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Abstract

The growing usage of machine learning solutions (movie recommendation, speech recogni-

tion, fraud detection and so on) creates the demand for having more efficient tools to build

them. Indeed, building a machine learning model is a tedious task. The practitioner is re-

quired to preprocess the data, build the features, select the machine learning algorithm and

tune its hyper-parameters. Historically, these steps are handmade, but more recent tools

called AutoML for Automatic Machine Learning have blossomed, and propose to perform

these tasks automatically. Thus, AutoML eases the research of models and permits a gain of

time for the experts, but also aims to help the non-experts to build a model without having

to understand all the underlying mechanisms. In this work, we analyze the best known

optimization methods used by the AutoML tools, and notice that among these methods,

the evolutionary algorithms are very promising when it comes to improve the research of

models. Indeed, evolutionary algorithms ease the tuning of the exploration versus exploita-

tion trade-offs, are inherently capable of handling any sort of candidates (fixed and variable

sizes), can tackle multiple objectives and can be easily parallelized. However, they have been

barely studied in the AutoMLs, especially when it concerns the choice of the components

such as the mutations or the algorithms. In this work, we first define a modular AutoML

and a range of new components designed to study their impacts when used to automatically

solve classification problems. Then, we come up with a method to accelerate all the opti-

mization processes based on evolutionary algorithms for large datasets. Finally, we propose

a solution to automatically tackle time series classification problems which, to the best of

our knowledge, have never been studied before.
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Résumé

L’utilisation grandissante de solutions d’apprentissage automatique (recommandation de

films, reconnaissance du texte, détection de la fraude et ainsi de suite) crée une demande pour

avoir des outils plus efficaces. En effet, construire un modèle d’apprentissage automatique est

une tâche laborieuse. Le praticien doit formater les données, construire les attributs, sélec-

tionner l’algorithme d’apprentissage automatique adéquat, et régler ses hyperparamètres.

Historiquement ces étapes sont manuelles, mais des outils récents appelés AutoML, Auto-

matic Machine Learning, ont vu le jour et proposent de réaliser ces tâches automatiquement.

Ainsi, l’AutoML facilite la recherche des modèles et octroie un gain de temps aux experts,

et permet également aux non-experts de construire un modèle sans avoir à comprendre les

mécanismes sous-jacents. Dans ces travaux, nous analysons les méthodes d’optimisations les

plus connues et utilisées par les outils d’AutoML. Lors de notre analyse, nous avons remarqué

que parmi ces diverses méthodes, les algorithmes évolutionnaires semblent prometteurs dans

la recherche des modèles. Notamment, ils facilitent la configuration de la phase de compromis

d’exploration versus exploitation, sont intrinsèquement capables de manipuler toute sorte de

candidats (taille fixe ou variable), peuvent aborder plusieurs objectifs et, sont facilement

parallélisables. Cependant, ces algorithmes évolutionnaires restent très peu étudiés dans les

AutoMLs, en particulier quand cela concerne le choix des composants tels que les mutations

ou les algorithmes. Dans ces travaux, nous définissons un framework d’AutoML modulable

avec de nouveaux composants. L’objectif est d’étudier l’impact de ces derniers quand ils

sont utilisés pour résoudre des problèmes de classification. Par la suite, cela nous a menés

au développement d’une méthode qui accélère l’ensemble du processus d’optimisation basé

sur les algorithmes évolutionnaires devant traiter d’importants volumes de données. Pour

finir, nous proposons une solution qui résout automatiquement le problème de classification

des séries temporelles qui, d’après nos connaissances, n’a jamais été étudié auparavant.
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Introduction (French)

L’apprentissage automatique, ou machine learning en anglais, est omniprésent de nos jours.

Parmi les dernières applications, cet apprentissage automatique est utilisé pour les voitures

autonomes dans le but de reconnaître les objets qui défilent en cours de route et pour

prendre des décisions telles qu’augmenter ou réduire la vitesse d’accélération du véhicule.

Cette technique est également employée dans de nombreux services (site web de shopping,

applications de streaming vidéos) pour recommander [89] des items (vidéos, musiques, livres

et tout autre produit). D’autres applications moins évoquées sont l’estimation du prix d’une

maison, la détection d’anomalies (surchauffes dans les datacentres), la reconnaissance des

codes postaux écrits à la main, la reconnaissance des catégories de déchets dans un centre

de tri etc.

Cet intérêt grandissant pour l’apprentissage automatique est dû à plusieurs raisons.

Premièrement, alors que la création d’une fonction dans un processus classique dépend

principalement du code réalisé par un être humain, l’apprentissage automatique, lui, con-

struit une fonction (également appelée modèle) à l’aide d’un algorithme qui utilise les données

comme source de connaissances (Figure 0-1). En déléguant la création de la fonction à un

algorithme et à des sources externes, le travail nécessaire pour la construire est réduit. Ceci

est particulièrement vrai pour les fonctions très compliquées qui, face à un environnement

changeant, ont constamment besoin d’être mises à jour pour fonctionner avec précision.

Créer ou mettre à jour manuellement une telle fonction requiert un temps considérable

pouvant facilement rendre obsolètes ses résultats. En effet, imaginons implémenter une fonc-

tion qui reconnaît les objets dans une image. Si chaque objet a des centaines de variables

(formes, couleurs, contrastes, dimensions), ainsi que des millions d’images à considérer tels

que l’on distingue l’ensemble des caractéristiques de chaque objet, cela représenterait un

temps de travail considérable pour la construire avec précision. En fait, la situation se com-

plexifierait encore si de nouvelles images et de nouvelles variables s’ajoutent. Il serait alors

nécessaire de travailler à nouveau l’ensemble des règles précédemment implémentées afin de

s’assurer que la fonction continue de prédire avec précision. En d’autres termes, la force de

l’apprentissage automatique se situe dans sa capacité à construire des fonctions complexes en
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un temps raisonnable via l’extraction de connaissances résidant dans les données. De plus,

ces algorithmes peuvent être relancés indéfiniment de telle manière que les nouvelles données

(c’est-à-dire la connaissance) soient constamment prises en considération dans la nouvelle

fonction reconstruite. Ainsi, le laborieux processus humain de coder et de maintenir à jour

une fonction est réduit et devient réalisable.

Deuxièmement, les techniques ont beaucoup progressé au cours de la dernière décennie.

En effet, la convergence des algorithmes existants [68] est devenue plus efficace. Il y a de

nouveaux algorithmes plus performants [18,67,109], et il en est de même pour les méthodes

de préprocessing des données [23, 118]. Ainsi, ces techniques ont permis de gagner en per-

formance en comparaison aux algorithmes plus classiques résolvant des problèmes similaires.

Par conséquent, elles ont accéléré l’adoption de l’apprentissage automatique.

Enfin, la prolifération d’établissements (data centres) capables de stocker une large quan-

tité de données avec toujours plus de puissance de calculs (clusters, clouds), et le fait que

nous monitorons bien plus d’informations à tous les niveaux de nos sociétés, contribuent

également à l’adoption des processus d’apprentissage automatique.

A OVHCloud, nous avons une grande quantité de données à travers le monde et nous

proposons une large gamme de produits, allant de l’enregistrement des noms de domaines

à la location de serveurs dédiés. Par conséquent, le comportement de nos clients diffère

d’un produit à un autre et il en est de même pour les pays. Comprendre ce changement de

comportement pourrait permettre l’amélioration de l’expérience utilisateur pour nos clients,

ainsi qu’améliorer nos processus internes. En effet, parmi les cas d’usages internes, il y

a la possibilité de réduire les pannes avec la maintenance préventive, d’optimiser le stock

des composants informatiques, et de réduire la consommation d’énergie des infrastructures.

Ainsi, pour toutes ces raisons, OVHCloud a développé de l’intérêt à utiliser l’apprentissage

automatique.

L’entreprise a commencé à utiliser l’apprentissage automatique pour s’attaquer à une

problématique concernant la fraude sur les services OVHCloud Public Cloud. Initialement,

les fraudeurs étaient identifiés avec des règles statiques directement implémentées dans le

code. Cependant, leur comportement change constamment et a rendu la solution rapide-

ment inadaptée. Cela a plusieurs répercussions sur l’entreprise. La perte d’argent. Le fait
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que les fraudeurs consomment des produits empêche les utilisateurs légitimes d’accéder aux

ressources. En effet, les ressources d’OVHCloud Public Cloud fonctionnent en flux tendu

pour des principes écologiques et pour minimiser les coûts. La fraude participe également

à la détérioration des composants (exemple des mineurs en cryptomonnaie). De plus, les

fraudeurs ont tendance à stocker des données illicites, ce qui peut mettre à mal l’image de

l’entreprise. Ainsi, nous avons décidé d’appliquer des solutions d’apprentissage automatique

plus adaptées au changement de comportement, ce qui a permis de résoudre l’ensemble des

conséquences évoquées. Néanmoins, de nouvelles complications sont apparues, notamment

la difficulté à mettre en place et à maintenir l’enchaînement des processus impliqués dans

l’apprentissage automatique. Citons également la complexité d’extraire des données qui pro-

duisent de bons modèles, l’expertise requise pour correctement sélectionner et configurer les

algorithmes d’apprentissage automatique, et le manque d’outils pour servir un modèle via

un microservice que tout le monde peut utiliser intuitivement.

Ainsi, nous avons décidé de construire notre propre outil capable de faciliter l’ensemble

des processus présents dans l’apprentissage automatique. Au cours de notre démarche, nous

avons remarqué que des outils similaires existaient dans la sphère de recherche publique.

Ces outils sont communément appelés AutoML, qui signifie l’Automatisation du Machine

Learning, et essaient de résoudre les différentes problématiques rencontrées par les praticiens.

Souhaitant développer nos connaissances dans ce domaine, nous avons décidé d’étudier ces

outils, ce qui nous a également menés sur le sujet de cette thèse et ces travaux.

Pour entreprendre cette tâche, OVHCloud s’est associé avec ORKAD via une procédure

CIFRE. ORKAD est une équipe de recherche faisant partie du laboratoire CRIStAL. Leur

domaine d’expertise concerne la résolution de problèmes d’optimisation avec des optimisa-

tions métaheuristiques et de l’extraction de connaissances. Cela concorde parfaitement avec

le coeur des méthodes utilisées par les outils d’AutoML pour sélectionner et configurer les

algorithmes d’apprentissage automatique afin de maximiser une fonction d’objectif.

Dans ces travaux, nous avons développé un nouvel outil d’AutoML capable d’étudier des

algorithmes évolutionnaires, des méthodes d’optimisation étudiées sur d’autres probléma-

tiques (N-Queens), mais à peine explorés sur les AutoMLs. Nos travaux ont débouché sur

une première proposition, une technique permettant aux algorithmes évolutionnaires d’être
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plus rapides quand appliqués sur de larges jeux de données. Et, une seconde proposition

permettant de résoudre automatiquement le problème de la classification sur des séries tem-

porelles.

Le manuscrit décrivant nos travaux est organisé comme suit:

Chapitre 1 introduit l’entreprise OVHCloud et son intérêt pour l’IA, justifié par la

présence de fraudeurs qui a donné naissance au développement d’un AutoML en plus de cette

thèse (1.2.1). Ensuite, nous mettons en lumière les produits d’IA qui ont été développés par

l’entreprise, chacun d’entre eux prenant une place comme un composant dans l’AutoML.

Le premier est Prescience (1.2.2), une plateforme globale d’AutoML utilisable au travers

d’une interface web. Ensuite, OVHCloud Serving Engine (1.2.3), un service qui permet de

déployer n’importe quel modèle d’apprentissage automatique. Enfin, OVHCloud AI Train-

ing (1.2.4), une plateforme avec un environnement de GPU/CPU extensible et qui peut se

connecter avec un Jupyter notebook. D’autre part, nous évoquerons trois projets développés

en parallèle de la thèse: DSOP (1.3.1), une plateforme qui permet de faciliter la récupération

de jeux de données, Interpretability Engine (1.3.2), une librairie qui facilite l’interprétation

de modèles déployés sur OVHCloud Serving Engine et, Slurm-PCi (1.3.3), un cluster de

haute performance évolutif basé sur OVHCloud Public Cloud pour lancer les expériences de

recherche.

Chapitre 2 donne un arrière-plan sur l’apprentissage automatique (2.1.1) et les difficultés

sous-jacentes qu’il cause, ce qui nous amène au développement du nouveau domaine d’étude

appelé AutoML (2.1.2). L’AutoML peut être défini comme un problème d’optimisation

(2.1.3). Nous énumérons et étudions les solutions de l’état de l’art (2.2). Cette étude nous a

permis de mettre en avant les parties sous-exploitées dans l’AutoML (2.3), ce qui a conforté

nos choix pour le développement d’un nouvel outil.

Chapitre 3 introduit Mary-Morstan, un nouvel outil d’AutoML. Cet outil est basé

sur les algorithmes évolutionnaires, que nous motivons par les nombreux avantages qu’ils

présentent (3.1). En effet, les algorithmes évolutionnaires sont adaptés pour traiter des can-

didats avec des tailles variables, ce qui en fait une solution idéale pour traiter le problème

de l’AutoML (2.1.3). Ils sont nativement capables de traiter plusieurs objectifs, une fonc-

tionnalité prometteuse pour le futur des AutoMLs. Et, ils sont également conçus pour être
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facilement configurables, ce qui permet de jouer avec la phase d’exploration versus exploita-

tion lors de l’optimisation. Il s’avère que ce dernier aspect a prouvé avoir un impact sur les

performances d’optimisation d’autres problèmes de recherche (N-Queens). Etant donné qu’il

n’a pas été étudié sur le problème de l’AutoML, nous proposons de le faire en y ajoutant de

nouveaux composants qui permettent d’étudier l’impact sur les performances de l’AutoML.

Dans ce chapitre, nous commençons par donner une vue globale (3.2) de notre outil en le

comparant avec l’état de l’art dans le but de mettre en avant ces nouveaux composants. En-

suite, nous détaillons le fonctionnement des différents composants (3.3) en plus des impacts

attendus sur les modèles d’apprentissage automatique (3.3.3.3). Pour évaluer les perfor-

mances de notre AutoML, nous réalisons deux différentes expériences, une première pour

valider notre solution (c’est-à-dire que les performances de l’état de l’art soient atteintes), et

une seconde pour voir si l’introduction de nos composants surpasse l’état de l’art (3.4). Du-

rant nos expériences, nous avons remarqué une faiblesse majeure des AutoMLs basés sur les

algorithmes évolutionnaires qui, ont des difficultés à gérer des jeux de données conséquents

(3.5).

Chapitre 4 propose une technique permettant aux AutoMLs basés sur les algorithmes

évolutionnaires de gérer des jeux de données conséquents (4). La technique est basée sur

Successive Halving, introduite sur le problème des Multi-armed Bandits (4.1.2). Une fois

Adaptée pour les AutoMLs basés sur les algorithmes évolutionnaires (4.1.3), nous réalisons

une expérience sur de petits jeux de données et sur de grands jeux de données afin d’observer

son comportement (4.3). Comme attendu, sur des petits jeux de données, l’emploi du Suc-

cessive Halving n’apporte pas de valeur ajoutée. Par contre, sur des jeux de données plus

conséquents, l’amélioration par rapport à l’état de l’art est très significative, résolvant com-

plètement le problème entrevu dans le chapitre précédent.

Chapitre 5 continue les travaux sur l’aspect modulable initié avec Mary-Morstan. Suite

à l’émergence de nouveaux algorithmes d’apprentissage automatique dédiés pour des prob-

lèmes de classification avec des données temporelles (2.1.1.3), et non étudiés par les Au-

toMLs, nous avons décidé de le résoudre avec notre solution en tirant profit des nouveaux

composants proposés. Nous commençons par introduire le problème de classification avec

des séries temporelles, et motivons l’intérêt qu’il y a pour le résoudre avec une solution
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d’AutoML (5.1). Nous décrivons ensuite les modules de Mary-Morstan permettant de se

pencher sur ce problème (5.1.5). Enfin, nous proposons une séries d’expériences sur des

jeux de données classiques de classification de séries temporelles (5.2). Expériences qui ont

démontré un intérêt significatif de notre approche sur une large partie d’entre eux, comparée

à des étalons standard définis au préalable (5.3).

Chapitre 6 résume l’ensemble des contributions et donne un panorama sur les futurs

travaux pouvant être réalisés.
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Introduction

Machine Learning is omnipresent nowadays. Among the latest applications, we find its

presence in autonomous cars to recognize the different objects encountered along the road

as well as to take a decision such as accelerating the car, or reducing its speed. We also find

it in services (shopping websites, video streaming applications) to recommend [89] different

items (movies, songs, books, and any other products). Many other applications that are less

mentioned exist. For example, estimating the price of a house, detecting the anomalies (e.g.

overheating in data centers), recognizing handwritten zip codes, categorizing and recognizing

waste in sorting centers, and so on.

Function Built with Machine Learning

Human

ML Algorithm Action 

external sources

 Function

Classical Process of Building a Function

Human

Function

Coding Select and Configure

external sources

Action 

Build

Model

Figure 0-1: Traditional Process of Building a Function versus with Machine Learning

This growing interest in machine learning is caused by different reasons.

First, unlike a classical process where the creation of a function mainly depends on the

coding made by a person, a function (also called a model) in machine learning is built via

a dedicated algorithm which uses external data as a source of knowledge (Figure 0-1). By

delegating the creation of the function to an algorithm and to external sources, the necessary

work to build it is reduced. This is especially true for very complex functions that see the

structure of their input or output evolve over the time, and need to be updated in order to

work accurately. Manually creating or updating such a function would take an unreasonable

amount of time if done by humans. For example, imagine you want to implement a function

that recognizes the objects in a picture. Given that each object can be described by hundreds

of variables (e.g. forms, colors, contrasts, dimensions) and that millions of pictures should

be considered in order to distinguish all the characteristics of each object, it would take a
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huge amount of time to accurately build such a function. In fact, it becomes even more

complicated if new pictures and new variables are introduced. You would have to pass

all along the already implemented rules (add, remove, or update them) to ensure that the

function still predicts accurately. In other words, the strength of machine learning resides in

its capacity to build a complex function within a reasonable time by extracting the knowledge

that lies in the data. Moreover, these algorithms can be re-performed indefinitely in such a

way that new data (i.e. knowledge) are consistently taken in consideration within the given

function that is rebuilt. Thus, the laborious human process of coding and maintaining an

updated function is reduced and becomes more achievable.

Second, the progress of the techniques in the domain, by improving the convergence of

the existing algorithms [68], proposing new faster and more efficient algorithms [18,67,109],

and new preprocessing methods [23, 118], permits to beat classical algorithms that solve

similar problems and by consequence accelerates the adoption of machine learning.

Third and last, the proliferation of facilities (e.g. data centers), capable of storing large

quantities of data with more computational power (e.g. clusters, clouds) and the fact that

we monitor much more information at all the levels of our societies, also contribute to the

adoption of machine learning processes for taking advantage of all that data by hand would

simply be intractable.

At OVHCloud, we have a lot of data centers around the world, and we provide a wide

range of products going from the registration of domain names to the rental of baremetal

servers. Therefore, the behaviors of our customers completely differ from one product to

another but also depending to the countries, the type of company, etc. Understanding

this change of behavior might improve the user experiences of our customers. We can also

leverage machine learning for many of our internal processes. Among others, we can mention

the possibility to reduce hardware failures with preventive maintenance, to optimize our stock

of hardware components or to reduce the energy consumption of our infrastructures. Thus,

for all these reasons, OVHCloud has an interest in using machine learning.

The company started to use machine learning processes by tackling fraud on OVHCloud

Public Cloud services. The initial solution consisted in catching the fraudsters with static

rules directly implemented in the code. However, the behavior of the fraudsters constantly
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changed and made the solution inadequate. This had multiple bad consequences, such as

the loss of money for the company but not only. The fact that fraudsters consume the

products tends to obstruct the legitimate users to have access to the resources. Indeed,

the resources of OVHCloud Public Cloud services work in almost just-in-time production,

which permits to respect some ecological principles, as well as to minimize our costs. Fraud

also participates to deteriorate the components (e.g. cryptocurrency mining softwares).

Moreover, the fraudsters tend to store illicit data which might harm the corporate image.

Thus, we decided to involve a solution of machine learning, more adapted to the constant

changes of behavior, which solved all the enumerated issues. However, it also brings new

complications. Among these complications, there is the difficulty to set up and maintain

an efficient and productive pipeline which is due to many reasons. To name a few, there is

the complexity of extracting the data such that the model gives good results, the expertise

required to correctly select and configure the machine learning algorithms, and the lack of

tools to set up a model as an intuitive microservice usable by other teams.

Hence, we decided to build our own tool, capable of easing all the involved processes

within machine learning. Along our road, we noticed the existence of similar tools in public

research. These tools commonly called AutoML, for Automatic Machine Learning, try to

solve the different issues encountered by their practitioners. Our lack of knowledge and our

motivation to know more on that field pushed us forward to investigate these tools, which

also led us on the subject of this thesis and this work.

To undertake this task, OVHCloud associated with ORKAD through a CIFRE1 proce-

dure. ORKAD is a research team, part of CRIStAL laboratory and the University of Lille.

Their domain of expertise concerns the optimization problems solved with metaheuristic

optimizations and with the extraction of knowledge. This perfectly fits with the core meth-

ods used by the AutoML tools to select the machine learning algorithms and to tune their

hyper-parameters, which is like maximizing a complex objective function.

In this thesis work, we developed a new AutoML tool capable of studying the evolutionary

algorithms, a known optimization method well studied on other problems (e.g. N-Queens),

but barely explored in AutoML. Our works led us to a first proposition, which is a new

1https://kutt.parmentier.io/cifre
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technique permitting the evolutionary algorithms to perform faster on large datasets without

using any parallelism methods. And, to a second proposition which automatically solve the

time series classification problems.

The manuscript that describes our work is organized as follows:

Chapter 1 introduces the company OVHCloud and its interest in AI, notably caused

by the presence of fraud that leads to the development of an AutoML and this thesis work

(1.2.1). Then, we give some insight concerning the AI products that were developed by the

company, each of which being a component of AutoML: Prescience (1.2.2), a global web-

ui AutoML platform, OVHCloud Serving Engine (1.2.3), a service to deploy any machine

learning model, and OVHCloud AI Training (1.2.4), a scalable GPU/CPU platform that

can be plugged with a Jupyter notebook. Finally, we list three sideline projects that were

developed along with the thesis: DSOP (1.3.1) a platform to ease the retrieving of datasets,

Interpretability Engine (1.3.2) a library that eases the interpretation of black-box models

deployed on OVHCloud Serving Engine, and Slurm-PCi (1.3.3) a scalable HPC platform on

top of OVHCloud Public Cloud to run research experiments.

Chapter 2 gives background on machine learning (2.1.1) and the underlying problems

it causes, which leads to the study of a new field called AutoML (2.1.2). AutoML can be

defined as an optimization problem (2.1.3). We finally propose a classification to categorize

all these approaches (2.2). This classification also permits to highlight the least studied

aspects of the problem (2.3) which contributed to guide our investigations while developing

our new AutoML.

Chapter 3 introduces Mary-Morstan, a new AutoML tool. In a nutshell, the tool is

based on evolutionary algorithms which is motivated by their multitude of advantages (3.1).

Indeed, these algorithms are adapted to manage candidates with variables sizes, which makes

it an ideal solution to solve the AutoML problem (2.1.3). They are natively capable of

managing multiple objectives, a promising feature for the future of AutoMLs. And, they

are also designed to be easily tuned, which permits to play with the exploration versus

exploitation trade-off during the optimization. This last aspect has been well studied on

different research problems and impacts the optimization performance. However, it has not

been studied on the AutoML problem, which is why we proposed new components permitting
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to study its impact on the performance of the latter. We give a general overview of our tool

(3.2) and compare it with the state-of-the-art in order to emphasize the new components

(3-2). Then, we detail all the different components (3.3) and give some of the expected

impacts (3.3.3.3) on machine learning models. Finally, to evaluate our AutoML, we run two

different experiments. A first one to validate our solution (i.e. that it meets the state-of-the-

art performance) and a second one to see if the new components surpass the state-of-the-art

(3.4). During our experiments, we noticed that a major weakness of EAs based AutoML is

that they struggle to tackle large datasets (3.5).

Chapter 4 proposes a technique to handle large datasets with Evolutionary-based Au-

toML solutions (4). The technique is based on Successive Halving, and was introduced on

the Multi-armed Bandits problem (4.1.2). After adapting it to EAs-based AutoMLs (4.1.3),

we perform an experiment (4.2) on small and large datasets to observe how it behaves (4.3).

On small datasets, there is no significant improvement. However, on large datasets, our so-

lution converges much faster than the state-of-the-art, while maintaining roughly the same

final performance.

Chapter 5 continues the modular work initiated with Mary-Morstan. With the emer-

gence of new machine learning algorithms dedicated to time series classification problems

(2.1.1.3), we decided to solve it with our AutoML, which to the best of our knowledge has

never been tackled. We first introduce the problem of time series classification (5.1). We

then describe the components of Mary-Morstan permitting to tackle the problem (5.1.5).

Finally, we propose an experiment on classical datasets used to benchmark the time series

classification algorithms (5.2). It shows that our solution significantly outperforms existing

AutoMLs straightforwardly adapted to the time series classification problem (5.3).

Chapter 6 summarizes all the above contributions (6.1), and gives a panorama for the

future works (6.2).
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Chapter 1

Industrial Context

In this chapter we introduce the company OVHcloud and how the company started to have

an interest in developing Artificial Intelligence products, which led to the development of

these thesis works. Then, we enumerate three sideline projects that we developed to support

this thesis work.

1.1 OVHCloud: the company

OVHCloud (previously named OVH) is a company founded by Octave Klaba and his family

in 1999. The company initially provided few services (web hosting, domain name registrar)

and expanded to many more offers since (dedicated server, public cloud, private cloud, VPS,

VOIP, database as a service, AI/GPU environment, etc.)1.

The company is known to be among the larger ones in the world, and the largest cloud

provider in Europe [1]. This can be easily shown through its presence2 in the world (see Fig-

ure 1-1). With 33 data centers located in 12 locations across 4 continents, a bandwith

network of 22 TBPS, and more than 400,000 servers running, it is also a world-wide

cloud competitor. Indeed, the company totalizes 1.6 million customers across 140 coun-

tries.

OVHCloud is also an innovative company. As a matter of fact, most of the servers

1see https://www.ovhcloud.com for more details
2data center, office, Point of Presences (PoPs)
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Figure 1-1: Presence of OVHCloud in the World (2021)

are built and mounted in a dedicated factory3 (see Figure B-1), which permits to build

on demand architectures4 and to reduce the production costs.

Its strong track record of innovation continues in the data center with the racking and

the cooling part where multiple patents have been deposited. The racks have been designed

to be quickly mounted in production (instant power, network, and cooling), and oriented for

the maintenance. The proprietary water-cooling technology reduces the need for energy, and

consequently the cost of electricity for the final customer. Compared to most of the data

centers that have air conditioning, it is much more ecological to use water-cooling.

More recently, Artificial Intelligence is another key innovation for the development of

efficient technologies [110]. To continue its quest of innovation, OVHCloud contributed in

this field in various ways: development of new products for the customers (Prescience,

ML Serving, AI training), resolution of internal problems (fraud detection, network

overheat monitoring5, water block anomaly detection), and the research work of

this thesis in the field of AutoML (international papers and patents).

3https://blog.ovh.com/fr/blog/nouveau-site-de-croix-une-usine-world-class-pour-la-production-dovh/
4type of cpu, amount of memory, type of storage: hdd, ssd, nvme
5https://blog.ovhcloud.com/network-devices-overheat-monitoring/
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In the next section, we first focus on the Artificial Intelligence related products which,

then lead to the development of this thesis along with its sideline projects.

1.2 Solutions Related to Artificial Intelligence

In this subsection, we first motivate the interest of OVHCloud in Artificial Intelligence and

more specifically in Machine Learning, then we give an overall view of the different products

that have been made from this interest.

1.2.1 Motivation

The usage of Artificial Intelligence at OVHCloud took its root in 2017 with the Machine

Learning Services (MLS) team composed of two people: Guillaume Salou and Christophe

Rannou.
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Figure 1-2: OVHCloud contributions and usage of Artificial Intelligence

A timeline of OVHCloud contributions is provided in Figure 1-2.

The MLS team noticed that the developers of the Public Cloud (PCi) product had
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difficulties to catch the fraudsters. The product allowed the customers to consume the

infrastructures (compute, memory, storage) instantly on credit and they generally paid at

the end of the month. Thus, the fraudsters found an interest in consuming the service for free

until the end of the month. As a countermeasure, the developers of PCi implemented some

rules, e.g. if a new customer consumes more than 200$ within the first few days, then he

might be suspicious. However, these rules were too generic to catch the different profiles of

fraudsters, and required a lot of updates (push code in production) to be constantly efficient.

For this reason, MLS started to develop a new service (API) based on Machine Learning.

Machine Learning has the capacity of building a model thanks to a dynamic function

which adapts itself to the input data (see 2.1.1 for more details). In other words, for this

case, the model can catch the different profiles. Once built, it can serve to predict if a

consumer is a fraudster (or not) with a certain probability.

The setup of the new ML service was a success. It considerably reduced the number

of fraudster on PCi as well as the lost expenses. However, it required a lot of effort to be

efficiently maintained as well. It happened that new models, when pushed in production,

incured an unexpected performance drop or worse, completely failed to make predictions,

leaving an open door for the fraudsters. The issues were due to many reasons. Sometimes,

it was due to modifications made in the information system (e.g. move of data to another

place, the appearance of new data which were not correctly formatted). Sometimes, the pre-

processing phases were wrongly built. And sometimes, the ML algorithm used was incapable

of giving great results with the selected features.

Following these observations, the MLS team realized how laborious it is to maintain

and put a Machine Learning model in production. Thus, they started to have an interest

in building an automatic tool that eases the use of Machine Learning. At the same time,

they found out that a related research field called AutoML (Automatic Machine Learning)

existed. However, the tools were very research oriented and therefore not ready for productive

environments. That was how MLS team started to build a new tool, called Prescience,

which was much more production ready6. At the same moment, we also initiated

the work of the thesis, which consisted in studying the tools present in public

6available at https://labs.ovh.com/machine-learning-platform
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research.

Note that along the time, the MLS team grew (from two to a dozen) and the major

objectives started to differ. For this reason, the team was split in 2021 such that the MLS

team focused on the development of AI products and that new Data Science team took

charge of internal use cases related with AI.

1.2.2 Prescience

Prescience7 is a Machine Learning platform that can be used through a web user interface,

or a command-line interface. The user simply deposits their dataset in the allowed format

(CSV, Parquet, Warp10) and selects the problem to solve (regression, classification, fore-

casting), and all the remaining steps (preprocessing the data into features, finding a model)

are automatically performed.

The strength of the platform lies in its straightforward usage, its ability to distribute

the compute, which accelerates the optimization process to find a model8 (see Figure 1-

3a), and in its visualization of the performance for a given model (confusion matrix, ROC

curve, and all other metrics: F-1, precision, recall: see Figure 1-3b).

(a) Optimization that looks for the best model. (b) Model’s performance wt. different metrics.

Figure 1-3: Prescience Web-UI interface.

7https://blog.ovhcloud.com/prescience-introducing-ovhs-machine-learning-platform/
8selection of the ML algorithm and tuning its hyper-parameter. It is based on a distributed version of

SMAC (Bayesian Optimization)
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While it might be straightforward to use at first-hand for a non-expert, it remains difficult

to understand the final performance indicators, or how to properly use a deployed model. On

the other hand, an expert might be frustrated by the lack of methods and customization (e.g.

preprocessing phase), which limits the performance of the optimization and by consequence

the performance of the deployed model. Therefore, the platform has not been proposed as a

product yet, and is only available on the lab of OVHCloud.

Through the development of this platform, MLS remarked that building all the steps of

an AutoML in detail is a massive job. For this reason, the MLS team started to focus on one

particular step of Prescience that showed a great interest: the usage of a model as a service.

This led to the development of a new product called ML Serving9.

1.2.3 ML Serving

ML Serving10 consists in deploying a model as a service, in other words, as an API

on top of a model (Figure 1-4), with the benefit of the cloud (scalability, availability,

pay-as-you-go). By doing so, the practitioner is free to build the model with their

preference (language, library), as long as it can be exported in one of the formats allowed

by the platform (PMML, ONNX, HDF5, Tensorflow SavedModel). These formats aim to

export/import a model from a platform to another.

Once the model built, the practitioner can deploy its model by choosing the closest

region to its customers (Europe or America), the hardware configuration (scalability:

memory, CPU) which permits to adapt to the requirements of the model (e.g. size

and complexity to predict) and to the needs of the customers (e.g. how often the model

will be called). The product also integrates a versioning feature which permits the customer

to choose which model to deploy on the service. This is especially useful when a previous

version of the model had better performance than a new one deployed.

Along with the enumerated features, there are the advantages of the cloud. The cus-

tomer does not have to constantly secure its service, it is done by the team that

updates the different internal services (e.g. Nginx proxy), nor to maintain the infras-

9https://www.ovhcloud.com/en/public-cloud/machine-learning-serving/
10https://blog.ovhcloud.com/serving-engine-a-cloud-based-tool-to-deploy-machine-learning/
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tructure. If a part of the hardware is broken, the model is not impacted and is automatically

deployed on another machine (high availability).

Another great advantage is the pay-as-you-go, which allows the customer to only pay

the time that the model is deployed. Thus, it avoids the customer to buy all the equipment

which is costly and that usually requires some maintenance. Neither does he have to rent a

service during the whole month while it is partially used along this period of time.

Figure 1-4: ML Serving. A model is locally build and then exported in the service. Finaly,
any user can interact with the model through the service with their favorite language.

1.2.4 AI Training

This decade, Machine Learning is in high demand [110], notably because of its great perfor-

mance, especially to handle a large quantity of data that have specific structures (images,

videos, and sounds). In accordance with the market, comes AI Training11, a GPU envi-

ronment that permits to quickly train Deep Learning models without having to deal

with the installation and the configuration of the drivers (neither to maintain

the hardware).

Like ML Serving, it includes all the benefits of the cloud. So it is possible to scale the

platform (choose the number of GPUs) while keeping an highly available service (no

11https://www.ovhcloud.com/en/public-cloud/ai-training/
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failure, possibility to choose a region). The goal of the platform is to ease the tasks for the

data scientists by letting them focus on their primary job which is to build accurate models

and not to manage all the trimmings.

Moreover, the proposed GPU (Nvidia Tesla V100s) is quite expensive to acquire, but

with the pay-as-you-go principle, the customers can rent it at their demand. By doing so,

a customer can optimize their costs and keep the advantage of having a powerful compute

environment.

AI Training is not limited to the GPU, and can also be scaled with CPU, which is quite

useful for more classical algorithms. Besides, a web-ui notebook (Jupyter) can be linked to

the platform, and permits to directly develop the models on it.

1.2.5 Conclusion

To conclude this section, OVHCloud took advantage of its internal use cases to build in-

novative and visionary products that perfectly line up with the needs of the market (see

Figure 1-5). By going from the storage of the data (OVHCloud Object Storage), to the

deployment of a model (OVHCloud ML Serving), plus the in between products (OVHCloud

Data Processing, OVHCloud AI Training), the whole process of extracting value from the

data can be chained with all the benefits of the cloud.
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Figure 1-5: OVHCloud AI products aligned with a Data Scientist journey.
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1.3 Sideline Projects

This subsection introduces three projects that have been developed in parallel of the

thesis. There is DataSet Open Platform (DSOP), a platform to ease the retrieval of

datasets. Interpretability Engine, a library that eases the interpretation of Machine

Learning models deployed on OVHCloud ML Serving. And Slurm PCI, a set of DevOps

tools to manage Slurm Clusters on top of the OVHCloud Public Cloud product which has

served to run all the experiments of the thesis.

1.3.1 DSOP: DataSet Open Platform

DataSet Open Platform (DSOP) is the subject of two patents12. The project comes

from simple observations that Machine Learning practitioners exchange and use their

datasets with no standards. This has multiple consequences.

First, it is common that practitioners transform the data to their need (e.g. fit with

a model, improve the performance), and along the time, these transformed data might

be shared and re-shared with no trace of their origin. If such a dataset is used during

a research experiment, it could lead to biased results. Indeed, either the results are

better thanks to the replacement of information, or worst due to the loss of information. The

obscure transformation of the data has another consequence, the difficulty of being

reproducible, which is in contradiction with the principle in research.

Second, practitioners tend to use multiple datasets (e.g. for different use cases, to

merge different datasets as a final one). These datasets are usually present on different

platforms (UCI, OpenML.org, Dataturks, datahub.io to name few public ones). Each

platform has its own encoding (raw, CSV, JSON, tar.gz, etc.) of the data, and its own

interface of communication (library, REST API). This extra layer of tasks takes the

practitioner away from its main task.

Third, and partially related with the previous point, a same dataset might be present

on multiple platforms. Which is great if one platform is down, another can be used

(failover) or to get the data from the closest point (accelerate the download). On the

12EP21305706
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other hand, as announced earlier, the process of getting the data might completely change

from a platform to another (e.g. encoding, interface of communication).
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Figure 1-6: DSOP overall view (classical usage versus improved).

To solve all the above problems, we noticed that no tools exist so we decided to

develop our own that we called DataSet Open Platform (DSOP). DSOP (Figure 1-6) eases

the process of getting the data and works as follows: the user defines a configuration file

(see the example in Figure B-2), which can be later shared with others. This file contains

a list of datasets where for each dataset a backend is specified with its parameters (url,
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authentication) and optionally an extractor (the process of decoding and/or transforming

the data). The controller then reads this file and loads the needed data into a general class

representation with a common interface. Thus, we have a tool that traces all the history of

the data, ensures that the transformation of the data is reproducible, and can even use a

backup platform to maintain a productive environment.

To highlight the advantages of DSOP in practice, we provide two examples of code (with

and without our tool) in Figure B-3.

1.3.2 Interpretability Engine

There are more and more different Machine Learning algorithms, and each of them

extracts the knowledge from the data (builds the model) in different manners. Some

models are pretty obvious to read, e.g. Decision Trees, while some others are more complex,

e.g. Deep Neural Networks. However, even if some algorithms have a predisposition to be

easily readable, they might become complex as well when they are fed with a large quantity

of data. Thus, a new field of research which consists in explaining (or interpreting)

complex models has emerged [6, 41, 78, 84, 86, 104, 117]. This bunch of algorithms aims

to help practitioners to debug their models, and non-practitioners to understand and

trust the decisions made by the models which are generally considered as black-box

functions.

With the development of ML Serving, we thought it would be great if customers could

get more insight on their models. To do so, we13 first analyzed the existing methods in

order to get an idea of their functionalities and their complexities (see 1-7).

It appeared that Partial Dependence Plot (PDP) [41] was the most interesting method

to integrate in a first place. This method has a low complexity and gives a global insights

on the model. We started to implement Interpretability Engine14, a library capable of using

PDP and other methods in the future with the models that are deployed on ML Serving.

Interpretability Engine works as follows. You first define the model to query (token

authentication and deployment url), select the method of interpretation, and specify the

13this work has been conjointly done with Etienne Levecque
14https://github.com/ovh/interpretability-engine
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Figure 1-7: A taxonomy on the intepretability methods.

feature(s) to interpret. Note that ML Serving only stores the model, not the data, that is

why we require a sample (it can be the training set, or test set) to query. Then, based on

the method, the model will be challenged and each of its response analyzed to draw a final

result (either in a pdf file, or directly on the screen).

We provide an example of CLI usage (Appendix B) and its partial result (PDP for one

feature: sepal width) on Figure 1-8 for the Iris dataset. The dataset is composed of three

flower species (Setosa, Vergicolor or Virginica) and four features (sepal length, sepal width,

petal length and petal width). As we can see on the figure, higher is the sepal width, the

higher is the probability of predicting a Setosa species. The lower is the sepal length, the

higher is the probability of predicting a Virginica species.

Thanks to the tool, we now understand how the model reads the features to take its

decisions, which becomes much less obscure for practitioners.

1.3.3 A scalable HPC (Slurm) setup on the Public Cloud

It is common for scientific researchers to need a laboratory to run their experiments.

In our case, the experiments of the thesis consist in running stochastic algorithms

(AutoML), which require multiple runs to get significative results. In other words, we

need multiple CPU to distribute the runs and get the results in a reasonable time.
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Figure 1-8: Interpretability Engine workflow with Iris dataset as an example and its related
PDP result (see B).

There are multiple infrastructures that are candidate to solve the above problem:

∙ ORKAD’s Slurm cluster, composed of 112 cores.

∙ Grid5000 [9], a Slurm cluster composed of 15 000 cores.

∙ And OVHCloud (Public Cloud, Baremetal), the number of cores depending on the

budget. No HPC solution.

Before choosing the infrastructure, we need to remind the characteristics of an AutoML.

It is known to be very costly. It requires a long run time as well as a lot of resources (CPU

and memory per job). To give an example, a run of an AutoML tool easily takes a dozen

minutes if not hours to see its performance converge on a single dataset (see experiments

of the thesis, e.g. 3.4.2). And it easily goes to multiple days with more complex datasets

(number of samples, number of features) or more complex search spaces (Machine Learning

algorithms that are costly to train).

On ORKAD’s Slurm cluster, we are multiple users, and the AutoML experiments would

easily monopolize the cluster. Moreover, AutoML solutions are written in different languages,

with different libraries, and require a lot of adaptation with the current setup of the cluster.

Also, the AutoML benchmarks take a lot of resources in terms of space (memory and hard
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drive). Lastly, and a major reason we wanted to avoid this cluster, is its instability. It

happened that the cluster went down due to moves or blackouts, which is very problematic

for AutoML experiments that typically need long runs, and the majority of the AutoML in

the literature are incapable of starting an optimization from where it stopped.

Concerning Grid5000, there is a policy that tends to limit the number of jobs, the re-

sources per user, and the time that a job can run (wall time)15, which makes the cluster not

praticable for AutoML experiments.

For these reasons, I decided to take benefit of my DevOps expertise along with the

products of OVHCloud to have an HPC platform without these limitations. The choice was

rapidly made: OVHCloud Public Cloud (internally abbreviated PCi) and Slurm. Hence the

project name Slurm-PCi.

OVHCloud Public Cloud is known for its nice features:

∙ Add and remove instances in seconds (no wait to add resources such as CPU, memory,

and hard drive storage).

∙ Choose the category of instances (memory usage, compute usage, in between) and its

region (Europe, USA, Asia, etc..).

∙ Secure the communications with VRack16 (plus the possibility to interconnect with

other internal products, e.g. OVHCloud Cloud Databases, a database that scales for

the needs of Slurm).

∙ The possibility to communicate with the API (permits to automatize the setup of the

instances with Terraform).

∙ Pay-as-you-go: control the expenses (no idle nodes).

Slurm is open source and aligned with the value of the company. It is also well known

to be robust, and runs on one of the biggest HPC clusters, the Tianhe-2 with 16 000 nodes

and 3.1 million cores.
15https://www.grid5000.fr/w/Grid5000:UsagePolicy
16similar to a VLan
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Figure 1-9: Architecture of a Slurm (HPC) on top of OVHCloud Public Cloud.

Slurm-PCi17 works as follows (see Figure 1-9): there is a bastion node that controls the

ingress traffic and serves to manage the Slurm cluster(s) thanks to Terraform and Ansible.

∙ Terraform interacts with the OVHCloud Public Cloud API to set up the

instances (Operating System, hardware requirements, VRack ID), and generates the

files later used by Ansible in order to know the different nodes.

∙ Ansible installs and configures Slurm on the nodes along with the different

libraries.

Due to the differences of requirements between the AutoML tools, I decided to have a

container capable solution18. Among Docker, Singularity, Podman and Enroot [3], I chose

the latter for its native support of Nvidia GPUs which might be a great advantage for future

experiments with Deep Learning models (e.g. AutoDL).

17will be published on https://github.com/ovh/
18https://slurm.schedmd.com/containers.html
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An example that adds a node is given in Figure B with its associated command in

Figure B. It shows how easy (almost no human intervention) it is to scale the HPC cluster.

As we can see, the combination of a Cloud structure with Slurm makes a great laboratory

for researchers. It permits to have a redundant, highly available, scalable, and

costly manageable HPC Cluster.

Note that some limitations exist and might make some researcher reluctant to use such a

solution. For example, there is no shared memory between nodes, which is sometimes used

by MPI19 practitioners. Indeed, it requires specific equipments and it is not needed by a

majority of cloud customers for now, which is why there is no such a feature yet in this

project.

A closing remark concerns Kubernetes. Along with the thesis, I tried20 the platform to

run some experiments, which is pretty nice to have features that Slurm does not have, e.g.

Web-UI that monitors all the resources, integration with other microservices. Nevertheless, it

was not practical to run thousands of jobs with different resource requirements. For example,

it was not possible to connect a CPU to a specific job all along its run, which started to bias

the experiments due unbalanced resources. To go further on this topic, the reader may refer

to [103].

19https://www.open-mpi.org/
20https://kutt.parmentier.io/wqZKhk
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Chapter 2

Automated Machine Learning

This chapter motivates the interest to study the field of the Automated Machine Learning

(AutoML). We first introduce the concepts of Machine Learning and highlight the problems

that are encountered by their practitioners. These problems are then summed up under

one unique combinatorial problem which leads to what we call the Combined Algorithm

Selection, Hyperparameter optimization And Preprocessing selection problem (abbreviated

CASHAP). We then enumerate the potential solvers for CASHAP along with the ones that

have been studied in the literature. Finally, we depict the state-of-the-art with their pros

and cons which shall help us to get a direction on the development of a new AutoML solution

called Mary-Morstan.

2.1 Background

In this section we first recall what Machine Learning (ML) is intended for and the way it is

usually handled by its users. Its usage reveals some tedious tasks that we formally define as

the CASHAP problem and that can be automated, hence the birth of the term: AutoML.
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2.1.1 Machine Learning

2.1.1.1 Concept

Machine Learning (ML) is a domain where mathematical functions are dynamically

built from data in order to find relationships.

The construction of these functions is usually separated in two phases as shown in

Figure 2-1: a first one called training which consists in fitting a model from the features, and

a second one called testing that compares predictions made by the trained model on data

not used for training, to the actual data (or values). Features1 are preprocessed2 data that

can be efficiently handled by ML algorithms.

Raw Input Data

1) Training Phase

ML Algorithm
extract features

Raw New Data

2) Prediction Phase

Trained Model
extract features

fit on features 

prediction(s)

Figure 2-1: Simplified Machine Learning workflow

We distinguish two different approaches to learn and predict :

∙ Supervised learning: involves part of data used as known predictions3.

Predictions can be contrasted in two classes:

– Classification: when the target variable (called the label) is categorical4

– Regression: when the target variable is numerical

1also known as attributes, or variables
2data which has been selected, cleaned and encoded
3also called target variable
4i.e. finite set of values
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∙ Unsupervised learning: when no variables are used as a target. This kind of algo-

rithm regroups the closest points together into clusters and predicts in which cluster

belongs a new observation5.

Note: There are other subfields of ML not represented here: reinforcement learning [113],

semi-supervised learning [25], and transfer learning [126]. Like supervised and unsupervised

learning, these subfields of Machine Learning rely on the data to shape the content of the

function (the model).

Machine learning algorithms present a considerable advantage because they do not

require to be explicitly programmed and are able to construct complex structures which

would normally take a lot of time by hand. To illustrate its advantage, we draw a Decision

Tree (DT) in Figure 2-2, a famous ML algorithm which can easily be compared to a set of

conditions programmable in most of the programming languages.

While a program needs to be updated by hand when the rules have changed, a ML algo-

rithm just need to be retrained on data. This is the case for the DT that will automatically

rebuild the whole structure of the conditions and gives a great gain of time, especially if the

function has hundreds if not thousands of variables.

However, this considerable advantage of ML algorithms needs some pre-requirements,

such as the amount of data [32, 48], the quality of the data [111, 119], and the right

setup of hyper-parameters in order to get accurate models.

Thanks to new methods of computation, larger storage (e.g. cloud for big data [36])

and different ways of collecting data (e.g. monitoring tools, sensors) we are capable of

constructing models that respect some of these requirements [79].

Nonetheless, the configuration of ML algorithms and the maintenance of the models

remain a current issue that we discuss in section 2.1.2, just after the summary of the best

known classification approaches in the two below subsections.

2.1.1.2 Classical Machine Learning Approaches for Classification

Here is a list of classical Machine Learning algorithms used for classification:

5also called an instance
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Age

< 18

No Income

>= 18

< 100 000 >= 100 000
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< 50 000 >= 50 000

Number of Children ...

>= 3< 3
...

No

Figure 2-2: Example of a Decision Tree that predicts if a bank can give a loan to buy a
house. Each box represents a variable, and each arrow a condition to respect. The leaves
represent the possible decisions returned. In that case, different financial parameters tend
to change along the years (e.g. inflation), which by consequence require the conditions to be
updated. E.g. if the market price of the houses increases, a loan for buying a house would
certainly require a higher income.

∙ Decision Tree consists in building a tree of rules where the decision (target value)

is given by the leave that returns a decision. Each rule is represented as a node with

two branches where each node serves as a variable and its branches as the conditions

(left branch if it is less or equal to a determined value, right branch if it is greater).

To name a few implementations: ID3, C4.5 [107], CART.

∙ Random Forest [50] builds a multitude of decision trees (ensemble). To get the final

decision, it applies a majority voting between the target values returns by each tree.

∙ k-Nearest Neighbors [39] looks for the k closest observations by computing a distance

between the variables of a test sample and the variables of the observations. The

test sample will be classified as the most present target values among the k closest

observations.

∙ Support Vector Machine (SVM) [18]: constructs a hyperplane according to a

defined kernel (e.g. linear, polynomial, sigmoid, gaussian radial) such that it maximizes

the separation of the targets. Each kernel completely changes the performance of the
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model, but also has an importance on the complexity of building it.

∙ Boosting [109] methods iteratively train weak classifiers which are then unified as a

final strong one (ensemble). A weak classifier can be viewed as a very simple rule that

splits the data on a unique variable.

To get an idea on how the models shape the separation of the data, we draw the Figure 2-

36.

For further references, the reader may refer to [16,123].

Input data

.95

Decision Tree

.93

Random Forest

.97

3-Nearest Neigh.

.88

SVM (linear)

.97

SVM (radial)

.93

Boosting (Ada.)

.78 .78 .93 .40 .88 .82

.95 .95 .93 .93 .95 .95

Figure 2-3: A comparison of classifiers trained on three different binary datasets. The
datasets have been generated such that the ideal frontier between the two target values
respectively looks like a moon, a circle, and a line.

2.1.1.3 Machine Learning Approaches for Time Series Classification

Here is a list of Machine Learning approaches oriented to solve time series classification

problems (see section 5.1):

∙ The interval-based [31] approach simply splits the different time series into random

intervals and extracts statistical features (e.g. mean, standard deviation) for each
6The example as been subsampled from from: https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
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interval. These statistical features are then used as tabular variables with a classical

ML algorithm.

∙ The distance-based [98] approach consists in computing distances between the series.

One of the most used algorithms is the k-NearestNeighbors (k-NN) with the Dynamic

Time Wrapping (DTW) distance. The method finds the centroid and computes the

DTW distance for each time series within a cluster. It is then possible to train a k-NN

algorithm with accurate results.

∙ The shapelet-based [125] approach finds the most representative sub-shape(s) to

discriminate the classes. These sub-shapes are called shapelets and serve to extract

the main features (e.g. distance to a shapelet) to train a classifier (e.g. decision tree).

∙ The dictionary-based [108] approach consists in building a dictionary of words. Each

word represents a shrunk part of the time series. Bag-of-SFA-Symbols (BOSS) is a

reduction-noise algorithm that explores this mechanism. BOSS splits the time series

into sliding windows. Those windows are represented by words which are sequences

of symbols extracted by the Symbolic Fourier Approximation. The repetitive and

consecutive words are discarded by the numerosity reduction. The remaining words

are used to construct a histogram of numbers of apparitions that characterizes the time

series. Then a prediction can be made by using a 1-NN, where a distance is measured

between the histograms.

∙ The kernel-based [30] approach uses kernels to detect different patterns in time series.

The author of ROCKET [30] uses a lot of random kernels with random length, weights,

bias, dilation, and padding to extract the features which are then used to train a linear

classifier.

2.1.2 Issues encountered by Machine Learning practitioners

In order to properly use the ML algorithms, the practitioners need to go through a series of

steps that we depict in the Figure 2-4.
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Figure 2-4: Practical Machine Learning workflow.

Among these steps, they first define the initial problem that will be solved (forecasting,

anomaly detection, etc...). This will determine the data to acquire and the algorithms

that are capable to tackle the initial problem. Then, the data are acquired from the

different sources (e.g. relational database, Hadoop file system, sensors). It is followed by

a preprocessing part which transforms the raw data into features (data that can be

efficiently used by ML algorithms). We divide the preprocessing phase in four parts:

Data
Preprocessing

Feature
Extraction

Feature
Encoding

Feature
Generation

Feature
Selection 

Figure 2-5: Regular Data Preprocessing Workflow in Machine Learning. Note that all these
steps can be combined in different orders through a pipeline.

∙ Feature extraction consists in retrieving the relevant data to the problem. This part

might also include some cleaning, e.g. remove absurd values given by a sensor (negative

values that should not appear).

∙ Feature encoding encodes the extracted features such that they are suitable for ML al-

gorithms. For example, it imputes the missing values [57] with the mean, or transforms

the categorical features as a one-hot numeric array [100].
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∙ Feature generation adds new features [97] by doing some computation such as aggre-

gating the features (e.g. multiply two features), or changing the scale of the data (e.g.

logarithm, exponential, polynomial, normalization, standardization). This step helps

the ML algorithms converge faster and could avoid overfitting.

∙ Feature selection is applied at the end, just before giving the final features for the

learning phase. It consists in keeping the most relevant features or removing some

unnecessary ones such that the loss of information is minimized. Indeed, the model

still needs to be accurate. This technique helps to reduce the training time, notably by

avoiding the curse of dimensionality [120]. It can also be used to ease the explanation

of the models by having fewer variables. Another way to reduce the number of features,

is to use techniques that build new, more informative features based on the existing

ones. The most famous techniques is the Principal Component Analysis (PCA) [94].

Once that practitioners have the features, they need to select the most adequate ML

algorithm that solves the initial problem and tune its hyper-parameters such that it

maximizes one (or more) performance indicators (e.g. precision, recall). After that, they

analyze the model for different reasons:

∙ model explanation: gives explanation/interpretation of the results given by the

model [84, 87, 104, 117]. It is useful to debug a model and understand the cause of

the results. It can also be used to gain trust from non-practitioners who see a model

and its results as a black-box function.

∙ performance: one usually checks the performance of the model by evaluating it on

a test set which has not been seen during the training phase. In other words, one

verifies that the decisions that are taken by the model match with the targets of the

unseen samples. This step might also monitor the performance along the time. Indeed,

depending on the problem, the data might change (new samples, or known samples

with different values in the variables) and might cause a degradation in the performance

of the model (bad predictions visible through the false positive rate or false negative

rate). The monitoring may serve later to make different actions.
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Finally, the model maintenance uses the monitored performance of the model to run

some actions, e.g. alert the users, train a new model, replace the degraded model by the

most suitable one (if a previous one exists), retrain the current one with new samples or

with other hyper-parameters.

As we can see, properly using ML algorithms requires to chain multiple steps. Among

these steps, some are relatively complex. It is the case with the selection of the ML algo-

rithm which by nature has an unpredictable outcome when not trained and might even act

unexpectedly once trained (e.g. Boosting methods are stochastic). This, plus the plethora

of hyper-parameter possible values, makes the overall task tedious. While it might seem

obvious to settle on small datasets (see Figure 2-3), it is not the case with larger (more than

hundred variables and thousands of samples) and scattered ones (see Figure B-4).

Thereby, new tools called AutoML (Automated Machine Learning) have emerged

[53, 116] in order to automatically solve the selection of the algorithm and the opti-

mization of the hyper-parameters. Note that very early contributions exist, but they

only tackle a unique step (either the selection of a model [19] or the optimization of hyper-

parameters [11]), while the concept of AutoML is to aggregate and automatizes multiple

steps like stated above.

The development of AutoML tools also leads to AutoML challenges that put them in

competition [46,47,73] in order to compare the performance of the solutions.

In the next subsection we formally define the AutoML problem that can also be called

the CASHAP problem.

2.1.3 Definition of Combined Algorithm Selection, Hyperparame-

ter optimization And Preprocessing selection (CASHAP)

The AutoML problem has been formally defined by Thornton for the first time as the CASH

problem in AutoWEKA [116]. CASH stands for Combined Selection and Hyperparameter

Optimization and has been stated as follows:

A⋆
𝜆⋆ ∈ arg min

A(i)∈𝒜,𝜆∈Λ(𝑖)

ℒ(A
(i)
𝜆 (𝒟𝑡),𝒟𝑣) (2.1)
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Where:

∙ 𝒜 is a set of 𝑛 ML algorithms

∙ Λ(1), ...,Λ(𝑛) are hyper-parameter spaces respective to each ML algorithm A(1), ...,A(𝑛)

∙ 𝒟 is a dataset split in two parts 𝒟𝑡 and 𝒟𝑣

∙ ℒ(A
(i)
𝜆 (𝒟𝑡),𝒟𝑣) is a loss function for A(i), using 𝜆 ∈ Λ(𝑖), trained on 𝒟𝑡 and evaluated

on 𝒟𝑣 for 𝑖 ∈ {1, ..., 𝑛}

However, this definition omits a major component, the preprocessing phase. Here we

introduce a new definition of the AutoML problem where the preprocessing part is included

in the definition. We formally define Combined Algorithm Selection, Hyperparameter

optimization And Preprocessing selection (CASHAP) [92] as the following problem:

(𝜌⋆,A⋆
𝜆⋆) ∈ arg min

𝜌∈Φ,A(i)∈𝒜,𝜆∈Λ(𝑖)

ℒ(A
(i)
𝜆 (𝜌(𝒟𝑡)), 𝜌(𝒟𝑣)) (2.2)

Where Φ is the space containing all different preprocessing methods, s.t. ∀𝜌1, 𝜌2 ∈ Φ, 𝜌1 ∘

𝜌2 ∈ Φ. All others symbols are previously defined in the CASH problem.

In other words, with CASHAP, a solution or a candidate is a ML pipeline represented

as a combination of preprocessing method(s) and a single ML algorithm with its associated

hyper-parameters.

2.1.4 Metaheuristics Optimization And Definition of Multi-objective

Problems

Before going through the state-of-the-art of the AutoML tools (CASHAP solvers), we first

give an overall view of the optimization solutions that have the potential to solve the AutoML

problem in Figure 2-6. Then, we define the multi-objective optimization problem, tackled

by our framework Mary-Morstan (Chapter 3) and some other tools (see 2.2).

AutoML is an optimization problem and can be theoretically solved by exact approaches,

i.e. returning the best solution. Nevertheless, the AutoML problem encompasses costly
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black-box function(s), and is a combinatorial problem (see 2.1.3) which makes the prob-

lem too computationally intensive to be solved in a reasonable time with these approaches.

Thereby, the AutoML tools are focused on heuristic approaches, by looking for good solu-

tions. To the best of our knowledge, all the solutions rely on metaheuristic [26] methods that

are capable to handle any problem, and are all global-based methods. Contrarily to local

methods that only focus on exploitation, i.e. they use unknown regions, the global search

methods will also use the unknown regions (called exploration) and will play with a trade-off

between the exploitation and the exploration.

Optimization

Exact  
approaches 

Heuristic 
approaches 

Branch &
Bound A* Dedicated

Heuristic  

Local search Global search

...

Metaheuristic

Iterated Local
Search 

Tabu Search

...
Bayesian

Optimization

Evolutionary
Computation

Monte-Carlo
Tree Search

Reinforcement
Learning

Swarm
Intelligence

...

Figure 2-6: Distinction of optimization methods in AutoML (2021). The presence of AutoML
tools is fill in blue.

The depiction in Figure 2-6 should help the reader to better situate the AutoML tools in

optimization, and might eventually help for the direction of future works, by notably looking

at non-exploited (e.g. Local Search) and promising methods.

In the state-of-the-art, some tools can handle multiple objectives like our proposed tool.

Multi-Objective is also an optimization Problem (MOP) with 𝑛 objectives, each of them as-

sociated to a function 𝑓𝑖 | 𝑖 ∈ [1..𝑛] to optimize (minimize or maximize), and mathematically

defined as follows:

(MOP) =

⎧⎨⎩ 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝐹 (𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), ..., 𝑓𝑛(𝑥))

𝑠.𝑡. 𝑥 ∈ 𝑋
(2.3)
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With 𝑋 the feasible set that represents the search space. We also denote 𝑍 the set of

solutions that represents the objective space:

𝑍 = {𝐹 (𝑥), 𝑥 ∈ 𝑋} (2.4)

To have a better representation of these spaces, the Figure 2-7 provides an intuitive

mapping of two objectives.

Figure 2-7: Bi-objective representation where 𝑓1, 𝑓2 are the objectives to minimize, and 𝑥1,
𝑥2 are two variables characterizing the solutions.

To compare feasible solutions in the search space, the notion of Pareto dominance needs

to be introduced.

Definition 1 (Dominance relation of Pareto) Let 𝑥, 𝑥′ ∈ 𝑋, a solution 𝑥 dominates 𝑥′ if

𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑥
′) ∀𝑖 ∈ {1, ..., 𝑛} ∧ ∃𝑖 ∈ {1, ..., 𝑛} : 𝑓𝑖(𝑥) < 𝑓𝑖(𝑥

′). This relation is denoted by

𝑥 ≺ 𝑥′.

Definition 2 (Pareto optimal) A solution 𝑥* ∈ 𝑋 is pareto optimal if @𝑥 ∈ 𝑋 : 𝑥 ≺ 𝑥*.

Definition 3 (Pareto optimal set) Set denoted 𝑃 = {𝑥* ∈ 𝑋} containing all pareto optimal

solutions.

Definition 4 (Pareto front) Set denoted 𝑃𝐹 = {𝐹 (𝑥)|𝑥 ∈ 𝑃}. containing all the images of

pareto optimal set through the function 𝐹 .
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The target of multi-objective optimization algorithms is to get the best Pareto optimal

set represented, with a well-converged and well-diversified Pareto front such as shown in

Figure B-7. The ideal point is at the origin, and the nadir point is at the opposite.

2.2 State-of-the-art

In this section we enumerate all the different AutoML solutions that tackle the CASH or the

CASHAP problem as defined in section 2.1.3.

As depicted in Figure 2-8, we can see the interest of tackling the problem.

2013 2015

Auto-WEKA
C. Thornton, F. Hutter, H. H. Hoos,

and K. Leyton-Brown

Hyperopt-
sklearn

B. Komer, J. Bergstra, and C.
Eliasmith

AutoCompete
A. Thakur and A. Krohn-

Grimberghe

Auto-sklearn
M. Feurer, A. Klein, K.

Eggensperger, J. Springenberg, M.
Blum, and F. Hutter

2017

TPOT
R. S. Olson, N. Bartley, R. J.
Urbanowicz, and J. H. Moore

ATM
T. Swearingen, W. Drevo, B.

Cyphers, A. Cuesta-Infante, A.
Ross, and K. Veeramachaneni

Recipe
A. G. C. de Sá, W. J. G. S. Pinto, L.
O. V. B. Oliveira, and G. L. Pappa

PoSH Auto-
sklearn

M. Feurer, K. Eggensperger et al.

AutoStacker
B. Chen, H. Wu, and W. Mo

LayeredTPOT
P. Gijsbers, J. Vanschoren et al.

2018

2014 2016

2019

MOSAIC
H. Rakotoarison et al.

BO EA

MCT
S

ML-Plan
Felix Mohr et al.

AutoxgboostMC
F. Pfisterer et al.

Auto-CVE
C. H. N. Larcher Jr. et al.

TPOT-SH
L. Parmentier et al.

2020

ADMM
P. Ram et al.

AutoGOAL
Suilan Estevez-Velarde et al.

AutoGuon-
Tabular

Nick Erickson et al.

Figure 2-8: AutoML implementations along the years.

To better distinguish the solutions, we regroup them by approach. An approach is char-

acterized by its main core algorithm (metaheuristic) used to optimize the combinatorial
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problem. We also order the approaches according to their first appearance in publications.

To the best of our knowledge, there are 4 main approaches that tackle the AutoML

problem:

∙ Non-adaptive

∙ Sequential Model-Based Algorithms (SMBO) [116]

∙ Evolutionary Algorithms (EAs) [91]

∙ Monte-Carlo Tree Search (MCTS) [83]

2.2.1 Non-adaptive

The non-adaptive methods are pure exploration methods that do not make any exploitation

and by consequence do not take the previous candidates found in consideration. The two

most famous methods are Grid Search and Random Search.

Gird Search consists in enumerating a grid of ML algorithms and hyper-parameters which

by association forms a candidate. Then each candidate is trained until the grid is consumed.

The method is greedy and can only be achieved on a small search space.

Random Search randomly trains candidates defined in a search space until a budget (e.g.

number of iterations, elapsed time, convergence) is reached. Compared to Grid Search, the

method demonstrates to be more promising [13]. As depicted in Figure 2-9, a Random

Search having the same budget (here the number of trials) as a Grid Search, shows that

Random Search spreads better in the search space of configurations. Therefore, it increases

the probability to have good configurations.

Both methods are relatively easy to implement and are currently present in two AutoML:

Hyperopt-sklearn [66] and AutoGoal [34].

More recently a new method called Hyperband [69] based on Random Search shows

that investigating the resources like data samples and features permits to speedup the opti-

mization. The idea has been explored in the SMBO approach [35,37] that we discuss in the

next subsection, and in the EAs [92].
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Figure 2-9: Grid Search (left) and Random Search (right) representations on two parameters
with their associated distribution performance.

2.2.2 Sequential Model-Based Optimization (SMBO)

The Sequential Model-Based Optimization (SMBO) [51] approach is a Bayesian Optimization

(BO) that leans on an acquisition function plus a surrogate model that represents

the posterior. The posterior consists in capturing beliefs from the previous evaluations of

the function. The acquisition function uses the posterior to estimate the next promising

candidates to consider. These candidates are then evaluated and their performance used to

update the posterior.

An example is given Figure 2-10. At 𝑡 = 3, we can see that the posterior returns a

large standard deviation between two points that are far from each other and an elevated

mean if the observations are higher than the others. On the other hand, if two points are

relatively close and low, the standard deviation will be tight and the mean inferior to the

rest. As a consequence, when the acquisition function reads the posterior, it will make

a distribution with high density on regions with high standard deviations, which can be

understood as unknown regions due to the lack of observations. This part helps to promote

the exploration. The acquisition function will act similarly on regions that have a high

average and few observations, but promotes exploitation of promising and known regions.

Exploitation is more visible at 𝑡 = 4, with the new observation from the previous step that

updates the posterior and by consequence the distribution from the acquisition which is in

favor of the surrounded region.
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Figure 2-10: Example of a SMBO with 3 (left) and 4 (right) observations. A Gaussian Process
is represented as a posterior and the Expected Improvement has been used as the acquisition
function. The blue line represents an estimated mean and the blue frame represents an
estimated standard deviation.

To give an idea on how the acquisition function balances between the exploration and the

exploitation, we provide one of the most famous equations, the Expected Improvement [61]

(EI) in 2.5.

𝐸[𝐼(𝑥)] = (𝑦⋆ − 𝑦(𝑥))

Penalized by area under the curve⏞  ⏟  
Φ0,1

(︂
𝑦⋆ − 𝑦(𝑥)

𝑠(𝑥)

)︂
⏟  ⏞  

Promote exploitation

+ 𝑠(𝑥) 𝜑0,1

(︂
𝑦⋆ − 𝑦(𝑥)

𝑠(𝑥)

)︂
⏟  ⏞  

Promote exploration

(2.5)

With 𝑦⋆ the current best solution known, 𝑦(𝑥) the kriging prediction (e.g. Gaussian

Process), 𝑠(𝑥) the standard deviation, Φ denotes the cumulative distribution function, and

𝜑 denotes the probability density function.

Different implementations of SMBO exist. Each of them differ in their representation of

the posterior and acquisition function. Moreover, they tend to add some extra procedures

to solve the different cons of Bayesian optimizations. Indeed, the Bayesian optimizations are

known to be costly when updating the posterior with many observations. This is notably

why the posterior has been implemented with surrogate models. Surrogate models tend to
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be less costly when updated and evaluated. The following SMBO methods are currently

used in the AutoML:

∙ Sequential Model-Based Optimization for General Algorithm Configuration

(SMAC) [52] used by Auto-sklearn [38] and Auto-Weka [116]. SMAC uses a

decision tree regression as a surrogate model, and an intensification mechanism that

ensures that the performance of the best candidate is competitive on a growing set of

instances against the other candidates.

∙ Tree-Parzen Estimator (TPE) [12] used by Auto-Weka [116]. The strength of

the method relies in its linear scalability in terms of number of configurations (number

of candidates and the number of hyper-parameters) which makes the optimization fast

and cheap. To do so, they use 𝑝(𝑥|𝑦) with two density distributions and the authors

demonstrate that Expected Improvement is equivalent to a ratio between the two

densities. The drawback of this technique is that configurations should be uncorrelated

to have it work as expected, which is not the case for certain hyper-parameters.

∙ Bayesian Optimization and HyperBand (BOHB) [35] used by PoSH Auto-

sklearn [37]. A TPE serves as a surrogate model. The novelty of this technique is to

handle even more configurations by adding the Hyperband [69]. Hyperband eliminates

candidates that perform poorly and gives more resources (dataset subsampling, feature

subsampling) to the promising ones at the same time.

∙ Bayesian Tuning and Bandits (BTB) [45] introduced by ATM [114]. The idea is

to distribute the costly part (cubic complexity in terms of observations) of the Gaussian

Processes (GPs). To tackle this issue, they introduce the notion of hyperpartition,

which delimits the specificity of each ML algorithm (e.g. of hyperpartition: Decision

Trees, Support Vector Machines (SVM) with polynomial kernels, SVM with sigmoid

kernels), and build a GPs model per hyperpartition. Then, they use a Multi-Armed

Bandit (MAB) algorithm (UCB), to know which hyperpartition should be selected

and by consequence which surrogate model should be used. In this manner, they limit

the complexity of GPs, except if the majority of candidates fall in the same surrogate

model, i.e. an hyperpartition dominates the optimization.
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2.2.3 Evolutionary Algorithms (EAs)

The Evolutionary Algorithms [33] have a pretty simple workflow that encompasses the main

following steps: Evaluation, Selection, and Reproduction within a loop. A global illus-

tration is given Figure 2-11 and a simple algorithm in Appendix 3. Like any other optimiza-

tion, it generally starts with an initialization phase which creates some individuals according

to a distribution. The individuals are then evaluated. In Machine Learning it generally con-

sists in running an evaluation strategy (e.g. holdout, K-fold). Some extra evaluations can

be made in order to measure an individual’s performance from other aspects [4,60,81]. The

evaluations are then used by the selection process in order to select the individuals that pass

to the next generation. Lastly, the eligible individuals go through the reproduction process.

This process includes variation operators that plays the role of exploration versus exploita-

tion by modifying individual attributes. The operators are commonly called mutations for

the ones that perform on one individual, and crossovers for those who perform on two or

more individuals. Once the reproduction process is done, it goes back to the evaluation

phase and continues until a termination criterion is met.

Initialization

Selection

Crossover

Mutation

Start

Evaluation

Termination ?

yes

no

Stop

parents

parents = childrens

construct
population of

childrens

Reproduction

Figure 2-11: Evolutionary Algorithm workflow.

Before listing the different AutoML based on EAs, we present a relation table (2.1)
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Table 2.1: Relation table between Optimization, Evolutionary Algorithms and AutoML

Optimization EA Metaphor Transcription AutoML
Optimization problem Environment AutoML

Solution Individual/Candidate ML Pipeline (tree)
Objective function Fitness ML metrics*

Element of the solution Locus/Attribute Node (ML algorithm, Preprocessing method, HPs)

Value of the element Allele Instance (ML algorithm or Preprocessing method) / HPs

* in majority but not only.

that helps to understand the different but same meaning terms used between Evolutionary

Algorithms, AutoML and Optimization. We also explain the Genetic Programming (GP)

principle, which according to the literature is the only one used with the EAs-based AutoML.

This is explained by their capacity to handle complex individuals where the attributes might

be mathematical functions and not only values.

In Genetic Programming, each solution or candidate is represented as a tree composed

of nodes and leaves (see B-8). Each internal node is called a primitive and each leaf a

terminal. A primitive can be seen as a function (also called an operator), and a terminal as

an argument or a constant. Primitives and terminals are defined depending on the problem

we solve.

Select
KBest

Standard
Scaler

Combine
features

SVM

primitives

k

terminals

max

features
max

depth

...

Figure 2-12: Representation of an AutoML candidate (Genetic Programming).

In the case of AutoML, the primitives are the ML algorithms or the preprocessing meth-

ods and terminals are the hyper-parameters (see 2-12). Note that the root node of the tree

is necessarily a ML algorithm used as a final estimator and other nodes act as operators
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taking data as input and returning the transformed data. Trees can be composed of differ-

ent branches where two branches are merged through a special primitive called "Combine

features" which has been introduced by TPOT [90]. It simply combines the output from two

previous nodes.

To the best of our knowledge, the AutoML based on EAs, and more specifically tackled

with Genetic Programming are the following:

∙ REsilient ClassifIcation Pipeline Evolution (RECIPE) [28], a Grammar-based

Genetic Programming (GGP). It is a GP with a grammar that constrains the

choice of attributes which constitutes the individual. In machine learning it can be

translated by having a logical ML pipeline additionally to their capacity to be trained.

Indeed, some models cannot be trained, e.g. logistic regression with non-numerical

values, while some others do not make sense, e.g. having consecutively the same algo-

rithm. Thus, the grammar helps to make valid pipelines and theoretically reduces the

original search space which improves the optimization.

∙ Autostacker [24]. The particularity of their solution is to stack the outputs given by

the non-final ML algorithms in the pipeline. Their inspiration comes from stacking

methods [122], which permits to extract new features thanks to the decision process

from other models.

∙ Tree-based Pipeline Optimization Tool (TPOT) [90] is built on top of DEAP

[40], a modular framework helping to build processes based on Evolutionary Algorithms

(EAs). The implementation used by TPOT is a GP with a (𝜇+𝜆)-ES strategy [14] that

we detail in our implementation (section 3.3.2). TPOT uses a clever technique (see

algorithm B) from the Python language (decorator) and the scikit-learn [95] library.

When a candidate is subject to a mutation, it is trained on a very small subsample

from the training set, which permits to train it really fast. If a Python exception is

raised during the training phase, i.e. the candidate cannot be trained, the mutation

is again called, and it continues recursively until a valid candidate is given. This

permits their optimization to be as efficient as the GGP present in RECIPE. Indeed,

through this technique, they reproduce a virtual "Grammar" that is induced from the
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rules that have been implemented in the different algorithms. While it is a benefit in

terms of performance for the optimization, it complicates the analysis of the process

to understand the roles of the operators. TPOT also introduces a concept of synthetic

features, which are added to the original dataset. This happens when a ML algorithm

is present in the in-between nodes. In that case, the predictions from these algorithms

are used as features. Thus, it includes a similar behavior to the stacking methods

present in Autostacker. Thanks to the two elaborated features above, TPOT performs

as well as the two previous AutoML combined.

2.2.4 Monte-Carlo Tree Search (MCTS)

Monte-Carlo Tree Search approaches (MCTS) [83] can be represented as a tree (Figure 2-13)

where each node represents a partial or a complete solution to the problem. The optimization

is composed of four main components: a Selection, an Expansion, a Simulation (or

Sampling), and a Backpropagation that are iteratively called and repeated according to

a termination criterion. The main idea is to find an interesting path in the tree that builds

good solutions to the problem. Firstly, the selection determines a path along the nodes

that will be manipulated by the expansion. The selection of an edge in the tree can be

viewed as a Multi-Armed Bandit problem. Secondly, the expansion adds a new node to the

selected path and also drives the content of the node. Thirdly, the simulation evaluates the

added node. Finally, the backpropagation propagates the reward (evaluation) given by the

simulation to the previous nodes. This reward will then be served during the selection of

the next iteration.

In AutoML, each node of the tree is a ML pipeline. To facilitate the explanation, the

Figure 2-14 is depicted from ML-Plan [83]. The idea behind the optimization is to find the

regions with partial pipelines giving good performances. Examples of uncompleted pipelines

are the ones with missing pre-processing methods. The selection/expansion mimics the

practitioner’s behavior which generally consists in iteratively adding new transformers to

the data and should improve the results made by the estimator. Such demeanor plays in

favor of exploitation. Other examples of uncompleted pipelines are the ones with specific

estimators but none or very few tried pre-processing methods. Going on such a node would

69



Figure 2-13: Representation of the four main phases in a Monte-Carlo Tree Search.

promote the exploration.

In the literature two solutions based on this approach exists: ML-Plan [83], and MO-

SAIC [101] widely inspired from the first.

Figure 2-14: Example of a Monte-Carlo Tree Search with ML-Plan. Inside each node there
are tasks, where a task is either a primitive or a complex. A primitive task is in green, and is
instantiated (algorithms selected or configured). An orange task is not complete and needs
to be refurnished (by adding a primitive or another complex task). A complete solution in
the leaf node is only composed of primitive tasks.
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2.3 Limitations of the existing solutions

This section distinguishes the above implementations by enumerating their pros (summarized

in Figure 2-15) and cons written below.

Concerning the non-adaptive methods [13], they are the simplest methods to imple-

ment, but their lack of exploitation make them unguided and limit the efficiency of the

optimization. While recent methods (Hyperband) [69] improve the optimization speed by

taking in consideration the specificity of the AutoML (costly due to the complexity of the

algorithms and induced by the dataset size), they remain erratic. In consequence, these

methods have been transposed on methods considering the past [35] and proved to work

even better.

The SMBO is the most studied approach in AutoML. Indeed, we can easily find a lot

of publications [37, 38, 99, 114, 116] that tackle the problem with distinct surrogate models

i.e. Decision Tree, TPE, multiple Gaussian Processes, and show good achievements in terms

of speed to handle many candidates despite the costly part induced by BO. SMBO also

encompasses a lot of additional features that improve the optimization performance (en-

sembles, meta-learning, end-to-end, multi-objective). Ensembles [22] permits to aggregate

the decisions made by multiple trained models. Meta-learning [20] aims to warm-start the

optimization by using the already good known configurations tried on similar instances. The

similitudes are found by computing the closest distances between statistical measures on the

datasets (e.g. number of instances, average value for features that have the same name).

End-to-end deals with the whole process of AutoML (e.g. the capability to connect on dif-

ferent databases and directly get the data on raw formats). This aspect does not improve

the performance of the models but makes the AutoML tools easier to use. Therefore, such

a feature has more interest in industries than for the progress in research. Multi-objective

consists in having models evaluated with a multitude of objectives instead of having just one

metric, it might be to minimize the pipeline size like it is done in TPOT or to maximize the

interpretability as done with AutoxgboostMC. Note that ADMM [72] differs a little bit, the

objectives are cumulated through a penalty process, which does not let the user select the

model and also change how the optimization is guided.
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While a lot of aspects have been studied in SMBO, its major limitation concerns its

capability to handle candidates that have variable sizes. Indeed, investigate the ML pipeline

components is an elementary function to properly solve the CASHAP problem (2.1.3). As

discussed in the section 2.1.2, CASHAP represents the closest issue encountered by ML prac-

titioners when compared to CASH that omits the preprocessing phase. Typically, the prac-

titioners improve their pipelines by adding and removing pre-processing methods. SMBO

is not the most adequate solution to handle such a feature during the optimization. As

a matter of fact, SMBO relies on a fixed number of variables (representing the posterior

space) to select the next promising candidates. Adding or removing the variables during the

optimization would make the space impracticable.

The EAs, are more recent but less studied compare to the SMBO. To the best of our

knowledge, end-to-end and meta-learning have never been studied for EAs. Only the stacking

[24] method, which acts closely to the ensembles have been studied. There is also a bi-

objective aspect in TPOT, but the second objective has been fixed by the AutoML itself,

in order to minimize the size of the pipeline. Thus, the user is limited to specify the first

objective only, making the solution equivalent to the others with a mono-objective. While

the SMBOs have been configured with different surrogate models and acquisition functions,

the EAs have not been tuned at all. There are always the same operators, selection method,

algorithm and parameter values. Consequently, the EAs have not been so much investigated

despite its great potential to be adaptable and their inherent capacity to handle flexible

pipelines [10, 33]. Indeed, the EAs are capable to change what constitutes a candidate,

which make them perfect applicants to solve the CASHAP problem.

MCTS is the most recent approach. Like the EAs, it is capable to solve flexible ML

pipelines [121], therefore, it is also adequate to solve the CASHAP problem. Like some SMBO

implementations, it has been investigated on various aspects: meta-learning, ensembles,

multi-objective. Nonetheless, like the EAs, the parameters related to the optimizer have

been quietly tuned. The selection which is one of the major components that performs

the trade-off between exploration and exploitation has been implemented with two different

methods only: a randomized depth-first search for ML-Plan [83] and the AlphaGo Zero

criteria for MOSAIC [101]. The same remark could be done on the other phases (expansion
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and back-propagation).

A last remark concerns the parallelism in the EAs, which compared to SMBO and MCTS

can be easily applied. By design, a given iteration with EAs includes multiple independent

candidates that can be trained at the same time, while SMBO and MCTS usually require

the result from the previously trained candidate to find and train the next one. However,

some methods [54,71,82] exist to overcome this limitation.

To summarize, the SMBO approach has already been well studied on the problem of the

AutoML, while the EAs and the MCTS approaches have been less considered.

In the next chapter, we introduce the development of a new AutoML which is notably

motivated by a majority of the above elements.
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Figure 2-15: Optimization approach(es) and main feature(s) implemented in the AutoML.
The unpresent solutions at the beginning of this manuscript works are written in grey.
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Chapter 3

Mary-Morstan: a Multi-Objective and

Modular AutoML Framework

In this chapter we present Mary-Morstan 1, a novel AutoML framework based on evolutionary

algorithms (EAs) which is modular and permits to entirely study what constitutes the EAs.

We first give our motivation to build such a solution, followed by a global overview of our

tool along with the processes of the new components. Then we perform two experiments, a

first one to ensure that our tool meets the state-of-the-art performance, and a second one to

see the impact of the new components on classification problems.

3.1 Introduction

In the previous chapter, we enumerated the state-of-the-art AutoML solutions. By looking

at them, we noticed that all the solutions based on evolutionary algorithms [24, 28, 90]

have been empirically configured and the authors barely have motivated their choice

for the settings. The operators (i.e. mutations and crossovers) are always the same, and

the few parameters used during their experiments are similar (e.g. number of individuals

per generation, the mutation rate, the crossover rate, the selection methods, the distribution

used to select the operators).

1it is a reference to the wife of Watson, the name used by the Artificial Intelligence software built by
IBM. The name Mary-Morstan is the continuity of my Master’s degree’s final project
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Since it is well known that tuning EAs on a given problem has an impact on the

performance [33], we decided to develop a new AutoML framework capable to be tuned in

order to observe if it is the case when applied on machine learning pipelines.

Our choice to focus on the EAs is not only due to the lack of configurations. We also

notice that the multi-objective aspect plays a significant role [60,99] for the success of the

future AutoMLs. Indeed, an ideal AutoML should return models that are interpretable,

unbiased, and robust. In other words, we should be capable to understand the decision

made by a model. The decision should not be unfair, e.g. discriminative. And the per-

formance should not decrease along the time. Other objectives could have an importance,

e.g. minimizing the prediction latency [72]. In order to have such an AutoML, the different

facets should be measurable and handled by the optimization. Recent studies proved that

there is a growing interest to quantify [17,64,84,87,130] the related aspects. By design the

EAs are capable of handling multiple measures (objectives) during the optimization,

which by consequence should participate in the successful development of the AutoML.

The multi-objective capacity is not the only benefit of EAs. EAs also have the capacity

of handling individuals that change (e.g. variable size) along the optimization. It is very

common for a ML pipeline to be expanded by adding or removing preprocessing methods in

order to transform the data which increases its accuracy. Not all the optimization approaches

are flexible, it is the case for the SMBOs that struggle to handle individuals that have changes

in their structure.

Lastly, another great advantage of EAs is their possibility to be easily parallelized on

multiple threads. It is not the case with the SMBOs and MCTS approaches which wait for

each evaluation to select the next candidate. Even if we did not study this part, we have to

mention it to highlight the future work that can be done with EAs that tackle the AutoML

problem.

To summarize, the lack of experiments to configure the EAs, and the enu-

merated pros above has reinforced our confidence to focus the development of

the AutoML using this approach.

In the following sections, we detail how our proposed solution operates and we present the

different available components. We designed the framework to be modular when it comes to
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integrating new elements such as operators (i.e. variations), algorithms, selection methods

and objectives.

3.1.1 Individual Representation
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Figure 3-1: Exemplar representation of an individual in Mary-Morstan, also called candidate
or ML Pipeline.

For a better comprehension along the different procedures presented later, we provide a

representation of an individual in Figure 3-1 that we also call a ML Pipeline or a candidate.

A ML Pipeline can be depicted as a tree with nodes where each node represents an attribute.

We distinguish three types of nodes.

∙ The estimator node, always at the root of the tree, used to take the final decision.

∙ The preprocessing nodes present in between the root node and the leaves, used to

preprocess the input data.

∙ The hyper-parameter nodes, present at the leaves of the tree and representing the

parameters of the different algorithms.
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Note that a specific method called Combine Features has been implemented. Similarly

to TPOT, the method allows to create complex trees by merging the output of two nodes.

3.2 General Overview

As shown in Figure 3-2, Mary-Morstan starts with a phase of initialization, which includes

three parts.

∙ The selection of a Machine Learning space, containing all the algorithms and their

associated parameters. This dictionary space is very common in other AutoML solu-

tions.

∙ The selection of an EA space, specifying and configuring all the different EAs compo-

nents. To the best of our knowledge, there is no such a feature in the current AutoML

solutions.

∙ The generation of initial ML pipelines.

Passed the initialization phase, the framework starts an EA loop process (see 2.2.3)

where the ML pipelines are subject to variations, evaluations and selection until a budget is

exhausted. The budget can be implemented in different manners. Usually it is represented

as a fixed number of iterations (generations). An alternative to the budget can be an amount

of time, or when there is no more progress (convergence).

In the Figure 3-2, we highlight in green the new components that we propose in compar-

ison to TPOT.
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Figure 3-2: Architecture of Mary-Morstan
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Table 3.1: Mary-Morstan parameters

Parameter Values

Population size 𝒫 [1..∞]
Generations 𝐺 [1..∞]
Initialization {random, LHS}
Initialization individual min/max size {min,max} ∈ IR|min ≤ max
Per-individual mutation rate [0,1]
Per-individual crossover rate [0,1]
Algorithm {simple, mu+lambda, mu,lambda, mu+lambda+kappa}
AlgorithmVariation {VarOr, VarAnd}
Mutation {insert, replace, delete,

uniformInteger, gaussian(𝜎 ∈ [0, 1]), oneRandom}
Crossover {onePoint, twoPoint, onePointAverage, onePointExactly}
Candidate evaluation {holdout, KFold, stratifiedKFold,

stratifiedshufflesplit timeSeriesKSplit}
Selection {random, KBest, best, NSGA-II, NSGA-III, SPEA2}
Maximum evaluation time per candidate [1..∞] (minutes)
Multi-objective selection methods.

3.3 Components

3.3.1 Generate the Initial Population
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Figure 3-3: Procedures to initialize the population at generation 0 with Mary-Morstan.

During the initialization phase, 𝒫 individuals are generated. Each individual is generated

with a random size (i.e. the number of nodes) picked between a minimum and a maximum.
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The root node is chosen among the estimator group (i.e. a set of algorithms defined in the

ML Search Space as estimators). The in between nodes are chosen from the preprocessing

group. An option can be specified to include the estimators in the preprocessing group.

In order to ensure a better diversity of candidates at generation zero, we propose an

alternative to a random initialization, the Latin Hypercube Sampling (LHS) strategy. As

shown in Figure 3-3, the method maximizes the number of algorithms used, and then uses a

pseudo-random generator to select the hyper-parameters per algorithm. The idea with LHS

is to generate 𝒫/𝑛 individuals per estimator (𝑛 represents the number of estimators in the

search space).

3.3.2 Algorithms

The algorithm defines the general behavior of the EAs (see 2.2.3). We implement the most

famous ones in order to give more choice to the practitioner. Here is a list of the four

algorithms present in Mary-Morstan:

∙ Simple (Alg. 3), which follows a traditional evolutionary algorithm workflow.

∙ (𝜇+𝜆)-ES (Alg. 1) which contrarily to the simple EA, generates 𝜆 offsprings and then

performs a selection of 𝜇 individuals among the offspring plus the parents.

∙ (𝜇, 𝜆)-ES (Alg. 4) is similar to (𝜇 + 𝜆) except that the selection is realized on the

offspring individuals only.

∙ (𝜇 + 𝜆 + 𝜅)-ES (Alg. 5) is similar to (𝜇 + 𝜆)-ES with 𝜅 individuals that are randomly

generated and not subject to any variations. The 𝜅 individuals are subject to the 𝜇

selection.

3.3.2.1 Procedures

Even if a procedure globally changes the behavior of the optimization, from an algorithmic

point of view, they slightly differ in the code. For this reason, we only detail the procedure

(𝜇 + 𝜆)-ES below and provide the remaining ones in the appendix (3).
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Algorithm 1 (𝜇 + 𝜆)-ES
Input: population size, 𝒫 ; wall time, 𝑇 ; offspring size, 𝜆; selection size, 𝜇; distribution

function, 𝑃 ; training set, 𝒟𝑡

Output: best candidate
1: 𝛼← generate(𝒫)
2: P𝑝 ← {(𝛼𝑘, evaluate(𝛼𝑘,𝒟𝑡)), 𝑘 = 1, ...,𝒫}
3: while elapsed_time < 𝑇 do
4: 𝛼← clone(P𝑝, 𝜆)
5: 𝛼← variation(𝛼, 𝑃 (elapsed_time))
6: P𝑜 ← {(𝛼𝑘, evaluate(𝛼𝑘,𝒟𝑡)), 𝑘 = 1, ..., 𝜆}
7: P𝑝 ← select (P𝑝 ∪P𝑜, 𝜇)
8: end while
9: return 𝛼⋆ ∈ opt.ℒ

In Algorithm 1, we denote 𝛼 the list of non-evaluated candidates, P𝑝 the parent popula-

tion, and P𝑜 the offspring population. The procedures are the following:

∙ generate(𝑝): generates a list of 𝑝 candidates.

∙ evaluate(𝑐, 𝑑): evaluates the candidate 𝑐 on dataset 𝑑.

∙ clone(𝑝, 𝜆): clones 𝜆 candidates by selecting them randomly in the population 𝑝.

∙ variation(𝑝, 𝑃 (elapsed_time)): applies on each individual of the population 𝑝 a vari-

ation operator, e.g. a mutation or a crossover, according to probability that follows

the distribution 𝑃 . The distribution 𝑃 can be changed along the time, thanks to the

elapsed_time that is passed as a parameter.

∙ select(𝑝, 𝜇): Select 𝜇 best candidates from the population 𝑝. In the (𝜇 + 𝜆)-ES, the

population 𝑝 is composed with the parent population P
(𝑖)
𝑝 and the offspring P

(𝑔)
𝑜 .

3.3.2.2 Algorithm Variation

Currently two kinds of mechanisms are implemented concerning the variations: VarAnd and

VarOr. For a given generation, VarAnd permits the algorithm to apply the mutations as

well as the crossovers on a candidate while VarOr only permits to apply to one of the two.

In the following subsections, we detail how the different variations modify the ML pipeline.
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3.3.3 Variations

In this section we enumerate all the variations and depict for each of them an example on

how it changes the pipeline. We first begin with the mutation procedures and finish with

the crossovers. A mutation consists in changing attributes on a selected individual, while a

crossover mixes attributes between two or more candidates.

3.3.3.1 Mutation Procedures

The MutationInsert procedure, Figure 3-4, randomly picks an algorithm from the ML

search space, and also randomly generates its associated hyper-parameters according to the

restrictions specified by the user. Then, a random node is selected and used to insert the new

generated node. The insertion only happens on nodes below the root node. This mutation

tends to increase the pipeline size along the generations.
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Figure 3-4: Example of individual subject to MutationInsert .

The MutationDelete procedure randomly picks a node in the tree, excluding the root

node and hyper-parameters, and removes it from the tree. In the example of the Figure 3-5,

the Combine Features node is removed, which enforces a chaining of nodes. This mutation

tends to reduce the pipeline size along the generations.

The MutationReplace procedure in Figure 3-6, randomly picks a node which is replaced

by a generated node. The type of the generated node is similar to the previous one. If it
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Figure 3-5: Example of individual subject to MutationDelete.

is a hyper-parameter, a new value is uniformly chosen from the search space. If it is a

component node, a new component is uniformly picked from the ML search space, and its

hyper-parameters are also randomly generated. Note that in this example the Combine

Features node is replaced, causing a chaining of the two previous nodes.
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Figure 3-6: Example of individual subject to MutationReplace.

The MutationOneRandom, Figure 3-7, randomly chooses one hyper-parameter node

and changes the value according to a uniform distribution within the range specified in the
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ML search space.
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Figure 3-7: Example of individual subject to MutationOneRandom.

The MutationUniformInteger, Figure 3-8, adds noise around the current values based

on a uniform distribution for the hyper-parameter nodes of real and integer types. The

uniform distribution is drawn according to the lowest value between the current value minus

the lower bound (defines in the search space) and the upper-bound minus the current value.

The MutationGaussian, Figure 3-9, adds noise according to a normal distribution for

all the hyper-parameter nodes with a real type. This mutation has three parameters, the

mean which is 0 by default, the variance undefined by default, and the sigma ratio defined

to 10%. When the variance is undefined, it will take the current value of the node multiplied

by the sigma ratio. The advantage of such a mutation lies in its aptitude to be instantiated

with different sigma ratios, which allows to play with the amplitude of the noise applied on

the parameters.

3.3.3.2 Crossover Procedures

The CrossoverOnePoint, Figure 3-10, switches the subtrees based on a common index

node in the tree. The index is randomly determined between zero (i.e. root node) and

the lowest pipeline size (i.e. the candidate having the lowest number of attributes). Root

nodes are excluded since exchanging them would not make any change. Please note that if
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Figure 3-8: Example of individual subject to MutationUniformInteger.
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Figure 3-9: Example of individual subject to MutationGaussian.
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two pipelines have the same size, and the latest nodes are exchanged, it is equivalent to a

CrossoverOnePointExactly on the latest index. There is an exception that if an individual

is only composed of one estimator, and the second one has an estimator and at least one

preprocessor, the subtree can be exchanged between the two individuals. This permits a

candidate to inherit the whole preprocessing phase from another candidate.
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Figure 3-10: Example of individuals subject to CrossoverOnePoint.

The CrossoverTwoPoint, Figure 3-11, exchanges two subtrees, distinguished by two

common index nodes in the tree. The index node is picked between zero and the lowest

pipeline size. This crossover changes the in between structure for the ML pipelines selected.

Note that both pipelines should have two preprocessing nodes at least. In the case that the

two pipelines have two preprocessing nodes exactly, it is equivalent to a CrossoverOnePoin-

tExactly.

The CrossoverOnePointExactly, Figure 3-12, aims to exactly change one node be-

tween two individuals. The nodes are chosen on an index number determined between zero

and the lowest pipeline size.

The CrossoverOnePointAverage, Figure 3-13, selects two similar hyper-parameter

nodes, and changes the value between one of them by the mean of the two.
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Figure 3-11: Example of individuals subject to CrossoverTwoPoint.

1st individual

2nd individual

Select
KBest

Standard
Scaler

Combine
features

Decision
Tree

k

...

Normalizer SVMNode change
individual side

Figure 3-12: Example of individuals subject to CrossoverOnePointExactly.
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3.3.3.3 Expected Impacts
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Figure 3-14: Taxonomy of reproduction procedures with Mary-Morstan v0.14+.

The choice of the different procedures have not been made randomly. They have been

designed in such a manner that they differently change the pipeline with the objective of

building heterogeneous populations. To the best of our knowledge, this degree of freedom to

configure the optimization of an evolutionary algorithm in AutoML has never been proposed.

It aims to improve the performance of the returned candidate by configuring the AutoML

to the needs of the problem, or to the specificity of the dataset. To better understand how

the procedures impact an individual, we propose a taxonomy in Figure 3-14.

3.3.4 Evaluation Strategies

Mary-Morstan includes the most common evaluation methods used in Machine Learning.

Among them, we find the Holdout validation, the K-Fold cross-validation, the Stratified

Shuffle Split validation, the Stratified K-Fold cross-validation, and the Time Series Split

validation.
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(a) Holdout validation.

(b) K-Fold cross-validation. (c) Stratified K-Fold cross-validation.

(d) Stratified Shuffle Split cross-validation. (e) Time Series Split validation.
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On the main lines, the holdout validation simply split the whole data set in two parts.

The first part, called training set, feeds the machine learning algorithm, and the second

part, called validation set, is used to evaluate the trained model. The problem with the

holdout validation is that some observations will be seen in the training set but unseen

during the evaluation. By consequence, a model can be discarded due to bad performance

while it was effectively a good candidate that can handle specific observations. To avoid

such a case, smarter methods like K-Fold cross-validation have emerged. The method splits

the dataset into K folds, where each fold splits the dataset in two parts (train set and

validation). Contrarily to the holdout, we now have multiple splits at different points. The

ML algorithm is individually trained on each fold (train set), and then evaluated on the

validation set related to the fold, which permits the algorithm to glimpse the whole dataset.

The final result is obtained by aggregating (e.g. average, median) the performance from

the validation folds. Other variants of the K-Fold exist (Stratified, Shuffle Split), and they

permit to better handle the different specificity of the datasets, for example when a dataset

has unbalanced classes. To better represent how the different evaluation strategies perform,

we provide the Figure 3-15a. For further details, the reader may refer to [65,124].

3.3.5 Selection methods

The following selection methods are present in Mary-Morstan:

∙ selectKRandom: randomly selects K individuals.

∙ selectKBest: selects K individuals according to the ascending order of the fitness

values.

∙ selectTournament [33]: picks the k best individuals from a portion of individuals

selected from the whole population and repeats this process until there are K selected

individuals.

∙ selectNSGA2 [29]: consists in selecting K individuals according to the non-dominated

Pareto fronts and to the crowding distance when it reaches the last front. The crowding

distance maximizes the diversity of the candidates, i.e. avoids to select candidates that
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have too close fitness values in a given front. The figure 3-16 gives an overall picture

of this process.

∙ selectNSGA3 [55]: improves the NSGA-2 selection by notably tackling the many

objectives problem. It works similarly to NSGA-II, but replaces the crowding distance

by a niching procedure that selects individuals not well represented in the selected

fronts based on reference points defined by the user.

∙ selectSPEA2 [129]: selects K individuals from a fitness assignment strategy which

incorporates density information.

The last three selection methods are capable and adapted to deal with multi-objective

problems (candidates with multiple fitness values), while the remaining ones are not. In

order to keep our framework agnostic, the selectKBest and selectTournament methods will

use the first value of the fitness if multiple values are present. This mechanism might be

useful for further experiments, e.g. comparing the performance of two different selection

methods (e.g. a mono-objective and a multi-objective) in a post-hoc analysis.

Figure 3-16: NSGA-2 selection. P represents the selected individuals from the non-dominated
fronts F plus the crowding distance in the last front.
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3.4 Experiments on Classification

In this section we detail the experiments that we run with Mary-Morstan. We perform

two main experiments. The first experiment compares our proposed solution Mary-

Morstan with TPOT [90], that is currently and to the best of our knowledge the most

efficient AutoML based on EAs. Such an experiment can be done by using the same config-

uration as TPOT, which permits to demonstrate that our framework is an AutoML capable

of having similar performance to the state-of-the-art. The second experiment consists in

looking for better EA configurations, which might help to accelerate the performance

of the optimization by investigate the exploration versus exploitation trade off.

3.4.1 Mary-Morstan Instantiated Like TPOT

To compare Mary-Morstan with TPOT, we similarly configure our solution to TPOT. We

use their variation procedures, the same evolutionary parameters (Tables A.4), and the same

ML search space (see Appendix A.2 and Appendix A.3).

3.4.1.1 Protocol

Each algorithm is stochastic and by consequence are run 30 times on a Slurm [127] cluster

for each dataset that are described in Table A.1. The datasets come from an article [43] that

describes how to benchmark an AutoML framework.

Similarly to the TPOT [90] experiment, 75% of the original dataset have been used for

the training data (with a 5-fold cross-validation) and the 25% remaining have been used to

test the best candidate found at the end of the optimization process. The balanced accuracy

metric has been chosen for the diversity of the datasets (presence of balanced, unbalanced,

binary, and multi-class datasets).

In order to ensure fair environments, we used enroot and pyxis [3], two related technologies

that permit to encapsulate each algorithm with the same libraries. Thus, we avoid the biases

induced by recent versions of the dependencies that generally include better optimizations.

Also, we limited each run to 3500 MB of memory, and one single CPU.
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Table 3.2: TPOT vs M-M (TPOT) average performance on the test scores over 30 runs.
According to the Mann-Whitney U Test with a 5% of significance, there is no statistical
difference between both algorithms.

Dataset TPOT M-M (TPOT)
sylvine 96.07 (± .66) 96.2 (± .59)
numerai28.6 52.08 (± .28) 52.02 (± .32)
blood-transfusion 66.59 (± 3.28) 66.76 (± 4.04)
credit-g 69.18 (± 4.6) 70.5 (± 2.7)
kc1 73.78 (± 2.88) 74.10 (± 2.66)
Australian 86 (± 2.27) 85.77 (± 2.33)
vehicle 88.85 (± 1.94) 88.93 (± 2.18)
phoneme 89.43 (± 1.07) 89.57 (± 1.03)
Shuttle 98.51 (± 1.83) 97.35 (± 3.42)
jasmine 49.73 (± 4.81) 48.37 (± 5.24)
Amazon_employee_access 77.72 (± 5.5) 78.81 (± .85)
bank-marketing 86.93 (± .3) 87.04 (± .53)
jungle_chess_2pcs_raw_endgame_complete 98.04 (± 1.09) 97.52 (± 1.5)
adult 83.16 (± 2.94) 83.73 (± 1.29)
connect-4 81.09 (± .85) 80.44 (± .87)
car 98.62 (± 4.65) 98.25 (± 6.78)
segment 96.61 (± .39) 96.02 (± 1.5)
kr-vs-kp 99.45 (± .26) 99.51 (± .27)
mfeat-factors 99.08 (± .09) 99.16 (± .12)

3.4.1.2 Results

We report the final performance on two different supports:

∙ Table 3.2 compares the final performance (obtained after 100 generations or after 5

days) on the test score between TPOT and M-M.

∙ Figure B-9 draws the average performance of the validation score for each algorithm.

Among the 39 datasets, both algorithms performed on 19 datasets only. The remaining

ones were too large to be trained with the computational environment that we have defined

(memory limit per run).

The final results that we obtained (Table 3.2), have shown that Mary-Morstan and TPOT

perform similarly on the different datasets. To prove this statement, we used the Mann Whit-

ney U Test with a significance of 5%. It shows that no algorithm statistically outperforms

the other on each dataset.
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The convergence results also show interesting results (Figure B-9). While both algorithms

seem to perform similarly for most of the datasets, there are some datasets where TPOT

converges faster than Mary-Morstan (blood-transfusion) and vice versa (phoneme). However,

regarding the statistical results on the test set, the hypothesis of a significant difference can

be discarded for the final results (end of optimization) which is also the part with the most

noticeable gap on the validation scores. In other words, for some datasets, the algorithms

slightly overfit on the train set, but not significantly enough to confirm that one is better

than another.

To conclude this experiment, we have shown that our proposed solution reaches the

state-of-the-art performance in the field of the AutoML based on Evolutionary Algorithms.

3.4.2 Tuning Mary-Morstan Evolutionary Space

By introducing new algorithms (3.3.2) and new variation procedures (3.3.3) we increase

the number of possibilities to configure Mary-Morstan. Indeed, by only considering the algo-

rithms and the procedures with static parameters (4 crossovers, 6 mutations, 4*2 algorithms

when multiplied with their variations), we have 218 ≈ 262 thousands possible combinations

of configurations. If we also take in consideration the parameters present in some variations,

.e.g, sigma_ratio, or the parameters of the mu+lambda algorithms, we can have an infinity

of possibilities. Knowing that for the smallest datasets, e.g. blood-transfusion (Fig. 3-17),

a single run of Mary-Morstan easily takes 2 hours, it would roughly take 15 years2 to try

the 218 configurations. In fact, it would be even more, because one run of Mary-Morstan is

stochastic, meaning that multiple runs are required. And even if this time could be reduced

by using parallel computing, it would not be enough.

Indeed, let’s assume we have a cluster with 3000 cores with each run performed on a single

core. Since a run is stochastic, we generally need at least 30 runs per configuration. With a

grid search, this would give 218 days3 to know which algorithm is the best for this dataset.

While it sounds more reasonable, we considered a reduced EA search space, on the smallest

dataset, with a lot of cores available. If only three instances of MutationGaussian are added

2(218 * 2)/(24 * 360) ≈ 60
3((218 * 2 * 30)/3000)/24 ≈ 218
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Figure 3-17: Convergence of Mary-Morstan with TPOT parameters for the dataset blood-
transfusion (left), and jasmine (right). The line represents the average performance over 30
runs on the validation set, and is framed by the standard deviation.

(with a different sigma_ratio for each), and ran on a medium dataset size (.e.g, jasmine

Fig. 3-17), it would take at least 10 hours to converge. This would throw our projection

to 24 years4 which, is not reasonable anymore, even with parallelism. Still, adding three

parameters on the EA search space is limited, and plenty of other datasets remain to be

benchmarked [8, 43] with even more samples and features.

Yet, there is no public research that studies the impact of the exploration versus exploita-

tion trade-off for the evolutionary algorithms in AutoML. This experiment aims to check if

there is any interest to tune the EAs of the AutoML for the classification problems.

3.4.2.1 Protocol

As previously introduced, finding the best EA search space is a combinatorial problem with

a costly black-box function that depends on the dataset. For this reason, we first use I-

Race [76], known as a metaheuristic optimization that looks for the best configuration of a

black-box function on a given set of instances. We then run Mary-Morstan with the best

configuration found by I-Race 30 times and use these results to compare with the "best

known" state-of-the-art configuration, i.e. the results from Mary-Morstan instantiated as

TPOT.

4((218+3 * 10 * 30)/3000)/(24 * 360) ≈ 24
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I-Race works as follows: it first samples new configurations according to a particular

distribution, then selects the best configurations from the newly sampled ones by means of

racing, and finally updates the sampling distribution in order to bias the sampling towards

the best configurations. These three steps are repeated until a termination criterion is met.

A global view of the architecture is provided in Figure 3-18. In our experiment, the

target runner is the framework Mary-Morstan, the parameter space is the EA search space

that we defined in Table 3.3, and the configuration scenario has been set with a budget

(termination criterion) of 5000 experiments. We also let I-Race know that our target runner

is stochastic, and by consequence should be run multiple times. Since it would be too

expensive to compute the test score for each generation, we staged the optimization to the

30th and the 60th generation. In other words, I-Race is run two times per dataset, one

run to find the best configuration at generation 30 and another for the best configuration at

generation 60. In this way, through the unseen sets we can verify the presence of a significant

progress along the optimization process.

To maximize our chances of having good results, we optimize the parameter space on each

instance and not on a set of instances. The instances used are picked up from the Table A.1,

and we exclude the expensive datasets that require too much computational resources. We

also run I-Race through the Slurm batch mode in order to accelerate the optimization. Like

the previous experiment, we used enroot and pyxis [3] and limit each run to 3500 MB of

memory, and one single CPU.

Along with all our experiments, 75% of the original dataset has been used for the training

data (with a 5-fold cross-validation strategy) and the 25% remaining have been used to test

the best candidate found at the end of the optimization process. Due to the diversity of the

datasets, the balanced accuracy metric was the most adapted metric to be used.

3.4.2.2 Results

We report the final performance on two different supports:

∙ Table 3.4 compares the final performance on the test set at the generation 30 and at

the generation 60 for each algorithm.
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Figure 3-18: Scheme of irace flow information.

Table 3.3: EA search space.

Parameter Values

algorithm ∈ {simple, mu+lambda, mu,lambda}
population ∈ [2..100]
lambda ∈ [10..100]
mu ∈ [10..100] : 𝑚𝑢 > 𝑙𝑎𝑚𝑏𝑑𝑎
mut_portion ∈ [0, 1]
cx_portion ∈ [0, 1]
sigma_ratio ∈ [0.1, .5]
CrossoverOnePoint ∈ {included, not_included}
CrossoverOnePointAverage ∈ {included, not_included}
CrossoverOnePointExactly ∈ {included, not_included}
CrossoverTwoPoint ∈ {included, not_included}
MutationDelete ∈ {included, not_included}
MutationGaussian ∈ {included, not_included}
n_ratio_gaussian ∈ [.1, .5] if MutationNGaussian = included
MutationInsert ∈ {included, not_included}
MutationNGaussian ∈ {included, not_included}
MutationNUniformInteger ∈ {included, not_included}
MutationOneRandom ∈ {included, not_included}
MutationReplace ∈ {included, not_included}
MutationUniformInteger ∈ {included, not_included}
n_ratio_uniform ∈ [.1, .5] if MutationNUniformInteger = included
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∙ Figure B-10 draws the average performance on the validation score for each algorithm.

Among the 19 datasets, both algorithms have results on 12 datasets. The remaining

one have unexpected errors with I-Race (batch of experiments with "infinite" score), and by

consequence are not completely optimized by I-Race. To avoid biased results, we exclude

them.

Table 3.4: Average of the test scores over 30 runs for M-M* (best configuration found by
I-Race) versus M-M (TPOT configuration) at generation 30 and 60. The bold type means a
statistical difference between M-M* and M-M (TPOT) for a given generation according to
the Mann-Whitney U Test with 5% of significance.

Dataset generation 30 generation 60

M-M* M-M (TPOT) M-M* M-M (TPOT)

blood-transfusion 66.64 (± 5.23) 66.73 (± 3.42) 66.71 (± 3.93) 66.79 (± 3.63)

credit-g 70.25 (± 2.8) 70.54 (± 2.98) 69.11 (± 2.42) 70.04 (± 2.92)

kc1 73.45 (± 3.32) 73.24 (± 3.02) 73.49 (± 2.83) 73.78 (± 2.86)

Australian 85.77 (± 2.59) 86 (± 2.37) 85.91 (± 2.44) 85.98 (± 2.29)

jasmine 48.3 (± 4.5) 48.45 (± 4.75) 49 (± 5.27) 49.41 (± 5.38)

Amazon_employee_acc. 77.84 (± 1.41) 78.09 (± 1.27) 75.74 (± 3.2) 78.69 (± .84)

bank-marketing 87.05 (± .44) 86.58 (± .79) 85.1 (± 6.91) 87.02 (± .50)

jungle_chess_2pcs 94.23 (± 2.18) 94.38 (± .84) 92.44 (± 1.31) 97.34 (± .34)

adult 82.54 (± 1.59) 82.79 (± 1.44) 83.76 (± 1.21) 83.50 (± 1.42)

car 99.28 (± .86) 98.80 (± 1.53) 99.24 (± .86) 99.11 (± 1.51)

sylvine 96.07 (± .56) 96.13 (± .63) 95.54 (± .51) 96.2 (± .59)

segment 96.51 (± .79) 94.02 (± .94) 96.57 (± .4) 93.93 (± .9)

We observe interesting but not promising results on the convergence curves (Fig. B-10).

We clearly see that the convergence varies from an instance to another. However the configu-

ration M-M(TPOT) seems to converge faster or equivalently to the configurations found by I-

Race for most of the datasets: credit-g, kc1, Australian, car, Sylvine, jasmine, jungle_chess,

segment. Only few datasets remain (blood-transfusion, Amazon_employee_access, bank-

marketing, adult) with M-M* that converges faster (at some steps). While these results

on validation sets highlight the difference between the solutions with a preference for M-
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M(TPOT) configuration, the results on test sets slightly change the scene.

On the test set (Table 3.4), I-Race was able to finding a configuration M-M* that out-

performs the M-M(TPOT) configuration on two datasets (bank-marketing and segment) at

the generation 30, and is statistically equivalent for the remaining datasets. However, at

generation 60, M-M* and M-M(TPOT) are equivalent for the dataset bank-marketing. In

fact, the M-M(TPOT) instance works even better at generation 60 as it is highlighted by

the statistical test which demonstrates a significant difference for three datasets (Amazon,

bank-marketing, jungle_chess), while M-M* only outperforms one dataset (segment).

In consequence, it seems that the convergence results were mostly overfitting on the

training set, which is confirmed by the statistical test performed on the test set at different

steps of the optimization process. Finding a better configuration that statistically brings

a faster convergence might be interesting but remains computationally expensive (it is a

third layer optimization) with a very small benefit (we have a small gain of performance for

two datasets during the early phase of optimization). Indeed, we had to use an optimizer

(I-Race) which is a costly process to optimize the EA space for only one specific dataset and

limits his purpose, i.e. find a configuration that works better for a set of instances.

To conclude this experiment, finding an EA configuration that statistically outperforms

all along the optimization process is not promising at first-sight. We explain these unexpected

and bad results by different reasons. First, I-Race has been mostly used, and designed for

non-expensive black-box functions, which is not the case for AutoML. Evaluating one solution

easily takes seconds if not minutes. This leads I-Race with too few results regarding the

number of candidates evaluated (number of experiments) and the search space it is looking

for. Second, our EA space is relatively vast and surely not optimized enough. Some operators

might act too similarly and should by consequence be removed to have a smaller EA space.

Finally, Machine Learning is already an optimization process, AutoML adds another level

of optimization, and on top of that we add I-Race, again another level of optimization. At

the end, there are three layers of optimizations, which becomes a little bit too tricky to solve

classification problems.

Even if the results were not promising for classification problems, it still might be inter-

esting to continue the investigations on other problems such as on Time Series Classification,
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or Multi-objective problems. Indeed, these other problems require a different approach of op-

timization, i.e. a different EA space, and by consequence the experiment remains challenging

and could lead to more promising results.

3.5 Conclusion

To conclude this chapter, we proposed a state-of-the-art AutoML solution capable of handling

classification problems and regression problems. We demonstrate that our performance

reaches the state-of-the-art with the latest AutoML Benchmark [43]. We also designed our

AutoML to be modular, in such a way that the exploration versus exploitation process can be

tuned through the specification of an Evolutionary Algorithm (EA) space. The introduction

of the EA space eases research to observe how the performance is impacted when the space

is tuned. Despite our unpromising results on classifications problems, we remain convinced

that tuning the EA space might impact positively the performance on others problems (e.g.

regression, time series classification, forecasting, anomaly detection, and so on). In fact,

in later research that we expose in Chapter 5, it demonstrated a real interest. Thanks to

the modular aspect of Mary-Morstan, we easily tuned the EA space to solve time series

classification problems. Such a benefit might also be useful with multi-objective problems

that usually search in a multitude of directions, which tends to slow down the optimization

when the objectives are in contradiction.

Through all our experiments, we noticed a major problem. The time to evaluate a

machine learning pipeline is relatively costly. It takes multiple seconds for small datasets,

and up to multiple hours for large ones. Thus, we decided to tackle this problem in the

next chapter by proposing a technique based on Successive Halving that we adapted to the

evolutionary algorithms in order to accelerate our AutoML process.
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Chapter 4

Mary-Morstan-SH: a Technique to

Tackle Large Datasets and Accelerate

the Optimization

In this chapter we propose a new technique that permits any AutoML solution based on

evolutionary algorithms to accelerate its optimization process. We first introduce our mo-

tivations, the principle of the technique, and how to integrate it with any evolutionary

algorithm. Then we elaborate the experimental setup, followed by the associated results.

This chapter has been the subject of a publication in the proceedings of the 31st Interna-

tional Conference on Tools with Artificial Intelligence (ICTAI) [92], and two patents1 with

OVHCloud.

4.1 Introduction

4.1.1 Motivation

Most of the AutoML are slow when they deal with large datasets. Indeed, the training set

size and the number of candidates to evaluate are substantial.
1US20200272909A1 / EP3702974A1
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This issue has been noticed during an AutoML challenge [46], particularly by the authors

of Auto-SKlearn who improved their solution by integrating a more adapted exploration

method called Successive-Halving (SH) [63], which reduces the complexity of the AutoML

trained on large datasets (PoSH [37]). Broadly speaking, SH consists in progressively ex-

hausting a defined budget that we detail in the next section (4.1.2).

During our experiments of Mary-Morstan on classification (3.4), we notice the same issue.

Running our AutoML on large datasets is costly. Thus, we think that integrating SH in our

process would help us solve the problem. However, SH has been adapted to run on SMBO

approaches, not on evolutionary algorithms which is the core method used by our tool. For

this reason, we propose to adapt the method such that Mary-Morstan and any other AutoML

based on EAs can use it.

The integration of such a method would also permit to reduce the costs in both compu-

tational power and memory.

In the following sections, we describe the concept of SH which inspires the solution that

we propose: Mary-Morstan-SH (MM-SH).

4.1.2 Successive-Halving principle

Sequential Halving [63] also called Successive Halving [56] (SH) is a technique introduced in

the Multi-Armed Bandits problem. The strategy consists in eliminating the worst half of

the arms as well as increasing the number of times that surviving arms are pulled during the

iterations of the process.

4.1.3 Include Successive-Halving in Evolutionary Algorithms

Our proposal is to adapt the two main components of SH in the evolutionary process. We

replace the number of arms by the population size (4.1) and the number of times that arms

are pulled by the sample size used by a candidate to be evaluated (4.2) that we call the

budget. The interest of such a method is to spend little time on as many candidates as

possible, pruning bad ones and then spend more time on promising ones.
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𝑝𝑖 = 𝒫/2𝑖 (4.1)

𝑏𝑖 = 𝑏× 2𝑖 (4.2)

We denote 𝑝𝑖 and 𝑏𝑖 the population size and the budget at 𝑖th generation. We initialize

𝒫 with the initial population size specified in the evolutionary algorithm and 𝑏 as a certain

percentage of the training set size.

In the classical use of the SH, the reduction of the number of arms and the increase of the

budget are applied at each step of the loop. However, applied on Evolutionary Algorithms

(EAs), population size quickly decrease to one individual only as well as the budget is

totally consumed (i.e. budget is equal to the dataset size). Also EAs need several successive

generations to find interesting regions of the search space. Therefore we adapt the original

formulas and end with the following equations (4.6) and (4.7) which respectively reduces the

population size and increases the budget at some step of the generations.

To find these equations we replace 𝑖 by 𝑖 × 𝑎, where 𝑎 is a coefficient that controls the

point when the population is divided by two. So for the population size 𝑝𝑖, we have:

𝑝𝑖 = 𝒫/2𝑖×𝑎 (4.3)

To find the coefficient, we need to be able to define the number of iterations needed such as

there are 𝑚 individuals left in the population:

𝒫/2𝑖 = 𝑚 =⇒ 𝑖 = log2(𝒫/𝑚) iterations (4.4)

Then we distribute the ratio on the 𝐺 generations, thus give:

𝑎 = log2(𝒫/𝑚)/𝐺 (4.5)

We use the floor to the whole equation to keep a natural number that represents the popu-

lation size. We also use the floor to the exponent to ensure that division of the population
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is performed by a factor 2. Finally, we insert "+1" to balance the equation such that the

number of iterations that happen before the divisions are equals. It yields to:

𝑝⋆𝑖 = ⌊𝒫/(2⌊𝑖×⌊(log2(𝒫/𝑚)+1)⌋/(𝐺+1)⌋)⌋ (4.6)

Where 𝑚 is the minimal number of individuals to keep in the parent population, 𝐺 and

𝒫 are respectively the number of generations and the initial population size specified in the

evolutionary algorithm.

Concerning 𝑏𝑖, we applied the same process to replace the exponent.

𝑏⋆𝑖 = 𝑏× 2⌊𝑖×⌊(log2(𝐵/𝑏)+1)⌋/(𝐺+1))⌋ (4.7)

Where 𝑏 is the initial budget and 𝐵 the maximum budget. Fig. 4-1 allows to have a

better representation of the new defined functions 𝑝⋆𝑖 and 𝑏⋆𝑖 .

Population	halved



�

�

Budget	doubled

�

�

Figure 4-1: Representation of 𝑝⋆𝑖 in blue dot line and 𝑏⋆𝑖 in green solid line. The horizontal
axe represents the generations. The vertical left axe and the vertical right axe respectively
represent the population size 𝑝⋆𝑖 and the budget 𝑏⋆𝑖 at 𝑖th generation.
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The implementation of our tool uses Mary-Morstan with the (𝜇+𝜆)-ES (see 1) in such a

way that at 𝑖th generation, values 𝜇 = 𝜆 = 𝑝⋆𝑖 and that first objective of the fitness function

𝐹 is evaluated on 𝑏⋆𝑖 samples.

Procedure of MM-SH is provided in Algorithm 2.

Algorithm 2 Mary-Morstan-SH
Input: population size, 𝒫 ; minimum of individuals, 𝑚; initial budget, 𝑏; maximum budget,

𝐵; number of generations, 𝐺; training set, 𝒟𝑡

Output: best candidate from the Pareto front
1: 𝑏0 ← 𝑏
2: 𝑝0 ← 𝒫
3: 𝛼(0) ← generate(𝒫)
4: 𝒟0 ← 𝐷′ : 𝐷′ ⊆ 𝒟𝑡, |𝐷′| = 𝑏0
5: P

(1)
𝑝 ← {(𝛼(0)

𝑘 , evaluate(𝛼
(0)
𝑘 ,𝒟0)), 𝑘 = 1, ...,𝒫}

6: for 𝑖 := 1 to 𝐺 do
7: 𝑏𝑖 ← 𝑏× 2⌊𝑏×⌊(log2(𝐵/𝑏)+1)⌋/(𝐺+1))⌋

8: 𝒟′′ ← 𝐷′ : 𝐷′ ⊆ 𝒟𝑡, |𝒟′ ∪ 𝒟𝑖−1| = 𝑏𝑖, 𝐷
′ ∩𝐷𝑘−1 = ∅

9: 𝒟𝑖 ← 𝒟𝑖−1 ∪𝐷′′

10: 𝛼(𝑖) ← clone(P(𝑖)
𝑝 , 𝑝𝑖−1)

11: 𝛼(𝑖) ← variation(𝛼(𝑖))
12: P

(𝑖)
𝑜 ← {(𝛼(𝑖)

𝑘 , evaluate(𝛼
(𝑖)
𝑘 ,𝒟𝑖)), 𝑘 = 1, ..., 𝑝𝑖−1}

13: 𝑝𝑖 ← ⌊𝒫/(2⌊𝑖×⌊(log2(𝒫/𝑚)+1)⌋/(𝐺+1)⌋)⌋
14: P

(𝑖+1)
𝑝 ← select (P(𝑖)

𝑝 ∪P
(𝑖)
𝑜 , 𝑝𝑖)

15: end for
16: return 𝛼⋆ ∈ opt.𝐹

We denote 𝛼(𝑖) the list of non-evaluated candidates, P(𝑖)
𝑝 the parent population, P(𝑖)

𝑜 the

offspring population and 𝒟𝑖 the 𝑖th subset of the training set 𝒟𝑡. The procedures are the

following (each one being instantiated according to the experiments presented in Section 4.3):

∙ generate(𝑝): generates a list of 𝑝 candidates. In our case each candidate is a tree

whose nodes are picked up from primitives and terminals from the leaves.

∙ evaluate(𝑐, 𝑑): evaluates the candidate 𝑐 on dataset 𝑑. In the experiments, a 5-fold

cross-validation is used on the dataset 𝑑. The objective value assigned to a candidate

is the performance computed on the validation set.

∙ clone(𝑝, 𝜆): clones 𝜆 candidates by selecting them randomly in the population 𝑝.
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∙ variation(𝑝): applies on each individual of the population 𝑝 a variation operator, i.e.

a mutation or a crossover, according to the rate in Tab. A.4.

∙ select(𝑝, 𝜇): Select 𝜇 candidates from the population 𝑝. TPOT used the efficient

selection from NSGA-II algorithm. In the (𝜇 + 𝜆)-ES, the population 𝑝 is composed

with the parent population P
(𝑖)
𝑝 and the offspring P

(𝑔)
𝑜

4.2 Experiments

In this section, we describe our experimental protocol that allow us to compare the opti-

mization performance of MM-SH versus TPOT.

4.2.1 Protocol

Evolutionary algorithms are stochastic and have to be run several times in order to measure

their performance. In our experiments, we run TPOT and MM-SH 30 times each. We

keep the original settings from the article of TPOT [90] as described in Tab. A.4. For

large datasets, we reduce the number of generations and for TPOT, add a supplementary

termination criterion based on time. Indeed, TPOT would use too much time to provide

results on large datasets. By observing early convergence around 25 generations during the

experiments on small datasets, we fix the number of generations to 25 for the large ones with

MM-SH. The termination criterion is fixed to the time needed by MM-SH to stop naturally

(i.e. after the 25 generations).

Contrarily to TPOT protocol [90] which presents the results from the performance of the

best candidate (candidate maximizing accuracy in the Pareto front at the 100th generation,

i.e. the last one), we measure the performance of each individual in the population at each

generation. This measure allows us to know how the optimization process converges.

To evaluate our experiments, we used a sample of 75% of the original dataset as training

data and test the candidates on the remaining 25%. The split is shuffled in a stratified way

with a different seed per run, and are identical for both algorithms with the aim to have

comparable results (same training and test set for each paired run).
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By design, at generation 𝑖, the number of samples seen by MM-SH depends on the budget

𝑏⋆𝑖 , which is a percentage of instances taken from the 75% of the training set. This budget

serve to perform a cross-validation on candidates. In the case of TPOT, the whole training

set serve along the generations to perform the cross-validation of the candidates. Hence MM-

SH is evaluated on fewer and different instances than TPOT. Thus it makes the results from

the cross-validation less accurate. To solve this problem, we use an identical test set (25%

remaining) between TPOT and MM-SH that fairly evaluate and compare both algorithms.

In order to compare the performance of TPOT and MM-SH, we compute the average

elapsed time between generations, and for all generations, the average performance of the

ML pipelines.

Table 4.1: Own settings of MM-SH

Parameter Value

Initial budget 𝑏 30% of samples from training set

Maximal budget 𝐵 100% of samples from training set

Minimum individuals 𝑚 10

MM-SH has its own parameters that are fixed as described in Tab. 4.1. We naturally set

the maximum budget to 100% in order to make available the whole training set in the latest

iterations of the optimization process.

4.2.2 Dataset Corpus

Both TPOT and MM-SH are run on 8 datasets (see Tab. 4.2). The small datasets have

been picked up from the experiment in the article of TPOT [90] in an attempt to validate

our experimental setup. We additionally provide 4 large datasets (composed of hundred

thousand instances) from an AutoML benchmark [43].

4.2.3 Computational environment

We conduct the experiments on OVH Public Cloud with different clusters depending on our

requirements. For small datasets, we use two C2-120 virtual machines (VM) composed of 32
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Table 4.2: Classification datasets

Dataset # Inst. # Attr. # Class. Majority class
wine-quality-red 1599 12 10 43%
car-evaluation 1728 6 4 70%

spambase 4601 57 2 60%
wine-quality-white 4898 12 10 45%

miniboone 130064 51 2 72%
kddcup99 494020 41 23 57%
airlines 539383 8 2 55%

covertype 581012 54 7 49%
# denote the cardinality.

cores of 3.1Ghz and 120GB RAM each. The first VM is used to run TPOT and the second

one for MM-SH. This way we ensure fair computation environments for both algorithms.

The large datasets require more memory, thus we use multiple R2-240 VMs with 240GB

RAM and 16 cores of 2.3Ghz. For example, each run of TPOT for the airlines dataset took

up to 20GB of memory. With only 12 runs, the machine was out of memory. In order to

prevent this problem, we set up multiple VMs and fairly balance runs on clusters by keeping

fair computation environments for each algorithm.

4.3 Results

In this section we describe the results of our experiments. Firstly, we compare the perfor-

mance of MM-SH and TPOT on small datasets, and then on the large datasets.

4.3.1 Small Datasets Results

Fig. 4-2 presents the results on the small datasets. MM-SH does not perform well on these

small datasets. Indeed, the performance of MM-SH is always below TPOT over the 100

generations.

The results are explained by the small number of instances in each dataset at the begin-

ning of the run of MM-SH that leads to overfitting. However, as mentioned in our motivation,

MM-SH has not been designed for small datasets, but to validate our experimental setup.
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Figure 4-2: Results for small datasets. Panes on left side are performance from cross-
validation on training set, panes on right side are performance from test set. Each horizontal
axe represents the elapsed time in seconds and each vertical axe represents the accuracy.
TPOT is represented as a red dot line and MM-SH as a blue solid line. Each black point
represent when a generation is completed, i.e. all individuals of the population are evaluated.
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Table 4.3: Accuracy on test set at different time where T1 and T2 respectively represent the
time that MM-SH and TPOT obtained the first generation and T3 is the time that MM-SH
obtained the latest generation.

Dataset T1 T2 T3
TPOT MM-SH TPOT MM-SH TPOT MM-SH

wine-quality-red 72 seconds 180 seconds 2.22 hours
N.A. 56.6% 61% 58.26% 68.47% 62.1%

car-evaluation 72 seconds 212 seconds 1.73 hours
N.A. 82.79% 87.45% 85.92% 97% 95.15%

spambase 360 seconds 810 seconds 7.54 hours
N.A. 90.74% 92.39% 92.1% 95.4% 94.6%

wine-quality-white 165 seconds 432 seconds 5.22 hours
N.A. 52.75% 57.9% 55.12% 68.2% 63.2%

miniboone 2.61 hours 6.17 hours 46 hours
N.A. 89.4% 83.5% 91.8% 93.3% 94%

kddcup99 6.57 hours 18.6 hours 72 hours
N.A. 98% 96.2% 99.9% 99.9% 99.9%

airlines 2.32 hours 8.8 hours 53.5 hours
N.A. 63.8% 61.4% 65.6% 66.2% 66.6%

covertype 7.5 hours 12.15 hours 101.5 hours
N.A. 71.2% 61.8% 75.2% 79.45% 96.2%

N.A. for Not Available.
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We can notice that the MM-SH’s convergence line is irregular with some bumps. It

is explained by the population size which is divided at some generations. It implies that

the performance of the population is not homogeneous. Indeed, when the population size

decreases between two successive generations, the average is computed on less and better

candidates.

As expected, we observe that MM-SH obtained the first generation before TPOT, since

the size of the training set, controlled by SH, is very small. This benefit is insignificant for

small datasets but become more significant for large datasets.

4.3.2 Large Datasets Results

Fig. 4-3 presents the computed results for large datasets. We clearly observe that MM-SH

performs better than TPOT on the training set as well as on the test set. MM-SH finds in

average better candidates and faster. In order to have a better comprehension, we detail

the results for miniboone dataset and provide an overview of the results for all datasets in

Tab. 4.3.

At the first generation of miniboone dataset, MM-SH obtains an accuracy of 89.6% on

training set and 89.4% on test set in 2.61 hours. TPOT obtains the first generation in 6.17

hours with an accuracy of 78.3% on training set and 83.2% on test set. Thus, we divide

the time of getting first generation by two, and at the same time the accuracy is increased

by 6% on test set. It would take a total of 14 hours from the initial run, i.e. five times

longer to TPOT to reach a similar level of performance as the one MM-SH reaches. After a

few generations, the population quickly converges and we clearly observe that TPOT stays

below MM-SH. After 46 hours of run, TPOT converges to a performance of 93.3% that is

already achieved by MM-SH 29 hours earlier.

At first reading, these results can confuse machine learning practitioners, indeed, TPOT

has more knowledge, i.e. 75% of training set, compared to MM-SH during the first gen-

erations (e.g. 30% from the 75% of the training set). Hence TPOT should give better

performance, however, TPOT has a timeout of 5 minutes by default to evaluate a candidate.

If the time is passed, the candidate is discarded. This explains why good candidates that

take too much time to be evaluated are not included in the computation. To verify this
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Figure 4-3: Results for large datasets. Panes on left side are performance from cross-
validation on training set, panes on right side are performance from test set. Each horizontal
axe represents the elapsed time in hours and each vertical axe represents the accuracy. TPOT
is represented as a red dot line and MM-SH as a blue solid line. Each black point represent
when a generation is completed, i.e. all individuals of the population are evaluated.
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hypothesis, we draw the ratio of non-evaluated candidates per generation in Fig. 4-4. We

can observe that timeout is reached for almost half of the candidates at the first generation

in TPOT (see for example covertype and kddcup99 datasets, the largest datasets in terms of

instances × features), but then decrease to zero after two or three generations. Even if it is

less significant, this phenomenon also happens with MM-SH. We did not include results after

generation four because it is just a flat line with no candidates having a timeout. Concern-

ing small datasets they never reached the timeout regardless of the generation. One manner

to solve this issue is to increase the timeout, that would certainly be a benefit for TPOT

on early generations as well as for MM-SH. Nonetheless it would also be a disadvantage in

term of time to get the first generation. Hence, increasing the timeout does not solve the

problem of accelerating the optimization process. Moreover, the number of non evaluated

candidates is not significant for airlines dataset which has good and similar performance to

other large datasets. By this fact, we can be quite confident that timeout procedure does not

bias our results. In consequence, having a smaller subset of the training set that represents

the dataset well enough to train ML algorithm leads to faster and better performance.

Note that dataset airlines has an irregularity. This abrupt change is not visible in other

large datasets because the performance of the candidates is homogeneous. When the per-

formance of the candidates is not homogeneous, our selection process that decreases the

population size impacts the average performance. Indeed, we start with a population of 100

candidates which falls to 25 individuals at generation 13. This is significant when there is

variance in the performance of the population.

Another remark concerns the performance of training set versus test set. They often do

not have a lot of differences regardless of the generation and the dataset. This is explained by

the stratified cross-validation scheme that keeps a training set representative to the test set.

In this way, based on our results, we could think that comparing performance on training

set or test set is the same. However we insist that keeping the test set as a measure is a good

thing to ensure reliable and comparable results when the sample size varying as we propose

through the budget process.

As we can see, our algorithm is far ahead from TPOT on large datasets. The first

generation is always obtained much faster. This can be significantly important for application
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requiring results in a limited amount of time. Moreover, we obtain better results. The

strength of our solution mainly resides on the budget, which on large datasets take a subset

part that represents the dataset well enough to train good ML pipelines.

0 20 40 60 80 100

0

2000

4000

6000

8000

10000

wine-quality-white

0 5 10 15 20 25

0

500

1000

1500

2000

2500

airlines

Generation

A
cc

u
m

u
la

te
d

n
u

m
b

er
o
f

in
d

iv
id

u
a
ls

ev
a
lu

a
te

d

Figure 4-5: Total of accumulated evaluations per generation. TPOT is represented as a red
dot line and MM-SH as a blue solid line.

4.3.3 Discussion

Here we discuss about our results and provide some hint for future works on a short term in

an attempt to improve MM-SH.

First of all, we expected better results for small datasets size. One way to improve the

current results is to se tup a higher initial budget in such a way that subset will be represen-
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tative enough for the problem. However, when a dataset is very small, it is complicated to

find such a subset. It would be interesting to study some statistical methods to know what

percentage of the training set size would represent the dataset well enough. This percentage

would serve as an initial budget in equation (4.7). Another solution to consider is to change

the principle of doubling the budget by multiplying it with another factor than two in equa-

tion (4.2) and this could also be done for the population size in equation (4.1). Changing

the factor would not only be an improvement for the performance on small datasets but also

for the performance on larger ones. Studying different factors is another lead to follow. We

did not explore this aspect because we initially planned to respect the concept of successive

halving.

In complement to the results on the optimization convergence, we extracted the total

number of evaluated candidates per generation for two datasets in Fig. 4-5, a small one

and a large one. In total, TPOT evaluates 10100 candidates, i.e. 100 pipelines times 100

generations plus 100 candidates from generation 0 for the small dataset, and 2600 for the

large one. In the case of MM-SH, it evaluates 4763 candidates for the small dataset and 1235

candidates for the large dataset. MM-SH evaluates approximately two times less candidates

compared to TPOT. This behavior depends on the parameter 𝑚, representing the minimum

number of individuals in equation (4.6). These curves are interesting because it shows that

MM-SH evaluates the same number of candidates than TPOT during the first generations

and obtains faster as well as better results. In consequence, we deduce that budget in

equation (4.7) is the main component influencing the performance at the beginning. Also,

these curves express how MM-SH does not explore the search space as much as TPOT.

Meaning that MM-SH has the potential to improve the performance by starting with more

candidates at the initialization of the population size in such a way that the total number

of evaluations is fairly equal to TPOT evaluations. This gain of candidates should give

more diversities and more choices during the successive selections and thus a better overall

optimization performance. As a side effect, starting with more candidates would increase

the time needed to obtain results due to the evaluation of more candidates. However this

would only happen at the beginning of the optimization process because the population size

decrease later. Moreover this side effect can be reduced by having a low initial budget. Since
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the focus of our work was the speed of the optimization process, we did not investigate

on higher population size. Studying different population sizes with different budgets at

initialization of MM-SH would be one more leading point for enhancements.

Another perspective of amelioration indirectly related with our solution but where we

questioned ourselves during the experiments is how to specify the number of generations.

We followed the parameters from the article of TPOT [90]. However there are no explana-

tions why they are using 100 generations. This issue could be simply solved by comparing

the performance from a generation to another and automatically considered when the opti-

mization process has converged to decide when to stop. Similarly, there are no explanations

why they are using 100 individuals per generation. These parameters have been chosen arbi-

trarily. It would be interesting to study different population size to see how the optimization

process performs. Hopefully, as seen on results from small datasets, 100 generations and

100 individuals are enough to converge, but it will not necessarily be the case for all dataset

types, e.g. very large ones. Please note that studying the initial population size from TPOT

is different than it is in MM-SH. Indeed, while TPOT keeps it constant, MM-SH varies the

population size along the generations.

Lastly, an interesting aspect we did not explore is to experiment our solution on bigger

datasets with more than millions of samples. We are pretty confident that our method

would perform pretty well on such dataset size thanks to the notion of maximum budget in

equation (4.7). Indeed, this aspect avoid the optimization process to take too much time.

TPOT maximum evaluation time would not be equivalent to this aspect, because when this

timeout is reached, the candidate is simply discarded, that is not the case with maximum

budget. So the maximum budget not only reduces the optimization time but also permits

complex candidates to be evaluated and kept along the runs.

To summarize, MM-SH could be enhanced by trying different factors in equations (4.2)

and (4.1). By exploring different population sizes, initial budgets and maximum budget, it

should give even better results and handle larger datasets in a reasonable time.
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4.4 Conclusion and future works

To conclude this chapter, we proposed a solution permitting evolutionary algorithms to solve

the AutoML problem faster on large datasets with better results. The implementation of the

solution is pretty simple and does not increase the complexity of the evolutionary algorithms.

Also, we did not insist on this point but we notice that our solution requires two times less

memory space at least, along the whole optimization process. This can be a considerable

gain for infrastructures with hardware constraints.

This improvement could serve to accelerate the optimization in other problems, e.g.

regression, time series classification. It also gives the advantage to train more candidates,

and by consequence increase the diversity of candidates, which can be beneficial for multi-

objective AutoML solutions [99].
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Chapter 5

AutoTSC: an Instance of Mary-Morstan

Dedicated to the Time Series

Classification Problem

In this chapter, we first motivate our choice to develop an AutoML solution called AutoTSC

that automatically solves the Time Series Classification (TSC) problem. Then we detail the

experimental setup we used, is followed by the results demonstrating the advantage of our

solution. Finally, we give some perspectives for futur research.

This chapter has been the subject of a publication in the proceedings of the 33rd Inter-

national Conference on Tools with Artificial Intelligence (ICTAI) [93].

5.1 Introduction

In the previous chapter, we approached machine learning algorithms on datasets without

temporal information. However, in some use cases, the data are subject to changes that

depend on preceding data, or on time. Most of the classical ML algorithms (Table. A.2)

assume that the features are independent, and do not consider the temporal dependence. In

consequence, those algorithms will not perform efficiently on such data.
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5.1.1 Illustration

Figure 5-1: Different Cardiac Rhythm Diagnoses.

To better understand the importance of these notions (dependence on time or on pre-

ceding data), we illustrate the problem through a basic use case in the field of Healthcare.

Let’s imagine we build a model that finds abnormal heartbeats [62] thanks to the annotated

data measured by an Electrocardiogram (ECG) (Fig. 5-1).

To distinguish the different anomalies, we use an interpretable model, a Decision Tree

(Fig. 5-2). First, we need to define the features. Apparently, taking the Beats Per Minute

(BPM) would be enough to discriminate some of them, e.g. the Normal Sinus Rhythm,

the Bradycardia, and the Tachycardia. However, if we include the Arrhythmia, the BPM

varies, and our model would produce false positives which can be dramatic for the health

of the patient. Taking the length between the different segments, e.g. between the waves

and the QRS complex (see Fig. B-11 for the references) would result in the same issues.

Indeed, the length varies as well as the BPM from a step to another. In fact, at some step
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Figure 5-2: Biased Decision Tree model to distinguish the heartbeat anomalies.

we recognize the Bradycardia pattern, while at some others we observe the Tachycardia or

even the Normal Sinus Rhythm.

To better discriminate the heartbeat anomalies, we need to extract the information dif-

ferently, by including the change from a step to another, which makes the features more

dependent. In this way, saying that the BPM hange from 60 to 100, and then from 100 to

60 and so on along the time, would certainly better recognize the Arrhythmia. A similar

reasoning can be made on the Atrial Fibrillation and Ventricular Fibrillation anomalies.

This very simple illustration highlights the importance of taking the time steps in con-

sideration during the learning process of a ML algorithm, or the model will give incorrect

results.

5.1.2 Use Cases Plurality

We can cite a lot of other use cases that rely on the temporal order of the data.
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Figure 5-3: Extraction of the time series from a picture representing the letter A in sign
language. Step 1 consists in delimiting the edge of the hand. Step 2 defines a base (usually
the center of the edge). Step 3 measures the length between the base and each point of the
of the edge and report them in a time series.

In Computer Vision, to recognize the sign language [106] and for example help people

to better understand those with disabilities. An overview of the process to extract the time

series from an image representing the ’A’ letter in sign language is given Figure. 5-3.

It has been used for a while now in our most advanced smartphone for speech recogni-

tion [42] by making the actions from our voice, e.g. playing a specific song, doing a research

on internet, or purchasing online products. It is also used to monitor our activities [21] by

guessing the way we walk or sit.

In Geology [7] to classify hearth quakes in order to improve the long-term health moni-

toring systems used by civil engineer when they build vital engineering structures (bridges,

towers, offshore platforms). This example can be spread to any data that rely on natural

phenomena (e.g. windstorms, volcanic eruptions, flooding).

All these scenarios emphase the diversity of the data that rely on successive events.

For these reasons, new ML algorithms that are more suited for these problematics have

blossomed, and they try to minimize the loss of information in the time steps.

5.1.3 Emergence of the Solutions and the Underlying Problem

Among the libraries capable of tackling the time series classification problem, we can cite

sktime [75], and tslearn [115] making the use of machine learning algorithms dedicated for

TSC more accessible. Since our work were focused on classical machine learning algorithms,
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we did not study the solutions based on Deep Learning methods such as TensorFlow [2]. We

discuss this part in the last chapter: conclusion and perspectives.

Sktime seems the most promising library by including a lot of different approaches (Ta-

ble. A.5). To name a few, there are: the interval-based [31] approaches, the distance-based

[98] approaches, the shapelet-based [125] approaches, the dictionary-based [108] approaches,

the kernel-based [30] approaches, and more recently1 the signature-based approaches [88]

(see 2.1.1.3 for more details).

Nevertheless, these new techniques also introduce a lot of hyper-parameters

which have an impact on the performance of the trained models. Accurately

choosing the algorithm and tuning the related hyper-parameters take time for

two reasons. The first reason concerns the number of possible choices (see Table A.5), and

the second one is related to the time of training which depends on the algorithm’s complexity

and the dataset’s characteristics (e.g. number of instances, sequence length).

This brings the problem to be equivalent to the AutoML problem. However the search

space of the algorithms changes, and the preprocessing phase seems useless since it is already

as part of the algorithm itself.

5.1.4 Formal Definition

The Time Series Classification (TSC) problem consists in training a classifier on input vari-

ables that are an ordered set of real values. It can be formally defined as a trained model

ℳ, that maps a time series 𝑋 to a probability distribution (or a label prediction) D over

the labels:

ℳ : 𝑋 → D (5.1)

Where:

∙ 𝑋 = [𝑥1, 𝑥2, ..., 𝑥𝑡] is a time series of length 𝑡 and 𝑥𝑖 ∈ R

∙ ℳ = A𝜆(𝒟) is a trained model, with A𝜆 a ML-TSC algorithm associated with its

1sktime v0.6+
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hyper-parameters, and 𝒟 = {(𝑋1, 𝑌1), ..., (𝑋𝑁 , 𝑌𝑁)} : (𝑋𝑖, 𝑌𝑖) ∈ (𝑋,N) is a dataset,

i.e. a collection of a time series paired with labels

In this chapter we only focus on the Machine Learning algorithms oriented for the Time

Series Classification. In the rest of the reading, we will use the term ML-TSC to designate

these algorithms (Table. A.5).

5.1.5 Our Proposition

As previously said, the preprocessing phase is included in the ML-TSC algorithm. By conse-

quence, it changes how the process of exploration versus exploitation should be performed.

Indeed, in a classic AutoML approach, such as it is done with Mary-Morstan (see sec-

tion 3.4), or with TPOT (see Figure 2.2.3) for classification problems, the presence of some

operators, e.g. MutationInsert (3.3.3.1), and CrossoverOnePoint (3.3.3.2), that changes the

structure of the ML pipeline, i.e. the preprocessing phase, is not required anymore. In con-

sequence, we only use the operators that are adapted for a pipeline of size 1 (see Tab. A.7).

Moreover, during some empirical experiments, we notice that running a pure random

phase along the first generations were beneficial to accelerate the convergence. In this way,

we use the distribution 𝑃 in Algorithm 1, such that during a quarter of the optimization time

the MutationReplaceNodeOnly (pure exploration) will be used, and then other operators

prone to exploitation continue the optimization process.

Thanks to the modular framework that we have built, we can easily change the EA space

in order to fit these expectations, and we prove their importance through the results of our

experiments.

To summarize:

∙ We define a ML-TSC search space (Table A.5).

∙ We use adapted operators (Tab. A.7) for the CASH problem (no preprocessing).

∙ And we change the distribution 𝑃 (Tab. A.7) over the time of the optimization.

In order to clearly understand what this instance of Mary-Morstan is intended

for, we named it AutoTSC for Automatic Time Series Classification.
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5.2 Experimental Setup

In this section we detail the whole experimental setup used to demonstrate the performance

of the proposed solution AutoTSC, which is an instance of Mary-Morstan with a Time Series

Classification search space additionally to a dedicated evolutionary algorithm configuration.

5.2.1 Baselines

Since there was no work that addresses the problem of AutoML for ML-TSC, there is no

off-the-shelf baseline to compare our work to. Therefore, to validate its interest, we defined

two baselines:

1. a Random Search, that randomly explores the space of ML-TSC algorithms described

in Table A.5.

2. TPOT2, a famous standard AutoML solution based on EAs. Since TPOT has been

shown to be closely equivalent to the other known state-of-the art AutoML solutions

[43], we excluded the other libraries to save computational resources.

5.2.2 Dataset Corpus

A UCR archive was proposed in 2015 and updated in 2018 [8]. It gathers most of the TSC

datasets used in the literature so far (128 datasets). Since then, many ML-TSC articles base

their experiments on this archive [30, 108, 128] and so did we. However, because testing an

AutoML is time consuming, we designed a procedure to discard datasets for which the best

solution is trivial given our search space and only consider "hard" datasets, but for which a

model can be trained in less than 5 minutes. This procedure is as follows:

∙ Run a random search of 1 hour through our search space with a wall time of 5 minutes

per evaluation.

∙ Discard the datasets for which we did not obtain any results or for which we observed

more than 50% of timeout (too long to evaluate).

2v0.11.5 https://github.com/EpistasisLab/tpot/releases/tag/v0.11.5
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∙ Discard the datasets with a standard deviation of the balanced accuracy (on the vali-

dation set) that is less than 0.03. For 40 datasets we even observed 0 variance. In that

case we considered the task too easy to be solved by automated ML.

5.2.3 Protocol

Evolutionary Algorithms and Random Search are both stochastic and have to be run several

times in order to measure their performance. In the experiments, each algorithm is run 30

times on each dataset on the training set with a wall time of 1 day. This time has been chosen

to enable convergence even for large datasets. The algorithms are run on 24 datasets (see

Tab. A.6) present in the UCR archive [8] and selected as the "hardest" by the aforementioned

procedure.

The settings used for this experiment within AutoTSC are provided in Tab. A.7. TPOT

uses a very similar configuration [90], except for the selection and the variation operators i.e.

the mutation and crossover. Indeed, as explained in the previous section, we reworked these

operators in order to be more adapted to the problem. Moreover, in TPOT, 𝑃 cannot be

modified and does not evolve over time. In our solution, we also adapted 𝑃 to the specificities

of TSC and made it time-dependent.

At the end of each run, the best candidate is evaluated with the balanced accuracy on the

test set (provided by the UCR archive). Our dataset corpus being quite heterogeneous, the

choice of this metric has been motivated by the fact that it is significant on a wide variety

of classification tasks (balanced or unbalanced classes, binary or multi-class).

5.2.4 Computational Environment

We conduct the experiments on OVH Public Cloud using Slurm [127] on C2-120 virtual

machines (VM) composed of 32 cores with 3.1Ghz and 120GB RAM. We set up cgroup and

Pyxis+ENROOT [3] to keep fair computation environments for each run.
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5.3 Results

In this section we describe the results of our experiments. Firstly, we analyze the distribution

of the test scores obtained at the end of the wall time (Fig. 5-4). Then we compare the

convergence of the validation scores (Fig. 5-5). Finally, we further discuss the results and

consider secondary indicators measured during the experiment (Fig. 5-6 and Fig. 5-7).

5.3.1 Final Results on Test Set

The results on the test set are depicted on Fig. 5-4. For each dataset, a Friedman [96] test

with a significance of 5 percent is performed. If the null hypothesis cannot be rejected, we

write "EQUIVALENTS" to signify that all optimizers perform similarly. If it is not the case,

we secondly conduct a pairwise post-hoc analysis by using the Wilcoxon signed-rank [112]

test with the same significant percentage. If a given optimizer statistically beats the other

two, we write its name on the figure. If there are two winners, both are written.

Among the 24 datasets (Fig. 5-4), AutoTSC statistically outperforms both Random

Search and TPOT on 12 datasets while TPOT only outperforms AutoTSC and Random

Search on 2 datasets. AutoTSC performs equivalently to Random Search but better than

TPOT on 5 other datasets and the three optimizers were considered equivalents on the last

5 ones. This clearly demonstrates the interest of using a smarter optimization process rather

than just a Random Search or a classical AutoML solution in particular when computational

resources are limited.

We notice that TPOT was unable to run on 2 datasets: ShapesAll and FiftyWords, which

are the biggest in terms of classes. That can be explained by the pretest mechanism included

in TPOT. It consists in training every candidate on a small subsample of the data to avoid

wasting time on degenerated pipelines. Yet, due to a technicality, it is incapable of doing so

when the number of classes is greater than the subsample size.

By looking at the characteristics of the datasets, we can observe other interesting results.

For example, the number of classes, i.e. binary versus multiclass. AutoTSC seems better

at handling multiclass classification for it wins 10 of the 18 multiclass datasets. However,

AutoTSC only wins 2 of the 6 datasets on the binary ones. The size of the dataset does
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not seem to matter though. On small datasets (i.e. less than 150 instances), AutoTSC

wins 5 of the 8 datasets and on large datasets, AutoTSC wins 7 times out of 16. The same

observation can be made on the length of the time series. AutoTSC wins 7 of the 13 small

datasets (less than 500 time steps), and 5 of the 11 large datasets. What is interesting

however is that AutoTSC dominates on the 4 largest datasets in terms of number of in-

stances multiplied by the sequence length - EOGVerticalSignal, MixedShapesRegularTrain,

UWaveGestureLibraryAll, NonInvasiveFetalECGThorax2. This and AutoTSC’s superiority

on multiclass problems show that the more difficult the classification tasks, the more one

has interest to use AutoTSC.

5.3.2 Evolution of the Validation Score over Time

Fig. 5-5 presents the convergence curves of the balanced accuracy. The curves clearly show

that AutoTSC converges faster than Random Search. Indeed, for half of the datasets (12

datasets: ECG200, MixedShapesRegularTrain, SmallKitchenAppliances, SmoothSubspace,

DistalPhalanxOutlineAgeGroup, Earthquakes, Wine, MiddlePhalanxOutlineAgeGroup, Screen-

Type, Herring, Lightning7, Ham), the solid blue line corresponding to AutoTSC is signifi-

cantly above the red dashed line that corresponds to Random Search. For the other half,

random search converges as fast as AutoTSC, indicating that several areas of the search

space can achieve a near-optimal performance.

5.3.3 Discussion

The most important remark concerns the fact that TPOT was surprisingly able to naively

outperform AutoTSC and Random Search on two datasets (Fig. 5-4): SmoothSubSpace

and DistalPhalanxOutlineCorrect. It is interesting that an AutoML configured for standard

classification problems is capable to handle TSC problems so well. We see two main reasons

for this to happen.

Firstly, in the introduction, we argued that using a classical ML algorithm by considering

time steps as features is generally not a good idea. Indeed the main assumption under such

models is the fact that features are independent. Even algorithms that do not make this
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assumption (e.g. random forests) will have a hard time adapting to temporal variation in the

data. Yet in some cases, classical ML algorithms could work well anyway and in that case,

TPOT has a great advantage. Classical ML algorithms are much faster to train than ML-

TSC algorithms so TPOT can try much more candidates than AutoTSC during an allocated

time (see Fig. 5-6, TPOT evaluates ten times more candidates on average). It clearly seems

to be the case for the dataset SmoothSubSpace. Moreover, its sequences only have a length

of 15 and in half of the runs, TPOT’s pipeline has an average size of 1 where the best trained

candidate is a Gaussian Naive Bayes, which is well known for its independence assumption.

Secondly, most of the ML-TSC algorithms we included in the search space consist in a TS

adapted preprocessing and a classical ML algorithm. In some cases however, more complex

models could be required to fit the data, even after smart TS-oriented preprocessing. TPOT

is able to assemble models and build complex pipelines (e.g. synthetic features). In this

first version of AutoTSC, however, we did not include that possibility since the goal was

to build a first proof of concept. On DistalPhalanxOutlineCorrect, we measure an average

pipeline size of 5 for TPOT even though TPOT has for the second objective to minimize that

size. This is not a hard proof because the TS preprocessing is meant to replace this model

complexity but we can reasonably assume that for this dataset, the various preprocessing in

AutoTSC did not match TPOT’s ability to build a complex model.

Another interesting point is the frequency of the ML-TSC algorithms (Fig. 5-7) that dif-

fers from a dataset to another, showing that none of them is always the best. For example,

the CompsableTimeSeriesForestClassifier works very well on the dataset SmoothSubspace,

while BOSSEnsemble works very well on ArrowHead. Thus, the different ML-TSC ap-

proaches (e.g. dictionary-based, interval-based) demonstrate a true interest in the impact of

the performance from a dataset to another. We also notice that some ML-TSC algorithms are

more widely represented. It is the case of MUSE, ROCKETClassifier and WEASEL. MUSE

is present on 17 datasets, ROCKETClassifer on 15 datasets and WEASEL on 12 datasets.

On the other hand, some ML-TSC algorithms are completely absent: ShapeletTransform-

Classifier, ContractableBOSS, ProximityTree, ShapeDTW, DecisionTreeClassifier. Most of

these methods are known to be computationally expensive and were most likely discarded

with the wall time of five minutes. Anyhow, this diversity of models among the best can-
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Figure 5-7: Heatmap of the best ML-TSC algorithms according to the validation scores
present among the 30 runs per dataset at the end of the optimization.
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didates selected by AutoTSC justifies the research for an automated process with a limited

amount of time.

5.4 Conclusion and perspectives

AutoTSC, is capable of addressing the AutoML problem on timeseries classification. This

solution consists in an evolutionary algorithm with variations specifically designed to handle

this problem additionally to an associated search space. This work also demonstrated the

interest of this solution on a standard set of TSC datasets from the UCR Archive. As such

this solution constitutes a good and already usable first step toward automated ML for

timeseries classification. Nonetheless, the careful study of the results conducted shows that

this work opens a lot of perspective to go further.

First, contrary to what intuition would suggest, it may happen that standard ML algo-

rithms perform well without any preprocessing on some datasets. Including them as well as

standard preprocessing techniques in the search space could probably help handle a wider

variety of cases. Moreover, TPOT’s ability to stack algorithms could be very interesting even

in the context of TSC. Adding this feature that can stack several TS preprocessing methods,

followed by standard preprocessing methods and finally train several complementary models

would certainly be beneficial in some complex situations. Obviously, in that case it also

needs a regularization mechanism such as TPOT’s minimization objective of the pipeline

size.

Following this idea of considering a wider range of models, finding a way to adapt the

wall time in order to be able to train costly models such as ShapeletTransformClassifier [49].

Yet this cannot be at the cost of slowing down the optimization process too much. A solution

could be to try and minimize the training time.

Moreover we empirically defined a ML-TSC search space in Table. A.5, that certainly

lacks expertise and could be improved by better tuning the hyper-parameter intervals. New

algorithms could also be added, such as SignatureClassifer [88] that was recently added in

sktime3.
3https://github.com/alan-turing-institute/sktime/releases/tag/v0.7.0
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Another set of perspectives is related to the very optimization process. We realized in

this work that the amount of exploration needed (number of randomly generated candidates)

depends on the dataset. We also realized that the optimization process benefited from

exploration even after the first generations. This is why we introduced the function 𝑃

that controls the distribution of the variation used at each generation. Note that 𝑃 not

only controls exploration but all the different types of evolutionary variations. Studying all

this, possibly finding ways to make it adaptive to the nature of the dataset or the way the

optimization goes would certainly be interesting.

Finally, our solution can by nature be made multi-objective. Among these objectives we

want to add a measure that quantifies the interpretability of the models. A first AutoML

that takes this kind of objective in consideration has been proposed [99], however it is

not adapted for TSC problems. Indeed, given the specificities of the TS preprocessing,

interpreting models is more difficult than for classical ML. Nevertheless, some methods have

been recently developed to better interpret the ML-TSC models [44] and integrating them

in our solution would be an interesting challenge.
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Chapter 6

Conclusion

In this section we first summarize all the contributions present in the above chapters of this

manuscript and then give perspectives for future works.

6.1 Summary of the Contributions

Our first contribution is a succinct comparison of the state-of-the-art solutions and

a way to classify them (section 2.3). At the beginning of the thesis works, there was no

study on the difference between the approaches1 of the AutoML tools. Thanks to our study,

we emphasized the pros and cons of each of them which helped us to choose our development

of our new tool Mary-Morstan based on the evolutionary algorithms, mainly motivated by

the lack of study in this domain (algorithms and operators).

Our second contribution is the study of the evolutionary algorithm components

and their impact when used by an AutoML to solve classification problems (Chapter

3). We elaborated new operators and included known EA processes that were not studied in

the other AutoML tools. Then we ran an optimizer (I-Race [76]) to find if a combination of

our new components statistically outperformed the state-of-the-art performance. Unfortu-

nately, it was unsuccessful, but the experiments remain interesting and might permit future

researchers to use the same protocol on different problems (e.g. regression) or on different

classification datasets which might be successful.

1Non-Adaptive, SMBO, EAs, MCTS
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The third contribution is the acceleration of the optimization process for the

EA-based AutoML (Chapter 4) [92]. During the experiments to study the impacts

of EA components impacts, we noticed that optimizing large datasets was extremely slow

and the same observation has been made by the authors of Auto-SKLearn, another AutoML

tool. They came up with a solution called PoSH based on Successive Halving (SH) [56],

a technique introduced in the Multi-armed Bandits problem which permits their tool to

tackle large datasets. However, their technique called PoSH was not adapted for EA-based

AutoML. In our contribution, we proposed a technique to make the SH work with any EA-

based AutoML tool. Through our experiments we demonstrated a considerable gain on large

datasets, with very few modifications in the optimization process.

The fourth contribution is a first proposition of solution capable of automatically

tackling the Time Series Classification (TSC) problem (Chapter 5) [93]. With the

emergence of new problems of classification under a format of time series [8] which requires

specific preprocessing methods, we observed a proliferation of dedicated algorithms (2.1.1.3).

These algorithms have the same underlying problems of classical classification methods, that

is to select and configure an algorithm so that it gives the best performance. We noticed

that these algorithms require no preprocessing, because it is included in the algorithm itself.

Thanks to the development of our modular AutoML Mary-Morstan, we easily adapted it for

this specific problem and showed an improvement of the performance when compared to a

classical approach.

The fifth contribution is a set of tools developed along the thesis. These contributions

are enumerated in the introduction (1.3): DSOP (1.3.1), a platform subject to two patents

that eases the sharing of datasets while preserving the process used to transform the data,

Intepretability Engine (1.3.2), a library that eases the interpretation of models deployed on

OVHCloud Serving Engine, Slurm-PCi (1.3.3), a set of tools which makes the HPC scalable

thanks to the use of OVHCloud Public Cloud.
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6.2 Perspectives

To conclude this work, we propose a multitude of perspectives. Some of the perspectives

have already been laid out along the chapters (4.4 and 5.4).

A first important perspective of amelioration concerns the exploitation of the adapt-

able aspect developed within Mary-Morstan. The tool has been designed to be tuned

from different levels, and even if it was not a success on our experiments for classification

(3.4) it worked for the time series classification problems with our instance called AutoTSC

(5). From this fact, we remain convinced that tuning the EA space will impact the per-

formance of other supervised problems, such as regression but also unsupervised problems.

There are also new AutoML solutions dedicated to Deep Learning architectures, generally

called AutoDL [27,58,59,70,102] which stands for Automatic Deep Learning, which face new

challenges [74]. These solutions differ from the classic approach, because they try to find

an architecture of neural network, commonly called NAS for Neural Architecture Search,

instead of selecting an algorithm and tuning its hyper-parameters like done in CASHAP

(2.1.3). Most of the AutoDL tools are based on EAs, mostly explained by their capacity

of handling candidates of variable sized (e.g. adding or removing nodes in the architec-

ture) without disturbing the optimization. Our tool being based on EAs, it makes a great

applicant to study the impact of the EA operators on the NAS problem.

A second perspective is the study and integration of new measures. We are

deeply convinced that the future of AutoML will rely on a diversity of metrics, and not

just on those that evaluate the accuracy of the model (e.g. precision, recall, F-score) which

"ideally" results in no false positives and/or no false negatives in classification. For example,

it is great to have an autonomous car that takes decision thanks to deep learning models with

almost no accident, but when an accident happens, it requires a certain amount of expertise

to understand the thought process caused of the model. This complexity could be reduced

by adding penalties or objectives within the evaluation/selection such that AutoML tools

build interpretable models [84, 85]. This would ease the diagnoses for experts as well

as non-experts (e.g. insurance company). Interpretability is not the only sort of measure

to consider. Machine learning models tend to be unfair (or biased) due to the data made
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by our intuitions and our environment. The problem has been highlighted [5, 105], notably

with COMPAS, a software based on a ML models that helps judges predict if a criminal will

reoffend once released. According to the models, there is more chance than white individuals

will not reoffend when compared to black individuals. However, in practice, the reoffend rate

between the two groups appears to be similar. Thus, the models are certainly biased by the

data they have been feed with. It might therefore be important to integrate some mechanisms

that maximize fairness in order to have less bias in the models returned by AutoML

tools. Other interesting facets are not detailed here, but might also be included by the

final users (maximize the robustness of a model, minimize the prediction latency [72]).

Integrating all these measures might make the optimization slower and more

difficult. Indeed, if we consider an interpretable model as a model with the fewer features

possible, it will certainly reduce its accuracy due to the lack of information to represent a

label. In other words, accurate models tend to be less interpretable and vice versa. The

same reasoning can be made with other objectives. When the objectives contradict

each other, more evaluations are required to explore the space of each objective

(and their combination for a trade-off). As demonstrated on other problems (e.g. CEC09)

solved thanks to EAs, the performance of a multi-objective optimization depends

upon the selection of the operators such as the crossovers and the mutations [15, 80].

Our tool Mary-Morstan has been designed to be easily tuned and studied on such parameters.

Therefore, studying different EA parameters of an AutoML with a combination of different

objectives to observe if it has an impact on the performance of the optimization (hypervolume

of the Pareto front, and diversity of the solutions) would constitute a great experiment with

Mary-Morstan. A first study has been initiated by Pfisterer [99] on a multitude of objectives

(intepretability and fairness), but does not investigate the tuning of the optimization.

The third perspective of amelioration is related to our proposition Mary-Morstan-

SH. We did accelerate the optimization process on large datasets that have more than a

hundred thousand samples. However, we did not exploit our technique (4.1.3) with a

budget that considers the number of features. Applying such a method on the number of

features would certainly be beneficial to train any ML algorithm even for those that struggle

with the curse of dimensionality. Indeed, all the algorithms would be capable of being
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trained at the beginning, and even if some are not trained anymore (due to the increase of

the features along the iterations), depending to the evolutionary algorithm used, they might

be kept until the end of the optimization. Without such a technique, algorithms with high

complexity on the number of variables would have been discarded from the beginning. Like

the number of samples, this might accelerate the optimization process for large datasets

in terms of features. Time series classification algorithms are essentially costly due to the

number of features (number of steps), it might be a great first case of study. Apart from

playing with the features, different aspects could be investigated:

∙ The SH parameters (4.1) that we empirically defined. Tuning these parameters might

contribute to an even better acceleration on the optimization process.

∙ MM-SH showed great results on classification problems, but has not been tested on

regression problems, nor on time series classification problems and or unsupervised

problems.

∙ The technique might help to accelerate the optimization process of multi-objective

problems which tend to make the optimization slower as mentioned in the second

perspective.

∙ The introduced method reduces the number of candidates along the iteration, which

logically reduces the memory footprint of the optimization. However we did not mon-

itor the memory to prove it.

Finally, we propose a set of mixed minor perspectives:

∙ AutoTSC (5.3.3) needs few refurnishment (adding the synthetic features) to compete

with the two time series classification datasets that gave better results with TPOT, an

AutoML that have a search space of classical machine learning algorithms.

∙ Interpretability Engine (1.3.2) is a great first proof of concept to interpret the deployed

model, but it still lacks of methods to explain the individual predictions. Including

SHAP [77] or Anchors [117] would complete the tool.
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∙ We noticed that new preprocessing methods have been developed [23]. Including them

in the search space might improve the overall optimization process for certain datasets.

To conclude this thesis, machine learning is an exciting playground that helps humans

solve complex problems. However, some challenges still persist in this domain. The fact

that running an AutoML is costly, and the lack of integrated tools that make any model

interpretable. We hope that this manuscript will be a step forward on both challenges.
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Table A.1: Datasets used by the AutoML Benchmark [43], ordered by the number of instances

Dataset # Inst. # Attr. # Class. Majority class (%)
Australian 690 15 2 55.51

blood-transfusion 748 5 2 76.2
vehicle 846 19 4 25.77
credit-g 1000 21 2 70
cnae-9 1080 857 2 11.11

car 1728 7 4 70.02
mfeat-factors 2000 217 10 10

kc1 2109 22 2 84.54
segment 2310 20 7 14.29
jasmine 2984 145 2 50
kr-vs-kp 3196 37 2 52.22
sylvine 5124 21 2 50

phoneme 5404 6 2 70.65
christine 5418 1637 2 50
fabert 8237 801 7 23.39
dilbert 10000 2001 5 20.49
Robert 10000 7201 10 10.43

guillermo 20000 4297 2 59.99
riccardo 20000 4297 2 75

Amazon_employee_access 32769 10 2 94.21
nomao 34465 119 2 71.44

jungle_chess_2pcs_raw_endgame_complete 44819 7 3 53.64
bank-marketing 45211 17 2 88.48

adult 48842 15 2 76.07
KDDCup09_appetency 50000 231 2 98.22

Shuttle 58000 10 7 78.6
Volkert 58310 181 10 21.96
Helena 65196 28 100 6.14

connect-4 67557 43 3 x 65.83
Fashion-MNIST 70000 785 10 10

APSFailure 76000 171 2 98.19
Jannis 83733 55 4 46.01

numerai28.6 96320 22 2 50.52
higgs 98050 29 2 52.86

MiniBooNE 130064 51 2 71.94
Dionis 416188 61 355 59
Albert 425240 79 7 50
Airlines 539383 8 2 55.46

Covertype 581012 55 2 51.24
# denote the cardinality.
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Table A.2: Classifiers in ML search space of TPOT and Mary-Morstan

Algorithm Hyperparameters

GaussianNB ∅

BernoulliNB alpha ∈ {0.001, 0.01, 0.1, 1.0, 10.0, 100.0}

MultinomialNB alpha ∈ {0.001, 0.01, 0.1, 1.0, 10.0, 100.0},

fit_prior ∈ {true, false}

DecisionTreeClassifier criterion ∈ {gini, entropy}

max_depth ∈ [1..11]

min_samples_split ∈ [2..21]

min_samples_leaf ∈ [1..21]

ExtraTreesClassifier criterion ∈ {gini, entropy}

n_estimators = 100

max_features ∈ { 1
20

𝑛}20𝑛=1

min_samples_split ∈ [2..21]

min_samples_leaf ∈ [1..21]

bootstrap ∈ {true, false}

RandomForestClassifier criterion ∈ {gini, entropy}

n_estimators = 100

max_features ∈ { 1
20

𝑛}20𝑛=1

min_samples_split ∈ [2..21]

min_samples_leaf ∈ [1..21]

bootstrap ∈ {true, false}

GradientBoostingClassifier max_depth ∈ [1..11]

n_estimators = 100

max_features ∈ { 1
20

𝑛}20𝑛=1

subsample ∈ { 1
20

𝑛}20𝑛=1

min_samples_split (𝑀𝐿𝑠𝑒𝑎𝑟𝑐ℎ𝑠𝑝𝑎𝑐𝑒) ∈ [2..21]

min_samples_leaf ∈ [1..21]

learning_rate ∈ {0.001, 0.01, 0.1, 0.5, 1.}

KNeighborsClassifier n_neighbors ∈ [1..100]

weights ∈ {uniform, distance}

p ∈ {1, 2}

LinearSVC penalty ∈ {l1, l2}

loss ∈ {hinge, squared_hinge}

dual ∈ {true, false}

tol ∈ {10−5, 10−4, 10−3, 10−2, 10−1}

C ∈ {10−4, 10−3, 10−2, 10−1, .5, 1, 5, 10, 15, 20, 25}

LogisticRegression penalty ∈ {l1, l2}

dual ∈ {true, false}

solver = lbfgs

C ∈ {10−4, 10−3, 10−2, 10−1, .5, 1, 5, 10, 15, 20, 25}
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Table A.3: Preprocessing methods in ML search space of TPOT and Mary-Morstan

Algorithm Hyperparameters

Binarizer threshold ∈ { 1
20𝑛}

20
𝑛=0

FastICA tol ∈ { 1
20𝑛}

20
𝑛=0

Normalizer tol ∈ {l1, l2, max}

StandardScaler ∅

MaxAbsScaler ∅

MinMaxScaler ∅

Nystroem kernel ∈ {rbf, cosine, laplacian, polynomial, poly, linear, sigmoid}

gamma ∈ { 1
20𝑛}

20
𝑛=1

n_component ∈ [1..11]

PCA svd_solver = randomized

iterated_power ∈ [1..11]

PolynomialFeatures degree = 2

include_bias = False

interaction_only = False

RBFSampler gamma ∈ { 1
20𝑛}

20
𝑛=0

RobustScaler ∅

ZeroCount ∅

SelectFwe alpha ∈ { 1
20𝑛}

20
𝑛=0

SelectPercentile percentile ∈ [1..100]

VarianceThreshold threshold ∈ {10−4, 5.10−4, 10−3, 5.10−3, 10−2, 5.10−2, .1, .2}

RFE step ∈ { 1
20𝑛}

6
𝑛=1

estimator = ExtraTreesClassifier

n_estimators = 100

criterion ∈ {gini, entropy}

max_features ∈ { 1
20𝑛}

20
𝑛=0

SelectFromModel threshold ∈ { 1
20𝑛}

6
𝑛=1

estimator = ExtraTreesClassifier

n_estimators = 100

criterion ∈ {gini, entropy}

max_features ∈ { 1
20𝑛}

20
𝑛=0

CombineDFs ∅

CombineTwoPreviousesDFs ∅
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Table A.4: Shared settings of TPOT and Mary-Morstan-SH

Parameter Value

Population size 𝒫 100

Generations 𝐺 25* or 100

Per-individual mutation rate 90%

Per-individual crossover rate 10%

TPOT Pareto selection 100 individuals

according to NSGA-II

Mutation Point, insert, shrink

1/3 chance of each

Crossover OnePoint

Candidate evaluation 5-fold cross-validation

Maximum evaluation time per candidate 5 minutes

Number of jobs 1

* only for large datasets.
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Table A.5: ML-TSC search space used for AutoTSC and Random Search

Algorithm Hyperparameters

ComposableTimeSeriesForestClassifier n_estimators ∈ {50, 100, 200}
(interval-based) criterion ∈ {gini, entropy}

max_depth ∈ [1..11]
min_samples_split ∈ [2..21]
min_samples_leaf ∈ [1..21]
bootstrap ∈ {true, false}
oob_score ∈ {true, false}

ShapeletTransformClassifier
(shapelet-based) time_contract_in_mins ∈ {1, 2}

n_estimators ∈ {10, 50, 100, 250, 500}
ROCKETClassifier
(kernel-based) num_kernels ∈ [100..10000]

ensemble ∈ {true, false}
ensemble_size ∈ [2..25]

BOSSEnsemble
(dictionary-based) threshold ∈ { 4

5
+ 1

50
𝑛}10𝑛=0

max_ensemble_size ∈ {100, 250, 500}
min_window ∈ [5..15]

IndividualBOSS
(dictionary-based) window_size ∈ [5..50]

word_length ∈ [4..14]
norm ∈ {true, false}
alphabet_size ∈ [2..4]
save_words ∈ {true, false}

ContractableBOSS
(dictionary-based) n_parameter_samples ∈ {250}

max_ensemble_size ∈ {25, 50, 100}
min_window ∈ [5..15]

TemporalDictionaryEnsemble
(dictionary-based) n_parameter_samples ∈ {125, 250, 500}

max_ensemble_size ∈ {25, 50, 100}
max_win_len_prop ∈ {1}
min_window ∈ [5..15]
randomly_selected_params ∈ {25, 50, 100}
dim_threshold ∈ { 3

4
+ 1

20
𝑛}5𝑛=0

max_dims ∈ {10, 20, 40}
IndividualTDE
(dictionary-based) window_size ∈ [5..50]

word_length ∈ {4, 8, 16}
norm ∈ {true, false}
igb ∈ {true, false}
alphabet_size ∈ {2, 3, 4}
bigrams ∈ {true, false}
dim_threshold ∈ { 3

4
+ 1

20
𝑛}5𝑛=0

max_dims ∈ {10, 20, 40}
WEASEL
(dictionary-based) anova ∈ {true, false}

bigrams ∈ {true, false}
binning_strategy ∈ {equi-d., equi-w., inf-g.}
window_inc ∈ [2..6]

p_threshold ∈ {5.10−2, 10−1, 5.10−1}
MUSE
(dictionary-based) anova ∈ {true, false}

bigrams ∈ {true, false}
window_inc ∈ [2..6]

p_threshold ∈ {5.10−2, 10−1, 5.10−1}
use_first_order_differences ∈ {true, false}

ProximityTree
(distance-based) n_stump_evaluations ∈ {3, 5, 10}
KNeighborsTimeSeriesClassifier
(distance-based) weights ∈ {uniform, distance}

distance ∈ {dtw, ddtw, wdtw, wddtw, lcss, erp, msm}
n_neighbors ∈ [1..4]

ShapeDTW
(distance-based) n_neighbors ∈ {1, 2, 3}

subsequence_length ∈ {15, 30, 45}
shape_descriptor_function ∈ {raw, derivative}

DecisionTreeClassifier
(interval-based) criterion ∈ {gini, entropy}

max_depth ∈ [1..11]
min_samples_split ∈ [2..21]
min_samples_leaf ∈ [1..21]

TimeSeriesForestClassifier
(interval-based) min_interval ∈ [3..10]

n_estimators ∈ {100, 200, 400}
RandomIntervalSpectralForest
(interval-based) n_estimators ∈ {100, 200, 400}

min_interval ∈ {8, 16, 32}
acf_lag ∈ {50, 100, 200}
acf_min_values ∈ {2, 4, 8}

based on sktime v0.6.0
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Table A.6: Time Series Classification datasets picked from the UCR Archive

Dataset #Inst. #Seq. #Class. Majority class
SmoothSubspace 150 15 3 33.33

ArrowHead 36 251 3 38.39
ECG200 100 96 2 66.50

Wine 57 234 2 51.35
Lightning7 70 319 7 26.57

DistalPhalanxOutlineAgeGroup 400 80 3 59.74
MiddlePhalanxOutlineAgeGroup 400 80 3 48.01

ProximalPhalanxOutlineAgeGroup 400 80 3 47.77
Herring 64 512 2 60.16
Ham 109 431 2 51.87

DistalPhalanxOutlineCorrect 600 80 2 61.53
ChlorineConcentration 467 166 3 53.56

FiftyWords 450 270 50 12.04
Yoga 300 426 2 53.64

ACSF1 100 1460 10 10.00
Earthquakes 322 512 2 79.83
InlineSkate 100 1882 7 18.00
ScreenType 375 720 3 33.33

SmallKitchenAppliances 375 720 3 33.33
ShapesAll 600 512 60 1.67

EOGVerticalSignal 362 1250 12 8.43
MixedShapesRegularTrain 500 1024 5 25.78
UWaveGestureLibraryAll 896 945 8 12.51

NonInvasiveFetalECGThorax2 1800 750 42 2.60
# denote the cardinality. Large datasets are written in bold.
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Table A.7: Settings of AutoTSC

Parameter Value

Wall Time 𝑇 24 hours
Population size 𝒫 5
Per-individual mutation rate 90%
Per-individual crossover rate 10%
Selection SelectKBest
Mutations Replace

ReplaceNodeOnly
Gaussian,
UniformInteger
OneRandom

Crossover OnePointAverage
Distribution 𝑃 Rep.NodeOnly. 25% of 𝑇

uniform* remaining 𝑇
Candidate evaluation 5-fold cross-validation
Max. evaluation time per candidate 5 minutes
Number of jobs 1
* distribution is made uniformly among all mutations
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Appendix B

Figures

Figure B-1: OVHCloud industrial process.
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download

download
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Backend n

Backends

Backend i...

Extractors
(optional)

Extractor a Extractor b

Config file example 
version: 1 

miniboone: 

  backend: "local"

  target_column: "signal" 

iris: 

  backend: "scikit" 

  function: load_iris 

covertype: 

  backend: "scikit" 

  function: fetch_covtype 

spambase: 

  backend: 'datahub' 

  url: 'https://datahub.io/machine-learning/spambase/datapackage.json' 

cloud: 

  backend: 'openml' 

  dataset_id: 890 

adult: 

  backend: 'uci' 

  url_data: 'https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data' 

O2: 

  backend: 'local'

  extractor: 'autonlp_challenge' 

  path: 'misc/dataset-autonlp/O2.data' 

O1: 

  backend: 'requests' 

  extractor: 'autonlp_challenge' 

  url: 'https://storage.bhs.cloud.ovh.net/v1/AUTH_1de31e43fad74b8cb021810be9eb69f1/autonlp-datasets/O1/O1.data' 

NONE

Dataset (general
class representation) 

common interface for
usage

dataset = dsop.get('miniboone') 
- dataset.features

- dataset.description

Figure B-2: DSOP architecture with a configuration file example.
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Classic Usage Example 
# installation (multiple lines) 

pip3 install lib1

pip3 install lib2

pip3 install requests

...

# configuration (multiple files + different instanciations)

lib1.instanciate('file1')

lib2.instanciate('file2')

...

# usage (interface differs, parameters differs) 

dataset1 = lib1.download(dataset_id=1324)

dataset2 = lib2.get(dataset_name='minibOone') 

print(dataset1.description.show_features())

print(dataset2._variables())

Improved Usage Example  
# installation (one line)

pip3 install dsop

# configuration (one file)

acsf1:

  backend: lib1

  extractor: ... 

minibOone:

  backend: lib2

  url: http://domain.tld/path/file.csv 

# usage (common interface, backend agnostic) 

dataset1 = dsop.get_dataset('config.yaml', 'acsf1')

dataset2 = dsop.get_dataset('config.yaml', 'minibOone') 

print(dataset1.features) 

print(dataset2.features) 

Figure B-3: Classical usage of getting data versus DSOP usage.
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1 interpretability -engine --token xxx --deployment -url https :// xxxx.c1.gra.

serving.ai.ovh.net/iris/ --samples -path iris.csv --features 0 1 2 3 --

feature -names "sepal.length" "sepal.width" "petal.length" "petal.width"

--label -names "setosa" "vergicolor" "virginica"

Listing B.1: Example of PDP for Iris dataset with Interpretability Engine usage through the

CLI

1 # Import your local data to an Object Storage container

2 ovhai data upload myBucket@GRA my_dataset.zip

3

4 # Run a Jupyter notebook with PyTorch pre -installed and mount your data in

a read -write folder/data with 2 GPUs

5 ovhai notebook run \

6 --gpu 2

7 --volume myBucket@GRA :/data:RW \

8 ovhcom/ai-training -pytorch :1.6.0

Listing B.2: Example of AI training usage through the CLI
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1 environment = "prod"

2 region = "BHS5" # default region to instance the node (can be specified

per node)

3

4 network = {

5 "private_subnet" = "10.2.0.0/16" # VRack private subnet

6 "public_network_name" = "Ext -Net"

7 "vrack_network_name" = "cluster -slurm -dhcp"

8 }

9

10 computes = {

11 "slurm -compute3" : {

12 flavor : "c2 -7",

13 image : "Ubuntu 20.04" ,

14 partition : "debug",

15 cpu : 2,

16 memory : 6000,

17 labels = ""

18 },

19 "slurm -compute4" : { # add a node

20 flavor : "c2 -120",

21 image : "Ubuntu 20.04" ,

22 partition : "prod",

23 cpu : 30,

24 memory : 120000 ,

25 labels = ""

26 },

27 }

Listing B.3: Terraform configuration file for Slurm Cluster Prod - add slurm-compute4

1 # Run Terraform (add / remove instances)

2 cd infrastructure && make apply ENV=prod

3

4 # Run Ansible (hosts file generated by Terraform)

5 make run VAULT_FILE =../ vault.txt HOST_FILE=environments/prod/hosts

Listing B.4: Commands to add and configure Slurm node(s)
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Figure B-4: A comparison of classifiers trained on P2 dataset. Highlight the difficulty of
shaping a model on large (in terms of number of samples) and scattered dataset.

f2

f1

Figure B-5: Bi-objective
pareto well-converged

f2

f1

Figure B-6: Bi-objective
pareto well-diversified

f2

f1

Figure B-7: Bi-objective
pareto well-converged and
well-diversified
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Figure B-8: Representation of max(x+3y, x+x) in Genetic Programming (GP).
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1 NUM_TESTS = 10

2 MAX_EVAL_SECS = 2

3

4 de f _pre_test ( func ) :

5 """Check i f the wrapped func t i on works with a p r e t e s t data s e t .

6 Reruns the wrapped func t i on un t i l i t g ene ra t e s a good p ipe l i n e , f o r a max o f

7 NUM_TESTS times .

8 """

9 . . .

10

11 @wraps ( func )

12 de f check_pipe l ine ( s e l f , *args , **kwargs ) :

13 bad_pipel ine = True

14 num_test = 0 # number o f t e s t s

15

16 # a pool f o r workable p i p e l i n e

17 whi le bad_pipel ine and num_test < NUM_TESTS:

18 . . .

19 try :

20 . . .

21 pass_gen = False

22 num_test_expr = 0

23 # to ensure a p i p e l i n e can be generated or mutated .

24 whi le not pass_gen and num_test_expr < in t (NUM_TESTS/2) :

25 try :

26 expr = func ( s e l f , *args , **kwargs )

27 pass_gen = True

28 except :

29 num_test_expr += 1

30 pass

31 . . .

32 f o r expr_test in expr_tuple :

33 pipe l ine_code = generate_pipe l ine_code (

34 expr_to_tree ( expr_test , s e l f . _pset ) ,

35 s e l f . ope ra to r s

36 )

37 sk l ea rn_p ipe l i n e = eva l ( pipel ine_code , s e l f . operators_context )

38 . . .

39

40 bad_pipel ine = False

41 except BaseException as e :

42 . . .

43 # Use the pbar output stream i f i t ’ s a c t i v e

44 s e l f . _update_pbar (pbar_num=0, pbar_msg=message )

45 f i n a l l y :

46 num_test += 1

47

48 return expr

49

50 return check_pipe l ine

Listing B.5: Extract from the decorator used in TPOT v0.11.5 to check if a pipeline is valid

160



0 5000 10000 15000 20000 25000
Elapsed time in seconds

67

68

69

70

71

72
Ba

la
nc

ed
 a

cc
ur

ac
y 

in
 p

er
ce

nt
 (v

al
id

at
io

n)

MaryMorstan
TPOT

(a) blood-transfusion dataset.
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(b) credit-g dataset.
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(c) kc1 dataset.
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(d) Australian dataset.

0 50000 100000 150000 200000 250000
Elapsed time in seconds

85

86

87

88

89

90

91

Ba
la

nc
ed

 a
cc

ur
ac

y 
in

 p
er

ce
nt

 (v
al

id
at

io
n)

MaryMorstan
TPOT

(e) vehicle dataset.
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(f) phoneme dataset.

Figure B-9: Results of Mary-Morstan vs TPOT for each dataset. The line represents an
average performance with a dotted when runs are missing (e.g. reach the last generation),
and the frame represents the standard deviation.
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(g) jasmine dataset.
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(h) Amazon_employee_access dataset.
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(i) bank-marketing dataset.
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(j) jungle_chess_2pcs_raw_endgame_complete
dataset.
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(k) adult dataset.
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(l) connect-4 dataset.

Figure B-9: Results of Mary-Morstan vs TPOT for each dataset. The line represents an
average performance with a dotted when runs are missing (e.g. reach the last generation),
and the frame represents the standard deviation.
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(m) car dataset.
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(n) segment dataset.
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(o) kr-vs-kp dataset.
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(p) mfeat-factors dataset.
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(q) Shuttle dataset.
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(r) Sylvine dataset.

Figure B-9: Results of Mary-Morstan vs TPOT for each dataset. The line represents an
average performance with a dotted when runs are missing (e.g. reach the last generation),
and the frame represents the standard deviation.

163



100000 200000 300000 400000
Elapsed time in seconds

52.1

52.2

52.3

52.4

52.5

Ba
la

nc
ed

 a
cc

ur
ac

y 
in

 p
er

ce
nt

 (v
al

id
at

io
n)

MaryMorstan
TPOT

(s) numerai28.6 dataset.

Figure B-9: Results of Mary-Morstan vs TPOT for each dataset. The line represents an
average performance with a dotted when runs are missing (e.g. reach the last generation),
and the frame represents the standard deviation.
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(a) blood-transfusion dataset.
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(b) credit-g dataset.
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(c) kc1 dataset.
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(d) Australian dataset.
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(e) car dataset.
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(f) Sylvine dataset.

Figure B-10: Results of Mary-Morstan (TPOT) vs Mary-Morstan (I-Race with 30 genera-
tion) vs Mary-Morstan (I-Race with 60 generations) for each dataset. The line represents
the average performance, and the frame represents the standard deviation. M-M(I-Race
with generation 30) is represented in solid blue line, M-M (I-Race with generation 30) is
represented in red dashed lines, and M-M (TPOT) is represented in green dotted lines.
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(g) jasmine dataset.
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(h) Amazon_employee_access dataset.
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(i) bank-marketing dataset.
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(j) jungle_chess_2pcs_raw_endgame_complete
dataset.
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(k) adult dataset.
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(l) segment dataset.

Figure B-10: Results of Mary-Morstan (TPOT) vs Mary-Morstan (I-Race with 30 genera-
tion) vs Mary-Morstan (I-Race with 60 generations) for each dataset. The line represents
the average performance, and the frame represents the standard deviation. M-M(I-Race
with generation 30) is represented in solid blue line, M-M (I-Race with generation 30) is
represented in red dashed lines, and M-M (TPOT) is represented in green dotted lines.167



Figure B-11: Electrical Activity of the Heart
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Algorithm 3 simple EA, see Algorithm 1 for completion
1: ...
2: 𝛼← generate(𝒫)
3: P𝑝 ← {(𝛼𝑘, evaluate(𝛼𝑘,𝒟𝑡)), 𝑘 = 1, ...,𝒫}
4: while ... do
5: 𝛼← variation(𝛼, 𝑃 )
6: P𝑜 ← {(𝛼𝑘, evaluate(𝛼𝑘,𝒟𝑡)), 𝑘 = 1, ...,𝒫}
7: P𝑝 ← select (P𝑜, 𝒫)
8: end while
9: ...

Algorithm 4 (𝜇, 𝜆)-ES, see Algorithm 1 for completion
Input: ...; offspring size, 𝜆; selection size; ...
1: ...
2: while ... do
3: ...
4: P𝑝 ← select (P𝑜, 𝜇)
5: end while
6: ...

Algorithm 5 (𝜇 + 𝜆 + 𝜅)-ES, see Algorithm 1 for completion
Input: ...; offspring size, 𝜆; selection size, 𝜇; random size 𝜅; ...
1: ...
2: while ... do
3: ...
4: P𝑘 ← generaterandomly(𝜅)
5: P𝑝 ← select (P𝑝 ∪P𝑜 ∪P𝑘, 𝜇)
6: end while
7: ...
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