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Introduction78

79

1.1 Overview80

Machine Learning as an inductive problem. Machine Learning (ml) is81

seen as an application of Artificial Intelligence. The use of learning algorithms82

equips systems with the ability to automatically acquire helpful information83

from experience without being explicitly programmed. Depending on the84

contextual scenarios, ml has been categorized into different approaches, e.g.85

supervised, unsupervised, semi-supervised or by reinforcement. In this disser-86

tation, we mainly focus on supervised learning problems where pairs of input87

and outputs are collected to learn a mapping functions from an input space to88

an output space. From the available observations, we wish to derive a func-89

tion that models the underlying mapping from the input data (covariates) to90

labels (or target values); from the function, we can then make predictions for91

all possible input values. It is obvious that the problem at hand is inductive.92

The approaches for learning the mappting function in a given task can be93

grouped into two categories: parametric and non-parametric.94

95

Parametric Modeling. Traditionally, we can use parametric machine learn-96

ing algorithms to deal with supervised problems. This kind of modeling re-97

stricts the underlying mapping to a family of functional forms which is pa-98

rameterized by a finite set of parameters. It also implies that no matter how99

much data is fed to a parametric model, it will not change its mind about100

how many parameters it needs (Russell and Norvig, 2003). Such paramet-101

ric models often perform inefficiently if the functional form is inadequate to102

represent the actual unknown underlying correlation between inputs and its103

labels. One may be tempted to employ a flexible functional form, e.g. we can104

assume the parametric function is the one obtained by a neural network, but105

this runs into the danger of overfitting, so that we can obtain a good fit to106

training data, but perform badly in predictions.107

108
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Non-parametric Modeling. In contrast to parametric model accompa-109

nying with a specified functional form, algorithms using free-form mapping110

functions are classified as non-parametric machine learning algorithms, such111

as k-Nearest Neighbor (Cover and Hart, 2006), Decision Trees (Quilan, 1988)112

or Support Vector Machine (Cortes and Vapnik, 1995) or Kernel methods113

(Hofmann et al., 2008). Non-parametric feature extraction algorithms have114

more advantages than parametric ones and are well suited for non-normally115

distributed data along with being able to extract more features than the clas-116

sic linear discriminant analysis (Russell and Norvig, 2003; Yang et al., 2010).117

In general, such non-parametric models possessing an infinite set of param-118

eters are capable of fitting any complicated functional form. Nevertheless,119

it also implies that the number of labeled data required by non-parametric120

approaches to estimate the mapping function is greater than the parametric121

model with a finite set of parameters. Therefore, non-parametric models are122

easy prone to overfitting, especially when labeled data is scarce.123

124

Scalability of Non-parametric approaches. In the era of big data, non-125

parametric models are promising solutions allowing to learn complicated pat-126

terns from data. Nevertheless, the computational complexity of non-parametric127

approaches depends on the training size. For example, the training phase of128

Kernel Support Vector Machine (Cortes and Vapnik, 1995) involves solving a129

quadratic problem which generally suffers cubic time complexity with respect130

to data size. Consider K-Nearest Neighbor (Cover and Hart, 2006) as another131

example; it is a non-parametric lazy learning algorithm which does not require132

an explicit training phase. However, K-Nearest Neighbor makes prediction on133

unseen data as a vote by using all the training data. Generally, the testing134

phase of these methods requires linear time complexity to data size. Hence,135

the application of non-parametric models to large-scale problems is hindered136

by their poor scalability.137

138

Needs of Predictive Uncertainty. The problem of enhancing the safety139

of decision-making system by acting on the model’s prediction in an informed140

manner has obtained a significant attention from the machine learning com-141

munity (Guo et al., 2017). Predictive uncertainty quantification has a crucial142

role to strengthen the safety of an AI system (Amodei et al., 2016) by acting143

on the model’s prediction in an informed manner. This is essential to appli-144

cations where the consequence of an error is serious, such as in autonomous145

vehicle control and medical, financial and legal fields. Hence, accurate fit-146

ting capabilities are no longer the most important aspects for evaluating the147

model’s effectiveness.148

149
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Source of Predictive Uncertainty. Predictive uncertainty is a conflation150

of several separate factors: model uncertainty, data uncertainty and distribu-151

tional uncertainty. Model uncertainty or epistemic uncertainty represents the152

uncertainty in the estimate of model’s parameter given the training data. This153

uncertainty can be explained away given enough data. Data uncertainty or154

aleatoric uncertainty comes from the complication in the observations, such as155

class overlap, label noise, input-dependent noise. As this kind of uncertainty156

accompanying the nature of data, it is irreducible even if more data are col-157

lected. Distributional uncertainty appears due to the mismatch between the158

training and testing distribution.159

160

Evaluation of predictive uncertainty. Evaluating the quality of predictive161

uncertainties is challenging as the ground-truth uncertainty estimates are un-162

known. Being motivated by practical applications, there are two aspects that163

are able to examine the plausibility of predictive uncertainty. The first notion164

of quality of predictive uncertainty concerns calibration (Dawid, 1982; DeG-165

root and Fienberg, 1983), which measures the discrepancy between subjective166

forecast and (empirical) long-run frequencies. Traditionally, the quality of167

calibration can be numerically assessed by proper scoring rules (Gneiting and168

Raftery, 2007), such as the Brier score (Brier, 1950). Secondly, the quality169

of predictive uncertainty is also obtainable using out-of-distribution examples170

(Hendrycks and Gimpel, 2016). For example, if a model is trained on one171

dataset, but is tested on a completely different dataset, the predictive un-172

certainty returned by the model should be high, as testing points would be173

distant from training points. Recently, the works of approximation of predic-174

tive uncertainty based upon ensemble learning are robust to calibration as well175

as the scenarios of data shift (Lakshminarayanan et al., 2017). Alternatively,176

a plethora of works revolves around the Bayesian formalism (Bernardo and177

Smith, 2000) with the aim of adapting neural networks to encompass predic-178

tive uncertainty and give them a probabilistic flavor (Mackay, 1992; Graves,179

2011; Louizos and Welling, 2016; Blundell et al., 2015).180

181

Gaussian Processes. As alluded earlier, an ideal modeling approach in182

the era of big data should possess not only a powerful fitting capability but183

also a firm mechanism to determine predictive uncertainty. Bayesian non-184

parametric approaches are ideal candidates due to their advantages over flexi-185

bility and calibrated predictive uncertainty. The philosophies and motivations186

of this area have been well discussed by a number of authors (Hjort et al.,187

2010; Ghosh and Ramamoorthi, 2011; Ghahramani, 2013). Gaussian Pro-188

cesses (gps) (Rasmussen and Williams, 2006) are an attractive way of doing189

non-parametric Bayesian modeling. A Gaussian Process is a collection of190
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random variables indexed by a variable in the input domain, such that ev-191

ery subset of those random variables has a multivariate normal distribution.192

Thanks to the properties of the multivariate normal distribution, given ob-193

servations, gps are able to make inferences as well as predictive uncertainties194

with a firm mathematical background. In addition to providing uncertainty in195

predictions, there are also compelling reasons to use gps, such as the gps can196

represent a rich family of functions; also, gps are protected from overfitting197

with an appropriate prior on hyperparameters. In practice, gps achieve state-198

of-the-art results in a wide spectrum of applications including robotics (Ko199

and Fox, 2008; Deisenroth and Rasmussen, 2011), geostatistics (Diggle and200

Ribeiro, 2007), numerics (Briol et al., 2015), active sensing (Guestrin et al.,201

2005) and optimization (Snoek et al., 2012).202

203

Deep Gaussian Processes. A shallow gp is defined by a mean and co-204

variance/kernel function. Kernel functions hold a crucial role as it not only205

encodes our assumptions as well as the desired flexibility into the functions206

we wish to learn. Thus, enhancing the expressiveness of kernel functions are207

able to boost the gps’ power. A Deep Gaussian Process dgp (Damianou and208

Lawrence, 2013) which is a hierarchical composition of multiple gps, comes to209

a rescue of the limitation of the representational power of a single-layer gp.210

dgps is more flexible than a standard gp, just as deep neural networks are211

more powerful than a Multilayer Perceptron with one hidden layer. In con-212

trast to models constructed by with a highly parameterized functional form,213

dgps learn a hierarchical representation with very few hyperparameters to214

optimize.215

1.2 Extensions and Open Problems216

In this section, I introduce the extensions and open problems of (Deep) Gaus-217

sian Processes which will appear in the dissertation.218

219

Combination of Neural Networks and Gaussian Processes. In 1996,220

Neal Neal (1996) showed that Bayesian Neural Networks with infinitely many221

hidden units converged to Gaussian Processes (gps) with a particular kernel222

function. Speaking theoretically, Gaussian Processes were viewed as an in-223

terpretable alternative to neural networks. However, in practice, the power224

of gps are restricted by the limitations of the kernel function. By contrast,225

neural networks are able to automatically discover meaningful representations226

in high-dimensional data by learning multiple layers of highly adaptive basis227

functions MacKay (1998); Hinton et al. (2006); Bengio (2009).228
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229

Despite the impressive expressiveness, neural networks access predictive un-230

certainties via sampling using approaches Welling and Teh (2011); Gal and231

Ghahramani (2016a); Lakshminarayanan et al. (2017). Unlike neural net-232

works, gps directly capture predictive uncertainties with a firm mathematical233

background. Another advantage of gps over neural networks is that the prior234

knowledge about the properties of mapping function, e.g. smoothness, differ-235

entiability or periodicity, can be added by specifying an appropriate kernel236

function.237

238

As neural networks and gps have particular strengths, the question of what239

the best paradigm, e.g. kernel methods in general (Gaussian Processes in par-240

ticular) and neural networks) is become irrational. Instead, it is more sensible241

to think about the idea of combining the advantages of each approach. There242

are several works about the combinations of convolutional neural networks and243

gps on image recognition, e.g. substituting gps for the last fully connected244

layers Bradshaw et al. (2017); Wilson et al. (2016) or introducing convolutions245

in the calculation of the covariance between images van der Wilk et al. (2017).246

247

Evaluation of Predictive Uncertainty of Probabilistic Models. As248

alluded in the introduction section, predictive uncertainty can be evaluated249

by inspecting the calibration and out-of-distribution samples. The majority of250

works accessing predictive uncertainty on NN involve with Bayesian formal-251

ism Mackay (1992); Graves (2011); Louizos and Welling (2016); Blundell et al.252

(2015). Along a similar vein, combining cnn and gp is an intuitive way to add253

probabilistic flavor to cnn Bradshaw et al. (2017); Wilson et al. (2016); van der254

Wilk et al. (2017). Intuitively, the motivation to impose these Bayesian treat-255

ments into neural networks is to do a better quantification of uncertainty256

compared to plain neural networks. Nevertheless, analyzing Bayesian Neural257

Networks and the combination of neural networks and gps on predictive un-258

certainty has not been conducted carefully.259

260

Inducing point-based approximation. GPs Rasmussen and Williams261

(2006) are well-known because of the predictive uncertainties with a firm262

mathematical background. Despite being able to underpin a range of al-263

gorithms for supervised and unsupervised learning, the application of gps is264

hindered to the large-scale problems due to the burden of computational and265

storage cost. Assuming that the input dimensionality D is significantly less266

than the number of observations N , gps require the complexities of O (N3)267

and O (N2) for computation and storage. These costs are sourced from linear268

algebraic operation with the N ×N kernel matrix. To improve the scalability269
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of gps, we must employ a technique accelerating the computation involving270

the kernel matrix. Almost works discussing the scalable gp have focused on271

the low-rank approximation of kernel matrix using inducing points (Lawrence272

et al., 2002; Seeger et al., 2003; Snelson and Ghahramani, 2005; Naish-Guzman273

and Holden, 2007; Titsias, 2009; Hensman et al., 2013; Wilson and Nickisch,274

2015; Hensman et al., 2015a). Using M inducing points to obtain an ap-275

proximation to the kernel matrix, the computational and storage costs are276

contracted to O (M3) and O (M2) respectively. It is obvious that inducing277

point-based approaches lead to a remarkable development on the scalability278

of gps if M is significantly less than N .279

280

Recently, it has been shown that it is possible to obtain an arbitrarily good281

approximation for a certain class of GP models (i.e. conjugate likelihoods,282

concentrated distribution for the training data) with M growing more slowly283

than N . However, the general case remains elusive and it is still possible that284

the required value for M may exceed a certain computational budget. To285

employ a large number of inducing points without exploding the computa-286

tional cost, these inducing inputs are arranged into a structure such that the287

resulting kernel matrix allows for the application of fast linear algebra, and288

the entries of the kernel matrix evaluated at the training inputs are approxi-289

mated through interpolation via sparse matrices. A well-known example for290

this line of work was introduced by Wilson et al Wilson and Nickisch (2015),291

namely Kernel Interpolation for Scalable Structured gps (kiss-gp). The ap-292

plicability of kiss-gpon higher-dimensional problems has been addressed in293

Wilson et al. (2015) by means of low-dimensional projections. A more recent294

extension allows for a constant-time variance prediction using Lanczos meth-295

ods Pleiss et al. (2018). The limitation of these approaches is that inducing296

inputs must abide by the Kronecker structure due to computational accelera-297

tion. This leads to the partial restriction on the freedom of the optimization298

of inducing inputs.299

300

301

1.3 Outline and Contributions of Thesis302

The content of this thesis is organized as follows:303

• Chapter 2 starts with a brief introduction to Gaussian Processes (gps).304

We also investigate state-of-the-art techniques for dealing with the noto-305

rious limitation of gps on time and storage complexity as well as the flex-306

ibility of kernel function. In this text, these approaches is grouped into307
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three main categories of approximations, namely inducing point-based308

approximations, structure exploiting approximations, random feature-309

based approximations are discussed. This chapter is intended to equip310

the reader with the background knowledge required for apprehending311

the underlying concepts presented in this thesis, and clarify how our312

contributions fit within the landscape of existing research on Gaussian313

process inference;314

• Chapter 3 covers the first primary contribution of this thesis. The315

study expresses a thorough investigation of the calibration properties316

of Bayesian Convolutional Neural Networks (cnns) . Along a similar317

vein, independently of the works on Bayesian cnns, there are other318

attempts to impose a probabilistic formalism to cnns by integrating319

cnns with gps. Previous work on combining cnns with gps has been320

developed under the assumption that the predictive probabilities of these321

models are well-calibrated. We show that, in fact, current combinations322

of cnns and gps are miscalibrated. We propose a novel combination323

that considerably outperforms previous approaches to this aspect, while324

achieving state-of-the-art performance on image classification tasks.325

• As alluded earlier, inducing point-based idea are a well-known approach326

to mitigate the computational bottleneck of gps in the large-scale prob-327

lems. However, this solution still suffers cubic time complexity to the328

number of inducing points. Wilson et al Wilson and Nickisch (2015) pro-329

pose to employ the Kronecker structure on inducing inputs to accelerate330

the approximation of covariance matrices. The trick also accompanies331

with significant restrictions on inducing inputs. Besides, the approach332

only performs well on low-dimensional datasets (Wilson and Nickisch,333

2015). In Chapter 4, we address one limitation of sparse GPs, which is334

due to the challenge in dealing with a large number of inducing variables335

without imposing a special structure on the inducing inputs. In partic-336

ular, we introduce a novel hierarchical prior, which imposes sparsity on337

the set of inducing variables. The study enables the possibility to use338

sparse GPs using a large number of inducing points without incurring a339

prohibitive computational cost.340

• Finally, in Chapter 5, we summarize the contributions presented in341

this thesis. We conclude the thesis by a discussion to an outlook on342

possible extensions and future work.343
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Gaussian Processes for Big Data345

346

Increasing the scalability and representational power of models without com-347

promising performance is a core problem in machine learning. As emphasized348

in the introduction to this dissertation, the scalability of Gaussian Processes349

to training size and dimensionality is significantly limited by algebraic oper-350

ations, which discourages their application to datasets having more than a351

few thousands of examples or high-dimensional covariates. Additionally, the352

flexibility of Gaussian Processes is possibly weakened by the need to choose353

a kernel functions, which might lead to difficulties in learning the intricate354

patterns concealed in the data. This chapter is a literature review on the355

developments of gps in both aspects, which involve the major contributions356

of the thesis.357

2.1 Overview358

Gaussian Processes (henceforth gps) which are powerful non-parametric Bayesian359

models can yield sensible predictions with a small number of available obser-360

vations. However, it is notorious that gps suffer from high complexity in terms361

of both computation and storage with respect to training size N , i.e. O (N3)362

and O (N2) respectively, so they not the primary choice in datasets with a363

massive number of data points. To broaden the application of gps to larger364

datasets, there is plenty of ideas in the literature that have been proposed365

and analyzed. According to the groupings mentioned in (Liu et al., 2018b),366

these approaches are categorized into global and local approximations. While367

the former approximate the full kernel matrix by a global distillation, the368

latter abide to the divide-and-conquer concept and make predictions using a369

local subset of training data. We further split global approximations into sub-370

categories: Inducing Point-Based Approximation and Random Feature-Based371

Approximation.372
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2.2 Gaussian Processes373

As alluded earlier, a modeling approach in the era of big data should possess374

not only a powerful fitting capability but also a firm mechanism on predictive375

uncertainty. Bayesian nonparametrics is obviously an ideal candidate as it376

offers flexibility as well as calibrated predictive uncertainties. The philosophy377

and motivation of this area have been well discussed by a number of authors378

Ghosh and Ramamoorthi (2011); Hjort et al. (2010); Ghahramani (2013).379

Gaussian Process (gps) Rasmussen and Williams (2006) are an attractive way380

of doing non-parametric Bayesian modeling in supervised learning problems.381

Firstly, I succinctly introduce Gaussian Processes Regression (gpr) which is382

the simplest way to describe gps.383

2.2.1 Gaussian Processes for Regression384

Given a dataset D of N examples, D = {(xn, yn) | n = 1, . . . , N}, where385

xn denotes the n-th input vector (covariates) and yn denotes the n-th scalar386

output or target; the column vector inputs for all N cases are aggregated387

in the D × N design matrix X, and the outputs are collected in the vector388

y, so we can write D = (X,y). We would like to specify a function y rep-389

resenting the correlation between inputs and its targets, i.e. yn = y (xn).390

From a generative perspective, the observable labels y (xn) are modeled via391

an appropriate conditional likelihood p (y (xn) | f (xn)), where f is the la-392

tent function which can also be perceived as the intermediate representa-393

tion of function y. In regression, the conditional likelihood is intuitively394

often assumed to be a Gaussian with mean of f and variance of σ2
n, i.e.395

p (y | f , σ2
n) = N (y | f , σ2

nI). In general, the function f can be viewed as396

a column vector f , i.e. f = [f (x1) , . . . , f (xN)]T , where f (xn) is latent values397

at input xn. Formally, gps are formally defined as a prior over latent func-398

tion f , but with the view of latent function f as a finite-dimensional vector,399

gps turns out a multivariate Gaussian distributions over f . A gps prior is400

fully specified by its mean m (x | ζ) and covariances which are determined by401

a predefined kernel functions k (xi,xj | θ). Here, ζ and θ are parameters of402

mean function m and kernel function k respectively. The gps prior over latent403

values f given ζ and θ is as follows:404

p (f | X, ζ,θ) = N (mX,KX) . (2.1)

where mX are column N -dimensional vector containing mean values at N405

covariates, i.e. mX = [m (x1 | ζ) , . . . ,m (xN | ζ)]T ; and KX is a N × N sy-406

metric and positive semi-definite matrix representing the correlation between407

latent random variables each other, [KX]ij = k (xi,xj | θ).408
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409

Hyper-parameter optimization. For convenience sake, we introduce ψ410

the set of all parameters involving mean function’s parameters ζ, kernel pa-411

rameters’ θ and variance of likelihood σ2
n, i.e. ψ = (σ2

n, ζ,θ). Given datasetD,412

Gaussian Processes Regressors are fitted to D by optimizing hyper-parameter413

ψ using the logarithm marginal likelihood function, log p (y | X,ψ). In gen-414

eral, the marginal likelihood can be found by marginalizing over latent random415

variables f .416

p (y | X,ψ) =

∫
p
(
y | f , σ2

n

)
p (f | X, ζ,θ) df . (2.2)

Thanks to the Gaussian likelihood p (y | f , σ2
n), we can derive an analytic form417

for the marginal likelihood as the Gaussian likelihood and Gaussian prior are418

conjugate to each other.419

p (y | X,ψ) = N
(
y |mX,KX + σ2

nI
)
. (2.3)

Setting Kσ2
n
as KX + σ2

nI, the logarithm marginal likelihood is written as:420

log [p (y | X,ψ)] = −1

2
log
∣∣Kσ2

n

∣∣− 1

2
(y −mX)T K−1

σ2
n

(y −mX)− N

2
log 2π.

(2.4)
The quadratic form appearing in this expression corresponds to the model fit421

term of the GPR, advocating parameter settings that fit the data well. In422

contrast, the log determinant term penalizes overly complex models that are423

characterized by kernel matrices which are diagonally dominant, indicating424

little interaction between observations. It follows that the optimal parame-425

ters ψOPT are identified by maximizing this objective function using iterative426

gradient ascent.427

428

Prediction. Generally, gps governs the distribution of a finite-dimensional429

vector including latent values at a set of covariates using a multivariate nor-430

mal distribution. Therefore, the joint distribution of training latent values, f ,431

and the testing latent values, f∗, according to the gp prior is:432 [
f

f∗

]
∼ N

([
mX

mX∗

]
,

[
KX KX,X∗

KX∗,X KX∗

])
(2.5)

If X and X∗ include N training points and N∗ testing points, respectively,433

then mX and mX∗ contain N and N∗ values of the mean function at X and434

X∗; and K (X,X∗) denotes the N×N∗ matrix of the covariances evaluated at435

all pairs of training and testing points, and similarly for the other covariance436

matrices.437
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438

Remind that, in regression, the likelihood of observable targets given training439

latent values are intuitively assumed to be a Gaussian with the variance of σ2
n,440

p (yn | fn) = N (yn | fn, σ2
n). It means that the functions for observable targets441

can be modeled as a noisy version of latent function f a Gaussian noise with442

variance of σ2
n, y (xn) = f (xn) + ε, where ε follows N (ε | 0, σ2

n). Assuming443

additive independent identically distributed Gaussian noise with variance σ2
n,444

the prior on the noisy observations becomes:445

y ∼ N
(
y |mX,KX + σ2

nI
)
. (2.6)

We can write the joint distribution of the observed target values and the446

function values at the test locations under prior as:447 [
y

f∗

]
∼ N

([
mX

mX∗

]
,

[
KX + σ2

nI KX,X∗

KX∗,X KX∗

])
(2.7)

To get the posterior distribution over function, we need to restrict this joint448

prior distribution to contain only those functions which agree with the ob-449

served data points. By virtue of the nice properties of the multivariate normal450

distribution, the operation of eliminating those violating the available obser-451

vations is extremely simple, corresponding to conditioning the joint Gaussian452

prior distribution on the observations to give:453

f∗ | X∗,X,y,ψ ∼ N
(
µf∗ ,Σf∗

)
, where (2.8)

µf∗ = mX∗ + KX∗,X

(
KX + σ2

nI
)−1

(f −mX) , and, (2.9)

Σf∗ = KX∗ −KX∗,X

(
KX + σ2

nI
)−1

KX,X∗ . (2.10)

Once again, thanks to Gaussian likelihood with noise variance of σ2
n, the454

predictive distribution p (y∗ | X,y,ψ) turns out:455

p (y∗ | X∗,X,y,ψ) =

∫
p (y∗ | f∗) p (f∗ | X∗,X,y,ψ) df∗

= N
(
y∗ | µf∗ ,Σf∗ + σ2

nI
) (2.11)

2.2.2 Covariance function456

In gps or any kernel machine learning methods, the notion of similarity be-457

tween data points is crucial as the predictions are made based upon these458

similarities. Under the Gaussian process view, a covariance matrix specified459

by a kernel function defines nearness or similarity between latent random vari-460

ables by using inputs. Therefore, it is able to encode our assumptions about461
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the function which we wish to learn through. It is uncertain whether an ar-462

bitrary matrix of input pair xi and xj will be a valid kernel function or not.463

The first purpose of the section is to show the properties and construction464

of a valid covariance function. In addition, examples of some commonly-used465

covariance functions in this dissertation are also given.466

467

Construction and properties. The covariance matrix of the is constructed468

from a kernel function k of an input pair. Consider a gps for the sequence of469

N latent values, the dimensionality of the covariance matrix of gps is N ×N ,470

and the element at i-th row and j-column of the covariance matrix is kernel471

function values of xi and xj, k (xi,xj). In general, the kinds of kernel function472

for all examples xi and xj in an input space X ⊂ RD:473

k (xi,xj) = 〈φ (xi) , φ (xj)〉. (2.12)

, where φ is a non-linear (or linear) map from the input space X to the feature474

space F , and 〈., .〉 is an inner product. Due to being computed by the inner475

product, a kernel function must be symmetric and also satisfy the Cauchy-476

Schwartz inequality:477

k (xi,xj) = k (xj,xi) , and k2 (xi,xj) ≤ k (xi,xi) k (xj,xj) . (2.13)

Practically, the kernel function k is usually specified directly, thus implicitly478

defining the map φ and the feature space F . Therefore, a kernel function is479

stated to be valid if it guarantees the existence of the feature space. Mercer480

Mercer (1909) showed that a necessary and sufficient condition for a symmetric481

function k (., .) to be a kernel is that it be positive definite. This means that482

for any set of x1, . . . ,xN and any set of real numbers λ1, . . . , λN , the function483

k must satisfy:484

∀x1, . . . ,xN ∈ X ,∀λ1, . . . , λN ∈ R,
N∑

i,j=1

λiλjk (xi,xj) ≥ 0. (2.14)

In summary, a symmetric positive definite function constructs a valid covari-485

ance matrix in kernel methods. As the positive definiteness possesses pleasant486

algebraic properties, a new kernel can be created from existing valid kernels.487

Introducing a1 and a2 are positive real numbers, and k1 and k2 are valid488

kernels, a new kernel can be manipulated using a weighted summation or489

multiplication:490

k (xi,xj) = a1k1 (xi,xj) + a2k2 (xi,xj) . (2.15)
k (xi,xj) = k1 (xi,xj) k2 (xi,xj) . (2.16)



2.2. Gaussian Processes 13

Stationary covariance function. A stationary covariance function of xi491

and xj only depends on Euclidean distance of xi and xj, i.e. k (xi,xj) = kS (r),492

where r =
√
|| xi − xj ||22. Thus, it is invariant to translations in the input493

space. This kind of kernel are commonly-used because, intuitively, it is a494

basic similarity assumption that points with inputs x which are close are495

likely to have similar target values y, and thus training points that are near to496

a test point should be informative about the prediction at that point. Next,497

we mention two commonly-used isotropic kernel functions. The covariance498

functions are given in a normalized form where k(0) = 1; we can multiply k499

by a (positive) constant σ2
f to get any desired process variance.500

• Squared Exponential Covariance Function.501

502

The square exponential function or Radial Basis Function (rbf) ker-503

nel has the form:504

kRBF (r) = exp

(
− r

2

2l2

)
. (2.17)

, with positive parameter l defines the characteristic length-scale which505

indicating the complexity of underlying latent functions.506

• The Matérn Covariance Function.507

508

The Matérn class of covariance functions is given by509

kMatérn (r) =
21−ν

Γ (ν)

(√
2νr

l

)ν

Kν

(√
2νr

l

)
. (2.18)

, with positive parameters ν and l, and Kν is a modified Bessel function510

Abramowitz (1974). The most interesting cases of Matérn class for511

machine learning are ν = 3/2 and ν = 5/2, for which512

kMatérn 3/2 (r) =

(
1 +

√
3r

l

)
exp

(√
3r

l

)
, (2.19)

kMatérn 5/2 (r) =

(
1 +

√
5r

l
+

5r2

3l2

)
exp

(
−
√

5r

l

)
, (2.20)

Automatic Relevance Determination Kernel. The kernel functions men-513

tioned above are called isotropic where the flexibility of kernel function is514

indicated by a lengthscale parameter, l. To enhance the flexibility of ker-515

nel function, we augment D length-scale parameters, l1, . . . , lD accompanying516

with D input dimensionality. It turns out that the term r/l in the isotropic517
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kernel is replaced using a quadratic form. For example, the rbf kernel can518

be rewritten as:519

krbf (xi,xj) = exp

(
−1

2
(xi − xj)

T Λ−1 (xi − xj)

)
. (2.21)

, where Λ = Diag [l21, . . . , l
2
D]
T . This interpretation of the lengthscales allows520

for automatic relevance determination whereby relevant features in the data521

are weighted by their corresponding lengthscale parameter. This can also be522

seen as an implicit form of feature selection (MacKay, 1991).523

2.2.3 Non-Gaussian Likelihoods524

Recall that in gp regression the Gaussian likelihood p (y | f) is conjugate525

to the Gaussian prior p (f). Thus, it is possible to calculate the marginal526

likelihood and carrying out inference in gp regression analytically. In con-527

trast, these calculations are analytically intractable in gp models with a528

non-Gaussian likelihood. There is a plethora of approaches to deal with the529

problem, including the Laplace approximation method (Williams and Barber,530

1998), expectation propagation (Minka, 2001), sparse approximation employ-531

ing online learning schemes (Lawrence et al., 2002; Csató and Opper, 2002)532

and methods attempting to characterize the full posterior (Murray et al.,533

2010; Filippone et al., 2013; Hensman et al., 2015b). As the prerequisite back-534

grounds for proposed models which will be introduced in the next chapters535

do not significantly depend on the techniques of approximating posterior with536

non-Gaussian likelihood, the discussion about the non-Gaussian likelihood or537

gps classification will not be provided in this manuscript.538

2.2.4 Limitations of Gaussian Processes539

Scalability. Theoretically, gps is an ideal approach for the supervised sce-540

nario in the era of big data. However, the scalability of gps is limited on541

small datasets including a few thousands of data points due to linear alge-542

braic operations requiring large computational complexity. Having considered543

the optimization of gps hyper-parameters ψ, the problem of gps scalability544

is revealed. As alluded in section 2.2.1, the process of fitting gps regressors545

given a dataset can be done by using a gradient-based method with the target546

function of marginal likelihood p (y | X,ψ,y). Take gps regression with zero547

mean prior as an example, the gradients of marginal likelihood with respect548

to parameter ψi is computed as:549

∂ log [p (y | X,θ)]

ψi
= −1

2
Tr

(
K−1
σ2
n

∂Kσ2
n

∂ψi

)
+

1

2
yTK−1

σ2
n

∂Kσ2
n

∂ψi
K−1
σ2
n
y. (2.22)
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The computation of gradients involves with solving the linear system, i.e.550

K−1
σ2
n
y where Kσ2

n
is N ×N covariance matrix with additive noise and y is N -551

dimensional column vector of outputs, where N is the number of data points.552

Practically, this linear system is solved by using Cholesky decomposition to553

factorize the symmetric positive definite kernel matrix Kσ2
n
into LLT , where554

L is a lower triangular matrix. Generally, factorization with Cholesky decom-555

position necessitates O (N3) operations. The calculation of the trace terms556

appearing in gradient formula also need O (N3) operations. In the progress557

of computing the gradients, the lower triangular matrix L must be cached.558

Therefore, the storage cost of the training phase is O (N2).559

560

Besides the cubic complexity in the training phase, the computational cost of561

gps inference also depends on the training size. On inspection of the predictive562

distribution given from equation 2.8 to 2.10, we can observe that evaluating563

this expression also involves the inversion of N × N kernel matrix. Theoret-564

ically, the computational cost for gp inference is also O (N3). However, in565

practice, the inversion of Kσ2
n
and the vector which is the multiplication of566

K−1
σ2
n
and y −mX can be recorded after the training phase. Therefore, the567

computational costs of predictive mean and predictive variance at an unseen568

data point are O (N) and O (N2). As discussed, the likelihood mapping the569

latent values to observation is not obligated to be a Gaussian, as the case of570

classification. Under these conditions, the computation of the marginal likeli-571

hood as well as inference is no longer analytic, and further approximations are572

required, and computational budgets required in these case is identical to gp573

regression. Due to the dependence of computational complexity on training574

size, gps are hindered to large-scale problems.575

576

To strengthen the scalability, while retaining the desired prediction quality, a577

large number of scalable gps have been proposed. According to (Liu et al.,578

2018b), these scalable approaches are sorted into two main categories: local579

and global approximation. Local approximations arising from the divide-and-580

conquer concept focus on the local area of input spaces (Gramacy and Lee,581

2007; Yuksel et al., 2012b; Masoudnia and Ebrahimpour, 2014; Rasmussen582

and Ghahramani, 2002; Sun and Xu, 2011; Hinton, 2002; Deisenroth and Ng,583

2015; Rullière et al., 2016; Liu et al., 2018a). Whereas global approximations584

replace kernel matrix KX by a compact representation reducing the burden585

of computation. The substitution is done through global distillation which586

can be accomplished by several ways, e.g. use a small subset of training data587

(Chalupka et al., 2013), or remove uncorrelated entries in KX using sparse588

kernel (Gneiting, 2002), or employ low-rank representation (Nyström approx-589

imation) (Hensman et al., 2013; Quiñonero Candela and Rasmussen, 2005;590
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Titsias, 2009; Wilson and Nickisch, 2015).591

592

Representational power. Kernel functions hold a crucial role as it not only593

encodes our assumptions as well as the desired flexibility into the functions594

we wish to learn. Concerning the representational capability, kernel-based595

methods possibly lose their power as very limited kernels such as rbf kernel596

sharing a single length-scale across input are overused, e.g. in some gp-based597

approaches and, especially in Support Vector Machine (svm) . Having been598

encouraged by the achievement of deep architectures, there have been several599

attempts to build kernel-based method that mimic deep neural networks, for600

example, multilayer arc-cosine kernel (Cho and Saul, 2009) which is built601

by successive kernel compositions, and kernel function at each layer are de-602

fined via an integral representation, or convolutional multilayer kernels (Mairal603

et al., 2014) which are built by concatenations of convolutional layers, and the604

compact representation of the kernel are learned in a data-dependent manner.605

Another approach to enhance the flexibility of kernel methods is to use its606

deep architecture, e.g. Deep gps (Damianou and Lawrence, 2013; Salimbeni607

and Deisenroth, 2017; Cutajar et al., 2017).608

2.3 Inducing Point Approximations609

2.3.1 Prior approximation610

Main idea. As mentioned in section 2.2.4, the computational bottleneck611

of Gaussian Processes (gps) stems from the algebraic operation of the full612

kernel matrix that appears in the prior distribution. Intuitively, the idea of613

employing the approximations to these true priors accelerating the computa-614

tions come to a rescue for the problem of scalability. In this approach, the615

joint prior p (f∗, f) is modified in ways that reduces the computational cost.616

Here, f∗ and f are the latent values at training points X and testing points X∗617

respectively. For clarity, it is useful to derive the exact expression for the joint618

prior before discussing about the particular approaches employing the idea.619

Without loss of generality, the mean of all priors is set to zero. Introducing620

the auxiliary random variables u, which are latent values at inducing inputs621

Z, the joint prior p (f∗, f) is expressed by marginalizing out u from the joint622

prior p (f∗, f ,u).623

p (f∗, f) =

∫
p (f∗, f ,u) du =

∫
p (f∗, f | u) p (u) du (2.23)

Due to the consistency of gps, all probabilistic components appearing in equa-624

tion 2.23, i.e. the joint prior p (f∗, f ,u) and the conditional prior p (f∗, f | u)625
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and the prior p (u) are Gaussian densities. Introducing f̂ as the general latent626

values for both training and testing points, we can rewrite the joint prior as:627

Joint prior: p (f∗, f) = p
(
f̂
)

=

∫
p
(
f̂ ,u
)
du =

∫
p
(
f̂ | u

)
p (u) du (2.24)

Prior: p (u) = N (u | 0,KZ,Z) (2.25)

Conditional: p
(
f̂ | u

)
= N

(
f̂ | KX̂,ZK−1

Z,Zu,KX̂,X̂ −QX̂,X̂

)
(2.26)

Here, X̂ generally indicates training inputs X and testing inputs X∗. As-628

suming that A and B are the matrices constructed by concatenating co-629

variates likewise X and X∗, we define KA,B as a cross covariance matrix630

whose element in the i, j position is the covariance between the i-th co-631

variate in A and j-th covariate in B. We also introduce the shorthand no-632

tation QA,B = KA,ZK−1
Z,ZKZ,B which can be seen as an approximation to633

KA,B using inducing inputs Z. For simplicity, we use the Gaussian likelihood634

p (y | f) = N (y | f , σ2
nI). The predictive latent distributions p (f∗ | y) can be635

written in a closed-form using Gaussian density:636

p (f∗ | y) = N
(
f∗ |KX∗,X

(
KX,X + σ2

nI
)−1

y,

KX∗,X∗ −KX∗,X (KX,X)−1 KX,X∗ + σ2
nI
)
.

(2.27)

By assuming that u captures all correlation between f∗ and f , i.e. f∗ and f are637

independent given u, we can approximate p (f∗, f | u) by separating training638

latent values f and testing latent values f∗:639

p (f∗, f) ≈ q (f∗, f) =

∫
q (f∗ | u) q (f | u) p (u) du. (2.28)

Following the unifying view mentioned by Quiñonero Candela and Rasmussen640

(2005), a particular algorithm complying with the idea of prior approximation641

corresponds to different additional assumptions about the two approximate642

inducing conditionals q (f | u) and q (f∗ | u) appearing in the approximation643

defined in 2.28. The method pic (Snelson and Ghahramani, 2007) mentioned644

at the end of the section is also an extension of the idea by using another way645

to approximate the joint prior p (f∗, f).646

647

Subset of Data. The most straightforward approach to reduce the com-648

putational burden of gps, which stems from the inverse of the kernel matrix649

KX, is to work on subsets of the data (henceforth sod ), Dsod for the whole650

training points, D, i.e. simply speaking, we use KXsod instead of KX. By651

restricting the number of data point M in Xsod to be less than the total num-652

ber of observations, N , the computational cost will decrease from O (N3) to653
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O (M3). In case Xsod is specified in an appropriate manner, the approaches654

of sod will produce reasonable predictive distributions. Otherwise and most655

often, sod yields overconfident predictions. On the inspection of the selection656

of Dsod, one could, for example, randomly choose M data points, use clus-657

tering techniques to divide the training data to M subsets and then choose658

the centroids as representative for all the whole data sets, or employ online659

learning scheme with criteria based on information theoretic principles, i.e.660

differential entropy (Lawrence et al., 2002), to choose active data points se-661

quentially.662

663

Turning to the unifying view mentioned above, u and f are replaced by fsod664

which are the latent values of subset input Dsod. sod also uses the true665

testing conditional distribution instead of its approximation, i.e. q (f∗ | u) =666

p (f∗ | fsod). The joint prior turns out to be:667

p (f∗, f)→ p (f∗, fsod) =

∫
p (f∗ | fsod) p (fsod) (2.29)

Subset of Regressors. According to the study on Subset of Regressors (sor)668

of Silverman (1985) and Wahba et al. (1999), Smola and Bartlett (2001) have669

adjusted sor for a sparse approximation to Gaussian Processes Regression.670

sor assumes that there is a deterministic relationship between latent values,671

i.e. f∗ and f , and inducing variables u. This correlation can be represented as672

a Gaussian distribution with zero covariance as follows:673

qsor

(
f̂ | u

)
= N

(
f | KX̂,ZK−1

Z,Zu,0
)
. (2.30)

Substituting qsor

(
f̂ | u

)
to the Equation 2.28, the approximated joint prior674

is:675

qsor (f , f∗) = N
([

f

f∗

] ∣∣∣∣[00
]
,

[
QX,X QX,X∗

QX∗,X QX∗,X∗

])
(2.31)

From the approximated joint prior and the Gaussian likelihood, we can obtain676

the approximated predictive latent distribution:677

qsor (f∗ | y) = N
(
f∗ |QX∗,X

(
QX,X + σ2

nI
)−1

y,

QX∗,X∗ −QX∗,X

(
QX,X + σ2

nI
)−1

QX,X∗

) (2.32)

Having observed the true predictive latent distributions p (f∗ | y) defined in678

Equation 2.27, the approximated predictive latent distributions qsor (f∗ | y)679

are identical with p (f∗ | y), except that the covariance K has been substi-680

tuted by Q. Therefore, sor approximation operates as an exact Gaussian681

Processes with the covariance matrix Ksor defined by the kernel function682
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ksor (xi,xj) = Kxi,ZK−1
Z,ZKZ,xj

.683

684

Deterministic Training Conditional. According to the analysis of Williams685

et al. (2002), sor can yield negative predictive variances due to the approxi-686

mation of the full covariance matrix using the Nyström method. In order to687

avoid these nonsensical predictive variances, Seeger and Williams (2003) pro-688

posed a novel sparse approximation to Gaussian Processes Regression. The689

approach mainly relies on a likelihood approximation, based on the projection690

of training latent values, i.e. f = KX,ZK−1
Z,Zu. Due to the deterministic pro-691

jection, this approach is called to Deterministic Training Conditional (dtc) .692

p (y | f) = N
(
y | f , σ2

nI
)
≈ qdtc (y | u) = N

(
y | KX,ZK−1

Z,Zu, σ2
nI
)

(2.33)

This approach uses the point estimate to variational distribution over training693

latent value similarly to sor, it remains to use the exact test conditional694

defined in 2.26.695

qdtc (f | u) = qsor (f | u) = N
(
f | KX,ZK−1

Z,Zu,0
)
. (2.34)

qdtc (f∗ | u) = p (f∗ | u) = N
(
f∗ | KX∗,ZK−1

Z,Zu,KX∗,X∗ −QX∗,X∗

)
. (2.35)

Another difference between sor and dtc is indicated in the joint prior. While696

sor uses QX,X∗ to govern the relation between testing points, dtc use the697

exact full covariance matrix KX∗,X∗ .698

qdtc (f , f∗) = N
([

f

f∗

] ∣∣∣∣[00
]
,

[
QX,X QX,X∗

QX∗,X KX∗,X∗

])
. (2.36)

The predictive distribution of dtc is similar to sor, but QX∗,X∗ is replaced699

by KX∗,X∗ :700

qdtc (f∗ | y) = N
(
f∗ |QX∗,X

(
QX,X + σ2

nI
)−1

y,

KX∗,X∗ −QX∗,X

(
QX,X + σ2

nI
)−1

QX,X∗

) (2.37)

Fully Independent (Training) Conditional. The main limitation of sparse701

approximation to Gaussian Processes proposed before 2006 is that the active702

points are restricted to be a subset of training covariate. In additions, the703

fact that selections of active points are repeated in training progress causes704

non-smooth fluctuations in the marginal likelihood and its gradients, meaning705

that they cannot get smooth convergence. To circumvent the problem, Snel-706

son and Ghahramani (2005) introduced an alternative sparse approximation707

to Gaussian Processes Regression which is called Sparse Gaussian Processes708

using Pseudo-inputs (sgpp) . This approach enables the joint optimization709
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of active locations and kernel hyper-parameters.710

711

Integrating sgpp into the unifying framework, we can observe clearly the712

differences in the formalism between sgpp and sor and dtc. While the like-713

lihood variance of dtc is characterized by only the noise variance, the likeli-714

hood variance of sgpp also takes into account the residual difference between715

Diag (KX,X) and Diag (QX,X). sgpp assumes that the auxiliary variables u in-716

duces the relation of training latent variables f . Due to this assumption, sgpp717

can be called Fully Independent Training Conditional (fitc) approximation.718

The approximation to the likelihood as well as the variational distribution of719

training and testing latent values given u also relies on the projection as in720

dtc, but the predictive variances are more sophisticated than dtc.721

p (y | f) ≈ qfitc (y | u) = N
(
y | KX,ZK−1

Z,Zu,Diag [KX,X −QX,X] + σ2
nI
)
.

(2.38)

qfitc (f | u) =
N∏
n=1

p (fn | u) =
N∏
n=1

N
(
fn | Kxn,ZK−1

Z,Zu,Kxn,xn −Qxn,xn

)
.

(2.39)

qfitc (f∗ | u) = p (f∗ | u) = N
(
f∗ | KX∗,ZK−1

Z,Zu,KX,X −QX,X

)
. (2.40)

By introducing A as a square matrix, the operator Diag (A) constructs a di-722

agonal matrix whose elements are taken from the diagonal line of A. The723

approximation to joint prior qfitc (f , f∗) is similar to dtc, except for the co-724

variance matrix governing the relation of training latent variables. While dtc725

uses QX,X in qdtc (f , f∗) defined in the equation 2.36, fitc also uses QX,X in726

the approximation to joint prior, but remain the true kernel value at diagonal727

elements.728

qfitc (f , f∗) = N
([

f

f∗

] ∣∣∣∣[00
]
,

[
QX,X + Λ QX,X∗

QX∗,X KX∗,X∗

])
(2.41)

, where Λ = Diag [KX,X −QX,X]. From the joint prior defined in 2.41, the729

predictive distribution of fitc or sgpp turns out:730

qfitc (f∗ | y) = N
(
f∗ |QX∗,X

(
QX,X + Λ + σ2

nI
)−1

y,

KX∗,X∗ −QX∗,X

(
QX,X + Λ + σ2

nI
)−1

QX,X∗

)
.

(2.42)

Observe the approximation to joint prior in fitc defined in the equation731

2.41, we realize that the training and testing covariance are constructed het-732

erogeneously. Therefore, the approximation fitc does not comply with the733

strict definition of gps where the covariance for all points must be com-734

puted by identical manners. In contrast, if the assumption of conditional735
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independence given active points is extended to the testing case, fitc turns736

into another approach which is logically called Fully Independent Conditional737

(fic) . fic is equivalent to Gaussian Processes with the covariance function738

kfic (xi,xj) = ksor (xi,xj) + δi,j (k (xi,xj)− ksor (xi,xj)), where δi,j is Kro-739

necker delta function. The prior and predictive distribution implied by fic740

is:741

qfic (f , f∗) = N
([

f

f∗

] ∣∣∣∣[00
]
,

[
QX,X + Λ QX,X∗

QX∗,X QX∗,X∗ + Λ∗

])
(2.43)

742

qfic (f∗ | y) = N
(
f∗ |QX∗,X

(
QX,X + Λ + σ2

nI
)−1

y,

QX∗,X∗ + Λ∗ −QX∗,X

(
QX,X + Λ + σ2

nI
)−1

QX,X∗

)
.

(2.44)

Partially Independent (Training) Conditional. Having compared the743

predictive distribution of dtc and fitc defined in equation 2.37 and 2.42, it744

is obvious that fitc is an improvement of dtc by remaining the exact diag-745

onal elements of the covariance matrix. Relying on the unifying framework,746

Quiñonero Candela and Rasmussen (2005) have proposed a further improved747

approximation compared to fitc by extending the training conditional to have748

a block of diagonal covariance and remaining the exact testing covariance as749

defined in equation 2.26. Due to the usage of diagonal block covariance on750

training conditional, the approximation is called Partially Independent Train-751

ing Conditionals (pitc) .752

qpitc (f | u) = N
(
f | KX,ZK−1

Z,Zu, Λ̃
)

(2.45)

qpitc (f∗ | u) = p (f∗ | u) = N
(
KX∗,ZK−1

Z,Zu,KX∗,X∗ −QX∗,X∗

)
. (2.46)

, where Λ̃ = bkdiag [KX,X −QX,X] is a block diagonal matrix that is not753

clearly specified in Quiñonero Candela and Rasmussen (2005). An intuitive754

blocking structure is to group training points using clustering techniques as755

mentioned in Snelson and Ghahramani (2007). Similar to fitc, the approxi-756

mation to joint prior of pitc is defined as:757

qpitc (f , f∗) = N
([

f

f∗

] ∣∣∣∣[00
]
,

[
QX,X + Λ̃ QX,X∗

QX∗,X KX∗,X∗

])
(2.47)

The approximation to the predictive distribution of pitc is identical to fitc758

defined in equation 2.42, except for the substitution of a block diagonal matrix.759

qpitc (f∗ | y) = N
(
f∗ |QX∗,X

(
QX,X + Λ̃ + σ2

nI
)−1

y,

KX∗,X∗ −QX∗,X

(
QX,X + Λ̃ + σ2

nI
)−1

QX,X∗

)
.

(2.48)
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As argued by Snelson and Ghahramani (2007), predictions obtained by pitc760

are empirically identical to fitc and fic given a specified set of active po-761

sitions and hyper-parameters. They have speculated that mean predictions762

of pitc are still just a weighted sum of basis functions centered on the same763

inducing inputs as in fitc or fic, and the blocking structures on training764

covariance only changes the weights slightly. In addition, the structure of co-765

variance of pitc defined in equation 2.47 means that the pitc approximation766

is not equivalent to a Gaussian Processes with a particular kernel function. To767

solve these problems, Snelson and Ghahramani (2007) relax the assumption of768

conditional independence between training and testing latent variables given769

inducing variable, i.e. do not approximate p (f , f∗ | u) by q (f | u) q (f∗ | u).770

They treat the training and testing inputs in the same manner, and put them771

into S blocks using clustering techniques. Consider a single testing input x∗772

which are assigned to block BS, then the joint prior are approximate as:773

p (f , f∗) =

∫
p (f , f∗ | u) p (u) du ≈

∫
p (fBS

, f∗ | u)
S−1∏
s=1

p (fBs | u) p (u) du.

(2.49)
According to the approximation, the assumption of using partial independence774

applies to both training and testing points. Therefore, this idea is logically775

called Partially Independence Conditional (pic) . Thanks to the relaxation776

of conditional independence, pic corresponds to a Gaussian Process with co-777

variance matrix Kpic.778

Kpic (xi,xj) = Q (xi,xj) + ψ (xi,xj) [K (xi,xj)−Q (xi,xj)] . (2.50)

, where779

ψ (xi,xj) =

{
1 if xi and xjare in the same block
0 otherwise.

(2.51)

The predictive distribution implied by pic is identical to the exact predictive780

distribution, except for the alternation of K by Kpic.781

2.3.2 Posterior Approximations782

Weakness of Prior Approximations. As alluded to previously, the783

aforementioned algorithms complying with the idea of prior approximation784

operate as an exact Gaussian Processes with a particular kernel function785

or an approximation to covariance matrices, i.e. sor (Smola and Bartlett,786

2001) and fic (Snelson and Ghahramani, 2006) and pic (Snelson and Ghahra-787

mani, 2007). Suppose we would like to employ M inducing variables which788

are latent values at some auxiliary inputs Z to approximate the gp prior.789
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The quality of these sparse approximations depends on the optimization of Z790

and hyper-parameters, i.e. kernel’s parameters and variance noise (for Gaus-791

sian likelihood). An approximation to the true marginal likelihood defined in792

2.1 allows us to select Z and other hyper-parameter using a gradient-based793

iterative method. For example, consider a zero-mean gp, Projected Pro-794

cess approximation (pp) (Seeger et al., 2003) and Sparse Gaussian Processes795

using Pseudo-points (sgpp) (Snelson and Ghahramani, 2006) following the796

idea of prior approximation replace the logarithm of gp marginal likelihood797

Fgp = log [p (y | X)] by Fpp and Fsgpp:798

gp: Fgp = log
[
N
(
y | 0,KX,X + σ2

nI
)]
. (2.52)

pp : Fpp = log
[
N
(
y | 0,QX,X + σ2

nI
)]
. (2.53)

sgpp : Fsgpp = log
[
N
(
y | 0,QX,X + Λ + σ2

nI
)]
. (2.54)

where we recall that QX,X = KX,ZK−1
Z,ZKZ,X is the Nyström approximation799

to KX,X using inducing inputs Z. Λ = Diag [KX,X −QX,X] is the difference800

on diagonal elements between the true kernel values and approximated ones.801

Observe Fpp and Fsgpp, the covariance of approximate marginal likelihood are802

parameterized by inducing inputs Z. While it is tempting to think that the803

introduction of Z in kernel function improves the representational power of804

approximate gps, the highly-parameterized form probably lead to an over-805

fitting problem because the continuous optimization of Fpp and Fsgpp with806

respect to Z does not reliably approximate true gp.807

808

Main idea of Posterior Approximations. In order to deal with the809

lack of consideration of the convergence between true gp and approximate810

ones, we intuitively find Z by minimizing the distance of the approximated811

predictive distributions produced by the inducing points and the true ones.812

Further, the idea also allows us to access the divergence between the true gp813

and sparse approximation to gp. Since both of predictive distribution p (f∗ | y)814

and posterior p (f | y) are conditional prior given observations, the selection815

of Z based upon the idea is equivalent to minimize the Kullback-Leibler diver-816

gence between the approximate posterior q (f) and the true posterior p (f | y).817

818

Starting from the true gp conditional prior over arbitrary auxiliary variable819

v given observations y, we construct the approximate gp posterior using M820

inducing points. We can express the conditional prior p (v | y) by integrating821

out inducing variables u and training latent values f as follows:822

p (v | y) =

∫
p (v | u, f) p (f | u,y) p (u | y) dfdu. (2.55)
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By assuming u completely capture the relation between v and f , it holds that823

p (v | u,y) = p (v | u). Thanks to the assumption of conditional indepen-824

dence, the variable f only appears in p (f | u,y), and therefore, f is canceled825

out as
∫
p (f | u,y) df = 1. Subsequently, the above p (v | y) can be written826

as q (v):827

q (v) =

∫
p (v | u) q (u) du =

∫
q (v,u) du. (2.56)

where q (v) = p (v | y) and q (u) = p (u | y). Practically speaking, it is in-828

feasible to find inducing variables u which are sufficient statistics for the pa-829

rameters f . Thus, q (v) should be expected as an approximation to p (v | y).830

Subsequently, the q (u) can be represented by a parameterized form.831

832

Since the joint variable [z,y]T and [z,u]T follow a gp, the conditional pri-833

ors of p (z | y) and p (z | u) are also Gaussian densities. Intuitively, q (z)834

which is the approximation to p (z | y) should be also a Gaussian. Thanks to835

the equation 2.56 and the conjugacy properties, we see that assuming q (u) a836

variational Gaussian distribution defined by a mean vector m and covariance837

matrix S turns q (v) to be a Gaussian. Introducing X̃ as the indices of v, we838

can express q (v) under a closed form:839

q (v) = N
(
Am,KX̃,X̃ + A (S−KZ,Z) A

)
. (2.57)

where A = KX̃,ZK−1
Z,Z. Since v is an arbitrary variable representing all latent840

function values, q (v) can be perceived as an approximation to gp posterior841

q (f) or predictive distributions q (f∗).842

843

Turning to the idea of posterior approximation, all parameters θ, e.g. in-844

ducing inputs or hyper-parameters, are selected to minimize the Kullback-845

Leibler divergence between the approximate posterior q (f) and the true pos-846

terior p (f | y). Equivalently, we can minimize a distance between the aug-847

mented variational posterior q (f ,u) defined in equation 2.56, i.e. q (f ,u) =848

p (f | u)φ (u) and the augmented true posterior p (f ,u | y).849

θ∗ = arg min
θ

KL [q (f ,u) || p (f ,u | y)] (2.58)

Taking further analysis, we see that KL [q (f ,u) || p (f ,u | y)] can be repre-850

sented as:851

KL [q (f ,u) || p (f ,u | y)] = log [p (y)]− Eq(f ,u) log

[
p (f ,u,y)

q (f ,u)

]
. (2.59)
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Since log [p (y)] is constant for q (f ,u), learning all parameters can be inferred852

by maximizing Fq defined as follows:853

Fq = Eq(f ,u) log

[
p (f ,u,y)

q (f ,u)

]
=

∫
p (f | u) q (u) log

[
p (y | f) p (u)

q (u)

]
dfdu.

(2.60)
Sparse Variational Gaussian Processes Regression. The most well-854

known representative following the idea of posterior approximation is proposed855

by Titsias (2009) using variational inference technique (Blei et al., 2017).856

In the approach, the lower bound to marginal likelihood is developed from857

Fq defined in 2.60. To derive a tighter bound, they firstly maximize the858

bound Fq by analytically solving for the optimal choice of the variational859

distribution q∗ (u). By differentiating 2.60 with respect to q (u) and using860

Gaussian likelihood p (y | f) = N (y | f , σ2
nI), the optimal q∗ (u) is derived as861

follows:862

q∗ (u) = N (u |m∗,S∗) , where, (2.61)

m∗ = σ2
nKZ,Z

(
KZ,Z + σ2

nKZ,XKX,Z

)−1
KZ,Xy (2.62)

S∗ = KZ,Z

(
KZ,Z + σ2

nKZ,XKX,Z

)−1
KZ,Z (2.63)

By replacing q∗ (u) into the bound Fq defined in Equation 2.60, we obtain the863

lower bound of Sparse Gaussian Processes for Regression (sgpr) proposed by864

Titsias (2009):865

Fsgpr = log
[
N
(
y | 0, σ2

nI + QX,X

)]
− 1

2σ2
n

Tr (Λ) . (2.64)

where we recall that QX,X = KX,ZK−1
Z,ZKZ,X is the Nyström approximation866

to KX,X using inducing inputs Z, and Λ = Diag [KX,X −QX,X] is the differ-867

ence on diagonal elements between the true kernel values and approximated868

ones. Observe the approximation to gp marginal likelihood of the approach of869

Projected Process Approximation (pp) or Deterministic Training Conditions870

(dtc) defined in 2.53, we can rewrite Fsgpr in terms of Fpp:871

Fsgpr = Fpp −
1

2σ2
n

Tr (Diag (KX,X −QX,X)) . (2.65)

It is obvious that sgpr differs dtc only by trace term, which have a significant872

impact on the inference. Intuitively, the Tr (Diag (KX,X −QX,X)) represents873

the total variance of predicting the latent variables f given u. When max-874

imizing the bound Fsgpr, the positive trace term should be decreased, and,875

in particular, the fact of the trace is zero means that u recover the full gp.876

Therefore, the trace term not only seeks to deliver a good inducing set but877
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also prevents sgpr from overfitting.878

879

Stochastic Variational Inference for Gaussian Processes. A downside880

of sgpr proposed by Titsias (2009) is that the computational and storage881

cost depends on the training size N linearly. On the inspection of the bound882

FSGPR defined in equation 2.64, each training iteration of sgpr requires the883

budget of O (NM2) for computation and O (NM). These costs come from the884

linear algebraic operation appearing the computation of QX,X, i.e. the matrix885

inversion of K−1
Z,Z and the matrix multiplication KX,ZK−1

Z,ZKZ,X. Though the886

reduction of sgpr on computation and memory requirement are impressive,887

these demands are quickly prohibitive for big data, where the training size N888

reaches to many millions or billions.889

890

In order to overcome the dependency of complexities on training size, Hens-891

man et al. (2013) have employed Stochastic Variational Inference on Gaussian892

Processes. This approach is, therefore, abbreviated by svi . While Titsias’893

bound are derived by replacing q (u) by optimal distribution for inducing vari-894

able q∗ (u) defined in equation 2.61, svi (Hensman et al., 2013) parameterize895

the variational distribution q (u) by a Gaussian density N (m,S). Substitut-896

ing N (m,S) for q (u) in the general bound Fq defined in the equation 2.60,897

the bound Fsvi are obtained as follows:898

Fsvi =
N∑
i=1

{
logN

(
yn | Kxi,ZK−1

Z,Zm, σ2
n

)
− 1

2σ2
n

Kxi,ZK−1
Z,ZSK−1

Z,ZKZ,xi

− 1

2σ2
n

(Kxi,xi
−Qxi,xi

)

}
−KL (q (u) || p (u)) .

(2.66)

Due to the Gaussian form of q (u), the KL term can be expressed analytically899

with the computational cost of O (M3). The most important property of Fsvi900

is that it can be written as a sum of N terms, each of them corresponds to901

one pair of input and output (xi, yi). This allows us to perform stochastic902

gradient ascent by using a mini-batch I as follows:903

Fsvi ≈
N

|I|
∑

(xi,yi)∈I

{
logN

(
yi | Kxi,ZK−1

Z,Zm, σ2
n

)
− 1

2σ2
n

Kxi,ZK−1
Z,ZSK−1

Z,ZKZ,xi

− 1

2σ2
n

(Kxi,xi
−Qxi,xi

)

}
−KL (q (u) || p (u)) .

(2.67)

Apart from accelerating the computation cost by applying stochastic varia-904

tional inference, the factorization over training examples allows the combina-905
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tion of svi and non-Gaussian likelihood. As a consequence, a more general906

approach of svi has also proposed by Hensman et al. (2015a), which is called907

Scalable Variational Gaussian Processes (svgp) . The bound Fsvgp can be908

derived easily by rewriting Fq in equation 2.60:909

Fsvgp = Fq =

∫
p (f | u) q (u) log

[
p (y | f) p (u)

q (u)

]
dfdu

= Eq(f) log p (y | f)−KL (q (u) || p (u))

=
N∑
i=1

Eq(fi) log p (yi | fi)−KL (q (u) || p (u))

≈ N

|I|
∑

(xi,yi)∈I

Eq(fi) log p (yi | fi)−KL (q (u) || p (u)) .

(2.68)

, where q (fi) is calculated as q (v) defined in equation 2.57. In case the likeli-910

hood p (yi | fi) is Gaussian, the variational expectation term can be expressed911

analytically. In general, the one-dimensional integrals of the log-likelihood912

can be computed by Gauss-Hermite quadrature as in Hensman et al. (2015a).913

914

Further Improvement. The approaches of posterior approximation (Tit-915

sias, 2009; Hensman et al., 2013, 2015a) can be further improved in various916

ways. The first direction is to apply a Bayesian treatment to all kernel hyper-917

parameters rather than optimizing them, which is prone to overfitting (Titsias918

and Lazaro-Gredilla, 2013; Hensman et al., 2015b; Yu et al., 2017). Another919

extension is to allow to work with a non-Gaussian posterior, e.g. mixture of920

Gaussians (Nguyen and Bonilla, 2014a), or a free-form posterior (Hensman921

et al., 2015b).922

2.3.3 Structure Exploiting Approximations923

Main idea. Consider a gp with Gaussian likelihood p (yi | fi) = N (yi | fi, σ2
n),924

the gradients of logarithm of the marginal likelihood p (y | X) with respect to925

an arbitrary trainable parameter ψ is as follows:926

∂ log [p (y | X,θ)]

ψ
= −1

2
Tr

(
K−1
σ2
n

∂Kσ2
n

∂ψ

)
+

1

2
yTK−1

σ2
n

∂Kσ2
n

∂ψ
K−1
σ2
n
y. (2.69)

where Kσ2
n

= KX,X + σ2
nI. Traditionally, the Cholesky decomposition is ap-927

plied to factorize Kσ2
n

= LLT which cost O (N3) (Golub and Van Loan, 1996).928

Therefore, the computational problems of these gradients start to arise when929

N exceed a few thousands. It is possible to enhance the scalability of the930

computations by imposing a special algebraic structure on the kernel matrix931
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KX,X. A well-known approach following the idea of structural exploitation is932

to use Kronecker product with the assumption of grid-structure dataset and933

tensor product kernel (Saatçi, 2011; Gilboa et al., 2015).934

935

Grid-structured data. According to the exposition of Chapter 5 in Saatçi’s936

dissertation, we assume all input points X are located on a Cartesian grid,937

i.e.938

X = X1 × · · · ×XD (2.70)

, where Xd represents all distinct input locations along dimension d, and939

operator × indicates the Cartesian product between vectors. The number of940

elements of the vector Xd is generally arbitrary, i.e. we can say that Xd ∈ RGd941

where Gd is the size of vector Xd. The definition of Cartesian product entails942

that X is restricted to contain exactly
∏D

d=1 Gd points which are put on the943

D-dimensional Cartesian grid. Though a grid-structured data can enable the944

computational acceleration, the number of data points grows exponentially945

with dimensions, and, consequently, the limitation of the computational re-946

source is quickly reached. Therefore, the speed-up of gp using the idea of947

grid-structured data is feasible with few dimensions. For example, follow-948

ing Saatçi (2011), the applicability of gp on multidimensional grid data is949

restricted with the dimension which is less than 8. Despite severely suffer-950

ing from the curse of dimensionality, this structure arises naturally in several951

spatial-temporal problems such as climate modeling, where the input points952

generally denote latitude and longitude coordinates that can be further aug-953

mented with some periodically spaced time dimension. Multimedia such as954

images and videos are also likely to inherently have such structure.955

956

Tensor product kernel. In this section, the covariance functions are as-957

sumed to be tensor product kernels, which compute the covariance as a sepa-958

rable product over dimensions. Introducing two D-dimensional covariates xi959

and xj belonging to the grid-structure input space X mentioned above, the960

covariance between xi and xj can be written as:961

k (xi,xj) =
D∏
d=1

kd (xi,d,xj,d) . (2.71)

where xi,d ∈ Xd is the d-th element of input xi and kd (., .) is any symmetric962

positive definite function which is described in section 2.2.2.963

964

Algebraic advantages of the Kronecker method. Introducing A as965

m × n matrix and B as p × q matrix, the Kronecker product of A and B,966
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denoted by A⊗B, is an mp× nq matrix having the following form:967

A⊗B =

a1,1B . . . a1,nB
... . . . ...

am,1B . . . am,nB

 (2.72)

, more explicitly:968

A⊗B =



a11b11 a11b12 . . . a11b1q . . . . . . a1nb11 a1nb12 . . . a1nb1q

a11b21 a11b22 . . . a11b2q . . . . . . a1nb21 a1nb22 . . . a1nb2q
...

... . . . ... . . . . . . ...
... . . . ...

a11bp1 a11bp2 . . . a11bpq . . . . . . a1nbp1 a1nbp2 . . . a1nbpq
...

... . . . ... . . . . . . ...
... . . . ...

...
... . . . ... . . . . . . ...

... . . . ...
am1b11 am1b12 . . . am1b1q . . . . . . amnb11 amnb12 . . . amnb1q

am1b21 am1b22 . . . am1b2q . . . . . . amnb21 amnb22 . . . amnb2q
...

... . . . ... . . . . . . ...
... . . . ...

am1bp1 am1bp2 . . . am1bpq . . . . . . amnbp1 amnbp2 . . . amnbpq


(2.73)

For the sake of clarity, we mention the basic properties of Kronecker product969

with square matrices, which is helpful for a forthcoming explanation.970

Bilinearity: A⊗ (B + C) = A⊗B + A⊗C (2.74)
Associativity: (A⊗B)⊗C = A⊗ (B⊗C) (2.75)

Mixed-product property: (A⊗B) (C⊗D) = AC⊗BD (2.76)

Inverse: (A⊗B)−1 = A−1 ⊗B−1 (2.77)

Transpose: (A⊗B)T = AT ⊗BT (2.78)
Trace: Tr (A⊗B) = Tr (A) Tr (B) (2.79)

Determinant: det (A⊗B) = (det A)DA (det B)DB (2.80)
Vec: V ec

(
CXBT

)
= (B⊗C)V ec (X) . (2.81)

, where DA and DB are dimensions of matrices A and B. Introducing X971

as m-by-n matrix, V ec (X) denotes flatten operator yielding mn-dimensional972

vector.973

974

Thanks to the assumptions of grid-structured data and tensor product kernel,975

the full covariance matrix for points on the grid can be evaluated by Kronecker976

product of a sequence of kernels:977

KX,X = K1 (X1,X1)⊗K2 (X2,X2)⊗ · · · ⊗KD (XD,XD) (2.82)
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, where Kd is Gd×Gd covariance matrix of the vector of scalar input locations978

Xd. In order to see how Kronecker product gain the benefit in gp computa-979

tions, we remind the logarithm of the marginal likelihood of a zero-mean gp980

with the Gaussian likelihood p (yi | fi) = N (yi | fi, σ2
n):981

log p (y | X) = −1

2
log
∣∣KX,X + σ2

nI
∣∣− 1

2
yT
(
KX,X + σ2

nI
)−1

y − N

2
log 2π.

(2.83)
It is infeasible to access the logarithm marginal likelihood of gp regression982

on X containing N =
∏D

d=1 Gd points due to the computational bottlenecks983

from the algebraic operations, i.e. the inversion and matrix-vector multipli-984

cation (KX,X + σ2
nI)
−1

y and logarithm of determinant log |KX,X + σ2
nI|. The985

original computational and storage cost are O (N3) and O (N2) respectively.986

Due to the nice properties of Kronecker product, the complexity of learning987

and inference turns out O
(
DN1+ 1

D

)
and O

(
DN

2
D

)
for storage. In the next988

section, I will analyze and explain why Kronecker product can lead to the989

improvements.990

991

These reductions come from the fast computation of eigendecomposition KX,X =992

QVQT , where V is the diagonal matrix constructed by corresponding eigen-993

values vi, and Q is the square matrix whose i-th column is the eigenvector994

qi of KX,X, and therefore, Q is guaranteed to be an orthogonal matrix, and995

consequently, Q−1 = QT . Since KX,X can be expressed by Kronecker product,996

the computation for matrices Q and V is accelerated by separately carrying997

out the eigendecomposition of K1 (X1,X1) , . . . ,KD (XD,XD). Denoting Qd998

as matrix containing eigenvectors of Kd (Xd,Xd) and Vd as a diagonal ma-999

trix of eigenvalues of Kd (Xd,Xd), i.e. Kd (Xd,Xd) = QdVdQ
T
d , matrix Q1000

and V can be expressed as Kronecker products by using the Mixed-product1001

property defined at 2.76. Actually, Vd and V are diagonal matrices, and V1002

are constructed by concatenating diagonal elements of Vd.1003

Q = Q1 ⊗ · · · ⊗QD , and V = Diag
(

Diag (V1)T , . . . ,Diag (VD)T
)

(2.84)

Due to the V ec property mentioned at 2.81, the fast matrix vector multipli-1004

cation are enabled by using the Algorithm kron-mvn mentioned in Saatçi’s1005

dissertation (Saatçi, 2011).1006

1007

In order to analyze the complexity of kron_mvm conveniently, I assume all1008

Ad have the same dimensions. Similarly, the algorithm kron_mvm also works1009

with matrices {A}Dd=1 with various sizes, i.e. Ad ∈ RGd×Gd . Consider the1010

iterative steps appear in the loop, the computational cost mainly relies on the1011

matrix multiplication AdX which requires O (NG) or O
(
N1+ 1

D

)
. The loop1012
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Algorithm 1 Fast Matrix Vector Multiplication with Kronecker Product -
kron_mvm.
Input: G-by-G matrices A1, . . . ,AD, N -dimensional vector b where N = GD

Output: α =
(
⊗Dd=1Ad

)
b.

1: α← b.
2: for d← D to 1 do
3: X← reshape (α, G,N/G);
4: Z← AdX;
5: α← vec

(
ZT
)

6: end for

is repeated D times, therefore, the ultimate budget is O
(
DN1+ 1

D

)
.1013

1014

Turning to the matrix-vector multiplication (KX,X + σ2
nI)
−1

y appearing in1015

the logarithm of marginal likelihood, it can be rewritten in terms of Q and1016

V. Thanks to the property of Transpose defined at 2.78, (KX,X + σ2
nI)
−1

y1017

can be further represented by Kronecker product:1018 (
KX,X + σ2

nI
)−1

y = Q
(
V + σ2

nI
)−1

QTy

= (Q1 ⊗ · · · ⊗QD)
(
V + σ2

nI
)−1 (

QT
1 ⊗ · · · ⊗QT

D

)
y

(2.85)

With the above expression, the matrix vector multiplication can be solved1019

efficiently using the following steps:1020

α← kron_mvm
([

QT
1 , . . . ,Q

T
D

]
,y
)

α←
(
V + σ2

nI
)−1

α

α← kron_mvm ([Q1, . . . ,QD] ,α)

(2.86)

where kron_mvm is a procedure detailed in Algorithm 1. Remind that V is di-1021

agonal matrix containing the eigenvalues of block covariances {Kd (Xd,Xd)}Dd=1,1022

the matrix V + σ2
nI is also diagonal, and, therefore, its inversion can be com-1023

puted with linear complexity.1024

1025

The fast eigendecomposition of KX,X also speeds up the computation of log-1026

arithm of determinant of KX,X + σ2
nI. Denoting v1, . . . , vN the diagonal ele-1027

ments of V, we know that {vi}Ni=1 are eigenvalues of KX,X as KX,X = QVQT .1028

Due to the definition of eigenvalue, there is a relation between matrix KX,X,1029

its eigenvalue vi and its corresponding eigenvector qi: KX,Xqi = viqi, then1030

(KX,X + σ2
nI) qi = viqi + σ2

nIqi = (vi + σ2
n) qi. Therefore, it can be de-1031

rived that if vi is an eigenvalue of KX,X then vi + σ2
n is also an eigenvalue1032
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of KX,X +σ2
nI. In consequence, the logarithm of determinant of KX,X +σ2

nI is1033

reduced from O (N3) to O
(
DN

3
D

)
which are the cost for eigendecomposition1034

of D matrices {Kd (Xd,Xd)}Dd=1.1035

log
∣∣KX,X + σ2

nI
∣∣ =

∑
i

log
(
vi + σ2

n

)
. (2.87)

Structural Kernel Interpolation. Despite their impressive computational1036

acceleration of Kronecker-based methodology presented above, the main lim-1037

itation of this approach is the restriction of grid-structured data. However,1038

most datasets will not satisfy this requirement, making the application of such1039

techniques narrow. In order to relax the condition of having observations at1040

all possible input locations in the grid, there are several attempts such that1041

missing observations and incomplete grid are also permitted (Flaxman et al.,1042

2015; Wilson et al., 2014). Ultimately, Wilson and Nickisch (2015) have ex-1043

tended the concept of the Kronecker method to a general scenario with the1044

proposal of Kernel Interpolation for Scalable Structured Gaussian Processes1045

(kiss-gp) . This method constrains that the set of inducing positions Z1046

constructs a complete multidimensional grid. Consider D-dimensional prob-1047

lems and introduce Zd as a vector containing distinct inducing locations along1048

with dimension d, we again define Z as Cartesian product of Z1, . . . ,ZD, i.e.1049

Z = Z1 ⊗ · · · ⊗ ZD.1050

1051

Similarly, the size of Z is M =
∏D

d=1Gd where Gd is the number of elements1052

in the vector Zd. By utilizing the tensor product kernel defined above, the1053

Kronecker idea enables the fast algebraic operations of the covariance matrix1054

of inducing points. Nevertheless, setting a massive M could be problematic1055

due to the time-consuming operations associated with the cross-covariance1056

KX,Z between design matrix X and inducing locations Z. For example, the1057

full covariance matrix KX,X which can be expressed by Nyström approxima-1058

tion KX,ZK−1
Z,ZKZ,X dominate the computations with quadratic complexity1059

to M , i.e. O (NM2). Instead of computing directly KX,Z, it is estimated1060

by interpolating on the M ×M covariance matrix KZ,Z. For example, if we1061

would like to estimate k (x, zj), for point x and inducing input zj, we can start1062

by finding the two inducing points za and zb which are the two closest to x.1063

Then, we can estimate k (x, zj) by k̃ (x, zj) = wk (zj, za) + (1 − w)k (zj, zb),1064

where w and 1−w are represented the relative distance from x to za and zb.1065

Generally, the cross covariance KX,Z between design matrix X and inducing1066

points Z can be interpolated by:1067

KX,Z ≈ K̃X,Z = WKZ,Z (2.88)
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While M is expected very large in the scenario, W is constraint to be ex-1068

tremely sparse. There are several options to construct matrix W based upon1069

various strategy including (i) local linear interpolation where each row of W1070

contains only 2 non-zero entries or (ii) local cubic interpolation for greater1071

accuracy with 4 non-zero elements per row.1072

1073

As a consequence, from the Nyström approximation to full covariance KX,X, a1074

further estimation can be obtained by substituting K̃X,Z for KX,Z. This gen-1075

eral approach of approximation is so called Structured Kernel Interpolation1076

(ski) .1077

KX,X ≈ KX,ZK−1
Z,ZKZ,X ≈ K̃X,ZK−1

Z,ZK̃Z,X = WKZ,ZW , Kski (2.89)

By exploiting the fast Kronecker matrix-vector multiplications mentioned1078

above, the overall complexity of learning gp is O
(
DM1+ 1

D

)
computations1079

and O
(
N +DM

2
D

)
storage. Nonetheless, this approach also introduces ad-1080

ditional design choices, such as determining the optimal density of the in-1081

terpolation point grid, which require further fine-tuning than the relatively1082

more straightforward inducing point methods. In general, the grid density is1083

expected to be heavily dependent on the choice of the kernel since more expres-1084

sive kernels are likely to require a greater number of interpolation points and1085

less sparse W. In summary, the combination of ski and Kronecker algebraic1086

structure results in the method kiss-gp.1087

2.4 Random Feature Approximations1088

As highlighted earlier, the inducing point-based approximation is a well-known1089

approach for improving gps’ scalability. In these methods, a small number of1090

pairs of inducing inputs and outputs are learned to define a new gps, which1091

is expected to be close as possible to the gps, and the computational and1092

storage cost now depend on the number of inducing points. These approaches1093

are appropriate for locally complex functions. Intuitively, most inducing in-1094

puts would be located in regions where the function is complex, while the1095

rest would be placed in regions where the function is simpler. Highly complex1096

functions cannot be modeled well with these inducing point-based approaches.1097

1098

In order to capture complex behaviors at a global level and improve the1099

scalability of gps, random feature-based approximations were proposed by1100

Lázaro-Gredilla et al. (2010) and Gal and Turner (2015), which relies on spec-1101

tral representations of kernel functions. For this kind of approximation, we1102
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only consider stationary gps whose covariance functions are written as a func-1103

tion of the distance between observations, i.e. k (x,x′) = k (x− x′) = k (r).1104

The spectral density for non-stationary kernels can be found in Remes et al.1105

(2017). The concept of spectral expressiveness and random feature expansions1106

are discussed here because these concepts are essential in the next chapter 21107

where we propose a novel combination of cnns and gps approximated with1108

random features.1109

2.4.1 Spectral Representations1110

Kernel trick and its problem. Kernel methods are a class of algorithms1111

enabling the operations in an infinite-dimensional feature space, which leads1112

to an enhancement of representational power. This is materialized by ob-1113

serving that inference for these methods is expressed through inner products1114

between test points and input points, e.g. svm (Cortes and Vapnik, 1995).1115

Thanks to this observations and Mercer’s theorem, we can implicitly define1116

the transformation from the original space to the infinite-dimensional space1117

by specifying the kernel function between points. This is the so-called kernel1118

trick. However, the weakness of these methods is that algorithms needs to1119

evaluate the kernel function between all pairs of datapoints. Consequently,1120

large training sets incur large computational and storage costs.1121

1122

Dual representation of a stationary kernel. Rahimi and Recht (2008)1123

proposed an idea to define a transformation of the input space enabling a1124

numerical approximation to kernel values without suffering a prohibitive cost.1125

Due to the significant impact on research communities working on kernel-1126

based models such as support vector machines, kernel ridge regression, and1127

ultimately gps, this seminal work is considered to be one of the most in-1128

fluential papers published in the previous decade. Their work is inspired1129

by Bochner’s theorem (Rudin, 1962) which states that any continuous shift-1130

invariant normalized covariance function k (xi,xj) = k (xi − xj) is said to be1131

positive definite if and only if it can be rewritten as the Fourier transform1132

of some non-negative measure p (ω). The spectral density s (ω) can be con-1133

structed from k (r) and vice versa through Wiener-Khintchin theorem:1134

k (r) = F−1 {p (ω)} =

∫ +∞

−∞
p (ω) exp

(
iωT r

)
dω (2.90)

1135

p (ω) = F {k (r)} =
1

2π

∫ +∞

−∞
k (r) exp

(
−iωT r

)
dr (2.91)

where F denotes Fourier transform and eix = cosx + i sinx is the Euler’s1136

formula. Thanks to the relation indicated in Equation 2.91 and 2.90, several1137
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examples of pairs of kernel function k (r) and spectral density p (ω) can be1138

given as follows:

Kernel Name Kernel function k (r) Spectral density p (ω)

Gaussian exp
(
− ||r||

2
2

2

)
(2π)−

D
2 exp

(
− ||ω||

2

2

)
Matérn 1/2 σ2 exp

(
− ||r||1

l

)
2σ

2

l

(
1
l2

+ ||ω||22
)−1

Laplacian exp (− ||r||1)
∏D

d
1

π(1+ω2
d)

1139

1140

Approximation of rbf Kernel using Random Fourier Features. Gen-1141

erally, we consider the rbf kernel parameterized by θ = (σ2, l1, ..., lD) and its1142

corresponding spectral density can be found using Equation 2.91 as follows:1143

krbf (xi,xj | θ) = krbf (xi − xj | θ) = krbf (r | θ) = σ2 exp

(
D∑
d=1

r2
d

ld

)
.

(2.92)1144

prbf (ω) = N
(
ω | 0,Λ−1

)
, where Λ = Diag (l1, . . . , lD) . (2.93)

From equation 2.90, the kernel function can be rewritten as the expectation1145

under the density prbf (ω).1146

krbf (xi,xj | θ) = k (r | θ) = σ2Ep(ω)

[
exp

(
iωT r

)]
= σ2Ep(ω)

[
cos
(
ωT r

)
+ i sin

(
ωT r

)]
.

(2.94)

As sin (.) is an odd function, i.e. sin (−x) = − sin (x), the imaginary term can1147

be canceled out from the expectation in Equation 2.94. Further, the kernel1148

function can be approximated using NRF spectral samples ω̃ from density1149

function p (ω).1150

krbf (xi,xj | θ) = krbf (r | θ) = σ2Eprbf(ω)

[
cos
(
rTω

)]
≈ σ2

NRF

NRF∑
r=1

cos
(
rT ω̃(r)

)
(2.95)

Replacing r by xi − xj into equation 2.95, we can express the approximation1151

of kernel function by an inner product representation:1152

krbf (xi,xj | θ) ≈ σ2

NRF

NRF∑
r=1

cos
(
xTi ω̃

(r) − xTj ω̃
(r)
)

= φrbf (xi)
T φrbf (xj) ,

(2.96)
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where φrbf (x) is known as random features of x for rbf kernel, which is1153

defined as follows:1154

φrbf (x) =
σ2

NRF

[
cos
(
xT ω̃(1)

)
, . . . , cos

(
xT ω̃(NRF )

)
,

sin
(
xT ω̃(1)

)
, . . . , sin

(
xT ω̃(NRF )

) ]T (2.97)

Approximation of order-one arc-cosine Kernel using Random Fea-1155

tures. In addition to working with rbf, we also consider order-one arc-1156

cosine covariance which is a prevalent kernel function.1157

karc (xi,xj | θ) =
σ2

π

∣∣∣∣∣∣Λ− 1
2 xi

∣∣∣∣∣∣ ∣∣∣∣∣∣Λ− 1
2 xj

∣∣∣∣∣∣ [sin (α) + (π − α) cos (α)] , (2.98)

where θ = (σ,Λ = Diag (l21, . . . , l
2
D)) and α is the angle between Λ−

1
2 xi and1158

Λ−
1
2 xj. Let H (.) be the Heaviside function. Following Cho and Saul (2009),1159

this covariance can be written under an integral form:1160

karc (xi,xj | θ) = 2σ2

∫
H
(
ωTxi

) (
ωTxi

)
H
(
ωTxj

) (
ωTxj

)
×N (ω | 0, I) dω.

(2.99)
The convenient integral representation allows for a Monte Carlo approxima-1161

tion obtaining a low-rank approximation to the covariance matrix involving1162

Rectified Linear Unit (relu) activation (Cho and Saul, 2009).1163

φarc (x) =

√
2σ2

NRF

[
max

(
0,xT ω̃(1)

)
, . . . ,max

(
0,xT ω̃(NRF )

)]T
(2.100)

2.4.2 Random featured-based Gaussian Processes.1164

In this section, I firstly present a well-known study of approximation of gps1165

using random features, which is proposed by Lázaro-Gredilla et al. (2010).1166

The key novel idea is to sparsify the spectral representation of gps.1167

1168

Sparse Spectrum Gaussian Process Regression. As alluded earlier,1169

Gaussian Processes Regression (gpr) is introduced in function-space view.1170

Here, we remind that, by considering the dataset D = {X,y} and Gaussian1171

likelihood p (y | f) = N (y | f , σ2
nI), the predictive distributions p (y∗ | x∗,D)1172

and the logarithm of the marginal likelihood log (y | θ) given parameters θ1173

are expressed as follows:1174

p (y∗ | x∗,D) = N
(
y∗ | µ∗, σ2

∗
)
, where

µ∗ = Kx∗,X

(
KX,X + σ2

nI
)−1

y

σ2
∗ = σ2

n + Kx∗ −Kx∗,X

(
KX,X + σ2

nI
)−1

KX,x∗

(2.101)
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1175

log p (y | θ) = −N
2

log (2π)− 1

2

∣∣KX,X + σ2
nI
∣∣− 1

2
yT
(
KX,X + σ2

nI
)−1

y

(2.102)
Computing the gradients of logarithm of the marginal likelihood with respect1176

to related parameters requires the cubic cost to training size, i.e. O (N3),1177

which is unacceptable for large-scale data sets. In order to avoid the pro-1178

hibitive cost, Lázaro-Gredilla et al. (2010) have employed the approximation1179

of the covariance matrix using spectral representation. Consider for example1180

ard kernel (a stationary anisotropic squared exponential covariance function):1181

kard (xi,xj | θ) = kard (r = xi − xj | θ) = σ2
0 exp

(
−1

2
rTΛ−1r

)
, (2.103)

where Λ = Diag ([l21, . . . , l
2
D]). Based on the dual representation of the sta-1182

tionary kernel mentioned above, we can approximate the kard (xi,xj) using1183

NRF spectral samples, and express the approximation as an inner product:1184

kard (xi,xj) ≈
σ2

0

NRF

NRF∑
r=1

cos
(
rT ω̃(r)

)
=

σ2
0

NRF

φ (xi)
T φ (xj) , (2.104)

where ω̃(r) ∼ p (ω) = N
(
ω | 0,Λ−1

)
, and we define φ(x) as a column vector1185

of length 2NRF containing the evaluation of the m pairs of trigonometric1186

functions at x.1187

φ (x) =
[

cos
(
xT ω̃(1)

)
, . . . , cos

(
xT ω̃(NRF )

)
,

sin
(
xT ω̃(1)

)
, . . . , sin

(
xT ω̃(NRF )

) ]T (2.105)

From the transformation φ (.), we construct 2NRF by N matrix of random1188

features ΦX = [φ (x1) , . . . , φ (xN)]. Now, the full kernel matrix KX can be1189

approximated as follows:1190

KX ≈
σ2

0

NRF

ΦT
XΦX (2.106)

Replacing the kernel matrix by this approximation in equation 2.101 and1191

2.102, we obtain the spectral approximation of predictive distribution with1192

mean µ∗ and variance σ2
∗:1193

µ∗ ≈ φ (x∗) A−1ΦXy, and σ2
∗ ≈ σ2

n + σ2
nφ (x∗)

T A−1φ (x∗) , (2.107)

where A = ΦXΦT
X + NRF σ

2
n

σ2
0

I. Similarly, we also obtain the approximate1194

logarithm of the marginal likelihood:1195

log p (y | θ) ≈−
[
yTy − yTΦT

XA−1ΦXy
]
/
(
2σ2

n

)
− 1

2
log |A|

+NRF log
NRFσ

2
n

σ2
0

− N

2
log 2πσ2

n

(2.108)
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Since this method approximates kernel matrices using the spectral density, it1196

is called the Sparse Spectrum Gaussian Process (ssgp). Model selection can1197

be done by optimizing jointly the logarithm of the marginal likelihood defined1198

in 2.108 with respect to spectral points ω̃(r) and hyperparameters θ. The1199

computational cost for each training step of ssgp algorithm is O (NN2
RF ). In1200

terms of making prediction for each test point, the cost is O (NRF ) for the1201

predictive mean and O (N2
RF ) for the predictive variance.1202

1203

Extensions of ssgp. Gal and Turner (2015) show that the original ssgp1204

model’s have a tendency of overfitting. They have presented a Variational1205

Sparse Spectrum approximation to the Gaussian Processes (vssgp) that al-1206

lows one to integrate out the set of spectral samples Ω =
[
ω̃(1), . . . , ω̃(NRF )

]
.1207

The model vssgp is shown to yield better calibrated uncertainty estimates1208

accompanying predictions, and a procedure for deriving the optimal weights1209

analytically is given for the Gaussian likelihood case. Other approaches of1210

applying variational inference on ssgp are featured in Tan et al. (2015) and1211

Hoang et al. (2016). Besides, efficient random feature maps have also been1212

proposed to accelerate the computation and reduce the storage cost, such as1213

the Fastfood approximation (Le et al., 2013) and Orthogonal Random Fea-1214

tures (Yu et al., 2016).1215

2.5 Local Approximation1216

Inducing point-based and random feature-based approximations of gps are1217

implemented based on a global distillation, and they are commonly used to1218

approximate gps. However, these approaches require the computational and1219

storage costs which are determined by auxiliary variables, i.e. number of1220

inducing points or spectral samples. An alternative class of methods for im-1221

proving the scalability of gps is to follow the divide-and-conquer idea, which1222

focuses on the local subsets of training data. According to the literature survey1223

conducted by (Liu et al., 2018b), in this text, we opt to split the approach of1224

local approximation into two groups: Separate-Local-Experts and Ensemble-1225

Local-Experts.1226

1227

Separate-Local-Experts. Intuitively speaking, there is almost no depen-1228

dence between two points which are distant from each other. Thus, the pre-1229

diction at an unseen input can be made sensibly by using localized experts with1230

an acceptable computational cost. For example, Kim et al. (2005) and Datta1231

et al. (2016) assume that a local expert model completely governs prediction1232

at inputs inside its corresponding area. Simply, these approaches firstly parti-1233
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tion the input space, then all local experts are trained based on these disjoint1234

subsets, and then the inference at x∗ can be made by an appropriate local1235

expert. By introducingMi as a local expert which is responsible for the sub-1236

region Ωi and Di as the subset of data located inside Ωi, we mathematically1237

state that the predictive distribution at x∗ can be approximated by using a1238

subset of data Di, i.e. p (y∗ | D,x∗) ≈ p (yi | Mi,Di,x∗). The partition on1239

input space can be made by some clustering algorithms, e.g. Voronoi tessella-1240

tions (Kim et al., 2005), and tree techniques (Vasudevan et al., 2009; Pratola1241

et al., 2013). By restricting the number of data points of a local model to M ,1242

there are N/M local gps where N is training size. Learning all independent1243

gps experts requires a cost of O (NM2).1244

1245

Instead of grouping data points into disjoint subsets statically before training1246

local gps experts, an alternative approach is to select a neighborhood subsets1247

D∗ around x∗, and train a particular expert M∗ to make the prediction at1248

x∗. For example, Urtasun and Darrell (2008) employ a dynamic partition to1249

choose m0 neighbor points around x∗, resulting in O (ntm
3
0) complexity that1250

relies on the test size nt. The primary problem of the approach is the concept1251

of the neighborhood set D∗ around x∗. The most straightforward way is to1252

use geometric closeness criteria for selection, i.e. the selected points should be1253

close to x∗. However, the approach is not optimal due to these closest points1254

convey redundant information. Thus, there are several gp-based methods1255

which have been employed to sequentially update the neighborhood set (Gra-1256

macy, 2016; Gramacy and Haaland, 2016; Gramacy and Lee, 2009; Gramacy1257

and Apley, 2015).1258

1259

While improving significantly the scalability and enjoying the capability of1260

capturing non-stationary features due to the localized structure, Separate-1261

Local-Experts yields discontinuous predictions on the boundaries of subre-1262

gions, which is illustrated in Liu et al. (2018b). To alleviate the discontinuity1263

problem, the patched gps (Park and Huang, 2016; Park and Apley, 2018)1264

restricts that two adjacent local GPs are patched to share the nearly identical1265

predictions on the boundary. However, it possibly yields non-sensible predic-1266

tive variances, and are only available in low dimensional space (Pourhabib1267

et al., 2014b; Park and Apley, 2018). Another problem of Separable Local1268

Experts is to suffer from poor generalization since it misses the long-term1269

spatial correlations. To address the generalization issue, we can restrict that1270

all local expert use the same hyperparameters (Deisenroth and Ng, 2015), or1271

combine local and global approximation of gps as mentioned in Snelson and1272

Ghahramani (2007).1273

1274
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Ensemble-Local-Experts. An alternative solution to mitigate the prob-1275

lems raised by Separable Local Experts is to use the model averaging strategy,1276

which is accomplished by an ensemble of local experts. The approach com-1277

bines various local gps possessing individual hyperparameters for enhancing1278

accuracy and reliability (Yuksel et al., 2012a; Masoudnia and Ebrahimpour,1279

2014). Mathematically, Ensemble-Local-Experts can be expressed as a mix-1280

ture of M Gaussian model, where the weight for each component can be seen1281

as a gating function of covariates, which often takes a parametric form such1282

as the softmax (Jacobs et al., 1991) and probit function (Geweke and Keane,1283

2007). More general, it can be extended to a tree-structured hierarchical ar-1284

chitecture (Jordan and Jacobs, 1993).1285

1286

The application of gps mixture experts for big data scenarios must deal with1287

various problems. For example, the question of determining the number of1288

local experts can be dealt with by Akaike information criterion (Huang et al.,1289

2014), or the synchronously balancing criterion (Zhao et al., 2015a). Another1290

problem is on the reduction of computational cost, which includes several re-1291

search directions. The first one is to the localization of experts. This can1292

be accomplished by Expectation Maximization (ME) algorithm, wherein the1293

data points are assigned to local experts through Maximum a Posterior in1294

E-step (Nguyen and Bonilla, 2014b; Zhao et al., 2015b; Chen et al., 2014),1295

and subsequently, the optimization in M-step only operates on small subsets1296

of data. The second one is to combine global approximation with local ex-1297

perts. When using m inducing points for each local gps that is responsible1298

for n samples, the complexity for trainingM experts is intuitively O (nm2M),1299

which can be reduced to O (nm2) using hard-cut EM (Nguyen and Bonilla,1300

2014b; Nguyen et al., 2016).1301
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Calibrating Deep Convolutional1303

Gaussian Processes1304

1305

The wide adoption of Convolutional Neural Networks (cnns) in applications1306

where decision-making under uncertainty is fundamental, has brought a great1307

deal of attention to the ability of these models to accurately quantify the1308

uncertainty in their predictions. Previous work on combining cnns with1309

Gaussian processes (gps) has been developed under the assumption that the1310

predictive probabilities of these models are well-calibrated. In this paper we1311

show that, in fact, current combinations of cnns and gps are miscalibrated.1312

We propose a novel combination that considerably outperforms previous ap-1313

proaches on this aspect, while achieving state-of-the-art performance on image1314

classification tasks.1315

3.1 Introduction1316

The wide adoption of Convolutional Neural Networks (cnns) in increasingly1317

popular pieces of technology such as self driving cars and medical imaging,1318

where decision-making under uncertainty is fundamental, has brought atten-1319

tion to the ability of these learning architectures to accurately quantify the1320

uncertainty in their predictions (Kendall and Gal, 2017; Gal and Ghahra-1321

mani, 2016b). In short, the reliability of predictive probabilities of learning1322

algorithms can be evaluated through the analysis of their calibration (Flach,1323

2016). In particular, a classifier is well calibrated when its output offers an1324

accurate account of the probability of a given class, i.e. when it predicts a1325

given class label with probability p that matches the true proportion p of test1326

points belonging to that class.1327

1328

The calibration properties of standard classifiers and neural networks have1329

been studied in the literature (Kull et al., 2017; Niculescu-Mizil and Caruana,1330
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2005), which has shown that classifiers that use the standard cross-entropy1331

loss are generally well calibrated. Perhaps surprisingly, modern cnns, which1332

are a particular case of deep neural networks (dnns), have been found to be1333

miscalibrated, and the depth of convolutional filters is the main factor affect-1334

ing calibration (Guo et al., 2017). The work in Guo et al. (2017) shows that1335

regularization, implemented through weight decay, improves calibration and1336

that, ultimately, simple methods such as post-calibration (Platt, 1999) can be1337

an effective remedy for most calibration issues of cnns.1338

1339

Alternatively, Bayesian cnns (Gal and Ghahramani, 2016b) where convolu-1340

tional filters are inferred using Bayesian inference techniques, seem like perfect1341

candidates to model uncertainty in these architectures in a principled way.1342

However, while Bayesian cnns have been shown to be effective in obtaining1343

state-of-the-art performance in image classification tasks, we are not aware of1344

studies that show their calibration properties. Hence, our first contribution is1345

to investigate the calibration properties of Bayesian cnns.1346

1347

Along a similar vein, independently of the works on Bayesian cnns, there1348

have been other attempts to give a probabilistic flavor to cnns by combining1349

them with Gaussian processes (gps, (Rasmussen and Williams, 2006)). Most1350

of these approaches can be seen as a way to parameterize a cnn-based covari-1351

ance for gps, and the aim is to learn end-to-end both the filters and the gps1352

(see, e.g., Bradshaw et al. (2017); Wilson et al. (2016)). A crucial aspect that1353

the literature has overlooked, however, is that methods that combine cnns1354

and gps suffer from the same issues of miscalibration that characterize mod-1355

ern cnns. Therefore, the second contribution of this paper is to show that1356

current combinations of cnns and gps are miscalibrated.1357

1358

Consequently, as our third contribution, we propose a novel combination of1359

cnns and gps that is indeed well-calibrated, while being simple to imple-1360

ment. In particular, we propose to replace the fully connected layers of cnns1361

with gps that we approximate with random features (Cutajar et al., 2017;1362

Lázaro-Gredilla et al., 2010). Due to this approximation, the resulting model1363

becomes a Bayesian cnn with a nonlinear transformation applied to the con-1364

volutional features. Building on the connection between variational inference1365

and dropout, we apply Monte Carlo dropout (mcd, (Gal and Ghahramani,1366

2016a)) to carry out joint inference over the filters and the approximate gps,1367

thus obtaining an end-to-end learning method for the proposed model, which1368

we call cnn+gp(rf). The resulting approach is characterized by a number of1369

attractive features: (i) it is well calibrated, given that it uses the multinomial1370

likelihood and the filters are regularized using Bayesian inference techniques;1371
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(ii) it is as scalable as state-of-the-art cnns, in so much as it can be trained1372

using mini-batch updates and can exploit GPU and distributed computing;1373

(iii) unlike other works that combine cnns and gps, it is as easy to implement1374

as standard cnns, as it leverages the equivalence of gps approximated with1375

random features and Bayesian dnns (Cutajar et al., 2017; Gal and Turner,1376

2015; Neal, 1996), and the connections between dropout and variational infer-1377

ence (Gal and Ghahramani, 2016a). We extensively validate these properties1378

in a variety of image classification tasks.1379

1380

Our final contribution extends the above framework by replacing the last1381

layer of cnns with Deep gps (Cutajar et al., 2017) and by proposing the use1382

of structured random features to obtain faster and more compact gp approxi-1383

mations (Le et al., 2013; Yu et al., 2016). In all, our proposal considerably im-1384

proves on classification accuracy compared to previous combinations of cnns1385

and gps (e.g., ∼88% on cifar10 and ∼67% on cifar100, all without data1386

augmentation), while being competitive with state-of-the-art cnns; we are not1387

aware of other gp works that approach these results. Crucially, we achieve1388

these performance without compromising on calibration, again considerably1389

improving on previous approaches that combine cnns and gps.1390

3.2 Related Work1391

Calibration of Convolutional Networks: The issue of calibration of clas-1392

sifiers in machine learning was popularized in the 90’s with the use of support1393

vector machines for probabilistic classification (Platt, 1999). Calibration tech-1394

niques aim to learn a transformation of the output using a validation set in1395

order for the transformed output to give a reliable account of the actual prob-1396

ability of class labels (Flach, 2016); interestingly, calibration can be applied1397

regardless of the probabilistic nature of the untransformed output of the clas-1398

sifier. Popular calibration techniques include Platt scaling (Platt, 1999) and1399

isotonic regression (Zadrozny and Elkan, 2002).1400

1401

Classifiers based on Deep Neural Networks (dnns) have been shown to be1402

well-calibrated (Niculescu-Mizil and Caruana, 2005). The reason is that the1403

optimization of the cross-entropy loss promotes calibrated output. The same1404

loss is used in Platt scaling and it corresponds to the correct multinomial like-1405

lihood for class labels. Recent sudies on the calibration of cnns, which are1406

a particular case of dnns, however, show that depth has a negative impact1407

on calibration, despite the use of a cross-entropy loss, and that regularization1408

improves the calibration properties of classifiers (Guo et al., 2017).1409
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Figure 3.1 – Reliability diagrams for three state-of-the-art combinations of
cnns and gps, i.e gpdnn (Bradshaw et al., 2017), cgp (van der Wilk et al.,
2017), svdkl (Wilson et al., 2016) applied to cifar10 and cifar100 data
sets with LeNet and resnet architectures. See table 3.1 for details on the
convolutional architectures that we apply to cifar10 and cifar100. Because
it is not possible to specify the convolutional structure in cgp (van der Wilk
et al., 2017), the left and central panels show the same curve for cgp.

1410

Combinations of Conv Nets and Gaussian Processes: Thinking of1411

Bayesian priors as a form of regularization, it is natural to assume that1412

Bayesian cnns can “cure” the miscalibration of modern cnns. Despite the1413

abundant literature on Bayesian dnns (Neal, 1996; Mackay, 1994), far less1414

attention has been devoted to Bayesian cnns (Gal and Ghahramani, 2016a),1415

and the calibration properties of these approaches have not been investigated.1416

1417

Several approaches have proposed the combination of cnns and gps as a1418

means to give a probabilistic character to cnns. Most of these works are1419

based on ideas developed in the context of manifold gps (Calandra et al.,1420

2016), where inputs are transformed using some parametric transformation.1421

In these works, the parametric transformation is based on convolutional lay-1422

ers, and scalability to large data is achieved through the use of ideas drawn1423

from the literature on scalable gps, for example the Stochastic Variational1424

Deep Kernel Learning (svdkl) approach in Wilson et al. (2016). In contrast,1425

the work on hybrid gps and dnns (gpdnn, (Bradshaw et al., 2017)) com-1426

bines cnns and gps using an inducing point approximation. Other recent1427

approaches that aim to introduce convolutions in the calculation of the co-1428

variance between images include the work in van der Wilk et al. (2017), which1429

proposes a way to construct covariances between domains/patches, mimicking1430

the computations in cnns.1431

1432

In this work, we propose an alternative way to combine cnns and gps, where1433
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gps are approximated using random features expansions (Rahimi and Recht,1434

2008; Lázaro-Gredilla et al., 2010). The random feature expansion approxima-1435

tion amounts to replacing the orginal kernel matrix with a low-rank approxi-1436

mation, turning gps into Bayesian linear models. Combining this with cnns1437

leads to a particular form of Bayesian cnns, much like gps and dgps are par-1438

ticular forms of Bayesian dnns (Duvenaud et al., 2014; Gal and Ghahramani,1439

2016a; Neal, 1996). Inference in Bayesian cnns is intractable and requires1440

some form of approximation. In this work, we draw on the interpretation of1441

dropout as variational inference, employing the so-called Monte Carlo Dropout1442

(mcd, (Gal and Ghahramani, 2016a)) to obtain a practical way of combining1443

cnns and gps.1444

3.3 On calibration of Convolutional GPs1445

Consider a Q-class image classification task where X denotes a set of N images1446

xi ∈ Rpx×py(1 ≤ i ≤ n), and Y is the matrix consisting of the correspond-1447

ing one-hot encoded labels yi stacked by row. We can use various metrics1448

to determine the quality of a classifier, and here we focus in particular on1449

calibration.1450

1451

Let g(x) be the output of a classifier for an input image x. To compute1452

the calibration properties of a classifier, consider a partitioning of the test1453

set X∗ into disjoint sets {X1, . . . ,XM}, such that each subset Xm contains1454

the inputs yielding predictions in the range (m−1
M
, m
M

]. Hence, the confidence1455

associated with each subset Xm is characterized by the midpoint of its corre-1456

sponding range, i.e. conf(Xm) = m−0.5
M

. Then, the accuracy acc(Xm) for each1457

subset can be evaluated as follows:1458

1

|Xm|
∑

x∗∈Xm

δ (arg max(y∗)− arg max(g(x∗))) , (3.1)

where δ(x) is equal to one if x = 0, and zero otherwise.1459

1460

In what follows, we use reliability diagrams to assess calibration, where we1461

plot accuracy as a function of confidence for the subsets {X1, . . . ,XM}. For a1462

perfectly calibrated classifier, we expect acc(Xm) = conf(Xm) for all m, with1463

deviations implying that the class probabilities are either underestimated or1464

overestimated. A useful summary statistics that can be extracted from relia-1465

bility diagrams is the Expected Calibration Error (ece), which is the average1466

of the absolute difference between accuracy and confidence weighted according1467
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to its size:1468

ece =
M∑
m=1

|Xm|
|X∗|

|acc(Xm)− conf(Xm)| . (3.2)

Another metric that measures the accuracy in predicting class probabilities is1469

the brier score which takes into account the factors of calibration, resolution1470

and uncertainty (Murphy, 1973). It is defined as the squared distance between1471

labels and outputs averaged across classes and test points:1472

brier =
1

Ntest

∑
x∗∈X∗

1

Q

Q∑
k=1

((y∗)k − (g(x∗))k)
2 . (3.3)

In figure 3.1, we report the reliability diagrams of three state-of-the-art com-1473

binations of cnns and gps, i.e gpdnn approach in Bradshaw et al. (2017),1474

cgp in van der Wilk et al. (2017) and svdkl in Wilson et al. (2016). These1475

approaches are applied to the cifar10 and cifar100 data sets with vari-1476

ous convolutional structures. Note that the lines for cgp in the sub-figure of1477

cifar10-LeNet and cifar10-resnet are identical because there is no equiv-1478

alent cnn architecture in cgp. All of reliability diagrams for these methods1479

and ours can be found in the supplemental material.1480

1481

The results indicate that current approaches that combine cnns and gps are1482

miscalibrated, with a tendence of being overconfident in predictions. This is1483

an important and perhaps surprising finding, because one of the motivations1484

to combine cnns with gps is to do better quantification of uncertainty com-1485

pared to plain cnns. In the experiments section we report more extensively1486

on the calibration of these classifiers, as well as illustrating other performance1487

metrics. These considerations call for the study of better ways to combine1488

cnns and gps to recover calibration while attempting to improve on standard1489

metrics such as error rate and test log-likelihood. The next section illustrates1490

our proposal that achieves this goal.1491

3.4 Proposed Method1492

In the proposed model, the labels Yi· are assumed to be conditionally in-1493

dependent given a set of corresponding latent variables Fi·, i.e. we consider1494

the likelihood p(Y|F) =
∏N

i=1 p(Yi· |Fi·), where the latent variables F are1495

realizations of a set of Q functions fj(x) at the input images x1, . . . ,xn, i.e.,1496

(F)ij = fj(xi) for j = 1, . . . , Q. Each individual p(Yi· |Fi·) is multinomial1497

with probabilities obtained using a softmax transformation of the latent vari-1498

ables. In this work we focus on functions fj(x) that are modeled using gps;1499
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note that extension to dgps is actually easy to consider in our framework, as1500

we show in the experiments.1501

1502

Due to the gp modeling assumption, the latent function values F·j compris-1503

ing (fj(x1), . . . , fj(xn))> are jointly Gaussian with p(F·j|X,θ) ∼ N (0,K),1504

where K is the covariance matrix. The entries of the covariance matrix1505

K = {k (xi,xj|θ)}i,j, are specified by a covariance (kernel) function k (with1506

hyperparameters θ) and this form is shared across output dimensions, al-1507

though this can be relaxed and allow for a different k for the Q outputs.1508

1509

Instead of applying the gp modeling directly to the images, we propose to em-1510

ploy a transformation c(x|Ψ) using convolutional layers, where Ψ denotes the1511

parameters of such layers. The vector-valued function c(x|Ψ) is differentiable1512

as it implements a series of differentiable operations, such as convolutions and1513

pooling. This is one of the key successes of cnn models that allows for the1514

learning of their filters, which we exploit for the end-to-end learning of our1515

model.1516

1517

Inference in this model requires being able to characterize the posterior over1518

all or a selected group of model parameters, but this posterior is analytically1519

intractable and thus computationally prohibitive (Rasmussen and Williams,1520

2006). In the remainder of this paper, we build on previous work on scalable1521

inference for gps and dgps with random features (Cutajar et al., 2017) to ob-1522

tain an approximation to the proposed model that can be learned end-to-end.1523

3.4.1 Random Feature Expansions1524

Naïve inference in gp models requires algebraic operations with K that would1525

cost O(n3) in time. Popular approaches to recover tractability use low-rank1526

approximations of the kernel matrix. Among this family of low-rank approx-1527

imations, we choose to work with random feature approximations (Lázaro-1528

Gredilla et al., 2010; Cutajar et al., 2017). The reason is that they offer1529

a number of possible extensions to speedup computations (e.g., using struc-1530

tured approximations (Le et al., 2013; Yu et al., 2016)) and increase the com-1531

plexity of the model (e.g., considering Deep gps (Cutajar et al., 2017)); we1532

elaborate on this in the experiments section. In random feature expansions,1533

the kernel matrix is replaced by a low-rank approximation K ≈ ΦΦ>, with1534

Φ ∈ Rn×m and m � n. This approximation suggests the construction of a1535

Bayesian linear model to approximate the gp latent variables as F = ΦW.1536

Using p(Wij) = N (Wij|0, 1) it is straightforward to show that the covari-1537

ance of each of the latent functions F·j is indeed an approximation to K, as1538
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cov(F·j) = E(ΦW·jW
>
·jΦ

>) = ΦE(W·jW
>
·j )Φ

> = ΦΦ> ≈ K.1539

1540

In this work, we focus in particular on the order-one arc-cosine kernel (Cho1541

and Saul, 2009)1542

k(1)
arc(xi,xj|Ψ,θ) =

σ2

π

∥∥∥Λ−
1
2 c(xi|Ψ)

∥∥∥∥∥∥Λ−
1
2 c(xj|Ψ)

∥∥∥
[sin(α) + (π − α) cos(α)] ,

(3.4)

where θ = (σ,Λ = Diag(`2
1, . . . , `

2
d)) and α is the angle between Λ−

1
2 c(xi|Ψ)1543

and Λ−
1
2 c(xj|Ψ).1544

1545

The arc-cosine covariance has a convenient integral representation that al-1546

lows for a Monte Carlo approximation, obtaining a low-rank approximation1547

to the covariance matrix involving Rectified Linear Unit (relu) activations1548

(Cho and Saul, 2009)1549

Φarc =

√
2σ2

NRF

max (0,C(X|Ψ) Ω) . (3.5)

In this expression, we have defined C(X|Ψ) as the matrix resulting from1550

the application of convolutional layers to the image training set X and Ω1551

is obtained by stacking NRF samples from p(ω) = N
(
ω|0,Λ−1

)
by column.1552

Note that in the case of a popular Radial Basis Function (rbf) covariance,1553

it is possible to obtain a similar random feature approximation, where the1554

relu activation is replaced by trigonometric functions; see Rahimi and Recht1555

(2008) and the supplement for details.1556

3.4.2 End-to-end learning1557

Inference in the proposed model is intractable due to the likelihood that is1558

not conjugate to the gp prior. Further complications stem from the need to1559

infer kernel parameters, which include convolutional parameters, and the need1560

to be able to scale to large data. Our aim is to carry out inference within a1561

consistent framework that is characterized by simplicity, as described next.1562

1563

We start by introducing an approximate posterior over W,Ω and Ψ, that we1564

denote as q(W,Ω,Ψ). Following standard variational inference arguments,1565

we can define an operative way to obtain these approximate posteriors. The1566

log-marginal likelihood L = log [p(Y|X,θ] can be bounded by the sum of an1567

expected log-likelihood term and a negative Kullback-Leibler (KL) divergence1568
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term as follows:1569

L ≥Eq(W,Ω,Ψ) (log [p (Y|X,W,Ω,Ψ,θ)])

−KL [q (W,Ω,Ψ) ‖p (W,Ω,Ψ)] .
(3.6)

Variational inference amounts to optimizing the lower bound above with re-1570

spect to q(W,Ω,Ψ) and any other parameters of interest.1571

1572

We have now a number of options on the form for the approximate poste-1573

riors q(W,Ω,Ψ). In previous works on variational inference for dnns, it has1574

been proposed to define the approximating distributions to be Gaussian and1575

factorized across parameters (Kingma and Welling, 2014; Graves, 2011). The1576

drawback of this is that it doubles the number of parameters. Alternatively,1577

we can rely on the connections between dropout and variational inference1578

(Gal and Ghahramani, 2016a,b) which is drawn by assuming the posterior of1579

W,Ω and Ψ as a mixture of two Gaussian distributions (see supplement).1580

From this connection, we are able to obtain an easier approximate inference1581

scheme, which is also known as Monte Carlo Dropout (mcd). Focusing on1582

the weights for now, the connection with dropout is apparent if we rewrite1583

W = Mw Diag[zw] (3.7)

with (zw)i ∼ Bernoulli(πw). The reparameterization introduces variational
parameters Mw (one for each weight in W) and a vector of binary variables
that can switch on or off the columns of the weight matrix with probability
πw. A similar reprameterization can be done for the convolutional parameters
Ψ and matrices of random feature Ω, introducing Mψ,MΩ and πψ, πΩ. The
optimization of the lower bound wrt all variational parameters requires being
able to evaluate the expectation and the KL term in (3.16).

In mcd, the KL term in (3.16) can be approximated following Gal and Ghahra-
mani (2016a), obtaining a regularization term involving the squared-norm of
the parameters

KL [q (W,Ω,Ψ) ‖p (W,Ω,Ψ)] ≈ πw
2
‖Mw‖2 +

πΩ

2
‖MΩ‖2 +

πψ
2
‖Mψ‖2

(3.8)

The expectation in (3.16), instead, can be unbiasedly estimated using Monte1584

Carlo and also considering a mini-batch of size m:1585

N

m

1

NMC

NMC∑
i=1

∑
k∈Im

log
[
p
(
yk|xk,W(i),Ω(i),Ψ(i),θ

)]
(3.9)
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with W(i),Ω(i),Ψ(i) ∼ q(W,Ω,Ψ), and Im is a set of m indices to select1586

a mini-batch of training points (Graves, 2011). This doubly-stochastic ap-1587

proximation is differentiable wrt variational parameters when the Bernoulli1588

variables are fixed.1589

1590

The approximate objective can now be optimized in the same vein as in stan-1591

dard back-propagation with dropout, noting that dropout is applied to W,1592

Ω and to convolutional parameters Ψ. What changes, however, is the in-1593

terpretation of the procedure as stochastic variational inference, whereby the1594

Bernoulli variables are resampled at each iteration. A practical implication is1595

in the way we compute the predictive distribution, which has a probabilistic1596

flavor as follows:1597

p(y∗|x∗, X,θ) ≈
∫
p(y∗|W,Ω,Ψ,x∗, X,θ)q(W,Ω,Ψ)dWdΩdΨ, (3.10)

and can be approximated using Monte Carlo by resampling the Bernoulli1598

variables. While mcd has been proposed for cnns in (Gal and Ghahramani,1599

2016b), in this work we extend it to the case of joint inference over convolu-1600

tional parameters and the gp approximation in the cnn+gp(rf) model, thus1601

obtaining a practical inference and prediction scheme, which combines cnns1602

and gps.1603

Depth Data set cnn architecture cnn name
Shallow mnist 2 Conv Layers + 2 Fully connected LeNet
Shallow cifar10 2 Conv Layers + 3 Fully connected LeNet
Deep cifar10 30 Conv Layers + 1 Fully connected resnet
Deep cifar100 150 Conv Layers + 1 Fully connected resnet

Table 3.1 – cnn architectures considered in this work. The same architectures
are used in gpdnn and svdkl by replacing the fully connected layers with
gps, while cgp does not explicitly use a convolutional structure.

3.4.3 Extensions1604

Structured random feature approximations: One of the advantages of1605

the proposed model, compared to other gp approximations, is that it can1606

exploit structured random feature expansions to accelerate computations and1607

reduce the size of the approximate gp (Le et al., 2013; Yu et al., 2016). In the1608

random features approximation, random features are constructed by multiply-1609

ing Ω with the convolutional features. Without loss of generality, assuming1610

that Ω ∈ Rm×d and c(x|Ψ) ∈ Rd×1, the cost of computing products Ωc(x|Ψ)1611

is O (md), while storing Ω requires O (md) storage.1612
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Figure 3.2 – Comparison of our cnn+gp(rf) and cnn+gp(sorf) with ex-
isting combinations of cnns with gps, and with Bayesian cnns and post-
calibrated cnns. All performace metrics are defined so that the lower the
better.

Structured approximations aim to reduce the time complexity to O (m log d)1613

and the storage cost to O (m+ d). Taking a standard random features expan-1614

sion of the isotropic covariance in (3.5) with Λ = `−2I as an example, Ω = 1
`
G,1615

with Gij ∼ N (0, 1). One way to make computations cheaper is to replace1616

the Gaussian matrix G with a pseudo-random alternative. The Structured1617

Orthogonal Random Feature (sorf) approximation (Yu et al., 2016) approx-1618

imates G through a series of Hadamard transformations of diagonal matrices1619

Di with elements randomly sampled from {−1,+1} or Rademacher distri-1620

bution, that is G ≈
√
dHD1HD2HD3, where H is the normalized Walsh-1621

Hadamard matrix. We refer to this variation of the model as cnn+gp(sorf).1622

Similarly to the other parameters, we infer the diagonal matrices Di using1623

mcd. We denote by di the diagonal of Di, i = 1, 2, 3. The mcd scheme1624

(Gal and Ghahramani, 2016a,b) assumes an L2 regularization which implies1625

a zero-mean Gaussian prior, which is inappropriate for di as it is Rademacher1626

distributed. We propose to bypass this limitation by applying mcd to a1627

reparameterization of di. In particular, denoting by d∗i ∈ {−1,+1}d the1628

initialized values of di, we apply mcd to di − d∗i . According to this choice,1629
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each diagonal element is sampled based on the variational parameters Mdi−d∗i
1630

di =

{
Mdi−d∗i

+ d∗i , with probability πd
d∗i , otherwise

(3.11)

Convolutional Networks with Random-Feature-Expanded Deep gps:1631

A dgp model represents a deep probabilistic nonparametric approach where1632

the output of one gp at each layer is used as the input to the gp in the next1633

layer (Damianou and Lawrence, 2013). Extending the random feature approx-1634

imation to dgps and the inference scheme presented here is straightforward;1635

see Cutajar et al. (2017) for details. The random feature approximation turns1636

the dgp into a Bayesian dnn for which we can apply stochastic variational1637

inference to infer model parameters. In the experiments section, we explore1638

the possibility to stack a dgp on top of convolutional layers, and we show the1639

impact of depth on performance.1640

3.5 Experiments1641

We carry out the experimental evaluation using popular benchmark datasets,1642

such as mnist, cifar10 and cifar100 and with a number of popular cnn1643

architectures based on LeNet and resnet (see table 3.1).1644

1645

We report three state-of-the-art competitors combining cnns and gps, namely1646

gpdnn (Bradshaw et al., 2017), svdkl (Wilson et al., 2016), and cgp (van der1647

Wilk et al., 2017). We also report Bayesian cnns, as suggested in Gal and1648

Ghahramani (2016b) and cnns with post-calibration as proposed in Guo et al.1649

(2017), which we refer to as cnn+mcd and cnn+cal, respectively. For all1650

the competing methods we used available implementations, adding the same1651

cnn architecture to ensure a fair comparison. In all experiments, we use1652

a batch-size m = 100 and the Adam optimizer with default learning rate1653

(Kingma and Ba, 2015). In the methods that use mcd, we use a dropout rate1654

of 0.5 for all parameters.1655

1656

The results are reported in figure 3.2, where we have used different training1657

sizes N , keeping the classes balanced. In the figure, we report the calibration1658

measures that we have introduced earlier, namely ece and brier scores, and1659

we also report the classification error rate (err) and the mean negative test1660

log-likelihood (mnll). Compared to other combinations of cnns and gps,1661

cnn+gp(rf) improves considerably on all metrics. It is interesting to see1662

that our proposal is competitive with Bayesian cnns employing mcd, with1663

only a marginal improvement on err and mnll in some configurations.1664
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1665

In temp it is necessary to leave out part of the data to perform post-calibration,1666

which can be problematic in applications where obtaining labeled data is dif-1667

ficult or expensive. As a result, our proposal is considerably better, although1668

temp is competitive in ece; this is expected given that this is the metric that1669

is optimized after training.1670

1671

The two variants of our approach, namely cnn+gp(rf) where we learn the1672

frequencies Ω and cnn+gp(sorf) where we sample Ω from its prior, are1673

comparable. This suggests that the extra level of complexity of learning the1674

spectral frequencies does not lead to substantial gains in performance and that1675

the structured random feature approximation yields satisfactory performance.1676

1677

We also note that these results have been obtained by fixing the covariance1678

parameters θ of the gp, as we found it to be unstable when learning these1679

jointly with Ω. This might be the reason why these parameters were learned1680

through cross-validation in Gal et al. (2017). In the supplement, we report1681

the results obtained when learning θ and fixing Ω, which we found yielding1682

similar performance as fixing θ. All these observations corroborate the hy-1683

pothesis that most of the performance of cnn-based classification models is1684

due to the convolutional layers.1685

1686

In summary, figure 3.2 shows that our cnn+gp(rf) is the best strategy for1687

calibrating these models compared to other approaches using gps. Further-1688

more, we found perhaps surprisingly that mcd has comparable performance.1689

In the supplementary material, we report results on gpdnn where we infer1690

convolutional parameters using mcd, so as to gain insights as to whether1691

most of the improvements in performance are due to this form of regulariza-1692

tion. The results support the intuition that inferring these parameters yields1693

improvements in calibration, but also that our cnn+gp(rf) still offers better1694

performance.1695

3.5.1 Reliability diagrams1696

In figure 3.3, we report the reliability diagrams of all the methods studied in1697

figure 3.1. The figure shows that temp, mcd and cnn+gp(rf) produce well-1698

calibrated predictions when using a shallow convolutional structure (LeNet).1699

For a deeper architecture (resnet), cnn+gp(rf) is slightly under-confident.1700

Compared to previous combinations of cnns and gps, our approach yields1701

better reliability curves.1702
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Figure 3.3 – Reliability diagrams of our cnn+gp(rf) in comparison with
existing combinations of cnns with gps, and with Bayesian cnns and post-
calibrated cnns.

3.5.2 Extension with Deep gps1703

In figure 3.4, we report results varying the depth of a dgp on top of the1704

convolutional layers; again, we learn the convolutional filters and the dgp1705

end-to-end as discussed in the previous sections. We show results when ap-1706

plying our model to the whole cifar10 data set in the case of the shallow1707

convolutional structure (table 3.1). We feed-forward the convolutional fea-1708

tures to all layers of the dgp, in line with what suggested in the literature1709

of dgps to avoid pathologies in the functions that can be modeled (Cutajar1710

et al., 2017; Duvenaud et al., 2014; Neal, 1996). The results indicate that1711

increasing the complexity of the model improves on all performance metrics,1712

and worsen calibration, which however is still around 3% ece. This is in1713

line with the intuition that increasing model complexity negatively impacts1714

calibration.1715

3.5.3 Knowing when the model does not know1716

We report experiments showing the ability of our model to know when it does1717

not know, following a similar experimental setup as in Lakshminarayanan1718

et al. (2017). In this experiment we train our cnn+gp(rf) model on mnist1719

and test on the not-mnist dataset, which contains images of letters from1720

“A” to “J” in various typefaces. For this experiment, while we do not know1721

the exact value that we should obtain for predictive probabilities, we expect1722

to observe low entropy in the predictions when tesing on mnist and high1723

entropy when predicting on not-mnist, indicating high uncertainty. The re-1724

sults are reported in figure 3.5, where we show the cumulative distribution1725

of the entropy of predictive probabilities for two depths of the convolutional1726

structure. In the figure, we compare our cnn+gp(rf) against one of the1727
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Figure 3.4 – Performance of the proposed model when varying the depth of the
dgp on top of a resnet convolutional structure on cifar10 dataset. Note
that the scale of y-axes indicates that the metrics change only slightly when
increasing the depth of the dgp.

methods combining cnns and gps, that is gpdnn. In the figure, we also in-1728

clude results on cnns with post-calibration and Bayesian cnns inferred with1729

mcd. Our approach is competitive with Bayesian cnns and it is considerably1730

superior to post-calibration. This is especially true in the case of the resnet1731

convolutional structure, where post-calibration still yields a large number of1732

predictions with low uncertainty. Interestingly, gpdnn assigns large uncer-1733

tainty to predictions on not-mnist, although with the deeper convolutional1734

architecture it yields a large fraction of predictions with low entropy. We1735

speculate that this due to the inducing point approximation of the gp, which1736

nicely captures uncertainty away from training data except for test points1737

which are closer to the training data.1738

3.5.4 Extension with the sorf1739

In table 3.2, we report further results comparing mcd with cnn+gp(sorf).1740

In this experiment, we use the alexnet structure (Krizhevsky et al., 2012) on1741

cifar10 and cifar100 datasets. The results in table 3.2 show improvements1742

in using our model compared cnns with mcd. We attribute this to the fact1743

that the gp approximated through sorf in place of the fully connected layer1744

of alexnet reduces model parameters from 30 million to 2.3 million.1745
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Figure 3.5 – Cumulative distribution function plot of predictive entropies
when the models trained on mnist are tested on mnist and not-mnist.
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METHOD Dataset err mnll ece brier
cnn+gp(sorf) cifar10 0.172 0.522 0.063 0.250
mcd cifar10 0.181 0.591 0.110 0.276
cnn+gp(sorf) cifar100 0.459 1.806 0.127 0.612
mcd cifar100 0.594 2.434 0.058 0.732

Table 3.2 – Comparison between cnn+gp(sorf) and mcd with alexnet
architecture on cifar10 and cifar100.

3.6 Mathematical details and other experiments1746

3.6.1 Random Feature Expansion of the rbf Covariance1747

We report here the expansion of the popular Radial Basis Function (rbf) co-1748

variance. Following the convolutional representation of images in our cnn+gp(rf)1749

model, the rbf covariance is defined as:1750

krbf(xi,xj|Ψ,θ) = σ2 exp
[
− (c(xi|Ψ)− c(xj|Ψ))>Λ−1 (c(xi|Ψ)− c(xj|Ψ))

]
,

(3.12)

http://yaroslavvb.blogspot.fr/2011/09/notmnist-dataset.html
http://yaroslavvb.blogspot.fr/2011/09/notmnist-dataset.html
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with θ = (σ,Λ = Diag(`2
1, . . . , `

2
d)). It is possible to express this covariance1751

function as the Fourier transform of a non-negative measure p(ω) Rahimi and1752

Recht (2008), where ω are the so-called spectral frequencies. It is straightfor-1753

ward to verify that p (ω) = N
(
ω|0,Λ−1

)
. Stacking NRF Monte Carlo samples1754

from p(ω) into Ω by column, we obtain1755

Φrbf =

√
σ2

NRF

[cos (C(X|Ψ) Ω) , sin (C(X|Ψ) Ω)] , (3.13)

where C(X|Ψ) denotes the matrix resulting from the application of convolu-1756

tional layers to the image training set X, and the sin and cos functions are1757

applied elementwise to their argument.1758

3.6.2 Variational Inference for the Proposed Model1759

3.6.2.1 cnn+gp(rf)1760

In cnn+gp(rf), the variational parameters we would like to optimize are1761

Mw,Mψ and MΩ. Our model parameters W,Ψ and Ω share an identical1762

form for the approximate posterior and prior. Focusing on W, its elements1763

have a standard normal prior, and we assume that the posterior q (W) is1764

a mixture of two Gaussian distribution, which can be factorized over rows,1765

governed by variational parameters Mw:1766

q (W) =
R∏
r=1

q (Wr) , with q (Wr) = πwN
(
Mwr , σ

2ID
)
+(1−πw)N

(
0, σ2ID

)
,

(3.14)
where πw ∈ [0, 1], σ2 ≈ 0 and Mwr ∈ RD. This form of posterior leads1767

to the sampling procedure which characterizes dropout Gal and Ghahramani1768

(2016a,b). Given the choice of σ2 ≈ 0, W can be sampled by introducing1769

Bernoulli variables1770

W = Mw Diag[zw] with (zw)i ∼ Bernoulli(πw), (3.15)

and similarly for Ψ and Ω.1771

All variational parameters are optimized to maximize the lower bound of1772

marginal likelihood which is defined as follows1773

log [p(Y|X,θ] ≥Eq(W,Ψ,Ω) (log [p (Y|X,W,Ψ,Ω,θ)])

−KL [q (W,Ψ,Ω) ‖p (W,Ψ,Ω|θ)]
(3.16)
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The expectation in 3.16 can be unbiasedly estimated using Monte Carlo and1774

also considering a mini-batch of size m1775

Eq(W,Ψ,Ω) (log [p (Y|X,W,Ψ,Ω,θ)])

≈ N

m

1

NMC

NMC∑
i=1

∑
k∈Im

log
[
p
(
yk|xk,W(i),Ψ(i),Ω(i),θ

)]
,

(3.17)

where W(i),Ψ(i),Ω(i) is a sample from q(W,Ψ,Ω), and can be obtained via1776

3.15. Im is a set of m indices to select a mini-batch of training points. In1777

classification, each individual p
(
yk|xk,W(i),Ψ(i),Ω(i),θ

)
can be computed1778

using a softmax transformation. The KL term can be approximated following1779

Gal and Ghahramani (2016a), noting that the fact that we are treating Ω1780

variationally, gives rise to extra terms that involve the gp length-scale `:1781

KL [q (W,Ψ,Ω) ‖p (W,Ψ,Ω|θ)]

≈ πw
2
‖Mw‖2 +

πψ
2
‖Mψ‖2 +

`2πΩ

2
‖MΩ‖2 +NRF d log

(
`−2
) (3.18)

3.6.2.2 cnn+gp(sorf)1782

In cnn+gp(sorf), our proposed variational inference scheme is similar to the1783

one in cnn+gp(rf), except that Ω is replaced by l−1
√
NRFHD1HD2HD3,1784

with length-scale l and Di = Diag (di) and H is the normalized Walsh-1785

Hadamard matrix. Because di is Rademacher distributed, the form of prior1786

and posterior in mcd proposed by Gal and Ghahramani (2016a,b) is inade-1787

quate. Therefore, we use the prior pε (di) = N (di|d∗i , ε2INRF
) with d∗i sampled1788

from the Rademacher distribution and a small positive ε. The posterior q (d)1789

is also composed by two Gaussian distribution as in cnn+gp(rf)1790

q (di) =

NRF∏
j=1

q
(

[di]j

)
, where q

(
[di]j

)
= πdN

(
M[di]j

, σ2
)

+ (1− πd)N
(

[d∗i ]j , σ
2
) (3.19)

with πd ∈ [0, 1] , σ2 ≈ 0 and Mdi
∈ RNRF . Following Gal and Ghahramani1791

(2016a), we can approximate the KL term between q (di) and p (di)1792

KL (q (di) ‖pε (di)) ≈
πd
2ε2
‖Mdi

− d∗i ‖2 (3.20)

In terms of implementation, we do not apply mcd to di−d∗i but on di directly.1793

According to this choice, each element in di is sampled based on the variational1794
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parameters Mdi−d∗i
as in 3.21. Thanks to this trick, the implementation of1795

mcd scheme does not change for optimizing di1796

di =

{
Mdi−d∗i

+ d∗i , with probability πd
d∗i , otherwise

(3.21)

In figure 3.6, we report some experimental results to illustrate the impact of1797

optimizing di. For cifar10-LeNet and cifar100-resnet, the optimization1798

of sorf parameters outperforms the case where spectral frequencies are fixed1799

in terms of err, mnll and brier. In the case of cifar10-resnet, the gains1800

are marginal.1801
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Figure 3.6 – Impact of optimization of sorf parameters

3.6.2.3 Optimization for covariance parameters1802

When using 3.18 to optimize all variational parameters pertaining to q (W,Ψ,Ω)1803

jointly with covariance θ we encountered some instabilities, and therefore we1804

decided to report results when fixing the covariance parameters θ in our pa-1805

per. For the case where Ω is not learned variationally we can simply draw Ω1806

from the prior N (Ω·j|0,Λ−1) and consider the reparameterization:1807

Ω·j = Λ−
1
2ε, (3.22)

where εi ∼ N (εi|0, 1) (Lázaro-Gredilla et al., 2010). This reparameterization1808

allows for the update of covariance parameters θ fixing the randomness in the1809

sampling from p(Ω|θ). The results comparing cnn+gp(sorf) when updating1810

or fixing θ throughout optimization are reported in table 3.3. It is interesting1811

to notice how fixing covariance parameters θ leads to comparable performance1812

to the case where they are learned.1813
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Table 3.3 – Results on the proposed cnn+gp(sorf) when fixing or learning
covariance parameters θ. All results were obtained on mnist, cifar10, and
cifar100 without subsampling the data. Please refer to table 1 in the main
paper for details on the convolutional structure corresponding to SHALLOW
and DEEP.

SHALLOW
mnist cifar10

Metrics Fixed Learned Fixed Learned
err 0.006 0.005 0.203 0.192
mnll 0.018 0.018 0.610 0.584
ece 0.002 0.003 0.015 0.010
brier 0.009 0.008 0.288 0.271

DEEP
cifar10 cifar100

Metrics Fixed Learned Fixed Learned
err 0.113 0.115 0.352 0.359
mnll 0.348 0.355 1.264 1.287
ece 0.051 0.054 0.050 0.054
brier 0.170 0.173 0.466 0.478

3.6.3 Variational inference of filters in gpdnn1814

In this section we report results when applying variational inference on the1815

weights in gpdnn (Bradshaw et al., 2017). In order to do this, we implemented1816

mcd for the convolutional parameters, similarly to what presented in the main1817

paper for our cnn+gp(rf) model. The results in table 3.4 indicate that this1818

improves the calibration and accuracy of gpdnn compared to optimizing the1819

filters. In the case of a shallow convolutional architecture, the performance1820

of cnn+gp(rf) and gpdnn are comparable, although in the deeper case1821

cnn+gp(rf) achieves better performance. This supports the intuition that1822

inferring convolutional parameters, ranther than optimizing them, leads to1823

considerable improvements in calibration.1824

3.6.4 Reliability diagrams1825

In this section, we report the reliability diagram and histogram of predictive1826

output for all methods with various datasets, i.e cifar10 and cifar100 and1827

convolutional architectures, i.e LeNet and resnet. We use the best config-1828

uration for cgp according to the implementation released by the Authors. In1829

each figure, rows correspond with the dataset and convolutional architecture,1830

while the column refer to the training size. After the training phase, all mod-1831
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Table 3.4 – Results on the proposed cnn+gp(sorf) vs gpdnn when inferring
convolutional parameters using mcd. All results were obtained on mnist,
cifar10, and cifar100 without subsampling the data. Please refer to table 1
in the main paper for details on the convolutional structure corresponding to
SHALLOW and DEEP.

SHALLOW
mnist cifar10

Metrics cnn+gp(rf) gpdnn cnn+gp(rf) gpdnn
err 0.005 0.005 0.172 0.172
mnll 0.014 0.019 0.535 0.531
ece 0.004 0.005 0.012 0.012
brier 0.0071 0.008 0.245 0.244

DEEP
cifar10 cifar100

Metrics cnn+gp(rf) gpdnn cnn+gp(rf) gpdnn
err 0.111 0.190 0.351 0.820
mnll 0.344 0.675 1.255 8.606
ece 0.051 0.036 0.050 0.527
brier 0.168 0.278 0.466 1.268

els are evaluated on the entire testing set. The number of bins used to draw1832

the reliability diagram is 20.1833

1834

In each subfigure, the dashed line indicates perfect calibration. The horizontal1835

axis is the softmax output ranging from 0 to 1. The vertical axis indicates1836

accuracy rate for the red line or frequency for the green bars. The red dot1837

is the real average accuracy at each bin, while the line segments at the red1838

dots refer to the standard deviation of the accuracies. The green bar is the1839

average frequency histogram at each bin of softmax values. The experiments1840

of gpdnn, cgp, mcd-cifar10-LeNet and cnn+gp(rf) are repeated three1841

times.1842

1843

Having observed these figures, we see that regularizing convolutional filters1844

has a huge impact on calibration. From figures 3.7, 3.8, 3.9 and 3.10 we see1845

that cnns and the previous combinations of gps and cnns are miscalibrated.1846

From figure 3.12 and 3.13, instead, we see that Bayesian cnns improve the1847

reliability of the prediction, which is comparable with post-calibration.1848

1849

It seems that there is a correlation between the histogram of predictive out-1850

put and the reliability line. When the histogram is skewed to the right, the1851

corresponding classifier is poorly calibrated.1852
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1853

Post calibration, mcd and cnn+gp(rf) (our method) are able to yeild cali-1854

brated classification.1855
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Figure 3.7 – Reliability diagrams for cnn

3.7 Conclusions1856

Despite the considerable interest in combining cnns with gps, little attention1857

has been devoted to understand the implications in terms of the ability of these1858

models to accurately quantify the level of uncertainty in predictions. This is1859

the first work that highlights the issues of calibration of these models, showing1860

that gps cannot cure the issues of miscalibration in cnns. We have proposed1861

a novel combination of cnns and gps where the resulting model becomes1862

a particular form of a Bayesian cnn for which inference using variational1863

inference is straightforward. However, our results also indicate that combining1864

cnns and gps does not generally improve the performance of standard cnns.1865

This can serve as a motivation for investigating new approximation methods1866

for scalable inference in gp models and combinations with cnns.1867
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Figure 3.8 – Reliability diagrams for gpdnn
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Figure 3.9 – Reliability diagrams for cgp
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Figure 3.10 – Reliability diagrams for svdkl
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Figure 3.11 – Reliability diagrams for cnn+cal
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Figure 3.12 – Reliability diagrams for mcd
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Figure 3.13 – Reliability diagrams for cnn+gp(rf)
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Local and Global Approximation1869

of Gaussian Processes1870

1871

Approximations to Gaussian processes (GPs) based on inducing variables,1872

combined with variational inference techniques, enable state-of-the-art sparse1873

approaches to infer GPs at scale through mini-batch-based learning. In this1874

work, we address one limitation of sparse GPs, which is due to the challenge1875

in dealing with a large number of inducing variables without imposing a spe-1876

cial structure on the inducing inputs. In particular, we introduce a novel1877

hierarchical prior, which imposes sparsity on the set of inducing variables.1878

We treat our model variationally, and we experimentally show considerable1879

computational gains compared to standard sparse GPs when sparsity on the1880

inducing variables is realized considering the nearest inducing inputs of a ran-1881

dom mini-batch of the data. We perform an extensive experimental validation1882

that demonstrates the effectiveness of our approach compared to the state-of-1883

the-art. Our approach enables the possibility to use sparse GPs using a large1884

number of inducing points without incurring a prohibitive computational cost.1885

4.1 Introduction1886

Gaussian Processes (gps) (Rasmussen and Williams, 2006) offer a powerful1887

framework to perform inference over functions; being Bayesian, gps provide1888

rigorous uncertainty quantification and prevent overfitting. However, the ap-1889

plicability of gps on big datasets is hindered by their computational complex-1890

ity of O (N3), where N is the training size. This issue has fuelled a consider-1891

able amount of research towards scalable gp methodologies that operate on a1892

set of inducing variables (Quiñonero Candela and Rasmussen, 2005). In the1893

literature, there is a plethora of approaches that offer different treatments of1894

the inducing variables (Lawrence et al., 2002; Seeger et al., 2003; Snelson and1895

Ghahramani, 2005; Naish-Guzman and Holden, 2007; Titsias, 2009; Hensman1896
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et al., 2013; Wilson and Nickisch, 2015; Hensman et al., 2015a). Some of1897

the more recent approaches, such as Scalable Variational Gaussian Processes1898

(svgps) (Hensman et al., 2015a), allow for the application of gps to problems1899

with millions of data points. In most applications of scalable gps, these are1900

approximated usingM inducing points (IPs) , which results in a complexity of1901

O (M3). It has been shown recently by Burt et al. (2019) that it is possible to1902

obtain an arbitrarily good approximation for a certain class of gp models (i.e.1903

conjugate likelihoods, concentrated distribution for the training data) withM1904

growing more slowly than N . However, the general case remains elusive and1905

it is still possible that the required value for M may exceed a certain compu-1906

tational budget. Our result contributes to strengthen our belief that sparsity1907

does not only enjoy desirable theoretical properties, but it also constitutes an1908

extremely computationally efficient method in practice.1909

1910

In this work, we push the limits of scalability and effectiveness of sparse gps1911

enabling a further reduction in complexity, which can be translated to higher1912

accuracy by considering a larger set of inducing variables. The idea is to op-1913

erate on a subset of H inducing points during training and prediction, with1914

H � M , while maintaining a sparse approximation with M inducing vari-1915

ables. We formalize our strategy by imposing a sparsity-inducing structure1916

on the prior over the inducing variables and by carrying out a variational1917

formulation of this model. This extends the original svgp framework and1918

enables mini-batch-based optimization for the variational objective. We then1919

consider ways to select the set of H inducing points based on neighbor in-1920

formation; at training time, for a given mini-batch, we activate H out of M1921

inducing variables considering the nearest inducing inputs to the samples in1922

the mini-batch, whereas at test time we select inducing variables correspond-1923

ing to the inducing inputs which are nearest to the test data-points. We name1924

our proposal Sparse within a Sparse gp (swsgp). swsgp is characterized by1925

a number of attractive features: (i) it improves significantly the prediction1926

quality using a small number of neighboring inducing inputs, and (ii) it ac-1927

celerates the training phase, especially when the total number of inducing1928

points becomes large. We extensively validate these properties on a variety1929

of regression and classification tasks. We also showcase swsgp on a large1930

scale classification problem where we set M = 100, 000; we are not aware of1931

other approaches that can handle such a large set of inducing inputs without1932

imposing some special structure on them (e.g., grid) or without considering1933

one-dimensional inputs.1934

1935

Hierarchical priors are often applied in Bayesian modeling to achieve com-1936

pression and to improve flexibility (Molchanov et al., 2017; Louizos et al.,1937
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2017). To the best of our knowledge, this work is the first to explore these1938

ideas for the purposes of sparsifying the inducing set in sparse gps.1939

4.2 Related work and background1940

Sparse gps that operate on inducing inputs have been extensively studied in1941

the last 20 years (Csató and Opper, 2002; Lawrence et al., 2002; Snelson and1942

Ghahramani, 2005; Quiñonero Candela and Rasmussen, 2005; Naish-Guzman1943

and Holden, 2007). Many attempts on sparse gps specified inducing inputs1944

by satisfying certain criteria that produce an informative set of inducing vari-1945

ables (Csató and Opper, 2002; Lawrence et al., 2002; Seeger et al., 2003).1946

A different treatment has been proposed by Titsias (2009), which involves1947

formulating the selection of inducing inputs as optimization of a variational1948

lower bound to the marginal likelihood. The variational framework was later1949

expanded so that stochastic optimization can be admitted, thus improving1950

scalability for regression (Hensman et al., 2013) and classification (Hensman1951

et al., 2015a). In a more recent work (Panos et al., 2018) scalability is ad-1952

dressed in terms of the dimensionality of the input. All the aforementioned1953

methodologies share a computational complexity of O (M3). Although there1954

have been some attempts in the literature to infer the appropriate number of1955

inducing points as well as the inducing inputs (Pourhabib et al., 2014a; Burt1956

et al., 2019), a large number of inducing variables is desirable in improving1957

the approximation to the posterior. In this work we present a methodology1958

that builds on the svgp framework (Hensman et al., 2015a) and reduces its1959

complexity, thus increasing the potential of sparse gp application on even1960

larger datasets and with a larger set of inducing variables.1961

1962

A different approach to scalable gps was introduced by Wilson and Nickisch1963

(2015), namely Kernel Interpolation for Scalable Structured gps (kiss-gp).1964

This line of work involves arranging a large number of inducing inputs into1965

a grid structure; this allows one to scale to very large datasets by means of1966

fast linear algebra. The applicability of kiss-gp on higher-dimensional prob-1967

lems has been addressed by Wilson et al. (2015) by means of low-dimensional1968

projections. A more recent extension allows for a constant-time variance pre-1969

diction using Lanczos methods (Pleiss et al., 2018). Our work takes a different1970

approach by keeping the gp prior intact, and by imposing sparsity on the set1971

of inducing variables.1972

1973

Local approximation of gps inspired by the the concept of divide-and-conquer1974

is also a practical solution to implement scalable gps (Kim et al., 2005; Urta-1975
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sun and Darrell, 2008; Datta et al., 2016; ?; ?) which allows gps to work on1976

large-scale datasets. In our work, we use neighbour information in a different1977

way, by incorporating it in a certain hierarchical structure of the auxiliary1978

variables through a variational scheme.1979

4.2.1 Scalable Variational Gaussian Processes1980

Consider a supervised learning problem with inputs X = (x1, . . . ,xN)> as-1981

sociated with labels y = (y1, . . . , yN)>. Given a set of latent variables f =1982

(f1, . . . , fN)>, gp models assume that labels are stochastic realizations based1983

on f and a likelihood function p(y | f). In svgps, the set of inducing points1984

is characterized by inducing inputs Z = (z1, . . . , zM)> and inducing variables1985

u = (u1, . . . , uM)>. Regarding f and u, we have the following joint prior:1986

p(f ,u) = N
(

0,

[
KX KX,Z

KZ,X KZ

])
, (4.1)

where KX, KZ and KX,Z are covariance matrices evaluated at the inputs1987

indicated by the subscripts. The posterior over inducing variables is approx-1988

imated by a variational distribution q (u) = N (u |m,S), while keeping the1989

exact conditional p(f | u) intact, that is q(f ,u) = p(f | u)q(u). The variational1990

parameters m and S, as well as the inputs Z, are optimized by maximizing a1991

lower bound on the marginal likelihood p(y | X) =
∫
p(y|f)p(f | X)df . The1992

lower bound on log p (y | X) can be obtained by considering the form of q(f ,u)1993

above and by applying Jensen’s inequality:1994

Eq(f) log p (y | f)−KL (q (u) ‖ p (u)) . (4.2)

The approximate posterior q (f) can be computed by integrating out u: q (f) =1995 ∫
q (u) p (f |u) du. Thanks to the Gaussian form of q (u), q (f) can be computed1996

analytically:1997

q (f) = N (f | Am, KX + A (S−KZ) A) , (4.3)

where A = KX,ZK−1
Z . When the likelihood factorizes over training points,1998

the lower bound can be re-written as:1999 ∑N
i=1 Eq(fi) [log p (yi | fi)]−KL (q (u) ‖ p (u)) . (4.4)

Each term of the one-dimensional expectation of the log-likelihood can be com-2000

puted by Gauss-Hermite quadrature for any likelihoods (and analytically for2001

the Gaussian likelihood). The KL (q (u) ‖ p (u)) term can be computed ana-2002

lytically given that q (u) and p (u) are both Gaussian. To maintain positive-2003

definiteness of S and perform unconstrained optimization, S is parametrized2004

as S = LLT , with L lower triangular.2005
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4.3 Sparse within Sparse Gaussian Processes2006

We present a novel formulation of sparse gps, which permits the use of a2007

random subset of the inducing points with little loss in performance. We2008

introduce a set of binary random variables w ∈ {0, 1}M to govern the inclusion2009

of inducing inputs Z and the corresponding variables u. We then employ these2010

random variables to define a hierarchical structure on the prior as follows:2011

p (u | w) = N (0,DwKZDw) , (4.5)

where Dw = Diag (w) , and w ∼ p (w). Although the marginalized prior p(u)2012

is not Gaussian, it is possible to use the joint p(u,w) = p(u | w) p(w) within a2013

variational scheme. We thus consider a random subset of the inducing points2014

during the evaluation of the prior in the variational scheme that follows; no2015

inducing points are permanently removed. Regarding p(w), we consider an2016

implicit distribution: its analytical form is unknown, but we can draw samples2017

from it. Later, we will consider p(w) based on the nearest inducing inputs to2018

random mini-batches of data.2019

4.3.0.0.1 Remarks on the prior over f2020

Our strategy simply assumes a certain structure on the auxiliary variables,2021

but it has no effect on the prior over f ; the latter remains unchanged. Let2022

I and J bet the sets of indices such that wI = 1 and wJ = 0. Given an2023

appropriate ordering, the conditional u | w is effectively the element-wise2024

product [uI ,uJ ]> = u ◦ w. This reduces the variances and covariances of2025

some elements of u to zero yielding a distribution of this form:2026

p (f ,u | w) = N

0

0

0

 ,
 KX KX,ZI 0

KZI ,X KZI 0

0 0 0

 (4.6)

The rows and columns of uJ can simply be ignored. Regardless of the value2027

of w, the conditional f ,uI | w is always a Gaussian marginal, as it is a subset2028

of Gaussian variables. The marginalized p(f ,u) =
∫
p(f ,u | w) p(w)dw is2029

mixture of Gaussian densities, where the marginal over f is the same for every2030

component of the mixture.2031

The effect on f is demonstrated in Figure 4.1, where we sample from the2032

(non-Gaussian) marginalized prior p(u) in two steps: first we consider an2033

arbitrary random subset uI , and then we sample from p(uI) ≡ p(u | w).2034

Finally, f samples are drawn from p(f | uI), which only involves the selected2035

inducing variables uI . Following Eq. (4.1), the conditional f | u is normally-2036

distributed with mean mf |uI = KX,ZIK
−1
ZI

uI and covariance Sf |uI = KX −2037
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Figure 4.1 – The choice of inducing points does not affect the prior samples
drawn from p(f). Left: visualizations of f | u,w for different samples of w.
Right: comparison of the marginalised (w.r.t. u,w) prior over f , against the
true p(f).

KX,ZIK
−1
ZI

KZI ,X. These conditionals can be seen for different samples of2038

u,w in the left side of Figure 4.1, while in the right side we compare the2039

marginalized prior over f against the true gp prior.2040

Of course, although the prior remains unchanged, that is not the case for the2041

posterior approximation. It is well known that the choice of inducing inputs2042

has an effect on the variational posterior (Titsias, 2009; Burt et al., 2019). Our2043

choice to impose a hierarchical structure to the inducing variables through w2044

effectively changes the model compared to svgp, and we adapt the variational2045

scheme accordingly.2046

4.3.1 Lower bound on marginal likelihood2047

By introducing u,w and using Jensen’s inequality, the lower bound on log p (y)2048

can be obtained as follows2049

Eq(u,w) log p (y |u,w )−KL (q (u,w) ‖p (u,w)) , (4.7)

where we choose the variational distribution q to reflect the hierarchical struc-2050

ture of the prior, i.e. q (u,w) = q(u | w) p(w). This choice enforces sparsity2051

over the approximate posterior q; the variational parameters are shared among2052

the conditionals q(u | w), for which we assume:2053

q(u | w) = N (u |Dwm,DwSDw ) (4.8)

By maximizing the variational bounds that follow, we impose a q that per-2054

forms well under a sparsified inducing set. We continue by applying Jensen’s2055

inequality on p (y |u,w ), obtaining:2056

log p (y |u,w ) ≥ Ep(f |u,w) log p (y |f ) (4.9)
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We can now substitute (4.9) into (4.7), obtaining a bound where we expand2057

q(u,w) as q (u |w ) p (w). By making this assumption, we obtain the following2058

evidence lower bound Lelbo:2059

N∑
n=1

Ep(w)

[
Eq(u|w )Ep(fn|u,w ) log p (yn |fn )

− 1

N
KL

(
q (u |w )

∥∥∥∥ p (u |w )

)] (4.10)

Recall that p (w) is implicit: although we do not make any particular as-2060

sumptions about its analytical form, we can draw samples from it. Using MC2061

sampling from p (w), we can obtain the approximation L̃elbo:2062

N∑
n=1

[
Eq(u|w̃(n) )Ep(fn|u,w̃(n) ) log p (yn |fn )

− 1

N
KL

(
q
(
u
∣∣w̃(n)

) ∥∥∥∥ p (u ∣∣w̃(n)
))]

,

(4.11)

where w̃(n) is sampled from p (w).2063

4.3.1.0.1 Sampling from the set of inducing points.2064

Recall that any sample w̃ from p (w) is a binary vector, i.e. w ∈ {0, 1}M . In2065

case all elements of w are set to one, our approach recovers the original svgp2066

with computational cost of O (M3) coming from computing p (fn |u, w̃ = 1)2067

and KL (q (u |w ) ‖p (u |w )) in the elbo. When a w̃i is set to zero, the entries2068

of the i-th row and i-th column of the covariance matrix in p (u |w ) and2069

q (u |w ) are zero. This means that the i-th variable becomes unnecessary, so2070

we get rid of i-th row and column in these matrices, and also eliminate the2071

i-th element in mean vectors of q (u |w ) and p (u |w ). This is equivalent to2072

selecting a set of active inducing points in each training iteration.2073

4.3.2 H-nearest inducing inputs2074

Despite the fact that p(w) is an implicit distribution, we have been able to2075

define and calculate a variational bound, assuming we can sample from p(w).2076

We shall now describe our sampling strategy, which relies on neighbor infor-2077

mation of random mini-batches.2078

2079

In order to explain the idea conveniently, we introduce ZH
x as the set of H-2080

nearest inducing inputs. Intuitively, the prediction for an unseen data x using2081

ZH
x is a good approximation of the prediction using all M inducing points,2082
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that is ZM
x . This can be verified by looking at the predictive mean, which is2083

expressed as a linear combination of kernel functions evaluated between train-2084

ing points and a test point, as in Eq. (4.3). The majority of the contribution2085

is given by the inducing points with the largest kernel values, so we can use2086

this as a criterion to establish whether an inducing input is “close” to an input2087

vector (the effect of different kernels on the definition of nearest neighbors2088

is explored in the supplement). With this intuition, p (w) becomes a deter-2089

ministic function w (x) indicating which inducing inputs are activated. For2090

mini-batch-based training, the value of w remains random, as it depends on2091

the elements x that are selected in the random mini-batch; this materializes2092

the sampling from the implicit distribution p(w). The maximization of the2093

elbo in the setting described is summarized in Algorithm 2 (swsgp). At

Algorithm 2 Sparse within sparse gp (swsgp).
Input: D, H, M .
Result: The optimum of trainable parameters θ.
1: Initialize θ, i.e. kernel’s parameters, Z, m and S.
2: while stopping criteria is False do
3: ELL← 0 and KL← 0.
4: Sample mini-batch I of size n from D.
5: for (xi, yi) ∈ I do
6: Find ZH

xi
, i.e. the H-nearest Z to xi.

7: Compute w (xi) using ZH
xi

as in (4.12)
8: Extract mw(xi) and Sw(xi) from m and S.
9: Compute q (fi |w (xi)) as in (4.13).

10: ELL← ELL + Eq(fi|w(xi) ) log p (yi |fi ).
11: KL← KL + KL

(
q
(
uw(xi)

)
‖p
(
uw(xi)

))
12: end for
13: L̃elbo ← N

n
ELL− 1

n
KL.

14: Update θ using the derivative of L̃elbo.
15: end while

2094

test time, however, the inputs of interest are not random; we need to describe2095

the predictive distribution in terms of the deterministic function w (x). In2096

fact, if we would like to approximate the predictive distribution at xn using2097

H-nearest inducing inputs to x, i.e. ZH
xn
, then w (x) =

[
w

(1)
x ...w

(M)
x

]T
where,2098

w(m)
x =

{
1 if zm ∈ ZH

x

0 else
, with m = 1, ...,M (4.12)
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Figure 4.2 – Visualization of posterior distribution of svgp and swsgp. In
both cases, we consider 128 inducing points; in terms of our scheme (swsgp)
we use 16 neighbors.

We extract the relevant elements using w (x); for the mean, we have mw(xi) =2099

Dw(xi)m, and for the covariance we select the appropriate rows and columns2100

using Sw(xi) = Dw(xi)SDw(xi). The approximate posterior over fi given w (xi),2101

i.e. q (fi |w (xi)) is:2102

N
(
fi |Axi

mw(xi),

Kxi
+ Axi

(
Sw(xi) −KZH

xi

)
A>xi

)
,

(4.13)

where Axi
= Kxi,ZH

xi
K−1

ZH
xi

.2103

2104

One-dimensional regression example. We visualize the posterior dis-2105

tribution for a synthetic dataset generated on a one-dimensional input space.2106

We execute svgp and swsgp, and depict the posterior distributions of these2107

two methods by showing the predictive means (orange lines) and the 95%2108

credible intervals (shaded areas) in Figure 4.2. We consider identical settings2109

for the two methods (i.e. 128 inducing points, kernel parameters, likelihood2110

variance) and a neighbor area of 16 for swsgp; a full account of the setup2111

can be found in the supplement. We see that although the models are differ-2112

ent, the predictive distributions appear remarkably similar. A more extensive2113

evaluation follows in Section 4.4.2114

4.3.3 Complexity2115

The computational cost of swsgp is dominated by lines 6, 8 and 9 in Algo-2116

rithm 2. For each data point (xi, yi) in mini-batch I, we need to find the2117

H nearest inducing neighbors ZH
xi

for n points in line 6, where n = |I|; this2118

contributes to the worst-case complexity by O (nMH).2119
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2120

In line 8, we extract relevant parameters from m and S. We focus on the2121

cost of extracting Sw(xi) from S. Similar to svgp (Section 4.2.1), we con-2122

sider S = LLT , where L is lower triangular. We extract Lw(xi) = Dw(xi)L2123

which contains the rows of L that correspond to the Cholesky decomposition2124

of Sw(xi) = Lw(xi)L
T
w(xi)

. The computational complexity of selecting the vari-2125

ational parameters is O (nMH2).2126

2127

Finally, the computation of approximating the predictive distribution in line2128

9 requires O (nH3). The overall complexity for swsgp in the general case2129

is O (nMH + nMH2 + nH3), which is a significant improvement over the2130

O (M3) complexity of standard svgp, assuming that n,H �M . If we choose2131

S to be diagonal, the total complexity reduces to O (nMH + nH3); if we ad-2132

ditionally consider Z to be fixed, the computational cost is O(nH3). In the2133

experiments of Section 4.4 we also explore these settings.2134

4.4 Experiments2135

In this section, we conduct experiments to evaluate swsgp on a variety of2136

experimental conditions. We denote our approach by swsgp-M-H, where M2137

inducing points are used and H determines how many neighbors are selected.2138

We introduce svgp-M, svgp-H and svgp-M-H as competitors; svgp-M and2139

svgp-H are usingM and H inducing points, respectively. svgp-M-H, instead,2140

refers to svgp using M inducing points at training time and H-nearest in-2141

ducing inputs at test time.2142

2143

The comparison is carried out on some UCI data sets for regression and clas-2144

sification, i.e., powerplant, kin8nm, naval, eeg, credit, and spam. We2145

also consider larger scale data sets, such as mnist and the airline data. We2146

use the Matérn-5/2 kernel in all cases except for the airline dataset, where2147

the sum of a Matérn-3/2 and a linear kernel is used, similar to Hensman et al.2148

(2015a). All models are trained using the Adam optimizer (Kingma and Ba,2149

2015) with a learning rate of 0.001 and a mini-batch size of 64. The likelihood2150

for regression and binary classification are set to Gaussian and probit func-2151

tion, respectively. All models are trained over 100, 000 iterations except for2152

the airline data set where models are trained for one million iterations. In2153

regression tasks, we report the test root mean squared error (rmse) and the2154

test mean negative log-likelihood (mnll), whereas we report the test error2155

rate (err) and mnll in classification tasks. The results are averaged over2156

three folds.2157
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4.4.1 Increasing the number of neighbors2158

We begin our experimental evaluation by investigating the behavior of swsgp2159

with respect to H. In Figure 4.3, we examine swsgp on a two-dimensional

H = 4 H = 16 H = 64

Figure 4.3 – Visualization of swsgp on banana data sets with increasing H.
The total number of inducing pointsM is fixed to 64, while the size of neighbor
area H varies from 4 to 64. The red dots represent the inducing inputs. The
orange and blue dots are training points from two different classes. The black
lines are the contours of a classifier where the predictive mean is 0.5.

2160

classification data set (banana), where M is fixed to 64 and H is increased2161

from 4 to 64. In general, these boundaries remain sensible across the whole2162

range of values of H, suggesting that swsgp is able to work and converge well2163

even though H is significantly less thanM . We also observe that the contours2164

of the classifier become smoother as H is increasing.2165

2166

We then test swsgp on other data sets with larger dimensional inputs. In2167

these experiments,H is gradually increased toM . For powerplant, kin8nm,2168

naval, eeg, credit and spam,M is set to 64, and for mnist and airline,M2169

is set to 512. In Fig. (4.4), we see that swsgp-M-H consistently outperforms2170

svgp-M-H and svgp-H. This suggests that including neighbor information2171

at prediction time, combined with the use of a larger set of inducing points2172

alone is not enough to obtain competitive performance, and that only thanks2173

to the sparsity-inducing prior over latent variables, this yields improvements.2174

Crucially, the performance obtained by swsgp are comparable with those2175

obtained by svgp-M, while at each iteration only a subset of H out of M2176

inducing points are updated, carrying a significant complextity reduction.2177

4.4.2 Increasing the number of inducing points2178

In this set of experiments, we show that the performance swsgp improves2179

when increasing the total number of inducing points, while keeping the num-2180

ber of active inducing points H fixed. We first illustrate this on the banana2181
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Figure 4.4 – Evaluation of swsgp on high-dimensional data sets with increas-
ing H. The black up-triangles are for svgp with M inducing points, the cyan
down-triangles are for svgp with H inducing points, the red circles are for
svgp training withM inducing points and the prediction at an unseen data x

are made by ZH
x , and the green squares are for swsgp. In these experiments,

M is set to 64 and H varies from 4 to 32. Horizontal axis shows various
configurations of H. The standard deviation of the error metrics over the
different folds is represented by vertical bars; they are very small for most
configurations.

data set, where H is fixed to 4 and M is gradually increased from 4 to 64. In2182

Fig. (4.5) we see that the classification boundaries improve when increasing2183

M .2184

2185

We also investigate the impact of increasing H and M simultaneously. In2186

each regression and classification data set, we test swsgp with H = 4, 8 and2187

M = 8, 16, 32, 64. The results shown in Fig. 4.6 indicate that using a small H2188

is not detrimental to performance when M is large. In addition, swsgp with2189

a small H is comparable or better than svgp in almost all cases.2190
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M = 4 M = 8 M = 16 M = 32

Figure 4.5 – Visualization of swsgp on banana data sets with increasingM .
The size of neighbor area H is set to 4. The total number of inducing points
M varies from 4 to 64. The red dots represent inducing inputs. The orange
and blue dots are the input points from the two different classes. The black
lines are the contours of a classifier where the predictive mean is 0.5.

4.4.3 Running time2191

Table 4.1 – Comparison of running time between svgp and swsgp. In the
table, each cell follows the format of [training time]|[testing time] (times are
in milliseconds). In the figure, we show the progression of err (rmse for
regression case) and mnll over training time. The black lines refer svgp, and
the green lines indicate swsgp.

Configuration powerplant eeg
svgp-256 22.83 | 2.89 21.42 | 1.43

swsgp-256-4 25.51 | 0.51 26.18 | 0.56
Configuration mnist airline
svgp-1024 516 | 21.6 465 | 45.8

swsgp-1024-4 233 | 1.77 157 | 0.78
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0.15
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SVGP SWSGP

We show the training and testing times of swsgp and svgp in Tab. 4.1. In2192

svgp, we set M = 256 for powerplant and kin8nm, and 1024 for mnist2193

and airline, i.e. svgp-256 and svgp-1024. In our approach, we use the same2194

M and we set H to 4 and M , i.e. swsgp-256-4 and swsgp-1024-4. Each cell2195

of Tab. 4.1 follows the format of t1 | t2 where t1 and t2 indicate execution time2196

of training and testing in milliseconds. The time t1 is the averaged training2197

time of a training iteration. The time t2 is the averaged execution time to2198

evaluate the predictive distribution on a test point. We stress that t1 and t22199
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Figure 4.6 – Evaluation of swsgp on high-dimensional data sets with increas-
ing M . The black up-triangles are for svgp with M inducing points. The
green stars and plus are for swsgp with H of 4 and 8 respectively. In these
experiments, M varies from 4 to 64, as shown on horizontal axes. The stan-
dard deviation of the error metrics over the different folds is represented by
vertical bars; they are very small for most configurations.

in swsgp take into account the computation of finding neighbors inducing2200

inputs for each data point. In svgp, we assume that K−1
Z is pre-computed2201

and saved after the training phase. Therefore, the computational cost to eval-2202

uate the predictive distribution on a single test point is O (M2). The time2203

t2 in svgp refers to the execution time of carrying out predictions with the2204

complexity of O (M2).2205

2206

The results in Tab 4.1 show a consistent improvement at test time compared2207

to svgp across all values of H and M . At training time, the results show2208

a trend dependent on the number M of inducing points. Not surprisingly,2209

swsgp offers limited improvements when M is small. Considering power-2210

plant and kin8nm in which M is set to 256, svgp is faster than swsgp in2211

terms of training time. This is because the inversion of a 256 × 256 matrix2212

requires less time than finding the neighbors and inverting several 4× 4 ma-2213

trices. However, Tab 4.1 shows dramatic speedups compared to svgp when2214

the number of inducing points M is large. When M = 1024 on mnist and2215

airline, swsgp-1024-4 is faster than svgp-1024 in training time. This is due2216

to the inversion of the 1024 × 1024 kernel matrix being a burden for svgp,2217

whereas swsgp deals with much cheaper computations. Finally, we show the2218



80 4. Local and Global Approximation of Gaussian Processes

progression of err and mnll over training time when we train svgp-10242219

and swsgp-1024-4 on mnist. It becomes apparent that for large datasets our2220

method achieves high levels of accuracy significantly more quickly in terms of2221

running time compared to the standard svgp.2222

4.4.4 Large-scale problems with a huge number of IPs2223

We showcase a large-scale classfication problem, where we illustrate that2224

swsgp enables the possibility to use sparse gps with a massive number of2225

inducing points without incurring a prohibitive computational cost. We em-2226

ploy the airline data set, featuring 5 million training points. We test swsgp2227

with M = 100, 000 inducing points. We attempted to run svgp with such a2228

large M without success (out of memory in a system with 32GB of RAM).2229

Therefore, as a baseline we report the results of svgp with the configuration2230

in Hensman et al. (2015a).2231

2232

In swsgp, we impose a diagonal matrix S in the variational distribution2233

q (u | w), and we fix the position of the inducing inputs during training. By2234

fixing the inducing inputs, we can operate with pre-computed information2235

about which inducing inputs are neighbors of training inputs. Thanks to these2236

settings, swsgp’s training phase requires O (nH3) operations only, where n2237

is the mini-batch size. Due to the appropriate choice of H and n, and the2238

computational cost being independent of M , unlike svgp, we can successfully2239

run swsgp with M = 100, 000.2240

2241

By setting H and the mini-batch size n to 100 and 16 respectively, in about 242242

hours of training we could run swsgp-100,000-100 for one million iterations.2243

The err and mnll of swsgp-100,000-100 evaluated on the test set are 21%2244

and 0.48, respectively, while the err and mnll of svgp-200 published in2245

Hensman et al. (2015a) are about 34% and 0.61, respectively. To the best of2246

our knowledge, swsgp is the first to enable sparse gps with such a large set2247

of inducing points without imposing a grid structure on the inducing inputs.2248

We conclude by reporting comparisons with other gp-based models. In par-2249

ticular, we compare against the Stochastic Variational Deep Kernel Learning2250

(svdkl) (Wilson et al., 2016) and the Deep gp approximated with random2251

features (Cutajar et al., 2017). In the former, kiss-gp is trained on top of2252

a deep neural network which is optimized during training, and in the latter2253

the layers of a deep gp are approximated as parametric models using random2254

feature expansions. Both competitors feature mini-batch-based learning, so2255

this represents a challenging test for swsgp. The results in Tab. 4.2 show2256

that swsgp is comparable with these competitors. We believe that this is2257
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a remarkable result obtained by our shallow swsgp, supporting the conclu-2258

sions of previous works showing that advances in kernel methods can result in2259

performance which are competitive with deep learning approaches (see, e.g.,2260

Rudi et al. (2017)).2261

Method Data set rmse mnll
swsgp-64-4 powerplant 4.29 2.42

kiss-gp powerplant 11.26 5.78
swsgp-100k-100 airline 0.21 0.48

svdkl airline 0.22 0.46
Deep gp random features airline 0.21 0.46

Table 4.2 – Comparison of swsgp, kiss-gp (Wilson and Nickisch, 2015),
svdkl (Wilson et al., 2016) and Deep gps random features (Cutajar et al.,
2017)

4.4.5 Comparison to Local GPs2262

We finally demonstrate that swsgp behaves differently from other approaches2263

that use local approximations of gps. We consider two well-established ap-2264

proaches of local gps proposed by Kim et al. (2005) and Urtasun and Darrell2265

(2008). Following Liu et al. (2018b), we shall refer to these methods as In-2266

ductive gps and Transductive gps, respectively. We run all methods on two2267

regression data sets: powerplant and kin8nm. We set the number of local2268

experts to 64, and we use the same number of inducing points for swsgp2269

(with H either 4 or 8). As the size of powerplant and kin8nm are approx-2270

imately 7000, we set the number of training points governed by a local expert2271

to 100. For the local gp approaches, we choose 64 locations in the input space2272

using the K-means algorithm, and for each location we choose 100 neighbor-2273

ing points; we then train the corresponding local gp expert. Regarding the2274

testing phase, inductive gps simply rely on the nearest local experts to an2275

unseen point x∗. Whereas for transductive gps, we use 100 neighbors of x∗2276

and the nearest local expert to make predictions. In table 4.3, we summarize2277

rmse and mnll for all methods; swsgp clearly outperforms the local gp2278

approaches in terms of mnll.2279



82 4. Local and Global Approximation of Gaussian Processes

Method powerplant kin8nm
rmse | mnll rmse | mnll

swsgp-64-4 4.27 | 2.41 0.11 | −1.27

swsgp-64-8 4.24 | 2.40 0.10 | -1.38

Inductive GPs 9.93 | 38.38 0.13 | −0.40

Transductive GPs 6.17 | 18.78 0.09 | −0.65

Table 4.3 – Comparison with Local gp approximations.

4.5 Other results2280

4.5.1 Various options for H-nearest inducing points se-2281

lection2282

SV
GP

RBF ARC-COSINE-0 ARC-COSINE-1 LINEAR POLYNOMIAL-3

K-
SW

SG
P

R-
SW

SG
P

Figure 4.7 – swsgp on various kernels and strategies for selecting the H-
nearest inducing points.
As we discuss in the paper, the selection of H-nearest inducing points ZH

x is2283

made by using the kernel as a proxy to the concept of distance. Intuitively, a2284

kernel defines the similarity between two points in the input space, which is2285

more formally expressed as correlation. The kernel implicitly defines a kind of2286

distance that we use to determine the active neiborhood. Thus, the selected2287

neiborhood is dominated by the inducing points with largest kernel values.2288

2289

In the main paper, we have used different versions of the Matérn kernel. We2290

shall now explore the effect of our neiborhood-selection strategy on a number2291

of different kernels, both stationary and non-stationary. We apply swsgp2292

on the banana data-set using different heuristics for the H-nearest inducing2293

points selection. Let K-swsgp denote what is essentially the vanilla version2294

of our method, where the kernel-based heuristic is used as a proxy to dis-2295

tance. In the case of the rbf kernel, K-swsgp essentially corresponds to the2296
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Euclidean distance. We also examine a random-based heuristic (R-swsgp) in2297

which H-nearest inducing points are randomly chosen. In all cases, we set M2298

and H as 32 and 8 respectively. We also compare against svgp with M of 32.2299

2300

In Fig. (4.7), we visualize the contours of classifiers of svgp and swsgp2301

with various configurations. Clearly, R-swsgp does not work, i.e. the con-2302

tours are discontinuous and the locations of contours does not makes sense.2303

Regarding the kernels rbf, arc-cosine-0 and arc-cosine-1, our method2304

(K-swsgp) seems to be virtually identical to svgp. The advantages of K-2305

swsgp over svgp are shown when using polynomial-3. It is highly possible2306

that the flexibility of variational distribution over inducing variables, i.e. q (u),2307

in swsgp is the main reason for this difference.2308

4.5.2 Further visualizations on 1d examples2309

We demonstrate swsgp on one-dimensional regression problem. We have gen-2310

erated a synthetic data-set by sampling inputs xi from the interval [−2, 2]; the2311

targets have been computed as yi = sin(12xi) + 0.66 cos(25xi) + ε, where ε is2312

additive Gaussian noise with variance 0.1. Figure 4.8 summarizes the regres-2313

sion result for a fixed M , while the value of H varies from 4 to 64. We notice2314

that the predictive means are nearly identical across the different sub-figures.2315

These observations suggest that swsgp is able to work and converge well even2316

though H is significantly less than M .

H = 4 H = 8 H = 16 H = 32 H = 64

Figure 4.8 – swsgp is applied on a one-dimensional data set, where M is
fixed to 64 and H is increased gradually from 4 to 64. The red dots are
inducing positions; the black crosses are testing points; the green line refers
to predictive means.

2317

2318

We also show that the performance of swsgp improves when increasing the2319

total number of inducing points while keeping the number of active inducing2320

points H fixed. We intuitively expect that a larger the total number of induc-2321

ing points should translate to a more accurate model. In these experiments,2322

the size of neighbor area is fixed to 4, i.e. H = 4, and the total number2323

of inducing points are varies from 4 to 64. We see that the sequence of the2324

predictive means in Fig. 4.9 are more and more accurate from left to right.2325
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Although we are using a small neighbor area, our model is improved when2326

increasing the total number of inducing points.

M = 4, RMSE= 0.87 M = 8, RMSE= 0.85 M = 16, RMSE= 0.47 M = 32, RMSE= 0.14 M = 64, RMSE= 0.11

Figure 4.9 – swsgp is applied on 1d. The red dots are inducing positions.
The black crosses are testing samples. The green lines are predictive means.
The title of each sub-figures shows M and corresponding rmse.

2327

4.6 Conclusions2328

Sparse approaches that rely on inducing points have met with success in re-2329

ducing the complexity of gp regression and classification. However, these2330

methods are limited by the number of inducing inputs that is required to2331

obtain an accurate approximation of the true gp model. A large number of2332

inducing inputs is often necessary in cases of very large datasets, which marks2333

the limits of practical applications for most gp-based approaches.2334

2335

In this work, we further improve the computational gains of sparse gps.2336

We proposed swsgp, a novel methodology that imposes a hierarchical and2337

sparsity-inducing effect on the prior over the inducing variables. This has2338

been realized as a conditional gp given a random subset of the inducing points,2339

which is defined as the nearest neighbors of random mini-batches of data. We2340

have developed an appropriate variational bound which can be estimated in2341

an unbiased way by means of mini-batches. We have performed an extensive2342

experimental campaign that demonstrated the superior scalability properties2343

of swsgp compared to the state-of-the-art.2344
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Conclusion2346

2347

The models and techniques presented in this thesis are unified by the overar-2348

ching goal of improving the calibration and scalability of Gaussian Processes.2349

We conclude this thesis by summarizing the principal themes and contribu-2350

tions presented in the preceding chapters, with particular emphasis on their2351

significance in the context of complementary work in this direction of research.2352

This is followed by a brief outlook on possible avenues for future work where2353

we indicate how one might go about achieving these objectives.2354

5.1 Themes and Contributions2355

In this thesis, we primarily investigated the following themes in relation to2356

Gaussian processes:2357

2358

•Well-calibrated deep convolutional probabilistic model. Developing2359

models which are able to provide accurate predictions and reliable uncertain-2360

ties has been a long-standing research topic attracting significant attention2361

from machine learning community. Deep cnns that have accomplished state-2362

of-the-art results in a range of tasks have been illustrated to be miscalibrated,2363

the depth of architecture are the main factor affecting calibration (Guo et al.,2364

2017). Thinking of Bayesian priors as a form of regularization, it is natural to2365

assume that Bayesian cnns are an appropriate treatment for the problem of2366

miscalibration of modern cnns. Independently of the works on Bayesian cnns2367

implemented by Monte Carlo Dropout (Gal and Ghahramani, 2016b), there2368

have been other attempts to give a probabilistic flavor to cnns by combining2369

them with Gaussian processes (Wilson et al., 2016; Bradshaw et al., 2017;2370

van der Wilk et al., 2017). To the best of our knowledge, prior to our work2371

there were no studies showing calibration properties of these Bayesian cnns2372

approaches. Hence, in Chapter 3, we investigated the calibration properties of2373

Bayesian treatment on cnns. Perhaps surprisingly, the results indicated that2374

current combinations of cnns and gps are miscalibrated, with a tendency of2375
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being overconfident in predictions. Consequently, by extending the random2376

feature expansion approximation for dgps (Cutajar et al., 2017), we proposed2377

a novel combination of cnns and gps which is well-calibrated, and we val-2378

idated it through several experimental results on image classification tasks.2379

Furthermore, our model was extended by replacing the last fully-connected2380

layers of cnns with Deep gps (Cutajar et al., 2017) and by employing struc-2381

tured random features to obtain faster and more compact gp approximations2382

(Le et al., 2013; Yu et al., 2016).2383

2384

• Combination of global and local approximation. Gaussian Processes2385

Rasmussen and Williams (2006) offer a powerful statistical framework for in-2386

ference on functions. However, the applicability of gps on big datasets is hin-2387

dered by the prohibitive complexity depending on training size N . Due to the2388

rigorous uncertainty quantification of gps, the inducing point-based sparse2389

approximation of gps have been extensively studied (Snelson and Ghahra-2390

mani, 2005; Quiñonero Candela and Rasmussen, 2005; Titsias, 2009; Hens-2391

man et al., 2015a). The state-of-the-art approaches, e.g Scalable Variational2392

Gaussian Processes (Hensman et al., 2015a), allows for the application of gps2393

to large-scale problems with a small number of inducing points M . As shown2394

recently by Burt et al. (2019), it is possible to obtain an arbitrarily good2395

approximation for a certain class of gp models with M growing more slowly2396

than N . However, in general, it is still possible that the required value for2397

M may exceed a certain computational budget. In Chapter 4, by imposing2398

a sparsity-inducing structure on the prior over the inducing variables and by2399

carrying out a variational formulation of this model, we pushed the limits2400

of scalability and effectiveness of sparse gps enabling a further reduction of2401

computational complexity. Our experimental results showed that the use of2402

unprecedented number of inducing points led to higher accuracy on airline2403

which is a dataset with millions data points. In addition, we showed that our2404

proposed model is able to know what it does not know by yielding sensible2405

predictive uncertainties.2406

5.2 Future work2407

Beyond the discussion featured in this thesis, the themes explored in this body2408

of work not only motivate immediate extensions for improvements, but also2409

set the foundations for broader long-term objectives. In this section, we ex-2410

pand upon the directions for future work which we believe to be particularly2411

pertinent to ongoing developments in both the theoretical and practical as-2412

pects of machine learning using gps. We partition this discussion into the2413
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overarching themes of (i) studying calibration properties of gps regression;2414

and (ii) proposing more elegant mixtures of cnns and gps; and (iii) adapting2415

the state-of-the-art scalable gps to online machine learning.2416

5.2.1 Calibrated GP regression2417

In addition to improving the scalability of gps, producing reliable predictive2418

uncertainties is also a primary goal for the application of gps in the era of big2419

data, especially when gps are components of larger decision-making pipelines.2420

This aspect can be evaluated by analyzing calibration properties mentioned2421

in Chapter 3. While the reliability of the predictive uncertainties of Bayesian2422

cnns on classification tasks has been analyzed Guo et al. (2017); Lakshmi-2423

narayanan et al. (2017); Tran et al. (2019), the calibration of gp-based regres-2424

sion methods has not been considered carefully. As mentioned in Kuleshov2425

et al. (2018), the calibration property of regressors is evaluated by their pre-2426

dictive interval. A regressor is stated to be calibrated if p-percent credible2427

intervals contain the true outcomes p-percent of the time. Starting with the2428

novel vision about reliable regressors, investigating calibration properties of2429

gps on regression promises to be interesting. Some potential candidates re-2430

inforcing the model’s calibration may be inspired by the preceding works, for2431

example post-calibration by Platt scaling (Platt, 1999; Guo et al., 2017) or2432

training with adversarial samples (Lakshminarayanan et al., 2017).2433

5.2.2 Elegant mixtures of CNNs and GPs2434

While studying on Bayesian cnn, we have realized that combining cnns and2435

gps does not generally improve the performance of standard gps. We spec-2436

ulate that the kernel’s parameterization with a high number of parameter2437

increases the risk of overfitting, and leads to overconfident tendency in pre-2438

dictions. As shown in Chapter 3, the Bayesian treatment on convolutional2439

parameters enhances not only model’s generalization but also model’s cali-2440

bration. However, the improvements of our approach carries a great compu-2441

tational cost due to repeated feed-forward procedure. This limit can serve as2442

a motivation for investigating new approximation methods for scalable infer-2443

ence in gp models and combinations with cnns.2444

2445

Generally, the Bayesian flavor in the mixtures of cnns and gps can be strength-2446

ened by applying a full Bayesian treatment. For example, following our works2447

in Chapter 3, the proposed models can be further improved by applying a2448

Bayesian treatment on priors of parameters, which would result in the opti-2449

mization of dropout rates of convolutional hyperparameters (Kingma et al.,2450
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2015; Molchanov et al., 2017; Louizos et al., 2017). Along a similar vein, in-2451

dependent works replacing the fully-connected layers of cnns by gps (Wilson2452

et al., 2016; Bradshaw et al., 2017; Tran et al., 2019), while Deep Convolutional2453

Gaussian Processes (DCGPs) proposed by Blomqvist et al. (2018) substitutes2454

gps for convolutional filters. Another interesting approach could be applying2455

the Bayesian formulation mentioned in Titsias and Lazaro-Gredilla (2013) to-2456

gether with sparsity inducing priors (Louizos et al., 2017; Molchanov et al.,2457

2017) on DCGPs, a procedure of learning architecture is proposed, which not2458

only accelerates computations but also allows one to approximately integrate2459

out kernel hyperparameters, such as length-scales.2460

5.2.3 Adaptability to online machine learning2461

According to the extensive literature review in Liu et al. (2018b), local approx-2462

imations are common approaches to implement scalable statistical inference2463

systems. The uses of local approximations require to define the localization2464

of experts, which directly affects to the assignments of data points to local2465

experts. Likewise, in chapter 4, our proposal named Sparse-within-sparse2466

Gaussian Processes (swsgp) perceived as a combination of global and local2467

approximations also relies on the way to select active inducing points for each2468

inputs. On offline tasks, swsgp was shown to be effective in terms of accu-2469

racy and complexity. With the application of online machine learning wherein2470

training sets are constantly evolving, the selection of active inducing points2471

based upon spatial or temporal distance, which is implemented in swsgp, may2472

ignore the information related to periodic patterns. In such scenario, a kernel-2473

based distance seems to be more appropriate because the kernel intuitively2474

determines the correlation between two points in the input space. More gen-2475

eral, by perceiving the selection of active inducing points as a gating function,2476

the input-dependent Dirichlet Process (Rasmussen and Ghahramani, 2002)2477

and Polya urn distribution (Meeds and Osindero, 2006) can automatically in-2478

fer which inducing points are necessary from data. Another problem in the2479

scenario of online machine learning is to define a scheme for removing unnec-2480

essary inducing points. This can be done simply by eliminating the oldest2481

ones. More elegantly, the frameworks proposed by McIntire et al. (2016); Bijl2482

et al. (2016) could be employed.2483
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