
THÈSE POUR OBTENIR LE GRADE DE DOCTEUR
DE L’UNIVERSITÉ DE MONTPELLIER

En Informatique

École doctorale I2S

Unité de recherche LIRMM, UMR 5506

Adaptive Segmentation Techniques for Efficient

Representation of Time Series Datasets

Présentée par Lamia DJEBOUR
le 13/09/2022

Sous la direction de Florent MASSEGLIA
et Reza AKBARINIA

Devant le jury composé de

Omar BOUCELMA Professeur, Univ. Aix-Marseille Rapporteur
Thomas GUYET CR, INRIA Rapporteur
Anne LAURENT Professeur, Laboratoire LIRMM Examinatrice
Dennis SHASHA Professeur, Univ. New-York Examinateur
Reza AKBARINIA CR, INRIA, Laboratoire LIRMM Co-directeur
Florent MASSEGLIA DR, INRIA, Laboratoire LIRMM Directeur

ABSTRACT

Many applications in different domains generate time series data at an increasing rate.
The continuous flow of emitted data may concern personal activities (e.g., through
smart-meters or smart-plugs for electricity or water consumption) or professional ac-
tivities (e.g., for monitoring heart activity or through the sensors installed on plants by
farmers). This results in the production of large and complex data, usually in the form
of time series.

In recent years, there has been an explosion of interest in time series data mining.
As a general rule, large time series come along with super-high dimensionality. As
a consequence, it is difficult and inefficient to directly mine the raw time series with-
out relying on dimensionality reduction. Therefore, the representation of the data is
the key to efficient and effective solutions. Given this high data volumes in time se-
ries applications, or simply the need for fast response times, it is necessary to rely
on alternative, shorter representations of these series, usually with loss. This incurs
approximate comparisons of time series where precision is a major issue.

In this thesis, we focus on the problem of segmenting time series before their trans-
formation into symbolic representations. For this, we propose solutions to adaptively
segment time series databases by adopting a variable segment size that depends on
the time series distribution. These methods reduce significantly the information loss
incurred by possible splittings at different steps of the representation calculation, par-
ticularly for datasets with unbalanced (non-uniform) distributions.

After reviewing the state of the art, we propose three novel approaches for effi-
ciently segmenting time series datasets by means of variable size segments. First, we
propose ASAX_EN a novel approach that performs the splitting based on the repre-
sentation’s entropy with an approximate algorithm using a top-down strategy.

Second, we propose ASAX_SSE approach that segments the time series by taking
into account the sum of squared errors (SSE) with an approximate algorithm using a
bottom-up strategy. This method provides high quality results in time series represen-
tation. Also, efficient algorithms for improving the execution time of our segmentation
approach have been proposed.

Third, we propose EASAX_SSE our segmentation method that finds the time do-
main division that guarantees to minimize the SSE of the representation with an exact
method.

Our solutions propose a lower bounding method that allows approximating the
distance between the original time series based on their representations in these ap-
proaches. They have been evaluated using several real world datasets. The results
illustrate that our techniques can significantly improve the time series representation
quality.

Keywords

Time Series, Symbolic Representations, Segmentation, SAX, Entropy, Approximation
Error, Similarity Search, Information Retrieval

RÉSUMÉ

De nombreuses applications dans différents domaines génèrent des données de séries
temporelles à un rythme croissant. Le flux continu de données émises peut concerner
des activités personnelles (par exemple, au moyen de compteurs intelligents ou de
prises connectées pour la consommation d’électricité ou d’eau) ou professionnelles
(par exemple, pour la surveillance de l’activité cardiaque ou à travers les capteurs
installés sur les plantes par les agriculteurs). Il en résulte une production de données
volumineuses et complexes, généralement sous la forme de séries temporelles.

Généralement, les bases de données de séries temporelles sont caractérisées par
leur très grand volume. Par conséquent, il est difficile et inefficace d’exploiter directe-
ment les données de séries temporelles brutes sans avoir recours à la réduction de la
dimensionnalité. Ce verrou motive l’étude de représentations alternatives, plus cour-
tes, qui résument les séries d’origine avec une perte d’information acceptable. Les
comparaisons de séries temporelles qui se basent sur ces représentations sont alors
approximatives, ce qui fait de la précision un enjeu majeur.

Dans cette thèse, nous étudions le problème de la segmentation des séries tem-
porelles avant qu’elles soient transformées en représentations symboliques. Pour cela,
nous proposons des solutions de segmentation adaptative des séries temporelles en
adoptant une taille de segment variable qui dépend de la distribution de ces séries.
Ces méthodes réduisent de manière significative la perte d’information due aux dé-
coupages possibles dans les différentes étapes du calcul de la représentation, en parti-
culier pour les ensembles de données dont les distributions sont non uniformes. Nous
fournissons des garanties théoriques sur la borne inférieure des mesures de simili-
tude entre séries temporelles, et nos résultats montrent que nos techniques peuvent
améliorer considérablement la qualité de la représentation des séries temporelles.

Titre en français

Techniques de segmentation adaptative pour une représentation efficace des séries temporelles

Mots-clés

Séries temporelles, Représentations Symboliques, Segmentation, SAX, Entropie, Er-
reur d’Approximation, Recherche de Similarité, Extraction d’Informations

CONTENTS

1 Introduction 1
1.1 Context . 1
1.2 Contributions . 3
1.3 Organization of the Thesis . 4

2 State of the Art 5
2.1 Time Series Data Mining . 5

2.1.1 Time Series . 5
2.1.2 Time Series Data Mining Tasks . 5

2.2 Time Series Representations and Distance Measures 7
2.2.1 Time Series Representations . 7
2.2.2 Similarity Measures . 10

2.3 Symbolic Aggregate Approximation (SAX) 16
2.3.1 Dimensionality Reduction Via PAA 16
2.3.2 Discretization . 17
2.3.3 Distance Measures . 17
2.3.4 Indexing Extensions . 18
2.3.5 Limitation of SAX . 19
2.3.6 SAX Extensions Based on Trend Feature 19

2.4 Conclusion . 20

3 Variable size segmentation for efficient representation of non-uniform time
series datasets based on entropy 21
3.1 Motivation and Overview of the Proposal 21
3.2 Problem Definition . 22
3.3 Adaptive SAX based on Entropy . 23

3.3.1 Entropy . 23
3.3.2 Variable-Size Segmentation Based on Entropy Measurement . . . 24
3.3.3 Uniform Distribution of Symbols 26

3.4 Lower Bounding of the Similarity Measure 27
3.5 Evaluation and results . 31

3.5.1 Datasets and Experimental Settings 31
3.5.2 Precision of k-Nearest Neighbor Search 34
3.5.3 Time cost of ASAX_EN segmentation algorithm 35

3.6 Conclusion . 35

4 Optimized techniques for time series segmentation based on the approxima-
tion error 37
4.1 Adaptive SAX based on Sum of Squared Error 37

CONTENTS

4.1.1 Sum of Squared Errors (SSE) . 38
4.1.2 SSE of PAA Representation Considering One Segment (LSSE) . . 38
4.1.3 SSE of PAA Representation Considering All Segments (GSSE) . . 39
4.1.4 Variable-Size Segmentation Based on SSE Measurement 41

4.2 ASAX_LSSE based on Dynamic Programming 43
4.3 PASAX : Parallel ASAX_SSE . 46

4.3.1 Parallelization on Data . 47
4.3.2 Parallelization on Segments . 48

4.4 Evaluation and results . 49
4.4.1 Setup . 49
4.4.2 Precision of k-Nearest Neighbor Search 50
4.4.3 Execution time of variable-size segmentation algorithms 52

4.5 Conclusion . 59

5 Time series representation based on the exact error 61
5.1 Motivation and Overview of the Proposal 61
5.2 EASAX_Dyn DP Algorithm description 62
5.3 Performance Evaluation . 65

5.3.1 Precision of k-Nearest Neighbor Search 65
5.3.2 Time cost of EASAX_Dyn segmentation algorithm 66

5.4 Conclusion . 66

6 Conclusion and future directions 69
6.1 Contributions . 69
6.2 Directions for Future Work . 71

Bibliography 74

LIST OF FIGURES

1.1 SAX segmentation Vs. ASAX_LSSE segmentation 2

2.1 Examples of time series data relative to seismic signal from an earth-
quake occurred few kilometers from Greve in Chianti, Italy [1] 6

2.2 A hierarchy of various time series representations found in the litera-
ture. The leaf nodes refer to the actual representation, and the internal
nodes refer to the classification of the approach 8

2.3 Example of techniques that can significantly reduce the dimensionality
of time series [33] . 8

2.4 The Euclidean distance between two time series X and Y results in the
sum of the point-to-point distances (green lines), along all the time series. 12

2.5 The Dynamic Time Warping distance between two time series X and Y
allows many-to-one point comparisons. 14

2.6 Two series (s1 and s2) may be similar in some dimensions (here, illus-
trated by Grid1) and dissimilar in other dimensions (Grid2). The higher
the similarity between t1 and t2, the larger the fraction of grids in which
the series are close. 15

2.7 A time series X is discretized by obtaining a PAA representation and
then using predetermined break-points to map the PAA coefficients into
SAX symbols. Here, the symbols are given in binary notation, where 00
is the first symbol, 01 is the second symbol, etc. The time series of Figure
2.7a in the representation of Figure 2.7c is [first, first, second, fourth]
(which becomes [00, 00, 01, 11] in binary). 17

3.1 ASAX_EN segmentation with 2 segments 24
3.2 The two different scenarios of ASAX_EN segmentation with 3 segments.

Scenario 3.2b is the one chosen because it optimizes the entropy. 26
3.3 The Gaussian based distribution of symbols in SAX are not suitable for

ASAX_EN since they would favor minor information gain. 27
3.4 The data distribution of the tested datasets, and the precision results for

each dataset. p(SAX) and p(ASAX_EN) show the precision of SAX and
ASAX_EN respectively. The datasets are sorted in descending order of
precision gain. 32

3.4 The data distribution of the tested datasets, and the precision results for
each dataset. p(SAX) and p(ASAX_EN) show the precision of SAX and
ASAX_EN respectively. The datasets are sorted in descending order of
precision gain. 33

3.5 Runtime of ASAX_EN segmentation algorithm for each dataset 34

LIST OF FIGURES

4.1 The PAA representation of time series X contains 5 segments. LSSE is
computed on the selected segment S3. 39

4.2 PAA representation of a time series X of length 10 with 5 segments.
GSSE is computed on all segments. 40

4.3 The four different scenarios of ASAX_LSSE segmentation with 4 seg-
ments. Scenario 1 is the one chosen because it provides the minimum
SSE. 43

4.4 State of the matrix at different steps of the algorithm. The updated val-
ues are in red and the possible scenarios are underlined in each step. . . 45

4.5 The three different scenarios of ASAX_SSE segmentation with 3 seg-
ments. Scenario 4.5c is selected since it provides the minimum SSE. . . . 47

4.6 The precision gain for ASAX_GSSE and ASAX_LSSE compared to SAX.
The obtained gain is up to 38% for both methods 51

4.7 An example of dataset on which ASAX_SSE segmentation produces a
precision loss . 52

4.8 The data distribution of the tested datasets, and the precision results
for each dataset. p(SAX), p(ASAX_EN) and p(ASAX_LSSE) show the
precision of SAX, ASAX_EN and ASAX_LSSE respectively. 53

4.8 The data distribution of the tested datasets, and the precision results
for each dataset. p(SAX), p(ASAX_EN) and p(ASAX_LSSE) show the
precision of SAX, ASAX_EN and ASAX_LSSE respectively. 54

4.9 Logarithmic scale. Runtime of ASAX_LSSE and ASAX_EN segmenta-
tion algorithms for each dataset . 55

4.10 ASAX_Dyn’s performance gain on ASAX_SSE in segmentation time,
over all datasets of the archive . 55

4.11 Logarithmic scale. Variable-size segmentation time for ASAX_Dyn and
ASAX_LSSE as a function of time series length, over the HandOutlines
dataset. 56

4.12 ASAX_Dyn’s performance gain on ASAX_LSSE in segmentation time as
a function of dataset size. The time series length is shown in the figure
for each dataset. 56

4.13 Variable-size segmentation time for PASAX_DP and ASAX_LSSE as a
function of dataset size. The original time series are of length 130. 57

4.14 Variable-size segmentation time for PASAX_SP and ASAX_LSSE as a
function of time series length. The dataset size is fixed to 1000. 58

4.15 Comparison of parallel segmentation time using PASAX_DP and PASAX_SP,
as a function of dataset size. The original time series are of length 300. . 58

4.16 Comparison of parallel segmentation time using PASAX_DP and PASAX_SP,
as a function of time series length. The dataset size is fixed to 10 000. . . 59

5.1 The precision gain computation result for EASAX_Dyn approach com-
pared to SAX. The maximum gain achieved is 39 percent. 66

5.2 ASAX_Dyn’s performance gain compared to EASAX_Dyn in segmen-
tation time, over the datasets of the UCR archive. 67

LIST OF TABLES

2.1 A lookup table that contains the breakpoints that divide a Gaussian dis-
tribution in an arbitrary number (from 3 to 7) of equiprobable regions . . 18

3.1 Datasets basic information . 31

4.1 Error calculation for each point in X. 40

5.1 Some statistic information to compare EASAX_Dyn and ASAX_SSE . . 66

LIST OF ALGORITHMS

1 ASAX_EN variable-size segmentation . 25

2 ASAX_SSE variable-size segmentation . 41
3 ASAX_Dyn variable-size segmentation . 44
4 PASAX_DP SSE computation Kernel . 48
5 PASAX_SP SSE computation Kernel . 49

6 EASAX_Dyn variable-size segmentation 62
7 init_errorMatrix . 63
8 segmentation . 64
9 find_segmentation . 65

CHAPTER 1

INTRODUCTION

1.1 Context

Many applications in different domains generate time series data at an increasing rate.
That continuous flow of emitted data may concern personal activities (e.g., through
smart-meters or smart-plugs for electricity or water consumption) or professional ac-
tivities (e.g., for monitoring heart activity or through the sensors installed on plants by
farmers). This results in the production of large and complex data, usually in the form
of time series [14, 3, 7, 20, 10, 38, 5] that challenges knowledge discovery. Data mining
techniques on such massive sets of time series have drawn a lot of interest since their
application may lead to improvements in a large number of these activities, relying on
fast and accurate similarity search in time series for performing tasks like classifica-
tion, clustering and motif discovery [31, 25, 48]. The problem of high dimensionality
in time series data is the main obstacle for time series data mining, and mainly for
defining a form of similarity measure based on human perception.

Because of the considered data volumes in such applications, similarity search can
be slow on raw data. This is why time series approximation is often regarded as a
means to allow fast computation of similarity search. SAX [23] is one of the most pop-
ular representations of time series, allowing dimensionality reduction on classic data
mining tasks. SAX constructs symbolic representations by splitting the time domain
into segments of equal size. This approximation model is effective for time series hav-
ing a uniform and balanced distribution over the time domain. However, we observe
that, in the case of time series having high variation over given time intervals, this
"one size fits all" division into segments of fixed length is not advantageous.

To illustrate the impact of a fixed length division of the series into segments, let us
consider Figure 1.1. It shows a set D of time series, taken from ECGFiveDays dataset
of UCR Archive [11], where the time series length is 130. We can notice that there is
almost no variation from time point 1 to 45 and from 95 to 130. On the other hand,
the remaining part, from time point 45 to 95, shows an important variation in the data
values. Figure 1.1a shows the SAX division on D, with a fixed-size segmentation on
the time series. In this example, the segment size is 10, leading to 13 segments in total.
If we take any time series X from D and convert it into its SAX representation, the
first 4 segments are always represented by the same symbol, all the values of these
4 segments being close to each other. Actually, there is no need to consider these
4 distinct segments. And the same applies to the last 3 segments. Meanwhile, for
segments 5-10, all the values of each segment are represented by a single symbol while
the data values present great variations, causing a significant loss of information on

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130

−6

−4

−2

0

2

4

6

(a) SAX (PAA) segmentation on D, with
13 segments

0 10 20 30 40 50 60 70 80 90 100 110 120 130

−6

−4

−2

0

2

4

6

(b) ASAX_LSSE segmentation on D, with
13 segments

Figure 1.1: SAX segmentation Vs. ASAX_LSSE segmentation

these segments.

As one can observe, it is not necessary to split the parts that are constant or where
the variation is low since they don’t carry any relevant information and would there-
fore better form a single segment. It is more efficient to divide into several small seg-
ments the parts where variation is important in order to preserve potentially relevant
information as shown in Figure 1.1b. The splitting of Figure 1.1b is the actual splitting
obtained by our approach ASAX_SSE with a segment budget limited to 13. It would
be rather counter-intuitive to merge segments 1-5 and 10-13 of Figure 1.1b, while it is
the opposite for the same segment ranges in Figure 1.1a. This observation encourages
us to provide solutions where the time intervals where data values show important
differences would be split to create more segments, e.g., between time point 50 and 90
in the dataset of this illustration. By proposing such a customized splitting, we aim at
improving the performance of information retrieval algorithms that will rely on our
data representation.

The SAX representation proceeds to an approximation by minimizing the dimen-
sionality: the original time series are divided into segments of equal size. This repre-
sentation does not depend on the time series values, but on their length. It allows SAX
to perform the segmentation in O(n) where n is the length of the time series. However,
for a given reduction in dimensionality, the modeling error may not be minimal since
the model does not adapt to the information carried by the series. Our claim is that, by
taking into account the information carried by time series for choosing the segments,
we may obtain significant improvement in the precision of kNN queries. This issue
motivated us for proposing an adaptive representation aiming at minimizing informa-
tion loss.

2

1.2 Contributions

The objective of this thesis is to develop new techniques in order to improve the quality
of similarity search, and to achieve adaptive splitting as illustrated above. For this,
we propose new approximation methods for time series that consider the time series
shape and does the splitting based on some specific measures. These approaches allow
reducing the information loss of the representation, and thus increasing the accuracy
of time series representations leading to better precision during retrieval phases. Our
main contributions are as following:

• Variable size segmentation for efficient representation of non-uniform time
series datasets based on entropy. In this work, we propose ASAX_EN a novel
and efficient method for time series that considers the information carried by
the series and does the splitting by means of segments of variable size on the
time domain by measuring the entropy of symbolic representations. This algo-
rithm chooses between different possible splittings at each step of the represen-
tation computation using a top-down approach. In this method, we create an
initial segmentation and then the top-down approach refines the segmentation
considering every possible partitioning of the time serie and splitting it at the
best location. The choice of division for possible splittings at different steps of
the representation calculation is based on the entropy measurement. The results
obtained in the experiments for this approach show the that this approximate so-
lution allows reducing information loss and thus increasing the accuracy of time
series representations, particularly for datasets with unbalanced (non-uniform)
distributions.

• Optimized techniques for time series segmentation based on the approxima-
tion error. In this work, we study the problem of finding the variable-size seg-
mentation that minimizes the approximation error of the time series represen-
tation. We propose ASAX_SSE, an efficient solution that allows obtaining a
variable-size segmentation of time series based on sum of squared error (SSE) that
measures the error of the representation. We adopted a bottom-up algorithm for
this approach in order to achieve better results in accuracy of time series rep-
resentations since it creates the finest possible approximation of the time series.
After the initialisation with a large number of fine segments, they are then gradu-
ally merged depending on the lowest cost pair of adjacent segments. To improve
the execution time of this segmentation approach, we propose ASAX_Dyn that
finds the adaptive segmentation by means of dynamic programming. We also
propose efficient parallel algorithms, called PASAX_DP and PASAX_SP, that im-
prove the execution time of our segmentation approach using GPUs. The exper-
imental results illustrate the good performance of ASAX_SSE, which confirms
the effectiveness of our approach.

• Time series representation based on the exact error. In this work, we propose
EASAX_SSE an exact algorithm for solving the segmentation problem based on

3

the SSE measurement to achieve optimal segmentation with our representation.
This method finds the adequate variable-size segments such that the combined
error of all segments is minimal. The optimal segmentation of time series is de-
fined as the segmentation that results in the lowest segmentation error in relation
to other possible combinations of segmentation. This approach provides excel-
lent performance gains in terms of precision for similarity search, although its
execution time is higher than the approximate techniques.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows.
In Chapter 2, we review the state of the art. It is divided into four main sections:

In Section 2.1, we define the time series, and give a general overview of the main
techniques for mining time series. In Section 2.2, we introduce the time series repre-
sentation techniques and solutions that have been proposed to deal with the problem
of high dimensionality in time series data. In Section 2.3, We present the detail of SAX,
one of the most popular methods that have been proposed in the literature for dimen-
tionality reduction. Finally, we discuss the major limitation of SAX and present some
related research initiatives work on enhancing the SAX representation.

In Chapter 3, we deal with the problem of time series segmentation. In Section 3.3,
we propose ASAX_EN that allows obtaining a variable-size segmentation of time se-
ries with better precision in retrieval tasks based on entropy measurement and using a
top-down algorithm. In Section 3.5, we assess the efficiency of our proposed approach
by carrying out experiments with several datasets.

In Chapter 4, we propose our second solution to deal with the problem of seg-
menting time series called ASAX_SSE. In Section 4.1, we propose the basic algorithm
ASAX_SSE that allows obtaining a variable-size segmentation of time series using a
bottom-up strategy and based on the SSE (Sum of Squared Error) of the representation.
In Section 4.2 we propose an efficient algorithm called ASAX_Dyn for improving the
execution time of our segmentation approach, by means of dynamic programming. In
Section 4.3, we propose efficient parallel algorithms for improving the execution time
of our segmentation approach using GPUs. In Section 4.4, we validate our approach
by carrying out various experiments using more than 120 datasets.

In Chapter 5, we propose an exact approach for time series segmentation using
a dynamic programming algorithm. In Section 5.2, we propose our exact segmen-
tation technique, called EASAX_DP, that finds the exact variable size segmentation
which minimizes the SSE of the representation. In Section 5.3, we validate our pro-
posal through different experiments using real world datasets.

Finally in Chapter 6, we conclude our work and give suggestions for further im-
provements and possible directions of research.

4

CHAPTER 2

STATE OF THE ART

In this chapter, we introduce the basics and the necessary background of this thesis. It
is organized as follows. First, we formally define time series. Then, we introduce the
problem of similarity search in time series datasets, and discuss the main existing tech-
niques and methods that have been proposed for this problem. Afterwards, we focus
on time series representation, and discuss the most efficient approaches proposed in
the literature.

2.1 Time Series Data Mining

The increasing use of time series data has initiated a great deal of research and de-
velopment attempts in the field of data mining. Mining is the final goal to discover
hidden information or knowledge from either the original or the transformed time
series data.

2.1.1 Time Series

Definition 1 A time series T is a series of n data points indexed in time order.

T = (t1, t2, ..., tn), ti ∈ R

Most commonly, a time series is a sequence taken at evenly-spaced intervals. Thus it is a
sequence of discrete-time data. A time series is often the result of the observation of an un-
derlying process. Examples of time series data are weather records, economic indicators and
patient health evolution metrics. An obvious example for a time series is the daily closing value
of the Dow Jones Industrial Average. Figure 2.1 shows an example of a time series from an
earthquake occurred few kilometers from Greve in Chianti, Italy [1].

2.1.2 Time Series Data Mining Tasks

Time series data mining has attracted an increasing interest due to its wide applica-
tions in many domains. Time series analysis comprises methods for analyzing time
series data in order to extract meaningful statistics and other characteristics of the
data. Nowadays, several techniques have been developed and applied to time series
data, e.g. , clustering , classification, indexing, etc. This section provides an overview
of the main tasks that have attracted wide research interest in time series data mining.

5

Figure 2.1: Examples of time series data relative to seismic signal from an earthquake
occurred few kilometers from Greve in Chianti, Italy [1]

2.1.2.1 Similarity Search and Indexing

Time series indexing schemes are designed for efficient time series data organization
and especially for fast similarity search in large databases. Given a query time series Q
the goal is to retrieve similar time series from a collection using a similarity measure.
Using a sequential or linear scan of a whole database of raw data to find the most
similar time series to a given query is very costly. Therefore, in order to speedup
the similarity search over time series, indexing techniques have been developed. To
speed up sequence retrieval and to deal with the high dimensionality of this data, first,
dimensionality reduction techniques are applied on the raw data and then, the results
are stored in index structures adapted for the given representation.

2.1.2.2 Clustering

Clustering is the process of finding natural groups, called clusters, in a dataset under
some similarity or dissimilarity measure. The objective is to find the most homoge-
neous clusters that are as distinct as possible from other clusters. In other words,
those groups should minimise intra cluster variance while maximising inter cluster
variance. In [33] the clustering is defined as the unsupervised version of classification
since the instances are not previously labeled with class.

2.1.2.3 Classification

Classification of time series is a further traditional data mining task. While cluster-
ing aims at finding the naturally present groups in a dataset, classification creates a
mapping from given unlabeled time series to existing classes (predefined in advance).
Classification approaches first build a classification model based on a training data
set containing labeled observation or time series. Then, the built models are used to

6

predict the label of a new, unlabeled observation or sequence of a time series. Classi-
fication as data mining task is assigned to the supervised learning algorithms in the
machine learning jargon.

2.1.2.4 Segmentation

Time series segmentation can be considered either as a preprocessing step for many
data mining tasks. It is also considered as a discretization problem. The segmentation
(summarization) task aims at creating an accurate approximation of time series, by
reducing its dimensionality while retaining its essential features.

2.1.2.5 Anomaly Detection

The detection of anomalies seeks to find abnormal subsequences in a series. Given a
time series T and a model of its normal behavior, the goal is to find all subsequences
of T which contain anomalies, i.e. which do not fit the model.

2.1.2.6 Motif discovery

Motif discovery is another typical task in the field of time series data mining, and con-
sists in finding the subsequences, frequent patterns, or motifs that appear recurrently
in a longer time series. This idea was transferred from gene analysis in bioinformat-
ics. Motif discovery comes usually along with clustering methods, as the occurrence
frequency of patterns in time series subsequences can naturally be found by clustering.

2.2 Time Series Representations and Distance Measures

Many time series datasets are usually large and high dimensional, and this is a major
issue with time series data mining. Similarity search over these data is computation-
ally too expensive, so it is important to estimate the distance between two time series
very quickly. Therefore the analytical tasks are often performed not on the raw data
itself, but on a more abstract representation by reducing the dimension (i.e. the num-
ber of data points). In order to reduce execution time and storage space, many high
level representations or abstractions of the raw time series data have been proposed.
In this section, we present these representations techniques and tools for large time se-
ries. We also introduce similarity measures that are the backbone of many data mining
applications.

2.2.1 Time Series Representations

Definition 2 Time series representations The representation of a time series X = (x1, ..., xn)

of length n is a model X̃ of reduced dimensionality w (w << n), such that X̃ approximates X.

7

Time Series Representations

Data Adaptive

Sorted
Coefficients

Piecewise
Polynomial

Piecewise
Linear

Approximation

Interpolation Regression

Adaptive
Piecewise
Constant

Approximation

Singular
Value

Decomposition Symbolic

Strings

Lower
Bounding

Symbolic
Aggregate

approximation

Non-Lower
Bounding

Natural
Language

Trees

Non-Data Adaptive

Wavelets

Orthonormal

Haar
Wavelets Daubechies

Bi-Orthonormal

Coiflets Symlets

Random
Mappings Spectral

Discrete
Fourier

Transform

Discrete
Cosine

Transform

Piecewise
Aggregate

Approximation

Model Based

Statistical
Models

Hidden
Markov
Models

Figure 2.2: A hierarchy of various time series representations found in the literature.
The leaf nodes refer to the actual representation, and the internal nodes refer to the
classification of the approach

Figure 2.3: Example of techniques that can significantly reduce the dimensionality of
time series [33]

In the literature, many techniques have been proposed that represent time series
with reduced dimensionality, and then apply a distance function to measure the simi-
larity between transformed time series. For example, Discrete Fourier Transformation
(DFT) [3], Single Value Decomposition (SVD) [14], Discrete Wavelet Transformation
(DWT) [7], Piecewise Aggregate Approximation (PAA) [20], Adaptive Piecewise Con-
stant Approximation (APCA) [6], Chebyshev polynomials (CHEB) [4], Piecewise Lin-
ear Approximation (PLA) [37, 9] and Symbolic Aggregate approXimation (SAX) [24].
This latter takes the PAA representation as an input and discretizes it into a small al-
phabet of symbols as we will show later. Figure 2.3 shows examples of such techniques
that can significantly reduce the time and space.

Time series representations can be classified into three main categories of dimen-
sionality reduction techniques according to the kind of transformations applied. In
this section, we will discuss these approaches and outline the most relevant methods.
Figure 2.2 shows the different categories proposed by [27, 23, 12, 13] and some of their
methods.

8

2.2.1.1 Non Data-Adaptive

Non data-adaptive representation techniques use the same transformation parameters
regardless the features of the the underlying data for dimensionality reduction. So,
the transformation parameters are fixed a priori. These techniques are based on the
idea of spectral decomposition, that any time sequence can be represented by a finite
number of trigonometric functions. Operating in the frequency domain is valid as the
Euclidean distances between two time series is the same in the time and frequency do-
mains, and hereby preserve distances. For example, Discrete Fourier Transform (DFT)
[3] projects a time series into the frequency domain, by decomposing the series into a
finite number of sine and cosine waves which are represented by complex coefficients,
the Fourier coefficients. Only the first few waves appear to be dominant and therefore
are kept for lower bounding of the actual distances, and the rest can be omitted with-
out any great impact on the reconstruction error. Similar to DFT, wavelet coefficients
give local contributions to the reconstruction of the signal, while Fourier coefficients
always represent global contributions to the signal over all the time. [30] demonstrate
that a large class of wavelets are applicable for time series dimension reduction. One
popular wavelet is the so called "Haar" wavelet proposed to use in the time series
data mining context by [39]. Haar wavelet is the simplest type of wavelet. In discrete
form, Haar wavelets are related to a mathematical operation called the Haar trans-
form. The Haar transform serves as a prototype for all other wavelet transforms. The
Haar transform is a series of averaging and differencing operations on a time series
[7]. The average and difference between every two adjacent data points are computed
and used for representing the time series. A completely different approach, especially
tailored to time series data mining, is the Piecewise Aggregate Approximation (PAA)
proposed by [20, 42]. The very simple idea appears to be competitive in comparison
to the more sophisticated transformations [27]. In this approach, the time series is
divided into w equal sized segments. The mean value of the data falling within a seg-
ment is calculated and a vector of these values called "PAA coefficients" becomes the
data-reduced representation.

2.2.1.2 Data-Adaptive

Data adaptive representation techniques are (more) sensitive to the nature of the data
at hand. The transformation parameters are chosen depending on the available data
and not fixed a priori as for non data-adaptive techniques. By adding a data-sensitive
selection step, almost all non data-adaptive techniques can become data-adaptive ap-
proaches. As DFT and DWT, Singular Value Decomposition (SVD) [14] is another
transformation-based approach, while DFT and DWT apply local transformations,
SVD acts globally. SVD examines the entire data and rotates the axes to maximise
variance along the first few dimensions [34]. Although SVD is an optimal transforma-
tion in the sense of minimal reconstruction error [20], it requires the computation of
eigenvalues for large data matrices making it computationally very expensive [13, 6]
PLA [37] is a widely used approach for the segmentation task. The set of polyno-
mial coefficients can be obtained either by interpolation [21] or regression [16]. Many

9

derivatives of this technique have been introduced. In [6], the authors propose an
extension of the PAA approach, called Adaptive Piecewise Constant Approximation
(APCA). While PAA stores the means of consecutive fixed length segments, APCA
allows the segments to be of different length, thus more adapting to the data. In this
way, we try to minimize the individual reconstruction error of the reduced time se-
ries. A very frequently used and probably the most popular dimensional reduction
and indexing technique is based on a symbolic representation and called SAX. It was
introduced by [23]. Based on the same underlying idea as PAA, SAX (Symbolic Ag-
gregate Approximation) calls on equal frequency histograms on sliding windows to
create a sequence of short words. SAX is said to outperform all other dimensionality
reduction techniques (we will present this approach in detail in Section 2.3). An ex-
tension of SAX, called indexable Symbolic Aggregate approXimation (iSAX) [38], has
been proposed to make fast indexing possible by providing zero overlap at leaf nodes.
It allows extensible hashing and indexing of terabyte sized time series.

2.2.1.3 Model-based

The paradigm of model based representation techniques builds on the idea that the ob-
served time series are usually produced by an underlying model. Therefore, the goal
of these techniques is to find the parameters of the corresponding underlying model.
Dimensionality reduction is obtained by representing the time series by the model’s
parameters, used to produce the series. As a consequence, time series similarity is
measured based on the model parameters [13]. Several parametric temporal models
can be considered, such as statistical modeling via feature extraction [28], or more com-
plex models such as Auto Regressive Moving Average (ARMA) [19], Markov Chains
(MCs) [35] or Hidden Markov Models (HMM) [29]. The objective of those approaches
is not often the explicit reduction of dimensionality, but the improvement of similarity
distances for further tasks such as clustering or classification [19, 29].

2.2.2 Similarity Measures

Similarity measures indicate the level of similarity/dissimilarity between time series.
Similarity measure is of fundamental importance for almost all data mining tasks (i.e.
clustering, classification, pattern discovery, etc.).

Definition 3 Similarity measure A similarity measure D(X, Y) between the time series X
and Y is a function that takes two times series as input and returns their distance d (d ≥ 0).

Similarity measures impose the major capacity constraints on time series data min-
ing algorithms [31]. The faster the similarity measure computation algorithm, the
faster is the whole time series data mining procedure.The list of approaches for deal-
ing with time series similarity is vast. Many different systematizations of time series
similarity measures exist.
In [13], four categories of similarity measures are defined in order to calculate the sim-
ilarity of the time series:

10

• Shape-based distances : that compare the overall appearance of the time series.

• Feature-based distances : that extract the features that usually describe the time
independent aspects of the series that are compared with static distance func-
tions.

• Model-based distances : that fit a model to the data and measure the similarity
by comparing the models.

• Compression-based distances : that analyze how well time series can be com-
pressed alone and together.

Furthermore, we distinguish between elastic and lock-step similarity measures.
Lock-step measures compare the ith point of time series X to the ith point of time se-
ries Y. In contrast to that, elastic similarity measures allow a flexible comparison and
additionally compare one-to-many or one-to-none points of X to Y. In this section,
we present the most popular representative examples of different families of time se-
ries similarity measures: lock-step measures (Euclidean distance) and elastic measures
(Dynamic Time Warping).

2.2.2.1 Euclidean distance

The simplest way to estimate the similarity between two time series is to use any Lp

norm which correspond to the group of lock-step measures such that :

Lp(X, Y) = (
n

∑
i=1

|xi − yi|p)
1
p

where X and Y are time series of length n and xi and yi are the ith element of time
series x and y, respectively. p is a positive integer that denotes the norm in use.
When p = 2 we obtain the Euclidean distance, one of the most straightforward sim-
ilarity measure used in time series similarity measures, favored by its computational
simplicity and indexing capabilities.

Given two time series X = {x1, ..., xn} and Y = {y1, ..., yn}, the Euclidean distance
between X and Y is defined as [14]:

ED(X, Y) =

√
n

∑
i=1

(xi − yi)2

Figure 2.4 shows an example of the Euclidean distance between two time series X and
Y.

The Euclidean distance is an effective measurement of similarity between two time
series, however it presents several drawbacks, which make it inappropriate in certain
applications, for example it cannot be applied to time series of different lengths and it
doesn’t handle outliers or noise.

11

Figure 2.4: The Euclidean distance between two time series X and Y results in the sum
of the point-to-point distances (green lines), along all the time series.

The Z-normalized Euclidean Distance

Normalization is a transformation process to obtain numerical and comparable in-
put data by using a common scale. Data normalization is essential for many decision-
making problems, allowing to obtain dimensionless units from heterogeneous data
measurements, which can be aggregated for rating and ranking decision alternatives.

The z-normalized Euclidean distance Dze is defined as the Euclidean distance be-
tween the z-normalized or normal form of two sequences, where the z-normalized
form is obtained by transforming a sequence X of length n such that it has mean µ = 0
and standard deviation σ = 1.

Given two time series X and Y, let µX and µY be the mean of the values in X and
Y respectively. Also, let σX and σY be the standard deviation of the values in X and Y
respectively. Then, the z-normalized Euclidean distance between X and Y is defined
as:

Dze(X, Y) =

√
n

∑
i=1

(
xi − µX

σX
− yi − µY

σY
)2

Matrix profile [41] has been recently proposed as a promising technique to the
problem of all-pairs-similarity search on time series. Given a time series X and a sub-
sequence length m, the matrix profile returns for each subsequence included in X its
distance to the most similar subsequence in the time series. The matrix profile is it-
self a time series very useful for data analysis, e.g., detecting the motifs (represented
by low values), discords (represented by high values), etc. Efficient algorithms have
been proposed for computing it, e.g., STAMP [41], STOMP [46] and SCRIMP++ [45].
All these algorithms use the z-normalized Euclidean distance to measure the distance
between subsequences.

2.2.2.2 Dynamic time warping

Dynamic Time Warping (DTW) [32] is the most popular elastic shape based similarity
measure proposed to handle warps in the temporal dimension. DTW gives more ro-
bustness to the similarity computation. By this method, time series of different length
can be compared, because it replaces the one-to-one point comparison, used in Eu-
clidean distances with both many-to-one point and one-to-many point comparisons.

12

The main feature of this distance measure is that it allows to recognize similar shapes,
even if they present signal transformations, such as shifting and/or scaling. Let us
take two time series X = (x1, x2, ..., xn) and Y = (y1, y2, ..., ym) of length n and m re-
spectively. An alignment by DTW method exploits information contained in a n × m
distance matrix, we compute the cost measure d(xi, yi) for each sample pair of both
series, we obtain the distance matrix DM ∈ Rn×m where :

dm(j, j) = d(xi, yj) = (xi − yj)
2, 1 ≤ i ≤ n, 1 ≤ j ≤ m

The DTW objective is to find the warping path P = (p1, p2, ..., pL) by optimally align-
ing the time series in the temporal domain so that the accumulated distances of this
alignment is minimal. The optimal path that minimizes the total cost is defined as :

DTW(X, Y) = min
(√√√√ L

∑
l=1

pl

)

This path has to fulfill some constraints in order to optimize the solution found :
Given pl = (i, j) and pl−1 = (i′, j′) with i, i′ ≤ n and j, j′ ≤ m :

• Boundary conditions : p1 = (1, 1) and pL = (n, m), i.e, the alignment path starts
at the bottom left and ends at the top right of the distance matrix DM which
guarantees that the alignment does not consider partially one of the sequences.

• Monotonicity : i − i′ ≥ 0 and j − j′ ≥ 0, i.e, the alignment path does not go back
in time index which guarantees that features are not repeated in the alignment.

• Continuity : i − i′ ≤ 1 and j − j′ ≤ 1, i.e, the alignment path does not jump
in “time” index which guarantees that the alignment does not omit important
features.

• Warping window : |i − j| ≤ r, where r > 0 is the window length. This defines
that a good alignment path is unlikely to wander too far from the diagonal which
guarantees that the alignment does not try to skip different features and gets
stuck at similar features.

This warping path can be obtained by dynamic programming using an accumu-
lated distance matrix DM′, recursively applying :

DM′(i, j) = d(xi, yj) + min{DM′(i − 1, j − 1), DM′(i − 1, j), DM′(i, j − 1)}

In [66], the authors show that DTW is significantly more accurate than the Euclidean
distance for small datasets, and the difference diminishes as the datasets get larger
until there is no measurable difference.

13

Figure 2.5: The Dynamic Time Warping distance between two time series X and Y
allows many-to-one point comparisons.

2.2.2.3 The Sketch Approach

In [47], Zhu et al. propose random projection method based on random vectors. The
basic idea is to multiply each time series with a set of random vectors. The result of
that operation is a "sketch" for each time series consisting of the distance (or similarity)
of the time series to each random vector. Then two time series can be compared by
comparing sketches. The sketches are used to approximate the distance between each
pair of time series. The random projection can approximate different types of distances
like Euclidean Distance and Lp Distance. The sketch approach is a kind of Locality
Sensitive Hashing [15], by which similar items are hashed to the same buckets with
high probability. In particular, it is similar in spirit to SimHash [8], in which the vectors
of data items are hashed based on their angles with random vectors.

The sketch approach, as developed by Kushilevitz et al. [22], Indyk et al. [17], and
Achlioptas [2], provides a very nice guarantee: with high probability a random map-
ping taking b points in Rm to points in (Rd)2b+1 (the (2b+1)-fold cross-product of Rd

with itself) approximately preserves distances.
The sketch of a time series is computed as follows. Given a time series t ∈ Rm,

we compute its dot product with N random vectors ri ∈ {1,−1}m. This results in N
inner products called the sketch (or random projection) of ti. Specifically, sketch(ti) =

(ti • r1, ti • r2, ..., ti • rN). We compute sketches for all time series of a dataset using the
same random vectors r1, ..., rN.

The theoretical underpinning for the utilization of sketches is given by the Johnson-
Lindenstrauss lemma [18].

Lemma 1 Given a collection C of m time series, for any two time series −→x ,−→y ∈ C, if ϵ < 1/2

and n =
9logm

ϵ2 , then

(1 − ϵ) ≤ ∥ −→s (−→x)−−→s (−→y) ∥2

∥ −→x −−→y ∥
≤ (1 + ϵ)

holds with probability 1/2, where −→s (−→x) is the sketch of −→x of at least n dimensions.

The Johnson-Lindenstrauss lemma implies that the distance ∥sketch(ti)− sketch(tj)∥
is a good appproximation of ∥ti − tj∥ provided the dimensionality of the sketches (r) is

14

b
b

b

b

0

3

6

9

9 12 15 18
12

15

18

21

7 10 134

s1 s2

s1

s2

Figure 2.6: Two series (s1 and s2) may be similar in some dimensions (here, illustrated
by Grid1) and dissimilar in other dimensions (Grid2). The higher the similarity be-
tween t1 and t2, the larger the fraction of grids in which the series are close.

large enough. Specifically, if ∥sketch(ti)− sketch(tj)∥ < ∥sketch(tk)− sketch(tm)∥,
then it’s likely that ∥ti − tj∥ < ∥tk − tm∥, because the ratio between the sketch distance
and the real distance is close to one.

A sketch of a time series t is a vector of dot products: element i of the sketch is
the dot product between t and the ith random vector. Thus, the full sketch contains as
many dot products as there are random vectors.

The data structure consists of a set of grids. Each grid maintains the sketch values
corresponding to the dot products between a specific set of random vectors and all
time series. Let |g| be the number of random vectors assigned to each grid, and N be
the total number of random vectors, then the total number of grids is b = N/|g|. (We
make sure that |g| divides N.) The distance between two time series in different grids
may differ. We consider two time series similar if they are similar in a given (large)
fraction of grids.

Example 1 Let’s consider two time series t1=(2, 2, 5, 2, 6, 5) and t2=(2, 1, 6, 5, 5, 6). Suppose
that we have generated four random vectors as follows : r1=(1, -1, 1, -1, 1, 1), r2=(1, 1, 1, -1, -1,
1), r3=(-1, 1, 1, 1, -1, 1) and r4=(1, 1, 1, -1, 1, 1). Then the sketches of t1 and t2, i.e. the inner
products computed as described above, are respectively s1=(14, 6, 6, 18) and s2=(13, 5, 11,
15). In this example, we create two grids, Grid1 and Grid2, as depicted in figure 2.6. Grid1 is
built according to the sketches calculated with respect to vectors r1 and r2 (where t1 has sketch
values 14 and 6 and t2 has sketch values 13 and 5). In other words, Grid1 captures the values
of the sketches of t1 and t2 on the first two dimensions (vectors). Grid2 is built according to
vectors r3 and r4 (where t1 has sketch values 6 and 18 and t2 has sketch values 11 and 15).
Thus, Grid2 captures the values of the sketches on the last two dimensions. We observe that t1

and t2 are close to one another in Grid1. On the other hand, t1 and t2 are far apart in Grid2.

Partitioning Sketch Vectors
Multi-dimensional search structures don’t work well for more than four dimensions
in practice [36]. For this reason, as indicated in Example 1, each sketch vector is parti-
tioned into subvectors, then grid structures are built for the subvectors as follows:

• Each sketch vector s of size N is partitioned into groups of some size |g|.

• The ith group of each sketch vector s is placed in the ith grid structure (of dimen-
sion |g|).

15

• If two sketch vectors s and s′ are in the same cell in more than a given fraction
f of the grids, then the corresponding time series are candidates for similar time
series and should be checked exactly.

For example, if each sketch vector is of length N = 40, we might partition each one
into ten groups of size |g| = 4. This would yield 10 grid structures, where time series
items are assigned to grid cells, so that close items are grouped in the same grid cells.
Suppose that the fraction f is 90%, then a time series t is considered as similar to a time
series t′, if they are similar (assigned to the same cell) in at least nine grids.

Grid granularity can be adjusted to control the tradeoff between efficiency and
accuracy. Coarser grids have larger grid cells (i.e. more time series assigned to the
same cell), which leads to a larger number of candidates to process (slower execution),
but lower probability to miss a true positive (higher accuracy). The grid granularity
is defined through the parameter grid_size that specifies the number of cells per grid
dimension. At the cell assignment step, grids are divided into cells in a way that results
in a uniform distribution of items across grid cells. This is supported by a sampling
phase that infers the distribution and defines the cell borders along each dimension of
each grid.

2.3 Symbolic Aggregate Approximation (SAX)

Many symbolic representations of time series have been introduced over the past
decades. The challenge in this field is to create a real correlation between the dis-
tance measure defined on the symbolic representation, and that defined on original
time series. SAX [23] is the most known symbolic representation technique on time
series data mining that ensures both a considerable dimensionality reduction and the
lower bounding property, allowing enhancing of time performances on most of data
mining algorithms.
SAX allows a time series X of length n to be reduced to a string of arbitrary length w
(and, usually, w << n). This transformation is done in two major steps: (1) transform-
ing the raw data into a (PAA) representation, (2) transforming the PAA representation
into a sequence of symbols belonging to a predefined set of alphabets, with a given
cardinality.

2.3.1 Dimensionality Reduction Via PAA

A time series X of length n can be represented in a w-dimensional space that is X =

(x1, x2, ..., xw), the ith element of X is the average of the ith segment values and is cal-
culated by the following equation :

xi =
w
n

n
w i

∑
j= n

w (i−1)+1
xj

In other words, the time series is divided into w equal-sized segments, for each seg-
ment, the mean value of the data value falling in it is calculated and a vector of these

16

0 2 4 6 8−2

−1

0

1

2

(a) A time series X of
length 8

0 2 4 6 8−2

−1

0

1

2

(b) A PAA representation of
X, with 4 segments

0 2 4 6 8−2

−1

0

1

2

00

01
10

11

(c) A SAX representation of
X, with 4 segments and car-
dinality 4, [00, 00, 01, 11]

Figure 2.7: A time series X is discretized by obtaining a PAA representation and then
using predetermined break-points to map the PAA coefficients into SAX symbols.
Here, the symbols are given in binary notation, where 00 is the first symbol, 01 is
the second symbol, etc. The time series of Figure 2.7a in the representation of Figure
2.7c is [first, first, second, fourth] (which becomes [00, 00, 01, 11] in binary).

values becomes the data-reduced representation. Example 2 gives an illustration of
PAA.

Example 2 Figure 2.7b shows the PAA representation of X, the time series of Figure 2.7a.
The representation is composed of w = |X|/l values, where l is the segment size. For each
segment, the set of values is replaced with their mean. The length of the final representation w
is the number of segments (and, usually, w << |X|).

2.3.2 Discretization

The SAX representation takes as input the reduced time series obtained using PAA.
It discretizes this representation into a predefined set of symbols, with a given cardi-
nality. In this step, PAA coefficients are mapped into alphabetic symbols by using a
lookup table that contains breakpoints for separating the symbols. The breakpoints βi
depend on the alphabet set size. They are derived using a Gaussian distribution such
that the area from βi to βi+1 is 1

a where a is the alphabet size. These breakpoints may be
determined by looking them up in a statistical table. Table 2.1 shows the breakpoints
for different alphabet sizes (a from 3 to 7) .

Example 3 gives an illustration of the SAX representation.

Example 3 In Figure 2.7c, we have converted the time series X to SAX representation with
size 4, and cardinality 4 using the PAA representation shown in Figure 2.7b. We denote
SAX(X) = [00, 00, 01, 11].

2.3.3 Distance Measures

As discussed in Section 2.2.2.1, the Euclidean distance is one of the most popular
similarity measurement methods used in time series analysis. Given two time se-
ries X = {x1, ..., xn} and Y = {y1, ..., yn}, the Euclidean distance between X and Y is

17

β\a 3 4 5 6 7
β1 -0.43 -0.67 -0.84 -0.97 -1.07
β2 0.43 0 -0.25 -0.43 -0.57
β3 0.67 0.25 0 -0.18
β4 0.84 0.43 0.18
β5 0.97 0.57
β6 1.07

Table 2.1: A lookup table that contains the breakpoints that divide a Gaussian distri-
bution in an arbitrary number (from 3 to 7) of equiprobable regions

defined as [14]:

ED(X, Y) =

√
n

∑
i=1

(xi − yi)2

By transforming the original time series X and Y into PAA representations X = {x1, ..., xw}
and Y = {y1, ..., yw}, the lower bounding approximation of the Euclidean distance for
these two representations can be obtained by:

DR f (X, Y) =
√

n
w

√
w

∑
i=1

(xi − yi)
2

If we further transform the data into the symbolic representation, the lower bound-
ing approximation of the Euclidean distance for SAX representation X̂ = {x̂1, ..., x̂w}
and Ŷ = {ŷ1, ..., ŷw} of two time series X and Y is defined as:

MINDISTf (X̂, Ŷ) =
√

n
w

√
w

∑
i=1

(dist(x̂i, ŷi))2

This function resembles the DR f function except for the fact that the distance between
the two PAA coefficients has been replaced with the sub-function dist(). The function
dist(x̂i, ŷi) is the distance between two SAX symbols x̂i and x̂i.
The lower bounding condition is formulated as:

MINDISTf (X̂, Ŷ) ≤ ED(X, Y)

2.3.4 Indexing Extensions

The classic SAX representation offers the potential to be indexed. iSAX [38] is an in-
dexable version of SAX designed for indexing large collections of time series. iSAX is
based on a modification of the SAX representation to allow extensible hashing. The
advantage of iSAX over SAX is that it allows the comparison of words with different
cardinalities, and even iSAX words where each word has its own cardinality. The iSax
tree index is built as follows. Given a cardinality a, an iSAX word length w and leaf
capacity th, we produce a set of bw children for the root node, insert the time series to
their corresponding leaf, and gradually split the leaves by increasing the cardinality

18

by one if the number of time series in a leaf node rises above the given threshold th.
Other extensions of SAX have been proposed for improving the similarity search per-
formance via indexing. For example, iSAX 2.0 [5] proposes a new mechanism and also
algorithms for efficient bulk loading and node splitting policy, which is not supported
by iSAX index. In [5], two extensions of iSAX 2.0, namely iSAX 2.0 Clustered and
iSAX2+, have been proposed. These extensions focus on the efficient handling of the
raw time series data during the bulk loading process, by using a technique that uses
main memory buffers to group and route similar time series together down the tree,
performing the insertion in a lazy manner.

2.3.5 Limitation of SAX

Despite the benefits of time series representation techniques, the reduction of dimen-
sionality of a time series will highly influence the outcome of further processing. We
can not expect an analysis performed on an approximation to yield results of same
quality as one would obtain on the original data. A big challenge in elaborating a
reduction technique is to establish a good compromise between dimensionality reduc-
tion and accuracy. This means that the features, which are extracted by the reduction
technique from the data, should keep to a high extent information about the original
data. The SAX representation proceeds to an approximation by minimizing the dimen-
sionality: the original time series are divided into segments of equal size. SAX enjoys
a good reduction, but its major limitation is that it only relies on the computation of
the mean values to derive the symbols on fixed-size segments.

2.3.6 SAX Extensions Based on Trend Feature

Several research works raised the loss of trend issue that comes with SAX. Indeed, av-
eraging the values of a segment makes possible to have different segments trends with
the same average value. Such segments will be mapped to the same symbol. Accord-
ingly, related research initiatives worked on enhancing the SAX representation. There
have been SAX extensions designed to improve the representation of each segment
by capturing the trend with different feature, while using the SAX fixed-size segmen-
tation. ESAX [26] is an extension of SAX in which a time series segment uses two
additional points, max and min, in equal sized segments besides the mean value for
data approximation in order to improve the classic SAX.

SAX_TD [40] uses the starting and end points of a segment for the sake of improv-
ing the SAX distance with the trend calculation. It captures the trends of time series
in numerical form by approximating the measure of trends using the difference be-
tween the average and the starting point of the segment, and the difference between
the average and the ending point of the segment.

In SAX_SD [43], the standard deviation of the segment is considered as another
feature to improve SAX. It includes the difference between standard deviations of dif-
ferent segments, and comes with a new distance that has a tighter bound compared to
the original SAX.

19

In EN_SAX [44], the authors propose to calculate the entropy values of the seg-
ments and to use them as additional features to improve the SAX method. However,
the segmentation in SAX and these extensions is not adaptive to the data since they di-
vide the time domain based on fixed-size segments, which causes the missing of some
important features in certain time series datasets.

2.4 Conclusion

In this chapter, we discussed the state of the art about time series representations. We
gave an overview of time series data mining and a brief description of the main tasks
in time series data mining that have attracted extensive research interest. Also, we
discussed the time series representations techniques that have been widely used, par-
ticularly SAX, being the most known symbolic representation technique on time series
data mining, that ensures both a considerable dimensionality reduction, and the lower
bounding property, allowing enhancing of time performances on most of data mining
algorithms. Despite the advantage of the SAX representation, its dimensionality re-
duction technique by means of equal sized segments is not efficient. In this thesis, we
propose our adaptive segmentation approaches based on variable-length segmenta-
tion to increase the quality of time series approximation by taking into account various
metrics allowing to measure the representation error. Our solutions are complemen-
tary to the existing SAX extensions, e.g., indexing based techniques or those that use
the trend for representing the segments. This makes our variable-size segmentation an
advantageous alternative for segmenting the time domain in indexing solutions like
iSAX.

20

CHAPTER 3

VARIABLE SIZE SEGMENTATION FOR

EFFICIENT REPRESENTATION OF

NON-UNIFORM TIME SERIES DATASETS

BASED ON ENTROPY

Many time series datasets are large and high dimensional. Accessing each point is
computationally too expensive, therefore analysis is often performed not on the raw
data itself, but on a more abstract representation obtained through dimensionality re-
duction techniques. This has the advantage of requiring less space and speeding up
calculation procedures but comes at the price of an approximation in the uses of these
representations like, e.g., comparisons for retrieval. Usually, the goal of dimensional-
ity reduction for time series representations is to lower computation time and memory
usage, while guaranteeing minimum performances like precision of retrieval requests
that are based on comparisons of the representations. The results of these comparisons
are expected to be close to the results obtained on the original data.

In this chapter, we propose an approximation method for time series that considers
the time series shape and does the splitting by means of segments of variable size on
the time domain based on the representation entropy with a top-down strategy .

3.1 Motivation and Overview of the Proposal

Time series segmentation is a discretization problem and aims at accurately approxi-
mating time series. In the last decade, a significant number of approaches have been
proposed to tackle the time series approximation problem. SAX [23] is one of the most
popular representations of time series, allowing dimensionality reduction on the clas-
sic data mining tasks. SAX is fast because it constructs symbolic representations by
splitting the time domain into segments of equal size. Therefore, its time complexity
is linear with the time series length. However, it does not consider the time series
shape, or distribution. Actually, we observe that, for time series having a non-uniform
distribution over the time domain, this division into segments of fixed length is not
advantageous since the model does not adapt to the shape of the data. Our claim is
that an adaptive segmentation of time series, by distributing segments where they will
increase the efficiency of uses of the representation, is necessary.

Therefore, in order to improve the quality of similarity search, and to achieve an
adaptive splitting on the data, we propose a new approximation method for time se-

21

ries that considers the time series shape and does the splitting by means of segments
of variable size on the time domain adopting a top-down strategy. Top-down ap-
proaches recursively segment the raw data until some stopping criteria are met. The
top-down algorithm works by considering every possible partitioning of the time se-
rie and splitting it at the best location. We create an initial segmentation and then the
top-down approach refines the segmentation. By measuring the entropy of symbolic
representations, our algorithm chooses between different possible splittings at each
step of the representation computation. This approach allows reducing information
loss, and thus increasing the accuracy of time series representations leading to bet-
ter precision during retrieval phases, particularly from non-uniform datasets. In this
work, we make the following contributions:

• We propose a new representation technique, called ASAX_EN (Adaptive SAX
based on Entropy), that allows obtaining a variable-size segmentation of time
series with better precision in retrieval tasks thanks to its lower information loss.
Our representation is based on entropy measurement for detecting what time
intervals should be split using a top-down strategy.

• We propose a lower bounding method that allows approximating the distance
between the original time series based on their representations in ASAX_EN.

• We implement our approach and conduct empirical experiments using several
real world datasets. The results suggest that ASAX_EN can obtain significant
performance gains in terms of precision for similarity search compared to SAX.
They illustrate that the more the data distribution in the time domain is unbal-
anced, the greater is the precision gain of ASAX_EN.

The rest of the chapter is organized as follows. In Section 3.2, we formally define
the problem we address. In Section 3.3 we describe the details of ASAX_EN represen-
tation and in Section 3.4 we define the distance measure on the proposed ASAX_EN
representation. In Section 3.5, we present the experimental evaluation of our approach.
Finally, we conclude in Section 3.6

3.2 Problem Definition

Our goal is to propose a variable-size segmentation of the time domain that minimizes
the loss of information in the time series representation.

The problem we address is stated as follows. Given a database of time series D
and a number w, divide the time domain into w segments of variable size such that
the representation of the times series based on that segmentation lowers the error of
kNN queries.

22

3.3 Adaptive SAX based on Entropy

In this section, we propose ASAX_EN, a variable-size segmentation technique for the
time series representation. To create a segmentation with minimum information loss,
ASAX_EN divides the time domain based on the representation entropy. Basically, the
idea is that the higher the entropy of a segment, the more important the distinguishing
power of this segment between two time series. Our goal is to give more importance
to segments that will allow distinguishing between to time series, therefore increasing
the efficiency of k-NN queries based on such representations.

In the rest of this section, we first describe the notion of entropy for the time se-
ries representation. Then, we describe our algorithm for creating the variable-size
segments based on this measurement.

3.3.1 Entropy

Entropy is a mathematical function which intuitively corresponds to the amount of
information contained or delivered by a source of information. This source of infor-
mation can be of various types. The more the source emits different information the
higher is the entropy. If the source always sends the same information, the entropy is
minimal. Formally, entropy is defined as follows.

Definition 4 Given a set X of elements, and each element x ∈ X having a probability Px of
occurrence, the entropy H of the set X is defined as: H(X) = −∑x∈X Px × log Px

In our context, we calculate the entropy on a set containing the different sym-
bolic representations obtained from the transformation of the original time series of
a dataset according to a given segmentation. The entropy computed on this set allows
to measure the quantity of information contained in the time series representations.
Let us illustrate this using an example.

Example 4 Consider the database D={x,y,z} in Figure 3.1 where x, y and z are time series
with l=8. Let us create a representation having two segments (e.g., 0-4, and 4-8), and then
compute the entropy of the representation of the set D. To generate the representation of the
time series x, y and z, they are discretized by obtaining their PAA representation and then
using predetermined break-points to map the PAA coefficients into the corresponding symbols
like the SAX representation proceeds. We have converted the 3 time series into symbolic rep-
resentations with size 2, and cardinality 4. Thus, the symbolic representations of x, y and z
are x̂ = [00, 10], ŷ = [00, 10] and ẑ = [00, 10], respectively. We notice that the 3 time series
have the same symbolic representation, thus, the set X consists of only this unique symbolic
representation with an occurrence equal to 3., i.e., X = {[00, 10]}. The entropy H(X) of X is
computed as follows:

H(X) = −(P(x = [00, 10])× log2 P(x = [00, 10]))
where the probability for the word x is P(x = [00, 10]) = 3

3 = 1. Therefore, we have
H(X) = −(1 log 1) = 0 meaning that in the representation X there is no information allow-
ing to distinguish the three original time series from each other. This is explained by the fact
that they have the same representation with a fixed-size segmentation.

23

0 2 4 6 8−2

−1

0

1

2

00

01

10

11x
y
z

Figure 3.1: ASAX_EN segmentation with 2 segments

In the next subsection, we describe our algorithm to create variable-size segments
based on entropy with a top-down strategy.

3.3.2 Variable-Size Segmentation Based on Entropy Measurement

Given a database of time series D, and a number w, our goal is to find the k variable
size segments that minimize the loss of information in time series representations.

Intuitively, our algorithm works as follows. First it splits the time domain into
two segments of equal size. Then, it performs w − 2 iterations, and in each iteration
it finds the segment s whose split makes the minimum loss in entropy, and it splits
that segment. By doing this, in each iteration a new segment is added to the set of
segments. This continues until having w segments.

Let us now describe ASAX_EN in more details. The pseudo-code is shown in Algo-
rithm 1. It first splits the time domain into two equal parts and creates two segments
that are included to the set segments (Line 1). Then, it sets the current number of seg-
ments, denoted as k, to 2 (Line 2).

Afterwards, in a loop, until the number of segments is less than w the algorithm
proceeds as follows. For each segment i (from 1 to k), i is divided into two equal parts,
if its size is greater than minSize, which is the minimum possible size of a segment,
and it’s default value is 1. Then, a temporary set of segments tempSegments is created
including the two new segments and all previously created segments except i (i.e.,
expect the one that has been divided). Then, for each time series ts in the database D,
the algorithm generates the symbolic representation of ts (denoted as word) using the
segments included in tempSegments with the given cardinality a (Line 12), and inserts
it to a hash table (Line 13). Note that for all time series, ASAX_EN uses the same
cardinality to map the PAA coefficients into the corresponding symbols. After having
inserted all the representations of the time series contained in D to the hash table, the
entropy of the representations is calculated (Line 14). If the entropy is higher than the
maximum entropy obtained until now, the algorithm sets i as the segment to be split,
and keeps the entropy of the representation. This procedure continues by splitting one
of the segments at each time, and computing the entropy. The algorithm selects the

24

one whose entropy is the highest, and updates the set of the segments by removing
the selected segment, and inserting its splits to the set segments (Lines 18-20). Then,
the variable k, which shows the number of current segments, is incremented by one.
The algorithm ends if the number of segments is equal to the required number, i.e., w.

Algorithm 1: ASAX_EN variable-size segmentation
Input: D: time series database; n: the length of time series; minSize: the

minimum possible size of a segment; a: cardinality of symbols; w: the
required number of segments

Output: w variable-size segments
1 segments = {[0, n

2], [n
2 , n]}; // split time domain into two equal size segments

2 k = 2
3 while k ̸= w do
4 segmentToSplit = 1
5 entropy = 0
6 for i=1 to k do
7 tempSegments = segments
8 if length(tempSegments[i]) > minSize then
9 split segment i into two equal parts, and replace the segment i by its

corresponding parts in tempSegments
10 hashtable = new HashTable
11 foreach ts ∈ D do
12 word = ASAX_EN(ts, tempSegments, a)
13 hashTable.put(word)

14 e = entropy(hashTable)
15 if e > entropy then
16 segmentToSplit = i
17 entropy = e

18 split segmentToSplit into two equal size segments s1 and s2

19 segments = segments - {segmentToSplit}
20 segments = segments

⋃{s1, s2}
21 k = k+1

22 return segments

Example 5 Let us consider the dataset D in Figure 3.1 which represents the initialization of
the algorithm, i.e., the time domain is divided into two segments of the same size. The next
step is to create the 3rd segment by splitting one of the two existing segments. Two different
scenarios are possible.

Scenario 1 : The first scenario is shown in Figure 3.2a where the left segment is divided into
two equal parts. We generate the symbolic representation of the time series x, y, and z by using
the 3 segments. Let’s assume the cardinality is 4. Then, x̂ = [00, 00, 10], ŷ = [00, 00, 10] and

25

ẑ = [00, 00, 10] are the symbolic representation of x, y and z, respectively. Thus, the set X1

consists of only one representation [00,00,10] with an occurrence of 3, i.e., X1 = [00, 00, 10].
The entropy is then calculated as: H(X1) = −(P(x = [00, 00, 10]) log P(x = [00, 00, 10]))
where P(x = [00, 00, 10]) = 3

3 = 1 and we have H(X1) = −(1 log 1) = 0.

Scenario 2 : This scenario is shown in Figure 3.2b in which the right segment is split. As
for Scenario 1 we generate the symbolic representation of time series x, y and z using the 3
segments, and cardinality of 4. x̂ = [00, 01, 10], ŷ = [00, 01, 11] and ẑ = [00, 01, 11] are
the symbolic representation of x, y and z, respectively. In this scenario the representation set
X2 consists of [00,01,10] with an occurrence of 1 and [00,01,11] with an occurrence of 2, i.e.,
X = [00, 01, 10], [00, 01, 10]. The entropy is calculated as:
H(X2) = −(P(x = [00, 01, 10]) log P(x = [00, 01, 10]) +
P(x = [00, 01, 11]) log P(x = [00, 01, 11])) where P(x = [00, 01, 10]) = 1

3 and P(x =

[00, 01, 11]) = 2
3 . Then, H(X2) = −(1

3 log 1
3 +

2
3 log 2

3) = 0.918.

After having calculated the entropy for the two scenarios, we see that H(X1) < H(X2). We
aim at maximizing the entropy, therefore we choose the segmentation generated in Scenario
2 for this iteration of our algorithm. We continue the next iterations, until the number of
segment reaches w.

0 2 4 6 8−2

−1

0

1

2

00

01

10

11x
y
z

(a) Scenario 1 of ASAX_EN segmentation
with 3 segments

0 2 4 6 8−2

−1

0

1

2

00

01

10

11x
y
z

(b) Scenario 2 of ASAX_EN segmentation
with 3 segments

Figure 3.2: The two different scenarios of ASAX_EN segmentation with 3 segments.
Scenario 3.2b is the one chosen because it optimizes the entropy.

3.3.3 Uniform Distribution of Symbols

SAX breakpoints divide the value domain into regions of different size where small
regions are concentrated on the middle of the value domain and regions at extreme
values are larger. This is illustrated by Figure 3.3, with three time series from our
motivating example in Figure 1.1 with 6 segments. The breakpoints of SAX with 10
symbols are represented by horizontal lines, and, logically, they appear close to the
center of the distribution. If we keep such distribution of symbols, then we would

26

have two issues. First, the extreme values of the series like those above 2 or below -4
would be assigned the same symbol (their PAA value on the segment would fall in
the same symbol). Second, the adaptive segmentation would consider that the slight
variations around zero are more important than the ones at extreme values, ending
in irrelevant splits that favor minor information gain. For this reason, we propose to
calculate the breakpoints differently. In ASAX_EN, the discretization is done based on
breakpoints that produce uniform distributions of symbols. These breakpoints divide
the value domain into regions of equal size. In the case of Figure 3.3 the 10 symbol
regions will be evenly distributed in the range of data values.

0 22 44 66 88 110 132
−6

−4

−2

0

2
x
y
z

Figure 3.3: The Gaussian based distribution of symbols in SAX are not suitable for
ASAX_EN since they would favor minor information gain.

3.4 Lower Bounding of the Similarity Measure

Having introduced the new representation of time series, we will now define a dis-
tance measure on it. SAX [24] defines a distance measure on the representation of
time series as described in Section 2.3. Given the representation of two time series,
the MINDISTf function allows obtaining a lower bounding approximation of the Eu-
clidean distance between the original time series. By the following theorem, we pro-
pose a lower bounding approximation formula for the case of variable size segmenta-
tion in ASAX_EN. Note that this distance measure will be used as a lower bounding
approximation in all our variable size segmentation algorithms which will follow in
the next chapters.

Theorem 1 Let X and Y be two time series. Suppose that by using ASAX_EN we create a
variable size segmentation with w segments, such that the size of the ith segment is li.
Let X and Y be the PAA representation of variable size of X and Y in ASAX_EN, DRv(X, Y)

27

gives a lower bounding approximation of the Euclidean distance between X and Y:

DRv(X, Y) =

√
w

∑
i=1

((xi − yi)
2 × li)

Let X̂ and Ŷ be the representations of X and Y in ASAX_EN obtained by converting X and Y
into symbolic representation. Then, MINDISTv(X̂, Ŷ) gives a lower bounding approximation
of the Euclidean distance between X and Y:

MINDISTv(X̂, Ŷ) =

√
w

∑
i=1

(dist(x̂i, ŷi)2 × li)

Proof : To generate the ASAX_EN representation of a time series, we need to first
generate its PAA representation using the variable size segmentation (by taking the
mean of the time series in each segment), and then we convert the PAA representation
to ASAX_EN by creating a symbol for each segment.

Our proof is done in two steps. In the first step, we show that the distance of X
and Y in the PAA representation, denoted as DRv(X, Y), is lower than or equal to their
Euclidean distance. In the second step, we show that MINDISTv(X̂, Ŷ) ≤ DRv(X, Y).

Step 1 : In the first step, we show that the DRv distance lower bounds the Euclidean
distance, that is : √

n

∑
i=1

(xi − yi)2 ≥

√√√√ w

∑
j=1

((xj − yj)
2 × lj) (3.1)

To prove the above inequality, it is sufficient to prove that the PAA distance of two
time series in each segment is lower than or equal to their Euclidean distance in the
segment. Without loss of generality, let us take the first segment S1, and suppose that
its size is l1. Thus, we need to prove the following inequality:√√√√ l1

∑
i=1

(xi − yi)2 ≥

√√√√ l1

∑
i=1

((xi − yi)
2 (3.2)

Let X and Y be the means of time series X and Y, respectively. We can rewrite the
above inequality as:

√
∑l1

i=1(xi − yi)2 ≥
√
(X − Y)2 × l1

Or :
√

∑l1
i=1(xi − yi)2 ≥

√
l1
√
(X − Y)2

By squaring both sides, we have:

l1

∑
i=1

(xi − yi)
2 ≥ l1(X − Y)2

For each point xi in X, xi = X − ∆xi. The same applies to each point y in Y. Then, we
substitute the rearrangement:

28

∑l1
i=1((X − ∆xi)− (Y − ∆yi))

2 ≥ l1(X − Y)2

After rearranging terms in the left-hand side, we have:

∑l1
i=1((X − Y)− (∆xi − ∆yi))

2 ≥ l1(X − Y)2

Then, we expand the inequality using the binomial theorem:

l1

∑
i=1

((X − Y)2 − 2(X − Y)(∆xi − ∆yi)

+ (∆xi − ∆yi)
2) ≥ l1(X − Y)2

By using distributive law and summation properties, we have:

l1(X − Y)2 − 2(X − Y)
l1

∑
i=1

(∆xi − ∆yi)

+
l1

∑
i=1

(∆xi − ∆yi)
2 ≥ l1(X − Y)2

We know that xi = X − ∆xi, which means that ∆xi = X − xi, and the same applies for
∆yi.

l1

∑
i=1

(∆xi − ∆yi) =
l1

∑
i=1

((X − xi)− (Y − yi))

= (
l1

∑
i=1

X −
l1

∑
i=1

xi)− (
l1

∑
i=1

Y −
l1

∑
i=1

yi)

= (l1X −
l1

∑
i=1

xi)− (l1Y −
l1

∑
i=1

yi)

= (
l1

∑
i=1

xi −
l1

∑
i=1

xi)− (
l1

∑
i=1

yi −
l1

∑
i=1

yi)

= 0 − 0 = 0

We substitute 0 into ∑l1
i=1(∆xi − ∆yi) in the inequality:

l1(X − Y)2 − 0 +
l1

∑
i=1

(∆xi − ∆yi)
2 ≥ l1(X − Y)2

Then by subtracting n(X − Y)2 from both sides, we have:

l1

∑
i=1

(∆xi − ∆yi)
2 ≥ 0

This always holds true, so it completes the proof.

29

Step 2 : Following the same method as in Step 1, we will show here that MINDISTv

lower bounds the DRv distance, that is :√√√√ w

∑
j=1

((xj − yj)
2 × lj) ≥

√√√√ w

∑
i=j

(dist(x̂j, ŷj)2 × lj)

To prove the above inequality, it is sufficient to prove that MINDISTv in each segment
lower bounds the DRv distance in the segment. Without loss of generality, let us take
the first segment S1, and assume that its size is l1. Thus, it is sufficient to prove the
following inequality:√√√√ 1

∑
i=1

((xi − yi)
2)× l1 ≥

√√√√ 1

∑
i=1

(dist(x̂1, ŷ1)2 × l1)

The above inequality can be written as: l1(X −Y)2 ≥ l1(dist(X̂, Ŷ))2. There are two
possible scenarios for the symbols representing X and Y.

Case 1 : the symbols representing X and Y are either the same, or consecutive from
the alphabet a, i.e. |(X̂ − Ŷ)| ≤ 1. In this case the MINDIST value is 0. Therefore, the
inequality becomes :

l1(X − Y)2 ≥ 0

which always holds true.
Case 2 : the symbols representing X and Y are at least two alphabets apart, i.e.

|(X̂ − Ŷ)| > 1. Let us assume that X is at a higher region than Y, i.e. X̂ > Ŷ, otherwise,
in the case where X̂ < Ŷ , it can be demonstrated in the same way.

dist(X̂, Ŷ) = βX̂−1 − βŶ

By substituting into the inequality, we have:

l1(X − Y)2 ≥ l1(βX̂−1 − βŶ)
2

By removing l1 from both sides, we have:

|X − Y| ≥ |βX̂−1 − βŶ|

Since X̂ > Ŷ and |(X̂ − Ŷ)| > 1, we can drop the absolute value notation and rearrange
the terms:

X − βX̂−1 ≥ Y − βŶ

We know that : βX̂−1 ≤ X < βX̂ and βŶ−1 ≤ Y < βŶ which implies that X − βX̂−1 ≥ 0
and Y − βŶ < 0.
Then, the inequality always holds true, and this completes the proof.

30

3.5 Evaluation and results

In this section, we report the results of experimental studies on the proposed ASAX_EN
segmentation approach that illustrate its performance in improving the accuracy of
time series representations in order to get better precision during information search
operations.

3.5.1 Datasets and Experimental Settings

Name Type time series Length
AllGestureWiimoteZ Sensor 500
ECG200 ECG 90
ECG5000 ECG 140
ECGFiveDays ECG 130
Fungi HRM 200
GesturePebbleZ1 Sensor 450
MedicalImages Image 90
SonyAIBORobotSurface1 Sensor 70
SyntheticControl Simulated 60

Table 3.1: Datasets basic information

We compared the ASAX_EN representation with the existing SAX representation
on datasets selected for their particular (lack of) uniformity. Notice that SAX and its
extensions in the literature use a fixed-size segmentation of the time domain. But,
ASAX_EN proposes a variable-size segmentation based on information theory tech-
niques.

The approaches are implemented in Python programming language and Numba
JIT compiler is used to optimize machine code at runtime. The experimental evalua-
tion was conducted on a machine using Ubuntu 18.04.5 LTS operating system with 20
Gigabytes of main memory, and an Intel Xeon(R) 3,10 GHz processor with 4 cores.

We carried out our experiments on several real world datasets from the UCR Time
Series Classification Archive [11]. Table 3.1 gives basic information about the datasets:
name, type, length of the time series (number of values). Notice that almost all selected
datasets have non-uniform distributions over time domain (see Figure 3.4), else Syn-
theticControl that has a quasi uniform distribution.

For each approach, we set the default cardinality value to 32 and the length w of
the approximate representations is reduced to 10% of the original time series length.

In the experiments, we measure the ASAX_EN and SAX precision in similarity
search by applying a k-Nearest Neighbor (k-NN) search, as detailed in Subsection
3.5.2. For ASAX_EN, we measure the time cost of the variable-size segmentation in
Subsection 3.5.3.

31

0 20 40 60 80 100 120

−6

−4

−2

0

2

4

6 p(SAX)= 55%
p(ASAX_EN)= 82%

(a) ECGFiveDays

0 10 20 30 40 50 60 70 80 90

−2

0

2

4

6

8 p(SAX)= 48%
p(ASAX_EN)= 68%

(b) MedicalImages

0 20 40 60 80 100 120 140

−6
−4
−2
0
2
4
6
8

p(SAX)= 54%
p(ASAX_EN)= 67%

(c) ECG5000

0 50 100 150 200 250 300 350 400 450
−40

−20

0

20

40
p(SAX)= 52%
p(ASAX_EN)= 61%

(d) GesturePebbleZ1

Figure 3.4: The data distribution of the tested datasets, and the precision results for
each dataset. p(SAX) and p(ASAX_EN) show the precision of SAX and ASAX_EN
respectively. The datasets are sorted in descending order of precision gain.

32

0 100 200 300 400 500

−4

−2

0

2

4

6
p(SAX)= 79%
p(ASAX_EN)= 87%

(e) AllGestureWiimoteZ

0 25 50 75 100 125 150 175 200
0

20

40

60

80 p(SAX)= 92%
p(ASAX_EN)= 97%

(f) Fungi

0 10 20 30 40 50 60 70 80 90
−3
−2
−1
0
1
2
3
4
5 p(SAX)= 72%

p(ASAX_EN)= 77%

(g) ECG200

0 10 20 30 40 50 60 70−4

−2

0

2

4

p(SAX)= 37%
p(ASAX_EN)= 40%

(h) SonyAIBORobotSurface1

0 10 20 30 40 50 60
−2

−1

0

1

2

3 p(SAX)= 32%
p(ASAX_EN)= 32%

(i) SyntheticControl

Figure 3.4: The data distribution of the tested datasets, and the precision results for
each dataset. p(SAX) and p(ASAX_EN) show the precision of SAX and ASAX_EN
respectively. The datasets are sorted in descending order of precision gain.

33

Al
lG
es
tu
re
W
iim
ot
eZ

EC
G2
00

EC
G5
00
0

EC
GF
iv
eD
ay
s

Fu
ng
i

Ge
st
ur
eP
eb
bl
eZ
1

M
ed
ica
lIm
ag
es

So
ny
AI
BO
Ro
bo
tS
ur
fa
ce
1

Sy
nt
he
tic
Co
nt
ro
l

Dataset

10−1

100

101

Ru
nt
im
e

(s
)

Figure 3.5: Runtime of ASAX_EN segmentation algorithm for each dataset

3.5.2 Precision of k-Nearest Neighbor Search

In this part of experiments, we compare the quality of ASAX_EN and SAX represen-
tation on the different datasets described in Table 3.1 by measuring the precision of
the approximate k-NN search for both of the two approaches. The precision reported
for each dataset represents the average precision for a set of arbitrary random queries
taken from this dataset. The search precision for each query Q from a dataset D is
calculated as follows :

p =
|AppkNN(Q, D) ∩ ExactkNN(Q, D)|

k

where AppkNN(Q,D) and ExactkNN(Q,D) are the sets of approximate k nearest neigh-
bors and exact k nearest neighbors of Q from D, respectively. AppkNN(Q,D) is obtained
using DR f distance measure for SAX and DRv for the ASAX_EN representation and
the set ExactkNN(Q,D) contains the k-NN of Q using the euclidean distance ED. App-
kNN(Q,D) and ExactkNN(Q,D) use a linear search that consists in computing the dis-
tance from the query point Q to every other point in D, keeping track of the "best so
far" result.
The precision results are reported in Figure 3.4 where each dataset is plotted with the
precision obtained (as percentage) for both approaches and the datasets are sorted in
descending order of precision gain. The plots show the shape of the different time se-
ries of each dataset and we can notice that the distribution of time series over the time
domain varies from one dataset to another. Let us take for example the ECGFiveDays
dataset presented in Figure 3.4a and SyntheticControl shown in Figure 3.4i. On the first
one, we were able to achieve a precision of 82% for ASAX_EN while it is 55% for SAX,
which is a significant gain in precision. This higher precision for ASAX_EN is due to
the variable-size segmentation which created segments in the parts that undergo a sig-
nificant variation (from time point 44 to 95) as discussed in our motivating example in

34

the introduction, allowing ASAX_EN to perform a better distribution of the segments
according to information gain.

For SyntheticControl we can see that the precision of the approximate k-NN search
is the same for both ASAX_EN and SAX approaches which is 32%. In this dataset, the
shape of the time series is balanced over the time, and the segmentations obtained by
ASAX_EN and SAX are the same, resulting in equivalent precision.

These results suggest the advantage of our approach over SAX when applied to
time series with unbalanced distribution.

3.5.3 Time cost of ASAX_EN segmentation algorithm

Figure 3.5 reports the time cost of our proposed approach. It gives the segmentation
time of ASAX_EN on the datasets of our experiments. It does not concern SAX since
SAX divides the time domain into segments of fixed size which does not require any
computation beforehand. The longest segmentation time is approximately 13 seconds,
while the shortest one is around 20 milliseconds. It depends on both the number of
time series in the dataset and their length.

3.6 Conclusion

In this chapter, we proposed a new approximation technique, called ASAX_EN, that
considers the time series distribution on the time domain and performs variable-size
segmentation, by using the entropy of symbolic representations. Our technique allows
reducing information loss and thus increasing the accuracy of time series representa-
tions. We implemented our technique and evaluated its performance using several
real world datasets. The experimental results suggest that ASAX_EN can obtain signif-
icant performance gains in terms of precision for similarity search compared to SAX.
The results show that the more the data distribution in the time domain is unbalanced
(non-uniform), the greater is the precision gain of ASAX_EN, e.g., for the EGCFive-
Days dataset that has a non-uniform distribution in the time domain, the precision of
ASAX_EN is 82% compared to 55% for SAX.

35

CHAPTER 4

OPTIMIZED TECHNIQUES FOR TIME

SERIES SEGMENTATION BASED ON THE

APPROXIMATION ERROR

In the previous chapter, we proposed a segmentation method based on the entropy
measure that uses a top-down algorithm. In this chapter, we address the problem of
finding the variable-size segmentation that minimizes the approximation error of the
time series representation using a bottom-up approach. In contrast to top-down ap-
proaches, bottom-up approaches start with the finest possible approximation and join
segments until some stopping criteria are met. We propose our variable-size segmen-
tation approach for time series representation based on the Sum of Squared Error (SSE)
of the representation. Our contributions are as follows:

• We propose a new representation technique, called ASAX_SSE, that allows ob-
taining a variable-size segmentation of time series based on SSE measure and by
using a bottom-up approach.

• We propose an efficient algorithm, called ASAX_Dyn, for improving the execu-
tion time of our segmentation approach, by means of dynamic programming.

• We propose efficient parallel algorithms for improving the execution time of our
segmentation approach using GPUs.

• We implemented our approach and conducted empirical experiments using more
than 120 real world datasets. The results illustrate that ASAX_SSE can obtain sig-
nificant performance gains in terms of precision for similarity search compared
to SAX and our ASAX_EN presented in Chapter 3.

The rest of this chapter is organized as follows. In Section 4.1, we describe the de-
tails of our segmentation approach. In section 4.2, we present an improved version of
our segmentation using dynamic programming and in Section 4.3, we present parallel
versions of our algorithms. In section 4.4, we present a detailed experimental eval-
uation to verify the effectiveness of our algorithms. Finally, we conclude in Section
4.5.

4.1 Adaptive SAX based on Sum of Squared Error

In this section, we propose ASAX_SSE, a variable-size segmentation approach for time
series representation using a bottom-up strategy. Here, to create a segmentation with

37

minimum information loss on time series approximation, our algorithm divides the
time domain based on the sum of squared errors (SSE) of the representation with a
bottom-up strategy instead of a top-down strategy . The results of the experiments
have shown that this method is more efficient than the ASAX_EN approach.

In the rest of this section, we first describe the notion of Sum of Squared Errors
(SSE) for the time series representation, and then, we present the algorithm that creates
the variable-size segments based on SSE measurement.

4.1.1 Sum of Squared Errors (SSE)

In Statistics, SSE is defined as the sum of the squares of the errors. In other words,
SSE is the sum of the squared differences between the actual and the estimated values.
Formally, SSE is defined as follows.

Definition 5 Given a vector X of n elements and a vector X̃ being the estimated values gen-
erated from X, SSE of the estimation is given by: SSE(X, X̃) = ∑n

i=1 (xi − x̃i)
2

In our context, we calculate the SSE on the PAA representation obtained from the
transformation of the original time series of a dataset according to a given segmenta-
tion. The SSE computed on this representation allows to measure the approximation
error on the time series by the PAA representation compared to the original time series.
The lower the SSE, the closer is the PAA representation to the original data.

By transforming a time series X = {x1, ..., xn} into a PAA representation X =

{x1, ..., xw}, X is reduced to the PAA representation composed of w segments. For
each segment, the set of values is replaced with their mean. We can compute the SSE
for each segment, that is in this case, the sum of the squared differences between each
value (actual value) and its segment’s mean (estimated value). In the next subsec-
tions, we show how to compute the SSE of a PAA representation considering only
one segment (called LSSE) or all segments (called GSSE). As shown by experiments,
using these two different SSE measurements may lead to different results in terms of
precision and execution time.

4.1.2 SSE of PAA Representation Considering One Segment (LSSE)

Let X be the PAA representation of X with w segments. The LSSE (local SSE) of X for
a particular segment is the sum of the squared errors for the time series values in this
segment. Formally, LSSE of X for a segment si is computed as:

LSSE(si, xi) =
UB(si)

∑
j=LB(si)

(xj − xi)
2

where si is the selected segment, LB(si) and UB(si) are the start and end time points
of si respectively. Let us illustrate LSSE using an example.

Example 6 Consider the time series X in Figure 4.1 where n=10. Let’s convert X into its PAA
representation having 5 segments by dividing the time domain into segments of equal size (l=2)

38

0 1 2 3 4 5 6 7 8 9 10−2

−1

0

1

2 s1 s2 s3 s4 s5

Figure 4.1: The PAA representation of time series X contains 5 segments. LSSE is
computed on the selected segment S3.

shown in the same Figure. We have X = [−1.3,−1,−0.9,−0.9, −0.7, 0.7, 1, 0.6, 0.5, 0.6] and
X = [−1.15,−0.9, 0, 0.8, 0.55]. Suppose that we want to measure the approximation error on
the 3rd segment s3 where s3 = [4, 5] (s3 is delimited by time points 4 and 5), then, we compute
the SSE of s3 as follows:

• We first compute the individual error values of s3, that is, the difference between each
value in s3 and its PAA value: e4 = x4 − x3 = −0.7 − 0 = −0.7 , e5 = x5 − x3 =

0.7 − 0 = 0.7.

• Then, we calculate the squares of the errors : e2
4 = (−0.7)2 = 0.49 , e2

5 = (0.7)2 = 0.49.

• Finally, the sum of the squared errors is calculated for all values of s3 that is sum = 0.98.

Notice that in the above example, for ease of presentation we have taken only one
time series. For a database containing m time series, LSSE is computed by summing up
the LSSE of all m individual time series. Then, the error approximation of s3 calculated
with LSSE is 0.98.

4.1.3 SSE of PAA Representation Considering All Segments (GSSE)

The global SSE (GSSE) is computed by taking into account all segments of the PAA
representation X: GSSE(X, X) = ∑w

i=1 ∑
UB(si)
j=LB(si)

(xj − xi)
2 where LB(si) and UB(si)

are the start and end time points of the segment si respectively.

Example 7 Let us consider the time series X and its PAA representation X of Figure 4.2. We
have X = [−1.3,−1,−0.9,−0.9, −0.7, 0.7, 1, 0.6, 0.5, 0.6] and X = [−1.15,−0.9, 0, 0.8, 0.55].
First, for each segment, we calculate the difference between each value in this segment and its
PAA value. Table 4.1 details the result obtained for this example. Then, the sum of the squared
errors is calculated for all values of the time series, i.e., sum = 1.105. According to the current
segmentation applied on X, the error in this approximation calculated with GSSE is 1.11. If
we choose a different segmentation, then the corresponding GSSE value will also change. So,
the approximation error is influenced by the chosen segmentation.

39

0 1 2 3 4 5 6 7 8 9 10−2

−1

0

1

2 s1 s2 s3 s4 s5

Figure 4.2: PAA representation of a time series X of length 10 with 5 segments. GSSE
is computed on all segments.

Segment Values PAA Error Squared Error

s1=[0,1]
-1.3

-1.15
-0.15 0.0225

-1 0.15 0.0225

s2=[2,3]
-0.9

-0.9
0 0

-0.9 0 0

s3=[4,5]
-0.7

0
-0.7 0.49

0.7 0.7 0.49

s4=[6,7]
1

0.8
0.2 0.04

0.6 -0.2 0.04

s5=[8,9]
0.5

0.55
-0.05 0.0025

0.6 0.05 0.0025

Table 4.1: Error calculation for each point in X.

40

In the next subsection, we describe our algorithm that creates variable-size seg-
ments thereby providing an accurate representation of time series based on the SSE
measurement.

4.1.4 Variable-Size Segmentation Based on SSE Measurement

Given a database of time series D, and a number w, our goal is to find the w variable
size segments that minimize the loss of information in time series representations by
minimizing the approximation error of these representations.

Algorithm 2: ASAX_SSE variable-size segmentation
Input: D: time series database; n: the length of time series; size: the starting

size of segments; w: the required number of segments
Output: w variable-size segments

1 k =
⌈ n

size
⌉

2 segments = {⋃k−1
i=0 [size × i, size × (i + 1)− 1]} // split time domain into k

segments of size size
3 while k ̸= w do
4 segmentsToMerge = null
5 msse = ∞
6 for i=1 to k − 1 do
7 s = merge (si, si+1)

8 tempSegments = segments − {si, si+1}
9 tempSegments = tempSegments

⋃
s

10 //merge segment i and segment i + 1 in tempSegments
11 sse = 0
12 foreach ts in D do
13 sse = sse + SSE(ts)

14 if sse < msse then
15 segmentsToMerge = i
16 msse = sse

17 s = merge (ssegmentsToMerge, ssegmentsToMerge+1)

18 segments = segments − {ssegmentsToMerge, ssegmentsToMerge+1}
19 segments = segments

⋃
s

20 k = k-1

21 return segments

Intuitively, our algorithm works as follows. Based on a starting segment size value
size, it firstly splits the time domain into k segments of length size. The default value
of size is 2. The algorithm performs k − w iterations, and in each iteration it finds
the two adjacent segments si and si+1 whose merging gives the minimum SSE (MSSE)
on the representations, and merges them. By doing this, in each iteration the two

41

selected segments are merged to form a single segment which replaces them in the set
of segments, reducing the number of segments by one. This continues until having w
segments.

Let us now describe our algorithm in more details. The pseudo-code is shown in
Algorithm 1. It first sets the current number of segments, denoted as k, to n

size . Then,
it splits the time domain into k segments of length size that are included to the set
segments (Line 2).

Afterwards, in a loop, until the number of segments is more than w the algorithm
proceeds as follows. For each segment si (i from 1 to k − 1), si is merged with segment
si+1 to form a single segment denoted as s (Line 7). Then, a temporary set of segments
tempSegments is created including the new segment and all previously created seg-
ments except si and si+1 i.e., except the two that have been merged (Lines 8, 9). Then,
for each time series ts in the database D, the algorithm generates its PAA represen-
tation and calculates the corresponding SSE (Line 13) calling either GSSE function in
the case that the entire PAA representation is considered for the error calculation, or
LSSE function if the error is computed on segment s. Then, it adds the result of the
computed SSE to sse (Line 13). After having calculated the sum of the SSE for the PAA
representation of all the time series contained in D, if the SSE is less than the MSSE
(minimum SSE) obtained so far, the algorithm sets i as the segment to be merged with
the next one, and keeps the SSE of the representation (Lines 15, 16). This procedure
continues by trying the merging of every two adjacent segments of segments at each
time, and computing the SSE. The algorithm selects the merging whose SSE is the
lowest, and updates the set of the segments by removing the selected segments, and
inserting its merging to segments (Lines 17-19). Then, k, which stands for the number
of current segments, is decremented by one (Line 20). The algorithm ends when k gets
equal to the required number, i.e., w.

Let us illustrate the principle of our algorithm using an example. For simplicity, we
consider a dataset containing only a single time series and we calculate the approxi-
mation error on the entire time series representation using LSSE approach.

Example 8 Let us apply our algorithm on the time series X in Figure 4.2 by taking the initial
size of 2 for the starting segments. The algorithm starts by dividing the time domain into
5 segments of size 2. The next step is to reduce the number of segments from 5 to 4. For
this purpose, the algorithm tests the merging of every two adjacent segments of the 5 existing
segments, in order to find the one that has the minimum SSE. Four different scenarios are
possible:

Scenario 1: The first scenario is shown in Figure 4.3a where s1 and s2 of the initial segmentation
(shown in figure 4.2) are merged into one segment. We calculate the values’s mean on the
resulting segment (denoted S1 in figure 4.3a), and then compute the SSE of this approximation
that is SSE1(X, X) = 0.11.

Scenario 2: This scenario is shown in Figure 4.3b in which s2 and s3 of the initial segmentation
are merged. As for Scenario 1, we compute the mean of X on the current segment S2. Here,
SSE2(X, X) = 1.79.

42

Scenario 3: This scenario is shown in Figure 4.3c, where we merge s3 and s4. For this merging
(S3), SSE3(X, X) = 1.70.

Scenario 4: The last scenario is shown in Figure 4.3d, where we merge s4 and s5. For this
segment S4, SSE4(X, X) = 0.15.

We have calculated the SSE for the 4 scenarios. Since we aim to minimize the SSE, we choose
Scenario 1 that leads to the minimum SSE value (MSSE), that is MSSE = 0.11 (obtained by
merging s1 and s2). After merging the segments s1 and s2, the algorithm continues the next
iterations, until the number of segment reaches w.

0 1 2 3 4 5 6 7 8 9 10−2

−1

0

1

2 S1 S2 S3 S4

(a) Scenario 1

0 1 2 3 4 5 6 7 8 9 10−2

−1

0

1

2 S1 S2 S3 S4

(b) Scenario 2

0 1 2 3 4 5 6 7 8 9 10−2

−1

0

1

2 S1 S2 S3 S4

(c) Scenario 3

0 1 2 3 4 5 6 7 8 9 10−2

−1

0

1

2 S1 S2 S3 S4

(d) Scenario 4

Figure 4.3: The four different scenarios of ASAX_LSSE segmentation with 4 segments.
Scenario 1 is the one chosen because it provides the minimum SSE.

4.2 ASAX_LSSE based on Dynamic Programming

The ASAX_LSSE algorithm, which we presented in the previous section, can reduce
significantly the information loss in time series representations, as illustrated by our
experiments, especially the ASAX_LSSE approach. The results shows that this latter
performs better than ASAX_GSSE in similarity search precision and in execution time.
However, its execution time may be high, particularly over large time series datasets.
In this section, we present an efficient version of ASAX_LSSE, called ASAX_Dyn, for
improving the execution time of our segmentation technique using dynamic program-
ming. In ASAX_Dyn, we use a data structure (matrix) to keep track of the result of the

43

Algorithm 3: ASAX_Dyn variable-size segmentation
Input: D: time series database; n: the length of time series; size: the starting

size of segments; w: the required number of segments
Output: w variable-size segments

1 k =
⌈ n

size
⌉

2 segments = {⋃k−1
i=0 [size × i, size × (i + 1)− 1]} // split time domain into k

segments of size size
3 matrix = matrix of k × k values initialized to -1
4 while k ̸= w do
5 segmentsToMerge = null
6 msse = ∞
7 for i=1 to k − 1 do
8 s = merge (si, si+1)

9 r, c =Compute the position in matrix corresponding to s
10 sse = 0
11 if matrix[r,c] = -1 then
12 foreach ts in D do
13 sse = sse + SSE(ts, s)

14 matrix[r,c]=sse
15 else
16 sse = matrix[r,c]

17 if sse < msse then
18 segmentsToMerge = i
19 msse = sse

20 s = merge (ssegmentsToMerge, ssegmentsToMerge+1)

21 segments = segments − {ssegmentsToMerge, ssegmentsToMerge+1}
22 segments = segments

⋃
s

23 k = k-1

24 return segments

44

s1 s2 s3 s4 s5

s1 −1 −1 −1 −1
s2 −1 −1 −1
s3 −1 −1
s4 −1
s5

(a) Matrix initialization

s1 s2 s3 s4 s5

s1 0.11 −1 −1 −1
s2 1.79 −1 −1
s3 1.70 −1
s4 0.15
s5

(b) After step 1

s1 s2 s3 s4 s5

s1 0.11 2.49 −1 −1
s2 1.79 −1 −1
s3 1.70 −1
s4 0.15
s5

(c) After step 2

Figure 4.4: State of the matrix at different steps of the algorithm. The updated values
are in red and the possible scenarios are underlined in each step.

SSE computation for each iteration. In the matrix, if the value of a cell (i, j) is positive,
then it corresponds to the SSE of merging all adjacent segments from segment si to
segment sj. In each iteration, after testing the merging of two adjacent segments, the
computed SSE of the merging is kept in the matrix, in order to be used in the case
where this merging needs to be evaluated again in the next steps.
Let us describe ASAX_Dyn algorithm in more details. Algorithm 3 presents the pseudo-
code of the improved approach. As for the ASAX_SSE algorithm (described in the
previous section), ASAX_Dyn splits the time domain into k segments of length size to
create the set segments (Lines 1, 2). A matrix of size k× k denoted as matrix is allocated
and all its values are initialized to -1 (Line 3). Then, in a loop, until the number of seg-
ments is more than w the algorithm proceeds as follows. For each segment si (i from
1 to k − 1), the algorithm tests the merging of si with segment si+1. For this, the algo-
rithm computes the position in the matrix corresponding to the merging of these two
segments by finding the row and column number (r, c) (Line 9). If it is the first time
that these two segments merging is tested (i.e., if the SSE value in the corresponding
cell in the matrix is equal to -1), then the algorithm has to compute the SSE for each
time series ts in the database D on the segment s made from merging si and si+1 (Line
13). By summing up the SSE of PAA representation of all the time series contained in
D, ASAX_Dyn adds the result of the computed SSE to sse and stores this value in the
matrix by replacing the existing value (-1) by the calculated SSE (Line 14). In the case
where the merging of si and si+1 has already been tested (i.e., if the SSE value in the
matrix is not -1), the algorithm simply has to get the SSE value from the matrix which
is already computed and sets sse to this value (Line 16). After having obtained the SSE
value, if it is less than the MSSE (minimum SSE) obtained so far, the algorithm sets i as
the segment to be merged with the next one, and keeps the SSE of the representation
(Lines 18, 19). This procedure continues by testing the merging of every two adjacent
segments of segments at each time by making use of the matrix to avoid redundant
SSE computations. The algorithm selects the merging whose SSE is the lowest, and
updates the set of the segments (Lines 20-22). The procedure continues until k reaches
the required number of segments w.

Bellow, we illustrate our algorithm using an example.

Example 9 Let us apply ASAX_Dyn on the time series X shown in Figure 4.1 by taking

45

the initial size of 2 for the segments. Suppose the number of desired segments is w = 3. The
algorithm starts by dividing the time domain into 5 segments of size 2 and initializes the matrix
that will keep track of the SSE computation (Figure 4.4a). This matrix’s row (and column) size
is 5 which is the initial number of segments, each value corresponds to a possible merging of
the initial segments (two segments or more). The value of cell (i, j) in the matrix corresponds
to the SSE of merging of all adjacent segments from si to sj. The final number of segments is
w=3, thus the algorithm consists of 2 steps:

Step 1 : Reduce the number of segments from 5 to 4. The algorithm tests the merging of every
two adjacent segments of the 5 existing segments, 4 different scenarios are possible (presented
previously in Example 9). Each of these 4 merging possibilities are tested, the corresponding
SSE for each possible merging is computed, and the results are stored in the matrix. Figure 4.4b
shows the content of the matrix after the update (the updated values are in red). The possible
scenarios are underlined. For this step, we choose the segmentation generated in Scenario 1
shown in Figure 4.3a, resulting from merging s1 and s2, since it provides the minimum SSE
value (MSSE), that is MSSE = 0.11.

Step 2 : Reduce the number of segments from 4 to 3. In the previous step, the initial segments
s1 and s2 have been merged into a single segment. Now, we have 4 segments as shown in
Figure 4.3a. To reduce the 4 segments to 3, three merging scenarios are possible:

Scenario 1: The first scenario is shown in Figure 4.5a where the first segment S1 of Figure
4.3a(the segment resulting from merging s1 and s2) and S2 are merged, i.e s1,s2 and s3 of the
initial segmentation are merged into one segment. This merging is tested for the first time until
now (matrix[1, 3]=-1), then, we calculate the values’s mean of X on the resulting segment, and
then compute the SSE that is SSE1(X, X) = 2.49. The matrix cell that corresponds to this
merging is updated (Figure 4.4c).

Scenario 2: This scenario is shown in Figure 4.5b in which s3 and s4 of the initial segmenta-
tion are merged. This merging has already been tested in the previous step (matrix[3, 4] ̸=-1),
the SSE value is retrieved from our matrix from the cell (3, 4). Here, SSE2(X, X) = 1.70.

Scenario 3: The last scenario is shown in Figure 4.5c, where we merge s4 and s5. The SSE
for this merging has been already computed in step 1, that is SSE3(X, X) = 0.15.

We have now the SSE for the three scenarios. We choose the minimum SSE value, that is
MSSE = 0.15 corresponding to the segmentation generated in Scenario 3, which is chosen for
this iteration.
After this step, we have 3 segments shown in Figure 4.5c. Since, the number of segment reaches
w, the algorithm ends.

4.3 PASAX : Parallel ASAX_SSE

In order to improve the accuracy of time series representations, we proposed the
ASAX_SSE segmentation approach. This method is efficient when the database con-
sists of few small time series but in case of large sets of time series, using this algorithm
is highly time-consuming. ASAX_Dyn allows to improve the execution time of our
segmentation approach, by means of dynamic programming. However, this method

46

0 1 2 3 4 5 6 7 8 9 10−2

−1

0

1

2 S1 S2 S3

(a) Scenario 1

0 1 2 3 4 5 6 7 8 9 10−2

−1

0

1

2 S1 S2 S3

(b) Scenario 2

0 1 2 3 4 5 6 7 8 9 10−2

−1

0

1

2 S1 S2 S3

(c) Scenario 3

Figure 4.5: The three different scenarios of ASAX_SSE segmentation with 3 segments.
Scenario 4.5c is selected since it provides the minimum SSE.

may require significant system resources: memory resources especially for long time
series as the size of the matrix increases with the length of the series ; and the SSE
computation for all time series of the dataset is done sequentially and for this, many
sequential loops have to be done at each step.

We propose efficient parallel techniques using GPUs for improving the execution
time of our segmentation algorithm. In our approach, the CPU controls the main
loop of the segmentation computation process and does light operations, while the
time-consuming tasks are parallelized on GPU, particularly the SSE computation on a
dataset for a given segmentation. We propose two parallel versions of the algorithm
using CUDA framework to provide a fast computation of the variable-size segmen-
tation over long time series and/or large number of time series: 1) PASAX_DP that
performs the parallelization on data; 2) PASAX_SP that makes the parallelization on
segments.

4.3.1 Parallelization on Data

The main computational part of the sequential algorithm is located in the calculation
of the SSE on the entire dataset that is done in a sequential loop for each segmentation,
the larger is the dataset, the more this computation is long. It may therefore be advan-
tageous to transform this computation into a GPU module. The main idea of our first
parallel algorithm, called PASAX_DP (PASAX Data Parallel), is to divide the dataset
into blocks (partitions), and to assign the SSE computation for the time series of each
block to a core of the GPU.
Let us describe the proposed algorithm. Initially, the host (CPU) sends the whole
dataset D to the GPU (this data transfer between the CPU and the GPU is done only
once). Then, the host creates the initial segmentation segments by splitting the time
domain into the k starting segments. Afterwards, in a loop, until the number of seg-
ments is more than w, it generates a candidate segmentation by merging 2 segments
of the last validated segmentation. For each candidate segmentation, the GPU is used
for computing SSE on D. For this, the host calls the GPU kernel that computes SSE in
parallel operating on different time series of the different dataset blocks. Algorithm 4
presents the pseudo-code of the corresponding GPU kernel. In the kernel, each thread

47

calculates the SSE on the time series of its block and stores the result in a shared ar-
ray, called sseArray, that is sent back to the CPU. The host calculates the sum of the
received results to get the SSE on D, and updates the MSSE (minimum SSE) if the SSE
obtained in this iteration is less than the MSSE obtained until now. After testing all
possible segmentations, it chooses the one that has the minimum SSE, updates the set
of segments segments and decrements the current number of segments k by one. This
process continues until k reaches the required number of segments w.

Algorithm 4: PASAX_DP SSE computation Kernel
Input: D: time series database; seg: current segment(s);
Output: sseArray: result of SSE computation

1 tx = threadIdx.x // thread id in a 1D block
2 ty = blockIdx.x // block id in a 1D grid
3 bw = blockDim.x // block width, i.e number of threads per block
4 i= tx + ty * bw // compute flattened index inside the array
5 if i < D.size() then
6 sseArray[i]=SSE(D[i],seg)

4.3.2 Parallelization on Segments

To find the k variable size segments on a dataset of long time series with the sequential
version of the algorithm many possible segmentations are tested for each step, the
number of these possibilities increases as the length of time serie increases. Here, we
propose PASAX_SP (PASAX Segment in Parallel), a parallel algorithm in which the
computations related to each possible merging of segments is done by a different GPU
core. As shown by our experiments, this algorithm can be more efficient than the one
presented previously in the cases where the time series are long (e.g., more than 1000
values per time series).

The initialization of this algorithm is the same as the algorithm presented in the
previous subsection. The host starts by sending the dataset D to the GPU, and dividing
the time domain into k starting segments to form the set segments.

Then, until the number of segments has reached w, the host calls the GPU kernel
described in Algorithm 5 to compute SSE on D of each possible segmentation in paral-
lel. The number of launched threads is equal to the number of possible segmentations
obtained when reducing the number of segments from k to k − 1. In the kernel, each
thread calculates its segmentation by merging two segments si and si+1 where i is the
thread position. The thread computes the SSE of the segmentation on the dataset D
and stores the result in a shared array, called sseArray, according to its position. The
result array is sent back to the CPU. Each element of the array represents the SSE for
a candidate segmentation. The host selects the one having the lowest SSE value, and
then updates segments and k. This process continues until k reaches w.

48

Algorithm 5: PASAX_SP SSE computation Kernel
Input: D: time series database; segments: initial segmentation; k: number of

segments
Output: sseArray: result of SSE computation

1 tx = threadIdx.x // thread id in a 1D block
2 ty = blockIdx.x // block id in a 1D grid
3 bw = blockDim.x // block width, i.e number of threads per block
4 i= tx + ty * bw // compute flattened index inside the array
5 if i < k then
6 find the current segmentation seg by merging si and si+1
7 sse = 0
8 foreach ts in D do
9 sse = sse + SSE(ts,seg)

10 sseArray[i]=sse

4.4 Evaluation and results

In this section, we present the experimental evaluation of ASAX_SSE, ASAX_Dyn and
PASAX. The section is organized as follows. We first present the experimental setup.
Then, in Subsection 4.4.2, we compare the precision of ASAX_SSE representation with
that of the existing SAX representation and the ASAX_EN proposed in chapter 3.
Then, in Subsection 4.4.3, we evaluate the performance of ASAX_Dyn and PASAX
by measuring the execution time of the variable-size segmentation.

4.4.1 Setup

All approaches are implemented with Python programming language. The implemen-
tation use Numba JIT compiler to optimize machine code at runtime.

The experimental evaluation was conducted on the same machine used for the
experimentation of ASAX_EN presented in chapter 3. The parallel experimental eval-
uation was conducted on an NVIDIA GeForce RTX 2080 Ti GPU card, equipped with
4 352 CUDA cores and 11 GB of memory installed in the same machine. We compare
the precision of the approaches using several real world datasets from the UCR Time
Series Classification Archive in similarity search by applying a k-Nearest Neighbor (k-
NN) search, as detailed previously in Subsection 4.4.2. We evaluate the performance
of the improved algorithms on the datasets taken from the same archive [11]. For each
approach, the length w of the approximate representations is reduced to 10% of the
original time series length. For the variable-size segmentation algorithms, ASAX_SSE
is initialized by splitting the time domain into segments of length 2 and for ASAX_EN
we set the default cardinality value to 32.

49

4.4.2 Precision of k-Nearest Neighbor Search

We compare the proposed ASAX_SSE and SAX in terms of precision on all 128 datasets
available in the UCR Time Series Classification Archive. The precision results are
reported in Figure 4.8 where the precision gain/loss (as percentage) for ASAX_SSE
compared to SAX precision is measured for each dataset. Figure 4.6a shows the pre-
cision results for ASAX_GSSE (i.e., ASAX_SSE using GSSE) and Figure 4.6b those for
ASAX_LSSE (i.e., ASAX_SSE using LSSE). The results are illustrated using a scatter
chart where the horizontal axis represents the dataset number and the vertical axis
shows the precision gain/loss obtained. We observe a gain in precision for the large
majority of datasets. We obtained a gain in precision for 80% of the datasets with
ASAX_GSSE and 84% with ASAX_LSSE (the loss in precision in represented by red
dots).
The distribution of time series over the time domain varies from one dataset to an-
other. There are some for which the distribution is quite balanced, those which un-
dergo some variations and others whose variation increases a lot. Figure 4.8 does not
allow explaining the precision gain or loss since we need to have the visualisation of
the time series for each datasets, for this, an analysis is done regarding the precision
results obtained and the shape of data. We have noticed that the more the distribution
of the data is unbalanced the more the gain is important. The maximum gain achieved
is a significant 38% for both ASAX_GSSE and ASAX_LSSE methods, obtained for the
ECGFiveDays dataset. This high gain is due to the unbalanced data distribution over
the time domain on this dataset (as shown in Figure 1.1). We were able to achieve a
precision of 93% for ASAX_SSE while it is 55% for SAX, because ASAX_SSE performed
a better distribution of the segments according to information gain by creating several
segments in the parts that undergo a significant variation that produces more accurate
times series representations leading to a better result for the approximate kNN search.

We can see that for some datasets the computed gain is zero meaning equivalent
precision for ASAX_SSE and SAX due to the balanced shape of the time series over the
time domain.

Regarding the few datasets where we obtain lower precision, the loss is relatively
low (mostly near zero) and corresponds to a very specific, well identified, type of
distribution. It is illustrated by Figure 4.7 that shows a set of time series taken from
MiddlePhalanxOutlineAgeGroup dataset of UCR Archive. It basically contains time se-
ries that split into two distributions. The first one concerns complete time series, while
the second one concerns time series that are flat on the last values (probably due to
missing values that have been replaced by a constant). The right part of the dataset,
with flat values, will always give higher SSE compared to the left part, forcing the
algorithm to split on the left part. However, when a request Q arrives, there are two
possibilities. The first one is that Q is complete and it is compared only on the left part,
leading to possible errors (the observed loss in our experiments). The second one is
that Q is flat on the right part and, in this case, the comparison will be accurate since
the right part has low impact on retrieving its kNN.

Here, we compare the quality of ASAX_SSE, ASAX_EN and SAX representation on

50

0 20 40 60 80 100 120
Datasets sorted by increasing gain

−10

0

10

20

30

40
Pr
ec
isi
on

 g
ai
n
(%

)

-8

38

(a) Precision gain for ASAX_GSSE

0 20 40 60 80 100 120
Datasets sorted by increasing gain

−10

0

10

20

30

40

Pr
ec
isi
on

 g
ai
n
(%

)

-7

38

(b) Precision gain for ASAX_LSSE

Figure 4.6: The precision gain for ASAX_GSSE and ASAX_LSSE compared to SAX.
The obtained gain is up to 38% for both methods

51

0 10 20 30 40 50 60 70 80

−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0

Figure 4.7: An example of dataset on which ASAX_SSE segmentation produces a pre-
cision loss

the same datasets described in Table 3.1 of the UCR Time Series Classification Archive
used to evaluate ASAX_EN. For these comparison we consider only the results of
ASAX_LSSE precision since The percentage of precision gain computed previously
shows that the gain obtained with this method in better than the one obtained with
ASAX_GSSE.

The precision results are reported in Figure 4.8. We can observe that ASAX_SSE
is often much more efficient than ASAX_EN and SAX. For example, on the ECGFive-
Days dataset presented in Figure 4.8a, we were able to achieve a precision of 93% for
ASAX_SSE, 82% for ASAX_EN while it is 55% for SAX, which is a significant gain in
precision.

Globally, our results suggest the effectiveness of our approach and its advantage
over SAX when applied to time series especially those with unbalanced distribution
over the time domain.

4.4.3 Execution time of variable-size segmentation algorithms

Figure 4.9 gives the segmentation time of ASAX_EN and ASAX_LSSE on the datasets
of Table 3.1. We can observe that the time cost of ASAX_LSSE is always less than the
one for ASAX_EN.

Next, we measure the variable-size segmentation time cost of the improved al-
gorithm ASAX_Dyn, and compare it to that of the basic algorithm ASAX_SSE. Fig-
ure 4.10 reports the performance gains of our improved approach ASAX_Dyn com-
pared to the basic version of ASAX_LSSE. The variable-size segmentation time cost
for the two methods is evaluated for all the datasets of the archive. We can observe
that ASAX_Dyn is much more efficient and allows to have significant performance
gains.

Figure 4.11 reports the computation time of variable-size segmentation for ASAX_Dyn
and ASAX_LSSE over HandOutlines dataset, by varying the time series length. The

52

0 20 40 60 80 100 120

−6

−4

−2

0

2

4

6 p(SAX)= 55%
p(ASAX_EN)= 82%
p(ASAX_LSSE)= 93%

(a) ECGFiveDays

0 10 20 30 40 50 60 70 80 90

−2

0

2

4

6

8 p(SAX)= 48%
p(ASAX_EN)= 68%
p(ASAX_LSSE)= 72%

(b) MedicalImages

0 20 40 60 80 100 120 140

−6
−4
−2
0
2
4
6
8

p(SAX)= 54%
p(ASAX_EN)= 67%
p(ASAX_LSSE)= 76%

(c) ECG5000

0 50 100 150 200 250 300 350 400 450
−40

−20

0

20

40

60 p(SAX)= 52%
p(ASAX_EN)= 61%
p(ASAX_LSSE)= 83%

(d) GesturePebbleZ1

Figure 4.8: The data distribution of the tested datasets, and the precision results for
each dataset. p(SAX), p(ASAX_EN) and p(ASAX_LSSE) show the precision of SAX,
ASAX_EN and ASAX_LSSE respectively.

53

0 100 200 300 400 500

−4

−2

0

2

4

6 p(SAX)= 79%
p(ASAX_EN)= 87%
p(ASAX_LSSE)= 92%

(e) AllGestureWiimoteZ

0 25 50 75 100 125 150 175 200
0

20

40

60

80
p(SAX)= 92%
p(ASAX_EN)= 97%
p(ASAX_LSSE)= 98%

(f) Fungi

0 10 20 30 40 50 60 70 80 90

−2

0

2

4

p(SAX)= 72%
p(ASAX_EN)= 77%
p(ASAX_LSSE)= 79%

(g) ECG200

0 10 20 30 40 50 60 70−4

−2

0

2

4

6 p(SAX)= 37%
p(ASAX_EN)= 40%
p(ASAX_LSSE)= 36%

(h) SonyAIBORobotSurface1

0 10 20 30 40 50 60
−2

−1

0

1

2

3 p(SAX)= 32%
p(ASAX_EN)= 32%
p(ASAX_LSSE)= 32%

(i) SyntheticControl

Figure 4.8: The data distribution of the tested datasets, and the precision results for
each dataset. p(SAX), p(ASAX_EN) and p(ASAX_LSSE) show the precision of SAX,
ASAX_EN and ASAX_LSSE respectively.

54

Al
lG

es
tu

re
W

iim
ot

eZ

EC
G2

00

EC
G5

00
0

EC
GF

iv
eD

ay
s

Fu
ng

i

Ge
st

ur
eP

eb
bl

eZ
1

M
ed

ica
lIm

ag
es

So
ny

AI
BO

Ro
bo

tS
ur

fa
ce

1

Sy
nt

he
tic

Co
nt

ro
l

Dataset

10 1

100

101

Ru
nt

im
e

(s
)

ASAX_EN
ASAX_LSSE

Figure 4.9: Logarithmic scale. Runtime of ASAX_LSSE and ASAX_EN segmentation
algorithms for each dataset

0 20 40 60 80 100 120
Datasets sorted by increasing gain in execution time
0

25

50

75

100

125

150

175

Ex
ec
ut
io
n
tim

e
ga

in

1.4

 181.9

Figure 4.10: ASAX_Dyn’s performance gain on ASAX_SSE in segmentation time, over
all datasets of the archive

55

running time increases with the length of time series and, as one could expect. The
basic approach ASAX_LSSE takes much more time than ASAX_Dyn. Depending on
time series length, ASAX_Dyn shows performance gains that can reach ×182 for the
1340 time series with length 2700 of the HandOutlines dataset.
Figure 4.12 illustrate ASAX_Dyn’s performance gain on ASAX_LSSE in segmentation
time for 5 datasets with different time series lengths. As seen, the performance gains
vary significantly depending on the number of time series in relation with their length.

300 600 900 1200 1500 1800 2100 2400 2700
Length of Time Series

10 1

100

101

102

Ru
nt

im
e

(s
)

x28

x53

x77
x97

 x117
 x136

 x154 x172 x182ASAX_Dyn
ASAX_LSSE

Figure 4.11: Logarithmic scale. Variable-size segmentation time for ASAX_Dyn and
ASAX_LSSE as a function of time series length, over the HandOutlines dataset.

100 200 300 400 500 600 700 800 900 1000
Number of Time Series

20

40

60

80

100

120

140

160

Pe
rfo

rm
an

ce
 g

ai
n

2700
1630
1020
940
420

Figure 4.12: ASAX_Dyn’s performance gain on ASAX_LSSE in segmentation time as a
function of dataset size. The time series length is shown in the figure for each dataset.

Here, we presents the time cost of the variable-size segmentation for our proposed
parallel algorithms. We measure the variable-size segmentation time costs of the par-
allel algorithms PASAX_DP and PASAX_SP, and compare them to that of the variable-
size segmentation for the sequential algorithm PASAX. The percentage of precision

56

gain computed in the experiments described in the previous subsection shows that
the gain obtained with the ASAX_GSSE approach is less than the one obtained with
ASAX_LSSE. Furthermore, the evaluation of the time cost for ASAX_GSSE approach
(sequential and parallel methods) showed that this approach is more time consuming
than ASAX_LSSE. For these reasons, we present the results of our parallel algorithms,
PASAX_DP and PASAX_SP, only using the LSSE measurement.

Figure 4.13 and Figure 4.14 report the performance gains of our parallel approaches
compared to the sequential version of ASAX_LSSE. Figure 4.13 reports the variable-

100K 200K 300K 400K 500K 600K 700K 800K 900K 1M
Number of Time Series

0

50

100

150

200

250

Ru
nt

im
e

(s
)

x14

x21

x26

x31

x35

x38

x40

x42

x44

x45PASAX_DP
ASAX_LSSE

Figure 4.13: Variable-size segmentation time for PASAX_DP and ASAX_LSSE as a
function of dataset size. The original time series are of length 130.

size segmentation time for the PASAX_DP and ASAX_LSSE with varying dataset size.
The computation time increases with the number of time series for both algorithms.
But, it is much lower in the case of PASAX_DP than that of the sequential ASAX_LSSE.
The performance gains vary significantly depending on the number of time series. As
seen, the gain reaches ×45 for 1M of time series.
Figure 4.14 reports the computation time of variable-size segmentation for the PASAX_SP

and ASAX_LSSE. Here we vary the time series length. The running time increases
with the length of time series and, as one could expect, the sequential ASAX_LSSE
takes much more time than PASAX_SP. Depending on time series length, PASAX_SP
shows performance gains that can reach ×24 for 1000 time series of length 2700.

Figure 4.15 and Figure 4.16 compare the parallel segmentation computation time of
our approaches. In Figure 4.15, we evaluate the two approaches with varying dataset
size (number of time series) and fixed time series length. For this case, we observe that
PASAX_DP is always faster than PASAX_SP. The results show that using PASAX_DP
is advantageous in the case of databases of many small time series.

In Figure 4.16, we vary the time series length and we fix the dataset size for the
evaluation. We notice that when time series length n = 100, PASAX_DP is a little faster
than PASAX_SP, but when the length of time series increases, PASAX_SP becomes
faster than PASAX_DP. The performance gain reaches ×7.5 for time series of length

57

300 600 900 1200 1500 1800 2100 2400 2700
Time Series length

0

20

40

60

80

100

120
Ru

nt
im

e
(s

)

 x3
 x6

 x8

x11

x14

x16

x19

x21

x24PASAX_SP
ASAX_LSSE

Figure 4.14: Variable-size segmentation time for PASAX_SP and ASAX_LSSE as a
function of time series length. The dataset size is fixed to 1000.

50K 100K 150K 200K 250K 300K 350K 400K 450K 500K
Number of Time Series

0

20

40

60

80

100

120

140

160

Ru
nt

im
e

(s
)

x1.8

x3.0

x3.7

x4.6

x5.4

x5.7

x6.3

x6.8

x7.3

x7.7PASAX-DP
PASAX-SP

Figure 4.15: Comparison of parallel segmentation time using PASAX_DP and
PASAX_SP, as a function of dataset size. The original time series are of length 300.

58

100 200 300 400 500 600 700 800 900 1000
Time Series length

0

20

40

60

80

Ru
nt

im
e

(s
)

x0.9 x1.6
x2.4

x3.1

x3.8

x4.6

x5.4

x6.2

x6.9

x7.5PASAX-DP
PASAX-SP

Figure 4.16: Comparison of parallel segmentation time using PASAX_DP and
PASAX_SP, as a function of time series length. The dataset size is fixed to 10 000.

1000. PASAX_SP allows better performance gains when the database consists of few
and long time series.

4.5 Conclusion

We proposed ASAX_SSE, an efficient solution for segmenting time series. ASAX_SSE
is a simple method with high performance, it can reduce significantly the error of the
representation calculation, by taking into account the sum of squared errors (SSE). We
evaluated the performance of our segmentation approach through experiments using
more than 120 real world datasets. The experimental results illustrate the excellent
performance of ASAX_SSE compared to SAX and our algorithm ASAX_EN (e.g., for
the ECGFiveDays dataset, the precision of ASAX_SSE is 93% compared to 55% for SAX
and 82% for ASAX_EN).

We proposed an efficient algorithm, called ASAX_Dyn, for improving the execu-
tion time of our segmentation approach ASAX_LSSE, by means of dynamic program-
ming. The results also show the effectiveness of our dynamic programming algorithm,
e.g., up to ×182 faster than the basic ASAX_SSE algorithm over HandOutlines dataset.

We also proposed two parallel algorithms for improving the execution time of
ASAX_SSE using GPUs. The results illustrate the effectiveness of our parallel algo-
rithms, e.g., up to ×45 faster than the sequential algorithm for 1M time series.

59

CHAPTER 5

TIME SERIES REPRESENTATION BASED

ON THE EXACT ERROR

In this chapter, we propose an exact approach for time series segmentation using a
dynamic programming algorithm. The rest of this chapter is organized as follows. In
Section 5.2, we describe the details of our new segmentation approach. In section 5.3,
we evaluate the performance of our solution through experiments on all datasets of
the UCR archive. Finally, in Section 5.4, we conclude.

5.1 Motivation and Overview of the Proposal

Several ways exist for approaching hard optimization problems. They may either be
of exact or heuristic nature. Exact approaches are guaranteed to yield proven optimal
solutions when they are given enough computation time. In contrast, heuristics only
aim at finding reasonably good approximate solutions usually in a more restricted
time, and performance guarantees are typically not provided. In the previous works
of this thesis, we proposed two methods for segmenting time series. These methods
try to find the w segments that minimize the approximation error based on a top-
down (ASAX_EN) and a bottom-up (ASAX_SSE) algorithms. The splitting produced
by these methods gives good approximation results in a reasonable time due to the
their heuristic approach. In this chapter, we propose an exact algorithm for solving the
segmentation problem based on the SSE measurement in order to achieve better results
and compare them with those of our approximate methods. As for the previous work,
we choose the SSE measure since it gives good accuracy results for the ASAX_SSE
approach. Our contributions are as follows:

• We propose an exact segmentation technique, called EASAX_Dyn, that finds the
exact variable size segmentation with minimum SSE of the representation using
dynamic programming.

• We implemented our approach and conducted empirical experiments using more
than 120 real world datasets. The results illustrate that EASAX_Dyn can obtain
better performance gains in terms of precision for similarity search compared to
the heuristic approach ASAX_SSE.

61

5.2 EASAX_Dyn DP Algorithm description

Given a set of time series, the problem we address is to find the most efficient seg-
mentation that minimizes the SSE of the representation. In other words, the problem
consists of deciding how to do the splittings in order to guarantee the minimum error.
We have many options to make the segments. A simple solution is to try all possi-
ble segmentations, calculate the cost for each segmentation and return the one that
leads to the minimum SSE. For time series of length n, we can place the first split in
n-1 positions. So when we place a split, we divide the problem into subproblems of
smaller size. Therefore, the problem has optimal substructure property and can be
easily solved using recursion. Minimum SSE value of the segmentation is equal to the
minimum of all n − 1 split placements. Since similar sub-problems are called again,
this problem has overlapping sub-problems property. So this segmentation problem
has the properties of a dynamic programming problem.

In this section, we propose EASAX_Dyn, our exact method that finds the variable
size segmentation that guarantees the minimum SSE on the representation using dy-
namic programming.

Algorithm 6: EASAX_Dyn variable-size segmentation
Input: D: time series database; n: the length of time series,w: the required

number of segments
Output: w variable-size segments

1 EM = 3D matrix of size (w, n, n) values initialized to -1 // the matrix
containing the minimum approximation error for each possible segment

2 SM = 3D matrix of size (w, n, n) values initialized to -1 // the matrix
containing the split position done for each possible segments

3 segments = { }
4 init_EM(D,n)
5 segmentation(w,1,n)
6 find_segmentation(w,1,n)
7 segments.sort()
8 return segments

The pseudo-code of this segmentation method can be seen in Algorithm 6. The
input is a dataset D that contains time series, the time series length n and the final
number of segments w. First, the algorithm starts by allocating the data structure
needed : EM and SM 3D matrices, all values are initialized to -1 (Lines 1,2). Next,
it calls the init_EM function to calculate the SSE for each possible segment that can
be formed on the time series length using a single frame. This calculation will be the
basis for getting the overall segmentation error when placing two or more segments,
until reaching w segments in total. Then, the algorithm calls the segmentation and
f ind_segmentation function that finds the optimal segmentation which minimizes the
representation error (Lines 5,6). Finally, we can obtain our final segmentation after
sorting the set segments (Line 7).

62

Let us now describe in details of each function used in this algorithm. We start with
the first function called the init_EM function described in Algorithm 7. This function
takes as input a database of time series denoted as D and their length denoted n. The
goal of this function is to calculate the SSE of each possible segment that we can form
on the n values of the time domain (using a single frame). For each segment (i,j) with
i from 1 to n and j from i to n, we compute the representation error using SSE on
this segment for each time series ts of the database D. If i is equal to j, meaning that
the segment contains a single value, the representation error on this frame is then 0,
this value is stored in the corresponding position in the EM matrix denoted EM[1, i, j]
(Line 4). If i ̸= j the sum of the SSE is computed for all time series ts in the database D
on the segment s and stored in EM (Lines 9,10). Notice that when storing the obtained
SSE value in EM[1, i, j] the first parameter here is always set to 1 meaning that one
single segment is formed between i and j timestamps positions. For other values of
this parameter the segmentation function computes the error and stores the results
gradually in the process.

Algorithm 7: init_errorMatrix
Input: D: time series database; n: the length of time series

1 for i = 1 to n do
2 for j = i to n do
3 if i == j then
4 EM[1, i, j]=0
5 else
6 sse=0
7 s=[i,j]
8 foreach ts in D do
9 sse = sse + SSE(ts, s)

10 EM[1,i,j] = sse

Let’s move to the segmentation function of Algorithm 8 which is the most impor-
tant part of the algorithm. This function tests all possible segmentations that can be
performed, in order to find the segmentation that minimizes the SSE measurement of
the representation. This procedure is done recursively. The first call takes as input all
n values of the series that form a single starting segment (i,j) and the goal is to find the
splitting positions of the the w segments by calculating the minimum error on the seg-
mentation. In the general case, for a given time interval (i,j) and a number of segments
s (budget given to a segment), it has to find the split position that divides the segment
into 2 parts that guarantee the minimum SSE: the first part (left part) with a segment
budget equal to 1 and the second part (right part) the remaining s-1 segments. This
function works as follows.

For the input (i,j) and s, if the number of segments that needs to be formed s is equal
to 1, meaning that there is only one segment left to form between i and j, it returns

63

the corresponding error on the EM matrix whose values have been pre-calculated by
initEM function (Line 2).

If the estimated error between i and j with a budget limit of s is different from -1,i.e,
the error has already been calculated during the previous steps of the process, this
value is simply returned (Line 4). Otherwise, we need to test all possible splittings of
the interval (i,j). For each split position denoted as k (k from i to j), the sum of the error
for placing one segment on the first interval (i,k) and the minimum error for placing
s − 1 segments on the second interval (k + 1,j) is computed and stored in error (Line
9). This latter is obtained recursively until the budget of segments s reaches 1. If the
total error computed for the two resulting parts of the segmentation according to the
split k is the minimum obtained so far, the algorithm keeps track of this segmentation,
the minimum error between i and j with s segments denoted as EM[s, i, j] and the split
position split is updated (Line 11, 12). After having tested all possible divisions at this
step of the segmentation, the algorithm stores the split position split that provides the
minimum SSE in the SM matrix (Line 13). Finally, the minimum error is returned.

At the end of this process, we can obtain the global segmentation from the informa-
tion contained in the EM and SM matrices using the function which will be described
bellow.

Algorithm 8: segmentation
Input: s: the segment budget ; i: start point of the segment ; j: end point of the

segment
Output: EM[s, i, j] the minimum error between timestamp i and j with s

segments
1 if s == 1 then
2 return EM[1, i, j]

3 if EM[s, i, j] ̸= −1 then
4 return EM[s, i, j]

5 EM[s, i, j]=∞
6 split = null
7 for k = i to j − 1 do
8 if (k − i + 1) ≥ 1 and (j − k) ≥ s − 1 then
9 error = segmentation(1,i,k) + segmentation(s − 1,k + 1,j)

10 if error < EM[s, i, j] then
11 EM[s, i, j]=error
12 split = k

13 SM[s, i, j] = split
14 return EM[s, i, j]
15

Finally, we describe our function f ind_segmentation of Algorithm 9. For a given
interval in the time domain delimited between i and j and a number of segments s

64

formed between i and j, this recursive function returns the position of the first split
done that is stored in the SM matrix (Line 2) and this position is added in the set
segments (Line 3). Recall that the first resulting part has a segment budget of 1, thus
the first part forms a final segment that is no longer divided, and for the remaining
part the function is called recursively to find the next divisions. This function is called
recursively for the resulting intervals (Line 4), until all intervals segments budget be-
comes equal to 1.

After having obtained the splittings positions stored in segments, they are sorted
on the time domain to obtain the correct order of the splits of the final segmentation.

Algorithm 9: find_segmentation
Input: s: the segment budget ; i: start point of the segment ; j: end point of the

segment
1 if s > 1 then
2 split=SM[s, i, j] // find the split position for the segment (i,j)
3 segments.add(split) // add the position to the set segments
4 find_segmentation(s − 1,split+1,j) // find the segmentation for the right

resulting segment

5.3 Performance Evaluation

In this section, we report experimental results that show the quality and the perfor-
mance of our exact segmentation algorithm EASAX_Dyn, illustrating the precision
of the segmentation. We compare our work with SAX and the previously proposed
ASAX_SSE.

We implemented the approaches in Python programming language and Numba
JIT compiler is used to optimize machine code at runtime.

The experimental evaluation was conducted on a machine using Ubuntu 18.04.5
LTS operating system with 20 Gigabytes of main memory, and an Intel Xeon(R) 3,10
GHz processor with 4 cores.

We carried out our experiments on the UCR Time Series Classification Archive
datasets. As for the previous experiments, the default value of w the length of the
approximate representations is reduced to 10% of the original time series length.

5.3.1 Precision of k-Nearest Neighbor Search

The precision results are reported in Figure 5.1 where the precision gain/loss (as per-
centage) for EASAX_Dyn compared to SAX is measured for each dataset. We can
observe a precision gain for the large majority of datasets. We obtained a gain in pre-
cision for 84% of the datasets with ASAX_SSE. The maximum gain achieved 39% for
EASAX_Dyn on the ECGFiveDays dataset where the precision is 94% for EASAX_Dyn
and 55% for SAX.

65

0 20 40 60 80 100 120
Datasets sorted by increasing gain

−10

0

10

20

30

40

Pr
ec
isi
on

 g
ai
n
(%

)

-7

39

Figure 5.1: The precision gain computation result for EASAX_Dyn approach com-
pared to SAX. The maximum gain achieved is 39 percent.

Gain on archive datasets max gain average gain
ASAX_LSSE 84% 38% 4.8%
EASAX_Dyn 88% 39% 5.5%

Table 5.1: Some statistic information to compare EASAX_Dyn and ASAX_SSE

Let us now compare these results with those of our best heuristic method ASAX_LSSE.
Table 5.1 shows some statistic information for both methods. We can see that the
number of datasets on which we observed a better gain in precision is higher for
EASAX_Dyn (88%) compared to ASAX_LSSE (84%), as well as for the max gain and
the average precision gain. From these sresult, we can state that the exact method
performs better than ASAX_LSSE.

5.3.2 Time cost of EASAX_Dyn segmentation algorithm

In this section, we measure the execution time of EASAX_Dyn and compare it to that
of ASAX_dyn.

Figure 5.2 reports the performance gains of our approach ASAX_Dyn compared to
EASAX_Dyn. The variable-size segmentation time cost for the two methods is eval-
uated for all the datasets of the archive. As expected, we can clearly see that that
EASAX_Dyn is highly time consuming compared to ASAX_Dyn, and its execution
time increases considerably as the size of the database increases.

5.4 Conclusion

In this chapter, we proposed EASAX_Dyn, an efficient solution that finds the seg-
mentation leading to the minimum SSE of the representation. We evaluated the per-
formance of our solution over more than 120 real world datasets. The experimental

66

0 20 40 60 80 100 120
Datasets sorted by increasing gain in execution time

0

1000

2000

3000

4000

5000

6000

7000

8000

Ex
ec
ut
io
n
tim

e
ga

in

Figure 5.2: ASAX_Dyn’s performance gain compared to EASAX_Dyn in segmentation
time, over the datasets of the UCR archive.

results illustrate the excellent performance of EASAX_Dyn compared to SAX in terms
of precision. Compared with the previous work ASAX_SSE, our exact solution pro-
vides better performance gains in terms of precision for similarity search. However,
the difference is not high between the two methods. This shows that the approximate
algorithm performs well on the segmentation and produces a representation whose
precision is very close to that of the exact method. Furthermore, the experiments show
that the segmentation time of the approximate algorithm, i.e., ASAX_Dyn, is very low
compared to EASAX_Dyn, e.g., up to 8000 times lower. Therefore, our approximate
approach ASAX_Dyn provides a good compromise between accuracy and the compu-
tation time for variable-size segmentation of time series.

67

CHAPTER 6

CONCLUSION AND FUTURE

DIRECTIONS

It is generally known that the time series, as essential high-dimensional collections of
data, permeate all areas of business and scientific research. Therefore, the time series
analysis is an active and attractive research area.
The key component in the data mining process of discovering the structure in time
series data is the segmentation of time series. As a data mining research problem, it
is focused on the division of time series into adequate internally homogeneous seg-
ments. Time series segmentation is often used as a preprocessing step in time series
data mining applications, so that the quality of the output of the segmentation process
is the key factor that determines the quality of the analysis and validity of the time
series models.
In this thesis, we focused on the problem of time series representation. We devel-
oped efficient techniques for variable-size segmentation of the time domain, aiming at
improving the accuracy of time series representations in order to get better precision
during similarity search operations. In this chapter, we summarize and discuss our
main contributions and then give some research directions for future work.

6.1 Contributions

This thesis includes the following main contributions related to time series approxi-
mation.

• Variable size segmentation for efficient representation of non-uniform time
series datasets based on entropy. In this contribution, our main challenge was
the approximation of time series using a variable-size segmentation based on en-
tropy adopting a top-down strategy. In this part of the thesis, the representation
is built based on the principles of SAX. We proposed ASAX_EN (Adaptive SAX
based on entropy), a new approximation technique that considers the time series
distribution on the time domain and performs variable-size segmentation, by
using the entropy of symbolic representations. This technique allows reducing
information loss and thus increasing the accuracy of time series representations.
We evaluated its performance using several real world datasets. The experimen-
tal results show that ASAX_EN can obtain significant performance gains in terms
of precision for similarity search compared to SAX, particularly for dataset with
unbalanced (non-uniform) distribution, e.g., for the EGCFiveDays dataset that has

69

a non-uniform distribution in the time domain, the precision of ASAX_EN is 82%
compared to 55% for SAX.

• Optimized techniques for time series segmentation based on the approxima-
tion error. In this part of the thesis, we addressed the problem of finding the
variable-size segmentation that minimizes the approximation error of the time
series representation using a bottom-up approach. We have proposed ASAX_SSE,
a simple and efficient method with high performance that can reduce signifi-
cantly the error of the representation calculation, by taking into account the sum
of squared errors (SSE). We evaluated the performance of our segmentation ap-
proach through experiments using more than 120 real world datasets. The ex-
perimental results illustrate the excellent performance of ASAX_SSE compared
to SAX and our algorithm ASAX_EN (e.g., for the ECGFiveDays dataset, the pre-
cision of ASAX_SSE is 93% compared to 55% for SAX and 82% for ASAX_EN).
Also, efficient algorithms for improving the execution time of our segmenta-
tion approach have been proposed. We proposed an efficient algorithm, called
ASAX_Dyn, for improving the execution time of our segmentation approach
ASAX_LSSE, by means of dynamic programming. The results also show the ef-
fectiveness of our dynamic programming algorithm, e.g., up to ×182 faster than
the basic ASAX_SSE algorithm over HandOutlines dataset.

We also proposed two parallel algorithms for improving the execution time of
ASAX_SSE using GPUs. The results illustrate the effectiveness of our parallel
algorithms, e.g., up to ×45 faster than the sequential algorithm for 1M time series.

• Time series representation based on the exact error. We addressed the prob-
lem of segmenting the time series based on the exact approximation error of
the representation. We proposed EASAX_Dyn, an exact segmentation technique
that finds the exact variable size segmentation with minimum SSE of the rep-
resentation using dynamic programming. We evaluated its performance over
more than 120 real world datasets. The experimental results illustrate the excel-
lent performance of EASAX_Dyn compared to SAX in terms of precision. Also,
we compared EASAX_dyn to ASAX_dyn in terms of precision, the result have
shown that ESAX_Dyn provides better performance gains. However, the dif-
ference in precision is not high between the two methods which shows that the
approximate algorithm performs well on the segmentation and produces a rep-
resentation whose precision is very close to that of the exact method. The results
of other experiments show that the segmentation time of the approximate algo-
rithm is very low compared to EASAX_Dyn, and therefore we can conclude that
our approximate approach ASAX_Dyn provides a good compromise between
accuracy and the computation time for variable-size segmentation of time series.

70

6.2 Directions for Future Work

The results presented in this thesis leave room to further improvement. Below, we
present some research directions for future work:

• Trend-aware symbolic representation. Our approximation methods have il-
lustrated their effectiveness in improving the time series representation quality
compared to SAX. However, as SAX, they only consider the average value of the
segment and miss important information in a segment, particularly the trend of
the value change in the segment. As a result, two segments with different shapes
but similar average values are transformed into the same symbol. To overcome
this drawback, our segmentation methods can be improved by capturing the
trend through the variations between segment points and the mean. These vari-
ations can be generated for each segment and coded as string. For using such
trend-aware representation in kNN search tasks, we need a modified similarity
measurement to compute the similarity between pairwise time-series not only
based on the segments mean, but also by taking into account time series’ trends.

• Indexing. Another possible future work concerns the construction of an index-
ing method for the proposed representation. There is an increasingly demand,
by several applications in diverse domains, for developing techniques able to in-
dex and mine very large collections of time series. Examples of such applications
come from astronomy, biology, web, and other domains. iSAX is the indexable
version of SAX, which allows extensible hashing and indexing of very large time
series databases.. A potential future work is to adapt iSAX for the variable-size
segments.

• Extension to other data mining tasks. In this thesis, we optimized our segmen-
tation methods for kNN search over time series. A future research direction is
the extension of our segmentation methods to other data mining tasks such as
classification, anomaly detection and motif discovery.

• Multidimensional time series. Another future work is the extension of our seg-
mentation methods to multidimensional time series. The recent advances in sen-
sor and GPS technology have made it possible to collect large amounts of spa-
tiotemporal data, so there is increasing interest to perform data analysis tasks
over multidimensional data. Such data types arise in many applications where
the location of a given object is measured repeatedly over time. Examples in-
clude animal mobility experiments, sign language recognition, mobile phone us-
age, etc. The trajectory of a moving object is typically modeled as a sequence of
consecutive locations in a multidimensional Euclidean space.

71

PUBLICATIONS

• Lamia Djebour, Reza Akbarinia, Florent Masseglia. Variable size segmentation
for efficient representation and querying of non-uniform time series datasets. In:
37th ACM/SIGAPP Symposium on Applied Computing (SAC), pp. 395–402,
2022.

• Lamia Djebour, Reza Akbarinia, Florent Masseglia. Parallel Techniques for Vari-
able Size Segmentation of Time Series Datasets. In : 26th European Conference
on Advances in Databases and Information Systems (ADBIS), 2022.

• Lamia Djebour, Reza Akbarinia, Florent Masseglia. ASAX : Segmentation adap-
tative basée sur la quantité d’information pour SAX. 37e Conférence sur la Ges-
tion de Données - Principes, Technologies et Applications (BDA), 2021.

• Lamia Djebour, Reza Akbarinia, Florent Masseglia. Variable-Size Segmentation
for Time Series Representation (under review in a journal)

73

BIBLIOGRAPHY

[1] La gilberta. http://lagilberta.pi.ingv.it/seismo/en/
new-earthquake-in-the-chianti-area/.

[2] Dimitris Achlioptas. Database-friendly random projections: Johnson-
lindenstrauss with binary coins. Journal of Computer and System Sciences, 66(4):671–
687, 2003.

[3] Rakesh Agrawal, Christos Faloutsos, and Arun N. Swami. Efficient similarity
search in sequence databases. In Proc. of the 4th Int. Conf. on FODO, 1993.

[4] Y. Cai and R. Ng. Indexing spatio-temporal trajectories with chebyshev polyno-
mials. In SIGMOD Conf., pages 599–610, 2004.

[5] A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon, and E. J. Keogh. Beyond one
billion time series: indexing and mining very large time series collections with i
SAX2+. Knowl. Inf. Syst., 2014.

[6] Kaushik Chakrabarti, Eamonn Keogh, Sharad Mehrotra, and Michael Paz-
zani. Locally adaptive dimensionality reduction for indexing large time series
databases. ACM Trans. Database Syst., 27(2):188–228, 2002.

[7] Kin-pong Chan and Ada Wai-Chee Fu. Efficient time series matching by wavelets.
In Proc. of the ICDE, 1999.

[8] Moses Charikar. Similarity estimation techniques from rounding algorithms.
pages 380–388, 01 2002.

[9] Q. Chen, L. Chen, X. Lian, Y. Liu, and J. X. Yu. Indexable pla for efficient similarity
search. In VLDB Conf., pages 435–446, 2007.

[10] Richard Cole, Dennis Shasha, and Xiaojian Zhao. Fast window correlations over
uncooperative time series. In KDD Conf., pages 743–749, 2005.

[11] Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan
Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, Yanping, Bing Hu,
Nurjahan Begum, Anthony Bagnall, Abdullah Mueen, Gustavo Batista, and
Hexagon-ML. The ucr time series classification archive, October 2018. https:
//www.cs.ucr.edu/~eamonn/time_series_data_2018/.

[12] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn J.
Keogh. Querying and mining of time series data: experimental comparison of
representations and distance measures. Proc. VLDB Endow., 1:1542–1552, 2008.

75

http://lagilberta.pi.ingv.it/seismo/en/new-earthquake-in-the-chianti-area/
http://lagilberta.pi.ingv.it/seismo/en/new-earthquake-in-the-chianti-area/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

[13] Philippe Esling and Carlos Agon. Time-series data mining. ACM Comput. Surv.,
45(1):12:1–12:34, December 2012.

[14] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast subse-
quence matching in time-series databases. In Proc. of the SIGMOD, 1994.

[15] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high
dimensions via hashing. Proceeding VLDB ’99 Proceedings of the 25th International
Conference on Very Large Data Bases, 99, 05 2000.

[16] Yun-Wu Huang and Philip Yu. Adaptive query processing for time-series data.
pages 282–286, 08 1999.

[17] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings and
data stream computation. In 41st Annual Symposium on Foundations of Computer
Science (FOCS), pages 189–197, 2000.

[18] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a
Hilbert space. In Conference in Modern Analysis and Probability, volume 26 of Con-
temporary Mathematics, pages 189–206, 1984.

[19] K. Kalpakis, D. Gada, and V. Puttagunta. Distance measures for effective cluster-
ing of arima time-series. In Proceedings 2001 IEEE International Conference on Data
Mining, pages 273–280, 2001.

[20] Eamonn J. Keogh, Kaushik Chakrabarti, Michael J. Pazzani, and Sharad Mehro-
tra. Dimensionality reduction for fast similarity search in large time series
databases. Knowl. Inf. Syst., 3(3):263–286, 2001.

[21] Eamonn J. Keogh and Michael J. Pazzani. An enhanced representation of time se-
ries which allows fast and accurate classification, clustering and relevance feed-
back. In KDD, 1998.

[22] Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient search for approx-
imate nearest neighbor in high dimensional spaces. In Proceedings of the Thirtieth
Annual ACM Symposium on Theory of Computing (STOC), pages 614–623, 1998.

[23] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation of time series,
with implications for streaming algorithms. In SIGMOD, 2003.

[24] J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing sax: A novel symbolic
representation of time series. Data Min. Knowl. Discov., 2007.

[25] Michele Linardi, Yan Zhu, Themis Palpanas, and Eamonn J. Keogh. Matrix pro-
file X: VALMOD - scalable discovery of variable-length motifs in data series. In
SIGMOD, 2018.

[26] B. Lkhagva, Yu Suzuki, and K. Kawagoe. New time series data representation
esax for financial applications. In ICDE Workshops, 2006.

76

[27] Oded Maimon and Lior Rokach. The Data Mining and Knowledge Discovery Hand-
book, volume 1. 01 2005.

[28] Alex Nanopoulos, Rob Alcock, and Yannis Manolopoulos. Feature-based classi-
fication of time-series data. International Journal of Computer Research, 10:49–61, 01
2001.

[29] Antonello Panuccio, Manuele Bicego, and Vittorio Murino. A hidden markov
model-based approach to sequential data clustering. pages 734–742, 08 2002.

[30] Ivan Popivanov and Renée J. Miller. Similarity search over time-series data using
wavelets. Proceedings 18th International Conference on Data Engineering, pages 212–
221, 2002.

[31] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J. Za-
karia, and E. Keogh. Searching and mining trillions of time series subsequences
under dynamic time warping. In KDD, 2012.

[32] Chotirat Ratanamahatana and E. Keogh. Everything you know about dynamic
time warping is wrong. 01 2004.

[33] Chotirat Ratanamahatana, Jessica Lin, Dimitrios Gunopulos, Eamonn Keogh,
Michalis Vlachos, and Gautam Das. Mining Time Series Data, pages 1049–1077.
07 2010.

[34] K.V. Ravi Kanth, Divyakant Agrawal, Amr El Abbadi, and Ambuj Singh. Di-
mensionality reduction for similarity searching in dynamic databases. Computer
Vision and Image Understanding, 75(1):59–72, 1999.

[35] Paola Sebastiani, Marco Ramoni, Paul Cohen, John Warwick, and James Davis.
Discovering dynamics using bayesian clustering. volume 1642, pages 199–210,
08 1999.

[36] D. Shasha and Y. Zhu. High Performance Discovery in Time series, Techniques and
Case Studies. Springer, 2004.

[37] Hagit Shatkay and Stan Zdonik. Approximate queries and representations for
large data sequences. volume 536-545, pages 536–545, 01 1996.

[38] J. Shieh and E. Keogh. isax: Indexing and mining terabyte sized time series. In
KDD Conf., 2008.

[39] Zbigniew R. Struzik and Arno Siebes. The haar wavelet transform in the time
series similarity paradigm. In Jan M. Żytkow and Jan Rauch, editors, Principles
of Data Mining and Knowledge Discovery, pages 12–22. Springer Berlin Heidelberg,
1999.

[40] Youqiang Sun, Jiuyong Li, Jixue Liu, Bingyu Sun, and Christopher Chow. An
improvement of symbolic aggregate approximation distance measure for time
series. Neurocomputing, 138:189–198, 08 2014.

77

[41] C. C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F. Silva,
A. Mueen, and E. J. Keogh. Matrix profile I: all pairs similarity joins for time
series: A unifying view that includes motifs, discords and shapelets. In ICDM,
2016.

[42] Byoung-Kee Yi and Christos Faloutsos. Fast time sequence indexing for arbitrary
lp norms. Proceedings of the 26th International Conference on Very Large Data Bases,
VLDB’00, pages 385–394, 01 2000.

[43] Chaw Zan and Hayato Yamana. An improved symbolic aggregate approximation
distance measure based on its statistical features. pages 72–80, 11 2016.

[44] Haowen Zhang, Yabo Dong, and Duanqing Xu. Entropy-based symbolic aggre-
gate approximation representation method for time series. In IEEE Joint Int. In-
formation Technology and Artificial Intelligence Conference (ITAIC), pages 905–909,
2020.

[45] Yan Zhu, Chin-Chia Michael Yeh, Zachary Zimmerman, Kaveh Kamgar, and Ea-
monn Keogh. Matrix profile xi: Scrimp++: Time series motif discovery at interac-
tive speeds. pages 837–846, 11 2018.

[46] Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael
Yeh, Gareth Funning, Abdullah Mueen, Philip Brisk, and Eamonn Keogh. Matrix
profile ii: Exploiting a novel algorithm and gpus to break the one hundred million
barrier for time series motifs and joins. pages 739–748, 12 2016.

[47] Yunyue Zhu. High Performance Data Mining in Time Series: Techniques and Case
Studies. Phd thesis, New York University, 2004.

[48] Kostas Zoumpatianos and Themis Palpanas. Data series management: Fulfilling
the need for big sequence analytics. In ICDE, 2018.

78

	Introduction
	Context
	Contributions
	Organization of the Thesis

	State of the Art
	Time Series Data Mining
	Time Series
	Time Series Data Mining Tasks

	Time Series Representations and Distance Measures
	Time Series Representations
	Similarity Measures

	Symbolic Aggregate Approximation (SAX)
	Dimensionality Reduction Via PAA
	Discretization
	Distance Measures
	Indexing Extensions
	Limitation of SAX
	SAX Extensions Based on Trend Feature

	Conclusion

	Variable size segmentation for efficient representation of non-uniform time series datasets based on entropy
	Motivation and Overview of the Proposal
	Problem Definition
	Adaptive SAX based on Entropy
	Entropy
	Variable-Size Segmentation Based on Entropy Measurement
	Uniform Distribution of Symbols

	Lower Bounding of the Similarity Measure
	Evaluation and results
	Datasets and Experimental Settings
	Precision of k-Nearest Neighbor Search
	Time cost of ASAX_EN segmentation algorithm

	Conclusion

	Optimized techniques for time series segmentation based on the approximation error
	Adaptive SAX based on Sum of Squared Error
	Sum of Squared Errors (SSE)
	SSE of PAA Representation Considering One Segment (LSSE)
	SSE of PAA Representation Considering All Segments (GSSE)
	Variable-Size Segmentation Based on SSE Measurement

	ASAX_LSSE based on Dynamic Programming
	PASAX : Parallel ASAX_SSE
	Parallelization on Data
	Parallelization on Segments

	Evaluation and results
	Setup
	Precision of k-Nearest Neighbor Search
	Execution time of variable-size segmentation algorithms

	Conclusion

	Time series representation based on the exact error
	Motivation and Overview of the Proposal
	EASAX_Dyn DP Algorithm description
	Performance Evaluation
	Precision of k-Nearest Neighbor Search
	Time cost of EASAX_Dyn segmentation algorithm

	Conclusion

	Conclusion and future directions
	Contributions
	Directions for Future Work

	Bibliography

