propagation of
possible bias from the measurements.

The estimated systematic error over all agrees well with actual manifestations of the
bias in the retrieval. The estimations reflect very well all qualitative effect of biases on
the retrieval. The results confirm improvements in the error estimates adding the new
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term to the equation of the systematic errors. It means, the additional assumptions of
potential presence of bias in the measurements help to model the contribution of bias
in the retrieval uncertainties.

The observed tendencies in the effects of biases on the retrieval are consistent with
all the results already described in other studies. The obtained results are expected
to be representative for most of practical situation, while some additional tests and
analysis can be certainly useful.

In addition, to the evaluation of error bars estimates and effects of systematic er-
rors, in this paper we illustrated and discussed the correlation structures of the error
covariance matrices for all main considered retrieval scenarios. The results showed
that analysis of the correlation structure can be very useful for understanding the
observed retrieval tendencies and optimizing retrieval. For example, for conventional
AERONET like aerosol retrievals from radiometer data only, the strong negative corre-
lation between errors of real part of the refractive index and size distribution values for
small sizes. This suggests agrees well with the tendency commonly observed in actual
retrieval when the underestimations of the real part are coincident with overestimation
of fine mode size distribution. Also, the presence of high positive correlation between
the errors of size distribution for extreme sizes and between the errors of refractive
index at different wavelengths agrees well with known possibilities of possible overesti-
mations of aerosol concentrations for very small or very large particles and joint over-
estimations/underestimations of refractive index value at different wavelengths. For
bi-component retrievals strong negative correlations can be observed between nearly
all corresponding parameter of fine and coarse mode. This means, for example, that
the overestimation of amount or absorption of one aerosol mode is likely compensated
by underestimation of amount or absorption of another aerosol mode. The decrease of
some of these correlations was observed when inverted radiometer data were inverted
simultaneously with the lidar data. The high positive correlations were seen for the
errors of the vertical profile of the fine and coarse concentrations with the exception of
the values for the altitudes where one or both of aerosol modes had substantial loads.
These and other less obvious, but quite interesting, correlations structures and ten-
dencies can be identified using the analysis of the correlation matrix structure. Thus,
the availability and analysis of not only error variances but also correlation patterns
appear to be a useful and promising approach for optimizing observation schemes and
retrieval setups.
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Chapter 5

GRASP error estimates using real
observations

The previous chapter allowed to validate the estimation of errors from different tests
using synthetic ground-based observations. Based on the previous tests, it was possible
to see how the errors are related to several aspects, for example, one of the simplest to
observe is the aerosol load. These validations allowed to know the error estimates for
the different scenarios, their tendencies, which configurations present lower errors, etc.
However, an important part is to provide the practical outcome of the error estimates
approach in real applications.

Different works were published over the last years using the GRASP algorithm
in applications of real data from several remote sensing instruments. Particularly, in
ground-based, GRASP has been successfully applied for different configurations. For
example, GRASP has been used to retrieve columnar properties from only spectral
aerosol depth measurements, as is shown by Torres et al. (2017); Torres and Fuertes
(2021). Furthermore, the well known application combining the aerosol optical depth
and sky radiances can be seen in different works as Torres et al. (2014), Lopatin et al.
(2013); Fedarenka et al. (2016). Also, the combination of aerosol optical depth and
sky/cameras was explored and the results were presented by Román et al. (2017).
Another successful GRASP application was shown by Espinosa et al. (2017) from
nelphelometer measurements.

In addition, the synergy between instruments has provided the possibility to re-
trieved extra information. Thus, the aerosol retrieval synergies from diverse combi-
nations of ground-based passive Sun/sky photometer measurements with collocated
active lidar ground-based was presented by Lopatin et al. (2013). This synergy was
applied by different authors (Benavent-Oltra et al. (2017, 2019, 2021); Hu et al. (2019);
Tsekeri et al. (2017)) showing the capabilities of GRASP to provide information also
vertically distributed. Moreover, some studies have showed the synergy using also
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ceilometer measurements (Herreras et al. (2019); Román et al. (2018), Cayuela et al.
(2021)). The recent work published by Lopatin et al. (2021) provide the description of
the evolution of GARRLiC/GRASP approach showing a wide spectrum of possibilities
for realizing the processing of ground-based observations.

These works show the successful performance of the GRASP algorithm against
different configurations and measurements. In addition, some of these studies have
explored sensitivity analyzes such as Lopatin et al. (2013), Torres et al. (2014) and
Román et al. (2018), which allows to have a reference on the accuracy of some of the
retrieved parameters. Unlike the aforementioned works, in this section GRASP has
been applied to the synergy of real lidar and sun/sky photometer observations with
the objective to verify the performance of error estimates in these real cases. Thus, in
this chapter is provided and illustrated the error of the different retrieved parameters.
The three selected cases were chosen over Buenos Aires (Argentina) for three different
aerosol loads: i) aod(440) = 0.1, ii) aod(440) = 0.3 and iii) aod(440) = 0.5. The error
was obtained as explained in the Equation 4.3 in the Chapter 4. Thus, the systematic
component of the error estimates is calculated as in the Equation 4.2 where the same
described values of bias in the contribution of the measurements are considered.

5.1 Illustrations for ground-based observations

This section illustrates the GRASP error estimates performance for the retrieval from
real data. With that purpose the lidar and sun/sky photometer measurements col-
lected at Aeroparque (34◦ 33′ 51′′S, 58◦ 25′ 02′′W ) and Villa Martelli (34◦ 33′21′′S,
58◦ 30′ 23′′W ) stations, in Buenos Aires, Argentina have been used. These instruments
are part of LALINET (Latin America Lidar Network, Guerrero-Rascado et al. (2016))
and AERONET networks. Both sites are located in an industrialized city dominated
by continental and urban/industrial aerosols, and during winter and spring are affected
by biomass burning from north and center of the country and neighboring countries
mainly Brazil. Aeroparque station is located at the airport Jorge Newbery within the
limits of the city. This station does not have a co-located sun-photometer but its lo-
cation is 7 km from the Villa Martelli station where the sun-photometer is installed.
On the other hand, Villa Martelli station is found in the limit of Buenos Aires city, in
a highly populated and industrialized area.

The observation from two different biomass burning events in Argentina were se-
lected for the illustrations. Specifically, three days were chosen with different aerosol
loads and SZA. The lidar range-corrected signal (RCS) corresponding to each event
are shown in Figure 5.1. They have been calculated from the lidar signal, with back-
ground and dark current correction, multiplied by the height squared. In addition, the
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back-trajectories calculated from the HYSPLIT (Hybrid Single-Particle Lagrangian In-
tegrated Trajectory; Stein et al. (2015); Rolph et al. (2017)) models are presented in
order to confirm where the air masses come from (Fig. 5.2).

(a)

(b)

(c)

Figure 5.1: RSC at 1064 nm in arbitrary units from Villa Martelli, Argentina on 19 August
2014 (a) and 22 August 2014 (b), and from Aeroparque station (c), Argentina on 25 September
2017. The two red lines indicate the analyzed lidar data interval. The black solid line indicates
the sun-photometer measurements.

The two first cases selected correspond to an important event of biomass burning
occurred in bordering countries in the north of Argentina in August 2014, particularly
south of Brazil and Paraguay. It was detected in Buenos Aires, between 19 to 23
August. For the illustrations are used the measurements corresponding on August 19

119



5. GRASP error estimates using real observations

(a)

(b) (c)

Figure 5.2: a) Satellite image with hot spots corresponding to August 22, 2014, b) air mass
back trajectories for the Villa Martelli measurement site on August 19, 2014 and c) air mass
back trajectories for the Villa Martelli measurement site on August 22, 2014.

which present low aerosol load at 440 nm (∼ 0.11) and SZA > 50 degrees. Figure 5.1a
indicated the presence of several layers of aerosols up to 1.5 km. The lidar measure-
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ments on August 19 were taken between 12:15 UTC and 12:45 UTC, and AERONET
measurements correspond to 11:25 UTC. Figure 5.2 shows the HYSPLIT back trajec-
tories that validate the source of the air masses. The measurements corresponding to
August 22 are shown in Figure 5.1b, where several layers of aerosol up to 3 km are
observed. For this day the aerosol load increases (AOD at 440 nm ∼ 0.31) and the
SZA is < 50 degrees. The inversion was realized with the average lidar data between
15 UTC to 15:20 UTC, and the AERONET measurements were considered to 16:59
UTC. The satellite image corresponding to August 22 (Fig. 5.2a) shows the presence
of aerosols that extend from north of Argentina towards the center, passing through
the province of Buenos Aires. Moreover, MODIS hotspots are detected in the satellite
image. The source of the air masses can be validated from the HYSPLIT back trajec-
tories (Fig. 5.2c). The last selected case corresponds to the biomass burning event on
25 September 2017, occurred in the north of Argentina and bordering countries (Figure
5.1c). In this work, lidar measurements from Aeroparque station between 19:20 UTC
to 20:10 UTC, and the AERONET measurements corresponding to 19:20 UTC, whose
AOD value at 440 nm is 0.57 and SZA > 50 degrees were used.

Figure 5.3 illustrate the retrieved columnar properties for each day obtained by
GRASP from a combination of radiometer and lidar data and the comparison with the
corresponding standard AERONET retrievals. The results provided by GRASP are
represented in solid lines: blue for the fine mode and green the coarse mode. Shaded
areas represent the error provided by GRASP for each retrieved and derived property.
Zoomed plots represent the effective refractive index and total SSA for GRASP (black
solid line) and AERONET (black dashed line). From the illustrations can see almost
all the GRASP retrieved properties in the three cases present good agreement with
AERONET retrievals.

The error tendencies for SD that can be seen from Figure 5.3 agree with those
identified above in present study and with results presented in previous sections and
also with the results in some works as Dubovik et al. (2000) and Lopatin et al. (2013).
For example, the retrieval errors clearly increase at the extremes of SD. Moreover, one
clear and known tendency can be mentioned. The size distribution shift towards higher
radii in the three cases could be explained by the use of lidar data in the inversions
that provide additional information at scattering angles of 180 degrees (Lopatin et al.
(2013); Bovchaliuk et al. (2016); Benavent-Oltra et al. (2017)). As it can be seen in
the Figure 5.3, these deviations in almost all cases are included in the error (shaded
areas).

The errors of RRI, IRI and SSA were retrieved for each mode separately by GRASP
and they are significantly higher than the error for RRI, IRI and SSA of the total
components. The effective RRI and IRI and the total SSA obtained by GRASP are in
the middle of the retrieved values for fine and coarse mode separately. The total values
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(a) August 19, 2014 (b) August 22, 2014 (c) September 25, 2017

Figure 5.3: Comparison of columnar properties retrieved by GRASP from a combination
of sun/sky photometer and lidar data and retrieved conventionally by AERONET. SD, RRI,
IRI and SSA retrieved by GRASP are shown in solid lines: blue (fine mode) and green (coarse
mode). The shaded area in colors blue and green represent the total error provided by GRASP
and black shaded areas are the uncertainties provided by AERONET. Zoomed panels show
the RI effective and total SSA provided by GRASP (black solid line) and AERONET (black
dashed line). Their associated errors are represented in grey sahded area for GRASP and
with error bars for AERONET.

showed in the zoomed plots agree well with RRI, IRI and SSA provided by AERONET.
On the other hand, the case corresponding to September 25 has an AOD > 0.4

and SZA > 50 degrees allowing us to have the uncertainty of the SSA provided by
AERONET. Thus, in the Figure 5.3 for this particular case we can observe the com-
parison of the uncertainty of SSA from AERONET and the SSA error provided by
GRASP. Note, it is one advantage of GRASP that provide the errors for each param-
eter in all the situations. Regarding the values of SSA and the tendencies of their
variability, the results show SSA representative of biomass burning cases. Namely
the values of SSA decreasing with the wavelength agree with AERONET climatology
by Dubovik et al. (2002b). As expected, based on the results of previous studies by
Dubovik et al. (2000), Lopatin et al. (2013) and Tsekeri et al. (2017) the best agree-
ments are obtained as the aerosol load increases. More specifically, we observe the
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estimated errors of total SSA, in the two first cases increase. This can be associated
with not favorable configurations of observation, on August 19 the AOD at 440 nm is
∼ 0.11 (SZA is > 50 degrees) and on August 22 the AOD at 440 nm ∼ 0.31 (SZA
is < 50 degrees). Thus, the measurements in situations with low amount of aerosol
and with small SZA may not contain enough information to adequately retrieve the
SSA (Dubovik et al. (2000), Lopatin et al. (2013); Torres et al. (2014)). Therefore, the
case of September 25 corresponds to the most favorable situation for realizing reliable
aerosol retrieval since AOD at 440 nm value is > 0.4 and SZA is > 50 degrees. Indeed,
the GRASP and AERONET retrievals have the best agreement for this day.

Figure 5.4 shows the retrieved vertical distributions of fine and coarse modes. The
vertical structure of the aerosols of different types is clearly discriminated and shows
good agreements with the back trajectory analysis for each day. Furthermore, the
error estimates show good agreements with previous results provided in last sections
for simulated cases.

Moreover, Figure 5.5 show the retrieved LR and their error estimates using GRASP
algorithm. The zoomed plots show the total LR provided by GRASP (black solid line)
and by AERONET (black dashed line). The associated errors are represented in shaded
areas for GRASP. As can be see only is possible to compare the values with AERONET
retrieval for the Fig.5.5c which corresponds to higher aerosol load and SZA> 50◦ on
September 25, 2017.

Thus, the retrieved parameters and error estimates from GRASP application to
the real data and their comparisons to the AERONET retrieval results showed an
encouraging agreement between columnar properties of aerosol. At the same time,
GRASP provide the error estimates for the retrieved properties in both fine and coarse
mode and also for the total components. Moreover, GRASP has also the advantage of
provide the dynamic error estimates in all the configurations. As was seen AERONET
error estimates are only provided in some particular situations, when the AOD at 440
is greater than 0.4 and SZA> 50 degrees.

5.2 Conclusions

This chapter shows the capability of GRASP to provide not only retrieved parameters
but also the dynamic error estimates for different configurations using real measure-
ments.

In this chapter the utilization of GRASP for deriving detailed aerosol properties and
their error estimates was demonstrated for the coincident lidar and sun/sky photometer
observations at Buenos Aires, Argentina. It was applied in three different cases of
biomass burning at different aerosol loads (AOD(440) = 0.1, 0.3 and 0.5).
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(a) August 19, 2014

(b) August 22, 2014 (c) September 25, 2017

Figure 5.4: Retrieved aerosol vertical profiles (AVP) by GRASP from a combination of
sun/sky photometer and lidar data. Blue solid line represents the AVP fine mode and green
the AVP coarse mode. The shaded areas correspond to the total error provided by GRASP.

The GRASP retrievals and the error estimates of the columnar aerosol proper-
ties showed to be fully adequate in comparative analysis with the aerosol products
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(a)

(b) (c)

Figure 5.5: Retrieved LR by GRASP from a combination of sun/sky photometer and lidar
data. Blue solid line represents the LR fine mode and green the LR coarse mode. Zommed
plots show: in black solid lines the LR provided by GRASP and in dashed line the LR
provided by AERONET. Their GRASP associated errors are represented in shaded areas.

available from AERONET operational retrievals. The retrieval of vertical profiles of
fine and coarse aerosol modes showed consistent results with the expectations and the
predictions of back-trajectories analysis.

Furthermore, GRASP has the capability to provide the dynamic error estimates for
retrieved parameters in all the configurations and also for fine and coarse mode. It is
an advantage since AERONET only provide the errors in the particular situation when
the AOD at 440 is greater than 0.4 and SZA> 50 degrees (for the Level 2 inversion
products).

125





Chapter 6

GRASP error estimates using
satellite observations: preliminary
results

As it is widely known, the amount of available satellite data and the algorithms to
obtain products from them have increased in the last two decades. In particular,
multi-angular multi-spectral polarimetry (MAP) is proven to be one of the ideal mea-
surements for aerosol and surface characterization from space. Different studies have
been carried out from the use of different algorithms for the retrieval of aerosol and sur-
face properties from this information (Hasekamp and Landgraf (2007); Waquet et al.
(2009); Tanré et al. (2011); Dubovik et al. (2019); Chen et al. (2020))

However, one of the challenges is to provide the error estimates of these properties.
As was already mentioned, there are several methods capable of providing error esti-
mates and some of them have been mentioned for different instruments. Though some
efforts have been already made, there are still some aspects to be analyzed.

GRASP has been adapted over the last decade for the operational processing of po-
larimetric satellite observations and several aerosol products for POLDER/PARASOL
observations have been generated, which are released and publicly available (for exam-
ple, http://www.icare.univ-lille.fr and http://www.grasp-open.com/products/).
Moreover, the GRASP algorithm provides the error estimates for the retrieved and de-
rived properties. Thus, an important further step is being able to provide the error
estimates for the different POLDER/PARASOL products. Therefore, the objective of
the current Chapter is the evaluation of the errors for the GRASP aerosol and surface
products from the PARASOL-like measurements. Note, the analysis were made based
in the Equations 3.52 and 3.53 for error estimates, which the systematic component of
the error estimates is based in the misfit of the observation. This means that in the fol-
low examples is not considered the improvements made in the systematic components,
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as was shown in ground-based results. Therefore, these are preliminary results and
more studies considering bias as explained in Chapter 4 are needed to have a complete
study of the evaluation of error estimates in satellite observation applications.

First part of this chapter presents the description of the aerosol models and the
configuration considered for the simulations. Then, the different tests and results are
described. Moreover, a brief description of the correlation matrix for PARASOL-like
measurements is illustrated. Finally, the application in real data is described and
illustrated over Banizoumbou and Mongu.

6.1 Aerosol models and configurations for numeri-
cal tests

In order to evaluate the error estimates for atmospheric properties using satellite data,
a series of numerical tests were conducted using synthetic data. They were performed
based on the observation geometry, the aerosol and the surface characteristics for
POLDER observations over land. The retrievals were considered using a multi-pixel
approach for two configurations: GRASP/HP (5 log-normal bins) and GRASP/Models
(5 aerosol models), which are explained below. A comparison with single pixel approach
in the case of GRASP/HP configurations is provided with the objective to understand
what is the contribution to multi-pixel approach in the retrievals and their error esti-
mates.

The sensitivity tests were performed for two distinct and widely studied AERONET
sites, Mongu and Banizoumbou, respectively. Particularly for this study, the sensitivity
tests were carried out from real POLDER/GRASP retrievals over each site, i.e., to
simulate the data was considered each configuration, GRASP/HP and GRASP/Models,
as initial approach for the retrievals. In this way, we can get realistic PARASOL-like
observations at each site for approximately months. For example, the retrievals for
Banizoumbou were considered from January 4, 2008 to March 26, 2008 and for Mongu
from June 2, 2008 to August 18, 2008.

The directly retrieved parameters such SD, RI and BRDF were used for the simu-
lations from the retrievals when using GRASP/HP approach and only Cv and BRDF
was considered from GRASP/Models retrievals. In this last approach, the values of the
size distribution and the complex refractive index at each wavelength were assumed
from AERONET retrieval climatology for each aerosol component from Dubovik et al.
(2002b), since they are not part of directly retrieved parameters.

Some variations can be seen from these simulations since they are based on retrievals
from real data. For example, the RI can vary quite significantly in time due to low
sensitivity, especially if AOD is low on a respective day. Even, some variations in the
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Table 6.1: Summary of POLDER/PARASOL measurements and the retrieved properties
by GRASP algorithm under two different configurations: GRASP/HP and GRASP/Models
(it is based on Table 1 Dubovik et al. (2011).

POLDER/PARASOL observations

- I(Θj, λi) reflected total radiances
- Q(Θj, λi) component of the Stokes vector
- U(Θj, λi) component of the Stokes vector

Retrieved characteristics

GRASP/HP (5 bins) GRASP/Models (5 Models)

Aerosol: Aerosol:
- CV - CV

- dV (ri)/d ln r - h0

- Csph

- n(λi)
- k(λi)
- h0

Surface Surface
Ross-Li model (Li and Strahler, 1992; Ross-Li model (Li and Strahler, 1992;
Ross, 1981): Ross, 1981):
- BRDF parameters (BRDF∗

iso, BRDFvol, - BRDF parameters (BRDF∗
iso, BRDFvol,

BRDFgeom) BRDFgeom)
Maignan et al., 2009 model: Maignan et al., 2009 model:
- BPDF - BPDF

∗ BRDFiso is called BRDF1 in the chapter.

BRDF with respect to the pixels can be seen since BRDF can be different even if
the pixels are neighbours. The advantage in these simulations is that they provide a
more evenly spread possible values range. The aerosol loadings values present in the
sensitivity tests cover the range from AOD(440 nm) = 0.01 to AOD(440 nm) = 1.

In this application, only the random noise was considered to perturb the simulated
data. Future additional studies will be needed to evaluate the error estimates adding
biases. The random noise at the level of 3% for intensity and 0.01 for the polarization
components Q and U of PARASOL signal have been added to the simulated synthetic
PARASOL observations. Moreover, a filtering criteria of the ‘residual relative’ (mean
root square of relative error in fitting the measurements by the algorithm) smaller than
3% was used in this work, to select the most reliable retrievals. It corresponds to the
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same value as the assumed random noise of 3%.
These synthetic PARASOL-like observations were inverted by GRASP using two

retrieval scenarios: conventional single-pixel and multi-pixel retrieval (more details are
presented in Chapter 3). In the first scenario all synthetic observations were inverted
fully independently. In both cases the simulated data corresponds to 4 pixels with 30
number of times (it is 2x2x30 pixels that corresponds to NxxNyxNt).

Two different approaches have been used to simulate the data and also to invert
them: GRASP/HP (High Precision) and GRASP/Models, in each case respectively.
Table 6.1 describes the retrieved aerosol parameters of both approaches. In the first
approach, GRASP/HP, the size distribution can be understood as a 5 bin simplification
of the AERONET 22 bins retrieval conceived for satellite application. On the other
hand, GRASP/Models approach further simplifies the assumption of external mixing
of 5 components. The significant reduction of retrieved parameters makes it faster and
gives good performances for satellite application, especially for single-viewing measure-
ment. A brief description is provided below and more details can be found in Chen
et al. (2020), Lopatin et al. (2021) and Dubovik et al. (2021).

6.1.1 Retrieval configuration for POLDER/GRASP

As was already mentioned in different chapters, GRASP has the flexibility of modeling
aerosol and surface. It is important since in some situations the information content is
limited and it might be desirable to add additional assumptions and reduce the number
of directly retrieved parameters.

In this way, as described in Dubovik et al. (2011), Chen et al. (2020) and Lopatin
et al. (2021), different retrieval configurations can be used. Particularly, in this chapter
only two configurations are used. However, a brief description of the three configura-
tions is provided below:

• PARASOL/GRASP Optimized: in the sense of radiative transfer calculations
were optimized to find the best trade-off between speed of processing and accuracy
of results;

• PARASOL/GRASP High-precision: radiative transfer calculations with high pre-
cision were used;

• PARASOL/GRASP Models: the simplest, fastest processing; aerosol is assumed
to be an external mixture of several aerosol models.

The first two configurations are based on the same concept, in which the retrievals
were performed using one aerosol component model with five bins of the size distribu-
tion and with spectrally dependent complex refractive index.
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On the other hand, the Models approach uses different assumptions for modeling
aerosol properties. The aerosol can be assumed to be an external mixture of several
aerosol components:

n(λ) =
K∑

i=1
ci ni(λ) and k(λ) =

K∑
i=1

ci ki(λ) (6.1)

or as an internal mixture of refractive indices of different components:

n(λ) = nmix[c1; c2; ...; n1(λ); n2(λ); ...] and k(λ) = kmix[c1; c2; ...; k1(λ); k2(λ); ...].
(6.2)

In this configuration, only the respective concentrations are retrieved together with
aerosol layer height (ALH) and spectral BRDF and BPDF parameters. Particularly,
in this study is used the 5 models as is explained in Chen et al. (2020) and Lopatin
et al. (2021): fine medium absorbing, fine non-absorbing, coarse spherical, coarse non-
spherical and fine absorbing. The correspondent size distribution, complex refractive
index and non-sphericity parameter for each aerosol model are derived from the results
of AERONET aerosol climatology for the main distinct aerosol types (Dubovik et al.
(2002b)) and improved in a series of sensitivity tests with satellite data as is described
in Lopatin et al. (2021).

Note, GRASP/HP employs the most accurate radiative transfer calculations, while
GRASP/Optimized and GRASP/Models are optimized to achieve the best trade-off
between accuracy and speed. More details can be found in Dubovik et al. (2011); Chen
et al. (2020); Lopatin et al. (2021) and Dubovik et al. (2021).

6.2 Test results for POLDER/PARASOL simulated
observations

Series of tests have been performed to evaluate error estimates for inverting PARASOL-
like measurements using the GRASP algorithm over Banizoumbou and Mongu. The
set of main aerosol retrieved and derived parameters include:

• AOD, SSA, RRI and BRDF1 in the case of GRASP/HP configurations, and

• AOD, SSA and BRDF1 in the case of GRASP/Models.

RRI is not discussed for Models since it is not part of the retrieved parameters.
The first results of the sensitivity tests are organized as follows: i) single pixel with

no noise added, ii) single pixel with adding noise and iii) multi-pixel with adding noise.
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6. GRASP error estimates using satellite observations: preliminary results

The main objective is to illustrate the differences using single-pixel and multi-pixel
approach in situations where random noise is present.

Two types of illustrations can be seen in each figure throughout this section. At
the top of each figure are the correlations between the assumed values and the retrieval
provided by GRASP for each property at 443 nm and 670 nm. The x-axis represents the
assumed values and the y-axis the retrieved property with their respective error bars
provided by GRASP. The black solid line and the red solid line are the 1 : 1 reference
line and the linear regression line. At the bottom, the scatter plots are illustrated with
the errors of the retrievals depending on the AOD at different wavelengths. Each of
them are represented by colors: 443 nm (green), 490 nm (black), 670 nm (blue) and
1020 nm (red).

Figures 6.1 to 6.6 present the results of retrieving PARASOL-like synthetic mea-
surements using GRASP/HP (High-precision) configurations.

Figures 6.1 to 6.3 show the results of the tests for retrieving aerosol and surface
parameters over Banizoumbou from synthetic measurements. Top panels illustrate the
AOD, SSA, RRI and BRDF1 at 443 nm and 670 nm. Figure 6.1 corresponds to the
single-pixel with no noises added. Then, Figures 6.2 and 6.3 show the results of the
retrieval considering random noise for I ∼ 3% and for the polarization components Q
and U ∼ 0.01 in the case of single-pixel approach and multi-pixel approach respectively.
At the bottom, the figures present scatter plots of the error estimates for each retrieved
parameter, separated by wavelengths: in green 443 nm, in black 490 nm, in blue 670
nm and 1020 nm in red. This allows to see the dependency of the errors with the AOD
for each wavelength. Figures 6.4 to 6.6 are analogous to Figures 6.1 to 6.3 in the case
of simulated observations over Mongu.

The analysis of the results show that in situations where no noise is added, all prop-
erties are retrieved rather accurately, low values of error estimates agree with strong
correlations (R) and low values of RMSE for each property (Figures 6.1 and 6.4).
In general, the retrievals of RRI and BRDF1 parameters become unstable, particu-
larly at short wavelengths even when no noise is added. All these tendencies become
pronounced once the random noise is added. Moreover, in the cases of single-pixel
approach and adding random noise almost all the retrieved properties deteriorate in
most of the cases and big values of error estimates for each parameter can be seen. For
example, very low correaltions and big dispersion of values can be seen for RRI in the
Figures 6.2c and 6.5c. SSA also present big dispersion of values mainly in Fig. 6.5b
over Mongu and BRDF1 over Banizoumbou (Fig. 6.2d). The error estimates in all
these cases also take large values, which is expected for such retrievals. Moreover, the
AOD retrievals and the error estimates are rather reliable even when random noise is
added.

Figures 6.3 and 6.6 show a significant improvement of the retrieved parameters
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6.2. Test results for POLDER/PARASOL simulated observations

and error estimates using a multi-pixel approach. As was explained by Dubovik et al.
(2011), this is an expected tendency since these additional restrictions allow the prop-
agation and consolidation of useful information from different observation situations.
For example, in the situations with low aerosol loading the satellite observes mainly
surface reflectance properties. Correspondingly, once the constraints limiting time
variability of the surface reflectance are applied, this information is supplied into the
interpretations of observations corresponding to moderate and high aerosol loading over
the same pixel. Similarly, the constraints of horizontal variability of aerosol properties
help to improve the retrieval of aerosol by benefiting from observations of the same
or similar aerosol properties over several pixels with somewhat different conditions of
observations (geometry, surface reflectance, aerosol loading).

Thus, as can be seen, in the presence of noise the multi-pixel configuration presents
the best results for GRASP/HP retrievals. Therefore, the results for GRASP/Models
retrievals are directly illustrated using multi-pixel configuration.

Figures 6.7 and 6.8 show the correlations of the retrieved parameters with their error
estimates for the inversion of GRASP/Models configuration. These cases represent the
retrieval using a multi-pixel approach and adding random noise (I ∼ 3% and Q and
U ∼ 0.01). Note that in the Figures 6.7 and 6.8 are illustrated the AOD, SSA and
BRDF1.

The results, in the cases of multi-pixel approach with added noises, show high
correlations for all the illustrated properties and present good agreements with the
error estimates since the errors provided by GRASP are comparable with the difference
between the assumed and the retrieved values (also called ‘actual values’). However,
some pixels show larger errors. These correspond to a low aerosol load.

On the other hand, the scatter plots at the lower part of the figures (Figs. 6.1 to
6.8) provide more detailed information about the errors. These illustrations present the
behavior of the error of each parameter as a function of the AOD and the wavelengths.
In general, it can be noted that the AOD errors and SSA errors increase as the AOD
decreases. Similar tendencies can be founded for the RRI, particularly in Fig. 6.3 and
6.6 where multi-pixel is considered. In the cases of single pixel with added noise, the
RRI error present big dispersion of values.

The highest dispersions of both retrieval and error are observed in BRDF1 mainly
at 443 nm and 490 nm showing the highest errors at Banizoumbou station. Moreover,
BRDF1 error increases with the AOD. This is because the radiance arriving to the
satellite comes from aerosol scattering and ground reflectance. Thus, in the situations
with low aerosol loading the satellite observes mainly surface reflectance properties.
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6. GRASP error estimates using satellite observations: preliminary results

(a) (b) (c)

Figure 6.7: Validation of retrieving PARASOL-like synthetic measurements over Bani-
zoumbou using GRASP/Models configuration for each property at 443 nm and 670 nm. The
retrievals are considered for multi pixel approach under random noise I∼ 3% and polariza-
tion components Q and U ∼ 0.01. At the top are the correlations for each property and the
bottom show their respective scatter plots at 443 nm (green), 490 nm (black), 670 nm (blue)
and 1020 nm (red): a) AOD; b) SSA; c) RRI and d) BRDF1.
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6.2. Test results for POLDER/PARASOL simulated observations

(a) (b) (c)

Figure 6.8: Validation of retrieving PARASOL-like synthetic measurements over Mongu
using GRASP/Models configuration for each property at 443 nm and 670 nm. The retrievals
are considered for multi pixel approach under random noise I∼ 3% and polarization compo-
nents Q and U ∼ 0.01. At the top are the correlations for each property and the bottom
show their respective scatter plots at 443 nm (green), 490 nm (black), 670 nm (blue) and
1020 nm (red): a) AOD; b) SSA; c) RRI and d) BRDF1.
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6. GRASP error estimates using satellite observations: preliminary results

In order to quantify the results, Tables 6.2 to 6.8 summarize the performance of
the retrievals in the most robust cases, multi-pixel approach, for both GRASP/HP (5
log-normal bins) and GRASP/Models (5 aerosol Models) configurations over land in
Banizoumbou and Mongu. In the Tables are represented the different metrics values
which allow quantify the results: correlation (R), Slope, Offset, root-mean-square error
(RMSE), Bias, standard deviation (STD) and GRASP/Errors.

Focus on the analysis of the retrieved parameters for the multi-pixel approach, it
is possible to see that in the case of Mongu the best results are obtained, showing the
best correlations, low RMSE values and error estimates that agree with those provided
by Dubovik et al. (2011).

Overall, based on the obtained metrics (R, RMSE, STD, Bias and GRASP/Errors),
the configuration of GRASP/Models and GRASP/HP present slight differences be-
tween them, though both show stability in the retrieved solutions. For example, over
Mongu observations, for AOD at 443 nm GRASP/Models shows slight better per-
formance than GRASP/HP: R = 0.996 compared to 0.991 and RMSE = 0.019 for
GRASP/Models compared to 0.029 for GRASP/HP at 443 nm (see in Figures 6.6 and
6.8). In general, error estimates have good agreements with the differences of the as-
sumed and the retrieved values. It can be seen from the following metrics: bias, std
and GRASP/Error. For example, for the same case already described, the metrics for
GRASP/Models are ∼ 0.0011 ± 0.019 and error estimates take values ∼ 0.014, while
in GRASP/HP the metrics are ∼ 0.014 ± 0.026 and error estimates are ∼ 0.024.

These errors, in the Tables 6.2 to 6.8, are provided as reference values since a com-
plete study is necessary taking into account the possible bias in the measurements.
Moreover, Figures 6.9 and 6.10 show the error variances for AOD and SSA for the sim-
ulated data over Banizoumbou and Mongu for the retrieval of multi-pixel configuration
(the retrievals represent one pixel in each case). In the figures can be seen the assumed
values in solid lines, the retrievals in dashed lines and the error estimates in shaded
areas showing good agreements between the retrievals and the assumed values. More
studies are needed assuming also bias in order to provide a complete description and
also the illustration of all the retrieved parameters.
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6.2. Test results for POLDER/PARASOL simulated observations

(a) (b)

Figure 6.9: AOD and SSA retrieved for PARASOL-like synthetic measurements from sim-
ulated sun/sky photometer data with assumed random noise in I ∼ 3% and in the polar-
ization components Q and U ∼ 0.01 for multi-pixel approach over Banizoumbou. a) using
GRASP/HP and b) using GRASP/Models. The solid lines are the simulated properties (SD,
RRI, IRI and SSA), the dashed lines are the retrieved parameters. The shaded area indicates
total errors provided by GRASP algorithm.

(a) (b)

Figure 6.10: AOD and SSA retrieved for PARASOL-like synthetic measurements from sim-
ulated sun/sky photometer data with assumed random noise in I ∼ 3% and in the polarization
components Q and U ∼ 0.01 for multi-pixel approach over Mongu. a) using GRASP/HP and
b) using GRASP/Models. The solid lines are the simulated properties (SD, RRI, IRI and
SSA), the dashed lines are the retrieved parameters. The shaded area indicates total errors
provided by GRASP algorithm.
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Table 6.2: Global statistics of PARASOL-like synthetic measurements using GRASP algo-
rithm for AOD in Mongu over land.

Band Products R Slope Offset RMSE Bias Std Grasp
(nm) Error

443 nm 5 bins (HP) 0.991 0.984 0.018 0.029 0.014 0.026 0.024
Models 0.996 1.009 -0.0018 0.019 0.0011 0.019 0.014

490 nm 5 bins (HP) 0.992 0.981 0.018 0.025 0.014 0.021 0.020
Models 0.996 1.011 -0.0019 0.017 0.0010 0.017 0.013

565 nm 5 bins (HP) 0.991 0.989 0.015 0.021 0.013 0.017 0.016
Models 0.996 1.014 -0.0022 0.014 0.0009 0.014 0.011

670 nm 5 bins (HP) 0.991 0.958 0.018 0.018 0.012 0.013 0.013
Models 0.995 1.020 -0.0025 0.012 0.0009 0.012 0.009

865 nm 5 bins (HP) 0.974 0.967 0.016 0.018 0.013 0.013 0.01
Models 0.991 1.033 -0.0029 0.011 0.0009 0.011 0.008

1020 nm 5 bins (HP) 0.963 0.933 0.015 0.016 0.012 0.011 0.009
Models 0.988 1.043 -0.0032 0.011 0.0009 0.011 0.008

Table 6.3: Global statistics of PARASOL-like synthetic measurements using GRASP algo-
rithm for AOD in Banizoumbou over land.

Band Products R Slope Offset RMSE Bias Std Grasp
(nm) Error

443 nm 5 bins (HP) 0.959 1.073 0.036 0.105 0.071 0.077 0.045
Models 0.984 1.078 -0.029 0.068 0.006 0.067 0.041

490 nm 5 bins (HP) 0.955 1.047 0.048 0.102 0.069 0.074 0.043
Models 0.984 1.077 -0.030 0.062 0.002 0.062 0.038

565 nm 5 bins (HP) 0.949 1.015 0.062 0.099 0.069 0.072 0.043
Models 0.983 1.075 -0.032 0.056 -0.003 0.056 0.035

670 nm 5 bins (HP) 0.938 0.984 0.074 0.099 0.068 0.073 0.043
Models 0.982 1.073 -0.033 0.052 -0.009 0.051 0.032

865 nm 5 bins (HP) 0.911 0.940 0.086 0.103 0.065 0.079 0.044
Models 0.979 1.072 -0.035 0.051 -0.014 0.049 0.032

1020 nm 5 bins (HP) 0.893 0.908 0.094 0.103 0.063 0.082 0.046
Models 0.978 1.072 -0.037 0.052 -0.017 0.049 0.032
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Table 6.4: Global statistics of PARASOL-like synthetic measurements using GRASP algo-
rithm for SSA in Mongu over land.

Band Products R Slope Offset RMSE Bias Std Grasp
(nm) Error

443 nm 5 bins (HP) 0.872 0.547 0.376 0.037 0.010 0.036 0.022
Models 0.881 0.960 0.035 0.013 0.0019 0.013 0.014

490 nm 5 bins (HP) 0.855 0.502 0.413 0.041 0.013 0.039 0.022
Models 0.873 0.946 0.046 0.014 0.0017 0.014 0.015

565 nm 5 bins (HP) 0.771 0.446 0.447 0.049 0.015 0.036 0.025
Models 0.858 0.922 0.066 0.016 0.0013 0.016 0.016

670 nm 5 bins (HP) 0.672 0.375 0.496 0.060 0.023 0.055 0.028
Models 0.834 0.890 0.091 0.018 0.0008 0.018 0.017

865 nm 5 bins (HP) 0.527 0.266 0.566 0.084 0.045 0.071 0.036
Models 0.807 0.872 0.104 0.023 -0.0001 0.023 0.021

1020 nm 5 bins (HP) 0.375 0.198 0.597 0.103 0.061 0.084 0.043
Models 0.798 0.885 0.092 0.027 -0.0009 0.027 0.023

Table 6.5: Global statistics of PARASOL-like synthetic measurements using GRASP algo-
rithm for SSA in Banizoumbou over land.

Band Products R Slope Offset RMSE Bias Std Grasp
(nm) Error

443 nm 5 bins (HP) 0.904 0.882 0.091 0.025 -0.018 0.017 0.011
Models 0.921 0.877 0.117 0.013 0.007 0.011 0.010

490 nm 5 bins (HP) 0.897 0.833 0.137 0.025 -0.017 0.018 0.011
Models 0.931 0.919 0.077 0.012 0.005 0.011 0.010

565 nm 5 bins (HP) 0.891 0.762 0.206 0.024 -0.013 0.200 0.011
Models 0.944 0.989 0.012 0.011 0.002 0.011 0.010

670 nm 5 bins (HP) 0.870 0.667 0.300 0.024 -0.008 0.232 0.010
Models 0.955 1.074 -0.070 0.012 -0.002 0.012 0.010

865 nm 5 bins (HP) 0.859 0.585 0.384 0.026 -0.002 0.025 0.010
Models 0.960 1.171 -0.165 0.014 -0.006 0.013 0.010

1020 nm 5 bins (HP) 0.834 0.535 0.434 0.027 -0.001 0.027 0.010
Models 0.961 1.219 -0.213 0.015 -0.007 0.013 0.010
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Table 6.6: Global statistics of PARASOL-like synthetic measurements using GRASP algo-
rithm for BRDF1 in Mongu over land.

Band Products R Slope Offset RMSE Bias Std Grasp
(nm) Error

443 nm 5 bins (HP) 0.937 1.012 -0.001 0.003 -0.0003 0.003 0.002
Models 0.959 0.932 0.0025 0.002 0.0004 0.002 0.001

490 nm 5 bins (HP) 0.943 1.074 -0.004 0.003 0.0004 0.003 0.002
Models 0.950 0.985 0.0008 0.002 0.00 0.002 0.001

565 nm 5 bins (HP) 0.939 1.026 -0.001 0.004 0.0011 0.004 0.003
Models 0.965 0.982 0.0018 0.003 0.0003 0.003 0.002

670 nm 5 bins (HP) 0.983 1.059 -0.005 0.004 0.0013 0.003 0.002
Models 0.985 0.954 0.0049 0.003 -0.0001 0.003 0.002

865 nm 5 bins (HP) 0.959 0.995 0.003 0.006 0.0019 0.006 0.004
Models 0.955 0.957 0.0114 0.005 0.0001 0.005 0.003

1020 nm 5 bins (HP) 0.968 1.025 -0.004 0.007 0.0036 0.007 0.005
Models 0.947 0.949 0.0161 0.006 0.0003 0.006 0.004

Table 6.7: Global statistics of PARASOL-like synthetic measurements using GRASP algo-
rithm for BRDF1 in Banizoumbou over land.

Band Products R Slope Offset RMSE Bias Std Grasp
(nm) Error

443 nm 5 bins (HP) 0.084 0.140 0.054 0.009 -0.0044 0.0079 0.0040
Models 0.780 0.767 0.017 0.004 -0.0003 0.0036 0.0028

490 nm 5 bins (HP) 0.383 0.543 0.049 0.007 -0.0015 0.0072 0.0041
Models 0.846 0.846 0.018 0.004 0.0004 0.0036 0.0028

565 nm 5 bins (HP) 0.643 1.133 -0.026 0.009 0.0012 0.0095 0.0051
Models 0.797 0.770 0.047 0.005 -0.0004 0.0054 0.0034

670 nm 5 bins (HP) 0.492 0.952 0.021 0.014 0.0051 0.0129 0.0064
Models 0.846 0.907 0.028 0.006 -0.0022 0.0059 0.0045

865 nm 5 bins (HP) 0.742 1.843 -0.363 0.016 0.0061 0.0151 0.0075
Models 0.621 0.770 0.096 0.009 -0.0030 0.0081 0.0051

1020 nm 5 bins (HP) 0.746 1.704 -0.341 0.016 0.0048 0.0157 0.0080
Models 0.640 0.870 0.058 0.010 -0.0048 0.0091 0.0054
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6.2. Test results for POLDER/PARASOL simulated observations

Table 6.8: Global statistics of PARASOL-like synthetic measurements using GRASP algo-
rithm for RRI for both Mongu and Banizoumbou stations over land. The retrieval configu-
ration is provided for 5 bins (HP) configuration.

Band Site R Slope Offset RMSE Bias Std Grasp
(nm) Error

443 nm Banizoumbou 0.514 0.702 0.459 0.064 0.039 0.049 0.029
Mongu 0.315 0.259 1.082 0.054 0.006 0.053 0.024

490 nm Banizoumbou 0.506 0.696 0.467 0.064 0.039 0.050 0.028
Mongu 0.349 0.280 1.053 0.053 0.006 0.052 0.023

565 nm Banizoumbou 0.527 0.713 0.443 0.064 0.039 0.049 0.030
Mongu 0.374 0.317 0.998 0.053 0.005 0.052 0.025

670 nm Banizoumbou 0.510 0.710 0.449 0.065 0.041 0.051 0.031
Mongu 0.331 0.284 1.048 0.056 0.006 0.056 0.027

865 nm Banizoumbou 0.436 0.678 0.497 0.072 0.042 0.059 0.036
Mongu 0.379 0.336 0.981 0.060 0.014 0.058 0.032

1020 nm Banizoumbou 0.447 0.679 0.495 0.071 0.042 0.058 0.040
Mongu 0.357 0.312 1.017 0.061 0.015 0.059 0.036
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6. GRASP error estimates using satellite observations: preliminary results

6.2.1 Illustration and description of the correlation matrix

As was already mentioned in the Chapter 3, correlation matrix provides additional
information about the correlations of the retrieved parameters. Therefore, this section
describes some details about the correlation matrix for GRASP/POLDER retrieval.
Particularly, only one example is described: the case of GRASP/HP configuration over
Banizoumbou. More studies are expected in a future work in order to see the different
tendencies in each configuration.

Figure 6.11 shows the correlation matrices for an example of GRASP/POLDER
retrieval for one pixel. In the example are retrieved aerosol and BRDF and BPDF
together. The first 5 parameters (5x5) represent the concentration values. It is followed
by two blocks of 6x6. These blocks are related to the RRI and IRI for 6 wavelengths
(440 nm to 1020 nm). Then, the next parameter is the sphericity fraction (1 x 1). It
is followed by BRDFiso, BRDFvol and BRDFgeom which are provided in 3 blocks each
of them of 6x6, correspondingly at 6 wavelengths. Finally, the last block represents
the BPDF at 6 wavelengths (6x6). The colors represent the degree of correlation
between each property, where the red color is related to positive correlations, the white
color represents uncorrelated properties and the blue color is for negative correlated
parameters (or anticorrelated). Values close to 1 or -1 mean stronger correlations
between the properties.

Some of the more obvious tendencies are outlined below which are also consistent
with the already mentioned in Section 4.4.3.1. Strong negative correlations can be seen
between C1 to C3 with the RRI, which are more pronounced at short wavelengths. This
is an expected tendency since C1 to C3 represent the concentrations related to the fine
mode. In addition, the concentration related to the coarse mode (C5) exhibits strong
negative correlations with the IRI at all wavelengths.

On the other hand, it can be mentioned that strong correlations between RRI and
IRI are not observed. RRI for all the wavelengths presents strong negative correlations
with the Csph. Moreover, the Csph presents strong positive correlations with the three
first concentration parameters (C1, C2 and C3) and very low correlations with C4 and
C5 concentrations.

For the surface parameters, it is possible to see some moderate positive correlations
between the BRDFiso and BRDFgeom.

An interesting feature is that there are not too strong correlations between aerosol
and surface parameters. This suggests in the GRASP/POLDER approach, aerosol and
surface can be well distinguished.
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6.3. Applications in real POLDER/PARASOL observations

Figure 6.11: Correlation matrix of aerosol and surface properties for POLDER/PARASOL
simulated data under noisy conditions using GRASP algorithm. The values close to 1 or -1
mean stronger correlations between the properties, positive or negative, respectively.

6.3 Applications in real POLDER/PARASOL ob-
servations

In order to verify the performance of GRASP error estimates in real applications,
the set of some aerosol and surface parameters including AOD, SSA and BRDF were
evaluated for the full 2008 year of POLDER/PARASOL observations. The illustrations
of the scatter plots comparing the POLDER/GRASP retrievals with the AERONET
observations are provided for AOD at Banizoumbou and Mongu. It is important to
note that total errors are provided by Eqs. 3.52 and 3.53 as was described in Section
6.2. The scatter plots for SSA are not provided since very few coincident points were
obtained at the Banizoumbou station and no coincident points were found at the Mongu
station. This is because the SSA for almucantar geometry corresponding to the Version
2 Level 2 of AERONET is provided when AOD(440)> 0.4 and an SZA> 50 degrees.

GRASP was applied to the 3x3 pixel around the AERONET locations sites and
for these retrievals was used the multi-pixel approach for different configurations: Op-
timized, High Precision, and Models. These configurations were described in Section
6.1.1. PARASOL/GRASP retrievals are available and validated at six wavelengths
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6. GRASP error estimates using satellite observations: preliminary results

(443, 490, 565, 670, 865 and 1020 nm) and in order to select the more reliable re-
trievals, it was filtered using the residual relative, at 5% as is suggested by general
users, for PARASOL/GRASP products.

In addition, for this study were used the requirements proposed by the Global
Climate Observing System (GCOS). These have been adopted in the Aerosol_cci
study (Popp et al. (2016)) as well as the DB validation by Sayer et al. (2019) and
POLDER/GRASP validation by Chen et al. (2020). Following the Aerosol_cci study
by Popp et al. (2016), the uncertainty of 0.01 for AERONET AOD has been taken into
account and GCOS is defined as

GCOS = max(0.04 or 0.1AOD) (6.3)

where, the GCOS fraction (%) is the percentage of retrieved AOD by satellite that
satisfies the GCOS requirement. Furthermore, in order to quantify the results, the
standard statistical parameters, the linear correlation coefficient (R), the root-mean-
square error (RMSE), the slope and the offset of linear regression and the bias, are
provided in the illustrations.

Figures 6.12 to 6.17 show the scatter plots for AOD of co-located PARASOL/GRASP
against AERONET at different wavelengths (440, 670 and 1020 nm) for GRASP/Opti-
mized, GRASP/HP and GRASP/Models respectively. The retrievals are provided over
Banizoumbou and Mongu after filtering retrievals where the fitting residual is higher
than 5%. The gray envelope indicates the described GCOS requirement. For each
GRASP retrieved AOD was provided the error estimates which are represented by
black error bars in the y-axis.

Figure 6.12: Evaluation of 2008 year of PARASOL/GRASP AOD at 440 nm, 670 nm and
1020 nm against AERONET over Banizoumbou using GRASP/Optimized configuration. The
gray dashed line and the red solid line are the 1 : 1 reference line and the linear regression
line. The gray envelope indicates GCOS requirement: max (0.04 or 0.1 AOD).

Figures 6.12 to 6.14 show the results for Banizoumbou. Figure 6.12 illustrates the
GRASP/Optimized AOD at 440, 670 and 1020 nm. In general, based on the metrics

150



6.3. Applications in real POLDER/PARASOL observations

Figure 6.13: Evaluation of 2008 year of PARASOL/GRASP AOD at 440 nm, 670 nm and
1020 nm against AERONET over Banizoumbou using GRASP/HP configuration. The gray
dashed line and the red solid line are the 1 : 1 reference line and the linear regression line.
The gray envelope indicates GCOS requirement: max (0.04 or 0.1 AOD).

(R, RMSE, Slope, Offset, bias, errors provided by GRASP) the quality of the compar-
ison with AERONET is the best for GRASP/Models. For example, the correlations
for AOD at 440 nm is R = 0.89 (GRASP/HP: 0.79 and GRASP/Optimized: 0.73),
for AOD at 670 nm is R = 0.89 (GRASP/HP: 0.76 and GRASP/Optimized: 0.70)
and for AOD at 1020 nm is R = 0.89 (GRASP/HP: 0.76 and GRASP/Optimized:
0.70). Moreover, RMSE, slope and offset values for GRASP/Models are the better
in the comparison with other both configurations. It is possible to see that they fol-
low the same tendencies except some discrepancies in 440 nm for RMSE that show a
bigger value than for GRASP/HP and GRASP/Optimized. GCOS fraction of AOD
for GRASP/Models at 440 nm is 36.8% while for GRASP/HP and GRASP/Optimized
are 26.8% and 25% respectively. The error estimates present bigger values in the case
of GRASP/Optimized and GRASP/HP than using GRASP/Models. However, more
studies about the error estimates are needed considering some contributions of system-
atic errors that could be originated from biases in the measurement or some modifi-
cations implemented in the algorithm to improve retrieval convergence of non-linear
solutions.

Figures 6.15 to 6.17 show the results over Mongu for GRASP/Optimized, GRASP/HP
and GRASP/Models respectively. Unlike Banizoumbou in these cases AERONET re-
sults at 1020 nm are not available for the year 2008. In general, good agreements
can be seen for Mongu station with AERONET. Overall, based on the different eval-
uated metrics the quality of the comparison with AERONET shows slight differ-
ences over Mongu for the three retrieval configurations. However, better results can
be seen for GRASP/HP. The correlation values for AOD at 440 nm are quite simi-
lar for all the configurations, for example, R= 0.99 in the case of GRASP/HP and
GRASP/Optimized while R= 0.98 for GRASP/Models. Some differences can be seen
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6. GRASP error estimates using satellite observations: preliminary results

Figure 6.14: Evaluation of 2008 year of PARASOL/GRASP AOD at 440 nm, 670 nm and
1020 nm against AERONET over Banizoumbou using GRASP/Models configuration. The
gray dashed line and the red solid line are the 1 : 1 reference line and the linear regression
line. The gray envelope indicates GCOS requirement: max (0.04 or 0.1 AOD).

Figure 6.15: Evaluation of 2008 year of PARASOL/GRASP AOD at 440 nm and 670 nm
against AERONET over Mongu using GRASP/Optimized configuration. The gray dashed
line and the red solid line are the 1 : 1 reference line and the linear regression line. The gray
envelope indicates GCOS requirement: max (0.04 or 0.1 AOD).

from RMSE, slope and offset. For example, RMSE for GRASP/Optimized is 0.08, for
GRASP/HP 0.11 and GRASP/Models 0.08. The slope and offset for GRASP/Models
are = 0.98 and = −0.01 respectively, while for GRASP/HP are 1.19 and −0.03 and for
GRASP/Optimized the slope and offset values are 1.13 and −0.04.

GCOS fraction shows bigger values for GRASP/Optimized: 62.3% while values for
GRASP/HP is 50% and GRASP/Models is 58.9%.

Figures 6.18 and 6.19 show the error estimates (relative and absolute) provided
by GRASP for AOD at four different wavelengths: 443 nm (green), 490 nm (black),
670 nm (blue) and 1020 nm (red); over Banizoumbou and Mongu for the three differ-
ent configurations (GRASP/Optimized, GRASP/HP and GRASP/Models). As it is
possible to see all the wavelengths show a dependency with the AOD, error estimates
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6.3. Applications in real POLDER/PARASOL observations

Figure 6.16: Evaluation of 2008 year of PARASOL/GRASP AOD at 440 nm and 670 nm
against AERONET over Mongu using GRASP/HP configuration. The gray dashed line and
the red solid line are the 1 : 1 reference line and the linear regression line. The gray envelope
indicates GCOS requirement: max (0.04 or 0.1 AOD).

Figure 6.17: Evaluation of 2008 year of PARASOL/GRASP AOD at 440 nm and 670 nm
against AERONET over Mongu using GRASP/Models configuration. The gray dashed line
and the red solid line are the 1 : 1 reference line and the linear regression line. The gray
envelope indicates GCOS requirement: max (0.04 or 0.1 AOD).

increase for lower values of AOD. Some differences can be seen between error estimates
for the different configurations. For example, more dispersion of errors can be seen in
the case of GRASP/Optimized while the lower dispersions are present in the case of
GRASP/Models.

In addition, GRASP/Models configuration shows the lower AOD errors provided by
GRASP. For example, in Banizoumbou the AOD errors at 443 nm are lower than 40%
using GRASP/Models while for GRASP/Optimized and GRASP/HP they are lower
than 60%. On the other hand, AOD errors of 15% can be observed at 443 nm in Mongu
using GRASP/Models, while errors of ∼ 50% are observed using GRASP/Optimized
and GRASP/HP.
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(a) (b)

Figure 6.18: Scatter plot of 2008 year of PARASOL/GRASP AOD at 440 nm (green),
490 nm (black), 670 nm (blue) and 1020 nm (red) vs their error estimates over Banizoum-
bou using the three different GRASP configurations: GRASP/Optimized, GRASP/HP and
GRASP/Models configuration. a) relative error, b) absolute error.

6.4 Conclusions and perspectives

This chapter has presented the preliminary results for PARASOL-like retrievals over
Banizoumbou and Mongu sites. The results attempt to show the performance of the
GRASP error estimates over satellite retrievals for a series of numerical tests and also
in real POLDER/PARASOL observations.

In the first part of this chapter, a series of tests were designed over Mongu and
Banizoumbou sites. For these particular studies the synthetic measurements were
perturbed by random noise and then inverted.

The PARASOL-like observations were inverted using both: the single-pixel and
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(a) (b)

Figure 6.19: Scatter plot of 2008 year of PARASOL/GRASP AOD at 440 nm (green),
490 nm (black), 670 nm (blue) and 1020 nm (red) vs their error estimates over Mongu
using the three different GRASP configurations: GRASP/Optimized, GRASP/HP and
GRASP/Models configuration. a) relative error, b) absolute error.

multi-pixel approach showing the best results in the case of multi-pixel approach. Two
retrieval configurations were used: GRASP/HP and GRASP/Models. The preliminary
results showed good performance using both approaches and slight differences between
them. Moreover, the results show high correlations for most of the illustrated prop-
erties and present good agreements with the error estimates since the errors provided
by GRASP are comparable with the actual errors. In addition, a description of the
correlation matrix for a particular example is also provided, this correlation matrix
allows to see different tendencies. Thus, an interesting feature is that there are not
too strong correlations between aerosol and surface parameters. This suggests in the
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GRASP/POLDER approach, aerosol and surface can be well distinguished.
This chapter also shows the performance of the algorithm in real applications. Thus,

GRASP was also applied to the full 2008 year of POLDER/PARASOL observations
over Mongu and Banizoumbou AERONET sites. Comparisons against AERONET
and GRASP retrievals have shown consistency of the retrievals for the 2008 year of
POLDER/PARASOL observations.

This study is a first step in the analysis of the error estimates for satellite appli-
cations. Future work will be done to provide a complete study of the error estimates
assuming both, random and systematic errors as it was made for the ground-based
observations.
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Chapter 7

General Conclusions and
Perspectives

This study was devoted to one of the most challenging and largely unaddressed aspect
of providing dynamic error estimates of retrieved parameters, adequately and rigorously
calculated, from remote sensing observations.

This thesis presented and discussed an approach realized in the GRASP algorithm
to estimate errors of the retrieved parameters from remote sensing observations. The
employed approach relies on rigorous consideration of error propagation based on the
concept of statistical estimations and tends to account for the propagation of both
random and systematic errors. For the case of aerosol retrieval from ground-based
observations the performance of the GRASP error estimates was extensively evalu-
ated. AERONET-like retrievals from observations by Sun/sky-scanning radiometer
and GRASP synergy aerosol retrieval from joint observations by radiometer and lidar
were specifically considered. GRASP generates the full covariance matrices that are
expected to be used to generate error bars for retrieved parameters, from the diagonal
elements, and to provide an interesting insight for understanding retrieval tendencies
from the non-diagonal elements. Therefore, the reliability of the obtained covariance
diagonal elements was evaluated quantitatively, while the structure of correlation co-
efficient of covariance matrices was mostly discussed qualitatively.

Chapter 3 provides detailed description of the overall concept and specific key im-
plementations of the error estimates in GRASP. This approach generates full covariance
matrix that includes both random and systematic components. The formulation used
to estimate errors account for some contribution of systematic errors that could be
originated from biases in the measurement or some modifications implemented in the
algorithm to improve retrieval convergence of non-linear solutions.

This approach provides extensive information about retrieval errors. The diagonal
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elements of the covariance matrix are used for the error bars of the retrieved and
derived parameters. Moreover, as it was shown, the errors can be estimated for any
characteristics that are not directly retrieved but are a function of retrieved parameters,
using the full covariance matrix of retrieved parameters. Moreover, this thesis has
demonstrated the importance of non-diagonal elements analysis which is very useful to
identify unobvious retrieval tendencies and that can be used to improve the observation
schemes and/or retrieval setups.

Thus, Chapter 4 presents the evaluation and validation of the methodology devel-
oped to generate the error estimates. Indeed, the practical evaluation of developed
error formalism and the possible tuning are necessary for a comprehensive evaluation
of the approach and for gaining full confidence in its practical efficiency. Two prac-
tical situations of the aerosol retrieval were considered: i) using the measurements
by ground-based sun/sky-scanning radiometer alone; and ii) using the combined ob-
servations by sun/sky-scanning radiometer and multi-wavelength lidar. Two GRASP
retrieval setups were tested: i) when the retrieval assumes that aerosol is composed by
homogeneous particles and the parameters of only one aerosol component are retrieved
and ii) when the aerosol is assumed as external mixture of two aerosol components and
the parameters of each component are retrieved separately. The analysis was performed
for synthetic observations for three different aerosol types, as well as, for the mixture
of them. Observations of desert Dust were modeled using AERONET retrieval cli-
matology at Solar Village (Saudi Arabia) site. The AERONET retrieval climatologies
from African savanna (Zambia) and the GSFC (Maryland, USA) were used simulating
Urban and BB aerosol observations respectively.

First, the effects of random errors were evaluated. For that purpose, the synthetic
proxy observations perturbed by 300 random noise generated realizations were inverted
using the GRASP algorithm. Then, retrieved parameters were compared with those
used for synthetic data generation, while the obtained error estimates were compared
with actual deviations of the retrieved parameters from assumed values. The result
of the test showed the capability of GRASP to provide dynamic error estimates for
all retrieved and derived parameters. They are provided for the fine and coarse mode
and also for the total components. The results of the statistical tests with randomly
generated noise showed that, in most cases, GRASP error estimates are comparable
or exceed the actual errors by 20% to 30% and therefore, they can be safely used
to assure uncertainties of actual retrieval products. In addition, the observation of
typical error values was summarized for different situations and retrieval scenarios.
The study confirmed that the detailed properties of aerosol mixtures can be rather
reliably retrieved from a combination of radiometer and lidar data, provided that there
is sufficient amount of aerosol load in both aerosol components.
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Another important contribution in this work is related to the effect of the systematic
errors. In principle, each retrieval methodology assumes that there are no systematic
uncertainties in measurements and neither in the used forward model. If any systematic
bias is identified, it is corrected in measurements or in their interpretation. However,
in practice the systematic uncertainties may remain unidentified and make significant
contributions to the retrieval uncertainties. Initially, in the GRASP algorithm, the
apparent misfit was used as an indicator of bias, however in real situations not all
biases can be seen from the misfit. Chapter 4 presents the results considering a possible
solution to this problem. Specifically, the contribution of potential bias was included in
the estimation of the retrieval errors. The tests showed that the resulting estimations
very well reflect all the qualitative effects of biases on the retrievals. Thus, as a result
of this study, an extra term that accounts for propagation of possible bias from the
measurements was added in the equation for calculation of the retrieval errors.

Thus, based on the results of the numerical tests, the GRASP approach was ad-
justed and tuned for generating errors that adequately characterize the retrieval uncer-
tainties in the practice. For example, for a case when aerosol is retrieved from ground-
based sun/sky photometer data, two types of potential main biases were considered: in
measured AOD and sky-radiances. Both the possible effects of underestimations and
overestimations of AOD and sky-radiances were considered and their quadratic means
were averaged. For the cases, when lidar data are used, it is suggested to simulate
biases in lidar attenuation measurements for each wavelength similarly as discussed in
studies by Lopatin et al. (2013, 2021). The finalized error equations were additionally
tested. The tests showed that the systematic error over all agrees well with actual
manifestations of both random errors and the bias in the measurements. Also, the
evaluation results clearly confirm improvements in the error estimates from adding the
new term equation accounting for potential effect of the systematic errors.

The observed tendencies in the effects of biases on the retrieval are consistent with
all the results already described in other studies. The results of the tests showed that
the complete set of aerosol parameters for each aerosol component can be robustly
derived with acceptable accuracy in almost all considered situations. The obtained
results are expected to be representative for most practical situations, while some
additional tests and analysis can be certainly useful.

It should be noted that even such a challenging approach as retrieval mixed bi-
component aerosol was considered. Namely, the retrieval of bi-component aerosol was
evaluated using radiometer only simulated measurements and then by adding lidar
observations. These tests allowed us to observe that by using the synergy of two
instruments, some improvements were observed in the aerosol properties retrievals of
each aerosol mixture component and in the estimations of the retrieval errors. The
test for selected cases with presence of different aerosol components (τf = 0.2, τc = 0.8
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and τf = 0.8, τc = 0.2) showed that optical properties of the dominant mode can be
retrieved significantly more accurately as can be expected. It is interesting to note that
in all situations using only radiometer data or adding lidar simulated measurements,
such properties as total SSA and effective refractive index can be retrieved rather
accurately, even in cases where the retrieval of properties of each mode separately is
questionable.

Chapter 5 has demonstrated the application of GRASP for aerosol retrieval from the
synergy between lidar and solar photometer in Buenos Aires (Argentina). The GRASP
retrievals and the error estimates of the columnar aerosol properties showed to be fully
adequate in comparative analysis with the aerosol products available from AERONET
operational retrievals. Furthermore, GRASP has demonstrated the capability to pro-
vide dynamic error estimates for retrieved parameters in all the different configurations
and also for fine and coarse mode. It can be considered as notable advantage of GRASP
since AERONET provides the errors of some retrieved aerosol parameter for the Level
2 (particularly, for SSA and IRI when AOD at 440 nm is greater than 0.4 and SZA> 50
degrees).

This approach to modeling error estimates for the derived and retrieved parame-
ters enables its application in different configurations and with several measurements
or combinations of them. In other words, this approach is not only limited to the
ground-based observations presented in this work but it could also be used with any
other possible combinations of existing remote sensing instruments, such as satellite
observations.

Finally, the last Chapter outlines the full potential of developed error estimation
methodology in satellite observations. Thus, the chapter provides preliminary illus-
tration of the generated errors for aerosol retrievals from satellite data and describes
the perspectives of the methodology evolution. For example, the evaluation of the
methodology in using more measurement scenarios and considering additional situa-
tions with different aerosol mixtures and abundances. Also, while the results of the
first illustration of error estimates in satellite retrievals are promising, additional ex-
tensive analysis is highly desirable, especially for complex satellite retrievals based on
multi-pixel retrieval concept (Dubovik et al. (2011)).

The main perspectives of this work are focus in extend the formalism for more
ground-based retrieval applications. For example, analyze the error tendency with
addition of polarization measurements. In addition, is expected to extend the error
estimation approach for practical characterization of satellite retrieval uncertainties.
Finally, more comprehensive studies are expected in the consideration of additional
error factors, e.g. biases in forward model and diverse assumptions.
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