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Résumé: Le Modèle Standard de la physique
des particules, quoique particulièrement pré-
dictif, est nécessairement incomplet. En ef-
fet, de nombreux puzzles restent inexpliqués,
tels que le problème de hiérarchie ou le
problème de la saveur, qui requièrent une
physique au delà de Modèle Standard. De
plus, d’apparentes violations de l’universalité
de la saveur leptonique ont été observé dans
les désintégrations semi-leptoniques des mé-
sons B, suggérant des déviations aussi bien
pour les courants neutres que les courants
chargés. La physique de la Saveur ap-
parait donc comme un candidat idéal pour
rechercher cette nouvelle physique. Dans cette
thèse, nous proposons plusieurs observables
de saveur dont la mesure pourrait permettre
de contraindre cette NP, d’une part dans une
approche de théorie effective (EFT), ainsi que
dans le cadre de modèle explicites de nouvelle
physique impliquant des Leptoquarks à basse
énergie. Après avoir résumé les propriétés im-
portantes du Modèle Standard et de ses exten-
sions par les théories effectives permettant de
paramétriser de manière générique la nouvelle
physique, nous construisons des observables
à partir des désintégrations leptoniques et
semi-leptoniques des mésons pseudoscalaires
via les courants chargés. Un soin partic-
ulier est apporté au traitement des incertitudes
hadroniques. En utilisant les résultats expéri-
mentaux disponibles pour quelques de ces ob-
servables, nous somme en mesure de con-
traindre plusieurs coefficients de la théorie ef-
fective. Nous étudions également en détail les
désintégrations semi-leptonique des baryons
lourds, et montrons que l’observation de leur
distribution angulaire permettrait d’extraire de
nombreuses contraintes, en particulier pour
la désintégration Λb → Λcτ ν̄ récemment ob-
servé pour la première fois par LHCb. Com-

plémentairement aux processus à basses én-
ergies, nous procédons à une analyse systé-
matique de toutes les observables de saveurs
à hautes énergies qui apparaissent dans les
queues de distribution de la section efficace de
collision pp→ ℓℓ′ observée par ATLAS et CMS.
Puisque contrairement au modèle standard, la
nouvelle physique tend à faire croitre cette sec-
tion efficace avec l’énergie, les contraintes ré-
sultants sont souvent complémentaires, voire
meilleures que les observables de précision
à basse énergie. Cette analyse a nécessité
le développement du programme “HighpT”, un
outil d’automatisation de la phénoménologie
de la saveur au LHC incluant la théorie ef-
fective jusqu’aux opérateurs de dimension 8,
ainsi que que tout les médiateurs possibles
au niveau des arbres, en tenant compte de
leur propagation. Ainsi nous pouvons com-
parer explicitement la validité des théories ef-
fectives pour les collisions à haute énergie, et
montrons qu’elle amène des erreurs non nég-
ligeables, même pour les processus non ré-
sonnants. Enfin, nous proposons quelques
exemples de scénarios minimaux de nouvelle
physique, faisant intervenir des Leptoquarks
à une masse O(1 TeV), en cherchant à véri-
fier toutes les contraintes précédentes. Parmi
les 5 Leptoquark considérés, seul le singulet
vecteur U1 est compatible avec l’ensemble
des contraintes provenant des expériences à
basses énergies, incluant les deux anoma-
lies du B, tout en restant compatible avec les
contraintes de recherche directe. Nous pro-
posons également un scénario faisant inter-
venir une paire de Leptoquarks scalaire, R2

et S3, capable d’accommoder ces contraintes,
tout en restant renormalisable. Ce modèle a
donc l’avantage supplémentaire de permettre
la prise en compte d’observables à boucle sans
nécessiter de complétion ultraviolette.
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Abstract: Despite being a very successful
theory, the Standard Model (SM) of Particle
Physics cannot be the final theory of Nature.
Various puzzles remain unexplained, includ-
ing the issue of hierarchy of scales and the
flavor problems, which call for New Physics
(NP) beyond the Standard Model. Recent
experimental hints of lepton flavor univer-
sality violation in semileptonic B-meson de-
cays through charged and neutral currents
sealed the flavor sector as a critical labo-
ratory for studying physics beyond the SM.
In this work, we propose several new ob-
servables the measurement of which could
be relevant for flavor physics and set rele-
vant constraints onto NP, both in the model-
independent framework via Effective Field
Theories (EFT) and with explicit scenar-
ios, involving low-energy Leptoquarks. Af-
ter pointing out the main features of the SM
and the EFTs that we use to parametrize NP,
we focus on the semileptonic and leptonic
decays of pseudoscalar mesons involving
charged currents, and propose observables
that are mostly free of hadronic uncertain-
ties and that are independent of the CKM
matrix elements. Using available experi-
mental results, we derive bounds on several
effective couplings to new physics. We then
study in great details the semileptonic de-
cays of heavy baryons, especially the per-
spectives they offer in terms of new observ-
ables that can be extracted from angular
distributions. We make several predictions
for quantities related to Λb → Λcτ ν̄ in the
SM and its several extensions. That decay
is currently studied at LHCb. Complemen-

tary to the low-energy processes, we also
study the high-energy ones. We systemati-
cally analyze the flavor constraints that arise
from the tail of the differential cross-section
pp → ℓℓ′ at ATLAS and CMS. Due to the
energy enhancement of these processes,
brought by NP compared to the SM, we find
constraints that are often complementary
and competitive with low-energy precision
observables, and in some cases even bet-
ter. We create and develop a new package
“HighpT”, designed to automatize this analy-
sis for a generic EFT up to and including op-
erators of dimension 8. Furthermore, we ex-
tend that to any (propagating) tree-level me-
diator. Comparing the two approaches al-
lows us to explicitly check the validity of the
EFT expansion in collider studies, and show
that it can introduce uncertainties even for
non-resonant processes. Finally, we study
some concrete examples of explicit NP sce-
narios involving O(1TeV) leptoquarks (LQ)
than can accommodate all of the available
constraints. Among the 3 scalar and 2 vec-
tor LQs we consider, we show that only
the vector singlet LQ can accommodate a
plethora of low-energy experimental data
as constraints, including both B-anomalies
and remain compatible with direct searches
pp → ℓℓ′ high-pT tails. We also propose
and demonstrate that a scenario involving a
pair of scalar LQs, R2 and S3, can also sat-
isfy all constraints. Such a scenario is even
better since it remains renormalizable and
no UV-completion needs to be specified to
compute the loop effects.
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Introduction

The more important fundamental laws and facts of physical science
have all been discovered, and these are now so firmly established that
the possibility of their ever being supplanted in consequence of new
discoveries is exceedingly remote. Nevertheless, it has been found that
there are apparent exceptions to most of these laws, and this is partic-
ularly true when the observations are pushed to a limit, i. e., whenever
the circumstances of experiment are such that extreme cases can be
examined. Such examination almost surely leads, not to the overthrow
of the law, but to the discovery of other facts and laws whose action
produces the apparent exceptions.

— Albert Abraham Michelson, Light Waves and their Uses, 1899

It would be a crude simplification to assume that physicists from the end of the 19th century
considered physics to be solved. After all, Michelson himself was the first to find holes in the
classical theory of Ether, but that did not prevent him from depicting the optimistic portrait of hu-
man knowledge. Of course, later discoveries of quantum mechanics, relativity, and cosmology
would change his interpretation, yet his views stayed surprisingly close to my understanding of
modern theoretical physics.

Today, the Standard Model of particle physics is by far the most predictive theory of Nature,
both in terms of the number of observables corroborated by experiments and by the precision
of its predictions. By the sheer effort that went into it and the quality of its results, the Standard
Model shines as one of the overall best successes of the 20th century science. However, we
again know that it cannot be the final theory of Nature. It is indeed incompatible with general
relativity, for which we have abundant experimental evidence. More importantly, there are ap-
parent exceptions mingled in unexpected sectors of the Standard Model, such as the non-zero
value of the neutrino masses, the lack of particle candidate constituting dark matter, in addi-
tion to the hierarchy and flavor problems. high-energy physics perfectly embodies this idea of
observation pushed to a limit, be it from the extremely short-range interactions probed in the
Large Hadron Collider (LHC) experiment, or through the exceedingly rare interactions in neu-
trino experiments. Seeking those scarce deviations is key to understanding the shortcomings
of the Standard Model.

Just as classical physics is still used in a wide range of applications, the Standard Model is
the canvas for any future theory. Whether it emerges as the approximation of a more complete
theory or is extended by new particles and new interactions, it would be nothing other than
the discovery of other facts and laws mentioned by Michelson. In some sense, instead of the
common interpretation of a nearly complete 19th century physics, it now feels more like an
early foundation for effective theories, almost a century before they were used in high-energy

1



physics.

In this spirit of exploring the edge of the set of experimental observations in search of New
Physics (NP), the work that led to this thesis was focused on finding and constraining new
flavor physics observables. While the gauge sector of the Standard Model (SM) is very well
understood, by virtue of being constrained by its theoretical simplicity, depending only on a
few gauge constants, reflecting the underlying gauge symmetry, this is not the case for the
flavor sector. Fermions in the SM appear in three distinct families, that would each obey a
U(3) symmetry if they were massless. Not only is this not the case, but fermions also exhibit
clear patterns in their masses and mixing. Experimental measurements helped us realize that
quark masses span 6 orders of magnitude, each family being heavier than the previous one.
The mixing matrix among quarks, the so-call Cabibbo-Kobayashi-Maskawa (CKM) matrix is
found to be very hierarchical: composed of 3 rotations between the 3 flavors, such that matrix
entries again span 3 orders of magnitude. These curious coincidences already call for a NP
explanation of flavor.

In addition to these strange structures, the discovery of hints of Lepton Flavor Univer-
sality Violation (LFUV) in semileptonic B meson decays seals the flavor sector as a prime
laboratory for discovery of NP. More specifically, since the SM forbids flavor changing neu-
tral currents at tree-level, the so-called “rare B decays” B → K(∗)ℓ+ℓ− (ℓ = e, µ) can only
happen through purely quantum effects, thus allowing for precision tests of the SM. In par-
ticular, because me and mµ are small compared to the other energy scales of this process,
the ratio of RK(∗) = B(B → K(∗)µ+µ−)/B(B → K(∗)e+e−) is expected to be very close
to 1. However, LHCb measurements [1, 2] of these observables found significantly smaller
values. It is equally surprising that another anomaly appeared in the decay of B mesons
through charged currents, which are not suppressed in the SM. In particular the observable
RD(∗) = B(B → D(∗)τ ν̄)/B(B → D(∗)µν̄) have been measured by B-factories above its SM
prediction [3,4].

There are two main strategies to uncover the potential NP responsible for LFUV. The first
is the “top-down” approach, where we start by writing down a NP scenario and then compute
quantities that are confronted with experiment. While this opens the possibility for discoveries
of new particles, it also requires prior knowledge of the content of NP and a plethora of exper-
imental searches, one for each model. And while it is always possible to push the masses of
new particles very high to avoid conflict with all the phenomenological constraints, it becomes
hard to explain the anomalies without unnaturally big or fine-tuned couplings. The alternative
strategy is a “bottom-up” approach. If we assume that NP happens at a very high energy scale,
potentially higher than those probed in experiments, it becomes possible to classify every pos-
sible NP contribution within an Effective Field Theory (EFT). Experimental results are then used
to constrain the values of the many coefficients of the EFT, in a manner, at least in principle,
completely agnostic of the details of the NP.

In this thesis, we will combine these two complementary approaches. Inspired by the B-
anomalies, we propose new flavor observables that can be used to further constrain the coeffi-
cients of the EFT. Using the constraints we derive, it becomes easier to build explicit models of
NP that can satisfy all of the available constraints. We illustrate this point using the extensions
of the SM involving one or two low-energy (O(1 TeV)) Leptoquarks (LQ), a class of scalar or
vector bosons that can couple simultaneously to quarks and leptons. The outline of this thesis
is as follows:
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� In Chapter 1 we briefly introduce the SM Lagrangian in order to fix our notation and
conventions, and we discuss some of the motivations for physics beyond the SM in more
detail, paying particular attention to the B-anomalies.

� In Chapter 2, we discuss several extensions of the SM considered in this thesis, reflected
in 2 Effective Field Theories: the Low-energy EFT (LEFT) used for observable below the
electroweak scale and the Standard Model EFT (SMEFT) used when the propagation
of the electroweak bosons is required. We also introduce the notation for 5 Leptoquark
models that can explain part of the B-anomalies, as well as their matching to the EFTs.

� In Chapter 3 we consider various low-energy flavor observables for charged current pro-
cesses. In addition to the usual RD and RD∗ , we derive constraints from all the available
semileptonic decays of pseudoscalar mesons, while focusing in particular on the observ-
ables that are devoid of problematic theoretical uncertainties, such as those coming from
the CKM matrix elements or the QCD uncertainties inherent to hadron decays. Finally,
we discuss the possibility of extracting constraints from the angular distribution of the
semileptonic decays of heavy baryons.

� In Chapter 4, we consider a completely different class of constraints on the NP coeffi-
cients: those obtained from study of the tail of the differential cross-section of pp→ ℓℓ′ by
relying on the data accumulated by CMS and ATLAS collaboration at LHC. While no ex-
cess is observed in these processes, the constraints obtained are complementary to the
low-energy constraints discussed in Chapter 3. Disentangling the many flavors involved
in these collisions led to the development of the package HighPT, a new tool for LHC flavor
phenomenology. Since the validity of the EFT is not guaranteed in high-energy experi-
ments, we implemented a possibility of both EFT and explicit mediators, thus permitting
a comparison between the two approaches.

� Finally, in Chapter 5 we apply all of the previous constraints to our leptoquark scenarios
of choice. We first consider single LQ solutions, and then focus on a specific scenario
involving two scalar leptoquarks: R2 and S3.
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Chapter 1

Standard Model

1.1 The SM Lagrangian

The Standard Model (SM) is among the most predictive theories of Nature. It explains the
behavior of the content of the universe: particles. Since its formulation (under a simplified
form), its validity has continuously been tested experimentally with increasing precision. The
final missing piece of the SM has been found in 2012 with the discovery of the predicted Higgs
Boson, sealing the success of the theory.

The SM is a quantum field theory (QFT) exhibiting a SU(3)C × SU(2)L × U(1)Y gauge
invariance. Imposing local invariance of the Lagrangian under each of those 3 groups requires
3 different kinds of gauge bosons. Their interactions will be responsible for 3 fundamental
forces: Strong, Weak, and Electromagnetic interaction. In addition to the gauge fields, the
theory is populated with fermionic fields forming the matter content of the universe. Some of the
gauge fields are observed to be massive but a mass term in the Lagrangian would break gauge
invariance. This can be avoided by introducing a scalar Higgs field, whose non-zero vacuum
expectation value spontaneously breaks the symmetry. The Higgs field can also explain the
mass of fermions via the Yukawa interaction.

The complete SM Lagrangian can thus be decomposed as

LSM = LGauge + LHiggs + Lfermions + LYukawa. (1.1)

In this section, we will introduce our notations by making explicit each component of the SM
Lagrangian.

Gauge Sector

The gauge part of the Lagrangian is the sum of 3 Yang-Mill Lagrangians, one for each gauge
group. This sector is completely specified by the 3 groups and the 3 gauge coupling constants.

LGauge = −
1

4
GaµνG

µν,a − 1

4
W i
µνW

µν,i − 1

4
BµνB

µν . (1.2)

a = 1 . . . 8 and i = 1 . . . 3 are the adjoint indices of SU(3) and SU(2) respectively. The sum-
mation over repeated indices is always implied. The G, W and B are the field strength tensors
defined by

Gaµν = ∂µG
a
ν − ∂νGaµ + gsf

abcGbµG
c
ν , (1.3)
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W a
µν = ∂µW

i
ν − ∂νW i

µ + gεijkW j
µG

k
ν , (1.4)

Bµν = ∂µBν − ∂νBµ. (1.5)

gs and g are the gauge coupling constants of SU(3) and SU(2) whereas fabc and εijk are the
structure constants of the su(3) and su(2) Lie algebras respectively. The U(1)Y gauge coupling
(that doesn’t appear here) is denoted g′.

Higgs Sector and Electroweak Symmetry Breaking

If we want to keep the Lagrangian gauge invariant, we cannot directly include mass terms for
the gauge fields. This problem is solved by the Brout-Englert-Higgs mechanism. The main idea
is to have a theory whose Langrangian is gauge invariant, but with a ground state that breaks
the symmetry. This can be achieved by having a scalar field subjected to a potential with many
degenerate minima. Falling into one of those minima corresponds to spontaneously breaking
the symmetry.

In order to break the SU(2) symmetry, we need our scalar to be a doublet of SU(2). The
most generic doublet scalar Lagrangian can be written:

LHiggs = (DµΦ)†(DµΦ) + µ2Φ†Φ− λ(Φ†Φ)2, (1.6)

where the covariant derivative of the scalar field is

DµΦ =

[
∂µ − ig

σi

2
W i
µ − i

g′

2
Bµ

]
Φ. (1.7)

This Higgs potential depends on 2 parameters: µ and λ. When both are positive the potential
admits a local maximum in zero, while still being bounded from below thanks to the quadratic
term. This leads to a vacuum states with.

〈
Φ†Φ

〉
=
v2

2
, (1.8)

where v = µ√
λ

is the vecuum expectation value (vev) of the Higgs field. Among all the possible
vacuum states, we can choose without loss of generality

⟨Φ⟩ = 1√
2

(
0
v

)
. (1.9)

Of the 4 degrees of freedom of the field Φ, 3 are Goldstone bosons that are "eaten" by the
gauge bosons to produce their mass. The last one can be expressed in the unitary gauge as

Φ =
1√
2

(
0

v +H

)
. (1.10)

Where H is the physical Higgs fields observed by LHC in 2012. Expanding the covariant
derivatives in the Lagrangian (1.6) with this redefinition of Φ, we obtain quadratic terms for
gauge bosons. The resulting masses can be diagonalized by the following linear combinations:

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ), with mass mW =

vg

2
, (1.11)

Zµ =W 3
µ cos θW +Bµ sin θW , with mass mZ =

vg

2 cos θW
, (1.12)
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Aµ = −W 3
µ sin θW +Bµ cos θW , with mass mA = 0. (1.13)

Where θW is the Weinberg angle, defined by tan θW = g′

g . These combinations are the physical
Z and W bosons, as well as the photon, that remains strictly massless thanks to the residual
custodial symmetry. Combined precise electroweak measurements [5,6] give

mW = 80.385(15) GeV, mZ = 91.1876(21) GeV. (1.14)

The parameters of the Higgs potential can be accessed from the mass of the Higgs boson
mH =

√
2µ2 = 125.25(17) GeV [7, 8], and the value of the vev v, which can be related to the

Fermi constant GF , usually measured using muon decay:

GF =
1√
2v2

. (1.15)

The masses of the electroweak gauge bosons being related to the coupling strength and
the Higgs VEV is a very strong prediction of the SM, tested with great accuracy.

Fermion sector

The fermionic sector of the theory seems to be populated by 5 fields, all either in the singlet
or fundamental representation of the gauge groups. The list of assigned charges is shown in
Tab. 1.1. Fields are separated based on their chirality: doublets of SU(2)L are left-handed while
singlets are right-handed fields. In addition, each field exists in 3 flavors, i.e. the Lagrangian
contains 3 copies of each particle, identical up to the mass, which are given names in Tab. 1.2.

SU(3)C SU(2)L U(1)Y

L 1 2 −1/2
ℓ 1 1 −1
Q 3 2 1/6

u 3 1 2/3

d 3 1 −1/3

Table 1.1: Dimension of the representation of the SM fermionic fields under the gauge group.
For U(1)Y we instead give the hypercharge of the field.

The Lagrangian for Fermions can be obtained using only the representation and charges of
the fields. It is expressed using the following covariant derivatives:

DµΨ = ∂µ − i
gs
2
λaG

a
µΨ− i

g

2
σiW

i
µΨ− ig′Y BµΨ, (1.16)

where λa are the 8 Gell-Mann matrices and σi are the 3 Pauli matrices. The second (resp. third)
term does not contribute in the case of singlet of SU(3) (resp. SU(2)). Using those definitions,
we can build a gauge invariant Lagrangian for fermions:

Lfermions =
∑

flavors

∑

Ψ∈L,Q,u,d,ℓ
iΨ̄ /DΨ. (1.17)

In which we can substitute Eqs. (1.11-1.13) to obtain the coupling to the physical gauge bosons.
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Since left- and right-handed fermions live in different representations of SU(2) and have
different weak hypercharge, a simple mass term in the Lagrangian cannot be gauge invariant.
We see that we are always missing a ±1/2 isospin and a ±1/2 hypercharge. But since those
are exactly the charges of the Higgs doublet we can instead reuse the Higgs field and write a
Yukawa interaction:

LYukawa = −Y ℓ
αβL̄

i
αΦ

iℓβ − Y d
αβQ̄

i
αΦ

idβ − Y u
αβQ̄

i
αΦ̃

idβ + h.c., (1.18)

where α and β are flavor indices, i is a SU(2) index, and Φ̃ = iσ2Φ
∗. When Φ acquires a

non-zero vev, (1.18) results in mass terms for the fermions. The Yukawa matrices Y ℓ, Y d and
Y u can at first be any matrix. Using Singular Value Decomposition, we can diagonalize them
by redefining independently the left- and right-handed fermions, rotating them from the “flavor"
to the “mass" eigenbasis.

Ψmass
L = V Ψ

L
†
Ψflavor
L , Ψmass

R = V Ψ
R

†
Ψflavor
R , (1.19)

where Ψ can be any fermion. VL and VR are unitary matrices. In the mass basis, components
are given names based on their flavor index, which are summarized in Tab. 1.2. This redefinition
leaves invariant most of SM Lagrangian, except for one part describing the interaction between
W , up-type and down-type quarks:

Lfermions ⊃ −
g√
2
V u
L ikV

d
L
†
kj ūi /W

+
PLdj . (1.20)

V = V u
L V

d
L
† defines the so-called the Cabibbo-Kobayashi-Maskawa (CKM) matrix. It is a unitary

3 × 3 matrix, and can thus depend on 9 parameters: 3 angles and 6 phases. Since we also
have 6 quarks, we can absorb 5 of those 6 phases by redefining the phase of quarks relative to
each other. We are left with 3 angles and 1 CP-violating phase. It is convenient for later on to
work in the basis in which down-type quarks are diagonal, by setting V = V u

L and V d
L = I. In

other words:

Qmass
i =

(
(V †uflavorL )i
dflavorL i

)
(1.21)

Since the CKM matrix is not diagonal, we see from Eq (1.20) that flavor-changing charged
currents (CC) are allowed in the SM at tree-level, through a W exchange. This is not the case
for neutral currents, where VL and VR cancel.

As a consequence of Eq. (1.20), the charged quark currents in the SM always come with a
CKM factor. This is problematic when we want to study precision observables since we need
to take into account the uncertainties in the CKM elements determination. For this reason,
we often build observables that are free of CKM elements, for example by taking the ratio
between two different decays involving the same quark current. Such an example with baryons
is investigated in Chapter 3.

1.2 Motivation for Physics Beyond the Standard Model

1.2.1 Incompleteness of the theory

Despite all its successes, we know that the Standard Model cannot be the final theory of Nature.
Some of its shortcomings include:
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Gen. 1 Gen. 2 Gen. 3

L


νeL
eL





νµL
µL





ντL
τL




ℓ eR µR τR

Q


uL
dL





cL
sL





tL
bL




u uR cR tR

d dR sR bR

Table 1.2: Names of the SM fermions in the mass eigenbasis.

� The absence of neutrino masses. The absolute values of the Neutrino masses have
not yet been measured but the observation of neutrino oscillation requires at least 2

of them to be massive. The current limit on the sum of the 3 neutrinos is 0.06 eV <∑
mν < 0.12 eV, where the upper limit comes from cosmology. Since neutrinos are

strictly massless, this is definitive proof of the existence of physics beyond the SM.

� The lack of Dark Matter. Cold Dark Matter is a necessary component to explain some of
the dynamics of the universe at very large scales, such as the rotational curve of galaxies.
For a particle to be a Cold Dark Matter candidate, it needs to be massive and very weekly
interacting. The SM contains no such particles (neutrino can only form hot Dark Matter),
which again strongly suggests the existence of physics beyond the SM.

� The flavor problem. The masses of the SM fermions exhibit strongly organized patterns.
They span 6 orders of magnitude between the lightest (electron, 511 keV) and heaviest
fermion (top quark, 173 GeV). In addition to all the masses, the 4 CKM parameters are
also very hierarchical, yielding a mostly diagonal matrix. All those parameters arise only
from the Yukawa parameters and are not linked through any symmetry. As such they
have to be extracted from experiment. Even worse, without the Yukawa interaction, the
SM Lagrangian would obey a global U(3)5 flavor symmetry (one for each of L, ℓ, Q, u,
and d), which is only broken by the Yukawa interaction. This unsatisfactory situation is
referred to as the flavor puzzle, and its resolution calls for physics beyond the SM.

� The Hierarchy problem. The Higgs boson is the only scalar particle of the SM. As such,
the quantum corrections to its mass are proportional to Λ, the cutoff scale. This is op-
posed to all the other particles which receive corrections proportional to their mass. If we
assume no NP scale above the SM, the next cutoff is the Planck scale at 1019GeV. If this
is really the case, the cancellation between the mass of the Higgs and its counter-term
would have to be abnormally exact to allow for such a light Higgs (125GeV). Assuming a
more reasonable 1 in 10 fine-tuning, the NP scale is expected to be of the order of a few
TeV.
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1.2.2 Anomalies in B decays

During the last decade, hints of Lepton Flavor Universality Violation (LFUV) have been ob-
served in B-factories [3] and at LHCb [1, 4]. These experiments observed anomalies in the
decay of B mesons compared to their SM prediction.

B decay through neutral currents

The B meson is a QCD bound state composed of a b̄ antiquark and another light quark (u or
d). In the SM they can decay to various end-products. In particular the decay B → K(∗)ℓ+ℓ−

where ℓ = e, µ and K(∗) is a s̄d bound state, is very suppressed in the SM since it involves a
flavor changing neutral current (FCNC): b → sℓ+ℓ−, which doesn’t happen at tree-level in the
SM. Instead, it can be mediated via loops, as depicted in Fig. 1.1.

Figure 1.1: 1-loop diagrams contributing to the FCNC in the standard model.

The theoretical prediction of this decay is complicated by various effects:

� The two quark transitions in the diagrams of Fig. 1.1 are proportional to CKM element, the
determination of which comes with experimental uncertainties. Moreover, it is possible
that the CKM matrix itself could be affected by NP. We would thus like to use observables
that are free of CKM parameters.

� The dominant source of uncertainty by far comes from QCD. The decay amplitude we
have to evaluate has to be computed between two bound states of QCD and thus cannot
be obtained perturbatively. Instead, we need to use non-perturbative techniques such as
Lattice QCD to extract the quark part of the amplitudes. These amplitudes depend on the
momentum transfer between the initial and final states and are parameterized in terms of
Form Factors. Form factors are obtained along with their uncertainties, which can be of
various origins, such as the lattice continuum or high-recoil extrapolation.

� In some regions of phase-space the momentum transfer can be close to the mass of
cc̄ resonances. This gives the possibility of Non-Local form factors, which will dominate
the total decay width since loop-suppressed electroweak effects cannot compete against
QCD decays. To prevent those resonances from polluting the results, it is possible to
restrict the study of B → K(∗)ℓ+ℓ− to regions of phase-space which are clear of reso-
nances.

10



To mitigate all three effects, it is convenient to look at the universality ratio R
[q2min,q

2
max]

K de-
fined as

R
[q2min,q

2
max]

K(∗) =
B
(
B → K(∗)µ+µ−

)

B
(
B → K(∗)e+e−

)
∣∣∣∣∣
q2∈[q2min,q

2
max]

, (1.22)

where q2 refers to the square of the momentum transfer between the B andK(∗) mesons. RK(∗)

involves both electrons and muons in the final states, in order for most of the uncertainty (form
factors and CKM) to cancel in the ratio. The bounds

[
q2min, q

2
max

]
are chosen in order to avoid

any resonances.
Last year, LHCb collaboration presented their new result for RK [1] which now, combined

with their previous data, amounts to

R
[1.1,6]
K = 0.847± 0.042 , (1.23)

which is 3.1σ lower than predicted in the SM, R[1,6]
K = 1.00(1) [9].

In this work, in addition to the value (1.23), we will also use [2]

R
[0.045,1.1]
K∗ = 0.68± 0.10 , R

[1.1,6]
K∗ = 0.71± 0.10 . (1.24)

We chose to not use the LHCb measurement of Λb → pK−ℓ+ℓ−, involving the same b →
sℓ+ℓ− semileptonic transition, due to the complicated treatment of theoretical uncertainties. It
is however worth mentioning that the universality ratio R

[0.1,6]
pK has also been measured to be

below 1, although with a larger uncertainty [10]:

R
[0.1,6]
pK =

B (Λb → pK−µ+µ−)

B (Λb → pK−e+e−)

∣∣∣∣
q2∈[0.1,6]

= 0.86± 14. (1.25)

Another related observable involving b → sℓ+ℓ− comes from the decay Bs → µµ. The
experimental value of B(Bs → µµ) has been updated to [11]

B(Bs → µµ) = (2.70± 0.36)× 10−9 , (1.26)

to which we include the most recent update of the LHCb result B(Bs → µµ) = (3.09+0.48
−0.44) ×

10−9 [12], and by using the prescription of Ref. [13] to build the likelihood functions, the new
average value is

B(Bs → µµ) = (2.85± 0.33)× 10−9 , (1.27)

thus a little over 2σ lower than predicted in the SM, B(Bs → µµ) = 3.66(14)× 10−9 [14].

B decay through charged currents

In addition to the anomalies in neutral currents, experimental indications of LFUV have also
been observed in the b → cℓν̄ℓ charged current (CC) decays. This was surprising considering
that this process is allowed at tree-level in the SM through a W exchange, and thus requires a
much bigger NP effect compared to the neutral currents, through for example a lower scale of
NP [15]. More specifically, we can define the same universality ratio as Eq. (1.22) but involving
D mesons in the final state:

RD(∗) =
B(B → D(∗)τ ν̄)

B(B → D(∗)ℓν̄)

∣∣∣∣∣
ℓ∈{e,µ}

. (1.28)
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Note that since there is no possible resonance in this case, it is not necessary to exclude part
of the phase-space in the observable.

Recent measurements by Belle [3], lead to the averages [4],

RD = 0.340± 0.030 , RD∗ = 0.295± 0.014 , (1.29)

which are, due to experimental correlations, about ≈ 3σ larger than predicted in the SM (see [4]
and references therein),

RSM
D = 0.293± 0.008 , RSM

D∗ = 0.257± 0.003 . (1.30)

A similar deviation, but with less competitive experimental uncertainties, has been observed in
a similar RJ/ψ ratio [16].
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Chapter 2

Beyond the Standard Model

The aforementioned motivations for physics beyond the SM give us little information on its
nature, except for the scale of New Physics which has to be around the TeV scale [15]. Thus,
we need a way to discuss NP in a model-independent way. This is precisely the framework of
Effective Field Theory (EFT). In this work, we will use EFT to present most of our results. This
section introduces the notations and conventions we use for the two EFT we will consider: a
Low-Energy EFT and the Standard Model EFT.

Since EFT tend to introduce a very large number of parameters, it can also be instructive
to introduce explicit scenarios of NP with stronger, minimal assumptions. We discuss here
a specific category of scenarios of NP involving Leptoquark states to illustrate the interplay
between EFT and explicit models.

2.1 E�ective Field Theory

If there is a large separation between the scale of New Physics Λ and the scale of the pro-
cesses we are studying, we can observe a decoupling between the heavy and light degrees
of freedom. This makes it possible to study the low-energy effects of NP without having to
completely specify the details of the ultraviolet (UV) completion. By performing an Operator
Product Expansion (OPE) we can approximate the complete Lagrangian of NP by a series in
1/Λ, each term composed of a finite number of non-renormalizable operators involving only
light (SM) fields. The term Effective Field Theory (EFT) describes the theory we obtain when
we allow every possible operator that is allowed by the symmetries of the original theory.

Below the electroweak scale in the broken phase, these symmetries include the Lorentz
symmetries, SU(3)color, U(1)charge, and the discrete symmetries of the SM. We consider only
operators that contribute to semileptonic transitions, i.e. involving 2 quark and 2 lepton fields,
(except for the O7 operator which involves quarks and photons). Depending on the charge
difference between quarks (or equivalently leptons), we separate these operators between the
Charged Current (CC) EFT and the Neutral Current EFT (NC).

In the case where we do not want to integrate out the heavy gauge bosons like in Chapter 4,
we can instead work in the framework of the Standard Model EFT (SMEFT) by keeping every
operator made out of SM fields obeying the same symmetries as the Standard Model: SU(3)C×
SU(2)L × U(1)Y . The added structure can be useful to relate the CC and NC transitions since
they will be related through the SU(2)L symmetry.

13



In this section, we specify our conventions for the EFT Lagrangians that will be used in this
thesis.

2.1.1 Below the electroweak scale: Low-Energy E�ective theory

Charged Currents

The most general low-energy effective Lagrangian of dimension-six describing the di → ujℓν̄

transition, with ℓ ∈ {e, µ, τ}, is given by

LCCeff = −2
√
2GFVij

[
(1 + gij ℓVL

)
(
ūLiγµdLj

)(
ℓ̄Lγ

µνL
)
+ gij ℓVR

(
ūRiγµdRj

)(
ℓ̄Lγ

µνL
)

(2.1)

+ gij ℓSL
(µ)
(
ūRidLj

)(
ℓ̄RνL

)
+ gij ℓSR

(
ūLidRj

)(
ℓ̄RνL

)
+ gij ℓT (µ)

(
ūRiσµνdLj

)(
ℓ̄Rσ

µννL
) ]

+ h.c. ,

where i, j denote quark-flavor indices, Vij are the CKM matrix elements and gij ℓα stand for the
effective NP couplings, with α ∈ {VL(R), SL(R), T}. Neutrinos are assumed to be purely left-
handed particles and only lepton flavor conserving transitions are considered. In this EFT the
scale of NP Λ is supposed to be higher than the electroweak scale and has been hidden into
the Fermi constant GF and the NP couplings gij ℓα . To describe low-energy processes, it is
convenient to define effective coefficients with definite parity in the quark current, namely,

gij ℓV (A) = gij ℓVR
± gij ℓVL

, gij ℓS(P ) = gij ℓSR
± gij ℓSL

. (2.2)

which is useful since the leptonic decays of pseudoscalar mesons will only be sensitive to gij ℓA

and gij ℓP . The remaining effective coefficients, gij ℓV , gij ℓS and gij ℓT , can be probed by studying the
semileptonic processes, P → P ′ℓν̄, where P (′) denote two pseudoscalar mesons.

In the SM, the 5 coefficients appearing in (2.1) are exactly zero, the only SM contribution
being the 1 in the left-handed vector operator, obtained from integrating out theW boson (Fermi
interaction).

The Effective Lagrangian (2.1) is defined in the broken electroweak phase. However, NP
scenarios can only be consistent with the direct search limits from the LHC if the new charged
particles arise above the electroweak symmetry breaking scale. Therefore, to reinterpret our
results for these scenarios, one should perform the renormalization group evolution from the
low-energy scale µb up to µEW ≃ mW [17], and then match Eq. (2.1) to the so-called SMEFT
(SM Effective Field Theory) [18, 19]. The concrete ultraviolet scenario can then be matched
to the SMEFT after accounting for the running effects above the electroweak scale µEW [20].
Even though we present our results only in terms of the low-energy effective theory defined in
Eq. (2.1), we provide the needed inputs to recast our results to the most general NP scenario
in Appendix 2.1.2.

Neutral Currents

In the neutral sector, we restrict ourselves to the quark transition relevant for the B-anomalies.
The effective Lagrangian for a generic exclusive decay based on b→ sℓ−1 ℓ

+
2 , with ℓ1,2 ∈ {e, µ, τ}

can be written as

LNCeff =
4GF√

2
VtαV

∗
tβ

∑

i

CiOi + h.c. , (2.3)
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where the effective couplings (Wilson coefficients) Ci ≡ Ci(µ) and the operators Oi ≡ Oi(µ)
are defined at the scale µ. The operators relevant to this study are

O7 =
e2

(4π)2
mb(s̄σµνPRb)F

µν ,

Oℓ1ℓ29 =
e2

(4π)2
(s̄γµPLb)(ℓ̄1γ

µℓ2) ,

Oℓ1ℓ210 =
e2

(4π)2
(s̄γµPLb)(ℓ̄1γ

µγ5ℓ2) ,

Oℓ1ℓ2S =
e2

(4π)2
(s̄PRb)(ℓ̄1ℓ2) ,

Oℓ1ℓ2P =
e2

(4π)2
(s̄PRb)(ℓ̄1γ

5ℓ2) ,

(2.4)

in addition to the chirality flipped ones, O′
i, obtained from Oi by replacing PL ↔ PR. The effect

of operators O1−6 is included in the redefinition of the effective Wilson coefficients C7,9. In what
follows we ignore the electromagnetic dipole operators O(′)

7 since they do not play a significant
role in describing the effects of LFUV.

Contrary to the charged current effective coefficients, the Ci coefficients are not zero in the
SM. We thus write all our results in terms of δCi, the NP contribution to those coefficients.

2.1.2 Above the EW scale: the SM E�ective Field Theory

Under the general assumption that NP arises well above the electroweak scale, one should
replace Eq. (2.1) with an EFT that is also invariant under SU(2)L × U(1)Y , i.e. the SMEFT [18,
19]. The SMEFT Lagrangian can be parameterized as

LSMEFT = LSM +
∑

d,k

C(d)k

Λd−4
O(d)
k +

∑

d,k

[ C(d)k

Λd−4
Õ(d)
k + h.c.

]
, (2.5)

where the first term corresponds to the SM Lagrangian, O(d)
i and Õ(d)

k respectively denote
Hermitian and non-Hermitian operators of dimension d > 4, and the UV physics is encoded in
the Wilson coefficients C(d)k . Our conventions for the SMEFT operators are given in appendix E.

To consistently describe a given scattering cross-section at the LHC up to order O(1/Λ4) in
the EFT expansion, it is necessary to include not only the contributions from dimension-6 oper-
ators but also the interference terms between dimension-8 operators and the SM contributions
since they also appear at the same order,

σ̂ ∼
∫

[dΦ]

{
|ASM|2 +

v2

Λ2

∑

i

2Re
(
A(6)
i A∗

SM

)

+
v4

Λ4

[∑

ij

2Re
(
A(6)
i A

(6) ∗
j

)
+
∑

i

2Re
(
A(8)
i A∗

SM

)]
+ . . .

}
, (2.6)

where [dΦ] denotes the corresponding Lorentz invariant phase-space measure, ASM is the SM
amplitude, and A(6)

i and A(8)
i stand for the New Physics contributions from dimension-6 and

dimension-8 operators, respectively. The dependence on the scale Λ is explicitly factorized
in each term to emphasize their order in the EFT expansion. The complete classification of
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SMEFT operators for d ≤ 8 can be found in Refs. [18,19,21,22]. In this thesis, we consider the
Warsaw operator basis at d=6 from Ref. [18], as well as its extension to d=8 from Ref. [22].

In Chapter 4 we will be interested in the high-energy tails of the momentum-dependent
distributions at the LHC. In this regime, only the energy-enhanced terms in eq. (2.6) that are
proportional to E/Λ will be relevant, where E =

√
s, while those scaling as powers of v/Λ will

be sub-dominant. There are three types of operators that directly contribute to the processes
q̄iqj → ℓαℓ̄β and ūidj → ℓαν̄β at tree-level which are relevant up to order O(1/Λ4) in the EFT
expansion:

• The semi-leptonic four-fermion operators in the classes ψ4, ψ4H2 and ψ4D2 ;

• The Higgs-current operators in the classes ψ2H2D, ψ2H4D and ψ2H2D3 ;

• The dipole operators in the class ψ2XH .

These operators are defined in appendix E, with the d = 6 ones listed in Tables 2, and the d = 8

in 3 and 4. The scaling of the New Physics amplitude for large E is shown in Table 2.1 for each
class of operators listed above. This scaling is to be compared to the one of the SM amplitude
that becomes constant in the E ≫ v regime.

Up to dimension d = 6, the semi-leptonic four-fermion operators ψ4 give the dominant
contributions at large E since they scale quadratically with the energy (∝ E2/Λ2). In particu-
lar, the chirality-conserving semi-leptonic operators of this type can also interfere with the SM
contributions, giving rise to sizable contributions. Dipole operators ψ2XH also induce energy-
enhanced contributions at the amplitude level (∝ vE/Λ2), but these are suppressed compared
to the previous ones since they only increase linearly with E and since they do not interfere
with the SM for massless fermions. Moreover, the contributions from Higgs-current operators
ψ2H2D do not increase with E since they only modify the W and Z-couplings, being negligible
for the observables we consider. The d = 8 operators appear in Table 2.1 with an additional
factor of either v2/Λ2 or E2/Λ2, with respect to the d = 6 contributions described above. Since
we are interested in the large E region, we will only keep in our numerical analyses the d = 8

operators that display an energy enhancement with respect to the SM contributions.
Besides the direct contributions to the Drell-Yan cross-sections, there can also be indirect

contributions arising from the redefinition of the SM inputs by the SMEFT operators. This
redefinition induces O(v2/Λ2) shifts to the SM contributions in eq. (4.12)–(4.14) depending on

Dimension d = 6 d = 8

Operator classes ψ4 ψ2H2D ψ2XH ψ4D2 ψ4H2 ψ2H4D ψ2H2D3

Amplitude scaling E2/Λ2 v2/Λ2 vE/Λ2 E4/Λ4 v2E2/Λ4 v4/Λ4 v2E2/Λ4

Parameters
# Re 456 45 48 132 123 48 52

# Im 399 25 48 18 18 18 12

Table 2.1: Counting of SMEFT parameters relevant to the high-pT observables and the corre-
sponding energy scaling of the amplitude for each class of operators. The number of real and
imaginary free parameters that contribute to the Drell-Yan cross sections at order O(Λ−4) are
listed for each type of operator. In total, we find 549 (472) real (imaginary) parameters at d = 6
and an additional 355 (66) real (imaginary) parameters at d = 8, where for the latter we only
consider those parameters that affect the interference of these operators with the SM.
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the chosen scheme for the electroweak parameters [23]. Examples of such operators are
the Higgs current O(3)

Hl operators or the purely leptonic Oll which can contribute to the muon
decay, for specific flavor indices, inducing a finite renormalization of GF . Similar redefinitions
are also needed in the flavor section since the Higgs current and the semi-leptonic operators
can induce finite shifts of the CKM parameters that are needed to compute charged-current
processes [24]. However, these redefinitions of electroweak and flavor parameters do not lead
to energy-enhanced effects at the LHC, thus being negligible in our present analysis.

Lastly, we count the number of independent SMEFT parameters at mass dimension-6 and
8 in Table 2.1. For this counting, it is necessary to separate operators that can contribute to
LHC processes including all three quark generations and operators that can contribute only to
processes involving the two light quark generations, i.e. operators involving SU(2)L singlet up-
type quarks (u), due to the negligible top quark parton distribution function. We find that there
are 549 CP-even and 472 CP-odd parameters that can contribute at d = 6 to the Drell-Yan
processes. There are additional 355 CP-even and 66 CP-odd parameters that can contribute
to these processes when d = 8 operators are considered. Note, in particular, that since we
truncate the cross-section at order O(Λ−4) in the EFT expansion only the interference of the
d = 8 operators with the SM is relevant for our analysis.

Matching the LEFT to the SMEFT

For completeness, we give here the matching of the SMEFT onto the LEFT. Only five of op-
erators can generate at tree-level the operators in Eq. (2.1), as listed in Table 2.2. To match
Eq. (2.1) to (2.5), we assume that down-quark and lepton Yukawa couplings are diagonal, and
that right-handed fermions are in the mass basis. The matching relations at µ = µEW are then
given by

gij ℓVL
(µEW) = − v

2

Λ2

∑

k

Vik
Vij

([
C

(3)
lq

]
ℓℓkj

+
[
C

(3)
Hq

]
kj
− δkj

[
C

(3)
Hl

]
ℓℓ

)
,

gij ℓVR
(µEW) =

v2

2Λ2

1

Vij

[
CHud

]
ij
,

gij ℓSL
(µEW) = − v2

2Λ2

1

Vij

[
C

(1)
lequ

]∗
ℓℓji

, (2.7)

gijSR
(µEW) = − v2

2Λ2

∑

k

V ∗
ik

Vij

[
Cledq

]∗
ℓℓjk

,

gij ℓT (µEW) = − v2

2Λ2

1

Vij

[
C

(3)
lequ

]∗
ℓℓji

,

where we kept only the quark-flavor indices. From these relations, we see that contributions
to gijVR are necessarily lepton-flavor universal at dimension-6. Furthermore, the operators listed
above also induce contributions to the di-lepton transitions di → djℓℓ, di → djνν, ui → ujℓℓ and
ui → ujνν.

Operator mixing Renormalization group equations (RGEs) are fundamental in order to re-
late the different scales involved in this problem. First, the running of the semileptonic operators
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SMEFT De�nition LEFT LFU?

[
O

(3)
lq

]
prst

(
l̄pγµτ

I lr
)(
q̄sγ

µτ Iqt
)

gVL ✗

[
Oledq

]
prst

(
l̄jper
)(
d̄sqt

)
+ h.c. gSR

✗

[
O

(1)
lequ

]
prst

(
l̄jper
)
ϵjk
(
q̄ksut

)
+ h.c. gSL

✗

[
O

(3)
lequ

]
prst

(
l̄jpσµνer

)
ϵjk
(
q̄ksσ

µνut
)
+ h.c. gT ✗

[
O

(3)
Hl

]
pr

(
H†i
←→
Dµτ

IH
)(
l̄pγ

µτ I lr
)

gVL ✗

[
O

(3)
Hq

]
pr

(
H†i
←→
Dµτ

IH
)(
q̄pγ

µτ Iqr
)

gVL ✓

[
O

(3)
Hud

]
pr

(
H̃†iDµH

)(
ūpγ

µdr
)
+ h.c. gVR ✓

Table 2.2: SMEFT operators contributing to the low-energy EFT defined in Eq. (2.1). Flavor
indices are denoted by {p, r, s, t} and SU(2)L indices by {j, k}. The operators O(3)

Hq and O(3)
Hud

induce lepton-flavor universal (LFU) contributions. We use the same conventions of Ref. [20].

from µ ≈ 1 TeV down to µEW ≈ mW due to gauge interactions is given by [25]




C
(3)
lq

Cledq

C
(1)
lequ

C
(3)
lequ




(µ=mW )

≈




1.00 0 0 0

0 1.19 0 0

0 0 1.20 −0.185
0 0 −0.00381 0.959







C
(3)
lq

Cledq

C
(1)
lequ

C
(3)
lequ




(µ=1 TeV)

, (2.8)

where we have omitted flavor indices and neglected the LFU operators. The SU(3)c × U(1)em
running below the EW scale reads [25]




gVL

gVR

gSL

gSR

gT




(µ=mb)

≈




1.00 0 0 0 0

0 1.00 0 0 0

0 0 1.46 0 −0.0177
0 0 0 1.46 0

0 0 0 0 0.878







gVL

gVR

gSL

gSR

gT




(µ=mW )

, (2.9)

and 


gVL

gVR

gSL

gSR

gT




(µ=2GeV)

≈




1.00 0 0 0 0

0 1.00 0 0 0

0 0 1.72 0 −0.02
0 0 0 1.72 0

0 0 0 0 0.82







gVL

gVR

gSL

gSR

gT




(µ=mW )

. (2.10)
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In addition to these RGE effects, there are also the ones induced by the top-quark Yukawa,
which mix the four-fermion operators with third-generation couplings into purely leptonic oper-
ators such as the ones contributing to Z → ℓℓ [26] and H → ℓℓ [27] which are of phenomeno-
logical relevance. In summary, the combination of the tree-level matching relations in Eq. (2.7),
with the RGE effects in Eq. (2.8)–(2.10), allows us to apply the constraints derived in these
thesis to any concrete NP scenario.

2.2 Example of NP scenarios: Leptoquarks

The model-independent approach of EFT is convenient when we do not have any idea of the
underlying structure of the NP. In an ideal scenario, we would first obtain numerical values for
the Wilson Coefficients through experiment, and would only then search for an explicit realiza-
tion of the EFT among the many possible NP possibilities. However, it is also possible that
the experiment is probing a part of the phase-space where the EFT expansion is not valid, or
comes with a sizeable error, see Chapter 4 for an example. In those cases, it is impossible to
put truly model-independent constraints on the NP.

Instead, we chose to highlight a small number of explicit NP scenarios involving Lepto-
quark (LQ) states, which we will introduce briefly in this section. In particular, we focus on the
Leptoquarks that have been shown to be compatible with the B-anomalies [28,29].

Leptoquarks denote massive bosons, scalar or vector, that can couple directly to quarks
and leptons in the same interaction. Gauge invariance of the Lagrangian imposes the possible
quantum numbers of LQs under SM gauge group SU(3)C × SU(2)L × U(1)Y . The states we
consider here are summarized in table 2.3

SU(3)C SU(2)L U(1)Y

S1 3̄ 1 1/3

S3 3̄ 3 1/3

R2 3 2 7/6

U1 3 1 2/3

U3 3 3 2/3

Table 2.3: Quantum number of some Leptoquarks under the SM group SU(3)C × SU(2)L ×
U(1)Y .

In Sect 2.2.1 and 2.2.2 we define the Lagrangian of some scalar and vector Leptoquarks.
We neglect the possibility of right-handed neutrinos and we work in the basis with diagonal
lepton and down-quark Yukawas, i.e. with left-handed doublets Qi =

(
(V †uL)i dLi

)T and Li =(
νLi ℓLi

)T , where V stands for the CKM matrix.

2.2.1 Scalar leptoquarks

• S3 = (3̄,3, 1/3) : The weak triplet of LQs is the only scalar boson that can simultaneously
accommodateRexp

K < RSM
K andRexp

K∗ < RSM
K∗ at tree level [30,31]. The Yukawa Lagrangian
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of S3 can be written as

LS3 = [yL3 ]
ij QCi iτ2

(
τ⃗ · S⃗3

)
Lj + h.c. , (2.11)

where τk are the Pauli matrices (k = 1, 2, 3) and yL3
ij the generic Yukawa couplings with

quark (lepton) indices i(j). LQ couplings to diquarks are neglected in order to guarantee
the proton stability [32]. After integrating out the LQ and matching to the low-energy EFT
(2.3), we find that the b→ sℓ−l ℓ

+
k effective coefficients read

δCkl9 = −δCkl10 =
πv2

VtbV
∗
tsαem

[yL3 ]
bk
(
[yL3 ]

sl
)∗

m2
S3

, (2.12)

As for the charged current transitions, b→ cℓν̄ℓ′ , the S3 scenario generates at tree level

gVL = − v2

4Vcb

[yL3 ]
bℓ′(V [yL3 ])cℓ
m2
S3

, (2.13)

which is strictly negative if we account for the constraints coming from B → K(∗)νν̄ and
∆mBs [28].

• S1 = (3̄,1, 1/3) : The weak singlet scalar LQ has the peculiarity of contributing to the
b → cτ ν̄ transition at tree level, but only at loop level to b → sℓℓ [33]. The S1 Yukawa
Lagrangian reads

LS1 = [yL1 ]
ij QCi iτ2Lj S1 + [yR1 ]

ij uCRiℓRj S1 + h.c. , (2.14)

where yL1 and yR1 are the LQ Yukawa matrices, and we neglect the diquark couplings
for the same reason as in the S3 case. The coefficients Ckl9 + Ckl10 and Ckl9 − Ckl10 are
generated at one-loop by yL1 and yR1 , respectively, with the relevant expressions provided
in Ref. [33]. This scenario contributes to the b→ cℓν̄ℓ′ transitions via,

gVL =
v2

4Vcb

[yL1 ]
bℓ′
(
V [yL1 ]

∗)
cℓ

m2
S1

, (2.15)

gSL
= −4gT = − v2

4Vcb

[yL1 ]
bℓ′
(
[yR1 ]

cℓ
)∗

m2
S1

, (2.16)

at the matching scale µ = mS1 .

• R2 = (3,2, 7/6) : The weak doublet was proposed to separately explain the LFUV effects
in the charged [34, 35] and in the neutral current B-decays [36]. This is the only scalar
LQ that automatically conserves baryon number [37]. Its Yukawa Lagrangian writes

LR2 = −[yL2 ]ij uRiR2iτ2Lj + [yR2 ]
ij QiR2ℓRj + h.c. , (2.17)

with yL2 and yR2 being the LQ couplings to fermions. At tree level one gets,

δCkl9 = δCkl10
tree
= − πv2

2VtbV
∗
tsαem

[yR2 ]
sk
(
[yR2 ]

bl
)∗

m2
R2

. (2.18)

We will show in Sec. 3.1 that this pattern is excluded by the observed values of RK and
RK∗ , viz. Fig. 3.1. If, however, one sets yR = 0, the leading contribution to b → sµµ
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arises at one-loop level and the Wilson coefficients verify δCµµ9 = −δCµµ10 < 0, which is
a satisfactory scenario [36]. Furthermore, this LQ contributes to the transition b → cℓν̄ℓ′ ,
via the effective coupling,

gSL
= 4gT =

v2

4Vcb

[yL2 ]
cℓ′
(
[yR2 ]

bℓ
)∗

m2
R2

, (2.19)

at µ = mR2 .

2.2.2 Vector leptoquarks

• U1 = (3,1, 2/3) : A scenario with a weak singlet vector LQ attracted a lot of attention
in the literature since it provides the operators needed to explain both the b → cτ ν̄ and
b→ sµµ anomalies [38–40]. The corresponding interaction Lagrangian can be written as

LU1 = [xL1 ]
ij QiγµLj U

µ
1 + [xR1 ]

ij dRiγµℓRjU
µ
1 + h.c. , (2.20)

where xL1 and xR1 stand for the U1 couplings to fermions. Notice that the diquark couplings
are absent for this state so no additional assumption is needed. In its minimal setup, in
which xR1 = 0, and starting from Eq. (2.20), one can easily obtain the contribution to
b→ sℓ−l ℓ

+
k ,

δCkl9 = −δCkl10 = −
πv2

VtbV
∗
tsαem

[xL1 ]
sk
(
[xL1 ]

bl
)∗

m2
U1

, (2.21)

while for the b→ cℓν̄ℓ′ one gets,

gVL =
v2

2Vcb

(
V [xL1 ]

)
cℓ′

(
[xL1 ]

bℓ
)∗

m2
U1

. (2.22)

• U3 = (3,3, 2/3) : Finally, the interaction of the weak triplet LQ with quarks and leptons is
described by

LU3 = [xL3 ]
ij Qiγµ

(
τ⃗ · U⃗µ3

)
Lj + h.c. , (2.23)

where, as before, xL3 stands for the couplings to fermions. In contrast to U1 this LQ
allows for the dangerous diquark couplings, neglected in the Lagrangian above in order
to ensure the proton stability. This scenario contributes to b→ sℓ−l ℓ

+
l via,

δCkl9 = −δCkl10 = −
πv2

VtbV
∗
tsαem

[xL3 ]
sk
(
[xL3 ]

bl
)∗

m2
U3

, (2.24)

which, again, can explain RK and RK∗ [41], but it contributes to b→ cℓν̄ℓ′ through

gVL = − v2

2Vcb

(
V [xL3 ]

)
cℓ′

(
[xL3 ]

bℓ
)∗

m2
U3

. (2.25)

Alternatively, we give the matching of the 5 leptoquark scenarios to the SMEFT in Tab. 2.4.
Note that the matching is given in the flavor basis.
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Field S1 R2 U1 S3 U3

Quantum Numbers (3̄,1, 1/3) (3,2, 7/6) (3,1, 2/3) (3̄,3, 1/3) (3,3, 2/3)

[Cledq]αβij � � 2[xL1 ]
iα∗

[xR1 ]
jβ � �

[
C(1)lequ

]
αβij

1
2
[yL1 ]

iα∗
[yR1 ]

jβ −1
2
[yR2 ]

iβ[yL2 ]
jα∗

� � �
[
C(3)lequ

]
αβij

−1
8
[yL1 ]

iα∗
[yR1 ]

jβ −1
8
[yR2 ]

iβ[yL2 ]
jα∗

� � �

[Ceu]αβij 1
2
[yR1 ]

jβ[yR1 ]
iα∗

� � � �

[Ced]αβij � � −[xR1 ]iβ[xR1 ]jα
∗

� �

[Cℓu]αβij � −1
2
[yL2 ]

iβ[yL2 ]
jα∗

� � �

[Cqe]ijαβ � −1
2
[yR2 ]

iβ[yR2 ]
jα∗

� � �
[
C(1)lq

]
αβij

1
4
[yL1 ]

iα∗
[yL1 ]

jβ � −1
2
[xL1 ]

iβ[xL1 ]
jα∗ 3

4
[yL3 ]

iα∗
[yL3 ]

jβ −3
2
[xL3 ]

iβ[xL3 ]
jα∗

[
C(3)lq

]
αβij

−1
4
[yL1 ]

iα∗
[yL1 ]

jβ � −1
2
[xL1 ]

iβ[xL1 ]
jα∗ 1

4
[yL3 ]

iα∗
[yL3 ]

jβ 1
2
[xL3 ]

iβ[xL3 ]
jα∗

Table 2.4: Matching of the leptoquarks to the semileptonic operators in the Warsaw basis [18].
In the matching conditions we have set Λ = mLQ.

2.2.3 Other potentially constraining observables

The viable leptoquark scenarios mentioned above predict specific combinations of effective
semileptonic operators, as shown in Table 2.4. To successfully explain the b → cτ ν̄ anoma-
lies, the flavor pattern of the effective coefficients must couple exclusively, or predominantly to
the second and third generation of quarks and leptons. The most relevant operators, at the
matching scale Λ, in each of these scenarios read

S3 :
[
C(1)lq

]
3332

= 3
[
C(3)lq

]
3332

. (2.26)

S1 :
[
C(1)lq

]
3333

= −
[
C(3)lq

]
3333

,
[
C(1)lequ

]
3332

= −4
[
C(3)lequ

]
3332

. (2.27)

R2 :
[
C(1)lequ

]
3332

= 4
[
C(3)lequ

]
3332

. (2.28)

U1 :
[
C(1)lq

]
3323

=
[
C(3)lq

]
3323

,
[
C(1)lq

]
3333

=
[
C(3)lq

]
3333

,
[
Cledq

]
3333

. (2.29)

U3 :
[
C(1)lq

]
3332

= −3
[
C(3)lq

]
3332

. (2.30)

These operators contribute not only to the b → cτ ν̄ transition but also to many other precision
observables that we briefly describe below:

• B → K(∗)νν̄ : The b→ sνν̄ transition provides stringent constraints on operators with left-
handed leptons [42]. The observables based on this transition are particularly relevant
to probe couplings to τ -leptons, which are difficult to assess otherwise. The low-energy
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effective Lagrangian describing the b→ sνν transition can be written as,

Lb→sνν
eff =

4GF√
2
VtbV

∗
ts

αem

4π

∑

αβ

(
CαβL OαβL + CαβR OαβR

)
+ h.c. , (2.31)

with

OαβL = (s̄Lγ
µbL)(ν̄LαγµνLβ) , OαβR = (s̄Rγ

µbR)(ν̄LαγµνLβ) , (2.32)

where i, j denote flavor indices. The SM contributions are lepton-flavor conserving and
they are given by CSM

L = −13.6(1.2), which includes NLO QCD corrections [43–45]
and two-loop electroweak contributions [46]. The low-energy Wilson coefficients can
be matched to the semileptonic SMEFT operators at µ = µew,

CαβL = δαβ C
SM
L +

2π

αemVtbV
∗
ts

v2

Λ2

([
C(1−3)
lq

]
αβ23

− δαβ
[
C(1−3)
Hq

]
23

)
, (2.33)

CαβR =
2π

αemVtbV
∗
ts

v2

Λ2

([
Cld
]
αβ23

− δαβ
[
CHd

]
23

)
, (2.34)

where we use the shorthand notation C(1−3)
lq = C(1)lq − C

(3)
lq and C(1−3)

Hq = C(1)Hq − C
(3)
Hq. These

effective coefficients can be evolved up to the scale Λ by using the one-loop RGEs from
Ref. [20, 47, 48]. The B → K(∗)νν̄ branching fractions can be easily computed in terms
of the coefficients defined in eq. (2.31) [42]. The most stringent experimental limits are
given by B(B+ → K+νν̄) < 1.6 × 10−5 and B(B0 → K∗0νν̄) < 2.7 × 10−5 [49–51],
which lie just above the SM predictions, namely B(B+ → K+νν̄)SM = 4.9(4)× 10−6 and
B(B0 → K∗0νν̄)SM = 1.00(9)× 10−6 [52].

• W and Z-pole observables : The precise determinations of theW and Z couplings at LEP
and the LHC can be used to constrain semileptonic interactions at one-loop [26, 53, 54].
The SMEFT operators describing modifications of the Z and W leptonic couplings up to
d = 6 read

[
O(1)
Hl

]
αβ

=
(
H†←→D µH

)
l̄αγ

µlβ ,
[
OHe

]
αβ

=
(
H†←→D µH

)
ēαγ

µeβ , (2.35)

[
O(3)
Hl

]
αβ

=
(
H†←→D I

µH
)
l̄αγ

µτ I lβ . (2.36)

Chirality-conserving semileptonic operators such as O(1)
lq and O(3)

lq mix into these opera-
tors at one-loop [20, 47, 48]. In particular, these effects can be sizable for semileptonic
couplings to the top quark. In our analysis, we account for these contributions by using a
leading-logarithmic approximation and we consider the recent fit to the couplings W and
Z couplings from Ref. [55].

• H → ττ : Measurements of the Higgs Yukawa coupling to τ -leptons at the LHC can also
provide a useful constraint on specific semileptonic operators at one-loop. This is the
case for the chirality-breaking operators O(1)

lequ and Oledq, since they mix at one-loop with
the following operator,

[
OeH

]
αβ

=
(
H†H

)
lαHeβ , (2.37)

which induces a shift in the τ -lepton Yukawa after the electroweak-symmetry break-
ing. This contribution is particularly relevant if the semileptonic operators couple with
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third-generation quarks, due to the chirality-enhancement induced via the Yukawa (i.e. ∝
mt/mτ ) [27]. The latest PDG average for the H → ττ strength signal reads [56],

µexpττ =
σ(pp→ h) · B(H → ττ)

σ(pp→ h)SM · B(H → ττ)SM
= 1.15+0.16

−0.15 , (2.38)

which is used to constrain the relevant operators at one-loop, with a leading-logarithm
approximation, and assuming that the Higgs production cross-section at the LHC is un-
affected by New Physics.
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Chapter 3

Low Energy Flavor observables

3.1 Previous EFT �ts to the B-anomalies

3.1.1 RK and RK∗

Using the 3 cleanest observables sensitive to neutral current that we introduced in Sec. 1.2.2,
namely, RK , RK∗ and B(Bs → µµ), we perform a fit in the C9−C10 plane. The result of our fit is
shown in Fig. 3.1 where we see a good agreement among all three observables. Furthermore,
we again see that the data are not consistent with the scenario δCµµ9 = +δCµµ10 , but instead they
are consistent with the solution, δCµµ9 = −δCµµ10 . This was to be expected, since the effects of
the interference with the SM dominates for small couplings and the SM is lepton-left-handed:
CSM9 ≃ −CSM10 . A scenario involving C10 only is also possible. By focussing on the left-handed
case, we find

δCµµ9 = −δCµµ10 = −0.41± 0.09 , (3.1)

which measures the deviation between the measured and the SM predictions of all three ob-
servables combined.

3.1.2 RD and RD∗

To determine the allowed values of gi, we assume that NP predominantly contributes to the
b→ cτ ν̄ transition, while being tiny in the case of electron or muon in the final state. In addition
to the ratios RD and RD∗ , an important constraint onto gP ≡ gSR

− gSL
comes from the Bc-

meson lifetime [57]. In that respect, we conservatively impose on the still unknown decay rate to
be B(Bc → τ ν̄) ≲ 30%. That constraint alone already eliminates a possibility of accommodating
the Rexp

D(∗) values by solely relying on the (pseudo)scalar operators [57].
To obtain the allowed range of values for gSL

we use the most recent determination of
RSM
D(∗) , obtained after combining the lattice QCD results for the relevant form factors in the high

q2-region with those extracted from experimental analysis at low q2’s [58]. Notice also that in this
work we use expressions and the values of the ratios of tensor form factors and the (dominant)
axial form factor [A1(q

2)] from Ref. [59]. A lattice QCD computation of the tensor form factors
would be very welcome.

By using the hadronic input collected in Ref. [28] we make the one-dimensional fits in
which one real effective coupling at a time is allowed to take a non-zero value, gi(mb), where
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Figure 3.1: Allowed regions in the plane δCµµ9 vs. δCµµ10 to 1σ accuracy derived by using RK
(red region), RK∗ (blue region) and B(Bs → µµ) (gray region). Darker (lighter) green regions
correspond to the combined fit to 1σ (2σ) accuracy.

i ∈ {VL, SR, SL, T}. We also consider two scenarios motivated by the LQ models and de-
fined by the relations gSL

(Λ) = +4 gT (Λ) and gSL
(Λ) = −4 gT (Λ) at the scale Λ ≈ 1 TeV.

After accounting for the renormalization group running from Λ to mb, these relations become
gSL

(mb) ≈ +8.1 gT (mb) and gSL
(mb) ≈ −8.5 gT (mb), respectively. We quote the allowed 1σ

ranges for gSL
(mb) in the latter two scenarios, both for real and for purely imaginary values.

The results of all these scenarios are presented in Table 3.1, where we see that only a few
scenarios can improve the SM description of b→ cτ ν̄ data.

In Fig. 3.2, we predict the correlation between RD∗/RSM
D∗ and RD/RSM

D within selected EFT
scenarios, and we confront these predictions with the current experimental values for these
ratios. In this plot, we also illustrate the results presented in Table 3.1 and confirm that the
scenarios with gVL > 0, gSL

= −4gT > 0 and gSL
= ±4gT ∈ iR are in good agreement with

current data. Furthermore, it becomes clear why the scenario gSL
= 4gT ∈ R is excluded, as it

cannot simultaneously explain an excess in both Rexp
D and Rexp

D∗ . In the same Fig. 3.2, we show
a similar correlation between RΛc/R

SM
Λc

and RD∗/RSM
D∗ , which is perhaps more interesting a pre-

diction, since the value of RΛc = B(Λb → Λcτ ν̄)/B(Λb → Λcµν̄) has not yet been experimentally
established, although the early study has been reported in Ref. [60]. Theoretical expressions
for RΛc in a general NP scenario (2.1) can be found in Ref. [61] as well as in Sec. 3.3.

3.2 Precision observables of meson decay

Leptonic and semileptonic decays of hadrons in the Standard Model (SM) are described by the
weak charged currents and as such, they are useful for extracting the values of the Cabibbo–
Kobayashi-Maskawa (CKM) matrix elements. This is done through a comparison of the exper-

26



E�. coe�. 1σ range χ2
min/dof

gVL(mb) 0.07± 0.02 0.02/1

gSR
(mb) −0.31± 0.05 5.3/1

gSL
(mb) 0.12± 0.06 8.8/1

gT (mb) −0.03± 0.01 3.1/1

gSL
= +4gT ∈ R −0.03± 0.07 12.5/1

gSL
= −4gT ∈ R 0.16± 0.05 2.0/1

gSL
= ±4gT ∈ iR 0.48± 0.08 2.4/1

Table 3.1: Low-energy fit to the b→ cτ ν̄ effective coefficients defined in Eq. (2.1) by using RD
and RD∗ , and by imposing that B(Bc → τ̄ ν) ≲ 30%. For the individual effective coefficients ga,
we fix the renormalization scale at µ = mb. For the remaining scenarios with both gSL

and gT ,
we impose the conditions gSL

= ±4gT at Λ = 1 TeV, and provide the allowed range for gSL
(mb)

after accounting for the renormalization-group evolution. The values of χ2
min for each scenario

is to be compared to χ2
SM = 12.7.

Figure 3.2: Predictions for RD∗/RSM
D∗ and RΛc

/RSM
Λc

versus RD/RSM
D in several EFT scenar-

ios, see text for details. Current 1σ (2σ) experimental constraints are depicted by the darker
(lighter) green region. Dashed lines correspond to effective couplings that are in tension with
the B(Bc → τν) < 0.3 constraint.

imentally established decay rates with the corresponding theoretical expressions. The most
difficult problem on the theory side is to reliably estimate the central values and uncertain-
ties attributed to the hadronic matrix elements. In other words, to extract the CKM couplings
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with a (sub-)percent accuracy the uncertainties related to the evaluation of the effects of non-
perturbative QCD need to be kept at a (sub-)percent level too.

Over the past two decades, we witnessed spectacular progress in taming the hadronic un-
certainties by means of numerical simulations of QCD on the lattice (LQCD). In particular, the
precision determination of quantities which involve the pseudoscalar mesons (decay constants
and form factors) has been radically improved [62]. This is the main reason why we will focus
our discussion on the semileptonic decays of one pseudoscalar to another pseudoscalar me-
son and the leptonic decays of pseudoscalar mesons. Similar semileptonic decays to vector
mesons would also be very interesting to consider because they offer a larger set of observ-
ables that could be used to probe the effects of New Physics (NP) [63] but the problem is that
(i) most of the vector mesons are broad resonances, and (ii) even in the narrow resonance
approximation many more hadronic form factors appear in theoretical expressions, making the
whole problem much more difficult to handle on the lattice at the level of precision comparable
to that achieved with pseudoscalar mesons only. The only exceptions to that pattern are the
decays Ds → ϕℓν̄ and Bc → J/ψℓν̄ which have been studied on the lattice in Ref. [64] and [65],
respectively.

In this section, we will therefore use the leptonic and semileptonic decays of pseudoscalar
mesons to constrain contributions arising from physics beyond the SM. An important ingredient
in such an analysis is the CKM matrix, the entries of which are extracted from various flavor
observables, including the same leptonic and semileptonic decays that we consider as probes
of the NP couplings [66, 67]. To eliminate this ambiguity in the discussion that follows, we will
define suitable observables in which the dependence on the CKM matrix elements cancels out
completely. An example of such observables are Lepton Flavor Universality (LFU) ratios, which
became popular in recent years owing to the discrepancies observed in semileptonic B-meson
decays [68]. However, these are not the only theoretically clean observables that are inde-
pendent of the CKM matrix elements. Another possibility is to consider ratios of leptonic and
semileptonic observables, based on the same quark-level transitions, which allow us to probe
the NP couplings without requiring specific assumptions on the non-universality of the leptonic
couplings. Furthermore, one can exploit the detailed angular analysis of a given semileptonic
decay, which provides us with complementary information on physics beyond the Standard
Model (BSM).

3.2.1 P → P ′ℓν̄

We first focus on P → P ′ℓν̄, where P (′) denotes the pseudoscalar mesons, for which one can
build several observables that can be used to test the SM since the hadronic uncertainties in
these modes are controlled by LQCD [62]. The differential P → P ′ℓν̄ decay distribution can be
written in general as

dB±(q2)
dq2 d cos θℓ

= a±(q2) + b±(q2) cos θℓ + c±(q2) cos2 θℓ , (3.2)

where q2 = (pℓ + pν)
2 with m2

ℓ < q2 ≤ (mP −mP ′)2, and θℓ is the angle between ℓ and the P ′

meson line-of-flight in the rest frame of the lepton pair, cf. Fig. 3.3. The ± superscript stands
for the polarization of the charged lepton, λℓ, and a±(q2), b±(q2), c±(q2) are the q2-dependent
coefficients that are in principle sensitive to NP contributions.

The simplest observable, sensitive to the effective NP couplings, is the differential branching

28



P−→q

−→uz
ℓ

ν̄

θℓ P ′

Figure 3.3: Angular convention for the process P → P ′ℓν, where P (′) are pseudoscalar
mesons. The angle θℓ is defined in the rest frame of the meson P .

fraction,

dB(q2)
dq2

=

∫ 1

−1
d cos θℓ

[
dB+(q2)

dq2 d cos θℓ
+

dB−(q2)
dq2 d cos θℓ

]
= 2

[
a(q2) +

c(q2)

3

]
, (3.3)

where a(q2) = a+(q2)+ a−(q2), and c(q2) = c+(q2)+ c−(q2). This observable has already been
copiously studied experimentally in the decays of K-, D- and B-mesons [56]. The parameter-
ization in Eq. (3.2) suggests that there is more information that can be in principle extracted
from these decays. To this purpose, one should further exploit the angular variables, as well
as decays to the specifically polarized outgoing lepton. In the following, we show that four
independent observables can be defined and we provide their most general expressions.

Form factors and helicity decomposition

The usual parameterization of the P → P ′ℓν̄ hadronic matrix elements reads

⟨P ′(k)|ūγµd|P (p)⟩ =
[
(p+ k)µ −

M2 −m2

q2
qµ

]
f+(q

2) +
M2 −m2

q2
qµ f0(q

2) , (3.4)

⟨P ′(k)|ūσµνd|P (p)⟩ = −i(pµkν − pνkµ)
2fT (q

2, µ)

M +m
, (3.5)

where f+,0,T (q2) are the hadronic form factors evaluated at q2 = (p − k)2, while M(m) denote
the P (P ′) meson masses. The relevant quark transition is denoted by d → uℓν̄, where flavor
indices are omitted for simplicity. The scalar matrix element can be obtained from Eq. (3.4) by
using the Ward identity, which amounts to 1

⟨P ′(k)|ūd|P (p)⟩ = M2 −m2

md −mu
f0(q

2) . (3.6)

With these definitions one can compute the coefficients a±(q2), b±(q2) and c±(q2), defined
in Eq. (3.2), as functions of the effective NP couplings, gijℓα , introduced in Eq. (2.1). To this
purpose, it is convenient to perform a helicity decomposition of the decay amplitude by using
the relation,

∑

n,n′

ε∗µV (n)ενV (n
′)gnn′ = gµν , (3.7)

1In the denominator of the right-hand-side of Eq. (3.6) md −mu should be understood as the quark
mass di�erence between the heavier and the lighter quarks. For instance for the c→ d transition, mc−md

should be in the denominator.
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where εV is the polarization vector of the virtual vector boson, as specified in Appendix 3.2.6,
with n, n′ ∈ {t, 0,±} and gnn′ = diag(1,−1,−1,−1). The decay amplitude can then be decom-
posed in terms of the helicity amplitudes:

hn(q
2) = εµ∗V (n)

[
(1 + gV )⟨P ′|ūγµd|P ⟩+ gS

qµ
mℓ
⟨P ′|ūd|P ⟩

]
, (3.8)

hnm(q
2) = εµ∗V (n) εν∗V (m) gT ⟨P ′|ū iσµνd|P ⟩ , (3.9)

which are explicitly given by

h0(q
2) = (1 + gV )

√
λ(q2,m2,M2)√

q2
f+(q

2) , (3.10)

ht(q
2) =

[
1 + gV + gS

q2

mℓ(md −mu)

]
M2 −m2

√
q2

f0(q
2) , (3.11)

h0t(q
2) = −ht0(q2) = − gT

√
λ(q2,m2,M2)

m+M
fT (q

2) , (3.12)

where λ(a2, b2, c2) = [a2 − (b − c)2][a2 − (b + c)2]. Other helicity amplitudes actually vanish. In
order to express the physical observables defined in Eq. (3.2) in a compact form, we define the
following combination of helicity amplitudes

h
(+)
0 (q2) = h0(q

2)− 4
√
q2

mℓ
h0t(q

2) , (3.13)

h
(−)
0 (q2) = h0(q

2)− 4mℓ√
q2
h0t(q

2) , (3.14)

which allows us to write

a+(q2) = B0(q2)m2
ℓ

∣∣ht(q2)
∣∣2 , a−(q2) = B0(q2) q2

∣∣h(−)
0 (q2)

∣∣2 , (3.15)

b+(q2) = B0(q2) 2m2
ℓ Re

[
h
(+)
0 (q2)ht(q

2)∗
]
, b−(q2) = 0 , (3.16)

c+(q2) = B0(q2)m2
ℓ

∣∣h(+)
0 (q2)

∣∣2 , c−(q2) = −B0(q2) q2
∣∣h(−)

0 (q2)
∣∣2 , (3.17)

with

B0(q2) = τP G
2
F |Vij |2

√
λ(q2,m2,M2)

256π3M3

(
1− m2

ℓ

q2

)2

, (3.18)

where τP denotes the P -meson lifetime. From Eqs. (3.15) and (3.17) we see that the following
relations hold true,

b−(q2) = 0 and a−(q2) = −c−(q2) . (3.19)

These equalities are respected not only in the SM but also when the NP couplings are consid-
ered. An alternative way to derive the above expression is to make a partial-wave decomposi-
tion of the matrix elements, combined with selection rules for a left-handed neutrino. In other
words, there are only four independent observables that can be constructed at the differential
level, instead of six as one would naively infer from Eq. (3.3). These two relations could be
a useful consistency check in experimental analyses in which the angular distribution to both
polarization states of the charged-lepton is reconstructed. For decays to τ this is possible as
the τ -polarization can be reconstructed through its decay to one or three pions, for example.
That methodology, however, cannot be applied to the decays to light leptons (µ’s or e’s).

30



Physical observables

From the above discussion, we conclude that only four observables are linearly independent.
We now list the set of observables that we will use in our subsequent phenomenological dis-
cussion.

i) Branching fraction: The first observable is the total branching fraction defined in Eq. (3.3),
which is the most commonly considered in experimental searches, and which is given by

Btot =
∫ (M−m)2

m2
ℓ

(
dB(q2)
dq2

)
dq2 , (3.20)

with dB(q2)/dq2 already given in Eq. (3.3).

ii) Forward-backward asymmetry : Another quantity that can be studied experimentally is
the forward-backward asymmetry,

dAfb(q
2)

dq2
=

1

Btot

[∫ 1

0
d cos θℓ

dB
dq2 d cos θℓ

−
∫ 0

−1
d cos θℓ

dB
dq2 d cos θℓ

]
=
b(q2)

Btot
, (3.21)

where B = B+ + B− and b(q2) = b+(q2) + b−(q2), as defined above. This observable
is normalized to the total branching fraction, Btot. The above expression refers to the
q2-dependent quantity and its integrated characteristic is obtained after integration over
the full q2 range.

iii) Lepton-polarization asymmetry : A study of the decay to the charged lepton with a specific
polarization state allows one to measure the lepton-polarization asymmetry defined as,

dAλ(q
2)

dq2
=

1

Btot

[
dB+
dq2

− dB−
dq2

]
, (3.22)

which depends on a complementary combination of helicity amplitudes, namely,

dAλ(q
2)

dq2
=

2

Btot

[
a+(q2)− a−(q2) + 1

3

(
c+(q2)− c−(q2)

)]
. (3.23)

iv) Convexity : The last independent observable that we consider is defined as follows,

dAπ/3(q
2)

dq2
=

1

Btot

[ ∫ 1

1/2
d cos θℓ

dB
dq2d cos θℓ

−
∫ 1/2

−1/2
d cos θℓ

dB
dq2 d cos θℓ

+

∫ −1/2

−1
d cos θℓ

dB
dq2 d cos θℓ

]
,

(3.24)

and allows us to single out the “convexity” coefficient c(q2) = c+(q2) + c−(q2) i.e.,

dAπ/3(q
2)

dq2
=
c(q2)

2Btot
. (3.25)

While Afb is defined as the symmetry between events collected in the regions θ ∈ (0, π/2)

and (π/2, π), the observable Aπ/3 measures the difference between events for which
θ ∈ (π/3, 2π/3) and those in the complementary angular region, as illustrated in Fig. 3.4.
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Figure 3.4: Description to count the events for the angular asymmetry Afb (left panel) and Aπ/3
(right panel) as a function of the angle θℓ ∈ (0, π) defined in Fig. 3.3. Both observables are
normalized to the total number of events.

In principle, one could define different sets of observables but, as demonstrated in Eqs. (3.15)–
(3.17), these observables would necessarily be a linear combination of the ones defined above.
In other words, they do not provide us with any additional information on physics beyond the
SM.

3.2.2 P → ℓν̄ and ℓ → Pν

As far as the control of the underlying hadronic uncertainties is concerned, the leptonic decays
of pseudoscalar mesons are among the cleanest probes of NP. The relevant hadronic matrix
elements for these decays in the SM are defined as

⟨0|ūγµγ5d|P (p)⟩ = ifP p
µ , (3.26)

where fP is the P -meson decay constant. From Eq. (3.26), after applying the axial Ward identity,
the matrix element of the pseudoscalar density reads

⟨0|ūγ5d|P (p)⟩ = −i
fP M

2

mu +md
, (3.27)

which is also needed to describe the NP contributions. In other words, neglecting QED correc-
tions, the only hadronic quantity needed to describe the leptonic decay mode in the SM and
its generic NP extension is the decay constant fP . It is now straightforward to compute the
branching fraction by using the effective Lagrangian (2.1). We have,

B(P → ℓν̄) = τP
G2
F |Vij |2f2PMm2

ℓ

8π

(
1− m2

ℓ

M2

)2 ∣∣∣∣1− gA + gP
M2

mℓ(mu +md)

∣∣∣∣
2

, (3.28)

where M and τP denote the mass and the lifetime of P . We remind the reader that the effective
coefficients gA and gP are related to the effective Lagrangian in Eq. (2.1) via the relations
gA = gVR −gVL and gP = gSR

−gSL
. For the τ -lepton and light-quark transitions, it is the inverse

process τ → Pν that is kinemetically available, P = π−,K−. These processes can also be
computed in terms of fP and the effective NP couplings gA,P ,

B(τ → Pν) = ττ
G2
F |Vij |2f2Pm3

τ

16π

(
1− M2

m2
τ

)2 ∣∣∣∣1− gA − gP
M2

mℓ(mu +md)

∣∣∣∣
2

, (3.29)

where M denotes once again the P -meson mass.
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3.2.3 SM phenomenology

Observables

To reduce the theoretical uncertainties, we opt for building observables that are independent
of the CKM matrix elements. These observables can be either a ratio of decays with distinct
leptons in the final state or a ratio of semileptonic and leptonic decays based on the same quark
transition, as we describe in what follows.

� LFU ratios: LFU ratios are powerful tests of the validity of the SM, since both theoretical
and experimental uncertainties cancel out in these ratios to a large extent. We define,

R
(ℓ/ℓ′)
P ≡ B(P → ℓν̄)

B(P → ℓ′ν̄)
, R

(ℓ/ℓ′)
PP ′ ≡

B(P → P ′ℓν̄)

B(P → P ′ℓ′ν̄)
, (3.30)

where P (′) denotes a pseudoscalar meson and ℓ(′) a charged lepton. Experimental re-
sults considered in our analysis are collected in Table 3.4, along with the SM predictions
that will be discussed in Section 3.2.3. SM predictions for leptonic decays have no un-
certainty when neglecting QED since the decay constant fP cancels out completely in
Eq. (3.30). Moreover, the uncertainties of semileptonic ratios are rather small, since the
normalization of P → P ′ form factors cancels out in Eq. (3.30), while the remaining uncer-
tainty from the form factor shapes is controlled by the LQCD results, as will be discussed
in Sec. 3.2.3.

� Semileptonic/leptonic ratios: Another way to eliminate the dependence on the CKM
matrix elements is to define the ratios,

r
(ℓ)
PP ′ =

B(P ′′ → ℓν)

B(P → P ′ℓν)
, (3.31)

where P ′′ → ℓν̄ and P → P ′ℓν̄ are decays based on the same quark transition. 2 The
label in r

(ℓ)
PP ′ refers to the mesons appearing in the semileptonic process, while P ′′ is

uniquely fixed by the given transition. For instance, P ′′ = K for the kaon observables
r
(ℓ)
Kπ, which are based on the transition s → uℓν, and P ′′ = Bc for r(ℓ)BD and r(ℓ)BsDs

, which
proceed via b → cℓν. The branching fraction in the denominator is defined by combining
the semileptonic decays of neutral and charged mesons, as follows,

B(P+ → P ′ 0ℓν) ≡ 1

2

[
B(P+ → P ′ 0ℓ+ν) + C2

P ′ 0
τP+

τP 0

B(P 0 → P ′+ℓ−ν̄)

]
, (3.32)

where τP+(τ0P ) is the lifetime of the meson P with electric charge +1(0), and CP ′ 0

is the Clebsch-Gordan coefficient, which is 1/
√
2 for P ′ = π0 and 1 otherwise, see

e.g. Eq. (3.35) below. 3 The advantage of this definition is to combine meson decays
with different lifetimes since the following relation holds, modulo small isospin-breaking
corrections,

B(P+ → P ′ 0ℓ+ν)

B(P 0 → P ′+ℓ−ν̄)
= C2

P ′ 0
τP+

τP 0

. (3.33)

2Similar observables have been de�ned for the b→ uℓν transition in Ref. [69].
3For the decay modes such as Bs → Dsℓν̄, where only one combination of electric charges is possible,

the denominator in Eq. (3.31) should be replaced by the standard branching fraction.
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The available experimental results for r(ℓ/ℓ
′)

PP ′ are collected in Table 3.5, along with our SM
predictions that will be discussed in Sec. 3.2.3. The relative hadronic uncertainty of the
SM predictions is larger in this case compared to the LFU ratios, also listed in Table 3.4,
since they do not cancel out in the ratio. Nonetheless, the current level of accuracy
of LQCD determinations for the relevant decay constants and form factors allows us to
perform this type of study as well. Notably, these observables are complementary to the
ones defined above because they too are sensitive to the LFU contributions from NP
which would normally cancel out in Eq. (3.30).

fP Value [MeV] Ref.

fπ 130.2(8) [62]

fK 155.7(3) [62]

fD 212.0(7) [62]

fDs 249.9(5) [62]

fB 190.0(1.3) [62]

fBc 434(15) [70]

Table 3.2: Decay constants obtained by numerical simulations of QCD on the lattice.

Hadronic inputs and SM predictions

In our analyses, we use the LQCD results for hadronic inputs [62]. The decay constants used
in this work are collected in Table 3.2, whereas the publications in which the results for the
P → P ′ form factors were presented will be appropriately referred to in what follows. The
relevant form-factor parameterizations and the needed numerical inputs can be found in the
references collected below. In our numerical analysis, we will sample the fit parameters for
each transition with a multivariate Gaussian distribution and the covariance matrices provided
in the LQCD papers.

� K → π: We use the q2-shape of the K → π form factors f0(q2) and f+(q2) as reported
in Ref. [71] from simulations with Nf = 2 + 1 + 1 dynamical quark flavors. Recently,
the shapes of these form factors have also been determined in an independent LQCD
study [72], but from simulations with Nf = 2 + 1 dynamical quarks. The results are fully
compatible with those presented in Ref. [71]. Concerning the form factor normalization,
i.e. f+(0) = f0(0), we use the FLAG average [62],

f+(0) = 0.9706(27) , (3.34)

which is dominated by the results reported by MILC/Fermilab [73] and by ETMC [71]. As
for the tensor form factor, the only available results come from Ref. [74] which we will use
in the following.
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� D → π and D → K: The scalar and vector form factors for D → π and D → K

semileptonic decays have been computed in Ref. [75] for all of the physically relevant q2

values. Similar results for the tensor form factor, for both of these channels, have been
presented in Ref. [76].

� B(s) → D(s): The scalar and vectorB → D form factors have been computed in Refs. [77]
and [78], which are combined in our analysis. For the tensor form factor, we use the
results for fT (q2)/f+(q2) evaluated near the zero recoil in Ref. [79] and drive the ratio to
low q2 values by a small slope that we extracted from Ref. [59].

� B → π and Bs → K: The B → π scalar and vector form factors have been computed
near zero-recoil in Ref. [80, 81] and combined in Ref. [62], whereas the tensor one has
been computed in Ref. [82]. Similarly, the Bs → K scalar and vector form factors have
been recently computed in Ref. [83]. There are no available results for the tensor form
factor but since the two decays are similar, we will assume that the ratio fT (q

2)/f+(q
2)

is the same for both channels, B → πℓν̄ and Bs → Kℓν̄. Notice that these channels
are particularly problematic due to a very large phase-space, which implies rather large
theoretical uncertainties when extrapolating the LQCD results for form factors, which are
available at large q2’s, all the way down to q2 → 0. For that reason, these decay modes
will be discussed separately in Sec. 3.2.3.

For kaon decays it is also necessary to account for the subleading corrections to match both the
experimental precision and the accuracy to which the hadronic matrix elements are evaluated in
LQCD. Those subleading corrections are summarized in the following multiplicative factor [84],

BKℓ3
→ BKℓ3

C2
π SEW

(
1 + δKℓem + δKπSU(2)

)2
, (3.35)

where SEW = 1.0232(3) is the short-distance electroweak correction [85,86], Cπ is the Clebsch-
Gordan coefficient (1 for decays to π± and 1/

√
2 for those to π0), while δKℓem and δKπSU(2) respec-

tively stand for the channel-dependent electromagnetic and isospin-breaking corrections the
values of which are given in Table 3.3. The first lattice QCD results of δKℓem have been presented
in Ref. [76], and the reported values fully agree with those given in Table 3.3. Radiative correc-
tions toKℓ2 have been estimated by using chiral perturbation theory (ChPT) and LQCD, leading
to the SM prediction [87,88]

(BKe2

BKµ2

)

SM

= 2.477(1)× 10−5 . (3.36)

The electromagnetic correction to the muonic mode alone can be written as [89–91]

BKµ2 → BKµ2(1 + δ
Kµ2
em ) , (3.37)

where we take δ
Kµ2
em = 0.0024(10), as recently determined in LQCD [88]. While the lattice

determination of δπµ2em appeared to be consistent with the one obtained in ChPT, the δKµ2
em value

turned out to be much smaller than δKµ2
em = 0.0107(21) as found in ChPT and previously used

in phenomenology, cf. Ref. [56] and references therein. As for the ratio of BKµ2 and BτK2 ≡
B(τ → Kν̄), the radiative corrections are included by [92]

BτK2

BKµ2

→ BτK2

BKµ2

(1 + δRτ/K) , (3.38)
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with δRτ/K = 0.90(22)×10−2 [93]. For the observables related to the decays of D(s)- and B(s,c)-
mesons, we do not include the electromagnetic corrections, because the evaluation of these
effects is not available from theory yet. In the future, however, and with improved experimental
and hadronic uncertainties, it will become necessary to account for these effects as well. Note
in particular that such effects are the leading theoretical uncertainties of the LFU ratios of
leptonic decays, since the decay constants fully cancel out. 4

Channel δKℓem × 10−2 δKπSU(2) × 10−2

K0 → π+eν̄ 0.49(11)
0

K0 → π+µν̄ 0.70(11)

K+ → π0eν̄ 0.05(13)
2.9(4)

K+ → π0µν̄ 0.01(13)

Table 3.3: Summary of long-distance electromagnetic
(
δKℓem

)
and isospin breaking

(
δKπSU(2)

)

corrections for Kℓ3 decays [84], see Eq. (3.35).

With the ingredients described above, we are able to make the SM predictions that are
listed in Table 3.4 and 3.5 for the two types of observables that we consider: (i) LFU tests,
and (ii) ratios of semileptonic and leptonic decays, based on the same weak process. We
find a reasonable agreement between our predictions and the experimental results, with a few
exceptions which will be mentioned in the following.

Discussion

K → lν, K → πlν and |Vus|: In the kaon sector, we find a good agreement between
the SM predictions and experiment for the LFU, as it can be seen in Table 3.4. For the ratios
of leptonic and semileptonic decays, we find a reasonable agreement for the electron modes,
while for the muonic modes we see a clear discrepancy. More specifically, the SM prediction
and the experimental values differ by 3.1σ:

B(K− → µν)SM

B(K− → π0µν̄)SM
= 18.55(16),

B(K− → µν)exp

B(K− → π0µν̄)exp
= 19.16(11) , (3.39)

where in the denominator we use the isospin average according to Eq. (3.32). Also taken
separately (without the isospin averaging), the measured values of the ratios are larger than
the ones predicted in the SM:

B(K− → µν)SM

B(K− → π0µν̄)SM
= 18.26(17),

B(K− → µν)exp

B(K− → π0µν̄)exp
= 18.9(2) ,

B(K− → µν)SM

B(KL → π+µν̄)SM
= 2.28(2),

B(K− → µν)exp

B(KL → π+µν̄)exp
= 2.352(11) . (3.40)

4E�ects from soft-photon emission in semileptonic B-meson decays have been recently considered in
Ref. [9, 94,95], see also Ref. [96].
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Observable De�nition Our SM prediction Exp. value Ref.

R
(µ/e)

K−π0

B(K− → π0µν̄)

B(K− → π0eν̄)
0.663(2) 0.662(3) [56]

R
(µ/e)

KLπ±
B(KL → π±µν̄)

B(KL → π±eν̄)
0.666(2) 0.666(4) [56]

R
(e/µ)
K

B(K− → eν̄)

B(K− → µν̄)
2.477(1)× 10−5 2.488(9)× 10−5 [56]

R
(τ/µ)
K

B(τ → K−ν̄)

B(K− → µν̄)
0.01126(3) 0.0107(4) [56]

R
(µ/e)

D−π0

B(D− → π0µν̄)

B(D− → π0eν̄)
0.9864(12) 0.943(45) [97, 98]

R
(µ/e)

D0π−
B(D0 → π−µ̄ν)

B(D0 → π−ēν)
0.9862(12) 0.915(43) [99]

R
(µ/e)
D

B(D− → µν̄)

B(D− → eν̄)
4.24× 104 > 42.5 [56]

R
(τ/µ)
D

B(D− → τ ν̄)

B(D− → µν̄)
2.67 3.21(64)(43) [100]

R
(µ/e)

D−K0

B(D− → K0µν̄)

B(D− → K0eν̄)
0.9751(10) 1.003(25) [56]

R
(µ/e)

D0K−
B(D0 → K−µ+ν)

B(D0 → K−e+ν)
0.9751(10) 0.973(14) [56]

R
(µ/e)
Ds

B(Ds → µν̄)

B(Ds → eν̄)
4.25× 104 > 65.4 [56, 101]

R
(τ/µ)
Ds

B(Ds → τ ν̄)

B(Ds → µν̄)
9.74 10.0(5) [56, 101]

R
(µ/e)
B

B(B → µν̄)

B(B → eν̄)
4.27× 104 > 0.66 [56, 102]

R
(τ/µ)
B

B(B → τ ν̄)

B(B → µν̄)
2.23× 102 1.7(8)× 102 [56, 102]

R
(µ/e)
BD

B(B → Dµν̄)

B(B → Deν̄)
0.9960(2) 0.995(22)(39) [103]

R
(µ/e)
BsDs

B(Bs → Dsµν̄)

B(Bs → Dseν̄)
0.9960(2) �

R
(τ/µ)
BD

B(B → Dτν̄)

B(B → Dµν̄)
0.295(6) 0.340(27)(13) [4]

R
(τ/µ)
BsDs

B(Bs → Dsτ ν̄)

B(Bs → Dsµν̄)
0.295(6) �

Table 3.4: Experimental results for LFU ratios and SM predictions obtained by using the
hadronic inputs described in Sec. 3.2.3. Ratios with semileptonic B → π(K) decays are dis-
cussed in Sec. 3.2.3. When quoted, first uncertainty corresponds to the statistical and second
to systematic. Upper limits are displayed at 90% C.L.
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Another way to see that problem has been already pointed out when extracting the value of
|Vus| from leptonic and semileptonic decay respectively [104]. We get:

|Vus|Kµ2 = 0.2264(6) , |Vus|Kµ3 = 0.2228(8) , (3.41)

with the latter value fully compatible with the one extracted from the electronic mode, |Vus|Ke3 =

0.2228(7). Clearly, the two values in Eq. (3.41) differ by 3.5σ. Understanding the origin of
that discrepancy requires a proper assessment of the electromagnetic corrections entering the
expressions for the Kℓ3 decays by means of LQCD.

As a side exercise, one can use the ratio of the accurately measured leptonic decays
Kµ2/πµ2, for which the electromagnetic corrections have been handled by LQCD [105], and
combine it with the ratio of decay constants fK/fπ = 1.193(2) [62]. As a result we get |Vus|/|Vud| =
0.2319(5). If we neglect |Vub| and impose the CKM unitarity we obtain 5

|Vus|CKM
Kµ2/πµ2

= 0.2259(5) . (3.42)

The same value is obtained if instead of invoking the CKM unitarity we multiply |Vus/Vud|Kµ2/πµ2

by |Vud|β, extracted from the nuclear β-decay [106] (see also Ref. [107–110] and references
therein). These values are clearly in good agreement with |Vus|Kµ2 , but not with |Vus|Kµ3 . More-
over, the discrepancy between |Vus|Kµ3 and |Vus|Kµ2 is larger if considering the semileptonic
decays of charged kaons.

In short, an improved LQCD determination of the K → π form factors, and especially a
good control over the electromagnetic corrections is needed in order to clarify this discrepancy.
If this discrepancy persists then a viable NP explanation would necessitate introducing the LFU
couplings to guarantee consistency with R(µ/e)

Kπ , where the SM predictions and the experimental
measurements agree very well, cf. Table 3.4.

Before closing this discussion we should emphasize the fact that for the semileptonic decays
we took the values for B(K− → π0lν̄)exp from Ref. [104]. Had we used the simple averages
of the measurements reported in the literature, and listed in PDG Review [56], the abovemen-
tioned discrepancy between |Vus|Kµ2 and |Vus|Kℓ3

would increase to 5σ. We believe that more
discussion in assessing the correct values of the experimental branching fractions in the kaon
decays is needed. For example, the value of B(K− → π0µν̄)exp = 3.366(30) % as suggested
in Ref. [104] is very close to the value reported in the PDG Review as “Our Fit", but it is 2.7σ

larger than the ordinary average which is heavily dominated by the result reported by the KLOE
collaboration, namely B(K− → π0µν̄)exp = 3.233(39) % [111]. Similar situation is true for
B(K− → π0eν̄)exp.

D → πlν and |Vcd|: As it can be seen in Table 3.4, we also find mild discrepancies
between theory and experiment in D → πlν̄. These are mostly related to the recent BES-
III results on D0 → π+lν̄ decays (with l = e, µ) [99, 112]. To investigate this problem, we
compare in Fig. 3.5 the ratio of the D → πµν̄ and D → πeν̄ differential distributions measured
experimentally for both D+ and D0 decays [98, 99, 112] with the SM predictions based on
the form factors taken from Ref. [75]. While there is a good agreement between theory and
experiment for D+ → π0lν̄ decays, we observe mild discrepancies in several q2 bins of D0 →
π+lν̄ (see also Ref. [113]). Since these deviations only appear in one of the decay modes, it
is likely that they arise from an underestimated theoretical or experimental uncertainty near the

5Note that the value of |Vub| is irrelevant for this discussion since its central value is too small compared
to the current precision in the determination of |Vus| and |Vud|.
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Observable De�nition Our SM prediction Exp. value Ref.

r
(e)
Kπ

B(K− → eν̄)

B(K− → π0eν̄)
3.05(3)× 10−4 3.17(2)× 10−4 [104]

r
(µ)
Kπ

B(K− → µν̄)

B(K− → π0µν̄)
18.6(2) 19.2(1) [104]

r
(e)
Dπ

B(D− → eν̄)

B(D− → π0eν̄)
2.79(12)× 10−6 < 2.4× 10−3 [56]

r
(µ)
Dπ

B(D− → µν̄)

B(D− → π0µν̄)
0.120(5) 0.108(7) [56]

r
(e)
DK

B(Ds → eν̄)

B(D− → K0eν̄)
1.41(7)× 10−6 < 9× 10−4 [56]

r
(µ)
DK

B(Ds → µν̄)

B(D− → K0µν̄)
0.061(2) 0.063(2) [56, 101]

r
(µ)
BD

B(B−
c → µν̄)

B(B− → D0µν̄)
4.3(4)× 10−3 �

r
(τ)
BD

B(B−
c → τ ν̄)

B(B− → D0τ ν̄)
3.5(3) �

Table 3.5: Experimental results for ratios of leptonic and semileptonic decays, and SM predic-
tions obtained by using the hadronic inputs described in Sec. 3.2.3. Ratios with semileptonic
B → π(K) decays are discussed in Sec. 3.2.3

zero-recoil. In other words, most NP scenarios would not be able to explain this discrepancy
since they would contribute equally to both decay modes. Note that these observables have
recently been analyzed in a similar context in Refs. [114,115].

D → Klν and |Vcs|: For the D → K transition we find a reasonable agreement between
theory and experiment. This conclusion is true for both LFU tests, as it can be seen in Table 3.4
and Table 3.5. The plot analogous to those discussed in the D → π case is shown in Fig. 3.6.
We observe a good agreement between the SM predictions and the measured LFU ratios in
most of the q2-bins. 6

B → Dℓν and LFU violation: Lastly, there are hints of LFU violation in the b → cτ ν̄

transition. These deviations appear not only in the ratio R
(τ/µ)
BD , that shows an ≈ 1.5σ excess

with respect to the SM prediction (cf. Table 3.4) [119,120], but also in the related decay modes,
B → D∗ℓν̄ [119–122] and Bc → J/ψℓν̄ [16], which are ≈ 2.5σ and ≈ 2σ above the correspond-
ing SM predictions respectively. This pattern of deviations has triggered an intense activity

6See Ref. [116] for a recent study of the related decay mode Ds → ϕℓν̄ with lattice QCD form
factors [64].
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Figure 3.5: Comparison between the µ/e LFU ratios measured experimentally in different q2
bins for D0 → π+lν [99, 112] (left panel) and D+ → π0lν [98, 99] (right panel) with the SM
predictions (shaded blue regions).
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Figure 3.6: Comparison between the µ/e LFU ratios measured experimentally in different q2
bins for D0 → K+ℓν [112, 117] with the SM predictions (shaded blue regions). The isospin-
related decay modes D+ → K0ℓν are not shown since the differential data for D+ → K0µν is
not available [118].

in the theory community which resulted in several viable scenarios beyond the SM capable
of accommodating the so-called B-anomalies (see e.g. Ref. [28, 39] and references therein).
The SM predictions for the B → D∗ transition are currently made by relying on the differen-
tial distributions measured experimentally for B → D∗(→ Dπ)lν̄ decays (with l = e, µ) [4], as
well as the heavy-quark effective theory combined with the QCD sum rules to evaluate the
non-perturbative coefficients entering the heavy quark expansion of the form factors, and in
particular to evaluate the f0 form factor [59]. Although the LQCD results at nonzero recoil are
not yet available for this particular transition, there are ongoing lattice studies the results of

40



which will help clarify the situation, and hopefully in understanding the long-standing disagree-
ment between the |Vcb| values as inferred from the exclusive and inclusive semileptonic decays,
respectively [123]. For the Bc → J/ψ transition, the relevant form factors at nonzero recoil have
been recently computed by means of LQCD simulations in Ref. [65], which allows us to predict
the corresponding LFU ratio R(τ/µ)

BcJ/ψ
, with O(1%) precision [124], see also Ref. [125].
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Figure 3.7: Differential branching fraction for B → πµν̄ (left panel) and B → πτ ν̄ (right panel)
by using only LQCD form factors (orange) [80, 81], and a combined fit to LQCD and experi-
mental data (blue) [62]. The shaded regions correspond to the 1σ predictions.

B → πℓν with LQCD form factors

The B → πℓν and Bs → Kℓν decays deserve a separate discussion due to the large theoretical
uncertainties involved in their SM predictions. For these processes, the form factors obtained in
LQCD simulations at large q2’s should be extrapolated to lower q2’s to cover the entire physical
region. This extrapolation introduces an ambiguity related to various parameterizations one
might use to describe the q2 dependencies of the form factors. In principle, this issue could be
avoided by combining the lattice data with experimental data which are more accurate for low
q2’s, but that would be at odds with our goal to solely rely on LQCD to evaluate the hadronic
matrix elements. Moreover, for our purpose it is important to avoid using the experimental data
to constrain the form factors because such results could already be heavily affected by the NP
contributions which we would like to isolate.

The ambiguity related to the form factor parameterization is noticeable for B → πℓν decays.
In Fig. 3.7 we compute the B → πℓν differential decay rates by using two different theoretical
inputs: (i) the scalar and vector form factors computed on the lattice at high-q2 values and
extrapolated to the rest of the physical region [80, 81]; and (ii) f0(q2) and f+(q

2) obtained by
a combined fit of LQCD data with the experimental measurements of dB(B → πlν)/dq2 (with
l = e, µ), which are more accurate at low q2-values [62]. Note, in particular, that the second
approach allows us to extract |Vub| = 3.73(14) × 10−3 [62], lower than the one extracted from
the inclusive decays (see e.g. Ref. [123] for a recent review). Our predictions by using both
sets of form factors are shown in Fig. 3.7. Both approaches lead to the same results in the
large q2-region where LQCD data dominate, but they diverge for small q2 values, due to the
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Figure 3.8: The ratio R(τ/µ)
Bπ (q2min), defined in Eq. (3.44), is plotted as a function of the mininum

value of the dilepton mass, q2min, which is taken to be the same in the numerator and denomi-
nator.

model-dependent extrapolation of the LQCD form factors. The LFU ratios defined in Eq. (3.30)
are then 7

R
(τ/µ)
Bπ

∣∣∣
LQCD

= 0.78(10) , R
(τ/µ)
Bπ

∣∣∣
LQCD+exp

= 0.66(2) . (3.43)

Therefore, it is still not possible to use only LQCD data and have a robust SM prediction for
R

(τ/µ)
Bπ . To avoid the artifact of the form factor extrapolations, we propose to use, instead of

Eq. (3.30), the following observable, 8

R̂
(ℓ/ℓ′)
PP ′ (q2min) ≡

∫ (M−m)2

q2min

dB
dq2

(P → P ′ℓν̄) dq2

∫ (M−m)2

q2min

dB
dq2

(P → P ′ℓ′ν̄) dq2
, (3.44)

where q2min ≥ m2
ℓ is to be chosen in such a way as to avoid the problematic low q2-region.

This observable is plotted in Fig. 3.8 as a function of q2min, where we see that choosing q2min ≳
10 GeV2 is already enough to obtain consistent results with both approaches. In order to be
conservative, we take q2min = 16 GeV2, which also corresponds to one of the q2-bins considered
in the experimental measurement of B → πlν̄ (with l = e, µ) at BaBar [126] and Belle [127].
Experimentally, choosing q2min = 16 GeV2 (resp. 10 GeV2) reduces the branching fraction of
B → πµν to 36% (resp. 64%) of the its full value, while it only reduces the branching fraction of
B → πτν to 51% (resp. 83%). For this choice of integration interval, we obtain the following SM
predictions,

R̂
(τ/µ)
Bπ (16 GeV2)

∣∣∣
LQCD

= 1.08(3) , R
(τ/µ)
Bπ (16 GeV2)

∣∣∣
LQCD+exp

= 1.07(2) , (3.45)

7Note that a similar problem is not present in the µ/e ratios, since the form factors cancel out to a
large extent in these observables because me ≪ mµ ≪ mB .

8A similar proposal has been recently made for the P → V ℓν̄ transitions in Ref. [125], where V denotes
a vector meson. In this case, the uncertainties related to the pseudoscalar form factor can be substantially
reduced by increasing the value of q2min.
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Observable Our SM prediction Exp. value Ref.

R̂
(µ/e)
Bπ (16 GeV2) 1.0007(1) �

R̂
(µ/e)
BsK

(16 GeV2) 1.0009(1) �

R̂
(τ/µ)
Bπ (16 GeV2) 1.08(3) < 6.4 [126�128]

R̂
(τ/µ)
BsK

(16 GeV2) 1.10(2) �

r̂
(µ)
Bπ (16 GeV2) 2.4(2)× 10−2 4(2)× 10−2 [56, 126,127]

r̂
(µ)
BsK

(16 GeV2) 1.7(1)× 10−2 �

r̂
(τ)
Bπ (16 GeV2) 5.4(3) > 0.44 [56, 128]

r̂
(τ)
BsK

(16 GeV2) 3.8(2) �

Table 3.6: Experimental results and our SM predictions for the observables defined in
Eq. (3.44) and (3.46) for q2min = 16 GeV2.

which are in perfect agreement. By using the same approach, we define the ratio of semilep-
tonic and leptonic decays as

r̂
(ℓ)
PP ′(q

2
min) ≡

B(P ′′ → ℓν)
∫ (M−m)2

q2min

dB
dq2

(P → P ′ℓν) dq2
, (3.46)

where the denominator accounts for the isospin average from Eq. (3.32), and P ′′ is defined as
in Eq. (3.31), i.e. P ′′ = B+ for B → πℓν̄ and Bs → Kℓν̄. Our predictions for these observables
are collected in Table 3.6, along with the existing experimental results. Currently, there is only
an experimental limit on the decay mode B(B → πτ ν̄) < 2.5 × 10−4 [128], which is expected
to be measured soon at Belle-II with a precision of O(20 %) [129]. For the reasons explained
above it would be very useful to separate the low and high-q2 regions. Note also that the
ratio of the Bs → K and Bs → Ds form factors has been studied in LQCD in Ref. [130].
The first experimental determination of the ratio of branching fractions of these modes has
been reported while this paper was in writing [131]. In that paper, the authors indeed make a
distinction between the low and high q2 regions, but with q2min = 7GeV2 that is perhaps too low.

3.2.4 New Physics Phenomenology

In this section, we use the observables discussed in Sec. 3.2.3 to constrain the effective cou-
plings defined in Eq. (2.1), which are then used to explore the new semileptonic observables
proposed in Sec. 3.2.1. In our analysis, we will focus on the LFU ratios of type µ/e and τ/µ, and
we will assume that NP couplings affect the decay to the heavier lepton in each ratio (i.e. µ’s
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for µ/e ratios and τ ’s for τ/µ). In other words, our analysis is based on the assumption,

|gij eα | ≪ |gij µα | ≪ |gij τα | , ∀ i, j (3.47)

which holds, for instance, in many NP scenarios aiming at explaining the hierarchy of fermion
masses, cf. e.g. Ref. [132,133]. However, the theoretical inputs given in Sec. 3.2.3 are sufficient
to recast our results to a more general NP scenario rather than the one defined in Eq. (3.47).

The experimental inputs used in our analysis are

i) The ratios of semileptonic decays R(ℓ/ℓ′)
PP ′ = B(P → P ′ℓν̄)/B(P → P ′ℓ′ν̄), which are listed

in Table 3.4 for the various transitions.

ii) The ratios of leptonic decays R(e/µ)
K = B(K → eν̄)/B(K → µν̄) and R

(τ/µ)
K = B(τ →

Kν)/B(K → µν̄), which is given in Table 3.4.

iii) The ratios of leptonic and semileptonic decays r
(ℓ/ℓ′)
PP ′ ≡ B(P → ℓν̄)/B(P → P ′ℓ′ν̄) ,

are simply the products of R(ℓ/ℓ′)
PP ′ and r

(ℓ)
PP ′ already presented in Tables 3.4 and 3.5,

respectively.

Note that for most transitions we opt for using the ratio r
(ℓ/ℓ′)
PP ′ , instead of the purely leptonic

one, R(ℓ/ℓ′)
P = B(P → ℓν̄)/B(P → ℓ′ν̄), since the decays P → ℓ′ν̄ (with ℓ′ = e, µ) are very rare

and still unobserved for many transitions. The only exception is the kaon sector, where R(e/µ)
K

and R(τ/µ)
K have been precisely measured [56], and in fact used in our analysis. In addition to

the observables listed above, we also consider the ones corresponding to B → πℓν̄, with the
choice of the cut q2 ≥ 16 GeV2, as described in Sec. 3.2.3.

Simpli�ed semileptonic expressions

Let us discuss the sensitivity of the different semileptonic observables defined in Sec. 3.2.1 to
the NP couplings defined in Eq. (2.1). Starting from the integrated branching fraction, without
loss of generality, we can write

Btot
BSMtot

= |1 + gV |2 + aBS |gS |2 + aBT |gT |2

+ aBSVRe
[
(1 + gV ) g

∗
S

]
+ aBT Re

[
(1 + gV ) g

∗
T

]
+ aBST Re

[
gS g

∗
T

]
,

(3.48)

where aBα are the numerically known coefficients obtained by integrating over the full range
of q2’s. Note that the flavor indices in gα ≡ gij ℓα are omitted. We evaluated all of aBα and
collected the results in Table 3.7 for each of the transitions considered in this section. These
values can be combined with the SM predictions quoted in Table 3.4 to compute the LFU ratios
defined in Eq. (3.30) for the most general NP scenario. For the B → πℓν̄ transition, we list the
coefficients aBα ≡ aBα(q

2
min) in Table 3.8, as obtained for different values of q2min and by using

the LQCD form factors from Refs. [80, 81]. Notice that the coefficient aBST vanishes identically.
This particular combination of effective couplings ∝ gSg

∗
T can only be probed by using the full

angular distribution, as we discuss in the following.
For the semileptonic observables O ∈ {Afb, Aλ, Aπ/3} defined in Sec. 3.2.1, we can write

in full generality,

⟨O⟩ BtotBSMtot
= ⟨OSM⟩ |1 + gV |2 + bOS |gS |2 + bOT |gT |2

+ bOSVRe
[
(1 + gV ) g

∗
S

]
+ bOTV Re

[
(1 + gV ) g

∗
T

]
+ bOST Re

[
gS g

∗
T

]
,

(3.49)
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Decay |Vij|−2 B(P → P ′ℓν̄) aBS aBT aBSV aBTV aBST

K+ → π0µν̄ 0.669(6) 15.74(12) 0.152(11) 4.43(3) 0.46(2) 0

D+ → π0µν̄ 0.066(4) 2.39(12) 1.17(18) 0.435(15) 0.47(4) 0

D+ → K0µν̄ 0.091(6) 1.69(5) 0.71(10) 0.465(10) 0.45(3) 0

B+ → D0µν̄ 14.8(8) 1.13(3) 0.68(6) 0.154(2) 0.188(9) 0

B+ → D0τ ν̄ 4.3(1) 1.076(9) 0.84(8) 1.533(9) 1.09(5) 0

Table 3.7: Numerical coefficients entering Eq. (3.48) for the different semileptonic transitions.
We also quote the values for the SM predictions BSMtot = B(P → P ′ℓν̄) after factoring out the
CKM matrix elements |Vij |. As mentioned in the text, the renormalization scale for all the
coefficients is taken to be µ = 2GeV, except for the B-meson decays for which µ = mb.

where Btot ≡ Btot(gV , gS , gT ) is the total branching fraction, bOα are the known numerical coeffi-
cients, and the brackets ⟨. . . ⟩ denote the integration over the full q2 range, 9

⟨O⟩ =
∫ (M−m)2

m2
ℓ

dO
dq2

dq2 . (3.50)

The values of all coefficients bOα are collected in Table 3.9. By comparing Table 3.7 and 3.9, it is
evident that Afb, Aλ and Aπ/3 are complementary to the branching fractions. In particular, Afb

is the only observable that depends on Re(gS g
∗
T ), with an enhanced sensitivity due to a large

numerical coefficients bAfb
ST , cf. Table 3.9. To assess the potential of these new observables to

reveal the presence of NP, we first need to determine the allowed ranges of the effective NP
couplings entering Eq. (3.49).

Decay q2min |Vub|−2Btot(q
2 ≥ q2min) aBS aBT aBSV aBTV aBST

B+ → π0µν̄

12 GeV2 2.1(2) 2.8(3) 5(1) 0.13(1) 0.23(3) 0

16 GeV2 1.4(1) 3.6(3) 5.2(6) 0.15(1) 0.23(1) 0

20 GeV2 0.66(3) 5.2(4) 5.8(5) 0.20(1) 0.23(1) 0

B+ → π0τ ν̄

12 GeV2 2.2(2) 2.0(1) 4.3(9) 1.5(1) 2.6(3) 0

16 GeV2 1.5(1) 2.4(1) 4.5(5) 1.7(1) 2.5(1) 0

20 GeV2 0.78(3) 3.3(1) 4.6(4) 2.1(1) 2.4(1) 0

Table 3.8: Numerical coefficients aBα ≡ aBα(q2min) appearing in Eq. (3.48) for the decaysB → πℓν̄
in the interval q2 ∈ (q2min, (mB −mπ)

2) with q2min fixed.

9In this notation the total branching fraction can be written as Btot =
〈
B(P → P ′ℓν̄)

〉
.
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Decay mode O
〈
OSM

〉
bOS bOT bOSV bOTV bOST

K− → π0µν̄

Afb 0.2726(3) 0 0 1.379(2) 0.343(13) 2.15(8)

Aπ/3 −0.1537(6) 0 0.066(5) 0 0 0

Aλ −0.091(4) 15.79(11) 0.065(4) 4.43(3) −0.154(6) 0

D− → π0µν̄

Afb 0.0386(11) 0 0 0.160(2) 0.29(3) 2.7(2)

Aπ/3 −0.3455(8) 0 0.84(13) 0 0 0

Aλ −0.890(3) 2.40(12) 1.1(2) 0.435(14) −0.156(14) 0

D− → K0µν̄

Afb 0.0580(8) 0 0 0.1714(15) 0.29(2) 1.78(12)

Aπ/3 −0.3307(7) 0 0.51(7) 0 0 0

Aλ −0.833(3) 1.69(5) 0.66(9) 0.465(10) −0.150(10) 0

B− → D0µν̄

Afb 0.0141(3) 0 0 0.0590(4) 0.116(5) 1.45(7)

Aπ/3 −0.3643(2) 0 0.50(5) 0 0 0

Aλ −0.9605(8) 1.13(3) 0.67(6) 0.154(2) −0.062(3) 0

B− → D0τ ν̄

Afb 0.3602(8) 0 0 0.4430(8) 0.87(4) 1.14(5)

Aπ/3 −0.0671(3) 0 0.18(2) 0 0 0

Aλ 0.324(3) 1.076(10) 0.052(5) 1.534(10) −0.36(2) 0

Table 3.9: Numerical coefficients for the coefficients bOi defined in Eq. (3.49) for the integrated
observables O ∈ {Afb, Aπ/3, Aλ} defined in Sec. 3.2.1. Notice that the “magic numbers" are
given for the decays of charged mesons, but that they are practically if one considers decays
of neutral mesons for the quantities as defined in Eq. (3.49).
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Constraints and predictions

To determine the allowed ranges of the NP effective couplings we consider the observables
described above, with the experimental results and SM predictions given in Tables 3.4, 3.5 and
3.6. In addition to these observables, we also require that B(Bc → ℓν̄) ≲ 30 % in order to avoid
the saturation of the Bc-meson lifetime, the value of which is known experimentally [57].These
quantities are used in Table 3.10 to constrain the couplings gij ℓA and gij ℓP from the leptonic
decays, and gij ℓV , gij ℓS and gij ℓT from the semileptonic ones. The renormalization scale µ is
taken to be µ = 2 GeV for the decays of K and D-mesons, and µ = mb for b-decays. 10 Several
comments regarding the results are in order:

� First, we note that there are two distinct real solutions for each NP coupling due to the
quadratic dependence of the branching fraction on gij ℓα , as it can be seen in Eqs. (3.48).
In Table 3.10, we choose the solution closer to the SM, since the other one would corre-
spond to a NP scenario with large NP couplings which is most likely in tension with the
direct searches at LHC.

� Our analysis was based on the assumption that the NP couplings to leptons are hierar-
chical, see Eq. (3.47). The CKM matrix element is eliminated in the ratios of leptonic or
semileptonic decays differing in the flavor of the lepton in the final state.

� For the semileptonic decays based on the transitions s → uτν, c → dτν and c → sτν,
there is no available phase space which is why the corresponding gij τV , gij τS and gij τT

effective couplings are not constrained by the low-energy data.

� The decays B → πℓν̄ with ℓ = e, µ are systematically combined in the experimental anal-
yses performed at the B-factories [126,127]. While this is the best approach to extracting
the |Vub| value, it is not straightforward to use these results in order to constrain the NP
scenarios in which the LFU is broken, as we assume. For this reason, we prefer not to
quote any constraint for this particular transition. We suggest to the future experimental
analyses to also quote the value of R(µ/e)

Bπ = B(B → πµν̄)/B(B → πeν̄), as done for
instance in certain studies of B → Dℓν̄ decays [103].

� The only significant discrepancy between theory and experiment in Table 3.10 is the well-
known B-physics LFU deviation in the B → Dℓν̄ transition [119, 120]. For this particular
transition, the allowed range for the effective couplings would become more constrained
if results concerning the B → D∗τν transition were also considered, see e.g. Ref. [63].
Note also that the small deviations observed in D0 → π+µν̄ decays become less signifi-
cant when the isospin average is considered, as discussed in Sec. 3.2.3.

We are now in a position to use the constraints obtained in Table 3.10 and predict the
value of new observables Afb, Aλ and Aπ/3, defined in Sec. 3.2.1, as a function of the allowed
ranges for the NP couplings. We first discuss their integrated values, see Eq. (3.50). These
quantities are plotted in Fig. 3.9 as functions of the real and imaginary parts of gij αS and gij αT ,
for each quark-level transition. The light-colored regions show the dependence of the physical
observables on the effective NP couplings, whereas the values allowed by the constraints given
in Table 3.10 are highlighted by darker colors. In that plot, we see that the sizeable deviations

10For reference, we use the following quark mass values: mMS
s (2 GeV) = 99.6(4.3)MeV,mMS

c (2 GeV) =

1.176(39) GeV [134], and mMS
b (mb) = 4.18(4) GeV [56].
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Figure 3.9: Predictions for the integrated observables ⟨Afb⟩, ⟨Aλ⟩ and ⟨Aπ/3⟩, defined in
Eq. (3.50), as a function of the Wilson coefficients gi ∈ {Re(gS),Re(gT ), Im(gS), Im(gT )}. The
darker regions are allowed by existing experimental constraints collected in Table 3.4.
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ui dj ℓ Re
(
gij ℓV

)
Re
(
gij ℓA

)
Re
(
gij ℓS

)
Re
(
gij ℓP

)
Re
(
gij ℓT

)

u s µ (0± 2)× 10−3 (2.2± 1.8)× 10−3 (−2± 9)× 10−4 (−9± 8)× 10−5 (−2± 9)× 10−3

u s τ � (2.2± 1.7)× 10−2 � (1.6± 1.1)× 10−2 �

c d µ (−3.0± 1.6)× 10−2 (7± 4)× 10−2 (−9± 7)× 10−2 (−2.6± 1.3)× 10−3 (−2.0± 1.4)× 10−1

c d τ � (−0.1± 1.1)× 10−1 � (1± 7)× 10−2 �

c s µ (3± 6)× 10−3 (−2± 4)× 10−2 (−1± 2)× 10−2 (0.7± 1.4)× 10−3 (1.2± 1.8)× 10−2

c s τ � (−3± 4)× 10−2 � (2± 2)× 10−2 �

u b µ � � � � �

u b τ −1± 2 (−1± 2)× 10−1 −0.3± 1.5 (3± 7)× 10−2 −0.3± 1.1

c b µ (0± 2)× 10−2 � (1± 2)× 10−1 (0± 8)× 10−1 (−1± 3)× 10−1

c b τ (7± 5)× 10−2 1± 4 (9± 6)× 10−2 (−2± 8)× 10−1 (1.2± 0.8)× 10−1

Table 3.10: 1σ constraints on the real part of the coefficients gij ℓα = gij ℓα (µ), with α ∈
{V,A, S, P, T}), derived from the observables collected in Table 3.4. The scale µ is taken
to be µ = 2 GeV for K and D-meson observables, and µ = mb for B-meson decays.

from the SM are indeed possible. For instance, ⟨Afb⟩(D → πµν̄) can be modified by varying
the NP coupling gT in the interval allowed by the data. Its value could not only change the sign
but its absolute value could be ≈ 2× larger than its SM value. Significant deviations for Afb

and Aπ/3, are also possible in D → Kµν̄, B → Dµν̄ and B → Dτν̄. It is therefore clear that
studying the angular distribution of these decays experimentally could offer a fertile ground for
searching the NP effects.

For decays to τ -leptons, such as B(s) → D(s)τ ν̄, Bs → Kτν̄ and B → πτ ν̄, the τ -
polarization is also experimentally accessible, since it can be reconstructed from the kinematics
of its decay products [135, 136]. From Fig. 3.9 we see that the lepton-polarization asymmetry
⟨Aλ⟩(B → Dτν̄) is very sensitive to the NP couplings, which can be increased (decreased) by
a pronounced NP coupling to the scalar (tensor) operator. For the processes involving muons,
it is not clear how the lepton polarization can be determined since muons are stable for the
length scales probed in most particle colliders. For these decays, the only observables that can
be reconstructed with known techniques are Afb and Aπ/3, and the predictions for Aλ are less
relevant, being given in Fig. 3.9 only for the sake of completeness.

Finally, we also explore the impact of NP effects on the differential distributions of the quanti-
ties (observables) discussed above. We focus on B → Dτν̄, as motivated by the discrepancies
observed in B-meson decays [119–122]. For simplicity, we consider the scenarios in which the
SM is extended by a O(1TeV) leptoquark boson S1 = (3̄,1, 1/3) or R2 = (3,2, 7/6), where
in the parentheses are the SM quantum numbers. These scenarios can accommodate the
observed LFU discrepancies and remain consistent with numerous low and high-energy con-
straints [28]. 11 Moreover, in these models the NP couplings satisfy gSL

(Λ) = −4 gT (Λ) and

11Another viable solution to the problem of B-anomalies is given by the vector LQ U1 = (3̄, 1, 2/3),
see e.g. Ref. [28] and references therein. Even though this scenario can also allow for a nonzero gcb τSR

,

the dominant coupling to explain the anomalies is gcb τVL
which does not a�ect the asymmetries considered
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Figure 3.10: Predictions for the differential distributions of Afb(q
2), Aλ(q2) and Aπ/3(q2) for the

B → Dτν̄ transition. The benchmark values for the NP scenarios are motivated by the LQ
scenarios that can accommodate the discrepancies observed in B → D(∗)lν̄ [28]. See text for
details.

gSL
(Λ) = +4 gT (Λ), respectively, at the matching scale Λ. After accounting for the running

effects from Λ ≈ 1 TeV down to µb = mb, these relations become gSL
(µb) ≈ −8.5 gT (µb) and

gSL
(µb) ≈ 8.14 gT (µb), respectively. We use the best-fit values for the NP couplings obtained in

Ref. [28] for these two leptoquark scenarios and plot the differential q2-distributions of different
observables. The results are shown in Fig. 3.10. We find that the overall normalization of Afb

and Aλ, as well as the branching fraction, can change by about 20% (S1) and by about 50 %

(R2), which are possibly large enough to be testable at the LHCb and Belle-II. Even more sig-
nificant are the predictions for Aπ/3, which can be strongly modified by the plausible values of
the NP couplings, especially in the region of intermediate q2’s.

Therefore, measuring the observables discussed in this section and their q2 shapes can
indeed be revelatory of the non-zero value of one of the NP couplings.

3.2.5 Conclusion

In this section, we made a comprehensive phenomenological analysis of the leptonic and
semileptonic decays of pseudoscalar mesons in the framework of a general low-energy ef-

above [28].
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fective theory which includes all possible interactions BSM, except for possible contributions
arising from the right-handed neutrinos.

One of our main goals was to derive the constraints on the NP couplings by relying only
on the decay modes for which the non-perturbative QCD uncertainties are fully under control,
i.e. which are handled through extensive numerical simulations of QCD on the lattice. In this
regard, the decay of pseudoscalar mesons offers the most precise predictions. By switching on
the NP couplings, one at a time, we were able to derive constraints by comparing the accurate
theoretical determination with the experimentally available results for the (partial) branching
fractions. To eliminate the dependence on the CKM matrix elements we combined similar
decay channels in suitable ratios.

The obtained constraints on the NP couplings are then used to predict the possible depar-
ture of the angular observables with respect to their SM values. To that effect, we showed that
one can construct at most four independent observables from the detailed study of the angular
distribution of the semileptonic pseudoscalar-to-pseudoscalar meson decays. Our results show
that these observables can indeed reveal the presence of physics BSM both through their val-
ues integrated over the available phase space or through modification of their q2-dependence
compared to the SM. Clearly more experimental work in this direction is very much needed.

Besides turning one NP coupling at a time, we also discussed the possibility of simultane-
ously including two non-zero couplings. Such a situation is realized in the scenarios in which
the SM is extended by a low-energy scalar leptoquark, such as R2 or S1, for which the scalar
and tensor couplings are both nonzero but the ratio of the two is fixed.

The future analyses along the one presented in this section should be updated and ex-
tended to include the decays to vector mesons in the final state, as long as the vector meson
is sufficiently narrow, as well as the semi-leptonic decay of baryons, which we will discuss is
Sect. 3.3. For that to be done one also needs reliable LQCD results for the form factors, ob-
tained by more than one LQCD collaboration. If these results were available, we would end up
with far more restrictive constraints on the New Physics couplings and many more observables
to predict. With the further improvement in the accuracy of the experimental results and the
hadronic matrix elements, one also has to start accounting for the electromagnetic corrections.
Such a situation is already present in the case of the kaon leptonic and semileptonic decays
for which we included electromagnetic corrections as estimated by means of chiral perturbation
theory with the low energy constants fixed from phenomenology. The strategies to control the
electromagnetic corrections through LQCD studies exist and the first results for the leptonic
decays of kaon appeared very recently in Ref. [137] and the result is compatible with what we
used in this paper.

3.2.6 Appendix

Angular conventions

Kinematics Our conventions for the decay P (p) → P ′(k)ℓ(k1)ν̄(k2) are summarized in
Fig. 3.3. In the P rest-frame, the leptonic and hadronic four-vectors q = p − k and k are
given by

qµ = (q0, 0, 0, qz) , kµ = (q0, 0, 0,−qz) , (3.51)

where

q0 =
M2 + q2 −m2

2M
, k0 =

M2 − q2 +m2

2M
, and qz =

λ1/2(M2, q2,m2)

2M
. (3.52)
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In the dilepton rest-frame, the leptonic four-vectors read

kµ1 = (Eℓ, |pℓ| sin θℓ, 0, |pℓ| cos θ) , kµ2 = (Eν ,−|pℓ| sin θℓ, 0,−|pℓ| cos θ) , (3.53)

where

Eℓ =
q2 +m2

ℓ

2
√
q2

, (3.54)

and Eν = |pℓ| =
√
q2 − Eℓ.

Polarization vectors In the P -meson rest-frame, we choose the polarization vectors of the
virtual boson V to be

εµ(±) = 1√
2
(0,±1, i, 0) , (3.55)

εµ(0) =
1√
q2

(qz, 0, 0, q0) , (3.56)

εµ(t) =
1√
q2

(q0, 0, 0, qz) , (3.57)

where q0 and qz are given in Eq. (3.52). These four-vectors are orthonormal and satisfy the
completeness relation (3.7).

3.3 Usefulness of baryons: The case of Λb → Λcℓν̄

Ever since the first indication of the lepton flavor universality violation (LFUV), reported by
BaBar in Refs. [119,138], we witnessed a growing interest in the high energy physics commu-
nity with a goal to clarify the situation and assess whether or not the LFUV is a real effect in the
decay modes based on b → cℓν̄ℓ decays, mediated by the charged currents that occur at tree
level in the Standard Model (SM). The BaBar collaboration was the first to measure

RD(∗) =
B(B → D(∗)τ ν̄)

B(B → D(∗)lν̄)

∣∣∣∣∣
l∈{e,µ}

, (3.58)

and they found that both RD and RD∗ are larger than predicted in the SM. Since B(B → D(∗)lν̄)

are known to be rather consistent with expectations, it has been inferred that B(B → D(∗)τ ν̄)exp

is larger than its SM prediction. To make that assessment clearer the lattice QCD community
has been working on computing the relevant form factors so that the hadronic uncertainties
could be minimized. While this has been achieved in the case of B → Dℓν̄ decays [62,77,139],
the first results regarding the B → D∗ℓν̄ℓ decay need more clarification [58, 140, 141]. On the
experimental side, after combining significant contributions from various experiments [121,122,
142–144], the HFLAV collaboration reported the following average values [145]:

RD = 0.340(30) , RD∗ = 0.295(14) , (3.59)

which, together, are more than 3σ larger than evaluated in the SM. Another exclusive b→ cℓν̄ℓ
channel, in which a similar test of LFUV could be made, has been experimentally studied by
the LHCb collaboration in Ref. [16], and the result

RJ/ψ =
B(Bc → J/ψτν̄)

B(B → J/ψµν̄)
= 0.71± 0.25 , (3.60)
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again appears to be a little less than 2σ larger than its SM value [124].
The above observations have motivated many physicists to build scenarios that go beyond

the SM (BSM) in order to accommodat the effects of LFUV while keeping a large plethora of
other processes compatible both with the SM and with experiment. Clearly, while the LFUV
ratios RD(∗) and RJ/ψ provide us with valuable information, they alone are insufficient to se-
lect among various possible BSM contributions to b → cτ ν̄. Indeed, much more information
about the effects of physics BSM can be extracted from the angular distributions of the above-
mentioned decay modes [146–151], some of which will be possible to study in the years to
come, at the Belle II and the LHC experiments.

Another exclusive channel, which is yet to be experimentally explored in the case of heavy
lepton in the final state, is Λb → Λcℓν̄. So far the LHCb collaboration presented the results
concerning the q2-shape of the differential decay rate, dΓ(Λb → Λcµν̄)/dq

2 [152], without a
normalization factor. This year, LHCb reported the first measurement of RΛc and found [153]

RΛc =
B(Λb → Λcτ ν̄)

B(Λb → Λcµν̄)
= 0.242± 0.076 , (3.61)

which is consistent with the SM prediction [154]. That measurement can be improved in multi-
ple ways. In this Chapter we will provide the expressions for the full angular distribution of this
decay, including the subsequent decay Λc → Λπ. We will then combine various coefficients
to construct the observables which could provide us with valuable information concerning the
BSM physics. While deriving the relevant expressions we separately show the results for spin
up and spin down of the outgoing lepton and/or baryon. In such a way we could propose new
quantities, including the well known lepton polarization asymmetry. To illustrate the power of
measuring angular observables relevant to Λb → Λcτ ν̄, we monitor their integrated character-
istics in several scenarios in which the BSM couplings are required to be consistent with Rexp

D(∗) .
Since the uncertainty of Rexp

J/ψ is large the BSM couplings selected from compatibility with Rexp

D(∗)

are automatically consistent with Rexp
J/ψ as well. We should also mention the constraints on the

effective NP couplings arising from the studies of the high-pT tails of the differential cross sec-
tion of pp→ ℓν at LHC. Such constraints in this case are not yet competitive with those obtained
from the low-energy observables, but in the future they might play an ever more important role,
cf. Refs. [155–160].

3.3.1 E�ective Theory, Matrix Elements, Decay Amplitude

To account for both the SM and the effects of physics BSM, we describe the b → cℓν̄ process
by the following low-energy effective field theory:

Leff =− 2
√
2GFVcb

[
(1 + gVL) (cLγµbL)(ℓLγ

µνL) + gVR (cRγµbR)(ℓLγ
µνL)

+ gSL
(µ) (cRbL)(ℓRνL) + gSR

(µ) (cLbR)(ℓRνL) + gT (µ) (cRσµνbL)(ℓRσ
µννL)

]
+ h.c. ,

=− GF√
2
Vcb

[
(1 + gV ) (cγµb)

(
ℓγµ(1− γ5)ν

)
− (1− gA) (cγµγ5b)

(
ℓγµ(1− γ5)ν

)

+ gS(µ) (cb)
(
ℓ(1− γ5)ν

)
+ gP (µ) (cγ5b)

(
ℓ(1− γ5)ν

)

+ gT (µ)
(
cσµν(1− γ5)b

)(
ℓσµν(1− γ5)ν

)]
+ h.c. , (3.62)
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written in both commonly used bases of operators. The two sets of the New Physics (NP)
couplings are related via, gV,A = gVR ± gVL , gS,P = gSR

± gSL
. After setting all of the NP

couplings to zero one obviously retrieves the SM Fermi theory.
The main stumbling point in the discussion of the weak interaction processes of hadrons is

the theoretical treatment of hadronic uncertainties. For the Λb → Λcℓν̄ decay, however, all of
the relevant form factors have already been computed on the lattice [154,161]. In this Chapter
we will use the same decomposition of the hadronic matrix elements as in the papers in which
the form factors have been computed, namely:

⟨Λc|cγµb|Λb⟩ = uΛc

[
F0(q

2)(MΛb
−MΛc)

qµ

q2
+ F⊥(q

2)

(
γµ − 2MΛc

Q+
pµ − 2MΛb

Q+
kµ
)

+ F+(q
2)
MΛb

+MΛc

Q+

(
pµ + kµ − (M2

Λb
−M2

Λc
)
qµ

q2

)]
uΛb

, (3.63)

⟨Λc|cγµγ5b|Λb⟩ = −uΛc

[
G0(q

2)(MΛb
+MΛc)

qµ

q2
+G⊥(q

2)

(
γµ − 2MΛc

Q−
pµ − 2MΛb

Q−
kµ
)

+G+(q
2)
MΛb

−MΛc

Q−

(
pµ + kµ − (M2

Λb
−M2

Λc
)
qµ

q2

)]
uΛb

, (3.64)

which, by virtue of the vector and axial Ward identities, imply:

⟨Λc|cb|Λb⟩ = F0(q
2)
MΛb

−MΛc

mb −mc
uΛcuΛb

, (3.65)

⟨Λc|cγ5b|Λb⟩ = G0(q
2)
MΛb

+MΛc

mb +mc
uΛcγ5uΛb

. (3.66)

Regarding the matrix element of the tensor density,

⟨Λc|ciσµνb|Λb⟩ = −uΛc

[
2h+(q

2)
pµkν − pνkµ

Q+

+ h⊥(q
2)

(
MΛb

+MΛc

q2
(qµγν − qνγµ)− 2

(
1

q2
+

1

Q+

)
(pµkν − pνkµ)

)

+ h̃+(q
2)

(
iσµν − 2

Q−
(MΛb

(kµγν − kνγµ)−MΛc(p
µγν − pνγµ) + pµkν − pνkµ)

)
(3.67)

+ h̃⊥(q
2)
MΛb

−MΛc

q2Q−

((
M2

Λb
−M2

Λc
− q2

)
(γµpν − γνpµ)

−
(
M2

Λb
−M2

Λc
+ q2

)
(γµkν − γνkµ) + 2(MΛb

−MΛc)(p
µkν − pνkµ)

)]
uΛb

,

from which one can also obtain ⟨Λc|ciσµνγ5b|Λb⟩ by simply using the relation

σµνγ5 = −
i

2
ϵµναβσαβ, (3.68)

with the convention ϵ0123 = +1. In the above decomposition matrix elements, p and k are the
four-momenta of Λb and Λc, respectively, while q2 = (p − k)2, and Q± = (MΛb

±MΛc)
2 − q2.

Kinematics and the explicit forms of spinors in the convenient reference frames are specified
in Appendix. The polarization of the virtual vector boson, ηµ(λ) satisfies the completeness
relation:

∑

λ∈{±,0,t}

η∗µ(λ)ην(λ)δλ = gµν , δ0 = −δ±,t = 1 . (3.69)
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With all of the above ingredients in hand we can write the Λb → Λcℓν̄ amplitude as:

Mλb
λcλℓ

GFVcb/
√
2
=HS−P,λb

λc
LS−P
λℓ

+
∑

λ

δλH
V−A,λb
λcλ

LV−A
λℓλ

+
∑

λ,λ′

δλδλ′H
T−T5,λb
λcλλ′

LT−T5
λℓλλ′

, (3.70)

where λb, λc, λℓ and λ(′) are the polarization states of Λb, Λc, the outgoing lepton and the virtual
vector boson, respectively. The hadronic parts in the above decomposition are evaluated by
using the explicit expressions for spinors, cf. Appendix. We get:

HS−P,λb
λc

= gS(µ) ⟨Λc|cb|Λb⟩+ gP (µ) ⟨Λc|cγ5b|Λb⟩,

HV−A,λb
λcλ

= (1 + gV ) η
∗
µ(λ) ⟨Λc|cγµb|Λb⟩ − (1− gA) η∗µ(λ) ⟨Λc|cγµγ5b|Λb⟩,

HT−T5,λb
λcλλ′

= gT (µ) η
∗
µ(λ)η

∗
µ(λ

′) ⟨Λc|cσµνb|Λb⟩ − gT (µ) η∗µ(λ)η∗µ(λ′) ⟨Λc|cσµνγ5b|Λb⟩.

(3.71)

In a more explicit form, after using the hadronic matrix elements listed in Eq. (3.63–3.67), the
above expressions read:

HS−P,±
± = gS

√
Q+

MΛb
−MΛc

mb −mc
F0(q

2)∓ gP
√
Q−

MΛb
+MΛc

mb +mc
G0(q

2),

HV−A,±
±0 = (1 + gV ) (MΛb

+MΛc)

√
Q−√
q2

F+(q
2)∓ (1− gA) (MΛb

−MΛc)

√
Q+√
q2

G+(q
2),

HV−A,±
±t = (1 + gV ) (MΛb

−MΛc)

√
Q+√
q2

F0(q
2)∓ (1− gA) (MΛb

+MΛc)

√
Q−√
q2

G0(q
2),

HV−A,∓
±± = −(1 + gV )

√
2Q− F⊥(q

2)± (1− gA)
√
2Q+G⊥(q

2),

HT−T5,±
±+− = −gT

[√
Q− h+(q

2)∓
√
Q+ h̃+(q

2)
]
,

HT−T5,±
±t0 = gT

[√
Q− h+(q

2)±
√
Q+ h̃+(q

2)
]
,

HT−T5,∓
±t± = −gT

[
(MΛb

+MΛc)

√
2Q−√
q2

h⊥(q
2)∓ (MΛb

−MΛc)

√
2Q+√
q2

h̃⊥(q
2)

]
,

HT−T5,∓
±±0 = gT

[
±(MΛb

+MΛc)

√
2Q−√
q2

h⊥(q
2) + (MΛb

−MΛc)

√
2Q+√
q2

h̃⊥(q
2)

]
,

(3.72)

where, for notational simplicity, we omit the renormalization scale dependence of the BSM
couplings gS,P,T . In what follows we assume that scale to be µ = mb. Note also that HT−T5,λb

λcλλ′
=

−HT−T5,λb
λcλ′λ

. As for the leptonic parts,

LS−P
λℓ

= ⟨ ℓν |u(λℓ)v(λν)|0⟩,

LV−A
λℓ,λ

= ηµ(λ) ⟨ ℓν |u(λℓ)γµv(λν)|0⟩,

LT−T5
λℓ,λλ′

= iηµ(λ)ην(λ′)⟨ ℓν |u(λℓ)σµνv(λν)|0⟩.

(3.73)
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The non-zero contributions read:

LS−P
+ = 2

√
q2β, LV−A

+,t = 2βmℓ,

LV−A
+,0 = −2βmℓ cos θ, LV−A

+,± = ±
√
2βmℓ sin θ,

LV−A
−,0 = 2

√
q2β sin θ, LV−A

−,± =
√
2q2β(± cos θ + 1),

LT−T5
+,0± = −

√
2q2β sin θ, LT−T5

+,0t = 2
√
q2β cos θ,

LT−T5
+,−+ = 2

√
q2β cos θ, LT−T5

+,±t = ∓
√

2q2β sin θ,

LT−T5
−,0± = −

√
2βmℓ(cos θ ± 1), LT−T5

−,0t = −2βmℓ sin θ,

LT−T5
−,−+ = −2βmℓ sin θ, LT−T5

−,±t =
√
2βmℓ(∓ cos θ − 1),

(3.74)

where β =
√

1−m2
ℓ/q

2. Similarly to the hadronic parts, also here LT−T5
λℓ,λλ′

= −LT−T5
λℓ,λ′λ

. Moreover,
we find that the leptonic amplitudes satisfy the following relations:

LλℓS−P =

√
q2

mℓ
LλℓV−A,t, L

+1/2,0t
T−T5 = −

√
q2

mℓ
L
+1/2,0
V−A , L

−1/2,0t
T−T5 = − mℓ√

q2
L
−1/2,0
V−A . (3.75)

In other words, all of the leptonic amplitudes are proportional to LV−A
λℓ,λ

, and we can therefore
redefine the hadronic contributions to

H̃λb+
λc± = −HV−A,λb

λc± +
2
√
q2

ml

(
±HT−T5,λb

λc±0 +HT−T5,λb
λc±t

)
,

H̃λb+
λc0

= −HV−A,λb
λc0

+
2
√
q2

ml

(
HT−T5,λb
λc+− +HT−T5,λb

λc0t

)
,

H̃λb+
λct

= HV−A,λb
λct

+

√
q2

ml
HS−P,λb
λc

,

H̃λb−
λc± = −HV−A,λb

λc± +
2ml√
q2

(
±HT−T5,λb

λc±0 +HT−T5,λb
λc±t

)
,

H̃λb−
λc0

= −HV−A,λb
λc0

+
2ml√
q2

(
HT−T5,λb
λc+− +HT−T5,λb

λc0t

)
,

H̃λb−
λct

= HV−A,λb
λct

+
ml√
q2
HS−P,λb
λc

.

(3.76)

The relations (3.75), therefore, help simplifying drastically the expression for the full decay
amplitude (3.70), which now becomes

Mλbλℓ
λc

=
GFVcb√

2

∑

λ∈{±,0,t}

H̃λbλℓ
λcλ

LV−A
λℓλ

, (3.77)

just like in the SM, except that the whole set of NP contribution is now collected in H̃λbλℓ
λcλ

. Of all
of the 32 terms, only the following 12 are nonzero:

M++
+ =

GFVcb√
2

2βmℓ

(
H̃++

+t − cos θ H̃++
+0

)
, M++

− = −GFVcb√
2

√
2βmℓ sin θ H̃

++
−− ,
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M−+
+ =

GFVcb√
2

√
2βmℓ sin θ H̃

−+
++ , M−+

− =
GFVcb√

2
2βmℓ

(
H̃−+

−t − cos θ H̃−+
−0

)
,

M+−
+ =

GFVcb√
2

2
√
q2β sin θ H̃+−

+0 , M+−
− = −GFVcb√

2

√
2q2β(1− cos θ) H̃+−

−− ,

M−−
+ =

GFVcb√
2

√
2q2β(1 + cos θ) H̃−−

++ , M−−
− = −GFVcb√

2
2
√
q2β sin θ H̃−−

−0 . (3.78)

This, to our knowledge, is a new result and represents the most compact way to express the
full Λb → Λcℓν decay amplitude in a generic BSM scenario.

3.3.2 Λb −→ Λc(→ Λπ)ℓν

Using the above expressions, we can now write the angular distribution of the Λb −→ Λcℓν

decay, ℓ ∈ {e, µ, τ}. In this Section we discuss such a distribution for various polarization states
of the outgoing Λc and ℓ. That will allow us to introduce the polarization asymmetries. We will
then consider the subsequent decay of Λc → Λπ and give the expression for the full angular
distribution of Λb −→ Λc(→ Λπ)ℓν, again separating the rates according to the polarization
states of the outgoing ℓ and Λ.

Detailed Λb → Λcℓν Decay Rate

We average over the polarizations of the initial state (Λb) and write the decay rate for each
combination of λc and λℓ. After inspection, we see that each such a differential decay rate can
be written as

d2Γλℓλc
dq2d cos θ

= aλℓλc(q
2) + bλℓλc(q

2) cos θ + cλℓλc(q
2) cos2 θ. (3.79)

The full decay rate is then obviously obtained by summing over λc and λℓ. The explicit expres-
sions for the coefficients aλℓλc , b

λℓ
λc

and cλℓλc are:

a++(q
2) = Nm2

ℓ

(
2
∣∣∣H̃++

+t

∣∣∣
2
+
∣∣∣H̃−+

++

∣∣∣
2
)
, a+−(q

2) = Nm2
ℓ

(
2
∣∣∣H̃−+

−t

∣∣∣
2
+
∣∣∣H̃++

−−

∣∣∣
2
)
,

a−+(q
2) = N q2

(
2
∣∣∣H̃+−

+0

∣∣∣
2
+
∣∣∣H̃−−

++

∣∣∣
2
)
, a−−(q

2) = N q2
(
2
∣∣∣H̃−−

−0

∣∣∣
2
+
∣∣∣H̃+−

−−

∣∣∣
2
)
,

b++(q
2) = −4Nm2

ℓ Re
(
H̃++

+0 H̃
++
+t

)
, b+−(q

2) = −4Nm2
ℓ Re

(
H̃−+

−0 H̃
−+
−t

)
,

b−+(q
2) = 2N q2

∣∣∣H̃−−
++

∣∣∣
2
, b−−(q

2) = −2N q2
∣∣∣H̃+−

−−

∣∣∣
2
,

c++(q
2) = Nm2

ℓ

(
2
∣∣∣H̃++

+0

∣∣∣
2
−
∣∣∣H̃−+

++

∣∣∣
2
)
, c+−(q

2) = Nm2
ℓ

(
2
∣∣∣H̃−+

−0

∣∣∣
2
−
∣∣∣H̃++

−−

∣∣∣
2
)
,

c−+(q
2) = N q2

(
−2
∣∣∣H̃+−

+0

∣∣∣
2
+
∣∣∣H̃−−

++

∣∣∣
2
)
, c−−(q

2) = N q2
(
−2
∣∣∣H̃−−

−0

∣∣∣
2
+
∣∣∣H̃+−

−−

∣∣∣
2
)
, (3.80)

where

N ≡ N (q2) =
G2
F |Vcb|2

√
λΛbΛc (q

2)

1024π3M3
Λb

(
1− m2

ℓ

q2

)2

, (3.81)

and λΛbΛc(q
2) = (q2 −M2

Λb
)(q2 −M2

Λc
). Using the above expressions we are now able to write

the polarization asymmetry with respect to the outgoing lepton ℓ and with respect to Λc, the
observables which we will come back to in the next Section.
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Before continuing, it is interesting to note that, based on the above formulas, we have:

b−+(q
2) = a−+(q

2) + c−+(q
2), b−−(q

2) = −a−−(q2)− c−−(q2). (3.82)

Since there are 4 angular distributions of the differential rate (3.79), each with 3 coefficients, it
means that one could construct at most 12 observables. That number reduces to 10, thanks
to the identities in Eq. (3.82). Notice also that the form (3.79) is similar to what one gets for
the semileptonic decays of the pseudoscalar mesons, such as B → Dℓν. It can be shown that
Eq. (3.82) also holds true for B → Dℓν, with an extra condition that b−(q2) = 0, which comes
from the fact that LV−A

−t = 0. 12

Inclusion of Λc → Λπ

In experiments, one reconstructs Λc from its decay products. This may give us access to new
observables. Here we focus on Λc → Λπ with a charged pion in the final state, and work in the
narrow width approximation in which we can use the Breit-Wigner distribution:

BW (k2) =
1

k2 −M2
Λc

+ iMΛcΓΛc

=⇒ |BW (k2)|2 ≃ π

MΛcΓΛc

δ
(
k2 −M2

Λc

)
. (3.83)

In that way we can decompose the 4-body amplitude in terms of the 3-body ones as

M(4)λbλℓ
λΛ

=
∑

λc=±
⟨ΛλΛπ|Λλcc ⟩Mλbλℓ

λc
BW (k2). (3.84)

A convenient parametrization of the matrix element ⟨ΛλΛπ|Λλcc ⟩ is,

⟨Λ+π|Λ+
c ⟩ = h+ cos

(
θΛ
2

)
, ⟨Λ+π|Λ−

c ⟩ = h−e
iϕ sin

(
θΛ
2

)
,

⟨Λ−π|Λ+
c ⟩ = −h+e−iϕ sin

(
θΛ
2

)
, ⟨Λ−π|Λ−

c ⟩ = h− cos

(
θΛ
2

)
. (3.85)

where θΛ is the angle between the z-axis and the direction of flight of Λ in the Λc rest frame,
while the parameters h+ and h− can be extracted from the total decay rate ΓΛc→Λπ and the
Λc-polarization asymmetry α, viz.

ΓΛc→Λπ = Γ+
Λc→Λπ + Γ−

Λc→Λπ =

√
λΛcΛπ

32πM3
Λc

(
|h+|2 + |h−|2

)
,

α =
Γ+
Λc→Λπ − Γ−

Λc→Λπ

Γ+
Λc→Λπ + Γ−

Λc→Λπ

=
|h+|2 − |h−|2
|h+|2 + |h−|2

, (3.86)

where λΛcΛπ = λΛπ(M
2
Λc
). The measurement of α has been recently improved at BES III [162],

and now its world average is α = −0.84(9) [56]. The sum |h+|2+|h−|2, is traded for a parameter
κ,

κ = |h+|2 + |h−|2 =
32πM3

Λc√
λΛcΛπ

ΓΛc→Λπ, (3.87)

12Note that in the case of B → Dℓν there is only one index, referring to the polarization state of the
outgoing lepton.
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so that

|h+|2 cos2
(
θΛ
2

)
+ |h−|2 sin2

(
θΛ
2

)
= (1 + α cos θΛ)

κ

2
,

|h+|2 cos2
(
θΛ
2

)
− |h−|2 sin2

(
θΛ
2

)
= (α+ cos θΛ)

κ

2
.

Using κ and α, we can describe Λc → Λπ and write the full angular distribution for the decay
Λb → Λc(→ Λπ)ℓν̄ℓ, which now involves 3 angles: θ, θΛ and ϕ, cf. Appendix. Similarly to what
we did in Eq. (3.77), in order to simplify the expression for the decay rate, we write

M(4)λbλℓ
λΛ

=
GFVcb√

2

∑

λ∈{±,0,t}

Ĥλbλℓ
λΛλ

LV−A
λℓλ

BW (k2), (3.88)

where Ĥλbλℓ
λΛλ

are obtained from H̃λbλℓ
λcλ

, given in Eq. (3.76), by

(
Ĥλbλℓ

+λ

Ĥλbλℓ
−λ

)
=


 h+ cos

(
θΛ
2

)
−h+e−iϕ

(
θΛ
2

)

h−e
iϕ sin

(
θΛ
2

)
h− cos

(
θΛ
2

)


(
H̃λbλℓ

+λ

H̃λbλℓ
−λ

)
. (3.89)

The resulting 8 amplitudes read:

M(4)++
λΛ

= BW (k2)
√
2βmℓ

(√
2Ĥ++

λΛt
−
√
2 cos θĤ++

λΛ0
− sin θĤ++

λΛ−

)
,

M(4)−+
λΛ

= BW (k2)
√
2βmℓ

(√
2Ĥ−+

λΛt
−
√
2 cos θĤ−+

λΛ0
+ sin θĤ−+

λΛ−

)
,

M(4)+−
λΛ

= BW (k2)
√
2q2β

(
(1− cos θ)Ĥ+−

λΛ+
+
√
2 sin θĤ+−

λΛ0

)
,

M(4)−−
λΛ

= BW (k2)
√
2q2β

(
(1 + cos θ)Ĥ−−

λΛ+
+
√
2 sin θĤ−−

λΛ0

)
,

(3.90)

where the superscript “(4)" indicates that we deal with the 4-body decay. By combining the
vector defined in Eq. (3.89) with its conjugate and by using Eq. (3.88) we obtain two useful
expressions, namely,

Ĥλbλℓ
+λ Ĥ

λ′bλ
′
ℓ

+λ′ + Ĥλbλℓ
−λ Ĥ

λ′bλ
′
ℓ

−λ′ =
κ

2

(
H̃λbλℓ

+λ H̃
λ′bλ

′
ℓ

+λ′ + H̃λbλℓ
−λ H̃

λ′bλ
′
ℓ

−λ′
)

+
ακ cos θΛ

2

(
H̃λbλℓ

+λ H̃
λ′bλ

′
ℓ

+λ′ − H̃
λbλℓ
−λ H̃

λ′bλ
′
ℓ

−λ′
)

− ακ sin θΛ
2

(
e−iϕH̃λbλℓ

+λ H̃
λ′bλ

′
ℓ

−λ′ + eiϕH̃λbλℓ
−λ H̃

λ′bλ
′
ℓ

+λ′

)
,

Ĥλbλℓ
+λ Ĥ

λ′bλ
′
ℓ

+λ′ − Ĥ
λbλℓ
−λ Ĥ

λ′bλ
′
ℓ

−λ′ =
ακ

2

(
H̃λbλℓ

+λ H̃
λ′bλ

′
ℓ

+λ′ + H̃λbλℓ
−λ H̃

λ′bλ
′
ℓ

−λ′
)

+
κ cos θΛ

2

(
H̃λbλℓ

+λ H̃
λ′bλ

′
ℓ

+λ′ − H̃
λbλℓ
−λ H̃

λ′bλ
′
ℓ

−λ′
)

− κ sin θΛ
2

(
e−iϕH̃λbλℓ

+λ H̃
λ′bλ

′
ℓ

−λ′ + eiϕH̃λbλℓ
−λ H̃

λ′bλ
′
ℓ

+λ′

)
.

(3.91)

The first of the above formulas shows that the summation over the spin projections of Λ allows
us to trade h+ and h−, for the overall factors κ and ακ. The same holds true in the second
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formula, which is useful when considering the polarization asymmetry with respect to Λ. Fur-
thermore, we see that the last line in both of the above formulas is vanishing when λb = λ′b,
λc = λ′c and λ = λ′, or when λ = 0 and λ′ = t.

The final missing ingredient is the 4-body phase space which we write as

dLIPS =
1

64(2π)6

√
λΛbΛc(q

2)

2M2
Λb

√
λΛcΛπ

2M2
Λc

(
1− m2

ℓ

q2

)
dq2dk2d cos θd cos θΛdϕ, (3.92)

and the full angular distribution reads:

d4Γ

dq2d cos θd cos θΛdϕ
=

1

64(2π)6

√
λΛbΛc(q

2)

2M3
Λb

√
λΛcΛπ

2M2
Λc

(
1− m2

ℓ

q2

)
1

4

∑

λℓλbλΛ

∫
dk2

∣∣∣M(4)λbλℓ
λΛ

∣∣∣
2
.

(3.93)

Before closing this Section we need to emphasize that Λc → Λπ as the secondary decay
is our choice. One could equally choose Λc → pKS , since both of them have nearly equal
branching fractions B(Λc → Λπ) = 1.30(7)% and B(Λc → pKS) = 1.59(8)% [56]. Currently,
however, Λc → Λπ is more advantageous because its asymmetry parameter α = −0.84(9) [56]
has been experimentally determined more accurately than in the case of Λc → pKS , for which
α = 0.2(5) [56]. We should also add that in some special cases we were able to compare our
expressions with those that are available in the literature and we agree with them [61,161,163–
166].

3.3.3 Angular distribution and observables

If we do not sum over λℓ in Eq. (3.93) we can use the formulas given in Eq. (3.91), which appear
to be particularly useful when combining the coefficients of the angular distribution in order to
define various observables. Concerning the spin projections of Λ we can either sum over them
or take their difference. In this way we arrive to the angular distribution of the full decay,

d4Γλℓ

dq2d cos θd cos θΛdϕ
= Aλℓ1 +Aλℓ2 cos θΛ

+
(
Bλℓ

1 +Bλℓ
2 cos θΛ

)
cos θ

+
(
Cλℓ1 + Cλℓ2 cos θΛ

)
cos2 θ

+
(
Dλℓ

3 sin θΛ cosϕ+Dλℓ
4 sin θΛ sinϕ

)
sin θ

+
(
Eλℓ3 sin θΛ cosϕ+ Eλℓ4 sin θΛ sinϕ

)
sin θ cos θ,

(3.94)
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and the angular distribution of the Λ-polarization asymmetry:

d4AλΛ
dq2d cos θd cos θΛdϕ

= Ãλℓ1 + Ãλℓ2 cos θΛ

+
(
B̃λℓ

1 + B̃λℓ
2 cos θΛ

)
cos θ

+
(
C̃λℓ1 + C̃λℓ2 cos θΛ

)
cos2 θ

+
(
D̃λℓ

3 sin θΛ cosϕ+ D̃λℓ
4 sin θΛ sinϕ

)
sin θ

+
(
Ẽλℓ3 sin θΛ cosϕ+ Ẽλℓ4 sin θΛ sinϕ

)
sin θ cos θ.

(3.95)

The q2-dependent coefficients entering Eq. (3.94) read:

A+
1 = κβ2N ′m2

ℓ

(∣∣∣H̃++
−−

∣∣∣
2
+ 2

∣∣∣H̃++
+t

∣∣∣
2
+
∣∣∣H̃−+

++

∣∣∣
2
+ 2

∣∣∣H̃−+
−t

∣∣∣
2
)
,

A+
2 = ακβ2N ′m2

ℓ

(
−
∣∣∣H̃++

−−

∣∣∣
2
+ 2

∣∣∣H̃++
+t

∣∣∣
2
+
∣∣∣H̃−+

++

∣∣∣
2
− 2

∣∣∣H̃−+
−t

∣∣∣
2
)
,

B+
1 = −4κβ2N ′m2

ℓ Re
(
H̃−+

−t H̃
−+
−0 + H̃++

+t H̃
++
+0

)
,

B+
2 = 4ακβ2N ′m2

ℓ Re
(
H̃−+

−t H̃
−+
−0 − H̃++

+t H̃
++
+0

)
,

C+
1 = κβ2N ′m2

ℓ

(
−
∣∣∣H̃++

−−

∣∣∣
2
+ 2

∣∣∣H̃++
+0

∣∣∣
2
−
∣∣∣H̃−+

++

∣∣∣
2
+ 2

∣∣∣H̃−+
−0

∣∣∣
2
)
,

C+
2 = ακβ2N ′m2

ℓ

(∣∣∣H̃++
−−

∣∣∣
2
+ 2

∣∣∣H̃++
+0

∣∣∣
2
−
∣∣∣H̃−+

++

∣∣∣
2
− 2

∣∣∣H̃−+
−0

∣∣∣
2
)
,

D+
3 = 2

√
2ακβ2N ′m2

ℓ Re
(
H̃++

+t H̃
++
−− − H̃−+

++ H̃
−+
−t

)
,

D+
4 = 2

√
2ακβ2N ′m2

ℓ Im
(
H̃++

+t H̃
++
−− − H̃−+

++ H̃
−+
−t

)
,

E+
3 = 2

√
2ακβ2N ′m2

ℓ Re
(
H̃−+

++ H̃
−+
−0 − H̃++

+0 H̃
++
−−

)
,

E+
4 = 2

√
2ακβ2N ′m2

ℓ Im
(
H̃−+

++ H̃
−+
−0 − H̃++

+0 H̃
++
−−

)
,

A−
1 = κβ2N ′q2

(∣∣∣H̃−−
++

∣∣∣
2
+ 2

∣∣∣H̃−−
−0

∣∣∣
2
+
∣∣∣H̃+−

−−

∣∣∣
2
+ 2

∣∣∣H̃+−
+0

∣∣∣
2
)
,

A−
2 = ακβ2N ′q2

(∣∣∣H̃−−
++

∣∣∣
2
− 2

∣∣∣H̃−−
−0

∣∣∣
2
−
∣∣∣H̃+−

−−

∣∣∣
2
+ 2

∣∣∣H̃+−
+0

∣∣∣
2
)
,

B−
1 = 2κβ2N ′q2

(∣∣∣H̃−−
++

∣∣∣
2
−
∣∣∣H̃+−

−−

∣∣∣
2
)
,

B−
2 = 2ακβ2N ′q2

(∣∣∣H̃−−
++

∣∣∣
2
+
∣∣∣H̃+−

−−

∣∣∣
2
)
,

C−
1 = κβ2N ′q2

(∣∣∣H̃−−
++

∣∣∣
2
− 2

∣∣∣H̃−−
−0

∣∣∣
2
+
∣∣∣H̃+−

−−

∣∣∣
2
− 2

∣∣∣H̃+−
+0

∣∣∣
2
)
,

C−
2 = ακβ2N ′q2

(∣∣∣H̃−−
++

∣∣∣
2
+ 2

∣∣∣H̃−−
−0

∣∣∣
2
−
∣∣∣H̃+−

−−

∣∣∣
2
− 2

∣∣∣H̃+−
+0

∣∣∣
2
)
,

D−
3 = −2

√
2ακβ2N ′q2Re

(
H̃−−

−0 H̃
−−
++ + H̃+−

−− H̃
+−
+0

)
,

D−
4 = 2

√
2ακβ2N ′q2 Im

(
H̃−−

−0 H̃
−−
++ + H̃+−

−− H̃
+−
+0

)
,
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E−
3 = 2

√
2ακβ2N ′q2Re

(
−H̃−−

−0 H̃
−−
++ + H̃+−

−− H̃
+−
+0

)
,

E−
4 = 2

√
2ακβ2N ′q2 Im

(
H̃−−

−0 H̃
−−
++ − H̃+−

−− H̃
+−
+0

)
. (3.96)

Once again β =
√

1−m2
ℓ/q

2, and

κβ2N ′ =
G2
F |Vcb|2
4096π4

√
λΛbΛc(q

2)

M3
Λb

(
1− m2

ℓ

q2

)2

B (Λc → Λπ) . (3.97)

The coefficients entering the angular distribution of the Λ-polarization asymmetry, cf. Eq. (3.95),
are not independent. More specifically, we find:

Ã±
1 = αA±

1 , Ã±
2 = A±

2 /α,

B̃±
1 = αB±

1 , B̃±
2 = B±

2 /α,

C̃±
1 = αC±

1 , C̃±
2 = C±

2 /α,

D̃±
3 = D±

3 /α, D̃±
4 = D±

4 /α,

Ẽ±
3 = E±

3 /α, Ẽ±
4 = E±

4 /α.

(3.98)

This means that measuring the asymmetry with respect to the polarization of the outgoing Λ

would not bring us any new information about the BSM physics with respect to Eq. (3.94). If one
of these quantities becomes experimentally accessible, it can be used as another determination
of the α parameter, and then both options for the secondary decay, Λc → pKS and Λc → pKS

would become equally interesting to study.
As we can see from the expressions for the differential decay width, for each polarization of

the outgoing lepton (3.94) there are 10 q2-dependent coefficients corresponding to λℓ = +1/2,
and 10 coefficients corresponding to λℓ = −1/2. In the latter case, however, it is easy to see
that not all the coefficients are linearly independent. Instead, one can express B−

1,2 in terms of
A−

1,2 and C−
1,2. If we normalize each coefficient by the full differential decay rate, we get a total

of 18 observables which we discuss in the next Section.

3.3.4 Observables

We already counted the number of independent coefficients in the angular distributions. We
found that the angular analysis of the 3-body decay, Λb → Λcℓν, can yield 10 independent
observables, while a detailed angular analysis of the 4-body decay, Λb → Λc(→ Λπ)ℓν, al-
lows us to define 18 observables. Let us denote by Oi one of the angular coefficients, O±

i ∈
{A±

1,2, B
±
1,2, C

±
1,2, D

±
3,4, E

±
3,4}, and define Oi = O+

i + O−
i and OA

i = O+
i − O−

i , where the super-
script A indicates that we deal with asymmetry with respect to the lepton polarization. 13

Integrated observables, RΛc and more

Each of the above-mentioned coefficients (observables), entering the full angular distribution
of Λb −→ Λc(→ Λπ)ℓν, is a q2-dependent function. To get the integrated characteristic of each

13We reiterate that the separation of the amplitudes with respect to the polarization of Λ does not
lead to any new interesting physics information. Instead, the separation of the amplitudes with respect
to the lepton polarization does provide us with new information.
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ai aS aVS aP aAP aV aTV aA aTA aT

Central Value 0.1011 0.1414 0.0105 −0.0272 0.1061 0.2947 0.2270 1.3289 3.4734

Error 0.0048 0.0071 0.0005 0.0013 0.0055 0.0156 0.0093 0.0528 0.1448

Table 3.11: Central values and uncertainty on each of the nine magic numbers ai entering the
expression for RΛc given in Eq. (3.103). Their correlation matrix is given in the text.

one of them, we will integrate over the available phase space, q2 ∈ [m2
ℓ , (MΛb

−MΛc)
2], and

normalize by the full decay width which is otherwise given by:

dΓ(Λb → Λcℓν)

dq2
= 8π

(
A1 +

C1

3

)
. (3.99)

In other words we define,

⟨Oi⟩ =
8π

Γ

(MΛb
−MΛc )

2∫

m2
ℓ

Oi dq
2, (3.100)

where the factor 8π is chosen for convenience so that ⟨A1⟩+ ⟨C1⟩/3 = 1.
Furthermore, for the quantities that are non-zero in the SM, we also introduce the ratios,

R(O(A)
i ) =

⟨O(A)
i ⟩

⟨O(A)
i ⟩SM

, (3.101)

which is a convenient way to measure the deviation of any given observable with respect to its
SM value.

Using the definition similar to Eq. (3.61), we write

RΛc =
B(Λb → Λcτν)

B(Λb → Λclν)

∣∣∣∣
l∈{e,µ}

, (3.102)

and we follow a common practice to assume that the New Physics affects only the decay with
τ in the final state, i.e. gτV,A,S,P,T ̸= 0, while gµ,eV,A,S,P,T = 0. The generic expression for RΛc can
be conveniently written in terms of the NP couplings, gV,A,S,P,T ≡ gτV,A,S,P,T , and the “magic
numbers" ai as:

RΛc =aS |gS |2 + aVSRe [(1 + gV)gS
∗] + aP |gP |2 + aAPRe [(gA − 1)gP

∗] + aV |1 + gV |2

+ aTV Re [gT (1 + gV
∗)] + aA |1− gA|2 + aTARe [gT (gA

∗ − 1)] + aT |gT |2 .

Since the parameter α does not enter the expression for the decay rate, the errors on the values
of ai are practically entirely due to form factors. We computed all of the magic numbers ai and
their values are given in Tab. 3.11. The correlation matrix has the following form
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Corra =




1 0.993 0.6985 -0.7 0.9492 0.764 0.8137 0.816 0.7969
· 1 0.6695 -0.6741 0.9666 0.7611 0.777 0.7784 0.7669
· · 1 -0.9987 0.7091 0.7203 0.8545 0.7893 0.7408
· · · 1 -0.7159 -0.7237 -0.8554 -0.7892 -0.7402
· · · · 1 0.8389 0.7555 0.7464 0.754
· · · · · 1 0.7229 0.7295 0.8344
· · · · · · 1 0.9703 0.877
· · · · · · · 1 0.9483
· · · · · · · · 1




,

where the order of rows and columns corresponds to the order of the magic numbers in
Tab. 3.11. Obviously, if we set all of the NP couplings to zero we obtain:

RSM
Λc

= 0.333± 0.013 . (3.103)

Before closing this Section, we also give the Standard Model values for all ⟨O(A)
i ⟩, in the case

of τ in the final state. We find:
⟨A1⟩SM = 1.035(1) , ⟨A2⟩SM = 0.658(6) , ⟨B1⟩SM = 0.049(8) , ⟨B2⟩SM = −0.093(9) ,

⟨C1⟩SM = −0.106(3) , ⟨C2⟩SM = −0.095(2) , ⟨D3⟩SM = 0.189(8) , ⟨D4⟩SM = 0 ,

⟨E3⟩SM = 0.069(2) , ⟨E4⟩SM = 0 ,
(3.104)

and
⟨AA

1 ⟩SM = −0.405(6) , ⟨AA
2 ⟩SM = −0.261(4) , ⟨BA

1 ⟩SM = 0.667(6) , ⟨BA
2 ⟩SM = 0.761(2) ,

⟨CA
1 ⟩SM = 0.293(7) , ⟨CA

2 ⟩SM = 0.300(7) , ⟨DA
3 ⟩SM = −0.492(8) , ⟨DA

4 ⟩SM = 0 ,

⟨EA
3 ⟩SM = −0.172(6) , ⟨EA

4 ⟩SM = 0 .
(3.105)

We should add, once again, that due to the fact that α(A−
1 +C−

1 ) = B−
2 and (A−

2 +C−
2 ) = αB−

1 ,
two of the above observables are not independent, so that the final number is indeed 18, as
discussed before.

3.3.5 Illustration and Phenomenology

We made an extensive analysis of all of the observables mentioned so far, and found that the
following 6 exhibit more pronounced sensitivity to the presence of physics BSM:

� Ratio RΛc , which in the SM is predicted to be RSM
Λc

= 0.333(13).

� Forward-backward asymmetry, ⟨Afb⟩ = ⟨B1⟩/2, which in the SM is expected to be ⟨Afb⟩SM =

0.049(8).

� Lepton polarization asymmetry, ⟨Aτ ⟩ = ⟨AA
1 ⟩+ ⟨CA

1 ⟩/3. In the SM, ⟨Aτ ⟩SM = −0.307(7).

� Asymmetry “π/3", ⟨Aπ/3⟩ = ⟨C1⟩/4; 14

14From the full angular distribution (3.94), after integrating over q2, θΛ and ϕ, Aπ/3 is obtained by
selecting the events as follows:

Aπ/3 =
1

Γ

[∫ π/3

0

+

∫ π

2π/3

−
∫ 2π/3

π/3

]
dΓ

d cos θ
sin θ dθ. (3.106)
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gi ∈ C gi ∈ R gi ∈ C and Re[gi] = 0

gVL 0.074 0.074 ±0.39 i

gSL
−0.76± 0.80 i 0.12 ±0.48 i

gT 0.10± 0.17 i −0.032 ±0.10 i

gSL
= +8.1 gT −0.094± 0.51 i N.A. ±0.48 i

gSL
= −8.5 gT 0.16 0.16 ±0.48 i

Table 3.12: Best fit values for the couplings obtained by requiring RD and RD∗ to be consistent
with the experimental values. Apart from gVL , all the couplings are scale-dependent. The
above results refer to the scale µ = mb. Notice that the last two scenarios verify gSL

= ±4gT at
µ ≃ 1TeV.

� ⟨D4⟩, which is strictly zero in the SM, ⟨D4⟩SM = 0.

� ⟨EA
4 ⟩, which is also zero in the SM, ⟨EA

4 ⟩SM = 0.

The last two quantities become non-zero only if the imaginary part of one of the NP couplings
is different from zero.

We reiterate that we assume that the LFUV in the b → cℓν̄ decays originates from the
pronounced NP coupling to τ , g(τ)V,A,S,P,T ̸= 0, while we keep g

(e,µ)
V,A,S,P,T = 0. In order to select

the plausible values of the couplings gV,A,S,P,T ≡ g
(τ)
V,A,S,P,T we use the current experimental

values of RD and RD∗ , and extract the allowed ranges of each of the couplings by using the
expressions presented in Ref. [28, 29]. Obviously, since we have only two experimental input
values, we cannot simultaneously vary all of the BSM couplings. Instead, we restrain our
attention to four scenarios of physics BSM that have been actively investigated in recent years.
More specifically, we either allow only gVL or only gSL

to be non-zero, or we consider a peculiar
combination of two BSM couplings which satisfy gSL

= ±4gT at the high energy scale, µ =

O(1 TeV). Due to the renormalization group running, at the µ = mb this last relation becomes
gSL
≃ 8.1gT , and gSL

≃ −8.5gT [25]. In Tab. 3.12 we present the best fit values for each of the
scenarios. We first allow the couplings to be complex, and then impose them to be either fully
real or fully imaginary. Notice that in the scenario with gSL

= +4gT there is no real solution that
would accommodate both Rexp

D and Rexp
D∗ [29].

For each of the values of the couplings given in Tab. 3.12 we compute the observables men-
tioned above and compare them with their SM values, following Eq. (3.101). For the quantities
which are zero in the SM, such as ⟨D4⟩ and ⟨EA

4 ⟩, we just give the values which are non-zero
in the presence of NP. The response of the observables mentioned above to the non-zero BSM
couplings is given in Tab. 3.13.
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Observable R(RΛc) R(Afb) R(Aτ ) R(Aπ/3) ⟨D4⟩ ⟨EA
4 ⟩

gVL cplx 1.153(0) 1 1 1 0 0

gSL
cplx 1.147(3) -0.77(25) 0.45(1) 0.87(0) 0.12(0) 0

real 1.046(1) 1.24(4) 0.81(1) 0.96(0) 0 0

im 1.077(1) 0.93(0) 0.70(1) 0.93(0) 0.08(0) 0

gT cplx 1.095(8) 2.92(39) 0.50(1) 1.38(2) 0.10(0) -0.25(1)

real 1.110(2) 1.51(15) 0.99(0) 0.91(0) 0 0

im 1.104(2) 1.83(17) 0.88(0) 1.02(1) 0.06(0) -0.15(0)

gSL
= 4gT cplx 1.137(1) 2.02(22) 0.74(1) 0.93(1) 0.11(0) -0.09(0)

im 1.114(1) 1.91(19) 0.66(1) 0.94(0) 0.11(0) -0.08(0)

gSL
= −4gT cplx 1.006(3) 1.17(32) 0.72(1) 1.00(0) 0 0

im 1.114(1) 0.53(7) 0.66(1) 0.94(0) 0.04(0) 0.09(0)

Table 3.13: Illustration of the change of the observable with respect to its SM value for different
choices of the New Physics couplings chosen as discussed in the text and explicitly given in
Tab. 3.12. Notice that we separate the cases in which gi ∈ C, gi ∈ R or purely imaginary. The
error on D4 and EA

4 only takes into account the error on the form factors, not on α, which is
taken to be α = 0.82 [61].

Therefore measuring the angular observables entering the Λb → Λcτν can give us access to
four of the above quantities which in turn can be very helpful for identifying the Lorentz structure
of the BSM contribution.To figure out whether or not there is a BSM phase, one needs to go
beyond and consider the secondary decay Λb → Λc(→ Λπ)τν which then gives a possibility to
get a non-zero contribution to ⟨D4⟩ and ⟨EA

4 ⟩.
We now go through various scenarios to further illustrate the usefulness of the quantities

mentioned above.

Only gVL
̸= 0

Considering the scenarios in which the only BSM coupling different from zero is gVL , practically
all of the observables are SM-like, because 1+gVL enters as an overall factor with respect to the
SM Lagrangian, cf. Eq. (3.62). Since the angular observables are normalized to the decay rate,
the effect of this coupling is not changing the SM predictions. The only exception is precisely
RΛc , the value of which does change, as we show in Fig. 3.11. An example of the explicit BSM
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Figure 3.11: RΛc
is plotted in the plane of Re(gVL

) - Im(gVL
). The blue circle corresponds to

the values of gVL
allowed by simultaneously requiring RD and RD∗ to be compatible with Rexp

D
and Rexp

D∗ . We also show the 2σ region defined by Rexp
Λc

(between the two red circles). The
green dot corresponds to the SM value. Various values of RΛc

are shown by the graded gray
regions.

model that falls into this category is the one with a light [O(1TeV)] vector leptoquark [167–174].

gSL,T ̸= 0

In the case in which only the gSL
̸= 0 is allowed, we find that a particularly sensitive quantity is

⟨Aπ/3⟩ and the τ -polarization asymmetry, ⟨Aτ ⟩. However, since the preferred values of gSL
by

Rexp
D and Rexp

D∗ have a large imaginary part, also ⟨D4⟩ becomes significantly different from zero,
cf. Tab. 3.13. A representative example of such a scenario would be the extension of the SM
with two Higgs doublets (2HDM), which provides a new tree-level mediator for theB → D(∗)τ ν̄τ ,
namely a charged Higgs boson. The complex coupling, selected by Rexp

D and Rexp
D∗ , is however

unusual and in particular inconsistent with a Type II 2HDM [151, 175, 176]. Note also that a
purely real gSL

is inconsistent with Rexp
D and Rexp

D∗ to almost 3σ.
Another possibility is to only allow gT ̸= 0. Such a scenario could be built up from the scalar

leptoquarks R2 = (3, 2, 7/6) and S1 = (3̄, 1, 1/3), coupled in such a way that their respective
non-zero gSL

cancel, in which case only gT ̸= 0 would survive. 15 In such a scenario, from the
requirement of compatibility with Rexp

D and Rexp
D∗ , we again obtain a possibility of Im(gT ) ̸= 0,

which could be verified by measuring ⟨D4⟩ or ⟨EA
4 ⟩. Otherwise, ⟨Afb⟩ appears to be more

sensitive to this scenario than the other observables mentioned in this Section.
We now consider the scenarios that are often invoked when trying to accommodate Rexp

D

and Rexp
D∗ in a minimalistic NP scenario. In the first one, one allows for the O(1TeV) scalar

leptoquark R2 [35,177–179] in which, at the high energy scale we have gSL
= 4gT which arises

after applying the Fierz identities in order to match with the effective theory (3.62). That relation
becomes gSL

≃ 8.1gT at the µ = mb, to which we refer in the following. A peculiarity of this
scenario is that the gSL

resulting from compatibility with Rexp
D and Rexp

D∗ has a large imaginary

15Note that the leptoquarks are speci�ed by their SM gauge group quantum numbers.
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Figure 3.12: Scenario with only gSL
̸= 0 shows that the only Re(gSL

) and Im(gSL
), allowed by

Rexp
D and Rexp

D∗ , are complex and large (blue regions). The gray regions correspond to various
values of ⟨Aπ/3⟩ and to ⟨Aτ ⟩ in the left and right panel respectively. Both quantities are smaller
than their SM counterparts, denoted by green dots in the plots. Red circles correspond to gSL

consistent with the current Rexp
Λc

.

Figure 3.13: Scenario with non-zero NP couplings satisfying gSL
= 4gT is shown in the

Re(gSL
)-Im(gSL

) plane. The blue regions are selected by Rexp
D and Rexp

D∗ to 1, 2 and 3 σ. The
gray regions correspond to various values of ⟨Afb⟩ and to ⟨D4⟩ in the left and right panel re-
spectively. Their SM values are indicated by green dots while the red circles limit the domain of
gSL

consistent with Rexp
Λc

.

part, and different from zero to more than 3σ. In order to check for the validity of this scenario,
it is therefore of major importance to get ⟨D4⟩ or ⟨E4⟩. Other quantities are also important to
measure as all of them, ⟨Afb⟩, ⟨Aπ/3⟩, ⟨Aτ ⟩, are likely to be smaller than their respective SM
values. In Fig. 3.13 we illustrate the situation for ⟨Afb⟩ and for ⟨D4⟩. Since the sign of the phase
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is not constrained, the available values of ⟨D4⟩ are symmetric.

Figure 3.14: Scenario with non-zero NP couplings satisfying gSL
= −4gT . The values of

Re(gSL
)-Im(gSL

) in the blue regions are selected by Rexp
D and Rexp

D∗ to 1, 2 and 3 σ. The gray
regions correspond to various values of ⟨Afb⟩ and to ⟨Aτ ⟩ in the left and right panel respectively.
The SM values are indicated by green dots while the red circles limit the domain consistent with
Rexp

Λc
.

The second scenario in which gSL,T ̸= 0, and which can explainRexp
D andRexp

D∗ is the minimal
extension of the SM by a low energy S1 scalar leptoquark [33,39,180–182]. In that scenario the
two non-zero effective couplings are related as gSL

= −4gT , a relation that at the low energy
scale µ = mb becomes gSL

≂ −8.5gT . Like in the previous cases, one would obviously prefer all
the observables to be measured. None of the observables exhibits more pronounced sensitivity
with respect to the others.. We select to show in Fig. 3.14 how ⟨Afb⟩ and ⟨Aτ ⟩ vary with respect
to the SM when gSL

̸= 0.

More comments on the gSL
= +4gT scenario

As we showed above, the model in which the SM is extended by a presence of the O(1TeV)

scalar leptoquark R2 is peculiar because the compatibility with the measured Rexp
D and Rexp

D∗

necessitates the NP coupling to have a large imaginary part. We show in Fig. 3.15 how the
measurement of three quantities, RΛc , ⟨Afb⟩ and ⟨D4⟩, can help distinguishing this scenario
from the SM.

Another point, which was abundantly discussed in the literature regarding B → K∗ℓ+ℓ−,
is the interest in defining the forward-backward asymmetry in one half of the physics q2-region
allowed in this decay. The situation with several observables, including the forward-backward
asymmetry, is that they change the sign when moving from the low to large q2’s. 16 As a result
their integrated characteristics, cf. Eq. (3.100), become small due to significant cancellations.
It would be therefore beneficiary for this research if one could split the data into high and low
q2-regions, so that the absolute values of the resulting observables become larger. Note also

16To be more speci�c, we �nd that Afb(q
2), B2(q

2), Aτ (q
2) are the observables which change the sign

when going from low to high q2 regions.

69



0.32 0.34 0.36 0.38 0.40 0.42
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.32 0.34 0.36 0.38 0.40 0.42 0.44

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

Figure 3.15: Scenario of NP with a low energy scalar leptoquark R2 verifying gSL
= +4gT .

We show the regions of predicted values of RΛc , ⟨Afb⟩ and ⟨D4⟩, which clearly differ from SM,
so that the measurement of these quantities can help (in)validating this model. Note that the
couplings are selected in such a way as to ensure the compatibility with Rexp

D and Rexp
D∗ to 1 and

2 σ.

that the shape of D4(q
2) is somewhat skewed towards the larger q2’s when Im(gSL

) ̸= 0, cf.
Fig. 3.16.

Finally, looking for the point q20 at which a given observable changes the sign could provide
us with helpful information as well. In particular, in the SM, we find that,

ASM
fb (q20) = 0, for q20 = 8.0(1) GeV2 . (3.107)

However, when switching on Im(gSL
) = 0.48, which is consistent with the scenario discussed

in this subsection, that zero is shifted to a larger q20 = 8.6(1) GeV2, see Fig. 3.16.

Figure 3.16: Displayed are the q2 shapes of Afb(q
2) and D4(q

2), in the SM (red curves) and
in the scenario with gSL

= 4gT where we choose the purely imaginary, Im(gSL
) = 0.48 (blue

curve). Notice that the zero of Afb(q
2) is larger in this NP scenario with respect to the SM value.
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3.3.6 Summary on baryons

In this work we revisited the problem of distinguishing the NP scenario in the exclusive b→ cℓν̄

decays, by focusing on the Λb −→ Λcℓν decay mode. This mode has received considerable
attention in recent years, it is being studied at the LHCb, and more importantly the hadronic
matrix elements relevant to the SM operators and those arising in the BSM scenarios have all
been computed by means of numerical simulations of QCD on the lattice.

By working in a general low energy effective theory, in which we included all of the pos-
sible NP contributions (without considering the right-handed neutrinos), we first provided the
expression for the angular distribution of this decay. In doing so we separated the contributions
arising from various polarization states of the outgoing baryon and lepton. In that way we were
able to show that one can at most build 10 different observables. That number rises to 18, if
one considers the secondary decay, which we choose to be Λc → Λπ. Notice that we can have
extra 18 observables if we also include the coefficients that would come with the polarization
asymmetries regarding the final Λ. However, those extra observables would not be informative,
as far as NP is concerned but it would lead to yet another determination of the polarization
asymmetry parameter of Λ, referred to as α.

In an ideal scenario, one would obviously prefer to have as many observables in order to
test the viability of various scenarios of physics BSM. In our phenomenological analysis we
restrained our attention to a subset of 6 observables which we find to exhibit more pronounced
sensitivity to the non-zero couplings to NP. In simplified scenarios, used to accommodate Rexp

D(∗) ,
one is turning on one coupling at a time.

If we assume NP to arise from the gVL coupling, we find that all our observables remain
SM-like, except for the ratio RΛc = |1 + gVL |2RSM

Λc
.

Other simplified scenarios arise from the extensions of the SM by including an O(1TeV)

scalar leptoquark, giving rise to two NP couplings, gSL
and gT , couplings to the (left) scalar

and tensor quark operators respectively. These couplings are, due to Fierz identities, related to
each other as gSL

= ±4gT , at the high energy scale. In these scenarios all observables can be
very different from their SM counterparts. We isolated a few such observables to show how they
can be used to validate or to refute the scenarios that are currently used in order to describe
the deviations of Rexp

D(∗) with respect to their SM values, RSM
D(∗) . In particular, to accommodate

those discrepancies in the scenario with gSL
= +4gT , the NP coupling must have a non-zero

complex phase, in which case some of the observables (such as ⟨D4⟩) would be a clear test of
validity because ⟨D4⟩ ≠ 0 only if Im(gSL

) ̸= 0.
We also discuss the impact of the recently reported Rexp

Λc
, the result which can and should

be improved. Importantly, however, we must emphasize that the observables arising from the
angular distribution, such as those discussed in this Chapter, represent a fine and powerful
check of the presence of NP at low energy scales. One can, for example, easily build a sce-
nario in which RD(∗) , RJ/ψ and RΛc are consistent with their SM values but that several of the
angular observables have values very different from SM. It is therefore important to measure
these quantities. Throughout our phenomenological discussion we referred to the quantities
integrated over the available q2’s. Needless to say that in some cases, such as the forward-
backward asymmetry with respect to the outgoing lepton, the q2-dependence of the observ-
ables could provide us with very interesting information and potentially reveal the presence of
physics BSM.

We should also stress that the hadronic form factors for all of the operators needed for the
full NP analysis of this decay have been computed on the lattice, which is not the case with

71



the modes involving mesons, such as B → D(∗)ℓν̄, for which the tensor form factors have not
been computed on the lattice. It should be kept in mind, however, that the hadronic matrix
elements relevant to Λb → Λcℓν̄ have been computed by only one lattice group and it is of
major importance for this research that another lattice QCD study is made, preferably by using
a different discretization of QCD.
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Appendix

In this appendix we give additional details which might be important for a reader willing to repeat
the computation the results of which are presented in the body of this Chapter. To discuss the
kinematics of Λb(p)→ Λc(k)ℓ(k1)ν̄(k2), we introduce q = k1 + k2 = p− k, and choose a z-axis
along the flight of Λc. Angle θ is defined in the frame in which |q⃗| = 0 between the z-axis and
the direction of flight of ℓ.

In the Λb rest frame we then have: MΛb
= EΛc + q0. By combining M2

Λb
=M2

Λc
+ q2 + 2k · q

with k · q = EΛcq0 + q2z =MΛb
q0 − q2 we get

q0 =
M2

Λb
−M2

Λc
+ q2

2MΛb

, EΛc =
M2

Λb
+M2

Λc
− q2

2MΛb

, qz =
√
q20 − q2 =

√
λΛbΛc(q

2)

2MΛb

, (3.108)

where we use

λΛbΛc(q
2) =M4

Λb
+M4

Λc
+ q4 − 2M2

Λb
M2

Λc
− 2M2

Λb
q2 − 2M2

Λc
q2 = Q+Q−, (3.109)

where
Q± = (MΛb

±MΛc)
2 − q2 , (3.110)

which we already used in Sec. 3.3.1.
In the dilepton rest frame:




√
q2

0
0
0


 =




Eν
−pℓ sin θ

0
−pℓ cos θ


+




Eℓ
pℓ sin θ

0
pℓ cos θ


 , (3.111)

and

k1 · k2 =
q2 −m2

ℓ

2
, Eℓ =

q2 +m2
ℓ

2
√
q2

, Eν =
q2 −m2

ℓ

2
√
q2

. (3.112)

To go from the first frame to the other, we use a Lorentz boost,
√
q2 = γq0+βγqz, 0 = βγq0+γqz,

so that the boost parameters are β = −qz/q0 and γ = q0/
√
q2, and therefore the components

of the momenta of hadrons in the second frame are:

p =
1√
q2

(MΛb
q0, 0, 0,MΛb

qz) =
1

2
√
q2

(
M2

Λb
−M2

Λc
+ q2, 0, 0,

√
λΛbΛc(q

2)

)
, (3.113)

k =
1√
q2

(
q0(MΛb

− q0) + q2z , 0, 0, q
2
z

)
=

1

2
√
q2

(
M2

Λb
−M2

Λc
− q2, 0, 0,

√
λΛbΛc(q

2)

)
, (3.114)

from which one can compute other scalar products.
For completeness, we also give the expression for the spinors in the Dirac basis:

u(λℓ = ±1/2) =
√
Eℓ +mℓ

(
ξ±

σ⃗·p⃗ℓ
Eℓ+mℓ

ξ±

)
, v(λℓ = ±1/2) =

√
Eℓ +mℓ

(
σ⃗·p⃗ℓ

Eℓ+mℓ
ξ∓

ξ∓

)
, (3.115)

where σ⃗ are the Pauli matrices and the spinors ξ± are given by

ξ+ = exp

(
i
σ⃗ · θ⃗
2

)(
1
0

)
, ξ− = exp

(
i
σ⃗ · θ⃗
2

)(
0
1

)
. (3.116)
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Explicitly, for the lepton in the dilepton rest-frame, we have

ξ+ =

(
cos θ2
sin θ

2

)
, ξ− =

(
− sin θ

2

cos θ2

)
, (3.117)

and

uℓ,+1/2 =
√
Eℓ +mℓ




cos θ2
sin θ

2
pℓ

El+mℓ
cos θ2

pℓ
Eℓ+mℓ

sin θ
2


 , uℓ,−1/2 =

√
Eℓ +mℓ




− sin θ
2

cos θ2
pℓ

Eℓ+mℓ
sin θ

2

− pℓ
Eℓ+mℓ

cos θ2


 . (3.118)

For the neutrino in the dilepton rest-frame, we take θ → θ + π:

vν,+1/2 =
√
Eν




cos θ2
sin θ

2

− cos θ2
− sin θ

2


 . (3.119)

As for the baryons, in the Λb rest frame, |θ⃗| = 0, we simply have

uΛb,+1/2 =
√

2MΛb




1
0
0
0


 , uΛb,−1/2 =

√
2MΛb




0
1
0
0


 ,

uΛc,+1/2 =
√
MΛc + EΛc




1
0
qz

MΛc+EΛc

0


 , uΛc,−1/2 =

√
MΛc + EΛc




0
1
0

−qz
MΛc+EΛc


 . (3.120)

Finally, the spinors for Λc and Λ in the Λc rest frame, θ⃗ = ϕe⃗z + θΛe⃗x, read:

ξ+ =

(
e

iϕ
2 cos θΛ2
sin θΛ

2

)
, ξ− =

(
− sin θΛ

2

e
−iϕ
2 cos θΛ2

)
, (3.121)

and

uΛc,+1/2 =
√
2MΛc




1
0
0
0


 , uΛc,−1/2 =

√
2MΛc




0
1
0
0


 ,

uΛ,+1/2 =
√
EΛ +MΛ




cos θΛ2 e
iϕ
2

sin θΛ
2

pℓ
EΛ+MΛ

cos θΛ2 e
iϕ
2

pℓ
EΛ+MΛ

sin θΛ
2


 , uΛ,−1/2 =

√
EΛ +MΛ




− sin θΛ
2

cos θΛ2 e
− iϕ

2

pℓ
EΛ+MΛ

sin θΛ
2

− pℓ
EΛ+MΛ

cos θΛ2 e
− iϕ

2


 .

(3.122)
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Chapter 4

Flavor Physics in High-pT collisions at

the LHC

4.1 Introduction

Even though low-energy flavor observables provide the most stringent constraints on semilep-
tonic transitions, their sensitivity strongly depends on the (unknown) flavor structure beyond
the SM. Scenarios based on Minimal Flavor Violation (MFV) [183], or on the U(2)5 flavor sym-
metry [132] can be fully compatible with current flavor data for much lower Λ values, in the
O(1 TeV) range, which is currently being probed at the LHC. With a more agnostic approach
to the flavor structure of New Physics, it is also clear that there are specific semileptonic tran-
sitions that remain unconstrained or that can only be weakly constrained by low-energy pro-
cesses. Therefore, it is fundamental to devise strategies to probe semileptonic transitions that
are complementary to the low-energy flavor probes in the quest for New Physics.

The measurement of the tails of mono-lepton and di-lepton production at the LHC has been
proven to be particularly useful as a complementary probe of flavor physics. EFT contributions
to the Drell-Yan partonic cross-sections can be energy enhanced, as long as the EFT approach
is valid, being potentially larger than the SM expectation in the tails of the distributions [184].
Moreover, the parton content of the proton includes five different quark flavors that can be used
to indirectly probe various semileptonic transitions in high-energy proton collisions. A recent
example concerns the discrepancies observed in the b → cτν transition, for which pp → ττ

data at high-pT was used to discard a few New Physics explanations of these anomalies, see
e.g. Ref. [185] and following works.

There have been many studies that derive constraints on flavor-physics scenarios by using
the processes pp → ℓℓ [185–191], pp → ℓν [157, 159, 160, 189, 191–194] and pp → ℓℓ′ (with
ℓ ̸= ℓ′) [195] at the LHC. However, these studies typically consider either specific types of
processes or impose a given ansatz to the flavor pattern of the New Physics couplings. The
complete combination of the LHC constraints on semileptonic transitions in a single framework
was not available thus far. In this work, we aim to amend this gap by combining the most
recent LHC data on all possible mono-lepton and di-lepton productions channels, without any
assumption about the flavor of the colliding quarks. This combination will be done for the
Standard Model Effective Field Theory (SMEFT) [18, 19], with a consistent EFT expansion up
to O(Λ−4) in the cross-section [196], as well as for models with concrete mediators, which
should be used if the experimental regime in a given channel is not sufficient to justify the EFT
approach.
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Figure 4.1: Neutral and charged Drell-Yan production processes at proton-proton colliders.

As an important by-product of our work, we developed the Mathematica package HighPT [197]
that provides the complete SMEFT likelihood for semileptonic operators at the LHC. This pack-
age complements the ongoing effort to provide tools for the SMEFT phenomenology of low-
energy flavor observables [198, 199], as well as electroweak and Higgs data [200]. Future
releases of HighPT will also provide the likelihood for specific models of interest such as lep-
toquarks [32, 201] based on the framework presented in this work. The comparison of the
constraints derived for both EFT and concrete models will allow the users to directly assess the
validity of the EFT description for a given high-pT process.

This chapter is organized as follows. In Sec. 4.2, we provide the most general description of
mono-lepton and di-lepton production in hadron colliders. In Sec. 4.3, we apply this description
to two specific scenarios, namely to the SMEFT and to simplified models with a tree-level
exchange of new bosonic mediators. In Sec. 4.4, we recast the most recent LHC searches in
the mono-lepton and di-lepton channels, with all possible lepton flavors in the final state. In
Sec. 4.5, discuss important aspects of the validity of EFT in colliders studies. We summarize
our findings and discuss the outlook for our study in Sec. 4.6.

4.2 Drell-Yan production at hadron colliders

In this Section, we provide a general description of the processes pp → ℓ−α ℓ
+
β and pp → ℓ−α ν̄β,

in terms of generic form-factors, where α, β are generic lepton-flavor indices. This description
has the advantage of covering both the EFT case, as well as scenarios containing new bosonic
mediators that propagate at tree-level, as will be discussed in Sec. 4.3. In Sec. 4.2.1, we write
the most general scattering amplitudes consistent with Lorentz invariance and the SU(3)c ×
U(1)em gauge symmetry, and we compute the differential partonic cross-section. In Sec. 4.2.2,
we discuss a general tree-level parameterization of the form factors that encapsulates both the
EFT and the concrete mediator contributions, which will be considered in the following Sections.

4.2.1 Amplitude decomposition

First, we consider the scattering amplitude for the neutral Drell-Yan process q̄iqj → ℓ−α ℓ
+
β given

by the first two diagrams in fig. 4.1, with qi = {ui, di}, where quark and lepton flavor indices
are denoted by Latin letters (i, j = 1, 2, 3) and Greek letters (α, β = 1, 2, 3), respectively1. The

1For up-type quarks the the indices run as i, j = 1, 2 because of the negligible top-quark content of
the proton at LHC energies.
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most general decomposition of the four-point scattering amplitude that is Lorentz and gauge
invariant is given by

A(q̄iqj → ℓ−α ℓ
+
β ) =

1

v2

∑

XY

{ (
ℓ̄αγ

µ
PXℓβ

)
(q̄iγµPY qj) [FXY, qqV (ŝ, t̂)]αβij

+
(
ℓ̄αPXℓβ

)
(q̄iPY qj) [FXY, qqS (ŝ, t̂)]αβij

+
(
ℓ̄ασµνPXℓβ

)
(q̄iσ

µν
PXqj) [FX, qqT (ŝ, t̂)]αβij

+
(
ℓ̄αγµPXℓβ

)
(q̄iσ

µν
PY qj)

ikν
v

[FXY, qqDq
(ŝ, t̂)]αβij

+
(
ℓ̄ασ

µν
PXℓβ

)
(q̄iγµPY qj)

ikν
v

[FXY, qqDℓ
(ŝ, t̂)]αβij

}
,

(4.1)

where X,Y ∈{L,R} are the chiralities of the anti-lepton and anti-quark fields, PR,L = (1±γ5)/2
are the chirality projectors, v = (

√
2GF )

−1/2 stands for the electroweak vacuum-expectation-
value (vev) and fermion masses have been neglected. Here it is understood that q (q̄) and ℓ (ℓ̄)
denote the Dirac spinors of the incoming quark (anti-quark) and outgoing anti-lepton (lepton)
fields, respectively. The four-momentum of the dilepton system is defined by k = pq + pq̄,
and we take the Mandelstam variables to be ŝ = k2 = (pq + pq̄)

2, t̂ = (pq − pℓ−)
2 and

û = (pq − pℓ+)
2 = −ŝ − t̂ for massless external states. For each of the five components in

eq. (4.1) we define the neutral current form-factor FXY, qqI (ŝ, t̂) where I ∈ {V, S, T,Dℓ, Dq} labels
the corresponding vector, scalar, tensor, lepton-dipole and quark-dipole Lorentz structures, re-
spectively. These form-factors are dimensionless functions of the Mandelstam variables that
describe the underlying local and non-local semi-leptonic interactions between fermions with
fixed flavors and chiralities. Note, in particular, that the tensor form-factor is non-vanishing only
for X=Y . 2

Similarly, the most general scattering amplitude for the charged current Drell-Yan process
can be written as

A(ūidj → ℓ−α ν̄β) =
1

v2

∑

XY

{ (
ℓ̄αγ

µ
PXνβ

)
(ūiγµPY dj) [FXY, udV (ŝ, t̂)]αβij

+
(
ℓ̄αPXνβ

)
(ūiPY dj) [FXY, udS (ŝ, t̂)]αβij

+
(
ℓ̄ασµνPXνβ

)
(ūiσ

µν
PXdj) [FX,udT (ŝ, t̂)]αβij

+
(
ℓ̄αγµPXνβ

)
(ūiσ

µν
PY dj)

ikν
v

[FXY, udDq
(ŝ, t̂)]αβij

+
(
ℓ̄ασ

µν
PXνβ

)
(ūiγµPY dj)

ikν
v

[FXY, udDℓ
(ŝ, t̂)]αβij

}
,

(4.2)

where the dilepton four-momenta is defined in a similar way by k = pd + pū, and where we
take the Mandelstam variables to be ŝ = k2 = (pd + pū)

2, t̂ = (pd − pℓ−)
2 and û = (pd −

pν)
2 . The charged current form-factors are denoted by FXY, udI (ŝ, t̂), with the same possible

Lorentz structures as in the previous case3. The above equation is also valid for X = R in the
presence of a light right-handed neutrino field νR that is a singlet under the SM gauge group.
The amplitudes in Eqs. (4.1, 4.2) are written in the mass basis. Similar expressions in the
weak interaction basis can be recovered by rotating the quark fields accordingly, as described
in appendix B.

2This can be shown e.g. by using the identity σµνγ5 = iεµναβσαβ/2 .
3Note that the charge-conjugate process can be described by a similar expression to eq. (4.2). The

relations between the d̄jui → ℓ+ανβ and the dj ūi → ℓ−α ν̄β form-factors are spelled out in appendix 2.1.2.
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Related processes

We briefly comment on two other semi-leptonic processes at hadron colliders that are closely
related to Drell-Yan production. The first of these are the quark-lepton fusion processes qil∓α →
qjℓ

∓
β and dil

∓
α → uj ν̄β. These probe the same semi-leptonic transitions entering Drell-Yan

production. In this case, the initial lepton is taken as a partonic constituent of the proton with
a PDF that is suppressed by αem [202]. By using crossing symmetry, it is straightforward to
express the amplitudes in terms of the Drell-Yan form factors described above,

A(ujℓ+α → uiℓ
+
β ) = A(ūiuj → ℓ−α ℓ

+
β )| s→−t, t→−s , (4.3)

A(djℓ+α → diℓ
+
β ) = A(d̄idj → ℓ−α ℓ

+
β )| s→−t, t→−s , (4.4)

A(djℓ+α → uiν̄β) = A(ūidj → ℓ−α ν̄β)| s→−t, t→−s . (4.5)

Another relevant probe for semi-leptonic transitions, also related to Drell-Yan production, are
the quark-gluon fusion processes qjg → qiℓ

−
α ℓ

+
β and qjg → qiℓ

∓
α ν̄β. Since these are 2 → 3

scatterings they will suffer from an additional phase-space suppression when compared to
the 2 → 2 Drell-Yan process. Given that both the quark-lepton and quark-gluon fusions are
generically less powerful New Physics probes 4, in the following, we will focus exclusively on the
Drell-Yan production modes as they are currently the most relevant ones for phenomenology.

4.2.2 Form-factor parametrization

In this section, we discuss a general parametrization of the Drell-Yan form-factors that is useful
for describing tree-level contributions from generic New Physics. For this purpose, we per-
form an analytic continuation of the scattering amplitudes to the complex ŝ and t̂ Mandelstam
variables. Furthermore, we assume that the form-factors are analytic functions within some
radius |ŝ|, |t̂| < Λ2 except for a finite set of simple poles in the ŝ, t̂ and û complex planes.
This assumption captures all possible tree-level physics entering high-pT Drell-Yan production
at collider energies below the scale Λ.5 We decompose each form-factor into a “regular" term
and a “pole" term,

FI(ŝ, t̂) = FI,Reg(ŝ, t̂) + FI,Poles(ŝ, t̂) , (4.6)

each encoding underlying local and non-local semi-leptonic interactions, respectively. To sim-
plify the notation we drop the XY and qq′ superscripts wherever the equations hold true for any
form-factor, and only keep the dependence on I ∈ {V, S, T,Dℓ, Dq}.

The regular term FI,Reg is an analytic function that describes local interactions, e.g. four-
point contact interactions, that arise from heavy unresolved degrees of freedom living at the
scale Λ beyond the characteristic energy of the scattering process. Within the radius Λ2, this
function admits a power series expansion of the form

FI,Reg(ŝ, t̂) =
∞∑

n,m=0

FI (n,m)

(
ŝ

v2

)n( t̂

v2

)m
(4.7)

4A notable exception is the quark-gluon fusion processes gb→ bℓℓ and gc→ bℓν. The enhancement of
the gluon over the bottom PDF and the background reduction from the additional b-tagged jet makes this
process an important probe for New Physics entering third-generation semi-leptonic transitions. See [159]
for more details.

5This assumption leaves out scenarios with loop-level contributions from light degrees of freedom
where e.g. branch cuts can appear.

78



where FI (n,m) are dimensionless expansion coefficients. The series in eq. (4.7) is not to be
confused with the complete EFT expansion in 1/Λ, since each coefficient FI (n,m) can receive
contributions from an infinite tower of non-renormalizable operators, as will be discussed for
the SMEFT in Sec. 4.3. This expression, however, provides a convenient separation of contri-
butions with different dependencies on ŝ and t̂ and, in particular, those that become dominant
in the tails of the Drell-Yan distributions.

The pole term FI,Poles is a non-analytic function with simple poles describing non-local tree-
level interactions. We adopt the following parametrization,

FI,Poles(ŝ, t̂) =
∑

a

v2 S I (a)
ŝ− Ωa

+
∑

b

v2 T I (b)
t̂− Ωb

−
∑

c

v2 U I (c)
ŝ+ t̂+Ωc

, (4.8)

where the poles Ωk = m2
k − imkΓk belong to each of the corresponding complex Mandelstam

planes, with the last term representing the poles in the u-channel. The pole residues SI (a), TI (b)
and UI (c) in the numerators are taken to be dimensionless parameters. Each term in eq. (4.8)
describes the tree-level exchange of degrees of freedom in the s-channel, t-channel and u-
channel, respectively, i.e. these are the propagators for various bosons a, b, c with masses
ma,b,c and widths Γa,b,c that can be resolved at the energy scales involved in the scattering.

In principle, the simple pole assumption for the form-factor singularities allows for the nu-
merators in eq. (4.8) to be general analytic functions of the form SI (a)(ŝ), TI (b)(t̂) and UI (c)(û),
where each describes generic three-point local interactions. However, the dependence of these
residues on the Mandelstam variables can be completely removed from each pole by applying
the identity,

ZI(ẑ)
ẑ − Ω

=
ZI(Ω)
ẑ − Ω

+ f(ẑ,Ω) , (4.9)

where f(ẑ,Ω) is an analytic function of ẑ = {ŝ, t̂, û} that can be reabsorbed into the regular form-
factor by a redefinition of FI,Reg. The identity in eq. (4.9) can be shown by power expanding
the numerator ZI(ẑ) and decomposing in partial fractions each of the resulting terms as

ẑn

ẑ − Ω
=

Ωn

ẑ − Ω
+ Ωn−1

n−1∑

k=0

(
ẑ

Ω

)k
, (4.10)

or in diagrammatic form:

ẑn
=

ẑk∑n−1
k=0

Therefore, from now on the residues SI (a), TI (b) and UI (c) in (4.8) are taken to be independent
of ŝ, t̂ and û. When discussing the SMEFT, we will see that decomposing into partial fractions
turns out to be useful for disentangling the effects from different operator classes within different
dimensions d.

In the SM, the gauge bosons contribute to the Drell-Yan amplitudes in Eqs. (4.1) and (4.2)

through the s-channel poles of the vector form-factors. It is therefore convenient to separate
the effects of the SM from potential BSM effects by defining the s-channel vector residues in
(4.8) as

SV (a) = S (a, SM) + δS (a) , (4.11)
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with a ∈ {γ,W,Z}, and where the δS(a) parametrize potential modifications of the SM gauge
couplings to fermions. The SM pole residues at leading order read

S XY, qq(γ, SM) = 4παemQℓQq 1ℓ1q , (4.12)

S XY, qq(Z,SM) =
4παem

c2W s
2
W

gXℓ g
Y
q , (4.13)

S LL, ud(W,SM) =
1

2
g22 1ℓV , (4.14)

where gXψ ≡ (T 3
ψX
−s2WQψ) 1ψ denote the Z-boson couplings to a fermion ψ, with electric charge

Qψ and weak isospin T 3
ψX

, and cW ≡ cos θW and sW = sin θW , where θW denotes the Weinberg
angle. V stands for the 3×3 CKM matrix, and 1ℓ(q) correspond to the 3×3 unit matrices in lepton
(quark) flavor-space with components δαβ (δij). See appendix 2.1.2 for our conventions. The
New Physics contributions to the form-factors S (a), T (a) and U (a) will be discussed in Sec. 4.3.

4.2.3 Cross-sections

The general amplitudes given in eq. (4.1) and (4.2) can be used to compute the neutral- and
charged-current cross-sections. After integrating over the azimuthal angle, the differential par-
tonic cross-section for the Drell-Yan process is given by

dσ̂

dt̂
(q̄iq

′
j → ℓαℓ′β) =

1

48π v4

∑

XY

∑

IJ

MXY
IJ (ŝ, t̂)

[
FXY, qq′I (ŝ, t̂)

]αβ
ij

[
FXY, qq′J (ŝ, t̂)

]αβ ∗

ij
, (4.15)

where neutral and charged currents are described by the same expression, where q(′) ∈ {u, d}
can be either a down- or up-type quark, and ℓ′ ∈ {ℓ, ν} denotes both neutral and charged
leptons, depending on the specific process. The indices I, J ∈ {V, S, T,Dℓ, Dq} account for the
different contributions and MXY are 5× 5 symmetric matrices that take the form

MXY (ŝ, t̂) =




MXY
V V (t̂/ŝ) 0 0 0 0

0 MXY
SS (t̂/ŝ) MXY

ST (t̂/ŝ) 0 0

0 MXY
ST (t̂/ŝ) MXY

TT (t̂/ŝ) 0 0

0 0 0 ŝ
v2
MXY
DD (t̂/ŝ) 0

0 0 0 0 ŝ
v2
MXY
DD (t̂/ŝ)




(4.16)

where the different MXY
IJ entries are polynomials in the angular variable ω ≡ t̂/ŝ defined by

MXY
V V (ω) = (1 + 2ω)δXY + ω2 , (4.17)

MXY
SS (ω) = 1/4 , (4.18)

MXY
TT (ω) = 4(1 + 2ω)2δXY , (4.19)

MXY
ST (ω) = −(1 + 2ω)δXY , (4.20)

MXY
DD (ω) = −ω(1 + ω) . (4.21)

The quantity ω = −(1 − cos θℓ)/2 is a function of the emission angle θℓ of the lepton ℓ− with
respect to the incoming quark in the center-of-mass frame. At the differential level, there is
an interference term only between the scalar and tensor structures that vanishes for the full
cross-section after integration over t̂ ∈ (−ŝ, 0).
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Hadronic cross-sections

The hadronic cross-section σ at a proton-proton collider can be written, following the conven-
tions of Ref. [203], as the convolution of the partonic cross-section σ̂(q̄iqj → ℓαℓ̄

′
β) with the

parton distribution functions (PDFs) fq̄i(x, µF ) and fqj (x, µF ), summed over all possible incom-
ing quark flavor combinations,

σ(pp→ ℓαℓ̄
′
β) =

∑

ij

∫ 1

0
dx1 dx2

[
fq̄i(x1, µ)fqj (x2, µ) σ̂(q̄iqj → ℓαℓ̄

′
β) + (q̄i ↔ qj)

]
, (4.22)

where x1,2 are the fractions of momenta that the scattering quarks carry relative to the momenta
of the corresponding protons. We set the factorization and renormalization scales equal to the
scale of the hard scattering µ =

√
ŝ. The hadronic cross-section can be more conveniently

expressed as

σ
(
pp→ ℓαℓ̄

′
β

)
=
∑

ij

∫
dŝ

s
Lij (ŝ) σ̂(q̄iqj → ℓαℓ̄

′
β) , (4.23)

where
√
s = 13 TeV is the proton-proton center-of-mass energy for the LHC searches con-

sidered in this paper, and where Lij(ŝ) are the dimensionless parton-parton luminosity func-
tions [203,204] defined as

Lij(ŝ) ≡
∫ 1

ŝ
s

dx

x

[
fq̄i (x, µ) fqj

(
ŝ

sx
, µ

)
+ (q̄i ↔ qj)

]
. (4.24)

In Sec. 4.4, we will confront the predictions for Drell-Yan production from different New Physics
models with the LHC run-II measurements of the high-pT tails of various momentum-dependent
distributions. For the neutral Drell-Yan process, we compute in terms of the form-factors in-
troduced in Eqs. (4.1), the particle-level distribution of the invariant mass mℓℓ of the dilepton
system. Combining the previous results we find the expression for the hadronic cross-sections
restricted to a specific invariant mass bin B ≡ [mℓℓ0 ,mℓℓ1 ] to be given by

σB(pp→ ℓ−α ℓ
+
β ) =

1

48πv2

∑

XY, IJ

∑

ij

∫ m2
ℓℓ1

m2
ℓℓ0

dŝ
s

∫ 0

−ŝ

dt̂
v2
MXY
IJ Lij

[
FXY,qqI

]αβ
ij

[
FXY,qqJ

]αβ ∗

ij
, (4.25)

where summing over up and down-type quarks q ∈ {u, d} is implied and where we have inte-
grated over the full azimuthal angle. Similarly, for the charged Drell-Yan process we compute
the particle-level distribution of the transverse momentum of the charged lepton pT (ℓ±). In this
case the cross-section σB(pp → ℓ±α νβ) restricted to a specific high-pT bin B ≡ [pT0 , pT1 ] takes
the same form as in eq. (4.25) but with the integration boundaries changed to6

∫ m2
ℓℓ1

m2
ℓℓ0

dŝ −→
∫ s

4p2T0

dŝ and
∫ 0

−ŝ
dt̂ −→

(∫ t̂+1

t̂+0

dt̂ +

∫ t̂−0

t̂−1

dt̂

)
, (4.26)

where

t̂±i (ŝ) = −
ŝ

2


1±

√√√√1−min

{
1,

4p2Ti
ŝ

}
 . (4.27)

6Notice that for ŝ < 4p2T1
we �nd t̂−2 = t̂+2 , whereas for ŝ < 4p2T0

the cross-section vanishes. Taking
the limit pT0

→ 0 and pT1
→∞ yields again the integration boundaries for the full angular integration.

81



For the sake of presentation, we have not explicitly expanded the squared form-factors in
Eqs. (4.15) and (4.25) in terms of the various regular and pole form-factors defined in (4.7) and
(4.8). Complete expressions for the hadronic cross-sections in terms of these parameters can
be easily extracted for any bin using the Mathematica package HighPT.

4.2.4 High-pT Tails

The high-energy regime of the dilepton invariant-mass or the monolepton transverse-mass are
known to be very sensitive probes for a variety of New Physics models affecting semi-leptonic
transitions [159,160,185,195]. In the SM, the partonic cross-section scales as ∼1/E2 at high-
energies, leading to a smoothly falling tail for the kinematic distributions of any momentum-
dependent observable. The presence of new particles coupling to quarks and leptons or new
semi-leptonic interactions beyond the SM can modify the shapes of these tails substantially.

The most obvious BSM effect is the appearance of a resonant feature on top of the smoothly
falling SM background, i.e. a peak in the dilepton invariant mass spectrum, or an edge in
the monolepton transverse mass spectrum. This indicates that a heavy colorless particle has
been produced on-shell in the s-channel. Non-resonant effects from contact interactions or
on-shell leptoquarks exchanged in the t/u-channels, on the other hand, lead to more subtle
non-localized features in the tails. Indeed, energy-enhanced interactions coming from non-
renormalizable operators will modify the energy scaling of the distributions leading to an ap-
parent violation of unitarity in the tails. The effects from leptoquarks exchanged in the t/u-
channels will lead to a similar behavior [187, 205]. After convoluting with the quark PDFs, the
non-resonant features are more difficult to uncover than a resonance peak, but can still be used
to set competitive limits on many relevant NP scenarios entering semi-leptonic transitions.

Finally, we remark that for the quark-lepton fusion process qiℓ+α → qj ℓ̄
′
β, leptoquarks are

exchanged in the s-channel, leading to a resonance peak in the jet-lepton invariant mass distri-
bution [206–209], while the colorless mediators, now exchanged in the t/u-channels, will pro-
duce non-resonant effects in the tails of the distribution. The lepton PDFs have been recently
computed in Ref. [207] and could be used to give a robust estimation of event yields.

4.3 Semi-leptonic transitions beyond the SM

Form-factors in the SMEFT

In the SMEFT the Drell-Yan amplitude can be written as a double perturbative expansion in
the small parameters ŝ/Λ2 and v2/Λ2. This EFT expansion can be matched to eq. (4.7) in
order to determine the regular form-factor coefficients FI (n,m). These are given by an infinite
perturbative series in the parameter v2/Λ2 of the form

FI (n,m) =

∞∑

d≥ 2(n+m+3)

c
(d)
I

( v
Λ

)d−4
. (4.28)

For example, the dimension-6 operators only maps to the leading coefficient FI (0,0), whereas
dimension-8 operators map to FI (0,0) as well as the next-to-leading coefficients FI (1,0) and
FI (0,1), and so on.

In order to write down the Drell-Yan form factors in terms of the SMEFT Wilson coefficients,
it is convenient to recast the general parametrization given in sec. 4.2.2 to a simpler truncated

82



q

q̄′

`

`′, ν

(a)

q

q̄′

`

`′, ν

(b)

q

q̄′

`

`′, ν

(c)

q

q̄′

`

`′, ν

(d)

q

q̄′

`

`′, ν

(e)

Figure 4.2: Representation of the leading contributions in the SM (a) and in the SMEFT (b)-(e)
to the partonic processes qq̄′ → ℓℓ′ and ud̄′ → ℓν with an EFT expansion up to O(Λ−4). The
green mediator represents the exchange of the SM gauge bosons V ∈ {γ, Z,W} and the black
dots are insertions of the SMEFT effective interaction.

form more suitable for the SMEFT to order d ≤ 8. First, it is sufficient truncate the power
expansion of the regular form-factors FI,Ref in eq. (4.7) to order n,m ≤ 1. The regular pieces
of the scalar and tensor form-factors can be further truncated to order n = m = 0 because when
squaring the amplitude, the terms with n+m = 1 generated at dimension-8 do not interfere with
the SM poles and will only lead to higher-order effects in the cross-section beyond O(1/Λ4).
In the SMEFT, the dipole interactions only arise from non-local interactions involving the SM
gauge bosons, so we can set the regular terms FDℓ,Reg and FDq ,Reg to zero. For the singular
form-factors FI,Poles, we only need to consider the vector poles and dipoles arising from the s-
channel exchange of the SM gauge bosons. The s-channel scalar pole FS,Poles generated from
the exchange of the SM Higgs boson is completely negligible because of the small fermion
Yukawa couplings of the external states. When putting all this together we end up with the
following form-factor parametrization for the SMEFT:

FS = FS (0,0) , (4.29)

FT = FT (0,0) , (4.30)

FV = FV (0,0) + FV (1,0)
ŝ

v2
+ FV (0,1)

t̂

v2
+
∑

a

v2
[
S(a, SM) + δS(a)

]

ŝ−m2
a + imaΓa

, (4.31)

FDℓ
=
∑

a

v2 SDℓ (a)

ŝ−m2
a + imaΓa

, (4.32)

FDq =
∑

a

v2 SDq (a)

ŝ−m2
a + imaΓa

, (4.33)

where a ∈ {γ, Z} when describing neutral Drell-Yan processes q̄iqj → ℓ−α ℓ
+
β , and a ∈ {W±}

when describing the charged Drell-Yan processes d̄iuj → ℓ−α ν̄β (ūidj → ℓ+α νβ), and S(a,SM) are
defined in eq. (4.12)-(4.14). This parametrization is enough to capture all possible effects to
order O(1/Λ4) in semileptonic transitions.
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Given that the scalar and tensor form-factors are independent of ŝ and t̂, the coefficients
FS (0,0) and FT (0,0) will directly map to the Wilson coefficients of the dimension-6 scalar and
tensor operators in class ψ4, respectively, as shown in appendix C.1. On the other hand,
for the vector form-factor, the dimension-8 operators will give rise to effects of order O(1/Λ4)

in the squared amplitude via interference with the SM s-channel contributions. The leading
coefficient FV (0,0) receives contributions from contact operators in the classes ψ4 and ψ4H2

at dimension-6 and dimension-8, respectively, as well as from modified interactions between
fermions and the SM gauge bosons generated by the dimension-8 operators in class ψ2H2D3.
The higher-order coefficients FV (1,0) and FV (0,1) receive contributions from the dimension-8
operators in class ψ4D2. The SM coefficients δS(a) receive contributions from modified fermion
interaction generated by dimension-6 operators in class ψ2H2D and dimension-8 operators
in class ψ2H2D3. Schematically, the matching between SMEFT Wilson coefficients and the
form factors take the following form:

FV (0,0) =
v2

Λ2
C (6)
ψ4 +

v4

Λ4
C (8)
ψ4H2 +

v2m2
a

Λ4
C (8)
ψ2H2D3 + · · · , (4.34)

FV (1,0) =
v4

Λ4
C (8)
ψ4D2 + · · · , (4.35)

FV (0,1) =
v4

Λ4
C (8)
ψ4D2 + · · · , (4.36)

δS(a) =
m2
a

Λ2
C (6)
ψ2H2D

+
v2m2

a

Λ4

([
C (6)
ψ2H2D

]2
+ C (8)

ψ2H4D

)
+

m4
a

Λ4
C (8)
ψ2H2D3 + · · · , (4.37)

where the squared term [C (6)
ψ2H2D

]2 in eq. (4.37) corresponds to double vertex insertions of the
corresponding dimension-6 operators, as depicted in diagram (e) of Fig. 4.2. The ellipses · · ·
indicate contributions from the neglected dimension-10 operators. The precise matching of the
SMEFT to the vector form-factors can be found in appendix C.2. Notice that the operators
in class ψ2H2D3 contribute to both FV (0,0) and δS(a). This can be understood by analyzing

one of the operator in this class, say O(1)
q2H2D3 = (q̄iγ

µDνqj)D(µDν)H
†H. After spontaneous

symmetry breaking, this operator gives rise to a modified coupling between the Z boson and
quarks that is proportional to (ŝ mZv/Λ

4)Zµ(q̄iγ
µqj). This interaction contributes to neutral

Drell-Yan production with an amplitude that scales as A(q̄iqj → ℓ−α ℓ
+
β ) ∝ ŝ/(ŝ − m2

Z). This
amplitude can be brought to the form eq. (4.31) by using the partial fraction decomposition in
eq. (4.10), which in diagrammatic form reads:

ŝ

Z
= +

m2
Z

Z

The first contact diagram appearing above on the right-hand side of the equality corresponds to
the last term in (4.34), while the second diagram corresponds to the last term in (4.37). Finally,
the dipole residues SD (a) match trivially to the d = 6 SMEFT dipole operators in class ψ2XH,
as shown in appendix C.3.

4.3.1 Concrete UV Mediators

In this section, we discuss the effects of new heavy bosonic states mediating Drell-Yan pro-
cesses at tree level. These states can be classified in terms of their SM quantum numbers
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SM rep. Spin Lint

Z ′ (1,1, 0) 1 LZ′ =
∑

ψ [g
ψ
1 ]
ab ψ̄a /Z

′
ψb , ψ ∈ {u, d, e, q, l}

W ′ (1,3, 0) 1 LW ′ = [gq3]
ij q̄i /W

′
qj + [gl3]

αβ l̄α /W
′
lβ

Z̃ (1,1, 1) 1 LZ̃ = [g̃q1]
ij ūi /̃Zdj + [g̃ℓ1]

αβ ēα /̃ZNβ

Φ1,2 (1,2, 1/2) 0 L2HDM−I = [λuI ]
ij q̄iujΦ

c
2 + [λdI ]

ij q̄idjΦ2 + [λeI ]
αβ l̄αeβΦ2 + h.c.

L2HDM−II = [λuII ]
ij q̄iujΦ

c
2 + [λdII ]

ij q̄idjΦ1 + [λeII ]
αβ l̄αeβΦ1 + h.c.

L2HDM−X = [λuX ]
ij q̄iujΦ

c
2 + [λdX ]

ij q̄idjΦ2 + [λeX ]
αβ l̄αeβΦ1 + h.c.

L2HDM−Y = [λuY ]
ij q̄iujΦ

c
2 + [λdY ]

ij q̄idjΦ1 + [λeY ]
αβ l̄αeβΦ2 + h.c.

S1 (3̄, 1, 1/3) 0 LS1 = [yL1 ]
iα S1q̄

c
i ϵlα + [yR1 ]

iα S1ū
c
ieα + [ȳR1 ]

iα S1d̄
c
iNα + h.c.

S̃1 (3̄, 1, 4/3) 0 LS̃1
= [ỹR1 ]

iα S̃1d̄
c
ieα + h.c.

U1 (3, 1, 2/3) 1 LU1 = [xL1 ]
iα q̄i /U1lα + [xR1 ]

iα d̄i /U1eα + [x̄R1 ]
iα ūi /U1Nα + h.c.

Ũ1 (3,1, 5/3) 1 LŨ1
= [x̃R1 ]

iα ūi /̃U1eα + h.c.

R2 (3,2, 7/6) 0 LR2 = −[yL2 ]iα ūiR2ϵlα + [yR2 ]
iα q̄ieαR2 + h.c.

R̃2 (3,2, 1/6) 0 LR̃2
= −[ỹL2 ]iα d̄iR̃2ϵlα + [ỹR2 ]

iα q̄iNαR̃2 + h.c.

V2 (3̄, 2, 5/6) 1 LV2 = [xL2 ]
iα d̄ci /V2ϵlα + [xR2 ]

iα q̄ci ϵ /V2eα + h.c.

Ṽ2 (3̄, 2, −1/6) 1 LṼ2 = [x̃L2 ]
iα ūci /̃V2ϵlα + [x̃R2 ]

iα q̄ci ϵ /̃V2Nα + h.c.

S3 (3̄, 3, 1/3) 0 LS3 = [yL3 ]
iα q̄ci ϵS3lα + h.c.

U3 (3, 3, 2/3) 1 LU3 = [xL3 ]
iα q̄i /U3lα + h.c.

Table 4.1: Possible bosonic mediators contributing at tree level to Drell-Yan production clas-
sified by their SM quantum numbers and spin. In the last column we provide the interaction
Lagrangian where ϵ ≡ iτ2, ψc ≡ iγ2γ0ψ̄T , Φci = iτ2Φ

∗
i , the RH fermion fields as u ≡ uR, d ≡ dR,

e ≡ ℓR, N ≡ νR, and LH fermion fields as q ≡ (uL, dL)
T , l ≡ (νL, ℓL)

T . For the Leptoquark
states we adopt the symbols from Ref. [32].

(SU(3)c, SU(2)L, U(1)Y ) with Q = Y + T3, and their spin. The possible semileptonic media-
tors are displayed in Table 4.1, where we also provide the relevant interaction Lagrangians with
generic couplings in the last column. For completeness, we also include three7 right-handed
neutrinos Nα ∼ (1,1, 0) with α = 1, 2, 3. Furthermore, we assume that the masses of these SM
singlets are negligible compared to the collider energies and if produced, can escape the LHC
detectors as missing energy.

The possible mediators fall into two broad categories with similar phenomenology: (i) color-
singlets exchanged in the s-channel, and (ii) leptoquarks, i.e. color-triplets, exchanged in the
t/u-channels. If the masses of these states are at the O(TeV) scale, their propagators will

7For simplicity we assume three RH neutrinos, but this need not be the case.
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Figure 4.3: Contributions to dilepton transitions d̄d → l+l− (upper row), ūu → l+l− (middle
row) and ūd → l±ν (lower row), from the tree-level exchange of the mediators displayed in
table 4.1 via the s-channel (left column), t-channel (middle column) and u-channel (right col-
umn).

contribute to the pole residues SI (a), TI (b), UI (c) of the pole form-factor, (4.8).
In the broken phase of the SM, the SU(2)L multiplets decompose into charge eigenstates

as: Φ2 ∼ (ϕ+, ϕ0R + iϕ0I ), R2 ∼ (R
5/3
2 , R

2/3
2 ), R̃2 ∼ (R̃

2/3
2 , R̃

−1/3
2 ), V2 ∼ (V

4/3
2 , V

1/3
2 ), Ṽ2 ∼

(Ṽ
1/3
2 , Ṽ

−2/3
2 ) for doublets, andW ′ a

µ ∼ (W ′+
µ ,W ′ 0

µ ,W
′ −), S3∼(S

4/3
3 , S

1/3
3 , S

−2/3
3 ), U3∼(U

5/3
3 , U

2/3
3 , U

−1/3
3 )

for triplets. The superscripts denote the electric charge of each component.

Form-factors in concrete models

The complete matching of the pole form-factors to concrete models is given in appendix D
where the flavor structure of the residues of the pole form-factors takes the following form:

[SI (a)]αβij = [g∗a]
ij [g∗a]

αβ , (4.38)

[TI (b)]αβij = [g∗b ]
iα[g∗b ]

jβ , (4.39)

[UI (c)]αβij = [g∗c ]
iβ[g∗c ]

jα , (4.40)

for I ∈ {V, S, T}, where g∗a,b,c denote generic couplings of the mediators to fermions of a given
chirality and each index a, b, c labels the possible mediators contributing to the s, t and u chan-
nels, respectively, as displayed in the Feynman diagrams in Fig. 4.3.

4.4 Collider limits

At hadron colliders, the detectors are complex and imperfect environments with a finite reso-
lution and limited acceptance. When dealing with di-lepton and mono-lepton searches at the
LHC, differential distributions are measured from the reconstructed four-momenta of high-level
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objects such as isolated leptons, τ -tagged jets, and missing transverse energy /ET . These
objects are meant to approximate the underlying final state leptons produced in the hard scat-
tering. Theoretical predictions, on the other hand, are typically computed from the experimen-
tally inaccessible final state leptons. This mismatch between the predicted distribution of a
particle-level observable x and the observed distribution of the corresponding observable xobs
is described by the convolution

dσ

dxobs
=

∫
dx K(xobs|x)

dσ

dx
, (4.41)

whereK(xobs|x) is a kernel function that parametrizes the detector response8 [211]. In practice,
for a given LHC search, both the measured and particle-level distributions are binned into
histograms leading to the discretization of eq. (4.41). For binnings A of xobs and B of x, the
expected number of signal events NA in a bin A ∈ A is given by

NA =
∑

B ∈B
Lint ·KAB · σB , (4.42)

where Lint is the integrated luminosity used in the search, σB is the particle-level cross-section
restricted to a bin B ∈ B, and K is a N×M response matrix, where N and M are the number
of bins in A and B, respectively. The response matrix represents the probability that an event
produced in a bin B of x passes all event selections of the search and is measured in bin A of
xobs. When estimating the event yieldsNA of a BSM signal, each independent term contributing
to the computation of the cross-section σB (e.g. see eq. (4.42)) needs to be convoluted with
a different KAB matrix since each term can respond differently to the selection cuts and the
detector. Therefore, in full generality, the response matrices entering eq. (4.42) are quantities
depending on the chiralities (X,Y ) and flavors (α, β, i, j) of the external leptons and quarks, as
well as the shape of the New Physics, i.e. the regular and pole form-factors that are involved
(I, J, n,m,Ωa,Ωb,Ωc). It is clearly not possible to compute the entries of each response matrix
from first principles. These must be estimated numerically for each LHC search using Monte
Carlo event generators and detector simulators.

4.4.1 LHC searches in di-leptons and mono-leptons

The experimental searches considered in our analysis are collected in Table 4.2. These cor-
respond to data sets from the full Run-II ATLAS and CMS searches for heavy resonances
in di-lepton and mono-lepton production at the LHC. In the last two columns, we display the
observables measured in each search (xobs) serving as proxies for the particle-level observ-
ables (x) used to compute the signal cross-sections. Specific details concerning the definition
of the measured observables, selection cuts and any other inputs used in these experimental
analyses are available in the respective ATLAS and CMS papers listed in Table 4.2. Limits
on the SMEFT and on mediator models are extracted with the HighPT package [197] where

8For example, the particle-level observable relevant for resonance searches in di-tau production at
the LHC [210] is the invariant mass x = mττ of the di-tau system. Given that τ -leptons always decay
into neutrinos, a precise experimental reconstruction of mττ is challenging. Therefore, what is actually
measured is the quantity xobs = mtot

T known as the total transverse mass, which serves as a proxy for
mττ . This observable is computed from the two leading τ -tagged jets coming from the visible part of the
hadronic decay of each underlying tau-lepton (τh) and the missing transverse energy of the event which
accounts for the undetected neutrinos.
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Process Experiment Luminosity Ref. xobs x

pp→ ττ ATLAS 139 fb−1 [210] mtot
T (τ 1h , τ

2
h , /ET ) mττ

pp→ µµ CMS 140 fb−1 [212] mµµ mµµ

pp→ ee CMS 137 fb−1 [212] mee mee

pp→ τν ATLAS 139 fb−1 [213] mT (τh, /ET ) pT (τ)

pp→ µν ATLAS 139 fb−1 [214] mT (µ, , /ET ) pT (µ)

pp→ eν ATLAS 139 fb−1 [214] mT (e, /ET ) pT (e)

pp→ τµ CMS 137.1 fb−1 [215] mcol
τhµ

mτµ

pp→ τe CMS 137.1 fb−1 [215] mcol
τhe

mτe

pp→ µe CMS 137.1 fb−1 [215] mµe mµe

Table 4.2: Experimental searches by the ATLAS and CMS collaborations that have been recast
in the HighPT package [197]. The last two columns refer to the observables considered in our
analyses.

each Drell-Yan search has been repurposed for generic New Physics scenarios. For each
signal hypothesis, we compute the 95% confidence intervals using the χ2 likelihood function
ChiSquareLHC which we then minimize using the native Mathematica routines for numerical
minimization. In order for the χ2 to give reliable limits, beforehand we made sure to combine
the data between neighboring experimental bins until NA ≥ 10 for any bin (background errors
are added in quadrature when combining).

Internally, for each search in Table. 4.2, the HighPT function ChiSquareLHC extracts the
number of signal events NA(θ) in a bin A ∈ A of xobs by convoluting the relevant response
matrix KAB with the analytical expressions for σB. These are computed with the PDF set
PDF4LHC15_nnlo_mc [216]. We denote by θ the parameters of the New Physics model that we
wish to constrain, e.g. form-factor parameters or specific model parameters such as Wilson
coefficients or mediator masses and couplings. The χ2 is then built from the number of back-
ground events N b, background uncertainties δN b and observed events N obs provided by the
experimental collaborations:

χ2(θ) =
∑

A∈A

(NA(θ) +N b
A −N obs

A

∆A

)2

, (4.43)

where the uncertainty ∆ is given by adding in quadrature the background and observed uncer-
tainties, ∆2 = (δN b)2 +N obs. The response matrices KAB have been provided in the HighPT

package for each LHC search. These were obtained from MC simulations using the following
pipeline: first, all relevant semileptonic operators in the SMEFT with d ≤ 8 and all mediator
Lagrangians in Table. (4.1) were implemented with FeynRules [217]. The resulting UFO model
files [218] were then imported into Madgraph5 [219] and used to simulate statistically significant
event samples for the dilepton and monolepton processes with all possible initial quark flavors.
Samples were then showered and hadronized using Pythia8 [220], and the final-state object
reconstruction and detector simulation were performed using Delphes3 [221] tuned to match
the experimental searches. After applying the same event selections as in each experiment,
the events were binned into xobs histograms. The simulation pipeline outlined above was used
to produce a xobs histogram from each bin B ∈ B of x. The rows of the matrix KAB were then
extracted from the resulting histograms.
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4.4.2 Constraints on the SMEFT

HighPT HighPT HighPT

HighPT HighPT HighPT

HighPT HighPT HighPT

HighPT HighPT HighPT

Figure 4.4: LHC constraints on the SMEFTWilson C(1,3)lq coe�cients with di�erent �avor indices

to 2σ accuracy, where a single coe�cient is turned on at a time. Quark �avor indices are denoted

by ij and are speci�ed on the left-hand side of each plot. All coe�cients are assumed to be real

and contributions to the cross-section up to and including O(1/Λ4) are considered. The NP scale

is chosen as Λ = 1TeV.

In this section, we report on numerical results for the SMEFT operators up to d = 6, by
considering a single effective coefficient at a time, which is assumed to be real, and with the
New Physics scale fixed to Λ = 1 TeV. These constraints are presented in Appendix F of
Ref. [222] for semileptonic operators with fixed leptonic indices, namely ee, µµ, ττ , eµ, eτ and
µτ , and for all possible quark-flavor indices that can be probed at the LHC. From these plots,
we find that the most constrained operators are the ones with valence quarks, but we also
derive useful constraints for operators with c-, s- and b-quarks despite the PDF suppression.
The only semileptonic operators that cannot be probed at leading order with the processes that
we consider are the ones with right-handed top quarks.

In addition to semileptonic operators, we show the constraints on lepton and quark dipole-
operators in Fig. 4.5, with the most general flavor indices, and assuming once again CP conser-
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HighPT HighPT HighPT

HighPT HighPT HighPT

Figure 4.5: LHC constraints on the SMEFT dipole Wilson coe�cients with di�erent �avor

indices to 2σ accuracy, where a single coe�cient is turned on at a time. Quark (lepton) �avor

indices are denoted by ij (αβ) and are speci�ed on the left-hand side of each plot. All coe�cients

are assumed to be real and contributions to the cross-section at order O(1/Λ4) are considered.
The NP scale is chosen as Λ = 1TeV.

vation. These constraints are much weaker than the ones obtained for semileptonic operators,
since these operators induce a mild energy enhancement of the cross-section and since their
interference with the SM contributions is highly suppressed by the external fermion masses.

Finally, we note that in scenarios with several effective operators there are correlations
among these coefficients if they contribute to the same process at the LHC. These correlations
are relevant for phenomenology and they can be obtained in full generality by using the HighPT

package, as illustrated in Ref. [52]. Furthermore, even though we do not present numerical
results for the d = 8 operators, the complete likelihood including these effects can be obtained
with the HighPT package, as shown in Ref. [52].

4.4.3 Numerical results

In this section, we combine the LHC constraints derived in Sec. 4.4 with the flavor and elec-
troweak precision observables discussed above. To illustrate the main features of the HighPT

package, which provides constraints for both EFT and concrete model scenarios, we perform
a two-step analysis. In a first step, we will consider the minimal set of SMEFT operators that
can accommodate RD(∗) in the viable scenarios described in eq. (2.29)–(2.28). In a second
step, we directly consider the leptoquark models that predict these Wilson coefficients, includ-
ing their propagation effects in the LHC observables. The comparison of the results obtained
for the EFTs and the concrete models will allow us to directly assess the validity of the EFT ap-
proach for the high-pT observables that we have considered. Using the leptoquark models will
also allow us to correlate the effective coefficients entering flavor processes in different sectors,
as shown in Table 2.4. The code input needed to extract these LHC constraints with the HighPT

package will be given in Ref. [52].
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(a) (b)

(c)

Figure 4.6: Constraints on the SMEFT coefficients from flavor-physics (blue region),
electroweak-precision (gray) and high-pT observables (red). The combined fit is shown in
green. For each type of observables, we show the 1σ (2σ) regions with lighter (darker) colors.
Three effective scenarios are considered which are motivated by different leptoquark models,
as explained in the text. The EFT cutoff is set to be Λ = 2 TeV.

EFT approach

Starting with the EFT scenarios inspired by the viable leptoquarks, we consider the effective
coefficients C(1)lq = C(3)lq , which are predicted at tree-level by the vector leptoquark U1 with purely
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left-handed couplings, see Table 2.4. 9 In the top left panel of Fig. 4.6, we show the allowed Wil-
son coefficients with flavor indices that contribute directly to the b→ cτ ν̄. The flavor constraints,
in this case, are dominated by RD(∗) (blue region), which are combined with electroweak (gray)
and LHC constraints (red). In this case, the LHC constraints are dominated by pp → ττ ,
whereas pp → τν give weaker bounds. From Fig. 4.6, we see that low- and high-energy
observables are complementary, and the synergy of the different searches is fundamental to
restricting the allowed region of the effective coefficients.

In a similar way, the scenario with C(1)lequ = −4 C(3)lequ and C(1)lq = −C(1)lq is considered in
Fig. 4.6(b). This pattern of effective coefficients is predicted by the S1 leptoquark at tree-level.
For simplicity, we assume real couplings and focus on the flavor indices 3332 and 3333 for the
scalar/tensor and vector operators, respectively. 10 In this case, we find that the most rele-
vant constraints arise from flavor observables, which are once again dominated by RD(∗) , and
from electroweak observables. In particular, the latter prevent an explanation of the b → cτ ν̄

anomalies in this scenario if only left-handed couplings are considered. In this particular case,
LHC constraints turn out to be practically irrelevant, at the EFT level, since the contributions to
pp→ ττ are CKM suppressed.

The last scenario we consider is C(1)lequ = 4 C(3)lequ, which is predicted by theR2 leptoquark. The
corresponding constraints are shown in Fig. 4.6(c) for the flavor indices entering the b → cτ ν̄

transition, with the same color code as before. This scenario is peculiar since purely real ef-
fective coefficients would induce contributions to RD and RD∗ with different signs, which is
incompatible with current data [34,35,224]. In other words, an imaginary part of the scalar/ten-
sor coefficients is needed to simultaneously explain the deviations observed in RD and RD∗ , as
shown in Fig. 4.6. Electroweak and Higgs constraints are not shown in this plot since they turn
out to be weak in comparison to flavor bounds at the EFT level. LHC constraints are dominated
by pp→ τν and they appear to probe a small portion of the favored flavor region. However, this
conclusion should be taken with caution since the propagation effects of the leptoquark have a
non-negligible effect in the LHC observables.

Concrete models

From the EFT examples discussed above, it is clear that the Drell-Yan tails provide comple-
mentary information to low-energy observables, being particularly useful to single out the viable
solutions of the RD(∗) anomalies. However, there are limitations of the EFT approach that must
be kept in mind. First of all, there can be non-negligible corrections to the EFT description of
the LHC observables if the EFT cutoff Λ is not sufficiently larger than the partonic center-of-
mass energy. Moreover, there are correlations among low- and high-energy observables that
are only manifest within the concrete models.

The constraints on the concrete models are shown in Fig. 4.7 for the leptoquarks U1 (upper
left), S1 (upper right) and R2 (bottom), with the leptoquark masses fixed to 2 TeV, in agreement
with current constraints from leptoquark pair-production at the LHC [29]. For each scenario, a
minimal set of two Yukawa couplings has been chosen to induce the SMEFT operators needed
to explain RD(∗) in Fig. 4.6. The leptoquark Lagrangians are defined in Table 4.1, with their
tree-level matching to the SMEFT given in Table 2.4.

9Notice that the presence of right-handed U1 couplings is also allowed by current constraints, which
would predict a di�erent pattern of low- and high-energy observables [223].

10Note that the e�ective coe�cients C(1)lq = −C(3)lq with �avor indices 3323 also contribute to RD(∗) , but
these e�ective coe�cients are subject to stringent constraints from B → Kνν̄.
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(a) (b)

(c)

Figure 4.7: Bounds on the LQ couplings from low-energy (blue), electroweak pole (gray) and
high-pT (red) observables. The combined fit is shown in green. For every bound we show the
1σ and 2σ regions. The LQ mass is set to be Λ = 2 TeV.

From Fig. 4.7 we see that the three models are viable explanations of RD(∗) and we confirm
that there is a complementarity of the low- and high-energy constraints. The high-pT constraints
turn out to be slightly relaxed in all cases in comparison to the EFT computation, due to the
propagation effects of the leptoquarks,

1

(t−m2)2
≃ 1

m4

(
1 +

2t

m2
+ . . .

)
, t ∈ (−s, 0) , (4.44)
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where m denotes the leptoquark mass and we assume without loss of generality that the lepto-
quark is exchanged in the t-channel. The first power-correction on t/m2 comes with a relative
negative sign which reduces the cross-section estimated with the EFT. This difference is partic-
ularly relevant for the R2 model, where the LHC constraints seem to exclude the favored region
in the EFT approach, but this is no longer true once the leptoquark propagator is considered,
as recently noted in Ref. [157].

Going from the EFT description to concrete models also allows us to obtain additional con-
straints arising from the correlation of the different SMEFT operators. An example is given by
the electroweak constraints for the R2 model in Fig. 4.7(c), which are not present for the mini-
mal set of operators contributing to the charged currents in Fig. 4.6(c). This correlation is also
the reason why LHC constraints seem to be weak in Fig. 4.6(b), but become relevant for the full
S1 models in Fig. 4.7(b).

4.5 On the validity of the EFT approach in collider

observables

It is well-known that the EFT approach is not always valid to describe LHC processes, since
the collision energies can be in certain cases of the same order or even above the EFT cutoff,
thus not justifying the truncation of the EFT expansion. One possible alternative to reduce
this problem is to give the constraints coming from the analyses as a function of a mass scale
Mcut, representing an upper value in some kinematical variable relevant for the considered
process, above which all data are discarded [225]. This would, in principle, allow for a more
robust interpretation of the bounds. However, such an approach is not ideal for the searches
we consider, since the last bin is typically the one with the largest S/B. In other words, the
sensitivity of the EFT coefficients would dramatically decrease.

Another important issue, which we try to address in this section in two explicit examples,
is the contribution of dimension-eight operators in the SMEFT. In many cases, the current pre-
cision of the experiments requires keeping the 1/Λ4 terms in the squared amplitude. This is
especially the case when dimension-six operators do not interfere with the SM amplitude. At
the same order in the expansion, however, also the interference terms of dimension-eight op-
erators with the SM appear, opening the question of whether these can be neglected or not.
While this is mainly the case, it has been pointed out that there are classes of operators that
might even lead to new kinds of effects, e.g. in angular distributions. In our case, we have men-
tioned operators (ψ4D2) that have an additional energy enhancement, thus being potentially
important in the tails of the distributions.

4.5.1 Limit comparison

In order to illustrate the difference between the limit obtained with an EFT and with concrete
scenarios, we focus on a single specific experimental search: the latest mono-tau resonance
search by ATLAS [213].

Due to the energy enhancement in the EFT partonic cross-section the most significant
events in the analysis will be located at the high energy end of the spectrum, i.e. in the tail of the
distribution. For obtaining the results presented in Sections 4.4.2, as well as in Refs. [158–160],
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the most constraining events are indeed those above 1TeV. 11 If we assume NP to be mediated
by a t- or u-channel particle with a mass around 1TeV, the partonic cross-section will be greatly
overestimated if we do not account for the propagation of the NP state. This can be easily seen
if we write the propagator

1

t−m2
≃ − 1

m2

(
1 +

t

m2
+ . . .

)
, t ∈ [−s, 0]. (4.45)

Obviously, if the negative t/m2 correction is neglected the cross-section would be much larger
than the one obtained by using the usual EFT approach. This effect becomes even worse due
to the energy enhancement in the cross-section and the fact that the size of the t/m2 correction
is enhanced by the cuts in the analysis.

To illustrate the effect of propagation of the mediator we shall compare the recast results of
the R2 leptoquark with and without the use of EFT.

Framework

For convenience we copy the R2 Lagrangien here:

LR2 = [yR2 ]
ijQ̄iR2lRj + [yL2 ]

i,j ūRiR̃
†
2Lj + h.c. (4.46)

where, as usual, Q and L are the left-handed doublets of quarks and leptons, while uR and lR
are the right-handed singlets. We work in the basis where down-quark Yukawa couplings are
diagonal. In Eq. (4.46) we use the notation with R̃2 = iτ2R

∗
2, where τ2 is the usual Pauli matrix.

As for the Yukawa couplings, i.e. between the R2 leptoquark and the lepton and quark flavors,
we use:

[yL2 ] =



0 0 0
0 0 ycτL
0 0 0


 , [yR2 ] =



0 0 0
0 0 0
0 0 ybτR


 . (4.47)

This is the minimal set of couplings needed to explain the charged current B-anomalies [29,35],
see also Ref. [158]. We take the mass mR2 = 1.3 TeV as our benchmark point, which is
consistent with current limits derived from direct searches [29,35]. After neglecting the fermion
masses, the partonic cross-section reads

dσ̂
(
cb̄→ τ+νµ

)

dt̂
=

1

64Ncπŝ2

∣∣[yL2 ]cτ
∣∣2 ∣∣[yR2 ]bτ

∣∣2 û2
(
û−m2

R2

)2 . (4.48)

This can be easily integrated since in the same limit ŝ+ t̂+ û = 0. We get

σ̂(ŝ) ≃
∣∣[yL2 ]cτ

∣∣2 ∣∣[yR2 ]bτ
∣∣2

192πm2
R2

[
x+ 2

x(1 + x)
− 2 log(1 + x)

x2

]
, (4.49)

where x = ŝ/m2
R2

.
We recast the latest ATLAS searches [213], using the same selection of events as in the

previous Section, again by allowing at most one extra jet in the final state.

11Note that in the new ATLAS data [213] 60 events are found above 1 TeV.
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Results

Like in the previous Section, we use the CLs method to constraint the two non-zero couplings
appearing in Eq. (4.46, 4.47). The resulting limit can be expressed as

∣∣∣[yL2 ]cτ [yR2 ]bτ
∣∣∣ < 2.44 for mR2 = 1.3 TeV . (4.50)

This inequality translates to a bound on the Wilson coefficient gSL
≡ gSL

(mb) as

|gSL
| = 8.1 |gT | < 0.88 ,

which is to be compared with |gSL
| < 0.55 as given in Refs. [157] using the exact same analysis,

and which was also previously obtained in Refs. [158–160].
We see that the latter constraint on gSL

is approximately 60 % weaker than the one obtained
by using EFT alone. This statement is dependent on the leptoquark mass and the difference
should decrease as mR2 increases (see Fig. 4.8).

An important observation is that despite the total cross-section being only 10 % smaller
when considering the propagation of the mediator the difference in the limits on Wilson coef-
ficients can be much larger. This is because the ratio of cross-sections depends on pmin

T , the
value starting from which the high-pT tail is defined to derive desired constraints. For a smaller
pmin
T , the t/m2 term in Eq. (4.45) is large only in a small part of the phase space, whereas for

larger values of pmin
T this term remains always large. In Fig. 4.8 we show how the two constraints

compare for various pmin
T and various values of leptoquark masses. Indeed for heavier LQs, the

constraints on couplings derived from EFT and propagating leptoquarks become closer to each
other. Already at mR2 ≃ 5TeV, we find that the two constraints are within 20 % from each other.
One should keep in mind, however, that the bound on |gSL

| is stronger for larger pmin
T because

the events larger than 1 TeV provide the most significant constraints.

0.5 1 5 10 50
1.0

1.5

2.0

2.5

3.0

Figure 4.8: Ratio of the limits obtained with the full model and the EFT for various pT cuts, in
the limit of infinite luminosity.

In Fig. 4.9 we plot the limit on the average coupling
√
yLcτy

R
bτ , that we obtain from the ATLAS

data. We see that we can only probe the region under 3.5 TeV because the couplings would
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Figure 4.9: 95 % exclusion limit on
√
yLcτy

R
bτ as a function of the R2 mass (orange). The

equivalent EFT result is shown in blue. We also include the projected limits with 3 ab−1 of
integrated luminosity.

otherwise become nonperturbative, i.e. larger than ∼
√
4π. However, with a further increase

in luminosity, the slope of the curves shown in Fig. 4.9 would become smaller, thus opening a
possibility to probe heavier leptoquarks. We also tried to include the effect of the leptoquark
width in this analysis, and we found that the effect is insignificant in the perturbative regime,
|yLcτ |, |yRbτ | <

√
4π.

4.5.2 Convergence of the EFT

A definite answer about the weight of dimension-eight operators can be only given with further
assumptions on the UV structure generating the EFT in the first place. For this reason, we study
the bounds obtained with and without the dimension-eight effects within two concrete examples
of simplified NP mediators, corresponding to the extension of the SM field content by a Z ′ boson
and a U1 vector leptoquark, respectively. In the first case, the Z ′ being exchanged in the s-
channel in Drell-Yan processes, we expect to see a larger effect, with the EFT essentially failing
to describe the data in the proximity of the resonance. The leptoquark, on the contrary, being
a t-channel mediator, should suffer less from this problem. We then compare the results with
what we obtain without integrating out the mediator. The whole analysis has been performed
within HighPT.

Z′ ∼ (1, 1, 0) : The general lagrangian for the Z ′ is given in Table 4.1, which we report here
for convenience:

LZ′ =
∑

ψ

[gψ1 ]
ab ψ̄a /Z

′
ψb , ψ ∈ {u, d, e, q, l} . (4.51)
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We choose to switch on only the three couplings [gl1]
22, [gq1]

11 and [gq1]
22, matching only onto the

following two effective coefficients in the SMEFT at dimension six12,
[
C(1)lq

]
1122

Λ2
= − [gl1]

22[gq1]
11

m2
Z′

,

[
C(1)lq

]
2222

Λ2
= − [gl1]

22[gq1]
22

m2
Z′

, (4.52)

our constraints will therefore derive from the parton-level transitions of the type qq̄ → µ+µ−, with
q ∈ {u, d, s, c}. Going one step forward in the EFT matching, we find the following tree-level
contribution to dimension-eight operators,

[
C(1)
l2q2D2

]
2211

Λ4
= − [gl1]

22[gq1]
11

m4
Z′

,

[
C(1)
l2q2D2

]
2222

Λ4
= − [gl1]

22[gq1]
22

m4
Z′

, (4.53)

where we have neglected operators without derivatives, since they are suppressed with respect
to the dimension-six contributions.

U1 ∼ (3, 1, 2/3) : The Lagrangian of the U1 leptoquark is

LU1 = [xL1 ]
iα q̄i /U1lα + [xR1 ]

iα d̄i /U1eα + h.c. . (4.54)

By considering only the left-handed couplings xL1 , the following dimension-six operators are
generated at tree-level,

[
C(1)lq

]
αβij

Λ2
=

[
C(3)lq

]
ijkl

Λ2
= − [xL1 ]

αj [xL1 ]
βi∗

2m2
U1

. (4.55)

Several operators appear at the next order in the EFT matching. However, only a few of these
induce energy-enhanced contributions to Drell-Yan tails (see Table 2.1). These effective coeffi-
cients are given by

−
[
C(1)
l2q2D2

]
αβij

Λ4
=

[
C(2)
l2q2D2

]
αβij

Λ4
= −

[
C(3)
l2q2D2

]
αβij

Λ4
=

[
C(4)
l2q2D2

]
αβij

Λ4
= − [xL1 ]

αj [xL1 ]
βi∗

4m4
U1

, (4.56)

with flavor indices α, β, i, j, as above. The d = 6 and d = 8 have the same numerator and their
contribution to the cross-sections will only differ by t/m2

U1
, as one could expect from expanding

the leptoquark propagator in the t-channel (see Fig. XX).
As an illustration, we choose to switch on the couplings with flavor indices 12 and 22, giving

effects in mono-muon and di-muon final states. Even without looking at the actual constraints,
it is useful to look at the differential Drell-Yan cross-section in the three cases (Figure 4.10)
for a mediator mass of 2 TeV, where we see that the interference of dimension-6 SMEFT is
indeed not sufficient to describe the model correctly, and that the dimension-8 terms only bring
a small correction compared to the squared dimension-6 terms. In the example chosen here,
the dimension-8 term is bringing the EFT cross-section closer to the full model, but this doesn’t
have to be the case, since the opposite value for one of the coupling would have resulted in a
destructive interference with the SM.

We can thus expect the effects of dimension-8 operators to be small for most explicit sce-
narios of NP. We decided to include them in this work anyways in order to make fully consistent
the EFT expansion to the order 1/Λ4, to no almost no additional computational cost, since our
form-factor parameterization 4.1 and 4.2 are capable of encapsulating such effects.

12Note that we set Λ =MZ′
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(a) (b)

Figure 4.10: Differential cross-sections normalized to the cross-section computed with the
mediators. For both cases Λ = m = 2 TeV.

4.6 Summary and outlook

We have presented an analysis of semileptonic transitions in charged- and neutral current
Drell-Yan processes at the LHC. Starting with a general description of the scattering amplitude
in terms of form factors, we have computed the relevant hadronic cross-sections with the Math-
ematica package HighPT that we have developed for the phenomenology of these processes at
high-pT [52]. These form-factors have been matched to the SMEFT with a consistent EFT ex-
pansion up to O(Λ−4) at the cross-section level, making distinctions between the contributions
which are energy-enhanced and those which lead to an overall shift of the SM cross-section,
as well as to explicit concrete models with new bosonic mediators that contribute at tree-level
to these processes. In particular, the comparison of these results allowed us to directly assess
the range of validity of the EFT description of LHC data in certain scenarios.

Our computations have been compared to LHC data, through appropriate recasts of the
experimental searches made by ATLAS and CMS. We have provided, for the first time, the
complete likelihood for semileptonic operators, with general flavor indices of quarks and leptons,
derived from the processes pp → ℓν and pp → ℓℓ′ at high-pT . To illustrate these results, we
have provided the constraints on all possible SMEFT semileptonic effective coefficients up to
dimension-6 by assuming a single coefficient at a time. The impact of dimension-8 in our
constraints has also been explored by considering a few illustrative scenarios.

Finally, we have considered the explicit leptoquark scenarios needed to explain the charged-
current B-anomalies as an example. These models have been explored by combining our limits
with the constraints arising from low-energy observables and electroweak precision measure-
ments. For the viable models, we have confirmed that the high-pT observables are comple-
mentary to the low-energy ones and that they provide fundamental information to identify the
viable solutions to these anomalies. Furthermore, we have discussed the impact of the lepto-
quark propagation effects on the LHC bounds that could be derived by naively recasting the
EFT results.

Several extensions and improvements of our analysis are foreseen for the future, which will
be accompanied by updates of the HighPT package:

� We plan to include all relevant flavor observables, as well as the relevant electroweak
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and Higgs observables, into a unified framework for flavor-physics phenomenology.

� The input-scheme used for the gauge parameters of the SM receives corrections from
New Physics parametrized with dimension-six operators, see e.g. Ref. [23]. The modifi-
cation of these inputs therefore needs to be taken into account when computing the SM
expectation for any observable, leading to correlations between different sectors. This
applies, in particular, to GF and the CKM matrix [24]. These contributions were irrelevant
in the examples considered here, as they do not induce energy-enhanced contributions
to the cross-section. However, they must be carefully taken into account to combine
low-energy and high-energy observables in full generally.

� We plan to implement a complete list of concrete mediators in the code, in addition to
the leptoquark models which already are available, with arbitrary values for the mass and
width of these particles.

� We plan to directly implement a more robust statistical approach to analyze LHC data in
the bins with few events, such as the CLs method [226].

� Lastly, it is possible to extend both our EFT and concrete-mediator analyses to scenarios
with light right-handed neutrinos.
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Chapter 5

Explicit Leptoquark solutions to the

B-physics anomalies

In this chapter, we will try to combine both the low-energy observables of Chapter 3 and the
high-energy observables of Chapter 4 applied to models of leptoquarks, as defined in Sec. 2.2.
We start by summarizing all those constraints on scenarios with a single leptoquark, and then
consider a model with 2 scalar LQ: R2 and S3.

5.1 Collider constraints on Leptoquark scenarios

In addition to the study of the high-pT tails of the pp → ℓℓ distributions discussed in Chapter 4
and in Refs. [185, 195, 227], search for LQs in hadron colliders can also be achieved through
their direct pair production [228, 229]. While the study high-pT tails can provide limits on the
coupling of LQs to quarks and leptons, this is not the case for direct productions. Instead, it
allows us to put powerful constraints on the LQ masses. The relevant diagrams are shown in
Fig. 5.1

Figure 5.1: Diagrams contributing the the LQ pair production (left) and high-pT tails (right).

5.1.1 Direct searches

The dominant mechanism for the LQ production at the LHC is pp→ LQ† LQ. Several searches
for LQ pairs have been made at ATLAS and CMS for different final states, namely (q̄ℓ)(qℓ̄),
(q̄ν)(qν̄) and (q̄dℓ)(quν̄), where qd and qu stand for the generic down- and up-type quarks. From
these searches it is possible to derive model independent bounds on a given LQ mass as a
function of its branching fraction into a specific quark-lepton final state.
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In Table 5.1 we present the limits on the LQ masses obtained from our recast of the latest
pp→ LQ† LQ→ (q̄ℓ)(qℓ̄) ATLAS and CMS searches. Previous limits were obtained in Ref. [28].
These limits are obtained as a function of the LQ branching fraction β, which we take to the
benchmark values β = 1 and β = 0.5. Our main assumption is that the LQ production cross-
section is dominated by QCD, which is true for the range of Yukawa couplings allowed by
flavor constraints [28]. Furthermore, we assume that the vector LQ (V µ) interaction with gluons
(Gµν) is described by L ⊃ κ gsV

†
µGµνVν , with κ = 1 (Yang-Mills case) [230], and we use the

predictions from [229] in our recast. Compared to the previous study [28] with only 36fb−1 of the
LHC data, the limits on LQs masses have been considerably improved thanks to the increase
in luminosity.

The LHC searches considered in Table 5.1 assume that pairs of LQs are produced and
decay into the same quark-lepton final states. Recently, CMS performed a search for pair of
LQs in the mixed channel pp → LQ†LQ → bτtν, with 140 fb−1 data [231]. This search was
performed under the assumption that the LQs decay with equal branching fractions (β = 0.5)
to the final states LQ(2/3) → bτ̄ , tν̄, or LQ(−1/3) → tτ , bν, where the upper index denotes the
LQ electric charge. Under this assumption the lower limits 1.0 TeV and 1.8 TeV have been
obtained for the scalar and vector LQs, respectively. That search is particularly useful for the
U1 = (3,1, 2/3) scenario, since the gauge invariance requirement implies that the couplings of
U1 to tν̄ and to bτ̄ are equal. Note, however, that this search is very model dependent and,
in particular, it does not generically apply to the models containing e.g. S1 = (3̄,1, 1/3) or
R2 = (3,2, 7/6).

Decays Scalar LQ limits Vector LQ limits Lint / Ref.

jj τ τ̄ � � �

bb̄ τ τ̄ 1.0 (0.8) TeV 1.5 (1.3) TeV 36 fb−1 [232]

tt̄ τ τ̄ 1.4 (1.2) TeV 2.0 (1.8) TeV 140 fb−1 [233]

jj µµ̄ 1.7 (1.4) TeV 2.3 (2.1) TeV 140 fb−1 [234]

bb̄ µµ̄ 1.7 (1.5) TeV 2.3 (2.1) TeV 140 fb−1 [234]

tt̄ µµ̄ 1.5 (1.3) TeV 2.0 (1.8) TeV 140 fb−1 [235]

jj νν̄ 1.0 (0.6) TeV 1.8 (1.5) TeV 36 fb−1 [236]

bb̄ νν̄ 1.1 (0.8) TeV 1.8 (1.5) TeV 36 fb−1 [236]

tt̄ νν̄ 1.2 (0.9) TeV 1.8 (1.6) TeV 140 fb−1 [237]

Table 5.1: Summary of the current limits from searches for pair-produced LQs at the LHC for
possible final states (first column). Limits on scalar and vector LQs are shown in the second
and third column, respectively, for a branching fraction β = 1 (β = 0.5).
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5.1.2 Bounds from indirect high-pT searches

Since the pioneering paper of Ref. [227] it is known that the high-energy tails of the invariant
mass distribution of the processes pp → ℓℓ(′) [185, 195] and pp → ℓν [160] are ideal probes
for generic LQ models. These observables are particularly useful for setting upper bounds on
complementary combinations of the couplings that cannot be constrained by flavor observables
at low energies.

Figure 5.2: Upper limits on the scalar (vector) LQ couplings yijL (xijL ), as a function of the LQ
masses, which have been obtained from the most recent LHC searches in the high-pT bins of
pp → ℓℓ at 13 TeV with 140 fb−1 [210, 238]. The solid (dashed) lines represent limits arising
from di-muon (di-tau) searches, by turning on a single LQ coupling in flavor space. In the plots
we highlight the regions consistent with the lower bounds on the LQ masses given in Tab. 5.1
and discussed in Sec. 5.1.1. The qq̄ pairs inside the parentheses indicate the combination of
qq̄ → ℓℓ channels used to set the exclusion limits for each coupling. Notice that all uū transitions
are Cabibbo suppressed.

In Ref. [29], we obtained some constraints on the LQ couplings using LHC data by following
a procedure already outlined in Ref. [28]. In particular, we used the most recent ATLAS and
CMS searches for resonances in the dilepton channels:

• pp → τ+τ−: We recast the ATLAS search for heavy Higgs boson decaying into the ττ

channel, at
√
s = 13 TeV with 140 fb−1 data [210]. We consider events with hadronic

τ -leptons (τhad) and we focus our analysis on the b-veto category.
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• pp → µ+µ−: We recast the CMS search for a heavy Z ′ boson decaying into the µµ

channel, at
√
s = 13 TeV with 140 fb−1 data [238].

The constraints obtained from those two recasts already involve many flavor combinations,
due to the flavor content of the proton. Other searches such as lepton flavor violating (LFV) and
mono-lepton searches are related to di-lepton through SU(2) invariance, and as such would
improve the constraints, at the cost of even more flavor structure. The HighPT package was
specifically designed to be able to disentangle the differing flavor structure.

In Fig. 5.2 we show the constraints on the LQ couplings obtained using only those two
searches as a function of the LQ mass for the LQ models that are relevant for the B-physics
anomalies, namely the scalars S1, S3 and R2, and the vector U1. In these plots, we only
present limits for the vector LQ couplings to left-handed currents. 1 The 95% upper limits on the
couplings are obtained as a function of the LQ masses by turning on one single flavor coupling
at a time. The specific qq̄ → ℓℓ transitions contributing to each exclusion limit are displayed
inside the parentheses (qq̄). As shown in Fig. 5.2, these limits are typically more stringent
than naive perturbative bounds on the couplings, namely |y| ≲

√
4π. The relevance of these

constraints to the scenarios aiming to explain RK(∗) and RD(∗) will be discussed in Sec. 5.2.
As of the time of writing, HighPT only supports mediator mass of 2 TeV, and thus cannot

produce graphs equivalent to Fig. 5.2 for combined searches. Instead, we provide the high-pT
constraints on the couplings of all leptoquark states, see Tab. 4.1, where we consider a sin-
gle coupling at a time and Leptoquark propagation effects have been systematically included,
which weaken the LHC limits in comparison to the ones derived via matching to the SMEFT.
The effects of the propagation of mediators have been discussed in Sec. 4.5, with an explicit
comparison between the constraints for concrete mediators and EFT for representative lepto-
quark scenarios.

Our results are collected in Fig. 5.3 for all leptoquark couplings that contribute to mono-
and di-lepton tails. These results follow the same pattern of the SMEFT results presented in
Fig. 4.4, with the strongest bounds corresponding to the lightest quark flavors, as they have
the largest PDFs. Moreover, we find that bounds on the couplings to electrons and muons are
comparable, whereas the ones on tauonic couplings turn out to be less stringent due to the
weaker experimental sensitivity at the LHC. The only couplings that are not constrained by our
observables are the ones that involve right-handed top-quarks.

Finally, we emphasize that there are non-negligible correlations between the limits on dif-
ferent leptoquark-couplings. These correlations are relevant for realistic scenarios where the
couplings to different quarks and leptons are themselves correlated. The complete leptoquark
likelihoods for the benchmark mass 2 TeV is fully implemented in the HighPT package [52].

1See Refs. [239,240] for recent and updated high-pT limits for right-handed couplings.
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Figure 5.3: LHC constraints on the coupling constants of all leptoquarks, where a single coupling

is turned on at a time. The numbers on the left-hand side of each plot correspond to the respective

�avor indices iα. See Tab. 4.1 for the de�nition of the couplings. Note that these results, being

obtained from a combination of all the searches in Tab. 4.2, are compatible, if not stronger, than

those obtained in Fig. 5.2 for a mass of 2 TeV.

105



5.2 Single Leptoquark solutions to the B-physics anoma-

lies

Armed with the mass and coupling constraints from Sec. 5.1 and with the constraints on the
EFT coefficients from Chapter 3 which can be related to LQ scenarios through the matching
conditions defined in Sec. 2.2, we are now able to determine if any of the 5 individual LQ states
we are considering can explain the B-anomalies.

5.2.1 S3 and U3

The matching of the S3 and U3 LQs to the neutral and charged EFT is given in Eq. 2.12-2.13
and Eq. 2.24-2.25 respectively. In both case, the following conditions are obtained:

δC9 = −δC10 and gVL < 0. (5.1)

As seen in Fig. 3.1, δC9 = −δC10 is the correct combination to explain the neutral current
anomalies Rexp

K(∗) < RSM
K(∗) , whereas the charged current anomalies Rexp

D(∗) > RSM
D(∗) instead re-

quire gVL > 0, and thus cannot be accommodated by S3 or U3.

5.2.2 S1

According to the matching Eq. (2.15), two different scenarios can lead to an explanation of the
charged current anomalies. If we assume the minimalistic scenario with [yR1 ]

ij = 0, then we
can have gVL > 0, which is enough to explain Rexp

D(∗) > RSM
D(∗) . Alternatively, it is possible to turn

on the right-handed coupling and use the second part of the matching 2.15, since gSL
= −4gT

is also a viable solution as shown in Fig. 3.2.
S1, however, does not lead to a desired contribution to the b → sµµ. In the minimal

ansatz for the Yukawa couplings, accommodating Rexp

K(∗) < RSM
K(∗) and ∆mBs requires large

LQ mass, mS1 ≳ 4 TeV, and at least one of the Yukawa couplings to hit the perturbativity
limit

√
4π [28]. Therefore, one needs to turn on at least [yR1 ]

cτ and otherwise satisfy the con-
dition |[yR1 ]iµ| ≪ |[yL1 ]iµ|, for i ∈ {u, c, t} to be consistent with data, cf. Fig. (3.1). However,
requiring consistency with a number of measured flavor physics observables [28], including
R
µ/e

D(∗) = B(B → D(∗)µν̄)/B(B → D(∗)eν̄), B(B → K(∗)νν̄), B(K → µν)/B(K → eν) and the
experimental limit on B(τ → µγ), leads to a large mS1 and very large couplings. This is why the
S1 scenario is considered as unacceptable for describing Rexp

K(∗) < RSM
K(∗) , but fully acceptable

for describing Rexp

D(∗) > RSM
D(∗) . cf. Refs. [28,241,242].

5.2.3 R2

As shown in Eq. 2.19, this LQ scenario generates the combination gSL
= 4 gT at the matching

scale µ ≃ mR2 , which is consistent with data if gSL
is mostly imaginary, cf. Fig. 3.2 and Refs. [34,

224,243], it can therefore accommodate the observed excess in RD and RD∗ , provided a large
complex phase is present, and at least one [yR2 ]

ij is non-zero, usually [yR2 ]
bτ .

Like in the S1 scenario, this LQ cannot generate the tree-level contribution consistent with
RK(∗) < RSM

K(∗) , but it can do so through the box-diagrams [36]. The two essential couplings
for this to be the case, [yL2 ]

cµ and [yL2 ]
tµ, can now be quantitatively scrutinized. To that end it

is enough to use two key constraints: the one arising from the well-measured B(Z → µµ) [56]
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and another one, stemming from the high-pT tail of the pp → µµ differential cross-section.
Note that the expression for the corresponding LQ contribution to Z → µµ has been derived
in Ref. [244], where the non-negligible finite terms ∝ xZ log xt have been properly accounted
for (xi = m2

i /m
2
R2

). As for the LQ mass, we use the bound given in Table 5.1 and set mR2 =

1.7 TeV, while from Fig. 5.2 we can read off the constraints on the couplings as obtained from
the large pT considerations. The result is shown in Fig. 5.4 where we also draw the curves
corresponding to three significant values of RK(∗) , making it obvious that only RK(∗) ≳ 0.9 is
compatible with the two mentioned constraints. In other words, RK(∗) in this scenario is pushed
to the edge of 1σ compatibility with R(exp)

K(∗) , cf. also Ref. [245].

Figure 5.4: The allowed regions for the couplings ycµL and ytµL are plotted in white for the R2 =

(3,2, 7/6) LQ with massmR2
= 1.7 TeV. Predictions forRK ≈ RK∗ in the bin q2 ∈ [1, 6] GeV2 are

shown by the red contours. Excluded regions by Z-pole observables and pp→ µµ constraints
are depicted in blue and gray, respectively.

As discussed in [28], the simultaneous explanation of both RK(∗) and RD(∗) in this scenario
is not possible even to 2σ because of the chiral enhancement by the top quark which leads to
a prohibitively large B(τ → µγ), in conflict with the experimental bound [36].

5.2.4 U1

In the minimal assumption where xR1 = 0, this model predicts at the same time δC9 = −δC10

and gVL > 0. In other words, this state alone can simultaneously explain RK(∗) and RD(∗) .
Owing to the fact that this LQ does not contribute to B → K(∗)νν̄ at tree-level, this is the

only scenario that can satisfy both anomalies. The main drawback, however, is that the con-
straints derived from the loop-induced processes cannot be used unless a clear UV completion
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is specified which in turn requires introducing several new parameters and new assumptions
(model dependence) making the scenario less predictive. For that reason, we do not include,
for example, the constraint arising from the frequency of oscillation of the Bs − B̄s system
(∆mBs) when dealing with vector leptoquarks. It has however been shown that this scenario
can be significantly constrained by the tree-level processes alone [28, 246]. In particular, the
model results in interesting correlations between the LFV processes B → K(∗)µτ and τ → µϕ,
and both upper and lower bounds for these modes can be derived. Setting the mass mU1 to its
lower bound of 1.8TeV from Tab. 5.1, we then use the low energy flavor physics observables as
in Ref. [28], combine them with the new constraints on couplings, as obtained from the high-pT
shapes of pp → ℓℓ, shown in Fig. 5.2, and instead of plotting the couplings, we focus directly
onto observables. Using the expressions for exclusive LFV b → sℓ1ℓ2 modes [241, 247] in the
first panel of Fig. 5.5 we show how the region of B(B → Kµτ) and B(τ → µϕ), allowed by
the low-energy flavor physics constraints (gray points), gets reduced to the red region, once
the current constraints coming from the high pT considerations of pp → ℓℓ at the LHC are
taken into account. We see that in both channels the current experimental bounds are al-
ready eliminating small sections of the parameter space. In the same plot we also show how
that experimental bound on B(τ → µϕ) is expected to be lowered once the Belle II runs will
be completed [129]. Concerning the experimental bound on B(B → Kµτ), we note that the
BaBar bound (4.8 × 10−5) [248] has been recently confirmed and slightly improved by LHCb
(3.9×10−5) [249]. In the minimal U1 scenario considered here, and with the current experimen-
tal constraints, we obtain

B(B → Kµτ) ≳ 0.7× 10−7 , (5.2)

which could be tested experimentally. Note that this (lower) bound is not expected to increase
significantly with the improved luminosity of the LHC data and with the projected 3 ab−1 of data
we get only a factor of about 3 improvement, namely B(B → Kµτ) ≳ 2.2× 10−7.

Figure 5.5: Lower and upper bounds on the exclusive b → sµτ processes as obtained in the
minimal U1 scenario from the constraints arising both from the low-energy observables (gray
points) and those coming from the current direct searches at the LHC (red points), the subset
of which (blue points) correspond to the projected integrated luminosity of 3 ab−1.

We should also mention that, in this scenario, from the lower bound (5.2) and the experimen-
tal upper bound, one can derive the bounds on similar decay modes since B(B → K∗µτ)/B(B → Kµτ) ≈
1.8, B(Bs → µτ)/B(B → Kµτ) ≈ 0.9, and B(Λb → Λµτ)/B(B → Kµτ) ≈ 1.7 [247]. Further-
more, in this scenario the SM contribution to the b → cτ ν̄ decay modes gets only modified by
and overall factor. For that reason, the predicted increase of RX with respect to the SM is the

108



same for any X ∈ {D(∗), D
(∗)
s , J/ψ,Λ

(∗)
c , . . . }. From the right panel of Fig. 5.5 we see that with

the current experimental constraints we have

1.05 ≲
RX

RSM
X

≲ 1.25 , (5.3)

the interval which remains as such even by projecting to 3 ab−1 of the LHC data (blue regions
in Fig. 5.5).

We were able to check the robustness of the above findings by varying mU1 and by im-
posing all of the constraints mentioned above, including the LHC bounds on the pair-produced
leptoquarks decaying into various final states. The result is shown in Fig. 5.6 from which we
see that the lower bound on B(B → Kµτ) remains stable with respect to the variation of mU1 .
Notice that the lower bound on the mass is mU1 ≳ 1.35 TeV, while the perturbativity limit on the
couplings set an upper limit mU1 ≲ 18 TeV.

Figure 5.6: Limits on B(B → Kµτ) with respect to the variation of the mass of the U1-
leptoquark, and by keeping all of the constraints discussed in the text. Colors of the points
are the same as in Fig. 5.5.

Finally, we summarized the situation regarding the viability of a scenario in which the SM is
extended by a single O(1TeV) LQ state in Tab. 5.2.

5.2.5 Summary

In this work, we revisited our previous phenomenological study and examined the viability of
the scenarios in which the SM is extended by only one O(1TeV) LQ after comparing them to
the most recent experimental results, in addition to those already discussed in Ref. [28]. In that
respect the Belle measurement of RD(∗) [3] has been particularly important, as well as the new
RK and B(Bs → µµ) values reported by the LHCb Collaboration [1,12]. Besides the low-energy
observables, we also exploit the most recent experimental improvements regarding the direct
searches and the high pT considerations of the pp→ ℓℓ differential cross-section studied at the
LHC.

Better experimental bounds on the LQ pair production, pp → LQ† LQ, results in a larger
lower bound on mLQ, now straddling 2 TeV and being higher for the vector LQs than that for
the scalar ones. From the study of the large-pT spectrum of the differential cross-section of
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Model RK(∗) RD(∗) RK(∗) & RD(∗)

S3 (3̄,3, 1/3) ✓ ✗ ✗

S1 (3̄,1, 1/3) ✗ ✓ ✗

R2 (3,2, 7/6) ✗ ✓ ✗

U1 (3,1, 2/3) ✓ ✓ ✓

U3 (3,3, 2/3) ✓ ✗ ✗

Table 5.2: Summary of the LQ models which can accommodate RK(∗) (first column), RD(∗)

(second column), and both RK(∗) and RD(∗) (third column), without being in conflict with existing
constraints. See text for details.

pp → ℓℓ, we extract the upper bounds on Yukawa couplings which provide us with constraints
complementary to those inferred from the low-energy observables.

Whenever available we use the improved theoretical expressions and improved hadronic
inputs. On the basis of our results, which are summarized in Table 5.2, we confirm that none of
the scalar LQs alone, with the mass mLQ ≲ 2 TeV, can be a viable scenario of NP that captures
both types of anomalies, Rexp

K(∗) < RSM
K(∗) and Rexp

D(∗) > RSM
D(∗) . Instead, one can combine S3 with

either S1 or R2 [35, 177, 178, 180, 181] to get a model suitable for describing all of the data
in a scenario requiring the least number of parameters. We investigate one such scenario in
Sec. 5.3.

With the new experimental data we were able to better examine the model with R2 scalar
LQ, and check on the possibility of describing the Rexp

K(∗) < RSM
K(∗) anomaly through the loop

process. We found that B(Z → µµ) and the constraint coming from the high pT shape of the
pp → µµ cross-section at the LHC are complementary to each other and allow us to rule out
the model (to 1σ) if RK(∗) ≲ 0.9.

Besides the scalar LQs we also considered the vector one, U1, for which we could not
account for the loop induced processes, such as ∆mBs , but by focusing on the tree level ob-
servables alone we could confirm that this scenario, in its minimal setup (xR = 0) can de-
scribe both Rexp

D(∗) > RSM
D(∗) and Rexp

K(∗) < RSM
K(∗) . In this U1 model all the exclusive processes

based on b → cτ ν̄ are modified by the same multiplicative factor so that all the LFUV ra-
tios are the same. In other words, and with the currently available experimental information,
1.05 ≲ RX/R

SM
X ≲ 1.25, X ∈ {D(∗), D

(∗)
s , J/ψ,Λ

(∗)
c , . . . }. Also interesting are the upper and

lower bounds on the LFV b → sµτ modes. While the upper bound is already superseded by
the experimentally established one, this scenario provides us with the lower bound, which we
found to be B(B → Kµτ) ≳ 0.7 × 10−7. In this study we also included baryons and obtain
1.2 × 10−7 ≲ B(Λb → Λµτ) ≲ 6.6 × 10−5, where the lower bound is a prediction of the U1

model discussed here, and the upper bound is obtained by rescaling the experimental bound
on B(B → Kµτ).
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5.3 R2-S3 combined model

5.3.1 Introduction

We established in Sec. 5.2 that the only viable scenario involving a singleO(1 TeV) LQ mediator
that can accommodate the B-anomalies while remaining consistent with other measured low
energy flavor observables, as well as with the bounds arising from collider searches at the LHC
is the U1 vector leptoquark. While the vector LQ is an appealing solution, it creates problems
when building a particular model because the resulting effective theory is not renormalizable
unless a particular ultra-violet (UV) completion to the theory is specified [167]. This, in turn,
necessitates introducing more states, and more parameters, which require many assumptions
to be made to make a predictive model. An alternative to that scenario is to combine two
scalar LQs, such as S1 = (3,1, 1/3) with S3 = (3,3, 1/3) [250], or R2 = (3,2, 7/6) with S3.
The advantage of the two scalar LQ scenarios is that they remain renormalizable, the loop
processes can be easily computed without the necessity of introducing a UV cutoff by hand,
so that, once measured, such processes can be used as constraints. In Ref. [35] a model in
which the R2 leptoquark is combined with S3 both with mass O(1 TeV) has been proposed. To
make it minimalistic we chose the structure of the NP couplings such that the matrices of left-
handed couplings to R2 and S3 are related via yL3 = yL2 , a pattern that can provide a plausible
embedding of the resulting effective theory in a SU(5) unification scenario.

In this section, we update the analysis presented in Ref. [35] to show that the proposed
scenario is still viable and consistent with the current experimental data. Furthermore, we
discuss several new observables, including those relevant to the angular distributions of B →
D∗(→ Dπ)τ ν̄ and Λb → Λc(→ Λπ)τ ν̄ that were discussed in Chapter 3, the measurement
of which can help distinguishing this particular model from the other ones proposed in the
literature. Another novelty is the analysis of the high-pT tails both of the mono-τ and di-τ events
for various leptoquark masses, which was not discussed in the first proposal of this model [35].

5.3.2 Model

As mentioned above, we combine R2 with S3 LQs to accommodate both kinds of B-anomalies.
More specifically, as discussed in Sec. 5.2, the (partial) branching fractions of the exclusive
b → sµµ can be accurately described by a S3 LQ, while a R2 LQ is responsible for the excess
of events based on the b→ cτ ν̄ transition.

To be more specific, the interaction Lagrangian between the LQs and the SM fermions in
this model reads:

L ⊃ LR2 + LS3 , (5.4)

In the mass eigenstate basis the above Lagrangian becomes:

L ⊃+ (V [yR2 ])
ij ūLiℓRjR

5
3
2 + [yR2 ]

ij d̄LiℓRjR
2
3
2

− (V u†
R [yL2 ]U)ij ūRiνLjR

2
3
2 + (V u†

R [yL2 ])
ij ūRiℓLjR

5
3
2

− [yL3 ]
ij d̄CLiνLjS

1
3
3 +
√
2(V ∗[yL3 ])

ij ūCLiνLjS
− 2

3
3

−
√
2[yL3 ]

ij d̄CLiℓLjS
4
3
3 − (V ∗[yL3 ])

ij ūCLiℓLjS
1
3
3

+ h.c.,

(5.5)
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where the superindices in R2 and S3 refer to the electric charge and V u
R is the rotation matrix

of the right-handed up quarks between the flavor and mass basis as defined in Eq. 1.19. We
neglected the PMNS matrix. In what follows we will assume the components of the R2 doublet
and those of the S3 triplet to be mass degenerate, respectively.

Concerning the coupling matrices, we assume their structure to be minimalistic and the
non-zero values are:

[yR2 ] =



0 0 0
0 0 0
0 0 ybτR


 , V u†

R [yL2 ] =



0 0 0
0 −ycµL −ycτL
0 0 0


 , (5.6)

where, as mentioned above, we take [yL3 ] = [yL2 ], namely,

[yL3 ] = −



1 0 0
0 cos θ sin θ
0 − sin θ cos θ





0 0 0
0 −ycµL −ycτL
0 0 0


 . (5.7)

In summary, the New Physics (NP) parameters in this model are: mR2 , mS3 , ybτR , ycµL , ycτL , and
θ. All of the mentioned parameters are real except for ybτR which we allow to be complex in order
to accommodate for the complex phases mentioned in Sec. 5.2.3.

Matching to the EFT

Substituting the NP couplings in the matching equation of Sec. 2.2.1, we obtain

gSL
(Λ) = 4 gT (Λ) =

ycτL ybτ ∗R

4
√
2GFVcbm

2
R2

, (5.8)

at the scale µ = Λ ≃ mR2 . As explained in Sec. 2.1.2, that relation translates to gSL
(mb) ≈

8.1 × gT (mb) [25] due to the renormalization group running from Λ ≃ 1TeV down to the low
energy scale µ = mb. More specifically, since gSL

(mb) = 1.56 gSL
(Λ), and gT (mb) = 0.77 gT (Λ),

one then obtains gSL
(mb) ≈ 8.1 × gT (mb). The contribution to b → cτ ν̄ from S3 is tiny [35] and

will be neglected in the following discussion.
The matching to the neutral current Lagrangian Eq. 2.3 reads:

δC9 = −δC10 =
πv2

VtbV
∗
tsαem

(
Y

(S3)
L

)bµ (
Y

(S3)
L

)sµ ∗

m2
S3

= − πv2

VtbV
∗
tsαem

sin 2θ
∣∣ycµL

∣∣2

2m2
S3

. (5.9)

5.3.3 Phenomenological Analysis

RD(∗)

From Fig. 5.7 we see that for all currently viable values of gSL
, that are consistent with Rexp

D(∗) ,
one must have Im[gSL

] ̸= 0. That is why we emphasized after Eq. (5.7) that one of the couplings
entering the expression for gSL

in Eq. (5.8) should be complex, which we chose to be ybτR .
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Figure 5.7: 1σ, 2σ and 3σ regions of complex values for gSL
≡ gSL

(mb) allowed by Rexp
D(∗) , cf.

Eqs. (2.1,5.8). Red and green circles correspond to the constraints on this coupling obtained
from analysis of the high-pT tail of pp → τν, as obtained from the LHC data [213, 251]. See
text for more details.

Constraints on gSL
from high-pT tails of pp → τν

The previously obtained bounds on EFT coefficients from the high-pT tail distribution of pp→ τν

events at LHC amounts to

|gSL
| ≤ 0.51 , (5.10)

which is obtained by recasting to our problem the bounds on W ′ obtained from 139 fb−1 by
ATLAS [213], under the condition gSL

= 4gT , which upon evolving down to µ = mb amounts to
represented by the red circle in Fig. 5.7.

Since the LQ masses that we work with are quite light compared to the scale at which the
EFT expansion converges properly for the study of high-pT tails [157], one should also use the
propagating LQ, and check on the difference with respect to the bounds on gSL

obtained by
treating LQ as static.

It is possible to adapt directly the results of Sec. 5.1 by noticing that the coupling struc-
tures factorizes out of the partonic cross-section. Indeed, using the Lagrangian specified in
Sec. 5.3.2, for the partonic cross section we obtain:

dσ̂
(
cb̄→ τ+ντ

)

dt̂
=

1

192πŝ2

[
g4 |Vcb|2 t̂2(
ŝ−m2

W

)2

+
sin2 θ |Vcs cos θ − Vcb sin θ|2

∣∣yLcτ
∣∣4 t̂2

4
(
t̂−m2

S3

)2 +

∣∣yLcτ
∣∣2 ∣∣yRbτ

∣∣2 û2
(
û−m2

R2

)2

+
g2 sin θ Re [(Vcs cos θ − Vcb sin θ)V ∗

cb]
∣∣yLcτ

∣∣2 t̂2
(
ŝ−m2

W

) (
t̂−m2

S3

)
]
, (5.11)
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with a similar expression for bc̄ → τ−ν̄τ , where the first term within the brackets corresponds
to the SM contribution, followed by the S3 and R2 contributions, and finally the last term is
interference between S3 and the SM contributions. Note that the fermion masses in the above
expression have been neglected. It appears that, for our phenomenological application, the R2

term indeed dominates because the S3 term is suppressed with respect to R2 by Vcs cos θ −
Vcb sin θ, in which the first term is small due to a tiny cos θ and the second one due to the
smallness of Vcb. One can therefore write:

σ̂(ŝ) ≃
|yRbτ |2

(
|yLcτ |2 + |yLcµ|2

)

192πm2
R2

[
x+ 2

x(1 + x)
− 2 log(1 + x)

x2

]
, (5.12)

where x = ŝ/m2
R2

. Again, after recasting the results by ATLAS [213] and using the above
expressions, we obtain

(∣∣yLcτ
∣∣2 +

∣∣yLcµ
∣∣2
) ∣∣yRbτ

∣∣2 < 5.95 , (5.13)

which then can be combined into gSL
via Eq. (2.19), and evolved down to µ = mb. For the

benchmark mass, mR2 = 1.3 TeV, we then find,

|gSL
| ≤ 0.88 , (5.14)

shown by a green circle in Fig. 5.7. Note that this bound, obtained by including the propagat-
ing R2, is far less stringent than the one deduced from the data after integrating out R2, c.f.
Eq. (5.10) as discussed in Sec. 4.5.

In summary, from the current data by ATLAS regarding the mono-tau high-pT tails, and by
including the propagation of the R2 LQ of mR2 = 1.3 TeV, one cannot obtain a very useful
constraint on the NP couplings appearing in Eq. (2.1). However, by assuming the data to be
Gaussian in each bin, one can make a simple projection to an integrated 3 ab−1 of the LHC
data and arrive at |gSL

| ≤ 0.41, which would indeed be a powerful constraint. In Fig. 5.7 the
dashed circles correspond to the projected bounds both by using the effective and propagating
R2 of mR2 = 1.3 TeV.

RK(∗)

In order to accommodate the neutral current anomaly δC9 = −δC10 = −0.41 ± 0.09 [28], and
knowing that VtbV ∗

ts < 0, one should have sin 2θ < 0. The factor sin 2θ provides a desired sup-
pression of the b→ sµµ decays with respect to b→ cτ ν̄. Indeed, from the fit with data we obtain
|θ| ≈ π/2, i.e. slightly larger than but close to±π/2. The contribution of this model to theBs−B̄s
mixing amplitude comes from the S3 box-diagram and it is proportional to sin2(2θ), thus again
bringing a desired suppression since we know that the SM contribution saturates the measured

∆mBs . More precisely, the S3 contribution to ∆mBs is ∝ sin2 2θ
[(
ycµL
)2

+ (ycτL )2
]2
/m2

S3
.

Parameter space of the R2-S3 model

Besides RD(∗) , RK(∗) and B(Bs → µµ) discussed so far in this section, and which are the most
important constraints on the parameters of this model, the following quantities are used as
further constraints:
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� The Bs − B̄s mixing is included by considering R(∆mBs) = ∆mBs/∆m
SM
Bs

. We combine
the improved experimental value with the lattice QCD result by HPQCD [252] and obtain
R(∆mBs)

exp = 1.027(68). We also performed the full scan of parameter space using the
FLAG value for the corresponding hadronic matrix element as computed with Nf = 2+ 1

dynamical quark flavors, which corresponds to R(∆mBs)
exp = 0.897(69) [62], and found

no significant impact to the selected parameter space, except for the slightly different
value of χ2

min.

� We require the results to be consistent with R(µ/e) exp

D(∗) = 0.977(43) [31], which is obtained

by combining R(µ/e) exp
D = 0.995(45) [103] with R(µ/e) exp

D∗ = 1.04(5) [253]. Note that in this
model only S3 can contribute to R(µ/e)

D(∗) = B(B → D(∗)µν̄)/B(B → D(∗)eν̄).

� We also impose the measured B(B → τν) = 1.09(24)× 10−4 [56] as a constraint, where
we use fB = 190.0 ± 1.3 MeV [62]. When needed we take the CKM couplings from
Ref. [254].

� Tests of LFUV in the kaon leptonic decays can also be used as constraints to the S3 LQ.
We consider r(e/µ)K = Γ(K → eν̄)/Γ(K → µν̄) and r

(τ/µ)
K = Γ(τ → Kν̄)/Γ(K → µν̄),

the measured values of which [56] are compared to the SM values, r(e/µ) expK /r
(e/µ) SM
K =

1.004(4), r(τ/µ) expK /r
(τ/µ) SM
K = 0.972(14), and represent a rather powerful constraint, cf.

Ref. [31]. Similarly, the ratio r
(τ/µ)
Ds

= B(Ds → τ ν̄)/B(Ds → µν̄), is converted to a

constraint when comparing to r(τ/µ) expDs
/r

(τ/µ) SM
Ds

= 1.027(52) [56].

� Experimental bounds on the lepton flavor violating (LFV) decay modes B(τ → µγ) <

4.4× 10−8, B(τ → ϕµ) < 8.4× 10−8 [56] provide the significant constraints too. Note that
both R2 and S3 contribute to the latter mode, cf. Ref. [32], while the expression for the
LQ contribution to B(τ → ϕµ) can be found in [241]. We also use B(B → Kµ−τ+) <

2.8× 10−5 [56,255] in our scan of the parameter space.

� In Ref. [35] we provided the expressions for R(∗)
νν = B(B → K(∗)νν̄)/B(B → K(∗)νν̄)SM,

which should respect the experimental bounds Rνν < 3.9 and R∗
νν < 2.7 [256].

� The complete expressions for the scalar LQ contributions to B(Z → ℓℓ) have been derived
in Ref. [244] and they are used in this analysis, together with the experimental values for
the branching fractions given in Ref. [56].

� Finally, we take into account the bounds on the couplings derived from the high-pT tails af-
ter recasting the bounds on heavy Higgs decaying to two τ -leptons obtained from 139 fb−1

of data by ATLAS, reported in Ref. [210]. By focusing on the region of mττ ≥ 700 GeV,
and by using the propagating R2 of mR2 = 1.3 TeV, we obtain rather stringent bounds on
the couplings, which can be conveniently written as

1.75(ybτR )4 + 0.29(ybτR )2 + 7.96(ycτL )4 + 3.43(ycτL )2 ≤ 25.9. (5.15)

Notice that in obtaining this result we use the experimental bounds from Ref. [210] to 2σ.

A careful reader would notice that with respect to Ref. [35], where mR2 = 0.8 TeV has been
used to present the results, here we take mR2 = 1.3 TeV. This choice is made in order to be
consistent with the most recent bounds regarding the LQ production processes in the direct
searches at the LHC, as discussed in Ref. [28]. For the same reason we take mS3 = 2 TeV and
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Figure 5.8: Results of the flavor fit in the gSL
plane, as defined in Eq. (2.1) for the transition

b → cτ ν̄τ . The allowed 1σ(2σ) regions are shown in red (orange). Separate constraints from
RD and RD∗ to 2σ accuracy are shown by the purple and blue regions, respectively. The
current LHC exclusions are depicted by the gray regions. We also show the projected bounds
expected to be obtained from the high pT mono-tau (red curve) and di-tau tails (dashed curve)
with 3 ab−1 of data.

perform a scan over the remaining parameters of the model, ybτR , ycµL , ycτL and θ ∈ (π/2, π) ∪
(−π/2, 0), by imposing all of the constraints discussed so far. In Fig. 5.8 we show the result of
such a scan in the gSL

≡ gSL
(mb) plane. We obtain χ2

min = 13.5, and for the best fit values we
get (to 1σ)

Re[gSL
] = −0.07(14), |Im[gSL

]| = 0.44
(
+0.09
−0.12

)
. (5.16)

If we did not use the experimental bounds on the LFV modes as constraints, our flavor fit
would have given two solutions: one corresponding to a small angle θ ∼ 0, and another one
corresponding to |θ| ∼ π/2. In fact, B(τ → µϕ) ∝ cos4 θ, and the corresponding experimental
bound help us select a viable solution, i.e. the one with |θ| ≈ π/2.

In Fig. 5.8 we also plot the current constraint, |gSL
| < 0.55, obtained from the study of the

high-pT di-tau tails. In the same plot, we also show the projected bound from 3 ab−1 of data,
a constraint that based on current information should be much stronger than the one based on
the high-pT mono-tau tails.

Before closing this Section we also provide the ranges for the couplings we obtain after
imposing all of the constraints discussed so far:

ycµL ∈ (0.16, 0.33)1σ, (0.11, 0.40)2σ,

ycτL ∈ (0.87, 1.40)1σ, (0.64, 1.54)2σ,

Re
[
ybτR

]
∈ (−0.37, 0.02)1σ, (−0.58, 0.15)2σ,

∣∣∣Im
[
ybτR

]∣∣∣ ∈ (0.83, 1.53)1σ, (0.61, 1.87)2σ,

θ ∈ π
2
(1.01, 1.06)1σ,

π

2
(1.01, 1.12)2σ, (5.17)
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where Im
[
ybτR
]

has two symmetric solutions (positive and negative).

5.3.4 More Observables

Contribution to the electric dipole moment of the neutron

From fit to the data we saw that we obtain Im[gSL
] ≫ Re[gSL

] when accommodating Rexp

D(∗) >

RSM
D(∗) . In other words we get a large |Im

[
ybτR
]
|, which then calls for a careful analysis of the

observables in which such a complex phase may play a significant role. We first check whether
or not this phase might be in conflict with the current bound on the electric dipole moment of the
neutron, |dn| < 1.8× 10−26 ecm [257]. That issue has recently been addressed in Ref. [258] in
the scenarios in which the SM is extended by one or more scalar leptoquarks. For our purpose
it is important to note that the charm quark contribution to dn can be written as dn = gcT dc,
where the tensor charge gcT , defined as

⟨N |c̄σµνγ5c|N⟩ = gcT ūNσ
µνγ5uN , (5.18)

has been recently computed by means of numerical simulations of QCD on the lattice with
Nf = 2 + 1 + 1 dynamical quark flavors [259]. The reported result at µ = 2 GeV, in the MS

renormalization scheme is gcT = −(2.4± 1.6)× 10−4. We translate the notation of Ref. [258] to
the one used here and write:

dc = 0.1×Qc emc
1

m2
R2

Im
[
V ∗
cb y

bτ ∗
R ycτL

]

≃ 0.1×Qc emc
4
√
2GFV

2
cb

1.7
Im [gSL

] , (5.19)

where in the second line we employed Eq. (5.8). In the denominator 1.7 accounts for the running
of gSL

to the low energy scale. By using the charm quark mass value from Ref. [62], the central
value for gcT , and the experimental bound on |dn|, we arrive at

|Im [gSL
] | < 0.76 , (5.20)

which is obviously in good agreement with what we obtain in Fig. 5.8 and in Eq. (5.16). However,
we should note that if instead of the central value we take gcT = −4 × 10−4 then this constraint
translates to |Im [gSL

] | < 0.46, which would eliminate a fraction of the allowed gSL
regions in

Fig. 5.8. This shows why a more precise lattice QCD value of gcT would be highly beneficial for
checking the validity of the model proposed in Ref. [35] and further discussed here.

Contribution to ∆aCP

The difference in the time-integrated CP asymmetries of D0 → K+K− and D0 → π+π− has
been measured by LHCb. Their recent result ∆ACP = (−15.4 ± 2.9) × 10−4 [260] has been
corrected for the effects of D0 − D

0 mixing so that the result for the difference of direct CP
asymmetries becomes ∆adirCP = (−15.7±2.9)×10−4 [261]. The interpretation of this result is still
unclear. In the SM picture, the effect could be attributed to the (nonperturbative) rescattering of
light mesons in the final state. Otherwise, one would need a NP contribution to accommodate
the measured value [262].
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In Ref. [263] the NP contribution to ∆aCP has been estimated under the assumption of the
maximal strong phases. It was found that |∆aCP| ≲ 1.8|ImCNP

8 (mc)+ ImCNP
8′ (mc)|, where C8,8′

are the Wilson coefficients of the chromomagnetic operators:

H =
GF√
2

gsmc

4π2
ūLσµν [C8PR + C8′PL] c T

aGµνa . (5.21)

In our model R2 will contribute to cR → uLg and to one-loop we get

CNP
8 =

mτVuby
bτ
R y

cτ
L

∗

4
√
2GFmc

B′
0(0,m

2
R2
,m2

τ ) . (5.22)

With the structure of couplings chosen in our model, cf. Eq. (5.6), there is no one-loop contri-
bution to cL → uRg, i.e. C8′ = 0. By taking mτ/mR2 → 0, we have B′

0(0,m
2
R2
, 0) → 1/(2m2

R2
),

which then leads to |∆aCP | ≲ 10−4, thus a very small effect.

Contribution to B → Kνν and K → πνν

It is well known that a contribution of the left-handed current to b→ sℓℓ implies a similar contri-
bution to B → K(∗)νν decays. In our case that means

R(∗)
νν =

B(B → K(∗)νν)

B(B → K(∗)νν)SM
=

∑
ij |δijCSML + δCijL |2

3|CSM
L |2

, (5.23)

where CSM
L = −6.38(6) [264] and the tree-level contribution arising from S3 amounts to [31]

∑

ii

δCiiL =
∑

i

πv2

2αemλt

(
Y

(S3)
L

)b i (
Y

(S3)
L

)s i ∗

m2
S3

= − πv2

2αemλt

sin 2θ
(
ycµ

2

L + ycτ
2

L

)

m2
S3

, (5.24)

thus also negative, and therefore the net effect in the present model is that R(∗)
νν > 1. We get

R(∗)
νν ∈ (1.3, 2.5)1σ, (1.1, 3.4)2σ, (5.25)

the result which is likely to be probed experimentally at Belle II [265].
The expressions relevant to the S3 contribution to B(K → πνν) have been derived in

Ref. [266]. With our choice of couplings, together with values given in Eq. (5.17), that con-
tribution turns out to be very small. We checked that the same conclusion holds for the R2

contribution as well.

B → Kµτ and its correlation with τ → µγ and R(∗)
νν

Most of the models that can accommodate the LFUV also predict a non-zero branching fraction
of the associated LFV decay modes [267]. Even more interesting is that in our model we get
both the lower and the upper bounds, namely and to 1σ,

0.6× 10−7 ≲ B(B → Kµ±τ∓) ≲ 3.1× 10−7 , (5.26)
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Figure 5.9: B(B → Kµτ) is plotted against R(∗)
νν = B(B → K(∗)νν̄)/B(B → K(∗)νν̄)SM for the

1σ (red) and 2σ (orange) regions of Fig. 5.8. The black line denotes the current experimental
limit, R∗

νν < 2.7 [256]. We also show the similar correlation between B(B → Kµτ) and B(τ →
µγ) obtained in this model.

currently, however, two orders of magnitude lower than the experimental limit [255]. This pre-
diction can be translated into similar modes via relations B(B → K∗µτ) ≈ 1.9× B(B → Kµτ),
B(Bs → µτ) ≈ 0.9 × B(B → Kµτ), and B(Λb → Λµτ) ≈ 1.7 × B(B → Kµτ) [268]. It is
interesting to note that B(B → Kµτ) is linearly correlated with R(∗)

νν , as show in Fig. 5.9.
Another interesting LFV mode is τ → µγ, because in order to accommodate both types of

B-anomalies we needed to switch on the NP couplings to both τ and µ. Indeed, in this model
we obtain a lower bound which to 1σ is

B(τ → µγ) ≳ 1.2× 10−8 , (5.27)

and its correlation with B(B → Kµτ), also shown in Fig. 5.9, is less pronounced than the one
between B(B → Kµτ) and R(∗)

νν .

Angular observables in B → D∗(→ Dπ)τν and in Λb → Λc(→ Λπ)τν

The angular analysis of the exclusive b→ cτ ν̄ modes can help identify several new observables,
the measurement of which could help disentangle the situation and select among the currently
viable scenarios. As an example we write the full angular distribution of the baryon decay
as [61]

d4B
dq2d cos θτd cos θdϕ

= 8π

[
A1 +A2 cos θ

+ (B1 + B2 cos θ) cos θτ + (C1 + C2 cos θ) cos2 θτ

+ (D3 sin θ cosϕ+D4 sin θ sinϕ) sin θτ

+(E3 sin θ cosϕ+ E4 sin θ sinϕ) sin θτ cos θτ
]
,

(5.28)
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where the angles θ and θτ are defined with respect to the direction of flight of Λc: θ being
the angle of Λ in the Λπ rest frame, and θτ is the angle of τ in the τ ν̄-rest frame. ϕ is the
angle between the τ ν̄ and the Λπ planes. In the above expression the q2-dependent coefficient
functions, A1,2, B1,2, C1,2, D3,4, E3,4, are given in terms of kinematical quantities and hadronic
form factors [61]. Notice that all of the form factors relevant to any BSM discussion are already
available, as they have all been computed in lattice QCD away from the zero-recoil point [154].
Forward-backward asymmetry is defined as

Afb(q
2) =

1

2

B1(q2)
Γ(Λb → Λcτ ν̄)

, (5.29)

where the full decay width is given by

Γ(Λb → Λcτ ν̄) =

(mΛb
−mΛc )

2∫

m2
τ

dq2
[
A1(q

2) +
1

3
C1(q2)

]
. (5.30)

We find that for all of the available gSL
values discussed in the previous section, the shape of

Afb(q
2) becomes different with respect to that found in the SM. In particular, the point q20, at

which this asymmetry is zero, Afb(q
2
0) = 0, is larger than the one found in the SM. Another

quantity that one can use to monitor the viability of this model is

D4(q
2) =

D4(q
2)

Γ(Λb → Λcτ ν̄)
, (5.31)

which is strictly zero in the SM and becomes non-zero only if the NP coupling can take a
complex value, such as the case with our model, Im [gSL

] ̸= 0. In Fig. 3.16 we illustrate the
change in shape of Afb(q

2) and of D4(q
2) once gSL

= 8.1 × gT is switched to a plausible
gSL
≃ 0.5i.
We repeated the same exercise with B → D∗τν [63, 147–150, 178] and found that the

corresponding Afb(q
2) changes only slightly. In order to support our observations by numerical

values, we compute

⟨O⟩ =
(MΛb

−MΛc )
2∫

m2
τ

O dq2, (5.32)

for O ∈ {Afb, D4}, and collect the results in Tab. 5.3 where we also give the values for q20 at
which Afb(q

2
0) = 0 and the results for the LFUV ratio

RΛc =
B(Λb → Λcτ ν̄)

B(Λb → Λcµν̄)
. (5.33)

From Tab. 5.3 we see that RΛc follows the pattern and RΛc > RSM
Λc

. This can be tested with a
more precise measurement of RΛc . Furthermore, in this model we clearly observe that

⟨Afb⟩ > ⟨Afb⟩SM, |⟨D4⟩| > |⟨D4⟩|SM , (5.34)

which is in stark contrast with the models based on accommodating the B-anomalies by cou-
plings to a U1 vector LQ in which ⟨Afb⟩ = ⟨Afb⟩SM, and ⟨D4⟩ = 0. It is important to emphasize
that these quantities can be used to discriminate among various scenarios proposed to explain
B-anomalies.
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gSL
(mb) 0 −0.07

(
+0.14
−0.14

)
+ 0.44

(
+0.09
−0.12

)
i

RΛc 0.333(14) 0.366(15)
(−0.002
+0.009

) (
+0.015
−0.014

)

⟨Afb⟩ 0.049(8) 0.085(7)
(
+0.002
+0.004

) (
+0.014
−0.016

)

q20 [GeV2] 7.97(7) 8.49(8)
(
+0.00
+0.13

) (
+0.27
−0.25

)

⟨D4⟩ 0 0.102(1)
(
+0.001
−0.002

) (
+0.016
−0.025

)

Table 5.3: Values of the observables relevant to Λb → Λc(→ Λπ)τν, discussed in the text and
computed in the SM (gSL

= 0) and for gSL
̸= 0, as obtained from our scan, cf. Eq. (5.16).

Second and third uncertainties correspond to the variation of the central value with respect to
the variation of the real and of the imaginary part of gSL

, respectively.

5.3.5 Mass range for this scenario to remain valid

So far in this section, we chose as a benchmark point the leptoquark masses mR2 = 1.3 TeV
and mS3 = 2 TeV, consistent with the lower bounds deduced from the direct searches at the
LHC, as discussed in Ref. [28]. From the low energy flavor physics observables, we then ob-
tained the constraints on the couplings of the model, and we pointed out that the very stringent
constraints on the couplings can also be obtained from the analysis of the high-pT di-tau tails
at the LHC. To monitor the range of masses preferred by this scenario we varied mR2 and mS3

and applied the same constraints on the couplings as before. We find that the model is highly
sensitive to mR2 , while it is only slightly sensitive to the variation of mS3 . The result is shown
in Fig. 5.10 where we see that the current setup of Yukawa matrices, cf. Eqs. (5.6,5.7), remain
consistent with the constraints to 2σ if mR2 ≲ 4.3 TeV. In other words, if the flavor constraints
remain unchanged, this scenario can be tested at the LHC. It is also interesting to note from

Fig. 5.10 that the effective coupling yeff =
√
|ycτL ybτ ∗R | always remains well below the perturba-

tivity limit, yeff ≤
√
4π.

5.3.6 Conclusion

We update the parameter space of the model in which the SM is extended by O(1TeV) two
scalar LQs, R2 and S3, and show that this model is still a plausible framework to accommodate
the B-anomalies while remaining consistent both with a number of experimental constraints
arising from the low energy observables, as well as with those deduced from the LHC measure-
ments relevant to the high-pT tails of pp→ ττ and pp→ τν. A peculiarity of this R2-S3 scenario
is that there is a complex coupling. We find that the size of the corresponding imaginary part
of the model parameter ybτR ∝ gSL

results in: (i) a value of the electric dipole moment of the
neutron consistent with the experimental bound, (ii) too small a contribution to ∆aCP, the differ-
ence of the CP-asymmetries between D0 → K+K− and D0 → π+π−, (iii) a significant change
in the observables that can be deduced from the angular distribution of B → D∗(→ Dπ)τν

and Λb → Λc(→ Λπ)τν and which are zero in the SM and in scenarios in which the NP cou-
plings are real. We also find that the forward-backward asymmetry in the case of Λb → Λcτν
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Figure 5.10: We plot the dependence of the effective coupling yeff =
√
|ycτL ybτ ∗R | on the vari-

ation of the leptoquark mass mR2
. The orange regions are allowed by the low energy flavor

physics constraints to 1σ and 2σ. The gray area is excluded by the 2σ limits arising from the
study of the high-pT tails of pp → ττ , as obtained from the currently available LHC data. We
also plot the limit from the case of mono-tau in the final state.

becomes significantly different from its SM value. Like in the other models built to accommo-
date B-anomalies and involving LQs, we establish the upper and lower bounds to the exclusive
LFV decay modes based on b → sµ±τ∓. We also checked that the model gives a negligible
contribution to B(K → πνν), but it significantly enhances B(B → K(∗)νν), cf. (5.25), which
will soon be experimentally scrutinized at Belle-II. We also find a clear correlation between
B(B → K(∗)νν) and the LFV decays such as B(B → Kµτ). Importantly, the model remains
consistent with the current experimental upper bound on B(τ → µγ).
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Chapter 6

Synthèse en français

6.1 Le Modèle Standard

Le Modèle Standard (MS) de la physique des particules figure parmi les théories les plus
prédictives de la Nature. Sa validité a été continuellement testée expérimentalement avec
une précision inégalée, aboutissant à la découverte en 2012 au LHC de la dernière pierre du
Modèle Standard : le boson de Higgs.

Cependant, le Modèle Standard ne peut pas être la théorie finale de la Nature. En effet,
malgré tous ses succès, il existe des observations que le MS ne peut expliquer. Celles-ci
comprennent :

� L’absence de mécanisme pour la génération de la masse des neutrinos. Les valeurs ab-
solues de ces masses n’ont pas encore été mesurées, mais l’observation des oscillations
des neutrinos et la cosmologie prouvent qu’elle sont non-nulles.

� L’absence de candidat pour une particule de matière noire. La matière noire est néces-
saire pour expliquer le comportement des structures à très grande échelle, telle que la
vitesse de rotation des galaxies. Le Modèle Standard ne contient aucune particule suff-
isamment massive et aux interactions suffisamment faibles pour jouer ce rôle.

� Le problème de hiérarchie. Le boson de Higgs est une particule scalaire, les corrections
quantiques à sa masse sont donc proportionnelles à l’échelle maximale de la théorie,
l’échelle de Planck, de l’ordre de 1019 GeV. Une annulation anormalement exacte est
alors nécessaire pour obtenir un Higgs léger de seulement 125 geV.

� Le problème de la saveur. Les masses des fermions dans la théorie sont organisées suiv-
ant des motifs fortement organisés. Chaque famille est plus lourde que la précédente : au
total 6 ordres de grandeurs séparent le fermion le plus lourd (quark top, 173 geV) et le plus
léger (électron, 511 keV). De même, la matrice de Cabibbo-Kobayashi-Maskawa (CKM)
qui régit le mélange des quarks présente également une structure très hiérarchisée. Tous
ces paramètres ne dépendent que des couplages de Yukawa, qui n’obéissent pourtant
aucune symétrie dans le Modèle Standard. Le secteur de la saveur a également reçu un
regain d’attention durant la dernière décennie grâce à la découverte des “anomalies du
B”,

Pour toutes ces raisons, le MS doit nécessite d’être complété par de la Nouvelle Physique
(NP). Dans cette thèse, nous explorons en particulier le dernier point, en construisant de nou-
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velles observables de saveurs, dans le but d’élucider la structure sous-jacente au secteur de
Yukawa du MS.

6.2 Possibles Extensions du Modèle Standard

Les motivations présentées précédemment ne nous donnent que peu d’informations concer-
nant la nature de la Nouvelle Physique. Il est donc important de travailler dans un cadre in-
dépendant du modèle considéré. Cela est rendu possible grâce à une approche de théorie
effective des champs (EFT), à une échelle de quelques TeV [15].

Ainsi, pour encapsuler toutes les dynamiques possibles à basses énergies, il suffit d’étendre
le Lagrangien du Modèle Standard par tous les opérateurs satisfaisant les mêmes symétries
que le MS. Explicitement, le Lagrangien effectif pour les transitions semi-leptoniques chargées
fait intervenir 5 opérateurs:

LCCeff = −2
√
2GFVij

[
(1 + gij ℓVL

)
(
ūLiγµdLj

)(
ℓ̄Lγ

µνL
)
+ gij ℓVR

(
ūRiγµdRj

)(
ℓ̄Lγ

µνL
)

(6.1)

+ gij ℓSL
(µ)
(
ūRidLj

)(
ℓ̄RνL

)
+ gij ℓSR

(
ūLidRj

)(
ℓ̄RνL

)
+ gij ℓT (µ)

(
ūRiσµνdLj

)(
ℓ̄Rσ

µννL
) ]

+ h.c. ,

généralisant l’interaction de Fermi. De la même manière pour les courants neutres, on consid-
ère le Lagrangien suivant :

LNCeff =
4GF√

2
VtαV

∗
tβ

∑

i

CiOi + h.c. , (6.2)

où tous les opérateurs sont définis Eq. (2.4). Au dessus de l’échelle électrofaible, il est néces-
saire de tenir compte de la propagation des bosons de jauge. Nous préférerons donc utiliser
la Théorie Effective du Modèle Standard (SMEFT), faisant intervenir tous les champs présents
dans le MS :

LSMEFT = LSM +
∑

d,k

C(d)k

Λd−4
O(d)
k +

∑

d,k

[ C(d)k

Λd−4
Õ(d)
k + h.c.

]
. (6.3)

La liste complète des opérateurs pertinents pour la physique de la saveur est détaillée
en appendice E. La correspondance entre les coefficients de la SMEFT et de l’EFT à basse
énergie est donnée Eq. (2.7).

Dans certains cas, il peut également être intéressant de tester des scénarios explicites de
nouvelle physique, afin par exemple de mesurer la validité de l’approche effective. Dans cette
thèse, nous avons choisi de travailler avec des scénarios faisant intervenir un ou plusieurs état
de leptoquarks. Les leptoquarks sont des bosons hypothétiques pouvant coupler directement
à un quark et un lepton. Ils sont particulièrement étudiés dans le cadre de la physique de la
saveur, car ils permettent d’expliquer les anomalies du B au niveau des arbres. la liste des lep-
toquarks considérés, ainsi que leur correspondance avec la théorie effective, sont explicitées
Section 2.2.

6.3 Observables de Saveur à basses énergies

Les observables de saveur les plus souvent considérées à basses énergies sont les rapports
d’universalité leptoniques. Pour les courants chargés, la transition semileptonique bc̄ → τ ν̄
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peut par exemple être sondée grâce au rapport

RD(∗) =
B(B → D(∗)τ ν̄)

B(B → D(∗)ℓν̄)

∣∣∣∣∣
ℓ∈{e,µ}

, (6.4)

dans lequel une majorité des incertitudes théoriques (provenant de la matrice CKM et des
facteurs de forme hadroniques) s’annulent. Expérimentalement, les valeurs mesurées sont en
tension avec le Modèle Standard, comme illustré Figure 3.2.

Nous avons étudié la phénoménologie des désintégrations leptoniques et semileptoniques
des mésons pseudoscalaires pour toutes les combinaisons de saveur expérimentalement ac-
cessibles, en prêtant une attention toute particulière au traitement des incertitudes hadroniques.
Les contraintes obtenues sont résumées Table 6.1.

ui dj ℓ Re
(
gij ℓV

)
Re
(
gij ℓA

)
Re
(
gij ℓS

)
Re
(
gij ℓP

)
Re
(
gij ℓT

)

u s µ (0± 2)× 10−3 (2.2± 1.8)× 10−3 (−2± 9)× 10−4 (−9± 8)× 10−5 (−2± 9)× 10−3

u s τ � (2.2± 1.7)× 10−2 � (1.6± 1.1)× 10−2 �

c d µ (−3.0± 1.6)× 10−2 (7± 4)× 10−2 (−9± 7)× 10−2 (−2.6± 1.3)× 10−3 (−2.0± 1.4)× 10−1

c d τ � (−0.1± 1.1)× 10−1 � (1± 7)× 10−2 �

c s µ (3± 6)× 10−3 (−2± 4)× 10−2 (−1± 2)× 10−2 (0.7± 1.4)× 10−3 (1.2± 1.8)× 10−2

c s τ � (−3± 4)× 10−2 � (2± 2)× 10−2 �

u b µ � � � � �

u b τ −1± 2 (−1± 2)× 10−1 −0.3± 1.5 (3± 7)× 10−2 −0.3± 1.1

c b µ (0± 2)× 10−2 � (1± 2)× 10−1 (0± 8)× 10−1 (−1± 3)× 10−1

c b τ (7± 5)× 10−2 1± 4 (9± 6)× 10−2 (−2± 8)× 10−1 (1.2± 0.8)× 10−1

Table 6.1: Contraintes à 1σ sur la partie réelle des coefficients gij ℓα = gij ℓα (µ), avec α ∈
{V,A, S, P, T}), obtenues à partir des observables de la Table 3.4. L’échelle µ est prise à
µ = 2 GeV pour les mésons K et D, et µ = mb pour les mésons B.

En plus de ces observables, nous étudions la phénoménologie des observables angulaires
pour les désintégrations semileptoniques. Nous montrons que même en présence de nouvelle
physique, seules 4 observables linéairement indépendantes sont suffisantes pour totalement
caractériser la distribution angulaire : le rapport de branchement (seule observables actuelle-
ment considéré expérimentalement), l’asymétrie avant/arrière, l’asymétrie de polarisation lep-
tonique et la convexité de la distribution.

L’étude de ces trois dernières observables, encore non mesurées, offre d’excellentes per-
spectives pour démêler les différentes contributions de la Nouvelle Physique.

En plus des désintégrations des mésons, nous étudions les désintégrations exclusives des
baryons lourds, pour lesquelles les facteurs de formes hadroniques ont également été calculés
avec une grande précision [154, 161]. La collaboration LHCb a récemment publié la première
mesure du rapport RΛc :

RΛc =
B(Λb → Λcτ ν̄)

B(Λb → Λcµν̄)
= 0.242± 0.076 , (6.5)
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compatible avec la prédiction du Modèle Standard. La désintégration Λb → Λcτ ν̄ est par-
ticulièrement intéressante, puisque la désintégration secondaire Λc → Λπ peut également
apporter de l’information sur la nouvelle physique. Au total, 18 observables linéairement in-
dépendantes sont accessibles.

En particulier, l’asymétrie avant/arrière exhibe une quasi-annulation accidentelle dans le
cas du Modèle Standard, ce qui la rend particulièrement sensible à la Nouvelle Physique. Enfin,
nous trouvons des observables, dénommées D4 et E4, proportionnelles uniquement à la partie
imaginaire des couplages de la NP, qui seraient donc indicateurs d’une nouvelle violation de la
symétrie CP. Ces deux observables sont illustrées Figure 6.1 pour un scénario de NP faisant
intervenir la combinaison gSL

= 4gT , qui sera motivé dans la suite.
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Figure 6.1: Valeurs prédites pour les observables RΛc , ⟨Afb⟩ et ⟨D4⟩ dans le Modèle Standard
(rouge) et par les valeurs mesurées de RD et RD∗ dans un scénario de NP avec gSL

= +4gT
(bleu). Puisque les valeurs sont incompatibles, la mesure de ces observables pourrait invalider
complètement ce scénario.

6.4 Observables de Saveur aux hautes énergies

En plus des observables à basses énergies basées sur la désintégration des hadrons, l’étude
des processus semileptoniques au LHC peut également servir à contraindre le secteur de la
saveur. En effet, toutes les saveurs de quarks (sauf le top) contribuent à la section efficace
proton-proton :

σ
(
pp→ ℓαℓ̄

′
β

)
=
∑

ij

∫
dŝ

s
Lij (ŝ) σ̂(q̄iqj → ℓαℓ̄

′
β) , (6.6)

où Lij désigne les fonctions de luminosité partoniques, et σ̂(q̄iqj → ℓαℓ̄
′
β) la section efficace

partonique. Bien que les fonctions Lij soient très hiérarchisées, avec une contribution bien
plus faible des quarks lourds par rapport aux quarks de valence, la section efficace partonique
augmente généralement avec l’énergie pour de nombreux scénarios de Nouvelle Physique.
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Ainsi, chercher des excès d’événements dans la queue de distribution à haute énergie permet
de contraindre les coefficients de la NP.

Pour démêler les différentes contributions, nous écrivons l’amplitude partonique en termes
de facteurs de formes :

A(q̄iqj → ℓ−α ℓ
+
β ) =

1

v2

∑

XY

{ (
ℓ̄αγ

µ
PXℓβ

)
(q̄iγµPY qj) [FXY, qqV (ŝ, t̂)]αβij

+
(
ℓ̄αPXℓβ

)
(q̄iPY qj) [FXY, qqS (ŝ, t̂)]αβij

+
(
ℓ̄ασµνPXℓβ

)
(q̄iσ

µν
PXqj) [FX, qqT (ŝ, t̂)]αβij

+
(
ℓ̄αγµPXℓβ

)
(q̄iσ

µν
PY qj)

ikν
v

[FXY, qqDq
(ŝ, t̂)]αβij

+
(
ℓ̄ασ

µν
PXℓβ

)
(q̄iγµPY qj)

ikν
v

[FXY, qqDℓ
(ŝ, t̂)]αβij

}
,

(6.7)

où X,Y ∈ {L,R}, PR,L = (1 ± γ5)/2, et v = (
√
2GF )

−1/2. ŝ = k2, t̂ et û = −ŝ − t̂ sont les
variables de Mandelstam. Ces facteurs de formes sont ensuite décomposés en une partie
régulière, correspondant aux interaction de théories effective à 4 fermions, et un nombre fini de
pôles, correspondant aux médiateurs (MS et NP).

Pour extraire une limite des observations au LHC par rapport à la section efficace hadronique
calculée, il est nécessaire de prendre en compte la réponse du détecteur. Cette réponse peut
être encodée dans un noyau K défini par

dσ

dxobs
=

∫
dx K(xobs|x)

dσ

dx
. (6.8)

Après discrétisation, le nombre d’événements attendu s’exprime

NA =
∑

B ∈B
Lint ·KAB · σB , (6.9)

où Lint est la luminosité intégrée de la recherche expérimentale. La matrice K est extraite
par Monte-Carlo grâce aux programmes Madgraph5 [219], Pythia8 [220], et Delphes3 [221], en
reproduisant du mieux possible les sélections expérimentales.

Les contraintes finales sont obtenues en comparant les distributions d’événements pour
chaque recherche expérimentale avec le résultat théorique Equation (6.9). La Figure 6.2 mon-
tre un exemple de contrainte obtenu dans le cadre d’un scénario explicite, montrant le bon ac-
cord avec la théorie effective pour des masses supérieures à 3 TeV, mais une sous-estimation
des contraintes en deçà.

6.5 Les Leptoquarks comme solutions aux anomalies du

B

Dans cette Section, nous étudions les extensions du Modèle Standard faisant intervenir les
états de leptoquarks. Pour les théories à un seul leptoquark, nous obtenons que :

� S3 et U3 résultent en gVL < 0, alors que RD(∗) nécessite gVL > 0.

� S1 peut expliquer RD(∗) mais pas RK(∗) [28,241,242].
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Figure 6.2: Limites à p < 0.05 sur
√
yLcτy

R
bτ en fonction de la masse du leptoquark R2 (orange).

La contrainte obtenue par théorie effective est montrée en bleu.
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Figure 6.3: Contours à 1 et 2σ de B(B → Kµτ), R(∗)
νν = B(B → K(∗)νν̄)/B(B → K(∗)νν̄)SM

et B(τ → µγ) autorisés dans le modèle R2 − S3. La ligne noire montre la limite expérimentale
actuelle.

� R2 produit la combinaison gSL
= 4gT mentionnée plus haut, qui peut expliquer RD(∗) ,

mais ne peut pas accommoder les anomalies pour les courants neutres [28,36,245].

� U1 est le seul leptoquark pouvant expliquer les deux anomalies en même temps [28,246].

Cependant, le leptoquark U1 étant un boson vecteur, il est impossible de calculer les ob-
servables à boucle sans introduire de complétion ultraviolette, nécessitant de nombreuses hy-
pothèses supplémentaires. Dans une optique de minimalité, nous proposons à la place un scé-
nario de nouvelle physique faisant intervenir deux leptoquarks scalaires : R2 et S3. L’ensemble
des contraintes phénoménologiques réduit fortement l’espace des paramètres de la théorie, et
nous permet de faire des prédictions concernant des modes accessibles expérimentalement,
y compris ceux violant la saveur leptonique, montré Figure 6.3.
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Appendix

A SMEFT conventions

For Hermitian semi-leptonic operators, we define the Hermitian conjugate C† of a Wilson coef-
ficients C that can be a two-tensor or four-tensor in quark/lepton flavor space as:

[ C† ]αβ ≡ [ C∗ ]βα , (A.1)

[ C† ]ij ≡ [ C∗ ]ji , (A.2)

[ C† ]αβij ≡ [ C∗ ]βαji . (A.3)

These coefficients have a redundancy under the flavor index swappings α↔ β and/or i↔ j.
One can remove this redundancy by adopting the following convention: For four-tensors, we fix
the lepton indices to α ≤ β, which also determines the ordering of the quark flavor indices of
the semileptonic four fermion operators if α < β. For the case α = β we adopt the ordering
i ≤ j.1 coefficients

In order to keep expressions compact, it is useful to introduce the following notation for the
signed sums of Wilson coefficients associated to operators with the same field content, but
different gauge/Lorentz structure:

C (i± j± k± ...) ≡ C(i) ± C(j) ± C(k) ± . . . (A.4)

B Form-factor rotations from the weak basis to the

mass basis

Here we provide the rotations needed to go from the form-factors expressed in the mass basis
to the ones in the weak basis, for which all the matching conditions to the SMEFT and the
mediators are provided in Appendix C and D. Everything is expressed in terms of the matrices
Vu and Vd, which are the left-handed rotations to the mass basis for up-type and down-type
quarks, respectively. The CKM matrix can then be expressed as V = V †

uVd.

FXL, udV → V †
uFXL, udV Vd , FXL, udI ̸=V → FXL, udI ̸=V Vd , FXR,udI ̸=V → V †

uFXR,udI ̸=V , (B.1)

FXL, uuV → V †
uFXL, uuV Vu , FXL, uuI ̸=V → FXL, uuI ̸=V Vu , (B.2)

FXL, ddV → V †
dF

XL, dd
V Vd , FXL, ddI ̸=V → FXL, ddI ̸=V Vd . (B.3)

1This choice agrees with the conventions adapted by DsixTools [269] and WCxf [270] with the exception
of the C qe

ijαβ

operator in the original Warsaw basis that we dub C eq
αβij

.
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The rotation to the down-aligned basis can be obtained from the above by setting Vu = V † and
Vd = 1, while the up-aligned one with Vu = 1 and Vd = V . Notice that the rotations for all the
remaining form-factors can be obtained by noticing that

[
FXY, udV

]
=
[
FXY, duV

]†
, (B.4)

[
FLL, udI=S,T

]
=
[
FRR, duI=S,T

]†
,

[
FRR, udI=S,T

]
=
[
FLL, duI=S,T

]†
, (B.5)

[
FRL, udS

]
=
[
FLR, duS

]†
,

[
FLR, udS

]
=
[
FRL, duS

]†
, (B.6)

[
FRX,udDℓ

]
= −

[
FLX, duDℓ

]†
,

[
FLX, udDℓ

]
= −

[
FRX, duDℓ

]†
, (B.7)

[
FXL, udDq

]
= −

[
FXR, duDq

]†
,

[
FXR,udDq

]
= −

[
FXL, duDq

]†
, (B.8)

[
FLL, qqI=S,T

]
=
[
FRR, qqI=S,T

]†
,

[
FRL, qqS

]
=
[
FLR, qqS

]†
, (B.9)

[
FRX, qqDℓ

]
= −

[
FLX, qqDℓ

]†
,

[
FXL, qqDq

]
= −

[
FXR, qqDq

]†
. (B.10)

C Form-factors in the SMEFT

C.1 Scalar and tensor form-factors

In this appendix, we provide the full matching between the form-factor coefficients in Eq. 4.29-
4.33 and the SMEFT Wilson coefficients. These results are consistent with the vertex parametriza-
tions in Ref. [196].

Neutral currents. The matching to the SMEFT Wilson coefficients depend if the process
is up-quark or down-quark initiated, ūiuj → ℓ−α ℓ

+
β and d̄idj → ℓ−α ℓ

+
β . This is then given by:

FRR, uuS (0,0) = − v
2

Λ2
C(1)lequ , FRL, ddS (0,0) =

v2

Λ2
Cledq , (C.1)

FRR, uuT (0,0) = − v
2

Λ2
C(3)lequ . (C.2)

Charged currents. For the mono-lepton processes ūidj → ℓ−α νβ (and their conjugates),
the matching reads:

FRR, duS (0,0) =
v2

Λ2
C(1)lequ , FRL, duS (0,0) =

v2

Λ2
Cledq , (C.3)

FRR, duT (0,0) =
v2

Λ2
C(3)lequ . (C.4)

C.2 Vector form-factors

Neutral currents ūiuj → l−α l
+
β : The matching of the coefficients FXYV (0,0) to the SMEFT

for up-quark initiated processes is given by:

FLL, uuV (0,0) =
v2

Λ2
C (1−3)
lq +

v4

2Λ4
C (1+2−3−4)
l2q2H2 +

v2m2
Z

2Λ4

[
gLl C

(1−2−3+4)
q2H2D3 + gLu C (1−2+3−4)

l2H2D3

]
, (C.5)
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FLR, uuV (0,0) =
v2

Λ2
Clu +

v4

2Λ4
C (1+2)
l2u2H2 +

v2m2
Z

2Λ4

[
gLl C

(1−2)
u2H2D3 + gLu C (1−2+3−4)

l2H2D3

]
, (C.6)

FRL, uuV (0,0) =
v2

Λ2
Cqe +

v4

2Λ4
C (1−2)
q2e2H2 +

v2m2
Z

2Λ4

[
gRl C

(1−2−3+4)
q2H2D3 + gLu C (1−2)

e2H2D3

]
, (C.7)

FRR, uuV (0,0) =
v2

Λ2
Ceu +

v4

2Λ4
Ce2u2H2 +

v2m2
Z

2Λ4

[
gRl C

(1−2)
u2H2D3 + gRu C (1−2)

e2H2D3

]
. (C.8)

The higher order coefficients FXYV (1,0) and FXYV (0,1) are generated in the SMEFT at d = 8 from
momentum-dependent contact operators in the class ψ4D2. These read:

FLL, uuV (1,0) =
v4

Λ4
C (1+2−3−4)
l2Q2D2 , FLL, uuV (0,1) = 2

v4

Λ4
C (2−4)
l2Q2D2 , (C.9)

FLR, uuV (1,0) =
v4

Λ4
C (1+2)
l2u2D2 , FLR, uuV (0,1) = 2

v4

Λ4
C (2)
l2u2D2 , (C.10)

FRL, uuV (1,0) =
v4

Λ4
C (1+2)
q2e2D2 , FRL, uuV (0,1) = 2

v4

Λ4
C (2)
q2e2D2 , (C.11)

FRR, uuV (1,0) =
v4

Λ4
C (1+2)
e2u2D2 , FRR, uuV (0,1) = 2

v4

Λ4
C (2)
e2u2D2 . (C.12)

The matching of the pole residues to the SMEFT is given by:

δSLL, uu(Z) =− 2
m2
Z

Λ2

[
gLl C

(1−3)
Hq + gLu C (1+3)

Hl

]
+
v2m2

Z

Λ4
C (1+3)
Hl C (1−3)

Hq

− v2m2
Z

Λ4

[
gLl

(
C (1)
q2H4D

− 2C (2)
q2H4D

)
+ gLu

(
C (1)
l2H4D

+ 2C (2)
l2H4D

)]

+
m4
Z

2Λ4

[
gLl C

(1−2−3+4)
q2H2D3 + gLu C (1−2+3−4)

l2H2D3

]
,

δSLR, uu(Z) =− 2
m2
Z

Λ2

[
gLl CHu + gRu C (1+3)

Hl

]
+
v2m2

Z

Λ4
C (1+3)
Hl CHu

− v2m2
Z

Λ4

[
gLl Cu2H4D + gRu

(
C (1)
l2H4D

+ 2C (2)
l2H4D

)]

+
m4
Z

2Λ4

[
gLl C

(1−2)
u2H2D3 + gRu C (1−2+3−4)

l2H2D3

]
,

δSRL, uu(Z) =− 2
m2
Z

Λ2

[
gRl C

(1−3)
Hq + gLu CHe

]
+
v2m2

Z

Λ4
CHe C (1−3)

Hq

− v2m2
Z

Λ4

[
gRl

(
C (1)
q2H4D

− 2C (2)
q2H4D

)
+ gLu Ce2H4D

]

+
m4
Z

2Λ4

[
gRl C

(1−2−3+4)
q2H2D3 + gLu C (1−2)

e2H2D3

]
,

δSRR, uu(Z) =− 2
m2
Z

Λ2

[
gRl CHu + gRu CHe

]
+
v2m2

Z

Λ4

[
CHe CHu − gRLCu2H4D − gRu Ce2H4D

]

+
m4
Z

2Λ4

[
gRl C

(1−2)
u2H2D3 + gRu C (1−2)

e2H2D3

]
.

(C.13)

Neutral currents d̄idj → ℓ−αℓ
+
β : For down-quark initiated processes the matching for the

leading coefficient FXYV (0,0) is given by:

FLL, ddV (0,0) =
v2

Λ2
C (1+3)
lq +

v4

2Λ4
C (1+2+3+4)
l2q2H2 +

v2m2
Z

2Λ4

[
gLl C

(1−2+3−4) †
q2H2D3 + gLd C

(1−2+3−4)
l2H2D3

]
, (C.14)

FLR, ddV (0,0) =
v2

Λ2
Cld +

v4

2Λ4
C (1+2)
l2d2H2 +

v2m2
Z

2Λ4

[
gLl C

(1−2) †
d2H2D3 + gRd C

(1−2+3−4)
l2H2D3

]
, (C.15)
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FRL, ddV (0,0) =
v2

Λ2
Cqe +

v4

2Λ4
C (1+2)
q2e2H2 +

v2m2
Z

2Λ4

[
gRl C

(1−2+3−4) †
q2H2D3 + gLd C

(1−2)
e2H2D3

]
, (C.16)

FRR, ddV (0,0) =
v2

Λ2
Ced +

v4

2Λ4
Ce2d2H2 +

v2m2
Z

2Λ4

[
gRl C

(1−2) †
d2H2D3 + gRd C

(1−2)
e2H2D3

]
. (C.17)

The higher order coefficients FXYV (1,0) and FXYV (0,1) read:

FLL, ddV (1,0) =
v4

Λ4
C (1+2+3+4)
l2q2D2 , FLL, ddV (0,1) = 2

v4

Λ4
C (2+4)
l2q2D2 , (C.18)

FLR, ddV (1,0) =
v4

Λ4
C (1+2)
l2d2D2 , FLR, ddV (0,1) = 2

v4

Λ4
C (2)
l2d2D2 , (C.19)

FRL, ddV (1,0) =
v4

Λ4
C (1+2)
q2e2D2 , FRL, ddV (0,1) = 2

v4

Λ4
C (2)
q2e2D2 , (C.20)

FRR, ddV (1,0) =
v4

Λ4
C (1+2)
e2d2D2 , FRR, ddV (0,1) = 2

v4

Λ4
C (2)
e2d2D2 . (C.21)

and the pole residues are given by:

δSLL, dd(Z) =− 2
m2
Z

Λ2

[
gLl C

(1+3)
Hq + gLd C

(1+3)
Hl

]
+
v2m2

Z

Λ4
C (1+3)
Hl C (1+3)

Hq

− v2m2
Z

Λ4

[
gLl

(
C (1)
q2H4D

+ 2C (2)
q2H4D

)
+ gLd

(
C (1)
l2H4D

+ 2C (2)
l2H4D

)]

+
m4
Z

2Λ4

[
gLl C

(1−2+3−4)
q2H2D3 + gLd C

(1−2+3−4)
l2H2D3

]
,

δSLR, dd(Z) =− 2
m2
Z

Λ2

[
gLl CHd + gRd C

(1+3)
Hl

]
+
v2m2

Z

Λ4
C (1+3)
Hl CHd

− v2m2
Z

Λ4

[
gLl Cd2H4D + gRd

(
C (1)
l2H4D

+ 2C (2)
l2H4D

)]

+
m4
Z

2Λ4

[
gLl C

(1−2)
d2H2D3 + gRd C

(1−2+3−4)
l2H2D3

]
,

δSRL, dd(Z) =− 2
m2
Z

Λ2

[
gRl C

(1+3)
Hq + gLd CHe

]
+
v2m2

Z

Λ4
CHe C (1+3)

Hq

− v2m2
Z

Λ4

[
gRl

(
C (1)
q2H4D

+ 2C (2)
q2H4D

)
+ gLd Ce2H4D

]

+
m4
Z

2Λ4

[
gRl C

(1−2+3−4)
q2H2D3 + gLd C

(1−2)
e2H2D3

]
,

δSRR, dd(Z) = −2m
2
Z

Λ2

[
gRl CHd + gRd CHe

]
+
v2m2

Z

Λ4

[
CHe CHd − gRLCd2H4D − gRd Ce2H4D

]

+
m4
Z

2Λ4

[
gRl C

(1−2)
d2H2D3 + gRd C

(1−2)
e2H2D3

]
.

(C.22)

Charged currents ūidj → ℓ−α ν̄β: The matching of the leading form-factor coefficients
FLL(LR)
V (0,0) is given by:

[
FLL, udV (0,0)

]αβ
ij

= 2
v2

Λ2

[
C (3)
lq

]αβ
ij

+
v4

Λ4

([
C(3)
l2q2H2

]αβ
ij

+ i
[
C(5)
l2q2H2

]αβ
i ̸=j

)
+

− g2

2

v4

2Λ4

[(
C (3)
l2H2D3 − C (4) †

l2H2D3

)
1q +

(
C (3) †
q2H2D3 − C (4)

q2H2D3

)
1l

]αβ
ij

. (C.23)

Notice that the d = 8 operator O(5)
l2q2H2 = ϵIJK ... only contributes to flavor violating processes

and therefore does not enter into neutral currents, but does affect charged currents like e.g.
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us̄ → ℓ±ν at order O(1/Λ4). The effects of this operator are small because they only interfere
with CKM suppressed transitions in the SM. For the higher-order regular coefficients we obtain
the following matching to the SMEFT:

FLL, udV (1,0) = 2
v4

Λ4
C (3+4)
l2q2D2 , FLL, udV (0,1) = 4

v4

Λ4
C (4)
l2q2D2 . (C.24)

The matching of the pole residues is given by:

δSLL, ud(W ) =
g2

2

v2

Λ2

[
C (3) †
Hl 1q + C (3)

Hl 1ℓ

]
+
g2

2

v4

Λ4
C(3) †Hl C

(3)
Hq

+
g2

2

v4

2Λ4

[
C (2†−3†+4)
l2H4D

1q + C (2−3+4†)
q2H4D

1l

]

− g2

2

v2m2
W

2Λ4

[(
C (3)
l2H2D3 − C (4) †

l2H2D3

)
1q +

(
C (3) †
q2H2D3 − C (4)

q2H2D3

)
1l

]
, (C.25)

δSLR, ud(W ) =
g2

4

v2

Λ2
CHud 1l

and δSLL, du(W ) = δSLL, ud(W ) and δSLR, du(W ) = δSLR, ud †(W ) .

C.3 Dipole form-factors

Neutral currents. The matching conditions for the Z boson and photon pole coefficients
are given by:

SRR,qqDl (γ)
= PRL,qqDl (γ)

= −
√
2eQq

v2

Λ2
(swCeW − cwCeB)1q , (C.26)

SLR,qqDl (γ)
= PLL,qqDl (γ)

=
√
2eQq

v2

Λ2

(
swC

†
eW − cwC

†
eB

)
1q , (C.27)

PRR,qqDl (Z)
= PRL,qqDl (Z)

= −
√
2gR/Lq

v2

Λ2
(cwCeW + swCeB)1q , (C.28)

SLR,qqDl (Z)
= PLL,qqDl (Z)

=
√
2gR/Lq

v2

Λ2

(
cwC

†
eW + swC

†
eB

)
1q , (C.29)

PRR,ddDq (γ)
= PLR,ddDq (γ)

=
√
2eQe

v2

Λ2
(swCdW − cwCdB) 1ℓ , (C.30)

SRL,ddDq (γ)
= PLL,ddDq (γ)

= −
√
2eQe

v2

Λ2

(
swC

†
dW − cwC

†
dB

)
1ℓ , (C.31)

SRR,ddDq (Z)
= PLR,ddDq (Z)

=
√
2g
R/L
l

v2

Λ2
(cwCdW + swCdB)1ℓ , (C.32)

SRL,ddDq (Z)
= PLL,ddDq (Z)

= −
√
2g
R/L
l

v2

Λ2

(
cwC

†
dW + swC

†
dB

)
1ℓ . (C.33)

PRR,uuDq (γ)
= PLR,uuDq (γ)

= −
√
2eQe

v2

Λ2
(swCuW + cwCuB)1ℓ , (C.34)

PRL,uuDq (γ)
= PLL,uuDq (γ)

=
√
2eQe

v2

Λ2

(
swC

†
uW + cwC

†
uB

)
1ℓ , (C.35)

PRR,uuDq (Z)
= PLR,uuDq (Z)

= −
√
2g
R/L
l

v2

Λ2
(cwCuW − swCuB)1ℓ , (C.36)

PRL,uuDq (Z)
= PLL,uuDq (Z)

=
√
2g
R/L
l

v2

Λ2

(
cwC

†
uW − swC

†
uB

)
1ℓ . (C.37)
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Charged currents. The W boson pole coefficients read:

PRL,udDl (W ) =
√
2g
v2

Λ2
CeW1q , PLL,duDl (W ) = −

√
2g
v2

Λ2
C†
eW1q , (C.38)

PLR,udDq (W ) = −
√
2g
v2

Λ2
CdW1ℓ , PLL,duDq (W ) =

√
2g
v2

Λ2
C†
dW1ℓ , (C.39)

PLR,duDq (W ) = −
√
2g
v2

Λ2
CuW1ℓ , PLL,udDq (W ) =

√
2g
v2

Λ2
C†
uW1ℓ . (C.40)

D Form-factors in concrete UV models

We now give the matching of every tree-level mediator in Tab. 4.1 to the pole form factors.

D.1 Scalar form-factors

Neutral currents ūiuj → ℓ−αℓ
+
β :

1

v2

[
FLL, uuS,Poles

]αβ
ij

=
1
2 [y

L
1 ]
jβ[yR1 ]

iα∗

û− ΩS1

−
1
2 [y

L
2 ]
iβ[yR2 ]

jα∗

t̂− Ω
R

(5/3)
2

, (D.1)

1

v2

[
FLR, uuS,Poles

]αβ
ij

= 0 . (D.2)

Neutral currents d̄idj → ℓ−αℓ
+
β :

1

v2

[
FLL, ddS,Poles

]αβ
ij

= 0, (D.3)

1

v2

[
FLR, ddS,Poles

]αβ
ij

= −2[xL1 ]
iβ[xR1 ]

jα∗

t̂− ΩU1

+
2[xR2 ]

iα∗[xL2 ]
jβ

û− Ω
V

(4/3)
2

. (D.4)

Charged currents ūidj → ℓ−α ν̄β:

1

v2

[
FLL, udS,Poles

]αβ
ij

=
1
2 [y

L
2 ]
iβ[yR2 ]

jα∗

t̂− Ω
R

(2/3)
2

−
1
2 [y

L
1 ]
jβ[yR1 ]

iα∗

û− ΩS1

, (D.5)

1

v2

[
FLR, udS,Poles

]αβ
ij

= −2 [xL1 ]
iβ[xR1 ]

jα∗

t̂− ΩU1

+
2 [xL2 ]

jβ[xR2 ]
iα∗

û− Ω
V

(1/3)
2

, (D.6)

1

v2

[
FRL, udS,Poles

]αβ
ij

= −2 [xL1 ]
jα∗[x̄R1 ]

iβ

t̂− ΩU1

+
[x̃R2 ]

jβ[x̃L2 ]
iα∗

û− Ω
Ṽ

(1/3)
2

, (D.7)

1

v2

[
FRR, udS,Poles

]αβ
ij

=
1
2 [ỹ

R
2 ]
iβ[ỹL2 ]

jα∗

û− Ω
R̃

(2/3)
2

+
1
2 [ȳ

R
1 ]
jβ[yL1 ]

iα∗

û− ΩS1

. (D.8)

D.2 Vector form-factors

Neutral currents ūiuj → ℓ−αℓ
+
β :

1

v2

[
FLL, uuV,Poles

]αβ
ij

=
[gl1]

αβ[gq1]
ij

ŝ− ΩZ′
− [gl3]

αβ[gq3]
ij

ŝ− ΩW ′
−

1
2 [y

L
3 ]
jβ[yL3 ]

iα∗

û− Ω
S
(1/3)
3
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−
1
2 [y

L
1 ]
jβ
[yL1 ]

iα∗

û− ΩS1

+
2 [xL3 ]

iβ
[xL3 ]

jα∗

t̂− Ω
(5/3)
U3

, (D.9)

1

v2

[
FLR, uuV,Poles

]αβ
ij

=
[gl1]

αβ[gu1 ]
ij

ŝ− ΩZ′
+

[x̃L2 ]
iβ[x̃L2 ]

iα∗

û− Ω
Ṽ

(1/3)
2

+
1
2 [y

L
2 ]
iβ[yL2 ]

jα∗

t̂− Ω
R

(5/3)
2

, (D.10)

1

v2

[
FRL, uuV,Poles

]αβ
ij

=
[ge1]

αβ[gq1]
ij

ŝ− ΩZ′
− [xR2 ]

jβ[xR2 ]
iα∗

û− Ω
V

(1/3)
2

+
1
2 [y

R
2 ]
iβ[yR2 ]

jα∗

t̂− Ω
R

(5/3)
2

, (D.11)

1

v2

[
FRR, uuV,Poles

]αβ
ij

=
[ge1]

αβ[gu1 ]
ij

ŝ− ΩZ′
+

[x̃R1 ]
iβ[x̃R1 ]

jα∗

t̂− Ω
Ũ1

−
1
2 [y

R
1 ]
jβ[yR1 ]

iα∗

û− ΩS1

, (D.12)

Neutral currents d̄idj → ℓ−αℓ
+
β :

1

v2

[
FLL, ddV,Poles

]αβ
ij

=
[gl1]

αβ[gq1]
ij

ŝ− ΩZ′
+

[gl3]
αβ[gq3]

ij

ŝ− ΩW ′
+

[xL1 ]
iβ[xL1 ]

jα∗

t̂− ΩU1

+
[xL3 ]

iβ[xL3 ]
jα∗

t̂− Ω
U

(2/3)
3

− [yL3 ]
jβ[yL3 ]

iα∗

û− Ω
S
(4/3)
3

, (D.13)

1

v2

[
FLR, ddV Poles

]αβ
ij

=
[gl1]

αβ[gd1 ]
ij

ŝ− ΩZ′
+

1
2 [ỹ

L
2 ]
iβ[ỹL2 ]

jα∗

t̂− Ω
R̃

(2/3)
2

− [xL2 ]
jβ[xL2 ]

iα∗

û− Ω
V

(4/3)
2

, (D.14)

1

v2

[
FRL, ddV,Poles

]αβ
ij

=
[ge1]

αβ[gq1]
ij

ŝ−m2
Z′

+
1
2 [y

R
2 ]
iβ[yR2 ]

jα∗

t̂− Ω
R

(2/3)
2

− [xR2 ]
jβ[xR2 ]

iα∗

û− Ω
V

(4/3)
2

, (D.15)

1

v2

[
FRR, ddV,Poles

]αβ
ij

=
[ge1]

αβ[gd1 ]
ij

ŝ− ΩZ′
+

[xR1 ]
iβ[xR1 ]

jα∗

t̂− ΩU1

+
1
2 [ỹ

R
1 ]
jβ[ỹR1 ]

iα∗

û− Ω
S̃1

. (D.16)

Charged currents ūidj → ℓ−α ν̄β:

1

v2

[
FLL, udV,Poles

]αβ
ij

=
2 [gl3]

αβ[gq3]
ij

ŝ− ΩW ′
+

[xL1 ]
iβ[xL1 ]

jα∗

t̂− ΩU1

− [xL3 ]
iβ[xL3 ]

jα∗

t̂− Ω
U

(2/3)
3

+
1
2 [y

L
1 ]
jβ[yL1 ]

iα∗

û− ΩS1

−
1
2 [y

L
3 ]
jβ[yL3 ]

iα∗

û− Ω
S
(1/3)
3

, (D.17)

1

v2

[
FLR, udV,Poles

]αβ
ij

= 0 , (D.18)

1

v2

[
FRL, udV,Poles

]αβ
ij

= 0 , (D.19)

1

v2

[
FRR, udV,Poles

]αβ
ij

=
[x̄R1 ]

jα∗[x̄R1 ]
iβ

t̂− ΩU1

+
[g̃l1]

αβ[g̃q1]
ij

ŝ− Ω
Z̃

−
1
2 [ȳ

R
1 ]
jβ[yR1 ]

iα∗

û− ΩS1

. (D.20)

D.3 Tensor form-factors

Neutral currents ūiuj → ℓ−αℓ
+
β :

1

v2

[
FLL, uuT,Poles

]αβ
ij

= −
1
8 [y

L
1 ]
jβ[yR1 ]

iα∗

û− ΩS1

−
1
8 [y

L
2 ]
iβ[yR2 ]

jα∗

t̂− Ω
R

(5/3)
2

. (D.21)
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Charged currents ūidj → ℓ−α ν̄β:

1

v2

[
FLL, udT,Poles

]αβ
ij

=
1
8 [y

L
2 ]
iβ[yR2 ]

jα∗

t̂− Ω
R

(2/3)
2

+
1
8 [y

L
1 ]
jβ[yR1 ]

iα∗

û− ΩS1

, (D.22)

1

v2

[
FRR, udT,Poles

]αβ
ij

=
1
8 [ỹ

R
2 ]
iβ[ỹL2 ]

jα∗

t̂− Ω
R̃

(2/3)
2

−
1
8 [ȳ

R
1 ]
jβ[yL1 ]

iα∗

û− ΩS1

. (D.23)

E d ≤ 8 semi-leptonic SMEFT operators
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d = 6 ψ4 pp → ℓℓ pp → ℓν

O(1)
lq (l̄αγ

µlβ)(q̄iγµqj) ✓ �

O(3)
lq (l̄αγ

µτ I lβ)(q̄iγµτ
Iqj) ✓ ✓

Olu (l̄αγ
µlβ)(ūiγµuj) ✓ �

Old (l̄αγ
µlβ)(d̄iγµdj) ✓ �

Oeq (ēαγ
µeβ)(q̄iγµqj) ✓ �

Oeu (ēαγ
µeβ)(ūiγµuj) ✓ �

Oed (ēαγ
µeβ)(d̄iγµdj) ✓ �

Oledq + h.c. (l̄αeβ)(d̄iqj) ✓ ✓
O(1)
lequ + h.c. (l̄αeβ)ε(q̄iuj) ✓ ✓

O(3)
lequ + h.c. (l̄ασ

µνeβ)ε(q̄iσµνuj) ✓ ✓

d = 6 ψ2H2D pp → ℓℓ pp → ℓν

O(1)
Hl (l̄αγ

µlβ)(H
†i
←→
D µH) ✓ �

O(3)
Hl (l̄αγ

µτ I lβ)(H
†i
←→
D I

µH) ✓ ✓

O(1)
Hq (q̄iγ

µqj)(H
†i
←→
D µH) ✓ �

O(3)
Hq (q̄iγ

µτ Iqj)(H
†i
←→
D I

µH) ✓ ✓

OHe (ēαγ
µeβ)(H

†i
←→
D µH) ✓ �

OHu (ūiγ
µuj)(H

†i
←→
D µH) ✓ �

OHd (d̄iγ
µdj)(H

†i
←→
D µH) ✓ �

OHud + h.c. (ūiγ
µdj)(H̃

†iDµH) � ✓

d = 6 ψ2XH + h.c. pp → ℓℓ pp → ℓν

OeW (l̄ασ
µνeβ) τ

IHW I
µν ✓ ✓

OeB (l̄ασ
µνeβ)HBµν ✓ �

OuW (q̄iσ
µνuj) τ

IH̃W I
µν ✓ ✓

OuB (q̄iσ
µνuj) H̃Bµν ✓ �

OdW (q̄iσ
µνdj) τ

IHW I
µν ✓ ✓

OdB (q̄iσ
µν dj)HBµν ✓ �

Table 2: Dimension-6 operators contributing to the q̄q′ → ℓ̄ℓ′ transition at tree-level. A “+h.c.”
in the first column indicates that the operator is not hermitian, and as such the SMEFT La-
grangian contains the operator and its hermitian conjugate. The last two columns indicate if
the operators contribute to neutral or charged current transitions.
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d = 8 ψ4H2 pp → ℓℓ pp → ℓν

O(1)

l2q2H2 (l̄αγ
µlβ)(q̄iγµqj)(H

†H) ✓ �

O(2)

l2q2H2 (l̄αγ
µτ I lβ)(q̄iγµqj)(H

†τ IH) ✓ �

O(3)

l2q2H2 (l̄αγ
µτ I lβ)(q̄iγµτ

Iqj)(H
†H) ✓ ✓

O(4)

l2q2H2 (l̄αγ
µlβ)(q̄iγµτ

Iqj)(H
†τ IH) ✓ �

O(5)

l2q2H2 ϵIJK(l̄αγ
µτ I lβ)(q̄iγµτ

Jqj)(H
†τKH) � ✓

O(1)

l2u2H2 (l̄αγ
µlβ)(ūiγµuj)(H

†H) ✓ �

O(2)

l2u2H2 (l̄αγ
µτ I lβ)(ūiγµuj)(H

†τ IH) ✓ �

O(1)

l2d2H2 (l̄αγ
µlβ)(d̄iγµdj)(H

†H) ✓ �

O(2)

l2d2H2 (l̄αγ
µτ I lβ)(d̄iγµdj)(H

†τ IH) ✓ �

O(1)

q2e2H2 (q̄iγ
µqj)(ēαγµeβ)(H

†H) ✓ �

O(2)

q2e2H2 (q̄iγ
µτ Iqj)(ēαγµeβ)(H

†τ IH) ✓ �

Oe2u2H2 (ēαγ
µeβ)(ūiγµuj)(H

†H) ✓ �
Oe2d2H2 (ēαγ

µeβ)(d̄iγµdj)(H
†H) ✓ �

d = 8 ψ4D2 pp → ℓℓ pp → ℓν

O(1)

l2q2D2 Dν(l̄αγ
µlβ)Dν(q̄iγµqj) ✓ �

O(2)

l2q2D2 (l̄αγ
µ←→D νlβ)(q̄iγµ

←→
D νqj) ✓ �

O(3)

l2q2D2 Dν(l̄αγ
µτ I lβ)Dν(q̄iγµτ

Iqj) ✓ ✓

O(4)

l2q2D2 (l̄αγ
µ←→D Iνlβ)(q̄iγµ

←→
D I

νqj) ✓ ✓

O(1)

l2u2D2 Dν(l̄αγ
µlβ)Dν(ūiγµuj) ✓ �

O(2)

l2u2D2 (l̄αγ
µ←→D νlβ)(ūiγµ

←→
D νuj) ✓ �

O(1)

l2d2D2 Dν(l̄αγ
µlβ)Dν(d̄iγµdj) ✓ �

O(2)

l2d2D2 (l̄αγ
µ←→D νlβ)(d̄iγµ

←→
D νdj) ✓ �

O(1)

q2e2D2 Dν(q̄iγ
µqj)Dν(ēαγµeβ) ✓ �

O(2)

q2e2D2 (q̄iγ
µ←→D νqj)(ēαγµ

←→
D νeβ) ✓ �

O(1)

e2u2D2 Dν(ēαγ
µeβ)Dν(ūiγµuj) ✓ �

O(2)

e2u2D2 (ēαγ
µ←→D νeβ)(ūiγµ

←→
D νuj) ✓ �

O(1)

e2d2D2 Dν(ēαγ
µeβ)Dν(d̄iγµdj) ✓ �

O(2)

e2d2D2 (ēαγ
µ←→D νeβ)(d̄iγµ

←→
D νdj) ✓ �

Table 3: Same as 2 but with dimension-8 operators involving 4 fermions.
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d = 8 ψ2H4D pp → ℓℓ pp → ℓν

O(1)

l2H4D i(l̄αγ
µlβ)(H

†←→D µH)(H†H) ✓ �

O(2)

l2H4D i(l̄αγ
µτ I lβ)[(H

†←→D I
µH)(H†H) + (H†←→D µH)(H†τ IH)] ✓ ✓

O(3)

l2H4D ϵIJK(l̄αγ
µτ I lβ)(H

†←→D J
µH)(H†τKH) � ✓

O(4)

l2H4D ϵIJK(l̄αγ
µτ I lβ)(H

†τJH)(DµH)†τKH � ✓

O(1)

q2H4D i(q̄iγ
µqj)(H

†←→D µH)(H†H) ✓ �

O(2)

q2H4D i(q̄iγ
µτ Iqj)[(H

†←→D I
µH)(H†H) + (H†←→D µH)(H†τ IH)] ✓ ✓

O(3)

q2H4D iϵIJK(q̄iγ
µτ Iqj)(H

†←→D J
µH)(H†τKH) � ✓

O(4)

q2H4D ϵIJK(q̄iγ
µτ Iqj)(H

†τJH)(DµH)†τKH � ✓

Oe2H4D i(ēαγ
µeβ)(H

†←→D µH)(H†H) ✓ �

Ou2H4D i(ūiγ
µuj)(H

†←→D µH)(H†H) ✓ �

Od2H4D i(d̄iγ
µdj)(H

†←→D µH)(H†H) ✓ �

d = 8 ψ2H2D3 pp → ℓℓ pp → ℓν

O(1)

l2H2D3 i(l̄αγ
µDνlβ) (D(µDν)H)†H ✓ �

O(2)

l2H2D3 i(l̄αγ
µDνlβ)H

†(D(µDν)H) ✓ �

O(3)

l2H2D3 i(l̄αγ
µτ IDνlβ) (D(µDν)H)†τ IH) ✓ ✓

O(4)

l2H2D3 i(l̄αγ
µτ IDνlβ)H

†τ I(D(µDν)H) ✓ ✓

O(1)

e2H2D3 i(ēαγ
µDνeβ) (D(µDν)H)†H) ✓ �

O(2)

e2H2D3 i(ēαγ
µDνeβ)H

†(D(µDν)H) ✓ �

O(1)

q2H2D3 i(q̄iγ
µDνqj) (D(µDν)H)†H ✓ �

O(2)

q2H2D3 i(q̄iγ
µDνqj)H

†(D(µDν)H) ✓ �

O(3)

q2H2D3 i(q̄iγ
µτ IDνqj) (D(µDν)H)†τ IH ✓ ✓

O(4)

q2H2D3 i(q̄iγ
µτ IDνqj)H

†τ I(D(µDν)H) ✓ ✓

O(1)

u2H2D3 i(ūiγ
µDνuj) (D(µDν)H)†H ✓ �

O(2)

u2H2D3 i(ūiγ
µDνuj)H

†(D(µDν)H) ✓ �

O(1)

d2H2D3 i(d̄iγ
µDνdj) (D(µDν)H)†H ✓ �

O(2)

d2H2D3 i(d̄iγ
µDνdj)H

†(D(µDν)H) ✓ �

Table 4: Same as 2 but with dimension-8 operators involving 2 fermions.
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