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Résumé: Les infrastructures critiques (IC) sont
essentielles au maintien de la stabilité socio-
économique et la prospérité d’une population. As-
surer leur résilience face aux défaillances et aux
perturbations est un enjeu majeur. De par leurs
diverses relations d’interdépendance, leurs inter-
faces de couplage complexes, ainsi qu’une exploita-
tion souvent réalisée par des entités indépendantes,
l’analyse et l’optimisation de leur résilience est une
tâche difficile. Cette thèse expose trois sujets liés
à la résilience des IC interdépendantes, avec un ac-
cent particulier sur leur couplage. Premièrement,
elle approfondit la vulnérabilité des réseaux ferrovi-

aires et électriques interdépendants, en prenant en
compte les interfaces de couplage réalistes et de
défaillances en cascade, afin de mieux compren-
dre leurs risques mutuels. Deuxièmement, elle pro-
pose une approche mathématique pour améliorer
la résilience des IC interdépendantes à travers
l’optimisation de la topologie de leur interface de
couplage. Enfin, elle suggère une approche prélim-
inaire pour la prise de décision dans les IC inter-
dépendantes qui tient compte des divers comporte-
ments des opérateurs indépendants dans des con-
ditions normales et des situations de perturbation.

Title: Resilience and coupling of interdependent critical infrastructures: models, optimization, and
operations
Keywords: Interdependent critical infrastructures, resilience, coupling interface, vulnerability analysis,
optimization

Abstract: Critical infrastructures (CIs) are essen-
tial for maintaining the socio-economic stability
and wealth of a population, and ensuring their re-
silience against failures and disruption is of the ut-
most importance. As CIs are connected with each
other through various relationships of interdepen-
dency and complex coupling interfaces, and they
are often operated by independent entities, their
analysis and optimization is a challenging task. In
this dissertation, three topics related to the re-
silience of interdependent CIs, with a particular fo-
cus on their coupling, are investigated. Firstly, the
vulnerability of interdependent railway and power

networks, accounting for realistic coupling inter-
faces and cascading failures, is investigated, in or-
der to better understand the mutual risks of these
interdependent CIs. Secondly, a resilience-based
mathematical programming framework for the op-
timization of the topology of coupling interfaces
between interdependent CIs is presented. Lastly,
a preliminary approach for decision-making in in-
terdependent CIs, accounting for the different be-
haviours of independent operators under normal
conditions and in situations of disruption, is pro-
posed.
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1 - Introduction

1.1 . Research group

The work contained in this thesis was performed within the Safety & Risks
Research Group of the Industrial Engineering Research Department of Centrale-
Supélec, Université Paris-Saclay, and founded by the Chair on Risk and Resilience
of Complex Systems and its industrial partners: EDF, the major French energy util-
ity company, Orange, the major French telecommunications company, and SNCF,
the French state-owned railway company.

The activities of the Chair focus on safety and risk analysis of complex engi-
neered systems, and they are organized into three main axes [1]:

1. Complex systems and infrastructures: analysis and optimization of complex
engineered systems and infrastructures, which require to be treated from
different perspectives.

2. Industry 4.0 and predictive maintenance: advanced models and optimization
methods for dynamic risk management and predictive maintenance.

3. Resilience: assessment and optimization of the resilience of complex systems
and critical infrastructures, including optimization of design, barriers, and
resource allocation.

The work of this thesis gravitates around the concepts of resilience analysis
and optimization of complex systems and critical infrastructures, and it belongs to
Axes 1 and 3.

1.2 . General context

The socioeconomic wealth of countries and nations strongly depends on their
capacity to supply essential goods, services and commodities, which is ensured
by their network of critical infrastructures (CIs), such as energy systems, trans-
portation networks, or telecommunications networks [2], [3]. In the context of the
European Union, a critical infrastructure is defined as "an asset or system which is
essential for the maintenance of vital societal functions" [4]. Moreover, "the dam-
age to a critical infrastructure, its destruction or disruption by natural disasters,
terrorism, criminal activity or malicious behaviour, may have a significant negative
impact for the security of the EU and the well-being of its citizens" [4].

From this definition, it is clear how CIs play a key role in maintaining high
standards of life and prosperity in a society, and how failures and disruption within
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these systems can lead to vast and widespread negative consequences. In fact,
disturbances and malfunctioning in one or several CIs can interrupt the supply of
essential goods, services, and commodities, and considerably affect the daily life
of citizens. A few illustrative examples are reported here:

• on September 28, 2003, failures of power transmission lines near the Swiss-
Italian border caused a general blackout of the Italian peninsula which af-
fected tens of millions of people for several hours [3], [5], [6];

• on November 4, 2006, a disconnection of high-voltage transmission lines
on the Ems River, Germany, caused electrical disturbances in more than 10
million European households [7];

• on January 12, 2010, a magnitude 7.0 earthquake occurred in Haiti, causing
vast disruption of the national CIs systems [8], and hampering crisis man-
agement operations.

CIs are extremely complex systems, as they are composed of a large variety
of technologies and managed by various entities and stakeholders. Moreover, CIs
are often interdependent on each other in terms of functionality and performance
[9], and failures and disturbances within one infrastructure can propagate to other
systems and cause multi-sectoral disruption [10], [11]. For example, in August
2019, British railway networks were heavily disrupted by disturbances within power
networks [12], and the aforementioned Italian blackout was partially caused by a
failure propagation process between interdependent power and telecommunications
networks [13].

Within this context, it is clear that the analysis, optimization, and design of CIs
are issues of the utmost importance. Despite interdependent CIs being an active
and prolific research field, many questions remain unanswered, as their analysis and
optimization are particularly challenging tasks. In fact, CIs are often dependent on
each other in terms of functionality and performance, and they are often operated
by independent entities and stakeholders. These factors highly increase the com-
plexity of analyzing and designing interdependent CIs.

In this dissertation, three topics within the framework of interdependent CIs and
their resilience, with a particular focus on their coupling, are addressed and investi-
gated: vulnerability of interdependent railway and power networks, optimization of
coupling interface topology, and joint decision-making with independent operators.
The rest of this chapter is dedicated to the introduction of the main concepts of
this dissertation. In Section 1.3, the topic of interdependent CIs, from a research
perspective, is outlined; in Section 1.4, the concept of resilience and its connection
to this work is addressed; in Section 1.5, the main contributions of this dissertation
are highlighted.
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1.3 . Interdependent critical infrastructures

1.3.1 . Interdependencies

An infrastructure A is dependent on infrastructure B if the state, functionality,
and/or performance of infrastructure A depends on the state, functionality, and/or
performance of infrastructure B. The interdependencies are unidirectional if infras-
tructure A is dependent on infrastructure B, but not vice versa; if infrastructures
A and B are mutually dependent on each other, the interdependencies are bidirec-
tional [11], [14].

Relationships of interdependencies between CIs can be classified in different
ways. The most used classification of interdependencies is the one proposed in
[11], where the authors identify four classes of interdependencies:

• physical : infrastructure A is dependent on infrastructure B through the flow
of physical quantities, such as energy commodities, equipment, or goods.
Typical examples are all those systems and infrastructures which are depen-
dent on power networks in terms of electricity supply;

• cyber : infrastructure A is dependent on infrastructure B through the flow
of data and information. Typical examples are all those systems and infras-
tructures which are dependent on telecommunications networks in terms of
exchange of data and information;

• geographic : infrastructure A and infrastructure B (or some of their com-
ponents) share the same geographical location, and a change in the local
environment can impact both the infrastructures;

• logic : infrastructure A is dependent on infrastructure B through a rela-
tionship that does not belong to the previous categories. Examples can be
infrastructures that are dependent on each other through human factors,
regulations, policies, or financial markets.

Alternative classifications are available in the existing literature. For example,
in [15], the authors analyze the existing classifications of infrastructure interdepen-
dencies, sorting them into six categories (types of interdependencies, environment,
coupling and response behaviour, type of failure, infrastructure characteristics,
state of operation), and propose their own classification based on the dimensions
of ontology and epistemology. The dimension of ontology refers to when interde-
pendencies between CIs exist, and it is classified into two categories [15]:

• chronic, when the interdependencies are permanent and exist during the
whole infrastructures lifetime;
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• episodic, when the interdependencies are temporary and exist only during
particular circumstances.

The dimension of epistemology refers to the classification of interdependencies
parallelly to the mathematical models used to describe them, and it is divided into
four categories [15]:

• hazard and exposure models, which describe the interdependencies in terms
of environment and hazard occurrence;

• policy and control models, which capture the interdependencies due to eco-
nomic and regulatory factors;

• operation and performance models, which describe the operational nature of
interdependencies in terms of performance, supply/demand, and cascading
effect;

• deterioration and recovery models, which describe the temporal evolution of
interdependencies and their effect on the functional state of CIs [15].

In general, relationships of interdependencies between infrastructures and sys-
tems are complex and variegate, and multiple types of interdependencies can exist
simultaneously.

1.3.2 . Modeling of interdependent critical infrastructures
A suitable modeling framework is essential for an accurate analysis and/or op-

timization of interdependent CIs. Different modeling approaches are available in
the existing literature, and a comprehensive review of the existing frameworks is
presented in [9], where the author identifies six modeling categories: empirical,
agent-based, system dynamics-based, economic theory-based, network-based, and
other approaches. Some illustrative existing works and considerations on the mod-
eling of interdependent CIs highlighted in [9] are recalled in this section.

Empirical approaches focus on available historical data and expert judgement
to infer the nature and the strength of interdependencies between different in-
frastructures. These approaches are useful to identify failure patterns and failure
propagation between existing infrastructures. For example, these models have been
used to identify failure patterns [16], [17], empirically quantify interdependency in-
dicators and metrics [18], or perform risk analyses [19].

Agent-based approaches found their foundations in the fact that interdepen-
dent infrastructures can be interpreted as complex adaptive systems [20], and their
macroscopic behaviour can be modeled as the result of microscopic interactions of
multiple agents [21]. For example, these models have been used to study power
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systems and their dependent infrastructures [22].

System dynamics-based approaches are another class of models that describe
interdependent infrastructures as complex adaptive systems in terms of concepts
of feedbacks, stocks, and flows. For example, a system dynamics-based approach
has been used by a consortium of US National Laboratories (Los Alamos, Sandia,
and Argonne) [23] to develop a supportive tool for CIs protection [24].

Economic theory-based approaches apply economic models to the study of in-
terdependent CIs. For example, the traditional Leontief’s input-output model [25]
has been adapted into the CIs inoperability model proposed in [26]. Input-output
based models have been extended to the Computable General Equilibrium method
to study economic resilience of CIs in case of extreme weather events [27] and
terroristic attacks [28].

Network-based approaches utilize networks to represent interdependent infras-
tructures and study the complex correlations and behaviours that can arise. These
models have been widely used in the existing literature, for analyzing and optimiz-
ing interdependent CIs with topological approaches [13], [29]–[31] and flow-based
approaches [32]–[34].

Other approaches include hierarchical holographic modeling method [35], high
level architecture-based method [36], petri-net-based method [37], dynamic con-
trol system theory-based method [38], and Bayesian networks [39].

The modeling of interdependent CIs include a large variety of frameworks and
approaches. A comprehensive review is out of the scope of this work, and the
reader is referred to the extensive review available in [9].

In the context of this thesis, network-based models have been extensively used.
In the next section, the main concepts of network-based models, along with some
important results of network science related to CIs, are presented.

1.3.3 . Network-based models
Network science is a branch of mathematics that focuses on the study of com-

plex networks and their properties. A complex network is a mathematical object,
represented by a graph G = (V,E), usually with nontrivial topology [40], com-
posed of a set V , containing N nodes (or vertices), and a set E, containing M

edges (or arcs). In this work, each edge k is assumed to be directed and defined
by an origin node O(k) and a destination node D(k). Interdependent networks are
represented as individual networks connected by directed edges which represent
interdependencies (also referred to as interdependency links). A representative
graphical example of interdependent networks is shown in Figure 1.1.

5



Figure 1.1: Example of interdependent networks. The two networks, in red and blue,consist of nodes connected by edges. Nodes belonging to different networks areconnected by dashed black edges, also referred to as interdependency links, thatrepresent relationships of interdependency. Figure from Paper III [10].
CIs can be easily represented by networks: nodes can be used to represent

components, while edges can be used to represent connections (physical and non-
physical). For example, power networks are composed of buses, which can be
represented by nodes, and power lines, which can be represented by edges. Sim-
ilar representations can be used for railway networks, where stations (nodes) are
connected by tracks (edges), gas networks, where hubs (nodes) are connected by
pipelines (edges), and many other CIs (telecommunications networks, water net-
works, etc.). In Figure 1.2, the Great Britain reduced power transmission network
[41], composed of 29 buses connected by 50 power lines, is represented as a net-
work of 29 nodes and 50 edges. Similarly, always in Figure 1.2, the proposition
for a new high-speed British railway network contained in [42] is represented as a
network composed of 16 stations connected by 21 tracks.

Networks are not only an intuitive tool for the graphical representation of CIs,
but also a modeling framework for their analysis and optimization. Interdependent
CIs can be modeled with two different classes of network models: topology-based
and flow-based [9].
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Figure 1.2: Example of CIs represented as networks. In red, the Great Britain reducedpower transmission network [41] is shown. In blue, the proposition for a new high-speed British railway network made in [42] is shown. Figure based on Paper I [14].

In topology-based models, nodes and edges are considered to be homogeneous,
and their physical properties, such as node production capacity or edge flow capac-
ity, are not taken into account. CIs are modeled and analyzed only accounting for
their topological properties and network metrics, such as node degree and between-
ness. Node degree and betweenness belong to the so-called centrality measures,
a group of metrics that defines the importance of each node (or edge) within
a network. The degree centrality denotes the number of edges connected to a
node. If the edges are directed, the degree centrality can be split into in-degree
and out-degree, by distinguishing edges entering and exiting the node [43]. The
betweenness centrality denotes the fraction of shortest paths within the network
passing through a specific node i, and it is computed as in Equation (1.1):

cB(i) =
∑

j ̸=i ̸=k∈V

σjk(i)

σjk
(1.1)

where σjk is the number of shortest paths between nodes j and k, and σjk(i) is
the number of shortest paths between nodes j and k passing through node i [44].
Other centrality measures, such as closeness centrality [45] and graph centrality
[46] exist and can be used for the analysis of networks and CIs. In general, these
metrics contain valuable topological information, and they can also be used as sur-
rogate models for physical properties of CIs. For example, betweenness centrality
can be used to simulate cascading failures processes in systems with heterogeneous
loads, such as power grids and Internet networks [47], [48].
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Within the existing literature on CIs, topology-based models have been used
to assess the resilience of telecommunications networks [49], [50], identify critical
locations [51], design coupling interfaces of interdependent CIs [31], and analyze
cascading failures in interdependent CIs [13].

The pioneering work of Buldyrev et al. [13] is of particular relevance in the con-
text of interdependent CIs. In this paper, the authors highlight that the behaviour
of interdependent networks in terms of cascading failures and failures propaga-
tion is inherently different to the behaviour of single non-interacting networks. In
particular, using percolation theory as a framework to model cascading failures in
networks [52], they demonstrate that interdependent networks are characterized by
a first-order phase transition when subject to cascading failures, contrary to single
networks which are characterized by a second-order phase transition. This feature
results in an increased vulnerability of interdependent networks, and into "the need
to consider interdependent network properties in designing robust networks" [13].
This consideration provides a solid theoretical background that justifies the study
of interdependent CIs, rather than individual CIs.

Topology-based models represent a versatile modeling approach; however, topo-
logical information and metrics are often not enough for a comprehensive assess-
ment and analysis of interdependent CIs. Flow-based models integrate the network-
based representation of CIs with physical properties, such as production capacity,
requested demand, and flow capacity of goods, services, or commodities supplied
by CIs. Nodes and edges are heterogeneous, as they are characterized by different
physical properties. The functionality and the performance of CIs are described
by a flow-based approach, such as maximal flow models [34], [53]–[56], power
flow models (for power networks) [57]–[59], or pressure-driven models (for water
networks) [60]. Among the various existing applications, flow-based models have
been applied to optimize the recovery of disrupted CIs [61]–[63], model cascading
failures within power networks [64]–[66], assess the vulnerability of interdependent
CIs [14], [67], [68], and enhance the resilience of interdependent CIs [34], [55],
[69]–[71].

Flow-based models, as they integrate network representation and physical mod-
eling of CIs, represent a more realistic approach, and they are applied within the
work of this thesis.

1.4 . Resilience: concept and metrics

Resilience is a concept that has gained increasing attention in recent years.
However, an exact definition of resilience seems to be missing, and several inter-
pretations are present within the existing literature [72], [73]. In this dissertation, it
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is interpreted as the ability of a system to "withstand stressors, adapt, and rapidly
recover from disruptions" [74]. In general, resilience defines the behaviour of a
system or a network under conditions of disruption, in terms of temporal evolution
of performance. It can be described by resilience curves, such as the one shown in
Figure 1.3.

As it can be clearly seen in Figure 1.3, resilience is divided into three phases:
disturbance phase, degraded phase, and recovery phase [75]. A system in a sta-
ble state with nominal performance p0, after a disruptive event at time te, enters
the disturbance phase, which describes the disruption propagation and temporal
decrease of performance p(t). The disturbance phase is strictly connected to the
concepts of vulnerability and survivability. Vulnerability is defined as the "degree
of loss or damage to a system when exposed to a strain of a given type and mag-
nitude" [68], and it can be interpreted as the loss of performance due to a specific
disruptive event. Survivability is defined as "the capability of a system to fulfill its
mission in a timely manner in the presence of attacks, failures, or accidents" [76],
and it can be interpreted as the residual performance after a specific disruptive
event. At time td, when the performance p(t) reaches the minimum value, the
degraded phase starts. This phase describes the time necessary for information
collection, organization, and decision-making. At tr, the recovery phase starts and
lasts until time tf , when the performance are back to the nominal value p0.

In reality, the separation between phases is not always straightforward, and
the three phases are often overlapped. However, these concepts are still useful to
understand the nature of resilience in systems and networks.

The resilience of a system can be measured using different approaches, and
various metrics are available in the existing literature [77]. In this section, two of
the most common approaches are mentioned.

The first method consists in taking an integral approach, by measuring the
area below the resilience curve (or part of it). Using the nomenclature in Figure
1.3 as a reference, the integral resilience metric R can be computed as in (1.2):

R =

∫ tf

te

p(t) dt. (1.2)
This approach is equivalent to computing the area under the black curve in

Figure 1.3 between te and tf , and it can be interpreted as the cumulative perfor-
mance of the system between te and tf . A similar approach consists in computing
the cumulative losses of the system, corresponding to the area between the dashed
horizontal line that defines the nominal performance p0 and the solid black curve
between te and tf .
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Figure 1.3: Traditional resilience curve with resilience phases.

A second method consists in computing separately different metrics related to
various aspects of resilience. A renowned approach is called ΦΛEΠ (pronounced
"FLEP") [75], and it consists in the computation of four different metrics [10]:

• Φ: it corresponds to the rate of performance drop in the disturbance phase.
Using Figure 1.3 as a reference, it can be computed as in (1.3):

Φ =
p(te)− p(td)

td − te
; (1.3)

• Λ: it corresponds to the magnitude of the drop in performance. This metric
is related to the concept of vulnerability and survivability. It can be computed
as in (1.4):

Λ = p(te)− p(td); (1.4)
• E: it corresponds to the temporal extension of the degraded phase, and it

can be computed as in (1.5):
E = tr − td; (1.5)

• Π: it corresponds to the rate of recovery, and it can be computed as in (1.6):
Φ =

p(tf )− p(tr)

tf − tr
. (1.6)

In this dissertation, the focus is on vulnerability and survivability, strictly con-
nected to the Λ metric of the ΦΛEΠ approach.
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1.5 . Timeline and contributions of the thesis

The first year of doctorate was dedicated to the investigation of interdependent
railway and power networks (IRPNs), in order to assess their mutual risks. During
this phase, three literature gaps and research questions were identified:

• How to model the interconnections between railway and power networks and
how do they affect the operational model?

• What is the impact of cascading failures in power networks on the dependent
railway networks?

• How to assess the impact of failures in railway networks on power networks?

These questions are addressed by introducing traction networks to act as an
interface between railway and power networks, by proposing a flow-based approach
for cascading failures in IRPNs, and by evaluating the feedback effect of failures in
railway networks on the cascading failure dynamics of power networks. The main
results are highlighted in Chapter 2, which is based on the work contained in Paper
I [14] and Paper II [78].

One of the main results in Paper II suggested that the topology of interdepen-
dency links between interdependent CIs, i.e. how interdependent CIs are intercon-
nected and coupled, might play an important role in determining their resilience,
and a new research question emerged:

• How to optimize the topology of interdependency links (also referred to as
the coupling interface) in order to enhance the resilience of interdependent
CIs?

The existing literature presents a limited number of works on this topic, mostly
based on network metrics-based heuristic strategies. In this work, the optimization
of coupling interface topology is addressed with a mathematical programming ap-
proach. Two different models (robust and distributionally robust) for the optimal
design of coupling interfaces are proposed, as well as an approach for the optimal
allocation of redundant interdependency links. The main results are highlighted in
Chapter 3, which is based on the work contained in Paper III [10], Paper IV [79],
and Paper V [80].

When optimizing the coupling interface, the interdependent CIs are assumed
to be operated in a centralized way. However, interdependent CIs can also be oper-
ated in a decentralized way, in which the different operators act independently. In
particular, CIs are usually operated in a decentralized way under normal conditions,
when the focus of each operator is to minimize its own individual costs, and in a
centralized way under conditions of disruption, when the different operators collab-
orate in order to minimize the negative impact on the general population. When
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designing a coupling interface - or taking any other joint decision - planners and
decision-makers should take into account that the behaviour of independent oper-
ators in interdependent CIs might change according to the state of their systems.
Given this consideration, a new research question emerged:

• How to take joint decisions in interdependent CIs when independent opera-
tors might display different behaviours according to the systems’ conditions?

This question is addressed in Chapter 4, where some preliminary results based
on Paper VI are presented. Moreover, a proposal for a decision-making framework
that takes into account the behaviour of independent operators (decentralized un-
der normal conditions, centralized under conditions of disruption) of interdependent
CIs is presented.

In Chapter 5, the main results and contributions of this thesis, as well as pos-
sible developments, are highlighted.

At the end of the manuscript, the aforementioned papers are appended. Paper
VII, which contains the results of a distributionally robust approach with endoge-
nous uncertainty for the optimal protection of power networks, is appended but
not discussed in this manuscript.
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2 - Vulnerability of railway and power net-
works

2.1 . Introduction

The disturbance phase of resilience is strictly connected to the concept of vul-
nerability, which is defined as the "degree of loss or damage to a system when
exposed to a strain of a given type and magnitude" [68]. In other words, the vul-
nerability V of a system defines the drop in performance after a specific disruptive
event, and it can be generally computed as in (2.1):

V =





p(te)− p(td), if not normalized

p(te)−p(td)
p(te)

, if normalized
(2.1)

where p(te) and p(td), consistently with Figure 1.3, define the performance of the
system before and after the disruptive event, respectively. The vulnerability V is a
time-independent metric, and when not normalized, is equivalent to the Λ metric
of the ΦΛEΠ resilience framework.

When dealing with CIs, analyzing and understanding the possible negative con-
sequences that might arise from various disruptive events is of the utmost impor-
tance. Vulnerability analysis, defined in [68] as the process of "systematically and
comprehensively identifying the possible states a system can be put into, due to
specific strains, and estimating the negative consequences associated with them",
is a suitable framework for estimating negative impacts of disruptive events in CIs.

In the case of interdependent CIs, a comprehensive vulnerability analysis must
take into account the effect of interdependencies and the mutual impact that in-
terdependent CIs can have on each other. As it is highlighted in [67] and [68],
vulnerability analysis is a suitable framework for the evaluation of interdependent
CIs. However, the results of the analysis are heavily impacted by the starting as-
sumptions and the modeling of cascading effects1 between different CIs.

The focus of this work is on interdependent railway and power networks (IRPNs),
in order to understand the mutual risks associated with these infrastructures. Con-
sistently with the framework in [11], the interdependencies between these two in-
frastructures are defined as unidirectional and physical, as railway networks (when

1Cascading effect defines the propagation of disruption and disturbances fromone infrastructure to another [14].
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electrified) are dependent on power networks in terms of electricity supply.

Railway and power networks are amongst the most important infrastructures
in any advanced society. As railway networks are often electrified, especially in
Europe, IRPNs are a very common configuration. In addition, it is well known that
failures in power networks can rapidly propagate and cause disruption in railway
networks [12]. Consequently, railway operators should be aware of risks related to
disruption of power supply from power networks [81]. Surprisingly, in the existing
literature, vulnerability analysis of IRPNs is not treated comprehensively and suffi-
ciently in detail. The reader is referred to Section 1.2 of Paper I for more details.

The existing literature presents some common drawbacks:

• the structure of the coupling interface, i.e. how IRPNs are coupled and
interconnected, is oversimplified;

• cascading failures in power networks and their effect on dependent railway
networks are overlooked or treated approximately;

• the feedback effect of failures in railway networks on the cascading failure
dynamics of power networks is not evaluated.

The first drawback is related to the modeling of coupling interfaces between
IRPNs, and in particular the modeling of traction networks. In fact, electrified rail-
way networks are supplied by power networks through traction networks, composed
of electrical substations fed by an external power network that regulate the elec-
tricity supply to the railway catenary2. In this context, the term coupling interface
refers to traction networks, which indeed act as an interface, and the interdepen-
dency links connecting traction networks to power networks and railway networks.
In the existing literature, with the exception of [67] and [68], this topological config-
uration is overlooked, and railway and power networks are often connected directly
by interdependency links without modeling explicitly traction networks (see Paper
I for more details). This might result in an unrealistic topological configuration.

The second drawback is related to the modeling of cascading failures in power
networks and their consequences on railway networks in terms of vulnerability. Cas-
cading failure is defined as a "kind of failure in a system comprising interconnected
parts, in which the failure of a part can trigger the failure of successive parts"
[82], and it can affect power networks. Cascading failures in power networks can
be modeled with various approaches (the reader is referred to [83] for a compre-
hensive review). In the context of IRPNs, cascading failures in power networks

2The catenary is a dedicated power line, parallel to railway tracks, which suppliesrolling stocks with electricity.
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and their impact on railway networks are evaluated only in [84]–[86]. However, in
these works, cascading failures are modeled with a network-based approach [87],
[88], which is not suitable to capture physical interdependencies based on power
supply. Network-based approaches for cascading failure modeling usually apply
network metrics, such as betweenness centrality, as a surrogate model for power
flows, and the results obtained by these models are locally inconsistent with the
results obtained with more realistic flow-based models [89].

The third drawback is related to the modeling of the impact of failures in
railway networks on power networks. Failures within railway networks modify the
power demand within power networks, impacting their cascading failure dynamics.
This aspect has not been addressed within the existing literature.

From this exploratory literature review on vulnerability of IRPNs, three main
research questions emerged, related to the identified research gaps:

• How to model the interconnections (the coupling interface) between railway
and power networks and how do they affect the operational model?

• What is the impact of cascading failures in power networks on the dependent
railway networks?

• How to assess the impact of failures in railway networks on the cascading
failure dynamics of power networks?

In Paper I, these drawbacks are addressed by introducing traction networks
within the analysis, by proposing a cascading failure model for IRPNs based on
the traditional ORNL-PSerc-Alaska (OPA) model [64]–[66], and by evaluating the
feedback effect of railway network failures on the cascading failure dynamics of
power networks.

In Paper II, a preliminary model which is able to account for different con-
figurations of traction networks is proposed. This chapter focuses on the work
contained in Paper I. Some insights on Paper II are available in Section 2.6.

2.2 . Modeling framework

2.2.1 . Operational model
Each network is modeled as a graph G = (V,E), and characterized by the sub-

script PN (power network), TN (traction network), and RN (railway network).

Power networks operations are modeled with a DC Optimal Power Flow (DC-
OPF) model. Each node i represents an electrical bus, containing generators
j, each with power production capacity pi,j , and loads j, each with requested
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power demand di,j . Buses are connected by transmission lines, characterized by a
power flow capacity fk. The DC-OPF model in (2.2)-(2.8) is implemented using
Pandapower [90]:

min
p,d,f

∑

i∈VPN

∑

j∈Gi

pi,j −W
∑

i∈VPN

∑

j∈Li

di,j (2.2)

0 ≤ pi,j ≤ pi,j , ∀i ∈ VPN ,∀j ∈ Gi (2.3)
0 ≤ di,j ≤ di,j , ∀i ∈ VPN ,∀j ∈ Li (2.4)
− fk ≤ fk ≤ fk, ∀k ∈ EPN (2.5)

∑

j∈Gi

pi,j −
∑

j∈Li

di,j +
∑

k |D(k)=i

fk −
∑

k |O(k)=i

fk = 0, ∀i ∈ VPN (2.6)
xkfk − (θO(k) − θD(k)) = 0, ∀k ∈ EPN (2.7)

− θ ≤ θi ≤ θ, ∀i ∈ VPN (2.8)
where pi,j is the power produced in generator j within the bus i, di,j is the power
supplied to load j within the bus i, and fk is the power flow in power line k. The
goal is to minimize the objective function in (2.2), where W is a penalty constant
(in this work, W=100) that guarantees the minimization of load shedding. This
objective function is based on the work in [66]. Each bus i can contain multiple
generators, contained within the set Gi, and multiple loads, contained within the
set Li. The power produced in each generator pi,j and the power supplied to
each load di,j are bounded by production capacity and requested power demand,
as shown in Constraints (2.3) and (2.4), respectively. As shown in Constraint (2.5),
the power flow in each line fk is bounded, in absolute value, by the flow capacity.
The net power balance in each node must be 0, as enforced in Constraint (2.6).
The DC power assumption is enforced in Constraint (2.7), where θi is the phase
angle in bus i and xk is the reactance of line k. The phase angle in each bus i is
bounded, in absolute value, by a maximum value θ, as shown in Constraint (2.8).
For more details, the reader is referred to Paper I, particularly Section 2.43.

Traction networks act as an interface between IRPNs. Traction networks con-
sist of multiple isolated substations, such as in AC-electrified railway networks,
which depend on power networks in terms of power supply. The binary functional
state of each substation i is dependent on the corresponding power network. In
particular, each substation i in a traction network is dependent on a load j within
the bus h of the corresponding power network. The binary functional state St,i of

3In order to maintain notations, nomenclature, and formulations consistentthroughout this dissertation, they might differ from the ones proposed in the ap-pended papers. However, notations, nomenclature, and formulations proposed inthis thesis are equivalent (or at least similar) to the ones in the appended papers,and they do not alter the message conveyed by the original works.
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substation i (1 if functional, 0 if failed) depends on the power supplied to load j

in bus h according to the relation in Equation (2.9):

St,i =





1, if Rt,i
h,j ≥ Tt←p and 0 < Tt←p ≤ 1

0, if Rt,i
h,j < Tt←p and 0 < Tt←p ≤ 1

0, if Rt,i
h,j = Tt←p and Tt←p = 0

(2.9)

where Rt,i
h,j defines the ratio between power supplied and requested power demand

of load j in bus h, as defined in Equation (2.10):
Rt,i

h,j =
dh,j

dh,j
. (2.10)

The parameter Tt←p ∈ [0, 1] defines the level of tolerance of traction substa-
tions to lack of electricity supply from the power network. For example, if Tt←p=1,
each substation is considered as failed if its corresponding load is not supplied with
its entire requested power demand; if Tt←p=0, each substation is considered as
functional as long as its corresponding load is supplied with some electricity. For
values 0 < Tt←p < 1, each substation is functional if at least a fraction Tt←p of
electricity is supplied to its corresponding load. The values of Tt←p selected in
Paper I are 0.0, 0.5, and 1.0.

Railway networks are composed of nodes, representing stations, connected by
edges, representing tracks. They are modeled with a topological approach, and they
are dependent on traction networks in terms of electricity supply. Specifically, it is
assumed that each railway track k is dependent on a subset of traction substations
V RN,k
TN ⊆ VTN . Each railway track k is functional (Sr,k=1) if all the substations

in V RN,k
TN are functional, as defined in Equation (2.11):

Sr,k =
∏

i∈V RN,k
TN

St,i. (2.11)

2.2.2 . Cascading failure model
Disruption within power networks can trigger cascading failure processes, which

can propagate to railway networks through traction networks and the corresponding
interdependency links. The proposed cascading failure modeling approach is based
on the ORNL-PSerc-Alaska (OPA) model [64]–[66] (see Paper I for more details).
The OPA model is a realistic flow-based modeling approach that has been validated
with historical data [65], and it involves the following steps:

1. initialize network and initiating disruptive event. Go to Step 2;

2. remove failed components and go to Step 3;

3. run DC-OPF in Equations (2.2)-(2.8) and go to Step 4;
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4. check the loading fraction fk/fk for each line k. If fk/fk ≥0.99, line k fails
with probability pol ∈ [0, 1]. Go to Step 5;

5. if at least one line failed at Step 4, return to Step 2; otherwise, the algorithm
is terminated.

Figure 2.1: Proposed cascading failure algorithm for IRPNs. Figure from Paper I [14].
The proposed cascading failure model for IRPNs is based on the OPA model

and accounts for the impact of failures in railway networks on the cascading failure
dynamics of power networks. The flowchart is shown in Figure 2.1. The main
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concept to highlight is that, in case of failures within railway networks, the loads
in the corresponding power networks do not require any power supply. This can
modify the cascading failure dynamics of power networks. The proposed approach
consists of the following steps:

1. initialize networks and initiating disruptive event. Go to Step 2;

2. remove failed components and go to Step 3;

3. run DC-OPF in Equations (2.2)-(2.8) and go to Step 4;

4. assess functional states of traction substations using Equation (2.9). If at
least one substation failed, go to Step 5; otherwise go to Step 8;

5. assess functional states of railway tracks using Equation (2.11) and go to
Step 6;

6. adjust the requested power demand in the power network according to the
failed railway tracks and go to Step 7;

7. check the loading fraction fk/fk for each line k. If fk/fk ≥0.99, line k fails
with probability pol ∈ [0, 1]. Return to Step 2;

8. check the loading fraction fk/fk for each line k. If fk/fk ≥0.99, line k

fails with probability pol ∈ [0, 1]. If at least one line failed, return to Step 2;
otherwise, the algorithm is terminated.

2.3 . Vulnerability analysis

Vulnerability analysis consists in identifying the negative impact that various
disruptive events can have on one or more systems or infrastructures. The three
main steps of a vulnerability analysis are:

• define the initiating disruptive event;

• define the new states of the systems/infrastructures after the disruptive
event;

• compute the associated negative consequences.

For a comprehensive vulnerability analysis, these three steps must be iteratively
repeated for multiple types of initiating disruptive event.

In Paper I, the initiating disruptive events are simulated with the random re-
moval of an increasing fraction of edges within the power network [67], [68]. In
order to make the analysis agnostic about the cause of failures, no spatial nor tem-
poral correlation between failed components is taken into account. This approach
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is typical of network science, and it can be used to simulate initiating disruptive
events with different magnitudes. The new states of the IRPNs are then computed
taking into account cascading failures and cascading effects within and between
networks, using the algorithm shown in Figure 2.1.

Without indulging in details, the proposed approach allows to evaluate:

• cascading failures in power networks, with a power flow-based approach, and
their propagation on railway networks through traction networks;

• the impact of failures in railway networks on the cascading failure dynamics
of power networks.

The negative impact of disruptive events is computed in terms of loss of perfor-
mance. For example, in power networks, the negative impact can be computed in
terms of fraction of demand not supplied FDNS, while in railway networks, it can
be computed in terms of loss of topological accessibility Ar (the average fraction
of stations accessible from each other [91]). The average results are evaluated for
fractions of removal from 0% to 100%, with steps of 10%, and 1000 simulations
per fraction of removal. In Paper I, vulnerability analyses with cascading failures
included (pol=1) and not included (pol=0) are compared.

2.4 . Case study

This approach is applied to investigate the vulnerability of a British case study.
The system is composed of a railway network, a traction network, and a power net-
work. The railway network consists of 16 nodes (stations) and 21 edges (tracks),
and it is based on a proposition made in [42]. The power network is based on
the Great Britain reduced power network, and it is composed of 29 nodes (buses)
and 50 edges (lines), 49 in double-circuit configuration and one in single-circuit
configuration [41]. The railway and power networks are connected by the traction
network, composed of 85 isolated nodes (substations). Each substation is con-
nected with, and supplied by, the geographically-closest bus in the power network.
Each railway track is supplied by a subset of substations. The geographical and
network-based representations of this illustrative case study are shown in Figures
2.2 and 2.3, respectively.

20



Figure 2.2: Geographical representation of the British IRPNs, based on Figure 3 ofPaper I [14].

Figure 2.3: Network-of-networks representation of the British IRPNs, based on Figure4 of Paper I [14].
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2.5 . Results

The results in terms of loss of accessibility in the railway network are shown
in Figure 2.4. The x-axis denotes the fraction of removed edges in the power
network, which is used to simulate initiating disruptive events. The y-axis denotes
the loss of accessibility. Solid curves denote results when cascading failures within
power networks are included in the analysis (pol=1), while dashed curves denote
results without accounting for cascading failures (pol=0). The three colors denote
different levels of tolerance of traction substations to lack of electricity supply, as
defined by the parameter Tt←p.

Figure 2.4: Average loss of accessibility in the railway network due to different frac-tions of edges removed in the power network. Figure from Paper I [14].

As it can be clearly seen, the tolerance Tt←p of traction substations plays a
key role in terms of vulnerability of electrified railway networks, as the the results
for different values of Tt←p vary considerably. In addition, as it can be clearly
noticed by comparing solid and dashed lines, it is essential to include cascading
failures within the vulnerability analysis of IRPNs, in order to avoid vulnerability
underestimation.

In Figure 2.5, the results in terms of FDNS in the power network are shown.
The x-axis denotes the fraction of removed edges in the power network. The
y-axis denotes the fraction of demand not supplied. The black curve denotes
the results of a traditional OPA model, which does not account for the effect of
failures in the railway network on the cascading failure dynamics of the power
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Figure 2.5: Average FDNS in the power network due to different fractions of edgesremoved in the power network. Figure from Paper I [14].

network. The other curves include the impact of railway network failures within
the analysis. As it can be clearly seen, when including the effect of failures in
the railway network on the cascading failure dynamics of the power network, the
results differ from a traditional OPA model, indicating that including the feedback
effect of interdependencies on cascading failure dynamics is essential in order to
estimate accurately the vulnerability of IRPNs.

2.6 . On the coupling interface topology

In Paper I, traction substations are assumed to be in electrical isolation and
disconnected from each other. This corresponds to the configuration of an AC-
electrified railway network. For DC-electrified railway networks, traction substa-
tions are often more numerous and connected with each other. A preliminary model
for evaluating the vulnerability of IRPNs with different traction network configu-
rations is proposed in Paper II. Within this framework, when traction substations
are connected to each other, such as in a DC-electrified railway network, traction
networks are modeled as a power network. Specifically, they are modeled using a
DC-OPF model. A preliminary vulnerability analysis is performed on the French
case study shown in Figure 2.6.

The initiating disruptive events are simulated by removing, one by one, buses
in the power network. The negative impact of removals is measured on the three
networks. For example, in the power and traction networks, the negative impact is

23



Figure 2.6: Network-of-networks configuration of the French IRPNs, based on Figure1 of Paper II [78].

computed in terms of FDNS, and the results are shown in Figure 2.7. For more
details on modeling and results, the reader is referred to Paper II.

As it can be seen in Figure 2.7, the worst-case scenarios for the power network
and the traction network, in terms of FDNS, are different. In particular, the
scenario which leads to the highest FDNS in the power network is the failure (re-
moval) of bus 83, which leads to FDNS=0.210; for the traction network, the worst
scenario is the failure (removal) of bus 78, which leads to FDNS=0.1464. Failures
and disruption in the power network spread to the traction network through their
interdependency links, collectively referred to as the coupling interface. Clearly, as
the worst-case scenario of the power network does not correspond to the worst-
case scenario of the traction network, the topology of their coupling interface, i.e.
where the interdependency links are present, plays a key role in terms of failures

4An accurate analysis of the features and the characteristics of these buses is outof the scope of this work; however, it is important to highlight that their topologicalpositions within the interdependent networks play a key role in determining theircriticality in case of failure.
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Figure 2.7: Fraction of demand not supplied FDNS in the power network and trac-tion network. Figure based on the results of Paper II [78].

and disruption propagation. This observation leads to the next research question
of this dissertation:

• how to design and optimize the topology of coupling interfaces between
interdependent CIs in order to enhance their resilience?

2.7 . Conclusion

In this chapter, the models for the vulnerability analysis of IRPNs proposed
in Paper I and Paper II are highlighted. The main contribution of this chapter
and the related papers is to propose an approach for assessing the vulnerability
of IRPNs while accounting for a realistic coupling interface and cascading failures
within and between networks. The obtained results demonstrate the importance
of considering cascading failures within the vulnerability analysis. In Paper II, pre-
liminary results show that the worst-case scenarios for individual interdependent
networks might differ. Intuitively, this result might be strongly influenced by the
coupling interface topology. Consequently, in the next chapter, the optimization
of coupling interface topology and design is investigated.
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3 - Design and optimization of coupling in-
terface topology

3.1 . Introduction

As CIs are the backbone of advanced societies, it is essential to guarantee
their resilience under conditions of disruption. In the previous chapter, it was high-
lighted that the topology of coupling interfaces, i.e. how interdependent CIs are
coupled together, might play a key role in terms of vulnerability and survivability, as
it defines how failures and disruption propagate between different infrastructures.
Despite playing such an important role, coupling interface optimization has not
been investigated thoroughly in the existing literature.

NB: In this chapter, the term "coupling interface" strictly refers to the ensemble
of interdependency links connecting two interdependent CIs.

In the community of network science, it is already acknowledged how cou-
pling interfaces can strongly impact failure propagation between interdependent
networks. In [92], it is shown how the coupling strength between interdependent
networks, i.e. the fraction of nodes in each network which is dependent on nodes
of the other network, strongly impacts the failure propagation between networks.
The results are evaluated in terms of transition phase using percolation theory.
Similarly, in [93], the authors explore the effect of interdependencies and differ-
ent coupling strategies on the vulnerability of interdependent networks. Moreover,
other authors have already investigated various allocation strategies of interde-
pendency links in interdependent networks using percolation theory as a model-
ing approach [94]–[96]. These works acknowledge the importance of optimizing
the coupling interface topology between interdependent networks. However, their
modeling framework, based on percolation theory, is not suitable for real-world
decision-making, as it provides only an approximation of the realistic functionality
of CIs.

In the existing literature on interdependent CIs, design and optimization of
coupling interfaces have been rarely investigated. In fact, in most of the existing
literature on interdependent CIs, the coupling interface topology is a constant pa-
rameter, and no sensitivity analysis nor optimization is performed. In some works,
coupling strategies based on network metrics have been investigated for different
types of interdependent infrastructures, such as power and water networks [97]
or power and telecommunication networks [98]–[100]. While these papers investi-
gate the impact of different coupling interface topologies on the cascading effect
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in interdependent CIs, they still rely on heuristics approaches based on network
metrics. Thus, these works can not provide a solid framework for decision-making,
as heuristic approaches do not guarantee the optimality of solutions and are hardly
generalizable.

The need to optimize coupling interfaces between interdependent infrastruc-
tures is acknowledged in [31] and [32]. In [31], the authors rely on network met-
rics, such as Euclidean distance, node degree, and betweenness, to identify hybrid
coupling strategies between power, water and gas networks and reduce cascading
effect under conditions of disruption. A similar approach is taken in [32], where
the authors propose a similar framework for coupling interdependent CIs, relying
on network metrics and physical properties of the CIs, in order to increase their
resilience. While these works investigate different hybrid strategies for coupling in-
terdependent infrastructures, their approaches are based on heuristics and network
metrics, and they do not guarantee optimal solutions.

In this chapter, a resilience-based mathematical programming framework for
the optimal coupling of interdependent CIs is proposed. Firstly, an approach for
designing robust coupling interfaces, based on the content of Paper III, is presented.
In this paper, the topology of coupling interfaces is optimized in order to maximize
the combined survivability of interdependent CIs in the worst-case feasible failure
scenario. Secondly, in Paper IV, this framework is extended including uncertainty
within the analysis, leveraging on a distributionally robust optimization (DRO)
approach. Lastly, in Paper V, the model is extended with the inclusion of redundant
interdependency links, which exist in reality but are often overlooked in the existing
literature.

3.2 . Operational modeling framework

Interdependent CIs are modeled as networks, and represented by a graph
G=(V,E), where V is the set of N nodes and E is the set of M edges. Each
edge k is directed, and is defined by an origin node O(k) and a destination node
D(k). Components belonging to different infrastructures can be connected by in-
terdependency links, which denote relationships of interdependency. The ensemble
of these links is referred to as the coupling interface.

Given a system of interdependent CIs, coupled through a coupling interface y,
their operations are defined by an operational model Q(y, ξ), where ξ denotes the
uncertainty realization. In this case, as it will be clear in the next sections, the
uncertainty ξ defines the functional state of the CIs components, which depends
on failures and disruption.
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The operational model simulates the actions of CIs operators, and is modeled
as an optimization problem. It is assumed that the operators aim at optimizing the
combined performance Pcomb of the interdependent CIs. For a set I of interdepen-
dent infrastructures, the combined performance Pcomb can be generally defined as
in Equation (3.1):

Pcomb =
∑

i∈I
wiPi (3.1)

where Pi is the individual performance of infrastructure i, and wi is its weight (i.e.
its importance) when computing the combined performance.

For a fixed coupling interface y∗ and fixed failure scenario u∗, which defines
the uncertainty realization ξ, the operational model Q(y, ξ) is defined as a maxi-
mization problem, represented in its compact matrix formulation as in (3.2)-(3.4):

max
h,δ

bTh (3.2)
subject to:

Rh ≤ q−Tu∗ −Hy∗ −Wδ − y∗TDδ (3.3)
h ∈ RNh , δ ∈ {0, 1}Nd . (3.4)

The vectors h and δ, with dimensions Nh and Nd, represent the continuous
and binary operational variables of the problem, respectively. The vector b and the
matrices R, T, H, W, and D contain the coefficients of objective function and
constraints, while the vector q contains the parameters of the constraints. The
objective function in (3.2) represents the combined performance of interdependent
infrastructures, previously shown in Equation (3.1). Equation (3.3) contains the
operational constraints. The details of the optimization problem depend on the
infrastructures involved and the operational assumptions. For the full formulation
of the operational models, with a detailed explanation of the operational variables
h and δ and the related operational constraints, the reader is referred to the ap-
pended papers (e.g. Section 2 of Paper III)5.

3.3 . Case study

In Paper III, Paper IV, and Paper V, a case study based on interdependent
power and gas networks (IPGNs) is used. The geographical representation of the
two infrastructures is shown in Figure 3.1. The power network, defined by the
subscript PN , is based on the IEEE 14-bus system [101], composed of 14 nodes
and 20 edges. The gas network, defined by the subscript GN , is based on the

5For simplicity, the cubic terms present in the operational model of Papers III andIV are assumed to be contained within the last term yTDδ of Equation (3.3).
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IEEE 9-bus system [102], composed of 9 nodes and 9 edges. Each node i is
characterized by production capacity of power or gas pi and requested demand of
power or gas di. These energy commodities are distributed through power lines
and gas pipelines, represented by edges, with a maximum flow capacity fk. The
power network operations are modeled with a DC power flow model, while the gas
network operations are modeled with a maximal flow approach, which represents a
linear approximation of gas flow models [34]. In this case, the operational model of
the IPGNs, represented by the recourse functionQ(y, ξ), denotes the maximization
of the fraction of requested demand of power and gas which is possible to supply.
The objective function of Q(y, ξ) is shown in Equation (3.5):

Pcomb =
wPN

dPN

∑

i∈VPN

di +
wGN

dGN

∑

i∈VGN

di. (3.5)
The coefficients wPN and wGN , here assumed to be both equal to 0.5, are the

weights of power network and gas network when computing the combined perfor-
mance. The coefficients dPN and dGN are the total requested power demand in
the power network and the total requested gas demand in the gas network. The
variable di defines the supplied power or gas in each node i of the networks. The
combined performance Pcomb ranges from 0, when no power and gas demand is
supplied, to 1, when 100% of the requested demand of power and gas is supplied
[10].

The interdependencies between IPGNs are based on the following assumptions:

• each node in the power network with power production capacity pi > 0

contains a gas-fired power plant, and is dependent on the gas network in
terms of gas supply;

• each node in the gas network needs electricity in order to guarantee the
functionality of various electrical equipment, such as pumps or valves, and
is dependent on the power network in terms of power supply.

These relationships of interdependency are built within the constraints of the
operational model Q(y, ξ), using mathematical assumptions which are consistent
with the existing literature on interdependent CIs [34]. For example, in each node
i of the power network with production capacity pi > 0, it is possible to produce
electricity only if there is a functional interdependency link with a node j in the
gas network, i.e. the gas-fired power plant receives the necessary gas supply. It
is assumed that the interdependency link from j ∈ VGN to i ∈ VPN is functional
only if the requested demand of gas in j ∈ VGN is fully satisfied. The rationale
behind this assumption is that, if node j is not supplied with its entire gas demand,
the dependent gas-fired power plant in i ∈ VPN might not receive the necessary
gas supply. Similar assumptions are considered for the interdependencies from the
power network to the gas network. For more details on the operational model
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Figure 3.1: Geographical representation of the IPGNs. Figure from Paper IV [79].

and the related equations and constraints, the reader is referred to the appended
papers (e.g. Section 2 of Paper III).

3.4 . Coupling interface topology - toy model

Before presenting the mathematical programming framework, it is useful to
introduce an illustrative example of the coupling interface design problem and its
impact on the failure propagation between interdependent CIs.

Let us have two interdependent power and gas networks, both consisting of
two nodes connected by one edge, as shown in Figure 3.2. In the power network,
the electricity is produced by a gas-fired power plant in node 1, and general cus-
tomers (industries, households, etc.) are supplied by node 2. Similarly, in the
gas network, the gas is produced (extracted) in node 1, and general customers
are supplied by node 2. The gas-fired power plant in node 1 ∈ VPN receives the
necessary gas supply from node 2 ∈ VGN , while nodes 1 ∈ VGN and 2 ∈ VGN

receive the necessary electricity from nodes 2 ∈ VPN and 1 ∈ VPN , respectively.
These relationships of interdependency define the coupling interface of the IPGNs,
and they are represented by the interdependency links (dashed lines) in Figure 3.2.

Let us assume that a failure occurred in the power line connecting nodes
1 ∈ VPN and 2 ∈ VPN . Consequently, the electricity produced in node 1 ∈ VPN
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Figure 3.2: Illustrative IPGNs. The dashed lines represent the interdependency links,i.e. the coupling interface of the IPGNs.

Figure 3.3: Illustrative IPGNs with modified coupling interface.
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can not be delivered to node 2 ∈ VPN , and the interdependency link from node
2 ∈ VPN to node 1 ∈ VGN can be considered as nonfunctional, as no electricity
is supplied to node 2 ∈ VPN . With no functional interdependency links from the
power network to node 1 ∈ VGN , i.e. no power supply to node 1 ∈ VGN , the gas
network can not produce gas, as the electrical equipment, such as pumps, valves,
and compressors, is not provided with electricity. With no supply of gas, the inter-
dependency link from node 2 ∈ VGN to node 1 ∈ VPN is considered nonfunctional.
Consequently, it is not possible to produce electricity in the gas-fired power plant
in node 1 ∈ VPN . The failure of the power line results, thus, in the total disruption
of the IPGNs, as no power and gas is produced nor supplied.

Let us modify the coupling interface topology, by making node 1 ∈ VGN cou-
pled with, and dependent on, node 1 ∈ VPN , as shown in Figure 3.3. In this
case, the failure of the power line would result only in partial disruption of the
IPGNs. The general consumers of electricity can not be supplied, as no electricity
is delivered to node 2 ∈ VPN due to the power line failure. However, as in this
case node 1 ∈ VGN is dependent on node 1 ∈ VPN , the production of gas is not
disrupted, and the general gas consumers, as well as the gas-fired power plant in
the power network, are normally supplied by node 2 ∈ VGN .

As it can be clearly understood in this qualitative example, the topology of the
coupling interface, which defines the specific location of interdependency links, is
a driving factor of failures and disruption propagation in interdependent CIs, and
its optimization is of the utmost importance.

3.5 . Robust coupling interface

3.5.1 . Defender-attacker-defender formulation

The approach taken in Paper III consists in identifying the coupling interface
topology that maximizes the combined performance of the IPGNs in the worst-case
feasible failure scenario. Using the resilience framework defined in Chapter 1, the
problem is equivalent to identifying the coupling interface topology that maximizes
the combined survivability of the IPGNs in the worst-case feasible failure scenario.
The proposed approach is based on the defender-attacker-defender (DAD) model,
which is often applied in the context of protection and resilience enhancement of CIs
[55], [69], [103]–[108]. The DAD approach is a three-players sequential game: the
outer defender represents planners and decision-makers, and aims at identifying the
optimal planning decisions or resource allocation in order to maximize the objective
function; the middle attacker represents various sources of failures and disruption,
and aims at identifying the most disruptive attack plan in order to minimize the
objective function; the inner defender represents the various CIs operators, and aims
at maximizing the objective function by controlling the operational variables [104].
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In this case, the outer defender aims at identifying the optimal coupling interface
topology, in order to maximize the combined performance of the IPGNs against
the optimal attack plan of the middle attacker, which aims at minimizing the
combined performance of the IPGNs. The inner defender represents the operators,
and it is defined by the operational model Q(y, ξ). The problem takes the form
in (3.6)-(3.12):

max
h′,δ′∈{0,1}Nd

y∈{0,1}Nc

min
u∈{0,1}MPN

Q(y, ξ) (3.6)

subject to: ∑

j∈VPN

yg←p
ij ≤ 1, ∀i ∈ VGN (3.7)

∑

j∈VGN

yp←g
ij ≤ 1, ∀i ∈ VPN (3.8)

∑

i∈VGN
j∈VPN

yg←p
ij dkmij cg←p

km +
∑

i∈VPN
j∈VGN

yp←g
ij dkmji cp←g

km ≤ Bci (3.9)

Rh′ ≤ q−Hy −Wδ′ − yTDδ′ (3.10)
bTh′ ≥ 1 (3.11)

∑

k∈EPN

(1− uk) ≤ Katt. (3.12)
The problem presents a trilevel max-min-max formulation, where the inner-

most maximization is contained within the recourse function Q(y, ξ). The outer
defender aims at maximizing the combined performance of the IPGNs, represented
by the objective function of the recourse function Q(y, ξ), by allocating the cou-
pling interface through the binary variables yg←p

ij and yp←g
ij , contained within the

vector y with dimension Nc=N2
PN × N2

GN . The binary variable yg←p
ij =1 if node

i ∈ VGN is dependent on node j ∈ VPN , and yg←p
ij =0 otherwise. Similarly, the

binary variable yp←g
ij =1 if node i ∈ VPN is dependent on node j ∈ VGN , and

yp←g
ij =0 otherwise. In other words, when a y variable is equal to 1, it denotes

the presence of an interdependency link between two nodes of the power and gas
network. The middle attacker aims at minimizing the combined performance of the
IPGNs by targeting and failing power lines of the IPGNs through the binary vari-
ables uk, contained within the vector u with dimension MPN . The binary variable
uk=1 when line k is functional, and uk=0 when line k is targeted and failed by the
attacker. The inner defender, represented by the recourse function Q(y, ξ), aims
at maximizing the combined performance by controlling the operational variables
of the IPGNs (variables of the operational model in Section 3.2). The recourse
function, as it was previously explained, depends on the coupling interface placed
by the outer defender through the binary variables y and the uncertain functional
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state of the systems ξ, defined by the components targeted and failed by the mid-
dle attacker through the binary variables u.

The optimal objective value corresponds to the maximized combined perfor-
mance of the IPGNs, expressed as in Equation (3.5), in the worst-case feasible
failure scenario. The coupling interface topology which maximizes the combined
performance of the IPGNs in the worst-case failure scenario is obtained as a byprod-
uct of the optimization model.

This model can be interpreted as a robust optimization problem. In fact, the
attacker can target and fail a finite combinations of components. All the feasible
combinations of failed components are contained within the set of feasible failure
scenarios, which can be interpreted as a discrete uncertainty set. Accordingly, the
outer defender seeks to optimize decisions against the worst-case scenario within
the uncertainty set, i.e. the worst-case failure scenario.

The actions of both the outer defender and the attacker are regulated by some
assumptions, defined by Constraints (3.7)-(3.11) for the outer defender and Con-
straint (3.12) for the attacker. In these equations, the coefficient dkmij denotes the
distance in kilometer between two nodes, while the coefficients cg←p

km and cp←g
km de-

note the price per kilometer of allocating interdependency links, here both assumed
to be equal to 1 $/km. The vectors h′ defines the continuous operational variables
of the outer defender, while the vector δ′ defines the binary operational variables
of the outer defender. The other vectors and matrices in Constraints (3.10) and
(3.11) represent coefficients and parameters of the operational constraints of the
outer defender.

The actions of the outer defender are regulated by the following assumptions:

• each node in the gas network can be dependent on a maximum of one
node of the power network, and vice versa. This is defined as "single-
dependency" assumption and is enforced by Constraints (3.7) and (3.8). In
other words, each node in the gas network can be the receiving end of only
one interdependency link from the power network, and vice versa;

• the allocation of interdependency links has a cost per kilometer, and it is
limited by the available monetary budget Bci, as enforced by Constraint
(3.9);

• the coupling interface must be allocated in order to ensure that, under nor-
mal conditions, i.e. all the components are functional, the total requested
demand of power and gas can be fully satisfied. This condition is enforced
by Constraints (3.10) and (3.11) (see Section 2 of Paper III).
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The actions of the attacker, similarly to other works [69], are limited by the
maximum number of lines Katt that can be targeted and failed, as enforced by
Constraint (3.12). The attacker is assumed to target only power transmission lines.
With these assumptions, the attacker can choose from a limited number of attack
plans, contained within the set of feasible failure scenarios A, defined as in (3.13):

A =
{
u
∣∣ {0, 1}MPN , ||1MPN − u||1 ≤ Katt

}
. (3.13)

As it is highlighted in Paper III, "by considering the simultaneous failures of
transmission lines, the model is agnostic about the source of disruption, providing
a rapid and objective way of calculating the consequence of damage to any set of
components" [10].

These assumptions are used to establish the general framework, and they can
be easily adapted to describe different situations. For example, the possibility for
the attacker to target other components, such as nodes or interdependency links,
can be easily included with additional constraints similar to Constraint (3.12) and
by modifying the relative operational constraints within the inner defender recourse
function Q(y, ξ).

3.5.2 . Solution strategy

When the recourse function is extended in its explicit form, previously shown in
Equations (3.2)-(3.4), the problem presents a trilevel max-min-max formulation. As
the inner maximization includes binary variables, a strategy based on the dualiza-
tion of the inner problem, in order to merge it with the middle minimization, is not
suitable. In this work, a cutting plane strategy, called Nested Column&Constraint
Generation (NC&CG) algorithm, is applied [109], [110]. With this approach, the
original problem is extended into a four-level max-min-max-max problem by sepa-
rating the binary and continuous variables of the inner level. The problem is then
separated into an outer layer and an inner layer. Each layer is composed of a mas-
ter problem and a subproblem. These problems and layers are solved separately
and iteratively, by exchanging primal binary variables between them. The gen-
eral flowchart of the NC&CG algorithm is shown in Figure 3.4. This procedure is
proven to converge to the global optimal solution, and it has already been applied
in similar problems [34], [104]. For more details, the reader is referred to Appendix
A of this manuscript and Section 3 of Paper III.

3.5.3 . Results

The results are evaluated in terms of combined performance of the IPGNs in
the worst-case feasible failure scenario. For the sake of comparison, the results
obtained by the proposed DAD approach are compared with the results obtained
by designing the coupling interface with network metrics-based heuristic strate-
gies. Five network metrics-based strategies, based on Euclidean distance, node
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degree, and betweenness centrality, are used. The description of the five strategies
contained in Paper III is here recalled [10]:

• "Euclidean: each node in the power network (or gas network) is dependent
on the geographically closest node in the gas network (or power network);

• DDast: the node with the kth highest degree in the power network (or gas
network) is dependent on the node with the kth highest degree in the gas
network (or power network);

• DDdst: the node with the kth highest degree in the power network (or gas
network) is dependent on the node with the kth lowest degree in the gas
network (or power network);

• BBast:the node with the kth highest betweenness in the power network (or
gas network) is dependent on the node with the kth highest betweenness in
the gas network (or power network);

• BBdst: the node with the kth highest betweenness in the power network (or
gas network) is dependent on the node with the kth lowest betweenness in
the gas network (or power network)."

The results of the network metrics-based coupling interfaces and optimal cou-
pling interfaces identified with the proposed DAD approach are shown in Figures
3.5 and 3.6, respectively. The x-axis indicates different values of Katt, from 1 to
5, which denotes the maximum number of power lines that can be targeted and
failed by the attacker. The y-axis denotes the worst-case combined performance
of the IPGNs, i.e. the combined fraction of requested demand of power and gas
which is possible to supply in the worst-case scenario within the set of feasible
failure scenarios A.

In Figure 3.5, it can be clearly noticed how different coupling interfaces lead
to considerably different worst-case combined performances. Particularly, the Eu-
clidean coupling strategy, based on node geographical proximity, seems to outper-
form the other strategies. However, these heuristic strategies are strongly case-
dependent, and for a different case study the best-performing coupling strategy
might differ. In Table 3.1, the cost associated with each network metrics-based
coupling strategy is computed assuming costs per kilometer cg←p

km and cp←g
km equal

to 1 $/km.

The results of the optimal coupling strategies, identified with the proposed ap-
proach for different available monetary budgets Bci, are shown in Figure 3.6. The
monetary budgets range from $823, equivalent to the cost of Euclidean coupling
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Figure 3.5: Combined performance in the worst-case feasible failure scenario withnetwork metrics-based coupling strategies. Figure from Paper III [10]. It should behighlighted that, since multiple Euclidean coupling interfaces exist, for each value
Katt, the plot represents the best performing Euclidean coupling interface.
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Figure 3.6: Combined performance in the worst-case feasible failure scenario withoptimal coupling strategies. Figure from Paper III [10].
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Table 3.1: Cost of network metrics-based coupling interfaces.
Strategy Cost
Euclidean $823
DDast $1518
DDdst $2098
BBast $1943
BBdst $2126

interfaces (see Table 3.1), to $1500.

Firstly, it can be noticed that the results for the Euclidean coupling interface in
Figure 3.5 (blue solid line) and the results with a budget Bci=$823 in Figure 3.6
(blue dashed line), are equivalent. This is because, with a budget equal to $823,
the Euclidean coupling interfaces are the only ones which is possible to allocate6.
With lower budgets, the problem is unfeasible, as it is not possible to respect Con-
straint (3.11).

Secondly, it can be clearly seen that the network metrics-based coupling in-
terfaces are outperformed in terms of worst-case combined performance. For ex-
ample, for the case Katt=5, the Euclidean coupling interface, the best-performing
in Figure 3.5, leads to worst-case combined performance equal to 0.308, while an
optimal coupling interface with a budget Bci=$900 leads to worst-case combined
performance equal to 0.514. This corresponds to a 66.9% increase in combined
performance for a 9.3% increase in budget.

3.5.4 . Remarks

This work represents the first mathematical programming approach for opti-
mizing the topology and the design of coupling interfaces between interdependent
CIs.

The main contributions of this work are:

• demonstrating the importance of coupling interface optimization for increas-
ing the survivability of interdependent CIs under conditions of disruption;

• proposing an optimization-based approach that can be used by decision-
makers for analyzing, designing, or retrofitting existing and new coupling
interfaces.

6The budget Bci=$823 corresponds to the cost of Euclidean coupling interfaces inTable 3.1.
40



It should be mentioned that in Paper III, the proposed optimization framework
also accounts for the cost of the coupling interface. In fact, for each combina-
tion of Katt and Bci, multiple optimal coupling interfaces might exist, and the
proposed approach identifies the cheapest optimal coupling interface thanks to a
cost penalty term. In other words, among the set of optimal coupling interfaces
that maximize the combined performance, the proposed DAD approach selects the
cheapest solution. For the sake of simplicity and clarity, this part is omitted from
this dissertation. The reader is referred to Paper III for more details.

The approach based on the DAD model suffers from some limitations. Partic-
ularly, similarly to other works developed with a DAD approach (or, in general, a
robust optimization approach), the solutions are optimized against the worst-case
scenario, and this might lead to over-conservative solutions. Despite the decision-
makers having control over the size of the set of feasible failure scenarios through
the parameter Katt, it might not suffice to avoid over-conservative solutions. In
Paper IV, an alternative approach, based on distributionally robust optimization,
is proposed, in order to provide decision-makers with more control over the con-
servativeness of the model. In this work, the occurrence probability of each failure
scenario in the set A is taken into account.

3.6 . Distributionally robust coupling interface

3.6.1 . Distributionally robust approach
When dealing with optimization under uncertainty, the two most traditional

approaches are robust optimization (RO) and stochastic optimization (SO).

In RO, the decision-maker seeks to optimize decisions against the worst-case
realization of the uncertainty. For example, in the previously explained DAD ap-
proach, assuming that the uncertainty set A denotes the discrete set of feasi-
ble failure scenarios, the decision-makers seek to optimize the coupling interface
against the worst-case failure scenario in A. The RO framework, as the decision-
makers seek to optimize against the worst uncertainty realization, is considered a
risk-averse approach

In SO, decision-makers are assumed to possess full probabilistic knowledge of
the uncertainty distribution, and to have a neutral attitude towards risk7. Decision-
makers seek, thus, to identify decisions that optimize the expectation of the objec-
tive function considering the whole spectrum of uncertainty realization. In the case
of coupling interface design, this situation would translate into identifying a cou-
pling interface topology that optimizes the expected combined performance of the

7Risk-averse stochastic approaches also exist. In this case, a probabilistic riskmea-sure, like Conditional Value-at-Risk (CVaR), is often optimized [111].
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IPGNs under the conditions of disruption defined by the set A. As the uncertainty
set A is discrete, it can be described by a multinomial probability distribution. The
expected performance of the IPGNs are simply computed as the weighted sum of
the combined performance in each individual scenario within the set A, where the
weight of each scenario corresponds to its probability mass within the multinomial
distribution. This approach relies on the assumption that the multinomial proba-
bility distribution of the set A of feasible failure scenarios is perfectly known.

In practice, this assumption is considerably difficult, if not impossible, to guar-
antee, due to various reasons:

• sparsity of data: detailed historical data on contingencies and failures are
rarely available. Even when available, the quantity of events does not usually
allow to estimate a probability distribution with high confidence;

• environment: the environment variability and external factors (weather, cli-
mate changes, geopolitical factors, etc.) introduce large uncertainties which
make it difficult to estimate failure scenario probabilities accurately;

• unpredictability: it is often impossible to estimate the likelihood of inten-
tional attacks, such as terroristic attacks or deliberate sabotages, against
one or more CIs.

Thus, in this context, this approach is impractical and it does not represent a
feasible modeling choice for the optimization of coupling interface topologies.

While it might be not feasible to identify the true multinomial probability distri-
bution of the set A, it is often possible to identify partial probabilistic information,
such as moment information, from historical data and/or expert judgement. This
available information can be exploited in a robust stochastic approach, called dis-
tributionally robust optimization (DRO), that protects decision-makers against the
ambiguity of the probability distribution [112]. With this approach, decision-makers
seek to optimize decisions against the worst probability distribution that can de-
scribe the uncertainty set. In practice, the available probabilistic information is
encoded within the optimization model. The decision-makers aim at optimizing
the expectation of the objective function under the worst probability distribution
(which becomes a variable of the problem) that can describe the uncertainty set
while respecting the encoded probabilistic information. In terms of risk-aversion,
DRO lies in-between RO and SO, and it can be considered as their generalization.

The DRO approach has gained the interest of several research fields in the
recent years. For example, the reader is referred to [113]–[117] for applications in
various fields.
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Probabilistic moments are particularly convenient information to encode within
DRO approaches, as they are usually easy to estimate. In Paper IV, a DRO ap-
proach based on the upper bounds of the conditional marginal probability of each
line to be in a failure state is proposed [118]. In other words, given the condition
that one of the scenarios within A has occurred (except the "normal" scenario,
where all the lines are functional), i.e. at least one line has failed, this conditional
marginal probability defines the likelihood of each line k to be in a failure state
(uk=0). Accordingly, decision-makers seek to identify the coupling interface topol-
ogy that maximize the expected combined performance of the IPGNs under the
worst probability distribution of the set A that respects the encoded upper bounds
on the conditional marginal probability of each line to be in a failure state.

3.6.2 . Distributionally robust optimization - toy model
The purpose of DRO is to protect decision-makers against ambiguous proba-

bility distributions. This is achieved by optimizing the expectation of an objective
function accounting for the worst probability distribution that respects the enforced
probabilistic conditions. Before presenting the DRO formulation for the optimal
coupling of interdependent CIs, it is useful to introduce an illustrative example
to clarify the meaning of worst probability distribution with upper bounds on the
conditional marginal probability of each line to be in a failure state.

Let us have a power network, composed of three buses (nodes) connected by
two power lines (edges), as shown in Figure 3.7. Node 1 contains a power plant
with a very large production capacity p1 (enough to supply the whole network).
Nodes 2 and 3 both contain a load with a requested power demand d2=d3=1 MW,
for a total requested power demand dPN=2 MW. The two power lines are charac-
terized by a very large flow capacity, greater than 2 MW. Under normal conditions,
2 MW are produced within node 1 and supplied to nodes 2 and 3 (1 MW each)
through the power lines.

In this work, the purpose of the DRO approach is to identify a solution (the de-
sign of the coupling interface topology) that maximizes the expected performance
in the worst probability distribution of the set A of feasible failure scenarios. The
toy model in Figure 3.7, solely based on a power network, is useful to understand
the concept of worst probability distribution with enforced moment information.

Assuming only failures of power lines and a value Katt=2, the set A of this
toy model consists of four different scenarios uk, as shown in Table 3.2. The cor-
responding performance Pk, in terms of fraction of total requested power demand
dPN which is possible to supply for each scenario uk are also shown in Table 3.2.
In the scenario with no failures u∅, the performance P∅ is equal to 1.0, as it is pos-
sible to supply 100% of the total requested power demand dPN . In the scenarios
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Figure 3.7: Toy model of a power network.

with one line failed, u1 and u2, the performances P1 and P2 are equal to 0.5, as
it possible to supply either node 2 or node 3. In the scenario with two lines failed
u1,2, the performance P1,2 is equal to 0.0, as it is not possible to supply any power
to nodes 2 and 3.

Table 3.2: Scenarios within the set A for the power network in Figure 3.7 and corre-sponding performance.
Scenario Vector uk Performance PkNo failures u∅=[1,1] 1.0Line 1 failed u1=[0,1] 0.5Line 2 failed u2=[1,0] 0.5Line 1 and 2 failed u1,2=[0,0] 0.0

As the set A is a finite set with discrete scenarios, it can be described by a
multinomial distribution P, in which each scenario uk is assigned a probability mass
ϕk. The assigned probability masses must respect the condition in (3.14):

∑

k∈A
ϕk = 1. (3.14)

Moreover, some probabilistic moment information are enforced to the proba-
bility distribution of A. In this work, an upper bound πmax

k on the conditional
marginal probability of each line k to be in a failure state8, defined as πk, is en-

8The word conditional refers to the condition that at least one line is in a failurestate.
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forced. The reason of this choice are detailed in the next section. The marginal
probability πk for line 1 and 2 are defined as in (3.15) and (3.16), respectively:

π1 = ϕ1 + ϕ1,2 (3.15)
π2 = ϕ2 + ϕ1,2 (3.16)

In this specific example, the distribution P should respect the conditions in
(3.17)-(3.19):

ϕ∅ = 0 (3.17)
ϕ1 + ϕ1,2 ≤ πmax

1 (3.18)
ϕ2 + ϕ1,2 ≤ πmax

2 . (3.19)
Equation (3.17) states that the probability mass of the normal scenario u∅

should be 0. In other words, P defines a conditional distribution, where the con-
dition is that at least one line is in a failure state. The reason of this choice is
explained in the next section. Equations (3.18) and (3.19) define the upper bounds
on the conditional marginal probability of each line k to be in a failure state.

Under these assumptions, the set A can be described by any multinomial
distribution that respects the conditions in (3.17)-(3.19). The worst probability
distribution P̂ defines the probability distribution that respects the aforementioned
conditions and leads to the lowest expected performance in the power network.
Mathematically, it can be identified by solving Equation (3.20) subject to (3.14)
and (3.17)-(3.19):

min
ϕ≥0

∑

k∈A
ϕkPk. (3.20)

For example, assuming upper bounds πmax
1 =πmax

2 =0.8, it can be easily verified
that the worst distribution P̂ is the one defined in (3.21), which leads to expected
performance equal to 0.20.

P̂ =





ϕ∅ = 0.0
ϕ1 = 0.2
ϕ2 = 0.2
ϕ1,2 = 0.6

(3.21)

Any other distribution would either lead to higher expected performance or fail
to meet the conditions enforced in (3.14) and (3.17)-(3.19). The purpose of DRO is,
thus, to identify solutions that are robust against the worst probability distribution
that can characterize the set of feasible failure scenarios.

3.6.3 . Distributionally robust formulation
In Paper IV, the DRO framework for the optimal coupling of interdependent

CIs is developed using IPGNs as case study. The operational model is represented
by the recourse function Q(y, ξ), which defines the maximization of the combined
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performance of the IPGNs under the operational constraints. The decision-makers
allocate the coupling interface in order to maximize the expected combined per-
formance of the IPGNs under conditions of disruption, and its actions are limited
by the same assumptions of Section 3.4.1, defined by Constraints (3.7)-(3.11). The
middle minimization still represents the disruptive agent. However, instead of iden-
tifying the worst-case feasible failure scenario in A, this agent aims at identifying
the worst multinomial distribution which can describe the uncertainty set A, while
respecting the encoded probabilistic information.

The DRO approach for optimizing the coupling interface topology can be de-
fined as Equation (3.22):

max
h′,δ′∈{0,1}Nd

y∈{0,1}Nc

min
P∈M

EP [Q(y, ξ)] (3.22)

subject to (3.7)-(3.11) and (3.23):
M =

{
P ∈ P(A) : 0 ≤ EP[1

MPN − u] ≤ πmax
}
. (3.23)

The set M, called the ambiguity set, contains all probability distributions on
a σ-field of A that ensure that the conditional marginal probability of each line
k to be in a failure state is lower or equal to the upper bound πmax

k . The upper
bounds are contained within the vector πmax. The term 1

MPN defines an MPN -
dimensional vector of 1s. As the middle agent in (3.22), rather than selecting the
worst-case scenario in A, aims at identifying the worst distribution inM, Equation
(3.23) replaces Constraint (3.12) of the DAD model.

The motivation for choosing an ambiguity set M based on the conditional
marginal probability of each line k to be in a failure state is threefold:

• the conditional marginal probability, where the term conditional refers to
the condition that at least one is failed, allows to optimize the expected
combined performance in situations of disruption. In fact, the combined
performance under normal conditions is already ensured by Constraints (3.10)
and (3.11);

• this marginal probability provides a meaningful physical interpretation of the
problem, as it represents the "tendency" of each line to be in a failure state;

• moment information is usually easy to estimate and encode within an opti-
mization problem.

In summary, the ambiguity set M denotes the set of conditional multinomial
distributions which define the probability of the system to be in a specific failure
scenario, under the condition that at least one line is failed. In order to guarantee
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that M defines the set of conditional multinomial distributions, i.e. the probabil-
ity mass assigned to the normal scenario is equal to 0, the upper bounds πmax

must respect some specific conditions (see Section 3.2 of Paper IV for more details).

In Paper IV, the upper bounds of the conditional marginal probability πmax

are estimated empirically from an artificial dataset of contingency scenarios. The
estimated upper bounds πmax are shown in Table 3.3. For more details, the reader
is referred to Section 4.1 of Paper IV.

Table 3.3: Upper bounds πmax
k for each power line k.

Line πmax
k Line πmax

k1 0.064 11 0.1362 0.012 12 0.0373 0.089 13 0.0374 0.037 14 0.1315 0.164 15 0.0896 0.012 16 0.1597 0.084 17 0.0538 0.043 18 0.1179 0.031 19 0.01910 0.089 20 0.108
The optimal objective value corresponds to the maximized expected combined

performance of the IPGNs under the worst distribution in M. The advantage of
a DRO model is to identify coupling interface topologies with a robust approach
that avoids the "worst-case" over-conservativeness of the DAD model.

3.6.4 . Solution strategy
The problem can be solved with an NC&CG approach. However, it needs to be

recast into an equivalent tractable formulation. Particularly, the problem in (3.22),
subject to (3.7)-(3.11) and (3.23), is equivalent to the problem in (3.24) subject to
(3.7)-(3.12):

max
h′,δ′∈{0,1}Nd

y∈{0,1}Nc

β≥0

min
u∈{0,1}MPN

Q(y, ξ) +
∑

k∈EPN

βk(1− uk − πmax
k ). (3.24)

As the reformulation involves duality theory, the problem in (3.24) contains the
dual variables βk, contained within the vector β. In this form, the problem can be
solved by an NC&CG algorithm, shown in Figure 3.4. For details on the solution
procedure and the derivation of the reformulation, the reader is referred to Section
3 of Paper IV.
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3.6.5 . Results
The results are evaluated for a maximum number of failed edges Katt=3 and

a monetary budget Bci=$1100, and they are shown in Figure 3.8. The results are
evaluated in terms of expected combined performance of the IPGNs under condi-
tions of disruption, as indicated by the y-axis. As indicated by the x-axis, the results
are evaluated in terms of ambiguity set size by multiplying the upper bounds πmax

in Table 3.3 by an increasing factor (from 1 to 6). For example, 2πmax indicates
that the upper bounds in Equation (3.23) are equal to the bounds in Table 3.3 mul-
tiplied by a factor of 2. The results are also evaluated when the upper bounds πmax

are all set equal to 1. Results with a budget Bci=$823, corresponding to the cost
of Euclidean coupling interfaces, are shown for the sake of comparison. Four curves
are shown in Figure 3.8: the blue curves represent the worst expected performance
associated with the optimal and Euclidean coupling interfaces, computed by the
distributionally robust optimization model; the red curves represent the worst-case
scenario in A associated to the optimal and Euclidean coupling interfaces. As it
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Figure 3.8: Results of the distributionally robust optimal coupling of IPGNs. Revisedversion of Figure 3 of Paper IV [79].
can be clearly seen in Figure 3.8, the Euclidean coupling interface is outperformed
by the optimal coupling interface. Firstly, the worst expected performances are sig-
nificantly higher in the optimal case. For example, using the upper bounds in Table
3.3, the optimal case leads to worst expected performance equal to 0.984, while the
Euclidean case, for the same upper bounds, to worst expected performance equal
to 0.927. As it is graphically evident, this difference increases as the upper bounds
πmax increases. For example, using the upper bounds πmax multiplied by a factor
6, the optimal case leads to worst expected performance equal to 0.937, while the
Euclidean case, for the same upper bounds, to worst expected performance equal

48



to 0.756. Secondly, the associated worst-case performances are also significantly
better in the optimal case. For example, using the upper bounds in Table 3.3, the
optimal case leads to an associated worst-case performance equal to 0.902, while
the Euclidean case, for the same upper bounds, leads to an associated worst-case
performance equal to 0.703.

As it was expected, increasing the upper bounds πmax, by multiplying them by
factors from 2 to 6, increases the conservativeness of the solution. In fact, as it can
be clearly seen, the worst expected performances decrease, while the worst-case
performances remain constant or increase.

If the upper bounds πmax are set to 1, worst expected performance and worst-
case performance are equivalent. This corresponds to a situation where the prob-
ability mass is entirely allocated to the worst-case scenario. In other words, the
worst probability distribution is the one where the worst-case scenario occurs with
probability 1. Accordingly, the results of the DRO approach with the upper bounds
πmax set to 1 are equivalent to the results of the DAD model explained in the
previous section. This fact is easily verifiable by comparing worst expected com-
bined performance in Figure 3.8 with πmax=1 and the results of the DAD model
for Katt=3 and Bci=$1100 in Figure 3.6. In both cases, the worst (expected)
combined performances are equivalent to 0.913.

Additional results with a sensitivity analysis of the parameters Katt and Bci

are available in Paper IV [79].

3.6.6 . Remarks
The DRO approach displays good properties of robustness and control over

the conservativeness of the problem. In fact, decision-makers can exploit histori-
cal contingency data and expert judgment to inform their choice on the coupling
interface topology, and tune their risk attitude using the upper bounds πmax.

In this specific illustrative example, the DRO approach also displays good prop-
erties in terms of worst-case scenarios. In fact, as it can be clearly seen in Figure
3.8, the worst-case scenario associated with the identified optimal coupling inter-
face presents considerably high combined performance. However, this is not an
intrinsic property of the DRO approach, but it is strictly related to the case study
to which it is applied.

In both the DAD and DRO models, the coupling interface is modeled with a
"single-dependency" assumption. In fact, consistently with the existing literature
(e.g. [34] or [70]), each node of the gas network is dependent on a maximum of
one node of the power network, and vice versa. In other words, each node in the
IPGNs can be the receiving end of a maximum of one interdependency link. How-
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Figure 3.9: Representative IPGNs with redundant interdependency links.

ever, redundant interdependency links exist in real CIs, and decision-makers should
take this possibility into account when designing and optimizing coupling interfaces.

In Paper V, the framework based on the DAD model is extended in order to
include the possibility of allocating redundant interdependency links between CIs.

3.7 . Allocation of redundant interdependency links

3.7.1 . Redundancy allocation problem

In Paper III and Paper IV, each node in the gas network is assumed to be
dependent on a maximum of one node of the power network, and vice versa. This
assumption, previously defined as the "single-dependency" assumption, is often
applied in the existing literature on interdependent CIs [34], [70], [119]–[123], even
though, in reality, redundant interdependencies can be present [31], [32]. In ad-
dition, redundant relationships of interdependency are also acknowledged within
the network science field [124]. In fact, each node in one CIs can be dependent
on multiple nodes of another CIs. For example, in IPGNs, each node in the gas
network can be supplied by multiple nodes of the power network, and be the re-
ceiving end of multiple interdependency links. These multiple interdependencies
can be represented by redundant interdependency links, as shown in Figure 3.9,
where node 1 ∈ VGN can be supplied by both nodes 1 ∈ VPN and 2 ∈ VPN .

The optimal allocation of redundancies is a traditional reliability problem [125]–
[131]. In Paper V, the concept of optimal redundancy allocation is extended to
the problem of optimizing coupling interface topologies in interdependent CIs. In
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particular, the impact of redundancy allocation on the combined survivability of
interdependent CIs under conditions of disruption is investigated. The model is
developed with a DAD approach for illustrative purposes; however, a DRO approach
can also be easily adopted.

3.7.2 . Defender-attacker-defender formulation
In Paper V, the IPGNs in Figure 3.1 are used as case study. The DAD model for

the optimal allocation of redundant interdependency links is developed considering
the following assumptions [80]:

• a coupling interface is already present, and it already ensures the necessary
performance under normal conditions;

• the cost of allocating a redundant interdependency link depends on the
distance between the two nodes;

• the middle attacker can target and fail a maximum number of power lines.

The operational model of the IPGNs is defined by the recourse functionQr(y, ξ),
where the superscript r denotes that, in this case, the operational model accounts
for the presence of redundant interdependency links (see Paper V for more details).
In particular, it is assumed that each node in the gas network can receive multiple
interdependency links from the power network, but only one is assumed to actively
supply the electricity. The same assumption is considered for the power network
and the interdependency links from the gas network.

The DAD approach for the optimal allocation of redundant interdependency
links takes the form of Equation (3.25) subject to Equations (3.26)-(3.29):

max
y∈{0,1}Nc

min
u∈{0,1}MPN

Qr(y, ξ) (3.25)
yg←p
ij ≥ yg←p

ij , ∀i ∈ VGN ,∀j ∈ VPN (3.26)
yp←g
ij ≥ yp←g

ij , ∀i ∈ VPN ,∀j ∈ VGN (3.27)
∑

i∈VGN
j∈VPN

yg←p
ij dkmij cg←p

km +
∑

i∈VPN
j∈VGN

yp←g
ij dkmji cp←g

km ≤ cci +Bci (3.28)
∑

k∈EPN

(1− uk) ≤ Katt. (3.29)
Constraints (3.26) and (3.27) ensure that, if an interdependency link is already

present, the corresponding binary variable is equal to 1. The presence of a pre-
existing interdependency link is defined by the binary parameters yg←p

ij and yp←g
ij ,

that are equal to 1 if the corresponding link is already existing, and equal to 0
otherwise. As enforced by Constraint (3.28), the cost of allocating the redundant
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interdependency links should not exceed the budget Bci. The cost of the existing
coupling interface is given by cci, computed as in (3.30):

cci =
∑

i∈VGN
j∈VPN

yg←p
ij dkmij cg←p

km +
∑

i∈VPN
j∈VGN

yp←g
ij dkmji cp←g

km . (3.30)

Including the term cci in (3.28) allows considering only the newly allocated
interdependency links within the budget limitation. Constraint (3.29) controls the
maximum number of power lines that can be targeted and failed by the attacker.

3.7.3 . Results

The model is solved with a NC&CG algorithm and it is applied to the IPGNs
in Figure 3.1. It is assumed that a Euclidean coupling interface is already present
within the IPGNs. The model is tested for values Katt from 1 to 5, and monetary
budgets Bci from $100 to $400. The results are shown in Figure 3.10 and Table 3.4.
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Figure 3.10: Results of the optimal allocation of redundant interdependency links interms of worst-case combined performance, with different values of Katt and Bci.Figure from Paper V [80].

As it can be clearly seen, the allocation of redundant interdependency links
considerably improves the worst-case combined performance of the IPGNs. For
example, for the case Katt=5, the worst-case combined performances with the
original Euclidean coupling interface are equal to 0.308, while the optimal allo-
cation of redundancies with a budget Bci=$400 leads to worst-case combined
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Table 3.4: Results of the optimal allocation of redundant interdependency links interms of worst-case combined performance and relative increase in percentage fromthe original case. Table from Paper V [80].
Bci Katt = 1 Katt = 2 Katt = 3 Katt = 4 Katt = 5

Original 0.940 0.770 0.670 0.523 0.308
$100 0.997(+6.04%) 0.785(+1.93%) 0.708(+5.74%) 0.558(+6.71%) 0.364(+18.43%)
$200 1.0(+6.33%) 0.879(+14.03%) 0.819(+22.33%) 0.670(+28.13%) 0.514(+67.04%)
$300 1.0(+6.33%) 0.953(+23.74%) 0.894(+33.49%) 0.699(+33.77%) 0.577(+87.33%)
$400 1.0(+6.33%) 0.953(+23.74%) 0.911(+35.98%) 0.722(+38.12%) 0.619(+101.21%)
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Figure 3.11: Average results of the random strategy allocation of redundant interde-pendency links in terms of worst-case combined performance, with different valuesofKatt and Bci. Figure from Paper V [80].

performance equal to 0.619, corresponding to an increase of 101.21%.

In order to better understand the potential in terms of resilience enhancement
of an optimal allocation of redundant interdependency links, the results in Figure
3.10 are compared to the results of a random allocation strategy, shown in Figure
3.11. For each combination of Katt and Bci, 50 experiments with a random alloca-
tion strategy (more details in Appendix A of Paper V) are performed. The results
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Table 3.5: Computational time in seconds of the NC&CG algorithm. Table from PaperIII [10].
Bci Katt = 1 Katt = 2 Katt = 3 Katt = 4 Katt = 5

$823 1.13 4.12 30.17 50.37 140.30
$900 2.91 6.26 35.58 156.44 93.36
$1000 1.73 7.80 21.64 52.67 176.26
$1100 2.89 11.25 22.40 21.29 47.63
$1200 2.75 9.45 53.61 97.97 53.41
$1300 2.87 6.31 27.94 73.95 49.66
$1400 2.89 8.03 16.48 22.89 40.37
$1500 2.90 5.86 12.48 39.94 42.58

in Figure 3.11 show the average results and the related 95% confidence intervals.
By comparing Figures 3.10 and 3.11, it can be noticed that the random allocation
strategy, even when considering the upper bounds of the confidence intervals, is
outperformed by the optimal allocation strategy.

Additional results with degree-based and betweenness-based pre-existing cou-
pling interfaces are available in Paper V [80].

3.8 . Computational performance

Multi-level robust optimization problems are generally hard to solve, and often
present an NP-hard complexity [109]. The NC&CG algorithm is a powerful frame-
work to solve efficiently the class of problems addressed in Paper III, Paper IV, and
Paper V.

The case studies used in this work present small-medium sizes; consequently,
the computational cost is affordable. For example, Table 3.5 contains the com-
putational cost in seconds for the optimization in Paper III, previously shown in
Figure 3.6. As it can be clearly seen, the computational time is not prohibitive, as
the most computationally-expensive optimization (Bci=$1000, Katt=5) requires
less than 3 minutes. However, for larger case studies and infrastructures, the com-
putational time required for solving the optimization might increase considerably
due to the higher number of binary variables involved. Nevertheless, as it was al-
ready highlighted in Paper III, Paper IV, and Paper V, the optimization of coupling
interface topologies is a problem that is meant to be solved during design phases,
and high computational costs are usually not a problematic issue. Moreover, the
computational complexity of the model can be reduced by limiting the number of
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binary variables within the optimization problem, e.g. by limiting the number of
possible coupling interfaces for the outer defender.

3.9 . Conclusion

In this chapter, some details of the work contained within Paper III, Paper IV,
and Paper V are presented. The core of the chapter is to present the proposed
approach, based on multilevel mathematical programming, for the optimization of
coupling interface topology and design, where the term coupling interface denotes
the ensemble of interdependency links connecting two or more interdependent CIs.

The approach proposed in Paper III is based on the traditional defender-
attacker-defender approach, and it demonstrates the potential of optimized cou-
pling interfaces in terms of improvement of combined performance under the worst
feasible failure scenarios.

This approach is extended in Paper IV with a distributionally robust approach
that includes ambiguous probability distributions of the set of feasible failure sce-
narios within the optimization framework. In addition, in Paper V, the efficacy of
redundant interdependency links is investigated.

In this works, the objective functions represent the combined performance of
the interdependent CIs. From a modeling perspective, it is like to assume that the
interdependent CIs are operated with a centralized approach. In reality, interde-
pendent CIs can also be operated with a decentralized approach by independent
operators. In the next chapter, a preliminary approach for joint decision-making
in interdependent CIs with independent operators that can display different be-
haviours is proposed.
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4 - Joint decision-making with independent
operators

4.1 . Introduction

Interdependent CIs are often operated by individual and independent entities,
rather than a centralized unique operator. In the previous chapter, the focus of
the proposed optimization approaches is to maximize the combined performance
of the interdependent CIs. The objective functions of single infrastructures are
aggregated within one single objective function through a scalarization approach,
assigning a weight to each CI according to its importance (see Equation (3.1)). As
the objective is to maximize their combined performance, the independent opera-
tors display a behaviour which can be categorized as centralized and collaborative,
as the maximization of one CI performance is not detrimental (actually, it is often
beneficial) to the performance of the other CI. For example, considering the IPGNs
used in Paper III, Paper IV, and Paper V, the maximization of the power supply
within the power network is beneficial to the performance of the gas network, as
more electricity is available for the gas network itself. Similarly, the optimization
of the gas supply is beneficial to the power network, as more gas is available for
the gas-fired power plants.

Centralized approaches based on combined performance optimization have
been used extensively in the existing literature, especially in the framework of
resilience assessment and optimization. In fact, these models are useful to simu-
late the behaviour of operators in situations of disruption, when their priority is to
maximize the combined performance of their CIs in order to minimize the negative
impact of disruption on the general population. For example, centralized operator
models have been used to enhance the resilience of interdependent CIs by optimiz-
ing protection plans and resource allocation [34], [70], [122] and by optimizing the
joint restoration of disrupted interdependent CIs [61], [120], [123]. In the afore-
mentioned works, the operators are centralized, as they can control simultaneously
the ensemble of interdependent infrastructures in order to optimize an objective
function, which is usually a weighted sum of the performance of each individual
infrastructure.

Another class of models for independent operators consists of decentralized
approaches, where operators aim at minimizing their own individual performance
(usually a cost function). Decentralized models are generally useful for modeling
the behaviour of operators under normal conditions. In the context of interde-
pendent CIs, independent operators often interact by selling and purchasing their
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respective goods, services, and commodities within a market-based environment.
For example, in the case of IPGNs, the independent operators interact by selling
and purchasing gas and electricity. In this case, the behaviour of independent op-
erators is decentralized and competitive, as each of them aims at "selling high"
and "purchasing low". The purpose of each operator is usually to optimize its own
performance (usually its own cost function), and the interaction between different
operators is often modeled through game-theoretic approaches. As highlighted in
[132], decentralized models have been used, for example, in the optimization of the
expansion planning of interdependent power and gas networks [133]–[135], the op-
timization of urban energy networks [136], the modeling of the security-constrained
operations of integrated wind and hydrogen systems [137] and the risk assessment
of interdependent power and heat networks [138].

In summary, the actions of independent operators of interdependent CIs can
be modeled with two approaches:

• centralized models: the actions of operators are taken in a centralized and
collaborative way, in order to optimize the combined performance of the
interdependent CIs. These models are often used while assessing and en-
hancing the resilience of interdependent CIs under conditions of disruption;

• decentralized models: each operator acts independently in order to opti-
mize its own performance, and the interaction between different operators
is usually modeled through game-theoretic approaches. These models are
often used to assess and optimize the operators behaviours under normal
conditions.

These two classes of models describe two different behaviours of independent
operators. When performing joint decision-making, such as the design of a cou-
pling interface between interdependent CIs, planners should take into account the
possibility for the independent operators to display different behaviours, namely
decentralized under normal conditions and centralized under conditions of disrup-
tion. In the previous chapter, coupling interface topologies are optimized with a
centralized approach in order to maximize the resilience, in terms of survivability,
of interdependent CIs. However, the optimal coupling interface identified with a
centralized operator model might be suboptimal under normal conditions, where
operators might display a decentralized behaviour (and vice versa). The research
question of this chapter is, thus:

• How to design a coupling interface y which guarantees high-quality perfor-
mance in interdependent CIs both in the case of centralized and decentralized
behaviour of the independent operators?
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Figure 4.1: Power network of the IPHNs. Figure based on [138].

Figure 4.2: Heat network of the IPHNs. Figure based on [138].

4.2 . Case study

In this chapter, the case study of interdependent power and heat networks
(IPHNs) proposed in [138] is utilized. The power network and the heat network
are shown in Figures 4.1 and 4.2. The power network is based on the topology
of the IEEE 33-bus system [139], and it is composed of 33 power buses connected
by 32 power lines. The requested power demand in each node ranges from 0
to 0.121 MW, and the total requested power demand is 3.655 MW. The power
network network is provided with a generator with a production capacity equal to
3.5 MW in node 1, and four generators with a production capacity equal to 0.5
MW in nodes 7, 15, 23, and 29. The power flow capacity of each line is 3.5 MW.
The heat network is based on the topology of the district heat network of Barry
Island [140], and it is composed of 32 heat nodes connected by 32 pipelines. The
requested heat demand in each node ranges from 0 to 0.145 MW, with a total
requested heat demand equal to 2.164 MW. The heat production is ensured by
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four boilers, in nodes 1, 20, 31, 32, each with a capacity equal to 0.8 MW. Nodes
1, 31, and 32 are provided with electric boilers, supplied by nodes 5, 14, and 28 of
the power network, respectively. Node 20 is provided with a gas boiler, which is
assumed to have a reliable supply of gas.

4.3 . Operational models

4.3.1 . Centralized operational model
In a centralized operational model, similarly to Paper III, Paper IV, and Paper

V, the interdependent CIs are operated in a centralized way, aiming at optimizing
their combined performance. In this chapter, instead of maximizing the residual
performance, the focus is on the minimization of loss of performance9. The two
approaches are equivalent in terms of solution optimality, but the minimization
is better suited for the proposed approach in Section 4.5, as it is merged with
a cost minimization problem (more details in the next sections). Assuming that
both the power network and the heat network are modeled with a linear maximal
flow approach, for a fixed coupling interface y∗ and fixed failure scenario u∗, the
centralized operational model takes the form of Equation (4.1) subject to (4.2)-(4.7):

min
p,d,f

wPN

dPN

∑

i∈VPN

di +
wHN

dHN

∑

i∈VHN

di (4.1)

0 ≤ pi ≤ pi, ∀i ∈ VPN ∪ VHN (4.2)
0 ≤ di ≤ di, ∀i ∈ VPN ∪ VHN (4.3)

pi = η
∑

j∈VPN

yh←p∗
ij dh←p

ij , ∀i ∈ V eb
HN (4.4)

− u∗kfk ≤ fk ≤ u∗kfk, ∀k ∈ EPN ∪ EHN (4.5)
pi−(di−di)−

∑

j∈V eb
HN

yh←p∗
ji dh←p

ji +
∑

k |D(k)=i

fk−
∑

k |O(k)=i

fk = 0, ∀i ∈ VPN (4.6)

pi − (di − di) +
∑

k |D(k)=i

fk −
∑

k |O(k)=i

fk = 0, ∀i ∈ VHN (4.7)
where di represents the load shedding (power or heat) in each node, pi represents
the power or heat production in each node, fk represents the power flow in each
line or the heat flow in each pipeline, and dh←p

ij represents the power demand of
node i ∈ V eb

HN supplied by node j ∈ VPN , where V eb
HN ⊆ VHN is the subset of

nodes in the heat network containing an electric boiler. Similarly to the previous
chapter, yh←p∗

ij and u∗k define the presence of interdependency links and the binary
functional state of edges, respectively. The objective function in (4.1) represents

9The problems of maximizing residual performance and minimizing performanceloss are equivalent.
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the weighted sum of the total load shedding of power and heat, where wPN and
wHN are the weights of the power network and the heat network. The production
level and the load shedding in each node are subject to Constraints (4.2) and (4.3).
Moreover, the heat production in each node with an electric boiler depends on the
amount of power received from the power network, as shown in Constraint (4.4),
where η is the power-to-heat conversion ratio, here assumed to be equal to 0.8.
The flow in each line or pipeline is subject to Constraint (4.5). The net balance in
each node is enforced by Constraint (4.6) in the power network, and by Constraint
(4.7) in the heat network.

The solution of this model leads to the minimization of combined loss of per-
formance, in terms of shedding of power and heat demand.

4.3.2 . Decentralized operational model
The decentralized model is based on the game-theoretic approach proposed in

[138]. Power and heat operators act independently, aiming at minimizing their own
cost function, and they interact through the purchase of electricity by heat opera-
tors in order to produce heat in the electric boilers. As the operators are competing
in a market-based environment (power operators aim at selling electricity at a high
price, heat operators aim at purchasing it at a low price), the price of electricity
and the power demand of the heat network are defined through a game-theoretic
approach.

For a fixed coupling interface y∗ and fixed failure scenario u∗, the power
network is modeled as Equation (4.8) subject to (4.9)-(4.13):

min
p,d,f

∑

i∈VPN

γpower
i pi +

∑

i∈VPN

αpower
i di −

∑

i∈VPN

∑

j∈V eb
HN

εid
h←p
ji (4.8)

0 ≤ pi ≤ pi, ∀i ∈ VPN (4.9)
0 ≤ di ≤ di, ∀i ∈ VPN (4.10)

− u∗kfk ≤ fk ≤ u∗kfk, ∀k ∈ EPN (4.11)
pi−(di−di)−

∑

j∈V eb
HN

yh←p∗
ji dh←p

ji +
∑

k |D(k)=i

fk−
∑

k |O(k)=i

fk = 0, ∀i ∈ VPN (4.12)

εmin ≤ εi ≤ εmax, ∀i ∈ VPN (4.13)
The objective function is composed of three terms:

• the production cost of electricity, where γpower
i defines the cost of producing

1 unit of power in each node i;

• the penalty cost of demand not supplied, where αpower
i defines the penalty

cost of shedding 1 unit of power in each node i;
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• the profit of selling electricity to the heat network, where εi defines the
selling price of 1 unit of power in each node i.

Constraints (4.9)-(4.12) are equivalent to Constraints (4.2)-(4.3) and (4.5)-(4.6)
of the centralized approach. The nodal price of electricity εi is bounded between
a minimum and maximum value, as enforced by Constraint (4.13).

Similarly, the heat network is modeled as Equation (4.14) subject to (4.15)-
(4.19).

min
p,d,f

∑

i∈V gb
HN

γheati pi +
∑

i∈VHN

αheat
i di +

∑

i∈V eb
HN

∑

j∈VPN

εjd
h←p
ij (4.14)

0 ≤ pi ≤ pi, ∀i ∈ VHN (4.15)
pi = η

∑

j∈VPN

yh←p∗
ij dh←p

ij , ∀i ∈ VHN (4.16)
0 ≤ di ≤ di, ∀i ∈ VHN (4.17)

− u∗kfk ≤ fk ≤ u∗kfk, ∀k ∈ EHN (4.18)
pi − (di − di) +

∑

k |D(k)=i

fk −
∑

k |O(k)=i

fk = 0, ∀i ∈ VHN (4.19)
The objective function is composed of three terms, respectively:

• the production cost of heat in the gas boilers, where γheati defines the cost of
producing 1 unit of heat in each node with a gas boiler i, and V gb

HN ⊆ VHN

is the subset of nodes containing a gas boiler;

• the penalty cost of demand not supplied, where αheat
i defines the penalty

cost of shedding 1 unit of heat in each node i;

• the cost of purchasing electricity from the power network for the electric
boilers, where εi defines the selling price of 1 unit of power in each node
i ∈ VPN .

Constraints (4.15)-(4.19) are equivalent to Constraints (4.2)-(4.5) and (4.7) of
the centralized approach.

As it can be clearly seen, the two problems are interconnected by the prices of
electricity εi, which are variables of the power network model and constant coef-
ficients of the heat network model, and the power demands of the heat network
dh←p
ij , which are variables of the heat network model and constant coefficients of

the power network model. In particular, power and heat operators are in com-
petition for the price of the electricity, as the power operators aim at selling the
electricity at a high price to maximize their profit, and the heat operators aim at
purchasing it at a low price in order to minimize their costs. This interaction can be
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modeled through a game-theoretic approach, which allows to identify the equilib-
rium solutions for electricity prices εi and power demands of the heat network dh←p

ij .

In Paper VI, similarly to [138], the interaction between power and heat oper-
ators is modeled with the assumptions of a Stackelberg game. In order to solve
this problem, the two optimization models, in Equations (4.8)-(4.13) and Equations
(4.14)-(4.19), need to be merged within one single problem. Under the assumption
of a Stackelberg game, in which the power operators take their actions before the
heat operators, i.e. the power operators are the leader and the heat operators the
follower, the two problems can be merged using the Karush-Kuhn-Tucker (KKT)
conditions of the heat network.

The single-level Stackelberg game between power and heat operators can be
formulated as the objective function in (4.8), subject to (4.9)-(4.13), (4.15)-(4.19),
which correspond to the primal feasibility of the KKT conditions of the heat net-
work problem, and the other KKT conditions of the heat network problem, shown
in Equations (4.23)-(4.25). For the sake of simplicity, the details and the full for-
mulation of the KKT conditions are reported in Appendix B of this dissertation,
and here only the compact matrix form is reported.

The compact matrix formulation of the heat network problem corresponds to
Equations (4.20) subject to (4.21) and (4.22):

min
h

bTh (4.20)

Rinh− qin ≤ 0 (4.21)
Reqh− qeq = 0 (4.22)

where (4.21) and (4.22) represent the inequality and equality constraints, previously
shown in Constraints (4.15)-(4.19), and they correspond to the primal feasibility of
the KKT conditions. With λ and µ being the vectors of dual variables of Con-
straints (4.21) and (4.22), the other KKT conditions (stationarity, complementary
slackness, and dual feasibility) are shown in Equations (4.23)-(4.25), respectively:

∇cTh+ λ∇Rinh+ µ∇Reqh = 0 (4.23)
λ(Rinh− qin) = 0 (4.24)

λ ≥ 0 (4.25)
The solution of this optimization problem leads to the minimization of the

individual equilibrium costs in IPHNs under the assumption of a Stackelberg game.
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4.4 . Preliminary results

In Paper VI, some preliminary results for assessing the difference between cen-
tralized and decentralized operational models are presented. The IPHNs presented
in Section 4.2 are used, and a vulnerability analysis, accounting for combinations
of 1, 2, and 3 failed power lines, is performed. Each combination of 1, 2, and 3
failed power lines is tested, and the results are evaluated in terms of fraction of
power and heat shedding and operational costs using the centralized and decen-
tralized operational models. The cases with 1, 2, and 3 failed lines are referred to
as MPN -1, MPN -2, and MPN -3. For the centralized model, costs are computed
using the equilibrium prices εi identified by the decentralized model under the same
failure scenario.

In Figure 4.3, the results in terms of average fraction of combined shedding
are shown, while in Figure 4.4, the results in terms of average combined cost are
shown. In both the figures, the results are assessed in terms of average values for
the three cases (MPN -1, MPN -2, and MPN -3) and using both the centralized
and decentralized models. Without indulging into details (the reader is referred to
Paper VI), it can be clearly seen how the results, in terms of shedding and cost,
considerably differ when using a centralized or a decentralized model. This is a
clear indication that: i) the energy commodities, in this case power and heat, are
dispatched differently in centralized and decentralized operational models, and ii)
optimal joint decisions, such as the design of a coupling interface, might consider-
ably differ if taken with centralized or decentralized models.

In Figure 4.3, it can be clearly seen how the centralized model leads to lower
levels of average combined shedding. This result is somehow expected, as the ob-
jective function of the centralized model is the combined power and heat shedding.
In Figure 4.4, it can be clearly noticed how the decentralized model leads to lower
average combined costs for the case MPN -2 and MPN -3. However, for the case
MPN -1, the centralized model leads to a slightly lower cost. This is because the
decentralized approach aims at minimizing the equilibrium individual cost of each
infrastructure operator, rather than the combined cost. Consequently, it is possi-
ble for the centralized approach to lead to lower average combined cost. However,
the individual solutions are far from the equilibrium optimality of the decentralized
model. For more details, the reader is referred to Figures 4-6 of Paper VI, where
it can be clearly seen that the centralized model leads to solutions far from the
optimal equilibrium of the decentralized model.

4.5 . Proposed modeling framework

In order to propose a decision-making framework which accounts for the be-
haviours of independent operators in interdependent CIs, it is necessary to build
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Figure 4.3: Average combined shedding in the IPHNs with different operator modelsand number of failed power lines. Figure adapted from Paper VI [132].
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Figure 4.4: Average combined cost in the IPHNs with different operator models andnumber of failed power lines. Figure adapted from Paper VI [132].
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an operational model that prioritizes individual costs under normal conditions, and
combined performance in situations of disruptions.

For the sake of clarity, a qualitative case study is built upon the IPHNs pro-
posed in Paper VI and [138]. Let us assume that a new heat network needs to
be constructed. As it is provided with electric boilers, it must be coupled with a
pre-existing power network. Consistently with the previous chapter, the decision
to optimize is the topology of the coupling interface y between IPHNs.

A distributionally robust approach is used, and decision-makers seek to allocate
the coupling interface between IPHNs accounting for an ambiguity set S containing
all the probability distribution on a σ-field of the set of feasible failure scenarios A.
Similarly to Paper III-V, only failures of a limited number Katt of power lines are
considered, and the sets A and S are defined as in Equations (4.26) and (4.27).

A =
{
u
∣∣ {0, 1}MPN , ||1MPN − u||1 ≤ Katt

} (4.26)

S =
{
P ∈ P(A) : 0 ≤ EP[1

MPN − u] ≤ πmax
}
. (4.27)

Contrary to Paper IV and Chapter 3, the probability mass allocated to the nor-
mal scenario (every line is functional) is not enforced to be 0 10. In other words,
the ambiguity set S denotes the set of multinomial distributions which define the
probability of the system to be in a specific state, including the normal scenario. In
Paper IV, the ambiguity set M denotes the set of conditional multinomial distri-
butions which define the probability of the system to be in a specific failure state,
excluding the normal scenario. In this case, the upper bounds πmax of the set S
are not subject to the conditions of the upper bounds of the setM (see Paper IV
for more details).

The proposed DRO approach consists of Equation (4.28) subject to (4.29)-
(4.30):

min
y∈{0,1}Nc

max
P∈S

EP [Q(y, ξ)] (4.28)
∑

j∈VPN

yh←p
ij ≤ 1, ∀i ∈ VHN (4.29)

∑

i∈VHN
j∈VPN

yh←p
ij dkmij ch←p

km ≤ Bci (4.30)

10In Paper IV, the coupling interface is optimized in order to maximize the perfor-mance under conditions of disruption. Here, normal conditions are also taken intoaccount, using the decentralized approach, and the normal scenario should be as-signed some probability mass.
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Constraint (4.29) denotes the "single-dependency" assumption, enforcing each
node in the heat network to be dependent on a maximum of one node of the power
network, while Constraint (4.30) states that the allocation cost of the coupling in-
terface should not exceed the available monetary budget Bci.

Differently from Paper III-V, the purpose of the decision-makers is to identify a
coupling interface topology that minimizes the expectation of a recourse function
Q(y, ξ) under the worst probability distribution within the ambiguity setM.

The next step is to define a recourse function Q(y, ξ) which accounts for: i)
decentralized cost minimization under normal conditions, and ii) centralized mini-
mization of loss of combined performance under conditions of disruption. In other
words, it is necessary to build a recourse function that integrates the centralized
and decentralized approach previously proposed.

NB: As at the moment of the redaction of this dissertation no final nor pre-
liminary result is available, the final formulation of the following operational model
might considerably differ from the one here proposed. In fact, the remaining of
this chapter is presented as a proposal of extension of the work already contained
within this thesis.

The proposed centralized and decentralized models can be easily integrated us-
ing a binary variable wr that defines normal conditions and conditions of disruption
(wr=1 under conditions of disruption, wr=0 under normal conditions). For the
sake of simplicity, the objective functions previously used are expressed as Fcnt,
Fdcn
PN , and Fdcn

HN , as defined in Equations (4.31), (4.32), and (4.33):
Fcnt =

wPN

dPN

∑

i∈VPN

di +
wHN

dHN

∑

i∈VHN

di (4.31)

Fdcn
PN =

∑

i∈VPN

γpower
i pi +

∑

i∈VPN

αpower
i di −

∑

i∈VPN

∑

j∈VHN

εid
h←p
ji (4.32)

Fdcn
HN =

∑

i∈V gb
HN

γheati pi +
∑

i∈VHN

αheat
i di +

∑

i∈VHN

∑

j∈VPN

εjd
h←p
ij (4.33)

For a given coupling interface y∗ and failure scenario u∗, the proposed opera-
tional model Q(y, ξ) consists of Equation (4.34) subject to (4.2)-(4.7), (4.13), and
(4.35)-(4.39):

min
p,d,f

wn∈{0,1}
wr∈{0,1}
µ,λ≥0

(1− wr)Fdcn
PN + wr Fcnt (4.34)

(1− wr)
(
∇Fdcn

HN + λ∇Rinh+ µ∇Reqh
)
= 0 (4.35)
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(1− wr)λ(Rinh− qin) = 0 (4.36)
wn ≤

∑
k∈EPN

uk

MPN
(4.37)

wr ≤MPN −
∑

k∈EPN

uk (4.38)
wr + wn = 1 (4.39)

The objective function in (4.34) is composed of two terms:

• the first term consists of the objective function of the power network in
the decentralized approach, and it is accounted for under normal conditions
(wr=0);

• the second term consists of the objective function of the IPHNs in the
centralized approach, and it is accounted for under conditions of disruption
(wr=1).

Constraints (4.2)-(4.7) and Constraint (4.13) represent the primal constraints of
power and heat network. Constraints (4.35) and (4.36) define the stationarity and
complementary slackness of the KKT conditions of the decentralized heat network
model, and they are accounted for only under normal conditions thanks to the fac-
tor (1-wr). Constraints (4.37)-(4.39) ensures that wr=0 under normal conditions,
and wr=1 under conditions of disruption (when there is at least one failure).

The advantage of this model is to identify a coupling interface topology that
performs well under normal conditions, where the operators display a decentralized
behaviour, and in situations of disruption, where the operators display a centralized
behaviour. The normal scenario is optimized using a decentralized model, while all
the feasible failure scenarios are optimized with a centralized model. The weight
assigned to each scenario corresponds to its probability mass in the corresponding
multinomial distribution. The DRO formulation allows to tune the problem towards
more risk-neutral or risk-averse solutions.

4.6 . Proposed solution strategy

The DRO model in Equations (4.28)-(4.30) must be recast into a tractable
equivalent formulation. The first step is to reformulate the recourse function in
order to eliminate the nonlinear terms. Three types of nonlinearities are present:
multiplication between binary variables, multiplication between binary and contin-
uous variables, and multiplication between continuous variables.

The multiplications between binary variables can be easily linearized by intro-
ducing new binary variables and additional constraints. For example, the multipli-
cation between two binary variables x and y can be replaced by the binary variable
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z and Constraints (4.40)-(4.42) [10]:

z ≤ x (4.40)
z ≤ y (4.41)

z ≥ x+ y − 1. (4.42)
The multiplications between binary and continuous variables can be easily lin-

earized by introducing new continuous variables and additional constraints, fol-
lowing the "Big-M" method. For example, the multiplication between a binary
variables x and a continuous variable a can be replaced by the continuous variable
c and Constraints (4.43)-(4.45):

c ≤ a (4.43)
c ≤Mx (4.44)

c ≥ a− (1− x)M (4.45)
where M represents a very large number.

The multiplications between continuous variables, in general, can not be lin-
earized without introducing an approximation and, thus, an error. However, in this
case, it is possible to obtain an exact linear reformulation. The first terms involving
multiplication between binary variables are the products between primal continu-
ous variables h and dual variables λ in the complementary slackness constraints in
(4.36). Given the nature of the complementary slackness, these constraints can be
linearized by introducing a binary variable and applying a "Big-M" approach [138],
[141]. Complementary slackness constraints present the general form in (4.46):

λ(a− a) = 0 (4.46)
where a is a continuous primal variable, a is a primal parameter, and λ a continuous
dual variable, and they can be replaced by Constraints (4.47) and (4.48):

λ− xM ≤ 0 (4.47)
a− a− (1− x)M ≤ 0 (4.48)

where x is a binary variable and M a very large number.

The second term containing multiplications between continuous variables is the
last term of Fdcn

PN in the objective function (4.34), which contains the product of
variables εi and dh←p

ji . As this product is also present in the term Fdcn
HN in (4.33),

it is possible to exploit the strong duality property of the problem in (4.14)-(4.19)
to find the equivalent linear reformulation in (4.49), which can be used to replace
the nonlinear term in (4.34), as suggested in [138]. The full formulation of (4.49)
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is shown in Appendix C of this dissertation.

∑

i∈VPN

∑

j∈VHN

εid
h←p
ji = qT

inλ+ qT
eqµ−

∑

i∈V gb
HN

γheati pi −
∑

i∈VHN

αheat
i di (4.49)

By applying these linearizations, the operational model present a linear formu-
lation. The new linearized recourse function is referred to as L(y, ξ). The DRO
problem can be formulated as Equation (4.50) subject to (4.2)-(4.7), (4.13), (4.35)-
(4.39) and all the additional linearization constraints in the forms in Equations
(4.40)-(4.42), (4.43)-(4.45), and (4.47)-(4.48).

min
y∈{0,1}Nc

max
P∈S

EP [L(y, ξ)] (4.50)
The second step is to reformulate the new DRO model in (4.50) into an equiv-

alent tractable reformulation, similarly to Paper IV and [118].

For a fixed coupling interface y∗, the inner maximization in (4.50) is equivalent
to the problem in (4.51) subject to (4.52)-(4.53):

max
P

∫

A
L(y, ξ) dP (4.51)

∫

A
dP = 1 : τ (4.52)

∫

A
(1− uk)dP ≤ πmax

k , ∀k ∈ EPN : ζk. (4.53)
The problem in (4.51)-(4.53) is convex in P, and since Slater’s conditions are

satisfied, strong duality holds. The dual formulation of (4.51)-(4.53) is shown in
Equation (4.54)-(4.55):

min
τ,ζ≥0

τ +
∑

k∈EPN

ζkπ
max
k (4.54)

τ +
∑

k∈EPN

ζk

(
1− u

(i)
k

)
− L(y, ξ) ≥ 0, ∀u(i) ∈ A (4.55)

where τ is the dual variable of Constraint (4.52) and ζk are the dual variables of
Constraints (4.53). As (4.54) is a minimization, the optimal value τ̂ of the dual
variable τ is equivalent to Equation (4.56):

τ̂ = max
u(i)∈A



L(y, ξ)−

∑

k∈EPN

ζk

(
1− u

(i)
k

)


 (4.56)
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By substituting (4.56) in (4.54), and merging the resulting formulation with
the outer level in (4.50), one can obtain Equation (4.57):

min
y∈{0,1}Nc

ζ≥0

max
u(i)∈A

L(y, ξ)−
∑

k∈EPN

ζk

(
1− u

(i)
k + πmax

k

)
. (4.57)

By expanding the recourse function L(y, ξ) with its explicit form, the for-
mulation presents a min-max-min structure which can be solved efficiently by a
NC&CG approach, with an algorithm similar to Figure 3.4 in the previous chapter.
The full formulation of the linearized tractable equivalent formulation of the DRO
model consists of Equation (4.57) subject to (4.2)-(4.7), (4.13), (4.35)-(4.39) and
all the additional linearization constraints in the forms in Equations (4.40)-(4.42),
(4.43)-(4.45), and (4.47)-(4.48).

4.7 . Conclusion

In this chapter, a proposal for a decision-making framework in interdependent
CIs with independent operators is presented. The proposed approach accounts
for decentralized cost optimization under normal conditions and centralized per-
formance optimization under conditions of disruption. The rationale behind this
modeling choice is that, under normal conditions, operators interact in a market-
based environment by selling and purchasing goods, services and commodities, and
they display a decentralized and competitive behaviour. However, under conditions
of disruption, the priority might shift towards centralized performance optimization,
in order to limit the negative consequences of disruption to the general population;
in this case, operators display a centralized and collaborative behaviour.

The proposed approach accounts for the probability of the interdependent CIs
to be in a specific state (normal or failure) with a distributionally robust approach.
The application of a DRO approach allows to tune the conservativeness of the
model towards more risk-neutral (stochastic) or risk-averse (robust) solutions.
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5 - Conclusion

5.1 . Vulnerability of railway and power networks

5.1.1 . Contributions
In Chapter 2, based on the work contained in Paper I and Paper II, the vul-

nerability of interdependent railway and power networks (IRPNs) is investigated.
The choice of these CIs is due to the industrial partners involved within this thesis.
From the exploratory literature review, three main research gaps are identified:

• the coupling interface between railway and power networks is often modeled
not sufficiently in detail, as traction networks are overlooked in most of the
existing papers;

• the effect of cascading failure in power networks on the vulnerability of the
dependent railway networks is treated rarely and approximately;

• feedback effects of failures in railway networks on the cascading failure dy-
namics of power networks are not evaluated in the existing literature.

In Paper I, these drawbacks are addressed by introducing the modeling of
traction networks to act as an interface between railway and power networks, and
by proposing a flow-based cascading failure model for IRPNs. The results in Paper
I highlight that:

• it is essential to include traction networks within the modeling framework,
as they define how failures and disruption propagate between networks;

• cascading failures within power networks can considerbaly increase the mag-
nitude of cascading effect from power networks to railway networks;

• failures within railway networks can impact the cascading failures dynamic
of power networks.

The results in Paper I are obtained by assuming a traction network with sub-
stations in electrical isolation. As traction networks are identified as an important
factor in the modeling of IRPNs, a more general approach, with the possibility
of modeling different traction network configurations, is a natural development of
Paper I.

In Paper II, a preliminary proposal of a model that accounts for different con-
figurations of traction networks is presented. The preliminary results suggest that
the topology of the coupling interface between different networks might play a key
role in terms of resilience and disruption propagation in interdependent CIs, and
this consideration leads to the topic treated in Chapter 3.
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5.1.2 . Prospective work

A possible extension of the work of Chapter 2 is the development of a more
precise and comprehensive model for the vulnerability analysis of IRPNs which
accounts for different configurations of traction networks, using the preliminary
model in Paper II as a starting point. The topic of vulnerability of IRPNs repre-
sents a major subject for the years to come. Due to climate changes, our systems
of CIs, including railway and power networks, are undergoing profound changes. In
fact, rail transport, when electrified, represents an environmentally friendly means
of transportation, and many countries are channeling massive investments in this
direction. In addition, power networks are undergoing a profound restyling in or-
der to decarbonize the energy sector. Given these changes, developing tools and
methodologies for the vulnerability analysis of IRPNs is essential to guarantee their
resilience.

Another promising direction for the vulnerability analysis of IRPNs is to ex-
ploit the mathematical approach developed in Chapter 3 to optimize the coupling
interfaces between power, traction, and railway networks. This approach is of
particular relevance for urban areas, where large networks of CIs are located in
a relatively small area, giving the possibility of designing and allocating various
coupling interface topologies.

5.2 . Design and optimization of coupling interface topology

5.2.1 . Contributions

In Chapter 3, based on the work contained in Paper III-V, the problem of de-
signing and optimizing the topology of coupling interfaces in interdependent CIs is
addressed. In the exploratory literature review, it is highlighted how this problem is
acknowledged by scholars and researchers but not treated in detail. In this disser-
tation, contrary to the heuristics approaches available in the existing literature, a
mathematical programming approach is proposed, and interdependent power and
gas networks (IPGNs) are selected as representative case study.

In Paper III, a defender-attacker-defender (DAD) approach for the optimization
of coupling interface topology is proposed. The results highlight the considerable
potential of coupling interface optimization in terms of resilience enhancement
against worst-case scenarios. To the best of our knowledge, this paper also repre-
sents the first mathematical programming approach for the optimization of coupling
interfaces in interdependent CIs.

In Paper IV, a more general model, based on distributionally robust optimiza-
tion (DRO), is proposed. Contrary to the DAD model, the DRO approach allows
to include probability of failure scenarios within the optimization model, and the
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conservativeness of the solution can be tuned by decision-makers towards more
robust or stochastic solutions. The results show that the DRO approach displays
good properties in terms of robustness and modeling of the attitude towards risk
of decision-makers.

The proposed approach is further extended with Paper V, in which a DAD
model for the optimal allocation of redundant interdependency links in existing
coupling interfaces is proposed. The results confirm the potential of redundant
interdependency links in terms of resilience enhancement of interdependent CIs.

The proposed models rely on a centralized operational model for the IPGNs,
which is valid under the assumption of optimizing under conditions of disruption.
However, under normal conditions, interdependent CIs are often operated with a
decentralized approach. These classes of operational model reflect the different
behaviours of independent operators, which can change according to the state of
the CIs. This consideration leads to the work presented in Chapter 4.

5.2.2 . Prospective work

The models proposed in Paper III, Paper IV, and Paper V are complementary,
and they could potentially be merged within one single optimization framework
that allows to design and retrofit coupling interfaces while accounting for i) am-
biguous probability of failure scenarios, ii) attitude towards risk of decision makers,
iii) existing coupling interfaces, iv) possibility of allocating redundant interdepen-
dency links.

An interesting extension of this work is to test the potential, in terms of re-
silience enhancement, of the optimization of coupling interface topologies using a
real case study. This would allow to validate the proposed models as an effective
tool for decision-making in a real-world context.

Another possible extension of this work is the inclusion within the analysis and
the optimization of nonlinear emerging behaviours of interdependent networks, such
as cascading failures within and between networks. These phenomena happen in
reality, and the optimization of coupling interface topologies might help increasing
the robustness of interdependent CIs against them.

5.3 . Joint decision-making with independent operators

5.3.1 . Contributions

In Chapter 4, based on the work contained in Paper VI, a proposal for a decision-
making framework which accounts for the behaviour of independent operators in
different situations is presented. Two classes of behaviour are identified:
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• centralized : the independent operators collaborate in order to optimize their
combined performance. This behaviour is usually displayed under conditions
of disruption;

• decentralized : each operator aims at optimizing its own performance (usu-
ally a cost), and their interaction can be modeled through game-theoretic
approaches. This behaviour is usually displayed under normal conditions.

Preliminary results in Chapter 4, using interdependent power and heat net-
works as illustrative case study, demonstrate that centralized and decentralized
operational models lead to different results. Consequently, optimal joint decisions,
such as the optimal topology of coupling interfaces, might differ if taken with a
centralized or decentralized model.

A proposal for a distributionally robust approach for joint decision-making in
interdependent CIs with independent operators is presented. The proposed model
is able to account for decentralized behaviours under normal conditions, and cen-
tralized behaviours under conditions of disruption. A tractable reformulation and
a solution strategy are also presented.

5.3.2 . Prospective work
The work contained in Chapter 4 can be extended by performing some results

in order to demonstrate the validity of the proposed approach.

The proposed approach is developed using a decentralized model based on
the Stackelberg game assumptions. However, independent operators might display
different types of decentralized behaviours (e.g. Cournot game). An interesting
direction of this work would be to include within the optimization framework the
possibility of having multiple decentralized behaviours, according to the specific CIs
to optimize. In addition, the effect of different governmental policies, incentives,
and penalties on the behaviours of independent operators could also be taken into
account within this approach.
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A - Nested Column&Constraint Generation
algorithm

A.1 . Overview

The extended compact matrix form of the DAD model for the optimal coupling
of IPGNs can be expressed as Equation (A.1) subject to Constraints (A.2)-(A.6):

max
h′,δ′∈{0,1}Nd

y∈{0,1}Nc

min
u∈{0,1}MPN

max
h,δ∈{0,1}Nd

bTh (A.1)

Py ≤ g (A.2)
Rh′ ≤ q−Hy −Wδ′ − yTDδ′ (A.3)

bTh′ ≥ 1 (A.4)
∑

k∈EPN

(1− uk) ≤ Katt (A.5)
Rh ≤ q−Tu−Hy −Wδ − yTDδ. (A.6)

This problem can be solved efficiently by a Nested Column&Constraint Gen-
eration (NC&CG) algorithm [104], [109]. The algorithm consists in splitting the
problem into an inner and outer layer. Each layer is divided into a master problem
and a subproblem, which exchange primal binary variables and provide lower and
upper bounds which converge to the optimal solution in finite steps [104].

A.2 . Inner layer

For a fixed coupling interface y∗, the bilevel middle-inner problem in (A.1)
identifies the optimal attack plan û, i.e. the worst failure scenario within the set
of feasible failure scenarios A, defined as in (A.7):

A =
{
u
∣∣ {0, 1}MPN , ||1MPN − u||1 ≤ Katt

}
. (A.7)

The middle-inner problem takes the form of Equation (A.8) subject to Con-
straints (A.5)-(A.6).

min
u∈{0,1}MPN

max
h,δ∈{0,1}Nd

bTh (A.8)
with fixed outer binary variables y∗. As the inner problem contains the binary
variables δ, it is not possible to merge the inner and middle problems using duality
theory. Let us fix the middle binary variables u and the inner binary variables δ,
reducing the problem to a pure LP problem. By taking its dual form, with dual
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variables λ, it possible to write the middle-inner problem as its equivalent form in
Equation (A.9) subject to (A.5), and (A.10):

min
u∈{0,1}MPN

max
δ∈{0,1}Nd

min
λ≥0

(q−Tu−Hy∗ −Wδ − y∗TDδ)Tλ (A.9)
RTλ ≤ b. (A.10)

The problem in (A.9) subject to (A.5) and (A.10) is equivalent to the problem
in (A.11) subject to (A.5), (A.10), and (A.12):

min
ρ,u∈{0,1}MPN

ρ (A.11)
ρ ≥ max

δ∈{0,1}Nd

min
λ≥0

(q−Tu−Hy∗ −Wδ − y∗TDδ)Tλ. (A.12)
As the vector δ contains Nd=NPN+NGN binary variables, the possible com-

binations of δ variables are finite (precisely 2Nd), and they are contained within
the set D. Constraint (A.12) can, thus, be rewritten as in Equation (A.13):

ρ ≥ (q−Tu−Hy∗ −Wδ∗(i) − y∗TDδ∗(i))Tλ(i), ∀δ∗(i) ∈ D. (A.13)
The maximization term in (A.12) can be replaced by an enumeration over the

set D of δ variables, while the minimization term can simply be removed as it
does not affect the optimal value of Equation (A.11). Solving (A.11) subject to (A.5),
(A.10), and (A.13) is possible in theory, and it would lead to identify the optimal
attack plan û. However, this problem presents often a very large scale due to the
enumeration over the set D, and it is, thus, often unfeasible in practice. The C&CG
approach solves this problem by relying on a limited number of combinations of
δ variables. By decomposing the problem in (A.11), subject to (A.5), (A.10), and
(A.13), into a master-subproblem form, it is possible to iteratively reconstruct the
set D and converge asymptotically to the optimal solution. The following steps
are employed:

1. Set i = 0, lower bound LBin = 0, upper bound UBin =∞, and Dpart = ∅

2. Solve the inner master problem in Equations (A.14)-(A.17). Obtain an optimal
solution ρ̂(i) and optimal attack plan û(i). Update LBin=ρ̂(i).

min
ρ,λ(i)≥0

u∈{0,1}MPN

ρ (A.14)

subject to:

ρ ≥ (q−Tu−Hy∗ −Wδ∗(i) − y∗TDδ∗(i))Tλ(i), ∀δ∗(i) ∈ Dpart (A.15)
RTλ(i) ≤ b, ∀δ∗(i) ∈ Dpart (A.16)

∑

k∈EPN

(1− uk) ≤ Katt (A.17)
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3. Solve the inner subproblem in Equations (A.18)-(A.19) with û(i)=u∗. Obtain

an optimal solution bT ĥ(i) and δ̂
(i)

. Set UBin = min(UBin,b
T ĥ(i)).

max
h,δ∈{0,1}Nd

bTh (A.18)
subject to :

Rh ≤ q−Tu∗ −Hy∗ −Wδ − y∗TDδ (A.19)
4. If (UBin − LBin)/LBin < 10−5, û(i) represents the optimal attack plan

and the algorithm is terminated. Otherwise, set Dpart = Dpart∪δ̂
(i)

, update
i← i+ 1, and return to step 2.

A.3 . Outer layer

The bilevel outer-middle problem identifies the optimal coupling interface topol-
ogy, and it can be solved, similarly to the inner layer, by decomposing the problem
into a master-subproblem form. The problem in Equations (A.1)-(A.6) can be rewrit-
ten as Equation (A.20) subject to (A.2)-(A.6) and (A.21):

max
η,h′

δ′∈{0,1}Nd

y∈{0,1}Nc

η (A.20)

η ≤ min
u∈{0,1}MPN

max
h,δ∈{0,1}Nd

bTh (A.21)
By enumeration of the set of feasible failure scenarios A, Constraint (A.21) can

be replaced by Constraint (A.22):
η ≤ bTh(i), ∀u∗(i) ∈ A (A.22)

The problem can be solved by employing the following steps:

1. Set i = 0, lower bound LBout = 0, upper bound UBout =∞, and Apart=∅

2. Solve the outer master problem in Equations (A.23)-(A.28). Obtain an opti-
mal solution η̂(i) and optimal coupling interface ŷ(i).
Update UBout=min(UBout, η̂

(i))

max
η,h′,h(i)

δ′∈{0,1}Nd

δ(i)∈{0,1}Nd

y∈{0,1}Nc

η (A.23)

η ≤ bTh(i), ∀u∗(i) ∈ Apart (A.24)
Py ≤ g (A.25)
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bTh′ ≥ 1 (A.26)
Rh′ ≤ q−Hy −Wδ′ − yTDδ′ (A.27)

Rh(i) ≤ q−Tu∗(i) −Hy −Wδ(i) − yTDδ(i), ∀u∗(i) ∈ A. (A.28)
3. Solve the outer subproblem using the inner layer in the previous subsection

with ŷ(i)=y∗. Obtain an optimal solution ρ̂(i) and an optimal attack plan
û(i). Set LBout = ρ̂(i).

4. If (UBout − LBout)/LBout < 10−5, ŷ(i) is the optimal coupling interface
and the algorithm is terminated. Otherwise, set Apart = Apart∪û(i), update
i← i+ 1, and return to step 2.
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B - Karush-Kuhn-Tucker conditions of the
decentralized heat network model

The decentralized operational model of the heat network corresponds to Equa-
tion (B.1) subject to Constraints (B.2)-(B.6):

min
p,d,f

∑

i∈V gb
HN

γheati pi +
∑

i∈VHN

αheat
i di +

∑

i∈VHN

∑

j∈VPN

εjd
h←p
ij (B.1)

0 ≤ pi ≤ pi, ∀i ∈ VHN : λ1
i , λ

2
i (B.2)

pi = η
∑

j∈VHN

yh←p∗
ij dh←p

ij , ∀i ∈ VHN : µ1
i (B.3)

0 ≤ di ≤ di, ∀i ∈ VHN : λ3
i , λ

4
i (B.4)

− u∗kfk ≤ fk ≤ u∗kfk, ∀k ∈ EHN : λ5
k, λ

6
k (B.5)

pi − (di − di) +
∑

k |D(k)=i

fk −
∑

k |O(k)=i

fk = 0, ∀i ∈ VHN : µ2
i (B.6)

where λ and µ are the vectors containing the corresponding dual variables.

The corresponding Karush-Kuhn-Tucker (KKT) conditions (stationarity, primal
feasibility, dual feasibility, complementary slackness) are shown in Equations (B.7)-
(B.17). Equations (B.18)-(B.29) contain the linearized form of the complementary
slackness, where M represents a "Big-M" constant [141]. The terms u∗k are omit-
ted as, in this case, the failure of heat pipelines is not considered, and the terms
u∗k are always equal to 1.

Stationarity
γi − λ1

i + λ2
i + µ1

i + µ2
i = 0, ∀i ∈ VHN (B.7)

αi − λ3
i + λ4

i + µ2
i = 0, ∀i ∈ VHN (B.8)

− λ5
k + λ6

k + µ2
D(k) − µ2

O(k) = 0, ∀k ∈ EHN (B.9)
εj − yh←p

ij µ1
i = 0, ∀i ∈ VHN , ∀j ∈ VPN (B.10)

Primal feasibility

Equations (B.2)-(B.6)
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Dual feasibility

λ1
i , λ

2
i , λ

3
i , λ

4
i , λ

5
i , λ

6
i ≥ 0, ∀i ∈ VHN (B.11)

Complementary slackness

− λ1
i pi = 0, ∀i ∈ VHN (B.12)

λ2
i (pi − pi) = 0, ∀i ∈ VHN (B.13)
− λ3

i di = 0, ∀i ∈ VHN (B.14)
λ4
i

(
di − di

)
= 0, ∀i ∈ VHN (B.15)

λ5
k

(
−fk − fk

)
= 0, ∀k ∈ EHN (B.16)

λ6
k

(
fk − fk

)
= 0, ∀k ∈ EHN (B.17)

Linearized complementary slackness

λ1
i − x1iM ≤ 0, ∀i ∈ VHN (B.18)

pi − (1− x1i )M ≤ 0, ∀i ∈ VHN (B.19)
λ2
i − x2iM ≤ 0, ∀i ∈ VHN (B.20)

pi − pi − (1− x2i )M ≤ 0, ∀i ∈ VHN (B.21)
λ3
i − x3iM ≤ 0, ∀i ∈ VHN (B.22)

di − (1− x3i )M ≤ 0, ∀i ∈ VHN (B.23)
λ4
i − x4iM ≤ 0, ∀i ∈ VHN (B.24)

di − di − (1− x4i )M ≤ 0, ∀i ∈ VHN (B.25)
λ5
k − x5kM ≤ 0, ∀k ∈ EHN (B.26)

fk + fk − (1− x5k)M ≤ 0, ∀k ∈ EHN (B.27)
λ6
k − x6kM ≤ 0, ∀k ∈ EHN (B.28)

fk − fk − (1− x6k)M ≤ 0, ∀k ∈ EHN (B.29)
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C - Linearization of nonlinear terms with strong
duality equivalence

As suggested in [138], thanks to the strong duality property of the problem in
(4.14)-(4.19), the equivalence in Equation (C.1), between the decentralized objective
function of the heat network and its dual objective function, is satisfied:

∑

i∈V gb
HN

γheati pi +
∑

i∈VHN

αheat
i di +

∑

i∈VPN

∑

j∈VHN

εid
h←p
ji =

qT
inλ+ qT

eqµ =

−
∑

i∈VHN

λ2
i pi −

∑

i∈VHN

λ4
i di −

∑

k∈EHN

λ6
kfk −

∑

k∈EHN

λ7
kfk −

∑

i∈VHN

µ2
i di. (C.1)

This equivalence can be used to linearize the terms εid
h←p
ji in Fdcn

PN by substi-
tution.
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A B S T R A C T

Railway and power networks are among the most important critical infrastructures and their vulnerability
under different types of disrupting events has been analyzed extensively. However, the increasing degree
of interconnection between these two critical infrastructures makes it necessary to consider the multiple
interdependencies when conducting vulnerability assessments. We propose an approach for the modeling and
vulnerability analysis of interdependent railway and power networks which accounts for a realistic coupling
through the traction power network, which acts as an interface. Moreover, we consider cascading failures
within and between networks. With the proposed model, we show that failures in the power network have
a considerable negative impact on the railway network. In addition, our analysis shows that the dependency
of the railway network on the power network can considerably impact vulnerability and cascading failures
dynamics of the power network.

1. Introduction

1.1. Motivation

Critical infrastructures, such as transportation, healthcare, energy
systems, water supply systems and telecommunication networks, are
large-scale systems that provide essential goods and services for society.
Their malfunctioning and failure can heavily affect the safety and the
socio-economic stability of a population. Developing highly reliable
infrastructures is, thus, an important issue. Lately, due to the increasing
degree of interconnection and interdependency, infrastructures have
transformed from isolated individual systems to highly interconnected
systems-of-systems. This evolution, while leading to improvements of
performance, has introduced new failure modes and threats [1]. Critical
infrastructures are often analyzed in terms of their vulnerability to dif-
ferent types and magnitudes of disrupting events. Vulnerability analysis
is defined in [2] as the process of ‘‘systematically and comprehensively
identifying the possible states a system can be put into, due to spe-
cific strains, and estimating the negative consequences associated with
them’’. This analysis has proved to be useful in design and prevention
stages, as it gives an overview of how a system responds to different
disruptive situations.

Transportation systems, railway networks in particular, are ac-
knowledged as one of the most important infrastructures. It is rec-
ognized that railway systems are dependent on several internal and

∗ Corresponding author.
E-mail address: andrea.belle@centralesupelec.fr (A. Bellè).

external subsystems and infrastructures [3]. The dependency of railway
networks on external power systems is of particular relevance, as these
systems supply the electricity necessary for a proper functioning. In
case of a disruptive event in a power grid, this strong dependency can
lead to considerable negative consequences on the dependent railway
systems. In fact, power outages and blackouts have been observed to be
an important cause of railway networks disruption. For example, in the
UK in August 2019, issues within the power grid led to major disruption
of the railway system [4,5]. It is clear that railway operators should be
aware of power network-induced risks [6].

Vulnerability analysis of railway networks dependent on external
power networks has been the focus of various studies. These existing
works, although recognizing the importance of the power systems
for the railway networks functionality, do not model in details the
interconnection between these two systems. In addition, the effect of
cascading failures in power networks and their repercussions on rail-
way networks are often treated approximately or overlooked. We refer
to cascading failures as the process of failure propagation within and
between different systems. Cascading failures have often been observed
in power networks. These failures have the potential to cause major
disruption in power networks, as well as within the dependent systems,
such as railway networks. Neglecting the cascading failures analysis
within a vulnerability assessment of interdependent railway and power

https://doi.org/10.1016/j.ress.2021.108091
Received 27 April 2021; Received in revised form 19 August 2021; Accepted 21 September 2021



Reliability Engineering and System Safety 217 (2022) 108091

2

A. Bellè et al.

List of Symbols

Railway network

𝐄𝐫 Set of edges in railway network

𝐆𝐫 Graph representing the railway network

𝐕𝐫 Set of nodes in railway network

𝑒𝑟,𝑖 Edge 𝑖 in railway network, representing railway
segment 𝑖

𝑀𝑟 Number of edges in railway network

𝑁𝑟 Number of nodes in railway network

𝑣𝑟,𝑖 Node 𝑖 in the railway network, representing station
𝑖

External power network

𝐄𝐩 Set of edges in external power network

𝐆𝐩 Graph representing the external power network

𝐠𝐩 Set of generators in external power network

𝐥𝐛𝐚𝐬𝐞𝐩 Subset of loads in external power network supply-
ing general consumers

𝐥𝐬𝐮𝐛𝐩 Subset of loads in external power network supply-
ing traction substations

𝐥𝐩 Set of loads in external power network

𝐕𝐩 Set of nodes in external power network

𝑒𝑝,𝑖 Edge 𝑖 in external power network, representing
transmission line 𝑖

𝑔𝑖 Generator 𝑖 in external power network
𝑙𝑖 Load 𝑖 in external power network
𝑀𝑝 Number of edges in external power network

𝑁𝑔 Number of generators in external power network

𝑁𝑙 Number of loads in external power network

𝑁𝑝 Number of nodes in external power network

𝑣𝑝,𝑖 Node 𝑖 in the external power network, representing
electrical bus 𝑖

Traction power network

𝐆𝐭 Graph representing the traction power network

𝐕𝐭 Set of nodes in traction power network

𝑁𝑡 Number of nodes in traction power network

𝑣𝑡,𝑖 Node 𝑖 in the traction power network, representing
substation 𝑖

Interdependency

𝐄𝑖←𝑗
𝑟←𝑡 Set of interdependency edges between railway

track 𝑖 and subset of substations 𝐕𝐫,𝐢
𝐭

𝐕𝐫,𝐢
𝐭 Subset of substations supplying the railway track 𝑖

𝑒𝑖←𝑗
𝑡←𝑝 Interdependency edge between substation 𝑖 and

electrical bus 𝑗 with load 𝑘

Initiating event

𝐍𝐟 Set of components to remove in the initiating event

𝑓 Fraction of components to remove in the initiating
event

𝑁𝑓𝑎𝑖𝑙 Number of elements to remove in the initiating
event

𝑝𝑖𝑒 Probability of being selected for a removal for each
component

networks could potentially lead to a significant underestimation of
the risks. With this work, we aim at complementing the available
literature with a modeling approach for interdependent railway and

Cascading failures

𝐄′ Set of edges after a disruptive event

𝐅 Set of line power flows

𝐆′ Graph after a disruptive event

𝐍𝐝𝐢𝐫
𝐅 Set containing the substations failed directly

𝐍𝐢𝐧𝐝
𝐅 Set containing the substations failed indirectly

𝐏𝐠 Set of nominal generator power

𝐏𝐠
′ Set of nominal generator power after a disruptive

event

𝐏𝐥 Set of nominal load power

𝐏𝐥
′ Set of nominal load power after a disruptive event

𝐕′ Set of nodes after a disruptive event

𝐹𝑖 Power flow at line 𝑖
𝐹𝑚𝑎𝑥
𝑖 Power flow capacity at line 𝑖

𝑃𝑔,𝑖 Nominal power of generator 𝑖
𝑃𝑚𝑎𝑥
𝑔,𝑖 Maximum power of generator 𝑖

𝑃𝑙,𝑖 Supplied power demand of load 𝑖
𝑃𝑚𝑎𝑥
𝑙,𝑖 Requested power demand of load 𝑖

𝑅𝑡,𝑖 Load shedding ratio of substation 𝑖
𝑆𝑝,𝑖 Binary functional state of transmission line 𝑖
𝑆𝑟,𝑖 Binary functional state of railway track 𝑖
𝑆𝑡,𝑖 Binary functional state of substation 𝑖
𝑇𝑡←𝑝 Tolerance threshold for substation load shedding

𝑊 Load penalty constant

Simulation

𝑉 Average vulnerability index

𝜎 Standard deviation estimation

𝐴𝑟 Accessibility of railway network

𝐶𝐼95 95% confidence intervals

𝐷𝑁𝑆 Demand Not Supplied in megawatts

𝐹𝐷𝑁𝑆 Fraction of Demand Not Supplied

𝑛𝑖𝑎 Number of stations accessible from station 𝑖
𝑁𝑒𝑥𝑝 Number of Monte Carlo simulations

𝑃𝐼 performance indicator

𝑅𝑃𝑃 Railway Power Performance

𝑇𝑃𝑃𝑖 Traction Power Performance of railway track 𝑖
𝑉 Vulnerability index

𝑍 Confidence intervals constant

power networks which accounts for a realistic modeling of the interface
between railway and power systems and flow-based characterization of
cascading failures in power networks, including their consequences in
railway networks. In addition, we aim at estimating the effect of failures
within railway networks on the vulnerability and cascading failures
dynamics of power networks.

1.2. Related work

Power and railway networks are a traditional example of inter-
dependent critical infrastructures. In fact, railway networks are often
electrified and dependent on external power networks in terms of
electricity supply. In general, two networks A and B are interdependent
if the functionality of one depends on the state/output of the other
one. Interdependencies are unidirectional (often simply referred to as
dependencies) if network A depends on network B but not vice versa;
otherwise, if networks A and B are mutually dependent on each other,
the interdependencies are bidirectional (or simply referred to as inter-
dependencies) [7,8]. The nature and the features of interdependencies
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have been an important subject of research since the early 2000s, and
various classifications are available in the existing literature. One the
most used classification is the one proposed in [7], where the authors
divide interdependencies into four categories: physical, when the state
of one system is dependent on the material output of another system;
cyber, when the state of one system is dependent on the information
transmitted through another system; geographic, when different sys-
tems share the same location and their state can be modified by an
environmental event; and logical, if the interdependency is not phys-
ical, cyber, or geographic. Within this framework, the unidirectional
interdependency from power to railway networks can be defined as
physical. Alternative classifications of interdependencies, which focus
on different aspects, are available in the existing literature, such as
in [8–10].

As critical infrastructures represent the backbone of essential so-
cietal functions, ensuring their resilience is an important issue. The
resilience of a system is defined as ‘‘its ability to withstand stressors,
adapt, and rapidly recover from disruptions’’ [11]. Resilience is generally
defined as the combination of three phases: the disturbance progress,
which describes how fast and severe are the damages to the system,
the post-disturbance degraded state, which describes how extensive
in time the damages are, and the restoration, which describes the
system restoration [12]. Lately, the resilience of interdependent critical
infrastructures has gained particular interest from researchers, and
many works have addressed this topic in recent years (e.g. [13–16]).
The first phase of resilience is strictly correlated with the concept of
vulnerability, which can be defined as ‘‘degree of loss or damage to
a system when exposed to a strain of a given type and magnitude’’ [2].
Analyzing systems in terms of their vulnerability is essential to assess
their exposure to external strains and stresses, and it is an important
dimension of systems resilience.

Both railway and power networks have been extensively analyzed
in terms of vulnerability. For example, the vulnerability of railway
networks has been assessed in terms of different performance indica-
tors, such as topological metrics [17–19] and flow-based metrics [20,
21], and different disruption scenarios, such as random and targeted
failures [22,23] or natural hazards [24,25]. For more references, the
reader is referred to [26,27], where the authors discuss the concepts of
vulnerability and resilience in transportation networks from a research
perspective, including a comprehensive literature review.

Similarly, power networks have been analyzed in several works, in
terms of different disruption scenarios, such as random failures [28–
30], natural hazards [31] and intentional attacks [32–34], and different
functional models and metrics, such as network-based models [28,30,
35] and flow-based models [28,29]. For more details, the reader is
referred to the comprehensive literature review in [36].

The risk and the resilience of interdependent systems have been
the subject of various recent studies [37–40], also with a focus on
vulnerability analysis (e.g. [41–44]).

However, only a few existing works discussed the vulnerability
of interdependent railway and power networks. In [45], the authors
propose a network-based approach for modeling the vulnerability anal-
ysis of a network-of-networks using as an example interdependent
transportation, power and telecommunications networks, and including
a network-based cascading failures model for the power network. This
work relies on these interdependent critical infrastructures to pro-
pose an approach for vulnerability analysis of networks-of-networks.
A similar approach, also including a network-based cascading fail-
ures model for the power network, is proposed in [46] and in [47],
where the authors consider a fictitious railway network, based on the
topology of the Italian high-voltage grid, connected to the power and
telecommunications networks, and they analyze its vulnerability taking
into account safety margins and uncertainties. In [48], a modeling
framework for the vulnerability analysis of a railway system dependent
on electrical and telecommunications networks is proposed, including
critical components and locations analysis. A similar approach is also

proposed in [2], where the dependency of the railway network on
the external power network is addressed but without considering the
structure of the external power network. These two last works provide
a general framework for the vulnerability analysis of interdependent
critical infrastructures. In [49], the authors propose a similar approach,
also including the topology of the power grid within the analysis. In [3],
a mathematical framework for modeling the vulnerability analysis of
a railway network considering its subsystems is presented; this study
accounts for the dependency between electricity and transportation, but
without considering the external power grid. In [50,51], the resilience
of railway networks is studied, also accounting for the dependency on
the power subsystems. In [52], the combined effects of an external
event (e.g. flooding) on both the infrastructures were considered and
analyzed.

These works present some common drawbacks:

• With the exception of [2,48], the structure of the interface (or
interconnection) between the interdependent railway and power
networks is oversimplified, and the traction power substations
that act as an interface between external power networks and
railway tracks are overlooked.
• The cascading failures within power networks and their conse-
quences within railway networks are considered only in [45–47].
However, in these works, the cascading failures are modeled
with a network-based approach [53,54], and this includes some
disadvantages: (i) network-based approaches do not include the
modeling of power flows, and they represent a computationally-
cheap surrogate model unable to capture the physical features
of power flows (ii) network-based and power flow-based models,
under specific conditions, exhibit comparable behaviors at global
scale but they are inconsistent at local scale [55]. This makes
network-based model unsuitable to describe realistically interde-
pendent systems, as the failures propagation between systems is
driven by the local topology of the interdependencies.
• The effect of failure in the railway network on the power network
is not addressed. In other words, only the dependent behavior is
analyzed, and how failures in railway networks affect the power
redistribution and the cascading failures dynamics within power
networks is not considered.

It is clear that interdependent railway and power networks deserve a
more detailed analysis, with a focus on a more realistic consideration of
the interconnection interface and cascading failures dynamics, in order
to shed some light on the mutual risks of these interconnected systems.

1.3. Contribution

In this work, we propose an approach for the modeling and vulner-
ability analysis of interdependent railway and power networks, which
includes the modeling of the interface between the external power
network and the railway network, here referred to as the traction power
network, and the evaluation of cascading failures within and between
networks. We model the cascading failures using a flow-based approach
based on the traditional ORNL-PSerc-Alaska (OPA) model [56,57].
However, we adapt it in order to account for the effect of failures in
the railway network on the cascading failures dynamics of the external
power network.

In summary, the contributions of this work are the following:

• We propose a modeling approach for the vulnerability analysis of
interdependent railway and power networks which accounts for
a realistic coupling interface between railway and external power
systems and the flow-based characterization of cascading failures
within and between the infrastructures.
• We propose a performance indicator for the railway network,
called track power performance TPP, which accounts for binary
functional states and continuous degraded performance due to
lack of electricity supply.
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• We propose an approach which accounts for the effect of failures

within the railway network on the cascading failures dynamics of

the external power network.
• We evaluate the effect of cascading failures within and between

networks analyzing the negative consequences on the railway and

the external power network.

The rest of this work is structured as follows: in Section 2, the

proposed modeling framework is presented; in Section 3, the illustrative

test systems utilized in this work are described; in Section 4, the results

are presented and discussed; in Section 5, final remarks and conclusions

are given.

2. Modeling framework

In this section, the modeling and simulation framework is described.

Each subsection describes a particular feature of the model:

• Section 2.1 describes the modeling of the topological features of

railway tracks and stations (called in the paper railway network),

railway traction power substations (called in the paper traction

power network) and external power grid (called in the paper

external power network) using network theory.
• Section 2.2 shows how to model the topological and functional

features of the interdependencies between the three networks.
• Section 2.3 describes how to model and simulate initiating events

as removals of elements of networks.

• Section 2.4 describes the modeling of cascading failures, i.e., fail-

ure propagation within and between networks.
• Section 2.5 describes how the analysis, in terms of performance

indicators and simulation, is performed.

2.1. Network-based model for interdependent railway and power systems

Network science is often used to describe the topology of both

railway and power networks, thanks to its capacity to describe complex

topologies and interactions with simple mathematical artifacts such as

nodes and edges. A network is defined by a graph 𝐆 = (𝐕,𝐄), with
𝐕 = {𝑣1, 𝑣2,… , 𝑣𝑁} representing the set of 𝑁 nodes (or vertices) and

𝐄 = {𝑒1, 𝑒2,… , 𝑒𝑀} the set of 𝑀 edges. Each edge 𝑘 is also defined
by a tuple 𝑒𝑘 = (𝑣𝑖, 𝑣𝑗 ), which indicates the two nodes 𝑣𝑖 and 𝑣𝑗
connected by edge 𝑘. In this work, we identify three separate networks:
the railway network, defined by the subscript 𝑟, the traction power

network, defined by the subscript 𝑡, and the external power network,
defined by the subscript 𝑝.

In the railway network 𝐆𝐫 = (𝐕𝐫 ,𝐄𝐫 ), nodes represent stations and
edges represent railway tracks. Each railway edge represents a direct

bi-directional physical connection between two stations.

In the traction power network 𝐆𝐭 = (𝐕𝐭 ,𝐄𝐭 = ∅), nodes represent
railway power traction substations. In this work, we assume that each

substation is in electrical isolation, and the set of edges is just an empty

set. However, for some configurations of electrified railway systems,

such as DC-electrified systems, substations are connected with each

other. This situation is not considered in this work, but it can be

modeled with an appropriate set of edges 𝐄𝐭 .

In the external power network 𝐆𝐩 = (𝐕𝐩,𝐄𝐩), nodes represent
electrical buses and edges represent transmission lines. Each electrical

bus can contain power production or consumption units, here referred

to as generators and loads. These elements are defined by the set of

generators 𝐠𝐩 = {𝑔1, 𝑔2,… , 𝑔𝑁𝑔
} and the set of loads 𝐥𝐩 = {𝑙1, 𝑙2,… , 𝑙𝑁𝑙

}.

2.2. Interdependencies

2.2.1. Topological
Electrified railway systems are dependent on external power net-

works, such as transmission and distribution networks, for the elec-
tricity supply. Rolling stocks are usually supplied by the catenary, a
dedicated power line which runs parallel to the railway track. Along
each railway track, the catenary is divided into sections, each of them
supplied by a dedicated traction power substation, which is supplied
by the external power network (distribution or transmission network).
Each substation also regulates the voltage level before feeding the
catenary (e.g. 25 kV for AC railway systems or 1.5 kV for DC railway
systems, typically). However, in this study, we do not model this
feature.

The traction power network thus depends on the external power
network in terms of electricity supply. Specifically, we assume that
each substation in the traction power network is dependent on the
geographically-closest node in the external power network. We denote
this relationship with the interdependency edge 𝑒𝑖←𝑗

𝑡←𝑝 = (𝑣𝑡,𝑖, 𝑣𝑝,𝑗 ),
indicating that the node 𝑖 in the traction power network is dependent
on the node 𝑗 in the external power network.

The traction power network is usually directly connected to the
railway catenary to supply electricity to the rolling stocks. The railway
network thus depends on the traction power network in terms of
electricity supply. Specifically, we assume that each railway track 𝑖
depends on a set of traction substations 𝐕𝑟,𝑖

𝐭 ⊆ 𝐕𝐭 , that are responsible
for the electricity supply of that specific railway track. We denote this
relationship with the set of interdependency edges 𝐄𝑖←𝑗

𝑟←𝑡 = (𝑒𝑟,𝑖,𝐕
𝐫,𝐢
𝐭 ),

indicating that edge 𝑖 in the railway network is dependent on the nodes
within the subset 𝐕𝐫,𝐢

𝐭 ⊆ 𝐕𝐭 of the traction power network. We assume

that the substations in 𝐕𝐫,𝐢
𝐭 are located equidistantly along the railway

track. The first and the last substation, denoted as 𝑣𝑟,𝑖𝑡,𝑣𝑟,𝑗 and 𝑣𝑟,𝑖𝑡,𝑣𝑟,𝑘 , are
located within the railway stations 𝑗 and 𝑘 delimiting the railway track
𝑖, and they are also responsible for the electricity supply of the stations.

2.2.2. Functional
The external power network is modeled using a traditional DC

power flow model (details in Section 2.4 and Appendix A). Each
node represents a bus, and it can contain multiple generators, char-
acterized by power generation 𝑃𝑔,𝑖 and generation capacity 𝑃𝑚𝑎𝑥

𝑔,𝑖 , and
multiple loads, characterized by supplied power demand 𝑃𝑙,𝑖 and re-
quested power demand 𝑃𝑚𝑎𝑥

𝑙,𝑖 . Loads can represent the power demand
of the traction substations (and thus of the railway network) or general
consumers (households, industries, etc.). The loads which represent
traction substations are defined by the subset 𝐥𝐬𝐮𝐛𝐩 ∈ 𝐥𝐩, while the loads
which represent general consumers are defined by the subset 𝐥𝐛𝐚𝐬𝐞𝐩 ∈ 𝐥𝐩.
Each edge represents a line, characterized by power flow 𝐹𝑖 and flow
capacity 𝐹𝑚𝑎𝑥

𝑖 .
The traction power network is dependent on the external power

network in terms of electricity supply. We assume that each substation
𝑖 is dependent on the geographically-closest bus of the external power
network, which contains a load 𝑗, denoted as 𝑙𝑡,𝑖𝑗 ∈ 𝐥𝐬𝐮𝐛𝐩 , with requested
power demand 𝑃𝑚𝑎𝑥

𝑙𝑡,𝑖𝑗
, which represents the power demand of the trac-

tion substation 𝑖. Each substation 𝑖 is characterized by two indicators:
the state 𝑆𝑡,𝑖, which indicates if the station is functional or not, and
the load shedding ratio 𝑅𝑡,𝑖, which defines the fraction of the requested
power demand which is supplied to the substation. Both these values
are dependent on the power supplied to the corresponding load 𝑙𝑡,𝑖𝑗
within the external power network. The value 𝑅𝑡,𝑖 defines, as shown
in Eq. (1), the ratio between the supplied and requested power demand
in the corresponding load in the external power network.

𝑅𝑡,𝑖 =
𝑃𝑙𝑡,𝑖𝑗

𝑃𝑚𝑎𝑥
𝑙𝑡,𝑖𝑗

. (1)
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The ratio 𝑅𝑡,𝑖 defines the fraction of requested demand which is sup-
plied, and it also defines the functional state 𝑆𝑡,𝑖 (1 if functional, 0
otherwise) of the substation 𝑖, according to a predefined threshold
𝑇𝑡←𝑝 = [0, 1] and Eq. (2).

𝑆𝑡,𝑖 =
⎧⎪⎨⎪⎩

1, if 𝑅𝑡,𝑖 ≥ 𝑇𝑡←𝑝 and 0 < 𝑇𝑡←𝑝 ≤ 1
0, if 𝑅𝑡,𝑖 < 𝑇𝑡←𝑝 and 0 < 𝑇𝑡←𝑝 ≤ 1
0, if 𝑅𝑡,𝑖 = 𝑇𝑡←𝑝 and 𝑇𝑡←𝑝 = 0

(2)

When 𝑇𝑡←𝑝 = 1, it represents a ‘‘zero-tolerance’’ situation, where a sub-
station is functional only as long as the entire requested power demand
is satisfied. When 𝑇𝑡←𝑝 = 0, it represents the opposite situation, where
a substation is functional as long as some electricity is provided. The
case 0 < 𝑇𝑡←𝑝 < 1 represents situations in-between, where a substation
is considered functional as long as at least a specific fraction of the
requested power demand is satisfied.

The railway network functionality depends on the traction power
network. As explained in the previous section, each railway track 𝑖
depends on a subset 𝐕𝐫,𝐢

𝐭 ⊆ 𝐕𝐭 of traction substations. Each railway track
𝑖 is defined by its functional state 𝑆𝑟,𝑖 and its track power performance
𝑇𝑃𝑃𝑖. We assume that each railway 𝑖 is functional only if all the
substations in 𝐕𝐫,𝐢

𝐭 are functional, as defined in Eq. (3):

𝑆𝑟,𝑖 =
∏
𝑗∈𝐕𝐫,𝐢

𝐭

𝑆𝑡,𝑗 (3)

In fact, we assume that if one substation is not functional, the corre-
sponding section of the railway track is not supplied with the necessary
electricity, thus interrupting the continuity of the railway track. The
track power performance 𝑇𝑃𝑃𝑖 of each railway track 𝑖 is dependent on
the state 𝑆𝑟,𝑖 and the ratio 𝑅𝑡,𝑗 of each substation 𝑗 within the subset
𝐕𝐫,𝐢
𝐭 , as defined in Eq. (4):

𝑇𝑃𝑃𝑖 =
𝑆𝑟,𝑖

𝑁𝐕𝐫,𝐢
𝐭

∑
𝑗∈𝐕𝐫,𝐢

𝐭

𝑅𝑡,𝑗 (4)

where𝑁𝐕𝐫,𝐢
𝐭
is the number of substations within the subset 𝐕𝐫,𝐢

𝐭 . As it can

be clearly seen in Eq. (4), the 𝑇𝑃𝑃𝑖 of each railway track 𝑖 is equal to
the ratio between total supplied and requested power demand within
the substations in 𝐕𝐫,𝐢

𝐭 if the track is functional, or 0 otherwise. This
performance indicator allows to describe the binary state of the track
(functional/not functional), as well as the degraded performance due
to lack of electricity supply.

In this study, we account also for the impact of failures in the
railway network on the external power network. We assume that
for any failed railway track 𝑖, the corresponding traction substations
in 𝐕𝐫,𝐢

𝐭 do not absorb electricity from the external power network.

Therefore, for each substation 𝑗 in 𝐕𝐫,𝐢
𝐭 , the corresponding load 𝑙𝑡,𝑖𝑗 in

the external power network has a reduced requested power demand
𝑃𝑚𝑎𝑥′

𝑙𝑡,𝑖𝑗
. Specifically, we assume that, if the substation is located within

a railway station, the requested power demand is reduced; otherwise,
the requested power demand is 0. This behavior can impact the power
redistribution and the cascading failures dynamics of the external
power network. More details are available in Section 2.4.

2.3. Modeling initiating events

Initiating events represent single and multiple failures which might
affect a system during normal operation or external strains. Vulnera-
bility analysis investigates the system’s response to different initiating
events, often modeled as removals of an increasing fraction of compo-
nents from the network [2,3]. The set of components to be removed
is defined as 𝐍𝐟 = {𝑛𝑓,1, 𝑛𝑓,2,… , 𝑛𝑓,𝑁𝑓𝑎𝑖𝑙

}. In this work, we assume that
only edges within the external power network can be removed from the
network, and the number of components 𝑁𝑓𝑎𝑖𝑙 which constitute the set
𝐍𝐟 depends on the fraction 𝑓 according to Eq. (5):

𝑁𝑓𝑎𝑖𝑙 = ⌊𝑓 ⋅𝑀𝑝⌋ (5)

where 𝑀𝑝 is the number of edges in the external power network and
⌊⋅⌋ is the floor function, which returns the greatest integer less than
or equal to the argument of the function. When an edge fails, it is
simply removed from the network. The fraction 𝑓 can be interpreted
as the magnitude of the initiating event. The elements selection of the
set 𝐍𝐟 depends on the type of initiating event. In this work, we consider
only random removals as removal strategies for initiating events. Other
strategies, such as spatially-localized and targeted removals, are not
considered in this work.

Random removals represent a wide range of initiating events (hu-
man errors, structural defects, random sabotages, etc.), and they are
useful for understanding the robustness of a network under different
magnitude of strains which might impact multiple locations of the
network. Given the set of network edges 𝐄𝐩, we assume that each edge,
has the same probability 𝑝𝑖𝑒 of being selected as part of the initiating
event and removed, computed according to Eq. (6):

𝑝𝑖𝑒 =
1
𝑀𝑝

. (6)

The component selection is made according to Eq. (7):

𝑝𝑖𝑒 ⋅ (𝑖 − 1) ≤ 𝑟 < 𝑝𝑖𝑒 ⋅ 𝑖 (7)

where 0 < 𝑟 < 1 is a random number and 𝑖 is the index of the edge 𝑒𝑖
which satisfies the above relationship, and the procedure shown in the
following steps:

1. Set 𝐍𝐟 = ∅ and compute 𝑁𝑓𝑎𝑖𝑙 according to Eq. (5).

2. Generate a random number 0 < 𝑟 < 1.
3. Identify edge 𝑒𝑖 which satisfies Eq. (7).
4. If 𝑒𝑖 is not in 𝐍𝐟 , add 𝑒𝑖 to 𝐍𝐟 and go to step 5; otherwise, return
to step 2.

5. If 𝐍𝐟 contains 𝑁𝑓𝑎𝑖𝑙 elements, stop the selection; otherwise,
return to step 2.

2.4. Modeling cascading failures

Failures and subsequent removals of failed elements can trigger a
cascading failures process, which is defined as a ‘‘kind of failure in
a system comprising interconnected parts, in which the failure of a
part can trigger the failure of successive parts’’ [58]. When failures
propagate within different infrastructures, it is also referred to as
cascading effect, and it is often characterized by an increasing severity
of damages [59]. In this work, we thus refer as cascading failures to the
process of failure propagation within and between networks, triggered
by an initiating event. Simulating cascading failures is an iterative
simulation process. At each step, the network topology is updated, as
failed components are removed. The general procedure for cascading
failures simulation in single or interdependent networks includes the
following steps:

1. Initialize network 𝐆 = (𝐕,𝐄).
2. Initialize initiating event 𝐍𝐟 .
3. Remove failed elements.
4. Update network topology.
5. Check conditions for cascading failures.
6. If there is any new failure, return to step 3; otherwise, stop the
simulation.

Cascading failures have been extensively analyzed for power net-
works, as several approaches are available in the existing literature [60].
However, these models often focus solely on power networks, without
considering interdependencies with other infrastructures. These models
are not suited for evaluating the effect of the interdependencies on the
cascading failures dynamics, and they allow to analyze only the effect
of failures in the power network on other systems. For example, this is
the approach taken in [45–47], where the cascading failures simulation
in the power network is decoupled from the vulnerability analysis of
the railway network and follows this general steps:
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Fig. 1. Flowchart of the cascading failures algorithm for interdependent railway and
power networks.

• Select initiating event.
• Run a complete cascading failures simulation with the external
power network.
• From the output of the cascading failures simulation, compute the
negative consequences on the railway network.

In this work, we propose a flow-based cascading failures model,
based on the traditional ORNL-PSerc-Alaska (OPA) model [56,57] (see
Appendix B for details), which accounts for the impact of failures in
the railway network on the cascading failures dynamics of the external
power network. The flowchart of the algorithm is shown in Fig. 1.

The algorithm comprises eight iterative steps, and it is based on the
assumption that, when a railway track fails, the corresponding traction
substations stop requesting electricity from the external power network.
This impacts the requested power demand of the corresponding loads
in the external power network, affecting thus the cascading failures
dynamics of the external power network. After the selection of the
edges to remove as initiating event (as explained in Section 2.3), the
cascading failures algorithm initializes the networks and the empty sets
𝐍𝐝𝐢𝐫
𝐅 and 𝐍𝐢𝐧𝐝

𝐅 in Step 1, and removes the failed edges from the networks
in Step 2.

In Step 3, the power supplied to each load of the external power
network is computed with a DC Optimal Power Flow (DC-OPF), an
optimization procedure shown in Eqs. (8)–(12):

min
𝐏𝐠 ,𝐏𝐥

𝑁𝑔∑
𝑖=1

𝑃𝑔,𝑖 −𝑊
𝑁𝑙∑
𝑗=1

|𝑃𝑙,𝑗 | (8)

subject to:

𝑁𝑔∑
𝑖=1

𝑃𝑔,𝑖 −
𝑁𝑙∑
𝑗=1

|𝑃𝑙,𝑗 | = 0 (9)

0 ≤ 𝑃𝑔,𝑖 ≤ 𝑃𝑚𝑎𝑥
𝑔,𝑖 (10)

−𝑃𝑚𝑎𝑥
𝑙,𝑗 ≤ 𝑃𝑙,𝑗 ≤ 0 (11)

−𝐹𝑚𝑎𝑥
𝑘 ≤ 𝐹𝑘 ≤ 𝐹𝑚𝑎𝑥

𝑘 . (12)

The objective function in (8) represents the cost to minimize, while
Eqs. (9)–(12) represent the constraints. The first term of Eq. (8) repre-
sents the power production cost, which is assigned a unitary value per
unit of power 𝑃𝑔,𝑖 produced in each generator 𝑖. The second term repre-
sents the negative cost associated to the power 𝑃𝑙,𝑖 supplied at each load
𝑖. The penalty constant𝑊 , here assumed to be equal to 100, ensures the
minimization of load shedding when possible. Constraint (9) describes
the power balance between power produced and consumed. Constraints
(10) and (11) represent the ranges of power generation and supplied
power demand, respectively. Constraint (12) represents the limit for
lines power flow. The computation of the power flow is subjected to
the DC power flow assumption (see Appendix A).

After the computation of the power supplied to each load in the
external power network, in Step 4 we check for failed substations in
the traction power network, using the relations defined in Eqs. (1) and
(2).

If new failed substations are present, the algorithm proceeds with
Step 5, where we check for failed railway tracks, according to Eq. (3);
otherwise, it proceeds with Step 8, where we check for overloaded
lines. In Step 5, if a railway track 𝑖 is failed, each substation 𝑗 in 𝐕𝐫,𝐢

𝐭
is added to the set 𝐍𝐝𝐢𝐫

𝐟 if 𝑆𝑡,𝑗 = 0, or to 𝐍𝐢𝐧𝐝
𝐟 if 𝑆𝑡,𝑗 = 1. If 𝑆𝑡,𝑗 = 0, it

means the substation 𝑗 has failed directly (superscript 𝑑𝑖𝑟) due to lack
of electricity from the external power network; if 𝑆𝑡,𝑗 = 1, it means
the substation 𝑗 has failed indirectly (superscript 𝑖𝑛𝑑) due to the direct
failure of another substation 𝑘 within the same subset 𝐕𝐫,𝐢

𝐭 . These two
sets will be used to evaluate the vulnerability of the external power
network (more details in Section 2.5).

The algorithm proceeds with Step 6, where the requested power
demand in each load in the external power network corresponding
to a substation in the traction power network is adjusted, taking into
account the failures of railway tracks. For every failed railway track 𝑖,
the new requested power demand 𝑃𝑚𝑎𝑥′

𝑙𝑡,𝑘𝑗
for each load 𝑗 corresponding

to a substation 𝑘 within the subset 𝐕𝐫,𝐢
𝐭 is set to 0, with the exception of

the substations corresponding to the railway stations 𝑤 and 𝑞 delimiting
the railway track, 𝑣𝑟,𝑖𝑡,𝑣𝑟,𝑤 and 𝑣𝑟,𝑖𝑡,𝑣𝑟,𝑞 . In these substations, as they might
supply multiple railway tracks, the requested power demand is simply
reduced according to Eq. (13):

𝑃𝑚𝑎𝑥′

𝑙𝑡,𝑘𝑗
= 𝑃𝑚𝑎𝑥

𝑙𝑡,𝑘𝑗
⋅

∑
𝑖∈𝐄𝐯𝐫,𝐰

𝐫
𝑆𝑟,𝑖

𝑑(𝑣𝑟,𝑤)
(13)

where 𝐄𝐯𝐫,𝐰
𝐫 ⊆ 𝐄𝐫 is the subset of railway tracks connected to station

𝑣𝑟,𝑤, 𝑆𝑟,𝑖 is the state of the railway track 𝑖 and 𝑑(𝑣𝑟,𝑤) is the degree of
station 𝑣𝑟,𝑤 (number of edges connected to node 𝑣𝑟,𝑤).

Following this procedure, we proceed with Step 7, where we check
for overloaded lines, similarly to Step 8. As in the traditional OPA
model, a line 𝑘 is considered overloaded when its power flow 𝐹𝑘 is
within 1% of the maximum capacity of the line 𝐹𝑚𝑎𝑥

𝑘 . An overloaded
line is assumed to trip, and thus fail, with probability 𝑝𝑜𝑙. In this work,
aiming for a conservative worst-case analysis, we assume 𝑝𝑜𝑙 = 1 [55].
The state of transmission line 𝑘 is thus defined by Eq. (14):

𝑆𝑝,𝑘 =
⎧
⎪⎨⎪⎩

1, if 𝐹𝑘
𝐹𝑚𝑎𝑥
𝑘

< 0.99

0, otherwise
(14)

where 𝑆𝑝,𝑘 is the state of line 𝑘. From Step 7, the algorithm returns
to Step 2, where the new failed components are removed from the
networks. New failed components comprises railway tracks 𝑖 with at
least one failed substation within the set 𝐕𝐫,𝐢

𝐭 and overloaded power
lines (if any). From Step 8, the algorithm returns to Step 2 if overloaded
lines are present; otherwise, it is stopped.
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Fig. 2. Flowchart of the vulnerability analysis algorithm for each fraction of removals.

The outputs of the cascading failures algorithm are the new values
of requested and supplied power demand for each load 𝑖 in the external
power network, respectively 𝑃𝑚𝑎𝑥′

𝑙,𝑖 and 𝑃 ′
𝑙,𝑖, the new railway network

topology 𝐆′
𝐫 = (𝐕′

𝐫 ,𝐄
′
𝐫 ), and the sets of directly/indirectly failed traction

substations 𝐍𝐝𝐢𝐫
𝐅 and 𝐍𝐢𝐧𝐝

𝐟 .

2.5. Vulnerability metrics and analysis

Vulnerability analysis aims at estimating the negative consequences
which arise in a system given an imposed strain [29]. Mathematically,
the negative consequences on a system can be defined as the relative
change of a specific performance indicator after a disruptive event, and
the vulnerability 𝑉 can be generally expressed as in Eq. (15):

𝑉 = 𝑃𝐼 − 𝑃𝐼 ′

𝑃𝐼
(15)

where PI and PI ′ represent respectively the performance indicator
before and after the disruptive event.

In order to compute an average vulnerability index, multiple itera-
tions are needed, because different fractions of removals and different
combinations of components in 𝐍𝐟 leads to different vulnerability
values. Average values 𝑉 and 95% confidence intervals 𝐶𝐼95 for each
fraction of removals are computed respectively with Eqs. (16) and (17):

𝑉 =
∑𝑁𝑒𝑥𝑝

𝑖=1 𝑉𝑖
𝑁𝑒𝑥𝑝

(16)

𝐶𝐼95 = 𝑉 ±𝑍 ⋅
�̂�√
𝑁𝑒𝑥𝑝

(17)

where 𝑁𝑒𝑥𝑝 is the number of experiments per fraction of removals,
𝑍 is the 95% confidence interval constant, equal to 1.96, and �̂� is
the estimated standard deviation. The algorithm for computing the
vulnerability indexes for each fraction of removals is shown in Fig. 2.

After the initialization of the iteration counter 𝑐 = 0 in Step 1 and
the initiating event in Step 2 (as explained in Section 2.3), the algorithm
runs the cascading failures simulation explained in Section 2.4 (corre-
sponding to the algorithm in Fig. 1). From the outputs of the cascading
failures simulation, in Step 4 we compute the vulnerability indexes 𝑉𝑖
and store them. In Step 5, we increase the iteration counter by 1, and in
Step 6 we check if it is equal to the maximum number of iterations𝑁𝑒𝑥𝑝.
If 𝑐 = 𝑁𝑒𝑥𝑝, in Step 7, we compute the average vulnerability indexes

and the standard deviations with Eqs. (16) and (17) and we stop the
algorithm; otherwise, the algorithm returns to Step 2. This procedure
must be performed for every fraction of removals.

The performance indicator is selected according to the type of
system under analysis. For the railway network, we rely on two perfor-
mance indicators: the accessibility 𝐴𝑟 and the railway power performance
𝑅𝑃𝑃 . The accessibility is defined in Eq. (18):

𝐴𝑟 =
1
𝑁𝑟

𝑁𝑟∑
𝑖=1

𝑛𝑖𝑎
𝑁𝑟 − 1

(18)

where 𝑁𝑟 is the total number of stations and 𝑛𝑖𝑎 is number of stations
accessible from the station 𝑖. It can be interpreted as the average
fraction of stations accessible from (or connected to) each other [20].

The railway power performance 𝑅𝑃𝑃 is defined in Eq. (19):

𝑅𝑃𝑃 = 1
𝑀𝑟

𝑀𝑟∑
𝑖=1

𝑇𝑃𝑃𝑖 (19)

where 𝑀𝑟 is the number of railway tracks and 𝑇𝑃𝑃𝑖 is the track
power performance of railway track 𝑖, defined in Section 2.2.2. This
indicator represents the average performance of the railway network
tracks, where the performance of each track is equal to the average
ratio 𝑅𝑡,𝑖 of the supporting substation in 𝐕𝐫,𝐢

𝐭 if the track is functional,
or 0 if the track is not functional. This formulation allows to take into
account binary states (functional/not functional), as well as degraded
performance due to partial power supply.

For the power network, we utilize as performance indicator the
Demand Not Supplied (DNS) and the Fraction of Demand Not Supplied
(FDNS), shown in Eqs. (20) and (21).

𝐷𝑁𝑆 =
∑

𝑖∈𝐥𝐛𝐚𝐬𝐞𝐩

𝑃𝑚𝑎𝑥
𝑙,𝑖 +

∑

𝑖∈𝐥
𝐍𝐝𝐢𝐫𝐅
𝐩

𝑃𝑚𝑎𝑥
𝑙,𝑖 −

∑
𝑖∈𝐥𝐛𝐚𝐬𝐞𝐩

𝑃 ′
𝑙,𝑖 −

∑

𝑖∈𝐥
𝐍𝐝𝐢𝐫𝐅
𝐩

𝑃 ′
𝑙,𝑖 (20)

𝐹𝐷𝑁𝑆 = 1 −

∑
𝑖∈𝐥𝐛𝐚𝐬𝐞𝐩

𝑃 ′
𝑙,𝑖 +

∑
𝑖∈𝐥

𝐍𝐝𝐢𝐫𝐅
𝐩

𝑃 ′
𝑙,𝑖

∑
𝑖∈𝐥𝐛𝐚𝐬𝐞𝐩

𝑃𝑚𝑎𝑥
𝑙,𝑖 +

∑
𝑖∈𝐥

𝐍𝐝𝐢𝐫𝐅
𝐩

𝑃𝑚𝑎𝑥
𝑙,𝑖

(21)

where 𝑃𝑚𝑎𝑥
𝑙,𝑖 represents the baseline requested power demand in each

load, 𝑃 ′
𝑙,𝑖 represents the supplied power demand in each load after

cascading failures simulation, 𝐥𝐛𝐚𝐬𝐞𝐩 is the subset of base loads (loads

which does not represent any traction substations), and 𝐥
𝐍𝐝𝐢𝐫
𝐅

𝐩 ∈ 𝐥𝐬𝐮𝐛𝐩 is the
subset of loads representing traction substations directly failed during
the cascading failures simulation, as explained in the previous section.
We do not account for the loads corresponding to traction substations
indirectly failed. In fact, these substations are failed due to failures of
other substations, and the power not supplied in these substations is
not accounted for in the computation of 𝐷𝑁𝑆 and 𝐹𝐷𝑁𝑆.

3. Illustrative test systems

The developed model is applied to investigate the vulnerability
of an electrified railway network. For this, a simplified version of a
British high-speed railway system, based on a proposition made in [61],
is considered. The system comprises a railway network powered by
an external power network through a traction power network. The
railway network consists of 16 stations connected by 21 railways. The
external power network is based on the Great Britain reduced power
network [62], which represents a high-voltage transmission system (it
originally represents a 400/275 kV system). It consists of 29 electrical
buses, containing 29 base loads (one in each bus), representing the
power demand of general consumers (households, industries, etc.),
85 loads corresponding to the traction substations and 66 generators.
Buses are connected by 99 lines, most of them in redundant double cir-
cuit configuration. We assume the maximum power generation capacity
of the external power network to be slightly higher than the requested
power demand, respectively 20.59 GW and 20 GW. The generator
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Fig. 3. Geographical representation of the railway network (blue), the traction power network (green) and external power network (red).

power capacities range from 0.003 GW to 1.958 GW. The base load
power demands range from 0.033 GW to 2.724 GW. The capacities
of transmission lines range from 0.046 GW to 2.471 GW. In nominal
conditions, with all the elements functional, the loading percentage of
lines in the external power network ranges from 1.22% to 67.82%,
with an average value of 21.66%. For other electrical parameters of
the external power network, please refer to the data available in [62].

The railway and external power networks are coupled by the trac-
tion power network, which consists in 85 substations, in electrical
isolation, distributed equidistantly (on average one every 35 km) along
the corresponding railway tracks. The requested power demand for
each substation (and thus the requested power demand of each cor-
responding load in the external power network) is assumed to be 200
MW if the substation is located within a railway station, or 12 MW
otherwise. The total requested power demand of the traction power
network (and thus of the railway network) is 4028 MW, which cor-
responds to 20% of the total requested power demand of the external
power network. We define this fraction as the coupling strength between
the railway and the external power network. In this work, we do not
perform a sensitivity analysis on the coupling strength, but it might
be an interesting input for future works. As mentioned before, it is
assumed that the electricity is supplied to each substation from the clos-
est electrical bus within the external power network, which represents
the power demand of the corresponding station, as denoted by the set
of interdependency edges 𝐄𝐭←𝐩. The geographical and network-based
representations of the networks are shown in Figs. 3 and 4, respectively.

As initiating events, we remove fractions of edges from the external
power network. The fraction of removals ranges from 0% to 100%, with
steps of 10%. These removals can represent a wide range of disruptive
events which might cause multiple failures of power transmission lines:
intentional random sabotages, hidden failures due to defective relays,
natural events (e.g. extreme storms and/or winds), random failures
(e.g. falling trees), human mistakes (e.g. incorrect maintenance), or
other events. We analyze the effect in terms of vulnerability of the rail-
way network and external power network for three different tolerance
threshold 𝑇𝑡←𝑝 values (0.0, 0.5, 1.0).

The vulnerability of the railway network is assessed in terms of
accessibility 𝐴𝑟 and railway power performance 𝑅𝑃𝑃 . In order to high-
light the importance of cascading failures analysis, the vulnerability
of railway networks is assessed with and without cascading failures
simulation within the external power network. The analysis without
cascading failures in external power networks is performed with the
algorithm is Fig. 1 and by setting the tripping probability of overloaded
lines 𝑝𝑜𝑙 to 0. The vulnerability of the external power network is
performed only considering cascading failures within the analysis.

Fig. 4. Network-based representation of the railway network (blue), the traction power
network (green) and external power network (red).

The vulnerability of the external power network is assessed in terms
of demand not supplied 𝐷𝑁𝑆 and fraction of demand not supplied
𝐹𝐷𝑁𝑆.

For every fraction of removals, we compute average vulnerability
indexes and standard deviations using a number of experiments 𝑁𝑒𝑥𝑝
equal to 1000, as it allows to obtain 95% confidence intervals small
enough to perform a detailed and consistent analysis.

Finally, the external power network is implemented within Pan-
dapower [63] and the power flow computations are performed using
the PowerModels.jl API of Pandapower [64].

4. Results and discussion

4.1. The impact on the railway network

The impact of random removals of edges from the external power
network on the railway network is assessed by the average loss of
accessibility 𝐴𝑟 and average loss of railway power performance 𝑅𝑃𝑃
for three 𝑇𝑡←𝑝 values (0.0, 0.5 and 1.0). The results with and with-
out cascading failures simulation within the external power network,
denoted respectively as (C) and (NC), and corresponding to failure
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Fig. 5. Impact of removals in the power network on the railway network in terms of
average loss of 𝐴𝑟 for 𝑇𝑡←𝑝 equal to 0.0, 0.5 and 1.0. The results are evaluated including
cascading failures within the external power network in the analysis (𝑝𝑜𝑙 = 1), denoted
as (C) in the legend, and not including them (𝑝𝑜𝑙 = 0), denoted as (NC) in the legend.
95% confidence intervals are shown.

Fig. 6. Impact of removals in the power network on the railway network in terms
of average loss of 𝑅𝑃𝑃 for 𝑇𝑡←𝑝 equal to 0.0, 0.5 and 1.0. The results are evaluated
including cascading failures within the external power network in the analysis (𝑝𝑜𝑙 = 1),
denoted as (C) in the legend, and not including them, (𝑝𝑜𝑙 = 0), denoted as (NC) in the
legend. 95% confidence intervals are shown.

probabilities for overloaded lines of 𝑝𝑜𝑙 = 1 and 𝑝𝑜𝑙 = 0, respectively,
are presented in Figs. 5 and 6.

As it can be clearly seen, the impact on the railway network follows
different patterns for different 𝑇𝑡←𝑝 values. Intuitively, the lower is
the threshold 𝑇𝑡←𝑝, the less vulnerable is the railway network, as it
is more tolerant to lack of electricity supply. Moreover, as expected,
cascading failures considerably increase the impact of removals in
the power network on the railway network. These considerations are
valid for both the topological accessibility 𝐴𝑟 and the railway power
performance 𝑅𝑃𝑃 . A direct measure of the disruption is the area below
the vulnerability curves in Figs. 5 and 6. For comparison, the values of
the areas below the curves for 𝑇𝑡←𝑝 = 0.5 and 𝑇𝑡←𝑝 = 0.0 are computed
and normalized with the area below the curve for 𝑇𝑡←𝑝 = 1.0 with
cascading failures, for both 𝐴𝑟 in Fig. 5 and 𝑅𝑃𝑃 in Fig. 6. The results
for 𝐴𝑟 and 𝑅𝑃𝑃 are shown in Tables 1 and 2, respectively.

From the results in Figs. 5 and 6 and Tables 1 and 2, we can draw
two general considerations:

• The severity of disruption increases with the increase of the
threshold 𝑇𝑡←𝑝.

• The inclusion of cascading failures within the analysis increases
the severity of disruption within the railway network.

Table 1
Vulnerability curve areas for the accessibility 𝐴𝑟.

𝑇𝑡←𝑝 Curve (NC) area Curve (C) area

0.0 0.21 0.29
0.5 0.59 0.78
1.0 0.90 1.0

Table 2
Vulnerability curve areas for the railway power
performance 𝑅𝑃𝑃 .

𝑇𝑡←𝑝 Curve (NC) area Curve (C) area

0.0 0.33 0.44
0.5 0.57 0.73
1.0 0.89 1.0

These considerations are intuitive and in line with the expected results.
However, it is important to quantify and discuss the difference in results
within the two performance indicators when using different 𝑇𝑡←𝑝 values
and considering/excluding cascading failures within the analysis.

As it can be clearly seen in Figs. 5 and 6 and Tables 1 and 2, higher
tolerance thresholds 𝑇𝑡←𝑝 increase the vulnerability of the railway
network. For example, in the case of accessibility 𝐴𝑟, the area below
the continuous blue curve in Fig. 5, which corresponds to the case 𝑇𝑡←𝑝
= 0.0 with cascading failures, is a fraction 0.29 of the continuous red
curve within the same figure, which corresponds to the case 𝑇𝑡←𝑝 =
1.0 with cascading failures. This is due to the fact that, with low 𝑇𝑡←𝑝
values within the substations of the traction power network, the railway
network is more tolerant to the lack of electricity and the negative
impact of disruption within the external power network on the railway
network is less pronounced.

However, we can notice some differences when comparing the
results for the accessibility 𝐴𝑟 in Fig. 5 and the railway power perfor-
mance 𝑅𝑃𝑃 in Fig. 6. Firstly, the red curves (𝑇𝑡←𝑝 = 1.0) and the green
curves (𝑇𝑡←𝑝 = 0.5) for 𝐴𝑟 in Fig. 5 have higher values if compared to
the same curves for 𝑅𝑃𝑃 in Fig. 6. Secondly, the blue curves (𝑇𝑡←𝑝
= 0.0) are higher for 𝑅𝑃𝑃 , except for a total removal of edges in
the external power network (fraction of removal 1.0). As a result, the
railway network is more vulnerable in terms of accessibility 𝐴𝑟 than
railway power performance 𝑅𝑃𝑃 for high threshold values (𝑇𝑡←𝑝 ≥ 0.5);
on the contrary, for low threshold values (e.g. 𝑇𝑡←𝑝 = 0.0), the railway
network is more vulnerable in terms of 𝑅𝑃𝑃 .

These behaviors are caused by the intrinsic differences within the
two performance indicators. Firstly, the accessibility is binary-based
(railway tracks are either functional or not), while the railway power
performance is hybrid binary-continuous (it accounts for functional
state and degraded performance). As a result, for 𝑇𝑡←𝑝 = 0.0, the railway
network is more vulnerable in terms of 𝑅𝑃𝑃 . In fact, with 𝑇𝑡←𝑝 = 0.0,
the railway network is more tolerant in terms of lack of electricity
supply and the number of not functional railway tracks is smaller if
compared to higher 𝑇𝑡←𝑝 values. However, functional railways can have
degraded performance: this is captured by 𝑅𝑃𝑃 but not by 𝐴𝑟. As a
result, for low 𝑇𝑡←𝑝, the losses in terms 𝑅𝑃𝑃 are higher than the losses
in terms of 𝐴𝑟.

Secondly, the failures of railways can be more impactful in terms
of 𝐴𝑟 than 𝑅𝑃𝑃 . In fact, failed railway tracks might impact the acces-
sibility from/to several railway stations, leading to considerable losses
in terms of 𝐴𝑟. As a result, for high threshold values (e.g. 𝑇𝑡←𝑝 ≥ 0.5),
the railway network is more vulnerable in terms of 𝐴𝑟, as the number
of failed railway tracks is higher than 𝑇𝑡←𝑝 = 0.0.

Both the performance indicators are strongly affected by the cascad-
ing failures. In fact, it is clearly visible in Figs. 5 and 6 that cascading
failures lead to more negative consequences in terms of losses. The
difference between considering or excluding cascading failures from the
analysis can be quantified with Tables 1 and 2. In fact, by comparing
the normalized areas for the curves with and without cascading failures
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Fig. 7. Megawatts of demand not supplied within the external power network for
different values of 𝑇𝑡←𝑝 and a traditional OPA model. 95% confidence intervals are
shown.

for the same 𝑇𝑡←𝑝, it can be seen how the cascading failures lead to
greater disruption, in the order of magnitude of 10%–20% of additional
losses, depending on the case.

In conclusion, failures in the power network can lead to consider-
able disruption within the railway network due to lack of electricity.
We modeled the tolerance to lack of electricity of the railway network
using the parameter 𝑇𝑡←𝑝. Intuitively, the more tolerant is the railway
network, and the smaller is the disruption. In addition, we show that
cascading failures can considerably increase the negative consequences
on the railway network. We quantified the cascading failures effect
with the normalized areas in Tables 1 and 2, and we conclude that
cascading failures should be included within the vulnerability analysis
for a realistic estimation of possible negative consequences on the
railway network.

4.2. The impact on the power network

The dependency of the railway network on the external power
network can affect the behavior of the external power network itself.
In fact, as railway tracks fail, the corresponding traction substations
stop absorbing power, leading to a reduction of the requested power
demand within the external power network. This can impact the power
redistribution and the cascading failures dynamics.

As in the previous case, a specific fraction of edges (from 0% to
100%, with steps of 10%), is randomly removed from the external
power network. Through the model described in the previous section,
the impact on the external power network is assessed in terms of MW of
Demand Not Supplied (𝐷𝑁𝑆), shown in Fig. 7, and Fraction of Demand
Not Supplied (𝐹𝐷𝑁𝑆), shown in Fig. 8. The results are compared with
the ones of a traditional OPA model (see Appendix B), which does not
account for the effect of railway track failures on the external power
network and the cascading failures dynamics.

The key indicator to analyze is the 𝐷𝑁𝑆, which provides the
information on the quantity of requested power demand, in absolute
value, which is not satisfied. The results are shown in Fig. 7. Two main
considerations can be drawn:

• The application of a traditional OPA model leads to higher results
in terms of DNS, as it can be clearly seen by comparing the black
curve in Fig. 7 to the other ones.
• The effect of different 𝑇𝑡←𝑝 values is not straightforward like in
the previous case.

The results in terms of demand not supplied are higher when we
use the traditional OPA model. We quantify the difference using the
area under the curves in Fig. 7, normalized using the area under the

Fig. 8. Fraction of demand not supplied within the external power network for
different values of 𝑇𝑡←𝑝 and a traditional OPA model. 95% confidence intervals are
shown.

Table 3
Vulnerability curve areas for the external power net-
work 𝐷𝑁𝑆, normalized with area under the curve
corresponding to the traditional OPA model.

𝑇𝑡←𝑝 Area

0.0 0.96
0.5 0.85
1.0 0.96
OPA 1.0

black curve, corresponding to the traditional OPA case. As it can be
clearly seen in Table 3, the areas under the 𝑇𝑡←𝑝 curve corresponding
to our model are smaller than the area under the traditional OPA curve.
This trend can be characterized as clear evidence of antifragility in
interdependent railway and power networks, where ‘‘fragility is related
to how a system suffers from the variability of its environment beyond a
certain preset threshold [...], while antifragility refers to when it benefits
from this variability ’’ [65]. In our case, we can extend this definition to
a system-of-systems framework, and we can generalize this behavior
with the following statement: given a system-of-systems of interdepen-
dent infrastructures, sharing a unidirectional interdependency of the type
supplier–consumer, stressors, strains or disruptions in the consumer system
can decrease the vulnerability of the supplier system, as the margin between
supply generation capacity and total consumer demand increases.

However, regarding the different 𝑇𝑡←𝑝 values, the behaviors are
different and less intuitive than the previous case (impact on railway
network), where higher 𝑇𝑡←𝑝 corresponds to higher vulnerability.

The three 𝑇𝑡←𝑝 curves follows different patterns. The blue curve,
corresponding to 𝑇𝑡←𝑝 = 0.0, presents always values lower or equal to
the black curve, corresponding to the traditional OPA case. For fraction
of removals lower than 0.7, it presents 𝐷𝑁𝑆 values higher than the
other 𝑇𝑡←𝑝 curves.

The green curve, corresponding to 𝑇𝑡←𝑝 = 0.5, presents the lowest
𝐷𝑁𝑆 values when compared to the other curves. This is also clearly vis-
ible in Table 3, where the curve 𝑇𝑡←𝑝 = 0.5 has the smallest normalized
area.

The red curve, corresponding to 𝑇𝑡←𝑝 = 1.0, presents 𝐷𝑁𝑆 values
lower than the traditional OPA and 𝑇𝑡←𝑝 = 0.0 for fraction of removals
lower than 0.7; for higher fractions, it is coincident with the traditional
OPA curve.

These patterns are highly dependent on the failure modes of the
traction substations: direct and indirect (defined in Section 2.4). Sub-
stations which fail directly due to lack of electricity tend to increase the
𝐷𝑁𝑆 to values closer to a traditional OPA model; substations which fail
indirectly tend to decrease the 𝐷𝑁𝑆 to values lower than a traditional
OPA model. The fractions of functional and directly/indirectly failed
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Fig. 9. Fraction of substations functional and directly/indirectly failed. 95% confidence
intervals are shown.

substations play a key role in determining the patterns in Fig. 7. The
average fractions of functional and directly/indirectly failed substations
for different 𝑇𝑡←𝑝 values and fractions of removals are shown in Fig. 9.

For 𝑇𝑡←𝑝 = 0.0, the total fraction of failed substations increases
slowly and, except for a fraction of removals equal to 1.0, it is always
lower than the fraction of functional substations. This explains why for
low fractions of removals the 𝐷𝑁𝑆 values are similar to a traditional
OPA model. In addition, the fraction of indirectly failed substations
increases faster than the fraction of directly failed substations. This
explains why for high fractions of removals the traditional OPA tends
to lead to larger disruption.

Table 4
Vulnerability curve areas for the external power net-
work 𝐹𝐷𝑁𝑆, normalized with area under the curve
corresponding to the traditional OPA model.

𝑇𝑡←𝑝 Area

0.0 0.99
0.5 0.93
1.0 1.01
OPA 1.0

For 𝑇𝑡←𝑝 = 0.5, the patterns are similar to 𝑇𝑡←𝑝 = 0.0 but with a
faster rate. The increase of fractions of failed substations, as well as
the decrease of the fraction of functional substations, occurs faster with
the increase of the removals if compared to 𝑇𝑡←𝑝 = 0.0. This explains
the pattern in Fig. 7. As the number of indirectly failed substations
increases sharply, the requested power demand in the external power
network decreases. In addition, the fraction of indirectly failed substa-
tions is always higher than the directly failed ones (except for fraction
of removals equal to 1), and this contributes to decrease the𝐷𝑁𝑆, since
the power not supplied to indirectly failed substations is not taken into
account.

For 𝑇𝑡←𝑝 = 1.0, the fraction of directly failed substations is always
greater or equal to the fraction of indirectly failed substations, and they
increase at a faster rate than the previous cases. As a consequence, for
fractions of removals greater than 0.5, the 𝐷𝑁𝑆 for 𝑇𝑡←𝑝 = 1.0 and for
the traditional OPA model are coincident.

While in the case of 𝐷𝑁𝑆 the traditional OPA curve is always
greater or equal to the 𝑇𝑡←𝑝 curves, the situation is different for the
case of 𝐹𝐷𝑁𝑆. As it is visible in Fig. 8, the 𝑇𝑡←𝑝 curves can be higher
than the traditional OPA curve. We can appreciate the correlation with
the fractions of functional/failed substations in Fig. 9. For 𝑇𝑡←𝑝 = 0.0
and 𝑇𝑡←𝑝 = 0.5, we can notice a perfect correlation between the 𝐹𝐷𝑁𝑆
and the fractions of directly/indirectly failed substations. In fact, the
𝑇𝑡←𝑝 curves in Fig. 8 are greater than the traditional OPA curve for
a fraction of removals equal to 1; similarly, in Fig. 9, the fraction
of directly failed substations is higher than the fraction of indirectly
failed substations only for a fraction of removals equal to 1.0, for
both 𝑇𝑡←𝑝 = 0.0 and 𝑇𝑡←𝑝 = 0.5. For 𝑇𝑡←𝑝 = 1.0, the correlation is not
perfect, as the 𝑇𝑡←𝑝 curve in Fig. 8 is higher than the traditional OPA
curve for fraction of removals greater or equal to 0.7, while in Fig. 9
the fraction of directly failed substations is strictly higher (without
overlapping of confidence intervals) for fraction of removals greater
or equal to 0.5. This discrepancy is due to the fact that the fraction
of directly/indirectly failed substations is not the only factor to take
into consideration. In fact, also the fraction of functional substations,
which specific substations are failed/functional and the load shedding
within the base loads in the external power network can affect the final
outcome of the analysis.

It is also useful to compare the normalized area under the curves
in Fig. 8. The results, normalized with the traditional OPA curve, are
shown in Table 4. As it can be clearly seen, the areas for the curves
corresponding to 𝑇𝑡←𝑝 = 0.0 and 𝑇𝑡←𝑝 = 0.5 are smaller than the area
below the traditional OPA model, while the area under the curve for
𝑇𝑡←𝑝 = 1.0 is slightly greater. This confirms that, depending on the
𝑇𝑡←𝑝 value, including the impact of the railway network on the external
power network might impact positively or negatively the vulnerability
in terms of 𝐹𝐷𝑁𝑆.

We can conclude that failures in the railway network can affect
the vulnerability of the external power network. In terms of 𝐷𝑁𝑆,
including the impact of failures in the railway network on the external
power network within the analysis reduces the vulnerability of the
external power network, as the 𝑇𝑡←𝑝 curves in Fig. 7 are always smaller
or equal than the traditional OPA curve. In terms of 𝐹𝐷𝑁𝑆, including
the impact of failures in the railway network on the external power
network might increase or reduce the vulnerability of the external
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power network, depending on the value of 𝑇𝑡←𝑝 and the fraction of
removals.

In conclusion, we show that, in order to estimate precisely the
vulnerability of the external power network, it is important to include
the impact of failures in the railway network on the external power
network, as the outcome of the analysis might differ.

5. Conclusion

In this work, we have proposed an approach for modeling and
vulnerability analysis of interdependent railway-power networks which
includes: (i) modeling of the interface between the external power net-
work and the railway network through the traction power network, (ii)
modeling of cascading failures dynamics within and between networks,
(iii) evaluation of interdependent behaviors within the vulnerability
analysis of railway and external power network. Our analysis showed
that:

• The effect of cascading failures within the external power net-
work on the railway network should be taken into account while
performing a vulnerability analysis. In fact, estimations of the
consequences on the railway network based on load shedding
analysis which does not account for cascading failures (𝑝𝑜𝑙 = 0)
can lead to underestimated negative outcomes.
• It is important to include the effect of failures within the railway
network on the external power network, as it might considerably
change the vulnerability values of the external power network. To
the best of our knowledge, this was never evaluated in previous
works.

In this work, we used an illustrative case-study based on British sys-
tems. However, the initial assumptions are flexible, and the approach
can be used to analyze a wide range of situations. External power
networks can describe transmission or distribution systems at various
voltages. Traction power networks can describe substations in electrical
isolation (e.g. for AC electrified railway systems) or connected between
each other (e.g. for DC electrified railway systems). Railway networks
can describe different rail-based transportation means (metro, regional
trains or high-speed systems).

We analyzed the vulnerability of our case-study using random re-
movals of edges from the external power network as initiating events.
However, other disruption scenarios, such as targeted removals or
spatially-localized removals, can be easily analyzed. In addition, the
vulnerability of each system can be analyzed with different perfor-
mance indicators.

From a perspective of protecting the system, an integrated anal-
ysis accounting for interdependent behaviors between railway and
external power networks is important in order to estimate correctly
the vulnerabilities of the systems and plan adequate preventive mea-
sures and resource allocation. This is particularly relevant for the
railway network, as the inclusion of cascading failures within the anal-
ysis can lead to considerably greater negative consequences. Railway
operators should consider this while planning preventive measures,
such as emergency generators allocation or maintenance scheduling,
or resilience-driven design solutions, such as allocation of redundancies
with the traction and external power network.

We can then conclude that vulnerability analysis of interdependent
railway and power networks should include an evaluation on the possi-
ble effects of cascading failures. While the dependency is unidirectional
(the railway network depends on the external power network, but not
vice versa), the modeling and the analysis should be bidirectional,
accounting for the effect of failures within the railway network on the
cascading failures dynamics within the external power network.
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Appendix A. DC power flow model

Active and reactive power injections at bus 𝑖 are defined, in the AC
power flow model, respectively by Eqs. (A.1) and (A.2):

𝑃𝑖 = 𝑉𝑖
𝑁∑
𝑗=1

𝑉𝑗 (𝐺𝑖𝑗 cos 𝛿𝑖𝑗 + 𝐵𝑖𝑗 sin 𝛿𝑖𝑗 ) (A.1)

𝑄𝑖 = 𝑉𝑖
𝑁∑
𝑗=1

𝑉𝑗 (𝐺𝑖𝑗 sin 𝛿𝑖𝑗 − 𝐵𝑖𝑗 cos 𝛿𝑖𝑗 ) (A.2)

where 𝑃𝑖 and 𝑄𝑖 are the active and reactive power injections at bus 𝑖, 𝑉𝑖
the voltage magnitude, 𝛿𝑖𝑗 = 𝛿𝑖−𝛿𝑗 the voltage angle difference between
buses 𝑖 and 𝑗, 𝐺𝑖𝑗 and 𝐵𝑖𝑗 respectively the real and imaginary part of
admittance matrix elements and 𝑁 the number of buses. This formu-
lation is non-linear, and it is usually solved by applying Gauss–Seidel
or Newton–Raphson method, resulting in computationally expensive
simulations. The DC power flow model represents an approximation of
the aforementioned AC power flow model. It consists in a linearization
of the power flow equations, and it is based on three main assumptions:

1. The electrical resistance of each line 𝑖 is negligible.

𝑟𝑖 ≈ 0 (A.3)

2. The voltage magnitude at each bus 𝑖 are equal to 1.

|𝑉𝑖| = 1 (A.4)

3. The voltage angle difference between two buses 𝑖 and 𝑗, con-
nected by the same line, is small. The trigonometric terms can
thus be linearized:

sin 𝛿𝑖𝑗 ≈ 𝛿𝑖 − 𝛿𝑗 (A.5)

cos 𝛿𝑖𝑗 ≈ 1. (A.6)

Given these assumptions, the active power injection at bus 𝑖 and the
power flow in line 𝑘 between bus 𝑖 and 𝑗 are expressed in Eqs. (A.7)
and (A.8):

𝑃𝑖 =
𝑁∑
𝑗=1

𝐵𝑖𝑗 (𝛿𝑖 − 𝛿𝑗 ) (A.7)

𝐹𝑘 =
𝛿𝑖 − 𝛿𝑗
𝑥𝑘

(A.8)

where 𝑥𝑘 is the reactance of line 𝑘. The DC power flow model can be
expressed also in matrix form as following:

�̄� = 𝐁𝐍
−1 ⋅ 𝐏𝐍 (A.9)

𝐅𝐥 = 𝐁𝐝 ⋅ 𝐀 ⋅ 𝛿 (A.10)

where 𝐁𝐍 is the admittance matrix with resistance equal to 0, �̄� is the
bus voltage angle vector, 𝐵𝑑 is the diagonal line susceptance matrix
and 𝐴 is the line incidence matrix. For more details on derivation
and application of the DC power flow model, the reader is referred to
specialized literature [66–68,68,69].
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Fig. B.10. Flowchart of the traditional OPA model.

Appendix B. OPA model

The OPA model [56,57] is a flow-based model for cascading failures
simulation in power networks. It comprises a slow dynamics, which
accounts for the increasing in power demand over time, and a fast
dynamics, which accounts for initiating events and proper cascading
failures. In our work, we are interested in the fast dynamics. The
flowchart of the algorithm is shown in Fig. B.10, and it comprises four
iterative steps:

1. The power network is initialized.
2. The failed components, such as edges or nodes, are removed
from the power network.

3. The optimal power flow is computed with a DC Optimal Power
Flow, previously shown in Eqs. (8)–(12).

4. Check for overloaded lines (lines with a power flow within 1%
of the maximum flow capacity). An overloaded line fails with
probability 𝑝𝑜𝑙. If there is at least one failed line, return to Step
2; otherwise, stop the algorithm.

References

[1] Buldyrev SV, Parshani R, Paul G, Stanley HE, Havlin S. Catastrophic cascade of
failures in interdependent networks. Nature 2010;464(7291):1025–8.

[2] Johansson J, Hassel H, Cedergren A. Vulnerability analysis of interdependent
critical infrastructures: case study of the Swedish railway system. Int J Crit
Infrastruct 2011;7(4):289–316.

[3] Pant R, Hall JW, Blainey SP. Vulnerability assessment framework for interde-
pendent critical infrastructures: case-study for Great Britain’s rail network. Eur
J Transp Infrastruct Res 2016;16(1).

[4] Major power failure affects homes and transport. 2020, https://www.bbc.com/
news/uk-49300025?ns_mchannel=social&ns_source=twitter&ns_campaign=bbc_
breaking&ns_linkname=news_central. [Accessed 02 December 2020].

[5] of Rail and Road O. Report following railway power disruption on 9th August
2019. 2020.

[6] A European-wide power and infrastructure break-down (‘‘blackout’’) and railways
operators. UIC ENews 2018;616.

[7] Rinaldi SM, Peerenboom JP, Kelly TK. Identifying, understanding, and
analyzing critical infrastructure interdependencies. IEEE Control Syst Mag
2001;21(6):11–25.

[8] Sharma N, Nocera F, Gardoni P. Classification and mathematical modeling of
infrastructure interdependencies. Sustain Resil Infrastruct 2021;6(1–2):4–25.

[9] Dudenhoeffer DD, Permann MR, Manic M. CIMS: A framework for infrastructure
interdependency modeling and analysis. In: Proceedings of the 2006 winter
simulation conference. IEEE; 2006, p. 478–85.

[10] Zimmerman R. Social implications of infrastructure network interactions. J Urban
Technol 2001;8(3):97–119.

[11] Sharma N, Tabandeh A, Gardoni P. Resilience analysis: A mathematical for-
mulation to model resilience of engineering systems. Sustain Resil Infrastruct
2018;3(2):49–67.

[12] Panteli M, Mancarella P, Trakas DN, Kyriakides E, Hatziargyriou ND. Metrics
and quantification of operational and infrastructure resilience in power systems.
IEEE Trans Power Syst 2017;32(6):4732–42.

[13] Suo W, Wang L, Li J. Probabilistic risk assessment for interdependent critical
infrastructures: A scenario-driven dynamic stochastic model. Reliab Eng Syst Saf
2021;214:107730.

[14] Guidotti R, Chmielewski H, Unnikrishnan V, Gardoni P, McAllister T, van de
Lindt J. Modeling the resilience of critical infrastructure: The role of network
dependencies. Sustain Resil Infrastruct 2016;1(3–4):153–68.

[15] Sharma N, Tabandeh A, Gardoni P. Regional resilience analysis: A multiscale ap-
proach to optimize the resilience of interdependent infrastructure. Comput-Aided
Civ Infrastruct Eng 2020;35(12):1315–30.

[16] Nan C, Sansavini G. A quantitative method for assessing resilience of
interdependent infrastructures. Reliab Eng Syst Saf 2017;157:35–53.

[17] Ye Q, Kim H. Assessing network vulnerability of heavy rail systems with the
impact of partial node failures. Transportation 2019;46(5):1591–614.

[18] Chen A, Yang C, Kongsomsaksakul S, Lee M. Network-based accessibility mea-
sures for vulnerability analysis of degradable transportation networks. Netw Spat
Econ 2007;7(3):241–56.

[19] Zhang J, Hu F, Wang S, Dai Y, Wang Y. Structural vulnerability and intervention
of high speed railway networks. Physica A 2016;462:743–51.

[20] Ouyang M, Zhao L, Hong L, Pan Z. Comparisons of complex network based
models and real train flow model to analyze Chinese railway vulnerability. Reliab
Eng Syst Saf 2014;123:38–46.

[21] Hong L, Ye B, Yan H, Zhang H, Ouyang M, He XS. Spatiotemporal vulnerability
analysis of railway systems with heterogeneous train flows. Transp Res A
2019;130:725–44.

[22] Fang C, Dong P, Fang Y-P, Zio E. Vulnerability analysis of critical infrastructure
under disruptions: An application to China Railway High-speed. Proc Inst Mech
Eng O 2020;234(2):235–45.

[23] Berche B, Ferber CV, Holovatch T, Holovatch Y. Transportation network stability:
a case study of city transit. Adv Complex Syst 2012;15(supp 01):1250063.

[24] Hong L, Ouyang M, Peeta S, He X, Yan Y. Vulnerability assessment and
mitigation for the Chinese railway system under floods. Reliab Eng Syst Saf
2015;137:58–68.

[25] Yan Y, Hong L, He X, Ouyang M, Peeta S, Chen X. Pre-disaster investment
decisions for strengthening the Chinese railway system under earthquakes.
Transp Res E 2017;105:39–59.

[26] Mattsson L-G, Jenelius E. Vulnerability and resilience of transport systems–A
discussion of recent research. Transp Res A 2015;81:16–34.

[27] Reggiani A, Nijkamp P, Lanzi D. Transport resilience and vulnerability: The role
of connectivity. Transp Res A 2015;81:4–15.

[28] Ouyang M. Comparisons of purely topological model, betweenness based model
and direct current power flow model to analyze power grid vulnerability. Chaos
2013;23(2):023114.

[29] Johansson J, Hassel H, Zio E. Reliability and vulnerability analyses of critical
infrastructures: Comparing two approaches in the context of power systems.
Reliab Eng Syst Saf 2013;120:27–38.

[30] Chen G, Dong ZY, Hill DJ, Zhang GH, Hua KQ. Attack structural vulnerability
of power grids: A hybrid approach based on complex networks. Physica A
2010;389(3):595–603.

[31] Panteli M, Mancarella P. Influence of extreme weather and climate change on
the resilience of power systems: Impacts and possible mitigation strategies. Electr
Power Syst Res 2015;127:259–70.

[32] Zhu Y, Yan J, Tang Y, Sun YL, He H. Resilience analysis of power grids under
the sequential attack. IEEE Trans Inf Forensics Secur 2014;9(12):2340–54.

[33] Zhao L, Zeng B. Vulnerability analysis of power grids with line switching. IEEE
Trans Power Syst 2013;28(3):2727–36.

[34] Fang Y, Sansavini G. Optimizing power system investments and resilience against
attacks. Reliab Eng Syst Saf 2017;159:161–73.

[35] Chang L, Wu Z. Performance and reliability of electrical power grids under
cascading failures. Int J Electr Power Energy Syst 2011;33(8):1410–9.

[36] Abedi A, Gaudard L, Romerio F. Review of major approaches to analyze
vulnerability in power system. Reliab Eng Syst Saf 2019;183:153–72.

[37] Wu Y, Chen Z, Zhao X, Gong H, Su X, Chen Y. Propagation model of
cascading failure based on discrete dynamical system. Reliab Eng Syst Saf
2021;209:107424.



Reliability Engineering and System Safety 217 (2022) 108091

14

A. Bellè et al.

[38] Kong J, Zhang C, Simonovic SP. Optimizing the resilience of interdependent in-
frastructures to regional natural hazards with combined improvement measures.
Reliab Eng Syst Saf 2021;210:107538.

[39] Liu X, Fang Y-P, Zio E. A hierarchical resilience enhancement framework for
interdependent critical infrastructures. Reliab Eng Syst Saf 2021;215:107868.

[40] Goldbeck N, Angeloudis P, Ochieng WY. Resilience assessment for interdependent
urban infrastructure systems using dynamic network flow models. Reliab Eng Syst
Saf 2019;188:62–79.

[41] Ouyang M. Critical location identification and vulnerability analysis of interde-
pendent infrastructure systems under spatially localized attacks. Reliab Eng Syst
Saf 2016;154:106–16.

[42] Applegate CJ, Tien I. Framework for probabilistic vulnerability analysis of
interdependent infrastructure systems. J Comput Civ Eng 2019;33(1):04018058.

[43] Lu L, Wang X, Ouyang Y, Roningen J, Myers N, Calfas G. Vulnerability of inter-
dependent urban infrastructure networks: Equilibrium after failure propagation
and cascading impacts. Comput-Aided Civ Infrastruct Eng 2018;33(4):300–15.

[44] Ouyang M, Pan Z, Hong L, He Y. Vulnerability analysis of complementary
transportation systems with applications to railway and airline systems in China.
Reliab Eng Syst Saf 2015;142:248–57.

[45] Zhang J, Song B, Zhang Z, Liu H. An approach for modeling vulnerability of the
network of networks. Physica A 2014;412:127–36.

[46] Zio E, Sansavini G. Modeling failure cascades in critical infrastructures with
physically-characterized components and interdependencies. In: ESREL 2010
annual conference. 2010. p. 652–61.

[47] Zio E, Sansavini G. Modeling cascading failures in systems of systems with
uncertain behavior. In: ICASP11. 2011. p. 1858–66.

[48] Johansson J, Hassel H. An approach for modelling interdependent infrastructures
in the context of vulnerability analysis. Reliab Eng Syst Saf 2010;95(12):1335–44.

[49] Svegrup L, Johansson J. Vulnerability analyses of interdependent critical infras-
tructures: Case study of the Swedish national power transmission and railway
system. In: European safety and reliability conference. ESREL2015; 2015, p.
4499–507.

[50] Adjetey-Bahun K, Birregah B, Châtelet E, Planchet J-L. A model to quantify
the resilience of mass railway transportation systems. Reliab Eng Syst Saf
2016;153:1–14.

[51] Dorbritz R. Assessing the resilience of transportation systems in case of large-
scale disastrous events. In: Environmental engineering. Proceedings of the
international conference on environmental engineering, vol. 8. Vilnius Gediminas
Technical University, Department of Construction Economics; 2011, p. 1070.

[52] Pelzer R, Duval C, Migliorini M, Wilson F. FORTRESS - Foresight Tools for
Responding to cascading effects in a crisis - Case study reports on system
interdependencies. 2015, Confidential.

[53] Motter AE, Lai Y-C. Cascade-based attacks on complex networks. Phys Rev E
2002;66(6):065102.

[54] Crucitti P, Latora V, Marchiori M. Model for cascading failures in complex
networks. Phys Rev E 2004;69(4):045104.

[55] Cupac V, Lizier JT, Prokopenko M. Comparing dynamics of cascading failures
between network-centric and power flow models. Int J Electr Power Energy Syst
2013;49:369–79.

[56] Dobson I, Carreras B, Lynch V, Newman D. An initial model for complex
dynamics in electric power system blackouts. In: Proceedings of the 34th annual
hawaii international conference on system sciences, vol. 2. Citeseer; 2001, p.
2017.

[57] Carreras BA, Newman DE, Dobson I, Degala NS. Validating OPA with WECC
data. In: 2013 46th hawaii international conference on system sciences. IEEE;
2013, p. 2197–204.

[58] Mahmoud MS, Xia Y. Networked control systems: cloud control and secure
control. Butterworth-Heinemann; 2019.

[59] Duval C, Brinzei N, Chraibi H, Hassanaly M. Adéquation des Automates Stochas-
tiques Hybrides pour la modélisation des conséquences d’un événement redouté.
In: Lambda-Mu 23 Virtual Congress. 2020.

[60] Guo H, Zheng C, Iu HH-C, Fernando T. A critical review of cascading
failure analysis and modeling of power system. Renew Sustain Energy Rev
2017;80:9–22.

[61] 21 G. Fast forward—A high-speed rail strategy for Britain. Author Kingston-upon-
Thames; 2009.

[62] Bukhsh W, McKinnon K. Network data of real transmission networks. 2013,
Published online at http://www.maths.ed.ac.uk/optenergy/NetworkData.

[63] Thurner L, Scheidler A, Schäfer F, Menke J, Dollichon J, Meier F, et al.
pandapower — An open-source python tool for convenient modeling, anal-
ysis, and optimization of electric power systems. IEEE Trans Power Syst
2018;33(6):6510–21. http://dx.doi.org/10.1109/TPWRS.2018.2829021.

[64] Coffrin C, Bent R, Sundar K, Ng Y, Lubin M. Powermodels. jl: An open-source
framework for exploring power flow formulations. In: 2018 power systems
computation conference. IEEE; 2018, p. 1–8.

[65] Taleb NN, Douady R. Mathematical definition, mapping, and detection of (anti)
fragility. Quant Finance 2013;13(11):1677–89.

[66] Grainger JJ, Stevenson WD, Stevenson WD, et al. Power system analysis. 2003.
[67] Van den Bergh K, Delarue E, D’haeseleer W. DC power flow in unit commitment

models. 2014, TME Work. Pap. Environ. Tech. Rep.
[68] Glover JD, Sarma MS, Overbye T. Power system analysis & design, SI version.

Cengage Learning; 2012.
[69] Li W. Risk assessment of power systems: models, methods, and applications. John

Wiley & Sons; 2014.



Paper II

A. Bellè, Z. Zeng, M. Sango, and A. Barros, “Towards a Realis-
tic Topological and Functional Modeling for Vulnerability Anal-
ysis of Interdependent Railway and Power Networks,” Proceed-
ings of the 31st European Safety and Reliability Conference,
2021.

119



120



Towards a realistic topological and functional modeling for vulnerability analysis of
interdependent railway and power networks

Andrea Bellè
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Railway systems and power grids are recognized as two of the most important critical infrastructures. The majority
of European railway networks are electrified, and power transmission networks represent usually the main power
supplier. Railway and power networks share thus a unidirectional interdependency, as the railway network func-
tionality depends on the power network. Due to this interdependency, failures in power networks have the potential
of causing vast disruption in the dependent railway networks. Despite this, the issue of modeling interdependent
railway and power networks has not been addressed sufficiently carefully in the existing literature. Furthermore,
the treatment of cascading failures in power networks and their consequences in railway networks is limited and
approximative. In this work, we propose a modeling framework which accounts for more realistic assumptions on
the interconnections topology and the cascading failures dynamics. Firstly, we model the interconnections between
the railway and external power network by introducing the traction power network, which acts as a bridge between
the external power grid and the railway network. Secondly, we model cascading failures in the external and traction
power networks with an approach based on the DC power flow model. Thirdly, we suggest a simple approach to
estimate the negative consequences on the railway network due to load shedding in the traction power network.
Vulnerability analysis is performed to estimate the negative consequences in the railway network due to different
failure scenarios in the external power network. Sensitivity analysis on the initial assumptions is also performed.

Keywords: Critical infrastructures, interdependent networks, power network, railway network, cascading failures,
vulnerability.

1. Introduction
Critical infrastructures are large systems which
provide essential services to society. Despite be-
ing technologically and functionally different,
critical infrastructures are often interdependent
from each other. Power and railway networks are
among the most important critical infrastructures,
and they share a unidirectional interdependency,
as the power network supplies the necessary elec-
tricity to the railway network. This means that
disturbances in power grids can propagate and
cause disruption in railway systems. Despite this,
the available modeling approaches for vulnerabil-

ity analysis of interdependent railway and power
networks are limited and approximative.

One of the major limitations of the existing
modeling approaches is that the fundamental as-
sumptions are often over-simplified, failing to
fully capture the reality of the interconnection be-
tween railway and power networks. More specifi-
cally, available studies often neglect the modeling
of the traction power network, which in reality
plays a key role in linking the external power grid
and the railway system. In fact, this subsystem
is accounted for only in Johansson and Hassel
(2010); Johansson et al. (2011).
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A second drawback of the existing literature is
that the evaluation of cascading failures in power
networks and their impact on the railway network
is often neglected (Johansson and Hassel (2010);
Johansson et al. (2011); Pant et al. (2016)) or
simplified with a network-based approach (Zhang
et al. (2014); Zio and Sansavini (2010, 2011)).

With this work, we propose a new approach for
interdependent railway and power networks which
includes the modeling of traction power networks
and cascading failures in power networks. The
major contributions are:

• A realistic model of interdependent rail-
way electrical networks, which takes into
account the traction power network, is
proposed.

• The impact of load shedding in the ex-
ternal and traction power network on the
performance of interdependent railway
and power networks is investigated.

The focus of the study is the vulnerability anal-
ysis of the railway network given different initiat-
ing disruptive event in the external power network.
The remaining part of this work is structured as
follows: in section 2, the modeling framework
is presented; in section 3, the case-study is de-
scribed; in section 4, some preliminary results are
presented; in section 5, final insights and develop-
ments are given.

2. Modeling and analysis framework
The purpose of this work is to model the impact
of disturbances and disruption in external power
networks, including cascading failures scenarios,
to railway networks. For this, traction power net-
works are introduced in order to act as a bridge
between external power and railway networks.
The modeling and analysis framework comprises
three main steps:

• Compute the negative consequences in
the external power network after an initi-
ating disruptive event and cascading fail-
ures (if any).

• Use the output from the previous step as
an input for the traction power network
and compute the negative consequences,
including cascading failures (if any).

• Use the output from the previous step to
compute performance-based vulnerabil-
ity of traction power network and railway
network.

In the next subsections, we address the main mod-
eling features necessary to perform the aforemen-
tioned steps, including network-based topologi-
cal modeling, modeling of electrical quantities
of power networks, cascading failures within and
between networks and performance-based vulner-
ability index.

2.1. Network-based topological modeling
Network science is often used to describe the
topology of critical infrastructures. A network is
defined by a graph G = (V,E), with V =
{v1, v2, ..., vN} representing the set of N nodes
(or vertices) and E = {e1, e2, ..., eM} the set
of M edges. Each edge k is also defined by a
tuple ek = (vi, vj), which indicates the two nodes
vi and vj connected by edge k. In this work,
we identify three separate networks: the railway
network, defined by the subscript R, the external
power network, defined by the subscript E, and
the traction power network, defined by the sub-
script T .

In the railway network GR = (VR,ER),
nodes represent stations and edges represent rail-
way tracks. Each railway edge represents a direct
bi-directional physical connection between two
stations.

In the external power network GE =
(VE,EE), nodes represent electrical buses and
edges represent transmission lines. Each electrical
bus can contain power production or consumption
units, here referred as generators and loads. These
elements are defined by the set of generators
NE,G and the set of loads NE,L.

In the traction power network GT =
(VT,ET), nodes represent electrical substations
and edges represent distribution lines. Each sub-
station contains a power production unit, which
represent the available power extracted from the
external power network, and a consumption unit,
representing the power demand of the substation.
These elements are defined by the set of gen-
erators NT,G and the set of loads NT,L. The
power production units, rather than representing
real power production, they correspond to the
available power extracted by each substation from
the external power network.

2.2. Interdependencies
In most situations, the traction power network is
directly connected to the external power network.
However, to overcome lack of data and decrease
the structural complexity of the model, we de-
couple and treat the two networks separately. The
traction power network thus depends on the exter-
nal power network in terms of electricity supply.
Specifically, we assume that each substation in
the traction power network is dependent on the
geographically-closest load node in the external
power network. We denote this relationship with
interdependency edges ei←j

T←E = (vT,i, vE,j), in-
dicating that node i in the traction power network
is dependent on node j in the external power
network.

The traction power network is usually directly
connected to the railway catenary to supply elec-
tricity to the rolling stocks. The railway network
thus depends on the traction power network in
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Fig. 1. Interdependent railway network (blue), trac-
tion power network (green) and external power network
(red).

terms of electricity supply. Specifically, we as-
sume that each railway track i depends on a set
of substation Vr,i

T ⊆ VT, that are responsible
of the electricity supply of that specific railway
track. In Figure 1, this relationship is graphically
represented with edges between the two nodes de-
limiting railway track i in the railway network and
the nodes of the traction power network belonging
to Vr,i

T .

2.3. Modeling of electrical flows
External and traction power networks are charac-
terized by electrical quantities and parameters. In
this work, we rely on the DC power flow model,
and the main quantities to consider are power
generation capacity and power demand, for gener-
ators and loads, and power flow capacity for lines.
We assume that each generator and load i are
characterized by a maximum generation capacity
and demand Pmax

G,i (positive power) and Pmax
L,i

(negative power), and each line i is characterized
by a maximum flow capacity Fmax

l,i . The flow in
each line i is computed using the DC power flow
model assumption, according to Equation (1):

Fl,i = Bi Δθi (1)

where Bi is the susceptance of line i and Δθi is
the phase angle difference between the two nodes
defining line i. For more details, the reader is
referred to specialize literature (Van den Bergh
et al. (2014); Li (2014)).

2.4. Modeling of cascading failures
2.4.1. Power network

External and traction power network are subjected
to cascading failures, and different approaches are
available (see Guo et al. (2017)). In this work, we
rely on the traditional ORNL-PSerc-Alaska (OPA)
model, based on DC power flow equations and
linear optimization (Dobson et al. (2001); Car-
reras et al. (2013)). The model aims at simulating
the behaviour of the power grid after an initiating
disruptive event, considering electrical quantities
and operator actions. After the initialization of the
power network and the initiating disruptive event,
the model comprises the following steps:

(1) Remove failed elements from the network. If
a node is failed, remove also the connected
components (generators, loads, lines).

(2) Perform a DC optimal power flow (DC-OPF).
(3) Check if there is any overloaded failed lines:

if yes, go back to step 1; otherwise, stop the
simulation and compute load shedding.

Firstly, at step 1 failed lines and nodes, along with
the connected components, are removed from the
network.

Secondly, a DC-OPF is performed in order to
simulate operator actions. The cost to minimize
is shown in Equation (2), and it is subjected to
constraints in Equations (3)-(6).

min
PG,PL

NG∑

i=1

PG,i −W

NL∑

j=1

|PL,j | (2)

NG∑

i=1

PG,i −
NL∑

j=1

|PL,j | = 0 (3)

0 ≤ PG,i ≤ Pmax
G,i (4)

Pmax
L,j ≤ PL,j ≤ 0 (5)

− Fmax
l,k ≤ Fl,k ≤ Fmax

l,k (6)

The first term of Equation (2) represents the power
production cost, which is assigned a unitary value
per unit of power PG,i produced in each generator
i. The second term represents the negative cost as-
sociated to the power PL,i supplied at each load i.
The penalty constant W , here assumed to be equal
to 100, ensure the minimization of load shedding
when possible. Equations (3)-(6) represent the op-
timization constraints. The constraint in Equation
(3) represents the power balance of generation
and demand in the power network, which must be
always equal to 0. Equations (4) and (5) represents
possible ranges of power of each generator and
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load. The constraint in Equation (6) represents the
maximum power flow in each transmission line.
The power flow in each line Fl is computed using
the DC power flow model.

Thirdly, the power network is checked for ad-
ditional failures due to overloaded lines. A line is
considered overloaded if its flow is within 1% of
its maximum capacity. When a line is overloaded,
it fails (or trips) with a probability p (in this study,
we assume p=1). If there is any additional failure,
the simulation goes back to step 1 for a new iter-
ation; otherwise the simulation is stopped and the
new level of production P ′G,i for each generator
and demand P ′L,i for each load is given as output.

All the power flow computations are performed
using Pandapower (Thurner et al. (2018)) and
PowerModels.jl (Coffrin et al. (2018)).

2.4.2. From external to traction power network

The traction power network receives electricity
from the external power network. This means that
disruption in the external power network can de-
crease the power available to the traction power
network. As explained in section 2.2, each sub-
station i is dependent on the load node j in the
external power network as expressed by the in-
terdependency edge ei←j

T←E . In general, the load
j represents the power consumption of multiple
users (residential, industrial, etc.) in a given area,
including the substation i. If due to a disruptive
event (with or without cascading failures), the
power supplied at load j is not sufficient to satisfy
entirely its power demand, substation i can be neg-
atively impacted. To model this, we distinguish
two separate scenarios, called the no-priority sce-
nario and the priority scenario.

In the first one, substation i has no priority
over the other users supplied by load j, and the
maximum power available at substation j, defined
as Pmax′

T,G,i , is computed according to Equation (7):

Pmax′
T,G,i = Pmax

T,G,i ·
P ′E,L,i

PE,L,i
(7)

where Pmax
T,G,i is the nominal maximum power

available at substation i. It should be noted that the
power available at the substation is modeled as a
generator capacity, since the two power networks
are decoupled. The physical meaning of Equation
(7) is that the fraction of nominal power available
at substation i is equal to the fraction of nominal
power demand supplied to load j.

In the second one, we assume the substation i
has the priority over the other users supplied by
load j. This means that, as long as there is enough
power supplied at load j, avoiding load shedding
in substation i is prioritized. The power available

Pmax′
T,G,i is thus computed according to equation (8):

Pmax′
T,G,i =

{
Pmax
T,G,i, if P

′
E,L,i ≥ Aj ,

Pmax
T,G,i ·Bj , otherwise,

(8)

where Aj represents the sum of the nominal power
available at each substation dependent on load j
and Bj is the ratio between the power supplied
at load j and Aj . These two parameters are ex-
pressed in Equations (9) and (10):

Aj =

Nj
T→E∑

k=1,

k∈Vj
T→E

Pmax
T,G,k (9)

Bj =
P

′
E,L,i

Aj
(10)

where Vj
T→E represents the set of N j

T→E substa-
tions dependent on load j.

2.5. Modeling of vulnerability index
The vulnerability index V can be generalized as
the relative change of a system’s performance in-
dicator after a disruptive event. In this work, we
consider, for external and traction power network,
the fractional load shedding as vulnerability in-
dex, expressed as in Equation (11):

LS = 1−
∑NL

i=1 P
′
L,i∑NL

i=1 PL,i

(11)

where P ′L,i represents the power supplied to load i
after the cascading failures and PL,i represents the
actual power demand of load i. The load shedding
LS represents the fraction of power demand not
satisfied.

For the railway network, we consider a vulner-
ability index, defined as ΔΦ, which accounts for
the impact of load shedding in the traction power
network, as expressed in Equation (12):

ΔΦ = 1− 1

MR

MR∑

i=1

⎛
⎝
∑NR,i

T
j=1

P ′
T,L,j

PT,L,j

∏NR,i
T

k=1 SR,k

NR,i
T

⎞
⎠

(12)
where MR is the number of edges in the railway
network, NR,i

T is the number of substation in the
subset Vi

R←T (number of substations supplying
railway i) and SR,k is the binary state of sub-
station k (1 if functional, 0 if failed), computed
according to Equation (13):

SR,k =

⎧
⎨
⎩
1, if

P
′
T,L,k

PT,L,k
> 0,

0, otherwise.
(13)
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The physical meaning is that the drop of perfor-
mance in each railway is equal to the average
load shedding in the substations which supply the
electricity to the railway, when the substations are
functional. If at least one of the substations is
failed, the drop of performance is total, because
the railway is interrupted. In this work, we con-
sider a substation functional as long as it receives
some electricity.

3. Case-study
The external power network is based on the
French 400 kV transmission power network (Fang
et al. (2015)). It contains 171 electrical buses,
connected by 220 transmission lines. Each bus
contains either a generator, with positive electrical
power (power production), or a load, with negative
electrical power (power demand). There are 26
generator nodes, with powers ranging from 1.4
GW to 8.1 GW, and 145 load nodes, with powers
ranging from 0.151 GW to 1.331 GW in absolute
value. The maximum power production capacity
and the total power demand are 85 GW and 84.988
GW, respectively. Each transmission line is as-
sumed to have a maximum flow capacity equal to
7 GW.

The railway network, shown in blue in Fig-
ure 1, is based on the French high-speed railway
systems, called Train à Grande Vitesse or TGV
(SNCF (2014)). It is composed by 185 nodes,
representing stations, connected by 214 edges,
representing railway tracks.

The railway and the external power network
are connected through the traction power network.
Due to lack of data, we define a set of assump-
tions in order to build a realistic traction power
network. Firstly, we design the traction power net-
work topology starting from the railway network.
Specifically, for each railway i connecting stations
j and k, we assume that:

• For each station j in the railway network, a
substation j is present in the traction power
network at the same geographical location.

• Between each substation j and k (correspond-
ing to stations j and k connected by railway i
in the railway network), there is a number of
additional substations Nadd

sub,i proportional to
the length of railway i according to Equation
(14):

Nadd
sub,i =

⎧
⎪⎨
⎪⎩

⌊
lti
d̄sub

⌉
, if Nadd

sub,i ≥ 1,

1, otherwise,

(14)

where lti is the length of railway i in km,
d̄sub is the average distance between two con-
secutive substations, here assumed to be 60

km, and �·� defines the closest integer num-
ber. These substations are located equidis-
tantly along the trajectory of railway i and
connected consecutively.

The resulting traction power network, shown in
green in Figure 1, is composed by 424 nodes, rep-
resenting the substations, connected by 452 edges,
representing distribution lines. These elements are
connected to replicate the shape of the railway
network, as clearly visible in Figure 1.

Secondly, we define the electrical parameters of
the traction power network. As it was explained
in section 2.1, each substation contains a load,
which represents the power demand of the sub-
station itself, and a generator, which represents
the maximum power available from the external
power network. In this work, we assume the power
demand of each load PT,L,i in the traction power
network to be dependent on a base demand and
the degree of the substation, according to Equation
(15):

PT,L,i = Pmax
T,L,i = P̄T,L,i · k(i) (15)

where P̄T,L,i is the base demand, here assumed to
be 5 MW, and k(i) is the degree (number of con-
nected edges) of substation i. Moreover, we as-
sume that each substation has a maximum power
extraction capacity from the external power net-
work equal to its own power demand multiplied
by a safety coefficient. This feature is modeled as
the maximum capacity of the substation generator
Pmax
T,G,i, according to Equation (16):

Pmax
T,G,i = PT,L,i · (1 + αG) (16)

where αG is the safety coefficient, here assumed
to be 0.5. With these assumptions, we obtain a
total power demand of 4520 MW, with load pow-
ers ranging from 5 to 30 MW, and maximum ex-
traction capacity (or generation capacity) of 6780
MW, with generator powers ranging from 7.5 to
45 MW. The power flow capacity of each distribu-
tion line Fmax

T,L,i is assumed to be equal to the base
power demand P̄T,L,i.

We study the impact of single bus failures in
the external power network on the traction power
network and railway network, in terms of load
shedding LST and loss of performance ΔΦ. The
main steps of the simulation-based approach are
shown in Figure 2.

4. Results
The results in terms of load shedding LST in the
traction power network and loss of performance
ΔΦ in the railway network, in both priority and
no-priority scenario, are shown in Figure 3 and 4,
respectively. In both the figures, the x-axis rep-
resents the index of bus removed in the external
power network as initiating event (from bus 1 to
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Fig. 2. Flowchart of simulation algorithm. EPN in-
dicates the external power network, TPN indicates the
traction power network.

bus 171). Blue squares represent the no-priority
scenario, while red stars represent the priority
scenario. Green circles represent the total load
shedding LSE in the external power network.

The first consideration to highlight is that, as it
is clearly visible in both the figures, the priority
scenario leads to a considerably lower negative
impact in terms of load shedding in the traction
power network and loss of performance in the
railway network. This situation is summarized in
Table 1. The average load shedding LST in the

Fig. 3. Load shedding in external power network
(green circles), in traction power network with no-
priority (blue squares), in traction power network with
priority (red stars) for single bus failures in the external
power network as initiating event.

Fig. 4. Load shedding in external power network
(green circles), loss of performance in railway network
with no-priority (blue squares), loss of performance
in railway network with priority (red stars) for single
bus failures in the external power network as initiating
event.

Table 1. Average load shedding and loss of perfor-
mance in traction power network and railway net-
work with 95% confidence interval.

LST LST ΔΦ ΔΦ
No-priority Priority No-priority Priority

2.5% 0.7% 2.8% 0.9%
± 0.3% ± 0.2% ± 0.4% ± 0.3%

traction power network with the no-priority sce-
nario is 2.5% with 95% confidence interval equal
to 2.2%-2.8%, while in the priority scenario LST
is equal to 0.7%, with 95% confidence interval
equal to 0.5%-0.9%. The same consideration can
be drawn for the average loss of performance in
the railway network ΔΦ, which presents an aver-
age value of 2.8% with 95% confidence interval
equal to 2.4%-3.2% in the no-priority scenario,
and an average value of 0.9% with 95% confi-
dence interval equal to 0.6%-1.2% in the priority
scenario. This behaviour can be highlighted also

Table 2. Five most critical components for traction
power network (no-priority and priority scenario).

Bus index LST Bus index LST

No-priority No-priority Priority Priority

78 14.6% 78 14.6%
135 11.0% 62 6.1%
63 8.5% 63 6.1%
111 7.5% 107 5.6%
167 6.6% 111 4.4%
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Table 3. Five most critical components for railway
network (no-priority and priority scenario).

Bus index ΔΦ Bus index ΔΦ
No-priority No-priority Priority Priority

78 16.2% 78 16.2%
135 12.6% 62 7.0%
63 9.5% 63 7.0%
55 8.2% 107 6.1%
111 7.7% 135 5.1%

Table 4. Five most critical compo-
nents for external power network.

Bus index LSE

83 21.0%
138 19.0%
45 18.3%
39 17.9%
38 17.9%

by comparing results from individual initiating
events. The five most critical bus failures in the
external power network in terms of load shedding
in the traction power network and loss of perfor-
mance in the railway network are shown in Table
2 and 3, respectively. With the exception of the
most critical bus failure (bus 77 for LST and ΔΦ,
for both no-priority and priority scenario), we can
observe that the results for the no-priority scenario
are considerably higher. For example, for LST ,
the second most critical failure in the no-priority
scenario (bus 134) leads to a load shedding of
11%, while the second most critical failure in the
priority scenario (bus 62) leads to a load shedding
of just 6.1%. The same considerations can be
drawn for the loss of performance in the railway
network. These results highlight the importance to
prioritize the power supply to critical infrastruc-
tures, such as railway traction network, in case of
emergency situations.

Another important aspect to highlight is the
strong correlation between the three networks (ex-
ternal power, traction power and and railway),
since the load shedding in the external power net-
work is the primary cause of load shedding in the
traction power network which can lead to loss of
performance in the railway network. Despite this,
it is clear that the location of the initiating event
and the spatial dynamics of cascading failures
play an important role. This aspect is noticeable
in the case where load shedding in the external

power network and in the traction power network
are considerably different. For example, it is in-
teresting to notice how the failure of bus 82 as
initiating event constitutes the worst-case scenario
for the external power network, leading to a load
shedding LSE of 21% (see Table 4), while in the
traction power network it leads to a load shedding
of just 3.8% in the no-priority scenario and 1.4%
in the priority scenario. This behaviour indicates
that the topological features are a key aspect in
terms of negative consequences of cascading fail-
ures within and between networks.

A similar consideration can be deduced from
the difference in results of LST and ΔΦ. Despite
the fact that the computations of the two values
are strongly correlated, as it is clear from Equa-
tions (11) and (12), the losses of performance in
the railway network are tendentially higher than
the corresponding load sheddings in the traction
power network. This is clearly due to the assump-
tion on the substation states expressed in Equation
(13). However, we can notice that in some cases
the difference is negligible or not present, while
in other cases can be considerable, up to a few
percentage points. This is again an indication of
the importance of the topology, because location
of failures and/or load shedding can have a strong
impact on the possible negative consequences in
the dependent networks.

5. Conclusion
In this work we have proposed a modeling frame-
work for interdependent railway and power net-
works which accounts for an integrated evaluation
of realistic interconnections, introducing traction
power networks to act as a bridge, and cascading
failures scenarios. The model has been used to
study the impact of two different assumptions on
the electricity supply priority from the external
power network to the traction power network.
Preliminary results have shown, as expected, that
the priority scenario leads to considerably lower
disruption.

Analysis on individual initiating events have
shown that vulnerability index in single systems
are not always correlated in terms of magnitude.
For example, the worst-case scenario for the ex-
ternal power network leads to limited negative
consequences in the dependent networks (trac-
tion power network and railway network). This
behaviour indicates that the topology of the in-
terconnections between interdependent networks
plays a crucial role when performing an integrated
vulnerability analysis.

Further developments of this work include a
more comprehensive sensitivity analysis on the
starting assumptions and the comparison, in terms
of vulnerability, of different traction power net-
work’s configurations.
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Abstract

As critical infrastructures (CIs) are essential for the safety and socio-economic stability of a society,

ensuring their resilience is a task of the utmost importance. Critical infrastructures are often inter-

dependent on each other, and the topology of the interdependencies between different systems, also

referred to as coupling interface, plays a key role in terms of their resilience against failures. In case

of failures due natural events, random disturbances, or deliberate attacks, the design of the coupling

interface is a key factor for maintaining high performance within the interdependent CIs. How-

ever, in the existing literature, the issue of the coupling interface design is often addressed through

heuristics. In this work, we propose an optimization-based mathematical approach for designing

coupling interfaces between interdependent critical infrastructures under random failures. The pro-

posed approach allows designing a coupling interface that is robust against the worst realization

of a set of feasible failure scenarios. Using as case-study interdependent power and gas networks,

we show that the proposed method outperforms existing solutions based on network metrics-based

heuristics.
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GN Gas network

IPGNs Interdependent power and gas networks

NC&CG Nested Column&Constraint Generation

PN Power network

Sets

EGN Set of edges in the gas network

EPN Set of edges in the power network

VGN Set of nodes in the gas network

VPN Set of nodes in the power network

Parameters and coefficients

θ Maximum value of phase angle

d
b

i Base requested power demand of node i in the power or gas network

d
m3

j Requested gas demand of node j in the gas network

d
MW

j Requested power demand of node j in the gas network

dGN Total requested gas demand of the gas network

dPN Total requested power demand of the power network

fk Flow capacity of edge k in the power or gas network

pi Production capacity of node i in the power or gas network

Katt Maximum number of attacked edges

LGN Number of edges in the gas network

LPN Number of edges in the power network

Mk Big-M method constant

NGN Number of nodes in the gas network

NPN Number of nodes in the power network

wGN Weight of the gas network

2



wPN Weight of the power network

xk Reactance of edge k in the power network

Variables

δgj Binary variable that indicates the functional state of all the interdependency links starting

from node j in the gas network

δpj Binary variable that indicates the functional state of all the interdependency links starting

from node j in the power network

η Variable of outer layer of NC&CG algorithm

ρ Variable of inner layer of NC&CG algorithm

θi Phase angle of node i in the power network

di Supplied demand in node i in the power or gas network

fk Flow in edge k in the power or gas network

pi Production in node i in the power or gas network

uk Binary variable that indicates the functional state of edge k in the power network

yg←p
ij Binary variable that indicates if a physical link from node j ∈ VPN to node j ∈ VGN exists

yp←g
ij Binary variable that indicates if a physical link from node j ∈ VGN to node i ∈ VPN exists

1. Introduction

1.1. Motivation

Critical infrastructures (CIs), such as power networks or transportation systems, are complex

systems which supply goods, services, and commodities to people [1], [2]. Failures and disruption

within CIs can lead to severe socioeconomic stress in a society [3], and ensuring their resilience

against a large variety of disruptive events is an important issue [4], [5]. Moreover, CIs are increas-

ingly interdependent on each other. This increasing degree of interdependency brings advantages

in terms of functionality and efficiency, but often leads to new vulnerabilities and risks of cascading

effect between interdependent infrastructures [6].

Coupling interfaces play a key role in characterizing the resilience of interdependent CIs [7],

[8]. The coupling interface characterizes how the interdependent CIs are coupled together; in other

words, it characterizes how the interdependent CIs are connected and what are the components in

3



each CI that are dependent on the other CI. When CIs are modeled as networks [9], the coupling

interface simply denotes the allocation of interdependency links, as shown in Figure 1.

Figure 1: Network representation of two interdependent infrastructures. In evidence, we can notice the two struc-

tural components of networks (nodes and edges) and their connection (interdependency links). The ensemble of

interdependency links is referred to as coupling interface.

In most of the existing literature on interdependent CIs, coupling interfaces are treated as a

known parameter, and no optimization nor analysis is performed. Limited works try to optimize

the design of the coupling interface (e.g. [7] or [8]); however, they rely on heuristic methods based

on network science metrics, which do not guarantee optimal solutions nor high quality designs of

coupling interface.

In this work, we propose a resilience-based mathematical framework, based on the defender-

attacker-defender (DAD) model [10]–[13], for the optimal design of coupling interfaces in inter-

dependent CIs. The DAD approach allows to identify solutions, in this case a coupling interface

design, which are robust against the worst realization of uncertain scenarios, in this case failure

scenarios.

In general, the motivations of this work are the following:

• research: the design of coupling interfaces between interdependent CIs has not been addressed

comprehensively in the existing literature, and to the best of our knowledge, no mathemat-
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ical programming approach has been proposed. As the coupling interface is a key factor of

interdependent CIs and their resilience, optimizing its design is an important issue;

• application: due to the importance of coupling interface design, decision-makers and planners

should be provided with the means and tools to evaluate and optimize the allocation of

interdependency links between interdependent CIs.

As illustrative case-study, we rely on interdependent power and gas networks (IPGNs), similarly

to [14], where gas networks need electricity for the functionality of their equipment (valves, pumps,

compressors, etc.), and power networks need a gas supply to produce electricity in gas-fired power

plants.

1.2. Related work

In the next sections we review the main works related to resilience enhancement in CIs, and

design and optimization of coupling interfaces between interdependent CIs.

1.2.1. Resilience enhancement in critical infrastructures

The purpose of this section is to explain the main concepts in the context of resilience enhance-

ment and give a general overview in order to better contextualize and position this work.

As critical infrastructures represent the backbone of essential societal functions, ensuring their

resilience is a fundamental task [2]. The resilience of a system is defined as “its ability to withstand

stressors, adapt, and rapidly recover from disruptions” [15]. Resilience refers to the behaviour of a

system in disruptive conditions, it is generally represented with a resilience curve, as in Figure 2,

and it is defined as the combination of three phases [2], [16]:

• the disturbance phase, which describes the speed and the severity of the disruption; this phase

is strictly connected to the concepts of survivability and vulnerability1;

• the degraded phase, which describes the temporal extension of the disruption after the dis-

turbance phase, and it is linked to the emergency preparedness;

• the restoration phase, which describes the operations of restoration and repair.

The resilience of a system can be measured using different approaches, and various metrics

are available in the existing literature [20]. A renowned approach is called ΦΛEΠ (pronounced

”FLEP”) [16], and it consists of the computation of four different metrics:

1Survivability is defined in [17] as “the capability of a system to fulfill its mission in a timely manner in the

presence of attacks, failures, or accidents”, and it can be interpreted as the residual performance after the disturbance

phase. Vulnerability is defined in [18] as “degree of loss or damage to a system when exposed to a strain of a given

type and magnitude”, and it can be interpreted as the drop of performance due to the disturbance phase.
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Figure 2: Qualitative representation of a resilience curve and the related phases [16], [19]

• Φ: it defines the rate of performance drop during the disturbance phase. Using Figure 2 as

a reference, where p(t) defines a performance indicator at time t, it can be computed as the

difference in performance before and after the disruptive event divided by the duration of the

event, as in Equation (1):

Φ =
p(te)− p(td)

td − te
; (1)

• Λ: it defines the magnitude of the drop in performance. This metric corresponds to the

concept of vulnerability, and it strictly correlated with the survivability. It can be computed

as the difference in performance before and after the disruptive event, as in Equation in (2)

Λ = p(te)− p(td); (2)

• E: it defines the temporal extension of the degraded phase, and it can be computed as in (3):

E = tr − td; (3)

• Π: it defines the rate of recovery, and it can be computed as the difference in performance at

the beginning and at the end of the recovery phase, divided by the duration of the recovery,

as in Equation in (4):

Φ =
p(tf )− p(tr)

tf − tr
. (4)

Enhancing the resilience of systems and infrastructures by optimizing design, preventive mea-

sures and resource allocation (e.g. transmission and/or generation expansion, protection of compo-

nents, allocation of recovery resources, reliable network design, etc.), is one of the most important
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tasks and a major topic in the field of critical infrastructures. Within this context, several works are

available, and they can be distinguished according to different characteristics: i) which resilience

phase is optimized; ii) which type of infrastructures is optimized; iii) which type of optimization

model is used.

The optimization of critical infrastructures resilience can focus on one or multiple phases: for

example, in [11] and [21], the resilience of power networks is enhanced by focusing separately on

the optimization of protection against the disturbance phase and recovery phase, respectively; on

the contrary, in [13] and [22], the resilience of interdependent CIs is enhanced by simultaneously

optimizing both the disturbance phase and recovery phase.

An important feature that distinguishes the different works is which type of infrastructure is

optimized, in terms of resilience. Several authors focus on resilience of single infrastructures, such

as power networks [23] or water networks [24]. However, many other authors focus on the integrated

optimization of resilience of multiple interdependent CIs, such as power and gas networks [25] or

power and water networks [26], accounting for their mutual interdependencies when optimizing

their resilience by preventive measures and resource allocation. The type of infrastructure under

consideration is a key factor, as each infrastructure is characterized by specific operational models

and interdependencies on other systems.

Another important difference within the existing works is the type of optimization model used

for the resilience enhancement, which strongly impacts the quality and the nature of the solution.

Many authors apply multi-level approaches, such as the DAD model [27], to enhance CIs resilience.

These approaches offer robust solutions, and usually affordable computational cost. Some authors

also include uncertainty using a stochastic optimization approach [28], in order to enhance the

resilience expectation against a known probability distribution of uncertain parameters. Moreover,

heuristics approach are also used [29], in order to derive high-quality solutions with operational

models which can not be solved by traditional mathematical programming approaches.

It should be highlighted than in the aforementioned works the resilience of CIs is enhanced

by optimizing different preventive measures and resource allocations, such as construction of new

components (generation/expansion planning), protection of components or repair scheduling. How-

ever, the coupling interface, despite being a key parameter, is not optimized. As it is explained in

the next section, only a limited number of works accounts for different coupling interface designs

between interdependent CIs.

1.2.2. Design and optimization of coupling interface

When the state/functionality of one infrastructure depends on the state/functionality of another

one, a relationship of interdependency exists. Interdependencies are unidirectional when one infras-
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tructure depends on another one, but not vice versa; otherwise, they are bidirectional [30], [31]. As

interdependencies have been a subject of research since the early 2000s [2], different classifications

exist in the literature [30]–[33]. One of the most used classifications is the one proposed in [30],

where four categories are identified:

• physical, when one CI depends on another one through a physical flow (energy, goods, etc.);

• cyber, when one CI depends on another one through a flow of data and information;

• geographic, when elements of different infrastructures share the same location and they can

be modified by a change in the environment conditions;

• logical, when a relationship which is not physical, cyber, or geographic exist.

CIs are often modeled with a network science approach [9], and the interdependencies are rep-

resented as links between components (nodes and/or edges) belonging to different infrastructures

[34]. We refer to the ensemble of interdependency links as coupling interface. Its topology, i.e.

where the interdependency links are present, plays a key role in terms of failure propagation be-

tween different infrastructures. Interdependency topology and design have been addressed in the

field of interdependent networks, where various works focus on evaluating coupling interfaces and

their impact on failure propagation [35], [36], and how coupling interfaces, if properly allocated, can

increase the robustness of interdependent networks [37]–[39]. These works, despite representing a

solid theoretical framework, mainly rely on percolation theory, and they fail to capture the details

and the complex dynamics of real-world infrastructures.

Despite the critical role of coupling interfaces, in the existing literature they are often considered

as a given parameter, and they are not analyzed nor optimized.

In some works, different network metric-based coupling strategies are tested on different inter-

dependent CIs, such as power and water networks [40] or power and telecommunication networks

[41]–[43]. In these works, the impact of different topologies is evaluated, and they demonstrate

the importance of considering the coupling interface design problem within realistic CIs. However,

these network-based heuristic approaches do not guarantee optimal solutions.

Similar network metrics-based approaches are also proposed in [7] and [8]. In [7], the authors

propose an approach for designing coupling interfaces between urban CIs in order to increase their

robustness against external attacks. The proposed strategy for designing the coupling interface is

based on multiple network metrics (node degree, betweenness, clustering coefficient and Euclidean

distance). In [8], the authors propose a similar approach, also accounting for physical features of the

CIs, such as levels of supply and demand. However, these works still rely on network metrics as an

heuristics. Consequently, they do not guarantee optimal solutions and the quality of the identified
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coupling interface designs depends on the case-study considered. Moreover, these approaches are

tailor-made and are not readily generalizable to other case-studies, as one specific heuristic strategy

might perform well in some networks and poorly for other systems.

1.3. Contribution

In this work, a novel optimization-based approach for designing coupling interfaces between

interdependent CIs is proposed. Our model ensures that coupling interface topologies are opti-

mized in order to maximize the worst-case realization of combined performed of the interdependent

infrastructures under random failures. The proposed approach is based on the DAD model, a three-

stage sequential game which allows to identify robust defense strategies and/or resource allocation

against a defined set of feasible attack scenarios. To demonstrate the validity of our approach,

interdependent power and gas networks (IPGNs) are used as illustrative case-study.

The contributions of this papers can be summarized as follows:

• We developed a novel resilience-based optimization approach, which can be directly applied

to design or retrofit new or existent coupling interfaces between interdependent CIs.

• We developed an approach for the optimization of coupling interface design that is generaliz-

able for any case-study by selecting the appropriate operational model for the interdependent

CIs.

• We demonstrated that our approach outperforms network metrics-based coupling interface

strategies available in the existing literature.

The rest of this paper is organized as follows: in Section 2, the problem formulation is detailed;

in Section 3, the solution strategy is explained; in Section 4, the illustrative case-study is detailed;

in Section 5, results and discussion are presented; in Section 6, conclusive remarks and possible

future developments are detailed.

2. Optimization problem formulation

2.1. Modeling framework

In this work, each infrastructure is modeled using a network flow-based approach [9], [44], where

a network is a mathematical construct described by a graph G = (V,E). The set V contains N

nodes, connected by L edges, contained within the set E. Each edge k is directed and has an

origin node O(k) and a destination node D(k). In line with a flow-based approach, we assume that

commodities goods, and services are produced and consumed within nodes and distributed through
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edges. Each node i has a production capacity pi and a requested demand di, while each edge k has

a flow capacity fk.

In this work, we focus on the combined performance PC of the interdependent CIs [14], defined

as in (5):

PC =
∑

h∈H

wh

dh

∑

i∈Vh

di (5)

where the subscripts H denotes the set of interdependent CIs, wh represents the weight of infras-

tructure h when computing the combined performance, dh is the total requested demand of goods,

services, or commodities in infrastructure h, and di is the supplied demand of goods, services, or

commodities in each node i of infrastructure h.

Considering the resilience framework described in Section 1.2.1, the combined performance in

conditions of disruption represents the concept of survivability of the interdependent CIs, comple-

mentary to the concept of vulnerability and to the Λ metric of the ΦΛEΠ approach. In this work,

we do not consider the restoration phase, as it is characterized by deep uncertainties and it should

be optimized case-by-case according to the specific disruption and failure scenarios [21].

As illustrative case-study, we consider interdependent power and gas networks (IPGNs), which

are mutually interdependent on each other with physical interdependencies. In fact, equipment

in the gas network, such as valves, compressors, or pumps, needs a constant power supply; power

networks, if gas-fired power plants are present, need a constant supply of gas. The combined

performance of the IPGNs can be defined as in Equation (6):

PC,IPGNs =
wPN

dPN

∑

i∈VPN

di +
wGN

dGN

∑

i∈VGN

di (6)

where the subscripts PN and GN denote the power network and gas network, respectively, wPN

and wGN represent the weight of power network and gas network when computing the combined

performance2, dPN and dGN are the total requested demand of power and gas, and di is the supplied

power or gas in each node of the networks. The combined performance PC ranges from 0, when no

power and gas demand is supplied, to 1, when 100% of the requested demand of power and gas is

supplied.

In the power network, nodes represent buses, while edges represent power lines; in the gas

network, nodes represent hubs, while edges represent gas pipelines. The power network operations

are simulated with a DC power flow model, while the gas network operations are simulated with

a linear maximal flow model, which is a suitable approximation of flow-based infrastructures [14],

[45]–[47].

2It should be noted that wPN + wGN = 1.

10



Several works analyze critical infrastructures in the context of specific types of hazards, like

intentional attacks [46], spatially-localized attacks [48] and extreme natural events [14], [49]. In

this work, we adopt an approach based on the maximum number of contingencies [27], [50]. For

simplicity, but without loss of generality, we assume that only transmission lines (edges) in the

power network can be attacked and failed. By considering the simultaneous failures of transmission

lines, the present model is agnostic about the source of disruption, providing a rapid and objective

way of calculating the consequence of damage to any set of components.

In this work, the following assumptions are considered:

• a single demand scenario is considered, i.e. the expected forecast of requested power and gas

demand [27];

• each node in the gas network needs to receive a power supply from the power network in order

to run equipment;

• each node in the power network with some production capacity is assumed to contain a

gas-fired power plant and needs to receive a gas supply from the gas network;

• each node in the power network can be dependent on one, and only one node in the gas

network, and vice versa;

• allocating the coupling interface has a cost that depends on the geographical distance between

the two nodes connected by the interdependency link;

• the operators are perfectly aware of the status of the components within the power network

and gas network [27].

The purpose of the proposed model is to design a coupling interface between IPGNs that ensures

satisfactory combined performance in normal conditions (no failures) and conditions of disruption.

2.2. Defender-attacker-defender approach

The problem takes the form of a trilevel DAD optimization model, a formulation often used in

the framework of optimization of defense strategies and resources in CIs (e.g. [10], [14], [27]). It

is useful to imagine the problem as a three-players game: the inner defender aims at maximizing

the combined performance of the IPGNs through the operational variables of the two systems; the

middle attacker aims at minimizing the combined performance choosing the most disruptive attack

plan; the outer defender aims at maximizing the combined performance of the IPGNs by designing

a robust coupling interface that also ensures satisfactory performance in normal conditions (no

failures). The full formulation is shown in (7)-(43):
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max
p′,d′,f ′,θ′,δ′

yg←p∈{0,1}NC

yp←g∈{0,1}NC

min
u∈{0,1}LPN

max
p,d,f ,θ,δ

wPN

dPN

∑

i∈VPN

di +
wGN

dGN

∑

i∈VGN

di

−γ




∑

i∈VGN
j∈VPN

yg←p
ij dkmij cg←p

km +
∑

i∈VPN
j∈VGN

yp←g
ij dkmji cp←g

km


 (7)

subject to:

First level

∑

j∈VPN

yg←p
ij ≤ 1, ∀i ∈ VGN (8)

∑

j∈VGN

yp←g
ij ≤ 1, ∀i ∈ VPN (9)

∑

i∈VGN
j∈VPN

yg←p
ij dkmij cg←p

km +
∑

i∈VPN
j∈VGN

yp←g
ij dkmji cp←g

km ≤ Bci (10)

wPN

dPN

∑

i∈VPN

di +
wGN

dGN

∑

i∈VGN

di ≥ 1 (11)

0 ≤ p′i ≤ pi, ∀i ∈ VTOT (12)

0 ≤ d′i ≤ d
b

i +
∑

j∈VGN

yg←p
ji d

MW

j , ∀i ∈ VPN (13)

0 ≤ d′i ≤ d
b

i +
∑

j∈VPN

yp←g
ji d

m3

j , ∀i ∈ VGN (14)

−fk ≤ f ′k ≤ fk, ∀k ∈ ETOT (15)

xkf
′
k − (θ′O(k) − θ′D(k)) = 0, ∀k ∈ EPN (16)

p′i − d′i +
∑

k|D(k)=i

f ′k −
∑

k|O(k)=i

f ′k = 0, ∀i ∈ VTOT (17)
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di − δp
′

i

(
dbi +

∑

j∈VGN

yg←p
ji d

MW

j

)
≥ 0, ∀i ∈ VPN (18)

d′i − δg
′

i

(
dbi +

∑

j∈VPN

yp←g
ji d

m3

j

)
≥ 0, ∀i ∈ VGN (19)

p′i − pi
∑

j∈VGN

yp←g
ij δg

′

j ≤ 0, ∀i ∈ VPN (20)

p′i − pi
∑

j∈VPN

yg←p
ij δp

′

j ≤ 0, ∀i ∈ VGN (21)

d′i −


d

b

i +
∑

j∈VPN

yp←g
ji d

m3

j


 ∑

j∈VPN

yg←p
ij δpj ≤ 0, ∀i ∈ VGN (22)

−
∑

k|O(k=i)
j∈VPN

yg←p
ij δp

′

i fk ≤ f ′k ≤
∑

k|O(k=i)
j∈VPN

yg←p
ij δp

′

i fk, ∀k ∈ EGN (23)

−
∑

k|D(k=i)
j∈VPN

yg←p
ij δp

′

i fk ≤ f ′k ≤
∑

k|D(k=i)
j∈VPN

yg←p
ij δp

′

i fk, ∀k ∈ EGN (24)

yg←p
ji ∈ {0, 1}, yp←g

ij ∈ {0, 1}, ∀i ∈ VPN , ∀j ∈ VGN (25)

δp
′

i ∈ {0, 1}, δg
′

j ∈ {0, 1}, ∀i ∈ VPN , ∀j ∈ VGN (26)

Second level

∑

k∈EPN

(1− uk) ≤ Katt (27)

uk ∈ {0, 1}, ∀k ∈ EPN (28)

Third level

0 ≤ pi ≤ pi, ∀i ∈ VTOT (29)
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0 ≤ di ≤ d
b

i +
∑

j∈VGN

yg←p
ji d

MW

j , ∀i ∈ VPN (30)

0 ≤ di ≤ d
b

i +
∑

j∈VPN

yp←g
ji d

m3

j , ∀i ∈ VGN (31)

−ukfk ≤ fk ≤ ukfk, ∀k ∈ EPN (32)

−fk ≤ fk ≤ fk, ∀k ∈ EGN (33)

(
xkfk −

(
θO(k) − θD(k)

))
uk = 0,∀k ∈ EPN (34)

pi − di +
∑

k|D(k)=i

fk −
∑

k|O(k)=i

fk = 0, ∀i ∈ VTOT (35)

di − δpi

(
d
b

i +
∑

j∈VGN

yg←p
ji d

MW

j

)
≥ 0, ∀i ∈ VPN (36)

di − δgi

(
d
b

i +
∑

j∈VPN

yp←g
ji d

m3

j

)
≥ 0, ∀i ∈ VGN (37)

pi − pi
∑

j∈VGN

yp←g
ij δgj ≤ 0, ∀i ∈ VPN (38)

pi − pi
∑

j∈VPN

yg←p
ij δpj ≤ 0, ∀i ∈ VGN (39)

di −


d

b

i +
∑

j∈VPN

yp←g
ji d

m3

j


 ∑

j∈VPN

yg←p
ij δpj ≤ 0, ∀i ∈ VGN (40)

−
∑

k|O(k=i)
j∈VPN

yg←p
ij δpi fk ≤ fk ≤

∑

k|O(k=i)
j∈VPN

yg←p
ij δpi fk, ∀k ∈ EGN (41)

−
∑

k|D(k=i)
j∈VPN

yg←p
ij δpi fk ≤ fk ≤

∑

k|D(k=i)
j∈VPN

yg←p
ij δpi fk, ∀k ∈ EGN (42)

δpi ∈ {0, 1}, δgj ∈ {0, 1}, ∀i ∈ VPN , ∀j ∈ VGN . (43)

Equation (7) is the objective function of the trilevel optimization problem, and it contains three

terms. The first two terms correspond to the combined performance PC , previously shown in
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Equation (6). By including PC in the objective function, we can identify a coupling interface that

maximizes the combined performance of the IPGNs in the worst failure scenario; in other words,

we can identify the coupling interface that maximizes the survivability of the IPGNs (or minimizes

the Λ resilience metric) of the IPGNs in the worst failure scenario. The power and gas supplied

to each node i are defined by the variables di, while the total requested demand of power and gas,

denoted as dPN and dGN , are constant parameters computed as in (44) and (45), respectively.

dPN =
∑

i∈VPN

d
b

i +
∑

j∈VGN

d
MW

j (44)

dGN =
∑

i∈VGN

d
b

i +
∑

j∈VPN

d
m3

j (45)

In these equations, the constant d
b

i denotes the baseline requested demand of power or gas in each

node, and it represents the consumption of various private and public consumers. The constant

d
MW

j denotes the requested power demand of node j ∈ VGN , while the constant d
m3

j denotes the

requested gas demand of node j ∈ VPN .

The third term of the objective function ensures that, if more than one optimal coupling interface

exists, the one with the lowest allocation cost is chosen. The terms within the parentheses define the

cost of allocating a specific coupling interface. The binary variable yg←p
ij =1 if an interdependency

link from node j ∈ VPN to node i ∈ VGN is allocated, and yg←p
ij =0 otherwise. Similarly, the binary

variable yp←g
ij =1 if an interdependency link from node j ∈ VGN to node i ∈ VPN is allocated, and

yp←g
ij =0 otherwise. The constant dkmij denotes the distance in kilometer between node i ∈ VGN and

node j ∈ VPN , while the constants cg←p
km and cp←g

km denote the cost per kilometer of allocating an

interdependency link from the power network to the gas network, and from the gas network to the

power network, respectively. The terms within the parentheses are multiplied by a factor γ, which

represents a very small number. This factor ensures that the priority within the optimization is

given to the combined performance PC .

Equations (8)-(26) denote the constraints of the first optimization level, corresponding to the

outer defender. This agent allocates the coupling interface in a way such that: i) the available

monetary budget Bci is respected, as shown in Constraint (10), and ii) in normal conditions (no

failures), it is possible to supply the whole requested demand of power and gas (PC=1). Consistently

with the existing literature, we assume that each node in the gas network can be dependent on,

and connected through an interdependency link to, only one node in the power network, and vice

versa. We refer to this as the single-dependency assumption, and it is enforced by Constraints (8)

and (9). The coupling interface, as previously explained, is allocated through the binary variables

yg←p
ij and yp←g

ij , contained within the vectors yg←p and yp←g with dimension NC = NPN ×NGN .
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The coupling interface must be allocated in order to guarantee that, in normal conditions, the

requested demand of power and gas is fully satisfied, as enforced by Constraint (11). This condition

depends on the first-level operational variables, contained within the vectors p′,d′, f ′,θ′, δ′, which

represent production levels, supply demands, flows, phase angles, and interdependency links status,

respectively3.

Equations (12)-(26) contain the operational constraints of the first level. For both networks,

the production level of power or gas p′i in each node i is limited by the production capacity pi, as

enforced in Constraint (12). Similarly, as shown in Constraints (13) and (14), the supplied demand

of power or gas d′i in each node i is limited by the requested demand. As it is shown on the right side

of (13), the requested power demand of node i ∈ VPN is given by the sum of the baseline requested

power demand d
b

i and all the requested power demands d
MW

j of the nodes j ∈ VGN which depend

on the node i ∈ VPN for the electricity supply (yg←p
ji =1). Similarly, as it is shown on the right side

of (14), the requested gas demand of node i ∈ VGN is given by the sum of the baseline requested

gas demand d
b

i and all the requested gas demands d
m3

j of the nodes j ∈ VPN which depend on the

node i ∈ VGN for the gas supply (yp←g
ji =1).

The flow of power and gas f ′k in each edge k is limited, in absolute value, by the flow capacity

fk, as shown in Constraint (15). Moreover, in each line of the power network, the power flow is

subject to the DC power flow assumption, enforced by Constraint (16), where xk represents the

reactance of line k, and θ′O(k) and θ′D(k) are the phase angles in the origin and destination node of

line k, respectively.

The net nodal balance of power and gas in each node is ensured by Constraint (17).

The operations of the IPGNs depends on the status of the interdependency links. Similarly

to other existing works (e.g. [14]), we assume a binary functional status for the interdependency

links (1 if functional, 0 if not functional). We assume that the binary functional status of each

interdependency link starting from node i ∈ VPN is expressed by the binary variable δp
′

i ; similarly,

the binary functional status of each interdependency link starting from node i ∈ VGN is expressed

by the binary variable δg
′

i . Each interdependency link starting from node i ∈ VPN is functional

(δp
′

i =1) only if the requested power demand in i is fully satisfied, as enforced in Constraint (18).

The rationale behind this assumption is that, if some electricity is not supplied to i, the dependent

nodes within the gas network might not receive the necessary electricity. As shown in Constraint

(19), the same assumption is taken for the interdependency link starting from the gas network, with

a similar rationale: each interdependency link starting from node i ∈ VGN is functional (δg
′

i =1)

only if the requested gas demand in i is fully satisfied. These assumption are consistent with the

3The superscript ′ denotes the operational variables of the first level.
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existing literature (e.g. [14]). However, different assumptions which are not included in this work,

such as multi-discrete or continuous status for the interdependency links, can be implemented by

appropriate changes of the variables δ′.

We assume that the electricity in the power network is produced by gas-fired power plants, and

in each node i ∈ VPN it is possible to produce power only if a functional interdependency link with

a node j ∈ VGN is present (yp←g
ij =1 and δg

′

j =1). This condition is enforced by Constraint (20).

We assume that gas in the gas network can be extracted (produced) and supplied only if there

is enough electricity. Therefore, in each node i ∈ VGN it is possible to produce and supply gas only

if a functional interdependency link with a node j ∈ VPN is present (yg←p
ij =1 and δp

′

j =1). These

conditions are enforced by Constraints (21) and (22). Moreover, we assume that gas can flow in a

pipe k only if both the origin and destination nodes present a functional interdependency link with

a node j ∈ VPN , as enforced by Constraints (23) and (24).

Equations (27) and (28) denote the constraints of the second level of the optimization problem,

corresponding to the attacker. This agent decides which lines of the power network to target and

fail through the binary variables uk, contained within the vector u. Each variable uk takes the

value 0 if line k is targeted and failed, and value 1 otherwise. The attacker can target and fail a

maximum number Katt of lines in the power network, as shown in Constraint (27).

Equations (29)-(43) contain the operational constraints of the third level, corresponding to the

inner defender. This agent aims at maximizing the combined performance of the IPGNs through

the operational variables of the third level, contained within the vectors p,d, f ,θ, δ.

Constraints (29)-(43) are equivalent to the previously-explained Constraints (8)-(26). However,

in the third level, we also account for the failures of power lines through the inclusion of binary

variables uk in Constraints (32) and (34). Constraint (32) ensures that the power flow in a failed

power line is 0. Constraints (34) ensures that the DC power flow assumption is maintained in

functional power lines and disregarded in failed power lines. Constraint (34) contains quadratic

terms due to the multiplication of the binary variable uk with the continuous variables fk and θi.

These quadratic terms can be linearized with a “Big-M” approach, as shown in Appendix A. The

other constraints in (29)-(43) are equivalent to the ones in (8)-(26).

For simplicity, we can express the optimization problem in (7)-(43) with the compact matrix

formulation in (46)-(51).

max
h′,δ′

yg←p∈{0,1}NC

yp←g∈{0,1}NC

min
u∈{0,1}LPN

max
h,δ

bTh+ cTy (46)

17



subject to:

Py ≤ g (47)

bTh′ ≥ 1 (48)

R′h′ ≤ q′ −H′y −W′δ′ − yTD′δ′ (49)

Ku ≤ a (50)

Rh ≤ q−Tu−Hy −Wδ − yTDδ. (51)

The vectors h′ and h contain the continuous variables of the first and third level, respectively.

The other variable vectors, y, δ′, and δ, contain binary variables (vector y contains vectors yg←p

and yp←g). The vectors b and c contains the objective function coefficients, while the vectors g,

a and q contain constraint parameters. The matrices P, R′, H′, W′, D′, K, R, H, W, and D

contain constraint coefficients with suitable dimensions.

Equation (46) corresponds to Equation (7); Equation (47) corresponds to Equations (8)-(10);

Equation (48) corresponds to Equation (11); Equation (49) corresponds to Equations (12)-(26);

Equation (50) corresponds to Equations (27)-(28); Equation (51) corresponds to Equations (29)-

(43).

The optimal objective value of the trilevel optimization is the maximized combined performance

of the IPGNs in the worst scenario within the set of feasible failure scenarios. An important output

of the optimization problem is the optimal coupling interface design ŷ.

3. Solution strategy

3.1. Linearization

As the problem in (46)-(51) (or equivalently (7)-(43)) contains several nonlinear terms, the first

step of our solution strategy involves a reformulation into an equivalent linear form. In particular,

the nonlinear terms arise from the multiplications of binary variables y′ and δ′ in (49), and y and

δ in (51). Products of binary variables can be easily linearized by introducing new binary variables

and additional constraints. Generally, the product of two binary variables a and b is also a binary

variable, here called c, subject to Constraints (52)-(54):

c ≤ a (52)
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c ≤ b (53)

c ≥ a+ b− 1. (54)

The multiplications of y′ and δ′ in (49), and y and δ in (51), can then be linearized by introducing

binary variables z and r and additional constraints of the type in (52)-(54). The variables z are

introduced to linearize the multiplication between two binary variables, while the variables r are

introduced to linearize the multiplication between three binary variables. Constraint (49) can then

be replaced by Constraints (55) and (56), while Constraint (51) can then be replaced by Constraints

(57) and (58):

R′h′ ≤ q′ −H′y −W′δ′ − S′z′ −V′r′ (55)

Q′z′ + F′r′ ≤ t′ − L′y − J′δ′ (56)

Rh ≤ q−Tu−Hy −Wδ − Sz−Vr (57)

Qz+ Fr ≤ t− Ly − Jδ (58)

where Equations (56) and (58) corresponds to the additional constraints of the type in (52)-(54).

The linear compact matrix formulation corresponds to Equation (46) subject to (47)-(48), (50),

and (55)-(58).

3.2. Nested Column&Constraint Generation algorithm

The presence of the binary variables δ in the third stage makes it impossible to merge the second

and third stage into a single minimization problem relying on the dual formulation. Therefore, we

adopt a cutting plane strategy, called Nested Column&Constraint Generation (NC&CG) algorithm.

It represents an exact method, with proven convergence to the global optimum, for solving multi-

level mixed-integer linear programming with recourse problems [51], [52].

Figure 3 details the flowchart with the main steps of the NC&CG algorithm. In order to adopt

this strategy, the original trilevel max-min-max problem is transformed into a max-min-max-max

problem, by separating binary and continuous variables in the original third stage [14]. The new

fourth stage contains only continuous variables, and it is then a pure LP problem. The formulation

is then transformed into a max-min-max-min through a dual reformulation of the last stage. In this

form, the problem can be solved using a NC&CG algorithm, identifying an outer and inner layer

which exchange primal variables in form of parameters until the convergence to the global optimum

is reached.

For a more detailed explanation of the C&CG algorithm, the reader is referred to [51], [52] for

a theoretical framework and [14], [27], [50] for applications.
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Figure 3: Flowchart of the NC&CG algorithm [14], [27].
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3.3. Inner layer

The inner layer consists in solving the second and third level (min-max) in (46) with a fixed

coupling interface y∗. The output of the model is the worst-case realization of the combined

performance and the associated optimal attack plan û. With fixed binary variables (coupling

interface y∗, interdependency variables δ∗ and attack plan u∗), the inner-most maximization in

(46) and the relative constraints take the form in (59)-(60):

max
h

bTh+ cTy∗ (59)

subject to :

Rh ≤ q−Tu∗ −Hy∗ −Wδ∗ − y∗TDδ∗ (60)

The problem in (59)-(60) is a pure LP, and thus the introduction of variables z and r is not necessary.

Thanks to its linear nature, strong duality holds and it can be transformed into its dual form in

(61)-(62):

min
λ

(q−Tu∗ −Hy∗ −Wδ∗ − y∗TDδ∗)Tλ (61)

subject to:

RTλ = b (62)

As the variables δ are binary, the number of possible combinations that they can take is equal to

2Nδ , where Nδ=NPN +NGN is the number of binary variables δ. We denote as D the set containing

all the possible combinations of binary variables δ. The C&CG approach exploits the observation

that only a partial subset Dpart ⊆ D is essential to compute the optimal solution. The bilevel

min-max formulation can be solved by iteratively reconstructing the partial set Dpart by following

these steps:

1. Set j = 0, lower bound LBin = 0, upper bound UBin =∞, and Dpart = ∅
2. Solve the inner master problem in Equations (63)-(66). Obtain an optimal solution ρ̂(j) and

optimal attack plan û(j). Update LBin=ρ̂(j) + cTy∗.

min
ρ,u,λ

ρ (63)

subject to:

ρ ≥ (q−Tu−Hy∗ −Wδ∗(j) − y∗TDδ∗(j))Tλ(j), ∀δ∗(j) ∈ Dpart (64)

RTλ(j) = b, ∀δ∗(j) ∈ Dpart (65)

∑

k∈EPN

(1− uk) ≤ Katt (66)
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3. Solve the inner subproblem in Equations (67)-(68) with û(j)=u∗. Obtain an optimal solution

bT ĥ(j) and δ̂
(j)

. Set UBin = min(UBin,b
T ĥ(j) + cTy∗).

max
h,δ

bTh (67)

subject to :

Rh ≤ q−Tu∗ −Hy∗ −Wδ − y∗TDδ (68)

4. If (UBin−LBin)/UBin < 10−5, û(j) represents the optimal attack and the algorithm can be

terminated. Otherwise, Dpart = Dpart ∪ δ̂
(j)

. Set j ← j + 1 and return to step 2.

The optimal attack plan, or, in other words, the feasible combination of variables u which

minimizes the combined performance for a fixed coupling interface y∗, and the optimal value of the

objective function represent the main outputs of the algorithm.

3.4. Outer layer

Similarly, the outer layer is solved by employing a partial set of attack scenarios Apart ⊆ A.
The outer layer solves a bilevel max-min problem, and the minimization is solved by the inner layer

algorithm.

The outer layer is solved by employing the following steps:

1. Set j = 0, lower bound LBout = 0, upper bound UBout =∞, and Apart = ∅
2. Solve the outer master problem in Equations (69)-(76). Obtain an optimal solution η̂(j) +

cT ŷ(j) and optimal coupling interface ŷ(j). Update UBout=min(UBout, η̂
(j) + cT ŷ(j))

max
η,h(j)

h′,δ′
y∈{0,1}

η + cTy (69)

η ≤ bTh(j), ∀u∗(j) ∈ Apart (70)

Py ≤ g (71)

bTh′ ≥ 1 (72)

R′h′ ≤ q′ −H′y −W′δ′ − S′z′ −V′r′ (73)

Q′z′ + F′r′ ≤ t′ − L′y − J′δ′ (74)

Rh(j) ≤ q−Tu∗(j) −Hy −Wδ(j) − Sz(j) −Vr(j), ∀u∗(j) ∈ Apart (75)

Qz(j) + Fr(j) ≤ t− Ly − Jδ(j). (76)
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3. Solve the outer subproblem using the inner layer in the previous subsection with ŷ(j)=y∗.

Obtain an optimal solution bT ĥ(j) + cTy∗ and an optimal attack plan û(j). Set LBout =

bT ĥ(j) + cTy∗.

4. If (UBout − LBout)/UBout < 10−5, ŷ(j) is the optimal coupling interface and the algorithm

is terminated. Otherwise, Apart = Apart ∪ û(j), set j ← j + 1 and return to step 2.

The outputsof the algorithm are the optimal combined performance in the worst-case failure

scenario and the related optimal coupling interface ŷs.

4. Illustrative case-study

As illustrative case-study, a power network based on the IEEE 14-bus system [53] and a gas

network based on the IEEE 9-bus system [54] are considered. As shown in Figure 4, the IPGNs are

allocated within a 300×300 km area. The importance of each infrastructure is given by their weights,

wPN and wGN , both equal to 0.5. Node 1 in the power network is chosen as the reference bus. Other

parameter values are summarized in Appendix B. We test our model for values of Katt ranging from

1 to 5. We choose a representative interdependency cost-per-kilometer of 1 $/km, for both cg←p
km

and cp←g
km . We assume budget values Bci ranging from $900 to $1500 for the installment of coupling

interfaces. We also consider a budget of $823, which corresponds to the cost of the minimum-

distance coupling interface, where each node in one infrastructure is dependent, if necessary, on

the geographically-closest node of the other infrastructure4. We compare the results obtained by

our model with the results obtained with network metrics-based coupling interfaces, which are

identified based on different combinations of node degree (D) and betweenness (B). We distinguish

four coupling interfaces using the different network metrics and the terms assortative (subscript

ast) and disassortative (subscript dst). In network science, the assortativity (disassortativity) is

a property that describes the tendency of the nodes of a network to be connected to nodes which

are similar (different) regarding some specific properties [55]. For example, it can refer to the

tendency of high degree nodes to be attached to other high degree nodes. Additionally, we identify

a geographical location-based coupling interface, referred to as Euclidean. The five different network

metrics-based interfaces used in this work are characterized by the following features:

• Euclidean: each node in the power network (or gas network) is dependent on the geographi-

cally closest node in the gas network (or power network).

4The cost of this coupling interface, referred to as Euclidean coupling interface, is, precisely, $822.763752. For

the sake of simplicity, in this work, it is approximated to $823.
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Figure 4: Interdependent power and gas networks.

• DDast: the node with the kth highest degree in the power network (or gas network) is depen-

dent on the node with the kth highest degree in the gas network (or power network).

• DDdst: the node with the kth highest degree in the power network (or gas network) is depen-

dent on the node with the kth lowest degree in the gas network (or power network).

• BBast:the node with the kth highest betweenness in the power network (or gas network)

is dependent on the node with the kth highest betweenness in the gas network (or power

network).

• BBdst: the node with the kth highest betweenness in the power network (or gas network) is

dependent on the node with the kth lowest betweenness in the gas network (or power network).

The cost associated with each network metrics-based coupling interface is reported in Table 1.

24



Table 1: Cost of network metrics-based coupling interfaces. For simplicity, the costs are rounded by excess.

Interface Cost

Euclidean $823

DDast $1518

DDdst $2098

BBast $1943

BBdst $2126

The optimization problem is implemented with Gurobi 9.1 [56] on a desktop PC with a 3.20

GHz CPU and 32 GB RAM.

5. Results and discussion

5.1. Combined performance

The results for the network metrics-based coupling interfaces are shown in Figure 5, while the

results for the optimal coupling interfaces obtained by our approach with different budget Bci are

shown in Figure 6. The x-axis shows the maximum number of lines in the power network which can

be attacked and failed; the y-axis shows the correspondent worst-case realization of the combined

performance.

As it can be clearly seen in Figure 5, the DDast coupling interface performs quite poorly,

reaching a worst-case combined performance value of 0 for Katt=4. The BBast coupling interface

performs well for values Katt ≤4. The DDdst and BBdst coupling interfaces perform similarly for

values Katt ≤3. For Katt=4, the DDdst interface performs better, while for Katt=5, the BBdst

interface performs better.

The Euclidean coupling interface leads to the better performance overall: for Katt=3, Katt=4

andKatt=5, the Euclidean coupling interface leads worst-case combined performance of 0.703, 0.523

and 0.307. It is outperformed only by the BBast coupling interface for Katt=1.

These results clearly show how different coupling interfaces lead to different worst-case combined

performance. In this case, the Euclidean coupling interface performs better than the other network

metrics-based coupling interfaces. However, these results should not be generalized, as the perfor-

mance of each network metrics-based coupling interface is strongly case-dependent. For example, if

we change the geographical disposition of the nodes of the IPGNs, the Euclidean coupling interface

would be different and, thus, the results would differ. Similar considerations are valid for the other

network metrics-based coupling interfaces.
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Figure 5: Worst-case combined performance for different network metrics-based coupling interface and values Katt.
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Figure 6: Worst-case combined performance for optimized coupling interface with different budgets Bci and values

Katt.
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The optimal coupling interfaces, identified with the proposed optimization model, outperform

the network metrics-based coupling patterns in terms of worst-case combined performance, as it

can be clearly seen in Figure 6. The minimum budget which ensures the feasibility of the model is

$823, which corresponds to the cost of the Euclidean coupling interface (see Table 1). For a budget

lower than $823 it is not possible to allocate all the necessary interdependencies and to ensure

satisfactory performance in normal conditions, and the optimization problem is, thus, unfeasible.

The results for Bci=$823 (blue triangles in Figure 6) are equivalent to the results of the Euclidean

coupling interface (blue triangles in Figure 5).

As it can be clearly seen, for values of Bci greater than $823, the traditional interfaces are outper-

formed by the optimal coupling interfaces identified by the proposed approach. For example, with

Bci=$900 and Katt=3, Katt=4 and Katt=5, the worst-case combined performance are, respectively,

0.766, 0.644 and 0.514, while with Bci=$1000 and Katt=3, Katt=4 and Katt=5, the worst-case com-

bined performance are 0.894, 0.763 and 0.601, respectively. These results are considerably higher

than the previously explained Euclidean interface (0.703, 0.523 and 0.307, respectively).

The worst-case combined performance improves with the increasing of the budget Bci. For

example, with Bci=$1500 and Katt=3, Katt=4 and Katt=5, the worst-case combined performance

are 0.930, 0.906 and 0.860, respectively. For values of Bci greater than $1500, the results do not

improve. The case Bci=$1500 (pink triangles in Figure 6) leads to the best possible results for this

case-study.

It is also of interest to compare optimal coupling interface designs for different Bci and Katt.

In Figure 7, the optimal coupling interfaces for Bci=$900 and Bci=$1000 with Katt=2 are shown.

With Bci=$900 and Katt=2, the optimal value of the combined performance is 0.791, while with

Bci=$1000 and Katt=2, the optimal value of the combined performance is 0.953. These values

corresponds to an increase of combined performance of 20.5% for an increase of budget of 11.1%.

As we can notice in Figure 7, two interdependency links from the gas network to the power network

(red squares) change when passing from Bci=$900 to Bci=$1000, as it is also highlighted in Table

2. Moreover, three interdependency links from the power network to the gas network (blue squares)

change when passing from Bci=$900 to Bci=$1000, as it is also highlighted in Table 3.

Table 2: Reallocation of interdependency links from the gas network to the power network (gas supply) when passing

from Bci=$900 to Bci=$1000, with Katt=2.

Budget Node 6 ∈ VPN Node 8 ∈ VPN

$900 Node 8 ∈ VGN Node 6 ∈ VGN

$1000 Node 9 ∈ VGN Node 7 ∈ VGN
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Figure 7: Example of two optimal solutions for Bci=$900 and Bci=$1000 with Katt=2. Blue squares represent links

from the power network to the gas network (electricity supply); red squares represent links from the gas network

to the power network (gas supply); green squares represent links in both the directions; grey squares represent the

absence of links.

As it can be clearly seen, the reallocation of some of the interdependency links leads a consider-

able increase of worst-case combined performance. Moreover, it is interesting to notice that, with

Bci=$1000, nodes 1, 4, and 5 of the gas network are dependent on nodes 1, 6, and 6 of the power

network, respectively, and both these nodes of the power network contain a gas-fired power plant,

i.e. they have some power production capacity (see Table B.5 in Appendix B). Intuitively, as in

this work only failures of lines are considered, it is more convenient for nodes of the gas network to
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Table 3: Reallocation of interdependency links from the power network to the gas network (electricity supply) when

passing from Bci=$900 to Bci=$1000, with Katt=2.

Budget Node 1 ∈ VGN Node 4 ∈ VGN Node 5 ∈ VGN

$900 Node 12 ∈ VPN Node 11 ∈ VPN Node 14 ∈ VPN

$1000 Node 1 ∈ VPN Node 6 ∈ VPN Node 6 ∈ VPN
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Figure 8: Cost of optimal coupling interfaces for different budgets Bci and values Katt.

be dependent on nodes in the power network with some production capacity, and vice versa.

5.2. Coupling interface cost

In Figure 8, the results in terms of allocation cost of optimal coupling interfaces for different

monetary budgets and maximum failed lines are shown. As it can be clearly seen, the network

metrics-based coupling interfaces are outperformed also in terms of cost (with the exception of the

Euclidean coupling interface). The cost of the network metrics-based coupling interfaces are shown

in Table 1.

It is also useful to compare the increase in combined performance with the increase of cost.

For example, for the case Katt=3, passing from Bci=$823 to Bci=$1000 (21.5% of budget increase)

leads to an increase of 27.2% in worst-case combined performance (from 0.703 to 0.894). The cost of

the optimal coupling interface with a budget Bci=$1000 is 977.3$, corresponding to an increase of
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cost of 18.8% from the Euclidean coupling interface. In this case, the relative increase of combined

performance is greater than the relative increase of cost. However, as it can be graphically seen

in Figures 6 and 8, for higher values of Katt and Bci, the relative increase of cost is higher than

the increase in performance. For example, for the case Katt=5, when passing from Bci=$1400 to

Bci=$1500, the increase of budget is 7.1%, and the increase of actual cost is 2.8% (from $1369.40

to $1408.40); however, the increase of combined performance is only 0.93% (from 0.852 to 0.860).

For the case previously analyzed in Figure 7 and Table 3, an increase of 11.1% in the budget

(from $900 to $1000) leads to an increase of 20.5% in combined performance (from 0.791 to 0.953).

The actual costs of the two optimal solutions, for Bci=$900 and Bci=$1000 with Katt=2, are $854.1

and $977.3, respectively, corresponding to an increase of 14.4% in cost when passing from Bci=$900

to Bci=$1000 with Katt=2.

5.3. Validation

The last term in the objective function in (7) numerically pushes the optimization problem to

identify the cheapest solution among the coupling interfaces that maximizes the combined per-

formance of the IPGNs. In order to identify correctly this solution, the order of magnitude of

the factor γ should be set properly, accounting for the order of magnitude of the combined per-

formance, the monetary budget, and the optimality gap within the NC&CG algorithm. Within

this paper, a value of γ=10−5 is used. The results are then validated by solving the optimization

problem only accounting for the combined performance (γ=0), and by setting the monetary budget

Bci slightly below the actual cost of the optimal coupling interface, and verify that the optimal

combined performance are lower.

For example, for the case Bci=$1000 and Katt=2, the optimal coupling interface has a cost

of $977.3 and leads to combined performance of 0.953. We can verify that the cheapest optimal

solution is identified correctly by setting γ=0 and solving for a budget Bci=$977. Solving the

problem with a budget Bci=$977 leads to combined performance of 0.950, lower than the optimal

combined performance of 0.953. This is an indication the correct cheapest optimal solution is

identified correctly.

5.4. Computational performance

The computational time in seconds of the NC&CG algorithm is shown in Table 4. In this study,

the computational cost is acceptable, as the longest instance of the NC&CG algorithm occurs for

Bci=$1000 and Katt=5, and it takes 176.26 seconds.

The illustrative case-study in this work presents a small-medium size, and the computational

cost might increase considerably if larger networks are considered. However, this do not represent

an issue:
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Table 4: Computational time in seconds of the NC&CG algorithm.

Bci Katt=1 Katt=2 Katt=3 Katt=4 Katt=5

$823 1.13 4.12 30.17 50.37 140.30

$900 2.91 6.26 35.58 156.44 93.36

$1000 1.73 7.80 21.64 52.67 176.26

$1100 2.89 11.25 22.40 21.29 47.63

$1200 2.75 9.45 53.61 97.97 53.41

$1300 2.87 6.31 27.94 73.95 49.66

$1400 2.89 8.03 16.48 22.89 40.37

$1500 2.90 5.86 12.48 39.94 42.58

• the proposed model should be used for designing or retrofitting coupling interfaces, and in

preliminary design phases, the computational time do not represent a critical factor;

• the computational complexity of the optimization problem can be reduced by limiting the

number of binary variables of the problem. For example, the feasible allocation of interde-

pendency links can be limited to nodes which are geographically close to each other.

6. Conclusion

CIs are essential for any advanced society, and ensuring their resilience against failures and

disruption is of the utmost importance. As coupling interfaces between interdependent CIs are a

key factor for maintaining high levels of resilience, optimizing their design is an important issue.

In this work, we proposed a mathematical programming approach for the resilience-based opti-

mization of coupling interfaces between interdependent CIs that, compared to traditional network

metrics-based solutions, is more generalizable and leads to better performances.

In fact, using interdependent power and gas networks as case-study, we showed how optimal

coupling strategies, obtained by the proposed approach, clearly outperform traditional coupling

strategies based on network metrics. In addition, the proposed approach can be easily adapted to

other combinations of interdependent CIs by updating the operational model used in the optimiza-

tion procedure.

In the proposed case-study, only failures of power lines are considered. However, alternative

disruption scenarios, such as failure of nodes or gas pipelines, can be easily included with a similar

31



approach using additional binary variables.

The computational cost is affordable in this work. In general, in this kind of optimization

problems, aimed at being used during design phases, the computational time does not represent a

key factor.

Further improvements of this work includes the possibility of allocating redundant interdepen-

dency links within the coupling interface and the evaluation of occurrence probability of each failure

scenario.

Appendix A. Linearization of DC power flow constraint

Constraint (34) can be linearized by replacing it with the equivalent Constraints (A.1) and

(A.2):

xkfk −
(
θO(k) − θD(k)

)
≥ −Mk(1− uk),∀k ∈ EPN (A.1)

xkfk −
(
θO(k) − θD(k)

)
≤Mk(1− uk), ∀k ∈ EPN (A.2)

where Mk is the “Big-M” constants, computed as in (A.3) as suggested in [50]:

Mk ≥ θ + xkfk (A.3)

where θ is the maximum difference of two phase angles at two connected buses, here assumed π/2.
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Appendix B. IPGNs parameters

Table B.5: Production capacity and base requested demand for each node in the power network.

Node index pi [MW] d
b

i [MW] d
m3

i [m3]

1 42 8.5 3

2 42 8.5 3

3 42 8.5 3

4 0 8.5 0

5 0 8.5 0

6 42 8.5 3

7 0 8.5 0

8 42 8.5 3

9 0 8.5 0

10 0 8.5 0

11 0 8.5 0

12 0 8.5 0

13 0 8.5 0

14 0 8.5 0
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Table B.6: Boundaries, maximum flow capacity and reactance for each line in the power network.

Line index Boundaries (i, j) fk [MW] xk [pu]

1 (1, 2) 30 0.05917

2 (1, 5) 30 0.22304

3 (2, 3) 30 0.19797

4 (2, 4) 30 0.17632

5 (2, 5) 30 0.17388

6 (3, 4) 30 0.17103

7 (4, 5) 30 0.04211

8 (4, 7) 30 0.20912

9 (4, 9) 30 0.55618

10 (5, 6) 30 0.24202

11 (6, 11) 30 0.1989

12 (6, 12) 30 0.25581

13 (6, 13) 30 0.13027

14 (7, 8) 30 0.17615

15 (7, 9) 30 0.11001

16 (9, 10) 30 0.0845

17 (9, 14) 30 0.27038

18 (10, 11) 30 0.19207

19 (12, 13) 30 0.19988

20 (13, 14) 30 0.34802
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Table B.7: Production capacity and base requested demand for each node in the gas network.

Node index pi [m
3] di [m

3] d
MW

i [MW]

1 15 0 7

2 15 0 7

3 15 0 7

4 0 5 7

5 0 5 7

6 0 5 7

7 0 5 7

8 0 5 7

9 0 5 7

Table B.8: Boundaries and maximum flow capacity for each line in the gas network.

Line index Boundaries (i, j) fk [m3]

1 (1, 2) 15

2 (1, 5) 10

3 (2, 3) 10

4 (2, 4) 15

5 (2, 5) 10

6 (3, 4) 10

7 (4, 5) 15

8 (4, 7) 10

9 (4, 9) 10

35



References

[1] F. Nocera and P. Gardoni, “Selection of the modeling resolution of infrastructure,” Computer-

Aided Civil and Infrastructure Engineering, 2022.
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Gif-sur-Yvette, France.

Email: adam.abdin@centralesupelec.fr

Abstract

Critical infrastructures (CIs), such as energy systems, transportation networks and telecommuni-
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1. Introduction

1.1. Motivation

Critical infrastructures (CIs), such as energy systems, transportation and telecommunications

networks, are large and complex man-made systems which support vital societal functions and

represent a driving force in the socioeconomic development (Z. Guo & Haimes, 2016). In fact, many

essential services and commodities, such as electricity, public transportation, water and gas supply

or telecommunications, are provided by CIs (Ouyang, 2014). Consequently, failures and disruptive

events within CIs, such as intentional sabotages, extreme natural hazards or random failures, can

cause disruption and considerable negative consequences within a society. For example, the blackout

which affected Italy on 28 September 2003 caused over 10 hours of power outages for more than

50 millions people (Corsi & Sabelli, 2004). Thus, a risk-oriented analysis and optimization within

these critical systems is an essential task (Bier & Gutfraind, 2019).

CIs are not stand-alone isolated systems, but they are interconnected with, and interdependent

on, each other in terms of functionality, reliability and performance (Rinaldi et al., 2001). While

these interdependencies increase the operational performance and efficiency of CIs, they often lead

to an increased vulnerability (Buldyrev et al., 2010). Interdependent networks and systems are

intrinsically more fragile than isolated systems, as a failure within one infrastructure can spread

within other infrastructures and cause multi-sectoral disruption (Buldyrev et al., 2010; Lee II et

al., 2007; Vespignani, 2010). Ensuring and optimizing the resilience of interdependent CIs are

important issues, and they are the main focus of various existing works (e.g. Alkhaleel et al., 2022;

Fang and Zio, 2019; Ouyang, 2017; Ouyang and Fang, 2017).

Among the various factors and parameters that can affect the resilience of interdependent sys-

tems, network science has demonstrated that the topology of the ensemble of interdependencies,

here referred to as coupling interface, can strongly affect the failure propagation between differ-

ent systems (Parshani et al., 2010). However, designing (or retrofitting) the topology of coupling

interfaces of interdependent CIs has been investigated by very few studies.

Coupling interfaces should be designed to ensure the robustness of interdependent systems

against different failure and disruption scenarios. As failure scenarios can considerably vary in

terms of cause, magnitude and frequency of occurrence, optimizing coupling interfaces lies within the

framework of optimization under uncertainty. In our previous work (Bellè et al., 2021), we proposed

a framework to optimize the coupling interface design against the worst-case scenario within a set

of feasible failure scenarios, exploiting the traditional defender-attacker-defender model. While this

approach provides robust solutions, it might suffer from overconservativeness. In this paper, we

propose a data-driven distributionally robust approach for the optimal coupling of interdependent

critical infrastructures under random failure scenarios. Our proposed model has the advantage of
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allowing to tune the conservativeness of the solution with specific parameters, in order to better

reflect the attitude towards risk of the decision maker. Moreover, our model gives the possibility

to exploit historical data on failures and contingencies for an informed decision making.

1.2. Related work

1.2.1. Design of coupling interface

Despite coupling interfaces playing a key role in the failure propagation between different infras-

tructures, their design and optimization have been seldomly treated within the existing literature.

In fact, in most of the existing works on interdependent CIs, the coupling interface is given and

fixed, and no sensitivity analysis of different designs is performed.

The concept of interdependencies topology is typical of network science, and in particular of

interdependent networks. In this field, several works analyze the impact of different coupling

interfaces on the failure propagation between different types of networks. In fact, it has been shown

that the design of coupling interfaces modifies the failure propagation between interdependent

networks (Fu et al., 2014; Parshani et al., 2010). Moreover, a proper coupling interface design can

reduce the vulnerability and increase the robustness of interdependent networks (Chattopadhyay

et al., 2017; X. Wang et al., 2018; Yagan et al., 2012). These works represent the theoretical

background that justifies the study of coupling interfaces between CIs. However, the models in

these works are mainly based on percolation theory, which fails to detail the complexity of real-

world infrastructures. Thus, they can not be directly applied for real-world decision-making.

Some scholars leveraged on network metrics-based coupling strategies to assess the impact of

different coupling interfaces in interdependent CIs, such as power and water networks (S. Wang

et al., 2012) or power and telecommunication networks (Chen et al., 2017; H. Guo et al., 2019;

Rueda & Calle, 2017). These strategies represent only a heuristic approach and, although they

provide meaningful insights, they do not ensure solution optimality.

In (Winkler et al., 2011), the authors propose a more sophisticated heuristic model for de-

signing optimal coupling interfaces between complex urban infrastructure systems against external

attacks. The coupling interface is based on traditional network metrics, such as node degree, be-

tweenness, clustering coefficient and Euclidean distance. Interface design between power, gas and

water networks is given as an illustrative example. A similar approach is presented in (Ouyang

& Dueñas-Osorio, 2011), where the authors propose a network metrics-based heuristic method to

optimize coupling interfaces against cascading failures and different external attacks scenarios, also

accounting for physical features of the different nodes (e.g. supply or demand nodes). However,

these approaches still rely on network metrics-based heuristics, and they do not guarantee global

optimality of solutions.
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In our previous work (Bellè et al., 2021), we proposed a mathematical framework for the optimal

coupling of interdependent CIs based on the defender-attacker-defender model (Brown et al., 2005).

This model ensures a coupling interface design which is robust against the worst-case realization of

the uncertainty, represented by a set of feasible failure scenarios. While this model represents the

first mathematical programming approach for the optimal coupling of interdependent CIs, it does

not include probabilistic information on the different feasible failure scenarios considered within

the optimization. Consequently, the solutions might result overconservative, and the control of the

decision-maker over the conservativeness of the model is limited to the size of the uncertainty set, i.e.

the set of feasible failure scenarios. To the best of our knowledge, an optimization under uncertainty

approach for optimizing the coupling interface of interdependent CIs under random failures, which

avoids the the risk of overconservativeness, is missing. An approach based on distributionally robust

optimization might be able to offer more control over the level of conservativeness and to leverage

historical data for encoding probabilistic information within the decision-making.

1.2.2. Distributionally robust optimization in CIs

When dealing with optimization under uncertainty, different approaches are available. In robust

optimization (RO), it is assumed that the decision-maker has no knowledge on the uncertainty

distribution of the parameters, except for the support sets. The decision-maker thus seeks to

optimize the solution against the worst uncertainty realization. RO represents the most risk-averse

class of optimization under uncertainty, and it leads to solutions which are often highly conservative.

In stochastic optimization (SO), it is assumed that the decision maker has perfect distributional

knowledge of the uncertainty. The goal is, thus, to identify a solution that optimizes the expectation

of the objective function. SO represents a risk-neutral class of optimization under uncertainty.

In reality, it is often not possible to obtain full information on the uncertainty probability distri-

bution. However, partial probabilistic knowledge of the uncertainty distribution is often available.

While it is often insufficient for deriving a probability distribution with high confidence, this partial

information can be exploited with a robust stochastic approach that protects the decision-maker

from the ambiguity of the available distributional knowledge (Rahimian & Mehrotra, 2019). This

approach is called distributionally robust optimization (DRO), and it is based on the assumption

that the real distribution of uncertainty is unknown, but it is contained within an ambiguity set,

where the available probabilistic information is encoded. In this framework, the decision-maker

seeks to identify a solution that optimizes the expectation of the objective function under the worst

distribution within the ambiguity set. The risk-aversion of DRO lies between RO and SO, and it

can be tuned by modifying the size of the ambiguity set to correspond to one or the other.

The applications of DRO have seen an increased interest in several research domains. For
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example, it has been applied in traditional operational research problems, such as the shortest path

problem (Z. Wang et al., 2020), the capacitated facility location problem (Saif & Delage, 2021) or

continuous games (Liu et al., 2018). Moreover, DRO has been used for real-world applications, such

as retrofitting planning of transportation networks (Doan, 2021), planning of energy and reserve

dispatch (Arrigo et al., 2022) or elective surgery scheduling (Shehadeh & Padman, 2021). However,

the applications within the context of protection of CIs remain sparse and limited, and mostly

confined within power systems applications.

Ambiguity sets can be defined using different methods, and they can be grouped within two

main families: moment-based and discrepancy-based ambiguity sets. In this work, we rely on a

moment-based ambiguity set, often applied within the context of power networks. For example,

moment-based distributionally robust models under random contingency are applied to: configure

distribution networks (Babaei et al., 2020), assess the reliability of a transmission network hardening

plan (Bagheri & Zhao, 2019), define a contingency-constrained unit commitment model (Zhao &

Jiang, 2017), drive the formation of microgrids for service restoration (Cai et al., 2021), plan

transmission expansion with distributed energy resources (Alvarado et al., 2018), perform a multi-

disaster resilience enhancement of distribution networks (Zhang et al., 2020) and plan spinning

reserve in power networks (Li et al., 2022).

These existing works are a clear indication of the validity of DRO approaches with moment-based

ambiguity sets within the context of protection of CIs. It is also clear that DRO approaches, in the

context of critical infrastructures, have remained confined within the power systems applications,

and no application in the general field of protection of interdependent CIs seems to exist.

1.3. Contribution

We propose a novel data-driven DRO model for the optimal design of coupling interfaces between

interdependent CIs under random failures. The proposed approach ensures the robustness of the

coupling interface in terms of worst expectation of combined performed of the interdependent

infrastructures under disruption conditions. The proposed approach is based on a moment-based

ambiguity set, built upon a synthetic contingency data set. Using as an illustrative case-study

interdependent power and gas networks (IPGNs), our model ensures a coupling interface design

which maximizes the expected combined performance of the IPGNs under the worst distribution

within the ambiguity set.

The contributions of this papers can be summarized as follows:

• We propose a novel data-driven DRO-based model for the optimal coupling of interdependent

CIs, which can be directly applied in real-world situations such as: (i) design of the coupling
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interface between new CIs, (ii) design of the coupling interface between new and existing CIs,

(iii) retrofitting, analysis and evaluation of existing coupling interfaces.

• We show how to build a data-driven moment-based ambiguity set using a synthetic contin-

gency data set, generated ad hoc to recreate realistic historical data of failure scenarios.

• We develop a reliable and efficient solution approach based on the Nested Column&Constraint

Generation (NC&CG) algorithm.

• Using IPGNs as a case-study, we show the validity of our approach comparing the optimal

coupling interface designs with a traditional euclidean coupling strategy based on geographical

vicinity.

• We perform a sensitivity analysis on various parameters, demonstrating the validity of our

approach over a spectrum of parametric assumptions.

The rest of this work is organized as follows: in Section 2, the problem is formulated; in Section

3, the solution procedure is detailed; in Section 4, the case-study is presented in details; in Section

5, the main results are reported and discussed; in Section 6, some final remarks are given.

2. Problem formulation

2.1. Modeling framework

Critical infrastructures are interdependent if the state of one system depends on the state/output

of another one. Relationships of various nature can exist between elements of different infrastruc-

tures, and the interdependencies can be divided into four categories: physical, when the state of one

system is dependent on the material output of another system; cyber, when the state of one system

is dependent on the information transmitted through another system; geographic, when different

systems share the same location and their state can be modified by an environmental event; and

logical, if the interdependency is not physical, cyber, or geographic (Rinaldi et al., 2001).

We model each infrastructure using a network flow-based approach (Ouyang, 2014). A network

is a mathematical construct described by a graph G = (V,E), where V is the set of N nodes and

E is the set of M edges. Each edge k is directed, and it is defined by a tuple (i, j), where i and j

represent, respectively, the origin node O(k) and destination node D(k) of the corresponding edge.

We assume that each node i is characterized by a production capacity pi (e.g. power or gas flow

production) and a requested demand di (e.g. power or gas flow demand). Similarly, each edge k is

defined by a maximum flow capacity fk.
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In the context of J interdependent infrastructures, the focus of our analysis is the combined

performance PC (Fang & Zio, 2019), generally defined as in (1):

PC =
∑

j∈J
wj

∑
i∈Vj

di∑
i∈Vj

di
(1)

where wj represents the weight of infrastructure j, Vj represents the set of nodes in infrastructure j

and di represents the demand supplied at node i. This equation represents the fraction of requested

demand that is satisfied within the interdependent CIs.

In this work, we consider interdependent power and gas networks (IPGNs), which are mutually

interdependent on each other with physical interdependencies: equipment in the gas network needs

to be supplied with electricity, while gas-fired power plants needs a gas flow supply.

One could imagine the problem of designing the coupling interface as a traditional reliable

network design problem (e.g. Bhuiyan et al., 2020). In the reliable network design problem, a

decision maker seeks to allocate the links between nodes in order to design a network which satisfies

some given conditions in terms of performance and robustness against failures. In the coupling

interface design problem, we seek to allocate interdependency links between nodes of different

networks in order to guarantee satisfying performance in nominal conditions and robustness in

conditions of disruption.

Given a power network and a gas network, we want to identify the coupling interface design

which maximizes their combined performance in feasible disruption conditions. The expectation

of the combined performance is computed with respect to a set of feasible failure scenarios. Each

failure scenario is represented by an ambiguous probability, as defined by the ambiguity set.

In this work, we consider within the set of feasible failure scenarios only contingencies of edges

of the power network, which represent power transmission lines.

2.2. Networks operational model

The power network is operated with a traditional DC power flow model, while the gas network

is operated with a maximal flow model, which is a suitable linear approximation for any flow-based

system or infrastructure (Fang & Zio, 2019; Nurre et al., 2012; Ouyang & Fang, 2017). For a fixed

coupling interface and contingency scenario, the operational model of IPGNs is described by the

optimization shown in Equation (2), subject to Constraints (3)-(18):

max
h,δ

wPN

∑
i∈VPN

di

d
max

PN

+ wGN

∑
i∈VGN

di

d
max

GN

(2)

subject to:

0 ≤ pi ≤ pi, ∀i ∈ VTOT (3)
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0 ≤ di ≤ d
b

i +
∑

j∈VGN

y1ji d
MW

j , ∀i ∈ VPN (4)

0 ≤ di ≤ d
b

i +
∑

j∈VPN

y2ji d
m3

j , ∀i ∈ VGN (5)

−fk ≤ fk ≤ fk, ∀k ∈ EGN (6)

−ukfk ≤ fk ≤ ukfk, ∀k ∈ EPN (7)

pi − di +
∑

D(k)=i

fk −
∑

O(k)=i

fk = 0, ∀i ∈ VTOT (8)

xkfk −
(
θO(k) − θD(k)

)
≥ −Mk(1− uk),∀k ∈ EPN (9)

xkfk −
(
θO(k) − θD(k)

)
≤Mk(1− uk), ∀k ∈ EPN (10)

di − δPNi
(
d
b

i +
∑

j∈VGN

y1ji d
MW

j

)
≥ 0, ∀i ∈ VPN (11)

di − δGNi
(
d
b

i +
∑

j∈VPN

y2ji d
m3

j

)
≥ 0, ∀i ∈ VGN (12)

pi − pi
∑

j∈VGN

y2ij δ
GN
j ≤ 0, ∀i ∈ VPN (13)

pi − pi
∑

j∈VPN

y1ij δ
PN
j ≤ 0, ∀i ∈ VGN (14)

di − d
b

i

∑

j∈VPN

y1ij δ
PN
j −

∑

j∈VPN

y2ji d
m3

j

∑

j∈VPN

y1ij δ
PN
j ≤ 0, ∀i ∈ VGN (15)

−
∑

i=O(k)
j∈VPN

y1ij δ
PN
i fk ≤ fk ≤

∑

i=O(k)
j∈VPN

y1ij δ
PN
i fk, ∀k ∈ EGN (16)

−
∑

i=D(k)
j∈VPN

y1ij δ
PN
i fk ≤ fk ≤

∑

i=D(k)
j∈VPN

y1ij δ
PN
i fk, ∀k ∈ EGN (17)

δPNi , δGNi ∈ {0, 1}, θj free, ∀i ∈ VTOT ,∀j ∈ VPN (18)
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The term h={p,d, f ,θ} represents the continuous operational variables of the optimization,

where p, d, f and θ are, respectively, production levels and supplied demands of power/gas in each

node, power/gas flows in each edge and phase angles of the nodes in the power network. The term

δ represents the binary operational variables of the model, describing the functional states (1 if

functional, 0 otherwise) of the interdependency links between the IPGNs. The term y={y1ij , y2ij}
represents binary variables which define the coupling interface design. They do not appear below

the maximization in (2), as they are not variables of the operational model. The term y1ji=1 if

the node j ∈ VGN is dependent on the node i ∈ VPN and y1ji=0 otherwise. Similarly, the term

y2ji=1 if the node j ∈ VPN is dependent on the node i ∈ VGN and y2ji=0 otherwise. As it will be

clear in the next section, they are decision variables of the outer stage of the distributionally robust

model. The terms uk represents the failure variables of the power transmission lines. The variable

uk=0 if line k is failed, and uk=1 otherwise. Similarly to the variables y, the variables u do not

appear below (2), but they are present in the ambiguity set and they will be explained in the next

section. The objective function in (2) represents the combined performance of the IPGNs in terms

of fraction of requested demand of electricity and gas which is supplied. The subscripts PN and

GN denote the power network and the gas network, respectively. The subscript TOT denotes the

union of power and gas networks elements (e.g. VTOT = VPN ∪ VGN ). The variable di represents

the supplied demand of power/gas in the node i, while the terms d
max

PN and d
max

GN represent the

total requested demand of power and gas in the power and gas network, respectively. Contrary

to Equation (1), we define the requested demand in terms of networks rather than single nodes;

this is because the requested demand in each node is not a constant parameter, but it depends on

the coupling interface, defined by the variables y={y1ij , y2ij}. The importance of each infrastructure

when computing the combined performance is given by the weights wPN and wGN . The constraints

are shown in (3)-(18). Constraint (3) states that the production level of power/gas pi in each node

is bounded between 0 and the node production capacity pi. The supplied demand of power/gas di

in each node is bounded between 0 and the requested demand, as enforced by Constraints (4)-(5).

Contrary to traditional approaches, the requested demand in each node is not a fixed parameter

but it depends on the coupling interface, as shown in (4) and (5). The requested demand in each

node i, either in the power or gas network, is composed of two terms:

• The term d
b

i is the base requested demand, which represents various consumers of electric-

ity/gas (households, industries, etc.).

• The second terms,
∑
j∈VGN

y1ji d
MW

j in (4) and
∑
j∈VPN

y2ji d
m3

j in (5), represent the electric-

ity/gas demand of all the nodes of the other infrastructures dependent on the node i. The

terms d
MW

j and d
m3

j represent, respectively, the electricity demand of node j ∈ VGN and the

9



gas flow demand of node j ∈ VPN . We recall that the term y1ji has value 1 if the node j ∈ VGN
is dependent on the node i ∈ VPN and 0 otherwise. Similarly, the term y2ji has value 1 if the

node j ∈ VPN is dependent on the node i ∈ VGN and 0 otherwise.

Constraints (6) and Constraint (7) describes, respectively, the constraint on the flow of gas and

power in each edge, which is bounded, in absolute value, by the flow capacity fk. Since in this

study we consider random contingencies of power transmission lines, the variable uk=0 when the

edge k is failed and uk=1 otherwise. The net balance between generation, demand and flow in each

node is guaranteed by Constraint (8). The DC power flow assumption within the power network is

enforced by Constraints (9)-(10).

The functional state of each interdependency link is described in (11) and (12). Each interde-

pendency link from the node i ∈ VPN to the nodes j ∈ VGN is functional if the variable δPNi is

equal to 1; otherwise, δPNi =0 and the all the nodes in VGN that are depending on node i are not

functional. We assume, as shown in (11), that each variable δPNi can take the value 1 only when

the requested demand in the node i is fully supplied (Fang & Zio, 2019). The same assumption is

applied for the gas network and the corresponding variables δGNi , as shown in (12).

The production level pi in each node depends on the coupling interface. We assume that the

production pi in each node ranges between 0 and the production capacity pi if there is one functional

interdependency, and 0 otherwise. For example, as shown in (13), the production pi in the node

i ∈ VPN ranges between 0 and pi if there is one interdependency link from a node j ∈ VGN in the gas

network (y2ij=1) properly functional (δGNj =1); otherwise, pi takes the value 0. The rationale behind

this assumption is that, in this work, each node in VPN with a production capacity higher than 0

is assumed to contain a gas-fired power plant. The same assumption is applied for the gas network

and the corresponding interdependency link from the power network, as shown in (14). In addition,

we assume that, in the gas network, supplied demands and flows in the pipes are also dependent

on the interdependency from the power network. As shown in (15), the supplied demand di in the

node i ∈ VGN ranges between 0 and the requested demand if there is one interdependency from

a node j ∈ VPN in the power network (y1ij=1) properly functional (δPNj =1); otherwise, di takes

the value 0. The rationale behind these assumptions is that each node in VGN needs electricity to

run various equipment, such as pumps, valves or compressors. Lastly, we assume that the absolute

value of the flow fk in each pipe k ∈ EGN ranges between 0 and the maximum flow capacity fk

only if both the origin and destination node of k, respectively O(k) and D(k), have a functional

interdependency from the power network, as expressed in (16) and (17); otherwise, fk takes the

value 0.

For clarity, we can express the model in (2)-(18) with its compact matrix formulation, shown in

(19)-(20):

10



max
h,δ

bTh (19)

subject to:

Rh ≤ q−Tu−Hy −Wδ − yTDδ (20)

where h is the vector containing the continuous variables, u, y and δ are vector containing the

binary variables, b is the vector containing the parameters of the objective function, R, T, H,

W and D are matrices containing the constraints parameters and q is the vector containing the

constraints constants.

Due to the multiplication between y and δ variables in Constraints (11)-(17), the formulation

presents nonlinear terms. However, they can be linearized by introducing new binary variables,

contained within the vectors z and r, and new parameters matrices V and S, and Constraints (20)

can be replaced by (21).

Rh ≤ q−Tu−Hy −Wδ − Sz−Vr (21)

2.3. Distributionally robust formulation

We formulate a distributionally robust problem for the optimal coupling interface of IPGNs

under random failures, as it is shown in (22)-(27):

max
h0,δ0

y∈{0,1}

min
P∈M

EP [Q(y, ξ)] (22)

subject to:

∑

j∈VPN

y1ij ≤ 1, ∀i ∈ VGN (23)

∑

j∈VGN

y2ij ≤ 1, ∀i ∈ VPN (24)

∑

i∈VGN
j∈VPN

y1ij d
km
ij c1km +

∑

i∈VPN
j∈VGN

y2ij d
km
ij c2km ≤ Bc (25)

R0h0 ≤ q0 −H0y −W0δ0 − yTD0δ0 (26)

bTh0 ≥ 1 (27)
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and with the recourse function Q(y, ξ) representing the operational model of the IPGNs, previously

shown in (19) and (21).

In the first stage, a coupling interface between the IPGNs is allocated through the binary

variables y={y1ij , y2ij}, with the aim of maximizing the expected combined performance of the

IPGNs in disrupted conditions. The variable y1ij equals to 1 if the node i ∈ VGN is coupled to and

dependent on the node j ∈ VPN , and 0 otherwise; similarly, the binary variable y2ij equals to 1 if

the node i ∈ VPN is coupled to and dependent on the node j ∈ VGN , and 0 otherwise. We assume

that each node in the gas network that needs electricity is dependent on one and only one node

in the power network, as shown in constraint (23); similarly, each node in the power network that

requires gas flow supply is dependent on one and only one node in the gas network, as shown in

constraint (24). Coupling two nodes has a cost per kilometer, and the total cost of the allocated

interdependencies is bounded by the available monetary budget Bc. This is expressed in Constraint

(25), where dkmij is the distance in km between nodes i and j and the terms c1km and c2km are,

respectively, the cost per km of placing a coupling link from the power to the gas network and from

the gas to the power network.

The coupling interface must be allocated in a way such that, in nominal conditions (no com-

ponents failed), the requested demands of electricity and gas are fully satisfied. This condition

is enforced by Constraint (27), which depends on the operational constraints of the IPGNs, ex-

pressed in Constraint (26). The variables h0={p0,d0, f0,θ0} and δ0 are the operational variables

of the first stage. Constraint (26) does not contain u variables because every line is considered as

functional.

In the second stage, the probability distribution of feasible failure scenarios is chosen in order

to minimize the expected combined performance of the IPGNs. The set of feasible failure scenarios

A is defined in terms of maximum number of failed components K. In this work, we assume that

only edges in the power network can fail. Each failure scenario k is defined by an MPN -dimensional

vector uk, where the ith component defines the functional state (0 if failed, 1 if functional) of the

power transmission line i. The set of feasible failure scenarios can be defined as in Equation (28):

A =
{
u|u ∈ 2MPN , ||u||1 ≥MPN −K

}
(28)

where MPN is the number of edges in the power network. Given the condition that one of the

scenarios in A occurred (or, in other words, at least one edge failed), the conditional probability of

each scenario k ∈ A to have occurred is defined as φk. The scenarios are mutually exclusive and

their probability distribution is defined by a multinomial distribution P that respects the condition

in (29):

∑

k∈A
φk = 1. (29)
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As it can be clearly seen from the formulation in (22), the distribution P of the scenario occurrence

probabilities φk is a variable of the optimization problem. In particular, the distribution P is

chosen among a family of distributions defined by the ambiguity set M. This set contains all

the the multinomial distributions that can describe the conditional occurrence probability of the

feasible failure scenarios and respect some given conditions. Depending on the conditions which are

enforced, different ambiguity set can be defined. In this work, we rely on a traditional moment-based

ambiguity set, shown in Equation (30), that enforces the conditional marginal failure probability

of each line i ∈ EPN to be between 0 and an upper bound πmaxi :

M = {P ∈ P(A) : 0 ≤ EP[1− u] ≤ πmax} (30)

where P(A) defines the set of all probability distributions on a σ-algebra of A and πmax is the

vector containing the upper bounds of the marginal failure probabilities of each power transmission

line. We refer to conditional marginal failure probability of each line because we assume that at

least one line is failed. In other words, given the condition that at least one line is failed, the

conditional marginal failure probability denotes the probability of each line to be failed.

The goal of the model is to identify the coupling interface design that maximizes the expected

combined performance of the IPGNs in disrupted conditions (at least one line failed) under the

worst multinomial distribution within the ambiguity set.

3. Solution procedure

Our strategy involves a problem reformulation into a form which can be recast and solved

through a Nested Column&Constraint Generation (NC&CG) algorithm. This tractable reformula-

tion is shown in Proposition 1, and its proof is available in Appendix A.

Proposition 1. The problem in (22)-(27) is equivalent to the problem in (31) subject to (21),

(23)-(27) and (32).

max
h0,δ0

y∈{0,1}
β≥0

min
u∈{0,1}

max
h,δ

bTh +
∑

i∈EPN

βi(1− ui − πmaxi ) (31)

∑

k∈EPN

(1− uk) ≤ K (32)

where (32) defines the set of feasible failure scenarios A.

The formulation in Proposition 1 is a trilevel mixed-integer linear programming (MILP) problem,

presenting a structure that can be solved by a NC&CG approach. The formulation in (31) must
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be expanded into a max-min-max-max problem, by separating the binary and continuous variables

in the last stage. Subsequently, the problem must be split into an outer and inner layer, that must

be solved separately and iteratively. For simplicity, in the following explanation, we rely on the

compact matrix formulation. The flowchart of the NC&CG algorithm is shown Figure 1.

3.1. Inner layer

The inner layer consists in the solution of the middle lower-level problem (min-max) in (31) with

fixed y∗ and β∗ variables. The output of the model is an optimal failure scenario û, which will be

passed to the outer layer. For a fixed coupling interface y∗, fixed variables β∗, fixed interdependency

variables δ∗ and fixed failure scenario u∗, the compact form of the lower-level maximization in (31)

and the relative constraints are shown in (33)-(34):

max
h

bTh (33)

subject to :

Rh ≤ q−Tu∗ −Hy∗ −Wδ∗ − y∗TDδ∗ (34)

and plus the constant
∑
i∈EPN

β∗i (1− u∗i − πmaxi ). Its dual form is expressed in (35)-(36):

min
λ

(q−Tu∗ −Hy∗ −Wδ∗ − y∗TDδ∗)Tλ (35)

subject to:

RTλ = b (36)

and plus the constant
∑
i∈EPN

β∗i (1− u∗i − πmaxi ).

As the interdependency variables δ are binary, the set of possible interdependency functional

states D is finite. Following the classic C&CG approach, we can leverage on a partial set Dpart ⊆ D
of interdependency variables combinations to identify efficiently the exact optimal solution. This is

achieved employing the following steps:

1. Set j = 0, upper bound UBinr =∞, lower bound LBinr = 0 and Dpart = ∅
2. Solve the inner master problem in Equations (37)-(40). Obtain an optimal solution ρ̂(j) and

û(j). Update LBinr=ρ̂
(j) +

∑
i∈EPN

β∗i (1− πmaxi ).

min
ρ,u,λ

ρ (37)

subject to:

ρ ≥ (q−Tu−Hy∗ −Wδ∗(j) − y∗TDδ∗(j))Tλ(j) −
∑

i∈EPN

β∗i ui, ∀δ∗(j) ∈ Dpart (38)
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Figure 1: Flowchart of the Nested Column&Constraint Generation algorithm.
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RTλ(j) = b, ∀δ∗(j) ∈ Dpart (39)

∑

k∈EPN

(1− uk) ≤ K (40)

3. Solve the inner subproblem in Equations (41)-(42) with û(j)=u∗. Obtain an optimal solution

bT ĥ(j) and δ̂
(j)

. Set UBinr = min
(
UBinr,b

T ĥ(j) +
∑
i∈EPN

β∗i (1− u∗i − πmaxi )
)

.

max
h,δ

bTh (41)

subject to :

Rh ≤ q−Tu∗ −Hy∗ −Wδ − y∗TDδ (42)

4. If (UBinr−LBinr)/UBinr < 10−5, the current solution û(j) corresponds to the optimal attack

plan, the optimal objective value Ĥinr(y∗,β∗) = UBinr ≈ LBinr and the algorithm can be

terminated. Otherwise, Dpart = Dpart ∪ δ̂
(j)

. Set j ← j + 1 and return to step 2.

This algorithm corresponds to the inner layer in Figure 1. Its output is the optimal failure scenario

û that is passed to the outer layer, and the optimal objective value Ĥinr(y∗,β∗).

3.2. Outer layer

The upper-level problem can be solved in a similar way, by employing a partial set of feasible

failure scenarios Apart ⊆ A. While the inner layer solves a bi-level min-max problem, the outer

layer solves a bi-level max-min problem, where the minimization represents the outer subproblem,

and it is solved by the inner layer in the previous section.

To be consistent with the probability framework introduced, the outer master problem should

be solved with a partial set Apart that does not contain the scenario with no failed lines, defined

as u∅. Otherwise, it would be numerically possible to assign some probability mass to the scenario

u∅, violating the condition that at least one line has failed. This is in contrast with our definition

of conditional occurence probability, where the condition is that at least one edge of the power net-

work has failed. However, solving the model without the scenario u∅ introduces some infeasibility

problem within the optimization, particularly in the outer master problem in (45)-(50). An example

of this situation, including an explanation on why the the scenario u∅ has not been removed from

the set A since the beginning, is available in the Supplementary Material.

Proposition 2. For the problem in (45)-(50) to be feasible with a partial set Apart that does

not contain the scenario u∅ with no failed lines, the two following necessary conditions should be

respected:
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1. the sum of πmaxi in (30) must be at least 1, as shown in (43):

∑

i∈EPN

πmaxi ≥ 1; (43)

2. the partial set Apart must contain enough scenarios to ensure that the linear system in (44),

with φk as variables, has at least one solution:





∑
k∈Apart

φk = 1

∑
k∈Apart(1)

φk ≤ πmax1

...

∑
k∈Apart(MPN ) φk ≤ πmaxMPN

(44)

where Apart(i) ⊆ Apart is the subset containing all the scenarios where line i is failed and MPN is

the number of lines within the power network.

ProofThe proofs of the two conditions mentioned above are straightforward:

1. the condition in (43) implies that the probability that at least one line is failed is 1. If the sum

in (43) was lower than 1, it would automatically imply that, in order to respect the condition

in (29), some probability mass is assigned to the scenario u∅ with no failed lines;

2. the system in (44) represents the conditions enforced by the ambiguity set, and it corresponds

to Constraints (A.3) and (A.4) in Appendix A. The variables φk represent the probability of

each scenario k ∈ Apart. The system can have 0, 1 or infinite solutions. In case it has no

solutions, it means that the probability mass can not be allocated such to respect the moment-

based probabilistic conditions enforced by the ambiguity set.

Similar to the inner layer, the outer layer is solved with a C&CG algorithm with the following

steps:

1. Set j = 0, upper bound UBotr =∞, lower bound LBotr = 0 and Apart = ∅ and A∅part = {u∅},
where u∅ is the scenario where every line is functional.

2. Solve the outer master problem in Equations (45)-(50). If it is not feasible, solve it using

A∅part. Obtain an optimal solution η̂(j), ŷ(j) and β̂
(j)

. Update UBotr=min(UBotr, η̂
(j)).

max
η,h(j).β≥0

h0,δ0

y∈{0,1}

η (45)

η ≤ bTh(j) +
∑

i∈EPN

βi(1− u∗(j)i − πmaxi ), ∀u∗(j) ∈ Apart (46)
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Py ≤ g (47)

R0h0 ≤ q0 −H0y −W0δ0 − S0z0 −V0r0 (48)

bTh0 ≥ 1 (49)

Rh(j) ≤ q−Tu∗(j) −Hy −Wδ(j) − Sz(j) −Vr(j), ∀u∗(j) ∈ Apart (50)

where P and g are the coefficient matrix and the parameter vector of constraints in (23)-(25).

3. Solve the outer subproblem using the inner C&CG algorithm explained in the previous sub-

section with ŷ(j)=y∗ and β̂
(j)

=β∗. Obtain an optimal attack plan û(j). Update LBotr =

Ĥinr(y∗,β∗).

4. If (UBotr − LBotr)/UBotr < 10−5 and the master problem was solved with the partial set

Apart, the current solution ŷ(j) corresponds to the optimal coupling interface and the algo-

rithm can be terminated. Otherwise, Apart = Apart ∪ û(j) and A∅part = A∅part ∪ û(j). Set

j ← j + 1 and return to step 2.

The output represents the optimal coupling interface which maximizes the expected combined

performance of the IPGNs under the worst multinomial distribution of random failures within the

ambiguity set M. The optimal objective value represents the expected combined performance in

disrupted conditions.

4. Illustrative case study

As an illustrative example, we consider a power network with a topology based on the IEEE

14-bus system, and a gas network with a topology based on the IEEE 9-bus system. We assume

that the two infrastructures are placed within a 300×300 km2 geographical area, as shown in Figure

2. Each infrastructure is assumed to have an equal weight, i.e. wPN=0.5 and wGN=0.5. This value

represents the importance of each infrastructure when computing the combined performance. Other

parameter values are available in the Supplementary Material.

For the baseline case, we consider a maximum number of failed edges K=3 and a monetary

budget Bc=1100$. Sensitivity analysis on these parameters are also performed. We choose a

representative interdependency cost-per-kilometer of 1 $/km, for both c1km and c2km. Finally, all the

computations are implemented in the Python API of Gurobi 9.1 (Gurobi Optimization, 2021) and

performed on a desktop PC with a 3.20 GHz CPU and 32 GB RAM.
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Figure 2: Geographical allocation of the interdependent power and gas network.

4.1. Synthetic data set and ambiguity set

The ambiguity set can be defined with a data-driven approach, starting from historical data on

contingencies. In this illustrative case study, we generate synthetic contingencies historical data

from assumed line failure rates. The following assumptions are taken for generating the data set:

• each line is characterized by an independent failure rate λi. For simplicity, we do not consider

any correlations, and each line fails independently. The failure rates utilized in this work are

shown in the Supplementary Material;

• we consider daily resolution, simulating 30 years of contingency scenarios;

• each line, when failed, is assumed to be repaired immediately;

• we compute the arrival times Ti (failures) of each line using Equation (51):

Ti = − ln(s)

λi
(51)

where s is a random number between 0 and 1.

We obtain a synthetic data set of 252 contingencies, including 245 scenarios N−1, 2 scenarios N−2

and 1 scenario N − 3. From these data, we generate the upper bounds πmax for the ambiguity set

with the following steps. Firstly, we compute the estimated conditional marginal failure probability

π̂i of each line i with Equation (52):

π̂i =
∑

k∈A(i)

xk
Ns

(52)
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where A(i) ⊆ A is the subset which contains all the failure scenarios in which line i is failed, xk

is the number of times that scenario k has occurred, and Ns is the total number of contingency

scenarios occurred. Secondly, we compute the associated 95% confidence intervals for the conditional

marginal failure probability of each line i using Equation (53):

CI95i = Z

√
π̂i(1− π̂i)

Ns
(53)

where Z is the 95% confidence interval constant, equal to 1.96.

From the values π̂i and CI95i , and aiming for a conservative solution, we rely on the upper bound

of the conditional marginal failure probability πmaxi of each line i, computed using Equation (54):

πmaxi = π̂i + CI95i . (54)

The obtained πmax values are shown in Table 1 and they are directly used within the definition

of ambiguity set in (30).

Table 1: Upper bounds πmax for each power transmission line i.

Line πmaxi Line πmaxi

1 0.064 11 0.136

2 0.012 12 0.037

3 0.089 13 0.037

4 0.037 14 0.131

5 0.164 15 0.089

6 0.012 16 0.159

7 0.084 17 0.053

8 0.043 18 0.117

9 0.031 19 0.019

10 0.089 20 0.108

5. Results

5.1. Baseline case

We solve the distributionally robust optimal coupling with a maximum number of failed edges

K=3 and a monetary budget Bci=1100$. We evaluate the dependence of the results on the size

of the ambiguity set by changing the upper bounds of the conditional marginal failure probability

πmax. The results of the optimal coupling interface, in terms of worst expected performance
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in disrupted conditions, are compared with the ones of a coupling interface based on euclidean

distance, where each node in one infrastructure is coupled with the geographically-closest node in

the other infrastructure. This result is obtained simply setting the monetary budget Bc=822.76$,

corresponding to the minimum budget for the optimization to be feasible (or, in other words,

the budget corresponding to the euclidean coupling interface). We also evaluate the worst-case

performance associated with the optimal coupling interface and the set of feasible failure scenarios.

The worst-case scenario can be easily identified by enumeration or solving the model in (55) subject

to (21) and (32), also solvable by a C&CG approach.

min
u∈{0,1}

max
h,δ

bTh (y∗). (55)

where y∗ is a fixed coupling interface.

The results are shown in Figure 3. In the x-axis, we plot different upper bounds πmax, starting

from the values in Table 1 and multiplying them by factors from 2 to 6. The last point in the x-axis

corresponds to the case where the upper bound of each conditional marginal failure probability πmaxi

is equal to 1. In the y-axis, we can see the performance levels in disrupted conditions, in terms of

fraction of requested electricity and gas demand which is supplied. Four curves are shown: the blue

curves represent the worst expected performance associated to the optimal and euclidean coupling

interfaces, computed by the distributionally robust optimization model; the red curves represent

the worst-case scenario associated to the optimal and euclidean coupling interfaces. As it can be

clearly seen in Figure 3, the euclidean coupling interface is outperformed by the optimal coupling

interface. Firstly, the worst expected performance are significantly higher in the optimal case. For

example, using the upper bounds in Table 1, the optimal case leads to worst expected performance

of 0.983, while the euclidean case, for the same upper bounds, to worst expected performance of

0.901. As it is graphically evident, this difference increases as the upper bounds πmax increases.

Secondly, the associated worst-case performance is also significantly better in the optimal case. For

example, using the upper bounds in Table 1, the optimal case leads to an associated worst-case

performance of 0.902, while the euclidean case, for the same upper bounds, leads to an associated

worst-case performance of 0.703. This is a clear indication of: i) the importance of the coupling

interface in ensuring the robustness of interdependent critical infrastructures under random failures,

and ii) a distributionally robust approach seems to lead to satisfying results both in terms of worst

expected performance and associated worst-case performance.

Increasing the upper bounds πmax, by multiplying them by factors from 2 to 6, increases the

conservativeness of the solution. In fact, as it can be clearly seen, the worst expected performance

decreases, while the worst-case performance increases. This is because increasing the upper bounds

makes the worst probability distribution more disruptive. If we set the upper bounds πmax equal to
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Figure 3: Results of the distributionally robust optimal coupling of IPGNs. In the x-axis we can see the upper

bounds of the ambiguity set, defined in Table 1, multiplied by factors from 2 to 6. In the last point, the upper

bounds πmax are simply a vector of ones. In the y-axis, we can see the combined performance of the IPGNs. The

red curve denotes the worst expected combined performance, while the blue curve denotes the associated worst-case

combined performance.

1, we can notice that worst expected performance and worst-case performance are equivalent. This

is because this case corresponds to the situation where the probability mass is entirely allocated

to the worst-case scenario. In other words, the worst-case scenario has a conditional occurrence

probability equal to 1, while the other feasible scenarios have a conditional occurrence probability

equal to 0. This case also corresponds to the solution that can be identified with a classic defender-

attacker-defender framework, as it shown for example in the model in (56):

max
h0,δ0

y∈{0,1}

min
u∈{0,1}

max
h,δ

bTh (56)

subject to (21), (23)-(27) and (32) (Bellè et al., 2021).

5.2. The effect of the available monetary budget Bc

The effect of different monetary budget Bc is evaluated for upper bounds πmax equal to the

ones in Table 1 and maximum number of failed edges K=3. The results are shown in Figure 4.

Firstly, we notice the presence of an unfeasibility region, highlighted with a grey shadowed area,

for budgets lower than 822.76$. As it was also mentioned in the previous section, this value is the

minimum budget Bc that guarantees to respect Constraints (23)-(27), and it corresponds to the

cost of the euclidean coupling interface. In other words, it is the ”minimum cost” coupling interface,

where each node is coupled with the geographically-closest node of the other infrastructure.
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Figure 4: Results of the distributionally robust optimal coupling of IPGNs for different monetary budget values.

Secondly, we notice that, as it was expected, the results in terms of worst expected performance

and associated worst-case performance improve as the monetary budget increases, because of the

larger choice of coupling interface designs that is possible to implement. The improvement of

results is particularly pronounced for lower budgets. For example, passing from 822.76$ to 900$,

which represents a budget increase of 9.39%, leads to improvements of worst expected performance

from 0.901 to 0.949, and worst-case performance from 0.703 to 0.722. These values corresponds to

improvements of 5.26% and 2.74%, respectively. Increasing the budget from 900$ to 1100$, which

represents an increase of 22.22%, leads to improvements of worst expected performance (from 0.949

to 0.983) and worst-case performance (from 0.722 to 0.902) of 3.63% and 24.98%, respectively.

Further increasing the budget leads to only marginal improvements of performance.

5.3. The effect of the set of feasible failure scenarios

The size of the set of feasible failure scenarios is given by the parameter K, as it shown in

Equation (28). This parameter, together with the upper bounds of the conditional marginal failure

probability πmax, reflects the decision-maker’s attitude towards risk, as high K values denote a

more conservative approach (and vice versa). We evaluate the effect of different K values, using

the upper bounds πmax in Table 1 and a monetary budget Bc=1100$. The results are shown in

Figure 5.

As it can be clearly seen, the expected performance do not decline considerably considerably

as K increases. This is an indication of the validity of the DRO approach. However, it must be

highlight that the results depends on the size of ambiguity set. If the ambiguity set was larger,
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Figure 5: Results of the distributionally robust optimal coupling of IPGNs for different monetary budget values.

more probability mass could be allocated on the more disruptive scenarios which lead to lower

performance, strongly impacting the results.

We can also notice that the associated worst-case performance, corresponding to the red curve

in Figure 5, declines much faster than the expected performance. This is an indication that, with

the current ambiguity set, it is not possible to allocate considerable probability mass on the most

disruptive scenarios.

5.4. Computational performance

The computational performance for the cases presented in Sections 5.1, 5.2 and 5.3 are shown

in Tables 2, 3 and 4, respectively.

Table 2: Computational cost in seconds and number of outer iterations of the NC&CG algorithm for different upper

bounds πmax.

Bounds πmax 2πmax 3πmax 4πmax 5πmax 6πmax πmax=1

Time [s] 405.3 747.3 85.8 31.3 19.1 36.3 38.6

Outer iter. 29 36 18 13 10 12 8

For the baseline case presented in Section 5.1, the computational cost is highly affordable in

every case.

For the sensitivity analysis of the monetary budget Bc presented in Section 5.2, the computa-

tional cost is generally higher, reaching a maximum of 2385.2 seconds in the case Bci = 900$.
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Table 3: Computational cost in seconds and number of outer iterations of the NC&CG algorithm for different

monetary budgets Bc.

Budget [$] 822.76 900 1100 1300 1500 1700

Time [s] 260.5 2385.2 405.3 435.9 342.9 203.5

Outer iter. 27 30 29 26 24 20

Table 4: Computational cost in seconds and number of outer iterations of the NC&CG algorithm for different

maximum number of failed edges K.

K 1 2 3 4 5

Time [s] 6.1 260.4 405.3 3556.9 5276.6

Outer iter. 6 17 29 39 42

For the sensitivity analysis of the parameter K presented in Section 5.3, the computational cost

increases as the parameter K increases. This is because more scenarios are included within the

analysis, making the optimization more computationally-demanding.

For larger case studies, the computational time might increase considerably, due to the large

number of binary variables involved. However, an increased computational cost does not represent

an insurmountable problem, for the two following reasons: i) this model is tailored to be utilized

during design phases, and long computational times do not pose particular problems, and ii) the

complexity of the model can be reduced limiting the feasible number of coupling interfaces according

to geographical and physical constraints. For example, one can assume that only nodes within a

specific distance range can be coupled together; this would limit the number of y variables involved,

thus reducing the complexity and computational cost of the model.

6. Conclusion

In this paper, we have proposed a novel distributionally robust approach for the optimal coupling

of interdependent critical infrastructures, using an illustrative case study representing interdepen-

dent power and gas networks. The proposed approach clearly outperforms traditional euclidean

coupling strategies based on nodes geographical vicinity, leading to better results in terms of ex-

pected performance and worst-case performance under random failures.

In summary, the contributions of this paper are:

• The development of a novel approach, based on distributionally robust optimization, for the

design of coupling interfaces between interdependent CIs.
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• The development of a reliable and efficient solution procedure based on the Nested Col-

umn&Constraint Generation algorithm.

• The application of the proposed framework on a case study to demonstrate the validity of the

proposed approach.

The proposed case study is based on interdependent power and gas networks, modeled using a

DC power flow model and a maximum flow model, respectively. However, the proposed approach

can be applied to any combination of interdependent critical infrastructures, simply adapting the

operational model in Section 2.2.

The conservativeness of the model can be tuned adjusting the size of the feasible attacks set,

with variations of maximum number of lines attacked and failed, as well as tuning the parameters

of the ambiguity set. The model can be easily adapted to different disruption scenarios, for example

including failure of nodes.

Our solution strategy leads to acceptable computational times in this work. However, the

computational cost might increase considerably for larger case-studies. Nevertheless, it does not

represent a particular issue, since this approach aims at being used during design or retrofitting

phases.

Appendix A. Proof of proposition 1

For a fixed coupling interface, the inner problem in (A.1) can be rewritten as (A.2)-(A.4) by sub-

stituting the expectation with an integral over the set of feasible failure scenarios A and introducing

constraints (A.3) and (A.4).

min
P∈M

EP [Q(y, ξ)] (A.1)

min
P

∫

A
Q(y, ξ)dP (A.2)

subject to:

∫

A
dP = 1 (A.3)

∫

A
(1− ui)dP ≤ πmaxi , ∀i ∈ EPN . (A.4)
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As it is easy to verify that for the problem in (A.2)-(A.4) Slater’s conditions are satisfied, strong

duality holds and the problem can be recast into its dual form, shown in (A.5)-(A.6), where α and

βi are the dual variables of constraints (A.3) and (A.4), respectively:

max
α,β≥0

−α−
∑

i∈EPN

βiπ
max
i (A.5)

subject to:

α+
∑

i∈EPN

βi(1− ui) ≥ −Q(y, ξ), ∀u ∈ A. (A.6)

Constraint in (A.6) can be rewritten as in (A.7):

−α ≤ Q(y, ξ) +
∑

i∈EPN

βi(1− ui), ∀u ∈ A. (A.7)

Noting that (A.5) is a maximization problem, it can be observed from Constraint (A.7) that the

optimal value −̂α is given by (A.8):

−̂α = min
u∈A

Q(y, ξ) +
∑

i∈EPN

βi(1− ui). (A.8)

The reformulation of −̂α must be inserted in (A.5). Formulating explicitly Q(y, ξ) and merging

the problem with the first stage maximization in (22) complete the proof.
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Abstract

Critical infrastructures (CIs) are interconnected, and they are often mutually interdependent on

each other in terms of functionality and performance. CIs are often modeled using network-based

approaches, and the way they are coupled is defined by a set of interdependency links, globally

referred to as coupling interface. In the existing literature, each node in one CI is usually assumed

to be dependent on maximum one node of another CI. However, in reality, each node in one CI

can be dependent on multiple nodes of another CI through redundant interdependency links. In

this paper, we explore the potential of optimal allocation of redundant interdependency links in

terms of resilience enhancement of interdependent CIs. We use interdependent power and gas

networks (IPGNs) as illustrative example, and we show how the optimal allocation of redundant

interdependency links can considerably increase their resilience in terms of worst-case combined

performance.

Keywords: Coupling interface, resilience, defender-attacker-defender, interdependent critical

infrastructures, optimization, redundancy allocation

1. Introduction

Critical infrastructures (CIs), such as energy systems, transportation networks, and telecom-

munications systems, are often tightly coupled, and they are mutually interdependent with com-

plex relationships of interdependencies [1]. CIs are often modeled with a network-based approach
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[2], where infrastructures are modeled as networks, connected by links that represent the differ-

ent interdependencies. A qualitative representation of two interdependent CIs, modeled with a

network-based approach, is shown in Figure 1. Components of CIs are represented as nodes, while

their connections, physical and nonphysical, are represented as edges. Components belonging to

different can be dependent on each other, and be coupled by interdependency links. The ensemble

of interdependency links, which defines how two CIs are coupled, is often referred to as coupling

interface [3]–[5].

Figure 1: Network representation of two interdependent infrastructures. In evidence, we can notice the two struc-

tural components of networks (nodes and edges) and their connection (interdependency links). The ensemble of

interdependency links is referred to as coupling interface. Figure and caption from [3].

The design and the topology of coupling interfaces heavily impacts the resilience of interdepen-

dent CIs [3]–[5], and optimizing the topology of coupling interfaces is a fundamental task. In fact,

failures and disruption within one CI can propagate to other coupled CIs through the coupling

interfaces. In the context of interdependent CIs, the concept of coupling interface optimization

was introduced in [4] and [5]. In [4], the authors propose an heuristic approach, based on network

metrics such as node distance, degree, and betweenness, to couple interdependent CIs in order to

reduce failure propagation. A similar approach, which also accounts for the physical properties of

the infrastructures, is proposed in [5]. In both these works, the coupling interface between CIs is

acknowledged as one of the key factors for the resilience of CIs. However, as these strategies are

based on network metrics, they represent an heuristic approach, which is hardly generalizable and

does not ensure the optimality of solutions [3].

In our previous work, we proposed a mathematical programming approach, based on the
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defender-attacker-defender (DAD) model, to enhance the resilience of interdependent CIs by op-

timizing the design of their coupling interface [3]. In this work, we maintained the “single-

dependency” assumption1, which states that each node can be dependent on one, and only node of

the other infrastructure. This assumption is often used in the existing literature [6]–[11]. However,

in reality, a node can be dependent on multiple nodes of another infrastructure, as it is taken into

account in [4] and [5].

In this paper, we propose a mathematical programming approach, based on the DAD model, to

allocate redundant interdependency links in interdependent CIs in order to enhance their resilience.

Similarly to [3], we focus on enhancing the resilience of interdependent CIs in terms of combined

survivability against random failures. The concept of survivability can be defined as “the capability

of a system to fulfill its mission in a timely manner in the presence of attacks, failures, or accidents”

[12], and it can be interpreted as the residual performance of interdependent CIs after a failure

scenario [3]. Survivability is complementary to the concept of vulnerability, defined as the “degree

of loss or damage to a system when exposed to a strain of a given type and magnitude” [13]. In

other words, we seek to allocate the redundancies in order to maximize the residual performance

of interdependent CIs after failures and disruptive events.

The motivations of this work are the following:

• redundancy allocation is a traditional reliability optimization problem [14]. From a research

perspective, it is interesting to extend this concept to interdependent CIs and their coupling

interfaces. Moreover, redundancies have already been identified to be an effective measure for

enhancing the resilience of CIs [15], and investigating their potential, in terms of resilience

enhancement, within interdependent CIs is of the utmost importance;

• allocating redundancies in order to retrofit existing coupling interfaces can be an effective

measure to enhance the resilience of interdependent CIs [5]: planners and decision-makers

should, thus, be provided with the necessary modeling tools to optimize the redundancy

allocation.

This paper is presented as an extension of the work published in [3]. For more details on the

relevant existing work on coupling interfaces and and their connection to resilience, the reader is

1The “single-dependency” assumption limits each node of one CI to be dependent on maximum another node

belonging to a different CI. In other words, each node can be the receiving end of maximum one interdependency

link. However, it is still possible for each node to supply multiple components of a different system. For example,

assuming the case of power and gas networks, the “single-dependency” assumption defines that each gas-fired power

plant is dependent on one, and only one gas node of the gas network; however, each gas node can supply electricity

to multiple gas-fired power plants.
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referred to Section 1 of [3].

2. Problem formulation

2.1. Modeling framework

We consider the case of interdependent power and networks (IPGNs). Particularly, we consider a

power network PN , containing gas-fired power plants supplied by a gas network GN , which requires

electricity from the power network in order to maintain the functionality of valves, compressors,

and pumps in each node.

Each network is described by a graph G = (V,E), with V the set of N nodes and E the set of

M edges. Each edge k is directed, and it is defined by an origin node O(k) and a destination node

D(k).

The power network is defined by the graph GPN = (VPN , EPN ), where VPN is the set of

NPN nodes and EPN is the set of MPN edges. Each node i represents an electrical bus, with

power production capacity pi and requested power demand di. Each edge k represents a power

transmission line, characterized by flow capacity fk. The operation of the power network are

modeled with a traditional DC power flow model.

The gas network is defined by the graph GGN = (VGN , EGN ), where VGN is the set of NGN

nodes and EGN is the set of MGN edges. Each node i represents a gas hub, with gas production

capacity pi and requested gas demand di. Each edge k represents a gas pipeline, characterized

by flow capacity fk. The operations of the gas network are modeled with a linear maximum flow

model.

The focus of our analysis is the combined performance PC of the IPGNs, defined as in (1):

PC =
wPN

dPN

∑

i∈VPN

di +
wGN

dGN

∑

i∈VGN

di (1)

where wPN and wGN represent the weight of power network and gas network when computing the

combined performance. The combined performance represent the fraction of requested demand of

power and gas which is possible to supply. The terms dPN and dGN represent the total requested

demand of power and gas, respectively, and they are computed as in (2) and (3):

dPN =
∑

i∈VPN

d
b

i +
∑

j∈VGN

d
MW

j (2)

dGN =
∑

i∈VGN

d
b

i +
∑

j∈VPN

d
m3

j . (3)

The term d
b

i denotes the baseline requested demand (households, industries, general consumers,

etc.) of power or gas in each node i. The term d
MW

j denotes the requested power demand of
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node j ∈ VGN . The term d
m3

j denotes the requested gas demand of node j ∈ VPN . The term di

represents the supplied demand of power or gas in each node i.

2.2. Operational model of interdependent railway and power networks

The power network operations are modeled using a DC power flow model, while the gas network

is modeled with a linear maximum flow model. For the operational model of the IPGNs, the

following assumptions are considered:

• nodes in the power network with power production capacity pi > 0 contain a gas-fired power

plant, and they can be supplied (and, thus, be dependent on) multiple nodes in the gas

network. However, it is assumed that each node in the power network is supplied by only one

node in the gas network at a time, i.e. only one interdependency link is active and the other

ones are in stand-by;

• nodes in the gas network needs to receive electricity for the proper functionality of various

equipment, and they can be supplied (and, thus, be dependent on) multiple nodes in the

power network. However, it is assumed that each node in the gas network is supplied by only

one node in the power network at a time, i.e. only one interdependency link is active and the

other ones are in stand-by.

The operational model of IPGNs is described by the optimization in Equation (4), subject to

Constraints (5)-(21):

max
p,d,f ,θ

δp∈{0,1}NPN

δg∈{0,1}NGN

µg←p∈{0,1}Nc

µp←g∈{0,1}Nc

wPN

dPN

∑

i∈VPN

di +
wGN

dGN

∑

i∈VGN

di (4)

subject to:

0 ≤ pi ≤ pi, ∀i ∈ VPN ∪ VGN (5)

0 ≤ di ≤ d
b

i +
∑

j∈VGN

µg←p
ji d

MW

j , ∀i ∈ VPN (6)

0 ≤ di ≤ d
b

i +
∑

j∈VPN

µp←g
ji d

m3

j , ∀i ∈ VGN (7)

−ukfk ≤ fk ≤ ukfk, ∀k ∈ EPN ∪ EGN (8)

uk

(
xkfk − (θO(k) − θD(k))

)
= 0, ∀k ∈ EPN (9)
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pi − di +
∑

k|D(k)=i

fk −
∑

k|O(k)=i

fk = 0, ∀i ∈ VPN ∪ VGN (10)

di − δpi

(
dbi +

∑

j∈VGN

µg←p
ji d

MW

j

)
≥ 0, ∀i ∈ VPN (11)

di − δgi

(
dbi +

∑

j∈VPN

µp←g
ji d

m3

j

)
≥ 0, ∀i ∈ VGN (12)

pi − pi
∑

j∈VGN

µp←g
ij δgj ≤ 0, ∀i ∈ VPN (13)

pi − pi
∑

j∈VPN

µg←p
ij δpj ≤ 0, ∀i ∈ VGN (14)

di −


d

b

i +
∑

j∈VPN

µp←g
ji d

m3

j


 ∑

j∈VPN

µg←p
ij δpj ≤ 0, ∀i ∈ VGN (15)

−
∑

k|O(k)=i
j∈VPN

µg←p
ij δpi fk ≤ fk ≤

∑

k|O(k)=i
j∈VPN

µg←p
ij δpi fk, ∀k ∈ EGN (16)

−
∑

k|D(k)=i
j∈VPN

µg←p
ij δpi fk ≤ fk ≤

∑

k|D(k)=i
j∈VPN

µg←p
ij δpi fk, ∀k ∈ EGN (17)

µg←p
ij ≤ yg←p

ij , ∀i ∈ VGN ,∀j ∈ VPN (18)

µp←g
ij ≤ yp←g

ij , ∀i ∈ VPN ,∀j ∈ VGN (19)

∑

j∈VPN

µg←p
ij = 1, ∀i ∈ VGN (20)

∑

j∈VGN

µp←g
ij = 1, ∀i ∈ VPN (21)

The vectors p, d, f , and θ contain the continuous variables of the problem. The variables pi

define the production of power or gas in each node, di defines the supplied demand of power or gas

in each node, the variables fk define the flow of power or gas in each edge, and the variablesθi define

the phase angle in each node of the power network. The vectors δp, δg, µg←p, and µp←g contain
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the binary variable of the optimization problem. The dimension Nc is equal to NPN ×NGN . The

binary variables δpi define the functional state (1 if functional, 0 otherwise) of the interdependency

links starting from the node i ∈ VPN and going to the gas network. Similarly, the binary variables

δgi define the functional state of the interdependency links starting from the node i ∈ VGN and

going to the power network. The variable µg←p
ij is equal to 1 when node i ∈ VGN is supplied by

node j ∈ VPN , and 0 otherwise. Similarly, the variable µp←g
ij is equal to 1 when node i ∈ VPN is

supplied by node j ∈ VGN , and 0 otherwise.

The objective function in (4) represents the combined performance of the IPGNs in terms of

fraction of requested demand of power and gas which is supplied. In each node of the IPGNs, the

production of power or gas pi is limited by a production capacity pi, as shown in Constraint (5).

Similarly the supplied demand of power or gas di is limited by the requested demand, as shown in

Constraints (6) and (7). The total requested demand of power in each node i ∈ VPN is composed

of a baseline requested demand d
b

i , and the sum of the power demands d
MW

j of all nodes j ∈ VGN

which are supplied by node i ∈ VPN (µg←p
ji =1). Similarly, the total requested demand of gas in

each node i ∈ VGN is composed of a baseline requested demand d
b

i , and the sum of the gas demands

d
m3

j of all nodes j ∈ VPN which are supplied by node i ∈ VGN (µp←g
ji =1). The flow of power in

each line k ∈ VPN and the flow of gas in each pipeline k ∈ VGN are limited by the flow capacity fk

if the line/pipeline k is functional (uk=1), and forced to be 0 if the line/pipeline is failed (uk=0),

as shown in Constraint (8). The DC power flow assumption for the power network is enforced in

Constraint (9). The net nodal balance of power and gas in each node is enforced by Constraint

(10).

Each interdependency links from the node i ∈ VPN to the gas network is functional (δpi =1)

only if the requested power demand in node i is fully supplied (Constraint (11)). Similarly, each

interdependency links from the node i ∈ VGN to the power network is functional (δgi =1) only if

the requested gas demand in node i is fully supplied (Constraint (12)). The production of power

in each node i ∈ VPN is possible only if it supplied by a node j ∈ VGN (µp←g
ij =1) with a functional

interdependency link (δgj=1), as shown in Constraint (13). Similarly, as shown in Constraints (14)

and (15), the production and the supply of gas in each node i ∈ VGN is possible only if it supplied

by a node j ∈ VPN (µg←p
ij =1) with a functional interdependency link (δpj=1). Moreover, as shown

in Constraints (16) and (17), it is possible to flow gas in each pipeline k ∈ EGN only if both the

origin and destination nodes of k are supplied by a node j ∈ VPN (µg←p
ij =1) with a functional

interdependency link (δpj=1).

Each node i ∈ VGN can be supplied by node j ∈ VPN (µg←p
ij =1) only if an interdependency link

from j to i is present (yg←p
ij =1), as shown in Constraint (18). Each node i ∈ VPN can be supplied

by node j ∈ VGN (µp←g
ij =1) only if an interdependency link from j to i is present (yp←g

ij =1), as
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shown in Constraint (19). We assume that each node is supplied by only one node of the other

infrastructure at a time, as shown in Constraints (20) and (21). In other words, if a node i presents

multiple interdependency links from the other infrastructure, only one of these links is considered

to be active, while the other ones are assumed to be in a stand-by state.

The problem in (4)-(21) is dependent on the coupling interface topology, defined by the binary

variables yg←p
ij and yp←g

ij , contained within the vectors yg←p and yp←g, and the functional states

of power lines and gas pipelines, defined by the binary variables uk, contained within the the vector

u. The problem in (4)-(21) can be represented as a recourse function Q(yg←p,yp←g,u).

For the sake of simplicity, the problem in (4)-(21) can be represented with the compact matrix

formulation in (22)-(23):

max
h,δ,µ

bTh (22)

subject to:

Rh ≤ q−Tu−Hy −Wδ −Xµ− µTDδ. (23)

where the vector h contains the continuous variables, the vector δ contains the binary variables

δp and δg, the vector µ contains the binary variables µg←p and µp←g, the vectors b contains

the objective function coefficients, the matrices R, T, H, W, X and D contain the constraints

coefficients, and the vector q contains the constraints parameters.

2.3. Defender-attacker-defender model

The problem of allocating the redundant interdependency links is modeled as a DAD opti-

mization problem. The inner defender corresponds to the maximization presented in the previous

section, which represents the operational model of the IPGNs. The middle attacker aims at mini-

mizing the combined performance of the IPGNs by targeting and failing some components, and it is

a representation of various causes of disruption (terrorists, hackers, extreme weather events, etc.).

The outer defender is interpreted as a centralized planner who allocates the redundant interdepen-

dency links, aiming at maximizing the combined performance of the IPGNs under the worst-case

failure scenario. Within this work, the following assumptions are considered:

• a coupling interface is already existing, and the outer defender seeks to allocate redundant

interdependency links between the power network and the gas network;

• allocating redundant interdependency links has a cost which depends on the distance between

the two nodes connected by the interdependency link;

• the middle attacker can target and destroy a maximum number of components, and only

power lines in the power network can be targeted.
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The trilevel DAD formulation takes the form shown in (24):

max
yg←p∈{0,1}Nc

yp←g∈{0,1}Nc

min
u∈{0,1}MPN

Q(yg←p,yp←g,u) (24)

subject to (5)-(21) and (25)-(28):

yg←p
ij ≥ yg←p

ij , ∀i ∈ VGN ,∀j ∈ VPN (25)

yp←g
ij ≥ yp←g

ij , ∀i ∈ VPN ,∀j ∈ VGN (26)

∑

i∈VGN
j∈VPN

yg←p
ij dkmij cg←p

km +
∑

i∈VPN
j∈VGN

yp←g
ij dkmji cp←g

km ≤ cci +Bci (27)

∑

k∈EPN

1− uk ≤ Katt (28)

Constraints (25) and (26) ensure that any previously-existing coupling interface is considered

within the optimization. The binary parameter yg←p
ij defines if an interdependency link from node

j ∈ VPN to node i ∈ VGN is already existing (yg←p
ij =1). Similarly, the binary parameter yp←g

ij defines

if an interdependency link from node j ∈ VGN to node i ∈ VPN is already existing (yp←g
ij =1). The

corresponding binary variables, yg←p
ij and yp←g

ij , are forced to be equal to 1 if interdependency links

are present.

Constraint (27) enforces the cost of the allocated redundant interdependency link to be less or

equal the available monetary budget Bci. The parameter dkmij defines the distance in kilometer

between nodes i ∈ VGN and j ∈ VPN . The parameters cg←p
km and cp←g

km are the cost-per-kilometer of

allocating an interdependency link. The parameter cci represents the cost of the existing coupling

interface, computed as in (29):

cci =
∑

i∈VGN
j∈VPN

yg←p
ij dkmij cg←p

km +
∑

i∈VPN
j∈VGN

yp←g
ij dkmji cp←g

km (29)

With the term cci included, only the newly allocated interdependency links are considered within

the budget limitation.

Constraint (28) enforces the number of power lines targeted and failed by the attacker to be

lower or equal the parameter Katt. Each binary variable uk=0 if line k is targeted and failed, and

uk=1 otherwise.

The solution of the DAD model leads to the identification of the most robust allocation of

redundant interdependency links. In other words, the outer defender allocates the redundancies in

order to maximize the combined performance of the IPGNs in the worst-case attack scenario that

can be carried out by the attacker.
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3. Solution strategy

Similarly to our previous work [3], the DAD optimization problem can be solved efficiently by

implementing a Nested Column&Constraint Generation (NC&CG) algorithm [16], [17]. For sim-

plicity, in the following explanation, we rely on the compact matrix formulation of the operational

model in (22)-(23). If we fix the binary variables in (22)-(23), the optimization problem is a pure

LP problem, and its dual formulation can be expressed as in (30)-(31)

max
λ≥0

(
q−Tu∗ −Hy∗ −Wδ∗ −Xµ∗ − µ∗TDδ∗

)T
λ (30)

subject to:

RTλ = b (31)

where the vector λ contains the dual variables.

3.1. Inner layer

With a fixed coupling interface y∗, the middle inner-level problem (min-max) allows to identify

the worst-case combined performance and the related optimal attack plan. This problem can be

solved by following these steps:

1. Set j = 0, lower bound LBin = 0, upper bound UBin =∞, and Dpart = ∅
2. Solve the inner master problem in Equations (32)-(35). Obtain an optimal solution ρ̂(j) and

optimal attack plan û(j). Update LBin=ρ̂(j).

min
ρ,u,λ

ρ (32)

subject to:

ρ ≥
(
q−Tu−Hy∗ −Wδ∗(j) −Xµ∗(j) − µ∗(j)TDδ∗(j)

)T

λ(j),

∀δ∗(j),µ∗(j) ∈ Dpart (33)

RTλ(j) = b, ∀δ∗(j),µ∗(j) ∈ Dpart (34)

∑

k∈EPN

(1− uk) ≤ Katt (35)

3. Solve the inner subproblem in Equations (36)-(37) with û(j)=u∗. Obtain an optimal solution

bT ĥ(j), δ̂
(j)

, and µ̂(j). Set UBin = min(UBin,b
T ĥ(j)).

max
h,δ,µ

bTh (36)

subject to :

Rh ≤ q−Tu∗ −Hy∗ −Wδ −Xµ− µTDδ (37)
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4. If (UBin−LBin)/UBin < 10−5, û(j) represents the optimal attack and the algorithm can be

terminated. Otherwise, Dpart = Dpart ∪ δ̂
(j) ∪ µ̂(j). Set j ← j + 1 and return to step 2.

3.2. Outer layer

The outer layer is solved by following these steps:

1. Set j = 0, lower bound LBout = 0, upper bound UBout =∞, and Apart = ∅
2. Solve the outer master problem in Equations (38)-(41). Obtain an optimal solution η̂(j), and

optimal coupling interface ŷ(j). Update UBout=min(UBout, η̂
(j))

max
η,y

η (38)

η ≤ bTh(j), ∀u∗(j) ∈ Apart (39)

Py ≤ g (40)

Rh(j) ≤ q−Tu∗(j) −Hy −Wδ(j) −Xµ(j) − µ(j)TDδ(j), ∀u∗(j) ∈ Apart (41)

where Constraint (40) is the matrix compact form of Constraints (25)-(27).

3. Solve the outer subproblem using the inner layer algorithm with ŷ(j)=y∗. Obtain an optimal

solution ρ(j) and an optimal attack plan û(j). Set LBout = ρ(j).

4. If (UBout − LBout)/UBout < 10−5, ŷ(j) is the optimal coupling interface and the algorithm

is terminated. Otherwise, Apart = Apart ∪ û(j), set j ← j + 1 and return to step 2.

4. Case-study

We applied our proposed DAD problem to the IPGNs used in [3]. This case-study consists of

a power network, containing five gas-fired power plant, supplied by a gas network, which needs

electricity from the power network. The power network is built upon the topology of the IEEE

14-bus system [18], while for the gas network the topology of the IEEE 9-bus system is used [19].

The geographical position of the IPGNs is shown in Figure 2. For more details on the case-study,

the reader is referred to [3].

We assume that the power and gas network are already coupled with an existing coupling

interface. Three different existing coupling interface designs, based on network metrics, are tested:

• distance-based coupling interface (also referred to as Euclidean coupling interface [3]): each

node in the gas network presents an interdependency link coming from the closest node in the

power network. Each node in the power network containing a gas-fired power plant presents

an interdependency link coming from the closest node in the gas network;
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Figure 2: Interdependent power and gas networks. Figure from [3].

• degree-based coupling interface: the node with the kth highest degree in the gas network

presents an interdependency link coming from the node with the kth highest degree in the

power network. The node with the kth highest degree containing a gas-fired power plant in the

power network presents an interdependency link coming from the node with the kth highest

degree in the gas network;

• betweenness-based coupling interface: the node with the kth highest betweenness in the gas

network presents an interdependency link coming from the node with the kth highest between-

ness in the power network. The node with the kth highest betweenness containing a gas-fired

power plant in the power network presents an interdependency link coming from the node

with the kth highest betweenness in the gas network.

The optimal allocation of redundant interdependency links is investigated with Katt from 1 to

5. Four different budgets Bci are used: $100,$200, $300, and $400. The allocation costs cg←p
km and

cp←g
km are 1 $/km. The NC&CG algorithm is solved using Gurobi [20] with an i7-8700@3.20GHz

processor and 32 GB RAM.
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5. Results and discussion

The results of the optimal allocation of redundant interdependency links in the distance-based,

degree-based, and betweenness-based coupling interface are shown in Figures 3, 5, and 7, and Tables

1, 2, and 3, respectively. For comparison, the results of the optimal allocation are compared to

the results obtained with a random allocation strategy, shown in Figures 4, 6, and 8. The random

allocation strategy is described by the algorithm in Appendix A. For each combination of budget

Bci and failed lines Katt, 50 simulations of random allocation of redundant interdependency links

are performed. The results in Figures 4, 6, and 8 represents the average values and their 95%

confidence intervals in the distance-based, degree-based, and betweenness-based coupling interface,

respectively.

By graphically comparing Figures 3, 5, and 7 with Figures 4, 6, and 8, we can immediately notice

how the optimal allocation of redundant interdependency links clearly outperforms the random

allocation strategy, even accounting for the upper bound of the 95% confidence interval.
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Figure 3: Results of the optimal allocation of redundant interdependency links with a pre-existing distance-based

(Euclidean) coupling interface.

For the distance-based coupling interface, as shown in Figure 3 and Table 1, the relative increase

of combined performance from the original coupling interface reaches a percentage equal to 101.21%

for the case Katt = 5 and Bci = $400, passing from 0.308 to 0.619. Moreover, as shown in Figure 4,

the random allocation strategy does not lead to good results if compared to the optimal allocation,

even accounting for the confindence intervals. For example, for the case Katt = 5 and Bci = $400,

the random allocation strategy leads to combined performance equal to 0.338± 0.070.
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Figure 4: Results of the random allocation of redundant interdependency links with a pre-existing distance-based

(Euclidean) coupling interface.

Table 1: Results in terms of worst-case combined performance and relative increase from the original case for the

distance-based (Euclidean) coupling interface.

Bci Katt=1 Katt=2 Katt=3 Katt=4 Katt=5

Original 0.940 0.770 0.670 0.523 0.308

$100
0.997

(+6.04%)

0.785

(+1.93%)

0.708

(+5.74%)

0.558

(+6.71%)

0.364

(+18.43%)

$200
1.0

(+6.33%)

0.879

(+14.03%)

0.819

(+22.33%)

0.670

(+28.13%)

0.514

(+67.04%)

$300
1.0

(+6.33%)

0.953

(+23.74%)

0.894

(+33.49%)

0.699

(+33.77%)

0.577

(+87.33%)

$400
1.0

(+6.33%)

0.953

(+23.74%)

0.911

(+35.98%)

0.722

(+38.12%)

0.619

(+101.21%)

For the degree-based coupling interface, as shown in Figure 5 and Table 2, the relative increases

of combined performance are even greater than the previous case. For example, for the caseKatt = 3

and Bci = $400, the increase of combined performance from the original coupling interface is

347.55% (from 0.204 to 0.913). Moreover, in the original coupling interface, with Katt = 4 and

Katt = 5, the worst-case combined performance are equal to 0, and the allocation of redundant
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Figure 5: Results of the optimal allocation of redundant interdependency links with a pre-existing degree-based

coupling interface.
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Figure 6: Results of the random allocation of redundant interdependency links with a pre-existing degree-based

coupling interface.

interdependency links allows to considerably improve the worst-case combined performance. For

example, for the case Katt = 5 and Bci = $400, we can achieve worst-case combined performance

equal to 0.641. The results of the random allocation strategy, shown in Figure 6, are considerably

lower if compared to the optimal allocation strategy, even considering the confidence intervals.
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Table 2: Results in terms of worst-case combined performance and relative increase from the original case for the

degree-based coupling interface.

Bci Katt=1 Katt=2 Katt=3 Katt=4 Katt=5

Original 0.941 0.679 0.204 0.0 0.0

$100
1.0

(+6.27%)

0.790

(+16.35%)

0.687

(+236.76%)

0.644

-

0.282

-

$200
1.0

(+6.27%)

0.953

(+40.35%)

0.744

(+264.71%)

0.663

-

0.600

-

$300
1.0

(+6.27%)

0.953

(+40.35%)

0.893

(+337.75%)

0.744

-

0.619

-

$400
1.0

(+6.27%)

0.953

(+40.35%)

0.913

(+347.55%)

0.839

-

0.641

-
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Figure 7: Results of the optimal allocation of redundant interdependency links with a pre-existing betweenness-based

coupling interface.

For the betweenness-based coupling interface, as shown in Figure 7 and Table 3, the relative

increases of combined performance are similar to the previous case. For example, for the case

Katt = 4 and Bci = $400, the increase of combined performance from the original coupling in-

terface is 311.27% (from 0.204 to 0.839). Moreover, similarly to the previous case, in the original

coupling interface, with Katt = 5, the worst-case combined performance are equal to 0, and the
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Figure 8: Results of the random allocation of redundant interdependency links with a pre-existing betweenness-based

coupling interface.

Table 3: Results in terms of worst-case combined performance and relative increase from the original case for the

betweenness-based coupling interface.

Bci Katt=1 Katt=2 Katt=3 Katt=4 Katt=5

Original 0.983 0.679 0.572 0.204 0.0

$100
1.0

(+1.73%)

0.948

(+39.62%)

0.712

(+24.48%)

0.587

(+187.75%)

0.282

-

$200
1.0

(+1.73%)

0.953

(+40.35%)

0.894

(+56.29%)

0.679

(+232.84%)

0.547

-

$300
1.0

(+1.73%)

0.953

(+40.35%)

0.912

(+59.44%)

0.784

(+284.31%)

0.640

-

$400
1.0

(+1.73%)

0.953

(+40.35%)

0.922

(+61.19%)

0.839

(+311.27%)

0.730

-

allocation of redundant interdependency links allows to considerably improve the worst-case com-

bined performance. For example, for the case Katt = 5 and Bci = $400, we can achieve worst-case

combined performance equal to 0.730. The results of the random allocation strategy in Figure 8

are again considerably lower if compared to the optimal allocation strategy, even considering the

confidence intervals.

17



Regarding the computational cost of the proposed approach, we refer to the considerations

already mentioned in [3], which we briefly recall here:

• in this work, the computational time is acceptable, as for each combination of Katt and Bci,

the computational time is less than 10 minutes;

• for larger case-studies, the computational time might increase considerably. However, this

fact does not represent an problematic issue, as in design problems long computational times

are generally not an obstacle;

• the computational cost of the problem can be reduced by limiting the number of binary

variables (e.g. limiting the choice of links which is possible to allocate).

6. Conclusion

In this work, we presented a mathematical programming approach for the optimal allocation of

redundant interdependency links in interdependent CIs. A DAD model is used, in order to maximize

the combined performance of the interdependent CIs under the worst-case failure scenario. Using

IPGNs as illustrative case-study, the results have demonstrated the great potential, in terms of

resilience enhancement, of allocating redundancies within the coupling interface of interdependent

CIs. Further developments of this work include different operational model of the IPGNs.
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Appendix A. Random allocation strategy

Algorithm 1 Random allocation of interdependency links

1: Initialize yg←p, yp←g, Bci, i=1, cost=0

2: while i=1 do

3: Define r=random binary number

4: if r=0 then

5: Initialize random nodes i ∈ VGN and j ∈ VPN

6: if yg←p
ij =0 then:

7: Set cost← cost+ dkmij cg←p
km

8: if cost ≤ Bci then:

9: Set yg←p
ij =1

10: else if cost > Bci then

11: Set i=0 and stop the algorithm

12: else if r=1 then

13: Initialize random nodes i ∈ VPN and j ∈ VGN

14: if yp←g
ij =0 then:

15: Set cost← cost+ dkmji cp←g
km

16: if cost ≤ Bci then:

17: Set yp←g
ij =1

18: else if cost > Bci then

19: Set i=0 and stop the algorithm
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[5] M. Ouyang and L. Dueñas-Osorio, “An approach to design interface topologies across inter-

dependent urban infrastructure systems,” Reliability Engineering & System Safety, vol. 96,

no. 11, pp. 1462–1473, 2011.

[6] Y.-P. Fang and E. Zio, “An adaptive robust framework for the optimization of the resilience

of interdependent infrastructures under natural hazards,” European Journal of Operational

Research, vol. 276, no. 3, pp. 1119–1136, 2019.

[7] X. Liu, Y.-P. Fang, and E. Zio, “A hierarchical resilience enhancement framework for interde-

pendent critical infrastructures,” Reliability Engineering & System Safety, vol. 215, p. 107 868,

2021.

[8] M. Ouyang and Z. Wang, “Resilience assessment of interdependent infrastructure systems:

With a focus on joint restoration modeling and analysis,” Reliability Engineering & System

Safety, vol. 141, pp. 74–82, 2015.

[9] M. Ouyang, “Critical location identification and vulnerability analysis of interdependent

infrastructure systems under spatially localized attacks,” Reliability Engineering & System

Safety, vol. 154, pp. 106–116, 2016.

[10] J. Kong, C. Zhang, and S. P. Simonovic, “Optimizing the resilience of interdependent in-

frastructures to regional natural hazards with combined improvement measures,” Reliability

Engineering & System Safety, vol. 210, p. 107 538, 2021.

[11] Y. Almoghathawi, K. Barker, and L. A. Albert, “Resilience-driven restoration model for

interdependent infrastructure networks,” Reliability Engineering & System Safety, vol. 185,

pp. 12–23, 2019.

20



[12] K. S. Trivedi, V. Jindal, and S. Dharmaraja, “Stochastic modeling techniques for secure and

survivable systems,” Information assurance: Dependability and security in networked systems.

Morgan Kaufmann, pp. 171–207, 2008.

[13] J. Johansson, H. Hassel, and A. Cedergren, “Vulnerability analysis of interdependent critical

infrastructures: Case study of the swedish railway system,” International journal of critical

infrastructures, vol. 7, no. 4, pp. 289–316, 2011.

[14] Z. Wang, T. Chen, K. Tang, and X. Yao, “A multi-objective approach to redundancy alloca-

tion problem in parallel-series systems,” in 2009 IEEE Congress on Evolutionary Computa-

tion, 2009, pp. 582–589. doi: 10.1109/CEC.2009.4982998.

[15] M. Panteli, C. Pickering, S. Wilkinson, R. Dawson, and P. Mancarella, “Power system re-

silience to extreme weather: Fragility modeling, probabilistic impact assessment, and adapta-

tion measures,” IEEE Transactions on Power Systems, vol. 32, no. 5, pp. 3747–3757, 2016.

[16] B. Zeng and L. Zhao, “Solving two-stage robust optimization problems using a column-and-

constraint generation method,” Operations Research Letters, vol. 41, no. 5, pp. 457–461, 2013.

doi: https://doi.org/10.1016/j.orl.2013.05.003.

[17] L. Zhao and B. Zeng, “Vulnerability analysis of power grids with line switching,” IEEE

Transactions on Power Systems, vol. 28, no. 3, pp. 2727–2736, 2013.

[18] Accessed: 30/03/2022. [Online]. Available: https://icseg.iti.illinois.edu/ieee-14-

bus-system/.

[19] Accessed: 30/03/2022. [Online]. Available: https://icseg.iti.illinois.edu/wscc-9-

bus-system/.

[20] L. Gurobi Optimization, Gurobi optimizer reference manual, 2021. [Online]. Available: http:

//www.gurobi.com.

21





Paper VI

A. Bellè, Z. Zeng, and A. Barros, “Vulnerability analysis of in-
terdependent energy infrastructures with centralized and decen-
tralized operator models,” Proceedings of the 32nd European
Safety and Reliability Conference, accepted, 2022.

227



228



June 13, 2022 11:12 RPS ESREL Proceedings/Edited Book: Trim Size: 221mm x 173mm output

Vulnerability analysis of interdependent energy infrastructures with centralized and
decentralized operator models

Andrea Bellè
Chair on Risk and Resilience of Complex Systems, Laboratoire Génie Industriel, CentraleSupélec, Université
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Paris-Saclay, France. E-mail: anne.barros@centralesupelec.fr

Energy infrastructures (EIs) are large systems which provide essential energy commodities, such as electricity,
gas, or heat, to people. As EIs are often interdependent on each other, integrated analysis and optimization are
needed. When performing analysis and optimization of interdependent EIs, the behaviour of independent operators
should be taken into account. Independent operators might display a decentralized and competitive behaviour,
when they interact through the prices of energy commodities in a market-based environment, or a centralized and
collaborative behaviour, when they aim at maximizing their combined performance. In this paper, we investigate
the impact of centralized and decentralized operators models in the vulnerability analysis of interdependent EIs.
Using interdependent power and heat networks (IPHNs), we show that these two classes of models lead to different
results in terms of cost and performance. These preliminary results represent the first step in defining a decision-
making framework which accounts for the two different behaviours of independent operators: decentralized in
normal conditions, and centralized in conditions of disruptions.

Keywords: Energy infrastructures, vulnerability, independent operators, interdependent networks, Stackelberg game,
optimization.

1. Introduction

Energy infrastructures (EIs) consist of different
systems and technologies, such as power net-
works, gas networks and heat networks. These
infrastructures are often interconnected to, and
interdependent on each other. For example, heat
networks are often dependent on power networks
for the production of heat through electric boilers,
and on gas networks for the production of heat
through gas boilers (Wang et al., 2020). Similarly,
power networks can be dependent on gas networks
for the production of electricity in gas-fired power
plants, and gas networks need electricity from
power networks for running pumps, compressors,
valves and other equipment (Fang and Zio, 2019).
These infrastructures are essential for maintaining
vital societal functions, and analyzing their be-

haviours in different conditions and ensuring their
resilience against disruptive events are key tasks.

Despite being interdependent on each other,
energy infrastructures are often operated by sep-
arate and independent operators. When perform-
ing analysis and optimization of energy infras-
tructures, the behaviour of independent operators
should be taken into account. The actions of en-
ergy operators are often modeled as the optimiza-
tion of a function that can represent cost, profit,
or dispatch of energy commodities. In the exist-
ing literature, the behaviour of independent EIs
operators is usually modeled using two different
approaches: centralized and decentralized.

In centralized approaches, a unique centralized
operator controls the operations of the interdepen-
dent EIs, dispatching the corresponding energy
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commodities in order to maximize profit and/or
supplied energy, or minimize cost and/or energy
not supplied. Centralized models have been often
applied in the context of resilience assessment
and optimization. For example, centralized oper-
ator models have been used to optimize the re-
silience of interdependent infrastructures via com-
bined improvements (Kong et al., 2021), for the
resilience enhancement of interdependent power
and gas networks against natural hazards with a
robust approach (Fang and Zio, 2019), and for the
resilience enhancement of interdependent power
and water networks under spatially-localized at-
tacks (Ouyang, 2017). Centralized operator mod-
els have also been used for optimizing the joint
restoration of disrupted interdependent infrastruc-
tures (Almoghathawi et al., 2019; Ouyang and
Wang, 2015; Lee II et al., 2007). In the afore-
mentioned works, the operators are centralized, as
they can control simultaneously the ensemble of
interdependent infrastructures in order to optimize
an objective function, which is usually a weighted
sum of the performance or cost of each individual
infrastructure.

In decentralized models, operators are consid-
ered to be independent, and they interact within
a market-based environment. For example, oper-
ators of interdependent power and gas networks
interact by purchasing from and selling to each
other energy commodities. The purpose of each
operator is usually to optimize their own profit
or cost, and the interaction between multiple op-
erators is often modeled through game-theoretic
approaches. For example, decentralized models
have been considered for the expansion planning
of interdependent power and gas networks (Rad
et al., 2019; Conejo et al., 2020; Qiu et al., 2014),
the optimization of urban energy networks (Jing
et al., 2018), security-constrained operations of
integrated wind and hydrogen systems (Mirzaei
et al., 2019) and the risk assessment of interdepen-
dent power and heat networks (Wang et al., 2020).

In general, centralized and decentralized ap-
proaches lead to different results, but they are both
useful in terms of modeling and decision-making.

Centralized models are often used for model-
ing resilience assessment and enhancement, and

decision-making in conditions of disruption. In
fact, in conditions of large disruption, independent
operators might fully collaborate in a centralized
way in order to minimize negative consequences
on the general population. In this case, the action
of energy operators are usually modeled as the
weighted sum of performance metrics of each
individual infrastructure.

Decentralized models are useful to model nor-
mal conditions, where energy operators behave
independently in a market-based environment, in
order to optimize their own profit or cost. In this
case, the action of energy operators are usually
modeled through game-theoretic approaches.

Decision-makers should take these consider-
ations into account. For example, when per-
forming some joint decision-making, such as a
joint transmission and/or generation expansion,
decision-makers should consider that operators
might display decentralized behaviours in normal
conditions, by interacting through prices and de-
mands of energy commodities, and centralized
behaviours in conditions of disruption, by aiming
at maximizing their combined performance.

In this preliminary work, we investigate the
impact of decentralized and centralized models by
performing a vulnerability analysis of interdepen-
dent power and heat networks.

The rest of the paper is organized as follows: in
Section 2, the problem formulation is presented;
in Section 3, the illustrative numerical example is
presented; in Section 4, the preliminary results are
shown and briefly analyzed; in Section 5, some
preliminary conclusions and future directions are
detailed.

2. Problem formulation

We consider the case-study of interdependent
power and heat networks (IPHNs) proposed in
Wang et al. (2020). Particularly, we consider a
power network PN which supplies electricity to a
heat network HN . The heat network is equipped
with electric boilers, which need a power supply
from the power network, and gas boilers. In this
work, gas boilers are assumed to have a reliable
gas supply.

Each infrastructure is modeled with a network-
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based approach, where a network is described by
a graph G=(V,E), where V is the set of M nodes
and E is the set of N edges. The origin and
destination nodes of each edge k are defined as
O(k) and D(k), respectively. In power networks,
nodes represent buses and edges represent power
lines; in heat networks, nodes represent hubs and
edges represent pipelines.

The operations of both power and heat network
are modeled with a linear maximal flow approach.
The models of both the networks consist of the
minimization of an objective function g, which de-
pends on the specific operator model (centralized
or decentralized), as shown in (1).

min
p,d,f

g(p,d, f) (1)

The specific objective functions are detailed in the
next sections.

The power network is subject to Constraints
(2)-(5).

0 ≤ pi ≤ pi, ∀i ∈ VPN (2)

0 ≤ di ≤ di ∀i ∈ VPN (3)

−u∗kfk ≤ fk ≤ u∗kfk, ∀k ∈ EPN (4)

pi − (di − di)−
∑

j∈VHN

dh←p
j,i +

+
∑

k|D(k)=i

fk −
∑

k|O(k)=i

fk = 0, ∀i ∈ VPN (5)

Constraints (2) and (3) defines the limit of power
production and shedding in each node. The terms
pi and di are the production capacity and the
power requested demand in each node, respec-
tively. Constraint (4) bounds the flow of power in
each line k, in absolute value, within its capacity
fk, if the line is functional (u∗k=1). If the line
is failed (u∗k=0), the flow is enforced to be 0.
Constraint (5) ensures that the net power balance
in each node is 0. The term dh←p

j,i represent the
power, supplied to node i ∈ VPN , necessary to
produce heat in the electric boiler of node j ∈
VHN (which, thus, depends on node i ∈ VPN ).

The heat network is subject to Constraints (6)-
(10):

0 ≤ pi ≤ pi, ∀i ∈ VHN (6)

0 ≤ di ≤ di ∀i ∈ VHN (7)

−u∗kfk ≤ fk ≤ u∗kfk, ∀k ∈ EHN (8)

pi − (di − di) +
∑

k|D(k)=i

fk −

−
∑

k|O(k)=i

fk = 0, ∀i ∈ VPN (9)

pi = ηdh←p
i,j , ∀i ∈ VHN , j ∈ VPN (10)

Constraints (6)-(9), similarly to Constraints (2)-
(5) of the power network, represent limits of heat
production and shedding, heat flow, and heat nodal
balance. Moreover, if node i ∈ VHN , dependent
on node j ∈ VPN , is provided with an electric
boiler, its heat production pi is equal to the power
supply dh←p

i,j multiplied by the power-to-heat con-
version efficiency η, as shown in Constraint (10).
We assume that each node in the heat network
equipped with an electric boiler is dependent on
one node of the power network for the electricity
supply.

2.1. Load shedding model

For the centralized model, we consider an ap-
proach which aims at minimizing the combined
load shedding of power and heat. We refer to this
model as the load shedding (LS) model. It simply
consists of the objective function in (11):

min
p,d,f

∑

i∈VPN

di

dPN

+
∑

i∈VHN

di

dHN

(11)

subject to Constraints (2)-(10). The terms dPN

and dHN represent the total requested demand of
power and gas, respectively. As it is clearly visi-
ble, the single objective functions for power and
heat network (minimization of fractions of power
and heat shedding, respectively) are simply aggre-
gated within a single linear programming model.
With this model, the two independent operators
act in a centralized way in order to minimize the
combined fraction of power and heat shedding.
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2.2. Game-theoretic cost model

For the decentralized model, we rely on the
game-theoretic approach proposed by Wang et al.
(2020). We refer to this model as the game-
theoretic cost (GTC) model. In this case, oper-
ators aims at minimizing their own costs, and they
interact by selling and purchasing electricity. In
fact, heat operators need to purchase electricity
from the power network in order to produce heat
in the electric boilers. The operators display a
competitive behaviour: power operators aim at
selling their electricity at a high price, while the
heat operators aim at purchasing it at a low price.

In this case, the cost-based objective functions
of power and heat network can not be directly
aggregated, but they need to be treated with a
game-theoretic approach.

The model of the power network consists of the
objective function in (12) subject to (2)-(5) and
(13):

min
p,d,f

∑

i∈VPN

γpower
i pi +

∑

i∈VPN

αpower
i di

−
∑

i∈VPN

∑

j∈VHN

βid
h←p
j,i (12)

βmin ≤ βi ≤ βmax, ∀i ∈ VPN (13)

The cost function consists of three terms:

• the power production cost, where γpower
i

is the cost per unit of power production
in each node i;

• the penalty cost associated with power
load shedding, where αpower

i is the
penalty per unit of power associated to
power load shedding in each node i;

• the profit associated to selling electricity
to the heat network, where βi is the sell-
ing price per unit of power produced in
each node i.

The electricity selling price is a variable which
is bounded between a minimum and maximum
value, as shown in Constraint (13).

Similarly, the cost model of the heat network
consists of the objective function in (14) subject

to (6)-(10).

min
p,d,f

∑

i∈V gb
HN

γheat
i pi +

∑

i∈VHN

αheat
i di

+
∑

i∈VPN

∑

j∈VHN

βid
h←p
j,i (14)

The cost function in consists of three terms,
respectively:

• the power production cost in gas boilers,
where γheat

i is the cost per unit of heat in
each node i;

• the cost associated with heat load shed-
ding, where αheat

i is the penalty per unit
of heat associated to heat load shedding
in each node i;

• the cost associated to purchasing elec-
tricity from the power network, where βi

is the selling price per MW of power,
which is seen as a constant by the model.

The two problems are interconnected through
the electricity demand of electric boilers in the
heat network, given by the terms dh←p

j,i , and the
electricity prices βi.

Power and heat operators are competing for the
electricity prices: power operators aim at increas-
ing prices βi in order to maximize their profit,
while heat operators aim at decreasing the elec-
tricity price for minimizing their operational costs.
If the price is too high, the heat operators will not
purchase electricity; if the price is too low, the
power operators will reach a sub-optimal solution
in terms of cost minimization. This situation can
be modeled using game-theory. In this paper, we
assume that the power network operators “move”
first by setting the price of electricity, and, sub-
sequently, the heat network operator adjust the
electricity demands dh←p

j,i . This situation leads to
a Stackelberg game between the power and heat
network operators. Under this assumption, as pro-
posed in Wang et al. (2020), the two optimization
problems can be recast into a single one by replac-
ing the model of the heat network with its Karush-
Kuhn-Tucker (KKT) conditions. For simplicity,
we rely directly on a compact matrix formulation.
For more details on the single-level reformulation
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of the Stackelberg game, the reader is referred to
Wang et al. (2020).

The single-level Stackelberg game between
power and heat operators can, thus, be formulated
as the objective function in (15), subject to (13)
and (16)-(20).

min
h

cTh (15)

subject to:

Rinh− bin ≤ 0 (16)

Reqh− beq = 0 (17)

∇cTh+ λ∇Rinh+ µ∇Reqh = 0 (18)

λ(Rinh− bin) = 0 (19)

λ ≥ 0 (20)

Equation (15) represents the objective func-
tion in (12). Constraints (16) and (17) repre-
sents the primary constraints of power and heat
networks, previously shown in Equations (2)-
(10). Constraints (18)-(20) represents stationarity
conditions, complementary slackness, and non-
negativity of the KKT conditions of the heat net-
work model (Equation (14) subject to Constraints
(6)(10)).

The term h represents the continuous primary
variables p, d and f , while λ and µ represent
the dual variables of inequality and equality con-
straints of the heat network, respectively. The
vector c contains the coefficients of the objec-
tive function, while the matrices Rin and Req

contain the coefficients of inequality and equal-
ity constraints of both power and heat networks.
The vectors bin and beq contain the constraints
parameters.

The solution of this optimization problem leads
to the minimized equilibrium costs for power and
heat networks under the assumption of a Stackel-
berg game.

3. Numerical example

The case study is built upon the one proposed
in Wang et al. (2020). The reader is referred to
Figure 5 of Wang et al. (2020) for a graphical
visualization. We assume that the heat network
is composed by 32 nodes connected of 32 edges
(Liu et al., 2016). Each node is characterized by
a requested demand of heat supply that ranges
from 0 to 0.145 MW, for a total demand of 2.164
MW. The heat network is provided with one 1 gas
boiler and 3 electric boilers, each of them with a
production capacity of 0.8 MW. Each edge has a
flow capacity of 1 MW.

The three electric boilers need electricity, and
they are supplied by three nodes of the power
network, composed of 33 nodes and 32 edges
(Baran and Wu, 1989). Each node is characterized
by a requested power demand, ranging from 0 to
0.121 MW, for a total demand of 3.655 MW. The
power network is equipped with a generator with
capacity of 3.5 MW, and four additional genera-
tors with a capacity of 0.5 MW. Each edge has a
power flow capacity of 3.5 MW.

The electricity price boundaries are set as
βmin=$200 and βmax=$1000. The penalty values
αpower
i and αheat

i for each node are set between
βmin and βmax. The power and heat production
cost γpower

i and γheat
i are set to $50. The power-

to-heat efficiency η is set to 0.8.
We perform a preliminary vulnerability analy-

sis by solving the LS model and the GTC model
for every possible combinations of N -1, N -2,
and N -3 line contingencies in the power network.
The results are evaluated for both the models in
terms of average power and heat load shedding
and average cost. The cost in the LS model is
computed using the equilibrium electricity prices
βi identified by the GTC model under the same
contingency scenario.

This illustrative case-study represents a numeri-
cal example to analyze the results of the two mod-
els and draw some preliminary considerations.

The computations are implemented in Gurobi
9.1 Gurobi Optimization (2021) and performed on
a laptop with a 2.60 GHz CPU and 16 GB RAM.
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4. Preliminary results

The results in normal conditions (no failed lines),
in terms of load shedding and cost, are shown in
Tables 1 and 2 .

Table 1. Load shedding in normal conditions with LS

model and GTC model.

Model LS PN LS HN Average LS

LS 0.00 0.00 0.00
GTC 0.00 0.186 0.093

Table 2. Costs in normal conditions with LS model and
GTC model.

Model Cost PN Cost HN Average cost

LS -345.80$ 653.80$ 154.00$
GTC -189.83$ 591.01$ 200.59$

We can immediately notice how the two models
lead to different results, even in normal condi-
tions. In terms of shedding, the LS model, as
expected, leads to no load shedding of power or
heat. However, the GTC model leads to a fraction
of heat shedding equal to 0.186. A reduction of
the heat shedding fraction would imply an elec-
tricity purchase with a price above the equilibrium
price and, thus, an increase of cost. In addition,
the LS model leads to a lower average cost. In
fact, the heat operators, aiming at minimizing their
load shedding, purchase more electricity from the
power network. This contributes to increase the
cost of the heat network and decrease the cost of
the power network. However, despite the average
cost being lower, these values do not represent an
equilibrium solution.

The results of the preliminary vulnerability
analysis are shown in Figures 1-6. The bar plots
denotes the average values of load shedding frac-
tion and cost for both models and N -1, N -2, and
N -3 power line contingencies.

The results in terms of load shedding for the
combined networks, the power network, and heat

network are shown in Figures 1, 2, and 3. As it
was expected, in Figure 1, we can notice that the
LS model leads to lower level of average com-
bined load shedding in all the three contingency
scenarios evaluated. However, as it can be seen in
Figures 2, and 3, the same consideration is not
valid for the individual load shedding in power
and heat networks. In fact, the GTC model leads
to fraction of load shedding lower than the LS

model in the power network, and considerably
higher than the LS model in the heat network.
However, overall, the GTC model leads to higher
levels of combined load shedding.

Fig. 1. Average load shedding in the IPHNs.

Fig. 2. Average load shedding in the power network.

The results in terms of cost for the combined
networks, the power network, and heat network
are shown in Figures 4, 5, and 6, respectively.
Firstly, looking at the total cost of power and heat
network in Figure 4, we notice that for the cases
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Fig. 3. Average load shedding in the heat network.

N -2, and N -3, the GTC model leads to lower
average costs; however, for the case N -1, the LS

model leads to a slightly lower average cost (the
difference is small, less than $1). For understand-
ing this behaviour, the individual costs of power
and heat network, in Figures 5 and 6, need to be
analyzed. In fact, if we look at the power network
cost in Figure 5, we can notice for the case N -
1 the LS model leads to a considerably lower
cost. However, if we look at the heat network cost
in Figure 6, we see that the LS model leads to
a higher cost. These are the results of the mini-
mization of load shedding: in fact, the heat opera-
tors, when modeled with the LS model, aiming
at minimizing the heat load shedding, purchase
more electricity that they would with the price-
aware GTC model. As a consequence, the power
network sells more electricity, which is purchased
by the heat network. In conclusion, in terms of
cost, similarly to the case in Tables 1 and 2, the
LS model leads to solutions far from the optimal
equilibrium of the GTC model.

5. Conclusion

With these preliminary results, we show how cen-
tralized and decentralized models lead to different
results, in terms of cost and shedding, both in nor-
mal and disrupted situations. Decentralized mod-
els, like the one proposed in Wang et al. (2020),
imply a market-based competition between the
operators of different infrastructures, and they are
useful for modeling normal situations, when op-
erators aim at minimizing their costs. Centralized
models imply a collaborative behaviour between

Fig. 4. Average cost in the IPHNs.

Fig. 5. Average cost in the power network.

Fig. 6. Average cost in the heat network.

operators of different infrastructures, and they are
useful in disrupted conditions, when the objective,
rather than minimizing a cost, is to restore the
infrastructures functionality as rapidly as possible.

In conclusion, centralized and decentralized
models lead to different solutions in terms of en-
ergy dispatch, as they are based on different ob-
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jective functions and assumptions. However, both
these classes of models are useful, as they repre-
sent operators behaviours in different situations.

When performing optimization and analysis of
interdependent EIs, these behaviours in different
situations should be taken into account. Further
developments of this work will investigate the
possibility of a decision-making framework for in-
terdependent EIs which account for decentralized
operators behaviours in normal conditions and
centralized behaviours in conditions of disruption.
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Abstract:
Power networks are among the most important infrastructures in any society, and protecting
them from a large variety of disruptive events is an essential task. Finding an optimal protection
plan often takes the form of a multilevel optimization problem. Recently, approaches based on
distributionally robust optimization (DRO) have gained the attention of many scholars. In fact,
DRO allows protecting the decision-maker from the ambiguity arising from the imprecisely
identified probability distributions of the failure scenarios. In this framework, the probability
distribution of the failure scenarios is assumed to be known ambiguously, and contained in an
ambiguity set defined by moment-based conditions. In practice, some decisions taken in the
protection plan affect the conditions of the ambiguity set. We refer to this situation as DRO
with endogenous uncertainty. In this paper, we study the impact of the endogenous uncertainty
on the optimal protection plan of a power network, using a numerical example built upon the
IEEE 14-bus system with a traditional moment-based ambiguity set.

Keywords: Power network, optimal protection, distributionally robust optmization,
moment-based ambiguity set, critical infrastructures.

1. INTRODUCTION

Power networks are among the most important infras-
tructures for any society, as they provide private and
public customers with electricity. Failures and disruption
within power networks can lead to considerable negative
consequences (Garcia Tapia et al., 2019). The protection
of power networks components, i.e., to reinforce them and
make them invulnerable to external attacks and hazards, is
an effective measure to decrease the vulnerability of power
networks and increase the performance in disruptive condi-
tions (Yuan et al., 2014). Due to technical and economical
constraints, often, only a limited number of components
can be protected. The set of components to protect, which
constitutes the protection plan, must then be optimized.

Various works have proposed frameworks for the opti-
mization of protection plans, relying on the traditional
defender-attacker-defender (DAD) model, adaptive robust
optimization and distributionally robust optimization.

In the DAD framework, the decision maker seeks to iden-
tify the optimal protection plan against the worst-case
scenario within a set of feasible failure/attack scenarios
(in this work, the words failure/failed and attack/attacked
are used interchangeably). For example, in Ouyang (2017),
the author exploits a DAD approach to identify the op-
timal protection plan against spatially-localized attacks
in interdependent power and water networks; similarly,
in Ouyang and Fang (2017) and Yuan et al. (2014), the
authors provide the optimal protection plan for a power
network against attacks and failures.

When the decision maker has information on the failure
probability of specific components, an adaptive robust
approach can be used. For example, in Fang and Zio
(2019), the optimal protection plan for interdependent
power and gas networks against typhoons is computed
with an adaptive robust approach, accounting for the
fragility curves of the power network components and the
confidence level of the decision maker.

If distributional information on the failure probability
of components is available, a distributionally robust ap-
proach can also be applied. For example, in Zhang et al.
(2020), the optimal protection plan is identified with a
distributionally robust approach, where the probability
distribution of feasible failure scenarios is ambiguous.
Within this framework, the probability of each scenario
is unknown and ambiguous, and contained within an am-
biguity set in which moment information of the probability
distribution are encoded. A similar approach is applied in
Bagheri and Zhao (2019), where the optimal protection
plan is identified with a distributionally robust approach
under a N − k security criterion.

Distributionally robust approaches have recently attracted
the attention of several researchers, thanks to their abil-
ity to protect decision maker from the ambiguity which
often affects the probability distribution of failure/attack
scenarios (Rahimian and Mehrotra, 2019). Within the
framework of power network optimization, various recent
works have applied distributionally robust approaches. For
example, in Babaei et al. (2020), the authors propose a
DRO approach for the optimal power network configura-



tion under random failures. In Zhao and Jiang (2017), a
contingency-constrained unit commitment model is pro-
posed using DRO. In Alvarado et al. (2018), a transmission
expansion planning with distributionally robust security is
proposed.

In general, in a distributionally robust framework, a deci-
sion maker seeks to identify the decision plan z which is
robust against the worst probability distribution in the
ambiguity set. However, first-stage decisions z can also
affect the probability distributions contained within the
ambiguity set, which is then dependent on z (decision-
dependent ambiguity set). We refer to this situation as dis-
tributionally robust optimization with endogenous uncer-
tainty. The reader is referred to Luo and Mehrotra (2020)
and Noyan et al. (2018) for a theoretical framework, Doan
(2022) for an application to retrofitting of transportation
networks after natural disasters, and Noyan et al. (2021)
for a unified modeling framework and an illustrative appli-
cation to machine scheduling and humanitarian logistics.

When a distributionally robust approach, such as that
in Zhang et al. (2020) and Bagheri and Zhao (2019), is
used for the optimal protection plan of a power network,
the ambiguous distribution is related to the occurrence
probability of the feasible failure/attack scenarios. When
we protect an element, such as a transmission line, its fail-
ure probability is reduced. Consequently, the occurrence
probability of each scenario that implies the failure of a
protected line changes. Thus, the ambiguity set is decision-
dependent, as it can be modified by the protection plan.

To the best of our knowledge, optimal protection plans of
power networks with a distributionally robust approach
which accounts for this endogenous uncertainty through
a decision-dependent ambiguity set have not been investi-
gated.

In this work, we propose a distributionally robust frame-
work for identifying optimal protection plans in power
networks with endogenous uncertainty. In our preliminary
results, we highlight the difference in results between the
cases with and without endogenous uncertainty.

2. PROBLEM FORMULATION

2.1 Power network modeling

A network is a mathematical construct described by a
graph G = (V,E), with the set V containing N nodes and
the set E containing M edges. Each edge k is directed,
and it is defined by an origin node O(k) and a destination
node D(k). Each node i is characterized by a production
capacity pi and a requested demand di, while each edge k
is defined by a flow capacity fk (Bellè et al., 2021).

Power networks are usually modeled using power flow
models, such as the DC optimal power flow (Fang and
Sansavini, 2017). For the sake of simplicity, in this work,
the power network is modeled using a linear maximal
flow model, which is an approximation for flow-based
infrastructures (González et al., 2016). The purpose of
power network operators is to maximize the performance
of the power network. The performance is expressed in
terms of fraction of requested power demand which is
supplied, as shown in Equation (1):

max
p,d,f

∑
i∈V di∑
i∈V di

(1)

where di and di represents the supplied and requested
power demand at bus i, respectively. The optimization in
(1) is subject to the constraints of the maximal flow model,
shown in Equations (2)-(6):

0 ≤ pi ≤ pi, ∀i ∈ V (2)

0 ≤ di ≤ di, ∀i ∈ V (3)

fk ≥ −fk((zk) + uk(1− zk)), ∀k ∈ E (4)

fk ≤ fk((zk) + uk(1− zk)), ∀k ∈ E (5)

pi − di +
∑

D(k)=i

fk −
∑

O(k)=i

fk = 0, ∀i ∈ V (6)

Constraint (2) bounds the power production in each node
pi between 0 and the maximum production capacity pi.
Similarly, the supplied power demand di is bounded be-
tween 0 and the requested demand di, as shown in Con-
straint (3).

Constraints (4) and (5) limit the flow in each line, in
absolute value, to the maximum capacity fk. The term
((zk) + uk(1 − zk)) governs the functionality of line k.
If a line k is protected, the variable zk = 1 and the
line is considered to be invulnerable, similarly to other
works in the existing literature, e.g. Ouyang and Fang
(2017); otherwise, the variable zk = 0. If a line is attacked
(in this work, the word attacked and failed are used
interchangeably), the variable uk = 0; otherwise, the
variable uk = 1. In this way, if line k is unprotected
(zk = 0) and attacked/failed (uk = 0), its flow fk is forced
to be 0; otherwise, the flow fk is bounded between−fk and
fk. We highlight that the binary variables zk and uk do
not appear under the maximization in Equation (1). This
is because these are variables of the full DRO formulation.
More details are available in the following subsections.

Constraint (6) ensures that the net power balance in each
node is equal to 0.

For the sake of clarity, we can express the optimization
problem in (1)-(6) with its compact matrix formulation,
shown in Equations (7)-(8)

max
h

bTh (7)

subject to:

Rh ≤ q−Tu−Hz− zTDu (8)

where h = {p,d, f} are the continuous variables, z and u
are the binary variables, b is the vector with the objective
function coefficients, R, T, H, and D are the matrices with
the constraints coefficients, and q is the vector with the
constraints constants. Equation (7) represents Equation
(1), while Constraint (8) represents Constraints (2)-(6).

2.2 Ambiguity set without endogenous uncertainty

In this work, the uncertainty represents the conditional
occurrence probability of the feasible failure scenarios
contained in the set of feasible failure scenarios F , where
the condition is that at least one component has failed.
We assume that only edges can fail and we rely on a set
of feasible attack/failure scenarios based on the maximum



number of attacked/failed edges Katt. The set F is then
defined as in Equation (9):

F = {u | {0, 1}M , ||u||1 ≥M −Katt} (9)

where Katt is the maximum number of lines that can fail
and u is a vector containing the functional state of each
line. The kth element of u is uk = 1 if line k functional, and
uk = 0 if it is attacked/failed. Assuming that the scenarios
in F are mutually exclusive, and given the condition that
at least one of the lines is attacked/failed, the conditional
probability of each scenario to have occurred is defined by
a multinomial distribution.

In a DRO approach, the probability distribution of the
uncertainty is unknown and ambiguous, and it is contained
within an ambiguity set D, which contains all the distri-
bution that can describe the uncertainty and respect some
given conditions. Similarly to other existing works, such as
Babaei et al. (2020), we rely on a moment-based ambiguity
set which restricts the marginal probability of each line
k to be attacked/failed between 0 and an upper bound
πmaxk . The ambiguity set without endogenous uncertainty
is defined in Equation (10):

D = {P ∈ P(F) : 0 ≤ EP[1− u] ≤ πmax} (10)

where P(F) defines the set of all probability distributions
on a σ-algebra of F , and πmax is the vector containing
the upper bounds of the conditional marginal failure
probabilities of each power transmission line. We highlight
that the upper bounds πmax can be estimated from
historical data and reliability analysis (Babaei et al., 2020).

2.3 Ambiguity set with endogenous uncertainty

When we protect a power line, we assume that it becomes
invulnerable. As a consequence, we can assume that the
conditional marginal failure probability of each protected
line is 0. The protection plan can, thus, modify the
ambiguity set and it represents a source of endogenous
uncertainty. The decision-dependent ambiguity set D(z)
is defined as in Equation (11):

D = {P ∈ P(F) : 0 ≤ EP[1− u] ≤ πmax(z)} (11)

where the decision-dependent upper bounds are defined as
in Equation (12):

πmax(z) =
M
(
(1− z)Tπmax

)T

M −Kdef
(12)

where M is the number of edges, z is a vector containing
the protection plan (zk = 1 if line k is protected, zk = 0
otherwise) and Kdef is the parameter, set by the decision-
maker, that defines the number of protected lines. The
term M/(M − Kdef ) is a scaling factor for each upper
bound πmaxk . In fact, if line k is protected, all the scenarios
implying line k to be failed can not occur, and the condi-
tional probability of the other scenarios increase. Conse-
quently, the upper bounds πmax need to be increased.

2.4 DRO formulations

We define two DRO formulations, one without endogenous
uncertainty, and one with endogenous uncertainty, where
the ambiguity set is dependent on the protection plan z.

The DRO without endogenous uncertainty corresponds to
Equation (13):

max
z

min
P∈D

EP [Q(z, ξ)] (13)

subject to (10) and (14):
∑

k∈E
zk = Kdef (14)

and where the recourse function Q(z, ξ) corresponds to the
optimization in (7) subject to (8).

The DRO model with endogenous uncertainty is defined
as in (15):

max
z

min
P∈D(z)

EP [Q(z, ξ)] (15)

subject to (11) and (14).

In both the formulations, a decision maker seeks to identify
the optimal protection plan z that maximizes the expected
performance of the power network in disrupted conditions.
The expected performance are computed considering the
worst multinomial distribution contained in the ambiguity
set D or D(z). In this work, we investigate the impact of
considering the endogenous uncertainty within the opti-
mization of the protection plan.

3. SOLUTION PROCEDURE

3.1 Reformulation

We recast the problem into a tractable form, based on the
reformulation presented in Babaei et al. (2020), and we
solve it with a column and constraint generation (C&CG)
approach (Zeng and Zhao, 2013). For simplicity, we derive
the reformulation only for the case with endogenous uncer-
tainty. The reformulation for the case without endogenous
uncertainty can be derive in a similar way.

For a fixed protection plan z∗, the inner stage of (13) is
equivalent to Equation (16) subject to (17) and (18):

min
P

∫

F
Q(z, ξ)dP (16)

∫

F
dP = 1 (17)

∫

F
(1− uk)dP ≤ πmaxk (zk), ∀k ∈ E (18)

where πmaxk (zk) is the kth element of πmax(z), defined as
in (19):

πmaxk (zk) =
M(1− zk)πmaxk

M −Kdef
. (19)

Formulation(16)-(18) is convex in P and it satisfies Slater’s
conditions. The dual form of the inner level of (13) is
shown in (20):

max
α,β≥0

−α−
∑

k∈E
βkπ

max
k (zk) (20)

subject to:

α+
∑

k∈E
βk(1− u(i)k ) ≥ −Q(z, ξ) ∀u(i) ∈ F (21)



and where α and β are the dual variables. The optimal
value −̂α corresponds to (22):

−̂α = min
u(i)∈F

Q(z, ξ) +
∑

k∈E
βk(1− u(i)k ). (22)

By substituting (22) in (20) and explicitly expressing
Q(z, ξ), we obtain the reformulation in (23):

max
β≥0

min
u∈{0,1}

max
h

bTh +
∑

k∈E
βk(1− uk − πmaxk (zk)) (23)

subject to (8) and (24):∑

k∈E
uk ≥M −Katt (24)

where Constraint (24) defines the condition on the maxi-
mum failed lines Katt as denoted in the set F in Equation
(9). For a fixed failure scenario u∗ and fixed dual variables
β∗, the inner level of (23) is an LP problem. By taking its
dual form and merging it with the outer and middle levels
of (23) and the outer level of (15), we obtain the bilevel
formulation in (25):

max
z,β

min
λ,u

(q−Tu−Hz− zTDu)Tλ (25)

+
∑

k∈EPN

βk(1− uk − πmaxk (zk))

subject to (14), (24) and (26):

RTλ = b (26)

where λ represents the dual variables of (8). For simplicity,
we report directly the compact matrix formulation. In this
form, the problem can be recast and solved directly with
a C&CG algorithm.

The reformulation for the case without endogenous un-
certainty is obtained by simply substituting the decision-
dependent upper bounds πmax(z) with the upper bounds
πmax.

3.2 Column&Constraint Generation algorithm

We report the main steps of the C&CG approach for
the case with endogenous uncertainty. The main steps
for the case without endogenous uncertainty can be de-
rived by substituting the decision-dependent upper bounds
πmax(z) with the upper bounds πmax.

The C&CG algorithm is a traditional cutting-plane strat-
egy. It involves the split of the original problem into a
master problem and a subproblem which iteratively ex-
change binary decision variables. The optimal solution is
found by following these steps:

(1) Set i = 0, upper bound UB = ∞, lower bound
LB = 0 and Fpart = ∅.

(2) Solve the master problem in Equations (27)-(29).
Obtain an optimal solution ρ̂(i), optimal variables

β̂(i), and an optimal protection plan ẑ(i). Update
UB=min

(
UB, ρ̂(i)

)
.

max
ρ,z,h,β

ρ (27)

subject to (14), (28) and (29): :

ρ ≤ bTh(i) +
∑

k∈EPN

βk(1− u∗(i)k − πmaxk (zk)) (28)

Rh(i) ≤ q−Tu∗(i) −Hz− zTDu∗(i) (29)

where Constraints (28) and (29) are defined ∀u∗(i) ∈
Fpart.

(3) Solve the subproblem in Equations (30) with ẑ(i)=z∗

and β̂(i)=β∗. Obtain an optimal solution and an
optimal attack plan û(i). Update the lower bound LB.

min
λ,u∈{0,1}

(q−Tu−Hz∗ − z∗TDu)Tλ (30)

+
∑

k∈EPN

β∗k(1− uk − πmaxk (zk))

subject to (24) and (26).
(4) If (UB − LB)/UB < 10−4, the current solution ẑ(i)

corresponds to the optimal protection plan and the
algorithm can be terminated. Otherwise, Fpart =

Fpart ∪ û(i). Set i← i+ 1 and return to step 2.

4. NUMERICAL EXAMPLE

We perform a numerical experiment using an illustrative
case study based on the topology of the IEEE 14-bus
system (Iyambo and Tzoneva, 2007), shown in Figure
1. The power network is, thus, composed of 14 buses
connected by 20 transmission lines. Each bus presents a
requested power demand of 14 MW. Buses 1, 2, 3, 6, and 8
present a production capacity of 40 MW. The flow capacity
of each line is 22 MW.

For each upper bound πmaxk , we assume a value of 0.2. We
compute the optimal protection plan with and without en-
dogenous uncertainty for values of Kdef and Katt ranging
from 1 to 4.

All the computations are performed on a desktop PC with
a 3.20 GHz CPU and 32 GB RAM using the Python API
of Gurobi 9.1 (Gurobi Optimization, LLC, 2021).

The results for different combinations of Kdef and Katt

are shown in Figure 2.

Fig. 1. Topology of the IEEE 14-bus system.



Fig. 2. Expected performance with and without considering endogenous uncertainty within the ambiguity set for different
combinations of Kdef and Katt. The blue vertical lines indicate different optimal protection plans between the cases
with and without endogenous uncertainty and the same values of Kdef and Katt.

Each plot in Figure 2 represents the results for differ-
ent values Kdef , which denote how many lines are pro-
tected. The x-axis in each plot represents the Katt values,
which denote the maximum number of lines which are
attacked/failed. The y-axis represents the expected perfor-
mance of the power network. The expected performance is
computed considering the worst distribution in the ambi-
guity set without endogenous uncertainty D (red curves),
and the decision-dependent ambiguity set with endogenous
uncertainty D(z) (black curves).

From these preliminary results, some important consider-
ations can be drawn.

As it was expected, the expected performance in both
the cases - with and without endogenous uncertainty -
increases as Kdef increases and Katt decreases.

In addition, we can notice that the expected performance
with endogenous uncertainty is always lower than (or
equal to) the expected performance without endogenous
uncertainty. Moreover, the difference between the two
cases increases as Kdef and Katt increase. In fact, the
maximum difference is reached for the case with Kdef = 4
and Katt = 4, where the expected performance with and
without endogenous uncertainty take a value of 0.8061
and 0.8374, respectively. In fact, as expected, changing the

probability space from which the multinomial distribution
is chosen has an impact on the expected performance in
disrupted conditions.

Most importantly, we compare the optimal protection
plans identified with and without considering the endoge-
nous uncertainty. As it can be seen in Figure 2, in 9 out
of the 16 combinations of Kdef and Katt investigated, the
protection plans for the two uncertainty cases are differ-
ent (blue vertical lines). Moreover, the optimal protection
plans identified without endogenous uncertainty are not
guaranteed to be optimal when considering endogenous
uncertainty. For example, with Kdef = 4 and Katt = 4,
an optimal solution for the case without endogenous un-
certainty consists in protecting the lines with indices 2,
9, 10, and 14. This protection plan is suboptimal for the
case with endogenous uncertainty, as it leads to expected
performance of 0.8035, instead of 0.8061, which is attain-
able, for example, by protecting the lines with indices
2, 6, 9, and 13. In this specific case, the suboptimality
leads to limited negative consequences in terms of expected
performance in disrupted conditions with endogenous un-
certainty. However, the negative impact of suboptimal so-
lutions is strongly dependent on the case-study considered,
and a thorough sensitivity analysis on size and parameters
of the case-study should be performed. It should also be



highlighted that common optimal solutions, for the cases
with and without endogenous uncertainty, can exist.

Including the endogenous uncertainty within the optimiza-
tion problem has also an impact on the computational
performance. In fact, the computational time when in-
cluding the endogenous uncertainty increases considerably.
For example, with Kdef = 4 and Katt = 4, the case
without endogenous uncertainty leads to a computational
time of 3.2 seconds, while for the case with endogenous
uncertainty the computational time is 218.7 seconds.

5. CONCLUSION

In this work, we proposed a distributionally robust ap-
proach with endogenous uncertainty for the protection
plan of power networks. Preliminary results have high-
lighted the importance of including the endogenous un-
certainty in optimal protection planning. We showed
how including endogenous uncertainty through decision-
dependent ambiguity sets impacts the expected perfor-
mance and the optimal protection plan decision.

Further extensions of this work include: i) a more compre-
hensive sensitivity analysis of the DRO parameters, such
as upper bounds πmax, parameters Kdef and Katt, and
scaling factor for the decision-dependent upper bounds,
ii) a thorough comparison between the optimal protection
plans identified with and without endogenous uncertainty,
in order to quantify their difference in terms of expected
performance in the two different probability spaces (with
and without endogenous uncertainty), and iii) a detailed
analysis of the computational performance of the optimiza-
tion problem.
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