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Depuis plus de dix ans, une coopération s'est établie entre I'Université Paris-Saclay et la Faculté
d'Ingénierie de I'Université Nationale du Laos (FE-NUOL) dans le domaine des énergies
renouvelables afin de fournir des systéemes de travaux pratiques aux enseignants et étudiants
laotiens dans le domaine du génie électrique. Cette collaboration a pour objectif de développer
une pédagogie de I'expérimentation en ingénierie et de faciliter I'électrification des zones isolées
a partir de ressources renouvelables (énergie solaire photovoltaique et hydroélectricité). Au
Laos, le taux d'électrification des habitations a progressivement et régulierement augmenté
depuis la fin des années 90. En effet, il a été multiplié par environ cing sur les 20 dernieres
années, passant de 15 % en 1995 a environ 73 % en 2010. Entre autres, I'électrification hors
réseau utilisant les ressources énergétiques renouvelables locales, c'est-a-dire les rivieres et
I'énergie solaire, s'est concentrée sur les zones rurales et isolées. C'est pour cette raison que le
gouvernement laotien s'est fixé l'objectif ambitieux de fournir de I'électricité a 90 % de la
population d'ici 2030 [1].

L'énergie hydroélectrique est utilisée depuis de trés longues années au Laos, et le pays
dispose de structures de formation (cours d'hydroélectricité en génie électrique a FE-NUOL),
ce qui n'est pas le cas pour le photovoltaique. La création d'un site photovoltaique pour la
formation d'ingénieurs et de techniciens, ainsi que la mise en ceuvre d'activités de recherche est
donc une priorité pour FE-NUOL. Sa mise en ceuvre se fera grace a la collaboration avec des

chercheurs et ingénieurs francais.

FE-NUOL et I'Université Paris-Saclay ont signé un accord pour créer le premier
laboratoire de recherche au Laos, dans le domaine du génie électrique, afin de soutenir les

enseignants laotiens dans leurs activités d'enseignement et de recherche.

La mise en place d'un laboratoire est un objectif ambitieux qui doit étre envisage a long
terme et réalisé étape par étape. Le théme principal du laboratoire est I'optimisation des réseaux
intelligents. Un réseau intelligent est un réseau énergétique autonome et intelligent composé de
plusieurs sources d'énergies renouvelables, de dispositifs de stockage d'énergie, de dispositifs

de contréle et de communication pour la gestion et le suivi de I'énergie.

Dans ce cadre, cette thése de doctorat est consacrée au développement de deux systéemes
photovoltaiques isolés identiques, I'un en France et I'autre au Laos. Le sujet principal de la thése

est d'évaluer la fiabilité et I'efficacité des modules photovoltaiques a l'aide d'un systeme de
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surveillance de I'état de santé peu colteux mais efficace. Le travail a commencé en France pour

béneéficier de I'expertise locale avant le transfert de compétences.

Aprés une baisse en 2020, la demande d'électricité devrait augmenter de plus de 1000
térawattheures (TWh) en 2021, bien au-dela des niveaux prépandémiques. En 2020, la
croissance sans précédent des énergies renouvelables a permis de réduire la consommation
d'énergie, ce qui s'est traduit par une augmentation significative de 28 % de la production
d'énergie renouvelable et une pression sur la production non renouvelable. En conséquence, les
émissions mondiales du secteur de I'électricité ont diminué d'environ 3 %, soit la plus forte
baisse jamais enregistrée. En 2021, une nouvelle augmentation était attendue, mais elle sera

bien inférieure a I'augmentation de la demande, comme le montre la figure 1 [2].
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Fig. 1: Evolution de la production mondiale d’électricité, 2014-2021

Afin de satisfaire les besoins énergétiques futurs et de réduire I'impact environnemental,
I'utilisation d'énergies propres et renouvelables a récemment été reconsidérée, en particulier
I'énergie solaire. Le solaire photovoltaique a connu une nouvelle année record, avec de
nouvelles installations atteignant 139 GW, ce qui porte le total mondial a 760 GW, y compris

la capacité en réseaux et en sites isolés, comme le montre la figure 2 [3].
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Fig.2 : Capacité mondiale et augmentation annuelle du solaire PV
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Gréace aux différents facteurs stimulants (réduction des codts de production et politiques
de soutien), le retour sur investissement des installations photovoltaiques s’est amélioré.
Cependant, comme tout autre processus industriel, une installation photovoltaique peut étre
sujette a divers défauts et anomalies, qui dégradent les performances du systeme ou, pire,
arrétent la production. Par conséquent, la productivité peut étre considérablement affectée en

réduisant la rentabilité en raison de colts de maintenance plus élevés.

Dans les centrales solaires, les panneaux photovoltaiques sont les éléments clés. Ils sont
sujets a des défauts intrinseques (jaunissement, points chauds, par exemple) ou extrinseques
(ombrage, encrassement, rupture de cellules) qui doivent étre diagnostiqués a leur stade le plus
précoce pour atténuer les pertes de production et prévenir les dommages irréversibles. Les
méthodes de détection et de diagnostic des défauts (FDD) sont nécessaires pour surveiller en
permanence le systéeme étudié. Les approches FDD peuvent étre décomposées en quatre étapes

modélisation, prétraitement, choix et analyse des caractéristiques. La modélisation
(construction de la connaissance) est basée sur des modeles physiques ou/et des données.
Plusieurs techniques peuvent étre utilisées pour le prétraitement dont I'objectif est de préparer
I'extraction des caractéristiques les plus sensibles aux défauts, qui seront analysées pour détecter

et classer les défauts.

La these a pour objectif de développer un systéeme de surveillance de I'état de santé basé
sur l'analyse des courbes I-V et sur le modéle analytique des modules PV. En effet, les courbes
I-V contiennent des informations utiles sur I'état de santé des modules PV. La solution doit étre

efficace mais pas chere pour faciliter le déploiement dans les zones a faibles revenus.
Le manuscrit est structuré en trois chapitres.

Le chapitre 1 est consacré au développement de la plateforme expérimentale. Elle comprend
les capteurs (irradiance, courant, tension, température), les systémes d'acquisition de données
et de communication, I'émulateur de défauts, et le traceur I-V. Les principaux sujets abordés
dans ce chapitre sont : la structure et le fonctionnement du traceur I-V a faible codt,
I'optimisation du nombre et de la distribution des points mesurés sur la courbe I-V. Le chapitre
décrit également la méthodologie pour calibrer et valider le traceur I-V. Le chapitre se termine
par la description du prétraitement indispensable des courbes I-V mesurées pour éliminer les

courbes anormales dues aux effets de sur-illumination sur le panneau PV.

Dans le chapitre 2, nous présentons le modele analytique du module PV. Sur la base de
la synthése de la littérature, nous avons retenu le modéle a une diode caractérisé par ses cing

parameétres. Nous avons implémenté I'algorithme de Levenberg-Marquardt pour extraire les
iv
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parametres du modéle & partir de la courbe I-V. Les modéles analytiques des parametres ont été
validés avec des données expérimentales mesurées sur des modules PV sains a travers une
méthodologie en quatre étapes : les deux premiéres étapes sont consacrées a l'apprentissage,
tandis que les deux derniéres sont destinées a la validation. Ces modéles analytiques sont
combinés avec le modéle numérique dans Matlab-Simulink pour construire le modele hybride

qui sera utilisé comme référence pour générer des courbes I-V saines.

Le chapitre 3 est consacré au développement de deux méthodes de détection et
diagnostic des défauts basées sur les caractéristiques de la courbe courant-tension (I-V). Dans
un premier temps, une revue de la littérature est réalisée sur les différents défauts d'un systéeme
PV. La deuxiéme partie du chapitre présente les méthodes de détection de défauts, leur mise en
ceuvre, ainsi que les résultats de simulation et expérimentaux pour les trois cas de défauts que
nous avons étudiés : dégradation de la résistance série, dégradation de la résistance shunt, et

ombrage partiel.

Une conclusion et des perspectives cloturent le manuscrit.
Contribution

Dans notre étude, un traceur embarqué a faible codt est développé et optimisé pour
mesurer les vingt-six points de la courbe 1-V en moins de 0,2 s afin de minimiser la durée de
I’interruption de la production électrique. Le traceur proposé est validé avec un analyseur du
commerce. Les données expérimentales sont utilisées pour valider le modele analytique du
module PV. Ce modéle s’appuie sur les cinq parametres (I, R, Rsp, Iy and n) du circuit
électrique a une diode. Il est combiné au modéle numeérique de Matlab-Simulink pour mettre
en place le modéle hybride qui sera utilisé comme référence pour le diagnostic. Ce modéle est
validé avec une erreur relative inférieure a 3% pour plusieurs conditions environnementales
(éclairement et température). Les données mesurées sont utilisées pour extraire les cing
parameétres du modele électrique équivalent ainsi que les principales caractéristiques de la
courbe I-V (courant (I,,), tension (1,,), tension de circuit ouvert (Voc), courant de court-

circuit (Isc) et puissance maximale (Pmpp)).

Les courbes I-V mesurées sont aussi utilisées pour évaluer les deux méthodes de diagnostic des
défauts notées M1 et M2. M1 s’appuie sur le modele analytique des cinq paramétres

Prppr Voeor Isc) €t le

(Iyn, Rs, Rsp, I, m) alors que M2 utilise les cing caracteristiques (I, Vyy, Brpp

pvr Ypvr
modéle hybride pour genérer les courbes 1-V de référence. Les résidus sont calculés entre les

indicateurs des défauts extraits des mesures expérimentales et ceux issus des courbes de
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référence. Trois cas de défaut ont été étudiés : dégradation de la résistance série R, dégradation
de la résistance shunt Ry, et I’ombrage partiel. Les résultats basés sur des données
expérimentales obtenues pour différentes températures et éclairements ont montré que la
dégradation des résistances série et shunt et lI'ombrage partiel étaient mieux détectés par les

caractéristiques qu'avec les parametres.

[1]  “Annual Reports — EDL-GENERATION PUBLIC COMPANY.” [Online]. Available:
https://edlgen.com.la/annual-reports/?lang=en. [Accessed: 25-July-2022].

[2] 1EA, “World Energy Outlook 2021,” Technical Report, 2021. [Online]. Available:
https://www.iea.org/reports/world-energy-outlook-2021 [Accessed: 25-July-2022]

[3] RENZ21, “Renewables 2021 Global Status Report”, Technical report of the Renewable
Energy Policy Network for the 21st century, Paris, 2021
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General introduction

General introduction

Background and motivation

For more than ten years, cooperation has been established between Université Paris-
Saclay and the Faculty of Engineering of the National University of Laos (FE-NUOL) in
renewable energies to provide practical work systems to Laotian teachers and students in the
field of electrical engineering. This alliance aims to promote a pedagogy of experimentation for
Laotian engineering students and facilitate the electrification of isolated areas using solar and
hydroelectric energy. In Laos, the household electrification rate gradually and steadily
increased by the end of the 90s. Indeed, it rose nearly fivefold during the last 20 years,
from 15 % in 1995 to around 73 % in 2010. Among others, off-grid electrification using
local renewable energy resources, i.e., rivers and solar power, has been focused on rural,
isolated areas. Therefore, the Government of Laos has set an ambitious goal of providing
electricity to 90% of the population by 2030[1]. Hydroelectric energy has been used for
many Yyears in Laos, and the country has training facilities (hydroelectric course in Electrical
Engineering at FE-NUOL), which is not the case for photovoltaics. Creating a photovoltaic site
for the training of engineers and technicians, as well as the implementation of research activities
is, therefore, a priority for FE-NUOL. Its implementation will be done with the support of
French researchers and engineers.

FE-NUOL and the Université Paris-Saclay have signed an agreement to create the first research
laboratory in Laos, which is focused on Electrical Engineering to support the Laotian teachers
in their teaching and research activities.

A laboratory setting is an ambitious objective that should be envisaged in the long term
and done step by step. The main topic of the laboratory is the optimization of smart grids. A
smart grid is an autonomous and intelligent energy network composed of several renewable
energy sources, energy storage devices, control and communication devices for energy
management and monitoring.

In this framework, this Ph.D. thesis is devoted to develop two identical isolated
photovoltaic-based smart grids, one in France and one in Laos. The Ph.D.'s main topic is to
assess the PV modules' reliability and efficiency with low-cost but effective health monitoring.

The work started in France to benefit from the local expertise before the transfer of competence.

Vii
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Solar Energy

Following a decline in 2020, power demand is predicted to rise by over 1000 terawatt-
hours (TWh) in 2021, well beyond pre-pandemic levels. In 2020, unprecedented growth in
renewables coincided with a drop in energy consumption, resulting in a significant increase of
28% in renewable energy generation and a strain on non-renewable output. Consequently,
worldwide power sector emissions fell by roughly 3%, the highest decrease on record. In 2021,
another record increase in renewable energy was expected, but it will fall well short of the

increase in demand, as seen in Fig.1 [2].
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Fig.1 : Changing in global electricity generation, 2014-2021
In order to satisfy future energy needs, and reduce environmental impact, the use of
clean, renewable energy has recently been reconsidered, particularly solar energy. Solar PV
experienced another record-breaking year, with new installations reaching as high as 139 GW,
bringing the worldwide total to 760 GW, including both on-grid and off-grid capacity. These
early worldwide figures are unreliable, and the amount of uncertainty grows year after year, as

seen in Fig.2 [3].
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Fig.2 : Solar PV Global capacity and annual addition, 2010-2020
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Thanks to the different stimulating factors: reduction of production costs and support

policies. These stimulating factors make the return on investment of photovoltaic installations
more and more enjoyable. However, like all other industrial processes, a photovoltaic system
can be subject to various defects and anomalies, which degrade the system performance or,
worse, stop production. Consequently, productivity can be significantly affected by reducing
profitability due to higher maintenance costs.
In solar power plants, the PV panels are the key components. They are prone to intrinsic defects
(yellowing, hotspots, for example) or extrinsic (shading, soiling, cell breakage) that should be
diagnosed at their earliest stage to mitigate production losses, and prevent irreversible damages.
Fault detection and diagnosis (FDD) methods are required to monitor continuously the system
under study. FDD approaches can be decomposed in four steps; modelling, preprocessing,
features selection, and features analysis. The modelling (knowledge building) is based on
physical models or/and data. Several techniques can be used for the preprocessing whose target
IS to prepare the extraction of the most sensitive features, which will be analyzed to detect and
classify the faults.

I-V curves embed useful information on the health status of PV modules. This thesis
aims to develop a health monitoring based on the analysis of I-V curves, and the analytical
model of PV modules. The solution should be efficient but not expensive to ease the deployment

in low income areas.

Thesis outline

The manuscript is structured in three chapters.

Chapter 1 is devoted to the development of the experimental platform. It includes the
sensors (irradiance, current, voltage, temperature), the data acquisition and communication
systems, the faults emulator, and the I-V tracer. for emulating faults in PV installation. The
main topics in this chapter are: the structure and the setting of the low-cost I-V tracer, the
optimization of the number and distribution of the points on the 1-V curve. The chapter also
describes the methodology to calibrate and validate the I-V tracer. The chapter is closed with
the description of the mandatory preprocessing of the measured 1-V curves to eliminate
abnormal curves due to over-illumination effects on the PV panel.

In chapter 2, we present the analytical model of the PV module. Based on the literature
review, we have retained the single diode model characterized by its five parameters. We have
implemented the Levenberg-Marquardt algorithm to extract the model parameters from the I-

V curve. The analytical models of the parameters have been validated with experimental data
ix
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measured on healthy PV modules through a four-step methodology: the first two steps are
devoted to the training, while the last two are for validation. These analytical models are
combined with the numerical model in Matlab-Simulink to build the hybrid model that will be
used as a reference to generate healthy |-V curves.

Chapter 3 is dedicated to the development of two fault detection and diagnosis methods
based on the characteristics of the current-voltage (I-V) curve. First, a literature review is
conducted on the various faults in a PV system. The second part of the chapter will present the
fault detection methods, their implementation, and the simulation and experimental results for
the three fault cases we have studied: series resistance degradation, shunt resistance
degradation, and partial shading.

A conclusion and future works close the manuscript.

Contribution

In our study, two FDD methodologies have been evaluated. The first one uses the
parameters of the single diode model (SDM) as fault features. The second one uses the current

and voltage of the PV module, and the extracted characteristics;PV current (I,,), PV
voltage(V},,,) maximum power (P,,,), Short circuit current (I,.) and open circuit voltage (V,.)

as fault features.
The main contributions are:

- Design and implementation of a low-cost embedded I-V tracer with a logarithmic
distribution of the points (LDP) on the I-V curve to reduce the measurement time,

- Proposal of a four-step methodology to validate the PV model: the first two steps for
training and the last two for validation,

- Experimental validation of the analytical equations used to calculate the parameters of
the SDM,

- Evaluation of series or shunt resistance degradation and partial shading using either
SDM parameters or characteristic points of 1-V curves as fault features under a wide

variety of environmental conditions.

[1] “Annual Reports — EDL-GENERATION PUBLIC COMPANY.” [Online]. Available: https://edlgen.com.la/annual-
reports/?lang=en. [Accessed: 25-July-2022].

[2] IEA, “World Energy Outlook 2021,” Technical Report, 2021. [Online]. Available: https://www.iea.org/reports/world-energy-
outlook-2021 [Accessed: 25-July-2022]

[3] REN21, “Renewables 2021 Global Status Report”, Technical report of the Renewable Energy Policy Network for the 21st century,
Paris, 2021
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I.1. Introduction

Monitoring PV plants is critical to guarantee high output power availability and
reliability and minimize maintenance costs. The I-V curve is recognized as one of the most used
information to retrieve the health status of PV modules. The I-V curve is measured with an I-
V tracer. Besides the current and the voltage, the I-V tracer also measures environmental data.
The most popular is the irradiance, and the temperature of the PV module. There are several

commercial products already available in the market.

Although they have proven effective in monitoring PV modules, I-V tracers are not widely used
mainly because of their cost and because their operation requires a momentary interruption in
production. Therefore, if we want to promote the deployment of |-V tracers at the module level

in a PV plant, we need to offer a solution that is low cost and minimizes the measurement time.

The objective of this chapter is to present the experimental test bench developed for the
health monitoring of a PV module. Section 1.2 reviews the state-of-art of 1-V tracers. Section
1.3 presents the low-cost I-V tracer, the electrical circuit to emulate the degradation of series
and shunt resistances, and the data acquisition system. The distribution of points on the I-V
curve is presented in Section 1.4. Section 1.5 is devoted to calibrate and validate the 1-V tracer.
Section 1.6 presents the preprocessing of the I-V curve to eliminate the over-illumination issue.

Finally, Section 1.7 closes the chapter.

1.2. I-V tracer: state-of-the-art

The operating point of the PV module must be varied between short-circuit and open-
circuit operation to measure the 1-V curve. The most common method is to use a variable load,
either a resistor, a controllable electronic load, a capacitive load, a four-quadrant power supply
or a DC-DC converter [1][2].

I.2.1. Variable load resistance
The variable load resistance technique is illustrated in Fig.l.1 [3]. The value of R is

adjusted manually from zero to infinity while the current and voltage are measured with a

multimeter [4]. Although the method is simple, it is best suited to low-power modules to
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minimize Joule losses. Moreover, the short-circuit current (I;.) can not be reached, and the

reverse bias characteristics cannot be identified [2].

Variable resistance

Fig.l.1: Variable load resistance technique

1.2.2. Electronic load technique

The schematic circuit of the I-V tracer with a power switch (e.g., a MOSFET) used as
the load is shown in Fig.l.2. The operating point of the PV panel moves along the |-V
characteristic curve as shown in Fig.1.3 thanks to the variation of the gate voltage (v;s) with a
PWM control signal. It is shown that this technique employed to measure the I-V characteristics
of PV panels under real operation conditions is reasonable. The result obtained shows the
capacity for monitoring the degradation of the PV characteristics accurately, at low cost, and
with flexibility [5]. Nevertheless, if the array's voltage is greater than 1000 V, the power

switches need to be connected in series, which requires an equalizing circuit [6].

DU
e )
1 1
i EI# U iD ar
i !
Vov ! P contrel L i Xy G)
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H i
| - Ves
— — =

PV panel

Fig.1.2: Electronic load technique for the I-V tracer
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Fig.1.3: The I-V curve and the MOSFET characteristics [2]

The disadvantage of this technique is that a heatsink is required to dissipate the heat from the
transistor. Then, the size and weight of the tracer are increased. To conclude, this method is

more suitable for low-power applications.

1.2.3. Capacitive load technique

Fig.l.4 shows the schematic circuit with the capacitive load and the discharge resistance.
When S2 is turned OFF and S1 is turned ON, the voltage across the capacitor rises
progressively, and the current reduces as the capacitor charge increases. When the charge is
fully completed, the current delivered by the PV module drops to zero, and the device works

under the open circuit status.

- —

S2

Capacitor
Discharge resistance

PV panel

Fig.1.4: Capacitor load technique for I-V tracer
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High-quality capacitors (with low Equivalent Series Resistance) are preferable. The capacitor
bank may be sized to fit the measurement’s duration and resolution’s requirements [7].
According to the literature, the capacitive load technique is suitable for PV arrays with an open-
circuit voltage of up to 500 V and a maximum short-circuit current of 20 A [8]. It is also used
to determine the global MPP [9]. However, the capacitor bank's size and cost will increase for
high-power applications. Furthermore, the duration of the measurement strongly depends on
the PV parameters and the charging behavior of the capacitors. Fig.1.5 shows the different
technologies and voltage ranges of several major PV panel manufacturers (e.g., LG Energy,

SunPower, REC, Winaico, and Q-Cells).

100 kV o
R [ 1 - V tracing capacitors

N f_ _ Power capacitors

10 kV [ Plastic film capacitors
[[] Ceramic capacitors
‘ [[] Tantalum capacitors
° LKV | 270 Aluminum electrolytic
) capacitors
8
° [C] Double-layer and
-~ supercapacitors
100 V
10V
Y l
1 pF 1 nF 1 uF 1 mF 1F I kF 1 MF
Capacitance

Fig.1.5: I-V capacitor: technologies and voltage ranges [2]

I.2.4. Four-quadrant power supply

A four-quadrant power supply can provide and absorb power; it is bidirectional in
current and voltage. It can operate as a variable load. The system can be operated in the four
quadrants, as shown in Fig.1.6. Even if the PV panel operates in the first quadrant, the points in
the second and fourth quadrants might be a useful diagnostic tool for detecting mismatching,

such as one or more partly shaded cells when connected in series [10].
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Fig.l.6: 1-V curve and four-quadrant power supply

The output of a four-quadrant power supply can be varied by a reference input signal or

controlled to sweep a range of values, as seen in Fig.l.7.

Control
signal

PV panel

Power quadrant
power supply

Fig.1.7: Basic circuit for an I-V tracer using the four-quadrant power supply technique

Different methods have been developed to regulate the voltage of the four-quadrant power
supply [6, 13, 14]. This technique is limited to very low-power applications (< 1 kW) mainly
because of its cost and size. Therefore, it is mostly used for laboratory tests.

1.2.5. DC-DC converter
In several applications, the capability of DC-DC converters to simulate a variable

resistor was investigated and evaluated. The DC-DC converter connected to the load resistance

R, is controlled with a variable duty cycle. As a consequence, the operating point moves along
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the 1-V curve of the PV module. The circuit is displayed in Fig.I.8. One disadvantage of the DC-

DC converter technique is the generation of voltage and current ripples.

DC-DC
Ry
Converter

PV panel i
Duty cycle

Sweep

Fig.1.8: DC-DC converter used as an I-V tracer

The various topologies of DC-DC converters for measuring 1-V curves were investigated. From

the survey of the literature, several conclusions can be drawn:

o Buck-Boost-Derived structures are the only ones that enable a full curve sweep,

o Buck structures do not enable tracing curve points near Isc, but Boost structures do not
allow tracing of curve points near VVoc,

o The reproduction of the I-V curve is obtained with reduced ripples with SEPIC (Single-
Ended Primary Inductance Converter), and Cuk structures. According to experimental

data, these topologies are optimum for this application [11].

A low-cost DC-DC Cuk converter was designed to measure 1-V curves of PV modules up to
300W; the maximum values of open-circuit voltage and short circuit current are 50 V and 10A,
respectively. The tracer was tested under different operating conditions, and the findings were
compared to those of a commercial device. Even with simple electronic control circuitry and
low-cost (265% per unit), low-resolution, it has exhibited sufficient accuracy [12]. In another
study, a boost bidirectional DC-DC converter was employed to measure the 1-V curves of a
solar generator. These I-V curves were subsequently used to evaluate solar inverters by
simulating these generators. A 15 kV prototype was developed and evaluated under real
environmental conditions [17, 18]. Compared to its competitors, the technique using DC-DC
converter has the best accuracy, sweep speed, maximum rating, and resolution performance.

Furthermore, it might represent a future trend in I-V curve tracers since control techniques can
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be applied to produce more stable and precise data. However, there are still challenges to fulfill

market expectations in terms of volume and cost [2].

The comparison of the main techniques was done in [14], based on the following features:
flexibility, fidelity, and response time to trace the curve, complexity, implementation cost, and
application. The results are shown in Table I.1. The findings demonstrate that the electronic,
capacitive, and DC-DC converter approaches have high fidelity, complexity, and applicability
for PV cells, modules, and arrays. The DC-DC converter offers higher flexibility.

Table I.1: Comparison of the I-V tracers [14]

Method/Criteria(*) Flexibility Fidelity Respond times Cost Complexity | Resolution Applicability
Variable resistance Medium 90.5% 11s 15.42% Low 247 points Cells/Low power modules
Electronic load Low 99% 22s 6.33% Medium 730 points Cells/module/Array
Capacitive load Low 98.8% 43s 12.44% High 747 points Cells/modules/ low power array
DC-DC converter High 98.1% 35s 15.98% High 70 points Cells/modules/arrays
*) I - : -
e Flexibility: It addresses the capability of drawing the 1-V curve from a certain point and
drawing only specific areas of the curve. Flexibility is classified as high, medium, and
low,

o Fidelity: Evaluates the error between the measured I-V curves and the reference curves
obtained from the simulation,

e Response time: Refers to the measurement time of I-V curve unit in seconds,

e Cost of the microcontrollers and electronic parts used to implement the PV tracer,

e Complexity: refers to method implementation technique, considering the circuit
designing, programming, etc. it is classified by high, medium, and low,

e Resolution: refers to the number of points on I-V curve,

e Applicability: refers to the applicability of the tracing I-V curve in the different level
of application such as PV cells, modules, or arrays.

The I-V tracer based on a DC-DC converter was selected for our research based on the literature
study. The next section will detail the proposal of a low-cost embedded I-V tracer. A
logarithmic distribution of the points (LDP) on the I-V curve is selected to reduce the

measurement time.

1.3.  Experimental Test Bench

The experimental test bench was installed in the Institut Universitaire de Technologie
de Cachan (IUT de Cachan), Université Paris-Saclay. The simplified schematic diagram of the
experimental system is shown in Fig.l.9. The main experimental setup consists of the
measurement devices such as a low-cost I-V tracer, a PV module temperature sensor TC 74, a
reference cell to measure the irradiance in the plane of area. It also includes a fault emulator of

series (Ry), and shunt (R,;,) resistances degradation with several fault levels. A data acquisition
9
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system (DAQ) described in more detail in section 1.3.4, transfers the measurements stored in

an Excel® file.
z.wires : 1V Characteristic of PV module
Test sumber
Irradiance sensor board e i e,
PV module temperatare T,,, 0] z \,.
Irradiance G, |W/m’| E :
= Serial link e —- =
=T oo W tracer - T
12 CAN BUS Maximam power Prax (W] 6120
Mazimam voltage Vmpp(V] 1571 P-V Characteristic of PV module
[T rAp——T :
T Control circuit board for Open Crenk et Ye¢ V) s = Sk
I degradation of Rs and Short circut currvat Isc [ A] =
Rsh £
I 1 .
Rs and Rsh degradation Voltage [V]

circuit

Fig.1.9: Schematic diagram of the testbed

1.3.1. Low-cost I-V tracer
The proposed I-V tracer is designed to characterize the I-V curves of the PV module.

The device installed on the back of the PV module allows measurement under real operating
conditions. The PV module under test is of Type A (See Table.l.2); it consists of two strings,

each one composed of 18 cells with a bypass diode.

Table.l.2: Characteristics under Standard Test Conditions (STC)

Maximum Power (Py,,) 87 W (+10%/-5%)
Maximum Power Voltage (V;,,,) | 17.4V

Maximum Power Current (I,,,) | 5.02 A

Open Circuit Voltage (V,.) 21.7V

Short Circuit Voltage (Ig¢) 5.34 A

Temperature Coefficient of V,, | —0.37 %/°C
Temperature Coefficient of I 0.038 %/°C

Our first objective is to develop a PV module’s low-cost I-V tracer. This will facilitate its
deployment in a power plant consisting of several modules. The following PV module
characteristics are retained for the design: P4, = 100 W,I,. = 10A, V,. = 30 V. Therefore, we
opted for low-cost electronic equipment (especially the microcontroller, and the sensors) as

follows:

- Microcontroller Nucleo 32 (model f303K8 with 32 bits, 72 MHz, 64kB of flash
memory, and 16kB SRAM memory, with 12 channels of 12bits A/D converters). It is
inexpensive and integrated with the CAN bus,

10
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- PV Panel Isolation: two low-voltage electric relays are used to disconnect the PV panel
during the measurement,

- Current measurement: shunt resistance [20],

- Voltage measurement: resistive voltage divider [22],

- Temperature measurement: TC 74 sensor.

PV +12v

L
El icrel
L ectric relay |
i’— |
\ R1

- F_ MOSFET
I MOSFET <«’WM2 il 1 []

}
i

RL510 IRL510
—
T RL=220
R2 I €
1 ! | =
Electric relay
-
+12V
+PV
== = = | Driver Vee
Temperature sensor TC 4427
- MCP 602
12C
TC74 Microcontroller — Nucleo-F303K8 arm
t Serial link Mbed
g BUS CAN | |
v o ; AETSEESIRTE
L bt LL DATA ACQUISITION
MPC2551 DIP SWITCH

Fig.1.10: Main circuit design

The developed I-V tracer is shown in Fig.1.10. The TC74 sensor is used to measure the
temperature of the PV module, which is transferred to the microcontroller through an 12C bus.
A CAN transceiver MCP2551 allows communication between the different electronic boards
and the other CAN transceivers in the system. The IP address of the I-V tracer can be accessed
using the dip switch. Mbed online compiler is used to write and upload the code. The driver
TC4427 controls the two MOSFET IRL350s, one of which is used to control the two electric
relays and the other one to change the resistive load. The distribution of the points on the 1-V
curve is used to generate the duty cycle to control the load. Finally, the I-V characteristics and
temperature are transferred to the computer via a serial link. The cost of the proposed I-V tracer
Is estimated at 35€/unit. The comparison with several commercially available I-V tracers is

displayed in Table.l.3.

11
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Table.l.3: Comparison with commercially available 1-V tracers

Type R;iﬁggs Cost (€) Resolution Acquisition Application
Fr;%zcr)sed -V 181 ms 35 26 points Auto&Cont Module
FTV 2000 IV .
tracer [15] - 3650 500 points Manual Module
I['l\é]SOOW tracer - 4300 128 points Manual&Auto Module/String/Array
Electronic load
Model 63600 2us 1o > 4000 L ATO% Manual&Auto Module/String/Array
. 40ms points
series [17]
MP 11 IV .
checker [18] 5s - 400points Manuel&Auto Module
Huawei Smart I- Module/ String/Array
V tracer 1s - 128 points Manual&Auto
Diagnosis [19]
Solmetric PV
analyzer I-V 0.05-2s 5690-11483 100 t0 500 Manuel &Auto Module/ String
points
curve tracer [20]
e Electric relay
The 1-V tracer must be first K- 2 PV Lower p
isolated from the PV system to ensure the 13 PV- 12
efficiency of the PV characteristic. Two L - =
electric relays are presented in Fig.l.11 to AD?
provide electrical isolation. The relay is Cmd | Relay
) K+ 2 PV Upper
disconnected from the PV system when a D . ; PV+ T
12 VDC is applied to the coil. These coils G 1 ‘ T
are activated by connecting one side to IRL30 A0 .y
12V and the other one to the drain of an | Ccmd, Relay
IRL530. This one has its source connected _ _
Fig.L.11 : Electric relay
to GND, so when we provide a 12V signal to the
transistor's gate, it turns on, allowing the coils to switch their relays.
e load resistance (R;)
Fig.l.12 shows the load resistance circuit, ~L ‘
where L is an inductance used to reduce the Output TC4427 5 [L} < 22 Omh
1 :
current ripples. The load resistance and the 'y IRL530
MOSFET are connected in parallel. The +Shunt

Fig.1.12 : Load resistance circuit

MOSFET works with a 50 kHz PWM signal. In

12
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this technique, the I-V tracer works as a variable resistance from the short-circuit (when the
duty cycle is 0) to the open circuit (when the duty cycle is 1).

e Transistor control

As known, the transistor works under 12 VDC, and the microcontroller Nucleo has only the
output signal at 3.3V (Digital to analog

outputs). Hence we need to upgrade these _ = Cmdl duty cyele EL} 32
signals to 12 VDC. For this, we use a TC4427. ”@ B O\EJDAEH;F R I
INB ouTB———
The circuit is specially designed to control  cmdreay Tcas27
MOSFET. We connect the microcontroller's I cmdredy
output to the TC44277's input and then
associated outputs to the correct transistor's
gates, using 12V from the power supply
source, as shown in Fig.l.13. Fig.I.13 : Transister control circuit

e Voltage and current measurements

The voltage and current of the PV module are measured using a resistive voltage divider

and a shunt resistance, respectively, as shown in Fig.1.14. .

L
Output TC4427 ¢ 220mh
IRL530
Shunt (0.1 umh)

GND —
ReK)

J‘_ \Voltage_PY —
vcc
R2(1.5K) ©=100nF GND
By R{10K) =
1 Mceeg2 R(1.2K) \_current_PV

1

ADF
AJr‘rcnuunF
GND

Fig.1.14: Circuit for voltage and current measurements

—

|_<

C1(310nF)

The two resistors R1 and R2 are connected in series, and the voltage divider is connected to the
ground. The input voltage of these resistors is U, and the output voltage U,,,; iS measured at
R2's terminals. The conversion rate is 30V to 3.3V. Hereby, the value of the resistors can be

calculated as below :

Rz(volt)
U =——V; 1.1
out(volt) R1(wolt) +Rawolt) in(volt) ( )

And
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G = ety _ 330 4 (1.2)

Uin(olt) 30
Therefore,
Rawoiry = 1.5 kQ
Riworr) = 15 kQ
Where G is the gain of the resistive voltage divider.

A shunt resistance (0.1 © in our case study) connected in series with the load resistance
is used as as current sensor. The voltage across the shunt's resistance is amplified before usage.
Indeed when the transistor short-circuits the load resistance, the current flowing into the shunt
resistance is the short-circuit current sized at 10A. Then, the maximum voltage (U,,,4) Can be

calculated as below:
Umax(curr) =012 X 10 A =1V, (1.3)

Therefore, we have an amplifier gain of 3.3 to increase the voltage between 0-3.3V. The

calculation of the amplifier’s resistors is:

R curr
Uout(curr) = (1 + ﬁ) Uin(curr) (1.4)
Rz(curr) — Uout(curr) _ 1 — 3 3 _ 1 — 2 2 (I 5)
Rl(curr) U in(curr) ' ' '
So that, Rl(curr) =1kQ and Rz(curr) =2.2kQ

1.3.2. Measurement of the PV module temperature and Irradiance

A TC 74 sensor is glued on the backside of the PV module to measure the temperature
(T,,) of the module. The operating range of this sensor is -40°C to 125°C with £3°C accuracy
from +25°C to +85°C. The plane of array irradiance (Gpp,) is measured with a reference cell
(model Si-RS485TC-T-MB monocrystalline silicon irradiance sensors) with a tilt angle of 25°,

the same as the PV panel support structure.

14



Chapter I: Development of the experimental test bench

1.3.3. Emulation of R; and R, degradation

To emulate the degradation of R and Ry, additional resistors are connected in series
or in parallel with the PV module, respectively. In order to evaluate different fault levels (three

for each resistance in our case studies), an automatic emulator is designed as shown in Fig.1.15.

Rs and Rsh degradation circuit Control circuit board for faulty
and healthy test

Fig.1.15: Automatic emulator for Rs and Rsh degradation

Rs aaa1 » Rs adazs Rs aaaz are the three additional resistances connected in series with the PV
panel to emulate R degradation with three levels of severity; their values are 0.22, 0.33, and
0.39 Q, respectively. And Rsp gaq1 » Rsh aaazs Rsh aaqz @re the three additional resistances
connected in parallel with the PV module; their values are 60, 50, and 39Q, respectively. The

different configurations are set with the control of the seven switches (S1 to S7).

The whole system is shown in Fig.l.16.
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Power distribution management board
Irradiance sensor board

TC 74 temperature sensor
board CAN Bus analyzer board

Controlling circuit board for faulty and healthy test

=

Data acquisition

Serial link

y
I-V curve tracer —

Fig.1.16: Image of the experimental test bench

1.3.4. Data acquisition system

The data acquisition system (DAQ) can be divided into four main parts: data acquisition
and digitalization, data transmission, data storage, and data analysis. Analog signals from the
sensors are converted into digital with ADC that is determined with its resolution and sampling
frequency. In [21], a microcontroller with an 8-bit ADC was shown to be adequate for small
and low-cost PV systems. There are several technologies available to interface the physical
system with the DAQ (microcontroller, data logger, DAQcard) and for the communication (
Peripheral Component Interconnect (PCI), Personal Computer Memory Card International
Association (PCMCIA), USB, Ethernet, wifi). DAQ cards are more expensive than
microcontrollers and data loggers. They are easy to use, and have already been utilized in a
number of researches [22]-[25]. In our application, the CAN bus protocol is used to
continuously collect the I-V characteristic, PV module temperature, and irradiance. The circuits
of the CAN bus communication interface are composed of the microcontroller Nucleo32, which
is used as the primary controller as well as a CAN bus node, a high-speed CAN transceiver
MCP 2551 used as the interface between the protocol controller and the physical bus to enable
data transmission and reception. Moreover, the connexion pins CAN H and CAN L are
connected to the CAN bus through a resistor to prevent the CAN transceiver MCP 2551 from
overcurrent. Our system has six communication nodes, as shown in Fig.l.17. To avoid any

conflict, the data acquisition nodes have different priorities set with an ID (identifier).
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CAN BUS Analyzer

Power distribution

nt board
Irradiance sensor board Eoard [anagemen hoe
Noded Node5 | @ e ————
Nodel Node2 Nodeﬁ:
1
Temperature [:j 120 Q| nodes [:]120 (3 | 1Vtracer board

board 1
1 CAN L '
Control circuit board for 1

faulty and health test : MCP2551
1
1
1
1

: Microcontroller

1 Nucleo32

1

Fig.1.17: Block diagram of the data acquisition system

The microcontroller communicates with the PC via a serial link. Visual Studio and Excel

are used to monitor, store, and display the incoming data of the PV module: current, voltage,

temperature, irradiance, date, and times. The flowchart of the software is shown in Fig.I.18.

Initialization

- GUI Visual studio (VS) & Macro excel on PC
- FVtracer & temperature and irradiance sensor

- D = current date

No

—] Yes

Selecting
Port com
Baud rate

ol

Yes [*

Open Macro excel file

Emitter
sends a message

Receptor

receives character

data

Storage

PV monitoring

|

GUI VSreceives
and forward
this message

¥

uC reads
message and
converse it into
the character
data

!

GUI VS receives
the character
data

Wait 2 minutes

[

Save file data
with name “D”

Fig.1.18: Flowchart of the software for data acquisition
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I.4.  The distribution of the points on the PV module’s I-V curve

The measurement of the 1-V curves, because it requires power interruption, must be
done as fast as possible. Moreover, the I-V curve is highly sensitive to environmental
conditions, e.g., irradiance, temperature, wind, and humidity. However, good accuracy is
mandatory to obtain relevant information for health monitoring [26]-[28] or performance
assessment (short-circuit current (I,.), open-circuit voltage (V,.), and maximum power point

(Prpp)) [29], [30], [31], [32]. So the sampling time, and the number distribution of the points

are real issues.

In the healthy case, the I-V curve can be broadly decomposed into three zones; the constant
current and constant voltage areas in which the characteristic is almost linear, and the area
around the maximum power point (of high interest) where the characteristic is non linear. The
distribution of the points along the curve can be even (uniform) or uneven, like the logarithmic
distribution that is the most usual. Indeed, it is not necessary to measure many points in the
constant current and constant voltage areas because the characteristic is linear. However, near
the the maximum power point more points should be measured. In this regard, the Uniform
distribution of points (UDP) and Logarithmic distribution of points (LDP) will be compared
and analyzed to determine the optimal number of points, which depends on the variable load
resistance that limits the 1-V tracer's measurement range, which causes difficulty in distributing
evenly the points along the 1-V curve [2]. Fig.l.19 shows the layout of the I-V curve with two

domains, where NbPtV is the number of points when the output voltage varies from 1, . to

|4

PVma.

.» and NbPtI the number of points when output current varies from [,,,, . to [

PVmax*

/A
Ipvnmx+ Req ==
/8 Sy pv

py

—
<
—
2
.-._?'

I

PVmin -

V;’Vim‘n %v [V] %v vaﬂmx

Fig.1.19: Layout of I-V curve
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+«+ LDP algorithm is described as below:

. i—1)%9
CoefLog(Diepr...n = log(1 + =22 (16)

where CoefLog is the logarithmic distribution coefficient for N points, and i is the sample

number.

e NbDPtI zone:

Ipv(i) = Ipvmin + [Ipvmax - Ipvmin] X COQfLOg [l] (|7)

va(i) = Vinax (1.8)
. V(i)

ReQ_NthI (= o) (1.9)

e NDPtV zone:

I(D) = Imax (1.10)

V(i) = Vmin + [Vmax - Vmin] X CoefLog[i] (I-ll)
. Vpu(1)

Req wopey @ = 1; 5 (1.12)

+«»» UDP algorithm is described as below:

CoefU = =mex—min (1.13)
where Coef U is the uniform distribution coefficient for N points, the subscript symbol X,
and X, ., refer to the first and final points, respectively. X (i) can be either identified as the
current Ly, (i) or the voltage V,, (i), and i is the sample number.

e NbPtI zone:

Ly, (i) = (i — 1) + CoefU[i] (1.14)
Vo (1) = Vinax (1.15)
RefI_NbPu (l) = % (|-16)

e NDPtV zone:

Lyy(D) = Lpax (1.17)
Voo () = (i — 1) + CoefU[i] (1.18)
Req wopy (D) = 125 (119)
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= Logarithmic

Current [A]

NbPtl

NbPti

}

0 5 10 15 20 25
Voltage [V]

Fig.1.20: Logarithmic and uniform distribution of points on the I-V curve

1.4.1. Qualitative analysis of the sensitivity of the five parameters of the single diode
model to the number of points on the I-V curve

% Methodology

A methodology is developed to study the sensitivity of the five extracted electrical
parameters of PV single diode model's (SDM) to the number of points on the I-V curve. The

methodology, which flowchart is shown in Fig.1.22 is described below :

First, the SDM with five parameters developed by NREL and available in
Matlab/Simulink is used to simulate 1000 sampling data in STC. The characteristics of the
simulated PV module are displayed in Table.l.2. The obtained I-V characteristic, denoted

I(V)ref1000. Will be used as reference vector. The simulation result is shown in Fig.1.21.

—I(V)ref1000

Current I,,[A]
N w £ (3]

-
T

o
[

| 1 |
10 15 20 25
Voltage Vp,[V]

o
(3]

Fig.1.21: I-V characteristic of PV module type A
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Simulation : reference I(V)
characteristic (1000 points)

- 1(V)ref1000 .
LM algorithm: five electrical Initialisation
parameters extractions of the NbPtl =3
SDM 1
1¢
p Initialisation
ref1000LM NbPV = §
Linear or logarithmic
sampling
g 1 (V)ectht
Single Diode Model (SDM) with LM algorithm: five electrical
S5 parameters < parameters extractions of the
SDM
pN tLM I(V)Nptl,M
I(V)1000Lm 4
— Error Evaluation
[ Proposed Distribution of points R
- Logarithmic Distribution of Point (LDP)
- Uniform Distribution of Point (UDP) No
NbPtV =15?
Yes
NbPtl++
<G>
Yes
Analyzes

Fig.1.22: Flowchart of the methodology

Second, the vector I(V);¢r1000 is Used with LM approach to extract the five parameters

of the PV model's. Their values are shown in Table.l.4.

Table.l.4: Extracted parameters from the reference vector

ijreflOOOLM( 7phrefv ﬁsreﬁ ﬁshref: 7oref; ﬁref )

ijreflOOOLM iphref [A] ﬁsref [mQ] Rshref [Q] iOref [A] ﬁT‘ef
Extracted values 5.294 323.3 759.87 3.39 x 10710 1

LDP and UDP algorithms are used to resample the vector I(V),.f1000- The new vector is called

I(V)ecnnpe- BY using this sampling vector as input for the extraction method (LM), five new
21
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electrical parameters(named Pyperm (Ipnnperms Rsnperms Rsnnperms lonperms Anperm)) and a
new sampling vector (named I(V)yp¢10) are obtained. The values of PNWLM are then used to

re-simulate a new I-V curve called I(V)10001m-

Finally, by varying the number of points between 8 and 30 ( (NbPtl€[3,15]) and 5 to 15
points (NbPtVE[5,15]), the errors between the vectors I(V)rer1000.m N 1(V)1000Lm:

Prerioooim and Puperr , I(V) ecnnpe and I(V) ypery are computed and analyzed.

The mean absolute percentage error of the photovoltaic current (MAPE,,,,,), and the absolute

relative error of the PV model’s parameters (AREp) are calculated as follows:

100 wm
N i=1

Ipv_ref(vi)_lpv_ex(vi) (I 20)

MAPEIpv(%) = Ipy ref(Vi)

ﬁref(i)_Pex(i)
ﬁref(i)

ARE5(%) = 100

(1.21)

The subscripts "ref" and "ex" correspond to reference and extracted data, respectively. Vi is

the i™" simulated voltage, and m is data point.

1.4.2. Results and Analysis

a) Sensitivity of the series resistances (Ry)
Fig.1.23 illustrates the variation of R, with NbPtl and NbPtV . LDP and UDP algorithms.
The range of variations are [322.07mQ - 323.34mQ] for UDP and [318mQ — 322mQ] for LDP,
respectively. The results also show that the values of R are relatively constant. Compared with
the reference value of ﬁsref (323.3 mQ), the minimum and maximum relative deviations are
in the ranges of [0.3% -1.23%] and [0.3% - 1.54%], respectively. These percentages of errors

are acceptable.

1.5 W Logarithmic

= | Uniform

=322
b

o 320

318
15 i
10 ) : 15

NbPtI 0 5 NbPtV
(@) (b)

Fig.1.23: Variation of Rg and ARER_with NbPtV and NbPtl

22



Chapter I: Development of the experimental test bench

b) Sensitivity analysis of the shunt resistance (Rgy,)

The variations of R, and the relative deviation with NbPtl and NbPtV are shown in Fig.1.24.
The results indicate that the minimum and maximum values of Ry, are in the range of [758.24
Q-854.93 Q] and [501.40 Q - 853.52 Q] for LDP and UDP algorithms, respectively. Compared
to the reference value of Ry, £ (759.87 Q), the deviations are in the range of [0.21%- 12.51%)]
and [12.32 - 34.01%]. It can be concluded that Ry, is less sensitive to the number of points on

the I-V curve when the LDP algorithm is used.

AREg,, |%)

(a) (b)
Fig.1.24: Variation of R, and ARER_, with NbPtV and NbPtl

c) Sensitivity analysis of the photocurrent (1,,,)

The variations of L,, with Nbptl and NbPtV, using the LDP and UDP algorithms are
represented in Fig.1.25. The maximum and minimum values of I,,, are in the ranges of [5.291 A
- 5,294 A] and [5.293 A - 5.298 A] in the case of LDP and UDP algorithms, respectively.
Compared to the reference value of fphref (5.294 A), the minimum and maximum deviations
are in the ranges of [0% - 0.05%] and [0- 0.07%], which shows that I, is very slightly impacted

by the number of points on the I-V curve.

ARE, (%)

15

(b)

Fig.1.25: Variation of I,,, and ARE,ph with NbPtV and NbPtI

d) Sensitivity analysis of the diode saturation current (/)
Fig.1.26 illustrates the variation of I, with Nbptl and NbPtV in the case of LDP and UDP
algorithms. The results show the values of I, are slowly increasing along with the number of
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points. The minimum and maximum values of I, are in the ranges of [3.37x 107 1°A — 3.41x
10719A] and [3.38x 1071°A - 3.46x 1071°A], respectively. Compared with the reference
value of Iy.e¢ (3.39x 10710), the calculated relative deviations are in the range of [0.44% -
0.58%] and [0.14% — 2.06%]. These percentages of errors are relatively low, which means that

I, is also slightly impacted by the number of points.

<100

(b)

Fig.1.26: Variation of I, and ARE; with NbPtV and NbPtl

e) Sensitivity analysis of the diode ideality factor (n)
The variations of n with Nbptl and NbPtV are shown in Fig.1.27. The relative deviation
from the reference value is lower than 0.6 % for both alogorithms, even if in the case of UDP,

several peaks can be observed.

1.006 W Logarithmic

B Uniform
~ 1.004

1.002

15
15

(b)

Fig.1.27: Variation of n and ARE,, with NbPtV and NbPtI

f) Evaluation of I-V characteristics between I(V)ecanpe aNd I(V) npeLm
Fig.1.28 shows the variations of MAPE,pv( I(V)ecnnpe and I (V) yperm) in the case of LDP
and UDP algorithms. The results show that in both cases, the MAPE,  increases when the

number of points in the current variation area (NbPtl) increases, but it decreases when the
number of points in the voltage variation area (NbPtV) increases. The minimum and maximum
values of MAPE, , are in the ranges of [0.165% - 0.362%] and [0.162% - 0.523%] in the case

of LDP and UDP, respectively. It can be concluded that when NbPtl and NbPtV increase, the
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sampling vector (I(V)echnpe) €Stimated from the extraction method is still accurate, reliable,

and satisfactory.

Bl Logarithmic|
B Uniform

o
o

- °
a N

10

MAPE;,, of 26 sampling points[%)]
=)
>

5 0 ___— 10
NbPtI 0 5 NbPtV

Fig.1.28: Variation of MAPE,W(ZG sampling points )with NbPtV and NbPtI

g) Evaluation of I-V characteristics between I(V),r1000 and I(V)1000Lm

The variations of MAPE,pv( I(V)ref1000 and I(V)1000.m ) With NbPtl and NbPtV for
the LDP and UDP algorithms are represented in Fig.1.29. The results indicate that when NbPtl
and NbPtV increase, the MAPE,, remains very low mainly because the new extracted
parameters used to simulate I(V)100. Slightly deviate from the reference ones, except for Ry,
in the case of the UDP algorithm. The lowest and highest values of MAPE, , are in the ranges

of [0.88% -1.204%] and [0.92% -1.081%] in the case of LDP and UDP algorithms, respectively.

Logarithmic
Bl Uniform

-
N
/

X
a
g
3
Y
D
£
2114
g
g
S 14
=
-
§09:
S 15 g
= 15
= 5 10
NbPtI 0 5 NbPtV

Fig.1.29: Evaluation of MAPE,W (1000 sampling points) with NbPtV and NbPtI
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1.4.3. Summary of the sensitivity analysis

The sensitivity of the five electrical parameters of the PV model to the number of points

on the I-V curve was investigated in this section. The ARE between the five new extracted
parameters PNptLM and the reference ones P, oo,y are displayed in Table.l.5. Based on the

findings, most of the AREs are lower when using the LDP instead of the UDP.

Table.l.5: Deviation of PV model parameters between reference and estimated data

case of UDP algorithm

Parameters of the PV model Lyn(A) R,(MmQ) Rsn () I, X 10710(A) n
Reference Parameters P, £1000 5.294 323.3 759.87 3.39 1
Parameter estimated | NbPtV € [5,15]
in the case of LDP NbPtl € [3,15] | 5.291-5.294 322- 323 758.2-854.93 3.375-3.412 1-1.000
algorithm
Parameter estimated | NbPtV € [5,15]
in the case of UDP NbPtl € [3,15] | 5.293-5.298 318-322 501.4-853.52 3.385-3.461 1-1.007
algorithm
Absolute Relative Error (ARE) % inthe |, 0.3-1.23 0.21-12.51 0.44-058 | 0-0.05
case of LDP algorithm
Absolute Relative Error (ARE) % inthe |, , ;7 03154 | 12323401 | 014206 | 0-0.75

The MAPE,W between the I(V)echnpe aNd I(V)nperm 5 1(V)ref1000 @Nd T(V)1000Lm > @€

dispayed in Table.l.6. These deviations are relatively very low. It can be concluded that both
methods of sampling points on the I-V curve are accurate, reliable, and acceptable for retrieving

the I-V curve. But LDP as it is the most stable will be used in our I-V tracer.

Table.l.6 : MAPE,, between the reference and estimated vectors

Description of detailed Mean Absolute Percentage Error (MAPE) %
I(V)echnpe and I(V) ypery in the NbPtV € [5,15] i
case of the LDP algorithm NbPtI € [3,15] 0.1653-0.3629
I(V) ecnnpe and I(V) yperm in the NbPtV € [5,15] i
case of the UDP algorithm NbPtI € [3,15] 0.162-0.5238
I(V)rer1000 aNd I(V)1000.m in the case of the LDP algorithm 0.88-1.204
I(V)ref1000 @aNd I(V)1900.m in the case of the UDP algorithm 0.92-1.081

1.4.4. Implementation of the LDP in the I-V tracer.

As explained in the previous section, our |-V tracer is based on a DC-DC converter
driven with a PWM duty cycle to sweep the load resistance. The schematic circuit of the I-V
tracer is shown in Fig.l1.30. The duty cycle (a) varies from 0 to 1; when a is equal to 0, the

circuit provides the maximum voltage (V},,, ), and when o is equal to 1, the circuit provides

Umax
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the maximum current (L, ). The relation between the variable resistance (R.g), the load

resistance (R, ), and the duty cycle (a) can be expressed as below:

a(d) = 1- (L2 (1.22)

Where i is the sample’s number on the I-V curve. R; the load resistance is set at 22 2. The LDP
algorithm embedded in the microcontroller generates the optimal duty cycle (a) to control the
MOSFET switch. Fig.1.31 shows the flowchart of the software for the 1-V tracer.

I
pv
()
R e
a o
1 1
1 1
i ! o
Voo | | G) -~ K
! i
1 1
1 1
1 1
1 1
| 1=
[F— | I
PV panel ‘Y—J
Duty cycle R
[0-1] -
Fig.1.30: Schematic circuit of the I-V tracer
Initialisation
NbPtI = 12,NbPtV = 15, *
Acquisition o m
a=0-Vy, se=1-1,, ‘ CoefLogli] =1+ NbptV -1
1
v
Calciulitiii Vyy [NBPH + NbPEV —i] =V, X logyo CoefLogli]
Vi 1, [NbPtI + NbPtV —i] = I,
Dyvin = —RL . V,,[NbPtI + nbPtV - i
l RegNbPLI + NbPLV — i] = -2 ———
v
Roo[NbPtI + NbPtV — 1}=0
—eeeee
. (i-1)-9
{ CoefLog[i] =1 +m J 0
Tpoli] = Dy M pvae T pvid X 10910 CoefLogli]
Volt] = Vpoyg,
1 — _PVmax
Reqli] = Tuli]
i++

Fig.1.31: Software flowchart of the I-V tracer using the logarithmic distribution of points
¢+ Sweep time of I-V tracer

The sweep time or sampling time interval is critical for the quality of the obtained 1-V

curves. It should be small enough to guarantee that voltage and current measurements are taken
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under constant solar irradiation and temperature but large enough to ensure they are collected
in steady state. In our case, NbPtV and NbPtl are set to 15 and 12 respectively.

L=150uH

§ R1(volt) =
15KQ
/
RL=22Q
=100nF
R2(volt) = Rshunt=0.1Q
1.5KQ ~

i VW

Vout(volt) Vout(cum)

MA—
V R=1.2 KQ
C1=910nF
Ri(cum)= — V V \I—| I

2.2KQ R2(curr) = 2.2 KQ

Fig.1.32: Simplified the main circuit of the I-V tracer

To determine the sweep time of the I-V tracer, its response time must be calculated first.
Fig.1.32 shows the simplified main circuit of the 1-V tracer, which indicates that there are three
time constants: the time constant of the primary circuit called “t,”, the time constant of the
voltage divider called “t,”, and the time constant of the amplifier operator (AOP) of the current

sensor called “t3”. The time responses of the I-V tracer can be calculated as below:

L 150x107°

T, = —= ———=0.006ms (1.23)
RL 22
R R C 1.5x103x15%x103x100%x10~°

T, = —eld 20o) - - = 0.136 ms (1.24)
R1wolt)TR2volt) (1.5%103+15%103)

T3 =R X (C1 =1.092ms (1.25)

Therefore, the global time response (t,) can be estimated as :
tT = (Tl + ¥ + T3)X 5 %617 ms

Based on this result, 7 ms will be retained in the microcontroller for the acquisition of one point.
Fig.1.33 shows the PWM signal measurement using the Picoscope Digital Oscilloscope, and the
result indicates that the 1-V tracer needs 181.2 ms to capture 26 points on the 1-V curve (let us

recall that the switching frequency f; = 50 kHz).
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Acquisition time for one point
Relaxation time

2ms 5ms

< —d —— >

T =~7ms

Total acquisition time : 181 ms (26 points)

NbPtV NbPtl — 1
|

[ 1
1 2 3 4 56 7 8 9101112131415 16 17 18 19 20 21 22,324 25 26

t (ms)
Fig.1.33: Acquisition time

I.5.  Calibration and validation of the I-V tracer

The approach for validating the calibration of the 1-V tracer is detailed in this section.
To perform all the measurements and ensure accuracy, the I-V tracer is usually compared to a
commercially available 1-V tracer[12], [33]. But in our case, the E4360 Modular Solar Array
Simulator (MSAS) from Keysight Technologies, Inc is used as the main device to calibrate and
validate the developed I-V tracer. Fig.1.34 and Fig.1.35 show the 1-V tracer calibration and

validation methodology and the I-V tracer and SAS test bench, respectively.

The mean absolute percentage error (MAPE) and absolute relative error (ARE) are used

to evaluate the accuracy of the I-V tracer. The calculation uses the formula below :

e X = [IPV]’ or [va]

MAPE(X,) = 100 m Ximsas~Ximeas (1.26)
m X1msas
o X,= [Pmm,,or Is., o7 VOC]
X -X
ARE(X,) = 100| 2aasas~*omeas| (1.27)
X2msas
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X; and X, are obtained from the MSAS and the developed I-V tracer. The subscripts "MSAS"

and "meas" denote MSAS and measurement. Where X, can be the vector of I, or V,,, and X,

is a scalar (Pypp, Isc O V,()

Modular Solar Array Modular Solar Array
Simulators (MSAS) Simulators (MSAS)
Under fixed mode Under table mode

Irated Vrated I(V)ref,h&f
|-V tracer I-V tracer
Idig Vdi_g I(V)meas
+ 8
Computation
- CCC and VCC Analyses
' ‘
Decision Decision
(a) (b)

Fig.1.34: Methodology for I-V tracer calibration (a) and validation (b)

Modular Solar Array Simulators (MSAS)
Keysight 14360A

Fig.1.35: Experimental test bench for calibration and validation of 1-V tracer at GeePs

The SAS is a dual output programmable DC power source that can generate the output
characteristics of a solar cell/module/array. Furthermore, the E4360 SAS is a generator current
source with a very low output capacitance that can rapidly simulate the 1-V curve in various
conditions (ex., temperature, age, etc.). It produces up to 2 outputs and up to 1200 W with three
modes of operation: Simulator (SAS), Table, and Fixed. SAS or table modes are used to model
the I-V curve of a solar module correctly, and fixed mode is used when a conventional power
source is required. A LabVIEW interface developed by Instrument National (IN) is used to

control and monitor this instrument.
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e Simulator (SAS) mode

The power supply output characteristic in SAS mode is shown in Fig.l.36. The E4360 SAS
creates a 4096 1-V points database. An I-V curve is approximated using an internal method.
This can be done without a PC via the 1/0 ports or from the front panel. In this mode, four input

parameters are needed to generate a curve:

- Open circuit voltage (V)
- Short circuit voltage ()

- Current at maximum power point (I,,,,))

- Voltage at maximum power point (V,,,,))

JSC
IWIU]J ------------------------------

Ipy[A]

’ VoulV]
Fig.1.36: Power supply output characteristic in SAS mode

e Fixed mode

When the device is turned on, this is the default mode with a conventional power
supply's rectangular I-V characteristics. Fig.1.37 show Power supply output characteristic in

fixed mode. I, 4¢eq and V,.4:0q are the reference values of current and voltage.

P'ﬂ'lﬂ)(
[?‘Llfﬁd .

o~

0 Vr ated

Fig.1.37: Power supply output characteristic in Fixed mode
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e Table mode

In this mode, the user can define the table data to determine the 1-V curve. The table can
have a minimum and maximum of 3 to 4000 points, respectively. Each point corresponds to

one current value and voltage value(l,V). The E4360 SAS memory can store up to 30 tables.

1.5.1. I-V tracer calibration

Fig.1.34 (a) shows the methodology used to calibrate the I-V tracer. The I-V tracer uses
two sensors to measure the current and voltage of the PV module. To ease the analyses, the
sensors will be calibrated directly in ampere and volt for the current and voltage, respectively.
Fig.1.38 shows the block diagram for the calibration of the current and voltage sensors. The
sensor's output signal is an analog signal in the range of 0-3.3V. The microcontroller converts
it into a digital signal in the range of 0-1. To eliminate the noise and the current ripples, 100
samples are averaged. Hence, the microcontroller's digital output is in the range of 0-100. The
calibration coefficient of current (CCC) and calibration coefficient of voltage (CCV) are then

obtained as below :

ICC = 'rated (1.28)
laig

ccy = Yrated (1.29)
Vaig

Where I,.4:0q and V404 are the current and voltage references introduced into the MSAS under

the fixed mode. I,;, and Vy;, are the values measured from the current and voltage sensors.

I shunt [0;3.3] [0;100] Ineas
— Rshunt " Hc 1 ccC pP—
f
100 acquisitions
(a)
vV [0;3.3] [0;100] Vineas
— VD P Uc > CCV p——

100 acquisitions
(b)
Fig.1.38: Scale-up process
To ensure the reliability of this process, the CCC and CCV are calculated for eight different
cases, as shown in Table.l.7. The finding demonstrates that the CCC and CCV from the eight
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different cases are relatively stable, which means that these coefficients can work under
different conditions. The average of these eight samples will be used as coefficients set directly

into the microcontroller of the I-V tracer.

Table.l.7: Eight different configurations for CCC and CCV calculation

No MSAS : Loy — Vitog Idigl -V trace;/ - Cagt():rcat:tlon coe::fcl:c\l/ent
1 15A-10V 14,1 39,2 0,1064 0,2551

2 2A-12V 19,4 47,4 0,1031 0,2532

3 25A-14V 24,7 55,7 0,1012 0,2513

4 3A-16V 30,1 63,7 0,0997 0,2512

5 35A-18V 35,4 72 0,0989 0,2500

6 4A-20V 40,7 80,2 0,0983 0,2494

7 45A-22V 46,1 88,5 0,0976 0,2486

8 5A-24V 51,4 96,7 0,0973 0,2482
Average 0,1003 0,2509

In the fixed mode, we played different scenarios with different voltage and current values such
as 10V-1.5A, 12V-2A, 14V-2.5A, 16V-3A, 18V-3.5A, 20V-4A, 22V-4.5A, and 24V-5A.
Fig.1.39 shows the different 1-V curves for calibration obtained from the reference (data
obtained from MSAS) and the measured data (data obtained from I-V tracer); the scatter with
a smooth line and the marker represent the reference and measured data, respectively. The
results show a good agreement between the data obtained from MSAS and the one from the
developed I-V tracer. The calculated deviations are shown in Table.l.8. The result show that
the relative deviations are relatively higher for low values of current and voltage (1.5A -10V
and 2A-12 V) compared to the case with higher values of current and voltage (2.5A-14V to 5A-
24V)).

6
m— MSAS:1.5A-10V
® Measl B
MSAS:2A-12V
® ® Meas2
00000000 0000000 0—0—@ | — MSAS:2.5A-14V
4 Meas3 4
. [ ] s MSAS:3A-16
< \ ® ® Measd
il e MSAS:3.5A-18V
33 A ® Meas5 b
5] : ] — MSAS:4A-20V
KT 00— -y b ® ©® Meas6
| ® MSAS:4.5A-22V
20m000 0 ¢ NN O © | A ® Meas? N
| N [ e MSAS:5A-24V
- 1
® Meas8
1+ ) ! P |
A | ®
o L L 1 | 1 1 -
0 5 10 15 20 25 30 35

‘/;'ated [V]

Fig.1.39: I-V curves of MSAS and I-V tracer in the fixed mode for various scenarios
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Table.1.8: Relative calibration deviations

Case (C) C1 C2 C3 C4 C5 C6 Cc7 C8
Current(A) 15 2 25 3 35 4 4.5 5
Voltage(V) 10 12 14 16 18 20 22 24
MAPE of Current (%) 5.56 2.49 0.67 0.42 0.34 0.33 0.32 0.28
MAPE of voltage (%) 211 1.37 0.96 0.6 0.44 0.34 0.38 0.46

Repeatability, defined as the ability to compare a given result to another measurement
taken under the same condition is highly recommended for instruments. The scenario 3.5A-
18V is retained (valued set into the MSAS under the fixed mode) to test the measurement
repeatability of the 1-V tracer. The scenario was repeated five times. The relative deviations
between the data obtained from MSAS and I-V tracer shown in Table.l.9, demonstrate that the
MAPE of current and voltage are stable. It can be concluded that the I-V tracer exhibits an

acceptable repeatability.

Table.1.9 : Evaluation of the repeatability

Case (C) C5 C5 C5 C5 C5
Current(A) 3.5 3.5 35 3.5 3.5
Voltage(V) 18 18 18 18 18
MAPE of current (%) 0.348 0.349 0.333 0.340 | 0.346
MAPE of voltage (%) 0.397 0.419 0.432 0.432 | 0.446

1.5.2. I-V tracer validation

The methodology used to validate the 1-V tracer is shown in Fig.1.34 (b). The MSAS
under the table mode is used to establish the I-V curve (used as reference), which will be
compared to the 1-V curve obtained from the I-V tracer. To ensure that the I-V tracer can
characterize the 1-V curve of the PV module in both healthy and faulty conditions (partial
shading, R, and Ry, degradations), the table used to create the 1(V),., must represent healthy
and faulty conditions. First, the SDM with five parameters developed by NREL and available
in Matlab/Simulink is used to generate I(V),.; curves in healthy and faulty conditions. These
I-V curves will be introduced into the MSAS under the table mode and used as the references.
Then 1-V tracer will be used to measure the I-V curve of MSAS. The data obtained from the I-

V tracer will finally be compared to the reference one.
e Healthy case

To begin, we introduced the healthy I-V curve I(V),r, in MSAS, then the I(V)peqs
can be measured using the 1-V tracer. Fig.1.40 shows the reference I-V and P-V curves and the

ones measured with the I-V tracer. The values of the relative errors MAPE,,, MAPE,,,,
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AREp ., ARE 5. and AREy, are 0.4%, 1.33%, 1.05%, 0.44% and 0.40%, respectively. They
indicate a good performance of the 1-V tracer with a high accuracy.

50

T T T T 5
4 T T T — S
—MSAS MSAS
® Meas
® Meas L I

= 3

=2 B

~ R o0
1 10 -

V...V Vo[V

(a) (b)
Fig.1.40: 1-V and P-V curves obtained from I-V tracer and MSAS in the healthy case

Because of the limited load resistance (R, = 22Q) the I-V tracer cannot reach the open-
circuit point Voc. There are several solutions to address this issue: change the elements in the
circuit (load resistance, MOSFETS) or use linear interpolation. The first solution is tedious and
time consuming. The second one is more suitable for small data analysis. For big data, a more
accurate methode would be necessary, which is beyond the scope of this work. Finally, for sake
of simplicity, we assume that the last point on the 1-V curve, which corresponds to a resistance

of 22 Q, is the open-circuit point (at ,.).
e Partial shading case

The 1-V and P-V curves obtained from the I-V tracer and MSAS are displayed in
Fig.1.41. The relative deviations MAPE},,, MAPEy,,, AREpny,, AREs, and AREy,. are
3.65%, 5.51%, 8.57%, 0.47% and 0.36%, respectively. The results show that there is a
mismatch around the inflexion points near the maximum operating point. The error could be
reduced with the increase of the number of points in the current-varying region or with a
different distribution of the points. However, despite this error around the MPP, the |-V tracer

has an acceptable performance in the reproduction of the I-V curve in partial shading

conditions.
4r- 9 r ; ;
—MSAS % —MSAS
o Meas
20 °
3 °o % r
L) % (]
p— —15
[ )
2, R E
~ o
1
5
. [ | . | |
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Viu[V] Vin[V]
(@ (b)

Fig.1.41: 1-V and P-V curves obtained from I-V tracer and MSAS in partial shading case
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e R, and Ry, degradations

R, and R, degradation in PV modules occurr due to ageing effects or aggressive
external conditions affect the shape of the 1-V characteristic [34][35]. The reference I-V curves
in these faulty conditions are obtained by connecting additional resistances in series (in parallel)
with the PV model (the SDM with five parameters available in the Matlab/Simulink). The
information used in the simulation is summarized in Table.l.10. The results are plotted in
Fig.1.42. There is a good agreement between the measured and reference data under the faulty

conditions. The deviations are summarized in Table.l.11

Table.l.10: Data used in the simulation to create the 1-V curves for Rs or Rsh degradation

Gpoq = 770 W /m? and T, = 39°C Healthy case casel case2
R, degradation 323 mQ 400 mQ | 700m Q
(connected the additional resistance in series with PV model )
R, degradation 759.6 Q 50Q 30 Q
(connected the additional resistance in parallel with the PV model )

—3 ® Measl:Rs =0.32
= MSAS2:Rs =0.4 ©
< ® Meas2:Rs =0.4

—MSAS3:Rs =0.7 Q

—MSAS1L:Rs =0.32

Meas3:Rs =0.7 Q

() R, degradation

—MSASI:Rsh =759 Q
@ Measl:Rsh =759 Q
MSAS2:Rsh =50
@ Meas2:Rsh =50
—MSAS3:Rsh =30 Q
Meas3:Rs =30 Q

0 5 10

VinlV]

(b) R, degradation

Fig.1.42: 1-V curves obtained from I-V tracer and MSAS in case of Rs and Rsh degradation

Table.l.11: Deviations in the case of R and R, degradation

R, degradation
Deviation Healthy case (Rs =0.32 Q) casel(Rs=0.4 Q) case(Rs = 0.7 Q)
MAPE,,(%) 0.94 0.82 0.74
MAPEy,,(%) 0.79 0.88 0.86
AREp (%) 0.11 0.03 0.183
AREy,.(%) 0.61 0.33 0.06
ARE, (%) 1.12 1.14 1.15
Ry, degradation
Deviation Healthy case (R, = 759 Q) Casel(Rgy, = 50Q) Case2(R¢,=30 Q)
MAPE,,,,(%) 0.98 0.73 0.87
MAPE, (%) 0.46 0.41 0.42
AREp (%) 0.70 0.43 0
AREy (%) 0.62 0.49 0.49
ARE; (%) 1.13 1.12 1.13
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1.5.3.  Summary of the validation

The methodologies for the calibration and validation of the I-V tracer with the E4360
Modular Solar Array Simulator (MSAS) from Keysight Technologies, Inc were presented, and
evaluated.

The current and voltage of the I-V tracer were calibrated in ampere and volt,
respectively. For the calibration, various current (1.5A to 5A) and voltage (10V -24 V) values
were employed. The result reveal that the deviations are relatively higher for low current and
voltage (1.5A -10V and 2A-12 V) compared to higher values of current and voltage 2.5A-14V

to 5A-24V. The repeatability has also been successfully evaluated.

For the validation, healthy case, partial shading (PS) , R, and Ry, degradations were
considered. The findings indicate that the 1-V tracer can accurately measure the |-V
characteristic of the PV module in healthy and faulty cases, even if the accuracy is lower in the

case of PS.

Finally, it can be concluded that the developed I-V tracer is reliable, has a low cost and

a short response time. It is therefore suitable for monitoring a PV module.

.6. Elimination of abnormal I-V curves due to over-illumination

1.6.1. Observation of abnormal curves

Fig.1.43 shows several I-V curves measured in healthy case on sunny days. We observed
every day, round noon, the occurrence of abnormal I-V curves (circled in red), in the low
voltage zone. These abnormal I-V curves exhibit inflexion points as in the case of partial
shading and the triggering of bypass diodes [36]-[38], which was not obviously the case. After
visual inspection, we found that the aluminum tube next to the PV module, was responsible
round noon of an overllumination of one part of the PV module, as shown in Fig.l.44. As a
consequence, the PV module was receiving a non uniform irradiance, triggering the bypass
diode! To avoid any misinterpretation, the abnormal 1-V curves must be eliminated before
processing the data. As the PV module behaves like in partial shading conditions, the partial
shading detection techniques could be used to eliminate the abnormal curves. They are

investigated in this section.
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Sample size (m) = 214 Sample size (m) = 228

10 15 20 0 5 10 15 20
Vool V] Vi V]

Sample size (m) = 205 | Sample size (m) = 186

Fig.1.44: Reflection on the PV panel

1.6.2. Partial shading detection methods using the I-V curve

In PV systems, shading is a significant issue. It occurs when the PV module is partially
shaded. The current generated by the shaded cells is reduced, limiting the maximum current
generated by the other series-connected cells. The bypass diodes are triggered to reduce shading

impacts by preventing healthy cells from going into reverse bias, which can cause reverse
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breakdown voltage and hot spots. Beside bypass diodes, the detection of such a mismatch is

still essential as the partial shading can be due to dust soiling or bird droppings for example.

This section presents the partial shading detection techniques based on 1-V characteristics. The
first technique exploits the inflection point by calculating the first and second order derivatives
of the I-V characteristic [38], [39]. The second technique calculates the irradiance values from
the short-circuit current, and the current measured at the maximum power point (MPP) [40],
[41]. The third uses a linear interpolation that is compared with the measured data in the low

voltage zone. Fig.l.45 depicts the flowcharts of the three techniques.

! Define .
Define I.srol <o, Gsre Define
V(Dimeas . ]}Tpp_ ’ V(Dmeass b =5
( )meas
Scan

Lc meas Ezstabllsl) the refel_'ence

Inpp_meas !me using the ll_near

1 Iy, interpolation technique

meas
I
Irradiance calculation ”""fl _
First Second G, = lsemeas @ Errorcalculation
derivative derivative ! ! Ieste oT¢ mapg, = 105" "”""f(;)*‘r("_‘;mm(‘)
o (L
G, = mpp_meas Gsre i ey
Impp,.W'C
Yes No Yes
MAPE; < Threshold?
- - - Faulty I-
Result and Analyses Healthyl. V Faulty I_V_ Healthyl' V aulty .V.
characteristic characteristic characteristic characteristic
(a) (b) (©

Fig.1.45: Flowcharts of partial shading detection techniques based on I-V characteristics

The calculation of derivatives is highly sensitive to the accuracy of the measurement and the
number of samples. In our case, we have compromised the I-V curve measurement with only
26 samples distributed logarithmically. There are only five points in the low-voltage zone
mainly affected by over-illumination. Therefore, this technique will not be suitable for our
application.

1.6.2.1. Calculation of the irradiance value with I. and I,
One of the partial shading detection methods proposed in [40] consists in calculating
the values of the irradiance with I, and I,,, denoted G; and G, respectively. Under the

assumption that the temperature remains constant, we can write:

Isc Im
G, = Gsre, G2 = £L Gsrc ('-30)

IS"_STC Impp_sTC
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Where s src) Impp stc - @nd  Gere  are retrieved from  Table.l.2,  while Is., and Ly,
are taken from the I — V curve measurement. Under uniform illumination conditions, the
current at the maximum power points (Impp) is close to Isc (approximately 90%)[40], [42]. As a

consequence,|G; — G,| < AG, Where AG,,, is a threshold.

The flowchart of the technique is represented in Fig..45 (b). The threshold is first set at
40 W /m?2, as in [49].

5 |G, — G3| < 10 W/m?

0 5 10 15 20 25 ] 5 10 15 20 25
vl Vi V]

Viu
(a) (b)
Fig.1.46: 1-V characteristics of PV panel after applying the partial shading detection method 2

Fig.1.46 shows the results of the application of this technique to measured I-V curves. The
results show that despite an improvement, there are still several abnormal 1-V curves, even with
a lower threshold (10 W /m? in Fig.1.46 (b)). It can be concluded that this technique would be

more suitable to detect high over-illumination.

1.6.2.2 Linear interpolation technique

The proposed method uses the linear interpolation method to draw a reference line from
the five points measured in the low-voltage zone, as shown in Fig.1.47, for healthy and faulty
conditions. The reference lines 1 and 2 were created from the measured I-V curves in the healthy
and faulty cases. The mean absolute percentage error of current (MAPE;) between the linear

interpolation and the actual measurements is calculated to evaluate the distortion due to over-

illumination.
100 «p Ieref(i)_IPUmeas(i)
MAPE; = —).; 1.31
1= (1.31)
Where Iy, ., Ly are the reference and measured line, respectively, b is the measurement
ref' "PVmeas

data points at low voltage zone.
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Fig.1.47: 1-V characteristics of PV module using the logarithmic distribution of points in the healthy

and shading cases

e Evaluation of the technique with synthetic data

The single diode model (at the cell level) developed in [43] is used to simulate the PV

module to evaluate the proposal. Fig.l.48 displays the methodology with the following

conditions: a difference of 50 W /m? is introduced to emulate the over-illumination. The LDP

Is used to retain only 26 points from the 1000 ones obtained from the simulation of the PV

current vector denoted as Ipy ;. in healthy and faulty cases. The vector is used for the linear

interpolation to get Ipy, ;- Then, the MAPE; is computed for analysis.

Define
G1=300:40:1000

b=5

/

}

Healthy cases: G, = G1
Faulty cases : G; = G1+40

¥

M3.string : PV model
|

lJVsimmuol

Logarithmic distribution of
points (LDP)

Establish the reference line
using the linear interpolation
technique

PVsimze lPVref
y

Error calculation
100 b

MAPEy, === )

Lpvee®

Tpvie (1) = Tpui26 (i)

Fig.1.48: Flowchart for the evaluation of the linear interpolation.
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Fig.1.49(a) and Fig.1.49 (b) illustrate the results for the healthy and faulty cases, respectively. In
the healthy case, the linear interpolation fits almost perfectly with the I-V curve. Fig.1.50 shows
that in this case, the MAPE;< 0.4%. In the case of over-illumination, the MAPE; > 0.98%. These

results will be used to set the threshold to eliminate abnormal curves.

6

Black color : I-V curves
Various color : Reference line

T
Black color : I-V curves
Various color : Reference line

Fia— —_— —— e
% 5 10 15 20 25 % 5 10 15 2 P
Vin[V] ViulV]
(a) Healthy case (b) Faulty case
Fig.1.49: 1-V characteristics and linear interpolations.
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Fig.1.50: Mean Absolute Percentage Error of current (MAPE)).
e Evaluation of the technique with experimental data
The 1-V curves are collected on April 24", June 14™, September 2", and 8™".
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Fig.1.51: 1-V characteristics of PV panel and MAPE of current profiles after eliminating the abnormal
I-V curves using the MAPE threshold of 0.4%

Fig.1.51(a) displays the remaining I-V characteristics after the elimination of the abnormal
curves when the threshold is set at 0.4% for the MAPE,. We can see in Fig.1.51 (b) that the over-
illumination that occurs everyday at the same time (from 11 AM to 1 PM) leads the MAPE to
cross the detection threshold. Finally, we can conclude that the proposed method can eliminate
the abnormal I-V curves due to over-illumination. Therefore, the proposal will process all the

measured I-V curves before being used to extract the parameters.

I.7. Conclusion

This chapter was mainly dedicated to developing the experimental test bench, which
consists of a low-cost I-V tracer, TC 74 temperature sensor, reference cell for irradiance
measurement, and fault emulator. Based on the literature review on I-V tracers, the I-V tracer

based on a DC-DC converter was selected for our study.

The number of points is a compromise between the duration of the measurement, which

should be as short as possible to minimize the power losses due to the interruption, and the
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required accuracy for post-processing. In this regard, the logarithmic distribution of points
(LDP) and the uniform distribution of points (UDP) algorithms were evaluated, analyzed and
compared to determine the optimal number of points on the I-V curve. The results demonstrated
that the absolute relative error (ARE) is lower for the LDP algorithm, which was selected for
the 1-V tracer.

The I-V tracer was calibrated and validated via a high-efficiency E4360A Modular Solar
Array Simulator (MSAS) Keysight with an accuracy of 1.33% in the healthy case. We have
also shown that it can also measure the I-V curves of faulty PV modules (partial shading, R,
degradation and R, degradation). This I-V tracer has a low cost, a short response time, a good

repeatability. It is therefore suitable for monitoring PV modules in PV power plant.

Dring the acquisition, we noticed that some I-V curves exhibit an abnormal shape due
to the activation of a bypass diode of the PV module that is peridiodically overilluminated by
an aluminium tube. Thanks to a partial shading detection technique based on linear
interpolation, the abnormal curves were successfully withdrawn to avoid any misinterpretation
and wrong identification of the single diode parameters. In the following, all the measurement

curves are preprocessed before being used.
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Chapter II: Modeling, extraction, and validation of Electrical PV
model in healthy cases

I11.1. Introduction

The previous chapter has highlighted the need to develop an experimental platform that
can measure the I-V characteristic of healthy or faulty PV modules, including the
characterization of the environment. In order to analyze the performance of a PV installation
and make Fault Detection and Diagnosis (FDD), it is necessary to compare the measured values
with those obtained by an accurate model, the FDD approach proposed is based on the complete
I(V) characteristic, and only an equivalent electrical circuit will allow to simulate it, while the
other types of modeling only give access to the MPP. This chapter presents the equivalent
electrical model, and the objective is to define the model’s parameters that best represent the I-
V characteristics of the measured PV module. The PV module manufacturers' specifications do
not allow for accurate modeling of PV performance under general and real environmental
conditions. That’s why we propose to extract electrical parameters from measured I-V
characteristics. Consequently, accessibility to an accurate and reliable PV model is critical for
FDD. The PV model will be used as the reference in health monitoring systems based on the
comparison between the measured and the estimated current-voltage (I-V) characteristics.
Hence, this chapter aims to identify and validate the PV model that we will use for FDD. In
section 11.2, we first present the state of the art on the electrical model equivalent of a PV
module. The parameters used in the model are environment-dependants. As a consequence,
analytical models of those parameters are described in section I1.3. The parameters’ extraction
methods are cited in section 11.4. The implementation of the numerical method based on
Levenberg Marquardt is explained in section 11.5. Thus, in section I1.6 a method is proposed to
extract the PV model parameters and validate the single diode model (SDM), including error
analysis. Section 1.7 introduces the exploitation, utilization, and validation of a hybrid PV
model, associating the analytical parameters model and numerical SDM. The influence of the
PV module temperature on the PV model is explained in section 11.8. The last section of this

chapter is a conclusion.
[1.2. State of the art on electrical PV model

The modeling of PV modules necessarily involves a judicious choice of equivalent

electrical circuits, taking more or less details. Numerous mathematical models have been
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developed to reproduce the highly nonlinear behavior resulting from the semiconductor PN
junction, the basis of the photoelectric effect. Many approaches are used to simulate the
performance of PV cells/modules/strings/arrays. In our study, we have decided to focus on the
module level. Artificial networks have been proposed in [1]. However, the equivalent electrical
circuit is the most commonly used. In the literature, several electrical models have been
proposed to estimate photovoltaic module performance and energy productivity in real
operating conditions [2]-[6]. The complexity of the models depends on the number of elements
in the circuit and, consequently, on the number of parameters to identify. Each model is
essentially an improvement of the ideal model, which contains a current source representing
the photo-current and a diode that models the PN junction; the most widely used electrical

circuit models are summarized in Table. II. 1, which will be presented and compared in the

next parts.
Table. Il. 1: Different electrical models
Accuracy
Model Circuit model Parameters | Computation
time
I out
=3
[Ton — ||1a
Ideal Model 3 Ly, 1, I
SZ Vout
®
I out
—
U e
Single diode R e
model with Tlph 1 I, o Lyp,m, Iy, | Quite good
series 4 7 R
resistance S_ Vout
—o
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|
Single diode ou t
1
model with o — _I_’
series and Tlph 1 Id l Ish RS Lpyp, 1, I, Good
parallel 4 37 R, Ry, Fast
resistances { R sh Vout
(SDM)
—e
Iout
—_—
 }—o

-+ Ly, ny,
Two diodes Tlph 1 141 1Id2 1Ish Rs P Very good

I ) )
model 4 7 o1 2 High
Rsh Vout oz, Rg, Rgp,
o

[ }J——o Lpp, ny,
i R
Three diodes Ilph 1 141 1 Idzl I3 1 L s Iy, My, Very good

model A Iz, 13, lo3, High
7 7 Y RSh Vout Rs: Rsh

Bishop TIph 1 1 ISh RS + Ipp, 1, I, Good

del Id RS’ Rshl H| h
mo
A 37 RSh Vo @ m g
—_— Vout

L,p, is the generated photo-current, n or n; is the ideality factor of the diode d or d; and I, or

Iy; 1s the saturation current. Ry and Ry, are the series and shunt resistances, respectively. V,,. is
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the breakdown voltage, a is the avalanche fraction, and m is the avalanche exponent for Bishop

model.

11.2.1. Ideal model

Fig.Il. 1 illustrates an ideal PV cell, which consists of a single diode connected in anti-

parallel with a photo-generated current source (I,p,).

Tout
=5
1on  ||1a
CD / Vout
=

Fig.1l. 1: Ideal PV circuit model (3 parameters)

The relationship between the output current and voltage has been investigated [3], and the

output current can be expressed as below:

Vou
Tout = Ipn = Lo = Ipn — lIo[exp (L) — 1] (I1.1)

nKT

Where 1,,,,, refers to the PV output current, I,,, defines the photo-generated current, I, denotes
diode saturation current, K is the Boltzmann constant (1.3806 x 10723JK~1), g represents the
electron’s charge (1.602 x 10719C), V,,,,, denotes the PV output voltage, n is the diode ideality
factor, and T refers to the temperature of the P-N junction in Kelvin; this temperature is usually

assumed to be equal to the PV module temperature (T,,) [7].

11.2.2. Single diode model with series resistance (four parameters)

The ideal PV model is rarely used to model PV and is only utilized to explain the theory
of PV cell modeling. When establishing a more realistic PV model, the contact resistance, the
current flow resistance in the silicon material, and contact resistance between silicon and
conductive surfaces are all taken into account by inserting a resistance (Ry) in series in the ideal

model [4], [8]. Fig.ll. 2 shows this electrical circuit called the four-parameter model [2], [3], [9].
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[Tpn
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Yo v

o
Fig.Il. 2: Single diode model with series resistance (Four parameters)
The output current can be presented as below:
Vou +Iou RS
Tout = Lpn = Lo = Ipn — I |exp (q Zeuete) 4 (112)

In [10], the four-parameters model was used to simulate three different PV technology: CIS,
multi-crystalline silicon, and mono-crystalline silicon. The four-parameter model was also used
to develop a mathematical model for PV modules that simply uses parameters from
manufacturers' datasheets [11]. Even though this model is more accurate than the ideal model

in simulating the behavior of physical PV modules, it’s still insufficient for our FDD purpose.

11.2.3. Single diode model with series and shunt resistances (SDM, 5 parameters)

A shunt resistance (Rg,) is added to the PV model to take into account the leakage
current of the P-N junction. The electrical circuit is shown in Fig.Il. 3. This model is known as
the five-parameters model and is widely used especially because of its reasonable compromise

between accuracy and simplicity [12].

Iout
—
 }—o
R -+
s

Tlph l Iq 1 Isp

C) SZ Rsh  Vour

Fig.Il. 3: Single diode model with series and shunt resistances (SDM, five parameters)

The output current can be re-written as below:
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Vout+10utRs) _ 1] _ Vout tloutRs (” 3)

Iout = Iph - Id - ISh = Iph - IO [exp (q nKT Rsh

The addition of R, increased the number of parameters to five, namely L,,, R, Rgp, Iy, and n.
The comparison between the four parameters and five parameters models was studied in [13],
[14]. The result obtained from the PV module simulation and an optimal ANN model has been
validated experimentally. The authors also demonstrated that the four-parameter model seems
unable to describe the influence of high temperature on current, leading to a less accurate model
than the five-parameter model. Another comparative study in [15] has demonstrated that the
five-parameters model has a better fit with the experimental data than the four-parameters

model.

11.2.4. Two diode model (seven parameters)

The single diode model is widely used, which can achieve acceptable accuracy.
However, the single diode model essentially ignores the impact of current recombination loss
in the depletion zone. Consequently, a second diode (d2) is added to the SDM to take into
account for this loss, and this model provides reasonable precision under low irradiance [4].

The electrical circuit of the two diode model is shown in Fig.11. 4.

Iout
——
[ }—o
R -+
S

[Ton IWar | [laz  Ish

) / Rsp Vout

()

Fig.1l. 4: Two diode model (seven parameters)
The output current can be expressed as below:

Loyt = Iph — g1 — g — Isp,

o = I = o e (g 252) 1] o (g P _ ) st 1.4

Where 1, and I, are the current pass through the corresponding diode; n, and n, are diode
ideality factors of the respective diode, and the saturation current of diodel and diode2 are I,

and I,,, respectively. On the other hand, adding a second diode increases the number of
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parameters that have to be computed. As equation (11.4) shows, this model is complicated since
it is a nonlinear and explicit equation with two exponential parts and up to seven parameters.
Consequently, the computation time is relatively long [6], [16]. Many approaches have been

attempted to minimize the computational complexity, but they seem unsatisfactory [6].

11.2.5. Three diode model (nine parameters)

Fig.l1. 5 shows the three diode model. The first diode would provide the diode current
(I41) due to diffusion and recombination in the quasi-neutral regions (QNRs) of the emitter and
bulk regions with n; = 1, and the second diode would provide a contribution to the diode
current (I;,) due to recombination in the space charge region (SCR) with n, = 2 and the third
diode in parallel to the two diodes would provide the diode current component (I;3) due to the

recombination in the defect regions, grain sites, etc., with n; > 2 [17].

I out
—
e
R +
S

I Wa Y 1az2l| 1as W1sh

<> / \/ \ Rsh Voue

—
Fig.Il. 5: Three diode model (nine parameters)

The following is an expression for the output current:

Loyt = Iph — g1 —lgp = Igs — Isp,

o = = o[ (o 222) 1] 1 o (g ) - 1] -

Iys [exp (q —VO";Z;;fRS) - 1] - —Vouf;:Z“tRs (11.5)

11.2.6. Bishop model

When one PV cell is occulted, it operates in the opposite regime (quadrant I11). The
SDM does not represent the behavior in this region, and it can be done by adding a nonlinear
multiplicator (M(V)) that describes the avalanche effect (Bishop effect) in series with the shunt

resistance [18]-[23]. The electrical circuit of this model is shown in Fig.ll. 6.
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I out
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| +
ph || 1a S

<> WA e Vout

Fig.ll. 6: PV electrical circuit of Bishop model

The output current can be written as below:

Loyt = Iph —Iqg — Iy

-k
Toue = Ion — Io [exp (g 2utiztie) _ q]  Yourtloutts |3 4 g (1 — YoutHlous) 7] 11 )

-k
With M(V) = 1+ q (1 — utoutt) (11.7)

Vipr

When the Bishop model is added to the five parameters model, the number of parameters

increases to eight parameters, and these three additional parameters are :

-V, : Breakdown voltage of the cell (-10 V to -30 V)
-k : Avalanche breakdown coefficient (3.4 to 4)

- a :Avalanche breakdown fraction (~0.1)

11.2.6. Summary of PV model

The three diode, two diodes and Bishop models are not selected for our study for the

following two reasons:

- The addition of a second and third diodes dominates at low voltage and low irradiance.
For FDD purposes, measurements can be selected in order not to be affected by low
irradiance levels.

- The Bishop model enables PV cells to operate in an inverse regime. Nowadays, PV
modules are protected by bypass diodes which prevent them from working as a load,

that is, in an inverse regime.
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The main drawback of the SDM is that the needed five parameters are not given in the
datasheet of the PV module. They should be deduced from the current-voltage characteristic
(given by the manufacturer or measured under controlled conditions). New methods for

extracting these five parameters are regularly proposed in the scientific literature (e.g., [24],
[25]).

Based on the literature review, many researchers considered the development of the SDM
and made some suggestions for improvement and simplification to obtain the needed five
parameters. Study results show acceptable performance in terms of accuracy [14], [26]-[32].

Therefore, the SDM is selected for our study.

The PV cell is the basic element of a PV module. Generally, N, PV cells are
interconnected in series to form the PV module. The SDM can model a PV cell, a PV module,
and even a PV string or array. To be sure of the notations used in this manuscript, below are
summarized the relationships we used to model a PV module from the five parameters of the
SDM of a PV cell.

Fig.Il. 7 illustrates the association of Ny PV cells connected in series to form a PV module, each

one being represented by its SDM and the equivalent SDM of the PV module.

.CE"]. .................................................... —> Ip]; X
+,
uph W g ‘Ish Rs [
T R va/Ns
L Ipy
........................................................ I‘ ::.
........................................................... pr,
i+ Ik I S
ton Y1a Y1, Bs v & [T || Tsn
Y pv 7
Rgp Vpo/Ns  — A NsRsn Vv
................ :.E.é..,._ § :'
TN N S - —
Cell Ns —
I
on Yo Y1 Bs
Rgp |va/Ns

Fig.Il. 7: SDM of Ns PV cells connected in series to form a PV module (left) and SDM of the same PV
module (right)
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According to equation (11.3) applied to a PV cell, the output current of the PV module is

represented in the left part of Fig.Il. 7 can be expressed as below:

[ m+IpvRS mevRs
Lyy = Lpyp — Ip |exp (CI _NSnKT - 1] - Rsn (11:8)
_ _ [ Vpv+IpvRgNsY __ (Vpv+IpvRsNs
low = Ipn = 1o €XP (q nNsKT ) 1] ( RspNs ) (11.9)

Where L, refers to the PV output current of the PV module, V,,, denotes the PV output voltage
of the PV module.

[1.3.  Description of the SDM five parameters and their variation with environmental
operating conditions

For the model to be even more precise, it is important to also take into account the
variation of the SDM parameters with the environmental operating conditions and, more
particularly, the irradiance in the plane of array (Gp,,4) and the operating temperature of the PV
module (T,y).

11.3.1. The photo-generated current (I,,,)

The output current at the standard test condition (STC) of Fig.ll. 1 is :

Vpv
Ly = Ipn — lo[exp (£22) — 1] (11.10)

This equation (11.10) allows quantifying I,,, which cannot be determined otherwise [33]. When
PV cell is short-circuited (V,,, = 0):
0
lse = Lo — Io [exp (=) — 1] (1.11)
This equation is valid only in the ideal case. Therefore, equation (11.11) has to be written as:
Ise = Ly, (11.12)

The photo-generated current (1,,) is directly proportional to the irradiance and depends on the
temperature via the short-circuit current temperature coefficient (K; ., expressed in %°C™1).

It can be expressed as below [34], [35] :

Iph ~ Isc_ref [1 + Kl_ref (Tpv - TSTC)] Groa (“-13)

Gstc
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Where T, and Tsrc represent the temperatures of the PV module in operating conditions and
in standard test conditions (STC), respectively, in °C. Gpp4 and Ggrc = 1000 W m~2 in plane
of array and STC irradiances. I .; and K; .., will be tuned according to our measurements

and operating environmental conditions for the proposed hybrid model (see part 11.7). Their

initial values are obtained from the datasheet (Table 1.2).

11.3.2. The diode saturation current (/,)

The diode saturation current (I,,) is the asymptotic value of the current in reverse bias.
It depends only on the temperature. It can be given through Eq (11.11) as below, according to
[36]:

Iy = Iy res (%)3 exp |22 (- 1) (11.14)

Where I, sr¢ and T, are the nominal diode saturation current and temperature in Kelvin at STC
and E; is the bandgap of the PV semiconductor in eV. I, sr¢ can be derived from Eq (11.8) of
the ideal model (neglecting series and shunt resistances), expressed in open-circuit conditions
and STC (I,,= 0 and V,,,= Voc res):

Voc_ref
0 =IL,n — losrc lexp ( qm -1

Ipn
Io yer = exp(qvp—f)—l (11.15)

nNgKT

But in this study, the formula of the saturation diode current (I,) that fits and matches the most

to the proposed approach is presented as follows [7], [37]:

1 1+K Tyy—T
ty = — el G e (1.16)
exp(q oc_ref v.refUpv=IsrTc )_1

nNgKT

Voc_res 1S the open-circuit voltage measured in STC and Ky, ¢ is the V. thermal coefficient in

%°C~1. Their value will be tuned according to our measurements and operating environmental
conditions for the proposed hybrid model (see part 11.7). Their initial values are taken from the
datasheet (Table 1.2).
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11.3.3. The series resistance (R;)

Several methods tried to model the effect of the temperature and the irradiance on R;.

Among others, the author in [38] propose the following equation:

_ Gpoa\ Bref
Rs - Rs_ref [1 + KR_ref (T - Tn)] (_) (||.17)

Gstc
Where Ky .. defines the linear temperature coefficient (varying from 0 to 0.5% °c 1), and B,., £

denotes the exponential solar irradiance coefficient of R, (0.78)

Some other authors assume that R, only depends on irradiance so that it can be written as the
equation below [39], [40]:

Ry = Ry yoy X -SIC (11.18)

Gpoa

Where R; .. is the series resistance at STC.

Finally, we can also find in the literature that R, increases with temperature and decreases with

irradiance [41], [42], as follows:

Ry = Ry ref [% X (1= Brep In (2224))] (11.19)

Gstc

With B, = 0.217.

The coefficients Kz ,¢r, Breg, Rs rer and B¢ Will be tuned according to our measurements and

operating environmental conditions for the proposed hybrid model (see part I1.7). The initial

value of R; s is estimated from a one-shot I-V curve measurement, while the initial values of

KR refs Bres, Brey are taken from the literature.

11.3.4. Shunt resistance (R},)
In the research of [43], [44], the author presents a formula for shunt resistance (Rgy,)

variation with the irradiance level from PVSYST software [45] as below:
_ Gpoa
Rsh - Rsh_ref + [Rsh(o) - Rsh_ref]exp (_Rshexp E) (“-20)

According to the software reference guide (PVSYST, 2012), Ry, (0) is equal to four times

Rgp res for crystalline silicon. Ry, is the exponential parameter, usually 5.5.

75



Chapter Il :Modeling, extraction, and validation of electrical PV model

G
Ry, = Rsh_ref [1 + 3exp (_Rshexp %)] (11.21)
Another research considers R, as constant, it can be written as below [46]:
Ry, = Rsh_ref (11.22)

Ry, can also be taken proportional to the irradiance, represented as following [26], [40], [47] :

Ry, = Rsh_ref X ST (11.23)

Gpoa

The coefficients Ry, o and Rgp.x, Will be tuned according to our measurements and operating
environmental conditions for the proposed hybrid model (see part I1.7). R, . initial values is
estimated from a one-shot I-V curve, while the initial value of Rgp.,, is taken from the

literature.

11.3.5. The diode ideality factor (n)

The diode ideality factor (n) is proportional to the PV module temperature. It can be
expressed in the equation as below [48], [49]:

R = Ty X (11.24)

n

Where n,..r is the diode ideality factor. Its initial value is set to 1.

The coefficients n,.. - will be tuned according to our measurements and operating environmental

conditions for the proposed hybrid model (see part 11.7).

11.3.6. Summary of parameter model variation with environmental conditions

The FDD method that we propose is based on the comparison between the measurement
in real conditions, and the simulation, under the same conditions, of a PV module. To do this,
we have chosen to use the SDM, whose five electrical parameters define the output PV voltage
and current. We have just synthesized the main analytical laws of variation of these parameters
as a function of the irradiance in the plane of array (Groa) and of the operating temperature of
the PV module (T,,). These laws were extracted from the literature. They will be empirically
tuned to our measurements in part 11.7 to obtain a hybrid model (analytical modelling of the
parameters with environmental conditions and numeriacal modelling of the SDM) that best

suits the characterized PV modules.
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I1.4. Parameters extraction methods

Following the choice of an acceptable model with five electrical parameters, and the
presentation of their variation with environmental conditions, we will now explain how their
values are setted. Determining them on the basis of information from the datasheet or
experimental measurements is still a challenge, and yet, it is essential to find the most accurate
parameters allowing better precisions in the simulations. As a consequence, this issue has
attracted the interest of many researchers. In recent years, several accurate parameter extraction
methods have been proposed to deal with the nonlinear I-V characteristic of PV cells, modules,
strings, or arrays. They can be classified into four main approaches [4], [50], which are

described bellow.

I1.4.1. Analytical approach

Analytical approaches provide formulas to obtain model parameters from the datasheets
or from I-V curve measurements. The analytical method proposes to solve a set of
transcendental algebraic equations to extract the parameters. These equations are derived from
(11.8) expressed for remarkable points (open-circuit voltage (V,.), short-circuit current (),
current (L,,,) and voltage (V,,,) at the maximum power point (MPP)) specified in the
manufacturer’s datasheet or from I-V curves measurements. The SDM parameters extraction
is described in references [41], [51], [52], which provide approximate equations using various

and V.

simplification methodologies. This analytical method needs the value of I, V,, -

mpp
This lead to a set of three equations for five unknown parameters. The slopes of the 1-V curve
can be added to the current source and voltage source zones. From them, Ry, and R, can be
derived. While using the whole I-V cuvre, the number of samples is also a limitation,
particularly when the MPP and the slopes have to be calculated. This approach is feasible if the
key points are accurate, but the MPP is subject to sampling noise. Therefore, these analytical

methods are not suited for high-accuracy calculations and are time-consuming.

I1.4.2. Numerical approach

Due to the drawbacks of the analytical approach, numerical methods for solving the
implicit nonlinear transcendental equation with better accuracy have been developed. The
numerical methods are based on iterative techniques or optimization algorithms such as Gauss-
Seidel [53], Newton Raphson [54], Levenberg Marquardt (LM) [2], and so on. These methods

typically use gradient-descent-based techniques to minimize an objective function between the
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measured and calculated I-V curves. This minimization aids in the optimization of parameter
values. The numerical methods provide fast convergence, high computation efficiency, and
sufficient accuracy. Any inappropriate choice of initial values may cause these methods to be

trapped in the local search instead of the global search [55].

11.4.3. Metaheuristic approach

To mitigate the disadvantages of numerical methods, metaheuristic methods have been
proposed for solving complex optimization problems to extract the parameter of PV models in
terms of global search capability. These methods rely on evolutionary, probabilistic,
population-based optimization algorithms developed from nature-inspired [56]. Metaheuristic
algorithms, including Genetic Algorithm, Differential Evolution, and Particle Swarm
Optimization, in general, do not require any initial value condition for the parameters or
gradient descent-based information [57], [58]. Even if metaheuristic methods have high
accuracy, they also require a high computation due to the large stochastic population's

complexity, which remains the main problem of these methods [59].

I1.4.4. Hybrid approach

Another method is known as hybrid methods, which combines the merits of two
methods, e.g., numerical-metaheuristic [60], analytical-numerical [61], and metaheuristic-
metaheuristic [62], to improve the efficiency of parameters extraction. For example, a
combination of the analytical and metaheuristic method was studied to identify PV cells’ single
diode model parameters. By using metaheuristics algorithms, the values of series and shunt
resistances (R, Rgp,) Were optimized. While the analytical method is applied to estimate the
values of the ideality diode factor (n), diode saturation current (/,), and photocurrent (1,,,) [63].
Even though hybrid methods feature the accuracy and convergence speed of parameter
extraction, they also need huge computing resources, which are not suitable for implementing

real-time parameter extraction [64].
11.4.5. Summary of extraction methods

To sum up, a useful parameter extraction method must include accuracy and low
computational time. In our study, we have chosen the numerical method based on the LM

algorithm because it requires a full range of measured I-V curves. Moreover, the LM algorithm
combines two minimization methods (Gradient Descent and Gauss-Newton) which give

78



Chapter Il :Modeling, extraction, and validation of electrical PV model

robustness and makes the algorithm faster [65]. In [2], the authors proposed a numerical method
based on the LM algorithm to extract PV models' electrical parameters from among the five
most commonly used ones, including PV models with three, four, five, six, and seven
parameters. The result showed that the single diode model with five electrical parameters gives
a very good accuracy when using the LM algorithm. Furthermore, this algorithm offers the best
trade-off between sufficient accuracy and the speed of calculation. For all of these reasons, this

extraction method was chosen to extract the single diode model's five electrical parameters.

[1.5. Levenberg-Marquardt optimization algorithm description

The parameters extraction method based on the Levenberg-Marquardt (LM) optimization
algorithm is chosen in our study to extract the five unknown parameters of the PV model. LM algorithm
provides a numerical solution to the problem of minimizing an objective function that is nonlinear and

dependent on several variables. Its main application is the progression through the least-squares method

[2], [60].

I1.5.1. Implementation in MATLAB

Assuming that we have the observation of m measurement data points along an I-V curve of
PV modules (Vneas;) Imeas;), i = 1:m, the PV model characterized by five parameters is

described by equation (11.8), as follows:

Vmeasi+1pred(l-_1)-9(2)-Ns) ] (Vmeasi+1pred(i_1)-9(2)-Ns

Lyrea; (6, Vieas;) = 6(1) — 6(4) [exp <q SN KT SN ) (11.25)

Where 6 = [I,n, Rg, Rsp, 1o, n] is a vector composed of the five unknown parameters of the
SDM. Iyreq, (8, Vineas;) is the predicted current as of the function of 6 and the measured voltage
Vineas;- Then, the absolute error vector between the predicted and measured current is

calculated, which is written as follows:

Imeasl - Ipred1 (9' measl) e, €))
Imeasz Ipredz(e' measz) /92(9)\‘
|
/l

e(0) = = (11.26)

Imeas - pred (9' meas)

I
I
\Imeasm predm(e' measm )
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The objective here is to find the optimal vector 8, which minimizes the function f(8) calculated
with the vector e(6).

f(0) = S 31 [e:(6)1? (11.27)

The function f(6) becomes the objective function to be minimized by least squares and thanks
to the LM algorithm under MATLAB. Fig.Il. 8 shows the L-M flowchart implemented in

MATLAB.
I-V curve data
Imem;, V:neas.—9 Tpv» Ns
andi=1:m

L ]
Initial parameters calculation
0 = [69(1),80(2),09(3),8¢(4),00(5)]
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Opin = [0: 0,0,0, 1]

B ,nax = linf,inf,inf,inf,2]
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. Vineas; Hpred(;_) 0D Ns an me"“"""’(l—l) B(2).N5
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Fig.ll. 8 : Levenberg-Marquardt approach flowchart
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11.5.2. Initial condition

Initial values play a crucial part in the numerical optimization method, especially in the
LM algorithm. Any wrong initial value choice of a parameter may affect the results, which can
be trapped in any local optimum instead of the global one. Poor initial values, for example, may
lead to a significant increase in the number of iterations and, in some cases, a divergence of the
optimization algorithm [2]. Therefore, the initial values of the SDM parameters must be taken

into account very seriously.

11.5.2.1. Initial value of the photo-generated current (1,p,0)

The research proposed in [2] indicates that a good starting point for the initial value for

L, is approximated by the short-circuit current at the operation condition. It can be defined as
below:
IphO = Iscmeas (“28)

11.5.2.2. Initial value of diode ideality factor (n,)
Depending on the fabrication process and semiconductor material, the ideality factor n

usually ranges from 1 to 2 [2]. Therefore, the initial value of n can be set to 1.
ng =1 (11.29)

11.5.2.3. Initial value of the diode saturation current (I)
Considering the ideal model, that is to say, the Eq (11.9) with R, = 0 and R, = oo,

expressed for a voltage equal to the open-circuit one (V,, =V,

OCmeas

and L,, = 0) and in

operating conditions and with the hypothesis that L,, = I the diode saturation current

SCmeas’

initial value can be expressed as bellowing [2], [26], [66] :

— ISCmeas
l00 = —— Vocmeas (11.30)
ANGKT

11.5.2.4. Initial value of the series resistance (Rs,)
The equation below uses the slope of the measured 1-V curve, close to the open circuit
point, to determine the initial value of R, [2], [67], [68]:

The two couples of points closest to the open circuit ( Vo, 0) on the measured I-V curve, are
indicated as (V1, I1) and (V2, I2). By making the following assumptions, we can calculate the

initial value of R, as below
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NgKT 1 Iyno—1I Vo=V
Ry = ng X =— X X In(22—2) -2 (11.31)
q I=I Ipno—I1 =1

Lypo is the initial value of photo generated current and n, is the initial value of the ideality

factor.

11.5.2.5 Initial value of the shunt resistance (Rgy0)
According to research on PV array modeling and circuit-based simulation [69], the Eq
(11.31) is one of the most suitable equations to have a good initial guess value of R, because

the initial value of R, started from the minimum value of Ry, by using the expression here

follow :
1% V, i
RSh_O =I mP_PImeas _ Dsz;‘as MmpPmeas (“32)
SCmeas "MPPmeas mpPmeas
Where, V. and I _ ., are open-Circuit voltage and short-circuit current, V,,,,,, - and
Lnppmeqs € Voltage and current at the MPP, respectively, in experimental operating
conditions.

[1.6. Description and validation of the analytical models

Manufacturers often provide information under standard test conditions (STC, 25°C,
1000 W m, AM1.5), which is insufficient for determining overall PV performance. PV cells,
modules, strings, and arrays do, in fact, work under a variety of meteorological conditions far
from the STC. For FDD, accurate and reliable modeling of the PV system under every
environmental condition is required. Furthermore, the PV model's extracted parameters must
be precise and accurate in order to simulate the PV system. Many numerical techniques have
recently been presented for several weather conditions to determine the optimal extracted
parameters that minimize the objective function and provide the lowest quadratic errors; these
extracted parameters are then utilized as constant values in the PV model. The precision and
dependability are not as high as they should be. When the irradiance and temperature of the PV
model are changed, the extracted parameters of the PV model also change substantially. In the
following, a 4-step methodology, described in Fig.Il. 9, is developed to extract the parameters
of the SDM. The first two steps are devoted to the training, while the last two ones are for

validation.

- Step 1: For training data (T,y,, Gpoa)taining, €xtraction of the parameters é(,_v) =

[Ion,Rs, Rsn, 1o, n] from measured 1-V curves,
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- Step 2: Identification of the reference values for the analytical models 6,., =
[Rshrefs Rs refs Brefs Voc refs kv vefr ki refs Isc ref» Mres]-  The  cross-effect  between
Gpoa and Ty, will be considered,

- Step 3: Extraction of O4n41, = [IpuRs, Rsn, lo, 7] with the analytical models using the
reference values &,.. and validation dataset (7, Gpoa) validation,

- Step 4: Analyses for each of the M I-V curves the mean absolute percentage error

(MAPEg) between ;_yy and 8,4, to validate the analytical model.

(Tpvv Gpoa)training

l N (Tpu' Gpoa)validation
Measurement of
(I-V) curves l
Analytical

‘Sref ]
motliels

A éanaly = [iphrﬁs' Rsh'iOJﬁ]
0u-vy = [Ipn, Rs, Rsp, o] — \

l

Determination of
reference values

]

6re f

Error analysis for
model validation

Oinic 1

Training stage Validation stage

Fig.1l. 9: Training and validating methodology
To evaluate the accuracy of our methods, parameters extracted from I-V curves
measurements and estimated by the analytical models for a validation dataset (which is different
from the training dataset used to adjust the analytical models) are compared. The mean absolute
percentage error between those two sets of parameters (MAPE,) is calculated using the

formulas below:

8011y ~Banaly;
MAPEy = —ym |2 i (11.33)

m

§(1-V)i

- é(,_v) is the five unknown parameters, which are extracted from I-V curves
measurement using the LM optimization algorithm
é(analy) is the five unknown parameters, which are calculated from the analytical

model of parameters

m is the number of I-V curves

i refers to it" measurement
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The two next parts present in detail how are trained the analytical models to get the best

reference parameters &,.r, using |-V curves measured under training conditions
(GPOA»Tpv)

analytically calculated é(analy) and extracted from measured I-V curves é(,_v), both in

training and how the models are validated by comparison between the parameters

validation conditions (GPO W .Once the proposed hybrid model is validated, it can

T,
pv)validation

be used to simulate PV healthy modules in FDD processes.

11.6.1. The training stage

During the training step, the five unknown parameters 9(1—1/) of the SDM are extracted

from measured I-V curves under real conditions. The curves used in this step are selected only
if they have been measured under an irradiance greater than or equal to 600 W m™ in order to
avoid low irradiance conditions. An example of an 1-V curve measured on 8" September 2021,
at 2:12 pm with an irradiance of 698 Wm™=2 and a module temperature of 47°C is presented in
Fig.Il. 10 with blue dot markers. We applied the LM algorithm as described in section 11.5; the
parameters are written in the figure. The red marker and yellow line in Fig.ll. 10 are the I-V
curve obtained from the LM algorithm and PV model, respectively. This figure shows a good
agreement between measurements and simulation. To ensure that the extracted parameters of
the PV model will be reliable, accurate, and work under any weather condition, many I-V curves
measured under different conditions are investigated, and the five parameters are extracted for
each one. The training dataset is composed of 488 measurements that have been carried out

under different weather conditions, as shown in Table.ll. 2.

. IVmeas
Gpoa = 698 W/m? a IV
5" T, =47C V..
4 % = - a I - all
— Parameters extracted using LM approach .’N
i I, = 4.228 A “x\,‘
A
gl R =740 mQ i i
R, = 65.698 2 v
" Ip=7.748x 1078 A
n=1.1 W
0 |
0 5 10 15 20
Vo[V

Fig.1l. 10: Measured and simulated I-V curve, in real operation condition; this data was measured on
08-09-2021 at 14:12; the SDM was configured with the extracted parameters
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Table.ll. 2 : Dataset used for the training step

Date of acquisition Weather Number of I-V curves, Gpos = 600Wm ™2

1 02/09/2021 Sunny 94
2 08/09/2021 Sunny 86
3 10/09/2021 Partly cloudy 29
4 14/09/2021 Partly cloudy 45
5 15/09/2021 Partly cloudy 42
6 19/09/2021 Partly cloudy 44
7 20/09/2021 Partly cloudy 27
8 23/09/2021 Partly cloudy 58
9 24/09/2021 Sunny 63

Total 488

The analytical expressions mentioned in section 11.3 are used to model the variation of the five
SDM parameters with irradiance and temperature. As can be seen in these equations, some
reference values need to be estimated. They are represented by &,.r =
[Rsh refs Rs refs Brefs Voc ref kv refs Ki refs Isc ref» Tores |- Those reference values are obtained
during the training step with the fitting of the analytical models to the real parameters variations.
The flowchart of this step is shown in Fig.Il. 11. The least square error method is proposed to
minimize the absolute error between the measured and the estimated parameter. The absolute

error vector is shown below:

g(l—V)l - éanalyl (6) e, (6)
H(I—V)Z - Qanalyz ©) /6’2 6)

N
V=13 9 - 11.34
“ Q(I—V)i - Hanalyi(5) \ﬁ'(ﬁ)) ( )

_ P (s
Q(I—V)M - HanalyM (5) eM( )

The goal here is to find the 6, vector which minimize the function f (&) defined as bellow:

f (&) =5EMe(8)) (11.35)
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Define the data
O 1-v)i Tpv;» Groa;
andi=1M

¥

Initial parameters guess
6(nnaly)m“ = [aim't(l) or 6inl’t (2)]

i=1
Define prediction function
o(ﬂnﬂly);(s)

¥

i++

No

Iteration <M

_~

61’18“’ Yes

Define Objective function

f(8)
v

options = optimoptions(@Isqnonlin,'Algorithm’,'levenberg-marquardt’)

]

[8] = Lsqnonlin(e(8), 8y, options)

No

Error < To

Give the optimal solution of parameters Sref

Fig.ll. 11 : Flowchart approach for calculating the reference values of the analytical model

11.6.1.1. Analytical model of the photocurrent (L)

According to Eq (I1.13), the photocurrent depends on the reference values K; ,.r and
Isc rep. Their initial values are determined using the datasheet or information found in the
literature, and then they are tuned to minimize the objective function defined in (11.35) and use

the LM algorithm. The photocurrent depends not only on the irradiance but also on the
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temperature. To avoid the cross-effect between Gpp, and T,,, K; ,or is tuned at constant
irradiance (Gppa = 765 W/m? + 2%) and I, ,f at constant T,,,. Under different irradiances

for T,,= 56°C, the reference parameters are estimated. The results are shown in Table.1l. 3.

Table.ll. 3 : Estimated reference value from Eq (11.13) for constant T,,, = 56°C

Isc ref [Al | Kirer [%/°C] MAPE ), [%]
Initial reference
values 5.34 0.038 8.34
Optimal reference
values of 1% step By 0.061 6.01

The evolution of I,,, with G, is shown in Fig.11. 12. The analytical model converges toward

the measured values. The MAPE,,, is 6.01%.

5.5 1 T T
=~ Q
© 0i1-v) o *
a g(analy—initial) Eq(II.13) X 2
5 % O(analy—optimal) Eq(II'13) g@ © B
* :
o X o
— P 88 © o N
= sl :5"’ o i
j‘l 4.5 O%Q 68 00 . g ®
ap & ) g
Ox m'j:ID
X0
4 8® 5 o™ p i
R o °
of
g o
g oF
3.5 : ‘ ‘ ; ‘
650 700 750 800 850 900 950
GPOA [W/mz]

Fig.1l. 12 : Evolution of the photo-generated current (I,,,) with irradiance, for constant T,,,, = 56°C

Once the reference temperature coefficient (K ,..r) is estimated for constant T,,,,, its value is set
in Eq (11.13). Then I ¢ can be estimated for constant Gp, 4. We assume that 750 W /m? <

Gpoa < 780 W /m? (i.e. 4% variations). The results are summarised in Table.ll. 4.

Table.ll. 4: Extracted reference values of Eq (11.13) for constant Gpp, = 765 W /m? + 2%

Isc_ref [A] KI_ref [%/OC] MAPEIph [%]
Optimal reference 5 817 0.061 6.01
values of 1% step ' ' '
Optimal reference
values

5.799 0.061 1.49
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The evolution of I,,;, as the function of T, for constant irradiance (Gpps = 765 W/m? + 2%)
is shown in Fig.Il. 13 . It can be observed that the module temperature T,,,, has a slight influence

on I,,. The MAPE,,, is equal to 1.49%.

6
5 | -
° 8 § I s 1) ! B0e g
=4 7
=
EN 7
2+ o é( v |
- ﬂ(analy—im'tial) Eq(I1.13)
% O(analy—optimat) Eq(I1.13)
I - : :

1 1 1 1 1
42 44 46 48 50 52 54 56 58 60

Ty [°C]

Fig.Il. 13 : Evolution of the photo-generated current (I,,,) with T,,, for constant Gpp4 = 765 W /m *
+ 2%

Once the optimal reference values of I ... and K ,..r are estimated, its values is set in Eq (11.13).
Then iph(analy) can be calculated for all measured in training stage (488 values) under the
difference of T,,,, and Gpo4. The evolution of [,panaryy and  Iyp—yy as function of Gpo, and
T,y is illustrated in Fig.Il1. 14. This figure shows a good agreement. The MAPE,,, is equal to
1.57%.

6 . ]
-
% o
5 é 9
=
5
~4
* Ou-v)
3 ° e(analyfoptimal) Eq(II.]_S)
60

1100

900 1000

40 800
T,, °C] 30 eoo 700

GpoA [W/mz]

Fig.Il. 14: Evolution of the photo generated current (1,,,) with Gpo4 and Ty, for all the measured
values in the training stage.

11.6.1.2. Analytical model of the diode saturation current (1)

I, is exclusively affected by temperature, as shown in Eq (11.16). The impact of

irradiance is not considered here. The reference values are Vo ver, Ky refs Isc refr aNd Kj e
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The last two ones have been determined in the previous section. Table.ll. 5and Fig.Il. 15 show
the estimated reference values and the evolution of I, as a function of temperature,
respectively. I, slightly increases with T,,,. The evolution of fo(analy) and fo(,_v) as function
of Gpoa and Ty, in 3D is illustrated in Fig.Il. 16. The results shows a good agreement and the

MAPE,, is equal to 10.5 %.

Table.ll. 5 : Extracted reference values of Eq (11.16)

Voc_ref [V] KV_ref [%/OC] MAPEIO [%]
Initial reference 917 -0.387 60.4
values ' ' '
Optimal reference 20.68 -0.519 105
values
25 X107 , , , . .
o é(I—V) ; g
2 © B(anaty—initial) Eq(II1.16)
% o(analy—optimal) EQ(II-IG) g

15 |!i

=
= .

1 l

y! .
o
g o
0.5 °ia!e DDDD
) 09988 50"
oL R R Saégsﬂumm
35 40 45 50 55 60 65
Ty [°C]

x10

3

* Ou-v)

2 © 0 (analy—optimar) £q(I11.16)
=
ol

0

60

1100

900 1000

800
GPOA [W/mz]

Fig.1l. 16: Evolution of the diode saturation current (Iy) with Gp4 and Ty, for all the measured
values in the training stage.

89



Chapter Il :Modeling, extraction, and validation of electrical PV model

11.6.1.3. Analytical model of diode ideality factor (n)

Eq (11.24) explains that the diode ideality factor (n) is exclusively affected by temperature.
Hence, only the influence of temperature is considered. The estimation of the reference value

is shown in Table.ll. 6. The MAPE,, and n, calculated are 0.831% and 1.01 respectively.
Fig.11. 17 represents the evaluation of n as function of T,,,, the result shows that n is relatively
constant. The evolution of A 4,41,y and A,y as function of Gpp, and Ty, in 3D is illustrated

in Fig.Il. 18, the finding shows a good agreement.

Table.ll. 6 : Estimated reference value of Eq (21) while Gp,,4 are constant

Nrer[—] MAPE, [%]
Initial reference
1 0.851
value
Optimal reference
P 1.01 0.831
value
2
1.5
1Q R RRARRRRIRRRRRRARRRRSOSSSBSY
= 05 = é(I—V)
- g(analy—initial) Eq(II-24)
0 * e(analy—aptimal) Eq(II.24)
0.5
-1
35 40 45 50 55 60 65

TI"’ [0 C]

Fig.Il. 17 : Evolution of n with T,,,, while Gy, are constant

2
L ]
. .Q o
15 ng *% o . s
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’ ¢ Ou-v)
1 © O(anaty—optimat) Eq(11.24)
60
% 1000 1100
900
opq 40 00 800
T [C] 30 600
Gpoa[W/m?]

Fig.11. 18 © : Evolution of n with with G, and T, for all the measured values in the training stage.
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11.6.1.4. Analytical model of the series resistance (R;)

Based on the literature review mentioned in section 11.3 for the series resistance (R;),

three analytical models are considered and compared with the extracted one. The best analytical

model will be selected based on determining the lowest of MAPER,. Eq. (11.17), in which

reference values are R .r, Rg ref, Brey and Eq. (11.18) which depense only on the irradiance

and its reference value is R; ,..r. Furthermore, Eq.(19), which reference values are R ,cr, Bres

modelise R, depence with irradiance and temperature.

Firstly, the reference values of each model are determined for constant T,,, = 56°C. The results

are shown in Table.ll. 7 and Fig.Il. 19. We can notice that the models represented by Eq.

(11.17) and Eqg. (11.18) do not converge to the measured value. From the Eq. (11.19), the result

demonstrates a good agreement with measured values. The MAPEg, are 6.1%, 4.65% and
0.88% respectively for Eq. (11.17), Eq. (11.18) and Eq. (11.19),. Therefore, the model of (11.19)
is selected for our study.

Table.ll. 7: Estimation reference values of Eq(11.17.18.19) for constant T,,,= 56 °C

Fig.11. 19 : Evolution of R with G,,, for constant T, = 56 ° C

Eq- Rs_ref [mﬂ] ﬁref [_] KR_ref [%/OC] Bref [_] MAPERS [%]

Initial .17 800 - 0.001 0.77 28.836
reference | 11.18 800 - - - 32.876
values 1.19 800 0.217 - - 18.972
Optimal .17 602 = 0.006 0.768 4.651
ref. values | 11.18 799 - - - 6.101
of 1% step | 11.19 708 0.036 = = 0.880

950 - : — 7

; © 0u-v)
900 o_ C g(analy—optima,l) EQ(II-17)‘—1
+*+ o, * B(analy—optimal) Eq(I1.18)
850 - * 1w * O (analy—optimat) £q(I11.19)|
g i % b o
gsooe 8 g ﬁ?a;gzw%sgm Q%QQ @ ¢ 9
750 - +*“++ . -
iy,
700 *
650 J ! : J
650 700 750 800 850 900 950
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The value of B, is set in Eq (11.19) to analyze the influence of the temperature. The extraction

results for constant irradiation are shown in Table.ll. 8 and Fig.Il. 20. The result demonstrates

that R, linearly increases with T,,,. Furthermore, the calculated deviation of MAPEg, is 0.925%.

Table.ll. 8: Extracted reference value of Eq(11.19) for constant Gpp4 = 765 KZ +2%
m

Rs_ref [m-Q] .Bref [_] MAPERS [%]

Optimal reference 708 0.036 0.880

values of 1% step ' '

Optimal reference

values 709 0.0% 092
1000 ~
© 0u-v)

950 - o Oanaty—initiaty Eq(19)

)

S~

900 (analy—optimal) Eq(lg)

850

o 80
800 : geggiiﬁ x

750

Rs[m)]

700

650 : 3
42 44 46 48 50 52 54 56 58 60

T, [C)
Fig.Il. 20 : Evolution of R; with T,,,, for constant Gpp4 = 765 W /m?* £ 2%

Once the optimal reference values of R .., and f,.f are estimated, its values is set in Eq (11.19).
Then ﬁs(analy) can be calculated for all measured under the difference of T, and Gpp,4. The
evolution of Rs(anaty—optimary and Rs—yy as function of Gpo, et T, in 3D s illustrated in
Fig.11. 21 This figure show a good agreement . The MAPEy, is equal to 1.175 %.

900
.
S 800 3 A
o 700 %g K )
o -
* Ou-v)
600 - © B(unalyfopti'mal) EQ(II']-Q)
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40 700 800
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Fig.Il. 21: Evolution of R with Gpg4 for all the measured values in the training stage
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11.6.1.5. Analytical model of the shunt resistance (R;)

In this section, the analytical model described by Eq. (11.21) and Eq. (11.23) are

investigated to estimate the reference value of Rgp, of and Rgpexp rep. According to Eq. (11.21)

and Eq(I1.23), we don’t see any term of importance related to the PV module temperature. Only

the influence of irradiance on Ry, is considered in this case. The evolution of R, as function

of Gpp, is shown in Fig.ll. 22. The result demonstrates that the shunt resistance is inversly

proportional to the irradiance. The reference values are extracted as shown in Table.ll. 9. The
MAPERg, calculated are 8.061% and 7.518% for the Eq. (11.21) and (11.23), respectively. And

the model described by the Eq. (11.23) is selected for our case study. The evolution of

Rsh(anaty—optimary and Rspq—yy as function of Gpps et Ty, in 3D s illustrated in Fig.11. 23.

This figure show a good agreement.

Table.ll. 9: Estimated value of Eq (11.21,23)

Eq' Rsh_ref ['Q] Rshexp_ref [‘Q] MAPERsh [%]
Initial reference 11.21 80 55 92.65
values 11.23 80 - 55.99
Optimal reference 11.21 38.17 1.86 8.06
values 11.23 49.85 - 7.52

120 x —— : : -
© Oi-v)
100 0 ?\(a'n.aly—optimal) Eq(II'zl)

20 :
600 650

* e(analy—optimal) EQ(II.23)

Fig.1l. 22: Evolution of R, with Gy,

1050
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* Bu-v)
o e(unaly—opti,mal) EQ(II.23)
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800
GPOA [W/mz]
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Fig.Il. 23 : Evolution of R, with Gp,,4 for all the measured values in the training stage

11.6.1.5. Summary of the training step

Table.Il. 10 summarizes the eight reference values of &,.r, extracted from the 488
measurements of the training dataset. These values will now be used to estimate the five

parameters of the SDM 8 through the analytical models for all possible environmental

conditions.

Table.ll. 10: Summary of the eight reference values tuned during the training step and used by th
analytical modelling

The single diode of PV model with five electrical parameters and eight reference values

Vow + Ly RsN, Vow + Ly, RsN,
Ipv:Iph._IO [exp(q( pv pvits s))_ll_(pu pvits s)

nN;KT Ry Ny
Five The eight reference values
electrical Ana|yti03| model Isc_ref KI_ref Vac_ref KV_ref Rs_ref :Bref Rsh_ref Nref
parameters [4] [%/°C] [Vl [%/°C] | [mQ] ] [9] =]
G
Lon Ton = Tsc rer[1+ Kp_ o, (Tyw = Torc)] % 579 | 0.061 .
I = Isc,ref + Kliref(Tpv - TSTC)
0 =
Iy Woc rer [1+ Ky, (Tyw = Torc)] | 570 | ooet | 2088 | -0519 ;
€xp nKN,T -
_ T Gpoa
Ry Ry = R yef |77 |1 = BresIn - - - - 709 0.036 -
_ Ty Gsre
R Ry = Rsh,ref GSTC - - - - - - 49.85 -
POA
n N= Nyorr - - 1.01
ref Tn
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11.6.2. The validation stage

After the training stage, the validation stage will compare the analytically calculated five
parameters of the SDM with extracted ones using the LM algorithm. The dataset of
measurements is different for the validation than for the training and is summed up in Table.ll.
11.

Table.ll. 11: Dataset used for the validation stage

Date of Weather Number of I-V curve

acquisition Gpoa = 600 W /m?
1 03/09/2021 Partly cloudy 100
2 09/09/2021 Partly cloudy 21

3 12/09/2021 Partly cloudy 9

4 13/09/2021 Partly cloudy 42
5 22/09/2021 Partly cloudy 12
6 08/10/2021 Partly cloudy 44
7 09/10/2021 Partly cloudy 71
8 10/10/2021 Partly cloudy 56
9 11/10/2021 Partly cloudy 47
10 | 15/10/2021 Partly cloudy 27
Total 429

In order to evaluate the performance of the proposed analytic models of the SDM

parameters, we compute residuals, which are defined as the difference between the SDM
parameters extracted from measured I-V curves with the LM algorithm (é(,_v)) and the
estimated ones (éanaly). The errors (&) and the standard deviation (o) are calculated with the

formulas below:

& = abs(é(,_v)i - éanalyi) (11.35)

p= 8 (11.36)
_ | Cmw)?

o= [EE (11.37)

Where, x; is observation value, which may be ¢;

Fig.Il. 24 shows the uncertainties in the estimation errors of the different parameters. The
finding showed significant dispersion for all the parameters, mostly due to the variable
environmental conditions. Despite the scattered uncertainties in the estimation errors of the five
parameters, the analytical models remain valid. In fact, the measurement could only be used to

identify four parameters. There was, therefore, a degree of freedom to obtain the correct I-V
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characteristic for several parameters combination. Finally, the vector of parameters estimated
from the analytical models can be used to make a diagnosis at the PV cell/model/string or array

level, under different irradiance and temperature.
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Fig.Il. 24 : Error analysis (¢ = abs(8(;_y) — Oanaiy)) during the validation step (M=429)

I1.7. Description and validation of the hybrid PV model

The hybrid model is developed to accurately simulate a PV array in real conditions and
compare the results to measurements for FDD. It includes the analytical models described in
the previous section combined with a numerical PV model in Matlab/Simulink for the SDM, as
shown in Fig.ll. 25. The detail is described in Appendix. The 1-V curves obtained from the

hybrid model are compared to the measured ones to evaluate its accuracy in Fig.Il. 26.
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%) Block Parameters: Hybrid PV model X
Subsystem (mask) ~

Parameters 69 8
Short-circuit current Isc (A) |Isc_ref : 2
= Gpoa [Wm™]
Open circuit voltage Voc (V) |Voc_ref H .
Discrete
0.001s.

Temperature coefficient of Isc Ki (%/deg.C) ?Kn_ref

of Voc Kv 'Kv_rei

The ideality factor of diode n in
Shunt Resistance [Q] _ﬁsh/N; 47
Series Resistance [Q] [Rs/ns
Number of cell in serie |Ns le [DC]
) | j:l p{ Psim ’
’T‘ Cancel Help Apply
Parameters’ configuration Variables input [r—

using analytical model with (environmental data )
eight reference values

Fig.Il. 25 : Presentation of the whole hybrid PV model with the variable input of environment
(Gpoa = 689 Wm~2 and Ty, = 47°C)
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Fig.ll. 26: Measured (I-V tracer) and simulated (Hybrid PV model) 1-V curve of a PV module

Fig.ll. 26 shows the 1-V characteristic of the PV module obtained from the measurement (26
sampling points) and the simulation (1000 sampling points). As the number of points on the I-
V curve in both cases is different, herein, the comparison between them is impossible.

Therefore, the resampling of the simulated I-V curves is proposed in next sub-section.

11.7.1. Resampling I-V curves of simulation

As mentioned in chapter I, the logarithmic distribution of points (LDP) with 26 optimal
numbers of points is applied with the low-cost I-V tracer to measure the I-V curves of the PV
modules. The I-V curve can be divided into two zones, such as a constant current zone, where

the number of points is called NbPtV (1% to 15" sampling points of the I-V curve), and a
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constant voltage zone where the number of points is called NbPtI (15" to 26" sampling points
of I-V curve). The simulated I-V curve is obtained with 1000 uniformly distributed points. In
order to compare point to point, the simulated and the measured I-V curves (e.g., to calculate
MAPE), these I-V curves need to have the same number of points and the same distribution on

Define data l
U(V)1:26)meas and (I(V)1.1000)sim i = NbPV

y —————

the voltage axis.

Looking for closest current

: i

Looking for closest voltage i++

@ / V,es(26,1) and I,,4(26,1) /

Fig.Il. 27 : Flowchart for the resampling of the simulated I-V curve to the same format of the
measured I-V curve

Fig.11. 27 illustrates the flowchart for resampling the 1000 points of the simulated I-V curve to
26 samples with the same distribution as the measured I-V curve. In the constant voltage zone
(NbPtl), the voltage is almost constant so the closest simulated point is determined by looking
for the closest measured current value. Reciprocally, in the constant current zone (NbPtV), it
the current that is almost constant. Herein, the closest point is determined by looking for the
closest measured voltage value. Fig.1l. 28 shows the I-V curve of the PV module obtained from
measured (26 points, blue markers), simulation (1000 points, red line), and resampling (26
points, yellow markers). This figure demonstrates that the I-V curve obtained from measured
and resampling simulation can be compared and analyzed; the sampling points on I-V curves

are the same.
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6 .
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Fig.Il. 28: 1-V curve of PV module obtained from measured (26 samples), simulation (1000 samples),
and resampling (26 samples)

11.7.2. Hybrid PV model validation

The validation process for the hybrid PV model is shown in the flowchart in Fig.l1. 29;

the input variables of this model are Gp,,4 and T,,,, from the measured conditions. The output of
the model is the I-V curve, then X; __and X, _can be derived from this simulated I-V curve.

To evaluate the hybrid PV model’s accuracy, the data obtained from the simulation are then

compared to the measured one (X, and X, ). The mean absolute percentage error

(MAPE (X,)), the absolute relative errors (ARE (X)) are computed as formulas below:

o Xy =[Ly)], [Vpw] (26 couples)

100 Ximeas(O~X1res (D)
MAPE(X;) = —XiL, L . (;) (11.38)
o Xp= [Pmppllsc» Voc]
ARE(X,) = 100 Xemeas—¥zres| (11.39)

XZmeas

The average and the standard deviation are calculated according to Eqg. (I1. 36) et (11.37).

The subscripts “meas” and “res” denote measurement and resampling after simulation.

Where X, can be the vector of L,, or V,,, and X, can be scalar of P,,,,, or I;. or V,.. M is the

mpp

number of the I-V curve, and m is the number of points on the I-V curve (m = 26).
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Fig.11. 29: Flowchart of the hybrid PV model validation

The Testing dataset shown in Table.ll. 12, which are different from the training dataset,
is used to test and validate the hybrid PV model. The histogram plotted in Fig.11. 30. It shows
that the errors between the experimental values, and the simulated ones, are lower than 3%.
Therefore, the hybrid model is accurate and robust to various environmental conditions. It is

suitable for health monitoring and FDD.

Table.ll. 12: Data acquisition used for validation of the hybrid PV model

L Number of I-V curves
Date of acquisition Weather Grou = 600 W/m?

1 03/09/2021 Partly cloudy 100
2 09/09/2021 Partly cloudy 21
3 12/09/2021 Partly cloudy 9
4 13/09/2021 Partly cloudy 42
5 22/09/2021 Partly cloudy 12
6 08/10/2021 Partly cloudy 44
7 09/10/2021 Partly cloudy 71
8 10/10/2021 Partly cloudy 44

Total 343
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Fig.1l. 30: Histogram of error distribution between measurements and simulation with the hybrid
model (M = 343) and all units of the average and standard deviation in %

11.8. Analysis of sensitivity to errors due to variations of PV module temperature

(Tyw)

The temperature of the PV module (T,,,) is one of the critical parameters that impact the
I-V characteristics. Therefore, this section aims to analyze the error sensitivity with the

variation of T,,,.

Fig.1l. 31 explains the methodology of this sensibility analysis by varying T,,. The
dataset used in this study is the same as the hybrid model validation dataset (Table 11.12), but
only the last 208" measurements. The values of Gpoa Will be kept at the same values as the

measurements, while the values of T,, will be varied from (measurement -10°C) to
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(measurement +10°C, by 2°C step). The profile of irradiance and temperature used in this study

are shown in Fig.I1. 32.

(Tpvr Gpoa)Testing (Gpoa) Testing (Tpv)TestingiYTpv
'

Hybrid PV model
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+ —
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Fig.1l. 31: Flowchart of the sensitivity analysis of errors due to changes in T,
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Fig.Il. 32: Profile of T,,,, and Gpo4
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step of 2°C). Fig.ll. 33 shows the error evolution as a function of the number of the measured

having one simulated curve for one measurement, they are eleven (measure T,,,, + 10° C, by
I-V curves.

The same analysis as in the hybrid model validation (section 11.7) is done here, but instead of
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Fig.Il. 33: Error analyses while T,,,,
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For each temperature, the average (u) and standard deviation (o) of the errors are calculated,
for one temperature and all the 208 measurements. Fig.l11. 34 shows the evolution of u and o
according to the added temperature (yrpy).
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Fig.1l. 34 : Average (left) and standard deviation (right) of errors as a function of the added
temperature (y,, = £10°C)

Fig.1l. 34 shows that the average of each error is obtained for yr,, = 0°C, which is rather

reassuring because it means that the difference between the simulation and the measurement is

minimal when the simulation is led under exactly the same temperature and irradiance

conditions as the measurement. The standard deviation has an acceptable low value except for

Ise, Ipy and Py,pp. This may be a consequence of the strong dependence of the current and power

on the operating irradiance. Therefore, they are not selected as a fault indicator for diagnosis.

On the other hand, the results hightlight that the MAPEY,,, and AREy, related to the voltage,

there are more stable and can be used as a fault indicator. The density and the cumulative density
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function of MAPE,,,, and AREy,, are displayed in Fig.Il. 35 and Fig.II. 36, respectively. they

shows that this two functions follow normal distributions.
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Fig.1l. 35 : Distribution (left) and cumulative distribution (right) of MAPEy,,
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Fig.ll. 36 : Distribution (left) and cumulative distribution (right) of AREy,.

We also evaluate successfully the normality of the distribution through the Kolmogorov-

Smirnov’s test. We have set the threshold according to a normal law at (g,), = p + 30. This

gives the following values (gMMAPEva)th = HumapEy,, + 3‘7MAPEvp,, ~ 245% and

(&u AREVOC)th = UarEy,, T 30agE,, =~ 3.46 %, for MAPEy,, and AREy,_, respectively.

11.9. Conclusion

In this chapter, the modeling, extraction, and validation of the PV model have been
presented. First, we conducted a literature review of several common electrical PV models and
extraction methods, which led us to choose the most appropriate methods for our study: Single
Diode Model with 5 parameters for simulation, and Levenberg-Marquardt algorithm for
parameters extraction based on measured I-V curves. These parameters are not constant with
environmental conditions. This leads us to propose analytical models for those five parameters
to take into account these environmental variations in simulation. To choose those best
analytical models, a 4-step methodology was developed. The first two steps are devoted to the

training, while the last two are for validation. The error between the parameters calculated from
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the analytical model and those extracted from measured I-V curves are : 0.356 + 0.205 A for
the photo-generated current I,,, 9.21 & 16.09 mQ for the series resistance R, 4.423 + 7.568

Q for the shunt resistance Ry, 2.90.1078 + 2.52.1078 A for the diode saturation current I,,
and 1.08 £ 0.019 for the diode ideality factor. The analytical model of PV parameters includes
eight reference values used in the physical PV model called the hybrid PV model under
MATLAB/Simulink to generate the simulated 1-V curves of a PV system. 343 I-V curves
obtained from the hybrid model are compared to the 343 curves measured with an I-V tracer,
and the relative error of the maximum power point is less than 3%. It can be concluded that our
proposed PV model is extremely accurate, user-friendly for the simulation of PV modules in
real operation conditions, and is suitable for health monitoring and FDD. Moreover, in the last
part, the sensitivity to the temperature where evaluated. The ARE;s., MAPE},,, and AREp
are more sensitive to the variable environmental conditions and they can’t be used as the fault

indicator.In contrast, the MAPE,,, and AREy,. can be used, and the thresholds are setted to

2.45% and 3.46 for MAPE),, and AREy,., respectively.
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Chapter I1l: PV panel fault detection and diagnosis
[11.1. Introduction

Photovoltaic systems can suffer failures which, depending on their severity level, lead
to loss of energy output or destruction by fire. Therefore, the increasing importance of
photovoltaic energy in the energy mix requires the availability, quality and profitability of
installations to be ensured. These goals will be achieved by continuously monitoring the health
of the modules that make up the plants. Detection and diagnostic methods are at the heart of the
monitoring systems. Their implementation requires a knowledge model of the system to be

monitored and its failure modes.

In the case of our study, the knowledge model is the hybrid model developed and validated in
chapter 11. We will therefore start in section 111.2 with a quick presentation of the main faults in
photovoltaic systems. Then we will briefly describe in section I11.3 the main detection and
diagnosis methods. Section 111.4 will be dedicated to the development and results of the method

implemented for our application. Finally, we conclude in section I11.5.

[11.2. Faults in Photovoltaic systems

Faults can affect a cell, a module (cell, junction block, bypass diode) or the inverter if
the system is connected to an AC grid. The classification of faults in photovoltaic systems can
be made according to several criteria: cause (intrinsic or extrinsic), location, permanent or

intermittent character, degree of severity [1]-[7]. They are summarized in Table.Ill. 1.

Table.1ll. 1: Fault Classification in PV systems

Ref Classification criteria Categories PV fault

e  Cell crack, Discoloration, Snail track,
delamination,etc.

e Shading/soiling, Frame breakage, Back sheet
adhesion loss, Junction box fault, Diode fault,
Burn Mark, Shunt hot spot, Short circuit and
open circuit module, PID, Abnormal
degradation,etc.

Cell-level faults

Location and
[1] components of the Module-level faults
PV system

e Ground fault(GF), Line to Line fault (LLF),

Array-level faults Arc fault(AF), etc.

(31, [4] e Internal: Damage to PV module, Damage to
Physical bypass diode, etc.

External: Crack PV module, degradation, etc.
Permanent shading: Hot spot fault
Temporary shading

Open circuit faults

Cause and nature of
PV faults

Environment

Electrical
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e LLF: Intra-string LLF, Inter-string LLF
e AF: Series AF, Parallel AF
e  Ground fault: single line GF, Double line GF

e Line to line, Line to ground, Bridging, Open

Permanent circuit, Bypass diode, Grounding, Arc,
Junction box, Interconnection, damage, etc.
[5] Duration and degree e Shading, Leaf, Bird drop, Dust,
of severity Intermittent Contamination, Snow, Accumulation, High
humidity., etc.

e Degradation, Corrosion, Interconnection,

Incipient Partial damage, etc.

e Encapsulation failures, Back sheet adhesion
loss, Cell cracking, Broken interconnection,
shading and soiling, hot spots, Module
corrosion, PID, LID, etc.

PV module failures
modes

. e Manufacturing and design problem.

Inverter failure

modes e  Control problem
Symptoms, effects, e Electrical components failures
[6] and consequences e Balance of system(BOS) failure
e Junction Box failure
e Bypass diode failure
e Mismatch fault
e Ground fault
e  Line-to-line fault

Other failure modes

o Arcfault
[ ]
Cell/module e Hot spot(HP)
Bypass diode or e Diode faults (DF)
Blocking diode
Component of PV Junction box e Junction box fault (JBF)
[7] system, Cause and Photovoltaic module e PV module fault
effects PV array or PV e  Grounding fault
string
PV string e Arc fault
PV array e Lineto Line fault

Transportation, manufacturing, installation, or environmental factors (temperature or humidity)
are the main reasons for PV faults, as reported in [10]-[14]. Fig. I11.2 shows the most common
structure for c-Si and thin-film PV modules with the different elements: solar cells, glass front
cover, encapsulant, back sheet, internal circuit (electrodes, interconnects), bypass diodes,

junction boxes, frame, cables, and connectors.

This section will give an overview of the different fault types, their frequency of occurrence,

and their effects.
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Fig. 111.2: Structure of standard crystalline silicon and thin-film PV module [11]

11.2.1. Faults in PV module
11.2.1.1. Encapsulation fault

The encapsulant is usually made with EVA (ethylene vinyl acetate). Delamination
(Fig.I11.3 (a)) and discoloration (Fig.I11.3 (b)) are the most common encapsulation faults due to
environmental factors such as humidity and heat [15], [16]. The delamination degrades the
optical properties of the cells, which reduces the solar flux penetration, resulting in a loss of
output power. Discoloration causes corrosion that results in an increase of the series resistance,
degrading the performance [18], [19].

"

(a) Encapsulant delamination (a-Si) . (b) Disolored solar cell-Yellowish (p-Si)
Fig.111.3: Encapsulation failure[20]
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11.2.1.2. Glass breakage

The breakage of the glass is mainly due to extrinsic factors. It can occur during
manufacturing, transportation, installation, or during operation. The main consequence is a
reduction of the output power, which depends on the damaged surface [1]. However, the module
can still keep on operating, increasing the risk of electric shock and moisture penetration. as it
can be observed in Fig. 111.4.

ST IA T . A .
=. b ik v B s S el

Fig. 111.4: PV module with broken glass and cell burn [14]

11.2.1.3. Corrosion of a PV module

Aggressive environmental factors or insufficient maintenance are responsible for the
corrosion of conductive components of the cells and interconnections via the encapsulant. This
degradation induces changes in series and shunt resistance, leading to poor performance of the
PV module [18], [21].

11.2.1.4. Interconnection failure

The major causes of these disconnections are transportation stresses, hot areas, thermal
cycling, or repetitive mechanical stress. They are responsible for failures of weak ribbon
interconnections between the cells. A small space between cells can also induce fault

interconnection leading to shorted or open-circuited cells.

11.2.1.5. Back sheet adhesion failure

Faults in the backsheet can be caused by various factors, including temperature,
moisture, mechanical stress, or delamination. An example is shown in Fig. IIl.5. The
consequences can be insulation default and increasing exposure to active electrical components,
particularly near the junction box or the edge of the module. The fault severity depends on the

design, the structure, and the materials [2], [6].
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Fig. I11.5: Backsheet/encapsulation fault [22]
11.2.1.6. Bubbles

A photovoltaic module with several bubbles on the back and front is shown in Fig. I11.6.
The bubbles in this kind of deprivation are similar to delaminating. The bubbles are caused by
a chemical reaction that releases the gas stuck in the PV module. When this happens on the

unit's backside, mobbing occurs in the encapsulated polymer, causing air bubbles and making

it more difficult for solar cells to disperse heat, leading to higher temperatures and a shorter life

lifetime [14].

Fig. 111.6: Bubbles in a PV module [14]

11.2.1.8. Light-induced power degradation (LID)

The LID is a natural deterioration of the p-n junction of a PV cell caused by a physical
reaction. It exhibits a decrease in silicon solar cells' efficiency and a reduction in the solar cell's
short circuit current and open-circuit voltage[6], [24]. Fig.I11.7 summarizes all of these failures.
It depicts PV modules' primary aging and failure processes, categorized as infant failures,

midlife failures, and wear-out failures [25].
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Fig.I11.7: Aging mechanisms leading to PV module degradation [25]

11.2.1.9. Hot spots (HS)

Hot spots can occur due, for example, to cell degradation, shading, bypass diode failure,
and cell mismatches[27]. Hot spots are well-known to be one of the major causes of the
degradation of performance or failures of PV modules. A hot spot appears when a cell, or a
group of cells, operates in reverse bias, dissipating heat rather than creating electricity.
Therefore, the local temperature increases, and the cell or the group of cells burns, as shown in
Fig.111.8 [14], if the fault is not detected at its earliest stage [26].

Fig.111.8: PV module with hot spot [14]

11.2.1.10. Shading and soling

Shading and soiling can be classified as hard or soft, permanent or temporary fault
causes [26]. Partial shading and shading are typically caused by trees, buildings, passing clouds,
etc. Soiling refers to dirt, dust, and snow covering the surface of the PV module. Fig.I11.9 shows

different cases of shading and soiling. They are responsible for non-uniform irradiation on the
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PV module. They can be handled with the triggering of bypass diodes to avoid hotspots.

However, the mismatch should be detected and preventive actions engaged to avoid any failure.

(@) Shading (b) Bird droppings (c) Irregular dirt patch
Fig.111.9: Different cases of shading and soiling fault [26]

11.2.1.11. Bypass Diode failure (DF)

The fault of the bypass diode is mainly due to human errors such as reverse or loose
connection. Its failure may be catastrophic as it should be triggered to protect a module in case

of non-uniform irradiation.

11.2.1.12. Junction box failure (JBF)

The junction box faults or failures are caused by moisture penetration, corrosion of
connections, poor connections, improper wiring leading to internal arcing, improper mounting,
or thermal degradation [2]. Approximately 85% of junction box failures are caused by system
installation, and most of them happen during the first three months following PV system
installation [28]. The failures are illustrated in Fig.111.10 [14].

Fig.111.10: Junction box failure [14]

11.2.2. Classification of defects according to their frequency of occurrence
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The occurrence of these defects, as studied in [8], represents the frequency of occurrence

of a defect as a function of the production year of the PV system.

20 Delamination

18 || m Defect backsheet

Defect junction box

16

Junction box detached

ol
2
é 14 Discolouring of pottant
=
= 12 ke
e Cell cracks
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= 10 # Burn marks
5
5 8 l Potential induced shunts PID
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g || ® Potential induced corrosion
3

B Disconnected cell or string
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(al) : Occurrence distribution of degrading failures
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m Disconnected cell or string
B Bypass diode fault
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(b1) : Occurrence distribution of degrading failures
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(b2): Occurrence distribution of sudden occurring failure

Fig. I11.11: Occurrence distribution of failures over the years of the PV system operation [8], (al) and
(a2): Total failure occurrence of all detected failures; (b1) and (b2): Occurrence of failures that cause
measurable power losses

Fig. 111.11 represents the frequency occurrence for two fault categories. The first
category represents faults due to internal factors such as delamination, discoloring of pottant,
corrosion called degrading faults. Their frequency of occurrence is represented in Fig. I11.11
(a.1) and Fig. 111.11.(b.1). The second category concerns the faults that occur suddenly due to
an external factor such as hail, snow load storm. Their frequency of occurrence is represented
in Fig. 111.11.(a.2) and Fig. 111.11.(b.2). The results show that the cell cracks appears mostly in
the first two years. The disconnection of cells or strings appears from year five and is spread
over the following years. The discoloration of the encapsulant appears as early as the third year
of operation and recurs over the years with a strong accumulation that leads to significant power
losses after 18 years of operation. Bypass diode faults are very common during the first ten
years of operation. The reasons for sudden PV failures are more often related to environmental
factors. When compared to the other types of defects, dust soiling is the most common sudden

defect causing power losses, especially in the first 12 years.

111.2.3. Impact of the defect in terms of power losses

The faults' power losses strongly depend on the PV module's environment and
technology. Generally, the losses are constant at the beginning of the operation but increase
with time. The study in [29] presents the photovoltaic failure and degradation mode. The
degradation modes are ranked from 1 to 10, with 1 indicating no influence on performance and
10 indicating a substantial effect on power and safety. The results are summarized in Table.lll.
2. It was mentioned in the same study that the defects with the highest severity are the hot spots
and the back sheet insulation. Back sheet insulation compromise includes peeling, flaking, and
cracking. This degradation has significant effects on the output power but also on the safety.

The summary of degradation modes with their severity ranking is shown in Table.lll. 3.
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Table.lll. 2: Severity rating of the different degradation modes [29]

Severity Rating
Major effect on power safety 10
Major effect on power 8
Moderate effect on power 5
Slight deterioration of performance 3
No effect on performance 1

Table.11l. 3:Summary of degradation modes with their severity ranking [29]

Mode Severity

Encapsulant discoloration

Major Delamination

Minor Delamination

Backsheet insulation compromise

Backsheet other

Internal circuitry discoloration, series resistance increase

Internal circuitry failure, solder bond failure

Hot spots

Fractured cells

Diode /J-Box problem

Glass breakage

Permanent soiling

Potential induced degradation

wlooNvo|ala|Slo|u|r Bl-|o|w

Frame deformation

Pareto chart obtained by adding all modules affected by a specific degradation mode is shown

in Fig. 111.12, these degradations have been identified in the last ten years of installations, and

the hot spots and PID are the most severe in the last ten years.
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Affected module * severity (scaled to 100%)
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|
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Fig. 111.12: Pareto chart of the most signification modes: (a) All years, (b) System installed in the last
ten years. The bars are color-coded by severity [29]

I11.3. Fault Detection and diagnosis of PV panel

11.3.1. Introduction

Condition-based maintenance based on continuous monitoring is suitable to limit the
drop in performance and improve the reliability of photovoltaic modules. Fault detection and
diagnosis (FDD) is at the heart of health monitoring. There are several FDD approaches
reported in the literature[2], [7], [30]. They can be broadly classified in two categories: visual

Inspection or automatic analysis.

11.3.2. Visual inspection

Visual inspection and infrared and thermal imagery analysis are classified as non-
electrical methods because they do not require the measurement of electrical data. Visual and
thermal methods are used specifically to detect discoloration, browning, soiling, hot spot,
breakage, and delamination of PV modules [7]. Visual inspection is suitable for small-scale PV
systems but may require an expert to analyze the data. At the PV module level, the infrared

imaging method (thermal camera) is widely used; this method is based on the fact that all
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materials emit infrared radiation over a range of wavelengths that depends on its temperature.
The anomalies can be located by examining the temperature distribution. Fig.111.13 shows some
examples of fault isolation with thermal images. Table.Ill. 4 shows the list of the most detectable

PV faults using visual inspection.

(a) Short circuit cell (b) Corrosion in the junction box

Fig.111.13: Some examples of fault isolation with thermal camera [31]

Table.111. 4: List of detectable PV module faults using visual inspection[1]

PV module component PV module fault
Front/Back of PV module Bubbles, delamination, Yellowing, browning
PV cell Cracked cell, discolored anti reflection
Cell metallization Burned, oxidized
Frame Bent, broken, misaligned
Junction box Broken, loose, oxidation, corrosion
Wired, connectors Detachment, broken, exposed electrical part
Bypass diode Burned, broken connection
111.3.3. Automatic analysis method based on features analysis

Automatic analysis methods are based on the analysis of fault features [32] obtained
from measured or estimated information. The most usual informations captured from PV plants
are the output power or energy, the maximum power, or the 1-V curves obtained with I-V

tracers.

133



Chapter 111 : PV panel fault detection and diagnosis

111.3.3.1. Power, energy, and maximum power point analysis approach

The approaches based on the analysis of the power, energy, and maximum power point
are usually integrated into the commercial inverter, in which an algorithm for maximum power
point tracking (MPPT) is embedded [33], [34].

The International Energy Agency (IEA) Photovoltaic Power System Program has
defined four performance indicators in IEC standard 61724 [36] to characterize the overall
system performance: energy output, solar energy, rated power, and total power impact on
system losses. The methods are based on the analysis of residuals computed as the difference
between the actual measurements and their predicted values. In [35], three residuals are
calculated: current, voltage, and power at the maximum power point. The reference [37]
analyses power losses to identify the fault types (faulty module in a string, faulty string, and a
set of distinct faults such as partial shading, aging), and MPPT error. In the study conducted in
[38], the analysis of the energy drop is used to identify component failure, inverter shutdown,
shading, and MPPT error.

111.3.3.2. Analysis of the Current-Voltage (I-V) curve characteristics

A change in the I-V characteristics occurs when there is a change in the PV state of
health caused by environmental conditions (irradiance or temperature) or fault occurrence.

Fig.111.14 shows the 1-V curves of a PV module in different conditions.

2-—I1 -V : Healthy
—I -V :PS

1- I -V : R, degraded i
—I —V : R, degraded
0 L | 1
0 5 10 15 20
Voo V]

Fig.111.14: Comparison of I-V characteristics in healthy and faulty cases
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The 1-V curve can be used for fault diagnosis in two ways:

= Partial usage:
Only several points are analyzed to make a decision. For example (open-circuit voltage V.,
short-circuit current Iy, and the power at the MPP, P,,,,) [39]. The disadvantages of this
approach are the limited number of diagnosable faults and its high sensitivity to environmental

conditions.

» Full usage:
In [40], the entire 1-V curve is used as a fault feature for PV fault diagnosis under eight
conditions (healthy and seven faults) with variable temperature and irradiance. Six machine
learning techniques (artificial neural network, support vector machine, decision tree, random
forest, k-nearest neighbors, and naive Bayesian classifier) have been evaluated. The main issues
are the number of sampling points and the computational burden necessary to handle the data
processing. The study [31] investigates the abrupt deviation of the faulty I-V characteristic in
the case of shading and R degradation fault ; the results indicate that it is impossible to detect
the presence of an inflexion point by observing the profile of the first derivative. The appearance

of a positive peak in the second derivative makes it possible to detect the fault.

The entire 1-V curve can also be used to extract the PV model parameters
(Iyn, 1o, Rs, Ry, and n) considered as fault features. In [41], this approach is used with the
double diode model. Various types of partial shading (PS) and degradation are diagnosed using
threshold analysis. However, the effectiveness of this method strongly depends on the model’s

accuracy.

111.3.4. Fault detection and diagnosis proposal

Still, the 1-V curve is a widely discussed topic [7] because the I-V curve contains several
pieces of information on the PV module's health status. However, measuring the 1-V curve
requires interrupting power production and the availability of an I-V tracer. The deployment on
a larger scale would be relevant if the I-V tracer has a low cost and interruption (measurement
time) is limited. Based on the solution proposed in chapter I, the measured 1-V curve will be
used as input for two FDD methodologies that will be detailed in the following. The first one
uses the parameters of the electrical equivalent circuit as fault features. It is based on the single
diode model (SDM). The second one uses the extracted characteristics I,,,,, V,y, Prpp, Isc, and V.
as fault features. The first one denoted “M1”, is displayed in Fig.l11.15(a), while the second one
“M2” is shown in Fig.I11.15 (b).
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¢ Faults under study

Due to natural aging or severe environmental conditions (e.g., a decrease in contact
adhesion and the corrosive action of water vapor), the series resistance increases while the shunt
resistance decreases. In the following, partial shading, degradation of series, and shunt

resistances will be considered through three scenarios:

e Fault 1: R, degradation
e Faulty 2: R, degradation
e Faulty 3: Partial shading

(Tpv: Gpoa)testing - T 6ref (Tpv: Gpoa)testing [ Sref
Analytical Hybrid model
models
Measured Measured Simulated
(I-V) curves (I-V) curves (I-V) curves
Features Features
LM Extraction Extraction
I | }
é(I—V) éanaly (le XZ)measured (Xlr XZ)Simulated
o+ @— | |+ @‘ |
Analysis of the residuals for FDD Analysis of the residuals for FDD
(a) M1 Method (b) M2 Method

Fig.111.15: Flowchart of the FDD

I11.4. Results of fault detection and diagnosis with methods M1 and M2

I11.4.1. R, degradation

The degradation of the series resistance R, is mainly due to the aging of the PV module.
In the PV model, the series resistance represents the resistance of the cell, the resistance of the
contact between the metal and the semiconductor, and the interconnection resistance between

136



Chapter 111 : PV panel fault detection and diagnosis

the cells. To evaluate the two methods, the degradation is emulated by connecting an additional

variable resistance in series with the PV panel.

1.4.1.1. Simulation data

To evaluate the methods M1 and M2 with simulation data, the ‘measured I-V’ curves in
the flowchart of Fig.I11.14 are replaced with I-V curves obtained from the simulation of the

hybrid model in which the faults are emulated.

1.4.1.1.1. Evaluation of method M1 with simulation data

The simulation uses the hybrid PV model presented in chapter 1. The environmental
measurement data for the testing stage ((Gpoq and Tpy)testing) CONSists of 343 samples. The
additional resistance used to emulate the degradation varies from from 5% to 50% of the mean
value of the series resistance of the healthy case ( R meann = 0.78 ), as shown in Table.lll. 5.
The five parameters (é(,_v)) are extracted from the simulated faulty 1-V curves, using the LM
algorithm. These extracted parameters are compared to the estimated ones (éanaly) calculated
from the analytical models in healthy conditions with the same environmental data. In the

following, the lower script ‘f’ stands for faulty, and ‘h’ for healthy.

Table.lll. 5: Fault levels for Rs degradation

No | Degradation percentage [%] AR([Q] Ry P = R + ARg[Q]
0 0 0 0,78
1 5 0,039 0,819
2 10 0,078 0,858
3 15 0,117 0,897
4 20 0,156 0,936
5 25 0,195 0,975
6 30 0,234 1,014
7 35 0,273 1,053
8 40 0,312 1,092
9 45 0,351 1,131
10 50 0,39 1,17
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Fig.111.16: Boxplot of the residual for Rs degradation

The boxplot of the residuals is shown in Fig.ll1.16. The fault can be detected with the

appropriate setting of a threshold. The severity levels can also be accurately estimated, as shown

in Table.lll. 6. It can be noted that the series resistance degradation does not affect the other

parameters, as shown in Fig.111.17. The result show that while R, increases, the extracted values

of ILyn, Rgp, Iy and n remain constant.

Table.lll. 6: Residuals for Rs degradation

Fault level f1 f2 f3 f4 f5 fé f7 f8 f9 f10
RS(,_V)_h(Q) 0.782 | 0.782 | 0.782 |0.782 |0.782 |0.782 |0.782 | 0.782 |0.782 | 0.782
ﬁs(analy),f (©2) 0821 |0.860 |0.899 |0.938 |0.977 |1.016 |1.055 |1.094 |1.133 |1.172
() 0,039 | 0,078 | 0,117 | 0,156 | 0,195 | 0,234 | 0,273 | 0,312 |0,351 | 0,39
T T T T T T T T T T < x107 |
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Fig.111.17: Effect of Rs degradation on the other parameters of the SDM
Fig.I11.18 shows the 1-V and PV curves under the same environmental condition with different
faulty conditions. It can be observed that the degradation of the series resistance mainly affects

the maximum power points, while the V. and I, remain almost constant.
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Fig.111.18: Effect of Rs degradation on I-V and P-V curves
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111.4.1.1.2. Evaluation of method M2 with simulation data

As previously mentioned, FDD with the method M2 uses the characteristics I, V,,

Pmppr

the characteristics extracted from the healthy I-V curves for the same environmental data. The

I;.,and V. extracted from the actual 1-V curves as fault features. They are compared with

results are displayed in Fig.I11.19.
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Fig.I11.19: Effect of Rs degradation on |-V curve characteristics

The mean values of the relative residuals for the five characteristics are summarized in Table.lll.
7. We can draw the following conclusions: the maximum power point is the most sensitive
feature to series resistance degradation, the voltage is more sensitive than the current, the short-
circuit current and open-circuit voltage are barely affected. These findings are consistent as the

series resistance mainly affects the voltage-source region of the 1-V curve.
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Table.lll. 7 : Mean values of the residuals

Fault level f1 | f2 f3 f4 | f5 f6 | f7 | f8 | f9 | f10

AuMAPE,,, (%) | 0,045 | 0,156 | 0,343 | 0,562 | 0,800 | 1,052 | 1,316 | 1,589 | 1,870 | 2,158

AuMAPEy,,(%) | 0,026 | 0,176 | 0,484 | 0,885 | 1,325 | 1,782 | 2,246 | 2,712 | 3,179 | 3,645

ApAREppmpy (%) | 0,115 | 0,381 | 0,803 | 1,250 | 1,718 | 2,192 | 2,659 | 3,122 | 3,585 | 4,047

AuAREy,.(%) | 0,007 | 0,023 | 0,048 | 0,072 | 0,202 | 0,128 | 0,153 | 0,183 | 0,209 | 0,242

AUARE; (%) | 0,006 | 0,013 | 0,021 | 0,029 | 0,038 | 0,048 | 0,058 | 0,070 | 0,083 | 0,097
111.4.1.2. Experimental data

111.4.1.2.1.

Evaluation of method M1 with experimental data

AR, , ARg,, AR5 are the three resistances added in series with the PV panel to emulate

three fault levels (f1, f2, f3), corresponding to an increase of 28%, 42%, and 50%, respectively.

Table.lll. 8 displays the fault scenarios, the environmental conditions, and the number of I-V

curves measured with the I-V tracer. TemperatureT,,, and irradiance G, are also provided. As

described in Fig.I11.15 (a), the FDD with the method M1 uses the vector of parameters as fault

features.

Table.lll. 8: Data acquisition in case of Rs degradation

Date of acquisition Weather Number of 1-V curves Fault level
Gpoa = 600 W /m?
1 12/04/2021 Partly cloudy 38 AR, =0.390Q
2 17/04/2021 Partly cloudy 16 AR, = 0.39 Q
3 18/04/2021 Partly cloudy 56 AR = 0.39Q
4 19/04/2021 Partly cloudy 34 AR, = 0.33(Q)
5| 26/04/2021 Partly cloudy 61 AR, = 0.33 Q
6 27/04/2021 Partly cloudy 61 AR, = 0.33Q
7| 20/04/2021 Partly cloudy 104 ARy, = 0.22Q

In the following, R,;_y) stands for the series resistance extracted from the

measured [-V curve, while Rg(gnq1,) is the series resistance estimated from the analytical

model. The lower script 'f' stands for faulty, and 'h' for healthy. The histograms of the

series resistances for the healthy and faulty cases are plotted in Fig./I1.19.
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Fig.111.20: Histograms of the series resistance Rs
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Fig.111.21: Histograms of the residuals for the three fault severities

The histograms of the residuals are plotted in Fig.I11.21. From these results, we can conclude:

o in the healthy case, despite the variations of the environmental conditions (irradiance
and temperature), the series resistance in healthy case Ry, € [0.737,0.788]( is almost

constant,
o in faulty conditions, the series resistances are significantly different from the healthy

case.
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The severity levels can also be estimated with an acceptable accuracy, as shown in Table.lll. 9.

Table.lll. 9: Accuracy of fault level estimation in case of Rs degradation

Fault level fl f2 f3
ARSExperimentaI(Q) 0.22 0.33 0.39
AR SEstimated (€2) 0.205 0.326 0.439
Relative error % 2.5 1.2 12.5

The cumulative density functions of a normal distribution and the residual in healthy

conditions are displayed in Fig.I11.21. We also successfully evaluate the normality of the

distribution through the Kolmogorov-Smirnov test. Therefore, we can set the threshold at

Thgs = pe, + 3 *0, = 0.0360. The fault can be detected for each case as ARs > Thyg.

1r { { _
0.8 i
0.6 - i

x ~ Healthy residual CDF

freg —Standard Normal CDF
0.4+ i
0.2+ i
-3 -2 -1 0 1 2 3 4

Fig.111.22: Cumulative Distribution functions in case of Ry

From the results shown in Fig.I11.23, we can observe that the fault has almost no effect

on the other parameters.
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Fig.111.23: Effect of Rs degradation on the other parameters of the SDM

111.4.1.2.2.

Evaluation of method M2 with experimental data

The method M2 compares the main characteristics extracted from measured I-V curves to those

extracted from healthy I-V curves simulated with the hybrid model. The results are shown in

Fig.I11.24. The relative variations of the mean values (compared to the healthy case) for the five

characteristics are displayed in Table.lll. 10. We can deduce as in the case of simulated data,

that the maximum power point is the most sensitive feature to the series resistance degradation.

The voltage values are also more affected than the current values. The open-circuit voltage and

the short-circuit current are barely affected. These results are consistent as the series resistance

mainly affects the voltage-source region of the I-V curve.
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Fig.111.24: Effect of R, on the I-V curve characteristics

Table.ll11. 10: Mean value relative variation of the residuals

Fault level fl f2 3
AUMAPE,, (%) | 1.4 1.84 1.99
AUMAPEy,, (%) | 3.15 4.06 4.48
APAREpm,, (%) | 3.6 4.64 5.1
AuUAREy,.(%) |0.13 0.21 0.32
AUARE;;.(%) |0.01 0.032 0.067

111.4.2. Ry, degradation

The parallel resistance represents all the paths crossed by the leakage current, either in

parallel with the cell or at the cell's border. It results from damage in the crystal or impurities
in or near the junction. The degradation of the shunt resistance Ry, is due to the aging of the
PV module. In order to investigate the FDD for this type of degradation, the PV panel's
resistance is decreased by connecting in parallel an additional resistance, which value is varied

to emulate several fault levels.

11.4.2.1. Simulation data

111.4.2.1.1. Evaluation of method M1 with simulation data

For the simulation, the shunt resistance will be decreased by 10 to 70% of the healthy

value measured in the healthy case: Rsy mean (Rshmeann = 70.71 2). The values of Ry, ,are

reported in Table.lll. 11.

Table.lll. 11: Shunt resistance fault levels used in the PV hybrid model

No Degradation percentage [%] AR([Q] Rsn; = Ropn — ARgp [Q]
0 0 0 70,71
1 10 7,072 63,648
2 15 10,608 60,112
3 20 14,144 56,576
4 25 17,68 53,04
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5 30 21,216 49,504
6 35 24,752 45,968
7 40 28,288 42,432
8 45 31,824 38,896
9 50 35,36 35,36

10 55 38,896 31,824
11 60 42,432 28,288
12 65 45,968 24,752
13 70 49,504 21,216

The boxplot of the residuals are shown in Fig.I11.25. It can be concluded from the results in

Table.lll. 12, that even with a decrease of 10%, the fault can be detected and its severity

assessed. We can also observe, as illustrated in Fig.I11.26, that the fault has no effect on the other

parameters, Ly, Iy, Rs, and n, which remain almost unchanged.
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Fig.111.25 : Boxplot of residuals for Rsh
Table.lll. 12: Residuals for Rsh
Fault level f1 12 13 f4 f5 f6 f7 18 f9 | f10 | f11 | f12 | f13
Rsh, h(2) 70,7 70,7 70,7 70,7 70,7 70,7 70,7 70,7 70,7 70,7 70,7 70,7 70,7
Rshestimated (2) | 63,6 60,0 56,5 52,9 49,4 45,8 42,3 38,7 35,2 31,6 28,1 24,6 21,0
€ (2) 7,1 10,7 | 142 178 [21,4 |249 |285 |320 |355 |391 |426 |46,2 |497
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Fig.I11.26 : Effect of Rsh degradation on the other parameters
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Fig.111.27: Effect of Ry, degradation on I-V and P-V curves

Fig.111.27 illustrates the influence of R, degradation on I-V and P-V curves under the same
environmental conditions. We can observe that the variations of R, mainly affect the

maximum power points, while V,. and I, are almost constant.
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4.2.1.2. Evaluation of method M2 method with simulation data

The effects of Ry, degradation on the characteristics of the I-V curve are shown in

Fig.111.28. Looking at the relative mean values displayed in

Table.lll. 13, it can be concluded that the maximum power point is the most sensitive feature,

the current is more significantly affected than the voltage, and the open-circuit voltage and

short-circuit current are barely impacted. These results are consistent because the shunt

resistance mainly affects the current-source region of the 1-V curve.
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Fig.I11.28: Effect of R, degradation on the characteristics of the I-V curve
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Table.lll. 13: Effect of Ry, degradation on I-V curve characteristics

Fault level f1 12 13 f4 f5 f6 f7 18 f9 | f10 | f11 | f12 | f13
AuMAPE,,,(%)| 0,13 [020 |030 |043 |060 |082 |1,09 |142 |183 [235 |303 |39 |[535
AuMAPEy,,(%) 0,47 | 019 |023 |028 |035 |047 |063 [087 |121 |[170 |249 |401 |7.20
ApUAREpy,, (%) 019 | 025 |034 |048 |068 |09 |130 |172 |224 |[291 (379 [500 |682
AuAREy,.(%) | 019 [019 |020 [020 [020 [020 |[021 |020 |021 |022 |027 [043 |[0,76
AuARE; (%) | 001 [002 [003 |[005 |[008 [012 |[018 |026 [037 |053 |[075 |[1,05 |1,50

111.4.2.2.

111.4.2.2.1.

Experimental data in case of Ry, degradation

Evaluation of method M1 with experimental data

For the experiment, three resistances are considered, Rgp, gaa1s Rsh adaz: ad Ry aqas

corresponding to three fault levels. They are connected in parallel with the PV panel to emulate

R, degradation. Table.lll. 14 summarizes the environmental conditions, and the fault cases.

Table.lll. 14: Data for Rsy degradation

Data acquisition in case of R, degradation
Date of Weather Number of I-V curves | Ry, qdd
acquisition Gpoq = 600 W /m? i
1] 13/04/2021 Partly cloudy 82 60 Q
2| 05/04/2021 Partly cloudy 61 50 Q
3| 03/04/2021 Partly cloudy 39 39 Q)

From the histograms displayed in Fig.111.29 and Fig.111.30, we can draw the following

conclusions :

o due to variations of the environmental conditions (irradiance and temperature), the shunt

resistance in the healthy case, Rsh € [54, 71]Q varies slightly,

o in faulty conditions, the shunt resistances are significantly different from the healthy

case,

o the mean values of the residuals are consistent with the calculated variations ARsh =

Rgnmeann — Rsn p [€2] displayed in Table.111. 15.
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Fig.111.30: Histograms of residuals for Ry,
Table.lll. 15: Three levels of severity for Ry, degradation
Fault Ievel RShadd [.Q] RShmean,h [.Q] RShmean,h//RShadd ARsh [Q]
(Analytical model)
1 60 57.89 29.46 28.42
2 50 65.81 28.41 37.39
3 39 63.8 24.20 39.59

The cumulative density functions of a normal distribution and the residual in healthy
conditions are displayed in Fig.I11.30. We also evaluate successfully the normality of the
distribution through the Kolmogorov-Smirnov’s test. Therefore, we can set the threshold at
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Thren = Uep,, + 3 * 0g,, = 4.5120. The fault can be detected for each case as ARg;, >

ThRsh-
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Fig.111.31: Cumulative Distribution Functions

The fault effect on the other parameters plotted in Fig.I11.32 shows that there is no significant

variation.
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111.4.2.2.2.

Evaluation of method M2 method with experimental data

The effects of R, degradation on the I-V curve characteristics are shown in Fig.111.33.
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Fig.111.33: Effect of R, degradation on the I-V curve characteristics

The relative variations of the mean values (compared to the healthy case) for the five

characteristics are presented in source region of the I-V curve.

Table.lll.

16. From these results,

it can be deduced, as with the simulation data, that the

maximum power point is the most sensitive feature to the degradation of the shunt resistance.

The current of the PV module is more significantly affected than the voltage. The open-circuit

voltage and short-circuit current are slightly affected. These results are consistent because the

shunt resistance mainly affects the current-source region of the I-V curve.

Table.lll. 16: Fault effect on the 1-V curve characteristics

Fault level fl f3
AuMAPE,, (%) 1.11 1.98 2.64
AUMAPEy ,, (%) 0.19 0.31 0.66
AUAREp (%) 1.48 2.44 3.39

AUAREy (%) 0.45 0.51 0.57
AUARE ;. (%) 0.14 0.46 0.61
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111.4.3. Partial shading

Partial Shading (PS) is a natural phenomenon of non-homogeneous irradiance on PV
cells/modules due to environmental causes (cloud passage, dust, snow, leaves, ...), building
shadows, or soiling. If the bypass diode is activated, several peaks appear in the P-V curve,
making it difficult to track the maximum power. Moreover, PS can induce hotspots reducing

the output power, efficiency, and reliability.

In case of partial shading, the parameters of the Singe Diode Model (SDM) cannot be
identified due to the 1-V curve. Therefore, method M1 is not applicable. So, only the method

M2 method will be evaluated in this section.

111.4.3.1. Evaluation of method M2 with simulation data

The PV single diode model M3.String developed in [43] is used to simulate the PV
module, which is composed of two strings of 18 cells and two bypass diodes. The environmental
data (Tyy, Gpoa)testing CONSist of 343 samples. The first group of 18 cells receives an irradiation
Gy = Gpoq While the second group receives an irradiation G, = G;(1 — DLI). To simulate the

partial shading conditions, different levels of irradiance (DLI) are used, as displayed in Table.lll.

17.
Table.1ll. 17: Configuration of the partial shading
No Different levels of irradiance (DLI) between G
G1 and G2 in percentage [%] 2
1 0
2 20
3 30
4 40 G, = G; — (DLI X Gy)
5 50
6 60
7 70
40 T T T
- + ¥
= == 3 “
§zo % - gzo- %
) 10 = % 1 =1} %
ok == J- i i i i i L= T 4
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153



Chapter 111 : PV panel fault detection and diagnosis

60 T 7
==
= '
540-
;5530- %
3 5
< 20 % L
o, & T
0-':.b + ; ; ; ; ;
0 10 20 30 40 50 60 70
DLI[%)
I: AREppp
10pF
—_— 8-
X
EE 6 T == == ==
& | 1
< 4fF 1
Z-E
0;':

o T T - 1 . ]
JUooasE
i L I 4
0 10 20 30 40 50 60 70
DLI[%)]
(d): AREy,.

0 10

I: ARE, s,

Fig.I11.34: Effect of partial shading on I-V curve characteristics

Fig.111.34 shows the impact of partial shading on the 1-V curve characteristics in faulty and

healthy cases. We can observe that the PV current, voltage, and maximum power point are

highly sensitive features. When the partial shading is severe (70%), the mean value of the

AREy, _ significantly increases because the LDP algorithm can no longer distribute the points

in the area close to the open-voltage value.
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Fig.111.35: Effect of partial shading on I-V and P-V curves
Fig.111.35 shows the I-V and P-V curves under the healthy and different shading levels. We can
observe that as the fault severity increases, the output power decreases, and the deformation of

the I-V curve is accentuated.

111.4.3.2. Evaluation of method M2 with experimental data

The PV panels are installed on the roof of the building, as shown in Fig.I11.36. In autumn,
every day at around 5 PM, the PV module is affected by partial shading due to the air

conditioning installation.

Fig.111.36: PV panel installation site

The data collection periods, weather information, and number of 1-V curves are displayed
in Table.lll. 18.
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Table.11l. 18: Data acquisition in case of partial shading

Date of acquisition Weather Number of I-V curves
Gpoq = 400 W /m?
1 03/09/2021 Partly cloudy 2
2 08/09/2021 Partly cloudy 2
3 10/09/2021 Partly cloudy 2
4 12/09/2021 Partly cloudy 2
5 19/09/2021 Partly cloudy 2
6 20/10/2021 Partly cloudy 2

Fig.111.37 shows the healthy 1-V curves obtained from the simulation of the hybrid model, and

the faulty ones measured under partial shading conditions. They will be used to for the fault

detection.

---IVym : healthy
—IVieas : faultyl|

Fig.111.37: 1-V curves under healthy and partial shading conditions

The results illustrated in Fig.I11.38 show that the PV current, voltage, and maximum power point

are highly sensitive features to partial shading. The open-circuit voltage and short-circuit

current are not affected.
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Fig.111.38: Effect of Partial shading on the I-V curve characteristics

I11.5. Conclusion

This chapter first provided a short overview of the most common faults in PV systems,
their frequency of occurrence, and their impacts on power losses and safety. Based on the
literature review, we classified the fault diagnosis approaches into two categories: visual

inspection and automatic analysis based on features analysis.

The automatic analysis is considered for our study because the objective is to propose a
low-cost and efficient solution that can be deployed for large-scale PV plants. Two methods
(denoted M1 and M2) for fault detection and diagnosis (FDD) for PV systems are developed
and evaluated with simulated and experimental data. Method M1, based on analytical models,
uses as fault features the five parameters (I,p, R, Rsp, Io and n) of the single diode model,
while method M2, based on a hybrid model, which is a combination of the analytical models
and a numerical model of the PV cells, uses five characteristics (I,,,, Vyy, Prpp, Voc, and I.) of
the I-V curves. The residuals are calculated between features extracted from experimental
measurements and features extracted from the simulated models. Three fault cases are studied:

series resistance R, degradation, shunt resistance R, degradation, and partial shading.

In case of R, and R,;, degradation, the results with method M1 have shown that the fault
can be accurately detected and its level estimated. The results have also shown that the other

parameters are not affected by the fault occurrence. The results with method M2 in both fault
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cases show that the maximum power point is the most sensitive feature. In the case of partial
shading, the results with method M2 have shown that the PV current and voltage, and the
maximum power point have almost the same sensitivity level. The results have also shown that
the fault had no impact on I, or V,.. The performance of the methods is summarized in
Table.1ll. 19.

Table.lll. 19: Summary of FDD performance

X:No detection ~ 1: Noeffect 2:Low  3:High

FDD Fault types
Method R, degradation Ry, degradation | Partial shading
Lyp 1 Ly 1 Ly X
R, High R, 1 R, X
M1 Ry 1 Ry High Ry X
I 1 I 1 I X
n 1 n 1 n X
Ly Low Ly Low Ly High
Vov Low Vov Low Vov High
M2 Prpp High Prpp High Brpp High
Ve Low Ve Low Ve 1
s, Low s, Low Is, 1
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General Conclusion

The efficiency and reliability of PV panels can be seriously compromised by accelerated
aging or transportation/installation (intrinsic fault) or shading and soiling (extrinsic faults).
These faults can occur at any time. Therefore, they should be detected and diagnosed at their
earliest stage to engage in an efficient maintenance policy. Health monitoring is one of the main
components of condition-based maintenance. Fault Detection and Diagnosis (FDD) methods
have been developed to address the health monitoring of PV panels. Among the different
methods, physics-based ones are widely recognized as being efficient if the model is accurate
enough. This model requires environmental data (irradiance in the plane of the array and
module temperature). The current-vector curve, known as the 1-V curve, is also recognized as
a valuable source of information on the PV module’s health status. Therefore, in our
application, we studied the FDD of PV panels using the analytical Single Diode Model (SDM)
to obtain simulated 1-V curves from which the fault features are extracted. The objectives of
this work were to develop a low-cost and accurate I-V tracer, design a hybrid PV model
combining analytical and numerical models, and develop FDD methods in which fault features

are extracted from the 1-V curve.

In chapter I, we developed the experimental test bench based on a low-cost I-V tracer,
a DC-DC converter, and current and voltage sensors. It also comprises an electronic board that
emulates the degradation of shunt and series resistances. The number of points (samples) and
their distribution of the I-V curve have been set to minimize the measurement duration
(disconnection duration), i.e., and the resolution. The logarithmic distribution of points (LDP)
was found to perform better than the usual uniform distribution of points (UDP). Indeed, its
absolute relative error (ARE) was lower. The I-V tracer was then validated/calibrated using a
high-efficiency E4360A Modular Solar Array Simulator (MSAS): we obtained a relative error
of 1.33 % in the healthy case. We also show that the proposed low-cost I-V tracer could
measure the 1-V characteristics of PV modules under faulty conditions (i.e., partial shading, R,
degradation, and R, degradation). We also evaluated its rapidity and reliability. During the
development of the test bench, we collected abnormal I-V curves due to over-illumination of
the PV module.Thanks to a linear interpolation technique, the abnormal curves were eliminated

to avoid any misinterpretation during the process of FDD.

Chapter Il presented the model of the PV module, the identification of its parameters,

and the validation. A four-step methodology was developed to extract the parameters of the
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single diode model. The first two steps are devoted to the training, while the last two are for
validation. The analytical models were still valid despite the dispersion observed when
identifying the five parameters. Indeed, the combination of the five parameters is crucial, and
it was found that for each combination, the model was able to provide a simulated I-V curve
close to the measured one with a relative error of less than 3%. We concluded that the PV model

was accurate for fault detection and diagnosis.

In Chapter 11, based on the literature review, we first provided a rapid overview of the
main faults and their frequency of occurrence that affect PV modules. The fault effects on the
output power and safety were also presented. We developed two FDD methods (denoted M1
and M2) based on the automatic analysis of fault features instead of visual inspection because
our objective was to propose a solution that can be deployed on large-scale PV plants. The

method M1 uses the five parameters (I, Rs, Rsp, I and n) of the single diode model as fault

features, while M2 uses the five characteristics (I, Vv,

Prpps Voo, and I.) of the 1-V curves.
M1 is based on the analytical models of the parameters, and M2 exploits a hybrid model, which
is a combination of the analytical models and a numerical model of the PV cells. The measured
features are compared to their healthy counterparts (obtained from the simulation) to generate

residuals.

Three fault cases are studied: series resistance R degradation, shunt resistance R, degradation,
and partial shading. The experimental and simulation results showed that with M1, the
degradation of the resistances could be accurately detected and the fault level estimated. The
results also showed that the other parameters of the model were not affected. The results with
M2 showed that for all the fault cases (degradation and partial shading), the maximum power
point was the most sensitive fault feature. In partial shading, the results with demonstrated that

the current, voltage, and maximum power point have almost the same sensitivity level.

Perspectives

Several studies could be conducted in the future :

The developed I-V tracer should be evaluated on a large-scale PV plant to assess its
effectiveness and performance in more realistic conditions. This could be done on the test bench
in Laos, whose development was stopped due to the Covid pandemic. It would also be an

opportunity to improve the measurement near the open-circuit voltage. The acquisition time
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could be optimized according to the position of the sun. It would also be interesting to evaluate

the I-V tracer with other technologies of PV cells.

The scope of the fault emulator could be enlarged with more fault severity levels,
particularly incipient faults whose detection, even if more tedious, helps improve condition-

based maintenance.

Building a database including measurements from the two sites (France and Laos)
would also be relevant. It will evaluate the accuracy and robustness of fault detection and

diagnosis methods.

Under partial shading conditions, the 1-V curve is very distorted. It should be interesting
to develop an efficient and robust technique to extract the parameters of the single diode model.

In that case, method M1 could be an alternative.

We only evaluated the threshold-based technique to analyze the residuals in this work.
With a higher number of faults and fault cases, it would be interesting to evaluate machine

learning techniques, especially if other environmental data were measured.

Finally, we have only dealt with faults on the DC side. It would be interesting to tackle

the faults that can occur on the AC side when the PV plant is connected to an AC power grid.

167



Appendix: Hybrid PV model based on the single diode with Rs and

Rsh model

Summary of the eight reference values estimated from the analytical model of parameters

The single diode of PV model with five electrical parameters and eight reference values

_ (Voo + Ly RsNs) (va + IWRSNS)
fpw = Tpn = Io [exp< NN, KT . RopN
Five The eight reference values
electrical Analytical model Isc,ref Kljef Voc,ref KV,ref Rs,ref ﬁref Rsh,ref Nref
parameters [4] [%/°C] V] [%/°C] | [mQ] =] [Q] =]
Gpo
Lon Ion = Iycref[1+ Kp_ o, (Tpy — Tm)]ﬁ 5.79 0.061
[ = Isc_ref + KI_Tef(Tpv - TSTC)
0 =
Iy Woc_rer [1 + Ky, (T = Tm)] .| 57 0.061 | 2068 | -0.519
exp nKN,T -
T G
Ry Ry = Ry res [—(1 = Bres ln( POA))] 709 | 0.036
- i z Gsre
STC
Ry Rgp = Rsh,refG— 49.85
POA
n N= Nper— 1.01
ref Tn

The analytical model of parameters and their reference value in the table are used to
implement the physical PV module model called the hybrid PV model, this model is established
under the MATLAB Simulink environment.

1. Photo generated current (I,,) implementation

Gpoa

ph = Isc_ref[1 + KI_ref(Tpv = Tsrc)]

GSTC

Detailed of I,,, implementation

2. Diode current (I;) implementation

q(Vpv+IpvRsNs)
NNSKT

Id=1I, [exp( ) - 1] , Where V. = Vpv + IpvRsNs
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Suturation Current 10

Detailed of Id implementation

3. Diode saturation current (I;) implementation

Isc_ref + KI_ref (Tpv - TSTC)

quc_ref[l + KV_ref (Tpv - TSTC)]

exp (

K_I

Tn

nKN,T

Isc_ref

n_ref

Detailed of 10 implementation

)-1

B e
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4. Combination of Iph, Id and 10

G_POA [W/m"2]

Photo current Iph

& -

Tpvin °C

273.15

Diode Current Id

Detailed of Ip,Id and 10 combination

5. PV electrical model with R; and R, depending on Ns

Tpv °C

a

G_POA [W/m"2]

Ns*Rsh

G_POA [W/m"2]

Cell

PV electrical model depending on Ns
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6. Whole PV model

[ Block Parameters: Hybrid PV model X
Subsystem (mask) &
Parameters Gpoa
Short-circuit it Isc (A) |Isc_ref ] !
ircuit current Isc (A) ‘ _re Gpoa [Wm ZJ
Open circuit voltage Voc (V) |Voc_ref
Temperature coefficient of Isc Ki (%/deg.C) |Ki_ref ||
Temperature coefficient of Voc Kv |Kv_ref I
The Ideallty factor of diode n [n ;
= - Resistance variable
Shunt Resistance [2] [Rsh/Ns : Tpv -
Series Resistance [Q] [Rs/Ns
Number of cellin serie [Ns Tp €
jumber of cell in serie :
CE> - x |_» P
oK Cancel Help Apply ’| I e |
Paramecters’ configuration Variables input . ‘
using analytical model with (environmental data )

eight reference values

Presentation of the whole hybrid PV model
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Résumé :

La surveillance continue de I'état de santé des modules PV
est obligatoire pour maintenir un rendement élevé et
minimiser les pertes de puissance dues aux défauts ou aux
pannes.

Dans ce travail, un traceur embarqué a faible colt est
développé et optimisé pour mesurer la courbe I-V en
moins de 0,2 s afin de minimiser la durée de I’interruption
de la production électrique. Le traceur proposé et validé
avec un analyseur du commerce.

Les données expérimentales sont utilisées pour valider le
modéle analytique du module PV. Ce modéle s’appuie sur
les cing paramétres (L,p, Rs, Rsp,lo and n) du circuit
électrique a une diode. Il est combiné au modéle
numérique de Matlab-Simulink pour mettre en place le
modele hybride qui sera utilisé comme référence pour le
diagnostic. Ce modéle est validé avec une erreur relative
inférieure a 3% pour plusieurs données environnementales
(éclairement et température).

Les données mesurées sont utilisées pour extraire les cing
parameétres du modéle électrique équivalent ainsi que les
principales caractéristiques de la courbe 1-V (courant,
tension, Voc, Isc et Pmpp)

Les courbes I-V mesurées sont aussi utilisées pour
évaluer les deux méthodes de diagnostic des défauts
(notées M1 et M2).

M1 s’appuie sur le modéle analytique des cing
parametres (Ipp, Rs, Rsp, I and n) alors que M2 utilise
les cinq caractéristiques (Iyy, Vou, Prpps Voo and Is.) et
le modéle hybride pour générer les courbes I-V de

référence.

Les résidus sont calculés entre les indicateurs des
défauts extraits des mesures expérimentales et ceux
issues des courbes de référence. Trois cas de défaut ont
été étudiés : dégradation de la résistance série R,
dégradation de la résistance shunt R, et I’ombrage
partiel. Les résultats basés sur des données
expérimentales obtenues sous différentes températures
et éclairements ont montré que la dégradation des
résistances série et shunt et I'ombrage partiel étaient
mieux détectés par les caractéristiques qu'avec les
parametres.

Title : Contribution to fault detection of PV modules using I-V curves

Keywords : Solar photovoltaic, I-V tracer, PV model, I-V characteristic, Fault detection and diagnosis.

Abstract :

Continuous monitoring of the health status of PV modules
is mandatory to maintain high efficiency and minimise
power losses due to faults or failures.

In this work, a low-cost embedded tracer is developed and
optimised to measure the 1-V curve in less than 0.2 s to
minimise the duration of power generation interruption.
The proposed tracer is validated with a commercial
analyser.

The experimental data is used to validate the analytical
model of the PV module. This model is based on the single
diode electrical circuit's five parameters
(Iphs Rs) Rsp, I and m) . It is combined with the Matlab-
Simulink numerical model to set up the hybrid model that

The measured I-V curves are also used to evaluate two
fault diagnosis methods (denoted M1 and M2). The
method M1 uses the analytical models of the five the
five parameters(l,p, Rs, Rgp, Iy and n) while M2 uses
the five characteristics (I, Vyy, Prpp, Voe, and Is.) of
the I-V curves as fault features, and the hybrid model to
generate the 1-V reference curves.

The residuals are calculated between the fault indicators
extracted from the experimental measurements and
those from the reference curves. Three fault cases were
studied: degradation of the series resistance, degradation
of the shunt resistance, and partial shading. The results
based on experimental data, obtained under different
temperatures and illuminations, showed that the I-V
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will be used as a reference for the diagnosis. This model is  curves' characteristics are more sensitive to series and
validated with a relative error of less than 3% for several shunt resistance degradation and partial shading than the
environmental data (irradiance and temperature). parameters.

The measured data are used to extract the five parameters
of the equivalent electrical model and the main
characteristics of the I-V curve (current, voltage, Voc, Isc
and Pmpp)
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