
Préparée à l'École Normale Supérieure

Validation de Traduction pour Compilateurs de Tenseurs

Soutenue par

Basile Clément
Le 9 Septembre 2022

École doctorale no386

Sciences Mathématiques
de Paris Centre

Spécialité

Informatique

Composition du jury :

Xavier Rival
Directeur de Recherche, Inria Président du Jury

Christophe Alias
Chargé de Recherche HDR, Inria Rapporteur

George Necula (absent)
Ingénieur, Google Rapporteur

Corinne Ancourt
Chercheuse HDR, Mines ParisTech Examinatrice

Sandrine Blazy
Professeure, Université de Rennes 1 Examinatrice

Jonathan Ragan-Kelley
Assistant Professor, MIT Examinateur

Xavier Leroy
Professeur, Collège de France Directeur de thèse

Albert Cohen
Chercheur, Google Co-encadrant

École Normale Supérieure

Thèse de Doctorat de l’Université PSL
Spécialité : Informatique

Validation de Traduction pour
Compilateurs de Tenseurs

Translation Validation of Tensor Compilers

Basile Clément

Soutenue le 9 Septembre 2022

Préparée sous la direction de

Xavier Leroy (Collège de France)

et

Albert Cohen (Google)

Rapporteurs

Christophe Alias (Inria)

George Necula*
(Google)

Examinateurs

Corinne Ancourt (Mines ParisTech)

Sandrine Blazy (Université de Rennes 1)

Jonathan Ragan-Kelley (MIT)

Xavier Rival (Inria), Président du Jury

*
Absent lors de la soutenance

Acknowledgements

A PhD thesis is, ultimately, a very personal work: in many ways, I am leaving

a part of my very self in this document and the work that lead up to it. It is

not, however, an individual work: many others have had an impact on both this

thesis and me, through their work and our interactions. I cannot possibly do

justice to all that deserve to be cited here, but I will try my best.

Among those that I couldn’t possibly forget are my advisors, without whom

this journey would never have been possible. Albert Cohen has been with

me from the first discussions on the original topic of the thesis to the last

lines of this manuscript. I couldn’t have done half of this work without your

guidance, your enthusiasm, and your knowledge of the polyhedral model and

the surrounding areas. Thank you, also, for your persistent support during the

tough times of this adventure. I started working with Xavier Leroy later, when,

at the start of my second year, I re-oriented my topic towards the verification

of tensor compilers. I am honored that you accepted to take me as a student.

Your humility in spite of your vast knowledge, your curiosity, and your sharp

but kind questions have made these PhD years a rewarding experience. You

have helped me achieve a greater understanding of my work, and have always

been a stable and reassuring support when it seemed things were falling apart.

There is no doubt this manuscript would not exist without you. I’d also like

to acknowledge Francesco Zappa Nardelli, who was my director during the

first year of this PhD, before he left for bluer pastures in the industry. Thank

you for encouraging me to get out of my comfort zone and explore different

directions beyond my first intuitions.

Thank you to all the members of my jury for coming to the defense, and

in particular to Christophe Alias and George Necula who have honored me

by accepting to report on my manuscript. Your proofreading, remarks, and

questions have helped improve the quality and precision of the manuscript.

iii

iv

Research has been on my mind since I was a little kid and Gérard Berry, who

was my first Computer Science teacher when my age fit on a 3 or 4 bit counter,

deserves to be mentioned here. I did not realize my luck at the time, but you

were influential nurturing my intereset for research and in instilling in me a

love for computers and what is not their science — I may have not followed

that path if not for you.

The first year of my PhD was spent in the PARKAS team at the École Normale

Supérieure, and they deserve my gratitude for making that year memorable.

Thank you, Marc, for hosting me in your team and for always being supportive,

and thank you, Timothy, for your kind and encouraging presence. The life at

PARKAS was also animated by its PhD students, postdocs and other engineers;

thank you, Andi, Ulysse, Nicolas, Guillaume, Lélio, and Ismaïl, for the scientific

discussions and the good times during lunch and other breaks.

From the second year onwards, I was supposed to move to the Cambium team

at Inria — but really, I moved to my room, because Covid-19 hit. The team’s

weekly video calls were a welcome moment of conviviality in bleak times. I

am glad we later got to spend more time together. Thank you, François, Didier,

Luc, Jean-Marie, Damien, Florian, and Sébastien. The PhD students deserve

a separate mention, as we shared the same struggles: thank you Nathanaëlle,

Clément, Alexandre, Glen, Thomas, Léo, Paulo. I wish you the same success,

for those of you that are still in this boat.

Thanks go to Christine, when I was at PARKAS, and then Hélène, at Cam-

bium, their respective team’s assistants, for their help in navigating various

administrative conundrums.

As a PhD student, I found some of the fuel needed to complete the dissertation

in my friends. There is the old Parisian guard that is still young in my heart:

Anaël, Ulysse, Julie, Abel, Kenji, Thomas, Nofar, Najib, Annalí, Ambre. Thank

you for being there. Some of my most important friendships are with people

that are best named by their pseudonyms. Thank you a3nm, Corbeau, DrNo,

Evarin, foncteur, loutre, Mi, Milton, Nathanaëlle, Tito, tobast. Thank you Robin

for putting up with me during the years we spent as roommates, it has been a

pleasure. Orphée, your strength, your talent, and your kindness are inspiring;

thank you. Lwenn, you are a precious friend. Thank you for believing in me as

much as I believe in you.

v

Finally, thanks go to my parents and my sister for your support during these

years. I am sorry I moved so far from home. Thank you, Marc and Pascale,

for hosting me during the lockdowns and allowing me to keep my sanity,

and thank you, Luc, Sonia, Noé, Damien, and Émilie, for making them more

lively.

Abstract

Tensor compilers are used in domains such as image processing and deep

learning to generate efficient low-level code from high-level specifications on

multidimensional tensors. After the application of both loop transformations

and algebraic simplifications to the specification, the resulting low-level code

can have a drastically different structure. This makes the formal verification

of tensor compilers an arduous task, unsuitable for standard bisimulation

techniques. I propose a new method for the verification of tensor compilers

in the presence of loop and algebraic transformations. This method draws

inspiration from polyhedral techniques for program representation, and relies

on a refinement mapping from assignments in the low-level code to tensor

definition in the specifications provided by the tensor compiler. Each run of the

compiler is verified by an independent verification tool implemented in OCaml,

making the method an instance of translation validation. This verification tool

is tested on Halide, an industrial-grade tensor compiler.

vii

Contents

Présentation xvii
1 Introduction . xvii

2 Représentation des programmes comportant boucles et tableaux xxi

2.1 Le modèle polyédrique xxii

2.2 Systèmes Récurrents d’Équations Affines xxv

2.3 Combinateurs fonctionnels et règles de réécriture xxv

2.4 Le modèle de Halide . xxvi

3 Ensembles de Presburger . xxx

4 Un langage intermédiaire pour les compilateurs de tenseurs . . xxxv

4.1 Syntaxe . xxxvi

4.2 Sémantique dynamique xxxvii

4.3 Sémantique à petit pas . xxxix

4.4 Typage . xl

5 Validation d’un compilateur de tenseurs xliv

5.1 Évaluation prophétique xliv

5.2 Évaluation symbolique . xlvi

5.3 Preuve de correction . xlix

5.4 Génération des expressions prophétiques l

6 Évaluation expérimentale . l

7 Vérification des réductions . lii

8 Travaux liés . liii

9 Conclusion . liii

1 Introduction 1

2 Representations of Programs with Loops and Arrays 15
2.1 The polyhedral model . 16

2.1.1 Instance sets . 17

2.1.2 One polyhedron, many polyhedra 19

2.1.3 Program order . 21

2.1.4 Scheduling . 23

ix

x Contents

2.1.5 Code generation . 25

2.1.6 Access Relations . 28

2.1.7 Dependence analysis . 30

2.2 Systems of Affine Recurrence Equations 31

2.3 Functional Combinators and Rewrite Rules 34

2.4 The Halide model . 35

2.4.1 Algorithms . 35

2.4.2 Schedules . 38

2.4.3 Semantics of Halide Specifications 44

2.4.4 Reduction from affine Halide algorithms to SAREs . . . 50

3 Presburger sets 53
3.1 Presburger arithmetic . 53

3.2 Named tuples . 55

3.3 Symbolic sets . 56

3.4 Unit sets . 60

3.5 Symbolic relations . 61

3.6 Piece-wise Expressions . 66

3.7 Lexicographic optimization . 67

3.8 Notations and Conventions . 69

4 An intermediate language for tensor compilers 71
4.1 Syntax . 73

4.2 Dynamic semantics . 75

4.3 Soundness . 90

4.4 Typing . 101

5 Verifying a tensor compiler 107
5.1 Verification conditions . 108

5.2 Symbolic Values and Heaps . 109

5.3 Prophetic Evaluation . 121

5.4 Symbolic Evaluation . 128

5.5 Correctness proof . 135

5.6 Generation of prophetic expressions 139

6 Experimental evaluation 143
6.1 Generation of Sched from Halide 143

6.2 OCaml prototype . 146

6.3 Benchmark selection . 148

Contents xi

6.4 Evaluation . 150

7 Verifying reductions 153
7.1 Parallel Implementations of Reductions 154

7.2 List Homomorphisms . 158

7.3 Implementing Reductions . 160

7.3.1 Reductions as Nested Computations 161

7.3.2 Initialization . 163

7.3.3 Partial Reductions . 164

7.3.4 Consecutive Reductions 166

7.3.5 Differential memories . 168

7.3.6 Reduction-Aware Dynamic Semantics 169

7.4 Specification of Reductions . 172

7.5 Validation of Programs with Reductions 177

8 Related work 191
8.1 Translation Validation . 191

8.2 Affine Program Equivalence . 198

8.3 Other Approaches . 201

9 Conclusion 203
9.1 Summary of My Approach and Results 203

9.2 Ecosystem Integration . 205

9.3 Sparse Arrays . 206

9.4 Floating-Point Arithmetic . 207

9.5 Overflow Checking . 211

9.6 Non-Affine Specifications and Schedules 212

9.6.1 Non-Affine Reads . 212

9.6.2 Non-Affine Specializations 213

9.6.3 Non-Affine Writes and Histograms 217

9.6.4 Parametric Tiling . 219

9.7 Array linearization . 221

9.8 Array Aliasing and Overlapping Arrays 223

9.9 Garbage Writes . 225

9.10 Formal Verification . 226

Bibliography 229

List of Figures

1 Syntax des expressions de Sched xxxvi

2 Syntaxe des commandes de Sched xxxvii

3 Sémantique à entrelacements pour Sched xli

4 Règles de typages pour les expressions de Sched xliii

5 Évaluation prophétique des commandes Sched xlv

6 Évaluateur symbolique . xlviii

4.1 Syntax of expressions . 74

4.2 Syntax of Commands . 75

4.3 Evaluation function for semantic expressions 77

4.4 Read locations for semantics expressions 84

4.5 Update semantics for Sched statements 87

4.6 Small-Step Interleaving Semantics 93

4.7 Typing rules for Sched expressions 104

5.1 Evaluation in a symbolic heap . 115

5.2 Evaluation in a symbolic heap . 115

5.3 Prophetic Evaluation of Statements 123

5.4 Symbolic Evaluator . 129

5.5 Symbolic Evaluation of a Matrix Product 134

7.1 Prophetic Evaluation . 187

7.2 Symbolic Evaluation with Reductions 189

xiii

List of Tables

1 Resultats de l’évaluation expérimentale (temps en secondes) . . lii

6.1 Results of the experimental evaluation (times in seconds) 151

xv

Présentation

Note to non-French-speaking readers: this section is a substantial summary of the

findings of this thesis in French. All the content within is included in the full version

of the thesis in English, that is found on page 1, after this summary.

Cette partie présente un résumé substantiel en français de la thèse, rédigée

en anglais. Chaque chapitre de la thèse est résumé en une section de quelues

pages en suivant l’organisation du document originel. Le lecteur souhaitant

des preuves, détails ou références plus précises est invité à se reporter au(x)

chapitre(s) correspondant(s) de la version complète en anglais.

1 Introduction

Imaginons un langage de spécification pour des tableaux multidimensionnels

potentiellement infinis, que nous appellerons tenseurs. Ce langage définit les

tenseurs par des équations mathématiques, lues comme des écritures uniques,

et implicitement quantifiées sur le domaine d’indexation du tenseur. On

peut ainsi représenter, par exemple, un produit extérieur de vecteurs par la

spécification :

C(i, j) = A(i) × B(j)

Ces spécifications sont ensuites compilées en programmes impératifs pouvant

être exécutés, où les tenseurs ont été remplacés par des tableaux impératifs

représentant un sous-ensemble de leur domaine. À la source des travaux

de cette thèse se trouve l’intuition qu’il est possible pour le compilateur de

préserver une relation explicite entre tableaux et tenseurs.

xvii

xviii Présentation

La spécification ci-dessus pourrait, une fois compilée, se transformer en le code

suivant :

for i0 = 0 to (N + 3) / 4 - 1 do
for j = 0 to M - 1 do
for i1 = 0 to 3 do
let i = min(i0 * 4, N - 4) + i1 in
c[i, j] := b[j] * a[i]

On remarquera à la fois des transformations de structures (ici la boucle

extérieure sur i a été tuilée d’un facteur 4) et des transformations sémantiques

(ici la commutativité de la multiplication a été appliquée). Les paramètres N et

M représentent la taille des tableaux a et b, et ne sont pas connus statiquement :

ils seront fournis par l’utilisateur au moment de l’exécution.

Dans ce cas simple, il est possible de se convaincre que le programme engendré

est équivalent à la spécification, au sens où si le programme est exécuté dans

une mémoire où les a[i] contiennentA(i) et où les b[j] contiennent B(j), alors

après l’exécution, les c[i, j] contiendront C(i, j). La preuve repose sur le fait

que, lorsque l’on écrit dans c[i, j], la valeur écrite est toujours B(j) × A(i),
qui est égal à A(i) × B(j) = C(i, j) par commutativité de la multiplication ; de

plus, l’ensemble des c[i, j] écrits par le programme est l’ensemble des c[i,
j] pour 0 ⩽ i < N et 0 ⩽ j < M, ce dont on se convainc à l’aide d’un peu

d’arithmétique.

Cette approche fonctionne dans un cas simple comme celui ci, mais échoue

dès lors que le programme contient une récurrence, c’est-à-dire dès lors que

la valeur écrite par une itération d’une boucle dépend de la valeur écrite

par l’itération précédente. En présence de récurrences, on ne connait plus

statiquement la valeur stockée dans une case de tableau, un problème bien connu

dans le cadre de l’équivalence de programme et pour lequel des techniques

opportunistes basées sur les clotures transitives ou les enveloppes convexes

ont été développées.

À l’inverse, dans cette thèse, je propose de demander un peu plus de travail

au compilateur pour générer une annotation légère indiquant, en termes de

spécification, la valeur que le compilateur pense être écrite par un assignement.

Je nomme ces annotations des expressions prophétiques (car elles prédisent,

en quelque sorte, la valeur qui sera calculée avant qu’elle soit effectivement

Introduction xix

calculée), et je les note entre accolades avant une affectation. En présence de

récurrences, comme dans l’implémentation d’une multiplication de matrice

avec un accumulateur R, on obtient un programme annoté comme suit :

for i0 = 0 to (N + 3) / 4) - 1 do
for j = 0 to M - 1 do
for i1 = 0 to 3 do
let i = min(i0 * 4, N - 4) + i1 in
r {0} := 0
for k = 0 to P - 1 do

r {R(i, j, k)} := r + b[k, j] * a[i, k]
c[i, j] {C(i, j)} := r

Les expressions prophétiques sont indiquées en violet afin de les distinguer du

reste du code. Ces expressions prophétiques permettent de casser le cycle de

dépendances : lorsque l’on exécute l’affectation r := r + b[k, j] * a[i, k],
on peut maintenant utiliser l’annotation prophétique de l’itération précédente

pour en déduire que la lecture de r, dans le membre droit, vaut R(i, j, k − 1).

Contributions

Cette thèse découlent de la remarque mentionnée précédemment : certaines

difficultés théoriques à la validation de compilateurs de tenseurs disparaissent

lorsque le compilateur est capable de fournir des annotations prophétiques

reliant les écritures dans le code engendré avec des expressions de tenseurs

dans la spécification en entrée. Les contributions de la thèse explorent donc

les conséquences de ces annotations, plus précisément, cette thèse fournit les

contributions suivantes :

• Le développement et la formalisation de Sched, un langage intermédiaire

dédié à la validation de compilateurs de tenseurs et proche du langage

intermédiaire Stmt utilisé par Halide et d’autres compilateurs de tenseurs,

étendu avec des annotations prophétiques.

• Le développement, la formalisation et l’implémentation d’un valida-

teur pour programmes Sched en rapport à une spécification exprimée

xx Présentation

sous la forme de systèmes récurrents d’équations affines (SREA), une

représentation générique de programmes.

• Une formalisation nouvelle de la sémantique de Halide sous forme d’un

système d’équations, ainsi qu’une réduction de cette sémantique vers la

sémantique standard des SREA.

• L’instrumentation du compilateur Halide afin d’annoter son langage in-

termédiaire Stmt avec des annotations prophétiques, et l’implémentation

des traductions de Stmt annoté vers Sched et de Halide vers un SREA.

• Une évaluation expérimentale des outils mentionnés ci-dessus sur un

ensemble de programmes extraits des benchmarks officiels de Halide, et

leur comparaison avec ISA, état de l’art de l’équivalence de programmes

affines.

• La formalisation (mais pas l’implémentation) d’une extension au système

décrit ci-dessus pour permettre le réordonnancement des operations au

sein d’une réduction, une primitive importante en calcul numérique.

Organisation du chapitre

Ce résumé est organisé suivant la même structure que la version complète de

la thèse en anglais. Il est composé de plusieurs sections correspondant aux

chapitres de la version anglaise.

La première section introductive s’achève ici, après avoir présenté le contexte

et les motivations des travaux réalisés durant cette thèse.

La seconde section présente les représentations utilisées par les compilateurs

de programmes numériques que nous chercherons ensuite à vérifier, avec un

intérêt tout particulier pour le modèle polyédrique qui a inspiré mes travaux.

La troisième section est fortement raccourcie dans ce résumé en français :

le chapitre correspondant de la version complète présente les ensembles

et relations de Presburger du modèle polyédrique tels qu’implémentés par

Représentation des programmes comportant boucles et tableaux xxi

isl [112], et le lecteur intéressé est invité à s’y référer.

La quatrième section présente les idées derrière le language impératif Sched

qui forment le cœur de l’aproche proposée dans cette thèse. Sched est spécifié

par une sémantique et un système de types et d’effets, prouvé cohérent dans la

version complète en anglais.

La cinquième section complète la présentation et étends le système de types et

d’effets de Sched avec un évaluateur symbolique basé sur les expressions pro-

phétiques mentionnées dans l’introduction. Cet évaluateur symbolique produit

des conditions de vérifications qui impliquent la correction du code engendré

relativement à la spécification de l’utilisateur.

La sixième section mentionne les résultats expérimentaux obtenus lors de

l’implémentation des méthodes développées dans les précédentes sections, et

en particulier son application au compilateur industriel Halide.

La septième section explique comment étendre les idées de cette thèse à la

validation de réductions, une primitive permettant de réordonner les calculs

lors de l’application répétée d’un opérateur associatif et commutatif.

La huitième section est omise de ce résumé en français : le chapitre correspon-

dant dans la version anglaise compare l’approche de ce manuscrit avec d’autres

travaux en validation de traduction publiés en langue anglaise.

2 Représentation des programmes comportant
boucles et tableaux

Cette section propose un tour d’horizon et un historique rapide des techniques

de compilation des programmes numériques intensifs opérants sur des tableaux

multi-dimensionnels, un domaine riche de décennies de recherche. Puisque

nous nous intéressons dans ce manuscrit principalement à la vérification des

transformations de programmes effectuées par les compilateurs de tenseurs,

ce chapitre se concentre sur les techniques permettant de représenter et

d’appliquer des transformations : en particulier, les techniques d’optimisations

xxii Présentation

ne seront que brièvement mentionnées.

Pour plus de détails sur les techniques de représentation mentionnées ici, et

notamment un historique du modèle polyédrique, le lecteur intéressé est invité

à se référer au chapitre 2 de la version complète en anglais de cette thèse.

2.1 Le modèle polyédrique

Le modèle polyédrique est une représentation des programmes en tant que

graphe de calcul étendu, dont les nœuds sont des instances d’instructions, c’est-

à-dire les instructions du programmes indexées par les valeurs des itérateurs

de boucles qui les contiennent. Bien que n’utilisant pas la représentation de

programmes du modèle polyédrique, les techniques décrites dans ce manuscrit

réutilisent certaines des intuitions du modèle.

Ensembles d’instances La première idée du modèle polyédrique est de

remarquer que dans un programme de boucles impératives comme par exemple

la multiplication de matrice :

for i = 0 to N - 1 do
for j = 0 to M - 1 do
for k = 0 to P - 1 do
c[i, j] += a[i, k] * b[k, j]

le concept classique d’instruction (ou, plus grossièrement, de ligne de code)

n’est pas suffisant pour parler du comportement dynamique du programme. Il

faut plutôt parler d’instructions paramétrées par leur contexte afin de distinguer

les “instances” de l’assignement pour des valeurs de i, j et k différentes. Par

exemple, si on dénote par I(i, j, k) l’assignement c[i, j]+ = a[i, k] ∗ b[k, j], on

pourra dire qu’il est possible d’exécuter I(i, j, k) et I(i′, j′, k′) en parallèle dès

lors que (i, j) ≠ (i′, j′) sans impacter la sémantique du programme.

Les instructions, ou lignes de code, sont donc représentées dans ce modèle par

leurs instances, des objets indexés par un espace multi-dimensionnel à coor-

données entières représentant les boucles autour de l’instruction. Les instances

peuvent ainsi être vus comme des points dans cet espace multi-dimensionnel,

Représentation des programmes comportant boucles et tableaux xxiii

et le modèle est ainsi parfois connu sous le nom de modèle géométrique. Le

nom de modèle polyédrique vient d’une restriction supplémentaire sur les en-

sembles d’instances – et donc les programmes – représentables : afin de rendre

décidables les problèmes de transformations de programmes et d’optimisation,

les premiers travaux du domaine autorisent uniquement expressions affines

(c’est-à-dire de la forme a1x1+· · ·+anxn+c avec a1, . . . , an et c des constantes

entières et x1, . . . , xn des variables de boucles ou des paramètres) dans les

bornes de boucles et les indices de tableaux. D’un point de vue géométrique,

cela correspond à autoriser uniquement des ensembles d’instances qui sont

exactement les points à coordonnées entières contenus dans un polyèdre.

Dans ses manifestations modernes comme la bibliothèque isl utilisée dans

cette thèse, le modèle polyédrique se généralise à des ensembles d’instances

représentés par des unions finies de polyèdres, ce qui correspond à autoriser des

expressions affines par morceaux (où les conditions sont elle-mêmes affines),

avec la possibilité d’effectuer des divisions par un facteur entier constant. On

appelle ces expressions des expressions quasi-affines par morceaux. La grammaire

des programmes gérés par une telle approche est :

s ::= for i < e; do s | s ; s | if e then s else s | I (e1, . . . , en) | skip

Le symbole I représente un morceau de programme arbitraire sans variables

libres et paramétré uniquement par ses arguments e1, . . . , en. Les expressions

apparaissant dans les bornes de boucles, les conditionnelles, et les arguments

des instructions sont des expressions quasi-affines par morceaux.

Ordre d’exécution La représentation d’un programme par un ensemble

d’instances dans le modèle polyédrique n’est pas suffisante pour capturer

totalement la sémantique d’un programme impératif, car un ensemble est

par définition non ordonné. Pour pallier ce problème, le modèle polyédrique

utilise un ordre partiel < entre les instances d’une même instruction mais aussi

d’instructions différentes. Si u et v sont deux instances, alors u < v indique

que u doit être exécutée avant v pour obtenir la sémantique correcte. Cet ordre

d’exécution partiel représente une exécution parallèle de l’ensemble d’instances :

deux instances incomparables peuvent être exécutées en parallèle.

Afin d’éviter l’explosion combinatoire induite par une représentation explicite

de l’ordre d’exécution, le modèle polyédrique utilise la notion d’ordonnanceur.

xxiv Présentation

Un schedule θ est une fonction associant à chaque instance un point dans un

unique espace multi-dimensionnel appelé le domaine d’ordonnancement, muni

de l’ordre lexicographique sur les entiers. L’ordre d’exécution est obtenu en

composant la fonction d’ordonnancement avec l’ordre lexicographique sur les

entiers. Afin de permettre plus de flexibilité dans la représentation du parallé-

lisme, les approches modernes autorisent à marquer certaines dimensions dans

le domaine d’ordonnancement comme parallèles : on utilise pour ces dimensions

l’ordre partiel induit par l’égalité (i.e. deux valeurs différentes sont toujours

incomparables) plutôt que l’ordre usuel sur les entiers.

Génération de code Le modèle polyédrique se prête à l’optimisation de pro-

grammes, qui doivent ensuite être convertis à nouveau vers une représentation

textuelle compatible avec des outils de compilation classiques. Cette partie du

modèle polyédrique s’appelle la génération de code, et reconstruit un arbre de

syntaxe en suivant la structure des dimensions du domaine d’ordonnancement,

chaque dimension du domaine d’ordonnancement devenant une boucle dans

le code engendré. La génération de code est une composante cruciale du

modèle polyédrique car une mauvaise génération de code peut introduire des

inefficacités qui contrebalancent les gains obtenus grâce à la réorganisation du

code permise par le modèle.

Relations d’accès et analyse de dépendences Il faut également mentionner

que le modèle polyédrique permet également de représenter des relations

(affines) entre paires d’instances, mais aussi entre instances et d’autres objets

comme des cases mémoires. Le modèle polyédrique permet de capturer, de

façon exacte en présence d’expressions quasi-affines ou approchée dans le

cas général, l’ensemble des cases mémoires lues et écrites par une instance

donnée. Ces ensembles de cases mémoires sont représentées sous forme de

relations d’accès liant par des expressions quasi-affines une instance d’instruction

indicée par ses itérateurs à un ensemble de cases mémoires indicées de façon

multidimensionnelle.

Ces relations d’accès entre instructions et cases mémoires peuvent être utilisées

pour effectuer une analyse de dépendance précise, indiquant de façon exacte

quel instance est la source en écriture d’une lecture donnée. Cette analyse

de dépendance permet de déterminer des contraintes sur l’ordonnancement

Représentation des programmes comportant boucles et tableaux xxv

à respecter pour que la sémantique du programme soit préservée à travers

une transformation. On peut également l’utiliser pour effectuer des transfor-

mations mémoire, comme remplacer une écriture répétée dans un scalaire

b[] = a[i] * a[i] par l’utilisation d’un tableau b[i] = a[i] * a[i] en

effectuant les transformations correspondantes lors des lectures.

2.2 Systèmes Récurrents d’Équations Affines

Les systèmes récurrents d’équations affines (ou SREA) prédatent et forment les

fondations théoriques du modèle polyédrique. Là où le modèle polyédrique

s’est concentré sur des représentations de programmes impératifs, les SREA

sont des systèmes d’équations mathématiques où les équations sont de la

forme :

∀x1, . . . , xnA , D(x1, . . . , xnA) ⇒ A(x1, . . . , xnA) = e

où D est une condition affine sur les x1, . . . , xnA , A est un nom de fonction

abstrait d’arité nA, et e est une expression arbitraires où tous les arguments

des fonctions abstraites définies par le système sont des expressions affines de

x1, . . . , xnA .

Les SREA ont une expressivité équivalente à celle du modèle polyédrique,

et sont utilisés comme spécification dans le compilateur ALPHA de Verge,

Mauras et Quinton [119]. Leur nature équationnelle en fait de bons candidats

pour la spécification de programmes affines, et nous utiliserons des SREAS

comme language de spécification dans cette thèse pour s’affranchir des détails

d’implémentation du compilateur à vérifier.

2.3 Combinateurs fonctionnels et règles de réécriture

Une ligne de recherche assez différente dans le monde de l’optimisation est celle

des règles de réécriture, généralement basées sur des combinateurs fonctionnels.

Dans ces approches, le programme est successivement transformé à partir

de règles de réécritures plus ou moins atomiques qui peuvent être prouvées

correctes de façon indépendante jusqu’à obtenir un programme final. L’absence

xxvi Présentation

de vision globale provenant de la nécéssité d’effectuer les réécritures pas à

pas rend plus difficile la construction d’optimiseurs automatiques performants

pour ces approches.

2.4 Le modèle de Halide

Les compilateurs optimisant basés sur le modèle polyédrique, en partie à cause

de sa vaste expressivité, peinent à trouver automatiquement des optimisations

aussi efficaces que celles d’un expert humain. Cette observation a mené au

développement de langages d’ordonnancement permettant à un expert de décrire

un ordonnancement à l’aide de primitives de base de façon plus efficace et

plus ergonomique qu’en réécrivant manuellement le code. Le langage Halide,

initialement développé par Ragan-Kelly et al. dans le cadre du traitement

d’image, est fondé sur cette idée. Halide est aujourd’hui un langage industriel

qui est utilisé dans la partie expérimentale de cette thèse.

Halide s’inspire à certains égards du modèle polyédrique, mais – contrairement

à des outils pré-existants comme CHiLL ou URUK – n’en fait pas directe-

ment usage, préférant un compromis d’expressivité différent. La communauté

polyédrique s’est ensuite inspirée de Halide pour développer Tiramisu, un

compilateur polyédrique avec un langage d’ordonnancement proche de celui

de Halide.

Algorithmes Dans le modèle de Halide, le code fourni par l’utilisateur est

séparé en deux composantes : un algorithme, qui représente les calculs à effectuer

sur des tenseurs, i.e. des tableaux multidimensionnels non bornés, nommés

Funcs (notamment dans les bibliothèques C++ et Python avec lesquelles l’utili-

sateur interagit) ou fonctions dans la terminologie de Halide.

Ainsi l’exemple traditionnel de Halide est celui d’un filtre 3 × 3 non-normalisé,

comme on le trouve par exemple dans “Halide: decoupling algorithms from

schedules for high-performance image processing” [83].

Représentation des programmes comportant boucles et tableaux xxvii

Func bh, bv; Var x, y;
ImageParam in(UInt(8), 2);

bh(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;
bv(x, y) = (bh(x, y-1) + bh(x, y) + bh(x, y + 1))/3;

L’algorithme prend en argument une image en niveaux de gris in et calcule

une moyenne locale horizontale dans bh, puis verticale dans bv, qui est la

sortie. Les dimensions de l’entrée in et de la sortie bv ne sont pas spécifiées

ici : elles ne seront connus qu’à l’exécution, lorsqu’une image d’entrée concrète

sera fournie et qu’une taille pour la sortie bv sera demandée. Halide vérifie

automatiquement que les tailles d’entrée et de sortie sont compatibles, et calcule

les tailles de tableaux intermédiaires pour éviter les débordements. Halide

impose des restrictions qui ne sont pas expliquées ici afin de s’assurer que les

définitions ne sont pas cycliques et sont uniquement définies en tout point.

Les variables x et y utilisées ici sont implicitement quantifiées sur l’ensemble

des entiers relatifs, sans ordre particulier. Afin d’exprimer des récurrences

de longueurs arbitraires, Halide ré-introduit dans ce monde pure une notion

impératif de mise à jour en permettant des re-définitions de tenseurs. Ces

re-définitions s’appliquent – sémantiquement – après la définition initiale

du tenseur, et peuvent utiiser des variables de récurrence (de type RDom)
qui représentent une itération séquentielle. À nouveau, Halide impose des

restrictions qui ne sont pas expliquées ici afin de s’assurer que les tenseurs mis

à jour restent bien définis et calculables.

Ordonnanceur Les algorithmes de Halide déterminent les valeurs séman-

tiques à calculer mais ne déterminent pas comment (dans quel ordre) sont

calculées ses valeurs. C’est le rôle de l’ordonnanceur (schedule en anglais)

qui est écrit dans un language de domaine spécifique à Halide. Ce langage

spécifique permet à l’utilisateur de jongler avec différents compromis de localité

et d’efficacité de travail. Le langage d’ordonnancement de Halide n’est pas

décrit dans ce résumé en français, car il est assez orthogonal aux considérations

de cette thèse ; le lecteur intéressé se référera à la version complète en anglais

ou aux publications de référence par les auteurs de Halide.

xxviii Présentation

Sémantique et SRAE Halide est un système appliqué, dont la sémantique

est principalement décrite en prose et n’est spécifiée que par son unique

implémentation. Reinking, Bernstein et Ragan-Kelley [89] ont proposé une

sémantique de Halide qui interprète les agorithmes comme des programmes

séquentiels qui sont transformés par l’ordonnancement. Dans le cadre de

cette thèse, et avec l’objectif d’obtenir une réduction vers les SRAE, je propose

plutôt de donner une sémantique équationnelle aux algorithmes de Halide,

qui permette de nommer les états intermédiaires de l’évaluation. Je propose

ici une formalisation des algorithmes de Halide arbitraires, i.e. qui peuvent

contenir des expressions non-affines ; la restriction de cette formalisation a des

accès de tenseurs et des filtres affines (ou quasi-affines par morceau) peut être

interprétée comme un sous-ensemble des SRAE, ce qui est démontré dans la

version complète en anglais qui contient également des exemples.

Un algorithme pour un ensemble de tenseurs 𝒮 est un tuple ⟨I, P,U, <⟩ tel

que :

• I est un ensemble de noms, les tenseurs d’entrées, qui n’ont pas de définition ;

• P est une fonction qui associe chaque tenseur A ∈ 𝒮\I à sa définition pure

PA, définie plus loin ;

• U est une fonction qui associe chaque tenseur A ∈ 𝒮\I à une séquence

finie (et possiblement vide) U1

A
, . . . ,UnA

A
de définitions de mise à jour pour

A ;

• < définit un ordre total sur les tenseurs de sortie 𝒮\I qui représente

l’ordre textuel de définition des tenseurs.

Une définition pure PA pour un tenseur A est une équation :

∀x1, . . . , xnA , A(x1, . . . , xnA) = e

où l’expression e à droite de l’égalité ne peut contenir que des accès à des

tenseurs d’entrée ou à des tenseurs de sortie A′ avec A′ < A. En particulier, e

ne peut pas contenir d’accès à A.

Une définition de mise à jour Ui
A

pour un tenseur A est aussi une équation

qui contient des variables pures x1, . . . , xn et des variables de récurrence

Représentation des programmes comportant boucles et tableaux xxix

y1, . . . , yr :

∀x1, . . . , xn. for y1 : R1, . . . , yr : Rr. ϕ =⇒ A(e1, . . . , enA) = e

Chaque yi est borné par Ri, un intervalle fini de Z dont les bornes dépendent

uniquement des paramètres du problème, pas des variables x1, . . . , xn ni

d’autres variables de récurrence. ϕ est une expression booléenne, appellée

filtre : la mise à jour n’est effectuée que pour les points où ϕ est vrai.

La condition utilisée par Halide pour s’assurer de la bonne formation de ces

définitions se formalise par la condition de bonne formation suivante : pour chaque

tenseur A d’arité nA et chaque définition de mise à jour Ui
A

avec n variables

pures, il doit exister une fonction π : {1, . . . ,n} → {1, . . . ,nA} telle que, pour

1 ⩽ j ⩽ n, et pour chaque accèsA(e′
1
, . . . , e′nA) qui apparait dansUi

A
(y compris

dans le filtre ou le membre gauche de l’égalité lui-même), on a e′
π(j) = xj.

Pour définir la sémantique d’un tel algorithme, j’introduis la notion d’indice de

niveau ψ, défini par la grammaire :

ψ ::= 𝒫 | 𝒰n | ℱ
| 𝒰n(n1, . . . ,nm)

où n > 0 est en entier strictement positif et n1, . . . ,nm sont des entiers

arbitraires. Les indices de niveau représentent les différentes “versions” du

tenseur à travers sa définition : 𝒫 est le niveau pur qui se réfère à la définition

initiale du tenseur ; ℱ est le niveau final après que toutes les mises à jour aient

été appliquées ;𝒰n est un niveau de mise à jour après avoir appliqué la n-ème

mise à jour ; et enfin𝒰n(n1, . . . ,nm) est un niveau de mise à jour partiel où les

n1, . . . ,nm représentent les valeurs des variables de récurrence.

L’ordre naturel sur les indices de niveaux est :

𝒫 ≺ · · · ≺ 𝒰n−1 ≺ 𝒰n(n1, . . . ,nm) ≺ 𝒰n ≺ · · · ≺ ℱ

où, de plus, les 𝒰n(n1, . . . ,nm) au sein du même niveau n sont ordonnés

lexicographiquement sur les n1, . . . ,nm.

La sémantique d’un algorithme est ensuite obtenue à l’aide d’une fonction

d’évaluation sur des paires ⟨A(n1, . . . ,nnA),ψ⟩ d’un tenseur indexé et d’une

indice de niveau. Cette fonction d’évaluation est définie de façon récursive

xxx Présentation

en lisant, pour chaque niveau, la valeur obtenue au niveau précédent du

tenseur en cours de définition, et la valeur finale (i.e. au niveau ℱ) des autres

tenseurs. Cette définition récursive est bien fondée grâce à la condition de

bonne formation, comme prouvé dans la version complète en anglais de cette

thèse.

3 Ensembles de Presburger

Ce chapitre, dans la version complète en anglais, rappelle les définitions

de l’arithmétique de Presburger et les notations des ensembles et relations

de Presburger tels qu’utilisés par isl. Il est largement inspiré de l’excellent

tutoriel de Verdoolaege [114], avec quelques adaptations pour cette thèse.

Dans ce résumé en français, je rappelle brièvement la notion d’arithmétique

de Presburger, ainsi que les notations essentielles pour la compréhension des

sections suivantes du résumé ; le lecteur intéressé par des détails plus complets

se référera à la version complète en anglais.

Arithmétique de Presburger L’arithmétique de Presburger, aussi connue sous

le nom d’arithmétique linéaire ou d’arithmétique affine, est la théorie du

premier ordre des entiers naturels munis de l’addition et de l’inégalité usuelle.

Les expressions affines sont construites à partir de variables, constantes (entières),

et d’addition et sont à valeur dans Z ; les contraintes affines sont des égalités ou

des inégalités entre expressions affines et sont à valeur booléenne. Les formules

de Presburger sont des formules logiques construites à partir de contraintes

affines, de la négation ¬, de la conjonction ∧, de la disjonction ∨, et des

quantificateurs de premier ordre existentiel ∃ et universels ∀. La multiplication

par une constante est définie en théorie par répétition de l’addition, mais gérée

nativement par les solveurs en pratique.

On peut étendre l’arithmétique de Presburger avec une infinité d’opérations de

division euclidienne par une constante (strictement) positive. On notera ⌊e/n⌋
le quotient de la division euclidienne de e par la constante n, et e mod n son

reste. Les expressions résultantes sont nommées expressions quasi-affines. L’arith-

métique de Presburger et l’arithmétique quasi-affine sont particulièrement

intéressantes car elles admettent une procédure d’élimination des quantificateurs :

Ensembles de Presburger xxxi

c’est-à-dire que toute formule en arithmétique de Presburger ou en arithmé-

tique quasi-affine admet une formule équivalente en arithmétique quasi-affine

sans quantificateurs. Les outils modernes comme isl gèrent l’arithmétique

quasi-affine de façon primitive, et puisqu’il n’y a autrement peu de différences

pour notre travail entre les expressions affines et quasi-affines, les qualifica-

teurs “affines” et “de Presburger” doivent dans la suite être compris comme

“quasi-affine”.

Tuples nommés isl représente des ensembles et des relations de tuples

nommés. Un tuple nommé pour un ensemble d’arguments 𝒜 est un objet

syntaxique qui représente un arbre binaire dont les nœuds sont étiquetés par

des noms d’argumentsn et dont les feuilles contiennent des tuples d’arguments

(i.e. d’éléments de𝒜).

On notera n⟨t1, t2⟩ un nœud interne étiqueté par n et dont les fils sont t1 et

t2, et on notera n⟨a1, . . . , ad⟩ une feuille étiquetée par n et contient le d-tuple

(a1, . . . , ad).

Le nom distingué ϵ représente un tuple anonyme, que l’on notera avec des

crochets au lieu d’angles. Ainsi, on notera [3] pour le tuple ϵ⟨3⟩ et [[x], [y]]
pour le tuple ϵ⟨[x], [y]⟩.

Définition 3.1. La structure d’un tuple nommé est simplement la structure

d’arbre sous-jacente, c’est-à-dire l’arbre que l’on obtient en effaçant les argu-

ments du tuple nommé (mais en préservant les étiquettes) et en annotant

chaque feuille avec son arité.

Ensembles symboliques Afin d’être à la fois générique et flexible dans notre

représentation, nous utiliserons l’arithmétique de Presburger pour représenter

des ensembles de tuples nommés, et des relations entre tuples nommés. Ces

tuples nommés seront étiquetés, suivant les cas, par des noms de tableaux (pour

représenter, par exemple, un ensemble de cases mémoires), par des contextes

d’expressions à trous multiples (pour représenter des expressions arbitraires

contenant des composantes affines), et, dans certains cas, par des arbres plus

complexes construits sur ces primitives.

xxxii Présentation

On distinguera les ensembles de tuples nommés où tous les tuples ont la même

structure, que l’on appellera ensembles homogènes, et les ensembles de tuples

nommés qui peuvent contenir des tuples de structures différentes, que l’on

appellera ensembles hétérogènes.

Définition 3.2. Ensemble homogène Un ensemble homogène est une paire ⟨t,ϕ⟩,
que l’on notera {t : ϕ}, où ϕ est une formule en arithmétique de Presburger et t
est un tuple nommé dont les arguments sont des variables, qui sont liées dans

ϕ.

Les paramètres de {t : ϕ} sont les variables libres de ϕ qui ne sont pas liées par t.

Un ensemble homogène peut être évalués naturellement comme un ensemble

de tuples nommés dont les arguments sont des entiers dans un environnement

qui associe des entiers à chaque paramètre de l’ensemble : il s’agit des tuples

nommés de même structure que t pour lesquels ϕ est vrai lorsqu’on associe à

chaque variable de t la valeur de l’argument entier correspondant.

Remarque 3.1. Une formule arithmétique ϕ peut être interprété comme un

ensemble qui est soit vide (quand ϕ est fausse), soit l’ensemble de tous les

tuples nommés (quand ϕ est vrai). Un tel ensemble est appelé ensemble unitaire

ou ensemble paramétrique, et on le notera { : ϕ}.

Définition 3.3 (Ensemble hétérogène). Un ensemble hétérogène est une union

finie d’ensembles homogènes. On notera cette union, suivant les cas, soit en

utilisant le symbole ∪, soit en séparant les différents ensembles homogènes

constituant l’ensemble hétérogène par des points-virgules : ainsi, on notera

indifféremment {t1 : ϕ1} ∪ {t2 : ϕ2} et {t1 : ϕ2 ; t2 : ϕ2} le même ensemble

hétérogène.

La représentation canonique d’un ensemble hétérogène est sa décomposition

structurelle qui est définie comme suit.

Définition 3.4 (Décomposition structurelle). La décomposition structurelle d’un

ensemble hétérogène S est l’unique (modulo des formules équivalentes pour

les ϕ) collection d’ensembles homogènes non vides et de structures deux à deux

différentes (Si)i∈I telle que

⋃
i∈I Si = S.

Ensembles de Presburger xxxiii

Les opérations usuelles sur les ensembles (union ∪, intersection ∩ et différence

−) peuvent être définies sur les ensembles homogènes et hétérogènes à l’aide

des connecteurs logiques ∧, ∨ et ¬ de l’arithmétique de Presburger, en remar-

quant que deux tuples nommés de différentes structures sont nécéssairement

différents. On notera que le complément non borné d’un ensemble hétérogène

ne peut pas être facilement représenté, d’où l’utilisation de la différence comme

primitive.

Les ensembles (hétérogènes ou homogènes) étant définis à partir de formules

en arithmétique de Presburger, on peut décider et calculer un certain nombre

de propriétés sur ces ensembles à l’aide de solveurs spécialisés comme isl.
Par exemple, isl est capable de donner la décomposition structurelle d’un

ensemble hétérogène, mais aussi de déterminer si un ensemble S est vide –

noté �(S) – ou contient au plus un élément, auquel cas on dira que S est un

singleton.

Il est à noter que S étant un ensemble paramétrique, la notion de singleton est

différente de celle à laquelle le lecteur peut être habitué : ainsi, on considérera

un ensemble paramétrique comme {A⟨i⟩ : i = 0 ∧N > 0} comme étant un

singleton, bien qu’il soit vide lorsqueN est négatif ou nul. En particulier, cela

veut dire que l’ensemble vide est un singleton.

On peut exprimer une condition sur les paramètres pour qu’un ensemble S soit

non-vide, que l’on notera ∃S. ∃S est une formule en arithmétique de Presburger

(ou, de façon équivalente, un ensemble paramétrique) qui est vraie exactement

dans les environnements où S est non-vide : ainsi, un singleton S contient

exactement un élément lorsque ses paramètres sont tels que ∃S est vrai.

Plus généralement, cette condition de non-vacuité permet de définir la mise

à jour d’un ensemble S1 par un ensemble S2, notée S1 ⊲ S2, et définie par

l’équation :

S1 ⊲ S2 = S2 ∪ {S1 − ∃S2}

La mise à jour S1 ⊲ S2 est égale à S2 quand S2 est non-vide, et à S1 autrement :

on remplace S1 par S2, sauf si S2 est vide, auquel cas on garde l’ancienne valeur.

Si S1 et S2 sont des singletons, l’opération de mise à jour permet de représenter

l’écriture conditionnelle (suivant la vacuité de S2) dans un case mémoire dont

la valeur actuelle est représentée par S1.

xxxiv Présentation

Relations symboliques De la même façon que l’on peut représenter de façon

symbolique des ensembles de tuples nommés à l’aide de formules affines,

on peut représenter des relations entre tuples nommés. Bien que la structure

d’arbre des tuples nommés permette déjà de représenter ces relations en

tant qu’ensembles de paires, on leur donnera une structure propre munie

d’opérations appropriées pour des relations.

Définition 3.5 (Relation symbolique). Une relation symbolique R est une rela-

tion entre paires de tuples nommés. Comme pour les ensembles symboliques,

on distinguera les relations homogènes, dénotées {s1 → s2 : ϕ} où s1 et s2

sont des tuples nommés de variables et ϕ est une formule de Presburger dans

laquelle les variables de s1 et s2 sont liées ; et les relations hétérogènes, unions

de relations homogènes.

On peut définir dom(R) et le codomaine ran(R) d’une relation symbolique

comme des ensembles symboliques obtenus en projetant la seconde (resp.

première) composante de la relation, ainsi que les opérations wrap(R) qui

convertit une relation symbolique en un ensemble symbolique de paires

anonymes, et unwrap(S) qui effectue l’opération inverse.

D’une façon générale, les définitions sur les ensembles symboliques peuvent

être étendues aux relations symboliques en considérant le domaine de la

relation comme des paramètres. Par exemple, l’opération de mise à jour sur des

relations R1 ⊲ R2 met à jour la valeur associée à chaque élément du domaine, et

a donc pour domaine dom(R1 ⊲ R2) = dom(R1) ∪ dom(R2), avec pour élément

du codomaine associé l’élément correspondant dans R2 s’il existe et l’élément

correspondant dans R1 autrement.

On définira également sv(R) qui, de façon équivalente à singleton(S), est une

formule de Presburger qui est vraie si et seulement si R est une relation

fonctionnelle, c’est-à-dire qu’il y a au plus un élément du codomaine de R

associé à chaque élément du domaine de R pour toute valeur des paramètres.

D’autres opérations peuvent être définies sur les relations de Presburger et

sont décrites dans la version complète de la thèse en anglais, notamment le

maximum lexicographique qui permet de définir une version symbolique de

la mise à jour itérée un nombre paramétrique de fois, que l’on utilisera plus

loin.

Un langage intermédiaire pour les compilateurs de tenseurs xxxv

4 Un langage intermédiaire pour les compilateurs de
tenseurs

Je présente maintenant la spécification formelle d’un langage pensé pour être un

intermédiaire entre un compilateur de tenseur et un compilateur traditionnel

comme LLVM. Ce langage, nommé Sched, est un langage impératif avec des

boucles et des tableaux multi-dimensionnels, fortement inspiré du langage Stmt

utilisé par Halide, TVM, et d’autres compilateurs de tenseurs. La principale

nouveauté de Sched — outre sa sémantique formelle, décrite ci-après — tient

dans l’incorporation d’annotations prophétiques qui relient écritures impératives

dans un tableau et valeurs dans une sémantique mathématique purement

fonctionnelle. Cette section se concentre sur la définition du langage Sched lui-

même, des concepts sous-jacents, et de sa sémantique formelle ; son utilisation

dans le cadre de la vérification de traduction est décrite dans la Section 5.

Les programmes Sched font la distinction entre les expressions représentant

des calculs demandés par l’utilisateur, appelées expressions sémantiques, telles

que a[i, k] * b[k, j], et des expressions d’indexation apparaissant dans les

bornes de boucles et les accès de tableaux.

Les expressions d’indexation peuvent être transformée par le compilateur : par

exemple, l’utilisateur peut avoir écrit i dans sa spécification, et ce i devient

4i0 + i1 dans le code engendré suite au tuilage de la boucle i. Afin de pouvoir

retrouver les expressions d’indexation originelles, nous utiliserons isl, un outil

polyédrique implémentant les concepts de la Section 3, afin d’inverser les

expressions engendrées par le compilateur. Il nous faut donc, comme dans

les compilateurs basés sur le modèle polyédrique, restreindre les expressions

d’indexation à des expressions affines (ou, plus précisément, quasi-affines par

morceaux).

À l’inverse, le compilateur doit être libre d’effectuer des simplifications ar-

bitraires sur les expressions sémantiques, tant qu’elles sont valides pour les

valeurs du type sous-jacent. Le but est ici de vérifier ces simplifications de

façon locales : une fois les expressions d’indexation inversées par isl pour

ramener l’expression sémantique associée à une écriture particulière, nous

pouvons vérifier avec un solveur SMT comme Z3 qu’elle est bien identique

sémantiquement à l’expression originellement fournie par l’utilisateur. Cette

xxxvi Présentation

Expressions

e, ι, t :: = x | l variables et littéraux

| a[ι1, . . . , ιn] indexation de tableau

| A(ι1, . . . , ιn) indexation de tenseur

| let x = ι1 in e2 variable locale

| ι1 + ι2 | n · ι
| ⌊ι/n⌋ | ι mod n arithmetique linéaire

| ι1 = ι2 | ι1 ⩽ ι2
| ι1 ≠ ι2 | ι1 < ι2 comparaisons

| ι1 && ι2 | ι1 | | ι2 | ! ι connecteurs de Boole

| select(ι, e1, e2) condition gloutonne

| f(e1, . . . , en) appel de fonction pure

Figure 1 : Syntax des expressions de Sched

comparaison est rendue possible par des annotations sur les écritures qui

n’impactent pas la sémantique du programme mais sont requises par les

techniques de vérification de la Section 5. Ces annotations sont engendrées

automatiquement par le compilateur, comme décrit dans la Section 5.4.

4.1 Syntaxe

La syntaxe des expressions de Sched est donnée en figure 1.

Les non-terminaux e, ι et t sont utilisés pour décrire la même grammaire

d’expressions. Informellement, e est utilisé lorsqu’une expression sémantique

est attendue, tandis que ι est utilisé lorsqu’une expression d’indexation est

attendue. t est utilisé pour les annotations prophétiques, c’est-à-dire une

expression qui fait référence aux tenseurs de la spécification A(ι1, . . . , ιn)
plutôt qu’aux tableaux du programme. Afin de faciliter une extension de la

Un langage intermédiaire pour les compilateurs de tenseurs xxxvii

c :: = skip

| c1 ; c2

| a[ι1, . . . , ιn] {t} := e

| if ι then c1 else c2

| let x = ι in c

| allocate a : τ[ι1 × · · · × ιn] in c

| for x < ι; do c

| par x < ι; do c

Figure 2 : Syntaxe des commandes de Sched

formalisation à des accès ou des bornes de boucles non affines, la distinction

entre ces différents types d’expressions est fait par le système de type décrit dans

la prochaine sous-section plutôt que par la syntaxe. Les appels de fonctions

pures f(e1, . . . , en) permettent d’encoder des primitives arbitraires comme

l’addition ou l’exponentiation. Afin de préserver l’aspect affine des expressions

d’indexation, ils y seront interdits par le système de type.

Les commandes de Sched sont décrites en figure 2. Les écritures de tableaux

sont annotées par une expression prophétique t, qui est ignorée à l’exécution :

les expressions prophétiques peuvent être considérées comme du code fantôme

qui représente la valeur écrite dans le tableau en terme de la spécification, et

servent uniquement à la vérification dans la Section 5. On notera la présence

d’une construction allocate permettant d’allouer localement un tableau non

initialisé, et la présence de boucles parallèles par dont le déterminisme est forcé

par la sémantique décrite dans la Section 4.2.

4.2 Sémantique dynamique

La sémantique dynamique de Sched est donnée sous forme de sémantique

à grand pas, et ne donne par construction pas de sémantique aux boucles

parallèles comportant des conflits d’écriture ou de lecture, ce qui permet au

xxxviii Présentation

validateur de la Section 5 d’être étendu naturellement aux boucles parallèles.

Ce choix non standard est rendu possible par la restriction à des expressions

d’indexation affines, permettant ainsi de garder trace de façon précise des

écritures et lectures de chaque itération parallèle.

La sémantique dynamique des commandes est exprimée sous la forme d’un

jugement ℰ;µ ⊢ c ⇓u ⟨δµ; ρ⟩. Les composantes de ce jugement sont :

• ℰ est un environnement de variables locales, représenté par une liste de

lieurs x ↦→ v où x est une variable locale et v est une valeur entière ou

booléenne.

• µ représente la mémoire sous forme d’une fonction des cases mémoire

vers des valeurs dans𝒰⊎{⊥}, où𝒰 est un ensemble de valeurs défini par

l’utilisateur qui inclut typiquement les flottants et les entiers machines, et

⊥ est une valeur spéciale qui représente une erreur (e.g. une valeur non

initialisée). Les cases mémoires, dénotées ℓ, sont des cellules de tableaux

multidimensionnels, c’est-à-dire des paires d’un nom de tableau et d’une

liste d’entiers :

l ::= a[n1, . . . ,nn]

• c est la commande dont la sémantique est calculée.

• δµ est le résultat de l’évaluation, représenté sous la forme d’une mémoire

différentielle : une fonction partielle des cases mémoires vers des valeurs

dans𝒰 , qui représente l’ensemble des écritures effectuées durant l’éva-

luation de c. Pour obtenir l’état de la mémoire après l’évaluation de c, δµ

doit être combiné avec la mémoire initiale µ, comme illustré par la règle

U-Seq. L’utilisation d’une mémoire différentielle en sortie rapproche la

sémantique dynamique du vérifieur décrit en Section 5, mais surtout

permet de formaliser simplement la sémantique des boucles parallèles

dans la règle U-ParLoop. La condition ∀0 ⩽ i ≠ j < n, δµi ¨ δµj s’assure

que deux itérations concurrentes de la boucle ne peuvent écrire dans

la même case mémoire que si les valeurs écrites sont identiques. ¨ est

l’opérateur de compatibilité, qui requiert que δµi et δµj associent la même

valeur aux cases mémoires de leur domaine commun. Cette restriction

est légèrement plus relâchée que la restriction habituelle, qui consiste à

Un langage intermédiaire pour les compilateurs de tenseurs xxxix

interdire à deux itérations concurrentes d’écrire dans la même case mé-

moire : deux écritures concurrentes de la même valeur dans la même case

mémoire est usuellement considéré comme un conflit. Les compilateurs

de tenseurs comme Halide se permettent toutefois l’exploitation de ce

type de conflit, dit bénin, qui est donc autorisé dans notre formalisation.

La formalisation peut facilement être modifiée pour interdire ces conflits :

il suffit pour cela de remplacer la condition par dom(δµi) # dom(δµj), où

est l’opérateur de disjonction défini ci-dessous.

• ρ est un ensemble de cases mémoires représentant l’ensemble des cases

mémoires lues durant l’évaluation de la commande c. ρ est utilisé conjoin-

tement avec dom(δµ), qui représente l’ensemble des cases mémoires

écrites durant l’évaluation de c, afin d’assurer l’absence de conflits en écri-

ture au sein d’une boucle parallèle dans la règle U-ParLoop. La condition

∀0 ⩽ i ≠ j < n, dom(δµi) # ρj s’assure qu’aucune case mémoire ne peut

être en même temps lue et écrite par deux itérations concurrentes de la

boucle. # est un opérateur de disjonction : S1 # S2 est vrai si, et seulement

si, S1 ∩ S2 est vide.

4.3 Sémantique à petit pas

La sémantique dynamique à grand pas décrite dans la section précédente est

non standard et il est approprié de se demander quelle confiance lui apporter.

Pour ce faire, nous pouvons définir une sémantique de Sched à petit pas, plus

standard pour un langage concurrent. Pour ce faire la syntaxe des commandes

est étendue par la construction c1 | | c2 permettant de représenter la composition

parallèle de deux commandes c1 et c2, ainsi que la construction inalloc µa do c

permettant de représenter l’exécution partielle de la commande c faisant appel

à un tableau alloué localement par la commande allocate.

La sémantique à petit pas pour Sched est définie en Fig. 3 sous la forme d’une

réduction ⟨c | µ⟩⇝ ⟨c′ | µ′⟩ représentant l’évaluation d’une commande c dans

l’état mémoire initiale µ, résultant en une commande c′ et un état mémoire

suivant µ′. Par simplicité, la sémantique à petit pas utilise des substitutions

c[x← v] pour affecter des valeurs aux variables plutôt que des environnements

explicites. Puisque les environnements explicites sont purs et non mutables, la

xl Présentation

différence est principalement cosmétique.

La sémantique à petit pas permet de donner plusieurs sémantique de façon

non-déterministe à des programmes comportant des conflits, tandis que la

sémantique à grand pas est toujours déterministe. Il est donc impossible de

prouver une quelconque équivalence entre les deux sémantiques. En revanche,

il est possible de prouver la sûreté de la sémantique à grand pas vis-à-vis de la

sémantique à petit pas. Ceci s’exprime à l’aide de deux théorèmes montrant

l’existence et le déterminisme de la sémantique à petit pas sous hypothèse de

l’existence d’une sémantique à grand pas.

Le premier théorème assure que tout programme avec une sémantique à grand

pas admet une évaluation à petit pas avec le même résultat. La notation c[ℰ]
dénote la substitution des lieurs de ℰ par leur valeur dans c.

Théorême 4.1 (Existence). Si la commande c exécutée à grand pas dans l’environne-

ment ℰ et la mémoire µ résulte en une mémoire différentielle δµ, il existe une séquence

de réductions à petit pas ⟨c[ℰ] | µ⟩⇝∗ ⟨skip | µ ⊲ δµ⟩

Le second théorème assure le déterminisme de l’évaluation à petit pas pour les

programmes qui admettent une évaluation à grand pas.

Théorême 4.2 (Déterminisme). Si la commande c exécutée à grand pas dans

l’environnement ℰ et la mémoire µ résulte en une mémoire différentielle δµ, et que par

ailleurs ⟨c[ℰ] | µ⟩ se réduit en zéro, une, ou plusieurs étapes en ⟨skip | µ′⟩, alors µ′

est égal à µ ⊲ δµ.

La preuve de ces deux théorèmes est omise de ce résumé : le lecteur intéressé

se référera à la version complète en anglais.

4.4 Typage

Afin de distinguer les expressions sémantiques des expressions d’indexations

et des expressions prophétique, nous utilisons un système de type. Dans

Un langage intermédiaire pour les compilateurs de tenseurs xli

Seq-Ctx

⟨c1 | µ⟩⇝ ⟨c′
1
| µ′⟩

⟨c1 ; c2 | µ⟩⇝ ⟨c′
1

; c2 | µ′⟩

Seq-Skip

⟨skip ; c | µ⟩⇝ ⟨c | µ⟩

Par-L

⟨c1 | µ⟩⇝ ⟨c′
1
| µ′⟩

⟨c1 | | c2 | µ⟩⇝ ⟨c′
1
| | c2 | µ′⟩

Par-R

⟨c2 | µ⟩⇝ ⟨c′
2
| µ′⟩

⟨c1 | | c2 | µ⟩⇝ ⟨c1 | | c′
2
| µ′⟩

Par-Skip-R

⟨c | | skip | µ⟩⇝ ⟨c | µ⟩

Par-Skip-L

⟨skip | | c | µ⟩⇝ ⟨c | µ⟩

If-True

JιK∅;µ = true

⟨if ι then c1 else c2 | µ⟩⇝ ⟨c1 | µ⟩

If-False

JιK∅;µ = false

⟨if ι then c1 else c2 | µ⟩⇝ ⟨c2 | µ⟩

Let

JιK∅;µ = v

⟨let x = ι in c | µ⟩⇝ ⟨c[x← v] | µ⟩

SeqLoop

JιK∅;µ = n ∈ Z
⟨for x < ι; do c | µ⟩⇝ ⟨c[x← 0] ; . . . ; x[c← n − 1] | µ⟩

ParLoop

JιK∅;µ = n ∈ Z
⟨par x < ι; do c | µ⟩⇝ ⟨c[x← 0] | | . . . | | x[c← n − 1] | µ⟩

Assign

JιiK∅;µ = ni for all 1 ⩽ i ⩽ n JeK∅;µ = v a[n1, . . . ,nn] ∈ dom(µ)
⟨a[ι1, . . . , ιn] {t} := e | µ⟩⇝ ⟨skip | µ[a[n1, . . . ,nn] ← v]⟩

Allocate

JιiK∅;µ = ni for all 1 ⩽ i ⩽ n
µa = {a[i1, . . . , in] ↦→ ⊥ | 0 ⩽ i1 < n1 ∧ · · · ∧ 0 ⩽ in < nn}

a ∉ arrays(µ)
⟨allocate a : τ[ι1 × · · · × ιn] in c | µ⟩⇝ ⟨inalloc µa do c | µ⟩

InAlloc-Ctx

dom(µ) # dom(µa)
⟨c | µ ⊎ µa⟩⇝ ⟨c′ | µ′ ⊎ µ′a⟩ dom(µ′a) = dom(µa)
⟨inalloc µa do c | µ⟩⇝ ⟨inalloc µ′a do τc′ | µ′⟩

InAlloc-Skip

⟨inalloc µa do skip | µ⟩⇝ ⟨skip | µ⟩

Figure 3 : Sémantique à entrelacements pour Sched

xlii Présentation

ce système de type, le type A représentant les expressions quasi-affines par

morceaux est utilisé pour les accès de tableaux et les bornes de boucles, tandis

que le type B des contraintes quasi-affines par morceaux est utilisé pour les

conditionnelles. Le système de type s’assure que les expressions d’indexation

sont de typeA ouB, tandis que les expressions sémantiques et prophétiques ont

des types “utilisateurs” (tel que float32 ou int32) dénotés par τ. On supposera

que les calculs sur les types A et B sont effectués à l’aide d’arithmétique

exacte, et on ne permettra pas leur stockage directement dans des tableaux. En

revanche, les valeurs de ces types peuvent être convertis en types utilisateurs à

l’aide de fonctions de conversions.

L’environnement de typage Γ représente à la fois l’environnement dynamique

ℰ et la mémoire µ. On trouve trois types de lieurs dans un environnement de

typage Γ :

• Des lieurs affines x : A et x : B indiquant l’existence d’une variable

(globale ou locale) du type d’indexation correspondant. Les variables de

types utilisateurs sont représentés par des tableaux de dimension 0.

• Des lieurs de tableaux a : τ[ι1 × · · · × ιn] indiquant un tableau n-

dimensionnel a, où la i-ème dimension a une longueur ιi, et contenant

des valeurs de type τ (ou la valeur d’erreur ⊥). Une variable mutable est

représentée par un tableau de zéro-dimensionnel a : τ[].

• Des expressions booléennes ι (de type B) qui contraignent les variables

d’indexations présentes dans le contexte. Ces expressions sont utilisées

pour représenter les contraintes sur les bornes des boucles ainsi que les

conditionnelles. Ces expressions peuvent être rapprochées des conditions

de chemin dans un évaluateur symbolique, et sont présentes dans le

jugement de typage afin d’être exploitées par l’évaluateur symbolique

décrit dans la Section 5.

Les règles de typage pour les expressions de Sched sont données en figure 4.

Un langage intermédiaire pour les compilateurs de tenseurs xliii

T-Var

⊢ Γ , x : τ

x, τ : ⊢ x : τ

T-Array

a : τ[ι′
1
, . . . , ι′n] ∈ Γ ∀1 ⩽ i ⩽ n, Γ ⊢ ιi :A

Γ ⊢a a[ι1 , . . . , ιn] : τ

T-Tensor

A ∈ 𝒮 ∀1 ⩽ i ⩽ nA , Γ ⊢ ιi :A

Γ ⊢A A(ι1 , . . . , ιnA) : τA

T-Bool

b ∈ {true, false}
Γ ⊢b :B

T-Int

n ∈ Z
Γ ⊢n :A

T-Call

∀1 ⩽ i ⩽ n, ki ∈ {k, ∅} ⇒ Γ ⊢ki ei : τi
k ∈ {a,A} f ∈ ℱ τf = τ1 × · · · × τn → τ

Γ ⊢k f(e1 , . . . , en) : τ

T-Select

k ∈ {a,A, ∅}
Γ ⊢ ι1 : B Γ , e1 ⊢k e2 : τ Γ ,¬e1 ⊢k e3 : τ

Γ ⊢k select(ι1 , e2 , e3)

T-Let

k ∈ {a,A, ∅} Γ ⊢ ι : A Γ , x : A ⊢k e : τ

Γ ⊢k let x = ι in e : τ

T-Add

Γ ⊢ ι1 :A Γ ⊢ ι2 :A

Γ ⊢ ι1 + ι2 :A

T-Mul

Γ ⊢ ι :A

Γ ⊢n · e :A

T-Div

Γ ⊢ ι : A n > 0

Γ ⊢ ⌊ι/n⌋ : A

T-Mod

Γ ⊢ ι : A n > 0

Γ ⊢ ι mod n : A

T-Cmp

Γ ⊢ ι1 : A Γ ⊢ ι2 : A ⊙ ∈ {=, ⩽}
Γ ⊢ ι1 ⊙ ι2 : B

T-And

Γ ⊢ ι1 : B Γ ⊢ ι2 : B

Γ ⊢ ι1 && ι2 : B

T-Not

Γ ⊢ ι : B

Γ ⊢ ! ι : B

Figure 4 : Règles de typages pour les expressions de Sched

xliv Présentation

5 Validation d’un compilateur de tenseurs

Cette section explore une approche pratique pour la validation d’un compilateur

de tenseurs à l’aide du langage Sched présenté dans la section précédente. Cette

approche consiste à construire un évaluateur symboliques pour les programmes

Sched qui construit, à l’aide des annotations prophétiques, des conditions de

vérifications dont la validité implique la correction de l’évaluation symbolique

elle-même.

5.1 Évaluation prophétique

Les commandes de Sched sont impératives et fonctionnent par effets de bord

(lectures et écritures depuis la mémoire). Nous étendons en conséquence le

système de type de la Section 4 avec un système de type et d’effets pour les

commandes de Sched qui capture précisément les effets d’une commande

sur la mémoire du programme. Ce système de type et d’effets est nommé

évaluation prophétique car il capture les écritures que le compilateur a prédit à

l’aide des annotations prophétiques — et non pas les écritures effectives du

programme.

L’évaluation prophétique est implémentée par le jugement Γ ⊢ c : ∆h décrit

dans la Fig. 5, où ∆h est un tas symbolique représentant l’ensemble des écritures

prophétiques effectuées par c. Les détails de la représentation des tas sym-

boliques sous forme de relations de Presburger est omise de ce résumé, il est

donc recommandé au lecteur intéressé de se référer à la version complète en

anglais pour sa description. Il suffit ici de savoir qu’un tas symbolique ∆h peut

s’évaluer en une mémoire partielle J∆hKℰ;M dans un environnement ℰ et un

modèle M, et que les opérations suivantes, définies sur les tas symboliques,

sont fidèles par rapport à cette évaluation :

• ∆h\a représente le tas symbolique ∆h où les cases mémoires associées

au tableau a ont été supprimées

• ∆h1 ⊲ ∆h2 représente le tas symbolique ∆h1 mis à jour avec le tas symbo-

lique ∆h2, i.e. on a J∆h1 ⊲ ∆h2Kℰ;M = J∆h1Kℰ;M = J∆h2Kℰ;M.

Validation d’un compilateur de tenseurs xlv

T-Allocate

Γ , a : τ[e1 × · · · × en] ⊢ c : ∆h ∀1 ⩽ i ⩽ n, Γ ⊢ ei : A

Γ ⊢ allocate a : τ[e1 × · · · × en in c : ∆h\a

T-Skip

Γ ⊢ skip : ∅

T-Seq

Γ ⊢ c1 : ∆h1 Γ ⊢ c2 : ∆h2

Γ ⊢ c1 ; c2 : ∆h1 ⊲ ∆h2

T-If

Γ ⊢ e : B Γ , e ⊢ c1 : ∆h1 Γ ,¬e ⊢ c2 : ∆h2

Γ ⊢ if e then c1 else c2 : (∆h1 ∩ e) ⊎ (∆h2 ∩ ¬e)

T-SeqLoop

Γ ⊢ e : A Γ , x : A , 0 ⩽ x < e ⊢ c : ∆h

Γ ⊢ for x < e; do c : ⊲
0⩽x<e

∆h

T-ParLoop

Γ ⊢ e : A Γ , x : A , 0 ⩽ x < e ⊢ c : ∆h υ

(⋃
0⩽x<e

∆h

)
= ∆h′

Γ ⊢ par x < e; do c : ∆h′

T-Assign

Γ ⊢a e : τ Γ ⊢A t : τ E⟨ι′′
1
, . . . , ι′′m⟩ = decompose(t)

a : τ[ι′
1
× · · · × ι′n] ∈ Γ Γ ⊢ ιi : A pour tout 1 ⩽ i ⩽ n
Γ ⊢ 0 ⩽ ιi < ι

′
i pour tout 1 ⩽ i ⩽ n

Γ ⊢ a[ι1 , . . . , ιn] {t} := e : {a⟨ι1 , . . . , ιn⟩ → E⟨ι′′
1
, . . . , ι′′m⟩}

Figure 5 : Évaluation prophétique des commandes Sched

xlvi Présentation

• ∆h1 ⊎∆h2 représente l’union disjointe de deux tas symboliques, défini si

leur domaines sont disjoints.

• ∆h ∩ e est identique à ∆h lorsque e est vrai, et est vide autrement.

• ⊲
0⩽x<ι

∆h est une représentation symbolique de la mise à jour itérée de

∆h, où x est libre dans∆h. On a J⊲
0⩽x<ι

∆hKℰ;M =⊲
0⩽i<JιKℰ

J∆hKℰ+x ↦→i;M.

Cette opération n’est calculable exactement que lorsque ι est une expres-

sion affine des variables d’indexation du contexte, ce qui est assuré par le

typage.

• υ(∆h) renvoie un nouveau tas symbolique ∆h′ qui représente une ver-

sion simplifiée de ∆h. υ permet de simplifier les tas symboliques qui

contiennent plusieurs expressions sémantiquement équivalentes (par

exemple A(i) +B(j) et B(j) +A(i)) associées à une même case mémoire en

un tas symbolique qui choisit arbitrairement parmi ces représentations.

• decompose extrait d’un terme t un contexte E à plusieurs trous et sans

variables libres et des expressions d’indexations ι1, . . . , ιn telles que la

substitution des trous par ι1, . . . , ιn dans E, dénotée E[ι1, . . . , ιn], est

égale à t. decompose est utilisé pour construire la représentation d’un tas

symbolique singleton dans la règle T-Assign.

5.2 Évaluation symbolique

Dans la section précédente, nous avons introduit un système de type et

d’effets nommé évaluation prophétique pour Sched qui calcule l’évaluation d’un

programme telle qu’annoncée par ses annotations prophétiques et qui ignore le

membre droit des assignements. Il nous faut maintenant définir un évaluateur

symbolique qui calcule l’évaluation du programme en utilisant sa définition

réelle, c’est-à-dire en évaluant le membre droit des assignements. Cet évaluateur

symbolique utilise l’évaluation prophétique pour briser les cycles créés par les

boucles séquentielles, et générera des conditions de vérifications qui impliquent

la correction de l’évaluation prophétique.

Le jugement Γ ;h ⊢ C =⇒ c : ⟨∆h;R⟩ est présenté en Fig. 6 et suit les

Validation d’un compilateur de tenseurs xlvii

règles d’évaluation dynamique de Sched. L’environnement de typage Γ et

le tas d’entrée h sont des représentations symboliques de l’environnement

dynamique ⟨ℰ;µ⟩. La paire ⟨∆h;R⟩ est une représentation symbolique de

l’état dynamique ⟨δµ; ρ⟩. h et ∆h sont représentés en utilisant des relations

de Presburger : leur domaine est constitué de tuples nommés étiquetés par

des noms de tableaux, et leur codomaine est constitué de tuples nommés

étiquetés par des contextes multi-trous. R est représenté comme un ensemble

de Presburger contenant des cases mémoires. C correspond aux conditions

de vérifications et est une relation de Presburger entre paires de contextes

multi-trous qui doivent être égaux pour que l’évaluation soit correcte.

L’évaluateur symbolique fait usage de quelques définitions auxiliaires, rappor-

tées ici.

rw-safe(x, ι,W , R) est une formule de Presburger qui assure l’absence de

condition critique entre les lectures dans R et les écritures dansW pour deux

valeurs distinctes de x entre 0 et ι. Elle est définie comme suit (y est une variable

fraîche) :

rw-safe(x, ι,W , R) =
�(

⋃
0⩽x<ι

⋃
0⩽y<ι

(W ∩ R[x := y] ∩ {x ≠ y}))

Pour éviter les conditions critiques entre deux écritures, on autorisera plus de

comportement qu’habituellement en théorie de la concurrence : en effet, Halide

autorise (et exploite) une certaine catégorie de conflits bénins où plusieurs

itérations parallèles peuvent écrire la même valeur à la même adresse. Pour

représenter cela nous définisions d’abord l’ensemble des cases mémoires qui

peuvent être écrites par des itérations différentes :

conflicts(x, ι,W) = ⋃
0⩽x<ι

⋃
0⩽y<ι

(fst(W) ∩ snd(W)[x := y] ∩ {x ≠ y})

Ensuite, nous définissons la condition suivante, qui requiert que la valeur écrite

dans une case mémoire conflictuelle doit être unique (rappelons que sv(R) est

xlviii Présentation

S-Allocate

Γ , a : τ[ι1 × · · · × ιn];h ⊢ C =⇒ c : ⟨∆h;R⟩ Γ ⊢ ιi :A pour tout1 ⩽ i ⩽ n

Γ ;h ⊢ C =⇒ allocate a : τ[ι1 × · · · × ιn] in c : ⟨∆h\a;R\a⟩

S-Skip

Γ ;h ⊢ ∅ =⇒ skip : ⟨∅; ∅⟩

S-Seq

Γ ;h ⊢ C1 =⇒ c1 : ⟨∆h1;R1⟩ Γ ;h ⊲ ∆h1 ⊢ C2 =⇒ c2 : ⟨∆h2;R2⟩
Γ ;h ⊢ C1 ∪ C2 =⇒ c1 ; c2 : ⟨∆h1 ⊲ ∆h2;R1 ∪ R2⟩

S-Let

Γ ⊢ ι :A Γ , x : A, x = ι;h ⊢ C =⇒ c : S

Γ ;h ⊢ C[x := ι] =⇒ let x = ι in c : S[x := ι]

S-SeqLoop

z fresh

Γ ⊢ ι :A Γ , x : A , 0 ⩽ x < ι;h ⊲ ⊲
0⩽z<x

∆h[x := z] ⊢ C =⇒ c : ⟨∆h;R⟩

Γ ;h ⊢
⋃

0⩽x<ι

C =⇒ for x < ι; do c : ⟨⊲
0⩽x<ι

∆h;

⋃
0⩽x<ι

R⟩

S-ParLoop

Γ ⊢ ι :A
Γ , x : A , 0 ⩽ x < ι;h ⊢ C =⇒ c : ⟨∆h;R⟩ Γ ⊢ rw-safe(x, ι, dom(∆h), R)

ww-covered(Γ , x, ι,∆h) = C′ R′ =
⋃

0⩽x<ι

R υ

(⋃
0⩽x<ι

∆h

)
= ∆h′

Γ ;h ⊢ C′ ∪
⋃

0⩽x<ι

C =⇒ par x < ι; do c : ⟨∆h′;R′⟩

S-If

Γ ⊢ ι :B Γ , ι;h ⊢ C1 =⇒ c1 : ∆h1R1

Γ ,¬ι;h ⊢ C2 =⇒ c2 : ∆h2R2 C = (C1 ∩ ι) ⊎ (C2 ∩ ¬ι)
∆h = (∆h1 ∩ ι) ⊎ (∆h2 ∩ ¬ι) R = (R1 ∩ ι) ⊎ (R2 ∩ ¬ι)

Γ ;h ⊢ C =⇒ if ι then c1 else c2 : ⟨∆h;R⟩

S-Assign

a : τ[ι′
1
× · · · × ι′n] ∈ Γ

Γ ⊢a e : τ Γ ⊢A t : τ Γ ⊢ ιi :A pour tout 1 ⩽ i ⩽ n ℓ̂ = a⟨ι1 , . . . , ιn⟩
Γ ⊢ {ℓ̂} ⊆ {a⟨x1 , . . . , xn⟩ | 0 ⩽ x1 < ι′

1
, . . . , 0 ⩽ xn < ι′n} Γ ⊢ reads(e) ⊆ dom(h)

Ĉ = JeKh = {decompose(t)} ∆h = {ℓ̂→ decompose(t)}
Γ ;h ⊢ Ĉ =⇒ a[ι1 , . . . , ιn] {t} := e : ⟨∆h; reads(e)⟩

Figure 6 : Évaluateur symbolique

Validation d’un compilateur de tenseurs xlix

une formule en arithmétique de Presburger qui exprime que la relation R est

fonctionnelle) :

sv-conflicts(x, ι,W) = sv((
(⋃

0⩽x<ι

W

)
∩ conflicts(x, ι,W))

On pourra ici considérer que ww-covered(Γ , x, ι,W) est l’ensemble vide lorsque

Γ ⊢ sv-conflicts(x, ι,W) et le singleton {0⟨ ↦→ ⟩1⟨}⟩ (qui représente la condition

de vérification fausse 0 = 1) autrement. En pratique, afin d’autoriser des écritures

concurrentes avec des expressions syntaxiquement différentes mais de même

valeur (par exemple, A(i) + B(i) et B(i) +A(i), la définition de ww-covered est

plus complexe : le lecteur intéressé se référera à la version complète en anglais

pour cette définition complète.

Les règles de l’évaluateur symbolique sont des adaptations symboliques assez

directes des règles d’exécution dynamiques et, à part pour la règle S-SeqLoop,

elles sont algorithmiques : on peut calculer les sorties ∆h, R et C récursivement

à partir des entrées Γ , h et c. Dans le cas de la règle S-SeqLoop, la sortie

∆h apparaît comme entrée de l’appel récursif dans la mise à jour itérée, ce

qui nécessite d’inventer ∆h avant l’appel récursif. L’évaluation prophétique

permet de résoudre ce problème : en effet, on peut prouver par un simple

raisonnement inductif que l’évaluation prophétique produit toujours le même

∆h que l’évaluation symbolique, qui est donc indépendante du tas d’entrée h.

On utilisera ainsi l’évaluation prophétique pour calculer le ∆h qui sera utilisé

lors de l’appel récursif à a règle d’évaluation symbolique, ce qui vérifiera a

posteriori sa correction.

5.3 Preuve de correction

La preuve que l’évaluateur symbolique capture correctement le comportement

de la sémantique dynamique présentée dans la section précédente est omise

de ce résumé en français, et peut être trouvée dans la version complète de la

thèse en anglais.

l Présentation

5.4 Génération des expressions prophétiques

Cette section propose une méthodologie de vérification qui présuppose la

présence d’annotations prophétiques dans le code liant écritures dans un

tableau avec une expression représentant la valeur écrite en terme des tenseurs

de la spécification. Cela peut sembler au premier abord comme imposant

une contrainte supplémentaire à l’utilisateur, qui devrait alors fournir ces

annotations, mais il n’en est rien. En effet, j’affirme que ces annotations peuvent

en pratique être engendrées automatiquement par le compilateur à partir de la

spécification de façon peu coûteuse. Pour justifier cette affirmation, considérons

une équation A(ι1, . . . , ιn) = e de la spécification. On peut la transformer en

une équation alternativeA(ι1, . . . , ιn) = fA(e, ι1, . . . , ιn) où fA est une fonction

opaque pour le compilateur de tenseurs, qui est en fait implémenté par la

première projection. Après compilation de cette spécification transformée, on

obtiendra des écritures dont le membre droit est de la forme fA(e′, ι′
1
, . . . , ι′n)

dont on pourra extraire l’annotation prophétique A(ι′
1
, . . . , ι′n). On voit donc

ainsi que le compilateur de tenseur doit, par nécessité, avoir la capacité de tracer

les annotations prophétiques durant la génération de code, et qu’il devrait

être possible de le modifier sans trop de mal pour produire automatiquement

du code annoté. Cette approche a été utilisée sur le compilateur Halide dans

l’évaluation expérimentale décrite dans la prochaine section.

6 Évaluation expérimentale

Durant cette thèse, j’ai implémenté les algorithmes de validation de traduction

décrit dans les sections précédents en OCaml, et appliqué l’approche au compi-

lateur Halide. J’ai également comparé l’approche à ISA, un outil d’équivalence

de programmes affine issue du modèle polyédrique, qui utilise une approche

complétement automatisée et ne dépend pas d’annotations prophétiques.

Dans l’implémentation, les calculs de l’évaluation prophétique et symboliques

sont effectués à l’aide de la bibliothèque isl. La spécification ainsi que les

conditions de vérifications obtenues sont ensuites fournies au solveur Z3 pour

déterminer leur véracité.

Évaluation expérimentale li

Les détails de l’implémentation et de l’instrumentation du compilateur Halide

pour ces expériences sont décrits dans la version complète de cette thèse

en anglais. Dans ce résumé en français, je me contente de rappeler et de

commenter les résultats de l’évaluation expérimentale effectuée sur un ensemble

de programmes issus des benchmarks officiels de Halide.

Les résultats de la vérification expérimentale, effectuée sur une machine avec

un processeur Intel® Core™ i9 − 9900 et un timeout de 15 minutes, sont

disponibles en Table 1. On notera que dans l’outil ISA effectue son analyse en 3

étapes implémentés par les outils c2pdg, da, et eqv, dont les temps d’exécution

sont indiqués séparément. Le temps total pris par ISA doit être obtenu en

sommant ces trois temps d’exécution. De plus, lorsqu’un opérateur associatif

ou commutatif est en jeu, cela doit être explicitement indiqué à ISA, ce qui

peut augmenter significativement son temps d’exécution. Cette information est

disponible sous la forme d’annotations A (associatif) et C (commutatif) pour

l’opérateur correspondant dans la colonne eqv.

Il est à noter que certains exemples sont des variations du même exemple : par

exemple, sgemm1024 et sqsgemm sont des variantes de sgemm (une multiplication

de matriceN×M par une matriceM×P) avec les contraintesN =M = P = 1024

et N = M = P, respectivement. De même, les variantes préfixées par big
correspondent à des cas où les tailles de matrices sont plus grandes que 512, ce

qui limite le nombre de spécialisations à considérer et permet à ISA de réussir la

vérification. Pour plus de détails sur les benchmarks utilisés, le lecteur intéressé

se référera à la version complète de la thèse en anglais.

On remarquera que lorsque mon outil et ISA parviennent tous deux à valider

la correction d’une compilation, leur performance est comparable ou plus

avantageuse pour mon outil — sauf pour le benchmark conv qui implique des

conditions affines complexes, et la conversion depuis la représentation affine

vers la représentation interne de Z3 est un facteur limitant important dans ce

benchmark. Par ailleurs, mon outil est capable de vérifier plus d’exemples que

ISA.

lii Présentation

Table 1 : Resultats de l’évaluation expérimentale (temps en secondes)

isa

Ours

c2pdg da eqv

blur <1 <1 1.1AC+ ✓ <1 ✓

cmm1024 <1 1.2 10 ✓ 2.6 ✓

sgemm1024 <1 2.5 27.3C× ✓ 1 ✓

sqsgemm 2.5 4min34 > 15min
C×

? 15.1 ✓

bigsqsgemm 1.6 17.5 8min12
C× ✓ 2.7 ✓

sgemm 7. >15min N/A ? 3min24 ✓

bigsgemm 2.8 1min19 >15min ? 12.1 ✓

sc1 3.44 4m20 3.3 ✗ 12.5 ✓

sc32 1min41 >15min N/A ? 4min53 ✓

dsc 10.2 13min49 >15min ? 1min43 ✓

conv 2. 12.2 27.9Cmax ✓ 2min12 ✓

sdot <1 <1 <1 ✓ <1 ✓

harris
*

7.9 31.5 1min8 ✓ 44.8 ✓

unsharp
*

1.3 6.1 13min44 ✗ 6.1 ✓

nl_means
*

>15min N/A N/A ? >15min ?

sgemmTA
†

21.5 >15min N/A ? 10.4 ✗

sgemmTB
†

21.1 N/A N/A ✗ 34.7 ✗

*
Pas d’optimisations flottantes

†
Échec attendu

7 Vérification des réductions

Une réduction est l’application répétée d’un opérateur binaire sur les éléments

d’une séquence de valeurs, les réduisant ultimement en une unique valeur.

L’exemple le plus commun est l’opérateur de somme Σ qui itère l’opérateur

d’addition +. Lorsque l’opérateur binaire sous-jacent est associatif et commuta-

tif, comme c’est généralement le cas pour l’addition, le résultat de la réduction

ne dépend pas de l’ordre dans lequel le calcul est effectué. Cette propriété est

utilisée par les compilateurs de tenseurs afin de mieux optimiser la localité des

calculs mais aussi pour révéler du parallélisme caché.

L’approche décrite jusqu’ici dans ce manuscrit ne s’applique pas à de tels

Travaux liés liii

réordonnancement, car elle requiert un encodage rigide de l’ordre d’exécution

d’une telle réduction. Ce chapitre décrit une extension à l’approche développée

jusqu’ici, basée sur la remarque que dans l’application d’une réduction à une

case de tableau :

for j in 0 to N - 1 do
a[] += b[j]

on peut considérer l’affectation a[] += b[j] comme ajoutant la valeur b[j] à

l’ensemble des valeurs réduites dans la case mémoire a[].

Comme on ne peut pas tracer directement les valeurs b[j] de façon symbolique,

il faut utiliser une représentation plus complexe, qui représente à la fois l’index

j réduit et la valeur b[j] associée. Les détails de cette représentation et

sa formalisation sont disponibles dans la version complète de la thèse en

anglais, mais n’ont pas été implémentés dans l’outil utilisé pour l’évaluation

expérimentale.

8 Travaux liés

Le chapitre 8 présente de nombreux travaux liés à cette thèse, notamment en

validation de traduction et en équivalence de programmes affines. Ces travaux

étant rédigés en anglais, ils sont discutés en détail uniquement dans la version

complète de cette thèse en anglais.

9 Conclusion

La spécificité des compilateurs de tenseurs est d’effectuer principalement des

transformations qui modifient en profondeur la structure du programme opti-

misé, ce qui rend leur vérification difficile pour les techniques de vérification

traditionnelles basées sur des bisimulations. Cette thèse s’intéresse au dévelop-

pement de techniques de validation de traduction pour ces compilateurs, dans

lesquelles un validateur est développé indépendemment et peut être utilisé

pour plusieurs compilateurs différents.

liv Présentation

En toute généralité, le validateur doit résoudre un problème indécidable, celui

de l’équivalence de programmes entre l’entrée et la sortie du compilateur.

La validation de traduction est donc nécessairement incomplète, et doit soit

accepter de ne pouvoir valider certaines transformations, soit demander au

compilateur des aides pour la vérification, qui prennent habituellement la

forme d’une preuve complète de correction des transformations instanciées

sur le programme source. Cette thèse propose, dans le cadre des compilateurs

de tenseurs, une approche intermédiaire, à partir de la remarque suivante : de

nombreux compilateurs de tenseurs sont construit comme des générateurs de

code à partir d’une spécification de haut niveau. En ajoutant à la spécification

des annotations triviales, celles-ci sont transformées comme le code par le

compilateur. Le code engendré peut ensuite, grâce à ces annotations, être relié à

la spécification initiale, et cette thèse montre que – sous l’hypothèse d’un flot de

contrôle affine – ces annotations sont suffisantes pour construire un générateur

de conditions de vérifications qui garantisse la correction du code engendré.

Dans cette thèse je fournis les fondations théoriques et une implémentation

en OCaml d’un tel algorithme. Il se base sur des spécifications de haut niveau

inspirée des SRAE, une représentation intermédiaire provenant du monde

polyédrique, utilisée comme langage commun pouvant facilier, à terme, l’uti-

lisation du système par différent compilateurs de tenseurs. En appliquant

avec succès cette approche au compilateur Halide, je montre qu’il est possible

d’instrumenter des compilateurs de tenseurs pour générer les annotations

nécessaires à cette approche et sa faisabilité en pratique, montrant ainsi la

viabilité de l’approche de validation de traduction pour les compilateurs de

tenseurs.

Certaines questions restent toutefois non résolues, notamment concernant

l’applicabilité de l’approche au-delà du cas purement affine (ou quasi-affine) :

j’explore dans la version complète de la thèse en anglais une dizaine de telles

questions qui ouvrent les perspectives futures de mon approche.

Introduction 1

Parallel Computing

In the second half of the twentieth century, the silicon industry was growing at

a fast rate. In 1975, Gordon Moore predicted that the number of transistors in a

circuit would double every two years — an exponential rate that has empirically

held since, and has been known under the name of “Moore’s Law”. At first,

the exponential increase in transistor density has translated directly into an

exponential increase in computing power: switching to a new generation of

processors would often directly translate into faster execution times, with little

to no change to the program. Thermal dissipation issues put an end to that

golden age of free performance improvements, and the additional transistors

now translate to an increase in the number of functional units, whose clock

speed remains roughly the same as that of the previous generation. Today,

even that is slowly coming to an end as the chip fabrication process reaches the

limits of what physics allow — plotting out a future where chip space is ever

so valuable, and encouraging the design of purpose-built hardware tailored to

the specific needs of performance-intensive applications.

The democratization of numerical computing The improvements to chip

design allowed by Moore’s law has fueled an explosion of computing devices

both in data centers; through the rise of cloud computing, and in the hands of

everyone; through the development of the now ubiquitous smartphones and

otherwise increasingly “smart” appliances and devices. These heterogeneous

devices embed general-purpose processors but also more specialized processors

that can be orders of magnitude more efficient both in terms of performance and

power usage for certain tasks such as graphics processing or cryptography.

1

2 Introduction

The most common of these specialized processors are graphics processing units,

or GPUs: originally developed as independent processors responsible for

outputting pixels on a display, their highly parallel structure has proven

invaluable for the implementation of many computationally heavy algorithms

for image processing and linear algebra. The use of GPUs to implement

non-graphics algorithms is known as GPGPU: general-purpose computing

on graphics processing units. GPGPU, through frameworks such as CUDA

for programming Nvidia GPUs, was a critical piece in making deep learning

techniques viable at a previously impractical scale, leading to their widespread

use since the early 2010s. This use is now pervasive, both in the data center and

— fueled by privacy concerns — directly on users’ devices, with applications

ranging from computer vision to natural language processing. In turn, this is

increasing the demand for performant numerical code outside the confines

of traditional high-performance computing application domains such as the

numerical simulations of scientists and engineers.

Writing efficient code for parallel architecture such as GPUs is notoriously

difficult: in addition to the usual considerations about program semantics, the

programmer needs to think about synchronization, shared caches, and memory

coalescing optimizations in a programming model that has much different

performance characteristics than the CPUs most are used to. Unoptimized

programs written by novices that fail to account for the hardware’s specificities

can easily be orders of magnitude slower than properly optimized programs

written by an expert. Thus, traditionally, efficient code has been written

by experts and packaged into libraries (such as BLAS libraries for linear

algebra) that provide highly optimized primitives. Users then have to express

their problem using those optimized primitives, leaving massive performance

improvements on the table when doing so is impossible or complex. With

the inclusion of GPUs as components of increasingly diverse systems and the

development, driven by the needs for both performance and energy efficiency, of

specialized hardware such as Google’s Tensor Processing Unit and Microsoft’s

Brainwave project, the reliance on a small set of handwritten primitives for

each platform cannot scale. This drives a renewed interest in languages and

frameworks aiming to improve the readability, portability, and efficiency of

user-defined array programs.

3

A second era of parallel computing While improvements to chip design

have led to steadily increasing clock frequencies for decades, memory has not

followed, and the speed at which data can be accessed in a Von Neumann

architecture compared to the speed at which it can be processed has drastically

slowed, relatively speaking. Caches are part of the solution to this problem.

Another solution is to increase instruction-level parallelism to ensure that the

processor has work to do while memory transfers is in progress. Hardware

architects have developed dynamic techniques such as out-of-order execution,

branch prediction, and speculative execution to increase the instruction-level

parallelism. These techniques work well but are local by nature and not able

to exploit long-range parallelism opportunities. The necessary hardware is

also competing with functional units for what is now extremely valuable chip

space. The alternative is to rely on the programmer or the compiler to ensure

that instructions and data are appropriately laid out in memory, taking into

consideration cache sizes and the available parallelism in order to achieve

optimal performance on a given hardware.

The Role of Languages

GPUs and other specialized processors require such precise compiler optimiza-

tions to achieve peak performance. This leads to an interest in the design of

new tools and frameworks aiming at democratizing the availability of high

performance numerical programming. This includes tools using true-and-tried

techniques such as polyhedral compilation in Polymage [75], Tiramisu [7], and

Tensor Comprehensions [111]; but also the exploration of new approaches. One

line of research concerns the design of languages suited to the optimization

of programs through rewrite rules and includes tools such as Accelerate [72],

Futhark [50] or Rise [48]. Another line of research, introduced by Ragan-Kelley

et al. [82] in the Halide domain-specific language and compiler, takes some

ideas from polyhedral compilation through the separation of algorithms (with

semantic properties) and schedules that guide the compiler through the process

of generating efficient code. The schedule can be either written by an expert,

or found through the use of automated techniques. Halide was originally

developed in the context of image processing pipelines; with TVM [25] using

the same approach with a focus on deep learning kernels.

4 Introduction

These different approaches are tensor compilers, because they compile tensor

specifications. To differentiate these tools that work with “pointful” speci-

fication (i.e. a specification that gives a value to each point in the tensor’s

domain) from higher-level frameworks such as TensorFlow [1] that operate

on multidimensional operators, I will sometimes explicitly talk about low-level

tensor compilers.

Due to the different factors mentioned above, new techniques are being

developed to generate highly efficient numerical programs for an increasingly

wide landscape of hardware. At the same time, more and more algorithms

must be implemented efficiently. This poses the question: how do we ensure

that the low-level programs generated for these combinations of algorithms,

compilation techniques, and hardware are correct, and effectively implement

the program that the user had in mind? A recent study by Shen et al. [99] on

the source of bugs in deep learning compilers shows semantics issues in the

compilation can cause bugs that are hard to catch because they silently return

incorrect results. Testing is the traditional solution to this problem, but it is

necessarily partial and full coverage cannot easily be achieved. Fuzzing is an

extension of testing where test cases are generated automatically to try and

uncover bugs in the compiler. The design of formally verified implementations

of the compiler algorithms used is an interesting direction, but it has the

main issue that as new compilation algorithms are being designed, a formally

verified implementation of the new algorithms must be provided.

Translation validation provides an attractive middle ground between testing and

formal verification. In translation validation approaches, a separate tool (that

can be itself formally verified) is designed. The tool takes as input the source

program and the output of the compiler, possibly extended with annotations,

and tries to produce a proof that the transformations performed by the compiler

are correct on this instance, i.e. that this optimized code is properly implement-

ing this input program. Program equivalence being undecidable in general,

translation validation is most often used to verify a single transformation pass

in an optimizing compiler, ensuring the correction of the full compilation pro-

cess through many small hops between consecutive states of the intermediate

representation. Within the verified transformation pass, however, translation

validation is mostly agnostic to the actual implementation, and only cares about

the type of transformations that can be performed. Translation-validation is

usually applied to specific pass of an optimizing compiler and can be specific

to the transformation performed by the optimization pass.

5

In the domain of numerical computing, translation validation algorithms for

array and loop programs have been proposed [59, 98, 116]. These algorithms

have originally been developed under the assumption of human programmers

performing code transformations manually e.g. in the context of embedded

systems. These approaches have been successful at verifying transformations

of realistic multimedia systems [117]; however, they do not compose well with

the possibility to perform program transformations based on complex algebraic

or (non-linear) arithmetic reasoning.

Existing approaches try to prove the equivalence between the original and the

compiled program by asserting that the outputs of the computation must be

identical and propagating that information backwards to determine which

equalities must be satisfied by intermediate and input arrays. This limits the

transformations on the array values that can be handled; even transformations

that can be handled (e.g. associative and commutative operator re-orderings)

can result in drastically increased execution times due to considering all possible

permutations. These issues cannot easily be lifted: the equivalence problem

that these approaches try to solve is undecidable by nature, as relations between

the intermediate arrays in both programs must be inferred.

Instead, I propose an alternative approach relying on the presence of a compiler

that can give hopefully reasonable hints through annotations, as I now outline.

Motivating Examples

Picture yourself a specification language for n-dimensional arrays. The exact

details of the specification language may vary, but can be roughly thought of as

follows. This language deals with tensors: functional values indexed by integer

points in a multidimensional space. The tensors are defined by equations, read

as assignments, and implicitly quantified over the multidimensional domain.

For instance, the outer product of two vectors A and B is a two-dimensional

tensor defined by the equation:

C(i, j) = A(i) × B(j) (1.1)

Here i and j are implicitly bound variables ranging over arbitrary integer values.

6 Introduction

These high-level specifications are compiled into imperative programs through

a code generation process guided by a (user-provided or compiler-generated)

schedule, whose concrete details vary. In the generated program, the tensors

are replaced by arrays representing finite subdomains of the corresponding

tensor. Our first intuition is that the nature of the code generator makes it

possible to keep track of a mapping between array writes and tensor definitions:

this property will be at the basis of our verification algorithm.

Going back to Eq. (1.1), in an implementation of that specification, A, B and

C become arrays, and the range of i and j are computed through auxiliary

mechanisms such as inference from the shape of the input arrays (as in Tensor

Comprehensions), or an explicit realization domain for the output array (as

in Halide). In Halide, expert users can manually write schedules using

a domain-specific language; in our example, the schedule C.split(i, i0,
i1, 4).reorder(i1, j, i0)would generate the following implementation,

expressed in pseudocode (recall that lower-case names and brackets are used

for array accesses while upper-case names and parentheses are used for tensor

accesses).

for i0 = 0 to (N + 3) / 4 - 1 do
for j = 0 to M - 1 do
for i1 = 0 to 3 do
let i = min(i0 * 4, N - 4) + i1 in
c[i, j] := b[j] * a[i]

The split directive indicates that the loop over i should be separated into an

outer loop i0 and an inner loop i1. The loop nesting order, from innermost to

outermost, is specified by the reorder directive. More examples of the Halide

scheduling language are shown by Ragan-Kelley et al. [83]. The commutativity

of × (i.e. b[j] * a[i] instead of a[i] * b[j]) has been applied manually

for illustration purposes: it does not appear in the schedule. More generally,

Halide features a simplification algorithm which can propagate constants

and make use of algebraic properties such as commutativity, associativity

and distributivity: the values stored in the array c can be computed using a

different, but equivalent, expression than that defining tensor C.Halide makes

fast-math

assumptions on

floating-point

numbers, which we

discuss in Section 9.4.

The parameters N andM used in the code correspond to the size of the arrays

a and b, and are not statically known; therefore, the program ought to be valid

for any such sizes.

7

In this case, it is relatively easy to convince oneself that the implementation

follows the semantics prescribed by the specification. More precisely, for any

tensors A, B and C such that C(i, j) = A(i) × B(j), and any initial memory

mapping the a[i] toA(i) and the b[j] to B(j), running the above program will

produce a final memory which, in addition, maps the c[i, j] to C(i, j), where

i ranges over 0, . . . ,N − 1 and j over 0, . . . ,M − 1.

There are multiple proofs of this fact, but we will focus on the following one,

which exploits the remark that, when executing an assignment c[i, j] :=
b[j] * a[i], the value written is always the corresponding C(i, j) from the

specification. More precisely, we can make the following observations:

• The set of locations written by the assignment c[i, j] := b[j] * a[i]
is precisely{

c[min(4i0,N − 4) + i1, j]
���� 0 ⩽ i0 < ⌈N/4⌉

0 ⩽ i1 < 4 ∧ 0 ⩽ j <M

}
This set contains the “required” set of locations {c[i, j] | 0 ⩽ i < N ∧ 0 ⩽
j < M}, which is expressed as an inclusion of sets defined by quasi-

affine formulas. Quasi-affine formulas are affine formulas extended with

division and modulo operations where the denominator is a constant.

The decidability properties of Presburger arithmetic [78] extend to quasi-

affine formulas, and efficient specialized solvers such as isl [112] can be

used to check its validity.

• When the assignment is executed for some values of i and j, we have

0 ⩽ i < N and 0 ⩽ j < M, which can also be checked using isl, and

ensures that reads from arrays a and b are in bounds. Note that this is

not the same check as above: here we bound the set of locations upwards

to stay within the bounds for a and b, while earlier we bounded that set

downwards to at least contain the required writes to c. Combining these

two checks, the set of computed locations must be exactly {c[i, j] | 0 ⩽
i < N ∧ 0 ⩽ j <M}.

• When the assignment is executed for some values of i and j, the value in

b[j] is B(j) and the value in a[i] is A(i), as per the previous point, and

because arrays a and b are never written to. Hence, the value written to

c[i, j] is equal to B(j)×A(i). This value is equal toC(i, j), sinceC(i, j) =

8 Introduction

A(i) × B(j) by definition and assuming × is commutative. In general,

proving this type of equality requires unfolding tensor definitions and

checking the algebraic reasoning performed by the compiler’s simplifier.

Off-the-shelf general purpose SMT solvers such as Z3 [74] used in this

work, are quite good at proving such formulas.

These three checks — coverage of writes, definedness of reads, equality of

values — form the backbone of a verifier for array programs. Here, we have

seen a simple example where a single value is ever written to each location; in

general, the resulting program can contain recurrences: an iteration of a loop

which depend on values read by a previous iteration of the same loop. This

would make the proof fail: we have assumed that, when reading from arrays a
and b, we know exactly the value they hold. In the presence of recurrences, this

is in general impossible, as it requires unfolding many iterations of the loop at

once. This property is also the main difficulty for program equivalence checking

approaches, where best-effort techniques based on transitive closure [97] or

affine hulls [116] have been developed.

Instead, we can side-step the issue entirely by relying on the fact we are dealing

with implementations generated by a scheduling compiler, which has a rich

set of information about the assignments available. Let us assume that the

assignment is annotated with a prophetic expression. The prophetic expression

lives in the specification world, and predicts the value that will be written by the

assignment in terms of tensors. Assuming that the compiler can produce those

annotations along with the code, this breaks the cycle, because the prophetic

expression uses tensors, and hence is independent of the program memory.

In particular, this means that we can always know the value of the prophetic

expression for any iteration of a loop without having to execute the previous

iterations of the loop.

Let us examine an example of this by considering matrix multiplication,

implemented with an explicit accumulator R:

R(i, j, k) = if k ⩽ 0 then 0 else R(i, j, k − 1) +A(i, k) × B(k, j)
C(i, j) = R(i, j, P − 1)

Reusing the same schedule as earlier, we would get the following implementa-

tion, where we have annotated each assignment with a prophetic expression:

9

for i0 = 0 to (N + 3) / 4) - 1 do
for j = 0 to M - 1 do
for i1 = 0 to 3 do
let i = min(i0 * 4, N - 4) + i1 in
r {0} := 0
for k = 0 to P - 1 do

r {R(i, j, k)} := r + b[k, j] * a[i, k]
c[i, j] {C(i, j)} := r

Prophetic expressions, here and throughout the manuscript, are written using

math font and (on the electronic version of this manuscript) a different color in

order to distinguish them from the surrounding code.

In an assignment such as c[i, j] {C(i, j)} := r, the prophetic expression

C(i, j) between brackets is ignored during the execution of the program, and

only used for the validation. It is an assertion than the value written when

executing the statement will be C(i, j).

Without the annotations, it would not be immediately clear what the value of r
should be at iteration k of the loop. However, by using the annotations, we can

build a prophetic version of the program, which reads from the specification

and executes assignments by using their prophetic expression instead of the

right-hand side.

This prophetic version of the program never reads from mutable memory,

making its analysis much easier: knowing the last write to an array cell is

enough to know its value. In particular, it is clear from the prophetic version of

the program that r is equal to either 0 (when k = 0) or R(i, j, k − 1) (otherwise)

when updating r within the loop on k, and equal to R(i, j, P − 1) (assuming

P > 0) when writing to c[i, j]. In addition, the fact that C(i, j) is written by

the prophetic program to the cell c[i, j] for all 0 ⩽ i < N and 0 ⩽ j < M is

also clear, by the same set inclusion as in the outer product case.

Finally, we have to prove that the regular version of the program has the same

behavior as the prophetic version of the program. To do so, we have to prove

the following side conditions for any values of i, j and k reachable during

10 Introduction

execution of the program:

R(i, j, k) = if k ⩽ 0 then 0 else R(i, j, k − 1) + B(k, j) ×A(i, k)
C(i, j) = if P ⩽ 0 then 0 else R(i, j, P − 1)

The right-hand side of the equalities are computed from the right-hand side of

the assignments of r and c[i, j], where the reads to r are computed using

the prophetic expressions. The side conditions are an inductive invariant: they

ensure that our reasoning propagates from one iteration of the loop to the

next.

We now have reduced the correctness of our program to these two quantified

equalities in the specification. In and of itself, that is valuable, thanks to

the simplifications performed above: in the formulas, the structure of the

implementation has been erased, yielding a simpler domain. The equalities in

this case can be proven easily by an SMT solver.

To recapitulate, the approach outlined here requires two key ingredients to be

automated:

• The assignments must be annotated with prophetic expressions in the

specification, using tensors and independent of the program memory.

This enables the use of symbolic evaluation for loops of parametric size.

• The expressions used in array indices (both for reads and writes), loop

bounds, and conditionals must be quasi-affine. This ensures that we can

keep track of the values written to and read from arrays.

Contributions

The contributions of this thesis follow from the remark that most of the dif-

ficulties in the verification of tensor compilers vanish if the compiler is able

to provide sufficiently precise annotations relating the intermediate values

in the compiled program and in the original specification. This leads to the

development of a validator for the black-box combination of affine transfor-

mations including structure-modifying loop nest transformations or array

11

layout transformations, and algebraic transformations of the right-hand side

of assignments, under the only assumption that the compiler is instrumented

to provide the appropriate annotations. More precisely, this thesis makes the

following contributions:

• The design of an intermediate language for the validation of tensor

compilers, Sched, that closely follows the Stmt intermediate language of

Halide augmented with prophetic annotations.

• Two semantics for Sched, a traditional interleaving small-step semantics

and a novel deterministic big-step semantics that captures the behavior of

race-free parallel programs, and a reduction from the big-step semantics

to the interleaving semantics, ensuring that programs with a big-step

semantics have a deterministic interleaving semantics.

• The design, implementation, and formalization of a verifier for Sched pro-

grams with respect to a system of affine recurrence equations (SARE) that

relies on the refinement mapping provided by the prophetic annotations.

• A novel formalization of Halide as a system of equations, and the deriva-

tion of a reduction from affine Halide specifications to SAREs.

• The instrumentation of the Halide compiler to augment its intermediate

language Stmt with annotations, and the implementation of both the

reduction from Halide to SAREs and of annotated Stmt to Sched.

• The experimental evaluation of the verifier for Sched programs, using

the instrumented Halide compiler on affine specifications extracted from

the official Halide benchmarks.

• The formalization (but not the implementation) of an extension to the

verifier to handle the reordering of reductions, an important primitive in

numerical computing representing the possible re-orderings of associative

and commutative operators and exploited by tensor compilers to expose

additional parallelism.

12 Introduction

Organization of this Manuscript The first chapter is this introduction and

presents the context and motivations for the need to validate low-level tensor

compilers.

The second chapter goes over an historical overview of the representations used

by compilers of computation-intensive numerical programs, with an assumed

focus on the polyhedral representation that has driven much research interest

and on the lightweight scheduling approach originating in the Halide DSL and

compiler that was used in the experimental portion of this thesis.

The third chapter is a reference on the abstraction of Presburger sets and

Presburger relations, originating from polyhedral compilers and implemented

by libraries such as isl [112]. This representation is used to build a symbolic

representation of programs in the later chapters of the manuscript.

The fourth chapter presents Sched, an imperative parallel language of loops

and arrays with annotations relating the assignments to so-called “prophetic”

expressions in a tensor specification. The chapter gives a small-step interleaving

semantics to programs, and a big-step deterministic semantics to race-free

programs that is proven sound with respect to the small-step semantics. Finally,

a type and effect system is given for Sched program capturing all the writes it

performs, expressed as prophetic expressions. The type and effect system is

proved sound for programs that have a big-step semantics where all annotations

hold at runtime.

In the fifth chapter, a symbolic evaluator is added to the Sched language by

augmenting the type and effect system with a verification condition generator.

It is proved that when the verification conditions hold, the symbolic evaluator

exactly captures the writes and the reads performed by a program, which

allows verifying a generated program with respect to its specification.

The sixth chapter discusses an implementation of the symbolic evaluator from

the previous chapter in OCaml, and its application on affine specifications

extracted from the officials benchmarks provided with the Halide compiler. The

implementation compares favorably in terms of runtime and coverage with the

isa tool from Verdoolaege, Janssens, and Bruynooghe [116], a state-of-the-art

program equivalence checking tool for affine programs.

The seventh chapter discusses the context of reductions, the repeated application

13

of an associative-commutative operator such as a summation that appear in

many tensor specifications. The computations in a reduction can be arbi-

trarily reordered, a property that tensor compilers exploit to better optimize

for parallelism and cache locality. Such reorderings cannot be verified by

the previously introduced approach, nor by most of the literature on affine

program equivalence checking. In the chapter, an extension of the prophetic

annotations and of the symbolic evaluator is proposed to be able to handle

these reorderings. This extension has not been implemented in the OCaml tool,

and no experimental evaluation is available.

The eighth chapter compares the solution proposed by this thesis with related

works in translation validation, affine program equivalence checking, and

formalizations of tensor specifications or compilers.

The ninth and final chapter is a conclusion, recapitulating the work performed

in the thesis and placing it in a larger context. The conclusion also contains an

ample discussion of possible future work to apply the approach of this thesis

to larger classes of programs such as histograms and compiler transformations

such as parametric tiling.

Notations and Conventions Throughout this manuscript, we will use the

term “tensor” and “array” abundantly with a rather precise semantics. A tensor

is a function from a tuple of integers to a value. We denote tensor accesses using

uppercase letters and parentheses, e.g. A(3, 7) denotes the value of tensor A at

position (3, 7). Tensors are used in functional specifications and a tensor access

refers to a unique, immutable value. On the other hand, an array is used in an

imperative programs, and is a mutable object that can be updated throughout

the execution of the program. We denote array accesses using lowercase letters

and brackets, e.g. a[3, 7] denotes the access to array a at position (3, 7). The

values associated with an array access can change during the execution of a

program and depend on the computer memory. In examples, it is generally

assumed that values stored in an array correspond to the values associated

with the tensor of the same (uppercase) name and corresponding index in the

specification.

14 Introduction

Previous Publications Part of this thesis (notably, parts of chapter 4, chapter 5

and chapter 6) are published in [27].

Representations of Programs with
Loops and Arrays

2

The need to optimize numerical programs operating on arrays is not a recent

development: the use of computers to help in the resolution of numerical

problems occurring in physics and mathematics has been a driving force behind

the development of computer science since its infancy. The techniques that are

used today to represent and optimize numerical array programs are the fruits

of a rich history of array optimization research and have evolved through the

years along with the hardware they target. This chapter is intended to give

some background and history on the compilation techniques for computation-

intensive array programs that are used in modern tools and research.

The reader should keep in mind, while reading this chapter, that this manuscript

is concerned with the verification of the program transformations performed by

tensor compilers. Hence, this chapter is intended to help put the verification

techniques developed in later chapters in the context of the transformations

they are designed for. This means that optimization is neither a concern nor

a focus here, and work that focuses on these aspects will only be mentioned

when it contributes to the discussion on the representation of programs or

transformations. Generally speaking, we are interested in understanding

what transformations the compiler can apply, not when or where they will be

applied.

This chapter is split into three sections. First, I present the history of the

polyhedral model: a framework for the representation and optimization of array

programs that has long been the focus of parallel programming research. The

polyhedral model enables the compact representation of combinations of many

loop and data-layout transformations; it also draws interest for its ability to

express performance-impacting characteristics such as parallelism and cache

15

16 Representations of Programs with Loops and Arrays

locality as objectives of an optimization problem. Then, I briefly present work

in a different line of research on using a functional representation of array

programs with combinators optimized using rewrite rules. Although this

line of research is promising, especially regarding the possibility of building

formally verified compilers, it is not the focus of this thesis, which is concerned

with techniques to validate and test existing compilers. Finally, I present the

approach to the organization of computation championed by Halide: by taking

some ideas from the polyhedral model (namely, a separation between what

is computed — the “algorithm” — and how it is computed) while rejecting

some of its core ideas (e.g. Halide eschews the expressive power of Presburger

arithmetic fundamental to the polyhedral model and replaces it with a much

simpler interval analysis), the approach seems to hit a sweet spot between

expressiveness, performance, and ease-of-use by non-expert practitioners. This

section also includes a new formalization of Halide algorithms as a set of

equations, and a reduction from affine Halide algorithms to SAREs, both being

novel contributions.

2.1 The polyhedral model

The polyhedral model is an abstract representation of a program as a compu-

tation graph [40]. The nodes of the computation graph represent statement

instances, i.e. iterations of a statement parameterized by their position in a

multidimensional space. Also known as the polyhedron model, the polytope

model, or the geometric model, the polyhedral model has had many incarna-

tions and alternate presentations; it is used both for program transformation in

compilers and for program analysis and verification.

In this section, I present an overview of the polyhedral model as a tool for the

representation and transformation of programs with arrays and loops. The

rest of the ideas presented in this thesis have roots in the polyhedral model,

notably in the exact representation of dependencies used by polyhedral tools;

as such, having a good grasp of the semantics representation of programs used

by the polyhedral model should help the reader put the rest of the thesis in

context. The presentation is roughly chronological, with different axes for

the concepts of the model: instance sets and schedules for the representation

of programs in the model; code generation for the extraction of traditional

2.1 The polyhedral model 17

program representations out of the model; dependence analysis for the validity

of transformations in the model. The history of the polyhedral model is tightly

related to the mathematical concept of Systems of Affine Recurrence Equations

(SAREs) that have been developed jointly. Any loop nest whose semantic is

exactly captured by the polyhedral model can be represented as a SAREs, and

they are used as intermediate or input representations in some polyhedral

compilers [119]. SARE can be used as a pure, equational specification for

polyhedral programs and are presented in section 2.2.

2.1.1 Instance sets

While the terminology was different and some concepts implicit, key ingredients

of the polyhedral model can already be found in the work of Lamport [65].

In this seminal work, the computations performed by a perfect loop nest

are modelled as the repetition of the loop body for each value of the loop

iterators. Under this view, it is possible to construct a different loop nest

with the same body but with a different iteration order while preserving the

program’s behavior. A well-chosen transformation can reveal latent parallelism

opportunities, resulting in a program that can be executed more efficiently on

a multiprocessor machine such as the Illiac IV computer that motivated his

work.

Using modern terminology, the work of Lamport could be presented as follows.

At the core of the approach is a simple idea: a counted for loop can be

understood as the set of its iterations. Assuming a single base instruction I

representing its body, a perfect loop nest can be described by the following

grammar:

s ::= for i < e; do s | I (e1, . . . , en)

where the loop body I is parameterized by expressions e1, . . . , en. The expres-

sions appearing in the loop bounds and as argument of the loop body can only

use the outer loop variables, as well as program parameters: variables that are in

scope for the whole execution of the program and whose value is unknown but

constant during said execution. Typically, the program parameters correspond

to the dimensions of the input and output arrays. The representation of the

loop body I is arbitrary; it will be assumed to be context-independent, i.e. I

18 Representations of Programs with Loops and Arrays

does not contain any free variables so that all uses of the loop variables go

through the expressions e1, . . . , en.

It should be noted that while we talk about a “program”, the appropriate

terminology would be that of a program fragment, such as the body of a

function, or even part of the body of a function. An example of such a perfect

loop nest is the computationally-intensive main loop of a matrix multiplication

algorithm:

for i = 0 to N - 1 do
for j = 0 to M - 1 do
for k = 0 to P - 1 do
c[i, j] += a[i, k] * b[k, j]

where the base instruction is I (i, j, k) = c[i,j]+ = a[i,k] ∗ b[k,j]. Another exam-

ple adapted from Lamport is:

for i = 2 to M do
for j = 1 to N do
a[i, j] := b[i, j] + c[i] ;
c[i] := b[i - 1, j] ;
b[i, j] := a[i + 1, j] * a[i + 1, j] ;

where the base instruction I (i, j) is the full loop body.

While the instruction I is present only once in the program text or in traditional

compiler representations such as abstract syntax trees and control-flow graphs,

it will be executed many times when running the program, for each value of

the loop iterators. The gist of the polyhedral representation of programs is to

make explicit this dynamic set of executions. For instance in the case of the

matrix multiplication it is the parametric set:

{I (i, j, k) | 0 ⩽ i < N ∧ 0 ⩽ j <M ∧ 0 ⩽ k < P}

Definition 2.1.1 (Instance set). The instance set of a program P is the set of all

dynamic executions of the program’s instructions. Elements of the instance set

such as I (0, 1, 3) are called instruction instances, statement instances, or simply

instances.

2.1 The polyhedral model 19

Instance sets are also called index set and iteration domain in the literature.

Different representations of instance sets exist. While I have chosen a presenta-

tion where the elements of the instance sets contain both an instruction and

its position in the iteration space, many authors choose to instead have one

instance set per statement. In this case, the instance set only contains points in

the iteration space, and I will prefer the terminology of index set. The elements

of an index set are ordered tuples containing the value of the loop iterators

surrounding the statement, and are also known as iteration vectors

I have already mentioned “points in the iteration space”; indeed, as tuples,

iteration vectors are points with integer coefficients in a multidimensional

space, and can be thought of and drawn as such. This gives a geometric

representation of index sets, giving the model the name of geometric model. This

is a natural remark, and Lamport’s article already contains representations

of a program’s iterations as points in a two-dimensional space to explain the

transformations. The name of “polyhedral model” comes from the necessity

to impose restrictions on the sets of points that we are able to handle while

keeping the representation practical: one of the original goals of the model,

and certainly that of Lamport, is to enable the automatic parallelization of

programs. To satisfy this requirement, the representation of index sets must

be expressible using a reasonably “nice” fragment of logic so that automated

tools can manipulate them. A naturally “nice” fragment of logic is obtained by

adding restrictions to the type of expressions appearing in loop bounds: only

affine combinations of the outer loop variables and the program parameters are

allowed. Loop bounds are of the form a1x1 + · · · + anxn + cwhere x1, . . . , xn
are loop variables or program parameters and a1, . . . , an and c are integer

constants. With this restriction, the index set of a program can be represented

as a conjunction of affine constraints: equivalently, when interpreting the index

set geometrically, it represents the interior points with integral coordinates of a

convex polyhedron.

2.1.2 One polyhedron, many polyhedra

This restriction to affine or mostly affine programs has been crucial to the

practical applicability of approaches based on the polyhedral model, as it makes

many of the problems presented below decidable using linear programming

20 Representations of Programs with Loops and Arrays

techniques. It has also, historically, been seen as somewhat of a weakness of the

model, and I should mention that techniques have been developed to improve

the representative power of the model, although they are outside the scope

of this presentation. The work of Benabderrahmane et al. [16] gives a good

overview of some of these techniques.

It is still worth mentioning how modern approaches to the “core” polyhedral

representation fare compared to Lamport’s restrictions half a century ago so as

not to build an opinion of the model that is too biased. The proper restriction

that still allows programs to be represented and manipulated using linear

programming techniques is a bit wider: modern polyhedral tools are able

to handle the full expressive power of Presburger arithmetic extended with

divisions by a constant positive number, i.e. quasi-affine arithmetic. This is

described in more details in chapter 3; for the goal of the current overview of the

polyhedral model, it suffices to say that in modern approaches, instance sets are

represented using unions of polyhedra and that the answers and approaches

mentioned here apply just as well to piece-wise quasi-affine expressions and

unions of polyhedra as they do to affine expressions and polyhedra.

In a similar vein, for the sake of simplicity and following Lamport’s research,

I have only mentioned perfectly nested loops whose body contains a single

instruction. Modern approaches based on the polyhedral model are concerned

with imperfectly nested loop nests with conditionals and potentially many

statements, a more realistic characterization of scientific and numerical code.

Imperfect loop nests can be defined by the grammar:

s ::= for i < e; do s | s ; s | if e then s else s | I (e1, . . . , en) | skip

The symbol I stands for an arbitrary piece of code that does not have free

variables, but can depend on the value of the contextual arguments e1, . . . , en.

Like the expressions for loop bounds, the expressions appearing in the condi-

tionals and as contextual arguments to the instructions are restricted to affine

expressions of the loop iterators — or rather, piece-wise quasi-affine expressions

thereof. This again ensures that programs can be represented and questions an-

swered using linear integer programming. The fragment of programs of imper-

fect loop nests that can be represented using this approach is commonly known

as a “Static Control Part” of the program, referring to the data-independent

nature of the control flow within. We will use if e {s} as a shorthand for

a conditional whose else branch is empty, i.e. if e then s else skip. Note

2.1 The polyhedral model 21

that conditionals are included as a convenience, and are not strictly necessary

in the presence of piece-wise expressions. Assuming that select(c, t, e) is a

conditional that returns the value of t when c is true and e when c is false, the

construct if e then s1 else s2 can also be expressed as follows, assuming that

x is a variable that does not appear in either s1 or s2:

for x < select(e, 0, 1); do s1 ; for x < select(e, 1, 0); do s2

In a polyhedral representation of an imperfect loop nest, it is implicitly assumed

that each statement occurs only once in the program source, because the

polyhedral model has no real notion of multiplicity. There is now a distinct index In some

representations it is

possible to duplicate

statements, e.g. by

tagging multiple

copies of the statement

as virtually distinct;

however, this must be

done ahead of time

and is not

well-supported by

automated optimizers.

set for each of the statements, which can a priori have different dimensionalities

if they are not nested under the same number of loops. Equivalently, the instance

set now contains points in spaces of potentially heterogeneous dimensionalities

for each of the statements in the program. Often, and in particular for code

generation, instances in these different spaces are aligned up to the highest

dimensionality by filling in the missing dimensions with zeroes; while crude,

this is a good way to think about the polyhedral model for imperfect loop nests

as a generalization of the case of perfect loop nests.

2.1.3 Program order

The instance set represents the set of dynamic instructions that gets executed

during a run of the program, and is one of the core abstractions of the polyhedral

model. However, the instance set alone is not enough to represent the behavior

of a program: instructions are imperative in nature and their semantics depends

on their execution order, which cannot be captured by the unordered nature of

a set representation. Instead, the polyhedral model seeks to explicitly model

the execution order as a strict partial order < over the instances: if u and v

are two instances such that u < v, u is executed before v during all executions

of the program. The partial nature of < represents parallel programs: two

incomparable instances u and v can be executed in parallel.

The execution order relates pairs of instances; in the case of the matrix multipli-

cation algorithm presented above, the original execution order is:

I (i, j, k) ≺ I (i′, j′, k′) ⇔ i < i′ ∨ (i = i′ ∧ (j < j′ ∨ (j = j′ ∧ k < k′)))

22 Representations of Programs with Loops and Arrays

On the other hand, the computations for different values of i and j are indepen-

dent and can be represented in parallel, as in the following pseudocode, where

par represents a loop whose iterations are executed in parallel:

par i = 0 to N - 1, j = 0 to M - 1 do
for k = 0 to P - 1 do
c[i, j] += a[i, k] * b[k, j]

The corresponding execution order only relates instances at the same iteration

of loops i and j:

I (i, j, k) ≺ I (i′, j′, k′) ⇔ i = i′ ∧ j = j′ ∧ k < k′

This split representation of programs as an instance set equipped with a partial

order raises the following questions about its practical use:

• How do we build this program representation from an input represen-

tation such as an abstract syntax tree or other compiler intermediate

representations?

• What is a good representation for the partial order that is practical for

use within a compiler or analysis framework?

• What are the conditions for two programs with the same instance set but

different partial execution orders to be semantically equivalent?

• Given an input program, how do we find an efficient execution order (e.g.

in terms of exposed parallelism) that is semantically equivalent?

• How can we build a concrete program that can be compiled down to

machine code from such a representation?

In the context of this presentation, we are only considering well-formed

loops without arbitrary control flow that renders the first question mostly

uninteresting, and it will not be treated further; however, it should not be

dismissed as entirely obvious, in particular when applying the polyhedral

model to fragments of general-purpose programming languages such as C and

Fortran. The remainder of these questions are at the root of problems such as

2.1 The polyhedral model 23

dependence analysis, scheduling, optimization, and code generation — all of

which are cornerstones of the polyhedral model.

2.1.4 Scheduling

The partial order < is rarely represented explicitly both due to the inherently

quadratic nature of such a representation, and because it is unclear how to

perform code generation directly using the partial order. Instead, more compact

representations, called schedules, are sought. A schedule is a function θ that

maps each statement instance to a point in a partially ordered set, whose

representation is chosen adequately to satisfy some “good properties”. A good

representation for the partial order must be compatible with code generation,

that is, it should be possible to generate a loop structure from the schedule

representation that is independent of the value of the program parameters. In

addition, one of the goals of the polyhedral model is program optimization

and parallelization: it should be possible to express profitability heuristics

as optimization problems on the schedule representation. Since I am mainly

concerned about questions of semantic equivalence between programs, I will

eschew questions about the inner workings of such optimizers; instead, I will

focus on what is representable as a schedule without worrying about the

possibility for a specific algorithm to exhibit a particular schedule.

A formal treatment of the schedules used in the polyhedral model can be

found in [71]. A schedule θ is a function mapping statement instances to a

multidimensional schedule domain, a subset of integer tuples of a fixed size

equipped with the lexicographic order ≺. To ensure that they are compatible

with automated tools, the schedules of the polyhedral model are limited to

piece-wise affine functions (or piece-wise quasi-affine functions using modern

tools) of the iteration vector. For instance the execution order of the original

loop nest can be captured by the trivial schedule θ0(I (i, j, k)) = (i, j, k) while

the following program where the iterations of loops i and j are performed in

parallel has the same instance set but schedule θ1(I (i, j, k)) = (k):
for k = 0 to P - 1 do
par i = 0 to N - 1, j = 0 to M - 1 do
c[i, j] += a[i, k] * b[k, j]

24 Representations of Programs with Loops and Arrays

The attentive reader can notice that there is one sequential loop in the program

representation for each schedule dimension, a property that will be ensured by

code generators.

Schedules are a compact representation of the program order ≺, but not all

program orders can be represented by schedules. In particular, since the

lexicographic order is a total order, polyhedral schedules can only express inner

parallelism by mapping several instances to the same value. The “maximally

parallel” program order mentioned above cannot be expressed using such

schedules. This is noted by Pugh [79], who also shows that in spite of such

restrictions, affine schedules can be used to represent most of the sequential loop

transformations studied in the literature such as loop interchange, loop skewing,

loop tiling, and loop reversal. Pugh focuses on the use of unidimensional

schedules with a proposed recursive application of his method when multiple

sequential loops are needed. Lu [71] provides a more general presentation

of multidimensional schedules, and extends the representation to piece-wise

affine schedules. Such multidimensional schedules are now a staple of the

polyhedral model, although there has been some interest in exploring the use

of uni-dimensional polynomial schedules instead [39].

The permutable bands of the Pluto algorithm propose a solution to the problem of

representing outer parallelism using polyhedral schedules: certain dimensions

of the schedule space can be marked as parallel, and are considered as unordered

by the lexicographic order. For instance, if we consider a three-dimensional

space (i, j, k)where j is such a parallel dimension, the partial execution order

is given by:

(i, j, k) ≺ (i′, j′, k′) ⇔ i < i′ ∨ (i = i′ ∧ j = j′ ∧ k < k′)

Using this approach, the schedule for the maximally parallel program earlier

is θ(I (i, j, k)) = (i, j, k) where both i and j are marked as parallel. Multiple

consecutive parallel dimensions can be implemented by a combined parallel

loop in any order: such consecutive parallel dimensions are called permutable

bands.

The idea behind permutable bands can be traced back to older scheduling algo-

rithms such as that of Lim, Cheong, and Lam [68]. Those algorithms could not

express the nesting of parallel bands within sequential loops. Modern schedule

representations such as that of Verdoolaege et al. [118] represent schedules as a

2.1 The polyhedral model 25

hierarchy of nodes representing permutable bands, sequential/lexicographic

schedules, and additional structuring nodes.

2.1.5 Code generation

Once a schedule has been found for a program, a new problem arises: the

polyhedral model has served its goal, and a transformed program (often under

the form of an abstract syntax tree) must be generated from the schedule to be

used by further compilation passes. Like the schedule optimization, the code

generation algorithm depends on the representation of the schedule; however,

unlike schedule optimization, code generation raises non-trivial semantics

questions.

In the case of a single instruction and an affine schedule, Lamport [65] shows

that it is possible to extend the schedule into a one-to-one affine mapping

to a larger space, so that the coordinates of the schedule coincide with the

first few coordinates of the one-to-one mapping. The construction of the

one-to-one mapping does not depend on the program parameters and can thus

be used to reconstruct a loop nest compatible with the schedule’s order: the first

components corresponding to the schedule dimensions are implemented using

nested sequential loops, while the remaining components are implemented as

a single multidimensional parallel loop (that might be split up or recomposed

by later compilation passes). Since every relevant piece of information is affine,

the bounds of the loops can be recovered from the index set and the one-to-one

mapping using integer linear programming. Other early works in the domain

such as those of Pugh [79] use similar techniques; with piece-wise schedules

such as those of Lu [71], extra conditionals are introduced for each piece,

leading to coarse code duplication.

Ancourt and Irigoin [4] give the first formal treatment of the code generation

process in the polyhedral model. Their polyhedra scanning method uses

Fourier-Motzkin elimination to generate a perfect loop nest scanning the points

in a single polyhedron obtained by applying an affine schedule to an input

affine loop nest. The schedule is required to be unimodular, i.e. it must

have determinant +1 or −1; the inverse schedule S−1
is applied to the vector

representing the loop iterators to reconstruct the original statement position

26 Representations of Programs with Loops and Arrays

in the input program. Fourier-Motzkin elimination is used to project the

constraints on an increasing number of dimensions, yielding minimum and

maximum bounds that only depends on the outer loop iterators. The original

constraints are kept as guards on the inner loop and redundant constraints

are removed using Fourier-Motzkin elimination, a sound but incomplete

procedure due to Fourier-Motzkin elimination not being exact on integer sets.

The technique can be thought of as generating code with inefficient control

flow, then trying to “clean up” the code to remove control overhead. It has

been improved further by Fur [41] using the simplex method instead of Fourier-

Motzkin to eliminate redundant constraints. Kelly, Pugh, and Rosser [61]

adapted the technique to handle multiple polyhedra by generating multiple

perfectly nested loops then removing redundant conditionals when possible.

Last in this line of work, Chen [24] proposed several improvements to the

simplification phase in order to minimize control overhead further.

The techniques described in the previous paragraph use a two-step approach

of first generating naïve code with inefficient control flow, then eliminating

redundancies to improve the control overhead in a second step. Another line

of research tries to directly generate efficient code with no control overhead,

obviating the need for the second phase entirely. The first approach following

this line of thought is presented by Quilleré, Rajopadhye, and Wilde [81]. This

top-down approach relies on the idea of separating a polyhedron or union

of polyhedra into two or more disjoint unions of polyhedra according to an

appropriate criterion. Starting from a top-level loop, the domain is separated

into disjoint parts that can be sorted textually in accordance with the schedule

order: the projection of each part on the current loop are disjoint intervals.

Applied recursively, this allows generating code that is free of conditionals,

except for some conditions involving modulo expressions; on the other hand,

this approach is prone to code explosion.

Bastoul [15] improved upon Quilleré’s algorithm to limit the code explosion

by preventing some unneeded splitting and introduced a technique to undo

splitting after the fact when possible. Implemented in the CLooG code generator,

another key innovation of this work is the ability to handle arbitrary schedule

functions without restrictions such as unimodularity. This is achieved by

keeping the original dimensions in the polyhedron that is given to the code

generation algorithm. The original dimensions are considered as additional

inner dimensions; once the code generation process reaches these dimensions,

loops are only generated for them if they cannot be directly expressed in

2.1 The polyhedral model 27

terms of the schedule dimensions. The “un-splitting” technique of Bastoul

is reminiscent of the control overhead removal techniques of the previous

paragraph; Vasilache, Bastoul, and Cohen [110] goes further in that direction

by proposing to use additional control overhead removal techniques on top of

the code generation algorithm.

Schedule trees are a modern and flexible schedule representation introduced

by Verdoolaege et al. [118] and refined by Grosser, Verdoolaege, and Cohen

[44]. Schedule trees are built as a tree of nodes of various types capturing

realistic use cases in applications such as the PPCG polyhedral compiler, and

traditional polyhedral schedules are but one type of node (albeit central).

The code generation algorithm for schedule trees is built on top of Quilleré’s

code generation algorithm, that the authors augmented with extensions such

as using strided loops to replace conditionals with modulo when possible

and an isolation mechanism giving the user some control code generation

process by specifying portions of the space to be processed separately. More

interestingly in terms of reducing code explosion, the improved algorithm uses

a component analysis exploiting the fact that two instances scheduled at the

same time can be arbitrarily reordered to avoid separating lone statements when

possible, resulting in more compact code compared to Bastoul’s post-processing

approach. Razanajato, Loechner, and Bastoul [84] investigate the impact of

the separation heuristics on the performance of the generated code and show

that more compact code is not necessarily more performant. Less compact

code can be more specialized and can often end up with simpler expressions

for loop bounds when decomposing polyhedrons as a composition of simpler

shapes such as rectangles and triangles. Compared to existing approach, their

aggressively splitting method generates code with better performance in some

cases, and worse performance in other cases, showing that the code generation

problem in the polyhedral model might not yet be solved in a satisfactory

way.

Quilleré’s code generation algorithm, as well as some of the improvements by

Bastoul, has been formally verified in Coq by Courant and Leroy [29]. This

formalization has led to the discovery of an intermediate language for loops over

polyhedron (not only intervals) that shares some properties with schedule trees

but is overall simpler, and uncovered some corner cases in the polyhedra sorting

algorithm that however do not seem to occur in practice. The formalization

uses the Verified Polyhedron Library [23] to implement polyhedral operations.

The proof is only focused on the code generation problem and assumes that

28 Representations of Programs with Loops and Arrays

the schedule is correct and respect dependencies. The code generator could be

plugged into a verified compiler such as the CompCert compiler of Leroy [67]

to obtain a polyhedral code generator down to assembly language. The more

recent improvements such as the components analysis and fine-grained control

over the polyhedron splitting decisions mentioned in the previous paragraph

are not part of the verified generator.

All the approaches mentioned here use structured loop nests to iterate over the

points of the polyhedron. Boulet and Feautrier [22] proposed an alternative

approach to code generation in the polyhedral model by generating unstruc-

tured programs using goto statements instead. The technique is based on the

computation of a piece-wise affine function computing the “next” instance to

execute after the current one according to the schedule, and using an appro-

priate goto statement after setting the loop iterators to their “next” value. A

technique based on Boolean guards is also proposed to avoid recomputing

derived variables when their dependencies have not changed.

2.1.6 Access Relations

The polyhedral model is not limited to the representation of programs as sets

of instances. It is also possible to represent relations between statements and

the memory locations they write to or read from. For instance, consider the

statement S defined as c[i, j] = c[i, j] + a[i, k] ∗ b[k, j]. An instance S(i, j, k)
of statement S reads from a[i, k], b[k, j] and c[i, j], and writes to c[i, j]. This

information is used to compute the dependence analysis described in the next

section, which gives criteria to ensure that a schedule is valid.

The representation not only of statements across time dimensions but also of

memory locations across space dimensions enables additional optimizations

related to memory layout to be expressed in the polyhedral model. For instance,

consider the following program:

allocate b[] in
for i = 0 to N - 1 do
b[] = a[i] * a[i]
c[i] = b[] * b[]

2.1 The polyhedral model 29

The same location b[] is used within each iteration of the loop to hold the

intermediate value a[i], hence this loop cannot be parallelized, even though

there are no semantic dependencies between distinct iterations. In order to be

able to parallelize the loop, a data layout transformation called array expansion

must be applied to the array b[] to introduce an extra dimension and store the

intermediate values in separate memory locations:

30 Representations of Programs with Loops and Arrays

allocate b[N] in
for i = 0 to N - 1 do
b[i] = a[i] * a[i]
c[i] = b[i] * b[i]

Much like schedules can be expressed as binary relations mapping a statement

in the original iteration space to a position in the new schedule space, data

layout transformations are expressed in the polyhedral model using binary

relations mapping memory locations in an old data space to memory locations

in a new data space where arrays can have different dimensionalities and

layouts. Data layout transformations can also be expressed using more precise

relations that depend on more that just the original memory location but also

on the occurrence of the array access within the statement (e.g. in the statement

b[] = a[i] * a[i], it is possible to apply a transformation only to the first

occurrence of a[i] but not the second), on the value of the iteration dimensions

for the current instance, and — when applied coincidentally with a schedule —

on the value of the schedule dimensions.

For instance, assuming the statement b[] = a[i] * a[i] is called S1, the

array expansion performed above can be expressed using the following ternary

relation:

{S1(i) → b[] → b[i] | 0 ⩽ i < N}

2.1.7 Dependence analysis

The general problem of equivalence between programs is undecidable; however,

the question of a schedule’ validty (i.e. preserves program semantics) must be

answered. The groundwork for what would become the standard polyhedral

approach to answer this question can be found in Lamport’s seminal work.

The general idea is to examine the dependencies between statement instances

to build a sufficient condition for equivalence that can be expressed as an

integer linear problem. Roughly speaking, we say that there is a dependency

between two instances if they access the same memory location, at least one

of the accesses being a write. Two schedules of the same instance set that

assign the same (strict) order to any pair of two dependent instances represent

semantically equivalent programs. This idea of looking at dependencies is not

2.2 Systems of Affine Recurrence Equations 31

unique to the polyhedral model, and has been extensively considered by the

parallel programming community. What is more unique to the polyhedral

model is the way in which these dependencies are computed.

The original approaches to dependence analysis classified dependencies

coarsely by treating full arrays as variables: instead of considering mem-

ory locations, there is a dependency between two instances in that coarse model

if they access the same array (at possibly different indices) with at least one of

the access being a write. On the other hand, the approach proposed by Lamport

and formalized in Pugh [79] and Lu [71] use an exact dependence analysis:

by inspecting the array accesses performed by the instructions, parametric

representations of the array locations accessed by each instruction can be

constructed. From these, a more precise over-approximation of the dependence

relation can be constructed using (once again) integer linear programming

techniques.

Computing the data dependencies between statements require inspecting the

representation of the statement I in order to collect the memory locations

it accesses. In order to make this tractable, this is usually done under the

assumption that arrays do not alias, and that array subscripts are always within

bounds, two properties that have to be checked separately. A strength often

touted by proponents of the polyhedral model is that, unlike other approaches

to automatic parallelization, the data dependencies between statement instances

can be computed exactly. The fact that the treatment of data dependencies

by the polyhedral model is by necessity correct for any over-approximation

of the dependencies is sometimes overlooked: it means that approximate

dependencies for any statement can be computed, although more precise

analyses and more transformations can be performed when only affine array

subscripts are in use.

2.2 Systems of Affine Recurrence Equations

While the polyhedral model was developed as a tool for the optimization of

imperative programs with arrays and loops, the theoretical foundations for

the semantics of programs that can be exactly represented in the model can

be found in the theory of Systems of Affine Recurrence Equations (SAREs).

32 Representations of Programs with Loops and Arrays

The foundations for the study of SAREs are described by Karp, Miller, and

Winograd [60], predating Lamport’s parallelization scheme by a few years.

Karp, Miller, and Winograd [60] are interested in the efficient organization

of computation for the recurrence equations that arise when applying finite-

difference approximations to systems of partial differential equations. These

recurrence equations are defined over a multidimensional grid space that

can be represented as a subset of Zn, and exhibit a uniformity property: the

dependencies can be expressed as constant vectors that invariant to translation

on the grid.

SAREs are a generalization of the Systems of Uniform Recurrence Equations

(SUREs) introduced by Karp, Miller, and Winograd [60]. A SURE can be

understood by considering the case of a single equation for a function a1

defined over a domain𝒟1 ⊆ Zn:

a1(p) = f1(a1(p −w1), . . . , a1(p −wk))

where p ∈ 𝒟1 and w1, . . . ,wk ∈ Zn are constant n-dimensional vectors with

integral coordinates. The SUREs studied by Karp, Miller, and Winograd [60]

are systems of such equations over a set of functions a1, . . . , am each having

one defining equation over domains𝒟1, . . . ,𝒟m, subsets of a shared space Zn.

The equations can be mutually recursive, and are represented by a dependence

graph, abstracting away the right-hand sides except for their dependencies.

There is a direct correspondence between the functions a1, . . . , am of a SURE

and the instructions in a polyhedral program representation. Karp, Miller, and

Winograd [60] are interested in the study of SUREs as they often occur when

applying finite-difference approximations to systems of partial differential

equations, and are hence motivated to find efficient solvers for SUREs. They

introduce the notion of schedules on SUREs from which the polyhedral

schedules are derived, although the schedules of Karp, Miller, and Winograd

[60] are unidimensional. A schedule of particular theoretical interest (but of

limited practical importance) is the free schedule: each computation is schedules

to the first time at which all its dependencies are available. The authors show

criteria for the existence of a schedule and for the amount of parallelism exposed

by a schedule, laying the theoretical foundation for the techniques of Lamport

[65] — and hence the whole polyhedral compilation field.

The equations in a SURE are uniform because the dependence vectors wi are

constants independent of the arguments of the function being computed. On

2.2 Systems of Affine Recurrence Equations 33

the other hand, arbitrary affine expressions can be used as dependence vectors

in a SARE; furthermore, multiple defining equations with mutually disjoint

domains and different right-hand sides can be associated with a single function.

Hence, a SARE is a set of equations:

∀x1, . . . , xnA , ϕ =⇒ A(x1, . . . , xnA) = e

where ϕ is a Boolean-valued affine formula of x1, . . . , xnA (and of global

constants), and e is an expression built from functions and tensor accesses.

The domain of the equation above is 𝒟 = {(x1, . . . , xnA) | ϕ}. If there are

multiple defining equations for the same tensor A, their domains must be

disjoint. The indices of all tensor accesses in emust also be affine expressions

of the variables. Equivalently, a single equation for each tensor can be provided

that performs a case analysis on the domain, and piece-wise affine expressions

in the tensor indices can be allowed. The inputs of a SARE are the tensors that

never appear on the left-hand side of an equation. There is no requirement that

the domain of a SARE be total, or that equations be free of self-references such

as A(i) = A(i) + 1. SAREs are typically given a semantic through a schedule:

each point in the domain of each equation is assigned a timestamp later than

all of its dependencies; the disjointness condition on the equations ensures

that this gives a unique semantics to a given SARE. Some SAREs such as those

with self-references do not have valid schedules, and hence do not have a

semantics.

Polyhedral programs can be converted to SAREs by using dataflow analysis as

introduced by Collard and Griebl [28]: using the Parametric Integer Program-

ming algorithm of [36], it is possible to express the last statement instance that

writes to a given memory location as a piece-wise affine expression. Tensors can

then be introduced for each assignment statement, with as many dimensions as

the statement has outer loop iterators, and the right-hand side of the assignment

can be used as the definition of the tensor where array accesses are replaced

with the corresponding tensor access obtained through the previous analysis

— a process also known as array expansion [38]. Dataflow analysis and array

expansion can be used to remove false dependencies in polyhedral programs.

SAREs are used as intermediate representations in polyhedral compilers, and

form the foundation of the ALPHA equational language of Verge, Mauras,

and Quinton [119]. The mathematical nature of SAREs are also a good

candidate for expressing the specification of affine programs, and the verifier

34 Representations of Programs with Loops and Arrays

presented in chapter 5 uses SAREs as a specification language to abstract

away from the details of a specific implementation such as Halide or Tensor

Comprehensions.

2.3 Functional Combinators and Rewrite Rules

Another line of research aiming to generate high-performance code for multi-

dimensional workloads stems from the functional programming community

and relies on rewrite rules for compiler optimizations. In languages such as

Accelerate [72], Futhark [50] or Rise [48], a successor to Lift [102] programs

are written using high-level functional combinators such as map and reduce.

Optimization and implementation choices are expressed using rewrite rules

introducing many specialized versions of the combinators that ultimately guide

an imperative code generator. The rewrite rules approach is flexible and can be

extended through the introduction of new combinators, new rewrite rules, or

both, to support various application domains such as stencils [47] and hardware

constructs such as specific vectorized instructions [101].

Compared to polyhedral compilation and especially to scheduling approaches

such as that used by Halide, approaches based on functional combinators are in

practice more limited in their ability to deliver the high-performance required by

real-world applications. Rise has proposed to combine functional approaches

and schedule-based approaches by introducing Elevate, a strategy language

that can express complex combinations of rewrite rules programmatically and

re-implement many of the scheduling primitives of TVM using this strategy

language.

Approaches based on functional combinators typically use the same functional

language to implement the original specification and the final implementation.

The rewrite rules can be proved correct independently. The approach of Liu

et al. [69] gives a formal specification to a functional language with map and

reduce combinators, and the available rewrite rules of the system are theorems

stating the correctness of the rule and proved in Coq. Using manually crafted

rules, they can match the performance obtained by a well-optimized Halide

schedule.

2.4 The Halide model 35

2.4 The Halide model

The polyhedral model makes the representation and optimization of many

array programs possible; however, in part due to its wide expressiveness,

optimizers that work by trying to find polyhedral schedules often fail to

compete with programs hand-optimized by experts, a situation for which the

user has no resort but to optimize the program by hand. This observation has

led to the design and implementation of scheduling languages that decouple the

writing of an algorithm with the application of a schedule using user-facing

scheduling primitives. Multiple such attempts have been made using the

tools and abstractions provided by the polyhedral model, but projects such

as AlphaZ, CHiLL or URUK have largely been unsuccessful at reaching a

non-expert audience. One of the reasons for this might be the very reliance

of these tools on the polyhedral model: the polyhedral model “leaks” in

various ways into the user interface. This may not deter, and even attract,

a researcher familiar with the model, but it makes these tools harder than

necessary to use and understand for the uninitiated. In comparison, the Halide

compiler and language, developed by Ragan-Kelly et al. in the context of

image processing pipelines, provides the combination of a familiar array-based

syntax and a powerful but succinct scheduling language. Originally designed

for computational photography and computer vision algorithms, Halide’s

scheduling language provides a mental model that is more familiar and easier

to use for members of related communities. The success of Halide — used both

in an industrial setting and the focus of ongoing research — has inspired the

development of TVM, originally a fork of Halide, with a focus on deep learning

operators, and has inspired the polyhedral community to build Tiramisu, a

user-directed polyhedral compiler with a focus on distributed computing and

whose scheduling language is heavily inspired by Halide’s.

2.4.1 Algorithms

Halide represents tensors of arbitrary dimensionality as pure functions defined

over an infinite integer domain. The expressions defining the tensors can refer

to other tensors, which must have been previously defined: the graph of tensor

definitions must be acyclic. Halide algorithms are defined in a DSL embedded

in C++ or Python, where the user defines tensors (called Funcs) as symbolic

36 Representations of Programs with Loops and Arrays

multidimensional functions over an infinite domain. Definitions are written

using an overloaded = operator. The traditional Halide example is that of a

3 × 3 unnormalized box filter, reproduced below from “Halide: decoupling

algorithms from schedules for high-performance image processing” [83].

Func bh, bv; Var x, y;
ImageParam in(UInt(8), 2);

bh(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;
bv(x, y) = (bh(x, y-1) + bh(x, y) + bh(x, y + 1))/3;

In this algorithm, we take as input a grayscale image represented by theN×M
uint8matrix in, and computes a horizontal blur in bh followed by a vertical

blur in bv. The first definition of any Func is its unique pure definition, and it

is treated specially to ensure that the Func is defined over all the points in its

multidimensional domain. Pure definitions make use of pure variables, which

have type Var in the DSL, and are implicitly quantified over all the integers

(including negative ones). Distinct pure variables must appear as arguments

to the tensor in the left-hand side of a pure definition, and are bound on the

right-hand side. Only pure variables bound on the left-hand side can appear

in the right-hand side.

A Halide specification is called an algorithm, and an algorithm containing only

pure definitions bears similarity to a system of affine recurrence equation used

in the polyhedral model, with a few key differences allowing Halide to thrive on

different trade-offs. First, Halide algorithms are laid out in a textual order: pure

definitions can only refer to Funcs that have already been defined, ensuring an

acyclic dependence graph between the pure definitions that make them more

restrictive than the arbitrary mutual recursion of SAREs. Second, equations in

a SARE have as domain a sub-set of Zn defined using affine inequalities, while

pure definitions in Halide are always defined over the full Zn space. In a SARE

each access must be checked to be in bounds and falls back to a pre-determined

value otherwise; on the other hand, arbitrary indices (including the result of

indexing another Func) can be used on the right-hand side of a pure Halide

definition. Bounds must be approximated to ensure infinite arrays do not have

to be materialized, as described below.

Using only pure definitions, Halide algorithms are fairly limited in their

expressiveness and are not able to express recurrences of parametric length.

2.4 The Halide model 37

Halide’s solution is to introduce some imperative mutability to the algorithms

through the concept of update definitions, that effectively enables the user to

implement algorithms using sequential loops. An example of an algorithm

using update definition is the following specification for the general matrix

multiplication D = αAB + βC, where K is the size of the reduced dimension

Var i, j;
Func D;
RDom k(0, K);
D(i, j) = beta * C(i, j);
D(i, j) = D(i, j) + alpha * A(i, k) * B(k, j);

The tensor D in this example has two different definitions. The pure definition

D(i, j) = beta * C(i, j) initializes the tensor, and the update definition

D(i, j) = D(i, j) + alpha * A(i, k) * B(k, j) applies on top of that

initialization for each value of k, iteratively. In addition to pure variables,

update definitions can make use of recurrence variables. Using, recurrence Halide calls

recurrence variables

“reduction variables“,

but their use is not

limited to reductions,

hence I prefer the term

of “recurrence

variables”. See

chapter 7 for an

in-depth discussion of

reductions.

variables is it possible to define tensors iteratively in multiple steps, by having

the value at each step depend on the value at the previous step. The value of

D(i, j) used in the update definition refers to the previous value of the tensor

D(i, j) in an imperative way, according to the iteration order of the recurrence

variables appearing in either the left- or right- hand side of the definition.

Recurrence variables are declared using the RDom constructor, representing

a multidimensional loop as a tuple of recurrence variables iterating over a

bounded rectangular domain. In the example, the update definition uses the

recurrence variable k, and is semantically equivalent to the imperative loop:

for k = 0 to K - 1 do
D(i, j) = D(i, j) + alpha * A(i, k) * B(k, j)

As in the example, update definitions can refer to the tensor currently being

defined, in an imperative way. They are not equations: pure variables appearing

in update definitions should be thought of informally as parallel loops over

an infinite domain. As such, it is not possible to give a semantics to some

update definitions such as D(i, j) = D(j, i) + 1. In order to rule out such

impossible definitions, Halide ensures that within a single update definition,

the same tensor indices can only be accessed at the same value of the pure variables.

This is enforced by ensuring that each pure variable appearing in the definition

must appear as an argument in the same position in all accesses to that tensor

38 Representations of Programs with Loops and Arrays

in the definition. The pure variable can also appear in other positions, for

instance, it is valid to write D(i, i + 1) = D(i, i - 1) + D(i, 0) because

i is the only pure variable, and it is the first argument in all accesses to tensor

D.

Definitions for distinct Funcs cannot be interleaved: a definition Func only

sees the values of another Func after all the update definitions for that other

Func have been processed. To define mutually recursive tensors, users must

use functions whose value is a tuple, whose components must be computed

together. Finally, update definitions can include an arbitrary boolean expression

as a “filter” restricting the points where the update is performed, and which can

refer to the recurrence variables and any pure variables used in the definition.

If all the filters and all the index expressions appearing in a Halide algorithm

are piece-wise quasi-affine combinations of pure and recurrence variables, we

say that the algorithm is an affine algorithm. An affine algorithm is equivalent

to an affine program that can be represented exactly in the polyhedral model,

and can be readily converted to a SARE, as explained in subsection 2.4.4.

2.4.2 Schedules

Halide algorithms specify what values should be computed, but does not

say much about how to compute those values. More precisely, the algorithm

does not specify the order in which computations should occur (except for

semantic dependencies), or where intermediate results should be stored, if

applicable. Like in the polyhedral model, this information is encoded separately

in a schedule — but Halide schedules bear little resemblance to polyhedral

schedules. In fact, I would argue that Halide’s scheduling primitives, tailored

to the needs of computational photography and computer vision algorithms,

reveal a fundamentally different way of thinking about the organization of

computation compared to traditional polyhedral tools, a way of thinking

materialized in the compute_at and store_at scheduling directives.

Halide schedules are written in the same DSL as the algorithms by applying

scheduling directives to the Funcs. Schedules are often written manually by

experts, but Halide also provides automated schedulers that search for efficient

schedules using machine learning techniques [3, 5]. By default, scheduling

2.4 The Halide model 39

directives apply to the pure definition of the Func; they can also be applied to

update definitions by using the .update() accessor which return a scheduling

object for the corresponding update definition. Describing the complete

interface of Halide’s scheduling API is out of scope for this manuscript, and

I will instead focus on a few simple examples to give a taste of its design

philosophy.

When scheduling a single function, Halide’s scheduling directives can express

a restricted set of loop transformations using the split and reorder primitives.

For instance, in the outer product C(i, j) = A(i) × B(j), the dimension i can be

strip-mined and sunk using the schedule

C.split(i, i0, i1, 4).reorder(i1, j, i0)

leading to the following low-level code:

for i0 = 0 to (N + 3) / 4 - 1 do
for j = 0 to M - 1 do
for i1 = 0 to 3 do
let i = min(i0 * 4, N - 4) + i1 in
c[i, j] := a[i] * b[j]

These primitives can express arbitrary tiling of the perfect loop nest computing

the function’s definition, but not more complex transformations such as skewing

that can be represented using the affine transformations of the polyhedral model.

On the other hand, the split primitive can express non-affine parametric tiling

(i.e. tiling by a factor that is not a statically known constant). The differences

in expressiveness between Halide schedules and polyhedral schedules are

discussed in more depth in Baghdadi et al. [7].

The split directive indicates that the loop over i should be separated into an

outer loop i0 and an inner loop i1. The loop nesting order, from innermost

to outermost, is specified by the reorder directive. Additional scheduling

directives such as .parallel or .vectorize can be used to mark loops as

parallel or to use vectorized instructions. Recurrence variables can typically

not be made parallel unless they satisfy specific requirements ensuring that

parallelization is semantically sound. It should be noted that in this example,

when N is not a multiple of four, the last tile of i is “shifted inwards” and

recomputes some elements that were already computed in the previous tile.

40 Representations of Programs with Loops and Arrays

This is only one of the modes provided by Halide’s split directive: by

ensuring that the loop over i1 has a statically known constant size, it enables

its implementation using vectorized instructions (expressed in Halide with the

.vector(i1) directive). Later optimizations performed by the Halide compiler

(not specified by the schedule) may split the last iteration of the i0 loop and

simplify away the min computation except for that last iteration.

The bounds of the generated loops are computed using a process called bounds

inference based on user-provided bounds for the area of C to be computed,

here J0,NJ×J0,MJ. Bounds inference uses interval analysis to compute an

over-approximation of the necessary range of the loops for the requested

domain of the output tensor to be computed. By using interval analysis, Halide

is not restricted to affine expressions in loop bounds and tile sizes; on the other

hand, Halide’s bounds inference algorithm can sometimes be too conservative

and infer larger bounds than necessary, resulting in wasted computation. If

the bounds inference fails (e.g. the computed over-approximation would have

an infinite size in some dimension), the programmer is met with an error and

has to explicitly clamp the indices to ensure they are within finite bounds, an

information that can be picked up by bounds inference. It is the programmer’s

responsibility to ensure that this does not unexpectedly change the algorithm’s

semantics.

The strength of Halide’s scheduling language appears when scheduling a

complete pipeline composed of multiple dependent tensors. In the polyhedral

model, each tensor definition is interpreted as a statement, and polyhedral

schedules map each statement instance (i.e. each point in a tensor’s definition

domain, in the case of pure definitions) to a single point in the final iteration

space, building schedules that are work-efficient by construction. In the modern

world where the cost of accessing memory is orders of magnitude larger than

the cost of performing a computation, work-efficiency is not necessarily a

desirable property: when possible, it is often better to recompute derived

values from data that is available locally rather than to communicate those

through a slower memory shared amongst many processing units, a technique

known as rematerialization. Halide recognizes the need for rematerialization

and Halide’s schedules are designed for a proper exploitation of the trade-off

between work-efficiency and locality.

Going back to the box filter shown earlier, “Halide: decoupling algorithms from

schedules for high-performance image processing” [83] shows the result of two

2.4 The Halide model 41

schedules illustrating this tension. Locality can be maximized by computing

the required values of bh at each iteration of the loop over bv, essentially

inlining bh’s computation. Halide’s default schedule is aggressively inlining

intermediate tensors, and results in the following low-level code:

for y:
for x:
bv(x, y) = // bh(x,y-1) + bh(x,y) + bh(x,y+1) =
(in(x-1,y-1)+in(x,y-1)+in(x+1,y-1))
+(in(x-1,y)+in(x,y)+in(x+1,y))
+(in(x-1,y+1)+in(x,y+1)+in(x+1,y+1))

The values of bh(x, y− 1), bh(x, y) and bh(x, y+ 1) are computed immediately

before being used, ensuring that they fit in registers or, at worst, a fast cache,

minimizing memory transfers. The price to pay for that locality is that each

point of bh is computed three times: there is an overlap between the points of

bh computed at each iteration of the loop.

At the other end of the scale, all values of bh could be pre-computed once,

in a work-efficient way. Since Halide prevents mutually recursive tensor

definitions, each tensor in a pipeline is scheduled independently, and this

work-efficient schedule can be expressed using bh.compute_root(), forcing

the computation of bh to be performed in a separate loop nest from that of bv:
bh.compute_root() in Halide.

for y:
for x:
bh(x, y) = in(x-1, y)+in(x,y)+in(x+1,y)

for y:
for x:
bv(x, y) = bh(x,y-1)+bh(x,y)+bh(x,y+1)

Halide’s bounds inference algorithm is used to automatically infer the bounds

on the loops over bh that are needed to compute the requested rectangle of bv.
No redundant work if performed in this work-efficient schedule, but locality is

completely lost: by first computing all of bh before computing bv, we essentially

ensure that it will not fit in cache (unless the dimensions are very small) and

that additional slow memory transfers from the memory will be needed.

42 Representations of Programs with Loops and Arrays

To explore the trade-offs between the local default schedule and the work-

efficient schedule of compute_root, Halide provides the compute_at primitive.

This primitive specifies where the computation of a function should happen

within the loop nest of its consumer. For instance, assume we have tiled the

computation of bv using the schedule directive

bv.split(x, tx, px, T)
.split(y, ty, py, T)
.reorder(px, py, tx, ty)

Ignoring the alignment issues when the dimension sizes are not divisible by

the tile size, this results in a loop nest that looks like the following:

for ty:
for tx:
for py:
for px:
let x = tx * T + px in

let y = ty * T + py in
bv(x, y) = ...

Then, using the scheduling directive bh.compute_at(bv, tx) indicates that

the value of bh should be computed independently for each tile: the bounds

inference algorithm is used on the set of bv locations computed within a specific

iteration of loop tx, and Halide inserts at the beginning of that loop code that

computes the inferred over-approximation of bh needed for the computation

of bv, resulting in the following loop nest:

for ty:
for tx:
for y = ty * T to ty * T + T - 1 do
for x = tx * T to tx * T + T - 1 do

bh(x, y) = ...

for py:
for px:
x = tx * tile_size + px

y = ty * tile_size + py
bv(x, y) = ...

The sizes of the loops for y and x are inferred automatically by Halide’s bounds

2.4 The Halide model 43

inference pass to ensure that all points required by the computation of bv is

computed exactly once between the tile. By adjusting the tile size, we get a

trade-off between work-efficiency and locality: only the points on the border of

the tile are re-computed across tiles, and the size of the portion of bh which

must be kept is (roughly) that of the tile. Although not crucial to the discussion,

it should be noted that in practice Halide re-aligns the loops and array bounds

so that they start at zero.

In some cases, compute_at forces the materialization of intermediate buffers

that are too large compared to their use. In this case, the store_at schedule

directive can be used. Like compute_at, store_at indicates a loop level.

Instead of allocating the temporary buffer for the intermediate computation

at the level of the compute_at, it is introduced at the level of the store_at.
Halide ensures that there are only sequential loops between the store_at and

compute_at level, and does not recompute values that it can prove have already

been computed by previous iterations using interval analysis. In addition,

Halide provides “storage folding” facilities to store intermediate values in a

rolling buffer when applicable.

Halide schedules can express trade-offs between work efficiency and data

locality concisely. The reliance on rectangular regions and interval analysis

gives a different point in the design space compared to polyhedral schedules.

The design of the compute_at and store_at scheduling primitives provide a

simple vision of tiling by computing the dependencies of a tile independently

of other tiles, leading naturally to overlapping tiles when appropriate. On

the other hand, the global view of the polyhedral model is biased towards

work-efficient schedules that are not necessarily optimal on today’s hardware.

Research exists to incorporate non work-efficient schedules in the polyhedral

model, but it is typically separate from the general framework and done using

specific approaches and ad-hoc schedulers. An example of this is the recent

work of Zhao and Cohen [121] that uses the expansion node of schedule trees

to represent overlapped tiling by using a single point in the original domain to

represent a full tile with modified dependencies.

44 Representations of Programs with Loops and Arrays

2.4.3 Semantics of Halide Specifications

Halide has been developed as a practical system, whose semantics is mostly

described in prose and represents the behavior of the existing implementation.

Reinking, Bernstein, and Ragan-Kelley [89] proposed a semantics of Halide

algorithms understood as sequential programs, in order to formalize the effect

of a subset of Halide’s scheduling directives and prove the correctness of the

code generation process. The authors of that paper also formalize Halide’s

bounds inference algorithm as solving a program synthesis problem.

I am more interested in giving an equational semantics to Halide algorithms,

in order to be able to name and keep track of the intermediate states of the

evaluation process. Hence, I propose the following formalization of Halide

algorithms that are not necessarily affine and may contain arbitrary expressions.

In the next subsection, I propose a reduction of affine Halide algorithms (i.e.

algorithms where all tensor accesses and all filters are affine in the pure and

recurrence variables) to SAREs that follow the same general structure as the

semantics in this section.

A Halide algorithm over a set of tensors 𝒮 can be represented as a tuple

⟨I, P,U, <⟩ where:

• I is the set of input tensors, which have no associated definition;

• P maps each tensor A ∈ 𝒮\I to its pure definition PA;

• U maps each tensor A ∈ 𝒮\I to a (possibly empty) finite sequence

U1

A
, . . . ,UnA

A
of update definitions for A;

• < defines a total order over the non-input tensors in 𝒮\I, representing

the textual order of the first pure definition to the tensor

The pure definition PA for tensor A ∈ 𝒮 is an equation written as follows:

∀x1, . . . , xnA , A(x1, . . . , xnA) = e

The right-hand side of a pure definition can only refer to input tensors and

the defined tensors A′ defined before A (i.e. with A′ < A). In particular, the

definition of A cannot refer to A itself.

2.4 The Halide model 45

An update definition Ui
A

for tensor A ∈ 𝒮 is also an equation, which involve

some pure variables x1, . . . , xn and an arbitrary number of recurrence variables

y1, . . . , yr:

∀x1, . . . , xn. for y1 : R1, . . . , yr : Rr. ϕ =⇒ A(e1, . . . , enA) = e
Each of the yi has a recurrence domain Ri, a parametrically bounded interval

of Z. The bounds of Ri can only depend on the parameters, not the pure

variables nor other recurrence variables. The boolean expression ϕ is the filter:

an additional condition on the points where the update is performed.

The well-formedness condition can be formalized as follows. We require the

existence of a function π from the pure variables {1, . . . ,n} to the argument

positions {1, . . . ,nA} such that, for all 1 ⩽ j ⩽ n:

1. eπ(j) = xj, and

2. For each A(e′
1
, . . . , e′nA) appearing as a sub-term of either the right-hand

side e or the filter ϕ, we have e′
π(j) = xj.

π maps each pure variable to a shared position in all accesses of the tensor

being defined in the update definition. In general, there might be fewer pure

variables than argument positions (n ⩽ nA); the other arguments can be any

expression of the pure and reduction variables. In any case, this ensures that

there is no circular dependencies between iterations of an update definition:

the expression defining a location at some value of the pure variables can not

read from locations defined for other values of the pure variables, since the

pure variables are shared indices of all the accesses.

I now propose a semantics for Halide algorithms based on model theory. Let

us define a stage index ψ as one of:

ψ ::= 𝒫 | 𝒰n | ℱ
| 𝒰n(n1, . . . ,nm)

where n > 0 is a non-negative integer and n1, . . . ,nm ∈ Z are arbitrary

integers.

Stage indices are used to distinguish between each of the “versions” of a tensor

that occurs when evaluating the Halide algorithm. They encode the updates

that have been applied to a tensor. A stage index can be:

46 Representations of Programs with Loops and Arrays

• The pure stage index 𝒫 refers to the value of the tensor’s pure definition.

• The final stage index ℱ refers to the value of the tensor after all updates

have been performed. This is the value of the tensor that is used by

dependent tensor definitions.

• An update stage index𝒰n refers to the value of the tensor after evaluating

the n-th update stage.

• A partial update stage index𝒰n(n1, . . . ,nm) refers to the value of the tensor

during the evaluation of the n-th update stage. The values n1, . . . ,nm
are the values of the reduction variables used in the n-th update stage;

updates for lexicographically smaller values of the reduction variables

are already taken into consideration.

There is a natural order, corresponding to the evaluation order, on stage indices.

In practice, Halide

orders the recurrence

variables in reverse

lexicographic order

(inside-out instead of

outside-in), but it

makes no practical

difference here.

𝒫 ≺ · · · ≺ 𝒰n−1 ≺ 𝒰n(n1, . . . ,nm) ≺ 𝒰n ≺ · · · ≺ ℱ
In addition, the𝒰n(n1, . . . ,nm) for the same stage n are ordered lexicographi-

cally on the recurrence variables n1, . . . ,nm.

A model M of the algorithm is a function from pairs ⟨A(n1, . . . ,nn),ψ⟩ of

a tensor indexing and a stage index. The evaluation of an expression e in

an environment ℰ and modelM, denoted JeKM, is defined by mapping each

function to their usual interpretation and maps tensor indices to their final

stage:

JA(e1, . . . , en)Kℰ;M =M(⟨A(Je1Kℰ;M, . . . , JenKℰ;M), ℱ ⟩)

We also define the intermediate evaluation of expression e in environment

ℰ and model M at stage ψ for tensor A, denoted JeKA ↦→ψℰ;M
, by mapping each

function to its usual interpretation and maps tensor indices to the current stage

as follows:

JA(e1, . . . , en)KB ↦→ψℰ;M
= {

M(⟨A(Je1K
B ↦→ψ
ℰ;M

, . . . , JenKB ↦→ψℰ;M
),ψ⟩) if A = B

M(⟨A(Je1K
B ↦→ψ
ℰ;M

, . . . , JenKB ↦→ψℰ;M
), ℱ ⟩) otherwise

2.4 The Halide model 47

We then say that M is a model for a Halide algorithm 𝒜 if the following

holds:

• For any pure definition in𝒜 of the form

∀x1, . . . , xn, A(x1, . . . , xn) = e

and for all integers n1, . . . ,nn, the following equality holds:

M(⟨A(n1, . . . ,nn),𝒫⟩) = JeKA ↦→𝒫ℰ ,x1 ↦→n1 ,...,xn ↦→nn;M

This states that the evaluation of tensor A at its pure index satisfies

Halide’s pure definition for A. Recursive tensor accesses are not allowed

in pure definitions, hence the choice to map A to its pure index when

evaluating e is arbitrary.

• For any update definition of tensor A at position s in𝒜:

∀x1, . . . , xn. for y1 : R1, . . . , yr : Rr. ϕ =⇒ A(e1, . . . , enA) = e

and for all integers n1, . . . ,nn and m1, . . . ,mr such that mi ∈ JRiKℰ
for any 1 ⩽ i ⩽ r, let ψ be the current stage index𝒰s(m1, . . . ,mr) and

let ψ′ be the previous stage index for A. ψ′ is either 𝒰s(m′
1
, . . . ,m′r)

where m′
i
∈ JRiKℰ for 1 ⩽ i ⩽ r and (m′

1
, . . . ,m′r) is the lexicographic

predecessor of (m1, . . . ,mr); or𝒰s−1 (with the convention that𝒰0 = 𝒫)

if no such lexicographic predecessor exists. Moreover, let ℰ′ be ℰ , x1 ↦→
n1, . . . , xn ↦→ nn, y1 ↦→ m1, . . . , yr ↦→ mr. Then, if JϕKA ↦→ψ

′

ℰ′;M holds, the

following equality holds:

M(⟨A(Je1K
A ↦→ψ′
ℰ′;M , . . . , JenAKA ↦→ψ

′

ℰ′;M),ψ⟩) = JeKA ↦→ψ
′

ℰ′;M

This states that when the condition ϕ holds, the value of A at the new

stage index ψ is equal to the evaluation of e at the previous stage index

ψ′.

Otherwise, the following equality holds:

M(⟨A(Je1K
A ↦→ψ′
ℰ′;M , . . . , JenAKA ↦→ψ

′

ℰ′;M),ψ⟩) =

M(⟨A(Je1K
A ↦→ψ′
ℰ′;M , . . . , JenAKA ↦→ψ

′

ℰ′;M),ψ
′⟩)

48 Representations of Programs with Loops and Arrays

This states that when ϕ does not hold, the value of A at the new stage

index ψ is unchanged and equal to its value at the previous stage index

ψ′.

All expressions are evaluated in the environment ℰ′ that defines the

current values of the pure and recurrence variables, but at the previous

stage index ψ′ instead of the current stage index ψ. This ensures the

absence of dependence cycles.

• The value at stage index𝒰s is equal to the value at the last stage index

𝒰s(n1, . . . ,nn) that is within the recurrence bounds, or to the evaluation

at stage index𝒰s−1 (still with the convention𝒰0 = 𝒫) if there is no such

stage index.

• The value at stage ℱ is equal to the value at𝒰s where s is the last update

associated with the tensor, or at 𝒫 if the tensor has no update.

This construction is deterministic in the sense that for any Halide algorithm

𝒜 and initial environment ℰ assigning a well-typed value to each of the

parameters, for any model M0 for the input tensor of 𝒜, there is a unique

modelM of𝒜 that is an extension ofM0.

The proof is obtained by defining a schedule assigning a unique computation

point to each pair of a tensor access and a stage index so that all its dependencies

are computed beforehand. The schedule is given as a lexicographically ordered

tuple. Since Halide requires a valid dependency graph between tensors, the

first component of the schedule is the tensor name, ordered according to the

Halide dependency order. Hence, we only need to build a schedule for the

equations relating to a given tensor, assuming that the tensors it depends on

are fully defined.

We take the stage index as second component of the schedule. Indeed, the

construction above ensures by construction that any equation for tensor A at

stage index ψ only depends on the values of A at a lexicographically smaller

stage index ψ′ ≺ ψ. The only exception is the pure definition of A at stage

𝒫, however, Halide forbids recursive uses of tensor A in its pure definition,

ensuring that A at 𝒫 has no dependence on itself.

Since the bounds on recurrence variables can only depend on parameters that

2.4 The Halide model 49

are defined by the initial environment ℰ, for each initial environment ℰ the set

of valid stage indices is finite and the construction is well-founded.

Finally, we must check that we never compute two different values for the

same tensor access and stage index. This could only happen in an update

definition, and since the stage index exactly defines the value of the pure

variables, it would require two distinct values of the pure variables to map to

the same tensor access. Since Halide requires that all pure variables used in

an assignment must appear at least once as an argument of the tensor being

defined on the left-hand side, this is not possible.

Note that this construction corresponds to an inner parallel construction: for

each stage index (that can be understood as a sequential iteration), we compute

the value of all the affected tensor accesses in parallel. We did not use the

second part of Halide’s update restriction, namely that all accesses to the tensor

in the right-hand side must share its pure variable indices with the left-hand

side definition. This second part is not necessary here because our semantics

only reads from the value of the tensor at the previous stage index, preventing

possible conflicts. This would not be practical in an implementation, as it

would require making a copy of the whole tensor at each step. By forcing the

pure variables to appear at the same position in all tensor accesses, Halides

ensures that the updates can be performed independently for each value of the

pure variables, making a practical implementation possible.

The semantics that is given here can be understood as defining a set of equations

between the values in the model. If the original Halide semantics was affine

(i.e. all array accesses and filter definitions are affine in the pure and recurrence

variables), then this set of equations form a SARE.

Example 1. Let us consider a simple matrix multiplication, written in Halide

as follows:

Var i, j;
RDom k(0, K);
C(i, j) = 0;
C(i, j) = C(i, j) + A(i, k) * B(k, j)

A model M is a model for this algorithm in environment ℰ if the following

constraints hold, for all i, j ∈ Z:

50 Representations of Programs with Loops and Arrays

For the pure definition of C, we have

M(⟨C(i, j)⟩,𝒫⟩) = 0 (2.1)

For the partial updates at stage 1, when ℰ(K) > 0, the previous stage index is

𝒫 when k = 0 and𝒰1(k − 1) otherwise, hence we have

M(⟨C(i, j)⟩,𝒰1(0)⟩) =
M(⟨C(i, j),𝒫⟩) +M(⟨A(i, k), ℱ ⟩) ×M(⟨B(k, j), ℱ ⟩) (2.2)

and for all 0 < k < K

M(⟨C(i, j)⟩,𝒰1(k)⟩) =
M(⟨C(i, j),𝒰1(k − 1)⟩) +M(⟨A(i, k), ℱ ⟩) ×M(⟨B(k, j), ℱ ⟩) (2.3)

For the update at stage 1, when ℰ(K) > 0 the last partial update is𝒰1(K − 1),
hence we have

M(⟨C(i, j)⟩,𝒰1⟩) =M(⟨C(i, j)⟩,𝒰1(K − 1)⟩) (2.4)

and otherwise there are no partial updates and we have

M(⟨C(i, j)⟩,𝒰1⟩) =M(⟨C(i, j)⟩,𝒫⟩) (2.5)

Finally,𝒰1 is the stae of the last update, and we have

M(⟨C(i, j)⟩, ℱ ⟩) =M(⟨C(i, j)⟩,𝒰1) (2.6)

The whole process is not without reminding of the array expansion procedure

of Feautrier [38], although our construction is more verbose because we do not

assume that tensor indices are affine.

2.4.4 Reduction from affine Halide algorithms to SAREs

The model theoretic semantics of Halide algorithms described in the previous

section can be adapted to define a reduction from affine Halide algorithms to

2.4 The Halide model 51

SAREs. For each tensor A in the Halide algorithm, we introduce a tensor AS to

represent A in the SARE, as well as intermediate tensors A0 to represent the

pure definition and A1, . . . ,An to represent the update definitions of A. The

tensor A0 is directly defined using the pure definition of A, where each other

tensorB is replaced with its SARE equivalentBS. The tensorAi representing an

update definition Ui
A

has r extra indices, where r is the number of recurrence

variables in Ui
A

: conceptually, the tensor is replicated for each value of the

recurrence variables. Note that due to the update restriction, knowing the

value of the array indices is enough to know the value of all pure variables

appearing in the right-hand side.

The transformation is essentially the same as the model theoretic semantics in

the previous section, except that we build equations for Aψ for the appropriate

stage indices for the tensor A. Instead of formal minutiae, we thus explain the

construction of these tensors through examples. In the matrix multiplication

algorithm above, the tensor D1 has an extra index for dimension k. Within the

reduction domain 0 ⩽ k < K, we replace accesses to other tensors with their

SARE equivalent, and replace accesses toD to accesses toDi with the previous

value of k. Outside the reduction domain, we replicate the last value of the

previous stage, which is just D0(i, j) in this case:

0 ⩽ k < K⇒ D1(i, j, k) = D1(i, j, k − 1) +AS(i, k) × BS(k, j)
k < 0 ∨ k ⩾ K⇒ D1(i, j, k) = D0(i, j)

The SARE tensor for D, DS, is defined as the last value of D1 lexicographically,

i.e. DS(i, j) = D1(i, j,K − 1). Note that when K ⩽ 0, D1(i, j,K − 1) is equal to

D0(i, j).

There are a few subtleties here. First, if there are multiple reduction variables,

the previous value must be computed lexicographically within the definition

rectangle: for two reduction variables 0 ⩽ x < X and 0 ⩽ y < Y, the extra indices

to a recursive access would be select(y ⩽ 0, x−1, x) and select(y ⩽ 0, Y−1, y−1)
respectively. Second, if there is a filter, when the filter is false, the previous

value of the current stage is directly reused. Finally, if the indices depend

on the reduction variables, all non-updated locations are defined using the

previous value of the current stage. For instance, the update D(i, 2k) += D(i,
k) where i is a pure variable and 0 ⩽ k < K is a reduction variable becomes

52 Representations of Programs with Loops and Arrays

(within the recurrence domain):

0 ⩽ k < K⇒ D1(i, 2k, k) = D1(i, 2k, k − 1) +D1(i, k, k − 1)
0 ⩽ k < K ∧ j ≠ 2k⇒ D1(i, j, k) = D1(i, j, k − 1)

Because it is derived from the general case where the Halide algorithm is

not necessarily affine, the construction can introduce unneeded “copies”, i.e.

equations that are just defined to reindex another tensor. While in general it is

not possible to eliminate such copies, for an affine specification, we can use

a library such as isl to symbolically solve for the last non-copy definition of

each location following the same approach as that of Feautrier [37].

Presburger sets 3
Presburger sets and relations form the cornerstone of modern polyhedral

representations, and form the basis of the validator presented in chapter 5. This

chapter is a compact retelling of (parts of) the excellent tutorial of Verdoolaege

[114] on polyhedral concepts, with some omissions and adaptations to make it

more suited to our use cases. It is not intended to be read linearly: rather, it

should be seen as a definition of background concepts the reader can refer to

while reading the rest of this manuscript.

In the electronic version of this document, uses of the concepts defined in

this chapter are hyperlinked to their definition; in compatible PDF readers,

hovering over a notation should bring up a window with the definition of a

notation or concept. This is done using Thomas Colcombet’s knowledge LAT
E
X

package [31].

3.1 Presburger arithmetic

Presburger arithmetic, also known as affine arithmetic and linear arithmetic,

is the first-order theory of natural numbers equipped with addition, equality,

and inequality (N,+,=, <). Affine expressions are built from variables, constants,

and addition; affine constraints are equalities or inequalities between affine ex-

pressions. Presburger formulas are logical formulas built from affine constraints,

negation ¬, conjunction ∧, disjunction ∨, and first-order existential ∃ and

universal ∀ quantifiers. Constant multiplication can be defined in Presburger

arithmetic using repeated addition:

n · x = x + · · · + x

53

54 Presburger sets

Solvers for Presburger arithmetic support constant multiplication as a primi-

tive.

Presburger arithmetic is well-known for being a decidable subset of Peano

arithmetic. While deciding the satisfiability of a Presburger arithmetic for-

mula has a triply-exponential worst case complexity, specialized solvers for

Presburger arithmetic or restricted subsets thereof exist and are used in a

variety of applications. Solvers for Presburger arithmetic are the foundation

of the polyhedral model, a collection of techniques for the representation and

optimization of array programs presented in chapter 2.

Another desirable and well-known property of Presbuger arithmetic is that it

admits a quantifier elimination procedure: any formula in Presburger arithmetic is

logically equivalent to a quantifier-free formula in Presburger arithmetic... almost.

To admit quantifier elimination, Presburger arithmetic must be extended with

either one constant division or constant remainder operation for each natural

integer, i.e. terms of the form ⌊e/n⌋ or e mod n where n > 1 is an integer

must be allowed (consider for instance the formula ∃y, x = 2y that otherwise

would not admit an equivalent quantifier-free formula). Affine expressions

with constant division or constant remainder (both of which can be defined

in terms of the other) are called quasi-affine; modern polyhedral tools such

as isl [112] support quasi-affine expressions everywhere. Because there are

otherwise not many differences in the theoretical properties of affine and

quasi-affine expressions or constraints, the reader should generally understand

the “affine” or “Presburger” qualifiers to be “quasi-affine” instead, unless

explicitly specified otherwise.

The rest of this chapter describes the formalization of symbolic sets and symbolic

relations over tuples of integers constrained by symbolic formulas. All the

notations and operations presented in this chapter generally apply to arbitrary

first-order formulas, but might not be decidable or computable for arbitrary formu-

las. Dealing with arbitrary first-order formulas would require relying on SMT

solver heuristics and completeness issues could come up virtually anywhere.

On the other hand, all the operations presented in this chapter are decidable

when using Presburger arithmetic, and admit efficient implementations in

libraries such as isl. A general goal of the approach presented in this thesis

will be to rely on the good theoretical properties of Presburger arithmetic as

much as possible.

3.2 Named tuples 55

3.2 Named tuples

Presburger sets are modelled as symbolic sets of named tuples, representing

arbitrary identifiers indexed by symbolic variables. The symbolic variables (but

not the identifiers) are constrained by formulas in Presburger arithmetic, and

polyhedral libraries such as isl provide efficient symbolic operations on such

sets. Named tuples are simply terms representing an arbitrary tree structure

using nodes of variable arity:

Definition 3.2.1 (Named tuples). A named tuple over a sort 𝒜 of arguments

ranged over by a is either:

• A name n along with d ⩾ 0 arguments ai for 1 ⩽ i ⩽ d, written

n⟨a1, . . . , ad⟩, or

• A name n along with two named tuples t1 and t2, written n⟨t1, t2⟩.

In the following, we will use three types of named tuples. Named tuples whose

arguments are integers are called integer tuples; named tuples whose arguments

are distinct variables are called integer tuple templates or simply variable tuples;

and named tuples whose arguments are affine expressions are called affine

tuples.

Example 2. A⟨B⟨2⟩, C⟨3, 4, 5⟩⟩ is a named integer pair. [x, y, z] is a flat

anonymous variable tuple. Q⟨x + 1, z mod 2⟩ is a flat named affine tuple.

We assume the existence of a distinguished name ϵ which is used to represent

anonymous tuples. Anonymous tuples are written using square brackets instead

of angle brackets: we write [3] to represent the integer tuple ϵ⟨3⟩, and [[x], [y]]
to represent the variable tuple ϵ⟨[x], [y]⟩. The isl notation uses square brackets

instead of angle brackets everywhere; this presentation uses angle brackets in

order to distinguish syntactically between the named tuple a⟨i + 1, j⟩ and the

array access a[i + 1, j].

Like regular tuples, named tuples represent collections of elements; as such,

we denote using bold face variables representing named tuples. We permit

56 Presburger sets

“lifting” constructs on elements to tuples when it makes sense to do so: for

instance, if x is a variable tuple and i is an integer tuple with the same structure

we write x ↦→ i to represent the mapping from each variable in x to the integer

at the corresponding position in i. Similarly, if x is a variable tuple, we can

write ∃x, ϕ to quantify ϕ existentially over the variables in x.

Example 3. A⟨B⟨x⟩, [y, z]⟩ ↦→ A⟨B⟨1⟩, [2, 3]⟩ represents the mapping x ↦→
1, y ↦→ 2, z ↦→ 3.

∃A⟨B⟨x⟩, [y, z]⟩, x + y = z is the formula ∃x, ∃y, ∃z, x + y = z.

This notion of “structure” is called the space of the tuple in isl, and we will

use the two terms interchangeably.

Definition 3.2.2 (Space of a tuple). The space𝒮t of the named tuple t represents

the shape or structure of the tuple. It is defined as:

• 𝒮t = n/d if t is of the form n⟨a1, . . . , ad⟩

• 𝒮t = (n,𝒮d,𝒮r) is t is of the form n⟨d, r⟩

The space of a pair (d, r) of named tuples is the pair of the spaces (𝒮d,𝒮r).

3.3 Symbolic sets

Following standard mathematical notation, a set of named tuples is written as

the list of elements in the set, enclosed by braces and separated by commas.

Following isl notation, we also allow separating elements using semicolon

interchangeably with commas. The named tuples in a set do not need to all

have the same structure for instance we can build the set {A⟨1, 2⟩, [3]} out of

A⟨1, 2⟩ and [3] that have different structure.

Definition 3.3.1 (Symbolic set). Let t be a variable tuple andϕ be a (Presburger)

formula, possibly involving more variables than those of t. Then {t : ϕ}, where

the variables of t are bound in ϕ, is a homogenous symbolic set.

3.3 Symbolic sets 57

A symbolic set is a finite union of homogenous symbolic sets with possibly

(but not necessarily) different structures. A symbolic set is represented by

separating the components of the union with a semicolon:

C ::= t : ϕ | t : ϕ;C

S ::= ∅ | {C}

If ϕ is the constant formula true, we omit both ϕ and the preceding colon, so

that for instance {[a⟨i⟩, b⟨j⟩]} is the set {[a⟨i⟩, b⟨j⟩] : true}.

The formula ϕ can contain free variables; the symbolic set {t : ϕ} is parametric

and has the free variables of ϕ not bound by t. The free variables of a symbolic

set are called the parameters of the symbolic set.

Example 4. The set {A⟨i⟩ : 0 ⩽ i < N} is a parametric set with N as unique

parameter.

A symbolic setS can be evaluated to a concrete set in an environmentℰ containing

bindings for the parameters of the symbolic set. The evaluation of S in ℰ is

denoted JSKℰ and, assuming that JeKℰ represents the evaluation of expression

e to an integer and JϕKℰ is the truth value of formula ϕ, we have:

Jt : ϕKℰ = {i | JϕKℰ+t ↦→i}
Jt : ϕ;CKℰ = {i | JϕKℰ+t ↦→i} ∪ JCKℰ

J∅Kℰ = ∅
J{C}Kℰ = JCKℰ

Note that the expressions on the right-hand side are set comprehensions in

the meta-language whereas the expressions within the brackets are syntactic

objects. The metavariable i here represents an integer tuple, and the notation

t ↦→ i implies that t and i have the same structure.

The representation of symbolic sets is not unique: a given heterogeneous set

can be represented using many equivalent formulations of the formula ϕ;

furthermore, multiple homogenous sets in a heterogeneous set can live in the

same space.

58 Presburger sets

Example 5. The sets {A⟨i, j⟩ : i < j;A⟨i, j⟩ : i = j; [i] : i = 3} and {A⟨i, j⟩ : i ⩽
j; [i] : i = 3} are different representations of the same symbolic set, i.e. they

both evaluate to the same concrete set in all environments.

Since the formulas defining a homogenous set is defined using Presburger

arithmetic, and formulas in Presburger arithmetic are decidable, it is possible

to decide the emptiness of a symbolic set:

Definition 3.3.2 (Empty set). A homogenous symbolic set {t : ϕ} is empty,

written �({t : ϕ}), if the formula ∃t, ϕ is false.

A heterogeneous symbolic set S is empty, written �(S), if all of its component

homogenous sets are empty. Equivalently, S is empty if JSKℰ is equal to the

empty set for all environments ℰ.

Many operations on symbolic sets are easier to formalize on disjoint homoge-

nous sets. The notion of space can be used to define the space decomposition of a

symbolic set as a disjoint union of homogenous sets, an operation implemented

using Presburger arithmetic by polyhedral libraries such as isl.

Definition 3.3.3 (Space decomposition). The space decomposition of a symbolic

set S is the unique collection of nonempty homogenous sets Si such that

⋃
i Si = S

and no two distinct components Si and Sj have the same space.

Operations on symbolic sets can be defined first on homogenous sets, then

lifted to a symbolic set using its space decomposition. This is the case of the

union S1 ∪ S2, intersection S1 ∩ S2 and difference S1 − S2 that can be defined

on pairs of homogenous sets with the same space as follows (where the set

definitions have been α-renamed to the same variables):

{t : ϕ1} ∪ {t : ϕ2} = {t : ϕ1 ∨ ϕ2}
{t : ϕ1} ∩ {t : ϕ2} = {t : ϕ1 ∧ ϕ2}
{t : ϕ1} − {t : ϕ2} = {t : ϕ1 ∧ ¬ϕ2}

3.3 Symbolic sets 59

These operations can then be lifted to heterogeneous symbolic sets by applying

them independently to each component of the space decomposition. An empty

homogenous set is used when one of the two sets has no component of the

appropriate shape. The unbounded complement of a homogenous set {t : ϕ}
can be defined as {t : ¬ϕ} but cannot easily be lifted to heterogeneous symbolic

sets.

There is a special case of symbolic sets: sets that are either empty or contain

a single element. Such sets can be thought of as representing (conditional)

constants: for any value of its parameters, either the set is empty and the

constant is undefined, or the set contains the value of the constant as single

element. Abusing the term, and following Verdoolaege [114], we define a

singleton set as follows:

Definition 3.3.4 (Singleton set). A symbolic set S is a singleton if, in any

environment ℰ mapping the free variables of S to integer values, there is at

most one element in JSKℰ .

Presburger arithmetic libraries such as isl can decide whether a set is a

singleton by checking that two elements in the set are necessarily equal. This

definition of singleton sets might make more sense when thinking of it as the

set version of a single-valued relation as defined below.

Use of symbolic sets In a polyhedral representation of programs, relations

between pairs of named tuples are used to represent both the scheduling of

statement instances and the access relations between instances. The names of

the tuples are identifier representing either statements or arrays, depending on

the type of relation considered. The presentation of section 2.1 can fairly easily

be expressed in terms of named tuples; for more details, the interested reader

can refer to the tutorial of Verdoolaege [114]. For our purpose of the translation-

validation of a tensor compiler, we will use named tuples to represent and

transport sets of expressions living in a multidimensional space between the

specification and the implementation. As such, instead of identifiers, we will

use expression contexts with multiple holes as names: for instance, we can

represent the set

{A(i, k) × B(k, j) | 0 ⩽ i, j, k < N}

60 Presburger sets

by extracting its affine components into an expression context used as an

opaque name:

{(A(21,22) × B(22,23))⟨i, k, j⟩ | 0 ⩽ i, j, k < N}

This representation enables handling the affine parts of an expression seman-

tically using Presburger arithmetic while still being able to handle arbitrary

expressions; this representation is explained in more details in chapter 5.

3.4 Unit sets

It is sometimes useful to represent conditions on the parameters of a set such

as the conditions under which the set is empty or nonempty. To do so, we can

use unit sets, that can be thought of as symbolic boolean, and are represented

using a formula within braces, prefixed with a colon:

Definition 3.4.1 (Unit set). A unit set is written { : ϕ} where ϕ is a (Presburger)

formula. Unit sets are also called parametric sets and represent a constraint on

the free variables of ϕ. Unit sets are evaluated to the truth value of the formula

ϕ in an environment ℰ.

The union, intersection, and difference of unit sets can be defined in the same

way as for symbolic sets by computing the appropriate boolean combination

on the formulas. We also allow the intersection (resp. difference) of a symbolic

set with a unit set by adding a conjunction with the unit set’s formula (resp. its

negation) to the symbolic set. The union of a symbolic set with a unit set is

not meaningful and hence disallowed. We occasionally abuse notations and

write the formula ϕ directly instead of the unit set {: ϕ}; in particular, the

intersection of a set Swith a formula ϕ is to be understood as:

S ∩ ϕ = S ∩ {: ϕ}

A common use of unit sets is to represent the non-emptiness condition of a

symbolic set.

3.5 Symbolic relations 61

Definition 3.4.2 (Non-emptiness condition). If S is a symbolic set, then ∃S is a

unit set representing the non-emptiness ofS. More specifically, ifS =
⋃
i{ti : ϕi}

is the space decomposition of S, then:

∃S = {:
∨
i

∃ti, ϕi}

Proposition 3.4.1. In any environment ℰ that binds the parameters of S, JSKℰ is

empty if, and only if, J∃Kℰ is false.

With this non-emptiness condition we can define the update combinator ⊲ on

sets:

Definition 3.4.3 (Update). If S1 and S2 are symbolic sets, the update of S1 with

S2, denoted S1⊲S2, is defined as:

S1⊲S2 = S2 ∪ (S1 − ∃S2)

S1⊲S2 is equal to S2 when S2 is nonempty, and to S1 otherwise, hence the notion

of update. Note that when ∃S1 and ∃S2 are disjoint, S1⊲S2 is simply S1 ∪ S2.

3.5 Symbolic relations

Symbolic sets represent a set of named tuples in terms of latent parameters. On

the other hand, it is often useful to represent relations between pairs of tuples:

for instance, in polyhedral representations, we want to represent dependence

relations and access relations. For the validator presented in chapter 5, relations

enables representing a heap symbolically by relating (symbolic) locations in an

array and an expression that location is currently equal, if known.

Definition 3.5.1 (Symbolic relation). A symbolic relation, ranged over by R, is a

relation between argument tuples. An homogenous symbolic relation is denoted

62 Presburger sets

{s1 → s2 : ϕ} where s1 and s2 are variable tuples and ϕ is a formula. The

variables of s1 and s2 are bound in ϕ.

Like sets, symbolic relations can be heterogeneous and are represented using

an explicit union separated by a semicolon.

Like for symbolic sets, union, intersection, and difference of symbolic rela-

tions can be defined by applying the appropriate boolean connectives to the

underlying formula. The domain and range of a symbolic relation can be

obtained by projecting out the tuples on the right and on the left of the arrow,

respectively:

dom({s1 → s2 : ϕ}) = {s1 : ∃s2, ϕ}
ran({s1 → s2 : ϕ}) = {s2 : ∃s1, ϕ}

Furthermore, we allow the intersection and difference of a symbolic relation

with a symbolic set, understood as restricting the domain of the relation by

considering both decompositions and adding the appropriate conjunction

where the spaces match.

Example 6. If R = {a⟨i, j⟩ ↦→ b⟨i + j⟩; c⟨k⟩ ↦→ b⟨k + 2⟩} and S = {a⟨i, j⟩ : i >
j;b⟨k⟩}, then R ∩ S is the relation:

R ∩ S = {a⟨i, j⟩ ↦→ b⟨i + j⟩ : i > j}

We also allow the intersection and difference of a symbolic relation with a unit

set, by adding or subtracting the corresponding formula to all the homogenous

parts.

Symbolic relations with at most one range element per domain element are

single-valued.

Definition 3.5.2 (Single-valued relation). A single-valued relation is a symbolic

relation which has at most one output associated with each input. In this case

we also say that the relation is a partial function.

3.5 Symbolic relations 63

The single-valuedness of a relation R is denoted by sv(R) and indicates that

JRKℰ is single-valued in any environment ℰ that binds the parameters of R.

Definition 3.5.3 (Inverse of a relation). A symbolic relation R can be inverted by

exchanging its domain and range. We denote by R−1
the inverse of R, defined

on its space decomposition:(⋃
i

{di→ ri : ϕi}
)−1

=
⋃
i

{ri→ di : ϕi}

Symbolic relations can be applied to symbolic sets, yielding the set of elements

that are in relation with any element of the set it is applied to.

Definition 3.5.4 (Relation application). The application R(S) of a binary relation

R to a set S is the set containing the elements that appears as the right-hand

side in Rwhen the left-hand side is an element of S. In other words:

R(S) = ran(R ∩ S)
= {j : ∃i, i ∈ S ∧ i→ j ∈ R}

Moreover, parameters can be bound to a set in order to build a relation between

the values in the set and the values of the parameters.

Definition 3.5.5 (Parameter binding). If S is a symbolic set and x a variable

tuple, x can be bound in S to a symbolic relation, mapping the elements of S

to the possible values of the variables in x. Binding the variable tuple x in

set S is denoted λx.S, borrowing the notation from the lambda calculus since

(λx. S)({x}) = S, and defined on the space decomposition of S as:

λx.
⋃
i

{ti : ϕi} =
⋃
i

{x→ ti : ϕi}

In practice, it is often more convenient to inverse the relation, so that the bound

variable is in the range rather than the domain of the resulting relation. We

use the keyword bind to indicate this “inverted binding”, i.e.:

bindx (S) = (λx. S)−1

64 Presburger sets

If x is a single variable [x], we allow writing an inequality involving x as a

subscript, with the convention that the inequality should be intersected with

the set S:

bindι1⩽x<ι2 (S) = bind[x] (S) ∩ { : ι1 ⩽ x < ι2}

Symbolic relations can be converted to sets of pairs, and sets of pairs can be

converted to symbolic relations, using the wrap and unwrap operations.

Definition 3.5.6 (Wrap and unwrap). The wrap operation converts a symbolic

relation R =
⋃
i{ti→ si : ϕi} to a symbolic set containing anonymous pairs of

the domain and range elements:

wrap

(⋃
i

{ti→ si : ϕi}
)
=

⋃
i

{[ti, si] : ϕi}

The unwrap operation is the inverse of wrap: it converts a symbolic set contains

only anonymous pairs to a symbolic relation, with the first component of the

pair as domain and the second component of the pair as range.

unwrap

(⋃
i

{[ti, si] : ϕi}
)
=

⋃
i

{ti→ si : ϕi}

If R is a symbolic relation, abstraction and application automatically wraps.

λx. R is λx. wrap(R), and R1(R2) is R1(wrap(R2)).

Note that the unwrap operation is partial and is not defined on all symbolic

sets.

dom and ran cannot be used on wrapped relations, but we can use fst and snd

instead.

Definition 3.5.7 (First and Second). The fst (resp. snd) operator can be used

on a set of pairs to access the first (resp. second) component of the pair. More

3.5 Symbolic relations 65

precisely, if S =
⋃
i {[ti, si] : ϕi} is a symbolic set, fst and snd are defined as:

fst(S) = dom(unwrap(S))
=

⋃
i

{ti : ∃si. ϕi}

snd(S) = ran(unwrap(S))
=

⋃
i

{si : ∃ti. ϕi}

fst and snd can be lifted to relations, where they apply to the range component

of the relation (e.g. fst({t→ [s, u] : ϕ}) = {t→ s : ∃u. ϕ}).

The equivalent of wrap and unwrap “lifted” to relations are the curry and

uncurry operations.

Definition 3.5.8 (Curry and Uncurry). The curry operation converts a symbolic

relation of shape

R =
⋃
i

{[ti, si] → ui : ϕi}

to a symbolic relation

curry(R) =
⋃
i

{ti→ [si, ui] : ϕi}

It is named curry due to the similarity with the operator of the same name

in functional programming, that transforms a function on pairs to a function

returning a function, represented in wrapped form by the [si, ui] pair.

The uncurry operation is the reverse of the curry operation: it converts a

symbolic relation of shape

R =
⋃
i

{ti→ [si, ui] : ϕi}

into

uncurry(R) =
⋃
i

{[ti, si] → ui : ϕi}

66 Presburger sets

Note that curry and uncurry are partial, and only defined on symbolic sets of

the appropriate shapes.

3.6 Piece-wise Expressions

It is often useful to represent a tuple expression as a function of another tuple

expressions. Piece-wise expressions fulfil that role, and can be thought of as an

explicit representation of singleton sets and single-valued relations.

Definition 3.6.1 (Piece-wise expression). An expression tuple f is a named

tuple whose arguments are affine or quasi-affine expressions of variables. A

piece-wise expression P maps a variable tuple to an expression tuple when a

given formula holds, and can be written as a disjoint union:

P ::= {x1 ↦→ e1

: ϕ1; . . . xn ↦→ en : ϕn}

The domain of the piece-wise expression P, denoted dom(P), is the symbolic

set:

dom(P) = {x1

: ϕ1, . . . , xn : ϕn}

As a special case, a constant or parametric piece-wise expression consists of a

union of expression tuples, in which case the domain is a unit set:

P ::= · · · | {e1

: ϕ1; . . . en : ϕn}

Example 7. {[i, j] ↦→ a⟨i + 1, j⟩ : i < N; [i, j] ↦→ a⟨N, j⟩ : i ⩾ N} is a piece-wise

expression representing the location a[min(i, N), j].

We allow the intersection and difference of a piece-wise expression with a

symbolic set, understood as restricting the domain of the piece-wise expression

by considering both decompositions and adding the appropriate conjunction to

the piece-wise formula on the piece where the domain space of the expression

3.7 Lexicographic optimization 67

matches the domain space of the heterogeneous set. Similarly, we allow the

intersection and difference of a piece-wise expression and a unit set.

A piece-wise expression P can be evaluated in an environment ℰ to a function

from integer tuples to either integer tuples or the special undefined value ⊥
indicating that no pieces matches the corresponding input tuple.

3.7 Lexicographic optimization

Binding parameters allows building maps from (symbolic) array locations to

the iteration of a sequential loop that write to said location. Projecting out

the maximal value associated with each location would yield a piece-wise

expression representing the last iteration that write to that location. This is

the basis of the array expansion procedure that is used to compute an exact

dataflow analysis. In general, we want to be able to compute the latest element

across a multidimensional tuple; hence, we use a lexicographic order:

Definition 3.7.1 (Lexicographic order). Given two vectors a and b of equal

length, a is said to be lexicographically smaller than b if it is equal to b or if it

is smaller in the first position in which it differs from b.

The lexicographic order is written ⪯ and its strict version is written ≺.

Assuming a strict partial order <𝒩 on the set of names, the lexicographic

order can be extended to named tuples by comparing the names before their

arguments.

Definition 3.7.2 (Lexicographic order of named tuples). If t1 and t2 are two

integer tuples and the names appearing in the tuples are ordered by a strict

partial order <𝒩 , the lexicographic order on named tuples is defined as follows:

• If t1 and t2 have distinct names n1 and n2, then t1 ≺ t2 if, and only if,

n1 <𝒩 n2.

68 Presburger sets

• If t1 and t2 are flat tuples with the same name n⟨i1⟩ and n⟨i2⟩, then t1 ≺ t2
if i1 and i2 have the same length and i1 ≺ i2.

• If t1 and t2 are pairs with the same name n⟨t1,1, t1,2⟩ and n⟨t2,1, t2,2⟩, then

t1 ≺ t2 if either t1,1 ≺ t2,1 or t1,1 = t2,1 and t1,2 ≺ t2,2.

• Otherwise, t1 and t2 are incomparable.

Generally, the lexicographic order on named tuples is not a total order. It is

however total when restricted to sets of tuples where the order on names <𝒩 is

total and each name is used to denote a unique space. In particular, it is total

on a heterogenous set.

The definition of the lexicographic order on named tuples given above is more

general than the usual definition which is restricted to comparing named tuples

in the same space by their argument vector. This is equivalent to stating that

distinct names are never ordered in the above definition, which can be assumed

in most of this manuscript, except when called out explicitly.

If S and S′ are symbolic sets, we can build the set S ≺ S′ defined as S ≺ S′ =
{[s, s′] | s ∈ S∧ s′ ∈ S′∧ s ≺ s′} that contains pairs of elements of S and greater

elements of S′. S ⪯ S′, S ≻ S′ and S ⪰ S′ can be defined similarly.

The lexicographic maximum and minimum allow computing the lexicographi-

cally maximal and minimal elements of a set, respectively.

Definition 3.7.3 (Lexicographic maximum and minimum). The lexicographic

maximum (resp. minimum) of a totally ordered symbolic set S, denoted

lexmax(S) (resp. lexmin(S)), is a piece-wise expression with unit domain such

that, in any environment ℰ, one of the following is true:

• Jlexmax(S)Kℰ is undefined (resp. Jlexmin(S)Kℰ) and JSKℰ is empty, or

• Jlexmax(S)Kℰ ∈ JSKℰ (resp. Jlexmin(S)Kℰ ∈ JSKℰ) and for any s ∈ JSKℰ ,

s ⪯ Jlexmax(S)Kℰ (resp. Jlexmin(S)Kℰ ⪯ s).

For a symbolic set S = {ti : ϕi}, the lexicographic maximum can be defined as

3.8 Notations and Conventions 69

a quantified first-order formula:

lexmax(S) = s⇔
(∨
i

∃ti, ti = s ∧ ϕi

)
∧

∧
i

∀ti, ϕii⇒ ti ≺ s

If the formulas ϕi are expressed in a logic that admits a quantifier elimination

procedure such as Presburger arithmetic, the quantifiers introduced by the

lexicographic maximum or minimum operations can be eliminated to yield

an equivalent quantifier-free formula. In the case of Presburger arithmetic,

parametric integer programming (PIP) of Feautrier [36] can be used instead.

PIP directly computes the lexicographic maximum as a symbolic piece-wise

affine expression, and is implemented in the isl library.

The lexicographic maximum and minimum operations can be defined simi-

larly for symbolic relations, and computed in the same way using PIP. For a

symbolic relation R, the lexmax(R) and lexmin(R) are piece-wise expressions

with the same domain as R, and each element in the domain is mapped to the

lexicographically greatest (resp. lowest) value associated with that domain

element.

3.8 Notations and Conventions

In explicit notations for symbolic constructs such as sets or relations, if the

formula ϕ entails an equality between a variable and a piece-wise quasi affine

expression using only free variables and variables that appear on the left of that

variable, we allow writing the equality inline. For instance, we can write: isl supports this

shorthand notation,

and uses it when

displaying objects,

but it only uses

quasi-affine

expressions that are

not piece-wise.

{[x1, x2] ↦→ [x3 = x1 + x2, x4] | x3 ⩾ x4}

instead of

{[x1, x2] ↦→ [x3, x4] | x3 = x1 + x2 ∧ x3 ⩾ x4}

If the variable no longer appears in the formula after having eliminated the

equality, its name can be omitted entirely. For instance, we can also write

{[x1, x2] ↦→ [x1 + x2, x4] | x1 + x2 ⩾ x4}

70 Presburger sets

to represent the same relation.

Note that this can change the precise representation of the underlying structure.

In general, we assume that sets (and relations, etc.) represent classes of

equivalent sets: changing the representation does not change the underlying

mathematical object. Changing the representation of objects can however

change the runtime characteristics of algorithms and operations (e.g. projections).

For instance, isl provides a coalescing primitive that exploits properties of

integer linear arithmetic to simplify the representation, and notably merge

multiple homogenous sets when possible. This can drastically improve the

performance of many algorithms that often are quadratic in the number of

homogenous sets present in the representation. Coalescing has been described

by Verdoolaege [113] who has shown its impact on improvements and a

reduction of time-outs in several applications. The implementation described

in chapter 6 relies on adequate use of the coalescing operation to get good

performance, notably to perform on-the-fly “re-rolling” of unrolled loops.

An intermediate language for tensor
compilers

4

This chapter presents the formal specification of an intermediate language

designed to stand in-between a tensor compiler and a traditional compiler such

as LLVM. This language, called Sched, is a simple imperative language with

arrays and loops. Sched is a subset of the Stmt language used internally by

Halide, TVM, and Tensor Comprehensions, extended with annotations for the

purpose of translation-validation that are explained in this chapter and used in

chapter 5. The presentation of this chapter focuses on the language itself and

aims to explain the syntax and semantics of Sched. It is intended to provide

relatively complete information to the compiler writer (with a background in

formal semantics) interested in targeting Sched: the details of the verification

techniques proposed for Sched are postponed until chapter 5.

In this chapter, and the rest of this thesis, we will assume the existence of an

ambiant specification and a modelM for that specification. In order to abstract

away the details of a specific tensor compiler, we assume that the specification

is expressed as a SARE. If the compiler to validate uses a different specification

formalism, as is the case with Halide, we assume that the specification has

previously been translated to a SARE, for instance using the algorithm presented

in subsection 2.4.4.

The underlying goals for Sched lead to the following design decisions.

Sched programs should distinguish between the expressions representing

computation requested by the original user of the tensor compiler, which we will

call semantic expressions (e.g. a[i, k] * b[k, j] in a matrix multiplication is a

semantic expression), and the index expressions appearing in loop bounds and

array accesses that can be transformed as a result of compiler transformations

71

72 An intermediate language for tensor compilers

(e.g. the user might have written i, j, and k in the multiplication above, but

after compilation, those expressions became 4 * i0 + i1, max(0, j) and

16 * k0 + 4 * k1 + k2).

The structure-modifying transformations performed by the compiler have

an effect on the index expressions, and we want our verifier to be able to

invert those transformations in order to recover the original indices written

by the programmer. To do so, we want to use polyhedral tools such as isl
(see chapter 3); hence, we must restrict index expressions to piece-wise affine

combinations of outer loop iterators and program parameters. Although most

useful loop transformations can be represented using affine transformations,

some transformations applied by compilers such as Halide can generate non-

affine index expressions; moreover, the user may want to write non-affine

specifications such as histograms. I restrict Sched to affine index expressions

for now, and discuss in section 9.6 ways in which this restriction could be

relaxed.

On the other hand, we want the compiler to be free to perform arbitrary

transformations on semantic expressions provided that their value does not

change; for instance, the compiler should be free to introduce bit tricks and to

simplify commutative, associative or distributive operators. The intent is to

verify each such transformation locally, at the level of an array write: once the

transformations performed by the compiler through index expressions have

been, in a way, “inverted” to bring the semantic expression into the specification

space, we can compare it with its expected value using verification tools such

as SMT solvers. To make this verification possible, Sched programs contain

annotations on assignments that express the expected value of the write using

the user’s original specification. These annotations do not impact the semantics

of Sched programs, but are required by the verification techniques of the next

chapter. section 5.6 discusses the generation of these annotations.

Finally, with the goal of facilitating translation validation in the next chapter,

and perhaps surprisingly for a language that contains parallel loops, the

semantics for Sched is given in a big-step operational style. This big-step

semantics evaluates a program to a set of updates performed while evaluating

the program that can represent deterministic communication-free parallel

loops, the likes of which are typically targeted by tensor compilers.

In formal definitions, we assume disjoint, countably infinite sets of array names

4.1 Syntax 73

(ranged over by a, b), variables (ranged over by x, y), tensor names (ranged

over by A, B), and function names (range over by f, g). We also assume a set of

values𝒰 , and a set of types (ranged over by τ). Each type τ can be interpreted

by a set of values JτK ⊆ 𝒰 . In general, the J·K notation is used to denote an

interpretation or evaluation. We assume the existence of two distinguished

types A, which evaluates to the set of all integers, and B, which evaluates to

{true, false}. Each function name f has a function type τf = τ1 × · · · × τaf → τ,

where af is the arity of f, and a semantic interpretation JfK as a well-typed

function of af values. Constants are nullary functions.

A signature 𝒮 is a pair ⟨𝒫 ,𝒜⟩ where 𝒫 is a finite set of integer variables called

the program parameters, and𝒜 is a finite set of tensor names ranged over by A. A

tensor A is equipped with a type τA and an arity nA. A modelM over 𝒮 is an

assignment of a value JxKM for each parameter x ∈ 𝒫, and of a function JAKM
from ZnA to JτAK for each A ∈ 𝒜.

4.1 Syntax

Although we want to enforce a distinction between affine and non-affine

expressions in order to make program analysis tractable, the distinction is

not made at the syntax level but through the use of a type system. The hope

is to make it easier to extend the system to handle non-affine expressions in

loop bounds and array accesses in a controlled way. In particular, programs As discussed in

section 9.6, allowing

non-affine indices in

array reads is fairly

easy, whereas

allowing non-affine

indices in array

writes and in

conditionals is harder.

that do not respect the affine restrictions of the type system are still given

a semantics: although the techniques developed in chapter 5 do not work

with such programs, extensions such as those discussed in section 9.6 can be

designed for them and rely on the same underlying semantics. The grammar

for the expressions of Sched is given in Fig. 4.1 Even though there is no syntactic

distinction, to make intentions clearer, the metavariable ι is used where an

index expression is expected, the metavariable e is used when a semantic

expression is expected, and the metavariable t is used when a tensor expression

is expected.

The syntax for expression includes tensor accessesA(ι1, . . . , ιn). This is because

Sched is designed to be used with a validator: tensor accesses referring to the

specification can be used only in assertions (as enforced by the type system);

74 An intermediate language for tensor compilers

Expressions

e, ι, t :: = x | l variable and literals

| a[ι1, . . . , ιn] array indexing

| A(ι1, . . . , ιn) tensor indexing

| let x = ι1 in e2 let expression

| ι1 + ι2 | n · ι
| ⌊ι/n⌋ | ι mod n linear arithmetic

| ι1 = ι2 | ι1 ⩽ ι2
| ι1 ≠ ι2 | ι1 < ι2 comparisons

| ι1 && ι2 | ι1 | | ι2 | ! ι Boolean connectives

| select(ι, e1, e2) eager conditional

| f(e1, . . . , en) pure function call

Figure 4.1: Syntax of expressions

they do not have an executable semantics. The pure function calls f(e1, . . . , en)
can refer to any operator or functions on values, and have a call-by-value

semantics. Pure function calls are not allowed in index expressions: instead,

the quasi-affine expressions ι1 + ι2, n · ι, ⌊ι/n⌋ and ι mod n are called out

specifically. Pure functions are allowed to take both semantic expressions and

index expressions as arguments, and hence can include casts from the arbitrary

precision indices to machine integers. Any primitive operation on values such

as multiplication, addition, exponentiation, etc. is implemented using such

function calls, and is opaque to the rest of the system.

The grammar for the commands (or statements) of Sched is given in Fig. 4.2,

and describes an imperative language of arrays and loops. Assignments

are annotated with a prophetic expression t representing an assertion that

the value written by the assignment is equal to the value denoted by the

prophetic expression in the original specification, as will be explained in

chapter 5. Prophetic expressions are ignored at runtime: they are a form

of ghost code used for verification purposes only. The allocation command

4.2 Dynamic semantics 75

c :: = skip

| c1 ; c2

| a[ι1, . . . , ιn] {t} := e

| if ι then c1 else c2

| let x = ι in c

| allocate a : τ[ι1 × · · · × ιn] in c

| for x < ι; do c

| par x < ι; do c

Figure 4.2: Syntax of Commands

allocate a : ι1, . . . , ιn in c allocates a new n-dimensional array a without

initializing its contents. Parallel loops par x < ι; do c are non-communicating:

they should be thought of as executing each iteration in an independent thread

that only synchronizes at the end of the loop. It particular, the semantics will

enforce the determinism of parallel loops.

Parallel loops are the only source of concurrency in the language. This is

consistent not only with polyhedral techniques and scheduling approaches

such as that of Halide, but also with the hierarchical structure of GPUs. In a

realistic compilation pipeline (e.g. in Halide), parallel loops are tagged with

the level in the hierarchy that they belong to, but this has no impact on the

high-level semantics, and hence is ignored in this presentation.

4.2 Dynamic semantics

A Sched expression evaluates to a value in𝒱 =𝒰 ∪ Z∪ {true, false} ⊎ {⊥}. ⊥
is a distinguished value representing an undefined or unknown value. Index

expressions have values in Z ∪ {true, false} ⊎ ⊥ while semantic expressions

have values in𝒰 ⊎ {⊥}. The evaluation function JeKℰ;µ is defined in a local

environment ℰ and a memory µ. The stack ℰ maps variable names to affine

76 An intermediate language for tensor compilers

values in Z ∪ {true, false}, and the memory µ maps memory locations to

𝒰 ⊎ {⊥}. Memory locations, ranged over by ℓ, are multidimensional array

cells, that is, array names indexed by integers:

ℓ :: = a[n1, . . . ,nn]

The evaluation function JeKℰ;µ for expressions is given in Fig. 4.3. If none

of the rules apply, the result of the evaluation is the distinguished value ⊥
representing an error. The use of metavariables v and n in rules imply that

the corresponding value is not ⊥; as such, ⊥ is propagating: the result of any

computation involving ⊥ is itself ⊥. The select operator is an eager conditional

and evaluates all its arguments before choosing a value depending on the value

of the conditional. This follows the design of the Halide compiler; it could

easily be replaced with a lazy version instead. A function name f is assumed

to evaluate independently of the environment to a function JfK that applies to

an arbitrary number of arguments and returns ⊥ if the arity is incorrect.

We also define the evaluation JtKℰ;M of a prophetic expression t in environment

ℰ and modelM, whereM assigns a semantic to tensors. The evaluation rules

for JtKℰ;M are identical to the rules for JeKℰ;µ, except that the rule for array

accesses is replaced with a rule for tensor accesses:

JιniKℰ;M = ni ∈ Z for all 1 ⩽ i ⩽ n

JA(ι1, . . . , ιn)Kℰ;M = JAKM(n1, . . . ,nn)

The question of the semantics to give to Sched commands needs to be con-

sidered carefully. As an intermediate language targeted to compilers of array

languages for heterogeneous hardware, one goal of which is the parallelization

of programs, it needs some notion of concurrency. Because they need to

reason about possible interleavings of concurrent threads, formalizations of

concurrent programming languages are usually presented using so-called

“small-step semantics” or structural operational semantics. A small-step se-

mantics can be described in terms of a reduction relating a command c and

program state σ to a new command c′ and new program state σ′ obtained after

performing one “step” of evaluation, such as performing a single assignment:

⟨x := e ; c, σ⟩ → ⟨c, σ[x := JeKσ]⟩. Small-step semantics are the standard way

of reasoning about concurrent programs because they capture interactions

between concurrent executions by considering all the possible interleaved

4.2 Dynamic semantics 77

x ↦→ v ∈ ℰ
JxKℰ;µ = v JlKℰ;µ = l

JιiKℰ;µ = ni ∈ N for all 1 ⩽ i ⩽ n a[n1, . . . ,nn] ↦→ v ∈ µ
Ja[ι1, . . . , ιn]Kℰ;µ = v

x ∉ fv(e) ∪ dom(ℰ) JιKℰ;µ = v0 JeKℰ+x ↦→v0;µ = v

J let x = ι in eKℰ;µ = v

Jι1Kℰ;µ = n ∈ Z Jι2Kℰ;µ = m ∈ Z
Jι1 + ι2Kℰ;µ = n +m

JιKℰ;µ = n ∈ Z m ∈ N
Jm · ιKℰ;µ = m · n

JιKℰ;µ = n ∈ Z m ∈ N m > 0

J⌊ι/m⌋Kℰ;µ = ⌊n/m⌋
JιKℰ;µ = n ∈ Z m ∈ N m > 0

Jι mod mKℰ;µ = n mod m

Jι1Kℰ;µ = n ∈ Z Jι2Kℰ;µ = m ∈ Z ⊙ ∈ {=, <,≠, ⩽}
Jι1 ⊙ ι2Kℰ;µ = n ⊙m

Jι1Kℰ;µ = b1 ∈ {true, false}
Jι2Kℰ;µ = b2 ∈ {true, false} ⊙ ∈ {&&, | |}

Jι1 ⊙ ι2Kℰ;µ = b1 ⊙ b2

JιKℰ;µ = b ∈ {true, false}
J ! ιKℰ;µ = ¬b

Select-True

JιKℰ;µ = true Je1Kℰ;µ = v1 Je2Kℰ;µ = v2

Jselect(ι, e1, e2)Kℰ;µ = v1

Select-False

JιKℰ;µ = false Je1Kℰ;µ = v1 Je2Kℰ;µ = v2

Jselect(ι, e1, e2)Kℰ;µ = v2

Call

JeiKℰ;µ = vi for all 1 ⩽ i ⩽ n

Jf(e1, . . . , en)Kℰ;µ = JfK(v1, . . . , vn)

Figure 4.3: Evaluation function for semantic expressions

78 An intermediate language for tensor compilers

executions. Furthermore, the semantics of non-terminating programs can be

naturally captured by infinite reduction sequences.

Small-step semantics’ ability to reason about race conditions and deadlocks is

invaluable when proving handwritten code that uses synchronization primi-

tives in subtle ways that can actually exhibit these behaviors. In the context of

compiling mostly equational high-level arrays program whose source does not

include any synchronization primitives, the resulting code usually does not

depend directly on low-level synchronization primitives but rather on higher

level constructs abstracting away the low-level primitives. The main interaction

a compiler for array languages has with concurrency is through the use of paral-

lel and vectorized loops evaluating all their instructions in a loosely constrained

order. Compilers such as Halide or Tensor Comprehension abstract away

parallelism through the use of non-communicating parallel loops; the loops are

converted into a single outer parallel loop (or to thread and block identifiers on

GPUs) with appropriate barriers as a transformation late in the compilation

process. This transformation is relatively simple and could be proved correct

independently. Effectively, the generated code represents a sequence of parallel

stages represented by parallel loops, with a single unconditional global barrier

between the stages, and without additional synchronization primitives within

the stages. This allows communication between concurrent execution units as

long as the communication does not occur within the execution of the same

parallel loop, encompassing communication techniques based on message

passing [21]. One notable exception is Halide’s async() scheduling primitive

that generate dependent threads communicating through a queue within the

same parallel loop. Furthermore, the input languages to tensor compilers

typically lack both recursion and unbounded while loops, making programs

in those languages necessarily terminating and the languages themselves not

Turing-complete by design. As such, because the code generated by tensor

compiler is always terminating and uses parallelism rather than true concur-

rency, the use of small-step semantics in this context appears less necessary

than is usually the case for concurrent programs.

On the other hand, so-called “big-step semantics” or natural semantics relate a

command c and a program state σ to a final program state σ′ obtained after

executing the whole command. Whereas small-step semantics perform the

computation piece by piece, making a bit of progress each time until no work

remain, big-step semantics directly evaluate a program to its final result in one

go. Big-step semantics abstract away many details of the computation and its

4.2 Dynamic semantics 79

order. This is attractive for symbolic evaluation since a symbolic evaluator does

not have to explore the many possible interleavings of small-step reductions. At

the same time, the requirement of fully evaluating a program to a value in a big-

step semantics make them awkward to use for nonterminating computations,

often requiring the use of a separate semantics for nonterminating programs.

In addition, in a big-step semantics, information about the computation order

is hidden within the derivation tree, making them difficult if not impossible to

use in the context of concurrent programs where reasoning about interleavings

of concurrent executions interacting through shared communication channels

is necessary. As was mentioned above, however, in the context of a tensor

compiler, these usual weaknesses of big-step semantics do not apply, while a

big-step semantics is attractive as the basis of a symbolic evaluator.

We want to build a big-step semantics for Sched. To make things concrete,

let us assume we have a big-step judgement µ ⊢ c ⇓ µ′ that evaluates a

command c in memory µ, resulting in a new memory µ′. The rules for the

evaluation of assignment, sequential composition, and sequential loops can be

written relatively easily and compose well; for instance, the rule for sequential

composition can be written as:

µ ⊢ c1 ⇓ µ1 µ1 ⊢ c2 ⇓ µ2

µ ⊢ c1 ; c2 ⇓ µ2

One problem remain: it is still unclear how to capture the semantics of

parallel loops using this big-step semantics. Recall that we are interested

in synchronization-free loops, i.e. we assume that the only synchronization

mechanism is a global barrier at the end of the execution of the loop that waits

for all iterations of the loop to finish before continuing. Since this implies that

distinct iterations of the loop cannot depend on their relative execution order in

any way, the first idea would be to execute the body of the loop in an arbitrary Active waiting

schemes could be used

to implement

synchronization

mechanism on top of

simple memory writes

and reads, but our

goal here is to prevent

such “bogus”

programs.

order, and require that all orders evaluate to the same final memory. However,

this is too coarse, as is shown by the following example:

80 An intermediate language for tensor compilers

par i = 0 to 1 do
if (i == 0) {
y[] := x[] ;
x[] := 0 ;
x[] := y[] ;

}
if (i == 1) {
z[] := x[] ;

}
done

Any execution of the program for one value of i followed by the other would

yield a final memory where all three arrays x, y and z have the same value, but

an interleaving semantics would allow a final state with z[] = 0 instead. The

issue here is the presence of a data race: both threads access to the array x, and

the first thread writes to it without consideration for the second thread’s read.

Because data races lead to nondeterminism, and the original program that was

compiled is always deterministic, the introduction of this nondeterminism can

be considered a compiler bug. Instead of trying to capture the semantics of

data races, we will prevent them: programs that exhibit data races should not

have semantics, because data races can only be introduced by a compiler bug.

In practice, tensor compilers such as Halide can allow a very specific kind of

data races, sometimes called “benign” data races. A benign data race is a race

where multiple threads write concurrently to the same location, but they all

write the same value. On all the hardware targeted by Halide, and all existing

hardware I know of, the location will always end up containing that value on

the next synchronization. Such benign races are exploited by Halide to shift

the start of the last tile of a tiled loop, ensuring that all tiles are full (an example

is given in chapter 1). In turn, this enables further optimizations, such as using

vectorized instructions even for the last tile.

To prevent data races, our semantics must capture the set of memory locations

that are read and written during the execution of the program. To allow benign

data races as used by Halide, we must further capture all the possible values

written to each location. Hence, the result of the evaluation of a command c

should not only contain the final memory µ′ but also a set ρ of read locations

and a mappingω from locations to a set of values written to that location. We

can enforce the absence of races between a read access and a write access by

4.2 Dynamic semantics 81

requiring the read-set ρi and the write-set dom(ωj) to be disjoint when i and j

are distinct threads. Further, we can enforce the absence of non-benign races

between write accesses by requiring that all possible values written by two

distinct threads i and j to the same location ℓ are identical (i.e. for all vi ∈ ωi(ℓ)
and vj ∈ ωj(ℓ), we must have vi = vj).

Because read-write races are forbidden, it is not possible for a thread to see the

writes performed by another thread, and we can define a big-step semantics by

evaluating each iteration of the loop independently in the initial memory at the

start of the loop. However, if we do so, it is not clear what the final memory

should be after evaluating the parallel loop, i.e. it is not clear how to recombine

the memories obtained by evaluating each iteration independently. Consider

the following pair of programs:

x[] := 0 ;
par i = 0 to 1 do
if (i == 1)
x[] := i ;

done

x[] := 1 ;
par i = 0 to 1 do
if (i == 0)
x[] := i ;

done

In both cases, after evaluating each iteration of the loop independently, we

would get one thread where x[] ↦→ 0 and another thread where x[] ↦→ 1, and

we need to somehow reconcile the values. To do so, we must either keep

the value that is different from the initial value before evaluating the loop, or

examine the sets of written locations in both cases to determine which thread

writes to x[] in each case. None of these solutions seem very satisfactory,

and we can instead think of a third solution: instead of capturing the final

memory after executing the command, we can make our big-step semantics

return a differential memory δµ, a partial mapping that contains the last value

written to each location. If a location is not written at all, it should have no

associated value in the differential memory. Using such a formulation of the

semantics, it is easy to recombine the evaluation of all the iterations in a parallel

loop: we can simply take the union of the differential memories, since the

absence of non-benign races ensures that the union has at most one unique

value per memory location. By returning a differential memory instead of a

“complete” memory as the result of the evaluation, the result of an evaluation

only depends on the locations that are actually touched during said evaluation,

giving natural framing properties to the semantics. In particular, this will make

82 An intermediate language for tensor compilers

it possible to break the self-dependent loop between iterations of sequential

loops in chapter 5, because we can write a symbolic evaluator for annotated

programs that is independent of the memory it is executed in.

Now that we have motivated the need for differential memories, the attentive

reader may notice some duplication of purpose with the set of readsω. The

difference is indeed small: whereωmaps each location to the set of all values

written to it during the execution of the program, δµmaps each location to the

last of those values. Could we completely get rid ofω and only use δµ instead?

The answer depends on the amount of slack we allow ourselves regarding the

kind of races that should be deemed acceptable. Clearly, read-write races are

inacceptable, and δµ can be used instead ofω to prevent those since they have

the same domains. We could also prevent all write-write reads using δµ by

requiring that the δµ for different threads must be disjoint, but we want to allow

benign races, because compilers such as Halide rely on them. Unfortunately,

it is not possible to allow benign races while preventing all non-benign races

using only δµ. Consider the following pair of programs:

par i = 0 to 1 do
x[] := i ;
x[] := 7 ;

done

par i = 0 to 1 do
x[] := 7 ;

done

In both cases, the last value written by the loop body to location x[] is 7,

and hence they would have the same δµ; for the program on the left, distinct

intermediate values are written by each thread, which is captured byω. The

program on the left has non-benign data races (there are races between the

writes of 0, 1 and 7 to x[]), while the program on the right has only benign

data races. However, the non-benign data races for the left program are, in

some sense, “covered” by a write of the same value, 7 — hence, even though

there can be data races during the execution of the program, the final value

is deterministic: once the parallel loop has finished executing, the value in

location x[] is always 7. This is true if all writes are atomic: in this case, we

can order all the writes depending on the time they are committed to the main

memory for x[], and the last write to x[] is necessarily the last write to x[] by

some thread, and hence necessarily a write of 7. Even if the writes to x[] are not

atomic, we can consider them as a combination of atomic writes to components

4.2 Dynamic semantics 83

of x[], and the same reasoning applies for each of the atomic components of

x[].

In the end, there seems to be no substantial difference between allowing only

benign data races (which requires ω) and also allowing data races that are

“covered” by an identical write (which can be expressed using δµ only). A

compiler assuming that no data race occurs can of course perform incorrect

program transformations if it assumes that no data race occurs, which may be

thought less likely if only benign races are possible. Unfortunately, even only in

the presence of benign races, compilers can perform incorrect transformations

changing program meaning, as described by Boehm [20]. Since this is not an

issue I aim to solve in this thesis, and in order to simplify the presentation here,

I only include the computation of δµ in the evaluation rules below, omittingω

completely.

To express the evaluation of a Sched command, we must define the set of

locations read during the evaluation of an expression, written rdℰ;µ(e), and

defined in Fig. 4.4. The definition of rdℰ;µ(e) depends on the evaluation

function J · Kℰ;µ. If any evaluation fails during the computation of rdℰ;µ(e) (i.e.

no rule applies, for instance because we are evaluating a memory location that

has no associated value), the result is undefined. When we write rdℰ;µ(e) = ρ,

we implicitly assume that the result is defined.

The set of locations read by an expression e is always defined in any environment

where the evaluation of e succeeds; moreover, whenever the set of locations

read is defined, it captures the locations that influence the evaluation of the

expression.

Lemma 4.2.1. If an expression e evaluates to a value v in environment ℰ and memory

µ, then rdℰ;µ(e) is defined and equal to a set of locations.

Proof. The proof is immediate by induction on the structure of e after general-

izing over both ℰ and µ. □

To express that the set of read locations captures the locations influencing the

evaluation, we first define what it means for memories to agree on a set of

locations.

84 An intermediate language for tensor compilers

rdℰ;µ(x) = ∅ rdℰ;µ(l) = ∅

JιiKℰ;µ = ni ∈ N for all 1 ⩽ i ⩽ n rdℰ;µ(ιi) = ρi for all 1 ⩽ i ⩽ n

rdℰ;µ(a[ι1, . . . , ιn]) = {a[n1, . . . ,nn]} ∪
⋃

1⩽i⩽n

ρi

x ∉ fv(e) ∪ dom(ℰ)
JιKℰ;µ = v0 rdℰ;µ(ι) = ρ1 rdℰ[x ↦→v0];µ(e) = ρ2

rdℰ;µ(let x = ι in e) = ρ1 ∪ ρ2

rdℰ;µ(ι) = ρ n ∈ Z
rdℰ;µ(n · ι) = ρ

rdℰ;µ(ι) = ρ n > 0

rdℰ;µ(⌊ι/n⌋) = ρ
rdℰ;µ(ι) = ρ n > 0

rdℰ;µ(ι mod n) = ρ

rdℰ;µ(ι1) = ρ1 rdℰ;µ(ι2) = ρ2 ⊙ ∈ {+,=, <,≠, ⩽,&&, | |}
rdℰ;µ(ι1 ⊙ ι2) = ρ1 ∪ ρ2

rdℰ;µ(ι) = ρ
rdℰ;µ(! ι) = ρ

rdℰ;µ(ι) = ρ rdℰ;µ(e1) = ρ1 rdℰ;µ(e2) = ρ2

rdℰ;µ(select(ι, e1, e2)) = ρ ∪ ρ1 ∪ ρ2

rdℰ;µ(ei) = ρi for all 1 ⩽ i ⩽ n

rdℰ;µ(f(e1, . . . , en)) = ρ1 ∪ · · · ∪ ρn

Figure 4.4: Read locations for semantics expressions

4.2 Dynamic semantics 85

Definition 4.2.1. We say that memory µ is compatible with memory µ′ over the

set of locations ρ, or that µ agrees with µ′ on ρ, and we write µ(ρ) = µ′(ρ), if the

locations in ρ are mapped to the same value in both µ and µ′:

∀ℓ ∈ ρ, µ(ℓ) = µ′(ℓ)

The compatibility over a set of location ρ is an equivalence relation; moreover,

two memories are compatible on a union if, and only if, they are compatible on

both components of the union. In particular, two memories compatible on a

set of locations are compatible on any subset thereof.

We can now state that the evaluation of an expression only depends on the

locations it reads:

Theorem 4.2.2. If the set of read locations rdℰ;µ(e) is defined, then for any memory µ′

compatible with µ over rdℰ;µ(e) we have rdℰ;µ′(e) = rdℰ;µ(e) and JeKℰ;µ′ = JeKℰ;µ.

Remark 4.2.1. Theorem 4.2.2 always apply when µ′ is an extension of µ, since it

is necessarily compatible with µ over rdℰ;µ(e) ⊆ dom(µ).

Note that JeKℰ;µ′ and JeKℰ;µ can be both equal to ⊥ if there is a non-memory-

related error such as evaluating 1 + true.

Proof of Theorem 4.2.2. By induction on the structure of e, after generalizing

over ℰ and µ:

Case e = x We always have rdℰ;µ′(x) = ∅ = rdℰ;µ(x) and JxKℰ;µ does not

depend on µ.

Case e = a[ι1, . . . , ιn] rdℰ;µ(a[ι1, . . . , ιn]) is defined, hence for any 1 ⩽ i ⩽ n,

JιiKℰ;µ = ni is an integer.

By definition, rdℰ;µ(ιi) ⊆ rdℰ;µ(a[ι1, . . . , ιn]) hence by induction hypoth-

esis rdℰ;µ′(ιi) = rdℰ;µ(ιi) and JιiKℰ;µ′ = JιiKℰ;µ = ni for any memory µ′

agreeing with µ on rdℰ;µ(a[ι1, . . . , ιn]).

86 An intermediate language for tensor compilers

Moreover, a[n1, . . . ,nn] is in rdℰ;µ(a[ι1, . . . , ιn]) over which µ and µ′

agree, hence either a[n1, . . . ,nn] is not present in both µ and µ′ or it

maps to the same value in both, from which we conclude.

Case e = let x = ι in e′ By induction hypothesis, we have:

rdℰ;µ′(ι) = rdℰ;µ(ι)
JιKℰ;µ′ = JιKℰ;µ

for any memory µ′ agreeing with µ on rdℰ;µ(e). Hence, we can apply the

induction hypothesis on e′ in environment ℰ + x ↦→ JιKℰ;µ to conclude.

The other cases are simple applications of the induction hypothesis. □

If no locations are read during the evaluation of e in ℰ and µ (i.e. rdℰ;µ(e) = ∅),
then the evaluation of e does not depend on µ, i.e. for any memory µ′ JeKℰ;µ′ =

JeKℰ;µ; moreover, we also have rdℰ;µ′(e) = ∅ and JeKℰ;M = JeKℰ;µ for any model

M.

Definition 4.2.2. If rdℰ;∅(e) is defined and equal to the empty set (e.g. if e does

not contain any array read), we define JeKℰ = JeKℰ;∅ and we have JeKℰ = JeKℰ;µ

for any memory µ.

Lemma 4.2.3. If rdℰ;µ(ι) = ∅ for some memory µ then for any environment ℰ ⊨ Γ ,
memory µ′ and modelM, we have JιKℰ;µ′ = JιKℰ;M = JeKℰ .

We are now finally able to define the evaluation of a command c in an

environment ⟨ℰ;µ⟩ into a pair ⟨δµ; ρ⟩ of a differential memory and a read-set.

This evaluation is written ℰ;µ ⊢ c ⇓u ⟨δµ; ρ⟩ and is defined through inference

rules in Fig. 4.5. δµ is a partial mapping from locations to values representing

the updates performed by the evaluation, and ρ is the set of locations that were

read during the evaluation.

The update operator µ1 ⊲ µ2, read “µ1 then µ2”, where µ1 and µ2 are mappings,

represents the mappings of µ2 and those of µ1 not overwritten by µ2. The

4.2 Dynamic semantics 87

U-Skip

ℰ;µ ⊢ skip ⇓u ⟨∅; ∅⟩

U-Seq

ℰ;µ ⊢ c1 ⇓u ⟨δµ1; ρ1⟩ ℰ;µ ⊲ δµ1 ⊢ c2 ⇓u ⟨δµ2; ρ2⟩
ℰ;µ ⊢ c1 ; c2 ⇓u ⟨δµ1 ⊲ δµ2; ρ1 ∪ ρ2⟩

U-If-True

JeKℰ;µ = true ℰ;µ ⊢ c1 ⇓u ⟨δµ; ρ⟩
ℰ;µ ⊢ if e then c1 else c2 ⇓u ⟨δµ; rdℰ;µ(e) ∪ ρ⟩

U-If-False

JeKℰ;µ = false ℰ;µ ⊢ c2 ⇓u ⟨δµ; ρ⟩
ℰ;µ ⊢ if e then c1 else c2 ⇓u ⟨δµ; rdℰ;µ(e) ∪ ρ⟩

U-Let

JeKℰ;µ = v ℰ + x ↦→ v;µ ⊢ c ⇓u ⟨δµ; ρ⟩
ℰ;µ ⊢ let x = e in c ⇓u ⟨δµ; rdℰ;µ(e) ∪ ρ⟩

U-For

JeKℰ;µ = n ∈ Z ∀0 ⩽ i < n, ℰ + x ↦→ i;µ ⊲ ⊲
0⩽j<i

δµj ⊢ c ⇓u ⟨δµi; ρi⟩

ℰ;µ ⊢ for x < e; do c ⇓u ⟨⊲
0⩽i<n

δµi; rdℰ;µ(e) ∪
⋃

0⩽i<n

⟩ρi

U-ParLoop

JeKℰ;µ = n ∈ Z ∀0 ⩽ i < n, ℰ + x ↦→ i;µ ⊢ c ⇓u ⟨δµi; ρi⟩
∀0 ⩽ i ≠ j < n, δµi ¨ δµj ∀0 ⩽ i ≠ j < n, dom(δµi) # ρj

ℰ;µ ⊢ par x < e; do c ⇓u ⟨
⋃

0⩽i<n

δµi; rdℰ;µ(e) ∪
⋃

0⩽i<n

ρi⟩

U-Assign

JeKℰ;µ = v

∀1 ⩽ i ⩽ n, JιiKℰ;µ = ni ∈ Z ℓ = a[n1, . . . ,nn] ∈ dom(µ)
ℰ;µ ⊢ a[ι1, . . . , ιn] {t} := e ⇓u ⟨{ℓ ↦→ v}; rdℰ;µ(e) ∪

⋃
1⩽i⩽n

rdℰ;µ(ιi)⟩

U-Allocate

µa = {a[i1, . . . , in] ↦→ ⊥ | 0 ⩽ i1 < n1 ∧ · · · ∧ 0 ⩽ in < nn}
∀1 ⩽ i ⩽ n, JeiKℰ;µ = ni ℰ; (µ\a) ⊲ µa ⊢ c ⇓u ⟨δµ; ρ⟩

ℰ;µ ⊢ allocate a : τ[e1, . . . , en] in c ⇓u ⟨δµ\dom(µa); ρ\dom(µa)⟩

Figure 4.5: Update semantics for Sched statements

88 An intermediate language for tensor compilers

intuition for ⊲ can be understood through the rule U-Seq, and it can be defined

as µ1 ⊲µ2 = (µ1\dom(µ2))⊎µ2, where⊎ denotes the union of disjoint mappings.

It can also be defined extensionally:

µ1 ⊲ µ2(ℓ) =
{
µ2(ℓ) if ℓ ∈ dom(µ2)
µ1(ℓ) otherwise

⊲ is associative, hence, we can define the iterated update⊲
0⩽i<n

µi = µ0⊲. . .⊲µn−1.

The iterated update is used to specify sequential loops in rule U-For.

Memories are expected to contain a value for each accessible memory location,

some of which may be potentially undefined (i.e. contain ⊥). This is respected

by rule U-Allocate that introduces a fresh local array and initializes its domain

with ⊥. Local arrays are properly scoped: the notation µ\a in rule U-Allocate

indicates that we remove all locations associated with array a from µ before

evaluating c. This ensures that array names are properly shadowed (i.e. if there

was already an array named a, it can no longer be accessed within an allocate a

block). Note that local arrays allocated in different threads do not alias, and

local arrays allocated outside a parallel loop can be accessed by each thread. To

ensure scoping, writes and reads to the local array are erased after returning

from the inner scope of the allocate statement, ensuring that the values are no

longer accessible. The assumption that a value is present for each accessible

memory location is exploited by rule U-Assign to make out-of-bounds writes a

runtime error. In fact, we can show using a trivial induction that both reads

and writes are only performed within the domain of µ:

Remark 4.2.2. If c evaluates to ⟨δµ; ρ⟩ in environment ℰ and memory µ, then

dom(δµ) ⊆ dom(µ) and dom(ρ) ⊆ dom(µ).

Conversely, the program c cannot distinguish between sufficiently big memories

that agree on the set of reads:

Lemma 4.2.4. If c evaluates to ⟨δµ; ρ⟩ in environment ℰ and memory µ, then it also

evaluates to ⟨δµ; ρ⟩ in any memory µ′ that contains dom(δµ) and agrees with µ on ρ.

Proof. Under the conditions of the lemma, by induction on the judgement

ℰ;µ ⊢ c ⇓u ⟨δµ; ρ⟩:

4.2 Dynamic semantics 89

U-Skip ℰ;µ′ ⊢ skip ⇓u ⟨∅; ∅⟩ holds for any memory µ′.

U-Seq We have ℰ;µ ⊢ c1 ⇓u ⟨δµ1; ρ1⟩ and µ′ ↾ρ1∪ρ2
= µ ↾ρ1∪ρ2

hence in

particular, µ′ ↾ρ1
= µ ↾ρ1

and, by induction hypothesis, we have ℰ;µ′ ⊢
c1 ⇓u ⟨δµ1; ρ1⟩.

Moreover, we have ℰ;µ ⊲ δµ1 ⊢ c2 ⇓u ⟨δµ2; ρ2⟩ and we must prove that

(µ′ ⊲ δµ1) ↾ρ2
= (µ ⊲ δµ1) ↾ρ2

to apply the induction hypothesis again and

conclude. The equality holds because if we consider a location in ρ2,

either it is in δµ1 and the result from δµ1 is used in both sides, or it is

not, and thus the results in µ′ and µ are used, respectively — but by

hypothesis we had µ′ ↾ρ1∪ρ2
= µ ↾ρ1∪ρ2

, and we conclude.

U-For By Theorem 4.2.2, the evaluation of e in µ and µ′ is identical. By iteration,

for each 0 ⩽ i < n, µ ⊲ ⊲
0⩽j<i

δµj and µ′ ⊲ ⊲
0⩽j<i

δµj agree on

⋃
0⩽j<n ρj,

hence in particular on ρi, and we get ℰ;µ′ ⊲ ⊲
0⩽j<i

δµj ⊢ c ⇓u ⟨δµi; ρi⟩.
We conclude using Theorem 4.2.2.

U-Par By Theorem 4.2.2, the evaluation of e in µ and µ′ is identical. By

induction hypothesis, we have ℰ + x ↦→ i;µ′ ⊢ c ⇓u ⟨δµi; ρi⟩ for each

0 ⩽ i < n and we conclude using Theorem 4.2.2.

The other cases (U-If-True, U-If-False, U-Let, U-Assign and U-Allocate) follow

immediately from the induction hypothesis and Theorem 4.2.2. □

The absence of races is enforced by rule U-ParLoop. The condition

∀0 ⩽ i ≠ j < n, dom(δµi) # ρj

ensures the absence of read-write races using the disjointness operator #,

defined as follows.

Definition 4.2.3. Two sets S1 and S2 are disjoint, written S1 # S2, if they have no

elements in common.

S1 # S2 := S1 ∩ S2 = ∅

By abuse of notation, we say that a partial memory µ and a set ρ are disjoint,

and write µ # ρ, if ρ and the domain of µ are disjoint, i.e. when dom(µ) # ρ.

90 An intermediate language for tensor compilers

Similarly, we say that two partial memories µ1 and µ2 are disjoint, and write

µ1 # µ2, when their domains are disjoint, i.e. when dom(µ1) # dom(µ2).

The condition

∀0 ⩽ i ≠ j < n, δµi ¨ δµj (4.1)

ensures that all write-write races are covered by a benign race, as explained

earlier. This condition uses the compatibility operator, defined as follows:

Definition 4.2.4. We say that two partial memories µ and µ′ are compatible,

denoted µ ¨ µ′, if they agree on their shared domain, i.e. for any location ℓ

associated to a value v in µ and to a value v′ in µ′, v and v′ are equal.

Remark 4.2.3. Two partial memories µ and µ′ are compatible if, and only if, their

respective updates commute:

µ ¨ µ′⇔ µ ⊲ µ′ = µ′ ⊲ µ

It is possible to replace condition Eq. (4.1) with a disjointness condition

∀0 ⩽ i ≠ j < n, dom(δµi) # dom(δµj)

in order to ensure the absence of all data races, however, as mentioned above,

languages such as Halide do generate code with benign data races that we

want to verify, hence the use of the more complex compatibility condition. If

the semantics is extended with the write-setω recording all the values written

to a given location (ω follows the same rules as δµ, except that an the union of

the associated sets must be taken whenever ⊲ is used), the condition can also

be replaced with a compatibility condition onω instead.

4.3 Soundness

To justify the use of the big-step semantics presented in the previous section, and

increase confidence that it properly captures the expected behavior of programs

4.3 Soundness 91

in Sched, it is worthwhile to prove it sound with respect to a more traditional

small-step concurrent semantics with interleaved executions allowing data

races.

As discussed in the previous section, the definition of a proper small-step

semantics must be carefully considered. Formulation of concurrent small-steps

semantics usually rely on mechanisms to represent a single pool of concurrent

execution units, akin to the threads in a processor or the processors in a

distributed system. Memory is split between a local memory for each thread

and a global memory that can be used by multiple threads to communicate.

Most transition rules are local to the thread, but synchronization primitives

and accesses to the global memory require conditions on the other threads

to make progress. On the other hand, the parallel loops introduced in Sched

can introduce arbitrarily nested “levels” of parallelism and a sequence of local

memories; for instance, the semantics of the following program:

par i = 0 to N do
allocate b[M] in
par j = 0 to M do
b[j] := a[i, j] ;

par j = 0 to M do
allocate c[] in
c[] := b[M - j] ;
d[i, j] := c[] * c[] ;

requires the introduction of two nested parallel levels with their own local

memories: there are N ×M versions of the zero-dimensional array c and N

versions of the array b. A proper semantics would take into account this nesting

property of the language, and could be modelled along the lines of concurrent

languages for GPU programming [51, 63] that also deal with hierarchical

memory structures.

In order to represent a small-step semantics for the Sched language, we

introduce additional constructs to represent intermediate computation stages

that are not needed for the big-step semantics: the parallel composition operator

c1 | | c2 that is used to expand parallel loops, and the inalloc µa do c construct

used to represent computation within an allocate block. inalloc takes as

argument a partial memory µa representing the current state of the memory

for the locally allocated array. By explicitly storing the local memory in the

92 An intermediate language for tensor compilers

command, this can properly express the semantics of locally allocated arrays in

the presence of parallel composition.

The small step reduction rules ⟨c | µ⟩ ⇝ ⟨c′ | µ′⟩ are given in Figure 4.6.

These reduction rules are similar to the reduction rules of Reinking, Bernstein,

and Ragan-Kelley [89], with two differences: compared to ours, semantics

of Reinking, Bernstein, and Ragan-Kelley [89] uses an explicit grammar for

contexts instead of the *-Ctx rules, and uses an imperative store instead of

substitutions. Since the imperative store is never written to except when entering

a loop, those differences are essentially stylistic. Reinking’s semantics also uses

a different formulation of memories where each array name is associated with

a partial function on integer tuples.

Rule Assign can only write to a location that is already present in the memory,

hence the small step semantics never introduce new locations:

Lemma 4.3.1. If ⟨c | µ⟩ reduces to ⟨c′ | µ′⟩, then µ′ and µ have the same domain.

In order to focus on the interesting part (i.e. the array language and the

constraints in rule U-ParLoop that are meant to ensure the absence of races),

the reduction rules are expressed using capture-avoiding substitutions (whose

standard rules are not reproduced here) rather than an explicit environment.

Relating the small-step to the big-step semantics (that does use an explicit

environment) requires the following technical lemma, whose proof is omitted

here (the general case is required for the induction):

Lemma 4.3.2. If ℰ , ℰ′ denotes the concatenation of environments ℰ and ℰ′, and e[ℰ]
(resp. c[ℰ]) denotes the application of ℰ as a capture-avoiding substitution to e (resp.

to c), then the following holds:

JeKℰ ,ℰ′;µ = Je[ℰ]Kℰ′;µ
and

ℰ , ℰ′;µ ⊢ c ⇓u ⟨δµ; ρ⟩ ⇔ ℰ′;µ ⊢ c[ℰ] ⇓u ⟨δµ; ρ⟩

In particular, when ℰ′ = ∅, we have:

JeKℰ;µ = Je[ℰ]K∅;µ

4.3 Soundness 93

Seq-Ctx

⟨c1 | µ⟩⇝ ⟨c′
1
| µ′⟩

⟨c1 ; c2 | µ⟩⇝ ⟨c′
1

; c2 | µ′⟩

Seq-Skip

⟨skip ; c | µ⟩⇝ ⟨c | µ⟩

Par-L

⟨c1 | µ⟩⇝ ⟨c′
1
| µ′⟩

⟨c1 | | c2 | µ⟩⇝ ⟨c′
1
| | c2 | µ′⟩

Par-R

⟨c2 | µ⟩⇝ ⟨c′
2
| µ′⟩

⟨c1 | | c2 | µ⟩⇝ ⟨c1 | | c′
2
| µ′⟩

Par-Skip-R

⟨c | | skip | µ⟩⇝ ⟨c | µ⟩

Par-Skip-L

⟨skip | | c | µ⟩⇝ ⟨c | µ⟩

If-True

JιK∅;µ = true

⟨if ι then c1 else c2 | µ⟩⇝ ⟨c1 | µ⟩

If-False

JιK∅;µ = false

⟨if ι then c1 else c2 | µ⟩⇝ ⟨c2 | µ⟩

Let

JιK∅;µ = v

⟨let x = ι in c | µ⟩⇝ ⟨c[x← v] | µ⟩

SeqLoop

JιK∅;µ = n ∈ Z
⟨for x < ι; do c | µ⟩⇝ ⟨c[x← 0] ; . . . ; x[c← n − 1] | µ⟩

ParLoop

JιK∅;µ = n ∈ Z
⟨par x < ι; do c | µ⟩⇝ ⟨c[x← 0] | | . . . | | x[c← n − 1] | µ⟩

Assign

JιiK∅;µ = ni for all 1 ⩽ i ⩽ n JeK∅;µ = v a[n1, . . . ,nn] ∈ dom(µ)
⟨a[ι1, . . . , ιn] {t} := e | µ⟩⇝ ⟨skip | µ[a[n1, . . . ,nn] ← v]⟩

Allocate

JιiK∅;µ = ni for all 1 ⩽ i ⩽ n
µa = {a[i1, . . . , in] ↦→ ⊥ | 0 ⩽ i1 < n1 ∧ · · · ∧ 0 ⩽ in < nn}

a ∉ arrays(µ)
⟨allocate a : τ[ι1 × · · · × ιn] in c | µ⟩⇝ ⟨inalloc µa do c | µ⟩

InAlloc-Ctx

dom(µ) # dom(µa)
⟨c | µ ⊎ µa⟩⇝ ⟨c′ | µ′ ⊎ µ′a⟩ dom(µ′a) = dom(µa)
⟨inalloc µa do c | µ⟩⇝ ⟨inalloc µ′a do τc′ | µ′⟩

InAlloc-Skip

⟨inalloc µa do skip | µ⟩⇝ ⟨skip | µ⟩

Figure 4.6: Small-Step Interleaving Semantics

94 An intermediate language for tensor compilers

and

ℰ;µ ⊢ c ⇓u ⟨δµ; ρ⟩ ⇔ ∅;µ ⊢ c[ℰ] ⇓u ⟨δµ; ρ⟩

Usually, one would expect big-step and small-step semantics to be equivalent,

in the sense that there should be a big-step evaluation for program c in memory

µ to memory µ′ if, and only if, there is a finite sequence of reductions from

⟨c | µ⟩ to ⟨skip | µ′⟩. However, imperative small-step semantics in a concurrent

setting are not deterministic due to the possibility of races, while our big-step

semantic is deterministic: hence, such a strong equivalence theorem would be

inconsistent and is necessarily false.

Recall that our big-step semantics is deterministic by design: we are only

interested in deterministic programs because we consider that if a tensor

compiler generates a racy, nondeterministic program from a deterministic

specification, it can only indicate a bug in the tensor compiler and should be

disallowed by the verifier. Hence, rather than true equivalence, we are interested

in proving that programs with a big-step semantics have a deterministic

interleaving small-step semantics. This can be expressed as the combination of

two theorems: if c evaluates in big-step to µ′ in µ, then ⟨c | µ⟩ reduces in many

small steps to ⟨skip | µ′⟩ (existence), and if c evaluates in big-step to µ′ in µ,

then all sequences of small-step reductions starting from ⟨c | µ⟩ converge to

⟨skip | µ′⟩ (determinism).

The existence property is the easiest to state and prove.

Theorem 4.3.3 (Existence). If a command c evaluates to ⟨δµ; ρ⟩ in environment

ℰ and memory µ, then there exists a sequence of reductions from ⟨c[ℰ] | µ⟩ to

⟨skip | µ ⊲ δµ⟩.

The proof of the theorem proceeds by building a leftward sequence of reduction

steps and composing them as appropriate, always evaluating the left branch first

in the case of parallel composition. Because the big-step semantics evaluates all

iterations of a parallel loop in the same initial memory while this construction

results in evaluating iteration i in the memory resulting of the evaluation of all

iterations 0 ⩽ j < i, an induction on Theorem 4.3.3 would not be well-founded;

we must instead generalize its statement before performing the proof:

4.3 Soundness 95

Lemma 4.3.4. If a command c evaluates to ⟨δµ; ρ⟩ in environment ℰ and memory µ,

then there exists a sequence of reduction from ⟨c[ℰ] | µ′⟩ to ⟨skip | µ′ ⊲ δµ⟩ for any

memory µ′ that contains dom(δµ) and agrees with µ on ρ.

The proof of Theorem 4.3.4 relies on a few technical lemmas relating the update

operation with inclusion and compatibility of maps.

Lemma 4.3.5. If δµ1 ⊆ δµ′
1

then δµ1 ⊲ δµ2 ⊆ δµ′
1
⊲ δµ2 for all partial maps δµ2.

Lemma 4.3.6. If µ is compatible with µ′ on ρ, then for any δµ, µ ⊲ δµ is compatible

with µ′ ⊲ δµ on ρ.

Proof. Consider a location ℓ. If ℓ is in the domain of δµ, then µ ⊲ δµ(ℓ) = δµ(ℓ) =
µ′ ⊲ δµ(ℓ). If ℓ is not in the domain of δµ, then µ ⊲ δµ(ℓ) = µ(ℓ) = µ′(ℓ) =
µ′ ⊲ δµ(ℓ). □

We can now prove Theorem 4.3.4 by induction, and the proof of Theorem 4.3.3

immediately follows by applying Theorem 4.3.4 with µ′ = µ.

Proof. By induction on the derivation of ℰ;µ ⊢ c ⇓u ⟨δµ; ρ⟩, we build a

sequence of reduction steps without using rules Par-R or Par-Skip-R by treating

the parallel composition as a sequential composition.

U-Skip We have δµ = ∅ and skip |µ′ reduces in 0 steps to skip |µ′ for any

memory µ′.

U-Assign Theorem 4.2.2 ensures that the evaluation of each expression in

µ and µ′ are identical, and we can apply rule Assign to c[ℰ]|µ using

Theorem 4.3.2.

U-If-True, U-If-False By induction hypothesis, we get a sequence of small-step

reductions for the body in any compatible memory µ′, which we can

prefix with If-True (resp. If-False).

96 An intermediate language for tensor compilers

U-Let By induction hypothesis, we get a sequence of small-step reductions

for the body ⟨c[ℰ + x ↦→ v] | µ′⟩⇝∗ ⟨skip | µ′ ⊲ δµ⟩. Moreover, we have

let x = ι in c[ℰ] = let x = ι[ℰ] in c[ℰ], hence by rule Let we have

⟨let x = ι in c[ℰ] | µ′⟩ ⇝ ⟨c[ℰ][x ← v] | µ′⟩ from which we conclude

since c[ℰ + x ↦→ v] = c[ℰ][x← v].

U-Seq By induction hypothesis, we have ⟨c1[ℰ] | µ1⟩⇝∗ ⟨skip | µ1 ⊲ δµ1⟩ for

any µ′
1

compatible with µ on ρ1. We also have ⟨c2[ℰ] | µ2⟩ ⇝∗ ⟨skip |
µ2 ⊲ δµ2⟩ for any µ2 compatible with µ ⊲ δµ1 on ρ2.

Assume that we have µ′ compatible with µ on ρ1 ∪ ρ2; in particular, µ′

is compatible with µ on ρ1 and we have ⟨c1[ℰ] | µ′⟩⇝∗ ⟨skip | µ′ ⊲ δµ1⟩.
Moreover, µ′ ⊲ δµ1 is compatible with µ ⊲ δµ1 on ρ2 by Theorem 4.3.6,

hence we have ⟨c2[ℰ] | µ′ ⊲ δµ1⟩⇝∗ ⟨skip | (µ′ ⊲ δµ1) ⊲ δµ2⟩.

By applying rule Seq-Ctx to the steps in the reduction of c1[ℰ] and

eliminating the resulting skip with rule Seq-Skip, we can connect it with

the reduction of c2[ℰ] to obtain ⟨c1 ; c2[ℰ] | µ′⟩⇝∗ ⟨skip | (µ′⊲δµ1)⊲δµ2⟩
and conclude by associativity.

U-Par Similar to rule U-Seq, we get ⟨c1[ℰ] | µ1⟩ ⇝∗ ⟨skip | µ1 ⊲ δµ1⟩ for any

µ1 compatible with µ on ρ1 and ⟨c2[ℰ] | µ2⟩⇝∗ ⟨skip | µ2 ⊲ δµ2⟩ for any

µ2 compatible with µ on ρ2.

Forµ′ compatible withµ on ρ1∪ρ2, we get ⟨c1[ℰ] | µ′⟩⇝∗ ⟨skip | µ′⊲δµ1⟩
which we can wrap in rule Par-L and Par-Skip-L to obtain ⟨c1 ; c2[ℰ] |
µ′⟩⇝∗ ⟨c2[ℰ] | µ′ ⊲ δµ1⟩.

Because of the constraint dom(δµ1) # ρ2, µ′ ⊲ δµ1 is compatible with µ′

and by transitivity with µ on ρ2, hence we have ⟨c2[ℰ] | µ′ ⊲ δµ1⟩ ⇝∗
⟨skip | µ′ ⊲ δµ1 ⊲ δµ2⟩ and we conclude.

U-For By induction hypothesis, for 0 ⩽ i < n and a memory µi compatible

with µ ⊲⊲
0⩽j<i

δµj on ρi, we have ⟨c[ℰ + x ↦→ i] | µi⟩⇝∗ ⟨skip | µi ⊲ δµi⟩.

If µ′ is compatible with µ on

⋃
0⩽i<n ρi, then µ′ ⊲ ⊲

0⩽j<i
δµj is compatible

with µ ⊲⊲
0⩽j<i

δµj by repeated application of Theorem 4.3.6 on

⋃
0⩽i<n ρi,

and in particular on ρi.

4.3 Soundness 97

Hence, we get a series of reductions from ⟨c[ℰ + x ↦→ i] | µ′ ⊲ ⊲
0⩽j<i

δµj⟩
to ⟨skip | µ′ ⊲ ⊲

0⩽j⩽i
δµjj⟩ that can be combined with rules Seq-Ctx and

Seq-Skip and prefixed with rule For to conclude.

U-ParLoop The proof is similar to that of rule U-For using rules Par-L, Par-

Skip-L and Par instead of Seq-Ctx, Seq-Skip and For. Moreover, we must

check that µ′ ⊲ ⊲
0⩽j<i

δµj is compatible with µ on ρi in order to apply

the induction hypothesis, which is the case because of the conditions

dom(δµj) # ρi ensuring that µ′ ⊲ ⊲
0⩽j<i

δµj is compatible on ρi with µ′

and hence with µ by transitivity.

□

Let us now consider the proof of the determinism property for programs with

a big-step semantics. Determinism can be stated as follows:

Theorem 4.3.7 (Determinism). If c evaluates to ⟨δµ; ρ⟩ in environment ℰ and

memory µ, and ⟨c[ℰ] | µ⟩ reduces in zero, one, or several steps to ⟨skip | µ′⟩, then µ′

is equal to µ ⊲ δµ.

In order to prove Theorem 4.3.7, the first intuition is to perform an induction

on the judgement ℰ;µ ⊢ c ⇓u ⟨δµ; ρ⟩. However, consider the case of rule U-

ParLoop: to apply the induction hypothesis, we would need to build separate

executions ⟨c[ℰ + x ↦→ i] | µ⟩ ⇝∗ ⟨skip | µ′
i
⟩ for each 0 ⩽ i < n from the

interleaved execution ⟨for x < ι; do c | µ⟩ ⇝∗ ⟨skip | µ′⟩. Doing so would

require many re-ordering of the underlying reduction steps, and it is not clear

it would be easy to prove the correctness of such re-orderings.

If we cannot perform an induction on the big-step semantics, we can try to

perform an induction on the small-step semantics instead, since this is the only

other hypothesis available to us. Doing so requires generalizing the statement

of Theorem 4.3.7, since within the induction, the result of the reduction is

not necessarily skip. Considering the case of a single-step reduction first, the

statement of the induction step would need to be similar to the following

lemma:

98 An intermediate language for tensor compilers

Lemma 4.3.8 (Single-step Preservation). If ℰ;µ ⊢ c ⇓u ⟨δµ; ρ⟩ and ⟨c[ℰ] | µ⟩⇝
⟨c′ | µ′⟩ both hold, then there exists δµ′ and ρ′ such that ∅;µ′ ⊢ c′ ⇓u ⟨δµ′; ρ′⟩ holds.

Moreover, we have δµ′ ⊆ δµ, ρ′ ⊆ ρ, and µ′ ⊲ δµ′ = µ ⊲ δµ.

Theorem 4.3.8 can be repeatedly applied through an immediate induction to

generalize its statement to a sequence of reductions:

Corollary 4.3.9 (Many-steps Preservation). If ℰ;µ ⊢ c ⇓u ⟨δµ; ρ⟩ and ⟨c[ℰ] |
µ⟩⇝∗ ⟨c′ | µ′⟩ both hold, then there exists δµ′ and ρ′ such that ∅;µ′ ⊢ c′ ⇓u ⟨δµ′; ρ′⟩
holds.

Moreover, we have δµ′ ⊆ δµ, ρ′ ⊆ ρ, and µ′ ⊲ δµ′ = µ ⊲ δµ.

By instantiating c′ with skip and ignoring the inclusion conditions, the proof

of Theorem 4.3.7 is immediate from Theorem 4.3.9:

Proof of Theorem 4.3.7. By Theorem 4.3.9, we get δµ′, and ρ′ such that ∅;µ′ ⊢
skip ⇓u ⟨δµ′; ρ′⟩, δµ′ ⊆ δµ, ρ′ ⊆ ρ, and µ′ ⊲ δµ′ = µ ⊲ δµ.

However, the only applicable rule giving a semantic to skip is U-Skip, hence we

get that δµ′ = ∅ and we conclude that µ ⊲ δµ = µ′ ⊲ ∅ = µ′. □

It now remains to prove Theorem 4.3.8. Except that Theorem 4.3.8 is trivially

false: we first need to introduce big-step evaluation rules for the intermediate

constructs introduced by the small step semantics, namely parallel composition

and the inalloc block. These evaluation rules are reproduced below and are

derived from the rules U-ParLoop and U-Allocate.

U-Par

ℰ;µ ⊢ s1 ⇓u ⟨δµ1; ρ1⟩ ℰ;µ ⊢ s2 ⇓u ⟨δµ2; ρ2⟩
dom(δµ1) # ρ2 dom(δµ2) # ρ1 ω1 ¨ ω2

ℰ;µ ⊢ s1 ; s2 ⇓u ⟨δµ1 ⊲ δµ2; ρ1 ∪ ρ2⟩

U-InAlloc

ℰ;µ ⊲ µa ⊢ c ⇓u ⟨δµ; ρ⟩
ℰ;µ ⊢ inalloc µa do c ⇓u ⟨δµ\dom(µa); ρ\dom(µa)⟩

4.3 Soundness 99

The proofs of Theorem 4.2.4 and Theorem 4.3.4 remain valid in the presence of

these additional rules, and we can finally prove Theorem 4.3.8.

Proof of Lemma 4.3.8. By induction on the reduction step ⟨c[ℰ] | µ⟩⇝ ⟨c′ | µ′⟩.

Seq-Ctx The big-step semantics must use rule U-Seq, hence we have ℰ;µ ⊢
c1 ⇓u ⟨δµ1; ρ1⟩. By induction hypothesis, since ⟨c1[ℰ] | µ⟩ ⇝ ⟨c′

1
| µ′⟩

holds, we get that ∅;µ′ ⊢ c′
1
⇓u ⟨δµ′

1
; ρ′

1
⟩ holds with the inclusions and

µ′ ⊲ δµ′
1
= µ ⊲ δµ1.

From the original application of U-Seq, we also have ℰ;µ ⊲ δµ1 ⊢ c2 ⇓u
⟨δµ2; ρ2⟩ hence, by Theorem 4.3.2, we have ∅;µ ⊲ δµ1 ⊢ c2[ℰ] ⇓u ⟨δµ2; ρ2⟩.

Since µ′ ⊲ δµ′
1
= µ ⊲ δµ1, we get ∅;µ′ ⊲ δµ′

1
⊢ c2[ℰ] ⇓u ⟨δµ2; ρ2⟩ and we

conclude using set reasoning and Theorem 4.3.5 to prove the inclusions

δµ′
1
⊲ δµ2 ⊆ δµ1 ⊲ δµ2, and ρ′

1
∪ ρ2 ⊆ ρ1 ∪ ρ2.

Seq-Skip The first two rules in the proof tree for ℰ;µ ⊢ skip ; c ⇓u ⟨δµ; ρ⟩ are

U-Seq and U-Skip, which we can remove.

Par-L and Par-R Assume without loss of generality that we are considering

rule Par-L; the proof is similar to the case of Seq-Ctx. By induction

hypothesis, we get ∅;µ′ ⊢ c′
1
⇓u ⟨δµ′

1
; ρ′

1
⟩ with µ′ ⊲ δµ′

1
= µ ⊲ δµ1 and the

appropriate inclusions.

We also have ℰ;µ ⊢ c2 ⇓u ⟨δµ2; ρ2⟩ from the big-step semantics, which

gives ∅;µ ⊢ c2[ℰ] ⇓u ⟨δµ2; ρ2⟩ by Theorem 4.3.2.

We now claim thatµ andµ′ are compatible over ρ2. First, since dom(δµ1) #

ρ2, µ′ ⊲ δµ′
1
= µ ⊲ δµ is compatible with µ over ρ2. Second, since δµ′

1
⊆ δµ1

and δµ1 # ρ2, we also have δµ′
1

ρ2, µ′ and µ′ ⊲ δµ′
1

are compatible over

ρ2, and we conclude by transitivity.

Since µ and µ′ are compatible over ρ2, we get ∅;µ′ ⊢ c2[ℰ] ⇓u ⟨δµ2; ρ2⟩
and we conclude since the side conditions of U-Par still apply when one

of the argument gets smaller.

When applying Par-R, note that δµ2 is compatible with δµ1 and δµ′
1
, hence

100 An intermediate language for tensor compilers

the updates δµ2 ⊲ δµ1 and δµ2 ⊲ δµ′
1

commute.

Par-Skip-L and Par-Skip-R The proof tree of the big-step semantics is com-

posed of U-Par and one U-Skip, which simplify to the proof tree of the

right (resp. left) hand side.

If-True, If-False and Let We have µ′ = µ and by Theorem 4.3.2, the evaluation

in the small- and big-step semantics are identical. We conclude using the

induction hypothesis and the monotony of ∪ for the inclusion.

SeqLoop We have µ′ = µ and the evaluations in the small- and big-step

semantics are identical by Theorem 4.3.2. The set of reads rdℰ;µ(e) no

longer contributes to ρ, which might get smaller; this is allowed. If n > 0,

the comb-like application of rule U-Seq for the sequence of assignments

corresponds to the unfolding of the quantified premise in U-For. If n ⩽ 0,

rule U-For is otherwise equivalent to U-Skip.

ParLoop We have µ′ = µ and the evaluations in the small- and big-step

semantics are identical by Theorem 4.3.2. The set of reads rdℰ;µ(e) again

no longer contributes to ρ. If n ⩽ 0, rule U-Par is otherwise equivalent

to U-Skip. If n > 0, the comb-like application of rule U-Par corresponds

to the unfolding of the quantified premise in U-ParLoop, except that the

same memory is used as input for each application of U-Par. Because

each dom(δµi) is disjoint with all the other ρj, we can apply Theorem 4.2.4

to change the input memory from µ to µ ⊲ ⊲
0⩽j<i

δµj. Finally, the side

conditions are equivalent in both case using De Morgan’s laws for # and∪,

and noting that δµ1 ¨ δµ2 ∪ δµ3 if and only if δµ1 ¨ δµ2 and δµ1 ¨ δµ3.

InAlloc-Ctx Since ⟨c[ℰ] | µ⊎µa⟩⇝ ⟨c′ | µ′⊎µ′a⟩ and ℰ;µ ⊎ µa ⊢ c ⇓u ⟨δµ; ρ⟩,
by induction hypothesis we get ∅;µ′ ⊎ µ′a ⊢ c ⇓u ⟨δµ′; ρ′⟩ with δµ′ ⊆ δµ,

ρ′ ⊆ ρ and (µ′ ⊎ µ′a) ⊲ δµ′ = (µ ⊎ µa) ⊲ δµ.

By standard set reasoning, the inclusions remain when removing dom(µa),
and we get the big-step evaluation for inalloc µ′a do c by applying U-

InAlloc.

InAlloc-Skip The proof tree for the big-step evaluation applies U-InAlloc to

U-Skip, hence evaluates to ⟨∅; ∅⟩ and can be transformed to U-Skip.

4.4 Typing 101

□

Theorem 4.3.9 and Theorem 4.3.3 can also be used to prove the confluence of

reductions starting in a program with a big-step semantics:

Corollary 4.3.10 (Confluence). If c has a big-step evaluation to ⟨δµ; ρ⟩ in ℰ and µ,

and ⟨c[ℰ] | µ⟩ reduces in many small steps to both ⟨c1 | µ1⟩ and ⟨c2 | µ2⟩, then they

both reduce in many steps to some common pair ⟨c′ | µ′⟩.

Proof. By Theorem 4.3.9, c1 has a big-step semantics ∅;µ1 ⊢ c1 ⇓u ⟨δµ1; ρ1⟩ with

µ1 ⊲ δµ1 = µ ⊲ δµ. Hence, by Theorem 4.3.3, there is a reduction ⟨c1 | µ1⟩⇝∗
⟨skip | µ ⊲ δµ⟩.

The same reasoning applies to c2, and we conclude with c′ = skip and

µ′ = µ ⊲ δµ. □

4.4 Typing

In order to distinguish between semantic expressions and index expressions,

we will introduce two distinct type systems. In these type systems, the distin-

guished typeA of affine expressions (or, more accurately, piece-wise quasi-affine

expressions) is used for array indices and loop bounds, while the distinguished

type B of affine constraints (or, rather, piece-wise affine constraints) is used in

conditionals. The type system enforces that expressions of these distinguished

types are expressed using piece-wise quasi-affine combinations of the program

parameters and outer loop iterators. For now, we will assume that computation

on the types A and B is performed using exact arithmetic and ignore the issue

of possible overflows in index computations throughout. The handling of

integer overflows is discussed in Section 9.5. Moreover, we do not allow values

of types A and B to be directly stored into arrays; however, we do allow casting

them to value types such as int32 using a conversion function.

The typing environments abstract over a portion of both the runtime environ-

ment ℰ and the memory µ. Typing environments are ranged over by Γ , and

can contain three type of bindings:

102 An intermediate language for tensor compilers

• Affine bindings x : A or x : B from a name to an affine type. We only

allow variables of affine types, because variables of other types can be

represented using local zero-dimensional arrays, as discussed below.

Affine bindings are introduced using let expressions and commands.

• Array bindings from names to array shapes a : τ[ι1 × · · · × ιn]. An array

shape τ[ι1 × · · · × ιn] represents an n-dimensional, rectangular array

containing values of type τ, where dimension i has length ιi. Indices

start at 0 in each dimension. Arrays are mutable, and are not initialized.

A mutable variable can be represented using a zero-dimensional array.

• Affine boolean expressions e, to keep track of the bounds on loop indices

and other conditionals. These are similar to path conditions in a symbolic

evaluator, and are included in the typing judgement for the purpose of

symbolic evaluation in the next section.

Whenever we write a context Γ , x : τ (resp. Γ , a : τ[ι1 × · · · × ιn]), we implicitly

assume that x (resp. a) is not bound in Γ . In the case of an array binding, we also

assume that the ιi are well-typed of type A, using the typing rules presented

below. More generally, we follow the Barendregt convention of α-renaming

the bound variables to avoid name conflicts. Moreover, we assume that all

contexts Γ start with a common prefix ΓP that only contain variable bindings

for the parameters and are always usable in expressions.

The expressions of Sched can be separated into two categories. Affine expressions

are used in array indices, loop bounds, and conditionals. They are restricted to

syntactically affine combinations of the program parameters and outer affine

variables, and are typed using the judgement Γ ⊢ ι : τ (read “under assumptions

Γ , the affine expression ι has type τ”), where τ ∈ {A,B}. We will also state

“ι is an affine expression in Γ” for Γ ⊢ ι :A and “ι is an affine constraint in Γ”

for Γ ⊢ ι :B, omitting the “in Γ” part when it can be inferred from the context.

Semantic expressions have a value type and can contain array reads and function

calls. They appear on the right-hand side of array assignments, and are typed

using the judgement Γ ⊢a e : τ, which is read “under assumptions Γ , the

expression e has semantic type τ”. We will also state simply “e has type τ in Γ”,

omitting the “in Γ” part when it can be inferred from context. Finally, prophetic

expressions have a value type and contains tensor accesses reading directly from

the specification tensors instead of array accesses. Prophetic expressions t are

typed using the judgement Γ ⊢A t : τ, read “t has prophetic type τ in Γ”.

4.4 Typing 103

The typing rules for both judgements are given in Fig. 4.7. Most of the rules

are fairly standard. select is an eager affine conditional that can appear in both

kinds of expressions.

A typing environment Γ can be related with the runtime environments ℰ that

it represents.

Definition 4.4.1. A runtime environment ℰ is compatible for a typing environ-

ment Γ , written ℰ ⊨ Γ , if the variables of Γ are associated in ℰ to values that

satisfy the assertions in Γ . Formally, ℰ ⊨ Γ is defined using the inference rules:

ℰ ⊨ ∅
ℰ(x) ∈ Z ℰ ⊨ Γ
ℰ ⊨ Γ , x : A

ℰ(x) ∈ {true, false} ℰ ⊨ Γ
ℰ ⊨ Γ , x : B

∀1 ⩽ i ⩽ n, JιiKℰ = ni ∈ Z ℰ ⊨ Γ
ℰ ⊨ Γ , a : τ[ι1 × · · · × ιn]

ℰ ⊨ Γ JeKℰ = true

ℰ ⊨ Γ , e

If b is a boolean expression in context Γ , whether written directly as a formula

on affine expressions or expressed as a set-theoretic formula on Presburger sets

(such as a set inclusion or an expression using empty or sv), we use the notation

Γ ⊢ b to indicate that the expression b is implied by the affine constraints of

Γ . That is, Γ ⊢ b holds iff JbKℰ is true for all environments ℰ compatible with

Γ . This can be expressed as a piecewise quasi-affine problem and decided

using isl. For instance, if S1 and S2 are two symbolic sets, Γ ⊢ S1 ⊆ S2 holds iff

JS1Kℰ ⊆ JS2Kℰ for all ℰ ⊨ Γ .

Similarly, we can define what it means for both an environment ℰ and memory

µ together to be compatible with a typing environment Γ . Because the typing

environment does not distinguish initialized and uninitialized memory cells,

we cannot say that the all values associated in µ with a valid location in Γ have

values of the corresponding type, as it could also hold the distinguished value

⊥. Instead, we quantify over a subset of the locations that must hold values of

an appropriate type.

Definition 4.4.2. A location a[i1, . . . , in] is well-typed with type τ for a typing

environment Γ in a runtime environment ℰ if there is a binding a : τ[ι1×· · ·×ιn]
in Γ such that JιiKℰ = ni ∈ Z and 0 ⩽ ii < ni for all 1 ⩽ i ⩽ n.

104 An intermediate language for tensor compilers

T-Var

⊢ Γ , x : τ

x, τ : ⊢ x : τ

T-Array

a : τ[ι′
1
, . . . , ι′n] ∈ Γ ∀1 ⩽ i ⩽ n, Γ ⊢ ιi :A

Γ ⊢a a[ι1 , . . . , ιn] : τ

T-Tensor

A ∈ 𝒮 ∀1 ⩽ i ⩽ nA , Γ ⊢ ιi :A

Γ ⊢A A(ι1 , . . . , ιnA) : τA

T-Bool

b ∈ {true, false}
Γ ⊢b :B

T-Int

n ∈ Z
Γ ⊢n :A

T-Call

∀1 ⩽ i ⩽ n, ki ∈ {k, ∅} ⇒ Γ ⊢ki ei : τi
k ∈ {a,A} f ∈ ℱ τf = τ1 × · · · × τn → τ

Γ ⊢k f(e1 , . . . , en) : τ

T-Select

k ∈ {a,A, ∅}
Γ ⊢ ι1 : B Γ , e1 ⊢k e2 : τ Γ ,¬e1 ⊢k e3 : τ

Γ ⊢k select(ι1 , e2 , e3)

T-Let

k ∈ {a,A, ∅} Γ ⊢ ι : A Γ , x : A ⊢k e : τ

Γ ⊢k let x = ι in e : τ

T-Add

Γ ⊢ ι1 :A Γ ⊢ ι2 :A

Γ ⊢ ι1 + ι2 :A

T-Mul

Γ ⊢ ι :A

Γ ⊢n · e :A

T-Div

Γ ⊢ ι : A n > 0

Γ ⊢ ⌊ι/n⌋ : A

T-Mod

Γ ⊢ ι : A n > 0

Γ ⊢ ι mod n : A

T-Cmp

Γ ⊢ ι1 : A Γ ⊢ ι2 : A ⊙ ∈ {=, ⩽}
Γ ⊢ ι1 ⊙ ι2 : B

T-And

Γ ⊢ ι1 : B Γ ⊢ ι2 : B

Γ ⊢ ι1 && ι2 : B

T-Not

Γ ⊢ ι : B

Γ ⊢ ! ι : B

Figure 4.7: Typing rules for Sched expressions

4.4 Typing 105

A memory µ is well-typed over a set of locations ρ for a typing environment

Γ in a runtime environment ℰ, written ℰ ⊨ µ(ρ) : Γ , if all locations in ρ are

well-typed for Γ in ℰ and for any well-typed location ℓ ∈ ρ with type τ, there is

a binding ℓ ↦→ v in µ for some v ∈ JτK.

A memoryµ is compatible with a typing environment Γ in a runtime environment

ℰ, denoted ℰ;µ ⊨ Γ , if the domain of µ is exactly the set of well-typed locations

of Γ in ℰ.

We can now prove soundness theorems for our typing judgements, stating

that when an expression is well-typed in typing environment Γ , it evaluates

to a value of the appropriate type in compatible runtime environment and

memories.

Theorem 4.4.1 (Type Soundness for expressions). If an expression ι is affine (resp.

an affine constraint) in context Γ (i.e. Γ ⊨ ι : A (resp. Γ ⊨ ι : B)), then the evaluation of

ι in any environment ℰ compatible Γ is an integer (resp. a Boolean).

If an expression e has type τ in context Γ (i.e. Γ ⊢a e : τ holds), then the evaluation of e

in any environment ℰ compatible for Γ and memory µ well-typed over rdℰ;µ(e) for Γ

in ℰ (i.e. ℰ ⊨ Γ and ℰ ⊨ µ(ρ) : Γ) is a value of type τ (i.e. JeKℰ;µ ∈ JτK).

Proof. For the first case, the proof proceeds by induction on the judgement

Γ ⊢ ι : τ after generalizing over τ = A or τ = B.

For the second case, the proof proceeds by induction on the judgement Γ ⊢a e : τ,

remarking that if µ is well-typed over ρ for Γ in ℰ, it is also well-typed over any

subset of ρ. Because we require µ to be well-typed over rdℰ;µ(e), we ensure

that the value read in an array access is defined and of the correct type. □

We can also state and prove type soundness for prophetic expressions simi-

larly:

Theorem 4.4.2 (Type Soundness for Prophetic Expressions). If e has prophetic

type τ in context Γ (i.e. Γ ⊢A e : τ) then for any environment ℰ compatible with Γ and

well-typed modelM the evaluation of e in ℰ andM has type τ (i.e. JeKℰ;M ∈ JτK).

106 An intermediate language for tensor compilers

Further, we note that affine expressions and constraints do not contain array

reads:

Lemma 4.4.3. If e is an affine expression or constraint in Γ (i.e. Γ ⊢ ι :A or Γ ⊢ ι :B)

then for any environment ℰ compatible with Γ , we have rdℰ;∅(e) = ∅.

In particular, the conditions of Theorem 4.2.3 apply to affine expressions and constraints.

Since Γ ⊢a e : τ ensures that all indices are affine, we also have:

Corollary 4.4.4. If e has type τ in Γ , then for any ℰ compatible with Γ , rdℰ;∅(e) = ρ
is defined.

Verifying a tensor compiler 5

The techniques and tools describe in chapter 2 are all used in production

systems today, targeting a range of heterogeneous hardware. These systems

are focused on practical applications and have different track records when

it comes to their correctness. A recent study by Shen et al. [99] of three deep

learning compilers (TVM, nGraph and Glow) found that about a quarter of

deep learning compilers bug result in the compiler generating incorrect code.

The authors of the study note that the high-level optimization are a source of

more bugs than the low-level optimization, but they admit that this is partly

due to their study focusing on frameworks that delegate low-level optimization

to underlying libraries and toolkits. The generation of incorrect code is a

concerning bug, and one that is challenging to design proper test cases for. The

authors of the study note that more attention should be paid to design effective

testing methods for wrong code bugs from both academia and industry.

By building upon the implementation language Sched presented in the previous

chapter, this chapter explores the design of a practical translation-validation

tool to allow the formal verification of the code generated by a tensor compiler

for a given operator. Formal verification guarantees correctness for any input

and any (possibly conditional) input shapes.

The content of this chapter is based on the work presented in “End-to-end

translation validation for the halide language” [27].

107

108 Verifying a tensor compiler

5.1 Verification conditions

Our technique can be understood as a generator of verification conditions, i.e.

assertions that, if true, entail the desired property — here that the implemen-

tation matches the specification. By far the most common presentation of

verification condition generators such as Why3 [19] or Dafny [66] is based

on the concept of predicate transformers[33] in a Hoare-style logic, usually a

“weakest precondition” predicate transformer. These tools use logical assertions,

pre- and post-conditions for functions, and loop invariants to relate the code

to a formal specification. The prophetic annotations we have introduced in

Chapter 1 can be seen as assertions, as in this naive implementation of the

matrix product from Chapter 1:

for i = 0 to N - 1 do
2 for j = 0 to M - 1 do

r[] := 0
assert (r[] = 0)
for k = 0 to P - 1 do
r[] := r[] + a[i, k] * b[k, j]

7 assert (r[] = R(i, j, k))
c[i, j] := r[]
assert (c[i, j] = C(i, j))

On its own, these assertions are not enough to prove the equivalence: loop

invariants are required to propagate information across loop iterations, such

as the value of r[] at line 6 that is needed to prove the assertion at line 7.

In this case, we need to infer the invariant for the loop on k that we used in

Chapter 1:

5 for k = 0 to P - 1 do
invariant { r[] = if k = 0 then 0 else R(i, j, k − 1) }
...

In the general case, if r[]was an array, the invariant would also need to specify

the values at the indices which are not written by the loop.

The process we use to generate invariants, presented in this chapter, proceeds

as follows. We abstract the memory state of the program using a symbolic

5.2 Symbolic Values and Heaps 109

heap h, and we abstract the behavior of a statement s by a symbolic heap

∆h(s) which represents the prophetic writes performed by s. We note ⊲ the

(associative) update combinator on symbolic heaps, such that the prophetic

evaluation of statement s in any abstract heap h is h ⊲ ∆h(s). For a loop for i
= 0 to N do s, after 0 ⩽ i ⩽ N iterations starting in any heap h, we end up

in h ⊲ ∆h(s[i := 0]) ⊲ · · · ⊲ ∆h(s[i := i]). If the concrete evaluation agrees with

the prophetic evaluation, this must be a loop invariant when taking h to be

the result of the prophetic evaluation up to that point. Because we verify the

equality of concrete and prophetic evaluation on each assignment, this inferred

invariant is correct by construction and does not need to be checked.

In the remainder of this chapter, we assume that a signature 𝒮 is given, with

a specification as a SARE S over 𝒮. We formulate the verification condition

generator as a symbolic evaluator, using symbolic heaps whose locations are

array names indexed by affine expressions of the outer variables. The values in

the symbolic heaps are not referring to any mutable state, only to outer loop

iterators and specification tensors, and can be considered a form of ghost state.

The definition of symbolic heaps is given in the next section.

The specification deals with possibly infinite domains, hence the implementa-

tion can only implement a subset of the specification. We want to express that

evaluating the implementation in a memory where the input arrays match a

subset of the input tensors results in a new memory where the output arrays

match a corresponding subset of the output tensors.

We will occasionally write e for a sequence of expressions e1, . . . , en. When

meaningful, different sequences in the same expression can have different

lengths. The length of the sequence is written |e|.

5.2 Symbolic Values and Heaps

The commands of Sched are imperative, and do not have a type; instead, they

can be described using a well-formedness judgement. In addition, this well-

formedness judgement computes the prophetic evaluation of the command,

as described in Chapter 1. This judgement is presented in Section 5.3 and

depends on a symbolic representation of heaps and values that we now present.

110 Verifying a tensor compiler

Symbolic heaps are a symbolic representation of memory states. We represent

symbolic heaps using the Presburger relations and operations presented in

Chapter 3. The symbolic heaps can be thought of as mapping symbolic locations

to symbolic values, which are presented first.

Symbolic location A symbolic location ℓ̂ is represented as a single-valued

Presburger set containing tuples with a space of the form a/n where a is an

array name. As a Presburger set, the symbolic value ℓ̂ can be evaluated in a

local environment ℰ to a set of integer tuples. These integer tuples can be

interpreted as locations with zero or one element, denoted JℓKℰ . By abusing

notations, this evaluation is defined on the space decomposition of ℓ̂:

J
⋃
i

{ai⟨x⟩ | ϕi}Kℰ =
⊎
i

{ai[j] | JϕiKenv+x↦→j}

Because ℓ̂must be single-valued, at most one of the sets on the right-hand side

is nonempty.

Symbolic Values A symbolic value v̂ is represented as a Presburger set contain-

ing tuples with a space of the form E/n where E is an expression context with

n holes. As a Presburger set, the symbolic value v̂ can be evaluated in a local

environment ℰ as a set of integer tuples, where the identifiers are expression

contexts. These integer tuples can be interpreted as expressions by performing

the corresponding substitution. By abusing notations, we can define the eval-

uation of a symbolic value v̂ in environment ℰ to a set of expressions on the

space decomposition of v̂ (recall that E[j] denotes the substitution of the holes

in E by j1, . . . , jn):

J
⋃
i

{Ei⟨x⟩ | ϕi}Kℰ =
⋃
i

{Ei[j] | JϕiKℰ ,x↦→j}

The obtained set of expressions can further be evaluated into a set of values

(which may include⊥) by evaluating the expressions in a modelM (or memory

5.2 Symbolic Values and Heaps 111

µ):

J
⋃
i

{Ei⟨x⟩ | ϕi}Kℰ ,M =
⋃
i

{JEi[j]K∅;M | JϕiKℰ ,x ↦→j}

J
⋃
i

{Ei⟨x⟩ | ϕi}Kℰ ,µ =
⋃
i

{JEi[j]K∅;µ | JϕiKℰ ,x ↦→j}

Unlike symbolic locations, we do not require symbolic values to be single-

valued Presburger sets. This is because the same value could be represented

by different expressions: for instance,

{(A(21) + B(22))⟨0, 0⟩; (B(21) +A(22))⟨0, 0⟩} (5.1)

is not single-valued as a Presburger set, but its evaluation in any model is a

singleton (assuming that + is a commutative operation).

Computations with symbolic values can often be easier to perform if we can

assume that they are single-valued, because they can then be represented

using piece-wise quasi-affine expressions. Thus, we define the function υ that

takes as argument a symbolic value v̂ and returns a single-valued symbolic

value v̂′ by arbitrarily restricting all but one of the formulas in v̂ in case of

conflicts (in particular, υ(v̂) = v̂ if v̂ is single-valued). For instance, if v̂ denotes

the symbolic value Equation (5.1), υ(v̂) can be either {(A(21) + B(22))⟨0, 0⟩}
or {(B(21) + A(22))⟨0, 0⟩} (which exactly it is does not matter and is left

unspecified).

In any environment where the original symbolic value was a singleton, the two

symbolic values evaluate to the same set:

Theorem 5.2.1. If v̂ is a symbolic value that evaluates to a singleton {v} in environment

ℰ and modelM (resp. environment ℰ and memory µ) then υ(v̂) also evaluates to {v}
in environment ℰ and modelM (resp. environment ℰ and memory µ).

If e is an expression, we can define the function decompose(e) that decomposes

e as a pair E⟨ι1, . . . , ιn⟩ where E is a context with n holes and no free variables,

and ι1, . . . , ιn are affine expressions following the structure of the typing

judgement.

112 Verifying a tensor compiler

We say that a symbolic value v̂ is well-formed with respect to a specification S

if it evaluates to a set with zero or one element for any environment ℰ and

modelM of the specification S. Unless otherwise stated, all symbolic values

in this manuscript are assumed to be well-formed with respect to an ambient

specification. In these conditions, by abuse of notation, we denote by Jv̂Kℰ;M

either its single element (when it has one) or the distinguished constant ⊥
when it is empty.

Symbolic Lifting Any construct on expressions can be lifted to symbolic values

by applying the construct to the underlying expression contexts, intersecting the

domains when applicable. For instance, we can compute v̂1 + v̂2 by considering

the space decompositions v̂1 =
⋃
i{E1

i
⟨ei

1⟩ | ϕ1

i
} and v̂2 =

⋃
j{E2

j
⟨ej

2⟩ | ϕ2

j
},

assuming that n1

i
and n2

j
are the numbers of holes in E1

i
and E2

j
, respectively:

v̂1 + v̂2 =
⋃
i,j

{ (
E1

i
[21, . . . ,2n1

i
]+

E2

i
[2n1

i
+1
, . . . ,2n1

i
+n2

j
]

)
⟨ei

1, ej
2⟩

����� ϕ1

i ∧ ϕ
2

j

}

In the expressionE1

i
[21, . . . ,2n1

i
]+E2

i
[2n1

i
+1
, . . . ,2n1

i
+n2

j
], the indices represent

the holes of the outer expression. In other words, the list of holes of the resulting

expression correspond to the holes of E1

i
followed by those of E2

i
. In practice, it

is possible to fuse the holes that can be proven equal when ϕ1

i
∧ϕ2

j
holds to get

a simpler representation.

Lifting a deterministic construct to symbolic values evaluates to the set of

values obtained by applying the construct to all possible combinations of values

for the arguments, for instance

Jv̂1 + v̂2Kℰ;M = {v1 + v2 | v1 ∈ Jv̂1Kℰ;M ∧ v2 ∈ Jv̂2Kℰ;M}

In particular, if all the arguments are singletons in a given environment, the

result is also a singleton in said environment.

Moreover, lifting a deterministic construct to single-valued symbolic values

always returns a single-valued symbolic value.

5.2 Symbolic Values and Heaps 113

Symbolic Heaps Where Presburger sets are used to represent values, i.e. the

result of a single expression, Presburger relations can be used to represent the

state of the program memory, i.e. representations of mappings from locations

to values. A symbolic heap, ranged over by ĥ, is a Presburger relation whose

domain contains tuples with space a/nwhere a is an array name and whose

range contains tuples with space E/mwhere E is an expression context with

m holes. Multiple relations with the same domain space but different range

spaces can be present in the same symbolic heap. For instance, the following

symbolic heap maps even indices to the context E0 and odd indices to the

context E1:

{ a⟨x⟩ ↦→ E0⟨x − 1⟩ | x mod 2 = 0 ;

a⟨x⟩ ↦→ E1⟨x⟩ | x mod 2 = 1 }

Symbolic locations are singleton sets, hence, the application of a symbolic heap

ĥ to a symbolic location ℓ̂ is a symbolic value, representing the value at the

corresponding position in the heap. The application ĥ(ℓ̂) is empty if either ℓ̂ is

empty, or the corresponding location is not present in the symbolic heap.

In the same way that we can evaluate a symbolic value to a set of expressions,

we can evaluate a symbolic heap ĥ to a set of (location, expression) pairs JĥKℰ
in environment ℰ:

J{a⟨x⟩ → E⟨y⟩ | ϕ}Kℰ = {(a⟨i⟩, E[j]) | JϕKℰ+x ↦→i+y↦→j}

We can then evaluate the expressions in the pairs in a modelM or memory µ

as for symbolic values, yielding sets of (location, value) pairs for JĥKℰ;M and

JĥKℰ;µ.

If the resulting evaluation JĥKℰ;M or JĥKℰ;µ is functional (i.e. each location is

associated with at most one value), we identify the result with the corresponding

partial memory. We can extend the concept of well-typed to symbolic heaps by

making sure that h only contains well-typed expressions:

Definition 5.2.1. A symbolic heaph is well-typed with respect to an environment

Γ if the following conditions hold:

114 Verifying a tensor compiler

• For each

{a⟨x1, . . . , xn⟩ → E⟨ι1, . . . , ιm⟩ | ϕ}

in h, there is a binding a : τ[ι′
1
, . . . , ι′m] in Γ such that

Γ , x1 : A, . . . , xn : A ⊢A E[ι1, . . . , ιm] : τ

holds

• The implication ϕ ⇒ 0 ⩽ xi < ιi holds in any environment Γ , x1 :

A, . . . , xn : A for all 1 ⩽ i ⩽ n.

Well-typed symbolic heaps are well-typed memories when they evaluate to a

functional relation.

Lemma 5.2.2. If h is well-typed in Γ , then for any environment ℰ compatible with Γ

such that JhKℰ;M is functional, JhKℰ;M is well-typed for Γ in ℰ.

Proof. The proof is mechanical by checking that the typing conditions for

a symbolic heap are the symbolic versions of the typing conditions for a

memory. □

We can also evaluate an expression in a symbolic heap, replacing array accesses

with the corresponding expression stored in the symbolic heap. We denote the

evaluation of expression e in symbolic heap ĥ JeKĥ. JeKĥ is a symbolic value,

defined inductively on the structure of e in Figure 5.1.

The evaluation of an expression in a symbolic heap preserves types; however,

said evaluation may be empty (e.g. if e accesses a location that is not defined in

h).

Lemma 5.2.3. If h is a well-typed symbolic heap in environment Γ and e has type τ

in Γ , then for any component {E⟨ι1, . . . , ιn⟩ | ϕ} of JeKh, E[ι1, . . . , ιn] has type τ in

environment Γ ,ϕ.

5.2 Symbolic Values and Heaps 115

JxKh = {2⟨x⟩}
JnKh = {2⟨n⟩}
JlKh = {l⟨⟩}

Ja[ι1, . . . , ιn]Kh = h({a⟨Jι1Kh, . . . , JιnKh⟩})
Jf(e1, . . . , en)Kh = f(Je1Kh, . . . , JenKh)

Figure 5.1: Evaluation in a symbolic heap

reads(x) = ∅
reads(n) = ∅
reads(l) = ∅

reads(a[ι1, . . . , ιn]) = {[a]ι1, . . . , ιn}
reads(f(e1, . . . , en)) = reads(e1) ∪ · · · ∪ reads(en)

Figure 5.2: Evaluation in a symbolic heap

To ensure that JeKh is defined, we define the function reads(e) to compute the

set of array accesses in e interpreted as a symbolic set of locations. reads(e),
defined on the structure of e in Figure 5.2, is the symbolic counterpart to the

dynamic set of reads rde;ℰ(∅):

Lemma 5.2.4. If Γ ⊢a e : τ holds and ℰ is compatible with Γ and rdℰ;∅(e) is defined,

then Jreads(e)Kℰ is equal to rdℰ;∅(e).

Note that JeKh and reads(e) are only properly defined for well-typed expres-

sions; in particular, they return bogus values for expressions containing nested

array accesses (e.g. a[b[i]]). However, when expressions are well-typed, if

the set of read locations are defined in h, then the evaluation of e in h is

nonempty:

Lemma 5.2.5. If e is well-typed in Γ , then reads(e) is a symbolic set expressed in

116 Verifying a tensor compiler

Presburger arithmetic and if the inclusion of symbolic sets reads(e) ⊆ dom(h) is valid

in Γ , then ¬ empty(JeKh) is also valid in Γ .

In particular, JJeKhKℰ is never empty for any environment ℰ compatible with Γ .

Proof. The proof follows by induction on the structure of e, noting that since

Γ ⊢a e : τ holds, any array access is indexed by affine index expressions. □

Finally, if the evaluation of h in an environment ℰ and modelM is functional,

evaluating the symbolic value JeKh is the same as evaluating e in JhKℰ;M

directly:

Lemma 5.2.6. If e is well-typed in Γ and JhKℰ;M is functional for an environment ℰ
compatible with Γ , the following set inclusion holds:

JJeKhKℰ;M ⊆ {JeKℰ;JhKℰ;M
}

In particular, if JJeKhKℰ is nonempty, JJeKhKℰ;M is equal to the singleton {JeKℰ;JhKℰ;M
}.

Symbolic Update The update operator ⊲ and its iterated counterpart⊲ can

be defined on symbolic heaps.

Definition 5.2.2. For two symbolic heaps ĥ1 and ĥ2, the update of ĥ1 with ĥ2 is

defined as:

ĥ1 ⊲ ĥ2 = ĥ2 ∪ (ĥ1 − dom(ĥ2))
= {s→ t | s→ t ∈ ĥ2 ∨ s→ t ∈ ĥ1 ∧ s ∉ dom(ĥ2)}

Remember that the update operator ⊲ is defined on (partial) mappings from

locations to values, where missing values are ignored. We can then prove the

following adequacy lemma:

5.2 Symbolic Values and Heaps 117

Lemma 5.2.7 (Symbolic Update). If ĥ1 and ĥ2 are symbolic heaps, then for any

environment ℰ and modelM where the evaluations of ĥ1 and ĥ2 are functional, the

evaluation of ĥ1 ⊲ ĥ2 in ℰ andM is functional and equal to:

Jĥ1 ⊲ ĥ2Kℰ;M = Jĥ1Kℰ;M ⊲ Jĥ2Kℰ;M

To define an iterated version of the symbolic update, we need to compute, for

each location, the last value assigned to that location. This can be done by

substituting the iterated variable with its largest value writing to the location;

hence, we need to define the substitution of a variable (or variable tuple) with

a relation.

Let me give an intuition of the substitution operator. Consider for simplicity a

homogenous relation R1 = {t→ s : ϕ} with a free variable x. In the simplest

case, we may want to substitute x with a value that depends on the free

variables, expressed as a singleton set S = {[x] : x = e} where x is not free

and e is piecewise affine. The substitution can then be expressed as in the

λ caculus as (λ[x]. R1)(S), except that we need to unwrap the resulting set to

obtain a relation with the same shape as R1. Unfolding the definition of relation

application, we obtain:

unwrap(ran((λ[x]. R1) ∩ S)) = {t→ s : ∃x. ϕ ∧ x = e}

This construction is defined when S is not a singleton, although it is harder to

justify calling it a substitution in that case.

If the domain of the relation R1 represents memory location or other indexing,

it makes sense for the value substituted for x to depend on the location. Hence,

we allow S to be a relation {t→ [x] : x = e} instead, so that the expression e

can depend on the memory location t. This requires some bookkeeping using

curry and wrap to properly align the tuples: we can use uncurry(λ[x]. R1) to
obtain a domain of shape [[x], t] and intersect it with wrap(R−1

2
) that has the

same shape, then curry it back to a relation of shape {[x] : [t, s]}. Hence, we

obtain the following definition for the substitution operator:

Definition 5.2.3 (Substitution). If R1 and R2 are symbolic relations and x is a

variable tuple, we define the substitution R1[x := R2] as:

R1[x := R2] = unwrap(ran(curry(uncurry(λx. R1) ∩wrap(R−1

2
))))

118 Verifying a tensor compiler

Note that we define the substitution of a variable tuple with an (implicitly

single-valued) relation, and not with a piece-wise expression. There is no

theoretical reason for this; it just was simpler and more efficient in practice to

implement it that way using the operations provided by the isl library. Recall

that piece-wise expressions can be converted to relations, and we allow the

substituted relation R2 to be a piece-wise expression instead, by first converting

it to a single-valued relation. We also allow for R2 to be a singleton set (in

which case the domain dimensions are implicitly added), or a tuple x of free

variables interpreted as the singleton set {y : y = x}.

The definition of the substitution using Presburger sets operations is opaque,

but we can check that it satisfies the expected properties of a substitution.

Theorem 5.2.8. If R1 and R2 are symbolic relations and x is a variable tuple, then in

any environment ℰ the pair of integer tuples i→ j is in JR1[x := R2]Kℰ if, and only if,

there exists an integer tuple k such that i→ k is in JR2Kℰ and i→ j is in JR1Kℰ+x ↦→k.

Proof. Assume that i → j is in JR1[x := R2]Kℰ . By definition of unwrap, ran

and curry, this holds iff there exists a tuple k such that [k, i] → j is in

Juncurry(λx. R1) ∩wrap(R−1

2
)Kℰ . This again holds iff k→ [i, j] is in Jλx. R1Kℰ

and i→ k is in JR2Kℰ , from which we conclude. □

We can now properly define the iterated update.

Definition 5.2.4 (Iterated update). For a symbolic heap ĥ, variable x and affine

expression ι, the iterated update of ĥ over x up to ι is defined as:

⊲
0⩽x<ι

ĥ = ĥ[x := lexmax(bind0⩽x<ι

(
dom(ĥ)

)
)]

In other words,⊲
0⩽x<ι

ĥ is ĥ where x is substituted, for each location, with the

latest value of x at that location such that there is an expression associated with

that location and value of x.

This definition of ⊲
0⩽x<ι

ĥ is quite abstract, and can be better understood

through a few examples.

5.2 Symbolic Values and Heaps 119

Example 8. When there is at most one value of x that affects a given location,

the lexmax computes the single value and the iterated update is simply the

iterated union. Assume that ĥ = {a⟨x⟩ → A(2)⟨x + 2⟩ : 0 ⩽ x < N}, which,

given that x is in the context, expands to:

ĥ = {a⟨i⟩ → A(2)⟨j⟩ : 0 ⩽ x < N ∧ i = x ∧ j = x + 2}

Hence, we have:

dom(ĥ) = {a⟨i⟩ | 0 ⩽ x < N ∧ i = x}

bind0⩽x<4

(
dom(ĥ)

)
= {a⟨i⟩ → [x] : 0 ⩽ x < min(4,N) ∧ i = x}

Now, the lexicographic maximum eliminates the variable x and computes its

last value for each location:

lexmax(bind0⩽x<4

(
dom(ĥ)

)
) = {a⟨i⟩ ↦→ [i] : 0 ⩽ i < min(4,N)}

Hence, we finally substitute xwith i at location a⟨i⟩ where 0 ⩽ i < min(4,N)
holds:

⊲
0⩽x<4

ĥ = {a⟨i⟩ → A(2)⟨i + 2⟩ : 0 ⩽ i < min(4,N)}

Assuming that N ⩾ 4, this represents the heap:
a[0] ↦→ A(2)
a[1] ↦→ A(3)
a[2] ↦→ A(4)
a[3] ↦→ A(5)

Example 9. When multiple values of x touch the same location, the lexmax

computes the last value of x affecting that location. Assume now that ĥ =

120 Verifying a tensor compiler

{a⟨x mod 4⟩ → A(2)⟨x+3⟩. This is an unbounded symbolic heap. If we expand

the notation to make the index explicit, we get:

ĥ = {a⟨i⟩ → A(2)⟨j⟩ : j = x + 3 ∧ i = x mod 4}

We can again compute the domain then bind x:

dom(ĥ) = {a⟨i⟩ : i = x mod 4}

bind0⩽x<N

(
dom(ĥ)

)
= {a⟨i⟩ → [x] : i = x mod 4 ∧ 0 ⩽ x < N}

The lexicographic maximum gives us the greatest value of x associated with a

given location, which can be computed using isl:

lexmax(bind0⩽x<N

(
dom(ĥ)

)
=

{a⟨i⟩ ↦→ [N − 1 − (N − 1 + 3i) mod 4] : 0 ⩽ i ⩽ min(N, 4)}

Finally, we substitute x with this expression as a function of the location to

obtain:

⊲
0⩽x<N

ĥ = {a⟨i⟩ → A(2)⟨N + 2 − (N − 1 + 3i) mod 4⟩
: 0 ⩽ i ⩽ min(N, 4) }

Assuming that N ⩾ 4, this represents the heap:
a[0] ↦→ A(N + 2 − (N + 3) mod 4)
a[1] ↦→ A(N + 2 − (N + 2) mod 4)
a[2] ↦→ A(N + 2 − (N + 1) mod 4)
a[3] ↦→ A(N + 2 −N mod 4)

Again, we can prove the adequacy lemma :

Lemma 5.2.9. If ĥ is a symbolic heap and ι is an expression, then in any environment

ℰ and modelM where JιKℰ = n ∈ Z and JĥKℰ+x ↦→i;M is functional for all 0 ⩽ i < n,

then J⊲
0⩽x<ι

ĥKℰ;M is functional and equal to:

J⊲
0⩽ι<e

ĥKℰ;M = ⊲
0⩽i<JιKℰ

JĥKℰ ,x ↦→i;M

5.3 Prophetic Evaluation 121

Proof. ⊲
0⩽x<ι

ĥ is defined as ĥ[x := lexmax(bind0⩽x<ι

(
dom(ĥ)

)
)].

Let us first make sense of Jlexmax(bind0⩽x<ι

(
dom(ĥ)

)
)Kℰ . By definition of

lexmax, this is a mapping between locations ℓ and values i such that i is the

largest 0 ⩽ i < JιKℰ such that ℓ ∈ Jdom(ĥ)Kℰ+x ↦→i.

Let us now consider an arbitrary location ℓ. If ℓ is associated with a value in

⊲
0⩽i<JιKℰ

JĥKℰ ,x ↦→i;M, this value must come from the largest 0 ⩽ i < JιKℰ such

that ℓ ∈ dom(JĥKℰ+x ↦→i;M), because for any larger i, ℓ is not in the domain of

the map.

This is exactly the definition of the lexmax above, hence, if ℓ is associated with a

value in⊲
0⩽i<JιKℰ

JĥKℰ ,x ↦→i;M, it is associated with the same value in JĥKℰ+x ↦→i;M

where i = Jlexmax(bind0⩽x<ι

(
dom(ĥ)

)
)Kℰ(ℓ), and hence in⊲

0⩽x<ι
ĥ.

On the other hand, if ℓ is not in the domain of⊲
0⩽i<JιKℰ

JĥKℰ ,x ↦→i;M, it means

that it is not associated with a value in JĥKℰ ,x ↦→i;M for any of the 0 ⩽ i < JιKℰ ,

i.e. ℓ is not in any of the Jdom(ĥ)Kℰ+x ↦→i;M.

Hence, ℓ is not in the domain of Jbind0⩽x<ι

(
dom(ĥ)

)
Kℰ , hence neither is it in

the domain of its lexmax, hence neither is it in the substitution, from which we

conclude ℓ is not in J⊲
0⩽x<ι

ĥKℰ. □

5.3 Prophetic Evaluation

Commands are imperative, and operate by performing effects (i.e. reads and

writes) on the program memory. Hence, we extend the type system of Chapter 4

with a type and effect system for commands that precisely capture the effect of

the command on the program memory. This type and effect system is dubbed

prophetic evaluation since it captures the writes to the memory expressed in

terms of the specification by exploiting the prophetic annotations.

122 Verifying a tensor compiler

Prophetic evaluation is expressed as a judgement Γ ⊢ c : ∆h described in

Fig. 5.3, where ∆h is a symbolic heap representing the set of prophetic updates

performed by c. Recall that our goal is to first perform an evaluation of c by

assuming that the prophetic annotations are correct, and to use its result to

define a symbolic evaluator (in Section 5.4) that generates verification conditions

ensuring that the original assumption (i.e. that the prophetic annotations are

correct) was sound.

The prophetic evaluation of a program disregards the right-hand side of assign-

ments, and assumes that the value computed by all assignments corresponds to

the prophetic annotation on that assignment. In particular, prophetic evaluation

does not depend on a program memory assigning values to implementation

arrays, but only on a model assigning values to specification tensors. As an

example, let us consider the specification for a matrix product:

R(i, j,−1) = 0

R(i, j, k) = R(i, j, k − 1) +A(i, k) × B(k, j) 0 ⩽ k < P

and an mostly unoptimized implementation of that specification:

par i = 0 to N - 1 do
for j = 0 to M - 1 do
c[i, j] {R(i, j,−1)} := 0
for k = 0 to P - 1 do
c[i, j] {R(i, j, k)} := c[i, j] + a[i, k] * b[k, j]

This specification uses a parallel loop for the outer loop on i in order to

demonstrate the T-ParLoop rule.

When computing the prophetic evaluation of that implementation, each state-

ment will be associated with an application of a corresponding prophetic

evaluation rule. Even for a simple program such as this, representing the full

tree of the prophetic evaluation can quickly get large; instead, we can annotate

each statement with the resulting symbolic heap ∆h obtained after computing

the prophetic evaluation of that statement. In addition, we also represent

the context changes introduced by the non-leaf rules such as T-SeqLoop or

T-ParLoop.

Note that while rules T-SeqLoop and T-ParLoop have exactly the same effect in

this case, T-SeqLoop computes an iterated update while T-ParLoop computes

5.3 Prophetic Evaluation 123

T-Allocate

Γ , a : τ[e1 × · · · × en] ⊢ c : ∆h ∀1 ⩽ i ⩽ n, Γ ⊢ ei : A

Γ ⊢ allocate a : τ[e1 × · · · × en in c : ∆h\a

T-Skip

Γ ⊢ skip : ∅

T-Seq

Γ ⊢ c1 : ∆h1 Γ ⊢ c2 : ∆h2

Γ ⊢ c1 ; c2 : ∆h1 ⊲ ∆h2

T-If

Γ ⊢ e : B Γ , e ⊢ c1 : ∆h1 Γ ,¬e ⊢ c2 : ∆h2

Γ ⊢ if e then c1 else c2 : (∆h1 ∩ e) ⊎ (∆h2 ∩ ¬e)

T-SeqLoop

Γ ⊢ e : A Γ , x : A , 0 ⩽ x < e ⊢ c : ∆h

Γ ⊢ for x < e; do c : ⊲
0⩽x<e

∆h

T-ParLoop

Γ ⊢ e : A Γ , x : A , 0 ⩽ x < e ⊢ c : ∆h υ

(⋃
0⩽x<e

∆h

)
= ∆h′

Γ ⊢ par x < e; do c : ∆h′

T-Assign

Γ ⊢a e : τ Γ ⊢A t : τ

E⟨ι′′
1
, . . . , ι′′m⟩ = decompose(t) a : τ[ι′

1
× · · · × ι′n] ∈ Γ

Γ ⊢ ιi : A for all 1 ⩽ i ⩽ n Γ ⊢ 0 ⩽ ιi < ι
′
i for all 1 ⩽ i ⩽ n

Γ ⊢ a[ι1 , . . . , ιn] {t} := e : {a⟨ι1 , . . . , ιn⟩ → E⟨ι′′
1
, . . . , ι′′m⟩}

Figure 5.3: Prophetic Evaluation of Statements

124 Verifying a tensor compiler

an iterated union, then removes duplicate locations. The effect is the same for

matrix multiplication because each iteration of the i loop write to a distinct

set of locations; however, note that this is not enforced by the T-ParLoop rule.

This, and other race conditions, are prevented by the symbolic evaluation rules

described in the next section.

Also recall that when we write a relation such as {c[i, j] → R(i, j,−1) : } when

i and j are in the context, i and j are the variables from the context and the

relation contains a single tuple. Once we leave the corresponding loop say for j,

a relation such as {c[i, j] → R(i, j, P − 1) : 0 ⩽ j <M} introduces a fresh local

variable j, and the relation spansM different rows.

// Γ ← a[N × P] : float, b[P ×M] : float, c[N ×M] : float

par i = 0 to N - 1 do
// T-ParLoop(i): Γ ← Γ , i : A, 0 ⩽ i < N
for j = 0 to M - 1 do
// T-SeqLoop(j): Γ ← Γ , j : A, 0 ⩽ j <M
c[i, j] {R(i, j,−1)} := 0
// T-Assign: Γ ⊢ 0 ⩽ i < N ∧ 0 ⩽ j <M
// T-Assign: ⇒ {c[i, j] → R(i, j,−1) : }
for k = 0 to P - 1 do
// T-SeqLoop(k): Γ ← Γ , k : A, 0 ⩽ k < P
c[i, j] {R(i, j, k)} := c[i, j] + a[i, k] * b[k, j]
// T-Assign: Γ ⊢ 0 ⩽ i < N ∧ 0 ⩽ j <M
// T-Assign: ⇒ {c[i, j] → R(i, j, k) : }

// T-SeqLoop(k): ⇒ {c[i, j] → R(i, j′, P − 1) : P > 0}
// T-Seq: ⇒ {c[i, j] → R(i, j,−1) : P ⩽ 0 ;

// c[i, j] → R(i, j, P − 1) : P > 0}
// T-SeqLoop(j): ⇒ {c[i, j] → R(i, j,−1) : 0 ⩽ j <M ∧ P ⩽ 0 ;

// c[i, j] → R(i, j, P − 1) : 0 ⩽ j <M ∧ P > 0}
// T-ParLoop(i): ⇒ {c[i, j] → R(i, j,−1) : 0 ⩽ i < N ∧ 0 ⩽ j <M ∧ P ⩽ 0 ;

// c[i, j] → R(i, j, P − 1) : 0 ⩽ i < N ∧ 0 ⩽ j <M ∧ P > 0}

The typing rules for the prophetic evaluation enforce restrictions on the

programs that can be expressed in Sched: conditionals, loop iterators, and

array indices can only be built from affine combinations of outer loop iterators

and program parameters, through the use of the affine typing judgement. On

the other hand, they are overly permissive: because they are not checking

that array reads are within bounds, and because out-of-bounds reads are

5.3 Prophetic Evaluation 125

unexpected runtime errors, they fail to guarantee the basic property that

“well-typed programs do not go wrong”. This is, in a way, by design: a

type system is not enough to ensure these properties. The inclusion of the

verification condition generator based on symbolic evaluation presented in the

next section will ensure that these erroneous behaviors do not happen. Because

the type system is not strong enough to ensure the existence of a non-erroneous

execution, we can only prove the following weak soundness theorem:

Theorem 5.3.1. If Γ ⊢ c : ∆h holds let ℰ be an environment such that ℰ ⊨ Γ and µ a

memory such that:

• The evaluation of c is defined, i.e. there is some δµ, ω and ρ such that

ℰ;µ ⊢ c ⇓u ⟨δµ; ρ⟩ holds, and

• In the evaluation of c the prophetic annotations hold in some common modelM

for all assignments

Then, δµ is equal to the evaluation of ∆h in ℰ andM, i.e. δµ = J∆hKℰ;M.

This theorem is concerned with showing that the compositional behaviors

of dynamic and prophetic evaluation match: it states that the condition

δµ = J∆hKℰ;M is preserved by structural induction on a program that has both

a dynamic and prophetic semantic. The second hypothesis requires that this

equality hold for all the base cases (i.e. the assignments) that are encountered

during the dynamic evaluation, and the conclusion states that this implies the

equality also hold for the full program.

Let us illustrate the theorem on the same implementation of matrix multiplica-

tion as above:

par i = 0 to N - 1 do
for j = 0 to M - 1 do
c[i, j] {R(i, j,−1)} := 0
for k = 0 to P - 1 do
c[i, j] {R(i, j, k)} := c[i, j] + a[i, k] * b[k, j]

The theorem requires that a prophetic evaluation Γ ⊢ c : ∆h for this program

exists, and that a dynamic evaluation for that program exists in memory µ

126 Verifying a tensor compiler

and environment ℰ ⊨ Γ with resulting updates δµ. Moreover, the prophetic

annotations must hold in the same modelℳ for all the assignments. This

means that there must be a shared modelℳ such that for each instance of rule

U-Assign in the dynamic evaluation

U-Assign

JeKℰ;µ = v

∀1 ⩽ i ⩽ n, JιiKℰ;µ = ni ∈ Z ℓ = a[n1, . . . ,nn] ∈ dom(µ)
ℰ;µ ⊢ a[ι1, . . . , ιn] {t} := e ⇓u ⟨{ℓ ↦→ v}; rdℰ;µ(e) ∪

⋃
1⩽i⩽n

rdℰ;µ(ιi)⟩

the assigned value vmust be equal to JtKℰ;M for the shared modelℳ.

In the case of matrix multiplication, this means that R(i, j,−1) must be 0 for

all 0 ⩽ i < ℰ(N) and 0 ⩽ j < ℰ(M), and c[i, j] + a[i, k] * b[k, j]
must evaluate to the same value as R(i, j, k) for each execution of the update

assignment in the dynamic evaluation.

If this is true, then we can see that the rules of the prophetic evaluation preserve

the proper value associated with each location: for instance, if each iteration

of the loop over k writes the value of R(i, j, k) in cell, c[i, j], once the loop

over k is over, the value in c[i, j] is the last value written by the loop, i.e.

R(i, j, P − 1) if P > 0. If P ⩽ 0, the loop is never executed, and the value is the

value of 0 = R(i, j,−1) that was written by the previous statement.

It should be noted that the theorem requires only the existence of some model

ℳ that satisfies the hypotheses without requiring any relationship between

the model and the implementation. In particular, the theorem does not require

any sort of general equivalence between the modelℳ and the annotations in

the implementation, as a different model can be selected for different values of

the input parameters in ℰ and/or input data in µ for the implementation.

Proof of Theorem 5.3.1. By induction on the structure of c.

Case c = skip We have ∅ = J∅Kℰ;M for any ℰ andM

Case c = c1 ; c2 By induction hypothesis c1 and c2 evaluate to differential

memories δµ1 and δµ2 using derivations that satisfy the prophetic anno-

5.3 Prophetic Evaluation 127

tations inM. Hence, we have δµ1 = J∆h1Kℰ;M and δµ2 = J∆h2Kℰ;M. We

conclude using Lemma 5.2.7.

Case c = a[ι1, . . . , ιn] {e′} := e Since Γ ⊢ ιi : A, using Lemma 4.4.3 and

Lemma 4.2.3, we have JιiKℰ;µ = JιiKℰ;M ∈ Z. Moreover, by hypoth-

esis, the runtime evaluation of the right-hand side in µ matches the

evaluation of the prophetic annotation inM, i.e. JeKℰ;µ = Je′Kℰ;M. Hence

we have:

J{a[ι1, . . . , ιn] ↦→ t}Kℰ;M = {a[Jι1Kℰ;µ, . . . , JιnKℰ;µ] ↦→ JeKℰ;µ}

from which we conclude.

Case c = if ι then c1 else c2 Since Γ ⊢ ι : A, using Lemma 4.2.3, we have

JιKℰ;µ = JιKℰ;M. Assuming that JιKℰ;µ = true (resp. false), we have

δµ = J∆h1Kℰ;M (resp. J∆h2Kℰ;M) by induction hypothesis. Moreover,

J∆h1

��
ι
Kℰ;M = J∆h1Kℰ;M (resp. ∅) and J∆h2

��
ι
Kℰ;M = ∅ (resp. J∆h2Kℰ;M),

and the result follows from rule U-If-True (resp. U-If-False).

Case c = let x = ι in c′ Since Γ ⊢ ι : A, using Lemma 4.2.3, we have JιKℰ;µ =

JιKℰ;M and conclude by induction hypothesis.

Case c = allocate a : τ[ι1 × · · · × ιn] in c′ By induction hypothesis, we have

δµ = J∆hKℰ;M hence the equality still holds when removing locations in

a.

Case c = for x < ι; do c′ By induction hypothesis, we have µ′
i
= J∆hKℰ ,x ↦→i;M

for all 0 ⩽ i < JιKℰ;µ = JιKℰ;M since Γ ⊢ ι : A. We conclude using

Lemma 5.2.9.

Case c = par x < ι; do c′ By induction hypothesis, the evaluations for each

parallel iteration match; moreover, since Γ ⊢ ι : A, the evaluations JιKℰ;µ

and JιKℰ;M are equal. Rule U-Par ensures that whenever the domains of

δµi and δµj intersect, the corresponding values are equal. Hence, even

though

⋃
0⩽x<ι∆h may not be single-valued as a Presburger relation

(i.e. there might be distinct expression contexts associated with a given

location), J
⋃

0⩽x<ι∆hKℰ;M =
⋃

0⩽i<JιKℰJ∆hKℰ+x ↦→i ↦→;M is functional. In

particular, whichever value is selected by υ in case of conflict still satisfies

the equation.

128 Verifying a tensor compiler

□

5.4 Symbolic Evaluation

We introduced a type and effect system called prophetic evaluation for Sched

commands in the previous section that computes the expected (or asserted)

evaluation of the program. We will now define a symbolic evaluator for Sched

that computes a symbolic evaluation of the program using the right-hand side

of the assignments, assuming that the prophetic evaluation holds in order to

break cycles introduced by sequential loops. The symbolic evaluator generates

verification conditions that ensure the prophetic evaluation is correct: if the

verification conditions are correct, then the hypotheses of Theorem 5.3.1 hold

and the dynamic execution matches the prophetic evaluation.

The judgement Γ ;h ⊢ C =⇒ c : ⟨∆h;R⟩ is presented in Fig. 5.4 and follows

the dynamic evaluation rules of Sched. The typing environment Γ and the

input heap h are symbolic representations of the dynamic environment ⟨ℰ;µ⟩.
The pair ⟨∆h;R⟩ is a symbolic representation of the dynamic state ⟨δµ; ρ⟩. h
and ∆h are represented using symbolic heaps implemented using Presburger

relations as described in Section 5.2; R is represented as a Presburger set of

locations. C is also implemented using a Presburger relation and represents

a set of constraints (i.e. verification conditions) that must be satisfied for the

prophetic evaluation to be correct, as explained below.

The symbolic evaluation makes use of some auxiliary definitions and rules,

explained below.

We define the construct rw-safe(x, ι,W , R) that ensures the disjointness of the

locationsW written by thread x and the locations R[x := y] read by a different

thread y, thereby ensuring the absence of read-write races. rw-safe(x, ι,W , R)
returns a Presburger formula and is defined as follows, where y is a fresh

variable:

rw-safe(x, ι,W , R) =
�(

⋃
0⩽x<ι

⋃
0⩽y<ι

(W ∩ R[x := y] ∩ {x ≠ y}))

5.4 Symbolic Evaluation 129

S-Allocate

Γ , a : τ[ι1 × · · · × ιn];h ⊢ C =⇒ c : ⟨∆h;R⟩ Γ ⊢ ιi :A for all 1 ⩽ i ⩽ n

Γ ;h ⊢ C =⇒ allocate a : τ[ι1 × · · · × ιn] in c : ⟨∆h\a;R\a⟩

S-Skip

Γ ;h ⊢ ∅ =⇒ skip : ⟨∅; ∅⟩

S-Seq

Γ ;h ⊢ C1 =⇒ c1 : ⟨∆h1;R1⟩ Γ ;h ⊲ ∆h1 ⊢ C2 =⇒ c2 : ⟨∆h2;R2⟩
Γ ;h ⊢ C1 ∪ C2 =⇒ c1 ; c2 : ⟨∆h1 ⊲ ∆h2;R1 ∪ R2⟩

S-Let

Γ ⊢ ι :A Γ , x : A, x = ι;h ⊢ C =⇒ c : S

Γ ;h ⊢ C[x := ι] =⇒ let x = ι in c : S[x := ι]

S-SeqLoop

z fresh

Γ ⊢ ι :A Γ , x : A , 0 ⩽ x < ι;h ⊲ ⊲
0⩽z<x

∆h[x := z] ⊢ C =⇒ c : ⟨∆h;R⟩

Γ ;h ⊢
⋃

0⩽x<ι

C =⇒ for x < ι; do c : ⟨⊲
0⩽x<ι

∆h;

⋃
0⩽x<ι

R⟩

S-ParLoop

Γ ⊢ ι :A
Γ , x : A , 0 ⩽ x < ι;h ⊢ C =⇒ c : ⟨∆h;R⟩ Γ ⊢ rw-safe(x, ι, dom(∆h), R)

ww-covered(Γ , x, ι,∆h) = C′ R′ =
⋃

0⩽x<ι

R υ

(⋃
0⩽x<ι

∆h

)
= ∆h′

Γ ;h ⊢ C′ ∪
⋃

0⩽x<ι

C =⇒ par x < ι; do c : ⟨∆h′;R′⟩

S-If

Γ ⊢ ι :B Γ , ι;h ⊢ C1 =⇒ c1 : ∆h1R1

Γ ,¬ι;h ⊢ C2 =⇒ c2 : ∆h2R2 C = (C1 ∩ ι) ⊎ (C2 ∩ ¬ι)
∆h = (∆h1 ∩ ι) ⊎ (∆h2 ∩ ¬ι) R = (R1 ∩ ι) ⊎ (R2 ∩ ¬ι)

Γ ;h ⊢ C =⇒ if ι then c1 else c2 : ⟨∆h;R⟩

S-Assign

a : τ[ι′
1
× · · · × ι′n] ∈ Γ

Γ ⊢a e : τ Γ ⊢A t : τ Γ ⊢ ιi :A for all 1 ⩽ i ⩽ n ℓ̂ = a⟨ι1 , . . . , ιn⟩
Γ ⊢ {ℓ̂} ⊆ {a⟨x1 , . . . , xn⟩ | 0 ⩽ x1 < ι′

1
, . . . , 0 ⩽ xn < ι′n} Γ ⊢ reads(e) ⊆ dom(h)

Ĉ = JeKh = {decompose(t)} ∆h = {ℓ̂→ decompose(t)}
Γ ;h ⊢ Ĉ =⇒ a[ι1 , . . . , ιn] {t} := e : ⟨∆h; reads(e)⟩

Figure 5.4: Symbolic Evaluator

130 Verifying a tensor compiler

Lemma 5.4.1. If Γ ⊢ rw-safe(x, ι,W , R) holds with Γ ⊢ ι :A, then for any environment

ℰ compatible with Γ and any distinct integers i and j such that 0 ⩽ i ≠ j < JιKℰ ,

JWKℰ+x ↦→i and JRKℰ+x ↦→j are disjoint.

To ensure that all write-write races are benign, we must ensure that conflicting

writes from disjoint threads can only write the same value. To do so, we first

define conflicts(x, ι,W) that computes the set of locations written to by multiple

distinct threads and is defined as follows, where y is a fresh variable:

conflicts(x, ι,W) = ⋃
0⩽x<ι

⋃
0⩽y<ι

(fst(W) ∩ snd(W)[x := y] ∩ {x ≠ y})

We can then express that locations that are written to by distinct threads must

have a single associated value (whereW is a symbolic heap) by checking that

sv-conflicts(x, ι,W) = sv((
(⋃

0⩽x<ι

W

)
∩ conflicts(x, ι,W))

holds. This would however prevent the verification of concurrent writes of the

same value using different expressions, e.g. A(i) + B(j) and B(j) +A(i). While

we do not expect such races in practice, we can capture them theoretically using

the υ function:

conflicts-ok(x, ι,W) = υ(
(⋃

0⩽x<ι

W

)
∩ conflicts(x, ι,W))

In practice, the condition conflicts-ok(x, ι,W) can be unnecessarily slow to

compute. The implementation first checks whether

⋃
0⩽x<ιW is single-valued,

and then checks sv-conflicts(x, ι,W) before resorting to the computation of

conflicts-ok(x, ι,W). The first check is almost always enough, because threads

tend to use local arrays (with the allocate construct) for intermediate computa-

tions, and only write once to global arrays when the final result is computed.

Since the local arrays are removed from the write-set when they go out of scope,

they do not appear in the conditions for the outer loops.

5.4 Symbolic Evaluation 131

We thus define ww-covered(Γ , x, ι,W) as a function returning a set of constraints

C ensuring that when true the write-write races inW are benign:

ww-covered(x, ι,W) =
∅ if Γ ⊢ sv(⋃

0⩽x<ιW)
∅ if Γ ⊢ sv-conflicts(x, ι,W)
snd(conflicts-ok(x, ι,W)) otherwise

Lemma 5.4.2. If ww-covered(Γ , x, ι,W) = Ĉwith Γ ⊢ ι :A, then for any environment

ℰ compatible with Γ such that JĈKℰ;M holds and for any distinct integers i and j such

that 0 ⩽ i ≠ j < JιKℰ , then JWKℰ+x ↦→i and JWKℰ+x ↦→j are compatible memories.

In rule S-Assign, the constraint Ĉ = JeKh = {decompose(t)} is a symbolic

value expressed as an union of equalities. For instance, when evaluating the

assignment a[3 · i] {A(3 · i)} := b[i] + c[i] in heap {b⟨i⟩ → (B(2))⟨i⟩, c⟨i⟩ →
(C(2))⟨2·i⟩}, JeKh is {(B(20)+C(21))⟨i, 2·i⟩} and decompose(t) is {(A(2))⟨3·i⟩},
hence Ĉ is {(B(20) + C(21) = A(22))⟨i, 2 · i, 3 · i⟩}.

The rules for the symbolic evaluator are mostly straightforward symbolic

adaptations of the dynamic evaluation rules. Furthermore, except for rule

S-SeqLoop, the rules are algorithmic: the outputs ∆h, R and C never appear

as inputs of the inductive applications of the predicate. Thus, except for rule

S-SeqLoop, the rules form an algorithm that can be computed structurally on a

given program. In the case of rule S-SeqLoop, the output ∆h appears as input

to the recursive call inside the iterated update, which would require inventing

the summary ∆h of a single iteration of the loop. However, we have designed

prophetic evaluation to solve this issue. If we examine the rules for symbolic

evaluation, we can see that the output ∆h only depends on the prophetic

expressions, and ignores the right-hand side of all assignments. Furthermore,

it is constructed exactly as in the prophetic evaluation:

Lemma 5.4.3. If Γ ;h ⊢ C =⇒ c : ⟨∆h;R⟩ holds, then Γ ⊢ c :∆h also holds.

Proof. The proof follows by induction and remarking that the rules of Γ ⊢ c :∆h

are exactly those of Γ ;h ⊢ C =⇒ c : ⟨∆h;R⟩ with the premises involving h, C

and R removed. □

132 Verifying a tensor compiler

Hence, the following strategy for the evaluation of sequential loops: first, we

compute the iteration summary using the Γ ⊢ c :∆h judgement which does not

require a precise description of the symbolic heap. Then, we plug the resulting

∆h in the input heap h⊲⊲
0⩽z<x

∆h[x := z] of the symbolic evaluation judgement

to compute the C, W and R. By using Γ ⊢ c :∆h, we rely on the fact that the

concrete evaluation will follow the prophetic evaluation. The constraints C are

the price we pay for that: they keep track of the equalities that must hold for

this property to be true, tying the knot and ensuring the well-foundedness of

our approach.

The symbolic evaluation of realistic programs is hard to read manually due to

the amount of annotations they provide. As an example, let us consider the

same unoptimized implementation of the matrix product used to demonstrate

the prophetic evaluation, whose symbolic evaluation is shown in Fig. 5.5. Recall

that the specification is as follows:

R(i, j,−1) = 0

R(i, j, k) = R(i, j, k − 1) +A(i, k) × B(k, j) 0 ⩽ k < P

while the implementation is:

par i = 0 to N - 1 do
for j = 0 to M - 1 do
c[i, j] {R(i, j,−1)} := 0
for k = 0 to P - 1 do
c[i, j] {R(i, j, k)} := c[i, j] + a[i, k] * b[k, j]

When computing the symbolic evaluation of that implementation, each state-

ment will be associated with an application of a corresponding symbolic

evaluation rule. This is represented by annotating each statement using com-

ments. There are two types of comments: comments starting with a => arrow

indicate the context changes performed by a rule such as S-ParLoop when

examining the body of the statement, while comments starting with a <= arrow

indicate the result of the rule, including both relevant side-conditions and

return values such as the set of constraints C, the differential updates ∆h, and

the set of read locations R.

To keep the symbolic execution readable, some side conditions are omitted,

such as the conditions in S-Assign that the read locations are defined in h (i.e.

Γ ⊢ reads(e) ⊆ dom(h)) an that the written location is well-formed in Γ are

5.4 Symbolic Evaluation 133

omitted to avoid too much clutter. In addition, we (ab)use the fact that k − 1

is −1 when k = 0, and similarly that max(P, 0) − 1 is P − 1 when P > 0 and

−1 otherwise, in order to write the conditions more compactly. The resulting

differential heaps ∆h are otherwise identical as in the prophetic evaluation.

On the other hand, for demonstration purposes, the ww-covered condition in

rule S-ParLoop is fully expanded to its definition using conflicts-ok, even though

in this example the relation {c[i, j] → R(i, j,max(P, 0) − 1) : 0 ⩽ i < N ∧ 0 ⩽ j <M}
is single-valued.

The verification conditions are stored as a Presburger relation representing a

set of equalities. This set of equality can then be converted to the following set

of actual equalities and sent to a SMT solver such as Z3 by replacing the bound

variables of the Presburger relation with universally bound quantifiers:

∀0 ⩽ i < N, 0 ⩽ j <M, R(i, j,−1) = 0

∀0 ⩽ i < N, 0 ⩽ j <M, 0 ⩽ k < P, R(i, j, k) = R(i, j, k − 1) +A(i, k) × B(k, j)
∀0 ⩽ i, i′ < N, 0 ⩽ j <M, i = i′ ∧ j = j⇒ R(i, j,max(P, 0) − 1) = R(i′, j,max(P, 0) − 1)

The astute reader will remark that the verification conditions obtained here are

not complete: we also need to ensure that the resulting differential heap ∆h cor-

responds to the expected differential heap, here {c[i, j] → C(i, j) : 0 ⩽ i < N ∧ 0 ⩽ j <M}.
This can be expressed separately using the compatibility operator ¨, resulting

in the following additional verification condition:

∀0 ⩽ i < N, 0 ⩽ j <M, C(i, j) = R(i, j,max(P, 0) − 1)

In practice, as is often the case in verification tools, we obtain this extra verifica-

tion condition by adding the following code at the end of the implementation

depending on the sizes provided by the user:

...
for i = 0 to N - 1 do
for j = 0 to M - 1 do
__discard {C(i, j)} := c[i, j]

134 Verifying a tensor compiler

par i = 0 to N - 1 do
// => S-ParLoop(i): Γ ← Γ , i : A, 0 ⩽ i < N
for j = 0 to M - 1 do
// => S-SeqLoop(j): Γ ← Γ , j : A, 0 ⩽ j <M
// h← h ⊲ {c[i, j′] → R(i, j′,max(P, 0) − 1) : 0 ⩽ j′ < j}
c[i, j] {R(i, j,−1)} := 0
// <= S-Assign: C← {R(i, j,−1) = 0}
// ∆h← {c[i, j] → R(i, j,−1) : }
// R← ∅
// => S-Seq: h← h ⊲ {c[i, j] → R(i, j,−1) : }
for k = 0 to P - 1 do
// => S-SeqLoop(k): Γ ← Γ , k : A, 0 ⩽ k < P
// h← h ⊲ {c[i, j] → R(i, j, k − 1) : k > 0}
c[i, j] {R(i, j, k)} := c[i, j] + a[i, k] * b[k, j]
// <= S-Assign: Jc[i, j]Kh = R(i, j, k − 1)
// Ja[i, k]Kh = A(i, k)
// Jb[k, j]Kh = B(k, j)
// C← {R(i, j, k) = R(i, j, k − 1) +A(i, k) × B(k, j)}
// ∆h← {c[i, j] → R(i, j, k) : }
// R← {c[i, j];a[i, k];b[k, j]}

// <= S-SeqLoop(k):
// C← {R(i, j, k) = R(i, j, k − 1) +A(i, k) × B(k, j) : 0 ⩽ k < P}
// ∆h← {c[i, j] → R(i, j, P − 1) : P > 0}
// R← {c[i, j];a[i, k] : 0 ⩽ k < P;b[k, j] : 0 ⩽ k < P}
// <= S-Seq: C← {R(i, j,−1) = 0 : }}
// ∪ {R(i, j, k) = R(i, j, k − 1) +A(i, k) × B(k, j) : 0 ⩽ k < P}
// ∆h← {c[i, j] → R(i, j,max(P, 0) − 1) : }
// R← {c[i, j];a[i, k] : 0 ⩽ k < P;b[k, j] : 0 ⩽ k < P}

// <= S-SeqLoop(j):
// C← {R(i, j, k) = R(i, j, k − 1) +A(i, k) × B(k, j) : 0 ⩽ j <M ∧ 0 ⩽ k < P}
// ∪ {R(i, j,−1) = 0 : 0 ⩽ j <M}
// ∆h← {c[i, j] → R(i, j,max(P, 0) − 1) : 0 ⩽ j <M}
// R← {c[i, j] : 0 ⩽ j <M;a[i, k] : 0 ⩽ k < P;b[k, j] : 0 ⩽ j <M ∧ 0 ⩽ k < P}

// <= S-ParLoop(j):
// Γ , i′ : A, 0 ⩽ i′ < N ∧ i′ ≠ i ⊢ {c[i, j] : 0 ⩽ j <M} # R[i := i′]
// C← {R(i, j, k) = R(i, j, k − 1) +A(i, k) × B(k, j) : 0 ⩽ i < N ∧ 0 ⩽ j <M ∧ 0 ⩽ k < P}
// ∪ {R(i, j,−1) = 0 : 0 ⩽ i < N ∧ 0 ⩽ j <M}
// ∪ {R(i, j,max(P, 0) − 1) = R(i′, j,max(P, 0) − 1) : 0 ⩽ i, i′ < N ∧ 0 ⩽ j <M}
// ∆h← {c[i, j] → R(i, j,max(P, 0) − 1 : 0 ⩽ i < N ∧ 0 ⩽ j <M}
// R← {c[i, j] : 0 ⩽ i < N ∧ 0 ⩽ j <M;a[i, k] : 0 ⩽ i < N ∧ 0 ⩽ k < P;

// b[k, j] : 0 ⩽ j <M ∧ 0 ⩽ k < P}

Figure 5.5: Symbolic Evaluation of a Matrix Product

5.5 Correctness proof 135

This allows reusing the same mechanism as for the rest of the verification

condition generation instead of having a special case for the outputs of the

program.

5.5 Correctness proof

Let us now prove that our symbolic evaluator correctly captures the dynamic

semantics of Sched as defined in Chapter 4. Fundamentally, we wnt to state that

if Γ ;h ⊢ C =⇒ c : ⟨∆h;R⟩ holds, then c evaluates in big-step to ⟨J∆hKℰ;M; JRKℰ⟩
in ℰ and JhKℰ;M – provided that the constraints in C hold, i.e. false ∉ JCKℰ;M.

J∆hKℰ;M and JhKℰ;M are, in general, relations that do not have to be functional

(i.e. there might be multiple values associated with the same location), and

hence the result cannot be stated in this form. We can easily prove that J∆hKℰ;M

is always functional, however we must take the functionality of JhKℰ;M as an

additional hypothesis.

Lemma 5.5.1. If Γ ;h ⊢ C =⇒ c : ⟨∆h;R⟩ holds, then J∆hKℰ;M as a relation is

functional in any environment ℰ compatible with Γ and such that false ∉ JCKℰ;M.

Proof. By induction on Γ ;h ⊢ C =⇒ c : ⟨∆h;R⟩, S-Assign introduces a

singleton ∆h hence J∆hKℰ;M is functional by construction, and all rules except

S-ParLoop immediately preserve the functionality of the relation.

For S-ParLoop, we must have false ∉ Jww-covered(Γ , x, ι,∆h)Kℰ;M, hence

J
⋃

0⩽x<ι∆hKℰ;M is functional by Lemma 5.4.2. □

We can again easily prove that the output ∆h of a symbolic evaluation is always

a well-typed symbolic heap.

Lemma 5.5.2. If Γ ;h ⊢ C =⇒ c : ⟨∆h;R⟩ holds then ∆h is well-typed with respect

to Γ .

136 Verifying a tensor compiler

By combining Lemma 5.5.1, Lemma 5.5.2 and Lemma 5.2.2, we get that the

evaluation of ∆h is always a well-typed memory:

Corollary 5.5.3. If Γ ;h ⊢ C =⇒ c : ⟨∆h;R⟩ holds, then the evaluation of ∆h in any

environment ℰ compatible with Γ is a memory that is well-typed over its domain for Γ

in ℰ.

Let us now prove that our symbolic evaluator correctly captures the dynamic

semantics of Sched as defined in Chapter 4. More precisely, we are interested

in the following theorem:

Theorem 5.5.4. If Γ ;h ⊢ C =⇒ c : ⟨∆h;R⟩ holds where h is well-typed in Γ , then

for all environments ℰ and memory µ such that:

• ℰ is compatible with Γ

• µ is compatible with Γ in ℰ

• µ contains JhKℰ;M that hence must be functional

• false ∉ JCKℰ;M (i.e. the constraints are satisfied)

then c evaluates in big-step to ⟨J∆hKℰ;M; JRKℰ⟩ in ℰ and µ.

Proof of Theorem 5.5.4. The proof proceeds by structural induction on the judge-

ment Γ ;h ⊢ C =⇒ c : ⟨∆h;R⟩.

S-Assign ℰ is compatible with Γ hence we get JιiKℰ = ii ∈ Z and Jι′
i
Kℰ = ni ∈ Z

for 1 ⩽ i ⩽ n from Theorem 4.4.1. Moreover, we get 0 ⩽ ii < ni for

1 ⩽ i ⩽ n from the condition Γ ⊢ {ℓ̂} ⊆ {a⟨x1, . . . , xn⟩ | 0 ⩽ x1 <
ι′
1
∧ · · · ∧ 0 ⩽ xn < ι′n} and we get ℓ ∈ dom(µ) because µ is compatible

with Γ in ℰ.

Since Γ ⊢a e : τ holds and ℰ is compatible with Γ , rdℰ;∅(e) = ρ is defined by

Corollary 4.4.4, hence we also have Jreads(e)Kℰ = ρ by Lemma 5.2.4. More-

over, since the indices ιi are affine, we have rdℰ;µ(ιi) = ∅ by Lemma 4.4.3.

5.5 Correctness proof 137

It remains to show that JeKℰ;µ is equal to a value v, and that J{ℓ̂ →
decompose(t)}Kℰ;M is equal to {ℓ ↦→ v}, which amounts to proving that

JeKℰ;µ and JtKℰ;M evaluate to the same value v.

JhKℰ;M is a functional relation, hence by Lemma 5.2.5 and Lemma 5.2.6

JJeKhKℰ;M is equal to the singleton {JeKℰ;JhKℰ;M
}.

We must rule out the case JeKℰ;JhKℰ;M
= ⊥. Since h is well-typed in Γ and

Γ ⊢ e : τ,

Moreover, h is well-typed in Γ and e has type τ in Γ hence, by Lemma 5.2.3,

any component of JJeKhKℰ is a well-typed prophetic expression of type

τ, hence JJeKhKℰ;M is a subset of JτK by Theorem 4.4.2, hence we get that

JeKℰ;JhKℰ;M
is a value v of type τ.

Moreover, by Theorem 4.4.2, JtKℰ;M is also a value v′ of type τ, and the

condition false ∉ JJeKh = {decompose(t)}Kℰ;M ensures that v = v′, i.e.

JeKℰ;JhKℰ;M
= JtKℰ;M.

Since the evaluation of e in JhKℰ;M is defined, it is unchanged in the larger

memory µ, from which we conclude.

S-Skip skip evaluates to ⟨∅; ∅⟩ in all environments, hence the properly holds

trivially.

S-Seq All the conditions of the theorem are preserved on smaller arguments,

hence by induction hypothesis we get that c1 evaluates to ⟨J∆h1Kℰ;M; JR1Kℰ⟩
in ℰ and µ.

By Lemma 5.5.2, ∆h1 is well-typed in Γ , hence h ⊲∆h1 stays well-typed in

Γ . In particular, the domain of J∆h1Kℰ;M contains only valid locations in

Γ , hence is a subset of the domain of µ, and µ ⊲ J∆h1Kℰ;M stays compatible

with Γ . By Lemma 5.5.1, J∆h1Kℰ;M is functional, hence Jh ⊲∆h1Kℰ;M stays

functional.

We conclude after applying the induction hypothesis to get the evaluation

of c2 in ℰ and µ ⊲ J∆h1Kℰ;M into ⟨J∆h2Kℰ;M; JR2Kℰ⟩.

S-SeqLoop By Theorem 4.4.1, we get that JιKℰ = n ∈ Z, and ℰ + x ↦→ i is

138 Verifying a tensor compiler

compatible with Γ , x : A, 0 ⩽ x < ι for 0 ⩽ i < n.

Moreover, J∆hKℰ+x ↦→i;M is functional and well-typed with respect to

Γ , x : A, 0 ⩽ x < ι for each 0 ⩽ i < n by Lemma 5.5.1 and Lemma 5.5.2,

hence each of the Jh ⊲ ⊲
0⩽z<x

∆h[x := z]Kℰ+x ↦→i;M are functional and

well-typed with respect to Γ , x : A, 0 ⩽ x < ι; moreover, the intermediate

evaluations do not introduce new locations by Lemma 5.5.2.

We conclude after applying the induction hypothesis to get the evaluation

of c inℰ andµ⊲J⊲
0⩽z<x

∆h[x := z]Kℰ+x ↦→i;M into ⟨J∆hKℰ+x ↦→i;M; JRKℰ+x ↦→i;M⟩
for 0 ⩽ i < n.

S-Let The result follows from Theorem 4.4.1 and the remark that JC[x :=

ι]Kℰ;M = JCKx+JιKℰ ↦→;M as well as the corresponding equalities for ∆h and

R.

S-If From Theorem 4.4.1, we have JιKℰ ∈ {true, false}. If JιKℰ is true (resp.

false), J(C1 ∩ ι) ⊎ (C2 ∩ ¬ι)Kℰ;M is equal to JC1Kℰ;M (resp. JC2Kℰ;M) and

ℰ and µ stay compatible with Γ , ι (resp. Γ , ¬ι).

Moreover, J(∆h1∩ι)⊲(∆h2∩¬ι)Kℰ;M is equal to J∆h1Kℰ;M (resp. J∆h2Kℰ;M)

and J(R1∩ι)⊎(R2∩¬ι)Kℰ is equal to JR1Kℰ (resp. JR2Kℰ), hence we conclude

by induction hypothesis and U-If-True (resp. U-If-False).

S-ParLoop By Theorem 4.4.1, we get that JιKℰ = n ∈ Z, hence ℰ + x ↦→ i and µ

are compatible with Γ , x : A, 0 ⩽ x < ι. for 0 ⩽ i < n. h stays well-typed

in the extended environments since no new arrays are added, and stays

functional since x does not appear in h.

Hence, by induction hypothesis, c evaluates to ⟨J∆hKℰ+x ↦→i;M; JRKℰ+x ↦→i;M⟩
in ℰ + x ↦→ i and µ for all 0 ⩽ i < n.

The side conditions of rule U-ParLoop follows from Lemma 5.4.1 and

Lemma 5.4.2, and since J
⋃

0⩽x<iota∆hKℰ;M is functional, it is equal to

J∆h′Kℰ;M by Theorem 5.2.1.

S-Allocate h contains no locations associated with array a, hence h stays well-

typed in Γ , a : τ[ι1 × · · · × ιn]; moreover, we have JιiKℰ;µ = JιiKℰ = ni ∈ Z

5.6 Generation of prophetic expressions 139

by Theorem 4.4.1, hence (µ\a) ⊲ µa has exactly the appropriate locations

associated with a to be compatible with Γ , a : τ[ι1 × · · · × ιn].

By induction hypothesis, c evaluates to in (µ\a) ⊲ µa to ⟨J∆hKℰ;M; JRKℰ⟩
and we conclude by removing the locations associated with array a.

□

5.6 Generation of prophetic expressions

We have proposed an intermediate language for a tensor compiler that is a

simple imperative language with arrays and concurrent loops. This language

requires the tensor compiler to output annotations, called prophetic expressions,

that indicate, for each array write, an expression in the specification that

corresponds to the value written at that location. We will show in the next

chapter that this information is enough to be able to validate the output of

the compiler, but is it a reasonable expectation for the compiler authors to

preserve? If we want this intermediate language to be of practical use for

compiler writers, it needs to be. We will see in chapter 6 that it was fairly easy

to modify the Halide compiler to preserve this transformation across most

compilation passes, but that is only a specific example. I argue that, for a tensor

compiler that relies on a pointful specification language such as that of Halide,

Tensor Comprehensions, or a SARE derivative, preserving this information

does not impose undue burden on the compiler writer.

Assume that we are using a compiler for a tensor specification language.

The specification is composed of a set of tensor equations A(ι1, . . . , ιn) = e,
and compiled down to an imperative language similar to Sched but without

prophetic annotations. Further assume, for the sake of simplicity, that the

compiler does not introduce intermediate storage except for values originally

defined as a tensor in the specification; in other words, when the compiler

generates an array assignment, the right-hand side of the assignment is derived

from the right-hand side of one of the original equations. The expression

can have been arbitrarily transformed through the use of algebraic rewritings,

simplifications, inlining, replacement of tensor accesses by array accesses, etc.

but it was originally the right-hand side of some tensor definition. We can

140 Verifying a tensor compiler

build a derived specification where we introduce a new abstract function fA
(abstract meaning here that the compiler is forced to treat fA as a black-box

without known semantic content) for each tensorA in the original specification.

Each equation A(ι1, . . . , ιn) = e in the original specification is replaced with an

equation:

A(ι1, . . . , ιn) = fA(e, ι1, . . . , ιn)

in the derived specification.

If we implement each of the fA as the function that returns its first argument,

this new specification is semantically equivalent to the original specification.

However, when compiling the modified specification with our tensor compiler,

the tensor compiler does not know about the semantics of fA, and is required

to preserve the call fA(e, ι1, . . . , ιn) in full. Hence, in the generated code, each

assignment (that might be writing to an array whose dimensionality and layout

has nothing to do with the original tensor A) must have as its right-hand side

an fA(e′, ι′
1
, . . . , ι′n) obtained through arbitrary transformations from some

fA(e, ι1, . . . , ιn). Since the original fA(e, ι1, . . . , ιn) originally appeared as the

right-hand side of the defining equation for A(ι1, . . . , ιn) by construction, we

can claim that if the compilation is correct, at that point in the program, the

evaluation of e′ must be equal to the evaluation of A(ι′
1
, . . . , ι′n) in the original

specification. This corresponds to the prophetic expression we were looking

for.

By introducing an appropriate uninterpreted function, we have shown that

compilers for pointful tensor computations must already have the necessary

underlying machinery to be instrumented to produce prophetic annotations.

In particular, this is true of any polyhedral compiler. However, it should be

noted that this does not show that those annotations can be generated through

all the transformations performed by the compiler: some optimizations that

were available when compiling the original specification may be prevented by

the presence of the uninterpreted functions representing the tensor definitions.

This is notably true if the compiler performs inlining; thus, it would be advised

to keep track of the original tensor indices in an auxiliary structure for each

assignment, and treat that auxiliary structure as if part of the right-hand

side whenever transforming the code but ignore it if the right-hand side is

inlined into another expression. This can also be an issue when dealing with

vectorizing transformations as an uninterpreted function typically cannot be

5.6 Generation of prophetic expressions 141

vectorized, so there is still some additional work for the compiler writer to do.

However, because the main mechanism for keeping track of the annotations

through loop transformations is necessarily already present, the amount of

work required can be expected to be fairly reasonable.

We verify that claim experimentally in the case of the Halide compiler in

chapter 6 by using the approach described here. Without any prior experience

with the Halide compiler source code, the author of this manuscript was able

to successfully instrument the compiler and verify multiple examples from the

official Halide benchmarks using the approach described in the next chapter.

Experimental evaluation 6
This section discusses the implementation of the approach described in Chap-

ter 5 in OCaml, using bindings to the isl library [112] to represent affine

expressions, and the Z3 SMT solver [74] to discharge the generated verification

conditions.

6.1 Generation of Sched from Halide

The Halide compiler is a parameterized code generator: the schedule guides

the generation of imperative code from the specification. We instrumented

the Halide compiler to add prophetic annotations to the generated code, as

described below. We also altered the compiler to produce a textual representa-

tion of the specification which can be parsed with our tool without having to

interpret the C++ DSL.

Halide starts by generating an imperative loop nest where the arrays live in the

specification index space, shifted to start at 0. We thus annotate each assignment

with the stage, reduction variables, and a copy of the original tensor indices.

Since transformations must preserve the semantics of the right-hand side of

the assignment, subsequent transformations are applied to the annotations as

if they were part of the right-hand side. We note that this approach can be

applied to any compiler which generates a loop structure from the specification

before possibly applying structure-preserving transformations. In particular,

this is the case for polyhedral compilers.

Multidimensional arrays are eventually flattened into buffers in linear memory.

We annotate accesses to the flat buffer with the original multidimensional

143

144 Experimental evaluation

array indices, so that we are able to recover the multidimensional affine

program. Linearized and multidimensional indices are both kept, making the

linearization step independently verifiable, as discussed in Section 9.7.

The bound_small_allocations pass is disabled. This pass transforms allocations

where the product of the extents in all dimensions is provably smaller than

128 bytes into an allocation of 128 bytes, the minimum allocation size of the

Halide memory allocator at runtime. The resulting allocation is always one-

dimensional, whereas the original allocation has the dimensionality of the

original tensor. Hence, disabling this transformation makes the conversion of

the output of the instrumented Halide compiler to Sched easier.

Most of the technical difficulties in the instrumentation of the Halide compiler

comes from its handling of vectorized loops, which I now explain. Consider

the following specification that computes tensor B by doubling the values in

tensor A:

B(i, j) = 2 ×A(i, j)

With the schedule B.vector(j, 4), and assuming that M mod 4 = 0 for

simplicity, this is first lowered internally by the non-instrumented version of

the Halide compiler to the following intermediate representation (where vector

is a special case of parallel loops representing a vectorized loop):

for i = 0 to N do
for j0 = 0 to M/4 do
vector j1 = 0 to 3 do
let j = j0 * 4 + j1 in
b[i * M + j] := 2 * a[i * M + j]

The vector loop is then transformed into a ramp intrinsic encoding all the

indices of the vectorized loop in a single assignment, leading to the following

intermediate representation:

for i = 0 to N do
for j0 = 0 to M/4 do
b[ramp(i * M + j0 * 4, 1, 4)] :=

2 * a[ramp(i * M + j0 * 4, 1, 4)]

ramp(b, s,n) represents the list of indices b+x ·swhere 0 ⩽ x < n is an implicit

6.1 Generation of Sched from Halide 145

variable representing the lane index. Halide relies on LLVM to transform this

intrinsic into hardware vector instructions when possible.

In the instrumented version of the compiler, we keep track of the multidimen-

sional array indices in addition to the linearized indices used by the Halide

compiler. Hence, the intermediate representation using the vector loop looks

as follows (the original linearized indices are omitted for readability):

for i = 0 to N do
for j0 = 0 to M/4 do
vector j1 = 0 to 3 do
let j = j0 * 4 + j1 in
b[i, j] := 2 * a[i, j]

When transforming vector into ramp, some care needs to be taken to properly

handle the multidimensional indices to obtain the correct program below,

where x4(e) is a shorthand for replicate(e, 0, 4):

for i = 0 to N do
for j0 = 0 to M/4 do
b[x4(i), ramp(j0 * 4, 1, 4)] :=

2 * a[x4(i), ramp(j0 * 4, 1, 4)]

When reading the output of the Halide compiler, the verifier then translates

back the ramp representation of the Halide compiler into a Sched program

using par loops, by explicitly re-introducing the implicit lane index around

assignments involving ramp or xN constructs:

for i = 0 to N do
for j0 = 0 to M/4 do
par lane = 0 to 3 do
b[i, j0 * 4 + 1 * lane] :=

2 * a[i, j0 * 4 + 1 * lane]

ramps can also appear in the prophetic annotations (not represented here), and

must be handled there in a similar manner. Properly keeping track of the implicit

lane indices when performing transformations involving ramps is more complex

than just performing substitutions, because it involves adjusting the ramps

in non-obvious ways. Most of the non-trivial issues encountered in properly

threading the annotations through the compiler pipeline were due to proper

146 Experimental evaluation

handling of ramp-related transformations, in particular when shuffling (re-

ordering the indices in a vector, possibly changing the total size if some indices

are missing or repeated) is involved. As a result, the rewrite_interleavings and

flatten_nested_ramps transformation passes are disabled in the experiments.

6.2 OCaml prototype

Our tool takes the annotated output generated from the Halide compiler and

rebuilds a Halide algorithm and a Sched candidate implementation from that

output.

We first convert all the indices and statement-level conditonals into piece-wise

quasi-affine functions represented using isl, and simplify them based on the

context. ramp-based vectors are transformed into parallel loops with an explicit

index. The code generated by Halide often features two “accidentally non-

affine” constructs, which we convert into an equivalent affine representation.

First, when multiple dimensions of sizes e1, . . . , en are parallelized, Halide

uses a single parallel loop with size e1 × · · · × en, which we recognize and

split into nested parallel loops of affine sizes. Second, Halide can generate

expressions of the form ⌊(e × e′ − 1)/e⌋, which is always equal to e′ − sgn(e)
provided e is non-zero. Since Halide’s simplifier fails to do so, we recognize

and simplify this pattern.

After this initial conversion phase, our tool implements the algorithms described

in Chapter 5. We rely on isl to represent symbolic heaps, domains, and

ranges. The coalescing operation provided by isl has proven effective to keep

simple representations of the symbolic heaps as they get updated. isl uses

parametric integer programming [36] to perform efficient quantifier elimination

for the union and lexicographic maximum operators. Symbolic operations and

simplifications on Presburger arithmetic is a unique asset of isl— tailored to

the needs of polyhedral compilation; these operations would be much more

cumbersome and inefficient to reproduce using Z3 (or any feasibility-focused

solver).

We note two optimizations that we make in the representation to improve

efficiency. In order to represent symbolic sets and heaps where the right-hand

6.2 OCaml prototype 147

side expression does not have to be affine, we transform every such expression

into a template where each index of a tensor is replaced with an affine hole. The

templates are then de-duplicated. Similarly, to represent the set of constraints

C, we make the observation that in a correct compilation, the indices in the

right-hand side (the implementation expression) of the equalities generated

by rule S-Assign must be deducible only from the indices in the left-hand side

(the specification expression). Hence, we compute an expression of the former

as a piece-wise quasi-affine function of the latter, and only store the set of

specification indices, thereby reducing the dimensionality of the set.

Once the toplevel set of constraints C has been computed, we generate Z3

queries to prove the corresponding equalities. The translation to Z3 is mostly

straightforward. We first encode the Halide algorithm into a SARE, which

are then encoded using the define-funs-rec facility [12]. The well-formedness

constraint on Halide algorithms ensures that these mutually recursive functions

are well-defined, but it is not checked. Z3 has specialized support for such

recursive functions which is typically more efficient than a direct encoding

using quantifiers. Each constraint in C is a set of equalities which can then

be expressed directly in Z3’s logic. Note that thanks to the coalescing and

simplifications performed by isl, there are typically fewer constraints to be

verified than assignments in the program, because unrolled statements yield

the same constraint. In addition, we observe that the domain of the formula

is often, but not always, simple. It might be worth investigating whether the

coalescing logic of isl can be improved to better coalesce the sets produced by

our tool. In the outer product example of Chapter 1, the constraint is exactly

∀0 ⩽ i < N, 0 ⩽ j <M.A(i) × B(j) = B(j) ×A(i).

Finally, we perform additional processing before sending the generated equali-

ties to Z3, leveraging polyhedral checks on indices using isl in a best-effort

strategy. Namely, before sending an equality es = ei where es comes from a

prophetic annotation and ei was inferred from the implementation:

• We unfold the tensors in es which do not appear in the transitive depen-

dences of the tensors in ei, excluding cycles.

• For each access as in es and ai in ei to the same tensor, if the indices

are equal, we replace both accesses with the same let-bound variable to

either as or ai.

148 Experimental evaluation

In most cases, after these simplifications, the equality contains the same accesses

syntactically on both sides of the equality, helping Z3 focus on value-level

reasoning rather than on resolving tensor indexings.

6.3 Benchmark selection

Halide has a large benchmark suite in the benchmarks/ subdirectory of its

repository. Some are out of the scope of this thesis due to containing non-affine

specifications, including those with data-dependent accesses and histograms.

Others use unsupported features, e.g. assigning an undefined value to simulate

in-place input updates. We have run our tool on the remaining benchmarks,

using the schedule provided in the original benchmark suite. This covers about

25% of the Halide benchmark suite, not counting the variations that some

benchmarks have (e.g. transposed matrix multiplication). The benchmarks have

implicit assumptions on the required input sizes (e.g. that some dimensions

are multiples of 16 or 32), implied by the scheduling directives used. They do

not appear in the specification, but Halide generates runtime checks for them.

These assumptions are given as contextual axioms to the verifier.

The benchmarks can be roughly separated into two application domains: linear

algebra, including the convolution operators of deep learning, and image

processing.

From the linear algebra domain, we consider the following benchmarks:

• sdot is a simple dot product manually implemented with a tiling factor

of 8. This is expected to be easy to verify.

• sgemm is a general matrix-matrix multiply on floats, from the linear_algebra

Halide application. It uses an optimized CPU schedule and specializa-

tions for small and large matrices. As a compute-intensive program,

matrix-matrix multiply requires precise optimizations to get good perfor-

mance: as such, this benchmark features heavy loop transformations and

is a good stress test of our verifier as far as linear algebra benchmarks

go. The sgemmTA and sgemmTB are variants where one of the input

matrices is transposed. The Halide specification has a bug in these cases,

6.3 Benchmark selection 149

and assumes that matrix A is square. As such, we expect the verification

to fail.

• cmm1024 is another matrix-matrix multiplication implementation, tuned

for GPUs. This Halide benchmark is written for 1024 × 1024 square

matrices, and we verify it for this concrete size only.

• conv_layer is a 2D convolution layer.

• dsc is a depthwise separable convolution. The specification contains non-

affine indices, hence we use a constant grouping factor of 3, eliminating

the non-affine component.

From the image processing domain, we consider the following benchmarks:

• blur is a two-dimensional blur filter, performing an average of three

neighbors in each dimension. This example features storage folding: the

schedule only stores four lines of the intermediate tensor at once in a

rolling buffer.

• sc is a chain of large stencils of width 25 (i.e. each stage reads from

25 distinct neighbors from the previous stage). The default depth (i.e.

number of stages) for the benchmark is 32, which is reported as sc32; we

also include a variant sc1 with a single stage.

• harris, unsharp, and nl_means are implementations of image processing

algorithms, namely the Harris corner detector, unsharp masking, and

non-local means.

In most cases, the Halide compiler applies algebraic transformations such as

associativity and commutativity to the expressions in the specification. We

represent signed and unsigned integer types using Z3’s native representation

based on bit-vectors. For floating-point numbers, we provide three possible

encodings, discussed in Section 9.4. In most cases, we simply encode floats

as real to capture the transformations which Halide makes under “fast-math”

assumptions. For harris, unsharp and nl_means, Halide performs constant

propagation in the floating point domain, which we cannot validate when

150 Experimental evaluation

interpreting floats as reals. As such, we run Halide in “strict float” mode for

these benchmarks, disabling floating point optimizations.

6.4 Evaluation

Table 6.1 shows that our translation validation system succeeds on 14 of the 17

examples, with running times from one second to 5 minutes for the successful

examples. Two of the remaining examples are expected to fail due to a bug

in the specification. The last example reaches a timeout of 15 minutes. To

put these results in perspective, we ran the same examples through the ISA

tool from Verdoolaege, Janssens, and Bruynooghe [116]. ISA is only able to

verify 7 of the examples, and times out on 8 including one of the incorrect

examples. Of the three remaining examples, one is correctly shown to be

incorrect, while the others cannot be proven by ISA due to using simplifications

beyond associativity and commutativity.

Unlike our approach, ISA is fully automatic, and does not rely on annotations.

ISA is able to handle associative and commutative operators, but it is optional

as it increases its runtime. We indicate with superscripts when ISA was allowed

to use associativity (A) or commutativity (C) of an operator.

ISA takes C programs as inputs, which we generate from Sched by erasing the

annotations. Halide can directly generate C code with linearized (non-affine)

accesses and using vectorization primitives not supported by ISA. We also

convert the specification to a C program, by creating a different loop nest for

each assignment. A simple data-flow analysis is used to infer the bounds.

Alternatively, we could compare the optimized Halide schedule with Halide’s

default schedule.

ISA takes the form of three command-line tools. c2pdg converts the C program

into a polyhedral representation. To disable overflow checks, we pass the option

--pet-signed-overflow=ignore to c2pdg. da performs a data-flow analysis

on the polyhedral representation. eqv performs the equivalence checking on

the da output of two programs. We report the run-times of the different tools

separately.

6.4 Evaluation 151

The results of our experimental evaluation are summarized in Table 6.1. The

benchmarks have been run on a machine with an Intel® Core™ i9 − 9900 CPU,

with a timeout of 15 minutes. For isa, the timeout applies separately to each

step. For each benchmark, we indicate the run-time of each tool in seconds, as

well as whether the equivalence was successfully proved. For isa, the c2pdg
and da timings include the sum of times for both the implementation and

specification.

Table 6.1: Results of the experimental evaluation (times in seconds)

isa

Ours

c2pdg da eqv

blur <1 <1 1.1AC+ ✓ <1 ✓

cmm1024 <1 1.2 10 ✓ 2.6 ✓

sgemm1024 <1 2.5 27.3C× ✓ 1 ✓

sqsgemm 2.5 4min34 > 15min
C×

? 15.1 ✓

bigsqsgemm 1.6 17.5 8min12
C× ✓ 2.7 ✓

sgemm 7. >15min N/A ? 3min24 ✓

bigsgemm 2.8 1min19 >15min ? 12.1 ✓

sc1 3.44 4m20 3.3 ✗ 12.5 ✓

sc32 1min41 >15min N/A ? 4min53 ✓

dsc 10.2 13min49 >15min ? 1min43 ✓

conv 2. 12.2 27.9Cmax ✓ 2min12 ✓

sdot <1 <1 <1 ✓ <1 ✓

harris
*

7.9 31.5 1min8 ✓ 44.8 ✓

unsharp
*

1.3 6.1 13min44 ✗ 6.1 ✓

nl_means
*

>15min N/A N/A ? >15min ?

sgemmTA
†

21.5 >15min N/A ? 10.4 ✗

sgemmTB
†

21.1 N/A N/A ✗ 34.7 ✗

*
No floating-point optimizations

†
Expected to fail

When both our tool and ISA successfully validate the implementation, our

tool has comparable or better performance, except on the conv benchmark.

This is because for the conv benchmark, the affine conditions for the equalities

sent to Z3 are quite complex. The conversion from the internal representation

of isl to Z3 for sets with many disjuncts is a bottleneck of our approach,

and in this specific case we suffer from a suboptimal implementation which

152 Experimental evaluation

does multiple conversion to and from the internal representation of isl. In

addition, our tool is able to prove more cases than ISA. In the case of parametric

matrix multiplications (sqsgemm and sgemm), ISA reached a timeout of 15

minutes. Parts of these kernels are specialized, with different implementations

depending on the values of the parameters. The bigsqsgemm and bigsgemm

entries present results when the size of the matrices are larger than 512:

by allowing the pruning of some branches, this allows ISA to complete the

verification. Note that this also drastically decreases runtime of our own

algorithm.

Finally, let us mention the nl_means benchmark, which we fail to verify

due to running out of time. Like in conv, Halide generates complex affine

conditions involving many minimums and maximums: in consequence the

isl representation of symbolic heaps contains many disjuncts, hurting the

performance. In fact, our current implementation times out during the initial

simplification of affine expressions. This could be mitigated by including more

contextual information during the simplification: manual experiments on some

expressions extracted from that benchmark indicate that it could result in up

to an order of magnitude less disjuncts. Another avenue to explore would be

to find independent piece-wise expressions that can be abstracted and factored

out to reduce the number of disjuncts.

Verifying reductions 7
A reduction is the iterated application of a binary function or operator on the

elements of a sequence of values, ultimately reducing them down to a single

value. The most common example of reductions is that of the summation

operator

∑
iterating the addition operator + over a sequence of values. As

mathematicians know, the result of a summation does not depend on the order

in which it is performed, and the summation can be split off arbitrarily into

partial sums. These properties follow from the associativity and commutativity

of +, and can be exploited in various ways to simplify computations — for

instance to reveal cancelling pairs or to factor out repeated terms.

A tensor compiler rarely performs the type of simplifications mathematicians

do. They do, however, exploit the ability to change the order in which a

reduction is computed in order to better optimize for cache locality or to

reveal hidden parallelism [49]. When implemented sequentially, reductions

can be the bottleneck of otherwise well-optimized programs: for instance, the

stopping criterion of an algorithm iterating until convergence in a vector space

is obtained through a summation (to compute a tensor norm). The detection,

modeling, and optimization of reductions in array programs has thus been a

long-lasting topic of research since the early days of parallel computing, and is

still an important component in a tensor compiler’s toolkit.

The re-ordering of computation within a reduction performed by a tensor com-

piler cannot be expressed directly in the validation framework using prophetic

annotations introduced in chapter 5, because that framework assumes a se-

quential representation of reductions. Expressing the new intermediate values

computed by a re-ordered reduction cannot be done using the specification

language without introducing new equations in the specification.

Polyhedral compilers have specific representations of reduction statements

153

154 Verifying reductions

that interact differently than regular statements with the framework in terms

of ordering. Similarly, in this chapter I propose an extension to the Sched

language and the validator of chapter 5 that introduce explicit reduction

operators in the specification, and augment the prophetic annotations to

validate re-orderings of the underlying computations. The new annotations

work by mapping accumulating assignments to the corresponding position in

the original reduction.

The extensions presented here have not been implemented in the validator of

chapter 6.

7.1 Parallel Implementations of Reductions

Let us start by looking at the parallel implementation of reductions that can be

performed by tensor compilers, in order to have a better grasp of the patterns

that our validator must be able to handle. To the imperative programmer, a

reduction is simply a sequential for loop that repeatedly applies the reduced

operator. For instance, the following imperative program computes the sum∑
0⩽i<N a[i] of array a into the variable r used as an accumulator:

r = 0
for i = 0 to N - 1 do
r = r + a[i]

This program, as written, is inherently sequential. The value of r at one iteration

of the loop explicitly depends on its value at the previous iteration of the loop.

A deeper look at the program reveals parallelization opportunities when + is

associative. To understand why, let us consider the computation performed by+ is not associative,

famously, for

floating-point

numbers — and

tensor operations

often operate on

floating-point

numbers. We ignore

the issue for now and

discuss it in

section 9.4.

the program when N = 8: it is the leftward summation

r = ((((((a0 + a1) + a2) + a3) + a4) + a5) + a6) + a7

where the initial addition with 0 has been omitted for the sake of the argument.

In this expression, since + is associative, we can change the nesting of the paren-

theses without changing the result. A balanced nesting naturally corresponds

7.1 Parallel Implementations of Reductions 155

to a “divide-and-conquer” algorithm: both left- and right- hand sides at each

level can be computed independently, then combined back into the result There is a

time-memory tradeoff:

distinct memory

locations must be

used to store partial

sums computed

concurrently.

r = ((a0 + a1) + (a2 + a3)) + ((a4 + a5) + (a6 + a7))

Actual hardware having a finite number of processors, performance-sensitive

code is tuned to an efficient balance of computation between the number of

available processors. On a machine with 4 processors, for instance, the following

implementation assigns a quarter of the computation to each processor:

par i = 0 to 3 do
tmp[i] = 0
for j = 0 to min(floor(N / 4),

N - i * floor(N / 4)) - 1 do
tmp[i] = tmp[i] + a[i * floor(N / 4) + j]

result = (tmp[0] + tmp[1]) + (tmp[2] + tmp[3])

In general, this implementation has complexity O(n/p + p) where n is the size

of the array and p the number of processors.

Unfortunately, this implementation is not an affine program because of the

i⌊N/4⌋ terms that cannot be expressed in Presburger arithmetic. Hence, this

implementation is out of reach both of our verifier and of affine compilation

techniques such as polyhedral compilers. Yet, the polyhedral model is able

to parallelize reductions: the key insight is that if computation is assigned

to processors in a round-robin fashion instead of by consecutive chunks, we

assign a strided segment of the original array to each processor, which can be

expressed using a modulo condition. The following implementation is indeed

(quasi-)affine:

par i = 0 to 3 do
tmp[i] = 0
for j = 0 to floor((N - i - 1)/4) do
tmp[i] = tmp[i] + a[4 * j + i]

result = (tmp[0] + tmp[1]) + (tmp[2] + tmp[3])

Assigning the computation to processors in round-robin fashion requires the

underlying operator to be commutative: we have effectively re-ordered the

computation so that for N = 8 we are now computing

r = ((a0 + a4) + (a1 + a5) + (a2 + a6) + (a3 + a7))

156 Verifying reductions

The most common reduction operators in scientific computing are addition,

maximum, and minimum — all of which are both associative and commutative.The IEEE 754-1985

and IEEE 754-2008

specifications allow

for the result of

min(0,−0) and

max(0,−0) to be

either 0 or −0 at the

choice of the

implementation,

because 0 and −0

compare equal. The

recent IEEE 754-2019

specification requires

that −0 be considered

less than 0 for the

purpose of min and

max, making both

operations

well-defined,

associative and

commutative on

non-NaN values.

Polyhedral compilers can only perform this second type of transformation using

strided instead of consecutive chunks. However, non-polyhedral compilers

such as Halide can still perform the original transformation, which cannot

be represented using affine constructs. This is a particular case of loop tiling,

discussed in section 9.6; in the rest of this chapter, we will assume that the

compiler transforms reductions using strided chunks.

One final remark is that when the reduction operator is both associative and

commutative, arbitrary re-ordering and re-parenthesizing of the computation

is allowed, making the result depend only on the (multi)set of values in the

reduction. This creates a new parallelization opportunity: the reduction loop

for an associative-commutative reduction can be implemented with a parallel

loop provided that the reduction operator is implemented using atomic update

operations (typically using primitive atomic operations such as an atomic

fetch-and-add instruction, although a lock-based implementation could also be

used). This can be combined with the previous transformations; for instance,

partial sums can be assigned to different compute units that then use atomic

operations to implement the final stage of recombining the results.

Parallel reductions in the polyhedral model In the polyhedral community,

early approaches to handle reductions were ad-hoc: after scheduling the

program without taking reductions into consideration, approaches such as that

of Jouvelot and Dehbonei [55] or [86] are applied after polyhedral scheduling

to detect reductions. Reductions are then optimized separately using program

rewriting techniques when applicable. Pugh and Wonnacott [80] introduced

reduction dependences to model reductions: a reduction dependence between

statement instances u and v indicate that u and v access the same memory

location but can be freely reordered. To accommodate this possible reordering,

instances that depend on the final value of the reductions must depend on all

previous statement instances taking part in the reduction instead. This approach

has been implemented in production compilers such as that of Doerfert et al.

[35]. While most approaches involve pattern-matching techniques of various

complexities to detect the reductions in the first place, Reddy, Kruse, and Cohen

[85] propose an extension to the PENCIL language of Baghdadi et al. [6] with

explicit annotations indicating the initialization and accumulation statements

7.1 Parallel Implementations of Reductions 157

in a reduction, allowing to express reductions using arbitrary operators and

to focus on scheduling rather than detection of reductions. Reductions are

modelled using a virtual “merge” statement that depends on all instances of

the update statement.

Parallel Reductions and SAREs Redon and Feautrier [87, 88] extend the SARE

representation with explicit reductions and scans (i.e. reductions that keep

all intermediate results) operators. Reductions are scheduled atomically in

the PRAM model: the whole reduction is represented as a single statement

with all its dependencies, assuming a sufficiently large amount of parallelism

to compute the reduction in one step. Gupta, Rajopadhye, and Quinton [45]

extend that work by assigning a variable duration to the reduction operation

depending on the ratio of the reduction size and the number of available

processors, taking into account the multiple steps necessary to compute the

reduction.

Parallel Reductions and Halide Halide has no syntactic support for reduc-

tions in the specification language other than the syntaxic sugar for operator

assignment such as +=. Reductions are defined like other sequential constructs

using recurrence variables in an update definition. If Halide can prove that

the update can be expressed using an associative and commutative operator,

the iteration order of the recurrence variable can be changed arbitrarily using

the same split and reorder that are used for pure variables. If the update is

made atomic, the corresponding loop can also be parallelized. Finally, Halide

supports the partial parallelization of associative-commutative reductions

using the rfactor primitive. Unlike other scheduling directives, however,

rfactormodifies the algorithm directly, explicitly introducing new tensors to

hold the intermediate results.

The handling of parallel reductions in Halide is described by Suriana, Adams,

and Kamil [103].

Parallel Reductions and Combinators Combinator-based frameworks are

fairly different from the type of imperative representation we are considering in

our validator. Their functional nature makes the representation of reductions

158 Verifying reductions

fairly easy: all approaches incorporate a primitive reduce operator that is

expected to be used to write reductions. Transformations on reductions are

expressed similarly to any other transformations using appropriate rewrite

rules, and do not necessitate special treatment.

7.2 List Homomorphisms

In the previous section, we made the remark that re-parenthesizing expressions

involving associative operators correspond to parallelizing their computation.

This remark is well-known in the parallel programming community since its

early days, and has been formalized using the notion of list homomorphism [18].

To understand list homomorphisms, let us first go back to the fold or reduce

of functional programming. fold is a function on lists which comes in twoFold can naturally be

defined on many

recursive data

structures other than

lists, but that is out of

scope of the current

discussion.

variants, the left fold foldl and the right fold foldr. Both iterate over the list and

accumulate an operator over the elements of the list. If l = [e1, . . . , en] is a list,

then:

foldl(⊙l, a, l) = ((a ⊙l e1) ⊙l . . .) ⊙l en
foldr(⊙r, a, l) = e1 ⊙r (· · · ⊙r (en ⊙r a))

The recursive definitions of both foldl and foldr can be given as follows, here

in OCaml:

let rec foldl op a = function
| [] -> a
| x :: xs -> foldl op (op a x) xs

let rec foldr op a = function
| [] -> a
| x :: xs -> op x (foldr op a xs)

If we denote ++ the concatenation operator on lists, a function f is called a

left fold if it can be implemented using the foldl function with a given initial

value and operator, and a right fold if it can be implemented using the foldr

function with a given initial value and operator. Left and right folds can be

7.2 List Homomorphisms 159

characterized equationally: a function f is a left fold if, and only if, it satisfies

the following equations for some initial value a and binary operator ⊙l

f([]) = a
f(x ++ [y]) = f(x) ⊙l y

and it is a right fold if, and only if, it satisfies the following equations for some

initial value a and binary operator ⊙r

f([]) = a
f([x] ++ y) = x ⊙r f(y)

In imperative terms, a left fold is a function that can be implemented as a

forward sequential loop over a list (or array), and a right fold is a function that

can be implemented as a backwards sequential loop over the list (or array).

In a left or right fold, there is an implicit order that forces the evaluation in

one direction or the other. A reduction should not possess that forced order;

instead, we can define a list homomorphism h to be a function on lists such

that there exists an operator ⊙ making the following equation true, for all pairs

of lists l1 and l2:

h(l1 ++ l2 = h(l1) ⊙ h(l2)

Since ++ is associative, and [] is a neutral element for ++, ⊙ is necessarily

associative and admits h([]) as a neutral element. It is easy to verify that a list Some authors do not

require h to be defined

on empty lists; for the

sake of simplicity, we

will assume that list

homomorphisms are

total functions.

homomorphism is both a left fold and a right fold; perhaps more surprisingly,

any function that is both a left and a right fold is a list homomorphism.

Finally, when the operator of a list homomorphism h is commutative, we have

the equality h(x ++ y) = h(y ++ x) for all lists x, y. This makes the proper

data structure to represent reductions with a commutative operator that of a

multiset: sets with multiplicity, or equivalently, lists without order. Let us call

such a list homomorphism a multiset homomorphism.

An interesting remark is that if h is a multiset homomorphism, it can be seen

as a set homomorphism, where sets are equipped with the partial operator of

160 Verifying reductions

disjoint union: it holds that h(x⊎y) = h(x) ⊙ h(y)where ⊎ denotes the disjoint

union.

There is a natural hierarchy between folds, list homomorphisms, and multiset

homomorphisms: any multiset homomorphism is also a list homomorphism,

and any list homomorphism is also a fold. In each case, the restrictions

come with additional properties on the parallelization opportunities. In the

rest of this chapter, I will focus on multiset homomorphism, i.e. associative

and commutative reductions: they are both the most common type of recur-

rences in scientific code, and the ones that enable the most parallelization

opportunities.

7.3 Implementing Reductions

Let us revisit the summation example from Section 7.1. Equipped with our

understanding of reductions as list homomorphisms, we know that the summa-

tion is not only a left fold as originally written but also a list homomorphism,

because + is associative — and even a (multi)set homomorphism, because

+ is also commutative. In order to be able to incorporate the validation of

the transformations presented in Section 7.1 into the framework of Chapter 5,

we must make one final remark: namely, that the reduction can not only be

expressed as a (multi)set homomorphism on the multiset of reduced values,

but also as a set homomorphism on the set of reduced indices, by defining the set

homomorphism h such that:

h({}) = 0

h({i}) = A(i)
h(x ⊎ y) = h(x) + h(y)

This is true because we are using a single iteration over the index i to compute

the reduction. This is true for reductions defined using Halide’s recurrence

variables (where each value in the reduction domain is computed exactly once),

or the reductions computed using variadic operators such as

∑
: ultimately, the

reduction is defined over a set of indices and accumulates exactly once for each of

7.3 Implementing Reductions 161

those indices. Note that the reduced set of indices is not necessarily directly used

as index in an array or tensor: for instance, the sum

∑
0⩽i<NA(⌊i/2⌋) iterates

over the set of indices {0 ⩽ i < N} but reads each of the {A(i) | 0 ⩽ i < ⌊N/2⌋}
exactly twice (if N is even).

In order to represent reductions, I propose to reconstruct a mapping from the

accumulations performed in the imperative code to the reduced indices in the

specification. This is in line with the rest of the proposed verification method:

for regular assignments, we make explicit a mapping from the loop iterators to

the tensor indices; for reductions, we make explicit a mapping from the loop

iterators to the tensor indices and to the reduction indices. A similar idea is

proposed in Iooss, Alias, and Rajopadhye [53] discussed further in chapter 8.

However we will not try to infer this mapping but rely on compiler annotations

instead. Moreover, we will assume that the compiler does not drastically

transform the reduction domain: for instance, the sum

∑
0⩽i<2NA(⌊i/2⌋) could

be transformed into

∑
0⩽i<N 2A(i) with a different iteration domain, but we do

not intend to support such transformations.

7.3.1 Reductions as Nested Computations

If we see the reduction as a function of a set of indices, as suggested above,

the computation of the reduction can be understood as the construction of an

array collecting the indices that have already been included in the computation.

For instance, if we consider the following pseudo-program, assuming that

{} builds a sparse table, the value of the variable result when entering an

iteration of the loop is always equal to the sum of the values stored in the table

result’:

result = 0
result’ = {}
for i = 0 to N - 1 do
result += a[i]
result ’[i] = a[i]

Because of this, we can recompute the value stored in result from the values

stored in the table result’. result’ does not have to be introduced in the

code, as its only purpose is for the verification — it is effectively a ghost variable

162 Verifying reductions

whose value is enough to re-compute the value of the variable result. Instead

of keeping track of the value stored in result, it is thus enough in the prophetic

evaluator and in the symbolic evaluator to keep track of the values stored in

result’. By doing so, we reduce the problem of tracking accumulation using

the accumulating assignment += to the solved problem of tracking regular

assignments with :=, that can be mostly handled by the same techniques

described in chapter 5. When program transformations are applied to the loop,

the assignment could become multiple separate assignments, and the order in

which the accumulations are performed can change. However, for the program

to be correct, we expect that each of the result’[i] will have been written

with the corresponding value exactly one.

Following this idea, accumulating assignments should have a different annota-

tion compared to regular assignments, because we also need to keep track of

the index in the original reduction that is currently being accumulated. We

propose to annotate update assignments as follows:

a[ι1, . . . , ιn] {t} +{ι′
1
, . . . , ι′n}= e

The prophetic annotation t should denote a reduction over operator + (see next

section), and this indicates that we are writing to a[ι1, . . . , ιn] the value ewhich

must be equal to the reduced element at position ι′
1
, . . . , ι′n in the reduction

denoted by t. For instance, the following program is implementing the sum

B() = ∑
0⩽i<NA(i)

b[] { 0 } := 0 ;
for i = 0 to N - 1 do
b[] { B() } +{N - i - 1}= a[N - i - 1]

We can argue, like we did in section 5.6, that a tensor compiler can be annotated

to produce these annotations, provided that the compiler does not merge or split

separate iterations of the reduction. Fortunately, this type of “across-iteration”

optimization is often out of scope for tensor compilers: not only it does not

fit nicely in their per-iteration model, the traditional compiler algorithms that

consume the intermediate language produced by the tensor compilers are

quite good at performing these optimizations opportunistically. In the Halide

representation, for instance, the extra information required correspond to the

value of the recurrence variables of the current tensor, an information that is

readily available in the compiler infrastructure.

7.3 Implementing Reductions 163

Before using the value resulting from the accumulation in another expression,

we need to ensure that it is equal to the original value of the reduction.

This is why we require the annotation to contain a specification expression

representing the whole reduction: this ensures that we know the set of

indices that we are reducing over in the specification ({[i] | 0 ⩽ i < N} in the

example), and we can check that the indices accumulated by the implementation

({[N − i − 1] | 0 ⩽ i < N} in the example) are a permutation of these.

Our proposed encoding uses sets to represent the set of indices that are being

reduced over. This means that we must forbid accumulating into an array

when a value for the annotated indices has already been accumulated. Since

the reductions in the specifications iterate over a set (not a multiset) of indices,

this could only occur in case of a miscompilation.

It is a good thing that we can ignore the issue, because associating an integral

count to each value of the reduced indices could result in a count expressed as

a polynomial in the presence of parametric loops, which leaves the Presburger

arithmetic language we have been working with. Representing such multisets

symbolically would be possible by using techniques such as Barvinok count-

ing [14], and deferring to SMT solvers to check the resulting multiset equality,

but would not have much practical interest since we do not expect the situation

to happen.

7.3.2 Initialization

In the previous section, we have devised (informally) a scheme to handle the

case where an array is only updated using accumulating operations. However,

when implementing a reduction, the reduced array is first initialized using a

regular assignment operation. The simplest case occurs when the initialization

is performed using the neutral element of the reduction operator:

b[] := 0
for i = 0 to N - 1 do
b[] += b[i]

This simple case can easily be integrated into the proposed representation: if

regular assignments are restricted to the neutral element of the reduction, we

164 Verifying reductions

can have a special representation to indicate that the cell is initialized. When

updating with a cell that is initialized, the existing reduced indices should

not be taken into consideration: if ∆h has a reduction associated with a cell

and ∆h′ re-initializes that same cell, the reduced indices in ∆h should not be

included in ∆h ⊲ ∆h′.It is not entirely

obvious that it is

possible to extend the

symbolic evaluator to

handle this construct

as it is not monotone

in the set of defined

indices. We present a

formal justification

for doing so in

Section 7.5.

In the general case, the reduced variable can be initialized with an arbitrary

value, or even not be initialized at all if the reduction is performed in-place

on an existing array. For instance, an implementation of the general matrix

multiply D = αAB + βC might start by assigning βC(i, j) to d[i, j]. Thus, we

need to keep track of the initial value of the reduction as a separate piece of

information from the set of reduced indices. In fact, we need three pieces of

information for each location:

• A specification expression that indicates the reduction that is being

implemented (in particular, this indicates the reduction operator so that

we are not mixing up reductions with different operators),

• The “initial value” for the location, i.e. the last value written to the location

by a regular assignment (or the original value of the location if it is an

input array)

• The set of reduced indices accumulated since the last regular assignment,

if any

7.3.3 Partial Reductions

Using the representation of arrays taking part in a reduction proposed above,

we can represent reductions performed out-of-order compared to their specifi-

cation, but we cannot split a complete reduction into multiple partial reductions

that are then recombined. In order to be able to validate this transformation,

two components are needed: we need to keep track of the partial accumulations

stored in temporary variables, and we need to ensure that when the partial

accumulations are used, all the indices of the full reductions are covered.

Keeping track of the partial accumulations is no different from keeping track

of the full accumulation and can be performed easily in our representation;

7.3 Implementing Reductions 165

however, some additional thought need to be given to the re-combining step.

To see why, let us consider the example of the sum C() = A() +∑
0⩽i<N B(i)

implemented by the following program, assuming N = 4k for simplicity:

c[] {A()} := a[]
allocate tmp[4] in
par j = 0 to 3 do
tmp[j] {0} := 0
for i = 0 to N / 4 do
tmp[j] {∑

0⩽i<N B(i)} +{4i + j}= b[4 * i + j]
for j = 0 to 3 do
c[] += tmp[j]

The assignments to tmp[j] can be handled using the method described in the

previous sections; however, there is no good annotation that can be written

for the accumulating assignment into c[]. This assignment conceptually

contributes many indices of the reductions: the set {i | 0 ⩽ i < N∧i mod 4 = j}.
It is not clear that a compiler would have a straightforward way of reconstructing

that set of indices. As such, it does not seem reasonable to require an annotation

for that set.

In such cases, one would usually not expect the variable c[] to be used during

the accumulation, as the intermediate value holds no meaningful value in the

original computation. And once the accumulation is over, we expect the stored

value to be equal to the complete reduction from the specification. In this

situation, we can use the prophetic evaluation of the partial reduction to infer

the set of indices accumulated into the final reduction. This works even in the

case of a reduction that has been split recursively into many partial reductions,

such as below:

out[] = 0
for i = 0 to 3 do
tmpi[i] = 0
for j = 0 to 3 do
tmpj[j] = 0
for k = 0 to 3 do
tmpj[j] { C() } +{(i, j, k)}= b[i, j, k]

tmpi[i] { C () } += tmpj[j]
out[] { C () } += tmpi[i]

166 Verifying reductions

Recalling that the prophetic evaluation can only “see” the writes that are

textually before the current statement, it is correct to infer that we are writing

the indices {(i, j, k) | 0 ⩽ k < 4} into tmpi[i] and the indices {(i, j, k) | 0 ⩽
j < 4∧0 ⩽ k < 4} into out[]. In general, this is not correct because it is possible

that the last write is textually after the current statement (it could have been

performed by a previous iteration of an enclosing loop); hence, for correctness,

we must check during the symbolic evaluation that the equality inferred during

the prophetic evaluation holds.

It would also be possible to infer the set of indices written using a multi-pass

approach by applying a lexicographic maximum at each sequential loop level

to capture writes performed after the current statement textually. However, I

will not consider that possibility in this presentation, as I believe that it would

not be needed in practice for reductions.

7.3.4 Consecutive Reductions

One final issue with the proposed representation remains to be tackled: the

same variable can be used for multiple consecutive reductions. For instance,

consider the following specification:

R0() =
∑

0⩽i<N

A(i)

R1() = R0() ×
∏

0⩽i<N,0⩽j<M

B(i, j)

that can be implemented by the following program:

r[] {0} := 0
for i = 0 to N - 1 do
r[] {R0()} +i}= a[i]

for i = 0 to N - 1 do
for j = 0 to N - 1 do
r[] {R1()} *{i, j}= b[i, j]

It is unclear how to properly handle the verification of such a program: the

array r[] is accumulated into using both addition and multiplication, where

7.3 Implementing Reductions 167

we have until now assumed that a given variable would be accumulated into

using a single reduction operator.

The issue here is that at some point we need to “switch” from considering

r[] as a sum to considering it as a product whose initial value is the result

of the first sum. Dynamically, this happens when the first accumulation into

r[] using ∗ = occurs, and ideally we would record this information in the

prophetic evaluation. Doing so would require keeping track of the multiple

nested reductions: assuming for the sake of the argument that the sequencing

operator is right-associative (i.e. s1 ; s2 ; s3 is s1 ; (s2 ; s3)), the semantics of the

code above is the function λx.(x+∑
0⩽i<N R0()@(i)) ×

∏
0⩽i<N,0⩽j<M R1()@(i, j).

As reductions are stacked, we would end up building more and more complex

expressions. These complex expressions then have to be checked on use to

be equal to their more succinct form (here, R1()) in order to ensure simpler

formulas are given to the final SMT check.

An “obvious” solution would be to require the generated code to use different

variables for each of the reductions, with an additional assignment to change

the variable after the first reduction. This approach fails when the reduced array

is not zero-dimensional, because the additional move now has a computational

cost. Properly applying this solution to arrays would require being able to

rename arrays or aliasing array names, which we do not currently support.

While this approach seems feasible, it is simpler to introduce some way to

know when one of the “steps” of the reduction is over, and to assert at that

point that the reduction must be equal to the corresponding specification

expression (here, R0() or R1()), in a similar spirit to the “merge” node used by

Reddy, Kruse, and Cohen [85] in their representation of reductions. Keeping

in mind that any additional annotation need to be designed to ensure that

it is reasonably straightforward to extract the required information from a

tensor compiler, instead of requiring the tensor compiler to create a new

virtual “merge” statement to be scheduled, I propose to use a lexically-scoped

accumulate a in c indicating the scope within which a reduction is performed.

This scope is a hint that a reduction is taking place on the array awithin the

scope: upon entering the scope, an accumulating representation of a should

be used, and upon exiting the scope, the stored accumulation — if any has

taken place — should be replaced with a regular symbolic heap. The previous

program can then be written as follows:

168 Verifying reductions

r[] {0} := 0
accumulate r in
for i = 0 to N - 1 do
r[] {R0()} +{i}= a[i]

accumulate r in
for i = 0 to N - 1 do
for j = 0 to N - 1 do
r[] {R1()} *{i, j}= b[i, j]

Using these annotations, the accumulating scopes for r[] are well-defined and

there is no risk of confusion between the two reductions.

The use of an explicitly scoped statement is appropriate because multiple

reductions are performed in stages, but not interleaved (distinct operators

usually do not commute). The tensor compiler knows typically knows the

range of the reduction, but the proper scopes could also be inferred by finding

the maximal regions that only contain a given type of accumulating assignment

for an array or location. We will assume that annotations are given indicating

the region within which a reduction is performed per array; this is appropriate

when the array variables come from distinct tensors in the specification, but

fails if multiple arrays are combined into one. Compilers often merge all buffers

stored in the “shared memory” of GPUs into a single buffer of static size, which

could interfere with these annotations. Dealing with this mismatch is left to

future research.

7.3.5 Differential memories

The semantics of an accumulating assignment such as x += e cannot be

captured by a resulting memory: the semantics depends on the current value

of x. To represent such semantics at runtime, we introduce differential memories.

A differential memory δµ is a curried function from a location and an (old)

value to a (new) value.

Memories can be represented by constant differential memories, i.e. if µ is

a memory it can be understood as the differential memory ℓ ↦→ v ↦→ µ(ℓ)
that simply ignores the old value. The sequencing of differential memories is

7.3 Implementing Reductions 169

defined in terms of function composition:

(δµ1 ⊲ δµ2)(ℓ) = δµ2(ℓ) ◦ δµ1(ℓ)

Note that a partial memory µ can be represented as a differential memory by

returning the corresponding value, i.e. the differential memory diff(µ) defined

as follows represents the memory µ.

diff(µ)(ℓ)(v) =
{
µ(ℓ) if ℓ ∈ dom(µ)
v otherwise

In that case, the implementation of ⊲ on memories and differential memories

ensures that diff(µ1 ⊲ µ2) = diff(µ1) ⊲ diff(µ2).

A differential memory δµ can be applied to a memory µ to obtain a new

memory by applying the stored function to each location:

δµ(µ)(ℓ) = δµ(ℓ)(µ(ℓ))

7.3.6 Reduction-Aware Dynamic Semantics

The dynamic semantics of Figure 4.5 can be adapted to use differential memories

instead of memories as the output δµ in the state triple. We must also replace

rules U-Seq, U-For and U-Assign with the following adapted rules.

170 Verifying reductions

Red-U-Seq

ℰ;µ ⊢ s1 ⇓u ⟨δµ1; ρ1⟩ ℰ; δµ1(µ) ⊢ s2 ⇓u ⟨δµ2; ρ2⟩
ℰ;µ ⊢ s1 ; s2 ⇓u ⟨δµ1 ⊲ δµ2; ρ1 ∪ ρ2⟩

Red-U-For

JeKℰ;µ = n ∈ Z ∀0 ⩽ i < n, ℰ + x ↦→ i;
©«⊲0⩽j<i δµjª®¬ (µ) ⊢ c ⇓u ⟨δµi; ρi⟩

ℰ;µ ⊢ for x < e; do c ⇓u ⟨⊲
0⩽i<n

δµi; rdℰ;µ(e) ∪
⋃

0⩽i<n

⟩ρi

Red-U-Assign

JeKℰ;µ = v JιiKℰ;µ = ni ∈ Z for all 1 ⩽ i ⩽ n

ℓ = a[n1, . . . ,nn] ℓ ∈ dom(µ) ρ = rdℰ;µ(e) ∪
⋃

1⩽i⩽n

rdℰ;µ(ιi)

ℰ;µ ⊢ a[ι1, . . . , ιn] {t} := e ⇓u ⟨{ℓ ↦→ λ_.v}; ρ⟩

The new rules apply the differential memories to the current memory instead of

using the update operator ⊲. Moreover, rule Red-U-Assign returns the constant

differential memory ignoring the pre-existing value at the location.

The definition of the compatibility δµi ¨ δµj used in rule U-Par must also be

updated, because δµi and δµj are now differential memories.

Definition 7.3.1. Two differential memories δµ1 and δµ2 are compatible if they

are equal to constant functions on their shared domain, i.e. for all ℓ ↦→ f1 in δµ1

and ℓ ↦→ f2 in δµ2, and for all value v, f1(v) = f2(v).

Finally, we introduce the rule Red-U-OpAssign for the update assignment

a[ι1, . . . , ιn] {t} ⊙(ι′
1
, . . . , ι′m) = e:

Red-U-OpAssign

JeKℰ;µ = v JιiKℰ;µ = ni ∈ Z for all 1 ⩽ i ⩽ n ℓ = a[n1, . . . ,nn]
ℓ ∈ dom(µ) δµ = {ℓ ↦→ λx.x ⊙ v} ρ = rdℰ;µ(e) ∪

⋃
1⩽i⩽n

rdℰ;µ(ιi)

ℰ;µ ⊢ a[ι1, . . . , ιn] {t} ⊙(ι′
1
, . . . , ι′m) = e ⇓u ⟨δµ; ρ⟩

7.3 Implementing Reductions 171

Rule Red-U-OpAssign adds the updated location to both δµ and ρ, ensuring

that there are no benign races involving a reduction. The semantics could

be improved to allow races between atomic accumulations using e.g. atomic

fetch-and-add instructions, as discussed below; this would require changing the

compatibility relation to require f1 ◦ f2 = f2 ◦ f1 instead, and having an atomic

version of Red-U-OpAssign that does not add the location to the read-set.

Reflection on Races When no reductions are involved, there are two types

of accesses to a memory location: read accesses and write accesses. With the

addition of reductions, there is also an accumulating or reducing access. Such

accumulating access can be implemented using a sequence of read and write

operations, or using an atomic operation, whether implemented with a lock or

an atomic fetch-and-accumulate instruction provided by the hardware. Hence,

we have three types of accesses: read (R), write (W) and accumulate (A); and

conflicts whenever between concurrent accesses, at least one of which is either

a write or an accumulation.

RW and RA conflicts No thread can read from a location that is concurrently

being either written to or accumulated into, as that would cause non-

determinism. This is enforced by the dom(δµi) # ρj constraint.

WW conflicts As previously, two concurrent writes are allowed only if they are

both writing the same value. This is enforced by the δµi ¨ δµj constraint.

WA conflicts Concurrent write and accumulating accesses must be forbidden,

because depending on the order the accumulation may or may not be taken

into consideration in the final value. Since accumulation is considered as

both a read and a write, this is forbidden by the dom(δµi) # ρj constraint.

In the presence of atomic accumulations that are not added to the set of

read locations, these conflicts are prevented by the extended compatibility

constraint δµi ¨ δµj because a constant function only commutes with

itself and the identity function.

AA conflicts Accumulating acccesses are treated as both reads and writes

hence conflicts between two accumulating accesses are disallowed by the

dom(δµi) # ρj constraint. In the presence of atomic accumulations that

are not added to the set of read locations, concurrent atomic accesses using

172 Verifying reductions

the same commutative operator are allowed as they commute. Concurrent

atomic and non-atomic accumulations are not allowed, because the atomic

accumulation writes to the location and the non-atomic accumulation

reads from the location.

7.4 Specification of Reductions

In order to represent reductions in the specification, we extend SAREs with a

parametric reduction construct. In addition to the existing construct, a SARE

expression with reductions can also include expressions of the form:⊙
{j|ϕ}

e

The set {j | ϕ} represents the indices over which the reduction is performed,

and the variables j are bound in the expression e. The set {j | ϕ} must be

bounded, i.e. it must be contained within a multidimensional rectangle defined

as a function of the existing variables in the context. Most often, reductions

are implemented over a full interval, in which case we write

⊙
a⩽j<b e for⊙

{j|a⩽j<b} e.

This representation of reductions is different from the usual presentation of

reduction in SAREs, such as that used by Iooss, Alias, and Rajopadhye [53],

that use a projection π from the domain of the inner expression to the outer

expression: if e is an expression with domain𝒟, then

⊙
π e has domain π(𝒟).

The two formulations are equivalent: a projection π can be represented using

the set {j | i = π(i, j)} where i denotes the variables in scope; conversely, a set

{j | ϕ} can be represented using the projection π(i, j) = j and restricting the

domain of the inner expression to {(i, j) | ϕ}.

The semantics of the parametric ⊙ operator is to apply ⊙ repeatedly to the

expression e evaluated at each point in the domain in lexicographic order.

If ⊙ is associative and commutative, the evaluation order does not matter

and

⊙
is a set homomorphism; however, evaluating

⊙
in lexicographic

order ensures that the semantics is well-defined even when it is not a set

7.4 Specification of Reductions 173

homomorphism. In particular, by enforcing a specific order, we are able to

represent list homomorphisms and associative operators that are not necessarily

commutative.

In order to verify an implementation of the reduction, it is not enough to be

able to talk about the final result: intermediate assertions must mention partial

reductions. Hence, we extend the specification language with a construct to

denote the value at a specific position in the reduction. We will use the @

operator for this, intuitively, we want the following equation to hold (recall

that the variadic operator

⊙
is a specification-only operator):

J©«
⊙

{j1 ,...,jn |ϕ}
e
ª®¬ @(ι1, . . . , ιn)K = Je[j1 := ι1, . . . , jn := ιn]K

The dynamic semantics of a reduction operator

⊙
must contain the set of

reduced values and the corresponding indices so that the semantics of the @

operator can be defined. Thus, we can evaluate a reduction to a pair ⟨h,V⟩
where h is a set homomorphism representing the reduction being performed

and V is the domain over which the reduction is performed. The evaluation of⊙
{x|ϕ} e is a pair ⟨h,V⟩ such that:

• V is the evaluation of {x | ϕ} as a Presburger set in ℰ, and

• h is the unique set homomorphism for ⊙ such that for an integer tuple i,
h(i) is JeKℰ+x ↦→i;M if i ∈ V and h(∅) otherwise

Recalling that we require that the set of indices of a reduction must be bounded,

the pair ⟨h,V⟩ can be obtained by simply applying the set homomorphism h

to its full domain V . This conversion can be performed automatically by the

semantics, except when storing the value to an array and when applying the @

operator.

The semantics for the @ operator are now easy to define using this representa-

tion: it corresponds to applying the h homomorphism to the corresponding

argument.

JeKℰ;M = ⟨h,V⟩ JιiKℰ;M = ni ∈ Z for 1 ⩽ i ⩽ n

Je@(ι1, . . . , ιn)Kℰ;M = h({[n1, . . . ,nn]})

174 Verifying reductions

Note that when the indices fall outside the range of the reduced domain, the @

operator returns the neutral element h(∅) for the associative operator ⊙. Also

note that this dynamic representation of reductions can be adapted without

issues to a non-commutative operator ⊙ by using lists and list homomorphisms

instead of sets and set homomorphisms.

There is an issue with this representation. Indeed, consider the following

Halide algorithm featuring an update definition:

RDom x(0, N);
B() = 7;
B() += A(x);

that is represented by the following SARE with reductions:

B0() = 7

B1() = B0() +
∑

0⩽x<N

A(x)

We would like to be able to annotate the accumulating assignments to the

variable that represents tensor B using annotations such as B1()@(x). Hence,

the evaluation of B0 +
∑

0⩽x<NA(x) must also encode the homomorphism h

and set of indices V , but include the initial value B0() and information about

the + operator that can be applied to the initial value. Hence, we augment the

semantics for a reduction operator to a quadruple ⟨0⊙ , ⊙, h,V⟩ where h and V

are defined as before, ⊙ is the reduction operator, and 0⊙ is a distinguished

constant representing the neutral element for ⊙.

More generally, we define a reduction value r using the following grammar,

where v denotes the original values of the language:

r ::= v | 0⊙ | ⟨r, ⊙, h,V⟩
We can evaluate a reduction value r to a primitive value v using the concretiza-

tion operator ⇓r:
⇓v = v
⇓0⊙ = J0⊙K

⇓⟨r, ⊙, h,V⟩ = ⇓r ⊙ h(V)

7.4 Specification of Reductions 175

where J0⊙K is the neutral element for ⊙.

The application of an operator ⊙ to a reduction value r and a value v or a neutral

element 0⊗ for an operator ⊗ ≠ ⊙ forces the concretization of the reduction

value:

r ⊙ v = ⇓r ⊙ v
r ⊙ 0⊗ = ⇓r ⊙ ⇓0⊗

The application of ⊙ to a reduction value r and the neutral element 0⊙ for that

operator is a no-op:

r ⊙ 0⊙ = r

The application of an operator ⊙ to two reduction values where the second has

operator ⊙ does not force any concretization and instead incorporates the first

reduction value into the initial value of the second reduction value:

r ⊙ ⟨r′, ⊙, h,V⟩ = ⟨r ⊙ r′, ⊙, h,V⟩

If the second argument is a reduction value with a different operator, this forces

concretization:

r ⊙ ⟨r′, ⊗, h,V⟩ = ⇓r ⊙ (⇓r′ ⊗ h(V))

This simplification process is coherent in the sense that it commutes with

concretization:

Theorem 7.4.1. If r and r′ are two reduction values and ⊙ an associative operator, the

concretization of r ⊙ r′ is equal to the application of ⊙ to the concretizations of r and r′.

Proof. By structural induction on r′.

Case r′ = v Since r′ is a value, we have r′ = ⇓r′; moreover, by definition,

r⊙ r′ = ⇓r⊙ r′ is also a value. Hence we have ⇓(r⊙ r′) = ⇓r⊙ r′ = ⇓r⊙⇓r′.

176 Verifying reductions

Case r′ = 0⊙ By definition, r ⊙ 0⊙ = r; moreover ⇓0⊙ is the neutral element for

⊙, hence ⇓(r ⊙ 0⊙) = ⇓r = ⇓r ⊙ ⇓0⊙.

Case r′ = 0⊗ By definition, r⊙ r′ = ⇓r⊙⇓r′ is a value, hence ⇓(r⊙ r′) = ⇓r⊙⇓r′.

Case r′ = ⟨r′′, ⊙, h,V⟩ If the operator of r′ is the reduced operator, we have:

r ⊙ r′ = ⟨r ⊙ r′′, ⊙, h,V⟩

By induction hypothesis, we have ⇓(r ⊙ r′′) = ⇓r ⊙ ⇓r′′. Hence:

⇓(r ⊙ r′) = ⇓(r ⊙ r′′) ⊙ h(V)
= (⇓r ⊙ ⇓r′′) ⊙ h(V)
= ⇓r ⊙ (⇓r′′ ⊙ h(V))
= ⇓r ⊙ ⇓r′

Case r′ = ⟨r′′, ⊗, h,V⟩ If the operator of r′ is not ⊙, then r ⊙ r′ = ⇓r ⊙ ⇓r′ by

definition, which is a value.

□

Whenever a reduction tuple needs to be evaluated in the semantics (i.e. except

when applied to the @ operator or applied as the right-hand side of the corre-

sponding reduction operator), it has to be concretized. Because concretization

commutes with the application of operators, we have the same semantics as

previously for an expression that does not use @.

We need to ensure that the @ operator is only applied to terms that have a

semantics as the appropriate reduction tuple. We can rely on the type system

for this; in addition, we will record the operator of the reduction in the type

system, which is useful when annotating reduction assignments with prophetic

expressions in the next section. If τ is a type, ⊙ an associative and commutative

binary operator over T and n a non-negative integer, we define the type ⊙nτ
to be the type of reductions using ⊙ over a n-dimensional space. ⊙nτ isWe restrict ourselves

to n-tuples as

reduction spaces for

simplicity.

7.5 Validation of Programs with Reductions 177

introduced by the following rule:

Γ , j1 : A, . . . , jn : A,ϕ ⊢A e : τ

⊙ is an associative operator for values of type τ

Γ ⊢A
⊙

{(j1 ,...,jn)|ϕ}
e : ⊙nτ

and can be propagated using the “initial value” rule:

Γ ⊢A e1 : τ Γ ⊢A e2 : ⊙nτ
Γ ⊢A e1 ⊙ e2 : ⊙nτ

There are two elimination rules for type ⊙nτ: either a value of type ⊙nτ can be

used whenever a value of type T is expected using an implicit conversion (this

corresponds to converting ⟨r, ⊙, h,V⟩ to h(V) in the dynamic semantics), or a

specific iteration of the reduction can be accessed using the @ operator.

Γ ⊢A e : ⊙nτ
Γ ⊢A e : τ

Γ ⊢A e : ⊙nτ Γ ⊢ ιi : A for 0 ⩽ i < n

Γ ⊢A e@(ι1, . . . , ιn) : τ

Note that we do not allow applying the ⊙ operator to a sequence of values

of type ⊙nτ without concretizing them: we do not allow the compiler to

merge distinct reductions from the specification. This simplifies the formalism;

adding support for this would simply require allowing more complex spaces

in the reduction (namely, the iteration space would be a disjoint tuple of the

combined reduction spaces).

7.5 Validation of Programs with Reductions

Let us now formalize the treatment of reductions in the implementation

proposed in section 7.3. This formalization builds upon the reduction-free ap-

proach presented in chapter 5, and represents reduction tuples by increasing the

expressiveness of symbolic heaps. We first describe the concept of accumulating

symbolic heaps to represent the value of a reduced variable mid-way through

the reduction and adapt the existing semantics of Sched to use accumulating

symbolic heaps as appropriate.

178 Verifying reductions

Symbolic Accumulation In order to represent the accumulating updates

performed by a reduction, we need to represent “accumulating” symbolic

values. Recall that a symbolic value is represented by a Presburger set whose

tuples are named with expression contexts:

v̂ =
⋃
i

{Ei⟨xi⟩ : ϕi}

To represent a variable that can be accumulated into to represent a reduction in

the specification, and following the intuition of reductions as nested (array)

computations, we can think of representing accumulating symbolic values using

Presburger relations instead, mapping positions in the reduction space to the

corresponding reduced value.

Conceptually, an accumulating symbolic value should represent the result

of repeated application of the accumulating operator ⊙ =. Note that this

is different from evaluating the result of the partial reduction: for instance,

consider the program for i < 4; do x+ = a[i] for some variable x. Its behavior

is not to compute

∑
0⩽i<4

A(i), but to add that value to the pre-existing value of

x. In particular the resulting heap after evaluating the program depends on

the initial value of x. Hence, accumulating symbolic values should be thought

of as functions from values to values, taking the old value of a memory cell and

returning the new value for that memory cell after applying the accumulation.

This will be made more precise with differential heaps below.

In order to represent the accumulating updates performed by a reduction,

we define an accumulating symbolic value â as a pair ⟨O, R⟩. O is a singleton

Presburger set containing tuples of the shape ⊙/0, where ⊙ is a reduction

operator. R is a single-valued Presburger relation with bounded domain mapping

flat anonymous tuples to expression tuples of shape Ei/mi, where Ei is an

expression context withmi holes. Effectively, an accumulating symbolic value

maps iteration in the reduction space to the corresponding reduced value.

We write op(â) = O and red(â) = R. We further require that whenever R is

nonempty,Omust be nonempty, i.e. if there are reduced indices, there must be

a reduction operator.

We can evaluate an accumulating symbolic value by applying the operator to

the mapping:

Definition 7.5.1. If â = ⟨O, R⟩ is an accumulating symbolic value, then the

7.5 Validation of Programs with Reductions 179

evaluation of â in environment ℰ and modelM is:

JâKℰ ,M(v) = v ⊙
⊙

[j]→E⟨i⟩∈JRKℰ

E[i]

when JOKℰ = {⊙}, and

JâKℰ ,M(v) = v

otherwise.

Note that the evaluation of â is well-defined due to the requirement that R

must have a bounded domain.

The update combinator can be defined on accumulating symbolic values as

follows. Since an accumulating symbolic value represents an accumulation as a

function, the evaluation of the update must correspond to function composition:

indeed, if x+ = e1 is represented by f1 and x+ = e2 is represented by f2, then

x+ = e1 ; x+ = e2 should be represented by f2 ◦ f1. This means that if â1 and

â2 are accumulating symbolic values with the same operator ⊙, then â1 ⊲ â2

should be such that:

Jâ1 ⊲ â2Kℰ;M = Jâ2Kℰ;M ◦ Jâ1Kℰ;M

Defining ⊲ as a total function would require being able to associate multiple

expressions to each position in the reduction space, making the relation R

no longer single-valued. Moreover, keeping track of a count associated with

each position would make the representation no longer representable using

Presburger arithmetic in the present of parametric loops. As discussed in

subsection 7.3.1, we can sidestep the issue by assuming that we only combine

accumulating values with disjoint domains, and define â1 ⊲ â2 as a partial

operator:

⟨⊙, R1⟩ ⊲ ⟨⊙, R2⟩ =
{
⟨⊙, R1 ∪ R2⟩ if empty(dom(R1) ∩ dom(R2))
undefined otherwise

⟨⊙, R1⟩ ⊲ ⟨⊗, R2⟩ =
{
undefined if ⊙ ≠ ⊗

Lemma 7.5.1. For accumulating symbolic values â1 = ⟨O1, R1⟩ and â2 = ⟨O2, R2⟩,
environment ℰ and modelM such that Jdom(R1)∩dom(R2)Kℰ is empty and JO1Kℰ =

180 Verifying reductions

JO2Kℰ , then the following holds:

Jâ1 ⊲ â2Kℰ;M = Jâ1Kℰ;M ⊲ Jâ2Kℰ;M

= Jâ2Kℰ;M ◦ Jâ1Kℰ;M

In the same way, the iterated update can be defined by taking the union of

the underlying sets, provided that the domains are disjoint — which can be

expressed using the single-valuedness of the bound maps bind0⩽x<e (dom(R))
and bind0⩽x<e (O) :

⊲
0⩽x<e

⟨O, R⟩ = ⟨
⋃

0⩽x<e

O,
⋃

0⩽x<e

R⟩

if bind0⩽x<e (dom(R)) and bind0⩽x<e (O) are single-valued, and is undefined

otherwise.

Lemma 7.5.2. For an accumulating symbolic value â = ⟨O, R⟩, environment ℰ and

modelM such that bind0⩽x<ι (dom(R)) and bind0⩽x<ι (O) are single-valued in ℰ,

and JιKℰ = n ∈ Z, then the following holds:

J⊲
0⩽x<ι

âKℰ;M = ⊲
0⩽i<n

JâKℰ+x ↦→i;M

Accumulating heaps In the same way symbolic heaps are defined on top of

symbolic values, accumulating symbolic heaps are defined on top of accumu-

lating symbolic values. An accumulating symbolic heap is represented as a

pair ⟨O, R⟩ of Presburger relations where:

• O is a single-valued Presburger relation from locations to reduction

operators, i.e. Omaps tuples in space a/n where a is an array name to

tuples in space ⊙/0 where ⊙ is a reduction operator. There is at most one

operator for each location.

• R is a Presburger relation mapping tuples in space a/n to tuples in space

ϵ/m × E/p where E is an expression context with p holes. The first

component of the pair represents the position in the reduction space,

while the second component represents the value that was written at that

position in the reduction space.

7.5 Validation of Programs with Reductions 181

• uncurry(R) is single-valued, i.e. there is at most one expression context

associated for a given reduction position at a given location.

• Each location that has associated reduced values must have a reduction

operator, i.e. dom(R) ⊆ dom(O)must hold.

Note that these restriction do not prevent having different operators associate

with different locations of the same array. Although this situation rarely occurs

in programs written by humans, it can occur when a compiler merges multiple

arrays into a single one. For instance, Halide merges all arrays stored on the

so-called shared memory on GPUs into a single statically-sized array. In this

situation the code on the left might be transformed into the code on the right:

allocate x[] in
allocate y[] in
x[] := 0 ;
y[] := 1 ;
for i = 0 to 31 do
x[] += a[i] ;
y[] *= b[i] ;

done

allocate xy[2] in
xy[0] := 0 ;
xy[1] := 1 ;
par i = 0 to 31 do
xy[0] += a[i] ;
xy[1] *= b[i] ;

done

If a[i] is a location, then O(a⟨i⟩) is an operator ⊙ and R(a⟨i⟩) is a set of

pairs, which can be unwrapped. Together, they can be used to represent an

accumulating symbolic value, which we note ⟨O, R⟩(a⟨i⟩).

Accumulating symbolic heaps can be interpreted as differential memories

performing the corresponding accumulation:

J⟨O, R⟩Kℰ ,M(a[i])(v) =
{
J⟨⊙, unwrap(R(a⟨i⟩))⟩Kℰ ,M(v) if JO(a⟨i⟩)Kℰ = {⊙}
v otherwise

The sequencing operator and its iterated counterpart can be defined as for

accumulating symbolic values, using the union of Presburger relations. The

following conditions are necessary for the correctness of this representation:

182 Verifying reductions

Lemma 7.5.3. If ⟨O1, R1⟩ and ⟨O2, R2⟩ are accumulating symbolic heaps, then in any

environment ℰ and modelM in which O1 ∪O2 is functional (i.e. locations appearing

in both heaps have the same operator) and dom(uncurry(R1))∩dom(uncurry(R2)) is
empty (i.e. no index is reduced twice), we have Jδh1⊲δh2Kℰ ,M = Jδh1Kℰ ,M⊲Jδh2Kℰ ,M.

Lemma 7.5.4. If ⟨O, R⟩ is an accumulating symbolic heap, then in any environment

ℰ and model M in which

⋃
0⩽x<ι(O) is functional (i.e. no location is associated

with different operators in different iterations) and bind0⩽x<ι
(
dom(uncurry(R1))

)
is functional (i.e. no index is reduced by distinct iterations), we have

J⊲
0⩽x<e

δhKℰ ,M = ⊲
0⩽i<JeKℰ

JδhKℰ ,x ↦→i,M

Reduction Heaps In order to represent both regular and accumulating as-

signments, we add a regular symbolic heap to this pair. A reduction heap ∆h

is thus a tuple ⟨h, ⟨O, R⟩⟩ where h is a regular symbolic heap as described in

chapter 5, and the ⟨O, R⟩ pair is an accumulating symbolic heap as described

in the previous section. Redution heaps evaluate to differential memories by

applying the accumulating heap to the regular heap:

J⟨h, ⟨O, R⟩⟩Kℰ ,M = JhKℰ ,M ⊲ J⟨O, R⟩Kℰ;M

This evaluation first overwrites any existing value with the value present in h,

if any, then uses the result to initialize the reduction O to the values in R.

When combining reduction heaps, the presence of an overwrite in the second

reduction heap must erase any accumulation to the corresponding location in

the first reduction heap. The update is thus defined as follows:

⟨h, ⟨O, R⟩⟩ ⊲ ⟨h′, ⟨O′, R′⟩⟩ = ⟨h ⊲ h′, ⟨(O\dom(h′)) ∪O′, (R\dom(h′)) ∪ R⟩

In order for this symbolic update to be correct, the single-valuedness invariants

on the accumulating component must be respected. They can be expressed

as a Presburger formula or unit set, called update-ok(⟨h, ⟨O, R⟩⟩, ⟨h′, ⟨O, R⟩⟩),
that states:

• The disjointness of dom(uncurry(R\dom(h′))) and dom(uncurry(R′)),
ensuring that we are not counting reduction indices twice

7.5 Validation of Programs with Reductions 183

• The single-valuedness of (O\dom(h′)) ∪O′, ensuring that each array cell

is associated with a single reduction operator

If the reduction operator associated with a cell in O is non-commutative, we

must also ensure that the reduced indices associated with that cell in the

second argument are lexicographically larger than the reduced indices in the

first argument, to ensure order is preserved. If we define O′′ = O\dom(h′)
and R′′ = R\dom(h′) and denote by nc(O) the subset of the domain of O that

is associated with a non-commutative operator, this can be expressed as the

Presburger formula:

fst(R′′) ∩ nc(O ∪O′) ≺ fst(R) ∩ nc(O ∪O′)

Recall that fst(R) denotes the first component in the range of the relation, i.e.

fst(R)maps each cell to its reduced indices.

We can now state a soundness lemma:

Lemma 7.5.5. If ∆h and ∆h′ are reductions heaps such that update-ok(∆h,∆h′)
holds in environment ℰ and memoryM, the following holds:

J∆h ⊲ ∆h′Kℰ;M = J∆hKℰ;M ⊲ J∆h′Kℰ;M

To represent an iterated update, we must apply the same ideas and first

remove the accumulations that are performed before the last overwrite.

As in the definition of the iterated update for a regular heap, we can use

lexmax(bind0⩽x<ι (dom(h))) to construct a mapping, denoted W, from each

location to the last iteration that writes to that location. We can also use

bind0⩽x<ι
(
wrap(R)

)
to construct a mapping, denoted A, from tuples (location,

(reduced indices, expression)) to the iterations that accumulate the expression

into the location. If we denote by W̃ the relation obtained by adding the full

possible set of reduced indices and expressions to each location in W, then

A ≺ W̃ is the set of (locations, (reduced indices, expressions)) tuples that are

overwritten by the last write and must be removed from A. This set imposes

conditions on x, so finally unwrap(dom(A\(A ≺ W̃))) is the set of mappings

from locations to (reduced indices, expression) pairs that are not overwritten

in the iterated update. The result of⊲
0⩽x<ι
⟨h, ⟨O, R⟩⟩ can thus be obtained as

184 Verifying reductions

the reduction heap ⟨h′, ⟨O′, R′⟩⟩ where:

h′ =⊲
0⩽x<ι

h

R′ = unwrap(dom(A\(A ≺ W̃)))
O′ =

⋃
0⩽x<ι

O

In order for this to be correct, we must ensure that each (location, reduced

indices) pair is only written to by at most one iteration. This can be ex-

pressed as the condition iupdate-ok(R′) that states the single-valuedness of

snd(curry(A\(A ≺ W̃))), i.e. the mapping from (location, reduced indices) to

the iterations that write to it. When non-commutative operators are present,

we must additionally ensure that this mapping is increasing.

Symbolic summarization At some point (i.e. when exiting the accumulate

blocks presented in Section 7.3.4), we must convert the accumulating value

into a regular symbolic value that represents the reduction. For instance, the

accumulating heap

{a⟨i⟩ → [k, E⟨(i, k)⟩] : 0 ⩽ k < i}

become the symbolic heap (assuming that the operator associated with a[i] is
+)

{a⟨i⟩ →
(∑

0⩽k<2

E[2, k]
)
⟨i, i⟩}

The most intuitive way to do this would be to perform this transformation

on the space decomposition of the accumulating value. However, if different

expression contexts are used in the decomposition, we want to keep the order

in which the accumulations have been performed, such as in this even-odd

accumulation:

{ ⊙⟨x⟩ ↦→ E0⟨x⟩ | x mod 2 = 0 ∧ 0 ⩽ x < N ;

⊙⟨x⟩ ↦→ E1⟨x⟩ | x mod 2 = 1 ∧ 0 ⩽ x < N }

7.5 Validation of Programs with Reductions 185

We want to preserve the order in such cases for two reasons. The first is that

ultimately we will need to generate an equality comparing the accumulation

performed by the implementation with a reduction in the specification, where

our goal is to have the indices match in order to alleviate the solver from having

to invent a permutation. The second reason is that preserving the order is the

only correct approach for non-commutative reductions, which we will consider

shortly.

In order to ensure that we keep the order of the accumulation, we only

define this summarization for homogeneous accumulating symbolic values.

For non-homogeneous accumulating symbolic values, we merge the different

possible expressions into a single one using by lifting a summarization process

on symbolic values described below, before applying the summarization for

homogenous accumulating heaps.

A symbolic value has a piece-wise definition following its space decomposition.

A symbolic value can be converted to a homogeneous symbolic set using

the summarize function, which embeds the piece-wise definition into the

expression context. For a symbolic value which is already a homogeneous

symbolic set, summarize simply removes the piece-wise condition if it exists:

summarize({E⟨î1, . . . , ˆin⟩ : ϕ}) = {E⟨î1, . . . , ˆin⟩}

For a symbolic value v̂ which is not homogeneous, let (Ei/ni)i be the space

decomposition of v̂, and let {E0⟨e⟩ | ϕ} be the set associated with space E0/n0.

ϕ is an affine expression and can be represented using a concrete expression

eϕ; let eϕ = Eϕ[e′] be a context decomposition of eϕ. Finally, let {E⟨f⟩} be

the result of summarizing the rest of v̂. Then, summarize(v̂) can be defined

recursively as:

summarize(v̂) = {select(Eϕ, E0, E)⟨e′, e, f⟩}

Since select implements a conditional at the expression level and J{Eϕ⟨e′⟩}Kℰ ,M
is JeϕKM = JϕKℰ , we have the following lemma:

Lemma 7.5.6. For any symbolic value v̂, environment ℰ and modelM, the following

186 Verifying reductions

value inclusion holds:

Jsummarize(v̂)Kℰ ,M ⊒ Jv̂Kℰ ,M

In particular, if Jv̂Kℰ ,M ∈ 𝒱, we have Jsummarize(v̂)Kℰ ,M = Jv̂Kℰ ,M.

The definition of summarize(v̂) is not unique as it depends on the order in

which the space decomposition of v̂ is performed, and it also depends on

the decomposition Eϕ[e′] which is used to represent the affine condition ϕ.

However, the above lemma guarantees that whichever choices are made in

the definition of summarize, the semantics evaluation is preserved. The exact

representation used can have performance implications, notably because it

controls whether merging can be performed.

As a unary operator on symbolic sets, the summarize function can be extended

to single-valued symbolic relations by defining it on the range decomposition

of the relation.

For a homogenous accumulating symbolic value R = {[x] → E⟨ι⟩ | ϕ}, we first

decompose ϕ = ψ ∧ψ′ where the variables in x do not appear in ψ′. We then

evaluate ϕ and ι (which are affine expressions) to the explicit expressions eϕ
and ι′ in order to build the expression

⊙
{x|eϕ} E[e

′]. This expression can then

be decomposed as a context E⊙[f] with no free variable, and we can define :

asummarize(⟨O, R⟩) = {E⊙[f] | ψ′}

Note that if R is empty (i.e. the reduction is applied to the empty set), the sum-

marization is empty: this represents the identity function, which is equivalent

to applying the reduced operator to its neutral element.

Prophetic evaluation We are now ready to extend the prophetic evaluator and

the symbolic evaluator with support for reductions. The prophetic evaluation

rules with reductions are given in Figure 7.1. In rule P-Seq and P-SeqLoop, we

use the conditions update-ok and iupdate-ok to ensure that each cell has at

most one associated reduction operator and that no reduced index is counted

7.5 Validation of Programs with Reductions 187

P-Skip

⟨Γ⟩ ⊢ skip ⇓ ⟨∅, ∅⟩

P-Seq

⟨Γ⟩ ⊢ c1 ⇓ ∆h1 ⟨Γ⟩ ⊢ c2 ⇓ ∆h2 Γ ⊢ update-ok(∆h1,∆h2)
⟨Γ⟩ ⊢ c1 ; c2 ⇓ ∆h1 ⊲ ∆h2

P-SeqLoop

Γ ⊢ ι : A ⟨Γ , x : A, 0 ⩽ x < ι⟩ ⊢ c ⇓ ∆h Γ ⊢ iupdate-ok(x, ι,∆h)

⟨Γ⟩ ⊢ for x < ι; do c ⇓⊲
0⩽x<ι

∆h

P-Assign

Γ ⊢a e : τ Γ ⊢A t : τ E⟨ι′′
1
, . . . , ι′′m⟩ = decompose(t)

a : τ[ι′
1
× · · · × ι′n] ∈ Γ Γ ⊢ ιi : A for all 1 ⩽ i ⩽ n

Γ ⊢ 0 ⩽ ιi < ι
′
i for all 1 ⩽ i ⩽ nĥ = {a[ι1, . . . , ιn] ↦→ E⟨ι′′

1
, . . . , ι′′m⟩}

⟨Γ⟩ ⊢ a[ι1, . . . , ιn] {t} := e ⇓ ⟨ĥ, ∅⟩

P-OpAssign

Γ ⊢ e : τ Γ ⊢A t : τ

t = decompose(t) a : τ[ι′
1
× · · · × ι′n] ∈ Γ Γ ⊢ ιi : A for all 1 ⩽ i ⩽ n

Γ ⊢ 0 ⩽ ιi < ι
′
i for all 1 ⩽ i ⩽ n Γ ⊢ ι′′i : A for all 1 ⩽ i ⩽ p

ℓ = a⟨ι1, . . . , ιn⟩ δh = ⟨{ℓ→ ⊙⟨⟩}, {ℓ→ [[ι′′
1
, . . . , ι′′m], t]}⟩

⟨Γ⟩ ⊢ a[ι1, . . . , ιn] {t} ⊙(ι′′
1
, . . . , ι′′p) = e ⇓ ⟨∅, δh⟩

P-ParLoop

Γ ⊢ e : A ⟨Γ , x : A, 0 ⩽ x < î⟩ ⊢ c ⇓ ∆h υ

(⋃
0⩽x<e

∆h

)
= ⟨∆h′,C⟩

⟨Γ⟩ ⊢ par x < e; do c ⇓
⋃

0⩽x<î

∆h

P-Accumulate

⟨Γ⟩ ⊢ c ⇓ ∆h ∆h′ = (∆h\a) ⊎ asummarize(∆h ∩ a)
⟨Γ⟩ ⊢ accumulate a in c ⇓ ∆h′

Figure 7.1: Prophetic Evaluation

188 Verifying reductions

twice, as explained above. Rule P-Accumulate is new, and simply summarizes

the reduction into a regular heap when exiting an accumulate block.

A symbolic state S represents the result of the execution of a program. It is

represented by a triple S = ⟨h, r,C⟩ where:

• h = updates(S) is the set of updates performed by the state; it is represented

by a reduction heap which models both regular writes using := and

accumulating writes.

• r = reads(S) is the set of reads performed by the statement; it is represented

as a symbolic set of locations. The evaluation of a statement only depends

on the value of the read locations, which is used to ensure the absence of

race in parallel loops.

• C = constraints(S) is a set of constraints, or assertions, that must be

satisfied. The assertions are represented as a symbolic set of tensor

expressions. All the assertions in the set must be satisfied for the rest

of the state to be valid. An assertion {[x1, . . . , xn] → ê⟨y1, . . . , ym⟩ | b̂}
represents the following formula, in a context assigning values to the

x1, . . . , xn:

∀y1, . . . , yn, b̂⇒ ê[y1, . . . , ym]

Intuitively, a symbolic state represents a program whose behavior is captured

by updates(S) provided that constraints(S) hold. Thus, the operations on

symbolic states are performed by applying them to the updates component

and the verification conditions are added to the constraints component.

Because accumulating assignments are considered as both a write and a read

of the corresponding locations, the rw-safe constraint ensures that there are no

conflicts between reduction accesses and any other type of access, including

another reduction access.

7.5 Validation of Programs with Reductions 189

Red-S-Skip

⟨Γ ;h⟩ ⊢ skip ⇓ ⟨∅; ∅; ∅⟩

Red-S-If

Γ ⊢ ι :B ⟨Γ , ι;h⟩ ⊢ c1 ⇓ s1 ⟨Γ ,¬ι;h⟩ ⊢ c2 ⇓ c2

⟨Γ ;h⟩ ⊢ c ⇓ (s1 ∩ ι) ∪ (s2 ∩ ¬ι)

Red-S-Let

Γ ⊢ ι :A ⟨Γ , x : A, x = ι;h⟩ ⊢ c ⇓ s
⟨Γ ;h⟩ ⊢ let x = ι in c ⇓ s[x := ι]

Red-S-Seq

⟨Γ ;h⟩ ⊢ c1 ⇓ s1 ⟨Γ ;h ⊲ updates(s1)⟩ ⊢ c2 ⇓ s2

⟨Γ ;h⟩ ⊢ c1 ; c2 ⇓ s1⊲s2

Red-S-SeqLoop

Γ ⊢ ι :A ⟨Γ , x : A , 0 ⩽ x < ι;h ⊲ ⊲
0⩽z<x

∆h[x := z]⟩ ⊢ c ⇓ ⟨∆h, R,C⟩

⟨Γ ;h⟩ ⊢ for x < ι; do c ⇓⊲
0⩽x<ι

⟨∆h, R,C⟩

Red-S-ParLoop

⟨Γ , x : A, 0 ⩽ x < ι;h⟩ ⊢ c ⇓ ⟨⟨h′, ⟨O, Rh⟩⟩;R;C⟩
W = dom(h′) ∪ dom(Rh)

Γ ⊢ rw-safe(x, ι,W , R) Γ ⊢ ι :A ww-covered(Γ , x, ι, h′) = C′

υ

(⋃
0⩽x<ι

h′

)
= h′′ Γ ⊢ sv(bind0⩽x<ι

(
fst(R′h)

)
)

R′ =
⋃

0⩽x<ι

R s′ = ⟨⟨h′′, ⟨
⋃

0⩽x<ι

O,
⋃

0⩽x<ι

R′h⟩⟩;R′;C′ ∪
⋃

0⩽x<ι

C⟩

⟨Γ ;h⟩ ⊢ par x < ι; do c ⇓ s′

Red-S-Assign

a : τ[ι′
1
× · · · × ι′n] ∈ Γ Γ ⊢ reads(e) ⊆ dom(h)

Γ ⊢a e : τ Γ ⊢A t : τ Γ ⊢ ιi :A for all 1 ⩽ i ⩽ n
ℓ̂ = a⟨ι1, . . . , ιn⟩ Γ ⊢ {ℓ̂} ⊆ {a⟨x1, . . . , xn⟩ | 0 ⩽ x1 < ι′

1
, . . . , 0 ⩽ xn < ι′n}

Ĉ = JeKh = {decompose(t)} ĥ = {ℓ̂→ decompose(t)}
⟨Γ ;h⟩ ⊢ a[ι1, . . . , ιn] {t} := e ⇓ ⟨⟨ĥ; ⟨∅; ∅⟩⟩; r̂; Ĉ⟩

Red-S-OpAssign

a : τ[ι′′
1
× · · · × ι′′n] ∈ Γ Γ ⊢ reads(e) ⊆ dom(h) Γ ⊢a e : τ

Γ ⊢A t : τ Γ ⊢ ιi :A for all 1 ⩽ i ⩽ n Γ ⊢ ι′i :A for all 1 ⩽ i ⩽ m
ℓ̂ = a⟨ι1, . . . , ιn⟩ Γ ⊢ {ℓ̂} ⊆ {a⟨x1, . . . , xn⟩ | 0 ⩽ x1 < ι′′

1
, . . . , 0 ⩽ xn < ι′′n}

Ĉ = JeKh = {decompose(t)}
δ̂h = {ℓ̂→ [[ι′

1
, . . . , ι′m], decompose(t)]}

⟨Γ ;h⟩ ⊢ a[ι1, . . . , ιn] {t} ⊙(ι′
1
, . . . , ι′m) = e ⇓ ⟨⟨∅; ⟨{⊙}; δ̂h⟩; r̂; Ĉ⟩

Figure 7.2: Symbolic Evaluation with Reductions

Related work 8
8.1 Translation Validation

Translation validation is part of a family of verification techniques that can

be described as instance verification. Where program verification is concerned

about proving properties that hold of any run of a program (under certain

conditions), instance verification is about checking properties of a specific run

of a program on a specific input. Translation validation is instance verification

applied to a compiler: the goal is to check a posteriori that the output of a

compiler, or compiler pass, has a semantics that is compatible with those

allowed by the source program. This contrasts to the formal verification or

certification of a compiler such as CompCert [67] whereby the compilation

process itself is proven a priori to never generate incorrect code. Some optimization

passes of the

CompCert compiler

use translation

validation approaches,

with untrusted code

performing program

transformations and a

verified checker. If the

verified checker fails

to validate the

transformations, the

compiler either skips

the optimization

altogether, or aborts

the compilation.

Tristan’s PhD thesis [107] provides a good overview of translation validation

works up to 2009, as well as presenting several validators for optimization

passes in the CompCert compiler, and was an oft-referred source for the

redaction of this section.

Origins of Translation-Validation The first instance of translation validation,

in spirit if not in name, is probably found in Samet’s Ph. D. thesis [95] in

1975. The dissertation presents a validator for an optimizing compiler from a

subset of Lisp 1.6 to an assembly language for the PDP-10. Twenty year later,

Pnueli, Siegel, and Singerman [77] re-introduced the concept under the name of

translation validation that is now popular. The authors consider the compilation

of the synchronous language Signal to C, and their approach works by encoding

both source and target programs into state transition systems. By making

syntactic assumptions about the shape of the C code generated from a given

191

192 Related work

Signal program, they are able to generate a refinement mapping [2] between

the two systems. The conditions for the refinement to be correct are expressed

in a general-purpose logic and discharged using an automated theorem prover.

The authors remark that their approach seems to work “in all cases that the

source and the target program each consist of a repeated execution of a single

loop body, and the correspondence between the executions is such that a single

loop iteration in the source corresponds to a single iteration in the target” —

hinting at the fact that many translation validation approaches designed since

would struggle with transformations that deeply modify the structure of the

code.

Credible Compilation Around the same time, Rinard and Marinov [90] pro-

pose a similar idea with the name of credible compilation, applied here to

imperative programs with pointers that are represented as control flow graphs.

Where Pnueli, Siegel and Singerman use syntactic methods and assumptions

on the shape of the code generated by the compiler, the credible compiler of

Rinard and Marinov is designed to produce alongside the generated code an

explicit proof, in an ad-hoc logic, that it simulates the source behavior — a

possibility mentioned but not explored by Pnueli, Siegel and Singerman. The

proofs generated by the credible compiler contain two types of invariants:

standard invariants apply to the original program and are used to validate the

results of compiler analyses such as points-to analysis that transformations can

rely upon, and simulation invariants that relate the values of variables between

the source and target programs at various execution points. Both kinds of

invariants can refer to a finite set of local variables and pointers, and are used

for the verification of standard compiler optimizations such as dead code

elimination and loop unrolling.

Translation-Validation of Optimizing Compilers The credible compilation

framework of Rinard and Marinov is able to verify some compiler optimizations,

at the cost of making the compiler generate explicit proofs of those optimizations.

The work of Necula [76] is the first to apply translation validation to a pre-

existing production-grade optimizing compiler, and provides a strong case for

the practicality of the non-proof-generating version of translation validation

even in the presence of optimization. Necula’s validator works on the IL

intermediate language used by the GNU C compiler, and — based on the

8.1 Translation Validation 193

remark that validating a single type of transformation at once is simpler

than validating an arbitrary combination thereof — is applied between each

optimization pass used by the compiler. Necula’s validator uses symbolic

evaluation to infer a simulation relation, similar to those used by Rinard and

Marinov [90], and a custom automated solver to prove its correctness. Basic

blocks are used as synchronization points, where memories in both programs

must match except on a finite set of locations.

Translation-Validation of Loop Transformations The validators of Necula

[76] or Rival [93] are able to handle loop transformations that mostly preserve

the execution order of instructions such as loop unrolling by Necula. Other

special-purpose validators for specific transformations have been developed,

such as the validators for software pipelining of Tristan and Leroy [109]

and the validator for loop-invariant code motion of Tristan, Govereau, and

Morrisett [108], both implemented within the CompCert verified compiler, or

the validator for loop-peeling and induction variable strength reduction of Tate

et al. [104]. On the other hand, loop transformations such as loop permutation,

loop fusion and loop tiling fundamentally change the structure of the program

and are out of reach of these techniques based on simulation relations.

Zuck, Pnueli, and Leviathan [123] propose a translation validation framework

that distinguishes between structure-preserving transformations, validated using

simulation techniques, and structure-altering transformations for which a simula-

tion relation does not necessarily exist and for which different techniques must

be developed. For structure-preserving transformations, the TVoc compiler de-

scribed by Zuck, Pnueli and Leviathan produces annotations relating the nodes

in the control-flow graphs of the input and output programs. Later work [43]

mentions that this requirement can be relaxed as long as at least one node has

an annotation within each cycle of the control-flow graph, as that is enough to

infer the remaining relations using symbolic evaluation. For structure-altering

transformations, on the other hand, a series of pattern-matching “meta rules”

are proposed to handle loop transformations such as loop tiling, loop fusion,

and loop distribution. The TVoc compiler generates an auxiliary file along with

the generated code that indicates which loop transformations were performed

— an information that is not readily available in schedule-based compilers but

can sometimes be reconstructed [8, 122]. Later work [124] consolidates the

meta rules into a single “Permute” rule, and propose to guess the sequence

194 Related work

of loop transformations that were (or could have been) applied by the com-

piler, generating a sequence of intermediate programs that are each proved

equivalent with the previous one using the Permute rule.

Product Programs Translation validation is instance verification applied to

a compiler, and somewhat blurs the line between instance verification and

program verification: a compiler is a program that transforms programs, and

translation validation is about checking properties of the output of the compiler,

which is itself a program. As such, translation validation approaches share

common techniques with the field of automated program verification and

analysis. One line of research on translation validation constructs a “product

program” embedding the semantics of both the original and transformed

program: the question of validation can then be expressed as a single-program

property on the product program, opening the path to program analysis

techniques designed for single-program verification. This idea was introduced

by Zaks and Pnueli [120] who apply it to the validation of transformations

performed by the LLVM compiler. Their verifier relies on an underlying

invariant generation algorithm to build loop invariant, proving their equivalence

through bisimulations.

To make the product program approach tractable, some sort of synchronization

points must be found where the states of both programs mostly align. Modern

approaches to find those synchronization points such as the work of Churchill et

al. [26] and Gupta, Rose, and Bansal [46] use combinations of brute-force search

and concrete executions to guide the search of appropriate synchronization

points and invariants leading to a provable bisimulation.

Equality Saturation and Value Graphs Equality saturation [104] is a technique

for reasoning about program equivalence. It works by first converting programs

into Program Expression Graphs (PEGs for short), a purely functional representa-

tion of programs as value graphs. Equality saturation extends PEGs to E-PEGs,

able to represent equivalence classes of PEGs in a compact way, by repeatedly

augmenting the equivalence classes through equality axioms (i.e. rewrite rules)

until saturation is reached. This representation of equivalence classes means

equality saturation can explore all the possible application orders in which

rewrite rules can be applied in a work-efficient way. E-PEGs are inspired by the

8.1 Translation Validation 195

E-graphs used in SMT solvers, but are specialized for the purpose of represent-

ing programs that may contain cyclic graphs in the presence of loops. Initially

designed for the purpose of code optimization in conjunction with heuristics

to pick the best representative within an equivalence class, equality saturation

can be used for translation validation using a product program approach, by

converting both the source and target program to a single E-PEG with shared

nodes and checking whether the output of both programs end up in the same

equivalence class. Equality saturation has been applied to LLVM by Stepp, Tate,

and Lerner [100], who were able to validate many optimizations including dead

code elimination, global value numbering, but also loop-invariant code motion,

and loop unswitching on about 80% of the SPEC 2006 C benchmarks. Instead of

E-PEGs, Tristan, Govereau, and Morrisett [108] use a similar approach, except

that normalization is used instead of saturation and uses Gated SSA, another

value graph representation of programs. By using normalization instead of

saturation, only a single series of axiom applications is considered instead of

all possible series of applications, resulting in a better runtime at the cost of

introducing a reliance on the order in which the normalization axioms are

applied in a non-confluent system. Still, by selecting an appropriate application

order, the authors obtain comparable results on the SPEC 2006 as the equality

saturation approach, with runtimes that are an order of magnitude faster. These

approaches based on a value graph representation are able to handle some

structure-preserving loop transformations such as loop-invariant code motion Some

transformations, such

as loop-invariant code

motion, are invisible

in a value-graph

transformation, and

do not need any

rewrite rules: the

value graph

representations of a

program before and

after loop-invariant

code motion is applied

are always identical.

and loop unswitching. [108] mentions successful preliminary experiments with

loop fusion and loop fission but it is unclear how to integrate transformations

such as loop interchange and loop tiling in these frameworks.

Special-Purpose Translation Validators Many approaches to translation vali-

dation take a “kitchen sink” approach and build general-purpose validators

relying on generic techniques such as symbolic evaluation, automated theorem

provers, model-checking and abstract interpretation. These validator directly

benefit of improvements in the underlying techniques, but the undecidable

nature of the equivalence problem is a double-edged sword: while it would

be in theory possible to validate a large number of transformations, these

validators can fail to verify transformations that are actually correct and lack a

formal characterization of their applicability. On the other hand, it is possible

to design special-purpose validators focusing on specific families of optimiza-

tions. Such special-purpose validators can exploit the limited range of code

196 Related work

transformations performed by the compiler, and formal completeness results

can be obtained. This type of special-purpose validators is particularly suited to

be incorporated to the design of formally verified compilers: a formally verified

validator opens the gate to the use of optimization passes that would be hard

to verify formally. Several special-purpose validators have been developed and

formally verified using Coq, such as those developed by Tristan in his PhD

dissertation [107], or the alias analysis of Robert and Leroy [94] that has been

integrated into CompCert.

Modern Translation-Validation Approaches To this day, translation validation

is seen as a valuable and promising avenue of research to find bugs and

increase trust in compilers, with projects such as Crellvm [57] adapting credible

compilation to the LLVM compiler infrastructure. The authors instrumented

the LLVM toolchain to produce correctness proofs using an extensible variant of

relational Hoare logic specifically designed for the LLVM IR. The logic relies on

the alignment of the source and target programs and cannot express structure-

modifying transformations. Crellvm is implemented and formally verified

using Coq a validator for the correctness proofs and apply their approach

to two major optimizations in LLVM, namely register promotion and global

value numbering, exposing four new miscompilation bugs in the process. The

validator also enables the compiler to produce partial proofs and integrates with

external inference programs that can complete the proofs before performing

the validation.

More recently, and still in the context of the LLVM compiler toolchain, Lopes

et al. [70] introduced bounded translation validation. Bounded translation

validation, like bounded model checking, works by unrolling loops up to a

given size, abandoning any hope for completeness (bugs that require more

iterations than the unroll factor cannot be found). In exchange, after unrolling

the control-flow graph is acyclic, and the approach is theoretically able to find

bugs in loop transformations without requiring inductive reasoning. A second

contribution of the work is to incorporate the undefined behavior semantics of

LLVM into the validator. LLVM depends on undefined behavior to perform

certain optimizations, and a proper validator for these optimizations must be

aware of undefined behavior semantics to allow certain transformations that

would otherwise be invalid.

8.1 Translation Validation 197

Invariant Translation Rival [93] applies translation validation to the non-

optimizing compilation of C down to assembly as a one-shot transformation.

The approach uses symbolic transfer functions and abstract interpretation to

establish a common semantics interpretation of the C and assembly languages

and generate verification conditions discharged by a first-order theorem prover.

The result of the translation validation is used to implement invariant translation:

whereas translation validation is concerned with the preservation of semantics

between the original and transformed program, invariant translation further

requires that global or local invariants proven on the source program be

preserved on the target program. Examples of such invariants can be found

in prior work [92] and include the absence of division by 0 or of overflowing

computations.

TV for Compiler Construction Kanade, Sanyal, and Khedker [56] propose a

different approach to translation validation. Primitive transformations on the

control-flow graph are developed, and executable soundness conditions are

proven independently. Soundness conditions for high-level transformations

built on top of the primitive transformations can be obtained by replacing

the application of the primitive transformation by its soundness condition.

When applying a transformation to a program, the soundness conditions can

be executed on the control-flow graph of the program to ensure the correctness

of the transformation. Their system is implemented on top of the PVS proof

assistant. Another similar work is that of Glesner [42]. In that work, the

compiler optimizes SSA graphs using rewrite rules, and produces a trace of

the instantiated rules used in the optimization. A separate verifier uses the

trace to re-play the optimization while checking the applicability of the rewrite

rules. Finally, the verifier validates that the resulting CFG is identical to the

CFG obtained by the compiler.

Kundu, Tatlock, and Lerner [64] provide a different application for translation

validation techniques. By combining the symbolic evaluation approach of

Necula [76] for structure-preserving transformations and the permute rule of

Zuck et al. for structure-modifying transformations, they design a validator

for the transformation of parameterized programs or program sketches. The

validator is then used to prove correct compiler optimizations expressed as

rewrite rules in a domain-specific language. The proven-correct optimizations

can then be used as components of a certified compiler without needing to use

198 Related work

translation validation at runtime.

8.2 Affine Program Equivalence

Relevant related work on polyhedral compilation as a representation of pro-

grams is presented extensively with references in section 2.1. While there is

ample literature on the use of polyhedral compilation as an optimization tool,

it is not directly relevant to the topic of this thesis and hence not mentioned

here. Related work using the polyhedral model for translation validation is

called affine program equivalence checking, and described in this section.

In scientific computing, the structure-modifying transformations were increas-

ingly becoming crucial to obtain good performance on computationally heavy

programs. These structure-modifying transformations can be performed by

polyhedral compilers (that are often implemented as source-to-source trans-

formations for C or FORTRAN), but are also often performed by hand by

performance engineers, especially in the domain of embedded computing.

Banerjee and Karfa [9] provide a short survey of the area.

Early work tackling the verification of structure modifying transformation by

Samsom et al. [96] proposed an approach based on pattern-matching of the

right-hand side of assignments on the original and optimized programs, then

proving that the loop nests for each pair of matched assignments iterate over

the same domains. This approach is restricted to code without recurrences,

and the pattern-matching rules can only handle the most basic algebraic

transformations.

In this context, Shashidhar et al. [98] propose a translation validation approach

for affine programs by converting both the original and transformed statement

into the polyhedral model. By assuming that the program is expressed in

dynamic single-assignment form (i.e. each array cell is written once), and

restricting the allowed transformations to the introduction of caches and the

reorganisation of the loop structure of the program without modifying the

right-hand side of assignments (except for array indices, as appropriate), it is

possible to identify matching statements in both programs. The authors then

devise polyhedral checks that the dependencies involving matching statements

8.2 Affine Program Equivalence 199

are preserved by the transformation, whose correctness is checked by the

Omega tool and implies the equivalence of both programs.

Shashidhar et al. [97] introduce Array Data-flow Dependence Graphs (ADDG)

to overcome the syntaxic restriction of this previous work. Instead of relying

on array names, ADDG express the computation as a graph of operators by

eliminating any internal array names, so that only the input and output arrays

remain. The method assumes that the source and target programs are in

dynamic single assignment form, and that no algebraic transformations have

been performed on the computed expressions. The verifier proceeds backwards

from the output arrays to build sufficient equalities between array cells in the

both programs. In order to recover the matching between two programs across

recurrences, the authors rely on an approximation of the transitive closure

operation that cannot handle all recurrences. The authors propose to extend the

method to handle a finite amount of associative and commutative rewritings

by trying all the possible re-orderings.

Verdoolaege, Janssens, and Bruynooghe [115, 116] further improve upon the

ADDG method and lift the requirement that the code be in dynamic single

assignment form by incorporating dataflow analysis into the method. The

new technique still operates on an ADDG, but is implemented as a two-pass

approach. In the first pass, equalities between the two programs are inferred

based on a backwards pass similar to that of Shashidhar et al. [97]. The

backwards pass differs, however, in their treatment of recurrences: instead

of approximating the transitive closure of the dependences, the new method

optimisticaly computes the affine hull of the equalities obtained by unrolling

the loop over a few iterations, an instance of the widening technique from

abstract interpretation. From this first pass, the verifier infers a set of “needed”

equalities for the proof of equivalence to hold. The second pass is a forward

pass that computes the subset of the needed equalities that can actually be

proven by saturation from the input equalities. The soundness of the method

does not depend on the result of the first pass, and only the second pass actually

needs to be trusted. The method uses a similar approach to associative and

commutative rewritings as the original ADDG method.

In a different line of research, Karfa et al. [59] extend the ADDG method

to handle more algebraic transformations by computing a normal form of

the program, essentially inlining all array definitions. Recurrences are not

supported, and Banerjee, Mandal, and Sarkar [10] proposes an extension to

200 Related work

re-introduce support for recurrences by trying to match the bodies of the loop,

effectively preventing structure-modifying transformation from being applied

to recurrences.

The same year as Shashidhar et al. [98], Barthou, Feautrier, and Redon [13]

proposed a method for checking the equivalence of systems of affine recurrence

equations. This is the same problem seen under the lense of SAREs instead of

affine programs with loops. The authors give a simple proof that the equiva-

lence problem is undecidable, even in the absence of algebraic transformations

on the data. They propose semi-decision algorithms by reducing the equiva-

lence problem to reachability queries on a memory state automaton, and use

(over)approximations of the transitive closure operation to handle recurrences.

The resulting algorithm is very similar to that of Shashidhar et al. [97], but to

the best of my knowledge, no formal comparison exist.

Iooss, Alias, and Rajopadhye [53] extend the method of Barthou, Feautrier,

and Redon [13] to handle parametric associative-commutative reductions in

the manner of those described in chapter 7. The equivalence problem is cast

as a parametric perfect matching problem, and a semi-decision algorithm for

the problem based on the augmenting path method used for non-parametric

perfect matching is proposed. Due to the parametric nature of the problem,

only augmenting paths of non-parametric length can be discovered, which

limits the applicability of the method in non-obvious ways. The authors also

note that their technique should be applicable to the widening-based method

of Verdoolaege, Janssens, and Bruynooghe [116].

All the approaches avoid depend on some sort of backwards pass on the

two programs, following the dependencies from the outputs to the inputs, in

order to infer a constraint on the input for the outputs to be equivalent. This

backwards pass is sometimes followed by a forward pass to check that a posteriori

the correctness of the inferred equivalences. This limits the transformations on

expressions that can be supported to those that can be traversed backwards,

possibly with additional branching as in the case of commutativity. On the

other hand, our approach only performs a forward pass guided by compiler-

generated annotations.

Karfa et al. [58] directly encode the program equivalence problem as a formula

which is fed to an SMT solver. They show that the formulas this creates are too

complex for SMT solvers to handle in practice. We avoid the issue by using

8.3 Other Approaches 201

prophetic expressions as natural stopgaps to generate multiple, simpler queries

to the SMT solver.

Finally, Bao et al. [11] propose a dynamic approach, dubbed PolyCheck, to

the problem. It exploits the structure of affine program control and data-flow

to build a checker with the same structure as the transformed program. If

successful, it ensures the validity of all executions for a given problem size.

8.3 Other Approaches

Abstract Interpretation Journault and Miné [54] propose abstract domains

to represent and infer properties about matrix manipulating program. They

successfully apply their approach in presence of loop tiling, as performed by

the Pluto polyhedral compiler. Unlike ours, their approach does not rely on

annotations but relies instead on a library of patterns to match assignments

with a corresponding semantic predicate. It is not clear how well this library of

patterns would scale to arbitrary code transformations.

Specification of Tensor and Array Optimizations The previous approaches

prove optimizations on intermediate representations and their transformations.

Unfortunately, most tensor compilers do not provide a formal semantics or type

system to reason about, or for that matter to prove their correctness w.r.t. some

functional specification. TeIL is one significant effort in this direction [91], but

its semantics based on combinators is not at the appropriate abstraction level

to easily express the iterator-based specifications of most tensor programming

languages. We rely on a simple equational language to capture the semantics of

these specifications, while demonstrating the translation validation of a tensor

compiler independently of the intermediate representations encountered along

the flow.

Reinking, Bernstein, and Ragan-Kelley [89] proposes a formal semantics for the

Halide compiler. They give an imperative semantics to Halide specifications

and implementations. These semantics are used to describe the code generation

procedure using Halides core scheduling primitives. This procedure depends

on a bounds inference algorithm to find the appropriate loop bounds, after

202 Related work

scheduling, so that the appropriate subsets of the tensors are computed.

Reinking et al. introduce holes in their implementation language, and formalize

the bounds inference step as a program synthesis problem to fill these holes.

To pose this program synthesis problem, their implementation language

features “compute” annotations that are somewhat reminiscent of our prophetic

annotations. These take the form of scopes such that, after exiting the scope,

the values in a rectangular region of the array are equal to the values in

the same region in the tensor. At first glance, these annotations seem more

expressive than our prophetic annotations, because a prophetic annotation

could be expressed using a one-element scope around an assignment. However,

Reinking et al’s “compute” annotations are generated at a coarser granularity

which is not sufficient for our verification procedure, and do not include the

value of recurrence variables.

Formal Verification of Tensor Compilers Liu et al. [69] have implemented in

Coq the ATL language introduced by Bernstein et al. [17] to represent tensor

computations using map and reduce combinators. They prove “reduction rules”

as theorems stating parameterized equalities between ATL expressions, using

a formal semantics of ATL developed in the Coq proof assistant, and provide

a framework for developing “schedules” using the proof assistant’s tactic

mechanism. Program optimization is performed by the user within the proof

assistant, using a combination of Coq’s primitive tactics and the framework’s

framework. The user can also implement arbitrary new optimizations, provided

they can be proven correct using the proof assistant’s logic. This system is

able to represent sufficiently complex transformations to be competitive with

Halide on the classic two-dimensional blur example.

In a different direction, Courant and Leroy [29] verify an implementation in Coq

of a polyhedral code generation algorithm based on Bastoul [15]’s version of

Quilleré’s algorithm. The implementation led to the design of an intermediate

language, PolyLoop, to represent the intermediate stages of the code generation

process, and has uncovered a possible error case in Quilleré’s algorithm that

however does not seem to happen in practice. The formal proof ensures that

the generated code evaluates statements in an order compatible with the given

schedule, without verifying that the schedule respects the dependencies of the

original program.

Conclusion 9

9.1 Summary of My Approach and Results

This dissertation on the translation validation of tensor compilers follows a

reflection around the formal guarantees provided by compilers for low-level

tensor specifications as used for image processing and deep learning applica-

tions. These compilers manipulate tensors (or, equivalently, multidimensional

arrays) and mostly focus on structure-modifying transformations, making their

verification out of reach of traditional verification techniques based on bisimu-

lations — and yet, as compilers, their correctness is paramount to the trust in

the software infrastructure that uses them.

To address the issue, we can turn to two wide categories of approaches to

guarantee the correctness of compilers: in formal verification, the goal is to

build a compiler with a machine-checked proof that it can only produce correct

output; while in translation validation, a separate validation tool is developed to

accompany the compiler. This validation tool can check that the compilation is

correct for a given input program and compiler output. While formally verified

compilers for tensor languages such as the one of Liu et al. [69] have been

developed, formal verification is difficult to apply to an existing compiler and

essentially requires rewriting the compiler from scratch. Formal verification

also imposes a high maintenance burden: any modification to the compiler now

requires adapting the correctness proof, becoming more costly and potentially

out of reach of existing compiler developers that have not been trained in

formal methods. Hence, we rather turn to translation validation: the validator

can be developed (or formally verified itself) separately from the compiler, and

can be shared across multiple versions of the compilers or even across different

compilers, making both integration and maintenance simpler.

203

204 Conclusion

For this to be true, translation validation has one critical requirement: the

validator must be powerful enough to actually establish equivalence of the

input and output programs, possibly relying on annotations from the compiler.

At the beginning of this thesis, it was not clear whether this could be the

case for tensor compilers. Some approaches to translation validation for

structure modifying transformations require the compiler to output a sequence

of the loop transformations it performed, or rely on knowledge of the pass

ordering to guess the transformations applied — both approaches sounding

inappropriate for tensor compilers implemented as code generators. Another

family of techniques, known as affine program equivalence checking, applies

translation validation to loop transformations by using a polyhedral program

representation. These rely on delicate syntactic correspondences between the

original and transformed programs and hence cannot verify some of the more

complex algebraic transformations performed by tensor compilers.

The solution explored in this thesis relies on the observation that many tensor

compilers work as code generators: roughly speaking, the compiler builds an

imperfect loop nest around the tensor definitions in the specification, while

backing up the tensors by arrays of possibly smaller domains. Arguing that this

makes it reasonable for these compilers to provide an explicit correspondence

between array writes in the generated code and tensor definitions in the input

specification, we could then devise and formally specify both a language

annotated with this correspondence and a verification condition generator

for programs written in this language. Assuming affine control flow, the

verification condition generator first abstracts the program behavior using a

symbolic representation that represents an optimistic, or prophetic, evaluation,

as if all annotations held. This symbolic representation can be checked against

the expected output from the specification using an SMT solver. The output of

this optimistic evaluation is also used to build loop invariants and verification

conditions that can also be checked using an SMT solver and ensure that

concrete evaluations of the program indeed match this optimistic evaluation —

tying the knot, so to speak.

With the goal of being as widely applicable as possible, the validation algorithm

expects a specification expressed as a SARE, an intermediate representation

of polyhedral programs, decoupling the verifier itself from the details of

the specification language. The implementation language developed in this

manuscript and called Sched is also an annotated subset of the Stmt language

originating in the Halide compiler and that is used as the output of other low-

9.2 Ecosystem Integration 205

level tensor compilers such as TVM, Tensor Comprehensions, and Tiramisu.

To validate the assertion that these annotations are effectively enough for the

validator to succeed on the transformations performed by industrial tensor

compilers, I have implemented the validation algorithm in OCaml, using the

isl library, and applied it to the Halide compiler, instrumented to generate

annotated Stmt which is readily converted into Sched and fed into the validator.

On a limited but realistic set of benchmarks extracted from the Halide repository,

the validator has been shown to be a viable candidate for the parametric

verification of important tensor primitives such as matrix multiplication, and

compares favorably in terms of performance with state-of-the-art affine program

equivalence tools when applicable.

Finally, I have developed extensions to the core verification algorithm to be able

to verify transformations involving reductions, an important primitive repre-

senting the iterated application of an associative and commutative operator.

By providing theoretical foundations and a prototype implementation for a

core algorithm devoted to the task, anecdotal evidence that tensor compilers

can be instrumented to produce the required annotations, and experimental

evidence that the algorithm successfully establishes correctness in practice, this

thesis makes a strong case for the viability of translation validation applied to

low-level tensor compilers. It also leaves many questions unanswered, notably

regarding the applicability of the approach outside strictly affine specifications

and transformations: some of these questions are explored in the following

sections.

9.2 Ecosystem Integration

The work presented in this thesis applies to low-level tensor compilers deriving

imperative kernels from pointful specifications. These imperative kernels

are then lowered to low-level representations such as the LLVM IR and fed

into traditional compilers that ultimately emit assembly code. The validation

techniques developed here can thus be combined with existing translation

validation or compiler verification approaches for traditional compilers to

obtain formal guarantees down to the binary produced. However, this would

206 Conclusion

require formally describing the lowering process from Sched to the underlying

low-level representation: in the presence of parallel loops, this requires some

care because consecutive non-communicating parallel loops of Sched are

typically lowered to a single loop with synchronizations instead, as discussed

in section 4.3.

On the other side of the pipeline, in the domain of deep learning, users typically

interact with higher level libraries such as TensorFlow, PyTorch, or JAX at a

different abstraction level: operations in these language take and return tensors,

and represent computations using (static or dynamic) graphs of operators

that can be transformed using high-level rules such as the commutativity of

matrix multiplication. These high-level transformations operate, for us, at the

specification level and are out of scope of the approaches described in this

thesis. On the other hand, the operators themselves are usually implemented

by either delegating to lower-level specialized libraries (when applicable),

or using handwritten low-level code. The validation approach presented in

this manuscript can integrate with these frameworks to help guarantee the

correctness of the operators, which can be considered primitive building blocks

for the rest of the framework.

9.3 Sparse Arrays

Some applications domains such as computational chemistry use sparse arrays.

TACO [62] is a tensor compiler that can express optimizations on both sparse

and dense arrays. Unlike dense arrays, sparse arrays do not provide random

access to their elements. Instead, nonzero elements can be iterated over in order;

when multiple sparse arrays are involved, they can be iterated over jointly by

comparing the next nonzero indices of both arrays. The validation methods

proposed in this dissertation should generally be applicable to implementations

involving sparse arrays, provided an appropriate representation for the iteration

on sparse arrays can be found. A simple idea is that if an iteration is skipped

due to a missing element in a sparse array, any cell that would have been written

in that iteration must already hold the value that would have been written had

the iteration been executed with a value of 0 instead. While this is enough to

represent loops on sparse arrays, more research is needed to understand how

to properly represent the result of transformations such as tiling applied to the

9.4 Floating-Point Arithmetic 207

sparse iterators.

9.4 Floating-Point Arithmetic

This manuscript mostly ignores the difficulties occurring in the verification of

computations involving floating-point numbers. And yet, in applications such

as linear algebra, image processing, and deep learning, computations on theo-

retically continuous values are often expressed using floating-point numbers

(or simply floats), usually represented not only following the IEEE Standard

for Floating-Point Arithmetic (IEEE 754) but also sometimes using alternate

representations such as the bfloat16 format introduced by TensorFlow. We

will now explore these difficulties in the context of compilers and consider how

they fit with the validation approach proposed here.

Floats, independently of their representation, are a particularly ill-behaved

approximation of real numbers, for many reasons:

• To represent overflow, floats use two distinguished values representing

respectively +∞ and −∞, which are not real numbers.

• As a consequence, floats also distinguish between positive and negative

zeroes, values that must compare equal yet have different inverses (+∞
and −∞, respectively). Until the recent IEEE

754-2019 version of

the standard, the

specification of the

min and max

operations allowed

values such as

max(+0,−0) to be

either +0 or −0 at the

discretion of the

implementation.

• To represent erroneous values such as the result of dividing zero by itself,

floats use distinguished “not-a-number”, or NaN, values. NaNs have the

peculiar property that it should compare different (and unordered) to any

value, including itself. Two different kinds of NaNs exist, signaling and

quiet, with different propagation rules. Signaling NaNs may interrupt

the normal flow of execution when consumed by an operation.

• Even ignoring the presence of infinities and NaNs, most of the reasoning

rules mathematicians are used to on real numbers, such as associativity

and distributivity laws or the equality
a
b = a · 1

b .

Because of these properties, compilers are very restricted in their ability to

208 Conclusion

optimize computations involving floating-point numbers, but programmers

rarely rely on all of these properties, and often do not care about the exact order

in which computations are performed: there is no reason for the programmer

writing an image processing pipeline to compute the luminance of a pixel as

αrr + (αgg + αbb) rather than (αrr + αgg) + αbb, or for the engineer writing

a deep learning primitive to compute the sum

∑
0⩽i<NA(i) forward rather

than backward. For this reason, modern compilers provide flags to enable

so-called “fast-math” optimizations that try to respect the spirit, rather than

the letter, of the program. Unlike traditional compilers, and in line with the

habits of their target communities, tensor compilers such as Halide or Tensor

Comprehensions enable “fast-math” optimizations by default.Halide provides a both

a global “strict float”

mode and local

annotations to disable

“fast-math”

optimizations.

The “fast-math” optimizations can be roughly separated into three categories,

ordered by the challenges they pose to formal verification:

• The least controversial “fast-math” optimization simply assumes the

absence of signaling NaNs, ensuring that floating point computations do

not disrupt the control flow.

• Another class of “fast-math” optimizations are conditionally sound: these

are the optimizations that are valid provided that no NaNs, infinities,

and/or negative zeroes occur during the execution of the program,

whether as inputs or in intermediate computations.

• The last class of “fast-math” optimizations are fundamentally unsound:

these correspond to the application of many algebraic rules (e.g. associa-

tivity) valid on the reals, but not on the floating-point numbers,

In the context of formal verification, the absence of signaling NaNs is reasonably

safe to assume: the program can be configured to make all floating-point

operations non-signaling (i.e. no operation ever returns a signaling NaN), in

which case the condition reduces to ensuring the absence of signaling NaNs in

the input data. This is an assumption that is often made (sometimes implicitly)

by verification tools targeting floats, because it means that floating-point

operations can be modelled by pure functions. The formalization presented in

this dissertation, and the tool implemented in chapter 6, implicitly make this

assumption already.

The second category — the conditionally sound optimizations — can be

9.4 Floating-Point Arithmetic 209

handled by assuming, possibly through annotations, appropriate magnitudes

for the values in the input tensors and arrays. We can then generate auxiliary

verification conditions ensuring the absence of infinities, NaNs, and negative

zeroes in the resulting computations. This approach has been used successfully

for instance in the Astrée static program analyzer [30] and by Menendez,

Nagarakatte, and Gupta [73] for the verification of floating-point optimizations

in LLVM.

These two categories of transformations can be handled by using a native or

axiomatic representation of floats in the underlying verification condition solver.

The implementation presented in chapter 6 can be configured to use the native

Z3 type for floating-point numbers, and checks bit-wise equality of the original

and transformed expressions. This representation is trivially compatible

with constant propagation performed by the compiler using floating-point

arithmetic.

On the other hand, the third category of “fast-math” optimizations is harder

to handle properly: the equality a + (b + c) = (a + b) + c is false on floats,

and cannot be simply added as an axiom without making the whole system

inconsistent. One alternative would be to use traditional approaches to floating-

point verifications, e.g. using interval analysis, to ensure that the result of the

transformed computation is “not too far” from the original computation — but

because “not too far” is not a transitive property (i.e. if v1 and v2 are within

distance ϵ of each other, and v2 and v3 are also within ϵ of each other, v1 and v3

are not necessarily within ϵ of each other), it is not clear how to compose these

approaches with the two-step approach of prophetic evaluation that relies

heavily on transitivity.

Another alternative is to follow common practice in numerical computing and

to accept program transformations that are valid on the reals. Following this

practice, the default behavior of the verification tool presented in chapter 6

is to (incorrectly) represent floats using Z3’s built-in type for real numbers

(although a custom axiomatization of reals as an abstract type equipped with

associative and distributive operators is an alternative). While this provides no

formal guarantees on the output of the program when ran using floats, it can Consider for instance

the replacement of x
with (x + fM) − fM
where fM is the

largest representable

float. This is correct

on the reals, but the

second expression

evaluates to 0 for any

finite value of x!)

still increase the trust in the correctness of the compilation (it is not “obviously

incorrect”), especially when the goal is to prevent accidental bugs rather than

defeat an adversarial compiler. Unfortunately, while mostly appropriate for

the algebraic specifications encountered in linear algebra or deep learning, it

210 Conclusion

causes issues with the frequent presence of constant computations in image

processing pipelines: the compiler is performing constant propagation using

floating-point math, which fails to validate under the validator’s use of real

numbers. Verifying constant propagation using this approach would require

the compiler to use exact rational math for floating-point simplifications, which

does not make much sense.

An idea for a third alternative that tries to bridge the gap would be to represent

floats using algebraic expressions. For instance, if x and y are two floats,

x + y is represented by itself as an expression tree. Expression trees can be

equipped with directional rewrite rules encoding both floating-point equalities

(for constant propagation) and acceptable “fast-math” rules (but, crucially, not

constant propagation in the reals). Instead of stating that the value computed

by the implementation is equal to the value computed by the specification, we

can state that implementation value must be accessible from the specification:

if location a[i]maps to an expression t in a symbolic heap, it means that at

runtime, a[i] contains a value accessible from t by following the directional

rewrite rules. Reduction is transitive (if e1 reduces to e2 and e2 to e3, e1 also

reduces to e3 by concatenation) and hence compatible with prophetic evaluation.

The use of directional rewrite rules is enough to remove at least the obvious

sources of inconsistencies: for instance, we can have floating point values a, b

and c such that (a+b)+c = 1 and a+(b+c) = 0, which invalidates the equality

(a+b) + c = a+ (b+ c) because it entails 0 = 1. On the other hand, if (a+b) + c
reduces to 1 and a + (b + c) reduces to 0 using unidirectional reductions, we

can apply the associativity rule before reducing to see that both expressions

can evaluate to either 0 or 1, but it does not introduce inconsistencies because

it does not imply a reduction between 0 and 1. This approach might be able

to give a formal definition to the transformations performed by the compiler,

although the ability for the compiler to duplicate expressions and compute them

differently makes every use of floating point variables nondeterministic (e.g.

X() − X() could be nonzero if the compiler decides to replicate the computation

of X() and applies different optimizations to both copies). On the other hand,

it is unclear if it could be efficiently implemented in automated solvers, and

whether the formal guarantees provided would be useful to users of the

compiler.

One final remark is that if we were to allow conversions from floats to indices

when lifting the affine restrictions (see Section 9.6), special care would be

required because “fast-math” transformations could lead the conversion to

9.5 Overflow Checking 211

result in a different index, possibly creating out-of-bounds accesses.

9.5 Overflow Checking

Another topic that has been absent of the discussion so far is integer overflows,

that have simply been ignored by modelling all computations on array indices

using unbounded integers. Technically, this is a threat to the formal soundness

of our results when running the generated code using machine integers instead.

There are two general approaches to dealing with this threat.

The first approach is to check the absence of integer overflow separately. Since

we require a strict separation between indices and values, we can express the

absence of integer overflow and underflow for a given width as a condition on

the range of the values for each index computation, which can be reduced to a

condition on the program parameters by eliminating the intermediate variables.

This is similar to the approach of Cuervo Parrino et al. [32], and should compose

well with the rest of the validator (if no overflow in the computation using

machine integers, the result is the same as the computation using unbounded

integers).

The second approach requires to explicitly model overflowing computations

during the validation by assuming some fixed well-defined behavior of signed

integer overflow and using a piece-wise or modulo expression to symbolically

represent index computations. This would increase the runtime of the algo-

rithm, potentially drastically, by introducing disjunctions and/or auxiliary

variables in the isl representation. This is the case in the ISA tool I compare to

in chapter 6, hence the overflow checking has been disabled in the experiments

for a fair comparison.

Finally, it should be noted that this discussion only considers overflow in

index computations. Integers used as values stored in arrays are value types

represented by machine integers of the appropriate width in Z3, and follow

standard overflow rules, assuming wrapping arithmetic. In the case of signed

integers, Halide can perform simplifications that are only valid under the

assumptions that no signed overflow occurs in the subset of the specification

that is being computed, and these simplifications are currently rejected by the

212 Conclusion

validator. It should be possible to allow these simplifications by modifications

by adding additional assertions that no overflow occurs in the appropriate

subset of the specification, using dependence analysis. An additional question

is how to express this constraint explicitly on the input arrays.

9.6 Non-Affine Specifications and Schedules

In this dissertation, we have made the assumption that specifications and

schedules are affine (including piece-wise affine). While this captures a wide

variety of both specifications and schedules, there are exceptions, some of

which are discussed here. Non-affine expressions involve both non-linear

arithmetic (e.g. terms involving a multiplication between two variables) and

data-dependent expressions (e.g. specifications where an index is computed

as an array access, as in A(B(i))). We will discuss non-affine schedules, in

particular tiling, specifications with non-affine reads (i.e. non-affine indices on

the right-hand side of a specification), and non-affine writes.

9.6.1 Non-Affine Reads

The first source of non-affine expressions in a tensor compiler is when a non-

affine expression appears on the right-hand side of an assignment. For instance,

a strided convolution with filter F can be expressed as B(i) = ∑
0⩽r<RA(i + r ·

S) × F(r) which contains the non-affine index A(i + r · S) (it is not affine due to

the multiplication r · S).

Such non-affine expressions in indices make the expression no longer express-

ible as a SARE; however, as long as these accesses are read accesses on the

right-hand side of assignments, this can be integrated as an extension, provided

that a non-linear solver is used to check that the non-linear index expressions

are within the domain of the accessed tensor. This check can be performed

using a modern SMT solver such as Z3, that have decent support for non-linear

arithmetic, especially simple uses thereof. When tensors have infinite domains,

such as when considering a Halide specification, no extra check is necessary at

this level.

9.6 Non-Affine Specifications and Schedules 213

At the implementation level, this specification can be implemented “trivially”

by the following program:

for i = 0 to N - 1 do
b[i] {0} := 0
for r = 0 to R - 1 do
b[i] {B(i)@(r)} := b[i] + a[i + r * S] * f[r]

In this program, non-affine expression only occur as indices to arrays on the

right-hand side of assignments. Since prophetic evaluation only looks at the

left-hand side of assignments and at prophetic expressions, we only need to

take care of these non-affine accesses in the symbolic evaluation. The access a[i
+ r * S] is non-affine, but we know the value of the array a at that point in the

program, hence we can obtain a symbolic expression representing the value

of a[j] for an arbitrary j by summarization. We can then substitute jwith i
+ r * S in that expression, to obtain a symbolic expression representing the

value in a[i + r * S]. We also must generate a verification condition that i +
r * S is within the defined bounds of a, a check that must be done using Z3

(whereas we usually use isl to verify that indices are within bounds).

If the non-affine read occurs within a parallel loop, we must either approximate

the read as potentially reading all the cells in the array, or keep enough non-

linear information in the set of reads ρ to generate a verification condition using

Z3 instead of isl to check the absence of read-write races.

Note that this approach requires to find proper expression contexts within

the non-affine expression: for instance, in the example, the symbolic value

representing b could be:

{b⟨i⟩ → (B(21) +A(22 +23 · 24) × F(25))⟨i, i, r, S, r⟩}

9.6.2 Non-Affine Specializations

A specialization is a duplication of the code used when a specific condition

is true, often in order to better tune performance. For instance, the CUDA

matrix multiplication used in chapter 6 has different specializations for small

and big matrices that make scheduling decisions appropriate for the volume

214 Conclusion

of computation available. Specializations are of this type (i.e. simple case

analysis on the size of the program parameters) are amongst the most common

specializations and can be expressed using affine constraints and handled by

the existing validator algorithm. On the other hand, some specializations are

non-affine, often because they are data dependent.

Let us first consider the case of a specialization that is used to simplify the

expressions inside a non-affine select conditional. For instance, consider the

following Halide specification, that selects the rows of matrix C, except for

columns that are a multiple of T (a parameter), in which case the row from

matrix B is selected instead:

D(i, j) = select(i mod T == 0, B(i, j), C(i, j))

While a naive implementation of the specification can look like the first program

below the left, a specialized implementation that avoids repeating the test can

look like the second program below.This transformation

is known as loop

unswitching.
for i = 0 to N - 1 do
for j = 0 to M - 1 do
d[i, j] := select(i mod T == 0, b[i, j], c[i, j])

for i = 0 to N - 1 do
if i mod T == 0
for j = 0 to M - 1 do
d[i, j] := b[i, j]

else
for j = 0 to M - 1 do
d[i, j] := c[i, j]

Even though the conditional uses a non-affine condition, both branches of the

“if” always write to the same set of locations. In this case, we can perform a

simple transformation when treating the if statement, by wrapping the symbolic

expressions associated with each branch within the corresponding non-affine

select statement. Here, the condition i mod T = 0 does not contain any array

read and can be evaluated prophetically; if the computation is data dependent

(e.g. if the condition was a[i] instead), an extra annotation is needed indicating

a prophetic expression (e.g. A(i)). In that case, a verification condition must

be generated by the symbolic evaluator ensuring that the asserted prophetic

expression is equal to the runtime expression.

9.6 Non-Affine Specifications and Schedules 215

This approach of reconstructing a select expression should work for most

cases of specialization with non-affine expressions, with the possibility of an

additional annotation for data-dependent specializations. However, in some

cases, one of the branch of the specialization is a no-op and can be simply

removed by the compiler.

Consider for instance the general matrix multiplication (GEMM)D = αAB+βC.

If β is 0, the GEMM is degenerate and becomes a simple matrix multiplication:

there is no need to consider the values in matrix C, because they are nullified

by the multiplication with 0. GEMM implementations often have a “fast path”

specialization for that case, avoiding loads of C entirely. A simple specialized

implementation might look like this (assuming thatD is specified in two stages

D0 computing αAB and D1 computing D0 + βC):

for i = 0 to N - 1 do
for j = 0 to M - 1 do
d[i, j] := 0
for k = 0 to P - 1 do
d[i, j] {D0(i, j)} += alpha * a[i, k] * b[k, j]

// Fast path when beta = 0
if (beta != 0)
for i = 0 to N - 1 do
for j = 0 to M - 1 do
d[i, j] {D1(i, j)} += beta * c[i, j]

Since beta is of a value type (e.g. a float), the test beta != 0 is not affine,

and the method presented in this dissertation fails at representing this code.

However, the following symbolic heap could represent the final value of the d
array:

{ d⟨i, j⟩ → select(β ≠ 0,D1(i, j),D0(i, j)) } (9.1)

Computing this symbolic heap cannot be done prophetically, because we cannot

give a prophetic evaluation to the if statement: the prophetic expression d[i,
j] after evaluating the if statement is unknown when the condition is false.

In this case (i.e. the specialization occurs at top-level — and more generally,

when the specialization does not occur within a sequential loop), we can use

the current state of the prophetic evaluation to find the value D0(i, j) and the

heap above. For non-affine ifs that we expect come from a specialization,

216 Conclusion

it is reasonably safe to assume in such cases that the prophetic annotations

within are still valid within the elided branch. This is a sound (but incomplete)

over-approximation that we can expect to be enough to handle the non-affine

patterns obtained through specialization.

A specialization occurring within a parallel loop may lead to over-approximating

the set of locations read and written, possibly leading to false positives in the

detection of read-write races. To handle this, we can attach the non-affine

condition to the written location and use Z3 instead of isl for the tests when

evaluating a parallel loop. It is unclear whether the added complexity and ver-

ification time would be worth it, as compilers are unlikely to exploit non-affine

or data-dependent conditions to enable parallelism.

The contextual information from the non-affine conditional should be kept

as an additional path condition to be given as hypothesis to any verification

condition generated within the conditional, including the bounds checking for

data-dependent reads. If the non-affine conditional uses nonlinear arithmetic

but no data-dependent indices, it may be worth generating bounds checks

within the conditional using Z3 even for the affine case because the non-affine

conditional can prevent out-of-bounds situations for an affine index (e.g. the

condition i × i ⩽ 4 is non-affine but forces the affine condition −2 ⩽ i ⩽ 2).

Some comparison should be made between the approach described here and

the method of Verdoolaege et al. [117] to handle non-affine control that is

present in both the specification and the implementation. Their handling of

such non-affine control is similar to the capabilities of our approach using a

non-affine select operator: when encountering a non-affine conditional, their

approach ensures that the same array elements are written in both branches of

the if, and the if is then transformed into expression-level ternary expressions

equivalent to the select operator. This is the same transformation we propose

to use, but our approach is better equipped to handle ifs containing an elided

branch by either exploiting the prophetic annotations in the non-elided branch

or exploiting the prophetic evaluation of a prefix program.

9.6 Non-Affine Specifications and Schedules 217

9.6.3 Non-Affine Writes and Histograms

To handle non-affine or data-dependent writes, Verdoolaege et al. [117] proposes

to reduce them to non-affine conditionals. More precisely, an assignment

a[f(i)] = g(b[i]) is treated as if it was the following program:

for j = n to m do
a[j] := select(j = f(i), g(b[i]), a[j])

where f(i) is known to be bounded below by n and above bym.

In our case, a non-affine write must first be represented in the specification.

To properly understand how to do this, we can first consider the simpler case

of non-affine writes: histograms. A histogram computes the number of times

each value occur in an array or tensor. A histogram specification in Halide can

be written as follows:

Var i;
RDom r(0, R)
H(i) = 0;
H(A(r)) += 1;

This can be represented equationally (as an “extended” SARE that is no longer

affine) using a reduction over the set of indices r such that A(r) is equal to the

current position in H:

H0(i) = 0

H1(j) =
∑

0⩽r<R∧j=A(r)
1

An implementation for this specification can look as follows, using explicit

annotations for the prophetic value of a[r]:

for i = 0 to N - 1 do
h[i] {H0(i)} := 0

for r = 0 to R - 1 do
h[a[r] {A(r)}] {H1(A(r))@(r)} += 1

218 Conclusion

If A(r) was an affine expression, using the proposed symbolic heap representa-

tion for reductions, we would want to compute the symbolic heap within the

reduction loop as:

{h⟨A(r)⟩ → [[r], (H1(21)@(22))⟨A(r), r⟩]}

Since A(r) is not an affine expression, we can instead introduce a fresh variable

j within the range of array h, similar to the encoding of Verdoolaege et al. [117]

mentioned above, as well as an additional component to the tuple to represent

the non-affine condition j = A(r):

{h⟨j⟩ → [[[r], [(21 = A(22))]jr], [(H1(21)@(22))]j, r] : 0 ⩽ j < N}

This represents a heap where h[j] is associated with

∑
r′=r∧j=A(r′)H1(j)@(r′)

which is equal to 0 when j ≠ A(r) and H1(A(r))@(r) otherwise.

Because we are dealing with a reduction with an associative and commutative

operator, we can compute the symbolic evaluation of the loop by taking the

union of these representations. We must check that the values appearing as

index to the reduction are distinct, because we do not know how to represent

multiple values associated with a reduction index, as explained in chapter 7;

fortunately, the index to the reduction is r, which is an affine expression, and

we can check the disjointness using isl as usual. If the underlying operator

is only associative, but not commutative, we can also check that the reduced

indices are increasing along the loop normally. In both cases, we end up with

the following symbolic heap to represent h after the loop:

{h⟨j⟩ → [[[r], [(21 = A(22))]j, r], [(H1(21)@(22))]j, r] : 0 ⩽ j < N ∧ 0 ⩽ r < R}

This symbolic heap represents the equalities, for 0 ⩽ j < N:

h[j] =
∑

0⩽r<N∧j=A(r)
H1(j)@(r)

This can be summarized to H1(j) for 0 ⩽ j < N, by checking that when the

condition j = A(r) and the condition in the definition of H1 are both true, then

the body H1(j)@(r) is equal to the body in the definition of H1, and when only

one of the conditions is true, the corresponding element is equal to the neutral

element of the reduction, if it exists.

9.6 Non-Affine Specifications and Schedules 219

We can now go back to the treatment of non-affine or data-dependent writes

that are not histograms. Although we have encoded assignments by adding

additional tensor indices, we can remark that the “assignment” operator ⊙
defined by x ⊙ y = y is associative (but not commutative). An assignment

within a recurrence can thus be modelled as a non-commutative reduction

using this operator, and the modelling described above for reductions can be

applied to regular assignments. Compared to an arbitrary non-commutative

operator, ⊙ has the additional property that the value of the reduction is the

value of the last defined index. This permits relaxing some restrictions when

combining reductions, which may be useful here.

9.6.4 Parametric Tiling

An important program transformation performed by tensor compilers is tiling,

already mentioned in this dissertation. Some forms of tiling, namely tiling

of the low bits of an index by a constant factor, can be expressed as an affine

transformation, and modelled directly using isl’s Presburger sets and relations.

However, other forms of tiling, and notably tiling where the tiling factor is

non-constant, cannot be represented this way. This is another form of non-affine

use case that is nontrivial to handle, because we must now have non-affine

expressions (e.g. ⌈NT ⌉) in loop bounds.

Let us consider a simple case of parametric tiling for a one-dimensional array

copy B(i) = A(i). A tiled program with tile size T may look as follows:

for i0 = 0 to ceil(N / T) - 1 do
let m = min(N - i0 * T, T) in
for i1 = 0 to m - 1 do
let i = i0 * T + i1 in
b[i] {B(i)} := a[i]

This is an issue for our verifier because the expressions i0 * T + i1 and ceil(N
/ T) - 1 are non-affine. The first one could possibly be handled as a non-affine

write (although it wouldn’t be entirely satisfactory, as we would have to treat

the write as possibly touching every cell of the b array), but the second one

is involved in a loop bound, and it is unclear how it can be integrated in our

representation.

220 Conclusion

In their work on monoparametric tiling, Iooss, Alias, and Rajopadhye [52] show

that in the case where all parametric tilings occurring in an expression are

multiples of some base tiling factor, the parametric construct is expressible as

an affine construction by decomposing every variable i involved in the tiling

into a “block” part ib and a “local” part il using euclidean division such that

0 ⩽ il < T and i = ib × T + il. If we introduce the monoparametric parameters

Nb and Nl such that N = Nb × T +Nl and 0 ⩽ Nl < T , substitute for N, and

perform the appropriate simplifications we can express this implementation

using a “view” of array b that is indexed using pairs (i0, i1) where 0 ⩽ i0 < Nb
and 0 ⩽ i1 < T such that 0 ⩽ i0 × T + i1 < N:

for i0 = 0 to select(Nl = 0, Nb - 1, Nb) do
let m = select(i0 < Nb, T - 1, Nl - 1) in
for i1 = 0 to m do
let i = i0 * T + i1 in
b[(i0, i1)] {B(i)} := a[i]

Since there is an order-preserving (when the tuples (i0, i1) are ordered using

the lexicographic order) bĳection between the original index space of b and the

new index space of b, we can perform the verification using this tiled view of

b. Obviously, the equality N = Nb × T +Nl cannot be used in affine contexts,

and non-tiled accesses such as a[i] become non-affine accesses and need to be

handled using the techniques for non-affine accesses described earlier in the

section; alternatively, we can also envision introducing a tiled view of array a.

Since we have a tiled representation of array b, any use of b that is not tiled with

the tiling parameter T is now non-affine and needs to be handled with care.

In practice, we can expect one of two scenarios: either array b is used locally

within a single tiling (possibly parametric), in which case only the tiled view

needs to be considered, or the tiling for array b is used locally, then forgotten

(for instance, the writes to b may be tiled with factor T only for one of its

defining stages). In this case, it is useful to transform back from the tiled view

to a non-tiled view in order to avoid non-affine accesses. For instance, we want

to transform the tiled symbolic heap:{
b⟨i0, i1⟩ → B(21 × T +22)⟨i0, i1⟩

���� (0 ⩽ i0 < Nb ∧ 0 ⩽ i1 < T)∨
(i0 = Nb ∧ 0 ⩽ i1 < Nl)

}
into the untiled symbolic heap:

{ b⟨i⟩ → B(2)⟨i⟩ | 0 ⩽ i < N }

9.7 Array linearization 221

This transformation can be performed by recognizing the following equalities

between boxes, that hold under the conditions N = NbT + Nl, 0 ⩽ Nl < T ,

0 ⩽ i1 < T , and 0 ⩽ m ⩽ p ⩽ T :

αNb + n ⩽ ib < βNb + k⇔ α(N −Nl) + nT ⩽ i < β(N −Nl) + kT
ib = βNb + k ∧m ⩽ il < p⇔ β(N −Nl) + kT +m ⩽ i < β(N −Nl) + kT + p

We can compute the condition for the interval over il to be full, i.e. when

the set removed from the interval is empty. Over that set, we can eliminate

il by finding α, n, β and k such that αNb + n ⩽ ib < βNb + k is full

(typically, α = n = k = 0 and β = 1). We then replace this with the condition

α(N −Nl) + nT ⩽ i < β(N −Nl) + kT . Then, we decompose the remaining

sets into equalities ib = αNb + k (typically, α = 1 and k = 0), we compute

appropriate n and m so that the interval on il is full (typically, n = 0 and

m = Nl), and we get the α(N −Nl) + kT + n ⩽ i < α(N −Nl) + kT +m. If we

take α = 0, β = 1 and m = Nl, we obtain 0 ⩽ i < N − Nl + Nl and we can

eliminate Nl.

This “untiling” transformation should be guided using annotations provided

by the compiler similar to the accumulate construct for reductions, which

should be relatively easy for the compiler to insert around the scope the tiling is

performed in. Only information about where the untiling should be performed

are needed. If the transformation fails, we can either report an error, or keep

using the tiled version of the array using non-affine accesses. Outside of

monoparametric tiling, if an appropriate monotonous bĳection is given, this

same approach should generalize to more complex schemes such as the sum

decomposition N = N1 × T1 +N2 × T2 used by Tollenaere et al. [106].

9.7 Array linearization

The focus of this presentation has been on multidimensional tensors and arrays,

because it is the way specifications are written. Ultimately, tensor compilers

transform multidimensional arrays into flat buffers in linear memory, often

creating non-affine indices due to parametric array sizes. For instance, the

222 Conclusion

array access a[i, j]might be transformed into a buffer access a[i * M + j]
or a[j * N + i] depending on the layout.

Reconstructing affine multidimensional indices from the linearized indices

is possible, but difficult and implementations often resort to runtime checks

to ensure the reconstructed indices are correct [34]. Fortunately, if we know

both the multidimensional and linearized indices, it is easier to check that the

same injective linearization function is used for all accesses using a solver such

as Z3, because it does not involve reconstructing any expression. This is a

fairly simple non-affine condition that can often be expressed as a piece-wise

polynomial equality. I performed preliminary experiments with Z3, which was

able to prove that the all the linearized accesses to the same array use the same

linearization function for all the accesses involved in the benchmarks described

in chapter 6.

This verification is not merely syntaxic, because the compiler can perform

additional simplifications in the linearized access. For instance, consider

the access a[i + 2, M - i] to array a of dimension N ×M. Applying the

linearization function naively results in the expression a[(i + 2) ×M +M − i],
while the actual buffer access found in the code might be a[i×(M−1)+3M−4]
or a[(i + 3) ×M − i − 4].

To cover verification in full, we need to check that the linearized expression

does not introduce overflowing computation: even if we have proved that all

of the multidimensional indices fit the integer type used to represent array

indices, the computation of the linearized index may involve intermediate

expressions that overflow that type. However, if only wrapping (or unsigned)

arithmetic is used to compute the linearized index, it is enough to check that

the buffer size fits the appropriate integer type: if we have separately proven

that the multidimensional indices are within bounds, the linearized index (as

an unbounded integer) is necessarily less than the buffer size, and hence also

fits that integer type.

9.8 Array Aliasing and Overlapping Arrays 223

9.8 Array Aliasing and Overlapping Arrays

The work presented in this thesis makes the implicit assumption that no two

allocated array cells are identical, i.e. each cell is uniquely identified by its

array name and indices. There are two ways in which this assumption can

fail. The most obvious is that multiple input and/or output arrays can overlap,

such as when performing an in-place update, but there can also be “overlap”

within a single array. As explained in section 9.7, multidimensional arrays are

ultimately implemented by buffers in linear memory. This is typically done by

computing the dot product of the index vector with a (parametrically) constant

stride vector, so that the linear index in the buffer is

∑
0⩽j<N ij × sj, where ij

is the index in the j-th dimension and sj is the stride for the j-th dimension.

Usually, the strides are chosen such that this linearization step is injective, but Typically, dimensions

are ordered in some

way, and the stride is

the product of the

sizes of the previous

dimensions.

some frameworks such as Halide do not treat this as a hard requirement and

allow a non-injective linearization step. The main use case is to set some strides

to zero to emulate a broadcast.

To make things clear, we will say that an array is an input array if the initial

value of (at least one of) its cells is read by the implementation, and an output

array if the implementation writes to at least one of its cells. Some arrays are

both input and output arrays, for instance when performing an in-place update.

We can determine output arrays by simple inspection of the source code: they

are the non-local arrays that are written to. The arrays that are read from is

a sound over-approximation of the input arrays, but there may be non-local

arrays where all reads are from a previous write during the execution of the

program . We can determine input arrays more precisely by computing the set It is common for the

user to provide

“workspace” or

“scratchpad” arrays

that are re-used across

consecutive calls,

avoiding the cost of

repeated allocation

and deallocation.

of cells that have been written to at each program point (in the same way as in

the symbolic evaluation) and computing the cells that are read from without

having been written to previously. When the implementation is affine, we can

be more precise and compute the set of input and output locations.

The possibility of overlapping arrays introduce two challenges. The first

challenge is one of soundness: we must ensure that after a cell has been written

to, we never rely on the old value of any cell it could overlap with. The second

one is about completeness: the compiler may make use of precise overlapping

information to perform certain optimizations (e.g. there can be a specialized

path in the generated code when two input arrays are identical).

224 Conclusion

Soundness Let us first focus on soundness. It should be clear that as far

as soundness is concerned, overlap is only an issue when one of the arrays

involved is an output array. Moreover, overlap between two output arrays or

within a single output array can be a soundness issue, but it is also fairly useless

as it would lead to computing the same output value twice and can be safely

prevented by a runtime assertion or contextual analysis. Hence, for soundness,

we can only consider overlap between an input and an output array, where

both may be the same array. There are two cases to consider: the overlap can

be arbitrary or constrained (e.g. an output buffer is allowed to start, but not

end, within an input buffer, as in a “copy” implementation forcing a specific

iteration order).

When we want to allow arbitrary overlaps between the two arrays, all the writes

to the output array must occur after the reads to the input array. This can be

integrated into our symbolic representation by considering that all writes to

the output array also virtually write an undetermined constant⊥ to all the cells

in the input array (here, ⊥ represents either the old value in that cell, or the

value that was just written to the output array).

When the overlap is constrained, writing to the output array should only write

⊥ to the cells of the input array it can overlap with. For this analysis to be precise,

the desired overlap can be represented as a Presburger relation provided as an

annotation; however it may be possible to infer an over-approximation of the

legal overlaps in some cases. Presburger relations can represent the common

instance where a buffer is prevented from either starting or ending within

the range of another buffer. The constrained case includes the case where the

two arrays can be identical, in which case each index in one array is related to

the index in the other array. These overlap relations behave like “may-write”

relations in polyhedral dependence analysis. If instead of merely allowing

certain overlap patterns one wish to force a specific overlap, a relation similar to

the “must-write” relation of dependence analysis should be used: writing to

one cell must be treated as also being a write to all related cells.

Completeness Allowing overlap in arrays can be done soundly, as mentioned

above. However, when the compiler is aware of some necessary overlap between

input arrays, it may exploit this overlap. For instance, it is not uncommon in

Halide to specialize for the case where the stride of an input array is zero, and

9.9 Garbage Writes 225

to exploit the resulting dimensionality collapse to avoid unnecessary repeated

loads. To verify an implementation that exploits this ability, we first need to

detect the dynamic stride check, and translate it to the appropriate overlapping

relationship between array cells. We also need to assert the corresponding

equalities between tensor indices when using Z3 to check verification conditions

occurring within the specialization. For instance, if a[i, j] maps to A(i, j)
and we are within a specialization where the stride of the first dimension is

0, we need to assert that A(i1, j) = A(i2, j)whenever i1, i2 and j are within the

bounds of a.

One additional remark is that when the compiler exploits such information,

extra care will have to be taken within the compiler so that the presence of

prophetic annotations do not prevent optimizations. Taking again the previous

example, two accesses a[0 * s_1 + 7 * s_2] and a[1 * s_1 + 7 * s_2] both

simplify to a[7 * s_2]within a specialization s_1 == 0. But if there are anno-

tations tracking back the indices to the original multidimensional indices, after

simplification, we get a[7 * s_2] {A(0, 7)} and a[7 * s_2] {A(1, 7)}. Hence,

either the prophetic annotations must be simplified as appropriate by the

compiler, or ignored by compiler phases such as common sub-expression

elimination.

9.9 Garbage Writes

In some cases, the assumption that the tensor compiler knows what tensor

definition backs up a given assignment breaks down, because some results

are thrown out and ignored, such as with Halide’s “round up” tail strategy.

Typically, this gives the compiler the ability to fully unroll a tiled loop with-

out having to emit a prologue or epilogue, performing computation using

uninitialized array cells for the “extra” iterations. The resulting garbage cells

are ultimately not used in the output, but because we need to perform eager

verification of the prophetic annotations, it would still cause verification to

fail (if only due to the reads from uninitialized memory). While it is not

clear whether it would be feasible to track this information in the compiler

itself, the prophetic evaluation in the validator can be adapted directly: when

an assignment reads from uninitialized memory, instead of raising an error,

we can treat this assignment as writing the undefined value ⊥, and do the

226 Conclusion

same for any assignment that reads from a ⊥ value, iteratively “fixing” the

prophetic annotations. Because this only makes sense for the compiler to

do for independent assignments (otherwise the later garbage assignments

would overwrite the earlier semantically meaningful ones), we can expect the

iterative process to terminate fairly quickly, which I confirmed in preliminary

experiments with Halide’s camera_pipe benchmark.

An alternative approach that I did not experiment with is to compute from

the specification the set of intermediate tensor indices that are semantically

meaningful for the output (either directly or using the compiler’s default

schedule), and treat prophetic annotations involving tensor indices outside

that set as writing ⊥ instead.

Finally, I will mention that it is possible to request the compiler precise

annotations of these garbage writes, such as the “compute bounds” used by

Reinking, Bernstein, and Ragan-Kelley [89] in their formalization of the Halide

code generation algorithm. These annotations seem to be a byproduct of

scheduling in the existing Halide implementation and do not appear in the

generated code, but going by that paper could be added to the code generation

algorithm naturally. However, it is not clear how well they would fit other

compilers — in particular compilers based on the polyhedral model that may

use non-rectangular regions.

9.10 Formal Verification

Formal verification can be used to increase confidence in both the proofs

of the theorems presented in this manuscript (notably Theorems 4.3.3, 4.3.7

and 5.5.4), and in the implementation of the verifier itself. Since the goal is to

have an automatic verifier relying on Z3 to check the verification conditions

and on isl for an efficient representation of Presburger sets and relations,

the mechanization would have to depend on an axiomatization of the isl
primitive to prove that the verification conditions that are generated ensure the

correctness of the implementation.

In fact, I have used the Coq proof assistant [105] to perform preliminary

exploration of this. I have formalized and proven the existence and determinism

9.10 Formal Verification 227

theorems for the small-step semantics with respect to the big-step semantics

(Theorems 4.3.3 and 4.3.7), in a restricted language featuring sequential and

parallel composition for no loops for simplicity. Separately, I have formalized The proof steps

involving reduction

rules SeqLoop and

ParLoop require

many technicalities

due to the use of lists.

and verified the soundness theorem Theorem 5.5.4 relating symbolic and

concrete evaluations using an early version of the prophetic evaluation rules,

expressed using code rather than inference rules, not presented in this thesis

and expressed using an algebraic representation of symbolic heaps.

While these are promising first steps, further work is needed to reach a formal

verification of the full system, following the proofs presented in this manuscript.

The resulting code could then be extracted to OCaml and used directly with

the OCaml bindings to Z3 and isl.

Finally, it could be interesting to plug the Sched language to a verified compiler

such as CompCert. Tensor compilers typically delegate the low-level compi-

lation to a readily available compiler such as LLVM, that could theoretically

re-introduce bugs. By directly plugging Sched to a verified compiler such as

CompCert instead, we can get a formal proof in Coq that if the verification

conditions computed with isl are correct (as checked by Z3), then the assembly

generated by CompCert faithfully implement the original specification.

Bibliography
[1] Martin Abadi et al. “TensorFlow: A System for Large-Scale Machine

Learning”. In: 12th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 16). 2016, pp. 265–283. url: https://www.usenix.
org/system/files/conference/osdi16/osdi16-abadi.pdf (visited

on 05/31/2022).

[2] Martín Abadi and Leslie Lamport. “The Existence of Refinement Map-

pings”. In: Proceedings of the Third Annual Symposium on Logic in Computer

Science (LICS ’88), Edinburgh, Scotland, UK, July 5-8, 1988. IEEE Computer

Society, July 1988, pp. 165–175. doi: 10.1109/LICS.1988.5115. url:

https://doi.org/10.1109/LICS.1988.5115.

[3] Andrew Adams et al. “Learning to optimize halide with tree search and

random programs”. In: ACM Trans. Graph. 38.4 (2019), 121:1–121:12. doi:

10.1145/3306346.3322967. url: https://doi.org/10.1145/3306346.
3322967.

[4] Corinne Ancourt and François Irigoin. “Scanning Polyhedra with DO

Loops”. In: Proceedings of the Third ACM SIGPLAN Symposium on Princi-

ples & Practice of Parallel Programming (PPOPP), Williamsburg, Virginia,

USA, April 21-24, 1991. Ed. by David S. Wise. ACM, Apr. 1, 1991, pp. 39–

50. doi: 10.1145/109625.109631. url: https://doi.org/10.1145/
109625.109631.

[5] Luke Anderson et al. “Learning to Schedule Halide Pipelines for the

GPU”. In: CoRR abs/2012.07145 (Dec. 13, 2020). arXiv: 2012.07145. url:

https://arxiv.org/abs/2012.07145.

[6] Riyadh Baghdadi et al. “PENCIL: A Platform-Neutral Compute Inter-

mediate Language for Accelerator Programming”. In: 2015 International

Conference on Parallel Architectures and Compilation, PACT 2015, San

Francisco, CA, USA, October 18-21, 2015. IEEE Computer Society, 2015,

pp. 138–149. doi: 10.1109/PACT.2015.17. url: https://doi.org/10.
1109/PACT.2015.17.

229

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://doi.org/10.1109/LICS.1988.5115
https://doi.org/10.1109/LICS.1988.5115
https://doi.org/10.1145/3306346.3322967
https://doi.org/10.1145/3306346.3322967
https://doi.org/10.1145/3306346.3322967
https://doi.org/10.1145/109625.109631
https://doi.org/10.1145/109625.109631
https://doi.org/10.1145/109625.109631
https://arxiv.org/abs/2012.07145
https://arxiv.org/abs/2012.07145
https://doi.org/10.1109/PACT.2015.17
https://doi.org/10.1109/PACT.2015.17
https://doi.org/10.1109/PACT.2015.17

230 Bibliography

[7] Riyadh Baghdadi et al. “Tiramisu: A Polyhedral Compiler for Expressing

Fast and Portable Code”. In: CoRR abs/1804.10694 (Dec. 20, 2018). arXiv:

1804.10694. url: http://arxiv.org/abs/1804.10694.

[8] Lénaïc Bagnères et al. “Opening polyhedral compiler’s black box”. In:

Proceedings of the 2016 International Symposium on Code Generation and

Optimization, CGO 2016, Barcelona, Spain, March 12-18, 2016. Ed. by Björn

Franke, Youfeng Wu, and Fabrice Rastello. ACM, 2016, pp. 128–138. doi:

10.1145/2854038.2854048. url: https://doi.org/10.1145/2854038.
2854048.

[9] Kunal Banerjee and Chandan Karfa. “A Quick Introduction to Functional

Verification of Array-Intensive Programs”. In: CoRR abs/1905.09137

(May 22, 2019). arXiv: 1905.09137. url: http://arxiv.org/abs/1905.
09137.

[10] Kunal Banerjee, Chittaranjan A. Mandal, and Dipankar Sarkar. “Trans-

lation validation of loop and arithmetic transformations in the presence

of recurrences”. In: Proceedings of the 17th ACM SIGPLAN/SIGBED

Conference on Languages, Compilers, Tools, and Theory for Embedded Sys-

tems, LCTES 2016, Santa Barbara, CA, USA, June 13 - 14, 2016. Ed. by

Tei-Wei Kuo and David B. Whalley. ACM, Aug. 2016, pp. 31–40. doi:

10.1145/2907950.2907954. url: https://doi.org/10.1145/2907950.
2907954.

[11] Wenlei Bao et al. “PolyCheck: dynamic verification of iteration space

transformations on affine programs”. In: Proceedings of the 43rd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016. Ed. by

Rastislav Bodík and Rupak Majumdar. ACM, 2016, pp. 539–554. doi:

10.1145/2837614.2837656. url: https://doi.org/10.1145/2837614.
2837656.

[12] Clark Barrett, Aaron Stump, and Cesare Tinelli. “The SMT-LIB Standard:

Version 2.0”. In: Proceedings of the 8th International Workshop on Satisfiability

modulo Theories (Edinburgh, UK). Ed. by A. Gupta and D. Kroening. 2010.

[13] Denis Barthou, Paul Feautrier, and Xavier Redon. “On the Equivalence

of Two Systems of Affine Recurrence Equations”. In: Euro-Par 2002

Parallel Processing. Ed. by Burkhard Monien and Rainer Feldmann. Red.

by Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen. Vol. 2400.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 309–313. isbn:

978-3-540-44049-9 978-3-540-45706-0. doi: 10.1007/3-540-45706-2_40.

https://arxiv.org/abs/1804.10694
http://arxiv.org/abs/1804.10694
https://doi.org/10.1145/2854038.2854048
https://doi.org/10.1145/2854038.2854048
https://doi.org/10.1145/2854038.2854048
https://arxiv.org/abs/1905.09137
http://arxiv.org/abs/1905.09137
http://arxiv.org/abs/1905.09137
https://doi.org/10.1145/2907950.2907954
https://doi.org/10.1145/2907950.2907954
https://doi.org/10.1145/2907950.2907954
https://doi.org/10.1145/2837614.2837656
https://doi.org/10.1145/2837614.2837656
https://doi.org/10.1145/2837614.2837656
https://doi.org/10.1007/3-540-45706-2_40

231

url: http://link.springer.com/10.1007/3- 540- 45706- 2_40
(visited on 04/21/2021).

[14] Alexander I. Barvinok. “A Polynomial Time Algorithm for Counting

Integral Points in Polyhedra when the Dimension Is Fixed”. In: 34th

Annual Symposium on Foundations of Computer Science, Palo Alto, California,

USA, 3-5 November 1993. IEEE Computer Society, Nov. 1993, pp. 566–572.

doi: 10.1109/SFCS.1993.366830. url: https://doi.org/10.1109/
SFCS.1993.366830.

[15] Cédric Bastoul. “Code Generation in the Polyhedral Model Is Easier Than

You Think”. In: 13th International Conference on Parallel Architectures and

Compilation Techniques (PACT 2004), 29 September - 3 October 2004, Antibes

Juan-les-Pins, France. IEEE Computer Society, Sept. 29, 2004, pp. 7–16. doi:

10.1109/PACT.2004.10018. url: http://doi.ieeecomputersociety.
org/10.1109/PACT.2004.10018.

[16] Mohamed-Walid Benabderrahmane et al. “The Polyhedral Model Is

More Widely Applicable Than You Think”. In: Compiler Construction,

19th International Conference, CC 2010, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus,

March 20-28, 2010. Proceedings. Ed. by Rajiv Gupta. Vol. 6011. Lecture

Notes in Computer Science. Springer, 2010, pp. 283–303. doi: 10.1007/
978-3-642-11970-5_16. url: https://doi.org/10.1007/978-3-642-
11970-5_16.

[17] Gilbert Bernstein et al. “Differentiating a Tensor Language”. In: CoRR

abs/2008.11256 (Aug. 25, 2020). arXiv: 2008.11256. url: https://
arxiv.org/abs/2008.11256.

[18] R. S. Bird. “An Introduction to the Theory of Lists”. In: Proceedings of

the NATO Advanced Study Institute on Logic of Programming and Calculi

of Discrete Design. Berlin, Heidelberg: Springer-Verlag, June 1, 1987,

pp. 5–42. isbn: 978-0-387-18003-8.

[19] François Bobot et al. “Why3: Shepherd Your Herd of Provers”. In: Boogie

2011: First International Workshop on Intermediate Verification Languages.

Wrocław, Poland, Aug. 2011, pp. 53–64.

[20] Hans-Juergen Boehm. “How to Miscompile Programs with “Benign”

Data Races”. In: 3rd USENIX Workshop on Hot Topics in Parallelism,

HotPar’11, Berkeley, CA, USA, May 26-27, 2011. Ed. by Michael Mc-

Cool and Mendel Rosenblum. USENIX Association, May 26, 2011. url:

http://link.springer.com/10.1007/3-540-45706-2_40
https://doi.org/10.1109/SFCS.1993.366830
https://doi.org/10.1109/SFCS.1993.366830
https://doi.org/10.1109/SFCS.1993.366830
https://doi.org/10.1109/PACT.2004.10018
http://doi.ieeecomputersociety.org/10.1109/PACT.2004.10018
http://doi.ieeecomputersociety.org/10.1109/PACT.2004.10018
https://doi.org/10.1007/978-3-642-11970-5_16
https://doi.org/10.1007/978-3-642-11970-5_16
https://doi.org/10.1007/978-3-642-11970-5_16
https://doi.org/10.1007/978-3-642-11970-5_16
https://arxiv.org/abs/2008.11256
https://arxiv.org/abs/2008.11256
https://arxiv.org/abs/2008.11256

232 Bibliography

https://www.usenix.org/conference/hotpar-11/how-miscompile-
programs-benign-data-races.

[21] Uday Bondhugula. “Compiling affine loop nests for distributed-memory

parallel architectures”. In: International Conference for High Performance

Computing, Networking, Storage and Analysis, SC’13, Denver, CO, USA -

November 17 - 21, 2013. Ed. by William Gropp and Satoshi Matsuoka.

ACM, Nov. 17, 2013, 33:1–33:12. doi: 10.1145/2503210.2503289. url:

https://doi.org/10.1145/2503210.2503289.

[22] Pierre Boulet and Paul Feautrier. “Scanning Polyhedra without Do-

loops”. In: Proceedings of the 1998 International Conference on Parallel

Architectures and Compilation Techniques, Paris, France, October 12-18, 1998.

IEEE Computer Society, Oct. 1998, pp. 4–11. doi: 10.1109/PACT.1998.
727127. url: https://doi.org/10.1109/PACT.1998.727127.

[23] Sylvain Boulmé et al. “The Verified Polyhedron Library: an Overview”.

In: 20th International Symposium on Symbolic and Numeric Algorithms for

Scientific Computing, SYNASC 2018, Timisoara, Romania, September 20-23,

2018. IEEE, Sept. 2018, pp. 9–17. doi: 10.1109/SYNASC.2018.00014. url:

https://doi.org/10.1109/SYNASC.2018.00014.

[24] Chun Chen. “Polyhedra scanning revisited”. In: ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, PLDI ’12,

Beĳing, China - June 11 - 16, 2012. Ed. by Jan Vitek, Haibo Lin, and Frank

Tip. ACM, June 11, 2012, pp. 499–508. doi: 10.1145/2254064.2254123.
url: https://doi.org/10.1145/2254064.2254123.

[25] Tianqi Chen et al. “TVM: An Automated End-to-End Optimizing Com-

piler for Deep Learning”. In: 13th USENIX Symposium on Operating

Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA, Oc-

tober 8-10, 2018. Ed. by Andrea C. Arpaci-Dusseau and Geoff Voelker.

USENIX Association, Feb. 12, 2018, pp. 578–594. url: https://www.
usenix.org/conference/osdi18/presentation/chen.

[26] Berkeley R. Churchill et al. “Semantic program alignment for equiva-

lence checking”. In: Proceedings of the 40th ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI 2019, Phoenix, AZ,

USA, June 22-26, 2019. Ed. by Kathryn S. McKinley and Kathleen Fisher.

ACM, June 8, 2019, pp. 1027–1040. doi: 10.1145/3314221.3314596. url:

https://doi.org/10.1145/3314221.3314596.

https://www.usenix.org/conference/hotpar-11/how-miscompile-programs-benign-data-races
https://www.usenix.org/conference/hotpar-11/how-miscompile-programs-benign-data-races
https://doi.org/10.1145/2503210.2503289
https://doi.org/10.1145/2503210.2503289
https://doi.org/10.1109/PACT.1998.727127
https://doi.org/10.1109/PACT.1998.727127
https://doi.org/10.1109/PACT.1998.727127
https://doi.org/10.1109/SYNASC.2018.00014
https://doi.org/10.1109/SYNASC.2018.00014
https://doi.org/10.1145/2254064.2254123
https://doi.org/10.1145/2254064.2254123
https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
https://doi.org/10.1145/3314221.3314596
https://doi.org/10.1145/3314221.3314596

233

[27] Basile Clément and Albert Cohen. “End-to-end translation validation

for the halide language”. In: Proc. ACM Program. Lang. 6.OOPSLA (Dec.

2022), pp. 1–30. doi: 10.1145/3527328. url: https://doi.org/10.
1145/3527328.

[28] Jean-François Collard and Martin Griebl. “Array Dataflow Analysis

for Explicitly Parallel Programs”. In: Euro-Par’96 Parallel Processing.

Ed. by Luc Bougé et al. Lecture Notes in Computer Science. Berlin,

Heidelberg: Springer, 1996, pp. 406–413. isbn: 978-3-540-70633-5. doi:

10.1007/3-540-61626-8_54.

[29] Nathanaël Courant and Xavier Leroy. “Verified code generation for the

polyhedral model”. In: Proc. ACM Program. Lang. 5.POPL (Jan. 4, 2021),

pp. 1–24. doi: 10.1145/3434321. url: https://doi.org/10.1145/
3434321.

[30] Patrick Cousot et al. “The ASTREÉ Analyzer”. In: Programming Languages

and Systems, 14th European Symposium on Programming,ESOP 2005, Held

as Part of the Joint European Conferences on Theory and Practice of Software,

ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings. Ed. by Shmuel

Sagiv. Vol. 3444. Lecture Notes in Computer Science. Springer, 2005,

pp. 21–30. doi: 10.1007/978-3-540-31987-0_3. url: https://doi.
org/10.1007/978-3-540-31987-0%5C_3.

[31] CTAN: Package Knowledge. url: https://ctan.org/pkg/knowledge?
lang=en (visited on 04/25/2022).

[32] Bruno Cuervo Parrino et al. “Dealing with Arithmetic Overflows in

the Polyhedral Model”. In: IMPACT 2012 - 2nd International Workshop

on Polyhedral Compilation Techniques. Ed. by Uday Bondhugula and

Vincent Loechner. Louis-Noel Pouchet. Paris, France, Jan. 2012. url:

https://hal.inria.fr/hal-00655485.

[33] Edsger W. Dĳkstra. “Guarded Commands, Nondeterminacy and Formal

Derivation of Programs”. In: Commun. ACM 18.8 (Aug. 1975), pp. 453–

457. doi: 10.1145/360933.360975. url: https://doi.org/10.1145/
360933.360975.

[34] Johannes Doerfert, Tobias Grosser, and Sebastian Hack. “Optimistic

loop optimization”. In: Proceedings of the 2017 International Symposium on

Code Generation and Optimization, CGO 2017, Austin, TX, USA, February

4-8, 2017. Ed. by Vĳay Janapa Reddi, Aaron Smith, and Lingjia Tang.

ACM, 2017, pp. 292–304. url: http://dl.acm.org/citation.cfm?id=
3049864.

https://doi.org/10.1145/3527328
https://doi.org/10.1145/3527328
https://doi.org/10.1145/3527328
https://doi.org/10.1007/3-540-61626-8_54
https://doi.org/10.1145/3434321
https://doi.org/10.1145/3434321
https://doi.org/10.1145/3434321
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-540-31987-0%5C_3
https://doi.org/10.1007/978-3-540-31987-0%5C_3
https://ctan.org/pkg/knowledge?lang=en
https://ctan.org/pkg/knowledge?lang=en
https://hal.inria.fr/hal-00655485
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
http://dl.acm.org/citation.cfm?id=3049864
http://dl.acm.org/citation.cfm?id=3049864

234 Bibliography

[35] Johannes Doerfert et al. “Polly’s Polyhedral Scheduling in the Presence

of Reductions”. In: CoRR abs/1505.07716 (May 28, 2015). arXiv: 1505.
07716. url: http://arxiv.org/abs/1505.07716.

[36] P. Feautrier. “Parametric Integer Programming”. In: RAIRO Recherche

Opérationnelle 22.3 (1988), pp. 243–268.

[37] Paul Feautrier. “Dataflow analysis of array and scalar references”. In:

Int. J. Parallel Program. 20.1 (Feb. 1, 1991), pp. 23–53. doi: 10.1007/
BF01407931. url: https://doi.org/10.1007/BF01407931.

[38] Paul Feautrier. “Array Expansion”. In: Proceedings of the International

Conference on Supercomputing (Aug. 5, 1996). doi: 10.1145/55364.55406.

[39] Paul Feautrier. “The Power of Polynomials”. In: Proceedings of 5th In-

ternational Workshop on Polyhedral Compilation Techniques (IMPACT’15)

(Jan. 19, 2015).

[40] Paul Feautrier and Christian Lengauer. “Polyhedron Model”. In: Ency-

clopedia of Parallel Computing. Ed. by David A. Padua. Springer, Sept. 1,

2011, pp. 1581–1592. doi: 10.1007/978-0-387-09766-4_502. url:

https://doi.org/10.1007/978-0-387-09766-4_502.

[41] Marc Le Fur. “Scanning parameterized polyhedron using Fourier-

Motzkin elimination”. In: Concurr. Pract. Exp. 8.6 (1996), pp. 445–

460. doi: 10.1002/(SICI)1096- 9128(199607)8:6%3C445::AID-
CPE253%3E3.0.CO;2-G. url: https://doi.org/10.1002/(SICI)1096-
9128(199607)8:6%3C445::AID-CPE253%3E3.0.CO;2-G.

[42] Sabine Glesner. “Using Program Checking to Ensure the Correctness

of Compiler Implementations”. In: J. Univers. Comput. Sci. 9.3 (2003),

pp. 191–222. doi: 10.3217/jucs-009-03-0191. url: https://doi.org/
10.3217/jucs-009-03-0191.

[43] Benjamin Goldberg, Lenore D. Zuck, and Clark W. Barrett. “Into the

Loops: Practical Issues in Translation Validation for Optimizing Compil-

ers”. In: Electron. Notes Theor. Comput. Sci. 132.1 (May 30, 2005), pp. 53–71.

doi: 10.1016/j.entcs.2005.01.030. url: https://doi.org/10.1016/
j.entcs.2005.01.030.

[44] Tobias Grosser, Sven Verdoolaege, and Albert Cohen. “Polyhedral AST

Generation Is More Than Scanning Polyhedra”. In: ACM Trans. Program.

Lang. Syst. 37.4 (Aug. 13, 2015), 12:1–12:50. doi: 10.1145/2743016. url:

https://doi.org/10.1145/2743016.

https://arxiv.org/abs/1505.07716
https://arxiv.org/abs/1505.07716
http://arxiv.org/abs/1505.07716
https://doi.org/10.1007/BF01407931
https://doi.org/10.1007/BF01407931
https://doi.org/10.1007/BF01407931
https://doi.org/10.1145/55364.55406
https://doi.org/10.1007/978-0-387-09766-4_502
https://doi.org/10.1007/978-0-387-09766-4_502
https://doi.org/10.1002/(SICI)1096-9128(199607)8:6%3C445::AID-CPE253%3E3.0.CO;2-G
https://doi.org/10.1002/(SICI)1096-9128(199607)8:6%3C445::AID-CPE253%3E3.0.CO;2-G
https://doi.org/10.1002/(SICI)1096-9128(199607)8:6%3C445::AID-CPE253%3E3.0.CO;2-G
https://doi.org/10.1002/(SICI)1096-9128(199607)8:6%3C445::AID-CPE253%3E3.0.CO;2-G
https://doi.org/10.3217/jucs-009-03-0191
https://doi.org/10.3217/jucs-009-03-0191
https://doi.org/10.3217/jucs-009-03-0191
https://doi.org/10.1016/j.entcs.2005.01.030
https://doi.org/10.1016/j.entcs.2005.01.030
https://doi.org/10.1016/j.entcs.2005.01.030
https://doi.org/10.1145/2743016
https://doi.org/10.1145/2743016

235

[45] Gautam Gupta, Sanjay V. Rajopadhye, and Patrice Quinton. “Scheduling

reductions on realistic machines”. In: Proceedings of the Fourteenth Annual

ACM Symposium on Parallel Algorithms and Architectures, SPAA 2002, Win-

nipeg, Manitoba, Canada, August 11-13, 2002. Ed. by Arnold L. Rosenberg

and Bruce M. Maggs. ACM, Aug. 10, 2002, pp. 117–126. doi: 10.1145/
564870.564888. url: https://doi.org/10.1145/564870.564888.

[46] Shubhani Gupta, Abhishek Rose, and Sorav Bansal. “Counterexample-

guided correlation algorithm for translation validation”. In: Proc. ACM

Program. Lang. 4.OOPSLA (Nov. 13, 2020), 221:1–221:29. doi: 10.1145/
3428289. url: https://doi.org/10.1145/3428289.

[47] Bastian Hagedorn et al. “High performance stencil code generation

with lift”. In: Proceedings of the 2018 International Symposium on Code

Generation and Optimization, CGO 2018, Vösendorf / Vienna, Austria,

February 24-28, 2018. Ed. by Jens Knoop et al. ACM, 2018, pp. 100–112.

doi: 10.1145/3168824. url: https://doi.org/10.1145/3168824.

[48] Bastian Hagedorn et al. “Achieving high-performance the functional

way: a functional pearl on expressing high-performance optimizations

as rewrite strategies”. In: Proc. ACM Program. Lang. 4.ICFP (Aug. 2, 2020),

92:1–92:29. doi: 10.1145/3408974. url: https://doi.org/10.1145/
3408974.

[49] Mark Harris. “Optimizing Parallel Reduction in CUDA”. 2008. url:

https://developer.download.nvidia.com/assets/cuda/files/
reduction.pdf.

[50] Troels Henriksen et al. “Futhark: purely functional GPU-programming

with nested parallelism and in-place array updates”. In: Proceedings

of the 38th ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017. Ed.

by Albert Cohen and Martin T. Vechev. ACM, 2017, pp. 556–571. doi:

10.1145/3062341.3062354. url: https://doi.org/10.1145/3062341.
3062354.

[51] Pieter Hĳma, Rob V van Nieuwpoort, and Henri E Bal. “Programming

Many-Cores on Different Levels of Abstraction”. In: HotPar ’13 Pro-

ceedings of the 5th USENIX Workshop on Hot Topics in Parallelism (July

2013), p. 7. url: https://staff.fnwi.uva.nl/h.p.hijma/papers/
Hijma2013Programming.pdf.

https://doi.org/10.1145/564870.564888
https://doi.org/10.1145/564870.564888
https://doi.org/10.1145/564870.564888
https://doi.org/10.1145/3428289
https://doi.org/10.1145/3428289
https://doi.org/10.1145/3428289
https://doi.org/10.1145/3168824
https://doi.org/10.1145/3168824
https://doi.org/10.1145/3408974
https://doi.org/10.1145/3408974
https://doi.org/10.1145/3408974
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/3062341.3062354
https://staff.fnwi.uva.nl/h.p.hijma/papers/Hijma2013Programming.pdf
https://staff.fnwi.uva.nl/h.p.hijma/papers/Hijma2013Programming.pdf

236 Bibliography

[52] Guillaume Iooss, Christophe Alias, and Sanjay Rajopadhye. “Monopara-

metric tiling of polyhedral programs”. In: International Journal of Parallel

Programming 49.3 (2021), pp. 376–409.

[53] Guillaume Iooss, Christophe Alias, and Sanjay V. Rajopadhye. “On

Program Equivalence with Reductions”. In: Static Analysis - 21st Inter-

national Symposium, SAS 2014, Munich, Germany, September 11-13, 2014.

Proceedings. Ed. by Markus Müller-Olm and Helmut Seidl. Vol. 8723.

Lecture Notes in Computer Science. Springer, 2014, pp. 168–183. doi:

10.1007/978-3-319-10936-7_11. url: https://doi.org/10.1007/
978-3-319-10936-7_11.

[54] Matthieu Journault and Antoine Miné. “Inferring functional properties

of matrix manipulating programs by abstract interpretation”. In: Formal

Methods Syst. Des. 53.2 (Feb. 2018), pp. 221–258. doi: 10.1007/s10703-
017-0311-x. url: https://doi.org/10.1007/s10703-017-0311-x.

[55] Pierre Jouvelot and Babak Dehbonei. “A unified semantic approach

for the vectorization and parallelization of generalized reductions”.

In: Proceedings of the 3rd international conference on Supercomputing, ICS

1989, Heraklion, Crete, Greece, June 5-9, 1989. Ed. by George Paul et al.

ACM, 1989, pp. 186–194. doi: 10.1145/318789.318810. url: https:
//doi.org/10.1145/318789.318810.

[56] Aditya Kanade, Amitabha Sanyal, and Uday P. Khedker. “A PVS Based

Framework for Validating Compiler Optimizations”. In: Fourth IEEE

International Conference on Software Engineering and Formal Methods (SEFM

2006), 11-15 September 2006, Pune, India. IEEE Computer Society, Sept.

2006, pp. 108–117. doi: 10.1109/SEFM.2006.4. url: https://doi.org/
10.1109/SEFM.2006.4.

[57] Jeehoon Kang et al. “Crellvm: verified credible compilation for LLVM”.

In: Proceedings of the 39th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2018, Philadelphia, PA, USA,

June 18-22, 2018. Ed. by Jeffrey S. Foster and Dan Grossman. ACM,

June 11, 2018, pp. 631–645. doi: 10.1145/3192366.3192377. url: https:
//doi.org/10.1145/3192366.3192377.

[58] Chandan Karfa et al. “Experimentation with SMT Solvers and Theorem

Provers for Verification of Loop and Arithmetic Transformations”. In:

ACM International Conference Proceeding Series. Oct. 17, 2013. doi:

10.1145/2528228.2528231.

https://doi.org/10.1007/978-3-319-10936-7_11
https://doi.org/10.1007/978-3-319-10936-7_11
https://doi.org/10.1007/978-3-319-10936-7_11
https://doi.org/10.1007/s10703-017-0311-x
https://doi.org/10.1007/s10703-017-0311-x
https://doi.org/10.1007/s10703-017-0311-x
https://doi.org/10.1145/318789.318810
https://doi.org/10.1145/318789.318810
https://doi.org/10.1145/318789.318810
https://doi.org/10.1109/SEFM.2006.4
https://doi.org/10.1109/SEFM.2006.4
https://doi.org/10.1109/SEFM.2006.4
https://doi.org/10.1145/3192366.3192377
https://doi.org/10.1145/3192366.3192377
https://doi.org/10.1145/3192366.3192377
https://doi.org/10.1145/2528228.2528231

237

[59] Chandan Karfa et al. “Verification of Loop and Arithmetic Transforma-

tions of Array-Intensive Behaviors”. In: IEEE Trans. Comput. Aided Des. In-

tegr. Circuits Syst. 32.11 (Nov. 1, 2013), pp. 1787–1800. doi: 10.1109/TCAD.
2013.2272536. url: https://doi.org/10.1109/TCAD.2013.2272536.

[60] Richard M. Karp, Raymond E. Miller, and Shmuel Winograd. “The

Organization of Computations for Uniform Recurrence Equations”. In:

J. ACM 14.3 (July 1967), pp. 563–590. doi: 10.1145/321406.321418. url:

https://doi.org/10.1145/321406.321418.

[61] W. Kelly, W. Pugh, and E. Rosser. “Code Generation for Multiple

Mappings”. In: The Fifth Symposium on the Frontiers of Massively Parallel

Computation Proceedings Frontiers ’95. The Fifth Symposium on the

Frontiers of Massively Parallel Computation Proceedings Frontiers ’95.

Feb. 1995, pp. 332–341. doi: 10.1109/FMPC.1995.380437.

[62] Fredrik Kjolstad et al. “The tensor algebra compiler”. In: Proc. ACM

Program. Lang. 1.OOPSLA (Oct. 12, 2017), 77:1–77:29. doi: 10.1145/
3133901. url: https://doi.org/10.1145/3133901.

[63] Kensuke Kojima, Akifumi Imanishi, and Atsushi Igarashi. “Automated

Verification of Functional Correctness of Race-Free GPU Programs”. In:

J. Autom. Reason. 60.3 (Mar. 1, 2018), pp. 279–298. doi: 10.1007/s10817-
017-9428-2. url: https://doi.org/10.1007/s10817-017-9428-2.

[64] Sudipta Kundu, Zachary Tatlock, and Sorin Lerner. “Proving optimiza-

tions correct using parameterized program equivalence”. In: Proceedings

of the 2009 ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009. Ed. by

Michael Hind and Amer Diwan. ACM, June 15, 2009, pp. 327–337. doi:

10.1145/1542476.1542513. url: https://doi.org/10.1145/1542476.
1542513.

[65] Leslie Lamport. “The Parallel Execution of DO Loops”. In: Commun.

ACM 17.2 (Feb. 1, 1974), pp. 83–93. doi: 10.1145/360827.360844. url:

https://doi.org/10.1145/360827.360844.

[66] K. Rustan M. Leino. “Dafny: An Automatic Program Verifier for Func-

tional Correctness”. In: Logic for Programming, Artificial Intelligence, and

Reasoning - 16th International Conference, LPAR-16, Dakar, Senegal, April

25-May 1, 2010, Revised Selected Papers. Ed. by Edmund M. Clarke and An-

drei Voronkov. Vol. 6355. Lecture Notes in Computer Science. Springer,

Apr. 25, 2010, pp. 348–370. doi: 10.1007/978-3-642-17511-4_20. url:

https://doi.org/10.1007/978-3-642-17511-4_20.

https://doi.org/10.1109/TCAD.2013.2272536
https://doi.org/10.1109/TCAD.2013.2272536
https://doi.org/10.1109/TCAD.2013.2272536
https://doi.org/10.1145/321406.321418
https://doi.org/10.1145/321406.321418
https://doi.org/10.1109/FMPC.1995.380437
https://doi.org/10.1145/3133901
https://doi.org/10.1145/3133901
https://doi.org/10.1145/3133901
https://doi.org/10.1007/s10817-017-9428-2
https://doi.org/10.1007/s10817-017-9428-2
https://doi.org/10.1007/s10817-017-9428-2
https://doi.org/10.1145/1542476.1542513
https://doi.org/10.1145/1542476.1542513
https://doi.org/10.1145/1542476.1542513
https://doi.org/10.1145/360827.360844
https://doi.org/10.1145/360827.360844
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20

238 Bibliography

[67] Xavier Leroy. “Formal verification of a realistic compiler”. In: Commun.

ACM 52.7 (July 2009), pp. 107–115. doi: 10.1145/1538788.1538814. url:

https://doi.org/10.1145/1538788.1538814.

[68] Amy W. Lim, Gerald I. Cheong, and Monica S. Lam. “An affine partition-

ing algorithm to maximize parallelism and minimize communication”.

In: Proceedings of the 13th international conference on Supercomputing, ICS

1999, Rhodes, Greece, June 20-25, 1999. Ed. by Theodore S. Papatheodorou

et al. ACM, May 1, 1999, pp. 228–237. doi: 10.1145/305138.305197.
url: https://doi.org/10.1145/305138.305197.

[69] Amanda Liu et al. “Verified tensor-program optimization via high-level

scheduling rewrites”. In: Proc. ACM Program. Lang. 6.POPL (Jan. 16,

2022), pp. 1–28. doi: 10.1145/3498717. url: https://doi.org/10.
1145/3498717.

[70] Nuno P. Lopes et al. “Alive2: bounded translation validation for LLVM”.

In: PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming

Language Design and Implementation, Virtual Event, Canada, June 20-25,

2021. Ed. by Stephen N. Freund and Eran Yahav. ACM, June 19, 2021,

pp. 65–79. doi: 10.1145/3453483.3454030. url: https://doi.org/10.
1145/3453483.3454030.

[71] Lee-Chung Lu. “A Unified Framework for Systematic Loop Transfor-

mations”. In: ACM SIGPLAN Notices 26.7 (Apr. 1, 1991), pp. 28–38. issn:

0362-1340. doi: 10.1145/109626.109630. url: https://doi.org/10.
1145/109626.109630 (visited on 04/01/2022).

[72] Trevor L. McDonell et al. “Optimising purely functional GPU programs”.

In: ACM SIGPLAN International Conference on Functional Programming,

ICFP’13, Boston, MA, USA - September 25 - 27, 2013. Ed. by Greg Morrisett

and Tarmo Uustalu. ACM, Sept. 25, 2013, pp. 49–60. doi: 10.1145/
2500365.2500595. url: https://doi.org/10.1145/2500365.2500595.

[73] David Menendez, Santosh Nagarakatte, and Aarti Gupta. “Alive-FP:

Automated Verification of Floating Point Based Peephole Optimizations

in LLVM”. In: Static Analysis - 23rd International Symposium, SAS 2016,

Edinburgh, UK, September 8-10, 2016, Proceedings. Ed. by Xavier Rival.

Vol. 9837. Lecture Notes in Computer Science. Springer, 2016, pp. 317–

337. doi: 10.1007/978-3-662-53413-7_16. url: https://doi.org/10.
1007/978-3-662-53413-7_16.

https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/305138.305197
https://doi.org/10.1145/305138.305197
https://doi.org/10.1145/3498717
https://doi.org/10.1145/3498717
https://doi.org/10.1145/3498717
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/109626.109630
https://doi.org/10.1145/109626.109630
https://doi.org/10.1145/109626.109630
https://doi.org/10.1145/2500365.2500595
https://doi.org/10.1145/2500365.2500595
https://doi.org/10.1145/2500365.2500595
https://doi.org/10.1007/978-3-662-53413-7_16
https://doi.org/10.1007/978-3-662-53413-7_16
https://doi.org/10.1007/978-3-662-53413-7_16

239

[74] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. “Z3: An Efficient

SMT Solver”. In: Tools and Algorithms for the Construction and Analysis

of Systems, 14th International Conference, TACAS 2008, Held as Part of

the Joint European Conferences on Theory and Practice of Software, ETAPS

2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings. Ed. by C. R.

Ramakrishnan and Jakob Rehof. Vol. 4963. Lecture Notes in Computer

Science. Springer, 2008, pp. 337–340. doi: 10.1007/978-3-540-78800-
3_24. url: https://doi.org/10.1007/978-3-540-78800-3_24.

[75] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. “PolyMage:

Automatic Optimization for Image Processing Pipelines”. In: Proceedings

of the Twentieth International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS 2015, Istanbul, Turkey,

March 14-18, 2015. Ed. by Özcan Özturk, Kemal Ebcioglu, and Sandhya

Dwarkadas. ACM, 2015, pp. 429–443. doi: 10.1145/2694344.2694364.
url: https://doi.org/10.1145/2694344.2694364.

[76] George C. Necula. “Translation validation for an optimizing compiler”.

In: Proceedings of the 2000 ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), Vancouver, Britith Columbia,

Canada, June 18-21, 2000. Ed. by Monica S. Lam. ACM, 2000, pp. 83–

94. doi: 10.1145/349299.349314. url: https://doi.org/10.1145/
349299.349314.

[77] A. Pnueli, M. Siegel, and E. Singerman. “Translation Validation”. In:

Tools and Algorithms for the Construction and Analysis of Systems. Ed. by

Bernhard Steffen. Red. by Gerhard Goos, Juris Hartmanis, and Jan

van Leeuwen. Vol. 1384. Lecture Notes in Computer Science. Berlin,

Heidelberg: Springer Berlin Heidelberg, 1998, pp. 151–166. isbn: 978-

3-540-64356-2 978-3-540-69753-4. doi: 10.1007/BFb0054170. url: http:
//link.springer.com/10.1007/BFb0054170 (visited on 03/15/2022).

[78] M. Presburger. “Über Die Vollständigkeit Eines Gewissen Systems

Der Arithmetik Ganzer Zahlen, in Welchem Die Addition Als Einzige

Operation Hervortritt”. In: Comptes Rendus Du Premier Congrès de Mathé-

maticiens Des Pays Slaves. Warsaw, Poland, 1929, pp. 92–101.

[79] William W. Pugh. “Uniform techniques for loop optimization”. In:

Proceedings of the 5th international conference on Supercomputing, ICS 1991,

Cologne, Germany, June 17-21, 1991. Ed. by Edward S. Davidson and

Friedel Hossfeld. ACM, June 1, 1991, pp. 341–352. doi: 10.1145/109025.
109108. url: https://doi.org/10.1145/109025.109108.

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2694344.2694364
https://doi.org/10.1145/2694344.2694364
https://doi.org/10.1145/349299.349314
https://doi.org/10.1145/349299.349314
https://doi.org/10.1145/349299.349314
https://doi.org/10.1007/BFb0054170
http://link.springer.com/10.1007/BFb0054170
http://link.springer.com/10.1007/BFb0054170
https://doi.org/10.1145/109025.109108
https://doi.org/10.1145/109025.109108
https://doi.org/10.1145/109025.109108

240 Bibliography

[80] William W. Pugh and David Wonnacott. “Static Analysis of Upper

and Lower Bounds on Dependences and Parallelism”. In: ACM Trans.

Program. Lang. Syst. 16.4 (July 1994), pp. 1248–1278. doi: 10.1145/
183432.183525. url: https://doi.org/10.1145/183432.183525.

[81] Fabien Quilleré, Sanjay V. Rajopadhye, and Doran Wilde. “Generation

of Efficient Nested Loops from Polyhedra”. In: Int. J. Parallel Program.

28.5 (Oct. 1, 2000), pp. 469–498. doi: 10.1023/A:1007554627716. url:

https://doi.org/10.1023/A:1007554627716.

[82] Jonathan Ragan-Kelley et al. “Halide: a language and compiler for

optimizing parallelism, locality, and recomputation in image processing

pipelines”. In: ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013.

Ed. by Hans-Juergen Boehm and Cormac Flanagan. ACM, June 23, 2013,

pp. 519–530. doi: 10.1145/2491956.2462176. url: https://doi.org/
10.1145/2491956.2462176.

[83] Jonathan Ragan-Kelley et al. “Halide: decoupling algorithms from

schedules for high-performance image processing”. In: Commun. ACM

61.1 (Dec. 27, 2017), pp. 106–115. doi: 10.1145/3150211. url: https:
//doi.org/10.1145/3150211.

[84] Harenome Razanajato, Vincent Loechner, and Cédric Bastoul. “Splitting

Polyhedra to Generate More Efficient Code”. In: IMPACT 2017, 7th Inter-

national Workshop on Polyhedral Compilation Techniques. Jan. 23, 2017.

url: https://hal.inria.fr/hal-01505764 (visited on 04/01/2022).

[85] Chandan Reddy, Michael Kruse, and Albert Cohen. “Reduction Draw-

ing: Language Constructs and Polyhedral Compilation for Reductions

on GPU”. In: Proceedings of the 2016 International Conference on Parallel

Architectures and Compilation, PACT 2016, Haifa, Israel, September 11-

15, 2016. Ed. by Ayal Zaks et al. ACM, Sept. 11, 2016, pp. 87–97. doi:

10.1145/2967938.2967950. url: https://doi.org/10.1145/2967938.
2967950.

[86] Xavier Redon and Paul Feautrier. “Detection of Recurrences in Sequen-

tial Programs with Loops”. In: PARLE ’93, Parallel Architectures and

Languages Europe, 5th International PARLE Conference, Munich, Germany,

June 14-17, 1993, Proceedings. Ed. by Arndt Bode, Mike Reeve, and

Gottfried Wolf. Vol. 694. Lecture Notes in Computer Science. Springer,

1993, pp. 132–145. doi: 10.1007/3- 540- 56891- 3_11. url: https:
//doi.org/10.1007/3-540-56891-3_11.

https://doi.org/10.1145/183432.183525
https://doi.org/10.1145/183432.183525
https://doi.org/10.1145/183432.183525
https://doi.org/10.1023/A:1007554627716
https://doi.org/10.1023/A:1007554627716
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/3150211
https://doi.org/10.1145/3150211
https://doi.org/10.1145/3150211
https://hal.inria.fr/hal-01505764
https://doi.org/10.1145/2967938.2967950
https://doi.org/10.1145/2967938.2967950
https://doi.org/10.1145/2967938.2967950
https://doi.org/10.1007/3-540-56891-3_11
https://doi.org/10.1007/3-540-56891-3_11
https://doi.org/10.1007/3-540-56891-3_11

241

[87] Xavier Redon and Paul Feautrier. “Scheduling reductions”. In: Pro-

ceedings of the 8th international conference on Supercomputing, ICS 1994,

Manchester, UK, July 11-15, 1994. Ed. by John R. Gurd and William Jalby.

ACM, July 16, 1994, pp. 117–125. doi: 10.1145/181181.181319. url:

https://doi.org/10.1145/181181.181319.

[88] Xavier Redon and Paul Feautrier. “Detection of Scans”. In: Parallel

Algorithms and Applications 15.3-4 (Dec. 1, 2000), pp. 229–263. issn: 1063-

7192. doi: 10.1080/01495730008947357. url: https://doi.org/10.
1080/01495730008947357 (visited on 05/02/2022).

[89] Alex Reinking, Gilbert Bernstein, and Jonathan Ragan-Kelley. “Formal

Semantics for the Halide Language”. EECS Department, University

of California, Berkeley, May 2020. url: http://www2.eecs.berkeley.
edu/Pubs/TechRpts/2020/EECS-2020-40.html.

[90] Martin C. Rinard and Darko Marinov. “Credible Compilation with

Pointers”. In: In Proceedings of the Workshop on Run-Time Result Verification.

1999.

[91] Norman A. Rink and Jerónimo Castrillón. “TeIL: a type-safe imperative

tensor intermediate language”. In: Proceedings of the 6th ACM SIGPLAN

International Workshop on Libraries, Languages and Compilers for Array

Programming, ARRAY@PLDI 2019, Phoenix, AZ, USA, June 22, 2019. Ed. by

Jeremy Gibbons. ACM, 2019, pp. 57–68. doi: 10.1145/3315454.3329959.
url: https://doi.org/10.1145/3315454.3329959.

[92] Xavier Rival. “Abstract Interpretation-Based Certification of Assembly

Code”. In: Verification, Model Checking, and Abstract Interpretation, 4th

International Conference, VMCAI 2003, New York, NY, USA, January 9-11,

2002, Proceedings. Ed. by Lenore D. Zuck et al. Vol. 2575. Lecture Notes

in Computer Science. Springer, Jan. 9, 2002, pp. 41–55. doi: 10.1007/3-
540-36384-X_7. url: https://doi.org/10.1007/3-540-36384-X_7.

[93] Xavier Rival. “Symbolic transfer function-based approaches to certi-

fied compilation”. In: Proceedings of the 31st ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL 2004, Venice,

Italy, January 14-16, 2004. Ed. by Neil D. Jones and Xavier Leroy. ACM,

Jan. 1, 2004, pp. 1–13. doi: 10 . 1145 / 964001 . 964002. url: https :
//doi.org/10.1145/964001.964002.

https://doi.org/10.1145/181181.181319
https://doi.org/10.1145/181181.181319
https://doi.org/10.1080/01495730008947357
https://doi.org/10.1080/01495730008947357
https://doi.org/10.1080/01495730008947357
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-40.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-40.html
https://doi.org/10.1145/3315454.3329959
https://doi.org/10.1145/3315454.3329959
https://doi.org/10.1007/3-540-36384-X_7
https://doi.org/10.1007/3-540-36384-X_7
https://doi.org/10.1007/3-540-36384-X_7
https://doi.org/10.1145/964001.964002
https://doi.org/10.1145/964001.964002
https://doi.org/10.1145/964001.964002

242 Bibliography

[94] Valentin Robert and Xavier Leroy. “A Formally-Verified Alias Analysis”.

In: Certified Programs and Proofs - Second International Conference, CPP 2012,

Kyoto, Japan, December 13-15, 2012. Proceedings. Ed. by Chris Hawblitzel

and Dale Miller. Vol. 7679. Lecture Notes in Computer Science. Springer,

2012, pp. 11–26. doi: 10.1007/978-3-642-35308-6_5. url: https:
//doi.org/10.1007/978-3-642-35308-6_5.

[95] Hanan Samet. “Automatically Proving the Correctness of Translations

Involving Optimized Code”. PhD thesis. Stanford, CA, USA: Computer

Science Department, Stanford University, May 1975. 222 pp. url: http:
//www.cs.umd.edu/~hjs/pubs/compilers/CS- TR- 75- 498.pdf
(visited on 04/22/2022).

[96] Hans Samsom et al. “System level verification of video and image pro-

cessing specifications”. In: Proceedings of the 8th International Symposium

on System Synthesis (ISSS 1995), September 13-15, 1995, Cannes, France. Ed.

by Pierre G. Paulin and Farhad Mavaddat. ACM, 1995, pp. 144–149. doi:

10.1145/224486.224533. url: https://doi.org/10.1145/224486.
224533.

[97] K. C. Shashidhar et al. “Verification of Source Code Transformations by

Program Equivalence Checking”. In: Compiler Construction, 14th Interna-

tional Conference, CC 2005, Held as Part of the Joint European Conferences on

Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005,

Proceedings. Ed. by Rastislav Bodík. Vol. 3443. Lecture Notes in Computer

Science. Springer, 2005, pp. 221–236. doi: 10.1007/978-3-540-31985-
6_15. url: https://doi.org/10.1007/978-3-540-31985-6_15.

[98] K.C. Shashidhar et al. “Geometric Model Checking”. In: Electronic

Notes in Theoretical Computer Science 65.2 (Apr. 2002), pp. 67–82. issn:

15710661. doi: 10.1016/S1571- 0661(04)80397- 9. url: https://
linkinghub.elsevier.com/retrieve/pii/S1571066104803979 (vis-

ited on 03/14/2022).

[99] Qingchao Shen et al. “A comprehensive study of deep learning compiler

bugs”. In: ESEC/FSE ’21: 29th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering,

Athens, Greece, August 23-28, 2021. Ed. by Diomidis Spinellis et al.

ACM, Aug. 20, 2021, pp. 968–980. doi: 10.1145/3468264.3468591. url:

https://doi.org/10.1145/3468264.3468591.

https://doi.org/10.1007/978-3-642-35308-6_5
https://doi.org/10.1007/978-3-642-35308-6_5
https://doi.org/10.1007/978-3-642-35308-6_5
http://www.cs.umd.edu/~hjs/pubs/compilers/CS-TR-75-498.pdf
http://www.cs.umd.edu/~hjs/pubs/compilers/CS-TR-75-498.pdf
https://doi.org/10.1145/224486.224533
https://doi.org/10.1145/224486.224533
https://doi.org/10.1145/224486.224533
https://doi.org/10.1007/978-3-540-31985-6_15
https://doi.org/10.1007/978-3-540-31985-6_15
https://doi.org/10.1007/978-3-540-31985-6_15
https://doi.org/10.1016/S1571-0661(04)80397-9
https://linkinghub.elsevier.com/retrieve/pii/S1571066104803979
https://linkinghub.elsevier.com/retrieve/pii/S1571066104803979
https://doi.org/10.1145/3468264.3468591
https://doi.org/10.1145/3468264.3468591

243

[100] Michael Stepp, Ross Tate, and Sorin Lerner. “Equality-Based Translation

Validator for LLVM”. In: Computer Aided Verification - 23rd International

Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings. Ed.

by Ganesh Gopalakrishnan and Shaz Qadeer. Vol. 6806. Lecture Notes

in Computer Science. Springer, 2011, pp. 737–742. doi: 10.1007/978-3-
642-22110-1_59. url: https://doi.org/10.1007/978-3-642-22110-
1_59.

[101] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. “Matrix

multiplication beyond auto-tuning: rewrite-based GPU code genera-

tion”. In: 2016 International Conference on Compilers, Architectures and

Synthesis for Embedded Systems, CASES 2016, Pittsburgh, Pennsylvania,

USA, October 1-7, 2016. ACM, Oct. 1, 2016, 15:1–15:10. doi: 10.1145/
2968455.2968521. url: https://doi.org/10.1145/2968455.2968521.

[102] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. “Lift: a

functional data-parallel IR for high-performance GPU code generation”.

In: Proceedings of the 2017 International Symposium on Code Generation

and Optimization, CGO 2017, Austin, TX, USA, February 4-8, 2017. Ed. by

Vĳay Janapa Reddi, Aaron Smith, and Lingjia Tang. ACM, Feb. 2017,

pp. 74–85. doi: 10.1109/cgo.2017.7863730. url: http://dl.acm.org/
citation.cfm?id=3049841.

[103] Patricia Suriana, Andrew Adams, and Shoaib Kamil. “Parallel associative

reductions in halide”. In: Proceedings of the 2017 International Symposium

on Code Generation and Optimization, CGO 2017, Austin, TX, USA, February

4-8, 2017. Ed. by Vĳay Janapa Reddi, Aaron Smith, and Lingjia Tang.

ACM, Feb. 4, 2017, pp. 281–291. url: http://dl.acm.org/citation.
cfm?id=3049863.

[104] Ross Tate et al. “Equality Saturation: A New Approach to Optimization”.

In: Log. Methods Comput. Sci. 7.1 (Mar. 2011). doi: 10.2168/LMCS-7(1:
10)2011. url: https://doi.org/10.2168/LMCS-7(1:10)2011.

[105] The Coq Development Team. The Coq Proof Assistant. Zenodo. Ver-

sion 8.13. Zenodo, Jan. 2021. doi: 10.5281/zenodo.4501022. url:

https://doi.org/10.5281/zenodo.4501022.

[106] Nicolas Tollenaere et al. “Efficient Convolution Optimisation by Compos-

ing Micro-Kernels”. Apr. 2021. url: https://hal.archives-ouvertes.
fr/hal-03149553 (visited on 05/31/2022).

https://doi.org/10.1007/978-3-642-22110-1_59
https://doi.org/10.1007/978-3-642-22110-1_59
https://doi.org/10.1007/978-3-642-22110-1_59
https://doi.org/10.1007/978-3-642-22110-1_59
https://doi.org/10.1145/2968455.2968521
https://doi.org/10.1145/2968455.2968521
https://doi.org/10.1145/2968455.2968521
https://doi.org/10.1109/cgo.2017.7863730
http://dl.acm.org/citation.cfm?id=3049841
http://dl.acm.org/citation.cfm?id=3049841
http://dl.acm.org/citation.cfm?id=3049863
http://dl.acm.org/citation.cfm?id=3049863
https://doi.org/10.2168/LMCS-7(1:10)2011
https://doi.org/10.2168/LMCS-7(1:10)2011
https://doi.org/10.2168/LMCS-7(1:10)2011
https://doi.org/10.5281/zenodo.4501022
https://doi.org/10.5281/zenodo.4501022
https://hal.archives-ouvertes.fr/hal-03149553
https://hal.archives-ouvertes.fr/hal-03149553

244 Bibliography

[107] Jean-Baptiste Tristan. “Formal verification of translation validators”.

PhD thesis. Paris Diderot University, France, Nov. 6, 2009. url: https:
//tel.archives-ouvertes.fr/tel-00437582.

[108] Jean-Baptiste Tristan, Paul Govereau, and Greg Morrisett. “Evaluating

value-graph translation validation for LLVM”. In: Proceedings of the

32nd ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011. Ed. by Mary

W. Hall and David A. Padua. ACM, 2011, pp. 295–305. doi: 10.1145/
1993498.1993533. url: https://doi.org/10.1145/1993498.1993533.

[109] Jean-Baptiste Tristan and Xavier Leroy. “A simple, verified validator for

software pipelining”. In: Proceedings of the 37th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL 2010, Madrid,

Spain, January 17-23, 2010. Ed. by Manuel V. Hermenegildo and Jens

Palsberg. ACM, Jan. 2010, pp. 83–92. doi: 10.1145/1706299.1706311.
url: https://doi.org/10.1145/1706299.1706311.

[110] Nicolas Vasilache, Cédric Bastoul, and Albert Cohen. “Polyhedral Code

Generation in the Real World”. In: Compiler Construction, 15th Interna-

tional Conference, CC 2006, Held as Part of the Joint European Conferences on

Theory and Practice of Software, ETAPS 2006, Vienna, Austria, March 30-31,

2006, Proceedings. Ed. by Alan Mycroft and Andreas Zeller. Vol. 3923.

Lecture Notes in Computer Science. Springer, 2006, pp. 185–201. doi:

10.1007/11688839_16. url: https://doi.org/10.1007/11688839_16.

[111] Nicolas Vasilache et al. “The Next 700 Accelerated Layers: From Mathe-

matical Expressions of Network Computation Graphs to Accelerated

GPU Kernels, Automatically”. In: ACM Trans. Archit. Code Optim. 16.4

(Jan. 2020), 38:1–38:26. doi: 10.1145/3355606. url: https://doi.org/
10.1145/3355606.

[112] Sven Verdoolaege. “Isl: An Integer Set Library for the Polyhedral Model.”

In: ICMS. Ed. by Komei Fukuda et al. Vol. 6327. Lecture Notes in

Computer Science. Springer, 2010, pp. 299–302. isbn: 978-3-642-15581-9.

url: http://dblp.uni-trier.de/db/conf/icms/icms2010.html#
Verdoolaege10.

[113] Sven Verdoolaege. “Integer Set Coalescing”. In: (2015). doi: 10.13140/
2.1.1313.6968. url: http://rgdoi.net/10.13140/2.1.1313.6968
(visited on 04/25/2022).

https://tel.archives-ouvertes.fr/tel-00437582
https://tel.archives-ouvertes.fr/tel-00437582
https://doi.org/10.1145/1993498.1993533
https://doi.org/10.1145/1993498.1993533
https://doi.org/10.1145/1993498.1993533
https://doi.org/10.1145/1706299.1706311
https://doi.org/10.1145/1706299.1706311
https://doi.org/10.1007/11688839_16
https://doi.org/10.1007/11688839_16
https://doi.org/10.1145/3355606
https://doi.org/10.1145/3355606
https://doi.org/10.1145/3355606
http://dblp.uni-trier.de/db/conf/icms/icms2010.html#Verdoolaege10
http://dblp.uni-trier.de/db/conf/icms/icms2010.html#Verdoolaege10
https://doi.org/10.13140/2.1.1313.6968
https://doi.org/10.13140/2.1.1313.6968
http://rgdoi.net/10.13140/2.1.1313.6968

245

[114] Sven Verdoolaege. “Presburger Formulas and Polyhedral Compilation”.

In: Presburger formulas and polyhedral compilation (2016), p. 174. url:

https://lirias.kuleuven.be/retrieve/361209.

[115] Sven Verdoolaege, Gerda Janssens, and Maurice Bruynooghe. “Equiva-

lence Checking of Static Affine Programs Using Widening to Handle

Recurrences”. In: Computer Aided Verification, 21st International Conference,

CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceedings. Ed. by

Ahmed Bouajjani and Oded Maler. Vol. 5643. Lecture Notes in Computer

Science. Springer, 2009, pp. 599–613. doi: 10.1007/978-3-642-02658-
4_44. url: https://doi.org/10.1007/978-3-642-02658-4_44.

[116] Sven Verdoolaege, Gerda Janssens, and Maurice Bruynooghe. “Equiv-

alence checking of static affine programs using widening to handle

recurrences”. In: ACM Trans. Program. Lang. Syst. 34.3 (Nov. 5, 2012),

11:1–11:35. doi: 10.1145/2362389.2362390. url: https://doi.org/10.
1145/2362389.2362390.

[117] Sven Verdoolaege et al. “Experience with Widening Based Equivalence

Checking in Realistic Multimedia Systems”. In: J. Electron. Test. 26.2

(Nov. 1, 2009), pp. 279–292. doi: 10.1007/s10836-009-5140-4. url:

https://doi.org/10.1007/s10836-009-5140-4.

[118] Sven Verdoolaege et al. “Schedule Trees”. In: 4th International Workshop

on Polyhedral Compilation Techniques. Jan. 20, 2014. url: https://www.
research.ed.ac.uk/en/publications/schedule-trees (visited on

04/01/2022).

[119] Hervé Le Verge, Christophe Mauras, and Patrice Quinton. “The ALPHA

language and its use for the design of systolic arrays”. In: J. VLSI

Signal Process. 3.3 (1991), pp. 173–182. doi: 10.1007/BF00925828. url:

https://doi.org/10.1007/BF00925828.

[120] Anna Zaks and Amir Pnueli. “CoVaC: Compiler Validation by Program

Analysis of the Cross-Product”. In: FM 2008: Formal Methods, 15th

International Symposium on Formal Methods, Turku, Finland, May 26-

30, 2008, Proceedings. Ed. by Jorge Cuéllar, T. S. E. Maibaum, and

Kaisa Sere. Vol. 5014. Lecture Notes in Computer Science. Springer,

2008, pp. 35–51. doi: 10.1007/978-3-540-68237-0_5. url: https:
//doi.org/10.1007/978-3-540-68237-0_5.

https://lirias.kuleuven.be/retrieve/361209
https://doi.org/10.1007/978-3-642-02658-4_44
https://doi.org/10.1007/978-3-642-02658-4_44
https://doi.org/10.1007/978-3-642-02658-4_44
https://doi.org/10.1145/2362389.2362390
https://doi.org/10.1145/2362389.2362390
https://doi.org/10.1145/2362389.2362390
https://doi.org/10.1007/s10836-009-5140-4
https://doi.org/10.1007/s10836-009-5140-4
https://www.research.ed.ac.uk/en/publications/schedule-trees
https://www.research.ed.ac.uk/en/publications/schedule-trees
https://doi.org/10.1007/BF00925828
https://doi.org/10.1007/BF00925828
https://doi.org/10.1007/978-3-540-68237-0_5
https://doi.org/10.1007/978-3-540-68237-0_5
https://doi.org/10.1007/978-3-540-68237-0_5

246 Bibliography

[121] Jie Zhao and Albert Cohen. “Flextended Tiles: A Flexible Extension of

Overlapped Tiles for Polyhedral Compilation”. In: ACM Trans. Archit.

Code Optim. 16.4 (Dec. 17, 2019), 47:1–47:25. doi: 10.1145/3369382. url:

https://doi.org/10.1145/3369382.

[122] Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul. “Visual Pro-

gram Manipulation in the Polyhedral Model”. In: ACM Trans. Archit.

Code Optim. 15.1 (2018), 16:1–16:25. doi: 10.1145/3177961. url: https:
//doi.org/10.1145/3177961.

[123] L Zuck, A Pnueli, and R Leviathan. Validation of Optimizing Compilers.

Computer Science Department, NYU, p. 13. url: https://cs.nyu.edu/
faculty/pnueli/ZPL01.pdf.

[124] Lenore D. Zuck et al. “Translation and Run-Time Validation of Loop

Transformations”. In: Formal Methods Syst. Des. 27.3 (Nov. 1, 2005),

pp. 335–360. doi: 10.1007/s10703-005-3402-z. url: https://doi.
org/10.1007/s10703-005-3402-z.

https://doi.org/10.1145/3369382
https://doi.org/10.1145/3369382
https://doi.org/10.1145/3177961
https://doi.org/10.1145/3177961
https://doi.org/10.1145/3177961
https://cs.nyu.edu/faculty/pnueli/ZPL01.pdf
https://cs.nyu.edu/faculty/pnueli/ZPL01.pdf
https://doi.org/10.1007/s10703-005-3402-z
https://doi.org/10.1007/s10703-005-3402-z
https://doi.org/10.1007/s10703-005-3402-z

MOTS CLÉS

Validation de Traduction, Modèle Polyédrique, Compilateurs de Tenseurs, Vérification Formelle

RÉSUMÉ

Les compilateurs de tenseurs sont utilisés dans des domaines comme le traitement d'image et l'apprentissage

profond pour générer du code bas niveau efficace à partir de spécification de haut niveau sur des tenseurs

multi-dimensionnels. Le code généré peut présenter une structure drastiquement différente de celle de la spé-

cification suite à l'application de transformations de boucles et de simplifications algébriques. La vérification

formelle des compilateurs de tenseurs est donc une tâche ardue, qui ne peut être traitée par les techniques

standard à base de bisimulations. Je propose une nouvelle méthode pour la vérification de compilateurs de

tenseurs en présence de transformations algébriques et de boucles. Cette méthode s'inspire des techniques

polyédriques de représentation de programmes, et s'appuie sur une association de raffinement depuis les

affectations dans le code bas niveau vers les définitions de tenseurs dans la spécification fournie par le com-

pilateur. Chaque exécution du compilateur est vérifiée par un outil de vérification indépendant implanté en

OCaml, faisant donc de la méthode un validateur de traduction. Cet outil de vérification est testé sur Halide,

un compilateur de tenseurs de niveau industriel.

ABSTRACT

Tensor compilers are used in domains such as image processing and deep learning to generate efficient

low-level code from high-level specifications on multidimensional tensors. After the application of both loop

transformations and algebraic simplifications to the specification, the resulting low-level code can have a dras-

tically different structure. This makes the formal verification of tensor compilers an arduous task, unsuitable

for standard bisimulation techniques. I propose a new method for the verification of tensor compilers in the

presence of loop and algebraic transformations. This method draws inspiration from polyhedral techniques for

program representation, and relies on a refinement mapping from assignments in the low-level code to tensor

definition in the specifications provided by the tensor compiler. Each run of the compiler is verified by an

independent verification tool implemented in OCaml, making the method an instance of translation validation.

This verification tool is tested on Halide, an industrial-grade tensor compiler.

KEYWORDS

Translation Validation, Polyhedral Model, Tensor Compilers, Formal Verification

	Contents
	Présentation
	1 Introduction
	2 Représentation des programmes comportant boucles et tableaux
	2.1 Le modèle polyédrique
	2.2 Systèmes Récurrents d'Équations Affines
	2.3 Combinateurs fonctionnels et règles de réécriture
	2.4 Le modèle de Halide

	3 Ensembles de Presburger
	4 Un langage intermédiaire pour les compilateurs de tenseurs
	4.1 Syntaxe
	4.2 Sémantique dynamique
	4.3 Sémantique à petit pas
	4.4 Typage

	5 Validation d'un compilateur de tenseurs
	5.1 Évaluation prophétique
	5.2 Évaluation symbolique
	5.3 Preuve de correction
	5.4 Génération des expressions prophétiques

	6 Évaluation expérimentale
	7 Vérification des réductions
	8 Travaux liés
	9 Conclusion

	1 Introduction
	2 Representations of Programs with Loops and Arrays
	2.1 The polyhedral model
	2.1.1 Instance sets
	2.1.2 One polyhedron, many polyhedra
	2.1.3 Program order
	2.1.4 Scheduling
	2.1.5 Code generation
	2.1.6 Access Relations
	2.1.7 Dependence analysis

	2.2 Systems of Affine Recurrence Equations
	2.3 Functional Combinators and Rewrite Rules
	2.4 The Halide model
	2.4.1 Algorithms
	2.4.2 Schedules
	2.4.3 Semantics of Halide Specifications
	2.4.4 Reduction from affine Halide algorithms to SAREs

	3 Presburger sets
	3.1 Presburger arithmetic
	3.2 Named tuples
	3.3 Symbolic sets
	3.4 Unit sets
	3.5 Symbolic relations
	3.6 Piece-wise Expressions
	3.7 Lexicographic optimization
	3.8 Notations and Conventions

	4 An intermediate language for tensor compilers
	4.1 Syntax
	4.2 Dynamic semantics
	4.3 Soundness
	4.4 Typing

	5 Verifying a tensor compiler
	5.1 Verification conditions
	5.2 Symbolic Values and Heaps
	5.3 Prophetic Evaluation
	5.4 Symbolic Evaluation
	5.5 Correctness proof
	5.6 Generation of prophetic expressions

	6 Experimental evaluation
	6.1 Generation of Sched from Halide
	6.2 OCaml prototype
	6.3 Benchmark selection
	6.4 Evaluation

	7 Verifying reductions
	7.1 Parallel Implementations of Reductions
	7.2 List Homomorphisms
	7.3 Implementing Reductions
	7.3.1 Reductions as Nested Computations
	7.3.2 Initialization
	7.3.3 Partial Reductions
	7.3.4 Consecutive Reductions
	7.3.5 Differential memories
	7.3.6 Reduction-Aware Dynamic Semantics

	7.4 Specification of Reductions
	7.5 Validation of Programs with Reductions

	8 Related work
	8.1 Translation Validation
	8.2 Affine Program Equivalence
	8.3 Other Approaches

	9 Conclusion
	9.1 Summary of My Approach and Results
	9.2 Ecosystem Integration
	9.3 Sparse Arrays
	9.4 Floating-Point Arithmetic
	9.5 Overflow Checking
	9.6 Non-Affine Specifications and Schedules
	9.6.1 Non-Affine Reads
	9.6.2 Non-Affine Specializations
	9.6.3 Non-Affine Writes and Histograms
	9.6.4 Parametric Tiling

	9.7 Array linearization
	9.8 Array Aliasing and Overlapping Arrays
	9.9 Garbage Writes
	9.10 Formal Verification

	Bibliography

