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Abstract

Today, cloud computing allows researchers and health professionals to flexibly store and pro-
cess large amounts of genetic data remotely, without a need to purchase and to maintain
their own infrastructures. These data are especially used in genome-wide association stud-
ies (GWAS) in order to conduct the identification of genetic variants that are associated with
some diseases. However genetic data outsourcing or sharing in cloud induces many secur-
ity issues in terms of privacy, integrity, traceability and confidentiality. Therefore, there is a
need for protecting genetic data during their sharing, storage and their processing in the cloud
environments.

During this PhD thesis, the conducted work aims at securing genetic data that are being
stored and/or processed on the cloud. To do so, we developed several new security tools
that are based on watermarking and cryptographic mechanisms (e.g., encryption, secure hash
functions, secure multiparty computation), as well as on the combination of them such that
watermarking and encryption that we call as "crypto-watermarking" mechanisms. Basically,
watermarking consists on the imperceptible insertion of a message into data, and this mes-
sage can be used for identifying data ownership, or controlling data integrity, etc. The main
advantage of this mechanism is that it enables the access to the data while keeping them pro-
tected. On its side, secure multiparty computation (SMC) allows two or several parties to
jointly compute a function over their own data while keeping these data private. Regarding
encryption, it is the process that converts a clear message into an encrypted message which is
comprehensible for only the person who has the secret decryption key.

In the first part of this work, we have focused on developing new solutions that are based
on homomorphic encryption (HE) as well as the watermarking of encrypted data. HE allows
performing linear operations such as additions or multiplications on encrypted data without
decrypting them, with the guarantee that the result equals to the one computed on clear data.
This allows data processing without getting access to clear data. We developed a privacy-
preserving method that allows to compute the secure collapsing method based on the logistic
regression model using fully homomorphic encryption. Next, we have exploited the semantic
security property of some homomorphic encryption schemes in order to develop a crypto-
watermarking method that allows the verification of integrity for encrypted data.

Homomorphic encryption have been proposed in various solutions for conducting privacy-
preserving GWAS. However, they have significant computational and storage overhead, which
makes them often impractical for real life applications. To overcome this issue, in the second
part of our work, we have developed a framework that allows secure performing of GWAS for
rare variants. Association studies performed in this framework are cases-control studies and
are secured based on the combination of several mechanisms such as secure hash functions
and encryption. At last, we studied watermarking of genetic data used in GWAS. We have
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developed a robust watermarking method. The way this scheme has been designed allows
to ensure that the distortion introduced in genetic data by watermarking procedures does not
interfere with the genetic association tests studied in this thesis. Our method is based on
quantization index modulation (QIM) and majority vote, and can be used for traitor tracing
and copyright protection of genetic data used in GWAS.

Key words: Security, genetic data, genome-wide association studies, watermarking, homo-
morphic encryption.
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Résumé

De nos jours, le "cloud computing" permet aux professionnels de santé et aux chercheurs
de stocker et traiter de manière flexible de grandes quantités de données génétiques à dis-
tance ; cela à un coût minime et sans avoir besoin de maintenir une infrastructure propre. Ces
données mutualisées sont notamment utilisées dans des études d’association pangénomiques
("Genome-Wide Association Studies" ou GWAS) afin d’identifier des variants génétiques as-
sociés à certaines maladies. Cependant, l’externalisation ou le partage de ces données sur
le cloud induit de nombreux problèmes de sécurité en termes d’intégrité, de traçabilité, de
confidentialité et du respect à la vie privée. De plus, le génome humain est par nature une
donnée très sensible étant une identité biologique unique d’un individu, en lien aussi avec ses
proches. Par conséquent, il est impératif de protéger ces données lors de leur partage, stockage
et traitement sur le cloud.

L’objectif de ces travaux de thèse est d’assurer la sécurité de données génétiques externali-
sées. Nous avons développé différents outils de sécurité fondés sur le tatouage, des méca-
nismes cryptographiques et leur combinaison. Dans un premier temps, nous avons proposé
une version originale sécurisée de la méthode d’analyse "collapsing method", qui s’appuie
sur la régression logistique, en utilisant le chiffrement homomorphe. Ensuite, nous avons ex-
ploité la sécurité sémantique des schémas de chiffrement homomorphes afin de tatouer des
données génétiques chiffrées externalisées sur le cloud. L’objectif de cette méthode est de
permettre au fournisseurs de cloud de protéger en termes d’intégrité, les bases de données
sous sa responsabilité. Pour pallier les problèmes liés aux complexités de calcul et de mé-
moire des méthodes basées sur le chiffrement homomorphes, nous avons proposé un proto-
cole qui permet de mener des tests d’association génétiques pour les variants rares de manière
externalisée entre plusieurs unités de recherche en génétique. Ce protocole profite de la com-
binaison de plusieurs outils de sécurité tels que les fonctions de hachage, le chiffrement et
PGP (Pretty Good Privacy) afin de sécuriser les données génétiques sensibles en termes de
respect de confidentialité et du droit à la vie privée, sans augmenter les complexités de calculs
et de communication de l’étude d’association à mener.

Enfin, pour tracer les données externalisées et assurer un service de "traçage de traître", nous
avons développé une toute première méthode de tatouage robuste qui permet d’identifier l’uti-
lisateur ou le fournisseur de services cloud qui détournerait ou divulguerait des données gé-
nétiques utilisées dans des GWAS.

Mots clés : Sécurité, données génétiques, études d’association pangénomiques, tatouage, chif-
frement homomorphe.
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Résumé en Français

De nos jours, les technologies de séquençage du génome progressent à un rythme rapide, et

cela coïncide avec l’évolution rapide des technologies du multimédia, de communication et du

cloud computing. En conséquence, des grandes quantités de données génétiques sont largement

collectées, stockées, partagées et traitées de manière flexible, par des entreprises, des particuli-

ers, des professionnels de santé ou chercheurs pour diverses raisons. Cela se fait à un coût

minime et sans avoir besoin de maintenir une infrastructure propre. Dans le domaine de la

santé, les données génétiques, en particulier les variants génétiques tels que les polymorphismes

nucléotidiques ("Single Nucleotide Polymorphisms" ou SNP) peuvent guider plusieurs décisions

médicales. Par exemple, il a été démontré que les femmes présentant certains variants génétiques

dans des gènes BRCA ont jusqu’à 80% de chances de développer le cancer du sein [4]. En con-

séquence, l’identification des personnes porteuses de ces variants peut les aider à opter pour des

mastectomies préventives [5].

En recherche scientifique, les données génétiques sont utilisées dans des études de population pour

par exemple établir la relation entre différents groupes ethniques, ou pour effectuer des études

d’associations génétiques qui permettent de découvrir des nouveaux variants ou traits génétiques

associés à certaines maladies. Dans ce dernier cas, ces tests d’association sont généralement menés

à l’aide des études d’association pangénomiques ("genome-wide association studies" ou GWAS),

dont l’objectif est de fournir une meilleure compréhension de l’étiologie d’une maladie en détect-

ant les variants génétiques impliqués dans cette maladie, pour un échantillon d’individus [6]. Pour

ce faire, on parte du principe qu’une meilleure compréhension conduira à la prévention ou à

un meilleur traitement de la maladie. Pour tester l’association dans des GWAS, l’approche la

plus commune est l’étude cas-témoins, où les distributions de génotypes à différents marqueurs

génétiques sont comparées entre deux grands groupes d’individus, un groupe témoin qui contient

des individus en bonne santé et un groupe des cas, qui contient des individus affectés par la mal-

adie.

Des études d’association pangénomiques nécessitent une grande quantité de données génétiques

afin d’atteindre une certaine signification statistique. Dans ce cas, il est souvent nécessaire de

partager ou externaliser ces données via des environnements cloud, entre différentes équipes de

recherche génétiques travaillant sur la même pathologie. Cette externalisation permet d’accéder

aux puissances importantes de calcul et de stockage offertes par le cloud. Cependant, le partage
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Figure 1: Étapes principales d’une chaîne de chiffrement classique. Les données en clair sont
chiffrées par un émetteur à l’aide d’une clé de chiffrement Ks. Nous considérons que les données
chiffrées sont ensuite partagées (par exemple via Internet), puis déchiffrées par un récepteur à
l’aide d’une clé de déchiffrement Kp.

et/ou l’externalisation des données génétiques induit plusieurs problèmes de sécurité dus au fait

qu’un ADN (acide désoxyribonucléique) humain est très sensible et représente l’unique identité

biologique de son propriétaire [7]. Une simple fuite de données peut conduire à la divulgation de

données génétiques et d’autres informations relatives à la santé sur pour des millions d’individus.

Avec ces fuites, certains individus peuvent par exemple être traités différemment par leurs em-

ployeurs ou compagnies d’assurance car ils présentent un risque élevé de maladie ou un trouble

héréditaire [8]. En outre, la fuite de données génétiques peut entraîner une divulgation indésir-

able des antécédents médicaux et l’identification des descendants ou des parents des individus

concernés, car ils partagent certaines de leurs caractéristiques génétiques.

Ainsi, l’externalisation ou le partage de données génétiques doit être protégé et cette protection

est une obligation légale qui varie d’un pays à l’autre, mais qui reste restrictive. Par exemple, le

rapport présidentiel américain sur la sécurité des données génétiques donne les directives et les

techniques de protection pour des données génétiques [9]. En France, la Commission nationale

sur l’informatique et la liberté (CNIL) a récemment publié un aperçu de la législation concernant

la collecte, le traitement et l’utilisation de données génétiques. Il précise que la protection de ces

données est une condition essentielle lors de leur collecte, utilisation ou traitement [10]. Par con-

séquent, il faut protéger ces données lors de leur partage ou externalisation dans un environnement

cloud. Cette protection consiste à assurer divers objectifs de sécurité, tels que:

• Respect à la vie privée la propriété qui consiste à protéger des informations sensibles des

individus.

• Confidentialité qui consiste à s’assurer que l’information n’est accessible qu’aux seules

personnes autorisées.

• Intégrité la propriété qui consiste à assurer l’exactitude de l’information, en évitant les

modifications de données non autorisées.

• Traçabilité qui correspond à la capacité d’identifier tous les éléments ou individus ayant

accédé, transféré, modifié ou supprimé une information depuis son origine jusqu’à son util-

isation finale ou dans un laps de temps donné.
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Figure 2: Étapes principales d’une chaîne de tatouage classique. Dans cette chaîne, on considère
que les données tatouées sont partagées (par exemple via Internet) et qu’elles peuvent être modi-
fiées ou manipulées illégalement entre les étapes d’insertion et de lecture. Au stade de la lecture,
le message inséré est lu et/ou extrait, et dans le cas d’un tatouage réversible, les données originales
peuvent être entièrement récupérées.

Plusieurs mécanismes ont été proposés afin d’assurer la sécurité des données génétiques exter-

nalisées et/ou partagées. Une liste non exhaustive comprend le contrôle d’accès, la gestion des

droits des utilisateurs, la confidentialité différentielle, les signatures numériques, les fonctions de

hachage, le calcul multipartite sécurisé, le chiffrement et le tatouage. Tel que décrit en Figure

1, le chiffrement permet de transformer à l’aide d’un algorithme de chiffrement et d’une clé de

chiffrement Kp, un message en clair en un message chiffré incompréhensible. Le message chiffré

ne peut être déchiffré avec l’algorithme de déchiffrement que si le récepteur du message dispose

de la clé de déchiffrement Ks. De son côté, le chiffrement homomorphe permet d’effectuer des

opérations linéaires telles que des additions et multiplications sur des données chiffrées sans avoir

besoin de la clé de déchiffrement; le résultat, une fois déchiffré est égal à ce qui serait obtenu sur

des données en clair.

Le chiffrement homomorphe permet d’assurer la confidentialité des données ainsi que le traite-

ment des données chiffrées. Néanmoins, il ne permet pas d’effectuer toutes les opérations sur ces

données, en particulier les opérations non linéaires telles que la comparaison ou la division. Le

calcul multipartite sécurisé (SMC) est alors une solution pour effectuer ces types de traitements.

Il permet à un ensemble de parties ou de participants différents (au moins un client et un serveur)

d’évaluer en toute sécurité une fonction sur leurs données privées respectives en tant qu’inputs de

la fonction. Autrement dit, la fonction s’évalue de telle manière qu’aucune information autre que

la sortie de la fonction ou un résultat convenu ne soit disponible pour les participants. Ce résultat

qui est connu de tout le monde peut être, par exemple, un booléen, ou l’index de l’élément dans

une base de données, et peut avoir diverses applications, y compris la prise de décision préservant

la confidentialité sur des données génétiques.

Quant aux fonctions de hachage cryptographiques, ce sont des algorithmes qui prennent en entrée

des quantités arbitraires de données et produisent des sorties de longueurs fixes appelées "hash".

Ces valeurs peuvent ensuite être stockées à la place de données eux-mêmes, puis utilisées pour

diverses applications, y compris la vérification de l’intégrité de données, la génération de nombres

pseudo aléatoires, la vérification de mots de passe ou l’authentification de messages.
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Figure 3: Scénario considéré dans l’externalisation des données génétiques sur le cloud

Les mécanismes de sécurité ci-dessus sont limités et plutôt a priori, car une fois outrepassées, les

données ne sont plus protégées [11]. C’est en particulier le cas des données déchiffrées. C’est dans

ce contexte que le tatouage s’impose, car il maintient une protection alors que les données sont

accessibles et manipulées. C’est une protection complémentaire pour l’information. Par définition,

et comme le montre la Figure 2, le tatouage consiste à insérer une marque ou un message sur la

base d’une clé de tatouage Kw, dans un document multimédia hôte qui peut être une image, un

signal audio, un signal vidéo ou une base de données. L’objectif de cette insertion peut varier

selon le contexte, et dépend du lien entre le message et son hôte. Le message inséré peut servir:

à la protection des droits d’auteur, au contrôle d’intégrité, à assurer la traçabilité des données, à

l’ajout de méta-données, etc. Cette versatilité fait du tatouage une solution très intéressante dans

le cadre de la protection des données génétiques [12].

Aucun de ces mécanismes (chiffrement, tatouage, SMC, etc) n’offre plus d’un seul objectif de

sécurité, et il y a un intérêt à combiner différents mécanismes tels que le tatouage et le chiffre-

ment, afin de bénéficier de leurs avantages respectifs et d’atteindre plusieurs objectifs de sécurité.

Dans cette thèse, nous nous sommes intéressés à la protection des données génétiques external-

isées lors de leur stockage ou de leur traitement dans des environnements cloud. Cette protec-

tion se base sur différents outils de sécurité qui sont le chiffrement (chiffrement homomorphe,

chiffrement symétrique/asymétrique), les fonctions de hachage, le tatouage, le calcul multipartite

sécurisé ainsi que la combinaison de plusieurs outils tels que le chiffrement et tatouage afin de

développer de nouvelles solutions permettant une protection a priori/ a posteriori des données

génétiques partagées et/ou externalisées.

Dans un premier temps, nous nous sommes focalisés sur la protection des études d’association

pangénomiques dans des environnements cloud en utilisant le chiffrement complètement homo-

morphe. Ce dernier permet d’effectuer un nombre illimité d’opérations (additions et multiplica-

tions), sur les données chiffrées sans les déchiffrer. Comme le montre la Figure 3, la solution que
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Figure 4: Architecture générale de la méthode proposée. Kw, W , Ŵ représentent la clé secrète de
tatouage, le message ou la marque insérée ainsi que la marque récupérée, respectivement.

nous avons proposée est basée sur un scénario à trois entités: une unité de recherche génomique

(GRU) qui possède des variants génétiques des individus malades (cas), un centre de recherche

génomique (GRC) possédant des variants génétiques des individus non malades (témoins) et un

fournisseur de services cloud (CSP). L’objectif est de comparer statistiquement les données de

GRU à ceux de GRC afin de déterminer s’il y a une relation entre un gène et une maladie don-

née. Par conséquent, toutes les données de GRU peuvent être stockées sur le cloud et un test

d’association tel que le "collapsing method" [13], une méthode basée sur le modèle de régression

logistique peut être effectué de manière sécurisé. Pour ce faire, nous profitons d’une combinaison

de chiffrement complètement homomorphe et le calcul multipartite sécurisé afin de sécuriser le

"collapsing method". Nos résultats expérimentaux indiquent que la méthode proposée fournit les

mêmes résultats sur des données chiffrées que celles obtenues sur des données en clair.

Les solutions basées sur le chiffrement homomorphe garantissent le respect à la vie privée et la

confidentialité des données mais ces données chiffrées peuvent rencontrer d’autres problèmes de

sécurité en termes d’intégrité du point de vue du fournisseur de services cloud. Cela peut être

causé par des erreurs de transmission ou des modifications non autorisées qui peuvent être effec-

tuées par des attaquants ou des sous traitants malveillants dans le cas où le cloud externalise aussi

ces données. Pour résoudre ce type de problèmes, nous avons proposé une solution qui combine

le chiffrement homomorphe et le tatouage afin de garantir à la fois la confidentialité et l’intégrité

des données génétiques externalisées. Pour ce faire, nous exploitons la sécurité sémantique (pro-

priété par laquelle un message clair peut avoir différents messages chiffrés) que possèdent certains

schémas de chiffrement homomorphe, afin d’insérer un message dans une base de données chif-

frée. Cela permet aux fournisseurs de services cloud de vérifier l’intégrité de bases de données

chiffrées homomorphiquement et externalisées par leurs propriétaires, à l’aide du tatouage.

La figure 4a. illustre l’architecture générale du système qui permet de vérifier une base de don-

nées sur la base de notre solution. On peut y voir deux procédures principales : la protection et

la vérification de la base de données. La procédure de protection permet d’insérer une preuve

d’intégrité ou un message binaire W dans une base de données chiffrée DBe. Pour ce faire, cette

base est d’abord organisée de manière sécrète par le biais d’une fonction de hachage cryptograph-

ique et une clé secrète Kw. Ensuite, la base organisée est subdivisée en plusieurs blocs. Un bit

du message est insérée dans chaque bloc et après l’insertion du message, la base de données est

réorganisée pour obtenir une base chiffrée et tatouéeDBw
e . La procédure de vérification est menée
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Figure 5: Différentes étapes de notre protocole WSS sécurisé dans le cas d’un gène.

de manière similaire (voir Figure 4b.). Pour vérifier l’intégrité d’une base de données suspectée

D̂Bw
e , nous effectuons d’abord sa réorganisation secrète basée sur la clé Kw. Ensuite, un mes-

sage Ŵ est extrait et comparé au message W . Si Ŵ et W sont différents, la base de données

d’origine a été modifiée illégalement. De plus, l’étape de vérification nous permet d’identifier les

éléments de la base qui ont été modifiés.Cette solution est dynamique dans le sens où les procé-

dures de protection et de vérification d’intégrité peuvent être menées tout au long du cycle de vie

de la base de données. c’est-à-dire qu’elle permet d’effectuer des opérations de mise à jour telles

que la modification, la suppression ou l’ajout de données dans la base de données tout en étant

toujours protégée par le tatouage. Les résultats expérimentaux effectuées sur une base de don-

nées contenant des variants génétiques ont montré une efficacité et une capacité élevées de notre

solution, dans la détection de différentes modifications illégales de données, avec une précision

de localisation élevée. Les solutions précédentes ainsi que plusieurs solutions proposées dans la

littérature basées sur le chiffrement homomorphe [14–20] permettent d’effectuer des GWAS de

manière sécurisée. Cependant, ils présentent des complexités de calcul et de stockage import-

antes, ce qui les rend souvent inutilisables pour les applications dans le monde réel [21]. Pour

résoudre ces types de problèmes, nous proposons une nouvelle méthode de sécurité qui permet

d’effectuer des études d’association génétiques de manière sécurisé, sans augmenter la complexité

de calcul et de stockage. Notre solution permet sécuriser des algorithmes tels que le "Weighted-

Sum Statistics" ou WSS utilisés dans des études d’association pour des variants rares. Comme

introduit précédemment, notre solution s’appuie sur une architecture composée par un GRU pos-

sédant des variants génétiques des individus atteints par la maladie (cas), un GRC avec des variants

génétiques issues des individus non malades (témoins), et un fournisseur de services cloud. Pour

procéder à l’identification de gènes avec des variants génétiques rares impliquées dans une mal-

adie, le GRU doit comparer les cas aux témoins grâce à des études d’association pangénomiques.
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Figure 6: Architecture générale de la méthode de tatouage robuste proposée pour des données
GWAS.

Notre solution positionne GRC comme un proxy entre GRU et le fournisseur de cloud. Cela

permet d’utiliser des mécanismes cryptographiques classiques pour conduire en toute sécurité un

GWAS sans augmenter la complexité de calcul, contrairement à l’état de l’art actuelle. Plus pré-

cisément, nous montrons comment la confidentialité des données sensibles peut être assurée avec

une fonction de hachage cryptographique basé sur une clé secrète sans avoir besoin de modifier

les algorithmes statistiques ou leurs résultats. Dans notre protocole, le cloud effectue simplement

des analyses statistiques sur des données partiellement hachées. De plus, nous introduisons une

nouvelle contrainte de confidentialité: l’identité de GRU doit rester inconnue du cloud car cette

connaissance peut lui donner des indices sur les données de GRU (par exemple, les maladies et les

gènes d’intérêt). Nous montrons comment le "Pretty Good Privacy" (PGP) peut être utilisé pour

résoudre ce type de problème. Nous illustrons notre protocole dans le cas d’un test d’association

de variantes rares, l’algorithme WSS, réalisé sur des données génétiques réelles. Le WSS sécurisé

donne les mêmes résultats que sa version non sécurisée sans augmenter la complexité. De plus,

notre protocole peut être étendu aux différents algorithmes de tests d’association génétiques util-

isés pour des variants rares. La Figure 5 décrit les différentes étapes de notre protocole dans le cas

de la protection du WSS pour un test effectué sur un gène.

La plupart des méthodes de tatouage proposées pour les données génétiques se concentrent sur

l’ADN moléculaire pour diverses raisons (dissimulation des données, protection du droit d’auteur,

contrôle d’intégrité ou tout simplement le stockage des données dans l’ADN) [22–27, 27–33, 33,

34]. Cependant, à notre connaissance, aucune solution de tatouage n’a été proposée pour les don-

nées génétiques utilisées dans des études d’association génétiques, comme celles utilisées pour le

WSS. Le tatouage de ces données peut permettre d’assurer leur intégrité, la divulgation illégale

d’informations ou la protection des droits d’auteur. Ainsi, nous proposons une nouvelle méthode

de tatouage robuste permettant de tatouer des données génétiques utilisées dans des GWAS. Elle

vise à assurer la traçabilité des données génétiques, c’est-à-dire identification de la personne ou

entité qui est à l’origine d’une divulgation illégale d’informations ou de la protection du droit

d’auteur de ces données. La solution que nous proposons est basée sur la modulation par quanti-

fication d’index (QIM) et le vote majoritaire [35]. Comme le montre la Figure 6, pour insérer un

message, les données sont d’abord collectées dans une base de données DB. Ensuite, cette base

de données est réorganisée en utilisant une clé de tatouage Kw. La base de données réorganisée
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est partitionné en plusieurs groupes et chaque groupe est aussi divisée en deux sous groupes. Dans

la suite, un bit du message est inséré dans tous les colonnes de chaque groupe en modulant la

cardinalité du nombre de génotypes égales zéros dans les sous groupes. Lors de la lecture, un bit

du message est détecté et extrait dans chaque colonne du groupe et, un vote majoritaire permet de

décider quel bit du message est le bon. Dans notre solution, le message est secrètement inséré dans

la base de données les données sans compromettre les résultats des tests d’association génétiques

qui peuvent être effectués sur ces données. Cela veut dire que l’identification des variants can-

didats ou des gènes impliqués dans une pathologie donnée donne les mêmes résultats que sur les

données originales. Ceci est confirmé par les résultats expérimentaux conduits sur les données

utilisées dans WSS.
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Introduction

Recently, genome sequencing technologies have progressed at a rapid pace, and this coincided

with the rapid evolution of cloud computing and communication technologies. As a consequence,

a large amount of genetic data are widely collected, stored, shared and processed by companies,

individuals, health professionals or researchers for various reasons. In healthcare, genetic data,

especially genetic variants such as single nucleotide polymorphisms (SNPs) can guide several

medical decisions. For example, it has been shown that individuals with certain genetic variants in

the BRCA genes have up to 80% chance of developing breast cancer [4]. Therefore, identification

of individuals who carry these variants can help them to opt for preventive solutions such as

mastectomy [5]. In research, genetic data are being used for population studies where these data

are used for example to establish relations between different ethnic groups, or for discovering

new associations in-between genetic traits and some diseases. In latter case, association tests

are usually conducted using genome-wide association studies (GWAS). The objective of GWAS

is to allow the better understanding of disease aetiology by detecting the correlation in-between

genetic variants and disease traits in population samples [6]. To test for association in GWAS, the

usual design is a case-control one where genotype distributions at different genetic markers are

compared between samples of individuals affected by the disease of interest (cases) and unaffected

individuals from the same population (controls).

GWAS require large amount of genetic data in order to achieve statistical significance. In this

case, it is often necessary to outsource or/and share these data via cloud environments, between

different genomic research teams that are working on the same pathology. However, genetic data

sharing or/and outsourcing induces several problems in terms of data security due to the fact, a

human DNA is sensitive and represents the unique biological identity of its owner [7]. A single

data breach can leak genetic data and other health-related information on millions of individuals.

With this leakage, individuals may for instance be treated differently by their employers or insur-

ance companies because they have particular variants in a gene that can cause or increase the risk

of an inherited disorder or disease [8]. In addition, genetic data leakage may cause an unwanted

disclosure of medical history of individuals and identification of descendants or relatives of the af-

fected individuals as they share some of their genetic characteristics. Thus, outsourcing or sharing

of genetic data must be protected and this protection is a legal obligation which varies from one

country to another, but it remains restrictive. For instance, the U.S. Presidential report on genetic

1



List of Tables

data security discusses policies and techniques to protect genetic data [9], or more recently, the

National Commission on Informatics and Liberty has published an overview on legislative about

the collection, the processing and the use of genetic data. It states that the protection of genetic

data is essential condition during their collection, use or processing [10]. Therefore, the protection

of genetic data consists in ensuring various security objectives [36]:

• Privacy the property which consists on the protection of sensitive information of individu-

als.

• Confidentiality which consists on ensuring that information is only accessible to authorized

users

• Integrity that consists on avoiding unauthorized modifications of data

• Traceability which corresponds to the capacity of identifying all the elements that have

accessed, transferred, modified or deleted an information from its origin to its final use or in

a given period of time.

Several mechanisms have been proposed in order to ensure the security of outsourced and/or

shared genetic data. A non-exhaustive list includes access control, user rights management, dif-

ferential privacy, digital signatures, secure multiparty computation, encryption, watermarking and

secure cryptographic hardware. Secure multiparty computation allow multiple parties to compute

a common function without revealing their inputs. It is used for ensuring the confidentiality of

data. Encryption is the process of converting an information or a message into unintelligible in

such a way that only authorized parties who have the secret decryption key can get the access to

clear message. On its side, homomorphic encryption allows the computation of linear operations

such as additions and multiplications on encrypted data discarding the need for the decryption key;

the output when decrypted equals to what would be obtained on unencrypted data. However, each

of these mechanisms rarely responds more than one security objective at a time [11]. Encryption

ensures the confidentiality of data, it offers an a priori protection or in other words, once data are

decrypted they are no longer protected. Watermarking was proposed as a complementary mechan-

ism which offers an a posteriori protection of data. It leaves data accessible and processed while

maintaining them protected by an imperceptible message which can be security attributes, a digital

signature or an authentication code. Thus, there is an interest in combining different mechanisms

in order to benefit from their respective advantages and ensure more than one security objective.

In this thesis work, we have focused on the protection of outsourced genetic data during their

storage or processing in cloud environments, by using different mechanisms that are encryption

(homomorphic, symmetric, asymmetric), watermarking, secure multiparty computation as well as

the combination of encryption mechanisms with watermarking techniques so as to develop new

solutions that make possible an a priori/a posteriori protection of shared and/or outsourced genetic

data.

This thesis is structured as follows: chapter 1 provides some general definitions about the main

domains we addressed in order to position the problems we focused on. We will thus come back
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on: introduction to genetic data and the security needs for shared or outsourced genetic data.

We expose the ethical and legislative rules which impose the protection of genetic data in terms

of several security objectives such as privacy, confidentiality, integrity and traceability. We then

give an overview about different data security mechanisms (e.g., encryption, watermarking, secure

multiparty computation, hash functions). We discuss the possible combination of several secur-

ity mechanisms, in particular the combination of watermarking and cryptographic mechanisms as

well as the limits of these mechanisms. Finally, We will take this opportunity to present an ex-

haustive state of the art of existing security approaches from the literature that were developed for

the protection of shared and/or outsourced genetic data.

In the second chapter, we present the first contribution of our work that consists in the protection

of genome-wide association studies (GWAS) in cloud environments using fully homomorphic en-

cryption. This method allows a Genomic Research Unit (GRU) who possesses genetic variants

of cases to statistically compare his/her data with genetic variants of controls from a Genomic

Research Center (GRC). Therefore, all data of GRU can be stored in the cloud and a secure as-

sociation test [13] based on the logistic regression model can be performed. To do so, we take

advantage of fully homomorphic encryption and of secure multiparty computation so as to con-

duct collapsing method in a secure manner. Experiment results indicate that the proposed method

provides the same results on encrypted data as the ones achieved on clear data, and it allows to

ensure the confidentiality of genetic variants used in GWAS.

Even if homomorphic encryption-based methods ensure data confidentiality, encrypted data may

face other security issues in terms of integrity. This can be caused by the transmission errors or

unauthorized alterations performed by attackers. Chapter 3 overcomes these issues by combining

homomorphic encryption and watermarking so as to ensure at the same time the confidentiality,

privacy and integrity of outsourced data. To do so, we exploit semantic security that some homo-

morphic encryption cryptosystems have, so as to allow the cloud service providers to verify the

integrity of encrypted databases outsourced by their owners, with the help of watermarking. The

proposed method is dynamic in the sense that, it allows update operations such as modification or

addition of data into the database while still protected by the watermarking. As in chapter two,

the performance of this scheme is evaluated and tested. It shows high efficiency and capability in

detection of different illegal data modifications with a high location precision.

Several solutions based on homomorphic encryption have been proposed for conducting privacy-

preserving GWAS. However, they have significant computational and storage overhead, which

makes them often impractical for real life applications [21]. Chapter 4 overcomes this issue by

addressing a new privacy-preserving GWAS framework that allows perform of rare variant case-

control association studies such as weighted-sum statistic (WSS) algorithm is a secure way. It

relies on a Genomic Research Unit (GRU) with genetic variants from cases, a Genomic Research

Center (GRC) with genetic variants from controls and the cloud. To conduct the identification

of genes with rare genetic variants that are involved in a certain disease, GRU needs to compare

cases to controls through genome-wide association studies. Our scheme positions GRC as a proxy

between GRU and the cloud. That makes it possible to use classical cryptographic mechanisms

for securely conducting GWAS without increasing computation complexity, contrarily to actual
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state of the art proposals which are of very high complexity. In particular, we show how sensitive

data confidentiality can be ensured with secret key-based cryptographic hash with no need to

modify statistical algorithms. In our protocol, the cloud simply conducts statistical analyses on

partially hashed data. In addition, we introduce a novel privacy constraint: GRU’s identity should

remain unknown to the cloud as this knowledge can give it clues about GRU’s data (e.g., diseases

and genes of interest). We exhibit how Pretty Good Privacy (PGP) can be used to solve this

problem. We illustrate our protocol in the case of one rare variant association test, the Weighted-

Sum Statistic (WSS) algorithm, carried out on real genetic data. This secure WSS achieves the

same accuracy as its nonsecure version with no increase of complexity. Furthermore, we establish

that our protocol can be extended to the different association test algorithms used for rare variants.

Most of the watermarking methods proposed for genetic data are focusing on molecular DNA for

various reasons (data hiding, copyright protection, integrity control or data storage). However, to

the best of our knowledge there is no watermarking solution that was proposed for genetic data

used in GWAS. Watermarking of these data can allow to ensure their integrity, illegal information

disclosure or copyright protection. Thus, in chapter four, we presents a new robust watermarking

method. It aims at ensuring traitor tracing of genetic data, i.e., identifying the person who is the

origin of an illegal information disclosure or copyright protection of these data, and it is based

on Quantization Index Modulation (QIM) and majority vote [35]. In this solution, the watermark

is secretly embedded within genetic data used in GWAS, without violating the identification of

candidate variants or genes involved in a given pathology, i.e genetic association studies results

are not compromised. Finally, performances of scheme are theoretically evaluated and empirically

tested.
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CHAPTER 1

Security of outsourced and shared
genetic data

With the rapid development of technology, whole genome sequencing has become less expensive

and offers a great promise of research advances that could benefit all of the society. As a result,

genomic research has quickly opened the way to several genetic data treatments that are used in

personalized medicine, tests for predisposition to diseases, genealogical analysis, etc [36]. How-

ever, even though this evolution is interesting, it comes with several needs in terms of information

security, and these ones must be defined before proposing new and more appropriate solutions.

This chapter aims at giving general definitions of genomic data, especially genetic data and de-

tailing security needs for these data. It is divided into three sections: in the first section, we will

introduce genetic data, the possible processes that could be conducted on these data, their domain

of use as well as the security risks they are submitted to. In the second section, we will provide

different security mechanisms proposed in the literature so as to ensure the protection of data such

as access control, homomorphic encryption, watermarking, secure multiparty computation, etc.

and all of these mechanisms must be integrated into a framework defined by one or more security

policies. Finally, We will provide an overview on methods that were proposed for securing genetic

data before conclude the chapter.

1.1 Genetic data

It is important to know what genetic data is, its use, how and why it is shared and/or outsourced

before describing why and how this data can be secured. This section addresses these different

questions.

1.1.1 Human genome

The human body is made up of billions of cells where each has one nucleus, and this nucleus

contains 23 pairs of chromosomes. These chromosomes contain our genetic information which

corresponds to our DNA (deoxyribonucleic acid). Basically, DNA is composed of two strands of
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1.1.1. Human genome
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Figure 1.1: The structure of human DNA. From pixabay, a bank of copyright free images [1]

four nucleotides or bases that are adenine(A), cytosine (C), thymine (T) and guanine (G), where A

bonds with the complementary T, G bonds with the complementary C, and vice versa (see Figure

1.1). The complete set of all DNA contained in one cell is called genome, and the total number of

bases in one genome is estimated to three billions.

In our DNA, the basic unit of heredity is a particular sequence of bases called gene. One gene

contains about 1000 to over 2 millions bases and the number of genes in a human genome is

estimated to 20300 genes [37]. In each gene, every three successive nucleotides make up a codon.

Since there are only four bases, the total number of possible codons is 43 = 64. All these codons

constitute what we call the genetic code, a set of rules used by living organisms to translate each

information encoded in DNA into proteins [38]. More clearly, genetic code defines how sequences

of codons, specify which amino acid will be added next during protein synthesis. The figure 1.2

illustrates all 64 codons and their corresponding amino acids. Notice that in all 64 codons, three

of them are called STOP codons and they do not correspond to any amino acid but instead, they

indicate the end of the protein chain. The remaining 61 codons correspond to 20 amino acids. As

there are only 20 amino acids for 61 codons, some codons represent more than one amino acid

and this is referred as degeneracy. In addition, for each codon of each amino acid, the first two

bases are the same. For instance, the amino acid Alanine (Ala/A) can be represented by one of four

codons “GCA, GCC, GCG and GCT” and the first two bases for Alanine are “GC”. As we will see

in chapter 5, these properties are of importance in developing some kind of DNA watermarking

methods.

In each genome or gene, there are two distinct regions: protein-coding (pcDNA) regions and

non-protein coding (ncDNA) regions. Protein-coding regions are responsible for the encoding or

translation of organism’s proteins. On other hand, non-protein coding regions do not encode any

proteins and it was believed for long time that these regions have non function in living organisms.

However, recent works demonstrated that up to 80% of these regions may have some functions of
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1.1.1. Human genome

Figure 1.2: Representation of genetic code with all 20 amino acids and 3 STOP codons. From
Openclipart [2]

regulation of gene expression [39]. The remaining part contains DNA with no function, referred

to as junk DNA. We will see in chapter 5 that these regions can be used for message embedding

as their modifications do not affect organisms.

The living beings from the same species have all the same number of genes, each controlling a

particular behaviour. However, excepts for identical twins, individual’s DNA is unique with one

chromosome of each pair coming from the father and one from the mother. These chromosome

may show some differences in genes due to mutations that change one base to another. These

differences may lead to different protein and thus have an impact on individual characteristics.

For instance, for each person, there is a gene responsible of eyes’ color but nucleotides which are

in the gene of an individual with blue eyes are not the same for an individual with green eyes.

These differences in-between individuals’ genomes are called genetic variants.

Depending on the frequency and effect of the variants, one will call them polymorphisms if they

are frequent (generally with a frequency of the minor allele above 1%) with no functional effect or,

one will call them mutations when they are rare and potentially deleterious. One can distinguish

three types of polymorphisms as described below:

• SNPs (Single Nucleotide Polymorphisms): As shown in Figure 1.3, they correspond to a

substitution of a single base or nucleotide that occurs at a specific position of the genome. In

individual genome, SNPs occur almost once in every 1,000 nucleotides on average. Thus,

there are an estimated 4 to 5 million SNPs in one individual’s genome [40].

• Indels: An insertion/deletion, commonly abbreviated "Indel" is a type of polymorphism

in which a specific DNA sequence is inserted or deleted in an individual gene or genome.
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SNP 

Figure 1.3: An example of genetic variant. Case of a single nucleotide polymorphism where A is
substituted by G. From [3]

Indels are widely spread across the genome and one genome contains an estimated 0.5 to 1

million [40].

• Structural variants: These are all genetic variations that can occur over a large part of

genome. They can be chromosomal rearrangements of genes where several DNA sequences

are broken off or located at some other positions on the chromosome (translocation), inver-

sions of nucleotide orders, presence of several copies of genes, etc. One genome contains

an estimated 2,100 to 2,500 structural variants [40].

As we will see in next chapters, genetic variants are of importance in many genetic processing

such as genomic/genetic testing or genome-wide association studies where they are used in order

to decide if a specific party of genome such as gene is associated with a disease.

1.1.2 What is genetic data ?

Recent years, genetic data have been the subject of several legal definitions. The European Council

has proposed two formulations [41]. Genetic data refers to "all data, of whatever type, concerning

the hereditary characteristics of an individual or concerning the pattern of inheritance of such

characteristics within a related group of individuals". It also refers to "all data on the carrying

of any genetic information (genes) in an individual or genetic line relating to any aspect of health

or disease, whether present as identifiable characteristics or not. The genetic line is the line con-

stituted by genetic similarities resulting from procreation and shared by two or more individuals".

In article two of International Declaration on Human Genetic Data adopted by UNESCO on 16

October 2003, genetic data are defined as "information about heritable characteristics of individu-

als obtained by analysis of nucleic acids or by other scientific analysis" [42]. More recently, the

General Data Protection Regulation (EU) 2016/679 (GDPR) [43] defined genetic data in its article

four as "personal data relating to the inherited or acquired genetic characteristics of a natural

person which give unique information about the physiology or the health of that natural person

and which result, in particular, from an analysis of a biological sample from the natural person

in question". From all these definitions, we can already emphasize the personal and hereditary

characters of genetic data as well as their privacy. Thus, genetic data corresponds to all data relat-

ing to genetic characteristics and gives unique information on physiology or health status for an
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individual. Some people consider genetic data as health data. However, genetic data have several

characteristics that differentiate them with common medical or other data. Genetic data are unique,

static, familial, valuable and contain individual health behaviors. We detail these characteristics

as follows.

• Individual DNA contains information about her/her blood relatives. Therefore, genetic data

are familial data. Depending on the context, these data can reveal individual’s biological

paternity, his/her susceptibility to certain diseases or implication in a criminal case. Thus,

genetic data may reveal many things about people other than the individual from whom they

were derived. In addition, it has been demonstrated that if we have genomes of few people

in the family, it is possible to infer other family members’ genomes [44].

• The DNA of any two individuals are different and can be easily differentiated from one

another. This means that genetic data of an individual are unique. As a consequence, in-

dividual genetic data correspond to his/her biological identity, and this is useful in many

domains for several purposes (e.g., criminal forensics).

• Individual DNA does not change much over time. This means that genetic data are relatively

static and they remain relevant to their owner over long periods of time, even between many

generations. As a consequence, the value of genetic data are likely to increase over time

because the information we are able to derive from studying those data will improve. For

instance, before 1980s, it was not possible to identify an individual who has committed a

crime using his or her DNA but nowadays, DNA analysis is helping for this identification

[45]. Therefore, the release of genetic information are not limited in time contrary to classic

medical data whose value decline with time.

• Our DNA contains more valuable information and till now, we do not know everything

about human genome. This conducts to different ways of its public perception. For instance,

violent behaviors of an individual are influenced by the environment. However, we do not

know either if this comes from their genomes or not [46].

• Genetic data contains information about individual health and behavior. It is now possible

to determine genome parties or genes that are associated with some diseases or behavi-

ors. For instance, Jia et al have identified and confirmed several pleiotropic genes such

as CLEC16A, CUX2, etc., that are associated with seven autoimmune/autoinflammatory

diseases. In another example, breast cancer can be diagnosed using BRCA1 and BRCA2

genes [47].

In this Ph.D. work, we are focusing on the protection of genomic data during their sharing and/or

outsourcing. These data are usually collected and kept in variant call format (VCF) files [48]

which are used for storing genetic variants for each sequenced individual. We describe these files

in the next section.
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Figure 1.4: An example of VCF file.

1.1.3 How are genetic data generated ?

As introduced in previous sections, we are interested in protecting genetic data, especially during

their storage or processing by genetic association studies. To conduct these studies, genetic data

such as genetic variants are used. Genetic variants are the result of a long processing process

which begins by data sequencing. More clearly, in order to obtain genetic variants, samples are

collected for several individuals and are sequenced using appropriate sequencers [49]. These ones

output FASTQ files each contains the raw NGS reads for each individual. These reads are then

aligned on the human reference sequence so as to produce a SAM (sequence alignment map) file

which is also equivalent to BAM (Binary Alignment Map) file for each individual. Notice that

BAM stores the same data in a compressed binary representation. As there are different human

reference sequences, for comparison purpose, one needs to make sure that the same reference

sequence is used for the different individuals in a sample and across the specific study. The next

step consists the variant calling that corresponds to extracting genetic variants from BAM files.

Results are stored in variant call format (VCF) files [48] and each reports all the positions on

the genome where the individual has a variant compared to the reference sequence. The variant

call format (VCF) was developed in order to standardize large scale genetic variants sharing and

storage in order to facilitate genetic studies such as GWAS. A VCF file corresponds to text file that

consists of three parties which are meta-data lines, a header line and data lines (see Figure 1.4).

Meta-data lines which begin the file and included after ## provide the descriptions about data

lines. The header line started by # names the columns for data lines. Finally, data lines follow the

header line and each data line or record represent one variant at a given position in the genome. In

a VCF file, a data line contains several columns including:

• CHROM which is an identifier from the reference genome and corresponds to chromosome

number. It indicate the chromosome in which the variant belongs;

• POS that refers to the position of first base on reference sequence;

• ID which is a unique identifier for each record if exists;

• REF that represents reference base(s);

• ALT that corresponds to alternate base(s);
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• QUAL which is a measure of the quality in the identification of ALT;

• FILTER that represents filter status of the variant and INFO that contains additional in-

formation on the description of the variant such as number of individuals, frequency alleles,

protein coding regions, etc.)

These columns are followed by FORMAT of variant for genotyped individuals. Notice that

FORMAT specifies the data type for genotypes of each individual. In a VCF file, genotypes are

reported as numbers separated by ’|’ or ’/’. Thus, we have genotype 0/0 if the individual is homo-

zygous reference, 0/1 if the individual is heterozygous and 1/1 if the individual is homozygous

alternate.

To conduct genetic studies such as genetic testing or genome-wide association studies (GWAS),

individuals that are either unaffected (controls) and affected (cases) by disease are genotyped so

as to produce a sample composed of thousands or up to millions of genetic variants that are then

stored into VCF files. After that, an intermediary step is performed in order to generate other files

with filtered data, and are specific for each GWAS algorithm. In the sequel, we will come back

to these files in chapters 4 and 5, especially Weighted-Sum Statistic (WSS) files which contain

genetic variants extracted from VCF files in order to conduct WSS algorithm.

1.1.4 Genetic data processing and its applications

As explained in introduction, genetic data contains more valuable information and can have several

applications. In this section, we discuss the importance of genetic data, especially, their applic-

ations in healthcare, direct-to-consumer services, genomic research as well as legal and forensic

services.

1.1.4.1 Healthcare applications

It has been demonstrated that variations in human genome can influence health. In fact, some

changes in a particular gene will have an adverse immediate effect on individual’s health or at

some point in the future generations [50]. Nowadays, many traits that are associated with diseases

have been reported in the literature [36] and their identification allows the discovery of new treat-

ments. Genetic information has allowed the identification of several neurodegenerative diseases

such as Huntington’s disease (HD) [51], blood disorders such as Sickle cell anemia (SCA) [52]

or metabolic disorders such as phenylketonuria (PKU) [53]. HD is caused by a mutation in the

HTT gene within the chromosome 4, SCA is caused by the mutation is HBB gene and PKU is

caused by two compound heterozygous mutations that are c.165 delT and c.284-286 delTCA in

the PAH gene. Even though some genetic diseases have no known intervention to assist in the

improvement of an individual’s health status, others are manageable through changes in diet or

pharmacological treatments. For instance, the identification of X-linked hypohydrotic ectodermal

dysplasia (XLHED) which is caused by the mutation in the gene EDA has allowed the treatment

of several fetuses. To do so, prenatal interventions have been conducted in order to administrate
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proteins to fetuses. The infants were able to sweat normally and XLHED-related disease had not

developed [54]. Therefore, in healthcare several genetic testing can be conducted either reques-

ted by the doctors or individuals. Herein, we resume some examples of genetic tests that can be

conducted in healthcare:

• to prevent risks of illness or if there is no cure for the illness, anticipated genetic testing

allow some life decisions.

• to investigate the cause of an observed phenotype. These tests can be performed any time

for any individual from an in utero fetus through to old age individual.

• make, confirm, refute or clarify a diagnosis, particularly prenatal, for a genetic disease .

• to establish the genes that are likely to be at the origin of the development of a disease for

individual or or his family.

• to allow the adaptation of the medical care of a patient according to his/her genetic profile

in order to identify the drugs presenting a particular risk of ineffectiveness or toxicity.

• for family members who are likely to be at increased risk of genetic disease (or to carry it)

due to family history (risk of recurrence).

• in carrier testing i.e., genetic testings that are conducted in order to identify either healthy

individuals who may have inherited a mutated gene for a particular disease but which is

not expressed in those individuals or healthy individuals who are carriers of balanced chro-

mosomal rearrangements such as translocation and whose future generations are at risk of

being affected.

1.1.4.2 Genetic data in research

It has been demonstrated that some parts of human genome is associated with a significant number

of traits and complex disorders, and till nowadays, many new associations are being discovered.

In order to facilitate these discoveries, several large scale genome sequencing projects have been

initiated so as to identify and characterize genome or genome parties such as genes of interest in

human populations. For instance, the Human Genome Project [55] is the first project that allowed

the sequencing of whole human genome. Since then, other projects such as the 1000 Genomes

Project [56], an international collaboration project between China, the UK, Germany and the USA,

or the 100,000 Genomes Project, a UK Government project that has allowed the sequencing of

whole genomes from National Health Service patients [57] have been developed.

In addition, with the decrease of the cost of genome sequencing, large scale genetic data is being

collected, stored in order to be used by researchers for identifying new genes or genetic variants

that are associated with diseases and in some cases, this may help for developing appropriate

personalized treatments for patients [58]. This is the case of UK Biobank [59] that was filled

with genetic data of 500,000 participants so as to be used in genetic and health research or the

Michigan Genomics Initiative (MGI) which is a collaborative research effort among physicians

12



1.1.4.3. Direct-to-consumer services

and researchers at the University of Michigan with the goal of harmonizing patient electronic

medical records with genetic data to gain novel biomedical insights. Notice that genetic data from

large populations increase the probability of finding the genetic correlation between genetic vari-

ants and diseases or traits. To do so, different technologies, analytical tools and study designs such

as genome-wide association studies (GWAS) [6] are being used. GWAS are successfully uncov-

ering several genetic variants or genes associated with complex traits and disorders. For example,

in [60] authors proposed a genome-wide association study that has allowed the identification of

genetic variants which increase the risk for emergence of suicidal ideation (TESI) during treatment

with antidepressants.

On the other hand, in order to simplify data sharing between individuals or researchers, several

web services called "beacons" as well as genome aggregation databases were developed [61].

They provide allele-presence responses to different queries such as "Do you have a genome that

has a specific nucleotide base T at position 12217 on chromosome 2 in your genome ?". For

example, the beacon SFARI contains genetic data from families that have children affected by

autism spectrum disorder. It has supported more than 550 investigators studying autism-related

research worldwide [62]. Thus, collecting, sharing and storing large scale genetic data is one of

the principles keys in genetic research, especially in genetic association studies.

1.1.4.3 Direct-to-consumer services

With the rapid diminution of sequencing costs, at-home genetic test services commonly known

as direct-to-consumer (DTC) services have become a major industry [63]. DTC is a type of ge-

netic testing that is available directly to individuals without having to go through hospital or other

health care professionals. They allow individuals or consumers collecting their genetic data, their

processing and analysis without the involvement of a health professional. For instance, in 1996

an online company ancestry.com was launched in order to allow individuals to conduct historical

searches and family records so as to obtain genealogical clues, as well as genetic tests for learning

about their genetic ancestry. Since then, several companies such as 23andMe, iGENEA, DNA

Tributes or Family Builder have been created [64], and they offer various genetic applications for

consumers [65]. They propose many services including ancestry tests, paternity tests and ethnicity

tests, genealogy tests, etc.

In some cases, DTC companies enable consumers to perform genetic compatibility tests with po-

tential partners, or allow volunteer individuals the opportunity to provide their genetic data in

order to support genetic research projects. This is the case of 48 000 individuals that have been

recruited by 23andMe in order to participate in a scientific study about major depressive disorder,

schizophrenia and bipolar disorder [66]. In health care, DTC are being used for determining dis-

ease susceptibility risk but this kind of genetic test is always contested in the context of DTC

because of lack of regulations. In this case, genetic test is usually conducted at specific parties of

genome such as genes and the possible corresponding diseases. For instance, the genes BRCA1

and BRCA2 are known to have genetic variants that are responsible of a certain number of hered-

itary cancers such as ovarian, breast and prostate cancers. Thus, results of this kind of testing can
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potentially lead to important health decisions such as mastectomy if an individual is a carrier of

those variants in BRCA genes.

Searching for better lifestyle of curiosity is another application of DTC. A study conducted by

Johns Hopkins University researchers on genetic data of 1,046 individuals from three companies

23andMe, Navigenics, and deCODE, has demonstrated that, 94% of consumers decided to take

DTC tests for curiosity reasons while 91% did these tests for learning about potential future dis-

eases [64]. Notice that DCT genetic testing have many benefits compared to traditional genetic

testing which are part of the health care system. They are accessible and affordable for everyone

at any time.

1.1.4.4 Use of genetic data in legal and forensic

Nowadays, genetic data are being used for identification of individuals in legal and forensic in-

vestigations, due to the fact that genetic data does not change or changes little over a lifetime, i.e.,

it is static. This allows the identification of a given individual in an investigation purpose. For

example, genetic data taken from individuals and crime scenes have been used as evidence by law

enforcement authorities in order to identify criminals and to exonerate innocent individuals. In

2005, Ricky Davis from California (USA) was convicted of second-degree murder of 54 years old

Jane Hylton committed in the 1985. However, in 2020 he becomes the first person in California to

be exonerated with the help of DNA analysis combined with family tree research [45]. As DNA

is inherited, genetic data from a family members can also used for criminal investigations so as

to identify unknown suspected individual by comparing his or her DNA to relatives who are not

themselves directly involved in a crime. In addition, genetic data can also be used for conducting

DNA-based parentage testing in the case of denial of paternity.

To perform these identifications, several techniques such as restriction fragment length polymorph-

ism (RFLP) [67] or short tandem repeats (STRs) analysis [68]. RFLP consists on analysing long

fragments of genetic variants using southern blot. The major drawback of this technique is that

large quantities of genetic data are needed. To overcome this issue, STRs analysis was proposed.

As seen in section 1.1, STRs are genetic variants with repeated units that are 2 to 7 nucleotides

in length, with the number of repeats varying from an individual to another, making STRs effect-

ive for individual identification purposes. For example for a particular repeat, like TCGTT, some

individuals inherited four copies of it from one parent, others inherited six, eight or ten. This has

made these repeats useful variants. In [68], authors state that human identification in legal and

forensic investigations can settled using a small number of STRs variants. In the US, 13 variants

are needed while in most of european countries 10 STRs variants are needed for identifying an

individual in forensic cases, missing person investigations or and paternity testing.

Even though, in many countries, the number of DNA identification databases is growing, it is

not clear how law enforcement agencies will continue to collect, store, and use this information

in future. The Supreme Court of the United States has recently ruled that law enforcement can

collect and store the DNA of suspects, even if they are subsequently exonerated. We leave our

DNA behind nearly everywhere we go; currently there are no restrictions on how the police can
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collect the DNA of criminal suspects in the hope of solving cases where other strategies have been

unsuccessful [69]. While collecting the DNA without a warrant, known as "abandoned DNA",

by the police can be very useful, leaving it unregulated not only affects police behaviour but also

challenges the individual right to security. While abandoned DNA is a very hot topic, it can at

the time of writing be collected, sequenced and used by anyone without consent in the USA.

Furthermore, the question of "whose DNA profiles should be kept in the DNA databases ?” is the

most controversial policy issues about the formation of these databases. Authors of [70] argue that

having population-wide databases with strict privacy protections would be more effective and fair

compared to store the profiles of only convicted or arrested individuals.

1.1.5 Security risks for genetic data

As discussed in section 1.1.4, genomic data has numerous distinguishing features and is subject

to several applications. During their collection, sharing, storing or processing, genetic data can be

subjected to many security threats or risks due to the fact that individual genome is unique. In this

section, we give an overview on these risks so as to show on the one hand, the need of genetic data

protection and in the other hand to find the "bast" protection mechanisms that can be deployed.

These risks can be classified into three categories that are accidents, errors or malicious attacks

[71], and separable according to the nature of the threats (technical, physical, environmental, hu-

man, etc.) [72]. These risks independently or jointly affect many security objectives in terms

of privacy, integrity, confidentiality, traceability and availability. We will details these security

objectives in next section.

• Accidents: They correspond to all problems related to the environment or functionalities of

information system that hosts genetic data. There are many accidents including:

– Partial or total destruction of hardware or software materials due to forces of nature

such as floods, earthquakes, tornadoes, landslides, electrical storms or fire, etc.

– Hardware or software malfunctions which may be caused by power failure, network

loss, faulty memory medium, etc.

– All events that are caused by negligence, failure or absence of individuals in charge of

information system, system handling and maintenance.

Whatever we can do, most of these risks will always be present and the only thing we can

do is trying to restrict their consequences.

• Errors: The responsibility of users and stakeholders is important but the design flaws of

software and systems play a significant role. Thus, in a information system (IS), errors may

come from several sources such as:

– Input errors,

– Information transmission errors,

– Manipulation errors in IS operating functions,
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– Errors from the misuse of the IS.

• Malicious attacks: If errors are often identified risks, this is not the case of malicious attacks

which are unpredictable and unavoidable. As soon as the human factor is present, it becomes

difficult to assess these attacks. In addition, it is particularly difficult to find examples. Many

factors can be the origin of malicious attacks including blackmailing or economic interests.

Malicious alterations can be ranged from removing evidence of a prescription or diagnostic

error to the liability of a third party. Thus, they can be the consequence of direct, total or

partial physical destruction of files and software or their backup, or indirect (virus, mal-

ware), or even the result of identity theft or intrusion by a third party allowing access to the

operating functions of the information system. Genetic data are highly sensitive, as an in-

dividual genome enables its unique identification. Thus, it is the biological identity of each

individual. In addition, as seen in previous sections, genetic data may reveal the current and

future susceptibility of specific diseases for a given individual or his/her relatives. There-

fore, these uniqueness of genetic data impose greater security risks for these data and their

owners from malicious attacks. Genetic data risks can be classified into three major groups

according to where and how these data are used:

– Risks in genetic data sharing: We have shown in section 1.1.4 that large scale ge-

netic data are being shared in order to facilitate genomic research or other services.

This is the case of the beacon SFARI that contains genetic data from families with a

child affected by autism spectrum disorder, and it is used by researchers who work on

autism disorder. However, SFARI could leak not only membership information for a

given individual, but also phenotype information for that individual. Several attacks

have been proposed whereby an attacker retrieves the identity of a target individual

by relying on quasi-identifiers such as demographic information (e.g., linking to pub-

lic records such as voter registries), date of birth, data communicated via social media,

and/or search engine records, etc. For instance, the study proposed in [73] has reported

that the identification of 30% of Personal Genome Project (PGP) participants can be

conducted using demographic profiling including zip code and birthday dates. Some-

times quasi-identifier attributes such as zip code or date of birth are removed from

these databases in order to protect participants (data anonymization) but it has shown

that this kind of technique is ineffective [74]. For example, an attacker can infer the

phenotype of the individual for an anonymized genome and use this information to

identify the anonymous individual in others types of databases. In [74], it has demon-

strated that genetic variants on the chromosome Y are correlated with the last name of

male individuals, and this last name can be retrieved using public available databases

such as genealogy databases. After recovering the name of the person, the complete

identity can be found using other databases such as vote databases, etc. Finally, as

these databases contain the disease association of the participants, their security must

be ensured. Many complications such as false identification of surnames may com-

promise the success of this attack. In addition, in some societies, a surname is not

a strong identifier and there is few chance to succeed individual identification. For

example, 400 million people in China hold one of the ten common surnames and the
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top hundred surnames cover almost 90 % of the population [75]. Thus, this strongly

reduces the utility of surname inference for individual identification. Shringarpure and

Bustamante [76] have presented an other example of inference attacks where they con-

ducted it against beacons. In their attack, they repeatedly submit queries for genetic

variants present in the genome of the targeted individual.

– Risks in genetic data computation and storage: During their storage or computa-

tion, genetic data may face several risks and attacks. For instance, we have seen that

large scale data are being collected, stored and computed so as to enable genomic

researches such as genome-wide association studies (GWAS). In most cases, storage

and computation operations are conducted on the cloud as the cloud computing ser-

vices are fast and cheap. Even without using the cloud services providers, allowing a

third party to compute or store genetic data without any protection involves unwanted

risks, as data might leak information from the secure enclosure of researchers [77].

Most of attacks that are conducted in this cases use genomic profile of the victim. In

fact, an attacker gains access to the genetic variants of the victim. Then, it is used for

identifying the victim from genetic databases with sensitive attributes (e.g., cases with

hypertension, drug abuse, etc). Any match between the victim genome and the data-

base links the person and the attribute. Pakstis et al [78] demonstrate that this attack

requires only a small number of single nucleotide polymorphisms (SNPs), and a set of

45 SNPs is sufficient to provide matches between individual genome and his data in

genetic database. Other attacks of this type have been studied [79–83].

– Risks in genetic data analysis results: Genetic data are used in several genomic

researches such as genomic association studies (see section 1.1.4). However, it has

demonstrated that results from these studies can still leaks information about parti-

cipants. For instance, Homer et al [80] demonstrated that it is possible to identify the

presence of an individual in a case group during a case-control association study. More

clearly, a participant in a GWAS can be identified using aggregate allele frequencies

and his DNA profile through the analysis these allele frequencies for a large number

of SNPs. In addition, another study in [84] has shown that even a small set of stat-

istics such as results of GWAS published can be used to identify the presence of an

individual in the case group. This kind of attacks is conducted based on the pairwise

correlation such as linkage disequilibrium among approximately hundreds of SNPs.

It is necessary to identify various risks to which genetic data are subjected in order to determine

the security objectives. These latter are defined in next section with the intention of countering

identified risks as we will see in section 1.2.

1.1.6 Security needs in genetic data sharing and outsourcing

Genetic data security is regulated by strict deontological ethics as well as national and interna-

tional legislative rules. This is due to the sensitive nature, personal identifiable and the nominative

aspect of pieces of genetic data, and to the fact that they are stored, shared/outsourced in open
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environments such as cloud. Thus different security needs have to be considered and well defined

before establishing appropriate security solutions. Many countries have been active in adapting

their legislation to the protection of genomic data. For instance, in the USA, one must take care

of the privacy and security rules imposed by the Health Insurance Portability and Accountability

Act (HIPAA) [85]. These rules aim at ensuring that individuals’ health information, including

genetic information, is properly protected while allowing the flow of health information needed to

provide and promote high quality health care and to protect the public’s health and well being. In

2008, the president of the USA has signed into law the Genetic Information Non-discrimination

Act (GINA), the goal of which is to protect individuals against discrimination using their genetic

data and it makes it illegal for health insurance companies or employers to request or require in-

dividuals’ genetic data or their family members [86]. In another example, the united kingdom

government and the Association of British Insurers (ABI) have agreed on a policy framework, the

Concordat and Moratorium on Genetics and Insurance which ensures that genetic data of an indi-

vidual can not be used in an unfair or unclear manner by insurance companies and that individuals

should not be treated differently based only on their genetic data [87]. All these regulations de-

veloped a set of commitments in terms of information security that medical entities, researchers

or individuals must ensure.

All security commitments imposed by national legislative rules of different countries or interna-

tional rules, include protecting: individual privacy, data integrity, data confidentiality and avail-

ability. These four main security objectives are also completed by authenticity control as well as

traceability of information, usually considered in order to secure the complete flow of informa-

tion. Beyond these legislative and deontological rules, there also exist national and international

recommendations which provide implementation guidance, such as the rules stated by standards

BS 7799, ISO 17799, ISO 27799 and ISO 27001. The standard BS 7799 that was created by the

British standard institute (BSI) in the 90s, gives instructions of a good practice for the informa-

tion system security. It has been adopted by ISO in 2000 so as to become ISO/IEC 1779 [88].

Since then, BSI has added a second part of the standard which is BS 7799-2. It focuses on how

to implement an information system security management by referring to the structure of inform-

ation security and to the identified controls. BS 7799-2 becomes ISO/IEC 27001 in November

2005 [88]. In healthcare, we have the ISO 27799 standard that has released in 2008. It addresses

the information security management needs of the health sector and its unique operating envir-

onments [89]. The ISO 27799 (Health Informatics - Information Security Management in Health

using ISO/IEC 27002) provides guidance to healthcare professionals or organizations on how best

to ensure the security of health information. This concerns genetic data, as in some cases these data

are considered as health information. Some other specific standards like those proposed by IHE

(Integrating the Healthcare Enterprise) [90], can also used so as to complete security requirements

for genetic data by defining specific security objectives. We introduce these security objectives

before explaining how they can be assured in section 1.2.

• Confidentiality : Basically, confidentiality relates to information not being accessible or

revealed to unauthorised individuals [91]. It can also be defined as status afforded to data or

information indicating that it is sensitive for some reason. Therefore, it needs to be protected
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against theft, disclosure, or both, and must be disseminated only to authorised individuals

or organisations [92]. It is specially relevant in the case of nominative information such as

medical data or genetic data. For example, an individual carrying genetic data related to

genetic variants or genes that are known to increase the likelihood of a particular cancer

or other genetic disease may be denied by the health insurance company for the coverage

[93]. Thus, ensuring confidentiality of these data is needed during their storage, sharing or

processing. We will see in section 1.2 some of many security mechanisms that have been

developed in order to ensure data confidentiality.

• Privacy: Privacy consists on limiting access to an individual or identifying a person from

his information [94]. In [95], authors proposed four categories of genomic privacy that are

i) informational privacy which concerns the access to personal information; ii) physical pri-

vacy which corresponds to the access to persons and personal spaces; iii) decisional privacy

that consists of governmental and other third-party interference with personal choices; and

iv) proprietary privacy concerns which corresponds to the appropriation and ownership of

interests in human personality. For all these categories the issue consists on the access on

an individual through his/her data. As a simple example and as we have seen in 1.1.5, it has

demonstrated that medical and demographic data used in Personal Genome Project, com-

bined with genetic data can allow the identification of participants [73]. As we will see

throughout this thesis, data privacy is a particularly important for genetic data, due to its

biological nature.

• Integrity: Integrity verification is defined as a process of proving that a piece of information

has not been modified by unauthorized users. For genetic data, integrity control corresponds

to the protection of the accuracy and consistency of this data, avoiding unauthorized alter-

ations or deletions. Data integrity can be compromised by many threats from accidental or

malevolent data manipulations, erasures or transmission errors. For instance, as detailed in

section 1.1.4, genetic data are being used in precision medicine the goal of which is to en-

able physicians to quickly, accurately and efficiently tailoring the right treatment according

to the characteristics of each individual genome [96]. Thus, the integrity of this information

is imperative in genomics/genetics or healthcare as illegally modifications of this data would

affect physician decisions in diagnosing as well as individual health. In other words, incor-

rect information can result in hazardous events such as death of patients, or the prescription

of the wrong medication for patients. Several solutions have been proposed for ensuring

data integrity and we will come back to these ones in section 1.2.

• Authenticity: In general, data authenticity represents the fact that data proceeds from the

source it is supposed to come from. This consists for example in asserting the origin of

genetic sequences and its link to a given individual, or a sample of genetic variants that are

associated to a certain disease and its link to a researcher or organization who works on

that disease. Another example can be the authentication of data during genome sequencing.

In fact, strains and their genome data are often mistakenly mislabelled during the process

of genome sequencing, and this leads to wrong taxonomic interpretation. In part, this is

because genome sequencing is carried out in central sequencing facilities where the chance

19



1.1.6. Security needs in genetic data sharing and outsourcing

Security

Confidentiality

Legislative regulations Deontological regulations

Traceability

Health professionals 
and researchers

Availability
Integrity

Privacy

Figure 1.5: Security components for genetic data.

of mislabelling and contamination is relatively high. Thus, it is important to verify if a

given genome sequence corresponds to the strain under investigation [97]. Both ensuring

data integrity and data authenticity corresponds to the protection of the reliability of data.

Thus, reliable genetic data can be used by researchers or health professionals in total trust.

If it is possible to trace the data from its origin to its distribution (i.e., its existence), the

concept of reliability becomes traceability.

• Traceability: Data traceability aims at identifying the persons or all the elements that have

transferred, accessed, deleted or modified data from its origin to its final use or in a given

period of time. When defining their security policies, health institutions or genomic research

centers take special attention to this property as it serves to determine the responsible parts

in case of negligence due to incorrect information manipulation [91].

• Availability: Each information system must be available to authorized users in order to be

always useful. In case genetic data is used healthcare, genetic information must be access-

ible in any situation when needed and this availability is critical in case of emergency. This

means that materials, software and communication channels that are needed for storing and

accessing to this information must be fully operational taking into account the supported

workload as well as the security mechanisms to use. Different threats may perturb the cor-

rect behaviour of an information system and most of them are non-malicious in nature and

include unscheduled software downtime, errors, accidents, hardware failures and network

bandwidth issues. Malevolent actions include various forms of sabotage can also be con-

ducted with the intention of causing harm to an organization by denying users access to the

information system. To counteract these security threats, different security mechanisms can

be implemented as we will see in section 1.2.

In summary, as it is shown in Figure 1.5, legislative and deontological regulations impose ensuring

genetic data security, and this consists of three essentials points that are: i) confidentiality and
Privacy that consist on ensuring that only authorized users can access to genetic data as well

as their owner; ii) availability that corresponds to the ability of an information system to be

accessed by users at each time; and iii) reliability which consists on ensuring that data were
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not illegally modified (i.e., its integrity) as well as the assurance of its origin and their owner

(i.e., its authenticity). We recall that reliability becomes traceability if it is possible to trace data

throughout its entire existence.

1.2 Implementing security in genetic data

The deployment of a security policy consists in exploiting mechanisms and devices that aim at

securing information system and applying the rules defined by the security policy. This one spe-

cifies security rules and requirements that must be satisfied by an information system. These rules

specify how information can and can not be accessed, all procedures of recovery management,

new user registration and also how security services must be deployed, configured, parameterized,

etc. Thus, security policy the deployment is a complex process, and as we have seen in section

1.1.6, different standards such as ISO 27001 or BS 7799 have been proposed in order to guide this

process.

Each deployment of a security policy is started by a risk analysis which is conducted using differ-

ent standards such as EBIOS [98], OCTAVE [99] or MEHARI [100]. The risk analysis process

allows to measure the level of the risks (e.g., critical or not) and the identification of the objectives

and security requirements for a given information system as well as for collected data that are

stored, processed or shared through this system. After that, the identified risks can be countered or

minimized using existing devices and security mechanisms. We can distinguish protection mech-

anisms into two categories: physical protection and logical protection. Physical protection mech-

anisms correspond to the materials that are used for counteracting unauthorized physical access,

natural risks such as fire, robbery, flooding, etc. Thus, in order to protect, an information system,

this one should be placed in a protected and isolated zone, where the access is well controlled. For

instance, in order to counter physical access, badges or biometric authentication tools can be used.

In addition, some cable locks that can be used to counter thieves should be deployed, and a regular

maintenance ensures the proper functioning of the information system in terms of hardware and

software. Notice that even though it depends of the security policy, as exposed above, it is usually

provided by external service societies contractually linked to the health institution or genomic re-

search center. These maintenance contracts take usually into account the constraints in terms of

confidentiality, integrity and availability of genetic information.

Logical protection correspond to security mechanisms that are exploited at the software level.

These are for instance user authentication methods (login, password, smart cards, etc.) [101];

access control using access control model such as OrBAC [102], cryptographic mechanisms (ho-

momorphic encryption [103], secure multiparty computation [104], hash functions [105], etc.),

certification management mechanisms that are used for distributing encryption keys (e.g., public

key infrastructure (PKI)), network filtering mechanisms (e.g., Firewall), traceability mechanisms

(e.g., message logging using SYSLOG, ODBC), intrusion detecting tools such as IDS or more re-

cently, watermarking mechanisms [106]. In next section, we will describe some cryptographic and

watermarking mechanisms as well as their respective limitations. As none of these mechanism can

ensures all security objectives, these mechanisms can be combined in some cases, so as to ensure
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more than one security objective (e.g., watermarking and encryption for protecting confidentiality

and traceability).

1.2.1 Security mechanisms and their limitations

We distinguish here two categories of security mechanisms that are information system security

mechanisms and data security mechanisms. Each mechanism was proposed for a specific security

objective (confidentiality, integrity and authenticity, traceability and availability).

1.2.1.1 Information system security mechanisms

1. User authentication: It corresponds to a process that allows the verification by a device, the

identify of a person who connects to a network resource, and this allows the protection of

data from unauthorized access. Several schemes have been proposed in order to ensure user

authentication, but the well-known is the strong authentication which is the combination of

two different criteria: verifying the user’s identity using passwords; and providing a proof

of the user’s identity using for instance smart cards. This solution can be associated with a

token, which ensures an unique connection per user. Once the user connected, the token is

assigned to the computer in which he is logged on. After that, no other connection will be

allowed for the user somewhere else in the system. RSA SecurID [107] is an example of

the strong authentication tool where two criteria are used to in order to ensure the protection

of network resources. Herein, the authentication is based on a password or PIN and an

authenticator. The latter is composed of a hardware token such as key job or a smart card,

and a software token which is the RSA Authentication Manager Software [107]. Other

mechanisms such as Windows Active Directory [108] or RADIUS [109] are also used for

user authentication.

2. Access control: In previous section, we have seen that user authentication ensures the pro-

tection of data from non-authorized access [110]. Once the user has the green light for

accessing to the information system, it is mandatory to control the activity that user can

perform by defining his/her access rights. To respond to this issue, several access con-

trol models have been proposed. For instance, discretionary access control (DAC) model

has been proposed for restricting the access to information system based on the identity of

users or the groups to which they belong, or both; object ownership and permission delega-

tion [111]. Other models such as the role-based access control (RBAC) [112], the organiza-

tion based access control (OrBAC) [113], the attribute-based access control (ABAC) [114]

or more recently smart contract-based access control [115] can also be used. Even though

access control protects data, using only the authorization policy or the access policy can not

counter all possible attacks, and it is sometimes possible for a user to bypass the mechan-

isms that implement this policy. Thus, it is suitable to reinforce data security using other

mechanisms such as antivirus, cryptographic mechanisms, security audit, etc.

3. Firewalls: A firewall can defined as a collection of components that are interposed between

two networks in order to filter traffic between these networks and according to a predefined
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security policy [116]. If the information system is connected to another network, firewalls

are used for protecting this system against intrusions. They make it possible to survey and

restrict the access from the outside of information system such as internet to the inside (e.g.,

a local network, etc.) and vice et versa [117]. Thus, a firewall is one of mechanisms that

are used for ensuring the access controls and as it is mentioned above, its main function

is filtering the traffic by only letting packets from authorized addresses to pass. Notice that

firewalls do not protect the confidentiality or integrity of the data circulating on the network,

and so other mechanisms must be implemented in order to ensure these security objectives.

4. Antiviruses: A computer virus is defined as a computer program that can copy itself and

infect a computer without the knowledge or the permission of the user. After being executed,

a virus can modify other computer programs and inserting its own code [118]. For example,

the conficker which is also known as downup virus had infected millions of computers all

over the world and damages caused by this virus detected in 2008, are estimated at more

than $ 9.1 billion [119]. Viruses are certainly one of the most important threats that face

each information system. There exist different ways by which viruses can be inserted into

an information system, this insertion can be conducted even if the information system is

not connected to an open network. In addition, external data storage or sharing devices

such as USB flash or hard disk drives can be infected. To counter these viruses, computer

programs called antivirus (e.g., Avast Antivirus, McAfee, etc.) have been proposed in order

to prevent, detect and isolate viruses, as well as the restoration of information system. The

prevention consists of testing all memory units but also all network connections, databases

and programs that can be imported. The virus detection corresponds to controlling the

information system using one or several detection tools, and suspicious memory units should

be isolated by disconnecting them. Regarding the information system restoration, viruses

are first removed from the system using antivirus before reformatting the memory units and

reinstalling the information system.

1.2.1.2 Data security mechanisms

A. Data encryption

In order to ensure the confidentiality of data, data encryption mechanisms are among the first

security mechanisms that were proposed. We discuss this section how they work.

A.1 Principles of encryption

Data encryption is a process that transforms a clear message, known as plain-text, into an en-

crypted message known as cipher-text, that cannot be understood by anyone other than the person

who created the message and the recipient. As illustrated in Figure 1.6, this process is conducted

by means of an encryption algorithm parameterized by an encryption key Kp. Message decryp-

tion involves the transformation of the cipher-text into a clear message identical to the original

one through a decryption algorithm and a decryption key Ks. There are two classes of encryption
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Encryption 
algorithm

Receiver

Encrypted data

Figure 1.6: Main stages of a common encryption chain. The clear data is encrypted by a sender
using an encryption key Ks. We consider that the encrypted data is shared (e.g., via the Internet)
and then, decrypted by a receiver using a deciphering key Kp.

algorithms according to the dependence between the encryption and decryption keys: symmetric-

key encryption or more simply, symmetric encryption and public-key encryption, i.e., asymmetric

encryption.

Symmetric encryption is based on one key which is shared between the sender and the recipient.

This means that the encryption key Ks and decryption key Kp are equals (Kp = Ks). Symmetric

encryption is still highly used due to its rapidity, and until 1976, all the proposed encryption al-

gorithms were symmetric. There exist two categories of symmetric encryption algorithms: stream

encryption algorithms that work directly with data flows, for instance the RC4 [120], and block

encryption algorithms that transform fixed-length strings (blocks) from the clear message into en-

crypted strings of the same length in encrypted message. There exist several block encryption

algorithms including DES or triple DES (Data Encryption Standard), Blowfish, Serpent and AES

(Advanced Encryption Standard) [121]. These algorithms are based on various block modes in-

cluding Electronic Codebook (ECB), Ciphertext-Feedback (CFB), Cipher Block Chaining (CBC),

Counter (CTR), or Output-Feedback (OFB) [122]. AES which was originally known as Rijndael,

is the most commonly used symmetric algorithm [123]. This is due to the fact that AES is proven

to be highly secure and fast. AES is the international standard set by the U.S. National Institute

of Standards and Technology (NIST) in 2001 in order to be used for the data encryption [123].

It has a block size of 128 bits, but can have three different key lengths as shown with AES-128,

AES-192 and AES-256 [124]. This standard replaced DES, which had been in use since 1977.

In this thesis, in the case symmetric encryption is needed, we have opted for AES algorithm (see

section 3.4 and section 4.3).

On the other hand, we have asymmetric encryption which is based on two different keys, the

encryption key Kp and the decryption key Ks. These keys are distinct but still mathematically

linked. However, theoretically, the knowledge of one of the keys does not allow obtaining the

other one. Kp is public, and is accessible to all, while Ks is private and is only known to the

recipient. The asymmetry comes from the fact that if a message is encrypted using Kp, it can only

be decrypted using Ks. Therefore, for ensuring data confidentiality, it is necessary to encrypt the

clear message with the recipient public key. Only him/her will be able to decrypt the encrypted

message by means of his/her private key. On the other side, if a user encrypts a clear message
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Figure 1.7: A simple example of HE use in cloud computing.

with his/her private key, everyone is able to decrypt it by means of the published public key and

this reverse process is used for verifying the origin of the message. Thus, the user can not deny

the emission of the message, and this ensures the non-repudiation and the authentication of the

user. Different symmetric encryption algorithms have been proposed, and the most widely used

algorithm is RSA (from its authors, Rivest, Shamir, Adleman) [125]. Recently, several authors

have suggested the use of encryption, especially homomorphic encryption in order to ensure the

privacy and confidentiality of genetic data during their storage and/or processing on the cloud for

instance [36]. We detail in the sequel this mechanism

A.2 Homomorphic encryption

Homomorphic encryption (HE) is one of the most exciting new topics in cryptography research

and is a promise for perfectly securing mechanism in cloud computing [14, 126]. It must allow

a user to store his encrypted data on the cloud and user can ask the cloud to process these data

without decrypting them. After processing, results are sent to user in encrypted form. From a his-

torical perspective in cryptology, in order to perform operations on encrypted data with traditional

encryption, there is no other solution than decrypting the data first. This is not the case of homo-

morphic encryption [127], the concept of which was introduced in 1978 by Rivest et al. [125] as a

possible solution to the computing without decrypting problem.

By definition, each algebraic operation performed in the space of clear messages corresponds

to another algebraic operation performed in the space of encrypted messages. To give a simple

motivational HE example for a sample cloud application, as shown in Figure 1.7 let us consider

the user U, first encrypts his or her sensitive data (Step 1), then sends the encrypted data to the

cloud server providers (CSP) (Step 2). When the user wants to perform a function (i.e., query, ),

f(), over his or her own data, he or she sends the function to the CSP (Step 3). The CSP conducts

a homomorphic operation over the encrypted data based on the function Eval that allows the

computation of the function f() on encrypted data without accessing to the result (Step 4). This

latter is sent to the user (Step 5) who will decrypt it using his or her own secret key in order

to obtain f(m) (Step 6). As seen in this simple example, the homomorphic operation, Eval(),

at the CSP side does not require the private key of the user U. The function Eval() is based

on elementary operators (e.g., ?, ◦) that are defined in the space of clear messages (M , ◦) and
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encrypted messages (C , ?). ? and ◦ can both be the usual addition or/and the usual multiplication

operators. Thus, if m1,m2 ∈M are two clear messages, the homomorphic property is such that

D[[m1,Kp] ? E[m2,Kp],Ks] = m1 ◦m2 (1.1)

where D() and E() are the decryption and encryption functions, respectively. ? represents the

algebraic operator performed in the space of encrypted messages while and ◦ is the algebraic op-

erator conducted in the space of clear messages. We provide the definition of an HE cryptosystem

and its properties as follows.

Definition 1 Let C and M be the spaces of clear and encrypted messages, respectively. An ho-

momorphic encryption(HE) cryptosystemHE = (KeyGen,E,D,Eval) with C and M consists

in four polynomial time algorithms:

• KeyGen[1λ] the key generation algorithm that takes one input, a security parameter λ in

order to output a key pair (Kp,Ks), where Kp is the public key used for encrypting data

and Ks is the private key used for data decryption.

• E[m,Kp] the encryption algorithm which with as inputs the encryption key Kp and a plain-

text m ∈M and as as output the cipher-text c ∈ C .

• Eval[h, c1, · · · , cn,Kp] the evaluation algorithm the inputs of which are the public key Kp,

an evaluation function h and a tuple of inputs that can be a mix of cipher-texts and previous

evaluation results. It produces an evaluation output which can be decrypted to get access to

the plain-text.

• D[c,Ks] the decryption algorithm which produces a plain-text m based on the secret key

Ks and a cipher-text.

The first attempts for defining a homomorphic cryptosystem [125, 128–139] have enabled either

one type of operation or a limited number of operations on the encrypted data. In addition, some

of theses methods are even limited over a specific type of set such as branching programs. One

can distinguish three types of HE cryptosystems with respect to the number of operations that are

allowed on the encrypted data as follows:

• Partially Homomorphic Encryption (PHE) allows performing only one type of opera-

tions with unlimited number of times, these operations being multiplication (e.g., ElGamal

cryptosystem [130]) or addition (e.g., Damgård-Jurik [140]). Since the pioneer work by

Rivest et al [125], several useful PHE cryptosystems have been proposed [128–139]. They

are deployed in various applications including electronic voting [141] or Private Inform-

ation Retrieval (PIR) [142], but these applications are restricted in terms of the types of

homomorphic operations that are allowed. In other words, a PHE cryptosystem can only be

used for a particular application, whose algorithm include only addition or multiplication

operations. Each of these cryptosystems has improved the PHE in some way. We give some

examples that are the basis for many other PHE cryptosystems.
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– RSA (from its authors Rivest, Shamir and Adleman) is the first asymmetric cryptosys-

tem and the first PHE that was proposed [125]. It was proposed shortly after the inven-

tion of public key cryptography by Diffie and Hellman [143] and it is the first feasible

achievement of the asymmetric cryptosystem. Moreover, it is the first cryptosystem

the homomorphic property of which has been introduced by Rivest et al [144]. It is a

multiplicative PHE, i.e. the product of the RSA encrypted messages allows the com-

putation of the product of the clear messages. Currently, RSA is considered one of the

most solid PHE cryptosystems. This is why it is still being used for protecting critical

data exchanges. Its security of the RSA is based on the hardness of the factorization

problem of two large prime numbers.

– Goldwasser-Micali (GM): GM is the first probabilistic asymmetric encryption cryptosys-

tem proposed by Goldwasser and Micali in 1982 [128]. The GM cryptosystem is

based on the hardness of quadratic residuosity problem [145]. Notice that a number

a is called quadratic residue modulo n if there exists an integer x such that x2 = a

mod n. The quadratic residuosity problem decides whether a given number y is quad-

ratic modulo n or not. The GM is the first cryptosystem that has introduced the se-

mantic security. This means one clear message can have different encrypted messages.

This property is important and is generally obtained by taking into account a random

number in the encryption function E. The homomorphic property of this cryptosys-

tem shows that encryption of the sum or XOR of two clears messages can be directly

obtained by computing the product of corresponding encrypted values. In addition,

as the clear message and encrypted message are binary messages, the operation is the

same with XOR and GM is then homomorphic over only addition for binary num-

bers. This cryptosystem was extended in many cryptosystems such as Benaloh [136],

Okamoto-Uchiyama [133] or Naccache-Stern [132] with the goal of increasing the

computational efficiency.

– ElGamal: This cryptosystem was proposed by Taher Elgamal in 1985 [130], and it is

the improved version of the original Diffie-Hellman Key Exchange algorithm [143].

The security of ElGamal is based on the hardness of the discrete logarithm problem

[146]. It is mostly used in hybrid encryption systems for encrypting the secret key of a

symmetric encryption cryptosystem. ElGamal is multiplicative PHE as the product of

two encrypted messages allows to the computation of the product of these messages

in clear form.

– Paillier: This is another novel probabilistic encryption cryptosystem that was pro-

posed in 1999 by Pascal Paillier [135]. It is based on the composite residuosity prob-

lem [147], which is the generalisation of the quadratic residuosity problem [145] used

in GM cryptosystem. Paillier cryptosystem has additive homomorphic properties, i.e.,

the product of two encrypted messages allows the computation of the sum of their

corresponding clear messages. This cryptosystem was extended in the Damgård-Jurik

cryptosystem [139].

Other PHE cryptosystems have been proposed, with the objective of improving previous

cryptosystems and preserving their homomorphic properties, or using new techniques [137].
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• Somewhat Homomorphic Encryption (SWHE) allows several types of operations in a

limited number of times. Indeed, if these cryptosystems support for example addition and

multiplication operations, the size of the encrypted data increases after each homomorphic

operation, and this limits the maximum number of allowed homomorphic operations (e.g.,

BGN [136]). SWHE properties were observed for some PHE cryptosystems [129,134,148]

but it was however difficult to use these schemes for encrypted data processing because

the increase of size of the encrypted data. For instance, the scheme proposed by Fellows

and Koblitz [148] allows both addition and multiplication operations over encrypted data.

However, the size of the encrypted data grows exponentially with the homomorphic op-

erations, and the multiplication operation is especially extremely expensive [148]. It was

not until 2005 that the first SWHE scheme appeared. The first cryptosystem of this type is

the BGN, named after its authors Boneh, Goh and Nissin [136]. This scheme supports an

arbitrary number of addition operations but allows only a single multiplication by keeping

the encrypted message size constant. The security of BGN is based on the subgroup de-

cision problem [149] which consists in deciding whether a given element is a member of a

subgroup Gs of the group G of composite order n = pq, where p and q are distinct prime

numbers. This cryptosystem was the first significant step towards to an FHE scheme. Other

SWHE schemes have been proposed [138,150–152] with the same objective which consists

of finding one day a FHE scheme. In general, during homomorphic evaluation, especially

multiplicative evaluation, SWHE cryptosystems add noise in encrypted data. Once the noise

exceeds a certain threshold, it will no longer be possible to correctly decrypt it. To overcome

this issue, several techniques such as bootstrapping have been proposed [153]. Thus, a fully

homomorphic encryption can be obtained.

• Fully Homomorphic Encryption (FHE) enables an unlimited number of operations for an

unlimited number of times (e.e., BGV [154]). There have been several attempts to build

such cryptosystems, but it was not until 2009 to see the first plausible construction of FHE

scheme presented by Gentry in his Ph.D thesis [153]. It is based on ideal-lattices, and its

use in practice is not feasible. The idea of gentry is to build a FHE cryptosystem from a

SWHE cryptosystem by introducing some techniques that allow reducing the noise when

it becomes important, during the homomorphic evaluation and one of these techniques is

bootstrapping. Gentry’s work leads not only to an FHE scheme based on ideal lattices, but

also to a generalized theoretical and powerful framework for defining a FHE scheme. How-

ever, this solution has several limitations such as the very high computational complexity

due to the fact that it is based on an ad hoc problem and a spare subset sum problem (SSSP)

problems. Thus, this scheme cannot meet the requirements of practical applications but it

give to researchers many ways that have permitted the designing of secure and practical

FHE schemes after Gentry’s work. There are four classes of FHE schemes:

– The first class consists of the FHE schemes that are based on ideal lattices, i.e., based

on the initial Gentry’s scheme [155–158]. These schemes use smaller cipher-text and

key sizes than Gentry’s scheme without reducing the security. In addition, some of

them have focused on the optimizations in the key generation algorithms in order to

increase the FHE efficiently.
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– The second class corresponds to FHE schemes that work on integers [159–163]. The

security of these schemes is based on problems such as the Approximate-Greatest

Common Divisor (AGCD) [164]. This problem consists on trying to find an integer

p from a set of equations pqi + ri. These solutions are efficient compared to ideal

lattice-based schemes. However, their security is based on weak problems.

– The last class consists the FHE schemes that are based on learning with errors (LWE)

or ring learning with errors (RLWE) problems [154, 165, 166], these schemes show

better performances compared to previous ones.

Today, solutions of the last class are the more efficient in terms of complexity, size of the

encrypted messages and security. In this thesis, we were particularly interested in the BGV

( from its authors Brkerski, Gentry and Vaikuntanathan) [154], a FHE scheme that was

implemented by IBM in HElib library [167]. In this library, several significant optimizations

such as re-linearization, bootstraping, squashing , batching, etc. have been considered. We

will return to this scheme in chapter 2 where we have proposed BGV-based solution for

protecting outsourced GWAS.

B. Secure Multiparty Computation

Even though homomorphic encryption allows the protection of data confidentiality as well as the

encrypted data processing, it does not allow all operations to be carried out on encrypted data, in

particular no-linear operations such as comparison and division. Secure multiparty computation

(SMC) comes as a solution for performing these types of treatments. By definition, SMC allows a

set of different parties or participants (at least a client and a server) to securely evaluate a function

on their private data as inputs in such a way that no information other than an agreed upon output

or result is available to the parties. This result which is known to everyone can be, for example, a

Boolean, or the index of the closest element in the database can have various applications including

privacy-preserving decision making on distributed genetic or financial data, online poker, private

set intersections, privacy-preserving machine learning, etc. Proposed SMC solutions can be classi-

fied into two main categories accordingly the number of parties they support: 1) secure two-party

computation and 2) secure multi-party computation. Different cryptographic techniques All these

techniques can be used in order to realize a SMC scheme. Three common underlying techniques

for these schemes are a) Oblivious Transfer, b) Yao’s Protocol or garbled circuit evaluation, and

c) Secret sharing.

• Oblivious Transfer (OT): This protocol introduced by Rabin 1981 [168] is among the fun-

damental tools for securing data, especially in cloud environments. OT can be introduced

as follows. Considering that we have two parties a sender that knows two secrets S1 and

S2, and a receiver who want to know one of these secrets, but he does not want the sender

to know which one. More generally, let’s consider an OT algorithm allows a receiver to

obtain an element Si in a set of T elements S = {S1, S2, · · · , ST } from the sender; without

knowing any other element in the set, and without revealing Si to sender. To do so, the

receiver choose an index i that corresponds to the element that he/she want in S, and this
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index is used to retrieve Si in S. At the end of the protocol, the receiver receives Si, without

knowing any other Sj , for i 6= j, and the sender does not know i.

• Yao’s Protocol (Garbled Circuit evaluation): This protocol presented by Andrew Yao in

1986 [129] allows two parties or entities to collaborate and correctly compute a function

before sharing its output, and without knowing the input of each entity to another. Yao

introduces this protocol in order to give the response to the millionaires’ problem. Herein,

two millionaires want to determine who is the richest between them, without revealing their

respective fortune. Yao modeled this problem as a series of binary gates that take as input

encrypted data. Encryption operation can be conducted using classic symmetric encryption

algorithms such as AES or 3-DES. Even though this solution is theoretically interesting, it

remains useless due to its computation complexity. After Yao’ scheme, several solutions

have been proposed using in particular homomorphic encryption. The latest approaches

model the function as a boolean circuit which is shared between the involved entities. At

each gate of the circuit, input or output data is encrypted so that the entity which evaluate

the function or part of the processing cannot extract any information about the inputs or the

intermediate values.

• Secret sharing: Introduced by Shamir [169] in 1979, it represents the set of methods in

which a secret is provided to several parties, so that the reconstitution of the secret requires

the collaboration of a certain number of these parties. Any entity can not get access to the

secret on its own. Formally, More formally, a secret sharing protocol between T participants

or entities with threshold k such that: i) Any k participants or more, chosen in a set of T

participants can always allow recovering the secret; and ii) any t − 1 participants chosen

a set of T participants can never allow the recovering of the secret. The solution proposed

by Shamir is based on polynomials of degree k and Lagrange polynomial interpolation for

distributing data (secret) to T participants. Assuming that the secret is the value s, a finite

field is chosen so that the secret s is the size of an element of this finite field. For instance,

a 64-bit secret gives the field K = F64
2 . Thus, in order to retrieve the secret by at least k

participants among T , one must choose a polynomial f on K[x] of degree k − 1 such that

f(0) = s

f(X) = s+
k1∑
i=0

aiX
i, ai ∈ F64

2 (1.2)

Each value f(bi) is distributed to each participant, with bi are distinct values and differ-

ent to zero. Therefore, if k participants collaborate, then they are able to reconstruct the

polynomial f of degree k − 1 and recover the secret s, thanks to the Lagrange polynomial

interpolation. If fewer than k participants collaborate, they will construct a polynomial but

with different constant. As the secret corresponds the constant s from the polynomial of

degree k − 1 , they cannot find any additional information on the secret. Secret sharing

could have different applications such as the protection of the decryption key of a given

cryptosystem, which requires the collaboration of many parties in order to conduct data

decryption.
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C. Cryptographic hash functions

A cryptographic hash function is defined as a cryptographic algorithm that takes as input an ar-

bitrary amount of data, and produces a fixed length output called a hash value, or just "hash".

This value can then be stored instead of the password itself, and later used for various applications

including data integrity verification, pseudo random number generation, password verification or

message authentication. An important property of such functions is that they are irreversible func-

tions or one way functions. This means that it is infeasible to get an idea of the input of the

function from its hash value. The hash computation can also be conducted using secret hash key

which is associated to original data. For instance, in message authentication code (MAC) mech-

anisms [170], a message is concatenated to a secret hash key Kh. Thus, the secret hash value ah
of a given message m is given by

ah = hash(m||Kh) (1.3)

where || is the concatenation operator, and hash represents a secure hash mechanism such as secure

hash algorithm SHA1, MD5, SHA256 or SHA3 [105]. For each data of any size, these schemes

provide a hash value encoded on l bits and the common choice of l is 160, 256, 256 and 512

bits. Each cryptographic hash function should be indiscernible from any random function with the

same parameters and it should fulfil the following four properties:

1. Efficiency which means that it is easy for each message m, to compute the corresponding

h(m);

2. Collision resistance which means that it is extremely difficult to find two distinct messages

m1 and m2 such that h(m1) = h(m2), and a such possibility should requires at least 2n/2;

3. Preimage resistance which corresponds to the fact that, for a given a hash value ah, it is

hard to find a message m such that h(m) = ah. The time complexity of a single preimage

attack is at least 2n/2;

4. Second preimage resistance which means that if m1 is given message, it is hard to find

a second message m2, such that h(m2) = h(m1). The time complexity of a such second

preimage attack is between 2n/2 and 2n. For example, for any data of maximum 264 bits,

SHA256 provides hash value encoded on 256 bits.

For any hash function mechanism, the probability two messages lead to the same hash value is
1

2128 ≈ 2.9 × 10−39. In this thesis, we will come back to the use of SHA256 in chapters 3, 4 and

5 where it is used in ensuring data confidentiality, databases partitioning during watermarking and

computation of the watermark.

D. Watermarking as a complementary security mechanism

Previous mechanisms offer an "a priori" protection. On the contrary to these methods, water-

marking provides an "a posteriori" protection, as it allows the access to the data while keeping
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Figure 1.8: Main stages of a common watermarking chain. In this chain, we consider that the
watermarked data is shared (e.g via the Internet) and it can be illegally modified or manipulated
between the embedding and the reading stages. At the reading stage, the inserted message readed
and/or extracted, and in the case of reversible watermarking, the original data can be fully re-
covered.

them protected by a message ( watermark) intrinsically linked to it. In the sequel, we come back

on general watermarking fundamentals, in particular database watermarking.

D.1 Definition

Digital watermarking is a technique that consists in the imperceptible embedding of an extra-

information (watermark or message) within a digital contents (e.g., video, image, etc.), usually

called host data, without perturbing its normal use or interpretation.

For instance, the watermark is embedded into an image by imperceptibly modifying its gray val-

ues. Watermarking uses the same principles as steganography, a discipline just as old as crypto-

graphy but with different objectives. With steganography, the host document data does not have

any importance. The objective of the user is to conduct a secret communication using the host

document as a covering channel. This is to say that the objective is to ensure the security of the

inserted message, and this one must be completely imperceptible and undetectable. The objective

of watermarking is the protection of the host document by using the embedded message, contrary

to steganography. Watermarking was originally proposed in the early 90s in order to ensure the

copyright protection of multimedia contents such as images [171]. To do so, a watermark that

contains the owner identity is embedded into the image, and is used as copyright information. The

buyer identity can also be inserted in order to ensure the traceability of the image. The inser-

ted watermark should be in this context resistant to attempts of an attacker who want to erase or

modify the watermark. Since then, watermarking was extended to several security objective such

as copy protection, integrity verification, etc; and to may types of data such as databases.

D.2 Principles of watermarking

A classic watermarking chain deeply resembles a communication system and they have both the

same objective which is the transmission of a message. In the case of digital watermarking, the

noisy communication channel corresponds to the host content and the available bandwidth is rep-
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resented by the number of bits of message one can embed. As illustrated in Figure 1.8, each

watermarking chain is conducted based on two main processes that are message embedding and

detection and/or extraction of the message.

• Message embedding: This process allows the insertion of a message (watermark) in the

host content such as an image or a database. This insertion is performed by altering, mod-

ulating or modifying as imperceptible as possible of the host content under the principle of

controlled distortion. For instance, an image watermarking is done by conducting the modi-

fication or modulation of gray levels of image pixels or of coefficients of a transform of this

one such as DCT (Discrete Cosine Transform), TFD (Discrete Fourier Transform) or DWT

(Discrete wavelet transform). For databases, watermarking can conducted by modifying

database attribute values or by dealing with the order of tuples in the database. The mes-

sage embedding process depends a secret watermarking key Kw which allows for instance

the selection of attribute values to be watermarked, the construction of the watermark itself

during the watermarking of a database or the selection of the pixels or the coefficients to be

watermarked in the case of image watermarking.

• Detection and/or extraction of the message: This process depends on the secret water-

marking key. The embedded watermark can completely be extracted or simply detected

depending on the application the watermark. In addition, in some cases it is possible to

invert the introduced modifications and to recover the original content. This latter is known

as lossless or reversible watermarking. One distinguish a blind detection/extraction or not.

A watermarking scheme is said to be blind if it does not require the presence of the original

data to extract the message, semi-blind if it requires some information from original data, or

no-blind otherwise. Notice that the watermarked data can be subject of authorized manipu-

lations or attacks (innocent and malevolent) in between the embedding side and the reader

that could erase, weaken or modify the inserted message. The former is referred as innocent

attacks, while the latter is malevolent. The capability of a watermarking scheme to resist

such an attack corresponds to the concept of robustness, and the length of the message that

one can insert in host data corresponds to the watermarking capacity. We will come back to

these properties in the next section.

D.3 Properties of watermarking systems

Each watermarking scheme should be characterized by different properties regarding the given

application. However, it is difficult to satisfy all these properties and a compromise has to be

established between them. In this section, we describe the existing main properties:

• Robustness: A watermarking scheme is called robust if after processing operations or ma-

liciously attacking on the watermarked data, the inserted watermark is still accessible [106].

For instance, for images, many processing including data compression, color correction,

noisy transmission, addition of captions or geometric modifications can be conducted. These

operations are known as innocent attacks. On the other hand, during their transmission or
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distribution across the internet, watermarked data may face several attacks the purpose of

which is to remove/alter the watermark for the illegal use of the watermarked data. As we

will see in chapter 5, we have proposed a robust watermarking scheme that must allows dif-

ferent genetic processing such as genome-wide association studies without compromising

test results.

• Watermarking capacity: The watermarking capacity is defined by the maximum amount

of information that can be embedded within a specific content. In the case of genetic data

watermarking, it can be measured in bpn, that is to say in number of bits that can be in-

serted in one nucleotide base or bits per codon (bits/codon) [12]. Under the condition of

imperceptibility as well as the requirements of robustness, the watermarking capacity relies

on the size of the original data. The more original patterns are attainable, more information

is able to be inserted. However, embedding as much watermark information as possible is

a more difficult task in digital watermarking. In addition, depending on the application of

watermarking scheme, capacity can be less considered.

• Imperceptibility: It is an essential property for digital watermarking as the visual similarity

between the watermarked version of data and original one, and the perceptual quality of the

original data should be transformed imperceptibly by the embedding process. Even though

by definition the watermark must be imperceptible or invisible, sometimes watermarking

schemes embed a visible watermark. This could be for example the embedding of related

to ownership into the original content (e.g., image) in a perceptible manner, so visible wa-

termarking can perform copyright protection in more direct and immediate manner than

invisible watermarking [172]. This type of solution is at the limit of watermarking but is

considered as such because of the degradation of the host data. There are two main reasons

why it is important to keep the imperceptibility of the host data after the watermark embed-

ding. Firstly, the absence or the presence of a watermark cannot be distinguished from the

primary purpose of the original data, if the watermarked data is so badly distorted that its

value is lost. Additionally, suspicious perceptible artifacts may introduce a watermark in

existence, and perhaps its precise location being detected from host data. This information

may help the attacker to access to the watermark and perform different illegal operations

such as substitution or removal of the watermark. Therefore, the information embedded in

it may no longer be available.

• Reversibility: Introduced in 1997 by Mintzer et al. [173] for image watermarking, this

property allows the extraction of the watermark and the restoration of the original host data

from their watermarked version by inverting back modifications induced during the water-

marking process. This property is often desired in different applications such as healthcare

or genomics/genetics where the quality of data is a strong constraint. For instance, several

schemes have demonstrated that this property can be used in integrity control of data where,

one can insert a digital signature computed for the whole host document or data [174].

• Complexity: This property corresponds to the indication of the required computation time

for the watermark embedding and watermark detection/extraction processes. In some ap-

plications such as video on demand (VOD), the insertion is not needed in real time, but at the
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reading stage, the no detection or a delay in detection may cut off the broadcasting process.

Thus, embedding and detection/extraction complexity constraints can also be determinant

in some application frameworks.

• Security: This property can be defined as making it very difficult for attackers to extract or

remove the watermark and its content as well as its modification (falsification), or to embed

a new one so as to hide the original watermark. Thus, for each watermarking scheme, the

access to the embedded watermark must be restricted, generally by means of a secret water-

marking key Kw that allows only authorized users to extract the embedded information. As

we have seen in previous sections Kw can also used for generating the watermark. Without

this key, it should not be possible to find the watermark or generating a valid watermark. For

some watermarking methods, the message is encrypted before being embedded in order to

improve its security [175]. Thus, even though an attacker can extract the watermark inform-

ation, it will still be difficult for him/her to get access to the watermark without knowing the

decryption [176]. It is important to note that this property is directly related to the notion of

robustness as the suppression of the watermark resulting the useless of watermarked data.

Nowadays, it is not possible to offer all of these properties simultaneously, and there is no wa-

termarking scheme that can ensure all of them. However, in practice, the requirement relating to

each of these properties varies according to the application context (e.g., integrity control, copy-

right protection, tracking of illegal copies, etc.). A watermarking method will be chosen according

to the compromise that it establishes between these different properties.

D.4 Applications of watermarking schemes

Digital watermarking is potentially useful in many applications depending on the relationship

between the host data and the embedded watermark, or the document or data to watermark. There

are several applications of watermarking including: copyright protection, traitor tracing and

integrity verification.

The first proposed and most-studied application of digital watermarking is copyright protection.

It was initial proposed for multimedia contents before being extended to other types of data such

as databases. Copyright protection relies on the embedding of an identifier which associates the

host document or data to its owner (creator or buyer) [177]. This identifier that corresponds to

the watermark should be imperceptible and resistant to any operations, especially those conduc-

ted by attackers in order to damage or remove the watermark. For instance, in association with

Adobe, Digimac developed a tool which is available in Photoshop software and allows the copy-

right protection control for images. In fact, when the this tool recognizes a watermarked image,

it refers to a centralized database which is accessible online, and uses the inserted watermark as

a key message in order to find the identity of the owner of the image [178]. In many cases, the

copyright assertion is conducted using two steps: the detection step that consists of verifying the

presence of the watermark and the extraction step that allows the identification of the owner. Thus,

watermarking offers more practical and autonomous solutions than classic solutions that are based

on the registration of the document (e.g., image) to a trusted third party who keeps a coy of the
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original document. In addition, it is not easy to implement this solutions in case of databases or

software because of their important size which can cause the storage complexity overhead in when

keeping their copies. Notice that the first database watermarking scheme, proposed by Agrawal

and Kiernan [179], focused on copyright protection. It is also possible to use the watermarking

for identifying the recipient of the one content or for tracing the historical of its possible illegal

distribution. This is referred to as content traitor tracing or fingerprinting [180]. To do so, data

owner embeds different watermarks in each distributed copy of the content using an identifier or

fingerprint which uniquely identifies an individual. If one of the receivers decides to illegally

reroute or redistribute the content, it becomes possible to identify him or her [181]. These solu-

tions are designed in the way that they must be resistant to collusion attacks. In these types of

attacks several users owning copies of the same content cooperate together in order to obtain the

original version of the content [182]. Tardos codes offer an interesting compromise between the

length of fingerprinting (in bits) and the detection efficiency of at least one attacker from such a

coalition [183]. Traitor tracing solutions can also be used for identifying a dishonest user who is

the origin of data leakage. As previously exposed, the user identifier is inserted when he/she ac-

cesses the data. If the information is retrieved elsewhere on internet, it will be possible to identify

the the individual which is responsible of this diffusion by extracting the watermark. Contrary

to the previous problem, collusion attacks are of less concerns as such data leaks are usually the

result of one user.

The last but not the least application of digital watermarking is integrity verification. Indeed, it

is essential to ensure data integrity, especially when they acquire a legal value or if they contribute

to sensitive decision making. That is especially the case of the genomic domain where genetic

data are very sensitives. For instance, genetic variants are highly used in different genetic ana-

lysis, and their illegal modifications may have several consequences to an individual health, their

relatives, etc. Thus, their integrity must be preserved, and watermarking comes as solution [184].

As previously said, it possible to control the integrity using reversible watermarking. To do so,

the integrity of a content such as database is controlled by computing the digital signature of the

content which is then embedded in the content. In the detection process, the signature is extracted

from the content and is compared to the one computed on the recovered content. Any difference

between them will indicate if the content have been illegal modified or not. Other watermarking

solutions that are used are the so called solutions fragile or semi-fragile schemes. In opposition to

robustness, the fragility of the watermark to contents’ manipulations can herein be useful. During

the verification, the absence or the incorrect detection of a watermark will indicate a data integ-

rity loss. Depending on the application context, the watermark can be designed for resisting to

some specific manipulations but not to all. If all modifications can be detected, we will talk about

fragile watermarking [185]. Such solutions are usually very sensitive, like a digital signature or

message authentication code, and in some cases, they can indicate which parts of the content that

have been illegal modified [186]. On the contrary, a semi-fragile watermark are designed to be ro-

bust to some innocent manipulations, that are allowed but fragile to malicious manipulations [174].

D.5 Database Watermarking
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Digital watermarking has been initial proposed for multimedia data [187] but since the 2000s,

it has gain an, interest in protecting databases. In fact, databases represent today great economical

and strategic concerns for both enterprises and public institutions. In that context, data leakage,

robbery as well as innocent or even hostile data degradation represent a real danger, and water-

marking comes as an interesting mechanism for databases [188]. Herein, we give an overview of

watermarking schemes that have been proposed for protecting relational databases.

By definition, a database is a structured set of data, stored on media which accessible through

a computer in order to satisfy several users simultaneously. A relational database is a database

organized accordingly to the relational model which is based on the notion of relationship as the

mathematical representation of a set of data. Formally, a relational database DB is a finite set

which is composed by a list of T tables or relations {Ri}i=1,··· ,T . Each relation is made of N

tuples {t1, t2, · · · , tN} and one tuple corresponds to M attributes {a1, a2, · · · , aM}. An attribute

aj takes its values in a specific domain which can be categorical or numerical. In a database,

the value ti.aj represents the jth attribute of the ith tuple in the relation, and in one relation, the

value ti.PK represents the unique identifier of attribute values of the tuple ti. This value is called

a primary key. Although watermarking emerges as a promising complementary mechanism for

database security, the use of existing methods that have been proposed for multimedia data (e.g.,

image, video, etc.) is not a straightforward process. This is due to the fact that relational databases

differ from multimedia data in several aspects, and these differences must be taken into account

during the conception of a new database watermarking scheme. For instance, in a multimedia

document such as image are sorted into a specific order, in a temporal and/or spatial domain (e.g.,

pixels of an image), and this gives a sense of the document itself to the user. Contrary to the

multimedia data, data stored in relational databases are independent elements within a common

structure. Thus, tuples or records in one relation can be stored without any specific order and can

be reorganized in many ways in a relation without impacting the database information. Thus, a

database watermarking must consider all their particularities compared to multimedia data.

Several methods have been proposed for watermarking databases, and these methods can be clas-

sified according to many criteria. First, methods are classified based on the fact that the database

to watermark is encrypted or not. The second level of classification is based on their robustness

against attacks. they are robust methods that are developed for traitor tracing applications and

fragile/semi-fragile methods most of them were designed for integrity control applications. An-

other criteria of classification can based on the way how these methods deal with data distortion.

Thus, there are methods without or with distortion control, distortion free methods and lossless

or reversible methods. Notice that all database watermarking methods exploit either numerical or

categorical data.

Regarding database watermarking methods in clear, a pioneering work was proposed by Agrawal

et al [179]. In this robust method, watermark embedding is conducted using bit substitution in the

least significant bits (LSB) of attribute values. Database elements to be modified (tuples, attrib-

utes and bits) are secretly selected by means of a hash function. In this method, the embedded

watermark depends of the database content and it is not known by the user, i.e., it corresponds

to a database identifier. During the detection process, if the database has been watermarked, the
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expected number of bit correspondences in secretly selected positions should be near to 100%.

In the case the database has not been watermarked, this number logically falls down to 50 %.

Since then, many other methods have been developed with as interest traitor tracing, fingerprint-

ing or copyright protection applications through the insertion of watermarks that are robust to

database modifications, these ones being illegal or not [106, 189–192]. As introduced before,

these methods can also be classified depending on how distortion is controlled. Thus, there are

distortion-based methods where a watermark is embedded in the database by modifying database

elements [179] or introducing “fake” tuples in the database [193], and these modifications may

satisfy distortions constraints or not; distortion control-based methods where a watermark can be

inserted in the database by using database statistics, and the distortion is controlled [192]; or re-

versible methods where a watermark is embedded by modifying database attribute values [189]

or by spaces between database contents [194], with the constraint that it is possible to reverse the

modification operations and recover the original database from their watermarked version. For in-

stance, the method presented by Gupta and Pieprzyk [195] a lossless watermarking method where

a meaningless pattern is inserted into secretly chosen tuples. To do so, a LSB of an integer part

of a numerical attribute value is secretly chosen and is replaced by another bit which is pseudo-

randomly generated. The original value is then inserted into the space left by right shifting the

LSB representation of the fractional part. The presence of this pattern is checked by the detector,

indicating if the database has been watermarked or not.

In parallel, fragile methods have been designed [174,185,186,196–205]. Contrary to robust ones,

these methods allow the embedding of a “fragile” watermark which will be damaged even by

minor database modification is performed. They have been especially proposed for integrity veri-

fication. Some of them allow the localization of the database elements (e.g., tuples) that have

been modified [197]. There are two categories of fragile schemes: distortion-free schemes and

lossless or reversible schemes. Instead of modifying database elements, distortion-free methods

encode the watermark into new data, such as in some “virtual” attributes’ values [186, 198], or

by dealing with the ordering of the database elements (i.e., tuples or attributes [196], [185]). The

first distortion-free method was presented by Li et al. in 2004 [196], and it does not modify the

attribute values. In fact, in this method, the database is first divided into several groups. Then,

tuples are grouped and ordered in each group accordingly the value of a hash function which is

computed on the attribute values concatenated with the primary key and the secret watermarking

key of the owner. The watermark to embed for a groupGi is a sequenceWi of length li = Ni
2 with

Ni the number of tuples in the group. The watermark embedding consists in altering the order of

pairs of tuples in the group depending on the bit to insert. During the detection process, if the same

order of tuples is not obtained, the database is considered as illegally modified. In [198], in order

to insert a watermark, one or several virtual attributes of NULL values are added to the database

before dividing the database into groups of tuples. Then, the watermark embedding works as fol-

lows. In a group, the values of one of the virtual attributes are substituted by the aggregate values

(e.g., the sum, the median or the mean value) of some other chosen numerical attribute values.

For one tuple, the checksum [206] of each attribute is computed and concatenated to the virtual

attribute value. The detection process and integrity control follows the same procedure. The integ-

rity of the database is only verified when the recomputed checksums correspond to the extracted
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ones. Regarding fragile and lossless methods, they are well adapted for ensuring integrity control

of databases. In general, they embed a digital signature of the database into itself. During the

verification stage, the digital signature is extracted and compared to the one computed from the

reconstructed database. This kind of methods relies on the difference expansion watermarking

modulation [200] or on histogram shifting [174]. They work on numerical attributes [200] or on

categorical attributes [174]. For example, the method proposed by Coatrieux et al. [174] is the first

fragile and lossless watermarking method that works on categorical data. This method is an adapt-

ation of the histogram shifting modulation to categorical data. In order to embed the watermark,

database tuples are divided into many groups and each group is partitioned into two sub-groups

SG1 and SG2. The number of appearances of the attribute values of the in the sub-group SG1 are

used in order to construct a virtual dynamic, i.e., an order relation between different values that

the attribute can take. The elements of the sub-group SG2 serve to the insertion and the histogram

shifting modulation is applied considering the virtual dynamic constructed from SG1. The ele-

ments that belong to the class with the highest cardinality are considered as carrier elements. The

others are shifted to the right in order to create a free bin. Carrier elements are then shifted or let

unchanged depending on the bit to insert, ’1’ or ’0’, respectively. The inserted watermark can be

a signature of the database that can be used for integrity verification.

Regarding watermarking methods for encrypted databases, few methods have been proposed

[207, 208]. The idea is to protect data confidentiality using encryption mechanisms and ensur-

ing while other security services such as integrity control using watermarking. For instance, the

method proposed in [207] focuses on the protection of outsourced databases by ensuring the con-

fidentiality of databases using Order Preserving Encryption (OPE) [209] and integrity verification

of encrypted databases using watermarking.

All above solutions have several limitations. First, all of them work on databases that are not up-

datable i.e., static databases. In general, these methods consider database updates as unauthorized

modifications. Thus, in the case the database one user adds, deletes or updates some tuples, the

whole database has to be re-watermarked. This is also the case of proposed methods for encrypted

databases. Regarding illegal modification, distortion-free methods can localize altered elements

but without a really good precision (i.e., tuple level at best). Lossless methods allow us to know

if the database has been modified but that is all. In addition, for encrypted database watermark-

ing [207], encryption operations are conducted using an OPE encryption that is known for its

security limitations due to some of its deterministic properties [210]. In this thesis, we overcomes

these limitations by proposing in chapter 3, a dynamic database watermarking solution that al-

lows the watermarking of homomorphically encrypted data. Contrary to these solutions, it allows

database watermarking while making possible update operations such as addition, suppression or

modification of database elements. This solution was particularly proposed for the protection of

outsourced genetic data.

1.2.2 Privacy-preserving of genetic data

In this section, we give an overview of security solutions that have been proposed for ensuring

privacy and security of genetic data, during their sharing, storage and computation. They are
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based on different security mechanisms including homomorphic encryption (HE), secure multi-

party computation (SMC), differential privacy (DP) and secure cryptographic hardware (SCH).

We classify these solutions four categories depending their application: methods that were pro-

posed for securing count queries on genetic data (QGD); methods which are used for securing

genetic sequence comparison (GSC) and matching; methods that were developed for ensuring the

security of personal genetic testing (PGT); and methods that are used for protecting genome-wide

association studies (GWAS) and statistical analysis.

1.2.2.1 Secure count queries on genetic data

Several querying operations (e.g., SNP, allele or frequency counts) on large genomic databases are

among fundamental building blocks for genetic analysis such as GWAS, personal genetic testing,

etc. For example, a disease susceptibility analysis is usually done by querying a patient’s genome

against a list of known variations and then predicting this disease susceptibility. In addition, many

genomic databases such as gnomAD ( the genome aggregation database) were constituted in or-

der to respond researcher’s queries about variants or frequencies about individuals from different

sources [211]. Thus, these operations present an opportunity for genomic databases whose data

are from multiple sources and different jurisdictions, which otherwise cannot be publicly shared

due to security issues presented in section 1.1.6.

Different solutions have been proposed for securing count queries on genetic data (QGD). One

of the earlier attempts to securely compute count queries on outsourced genomic databases is a

solution proposed by Kantarcioglu et al. [212]. Authors proposed a framework which involves

two third parties. One party is responsible for integrating homomorphically encrypted data com-

ing from different data sources and then executing queries on behalf of a researcher on those data.

Then, the result of the query is transmitted to another party, a key holder site who is responsible

for encryption key management. This key holder site conduct the decryption of the result and

produce the final result and send it to the researcher. This method has several limitations such as

the query execution time which is quite large. As stated in their paper, it takes around 30 mins

to execute a count query over 40 SNP variants in a database of 5000 tuples. Thus, this method

may not be suitable for big databases that contain millions of tuples. The use of homomorphic

encryption produce large encrypted databases which require large storage spaces. To improve

the efficiency of this solution in terms of communication, computational and storage complexity,

Canim et al. [213] presented a new method that makes use of a symmetric encryption combined

with cryptographic hardware. Indeed, their framework combines a secure cryptographic copro-

cessors (SCP) and Advanced Encryption Standard (AES) [123] so as to perform count queries on

joint genetic databases securely.

Other solutions that secure count querying have been proposed [214–216], and their objective as

to securely perform count queries while minimising communication, computational and storage

complexity. Table 1.3 represents the comparison of these methods.
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1.2.2.2 Secure genetic sequence comparison and matching

In bioinformatics, sequence comparison is one of the most fundamental techniques that are used

for analyzing similarities or homologies in between DNA sequences. It is used for motif finding,

gene finding or sequence alignment which is used for evaluating the optimal cost of insertions,

deletions and substitutions of bases (A, C, G and T).

Different methods have been proposed for performing secure genetic sequence comparison (GSC),

and most of them are based on homomorphic encryption and secure multiparty computation. Pro-

posed methods protect the well-known sequence comparison algorithms such as dynamic pro-

gramming methods (e.g., Smith–Waterman algorithm), word methods (e.g., BLAST) and their

variant. For instance, Atallah and Li [217] proposed a privacy-preserving method that allows the

computation of the edit distance between two DNA sequences based on dynamic programming.

This method requires two non-colluding servers, each of them possessing one input sequence, to

engage an interactive process. In order to exchange the results of computation from the servers in

each iteration, a secure look-up table is introduced. As the number of iterations is the product of the

two input sequence lengths, computation and communication complexity is overhead. The method

presented in [218] improves the computation efficiency of [217] allows two different parties the

computation of the edit distance between two DNA sequences such that neither party learns any-

thing about the private DNA sequence of the other party except the comparison result. However,

the communication complexity is still the same.

Notice that other methods have been proposed in order to secure DNA sequences comparison

[219–222], and sequence comparison is amongst the widely covered areas in the implementation of

privacy-preserving genetic methods. However, most of them are based on SMC and HE algorithms

the complexity of which is no negligible.

1.2.2.3 Secure personal genetic testing

Genetic testing consists the examination of variations in chromosomes, genes and proteins between

an individual’s genome in order to conduct disease susceptibility, identity, paternity, genealogical

or compatibility test. Compatibility test enables a pair of individuals to evaluate the risk of con-

ceiving an unhealthy or healthy baby. In this case, methods based on private set intersection have

been proposed [223] so as to conduct the computation of genetic compatibility, where one indi-

vidual submits the fingerprint for his or her genome-based diseases, while the other individual

submits her or his entire genome. By doing so, the couple learns their genetic compatibility

without revealing their entire genomes. Another test that can be conducted is paternity testing

which determines whether a male individual is the father of another individual. This test is based

on the high similarities between the genome of the father and his or her child (99.9%) comparing

to two unrelated individuals (99.5%). It is not known exactly which 0.5% of the human genome is

different between two individuals, but a properly chosen 1% sample of the genome can determine

paternity with high accuracy [224]. These tests are usually conducted using SNPs, haplotypes

or short tandem repeats (STRs). The method presented in [225] allows two parties to securely

conduct paternity, ancestry and identity tests based on Paillier HE cryptosystem. These tests are
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conducted by matching two DNA profiles (STRs) from these parties. To do so, different poly-

nomials over the input STRs are constructed and secretly compared, and yields zero if there is

match between them. Another example is a SMC-based method proposed by Blanton et al. [226].

It allows two parties to conduct paternity tests for individual sand their supposed children using

STRs, and genetic compatibility tests between partners in order to evaluate the risk of having un-

healthy babies. Used STRs are kept private from involved parties but the genetic compatibility

test still leaks the information about the tested disease. To conduct susceptibility test, methods

such as [227–229] have been proposed and all focusing on detecting the presence of mutations

and rare variants that can be implicated in a disease. In [228], the test is securely performed using

sharing HE and oblivious transfer in an interactive protocol to ensure that both the query and the

genome data were kept private. Methods [227] and [229] are also SMC-based focusing on private

computation of monogenic disorders and HIV-related cases susceptibilities, respectively.

These methods have many limitations due to the use of cryptographic mechanisms such as SMC

and HE that are known for their overheads in computation, communication and storage. This

complicates their practical use in the case of large scale genetic data. To overcome these issues,

different solutions such as [230] have been proposed. This method allows the efficient and se-

cure outsourcing of storage and genetic testing in cloud environment. To to so, they proposed to

combine a secure cryptographic hardware such as Intel Software Guard Extensions (SGX) and

asymmetric encryption such as AES. Notice that SGX provides a secure computation unit called

enclave where computation like the genetic testing functions are executed in a secure manner.

Even though SGX-based methods are more efficient than SMC and HE based methods, they are

limited storage capacity and it has recently demonstrated that they are sensitives to in-memory

and side-channel attacks [231]. However, the consequences of these attacks and their possible

remedies are still open research problems.

1.2.2.4 Secure GWAS and statistical analysis

As explained in 1.1.3 genome-wide association studies are widely used by researchers in order to

evaluate the correlation between genetic data such as variants (e.g., SNPs), and diseases. In these

studies, genetic data are compared between cases affected by the disease of interest and unaffected

controls. The genetic data compared consist on common variants that are tested individually or

rare variants within a gene that are considered together. We discuss in this section solutions that

were proposed for securing shared or outsourced GWAS.

Securing shared or externalized genetic association studies does not simply consists the protection

of genetic data storage and transmission [212, 214]. Indeed, parties involved in such studies may

not want that the other parties access their data, the objective and the conclusions of the study,

these ones being highly valuable assets. At the same time, the trust one can have in a cloud service

provider is quite relative. Thus, it is the data analysis algorithm itself and the way it is shared

between parties that have to be protected. Different methods have been proposed in order to con-

duct privacy-preserving GWAS, especially for common variants. These methods are based on

different cryptographic mechanisms including Differential Privacy (DP), Homomorphic Encryp-

tion (HE), Secure Multiparty Computation (SMC) and Secure cryptographic Hardware (SCH).
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Many privacy-preserving GWAS are based on differential privacy [232, 233] due to the ineffect-

iveness of data anonymization methods like k-anonymity [234, 235] or l-diversity [236] as it has

shown in [237]. Basically, DP adds a random noise to real data in order to ensure individuals’

privacy. In [238], the proposed solution allows researchers to conduct exploratory analysis in a

differentially private way, including the computation of: i) the number and location of the most

significant SNPs to a disease, ii) the p-values of a statistical test between a SNP and a disease,

iii) any correlation between two SNPs, and iv) the block structure of correlated SNPs. Uhlerop et

al [239] propose a differentially private release of aggregate GWAS data. They provide DP ver-

sions of the χ2-statistic test and of the minor allele frequencies (MAFs) test. Simmons et al [240]

introduce a computational GWAS framework that adapts DP principles to protect private pheno-

type information (e.g., disease status), while correcting for population stratification at the same

time. The authors of [241] developed a new statistic tests for private hypothesis testing. These

statistics are designed specifically so that their asymptotic distributions, after accounting for the

noise added for privacy concerns, match the distributions of the classical (nonprivate) χ2 statistic

test. Similar methods: RandChi and RandChiDist, have been proposed in [242]. In a more general

way and as pointed out in [242], it is inherently challenging to use DP techniques for GWAS. The

noise added to the original data reduces the utility of data and makes accurate statistical analysis

much harder. The level of noise depends on the dataset and on the study’s objective and also has

to be refined when more data are added.

HE algorithms are other mechanisms that have been used for protecting genetic data. Many solu-

tions to conduct privacy-preserving computation of GWAS using homomorphic encryption have

been proposed [16–18]. For instance, the method proposed by Zhang et al [17] allows the compu-

tation of χ2-statistic in the homomorphic domain. This method improves the solutions presented

in [16] and [18] by proposing a technique which allows the computation of nonlinear operations

such as division. To do so, they construct a lookup table which links the division result to the

nominator and denominator of the corresponding simplified fraction. This table is encrypted and

only known by an authorized party. This one receives the encrypted versions of the fraction num-

bers and decrypts the results of the division based on the table without the knowledge of the secret

decryption key. Even though the proposed strategy performs well, it does not scale enough to treat

large-scale data. In [19], Lu et al perform GWAS on homomorphically encrypted genotype and

phenotype data. In this method, they use a packing technique for the frequency table to improve

the efficiency of their method in terms of communication complexity compared to previous ones.

Nevertheless, this method is still limited to a small number of variants. Recently, Bonte et al [20]

proposed two solutions to perform secure GWAS: (1) a somewhat homomorphic encryption (HE)

approach, and (2) a secure multiparty computation (SMC) approach. These approaches aim at

preventing data breaches when calculating the χ2-statistic with the idea of not revealing any in-

formation other than whether the statistic is significant or not (binary response). Their approach

perform better than previous ones taking advantage of a data masking technique so as to perform

secure comparison of data between two parties. Unfortunately, while being secure, these methods

are most suited for GWAS based on frequencies. Indeed, HE is limited when it comes to statistical

analysis processes that are already of great complexity when applied over unencrypted data. To

sum up, today, homomorphic encryption based privacy-preserving GWAS are limited in terms of
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practical use.

Several other SMC-based methods for securing GWAS have been proposed [243–247]. Kamm

et al [243] present a data collection and computation system where genetic data are distributed

among several parties based on additive secret sharing. Constable et al [244] present a privacy-

preserving GWAS framework on federated genomic datasets. They secure the χ2-statistic test on

top of SMC systems based on garbled circuit. However, this scheme cannot be generalized to more

than two participants. Zhang et al [245] propose a secret sharing based SMC approach to secure

the χ2-statistic test, MAF and Hamming distance (HD) computations. Contrarily to [244], this

one can be scaled to more than two parties. Hyunghoon et al [246] describe a protocol for large-

scale genome-wide analysis using multiparty computation techniques. The GWAS method they

focus on is a method that enables the identification and the correction for population stratification

biases before computing CATT statistics. Bloom [247] proposed a distributed algorithm based on

SMC in order to secure a linear regression. SMC-based methods show better performances that

HE-based ones, but they still have an important overhead in terms of communication complexity

compared to the same computation in a centralized nonencrypted environment. Thus, this higher

complexity hinders practical adoption of SMC solutions over the large-scale genomic/genetic data.

To overcome these issues, a few numbers of methods based on the combination of encryption and

secure cryptographic hardware (SCH) have been developed. As stated above, the idea is to isol-

ate sensitive data in a protected computation unit (enclave) that allows secure computation. For

instance, Chen et al [230] present a method based on AES encryption and Intel’s Software Guard

Extensions (SGX). Data are encrypted with AES before being sent to SGX, where data are decryp-

ted before being securely processed. In [248], authors propose a hybrid framework where several

algorithms used in GWAS such as Linkage Disequilibrium (LD) computation, Hardy-Weinberg

Equilibrium (HWE) test, CATT and Fisher’s Exact Test (FET) can be securely performed on fed-

erated genomic datasets. They exploit homomorphic encryption and SGX due to the fact that

HE allows to compute linear operation over encrypted data in a secure way, especially, the sum

of all entities frequencies tables in secure way. Moreover, HE allows to achieve randomness in

encrypted data thanks to its probabilistic properties. However, as mentioned in previous section,

SCH-based methods are sensitive to many attacks such as side-channel attacks [231,249,250], and

the consequence of these attacks and their possible remedies is an open research problem.

Table 1.3 sums-up all the above methods accordingly the genetic algorithm they have been applied

to, as well as their respective applications.

1.3 Conclusion

As we have seen in this chapter, genetic data are widely collected, shared and externalized in open

environments in order to allow different institutions, individuals or researchers to access data for

various purposes. However, genetic data sharing and/or outsourcing come with several security

issues due to the fact that these data are sensitives. As a consequence, strict legislative and ethical

rules have been defined and impose ensuring the security of these data in terms of several security

objectives such as i) privacy and confidentiality; ii) availability; iii) integrity; and iv) traceability.
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We have seen that different security tools ( physical or logical) must be defined in order to respond

to these security objectives.

Implementing the security of genomic data is a complex process due to the nature of human

genome, and must depend on a specific security policy. In addition, proposed solutions must

be complementary and consistent in order to achieve a high level of security. Consequently, a

compromise has to be found in order to ensure an acceptable security level while not perturbing

medical services (in the genomic are used in healthcare) or research results (in the case these

data are used in genomic research). Several mechanisms such as homomorphic encryption, secure

cryptographic hardware or watermarking mechanisms have been proposed. However, any of these

mechanisms can fulfill all security objectives and many of them such as SMC and HE based

solutions are suffering from their overhead complexity which makes them no practical in real life.

In addition, some important statistical algorithms that are used in GWAS are still no protected.

It is in this context that we propose in chapters 2 and 4, two solutions that allows the privacy-

preserving genetic association studies in cloud environments. The first one which is based on fully

homomorphic encryption ans secure multiparty computation is the first solution that secures col-

lapsing method using a logistic regression model. However, like other techniques that are based

on these mechanisms, our solution is limited in use due to its computational complexity overheard.

The second solution secure WSS and is practical in real life use. On the other hand, all solutions

that have proposed for genetic data watermarking are for cellular DNA, and for various purposes

including integrity control and copyright protection. However, They can not be used for water-

marking genetic data that are used in GWAS studies. This work responds this issue by developing

in chapter 5 an adapted watermarking mechanism for genetic data used in outsourced GWAS.

In the next chapter will describe our FHE-based solution that allows to securely computation of

collapsing method based a logistic regression model.
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Table 1.1: A synthetic overview of existing secure and privacy-preserving schemes for genetic data

Scheme Genetic com-
putation

Considered Architec-
ture

Statistical algorithm Security mechanisms Type of considered genetic
data

Tramer et al [233] GWAS Secure outsourcing χ2-statistic DP Common variants

Kifer et al [241] GWAS Secure outsourcing χ2-statistic, GOF DP Common variants

Asharov et al. [219] GSC Secure collaboration Approximate edit dis-

tance

Garbled circuit, Oblivious

transfer, Secret sharing

Genetic sequences

Souza et al. [220] GSC Secure outsourcing Queries on VCF PIR, AES, Hash func-

tions, FV cryptosystem

All types of genetic variants

Sei et al [242] GWAS Secure outsourcing χ2-statistic DP Common variants

Kamm et al [243] GWAS Secure outsourcing χ2-statistic Secret sharing Common variants

Constable et al [244] GWAS Secure outsourcing χ2-statistic, MAFs Garbled circuit Common variants

Zhang et al [245] GWAS, GSC Secure outsourcing χ2-statistic, MAFs and

Hamming distance

Lightweight computa-

tional footprints, Secret

sharing

Common variants (Start from

VCF files (same entry format

as for sequencing data) Asso-

ciation study is only performed

with common variants but con-

sider also rare variants in se-

quence comparison)

Cho et al [246] GWAS Secure outsourcing CATT, Possible ap-

plication to logistic

regression

Secret sharing Common variants

Bloom et al [247] GWAS Secure outsourcing Linear regression Secret sharing Common variants

Continued on next page
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Table 1.1 – Continued from previous page

Scheme Genetic com-
putation

Considered Architec-
ture

Statistical algorithm Security mechanisms Type of considered genetic
data

Wang et al [251] GWAS Secure outsourcing Exact logistic regres-

sion

BGV cryptosystem Rare and common variants (But

each SNP is tested individually

(one at a time))

Lauter et al [16] GWAS Secure outsourcing HWE, PGOF, χ2-

statistic, CATT, Linear

regression, LD

SHE cryptosystem (Not

published yet)

Common variants

Kim et al [18] GWAS Secure outsourcing MAFs, χ2-statistic YASHE and BGV

cryptosystems

Common variants (Similar to

[245] : start from a VCF file only

for sequence comparison and do

not consider rare variant associ-

ation tests)

Zhang et al [17] GWAS Secure outsourcing χ2-statistic BGV cryptosystem Common variants

Lu et al [19] GWAS Secure outsourcing χ2-statistic, LD, HWE BGV cryptosystem Common variants

Bonte et al [20] GWAS Secure outsourcing χ2-statistic Secret sharing, Blinding,

FV cryptosystem

Common variants

Chen et al [230] GWAS, QGD Secure outsourcing Queries on VCF, many

possible computation

algorithms

AES-GCM cryptosystem,

SGX, Hash functions

None (They do not propose asso-

ciation test but solutions to query

data on VCF files)

Chen et al [252] GWAS Secure outsourcing Transmission Disequi-

librium Test (TDT)

AES-GCM cryptosystem,

SGX

Common variants

Continued on next page
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Table 1.1 – Continued from previous page

Scheme Genetic com-
putation

Considered Architec-
ture

Statistical algorithm Security mechanisms Type of considered genetic
data

Sadat et al [248] GWAS Secure outsourcing HWE, CATT, FET and

LD but the proposed

method can be used

for other algorithms

such as TDT, EIGEN-

STRAT and Linear

mixed model [240]

Paillier cryptosystem,

SGX

Common variants

Kantarcioglu et

al. [212]

QGD Secure outsourcing - Paillier cryptosystem Common variants, Genetic se-

quences

Canim et al. [213] QGD secure outsourcing - SCP, AES cryptosystem Common variant, Genetic se-

quences

Ghasemi et al. [214] QGD secure outsourcing - Paillier cryptosystem Common variants, Genome se-

quences

Nassar et al. [215] QGD secure outsourcing STR-based matching Paillier cryptosystem Common variants, Genome se-

quences

Hasan et al. [216] QGD secure outsourcing Tree-based indexing Garbled circuit, AES and

Paillier cryptosystems

Common variants, Genomic

databases

Atallah and Li [217] GSC Secure outsourcing Edt distance, Dynamic

programming (Smith-

Waterman)

SMC, OT, HE Genetic sequences

Continued on next page
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Table 1.1 – Continued from previous page

Scheme Genetic com-
putation

Considered Architec-
ture

Statistical algorithm Security mechanisms Type of considered genetic
data

Jha et al. [218] GSC secure collaboration Edit distance Oblivious transfer,

Garbled circuit

Genetic sequences

Wang et al [253] GSC Secure collaboration Multiple algorithms

including Edit dis-

tance and Multiple

alignment

Garbled circuit Common variants

Wang et al [222] GSC Secure outsourcing Pattern matching Predicate encryption Genetic sequences

Troncoso-Pastoriza et

al. [228]

PGT Secure collaboration Finite Automata,

Levenshtein distance

Secret sharing, Obli-

vious transfer, Paillier

cryptosystem

Genomic sequences

McLaren et al. [229] PGT Secure outsourcing - Proxy re-encryption,

AES-CCM and Paillier

cryptosystems

Common variants

Johnson et al [238] GWAS Secure Outsourcing χ2-statistic, FET, Lo-

gistic regression

DP Common variants

Uhlerop et al [239] GWAS Secure Outsourcing χ2-statistic, MAFs DP Common variants

Jagadeesh et al. [227] PGT Secure outsourcing,

Secure collaboration

Boolean operations Garbled circuit Rare variants

Blanton et al. [226] PGT Secure collaboration STR-based matching Garbled circuit, Oblivious

transfer, Hash functions

Common variants

Bruekers et al. [225] PGT Secure collaboration STR-based Matching SMC, Hash functions,

Paillier cryptosystem

Genetic sequences
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CHAPTER 2

Privacy-preserving GWAS using
fully homomorphic encryption

As defined in chapter 1, the main objective of GWAS is the identification of genetic variants

that are associated with some diseases. These studies are mainly based on the statistical analysis

of genetic data shared between different entities such as a genomic research unit (GRU) who

possesses genetic variants from affected individuals (cases) and a genomic research center (GRC)

who has genetic variants from unaffected individuals (controls). GWAS take advantage of cloud

computing capabilities which allow users the storage and processing of large amount of data.

However, As we have seen in the previous chapter, shared and/or outsourced genetic data present

several security needs in terms of privacy, confidentiality, integrity, etc., that are derived from strict

ethics and legislative rules.

Indeed, during outsourcing, data owner loses the control over his data. Even if in some cases a

service level agreement has been signed between the cloud service provider (CSP) and the user

has not actually any other choice than trusting the CSP. In addition, as introduced in chapter 1,

the human genome is very sensitive in the sense that it is unique to its owner and can be linked

to individual sensitive information or about his or her relatives, from a clinical and behavioral

point of view. Thus, there is a need for protecting genetic data during their storage, sharing or/and

processing in the cloud. Existing security mechanisms that have been proposed for perform-

ing privacy-preserving genome-wide association studies (GWAS) in cloud environments, such as

differential Privacy, homomorphic encryption, secure multiparty computation and secure crypto-

graphic hardware present some weaknesses especially in terms of type of users’ data that can be

externalized during association study. In addition, there are many statistical algorithms used in

GWAS that are not yet protected. This was the case of collapsing method. In this context, new

appropriate methods must be defined for securing these GWAS.

In this chapter, we are interested in securing the collapsing method [13], a case-control GWAS,

with the objective to test whether the proportions of individuals with rare variants in cases and

controls differ. More clearly, we present a privacy-preserving GWAS method that allows to se-

curely compute collapsing method based on the logistic regression model. To do so, our solution

takes advantage of fully homomorphic encryption, and especially of the BGV cryptosystem which

50



2.1. Overview on genome-wide association studies and security mechanisms

allows encrypting and process blocks of data, in combination with secure multiparty computation.

Contrarily to the previous schemes in the state of the art, it considers that all user data are out-

sourced and CSP only returns to the users whether the test is significant or not, making our scheme

more secure. In addition, in order to make our solution more efficient, we proposed an original

data packing strategy that allows the reduction of communication and computation complexities

as it allows processing data in parallel.

2.1 Overview on genome-wide association studies and security
mechanisms

In this section we present an overview on a genome-wide association study that we are interested

in through this chapter, as well as the security mechanisms that we exploited during the protection

of this study.

2.1.1 Collapsing method based on logistic regression

Methods used to test for association with common variants are underpowered to test for associ-

ation with rare variants. To overcome this issue several powerful methods that allow studies on

rare variants have been proposed and one of them is collapsing method [13]. This method involves

collapsing genotypes across variants in a specific gene and applying a statistical test such as lo-

gistic regression. It is a powerful tool for analyzing rare variants. To describe collapsing method,

let us consider a sample of N individuals constituted of N1 cases and N2 controls. Let Yj be the

disease status where Yj equal 1 if an individual j is affected by disease/"case" or 0 if this indi-

vidual is unaffected/"control". To perform the association test, k sites of the studied gene where

the variants of interest exist are chosen by GRC and GRU. After this selection, a variable Xi is

defined for each individual such that

Xi =

1 if the individual i has at least one variant allele on any of the k sites

0 otherwise
(2.1)

The detection of the association between disease and the gene is conducted by testing if the pro-

portion of individuals in cases and controls differ. To do so, several statistical methods such as

logistic regression model [254] can be used where outcome variables are {Yj}j=1,2,··· ,N and the

predictor variables are {Xj}j=1,2,··· ,N . Logistic regression is a statistical model that in its basic

form uses a logistic function to model a binary dependent variable. More clearly, it consists in

studying the dependence between a binary variable Y to be explained (qualitative variable with

two modalities) and one or several predictor variables X1, X2, · · · , Xl which are also qualitative.

Notice that in the case these variables are quantitative, the statistical model is called linear regres-

sion. As the variable Y is a binary variable, the logit transformation is applied so as to define

logistic regression model such as

logit(p) = ln( p

1− p) = β0 + β1X1 + · · ·+ βlXl (2.2)
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Table 2.1: Distribution of frequencies for cases and controls

X = 0 X = 1

Y = 0 N00 N01

Y = 1 N10 N11

where p is the probability that Yj occurs and {βl}l=0,1,··· ,l are the regression coefficients, and

are estimated through the realization vectors of (Y,X1, · · · , Xl) that are (yi, xi2, xi3, ..., xil) for

0 < i < N from a sample of N individuals. Regression coefficients are computed such that the

probability of observing the realizations of this sample is maximum and are estimated using the

maximum likelihood function such that

L(β) =
N∏
i=1

pyi
i (1− pi)1−yi (2.3)

where β = (β1, β2, · · · , βl) and pi is such that

pi = exp(β0 + β1xi1 + · · ·+ βlxil)
1 + exp(β0 + β1xi1 + · · ·+ βlxil)

(2.4)

Herein, the values of {βl}l=0,1,··· ,l we want to calculate are the ones that maximize the function L.

These values can also be obtained by using the ln function of L which does not change the result.

Thus, maximizing L is equivalent to maximizing ln(L) such that

g(β) = ln(L(β)) = ln(
N∏
i=1

pyi
i (1− pi)1−yi) =

N1+N2∑
i=1

yiln(pi) + (1− yi)ln(1− pi))] (2.5)

To conduct the collapsing method, two hypothesis tests are considered such thatH0 : the studied gene is not associated to the disease

H1 : the studied gene is associated to the disease
(2.6)

The null hypothesis (H0) states that the studied gene is not associated to the disease. In that case,

{βl}l=1,··· ,l are equal to 0 and logit(p) = β0. The alternative hypothesis (H1) informs that there

is an association between the disease and the gene. In this case, at least one value of {βl}l=1,··· ,l

is not null and the logit model remains logit(p) = β0 + β1X1 + · · · + βlXl. From here on and

for sake of simplicity, we will consider the model logit(p) = β0 + β1X1 and (2.5) becomes,

g(β) =
N1+N2∑
i=1

yi(β0 + β1xi)−
N1+N2∑
i=1

ln(1 + exp(β0 + β1xi)) (2.7)

As presented in table 2.1, our sample of N individuals is composed of four frequencies that are

N01, N11, N00 and N10. They represent the number of individuals that: have at least one variant

allele on any of the k sites in controls; have at least one variant allele on any of the k sites in cases;

have non variant allele on the k sites in controls and have non variant allele on the k sites in cases,

respectively. In that case, (2.7) is written as follows

g(β) = N10β1 +N11(β1 + β2)− [(N01 +N11)ln(1 + exp(β1 + β2))]

− [(N00 +N10)ln(1 + exp(β1))]
(2.8)
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This function has a global maximum only if the values of N00, N10, N01 and N11 are different

from 0. If one of these values is 0, it does not mean that the gene is not associated with the disease

(nor that the gene is associated with the disease). It means that during association test, we can not

apply logistic regression. For example, if N01 = 0, N11 = N1, N00 = N2 and N10 = 0, it means

that all individuals that have a given disease such as diabetes (controls) have a variant allele on

any of the chosen k sites, and none healthy individuals have a variant allele on any of the chosen k

sites. Thus, in this case the studied gene is associated with diabetes. In the following, we consider

that all frequencies are different from 0.

After the maximization of (2.8) under H1, the estimation of regression coefficients is such that

β̂H1 = (β̂0, β̂1) = (ln(N10
N00

), ln(N11 ∗N00
N01 ∗N10

)) (2.9)

and under H0, the maximization of (2.8) leads to

β̂H0 = β̂0 = ln(N11 +N10
N01 +N00

). (2.10)

After estimating all regression coefficients, the statistic test result is calculated as Stat such that

Stat = 2(g(β̂H1)− g(β̂H0))

= 2[N10(ln(N10)− ln(N00 +N10)) +N11(ln(N11)− ln(N01 +N11))

+N01(ln(N01)− ln(N01 +N11)) +N00(ln(N00)− ln(N00 +N10))

− ((N01 +N00)(ln(N11 +N10)− ln(N01 +N00))− (ln(N01

+N11 +N00 +N10)− ln(N01 +N00))(N01 +N11 +N00 +N10))]

(2.11)

This value being distributed according to the χ2 distribution with degree of freedom df (χ2(df)), if

Stat > χ2(df), H0 is rejected and this means that the studied gene is associated with the disease,

otherwise, we can not decide whether the gene is associated to disease or not. Notice that the

degree of freedom corresponds to the difference between the number of predictor variables in H1,

and the number of predictor variables in H0. In our case, df = 1 and using this value combined

with the threshold value α = 0.05, we obtain χ2(1) = 3.841 from χ2 distribution table.

2.1.2 Security mechanisms: fully homomorphic encryption

As we have seen in chapter 1 homomorphic encryption is one of powerful security mechanisms

that are used in the protection of shared and/or outsourced genetic data. It allows performing

linear operations over encrypted data. In this work, we opted for BGV cryptosystem, a fully

homomorphic encryption scheme which is based on the ring learning with errors (RLWE) [255].

The parameters of this cryptosystem are described as follows: we select a ring R = Z[x]/f(x)
where f(x) = xd + 1 is a cyclotomic polynomial and d is power of 2. Rq = Zq[x]/f(x),

q is a prime number verifies q = 1 mod 2d. The element in Rq can be viewed as d degree

polynomial over Zq. The computation in Rq are the addition and multiplication on polynomials,

result reduces modulo f(x) with coefficient in ] − q/2, q/2]. We take a discrete Gaussian error

distribution N = N(0, σ), the parameter σ is standard deviation over R. The plain-text space is
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2.2. Overview on existing privacy-preserving GWAS methods based on fully homomorphic encryption

Rt = Zt/f(x). The selection of the parameter t, q, d and σ is to guarantee that the homomorphic

encryption and decryption are correct and the scheme is secure. This cryptosystem is conducted

using these following algorithms:

Key generation samples ring elements are e, s ←− N and a1 ←− Rq. From these elements, a

key pair (Kp,Ks) is generated, where Kp = (a0 = (a1s+ te), a1) is the public key used for data

encryption, and Ks = s is the secret key used for data decryption. During the encryption process,

the message m ∈ Rt is encoded as a degree polynomial with coefficients in Zt. Thus, given a

public key Kp = (a0, a1) and the encryption algorithm samples u, f, d ←− N , the cipher-text c

is computed as

c = (c0, c1) = (a0u+ tg +m, a1u+ tf) = E[m,u, g, t, f ] (2.12)

To decrypt the cipher-text c = (c0, c1), we use the secret key Ks = s and the decryption function

D. Thus, the plain-text m is obtained such that

D[c,Ks] = m = (c0 + sc1 mod q) mod t (2.13)

As said at the beginning of this section, this cryptosystem is a fully homomorphic encryption

algorithm and has multiplicative and additive homomorphic properties. Considering two plain-

texts m and m′, and two cipher-texts c = (c0, c1) = (a0u+ tg +m, a1u+ tf) = E[m,u, g, t, f ]
and c′ = (c′0, c′1) = (a0u

′+ tg′+m′, a1u
′+ tf ′) = E[m′, u′, g′, t, f ′], the homomorphic addition

cadd on these two cipher-texts is delivered as

cadd = c+ c′ = E[m+m′, t, (u+ u′), (g + g′), (f + f ′)]

= (c0 + c′0, c1 + c′1) = (a0(u+ u′) + t(g + g′) + (m+m′), a1(u+ u′) + t(f + f ′))
(2.14)

Regarding, the homomorphic multiplicative cmul of c and c′ is given by

cmul = c0c
′
0, c0c

′
1 + c1c

′
0, c1c

′
1 (2.15)

In the next sections, we discuss how this cryptosystem, combined with SMC techniques that have

seen in chapter 1, can be used in order to protect outsourced collapsing method.

2.2 Overview on existing privacy-preserving GWAS methods based
on fully homomorphic encryption

As we have presented in chapter 1, fully homomorphic encryption (FHE) allows the computation

of both addition and multiplication operations on encrypted data without decrypting them.

Up to now, many solutions have been proposed for conducting privacy-preserving computation

of GWAS using fully homomorphic encryption [16, 18, 251, 256–258]. Yasuda et al. [256] gave a

practical solution for conducting computation of multiple Hamming distance values using the LNV

scheme [21] on homomorphically encrypted data, so as to find the locations where a pattern occurs

in a text. Some solutions such as [257,258] applied homomorphic encryption to machine learning,
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and described how to secure conducting predictive analysis based on an encrypted learned model.

Lauter et al. [16] proposed a method that allows secure computation of basic statistic algorithms

which are commonly used in genetic association studies such as Hardy-Weinberg Equilibrium

(HWE), Pearson Goodness-Of-Fit (PGOF), Linkage Disequilibrium (LD), linear Regression, χ2-

statistic and Cochran-Armitage Test for Trend (CATT). However, this method is not practical due

do its storage and computation complexities. Wang et al [251] adopted homomorphic encryption

on rare variants to perform exact logistic regression. Kim et al [18] proposed a scheme that allows

secure computation of MAFs, and the χ2-statistic using homomorphic encryption. Even though

they use a specific encoding technique to improve the work presented in [16], they only homo-

morphically compute the allele counts, and execute other operations on decrypted data. Other

methods such as [17, 19, 20, 259] have been proposed.

All previous methods were proposed for protecting several statistical algorithms but collapsing

method based on logistic regression was not secured. In this chapter, we present the first scheme

that allows the secure computation of collapsing method based on the logistic regression model by

combining fully homomorphic encryption and secure multiparty computation. Contrarily to the

previous schemes, our solution considers that all user data are outsourced and only returns to the

users whether the test is significant or not making our solution more secure.

2.3 Privacy-preserving GWAS: Collapsing method

In this section, we first introduce the outsourcing framework we consider before presenting how

collapsing method can can securely conducted using fully homomorphic encryption and secure

multiparty computation.

2.3.1 Considered data outsourcing scenario

As shown in Figure 2.1, the scenario we consider in our framework is composed by three entities:

a Genomic Research Unit (GRU) who owns data from individuals with disease (cases); a Genomic

Research Center (GRC) who has data from healthy individuals (controls) and a Cloud Service Pro-

vider (CSP). GRU and GRC outsource their data for storage or in order to be used for performing

genetic association studies. In the later case, GRC performs on the cloud a case-control association

test where the objective consists on determining whether a gene is associated with disease, through

a statistical method such as collapsing method based on logistic regression model. As described in

chapter 1, this data externalization can causes many security threats and must be protected during

their storage or processing on the cloud. The objective of this chapter is to set up a scenario where

genetic data is shared, processed or stored on the cloud in a protected manner. The association test

is performed on the cloud and GRU receives the result of the processing without compromising the

confidentiality of the data, and this by considering a passive attacker model, and without including

a trusted third party. We describe the details of proposed solution in the next section.
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Collapsing 
Method

Genomic Research 
Unit (GRU)

Cloud Service 
Provider (CSP)

Genomic Researcher 
Center (GRC)

Case data Control data

Result

Figure 2.1: Considered genetic data outsourcing scenario

2.3.2 Proposed scheme

We want to implement a secure scenario in which a cloud service provider (CSP) stores or pro-

cesses protected data that are outsourced by two entities: a genomic research center (GRC) and a

genomic research unit (GRU). Processing and result sent to GRU are conducted without revealing

any information that can be used by GRC in order to get access to GRU’s data or vice-versa, in

particular frequencies. Indeed, GRU knows the frequencies N11 and N10 (these are calculated

from his/her data) and these ones can be combined with the processing results from CSP and the

overall size of the simpleN in order to extract some information about GRC’s data (N01 andN00).

Therefore, the association test must be conducted without revealing any information to GRU. This

is possible if GRU does not know sites of interest that have been "collapsed". Similarly, even of

GRC does not directly receive association test results from CSP, he/she may get access to data

when for example GRU publish theme on internet. Thus, GRC should not know the chosen sites

of interest.

As introduced at the beginning of this section, our framework considers three entities: GRU who

owns N1 cases; GRC who has N2 controls and CSP with the computing power. We assume that

all data are encrypted using homomorphic asymmetric cryptosystems such as BGV, and stored

on the cloud by CSP, GRU and GRC possess their own pair of keys, respectively i.e., (KU
p ,K

U
s )

and (KC
p ,K

C
s ) where KU

p and KC
p are public keys while KU

s and KC
s are the private keys. In

addition, GRU and GRC ask CSP to perform collapsing method on their data and send the result

to GRU, and CSP is considered as "honest but curious". More clearly, it follows all processing

steps but may try to infer information about GRU and GRC data. In this chapter, we are focusing

on protecting data confidentiality and individual privacy. Other data threats such as data integrity

or traceability will be the subject of next chapters. On the CSP side, some operations such as the

computation of N00, N01, N10 and N11 are conducted based on data encrypted by KU
p and KC

p as
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Table 2.2: Comparison test between reg(N00, N01, N10, N11) and reg(N00 + 1, N01 + 1, N10 +
1, N11 + 1), executed 10000 times.

Sample (N00 +N01 +N10 +N11) 100 1000

Error (Err) 0.7% 0.1%

they are carried out separately on the data of each entity. Because the collapsing method is based

on some nonlinear operations (e.g., logarithmic and division operations) that cannot be achieved

with BGV, a third party entity (TPE) is introduced. It has also a pair of key, a public key KT
p and

a secret key KT
s . We made the choice of no encrypting data with the same key KT

p from TPE

because we did not want to build our framework on a single TPE, which, in the case of a collusion

with the CSP, will compromise the data. Even though the framework we propose does not prevent

the association between the CSP and the TPE, but at any time GRU and GRC can decide to no

longer participate in the association test and this will protect their respective data. Finally, TPE

will intervene at the end of the scenario for decrypting results of the processing and send it to GRU.

Case data from GRU and control data from GRC correspond to VCF files (see chapter 1), one VCF

file contains a table the lines of which correspond to the variants and the columns of individuals.

Each table element contains binary values. To benefit of the BGV batching property and of the fact

it allows binary operations, one line is encrypted as a single message. For a test of M variants, we

have two sets of encrypted vectors {E[vcasn ,KU
p ]}n=1...M and {E[vconp ,KC

p ]}p=1...M . It is difficult

for CSP to differentiate case and control data in encrypted form. To simplify the processing on

encrypted data, case or control data will be indicated to CSP, and this will not cause any security

breach as long as individual genotypes are encrypted.

During the computation of frequencies N00, N01, N10 and N11, in some cases one or more values

of these frequencies can equal to 0. Since the CSP is working on encrypted data, it will continue

the computation without knowing it and send the significant results to GRU but it is not always

the correct result. To overcome this issue, CSP will add 1 on these frequencies so that the logistic

regression can be conducted and therefore, instead of working on a sample ofN1+N2 individuals,

the CSP will work on a sample of N1 + N2 + 4 individuals. With this new sample, we have four

possibilities: one case with a variant, one case without a variant, one control with variant and one

control without a variant) and this will not change the final result of the association test. Indeed, we

have implemented a function reg(N00, N01, N10, N11), which returns the result of the processing

(rejection of the hypothesis H0 or not) for N00, N01, N10 and N11 different from 0. As illustrated

in table 2.2, by comparing reg(N00, N01, N10, N11) with reg(N00 +1, N01 +1, N10 +1, N11 +1),

we have less number of cases where outputs of our function reg are different. In addition, let Err
be the percentage of cases where reg(N00, N01, N10, N11) 6= reg(N00+1, N01+1, N10+1, N11+
1), this value continue to decrease with the increase of individuals in the sample.

After analyzing the impact of null values on our scenario we describe how our secure collapsing

method is conducted as shown in the Figure 2.2. We recall that GRU and GRC data are encrypted

by their respective keys before being outsourced. Our method is detailed in 9 steps as follows.

1. GRU sends a request to the CSP and GRC to initialize the association test, specifying the
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Cloud Service 
Provider (CSP)

Genomic Research Unit (GRU)

Genomic Research Center (GRC)

1. Request: • Collapsing  method
• Gene specification

2. Proposed sites 

2. Proposed sites 

3. Selection of sites of interest
4. Computation of 𝐸 𝑁01, 𝐾𝑝

𝐶 and𝐸 𝑁11, 𝐾𝑝
𝑈

7. Computation of 𝐸 𝑁00, 𝐾𝑝
𝑇 , 𝐸 𝑁10, 𝐾𝑝

𝑇 and  
encrypted result 𝐸[𝑅𝑒𝑠, 𝐾𝑝

𝑇]

Third Party 
Entity (TPE)

9. Decryption 

GRU public key

GRC public key

TPE public key

𝑅𝑒𝑠

5. 𝐸[𝑁11 + 𝑟, 𝐾𝑝
𝑈]

6. 𝐸[𝑁11 + 𝑟, 𝐾𝑝
𝑇]

5. 𝐸[𝑁01 + 𝑟′, 𝐾𝑝
𝐶] 6. 𝐸[𝑁01 + 𝑟′, 𝐾𝑝

𝑇]

8. 𝐸[𝑅𝑒𝑠, 𝐾𝑝
𝑇]

Figure 2.2: Different steps of our secure collapsing method

gene it is interested in. The positions and the corresponding genotypes in the gene of interest

are not necessarily the same for GRU and GRC. Thus, in the studied gene, each side must

indicate to the CSP the chosen positions.

2. GRU and GRC choose their respective sites of interest and send them to CSP. They corres-

pond to positions into the vectors {E[vcasn ,KU
p ]}n=1...M and {E[vconp ,KC

p ]}p=1...M .

3. CSP selects the sites of interest in the stored samples of GRC and GRU and constructs two

encrypted vectors of binary valuesE[CU ,KU
p ] andE[CC ,KC

p ] from {E[vcasn ,KU
p ]}n=1...M

and {E[vconp ,KC
p ]}p=1...M , respectively.

4. CSP computes E[N01,K
C
p ] = E[

∑
k CC(k),KC

p ] and E[N11,K
U
p ] = E[

∑
k CU (k),KU

p ].

5. CSP selects two random values r and r′, computes E[r,KC
p ] and E[r′,KU

p ] and sends

E[N01 +r,KC
p ] = E[N01,K

C
p ]+E[r,KC

p ] to GRC andE[N11 +r′,KU
p ] = E[N11,K

U
p ]+

E[r′,KU
p ] to GRU. This process corresponds to an additive data masking operation.

6. GRU decrypts E[N01 + r,KC
p ] and GRC decrypts E[b+ r′,KU

p ]. Both of them re-encrypt

these values using KT
p and send the results to CSP.

7. CSP computes E[N1,K
T
p ] and E[N2,K

T
p ]. With E[N01,K

T
p ], E[N11,K

T
p ], it calculates

E[N00,K
T
p ] = E[N1,K

T
p ] − E[N01,K

T
p ] and E[N10,K

T
p ] = E[N2,K

T
p ] − E[N11,K

T
p ].
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Then, 1 is added to each value such that

E[N00,K
T
p ]←− E[N00,K

T
p ] + E[1,KT

p ] (2.16)

E[N01,K
T
p ]←− E[N01,K

T
p ] + E[1,KT

p ]

E[N10,K
T
p ]←− E[N10,K

T
p ] + E[1,KT

p ]

E[N11,K
T
p ]←− E[N11,K

T
p ] + E[1,KT

p ]

After these computations, CSP interacts with TPE to SMC computes E[Stat,KT
p ] (see eq.

2.11, section 2.1).

8. Thanks to BGV, CSP computes the encrypted sign E[Res,KT
p ] of the encrypted difference

E[Stat− χ2(1),KT
p ] and sends it to TPE.

9. TPE decrypts Res and sends the decrypted value to the GRU.

As stated in section 2.1, the computation of Stat requires the computation of ln(.), a non-linear

function. To secure it, our solution combines homomorphic encryption with a multiplicative data

masking. It adds a noise that can be removed thanks to ln property: ln(ab) = ln(a) + ln(b).

As result, GRU helps in computation of ln(N11) and ln(N10), while GRC helps in calculating

ln(N01) and ln(N00). As with ln(.) function we cannot compute ln(N01 + N11) from ln(N01)
and ln(N11), we have also performed the same multiplicative data masking between CSP and TPE

so as to compute ln(N01 + N11) and ln(N00 + N10). As shown in Figure 2.3, our multiplicative

data masking is conducted as follows: CSP randomly choose six integers r1, r
′
1, r2, r

′
2, r3, r

′
3 and

computes E[ln(a),KT
p ] where a ∈ N00, N01, N10, N11, N01 +N11, N00 +N10, based on the

encryption value of ln(ar) (E[ln(ar),KT
p ]) where r ∈ r1, r

′
1, r2, r

′
2, r3, r

′
3 such that

E[ln(a),KT
p ] = E[ln(ar),KT

p ]− E[ln(r),KT
p ] (2.17)

All these multiplicative data masking operations are conducted after adding 1 to the frequencies

(see eq. 2.16), since we cannot compute ln(a + 1) from ln(a). Moreover, we could not have

conducted multiplicative data masking if these frequencies could take the value 0. The next section

will focus on experimental results and discussion.

2.4 Experimentation and results

In this section we experimentally verify the above solution on a real genomic database and us-

ing BGV cryptosystem. This latter is implemented in HElib, an homomorphic encryption lib-

rary which is written in C ++ and uses the GMP and NTL libraries. We have chosen BGV be-

cause it allows us to optimize the size of encrypted data that can be stored in the cloud thanks

to batching. By definition, batching consists on encrypting several messages in one single en-

crypted message while keeping homomorphic properties of the cryptosystem. This is due to

the fact that the polynomial f(x) used in section 2.1.2 is factorized into irreducible polynomi-

als F1, F2, · · · , Fs mod q, and therefore a message M ∈ Zq[X]/f(X) can be represented as a

set of s messages (m1,m2, · · · ,ms) each corresponding to a polynomial Fi (mi = M mod Fi).
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𝐸[ 𝑁00 + 𝑁10 𝑟3
′, 𝐾𝑝
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𝐸[ 𝑁01 + 𝑁11 𝑟3, 𝐾𝑝
𝑇]

𝐸[𝑙𝑛 𝑁00 + 𝑁10 𝑟3
′, 𝐾𝑝

𝑇]

𝐸[𝑙𝑛 𝑁01 + 𝑁11 𝑟3, 𝐾𝑝
𝑇]

𝐸[𝑁11𝑟1, 𝐾𝑝
𝑈]

𝐸[𝑁10𝑟1
′, 𝐾𝑝

𝑈]

𝐸 ln(𝑁11 𝑟1 , 𝐾𝑝
𝑇]

𝐸 ln(𝑁10 𝑟1
′ , 𝐾𝑝

𝑇]

TPE

𝐸 ln(𝑁01 𝑟2 , 𝐾𝑝
𝑇]

𝐸 ln(𝑁00 𝑟2
′ , 𝐾𝑝

𝑇]

𝐸[𝑁01𝑟2, 𝐾𝑝
𝐶]

𝐸[𝑁00𝑟2
′, 𝐾𝑝

𝐶]

Figure 2.3: Different exchanges between entities during the computation of ln(.)

As a result, we can see the space of clear messages as a set of polynomials (m1,m2, · · · ,ms) of

(Zq[X]/F1×Zq[X]/F1×· · ·×Zq[X]/Fs). In addition, with HElib, it is possible to use either the

leveled homomorphic encryption or fully homomorphic encryption based on bootstrapping. We

will come back to this property in next sections.

2.4.1 Description of HElib library

HElib is a software library that implements homomorphic encryption (HE), specifically the BGV

scheme. It uses the variant of BGV which has Zrp [X]/f(X) as the space of clear messages where

p is a prime number. With batching introduced at the beginning of this section, in HElib, we can

declare a vector [m1,m2, · · · ,ms] containing several polynomials or integers seen as polynomi-

als, and encrypt them as a single encrypted message. The number of slots or of polynomials that

we can put in the same vectors is s and it depends on m, p and r. HElib also offers the possibility

of directly encrypting a polynomial of Zrp [X]/f(X), but batching is more interesting as it is very

useful in the case of encryption of several messages.

In HElib, before generating encryption and decryption keys, we must first instantiate the context in

which several parameters are defined. Among them, m, p and r define the space of clear messages

which will be used Zrp [X]/f(X). It is strongly recommended to choose the smallest value of

pr in order to minimize the sizes of the encrypted messages and computation time. With a fully

homomorphic encryption scheme such as BGV, conducting operations on encrypted data increase

the noise in this data. To control this issue, in HElib an encrypted message is characterized by
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the level and and an estimator of the noise. If noise estimator exceeds a certain threshold, HElib

reduces this noise by performing a modulus switching. The level L an encrypted message can

have is one of parameters that must be defined in the context. Thereby, before performing any

operation on an encrypted message, this one has the level L. If some operations are conducted

on this message, its level decreases until it reaches 1 and at this level no modulus switching can

be performed. Thus, if we want to conduct other operations on this message, there is an increase

of the noise without having any way to control it and the message will no longer decrypted. To

overcome this issue, a bootstrapping is applied. This one allows us to evaluate an arbitrary circuit

and is a homomorphic evaluation of the decryption circuit in order to refresh an encrypted message

for more computations.

Bootstrapping is not applied to any context, the polynomial ψ should satisfy some constraints,

HElib offers a set of contexts which allow bootstrapping [260]. If we want to be able to apply

bootstrapping on our encrypted data, we must indicate this during the definition of the context and

specify if we want to use fully homomorphic version of HElib. Therefore, additional parameters

must be defined. Note that when bootstrapping is included, the size of public and private keys is

significantly increase, since the encryption of the public key will be added to the public key.

HElib has become a benchmark for evaluating homomorphic encryption because it is the first

library that implements a fully homomorphic scheme and it includes efficient optimizations such

as batching and bootstrapping. It is now used in various domains such as privacy-preserving

GWAS [18]. In this chapter HElib is used in order to implement the proposed solution which

consists in securing collapsing method based on logistic regression model.

2.4.2 Encoding and computation on encrypted data

Experiments were conducted on a genetic sample of 57 individuals (20 cases and 37 controls) and

these data are extracted from a real genetic database. We have seen in the previous section that

data are encrypted using the BGV cryptosystem implemented in HElib library. The data that we

encrypt corresponds to individual genotypes that are stored in VCF files (see chapter 1 ).

Before conducting encryption operations of our genetic data and uploading them on the cloud, a

pre-processing step must be conducted. It consists in modifying individual genotypes by replacing

all values that are greater than 1 by 1, and the "." which corresponds to a missing variant or

position that has not been sequenced by 0. This will be useful as all the data will be expressed in

binary form and the processing will be expressed directly in corresponding Boolean circuits. This

modification will hide some genetic information such as the identification of alternative allele for

a given variant or unsequenced positions but data will still be used for some genetic processing

which require only the knowledge about the existence of the reference allele or of an alternative

allele in individual genotype. This is the case of collapsing method. Moreover, this transformation

will allow us to choose a HElib context where p = 2 and r = 1.

To optimise the size of the encrypted data, we will use batching for data encryption. To explain

this optimization, let us consider for example a sample of case data which contains N1 individuals

but computations are conducted in the same way for control data. The genotype of individual i can
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be represented in two vectors A1ij/A2ij , i and j are going from 1 to N2 and 1 to Ng (the number

of positions in the studied gene), respectively. We had two options: i) Encrypting data according

to individuals and the size of each vector corresponds to the number of positions in the sample.

These vectors or slots are filled by individual modified genotypes; ii) Encrypting data according to

positions and vectors or slots correspond to alleles at these positions. In our method, we opted for

the second option. Thus, if s is the size of slot, we have two encrypted vectors for each position p

such that

C1p = Enc[· · · , A1N2j , · · · , A14p, A13p, A12p, A11p] (2.18)

C2p = Enc[· · · , A2N2j , · · · , A24p, A23p, A22p, A21p]

We conduct these computations for each position and the number of encrypted vectors is 2×Ng.

This way of data encryption allow us to compute the encrypted values of observations xi for all

individuals at once and this optimizes the computational cost. We explain this optimisation in next

section.

2.4.3 Extraction of observations xi

In the context we have chosen, we are working with p = 2 and r = 1. In this case, additions

correspond to XOR (⊕) while multiplications correspond to bitwise multiplication (⊗). Therefore,

the circuit which allows the extraction of encrypted values of xi from our encrypted vectors is as

follows.
Ng∏
p=1

[C1p ⊕ C2p ⊕ E[1, · · · , 1,KU
p ]⊕ C1p ⊗ C2p] = E[· · · , xN1 , · · · , x1,K

U
p ] (2.19)

From these values, a simple addition on encrypted values allows us the computation of frequen-

cies N00, N10, N01 and N11. In order to continue the processing by conducting data masking,

the encrypted values of N00, N10, N01 and N11 must have specific representations. After that, we

will continue with the representation of elements from eq.2.11, in order to compute Stat. Thus, for

maskingN01 andN11 we evaluate a circuit which allows to pass fromE[0, · · · , 0, xN1 , · · · , x1,K
U
p ]

to E[· · · , xbm , · · · , b0,KU
p ], such that

N11 =
N1∑
i=1

xi =
[log2(N11)]∑

j=1
bj2j (2.20)

Thus, all the following computations and data masking operations are performed on binary values.

Optimizations conducted on the addition, subtraction and multiplication operations in binary form

on encrypted data are conducted using algorithms presented in [261] and they help us to reduce

the time required to perform the bootstrapping.

2.4.4 Computational results

As explained in previous section, our solution was experimented on a genetic database that con-

tains 57 individuals among them 20 cases and 37 controls considering a gene with 100 positions.
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2.5. Conclusion

Data are encrypted using the BGV cryptosystem implemented with HElib library and this one

optimizes the size of encrypted data to store in the cloud thanks to batching. We ran the pro-

posed solution on a machine equipped with 4 GB RAM, Intel Core i5-5200U, 2.7GHz, running

on Ubuntu 18.04 LTS. The public and private keys of GRU, GRC and TPE are generated using

the same context. To give an idea about computation time, let us choose a context where security

parameter is less than 80. In this context if we chose L = 20, the bootstrapping time in this context

is 3s and this context allowed us to have 60 slots. We randomized by small masks 1 < r < 8 and

the execution time is about 15 minutes with no errors in the test results compared to the same tests

conducted on clear data.

Bootstrapping is the operation which consumes much time (it is estimated at 95% [262]). In the

context a security parameter is greater than 80 and L = 20, the bootstrapping is estimated at 600
seconds. The computation time for the same sample (20 cases and 37 controls) and with the same

masks, 1 < r < 8, is about 50 hours.

2.5 Conclusion

In this chapter we have focused on the privacy-preserving genome-wide association studies. We

have proposed a privacy-preserving collapsing method using a logistic regression model. It takes

advantage of fully homomorphic encryption, secure multiparty computation and multiplicative

data masking in order to allow two entities a genomic research unity and a genomic research

center to compute this association test on encrypted data without the need to decrypt them. This

solution is secure under the honest but curious adversarial model. Because our solution makes no

approximations, it achieves exactly the same results as working on clear data. The computation

of some operations such as ln(.) function on encrypted data with only addition and multiplication

operations has complicated the task for us. The multiplicative data masking solution we have

proposed requires a higher computation time because of the passage through binary representation

of encrypted values.

During the implementation of our solution, we were limited to the bootstrapping method im-

plemented in HElib, but more recently several improvements which can reduce the computation

time [263].
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CHAPTER 3

Watermarking of updatable
homomorphically encrypted genetic

data

As exposed in the previous chapters, genetic data outsourcing induces many critical security issues

for data owners especially in terms of individual privacy, data confidentiality and integrity. To

protect data confidentiality and privacy from unauthorized users as well as from the cloud service

provider (CSP), we have seen in chapter 2 that one common solution consists in encrypting data

before their outsourcing. Homomorphic encryption is widely used in this cases, as it allows the

protection of data and still allows processing on these data without need of decryption. Beyond

data confidentiality, data integrity is another major concern as it can be compromised by several

threats such as transmission errors, unauthorized modifications by attackers or by sub-contracted

service providers. This is the objective of this chapter where we have proposed a dynamic database

watermarking method which allows the protection of integrity of homomorphically encrypted data.

In that context, in this chapter we are interested in taking the point of view of the service cloud

provider who may also want to protect data that are under his/her responsibility in order to ensure

that these data are not illegal modified by attackers or by malevolent sub-contracted cloud service

providers. In addition, as exposed in chapter 1, section 1.2.1.2, existing solutions that allow the

protection of outsourced data integrity are all static in the sense that if any modification is occurred,

whole database is re-watermarked so as to update the watermark [207].

In this chapter we propose a solution that gives cloud service providers, the capacity of verifying

the integrity of homomorphically encrypted databases that are outsourced and maintained at dis-

tance by their owners. To do so, we propose to use watermarking in association with homomorphic

encryption with the idea of being also able to detect illegally modified data. The method we pro-

pose allows verifying the integrity of outsourced databases all along their lifecycle, in a dynamic

fashion. This means that it should be possible to perform update operations (tuple additions, tuple

suppression or attribute value modifications) without having to re-watermark the whole database.

In addition, there is a need for database watermarking scheme that provides a good localization

performance comparing to the existing literature. Moreover, our method should be able to work
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3.1. Overview on crypto-watermarking methods

with homomorphically encrypted data.

In the first time, we will explain how to watermark a static homomorphically encrypted database

before describing the complete dynamic crypto-watermarking scheme we propose. In addition, we

have conducted a simulation of different possible attacks such as tuple suppression, tuple addition

and encrypted attribute value modification, so as to analyse the performance of our solution.

3.1 Overview on crypto-watermarking methods

As we have seen in chapter 1, different methods have been proposed for securing the integrity

of outsourced data by mean of watermarking. Most of them are focusing on integrity control by

data owners. Initial, crypto-watermarking methods have been proposed for securing multimedia.

The objective of these methods is to ensure data confidentiality using encryption while giving

access to watermarking based security services such as copyright protection, traitor tracing [264–

266] or ensuring integrity control from decrypted/encrypted data [267–269]. Crypto-watermarking

schemes can be classified according to the domain where the embedded watermark is available. It

can be in the encryption domain [270], in the clear domain [271], [272], or in both domains [11].

Up to now, few methods that combine watermarking and encryption have been proposed so as to

protect outsourced databases [207, 208]. The one proposed in [207] focuses on the protection of

outsourced databases from the cloud service provider point of view. To do so, the user encrypts

the database elements using Order Preserving Encryption (OPE) [209] before being uploaded on

the cloud. The cloud service provider (CSP) can embed a watermark into the encrypted data so

as to protect the database integrity. To do so, the encrypted database is partitioned into several

groups, and the Discrete Cosine Transform (DCT) of each group is computed giving access to

DC and AC coefficients. AC coefficients are used for generating the watermark bits based on a

cryptographic hash function; watermark bits that are next inserted into the DC coefficients by using

the well-known quantization index modulation (QIM) [273]. To get access to the encrypted and

watermarked database, the inverse DCT is applied. During the verification stage, database integrity

relies on the comparison of the extracted watermark with the recomputed one. This solution allows

the verification of the integrity of encrypted database, but does not consider the possibility to

update the database. In addition, encryption operations are conducted using an OPE cryptosystem

that is known for its security limitations due to some of its deterministic properties [210].

In this chapter, we propose a dynamic database watermarking that allows a cloud service provider

to protect and verify the integrity of a homomorphically encrypted database externalized by its

owner, even if this one updates his or her data. Our solution allows watermarking of any database

which is homomorphically encrypted using any semantically homomorphic cryptosystem (addit-

ive, multiplicative or fully). The main objective of our solution is the detection and localization

of unauthorized database modifications; such authorized modifications being thus: tuple insertion,

tuple suppression or attribute value modifications conducted by the database owner. To conduct

watermark embedding in encrypted databases without altering clear data, we take advantage of

the semantic security properties of homomorphic encryption cryptosystems. And as we will see,

integrity verification is achieved by making possible the watermark extraction from cryptographic
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3.2. Homomorphic encryption cryptosystems

hashes of subsets of homomorphically encrypted attribute values, and the CSP will be able to

detect and identify which database elements have been modified.

3.2 Homomorphic encryption cryptosystems

As explained in the chapter 1, homomorphic encryption (HE) [127] allows computation on encryp-

ted data, producing an encrypted result which, when decrypted, corresponds to the one computed

on the clear data. Let us recall that if M , C and R are the spaces of clear messages, encrypted

messages and random integers, respectively. The encrypted version of a message m ∈ M is as

such as

E : M ×R 7→ C (3.1)

(m, r) 7→ E[m, r] = E[m,Kp] = c

where r is a random integer selected in R. As we will see in section 3.3, we will take advantage

of homomorphic and semantic security properties for the insertion of a watermark into encrypted

pieces of data. The database watermarking method we propose in this chapter was implemen-

ted using the Damgård-Jurik (D-J) cryptosystem and the ElGamal cryptosystem but it can be

implemented with all semantic homomorphic cryptosystems in general. We discuss these two

cryptosystems in the sequel.

3.2.1 Damgård-Jurik Cryptosystem

The Damgård-Jurik (D-J) cryptosystem [140] is a generalization of the Paillier cryptosystem [135]

and its principles are as follow. Let ((g,Kp),Ks) be the public key and the private key, respect-

ively, such that

Kp = pq and Ks = LCM((p− 1), (q − 1)) (3.2)

where p and q are two large prime numbers and LCM is the least common multiple function.

Let ZKn
p

= {0, 1, · · · ,Kn
p − 1}, Z∗Kn

p
denote the set of integers ∈ ZKn

p
that have multiplicative

inverses moduloKn
p where n ∈ N∗. A fast implementation of this cryptosystem, without reducing

its security [140], is obtained by choosing:

g = 1 +Kp (3.3)

Let m ∈ ZKn
p

be the message to be encrypted, its cipher-text c ∈ Z∗
Kn+1

p
is such that

c = E[m, r] = gmrK
n
p mod Kn+1

p (3.4)

where r ∈ Z∗Kp
is a random integer and it makes the D-J cryptosystem semantically secure. To get

access to the message m from cKs , the recipient has to calculate Ksm. To do so, authors of [140]

have proposed an iterative procedure to findm from (1+Kp)m mod Kn+1
p . This procedure takes

advantage of the Binomial theorem and a function L(·) defined such as L(b) = b−1
Kp

, function that

is applied repeatedly as follow. Taking as input the quantity a = (1 + Kp)m mod Kn+1
p this
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3.2.2. ElGamal Cryptosystem

Algorithm 1 Damgard-Jurik algorithm
1: procedure F (a)
2: m← 0
3: for j ← 1, n do . m = mj−1
4: t1 ← L(a mod Kj+1

p )
5: t2 ← m
6: for k ← 2, j do . t2 = m(m− 1)...(m− k + 2)
7: m← m− 1
8: t2 ← t2 ∗m mod Kj

p

9: t1 ← t1−
t2∗Kk−1

p

k! modKj
p . t1 = t1 − Ci

kK
k−1
p

10: end for
11: m← t1
12: end for
13: return m mod Kn

p

14: end procedure

algorithm first compute L(a) which gives access to m1 = L(a mod K2
p) = m mod Kp (using

Binomial theorem). Then, by iteratively calculating from j = 0 to n, mj is given by:

L(a modKj+1
p )− (Cmj−1

2 Kp + ...+ C
mj−1
j Kj−1

p ) modKj
p

The algorithm achieves mn = m mod Kn
p where (Cjk = j!

(j−k)!k!). This procedure we note as

the function F (·) is given in Algorithm 1.

The decryption of the cipher-text c into m such as

m = F (cKs)K−1
s mod Kn

p

This cryptosystem has an additive homomorphic property. Considering two plain-texts m1 and

m2, the homomorphic properties of the D-J cryptosystem are the following ones:

E[m1, r1]E[m2, r2] = E[m1 +m2, r1r2] (3.5)

E[m1, r1]m2 = E[m1m2, r
m2
1 ] (3.6)

3.2.2 ElGamal Cryptosystem

The ElGamal cryptosystem was developed by Taher ElGamal in 1984 [130]. It is based on the

hardness of the discrete logarithm problem [146] and its principles are as follows. Let G be a

cyclic group with n and g as order and generator, respectively. We recall that it is possible to

generate all cyclic group elements from the powers of its generator g. For a random integer x

chosen in Z∗n, we calculate y = gx. Then, the public key Kp and the private key Ks are given by

Kp = (G,n, g, y) and Ks = x, respectively. The cipher-text of the plain-text m ∈ Zn is given by

c = E[m, r] = (gr,myr) = (gr,mgrx) = (c1, c2) (3.7)

where r is an integer randomly selected in Zn making the ElGamal cryptosystem semantically

secure. To decrypt the cipher-text c, we use Ks and the decryption function D. Then, the plain-

text m is obtained such that

m = D[c,Ks] = c2(cx1)−1 = mgrx(grx)−1 (3.8)
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3.3. Watermarking of homomorphically encrypted databases
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Figure 3.1: Considered encrypted database outsourcing framework.

This cryptosystem has a multiplicative homomorphic property. Considering two plain-texts m1

and m2, we have

E[m1, r1]E[m2, r2] = E[m1m2, r1 + r2] (3.9)

In the next sections, we discuss how semantic security property of homomorphic encryption

cryptosystems can be used in order to embed a watermark into encrypted databases with the ob-

jective of protecting their integrity.

3.3 Watermarking of homomorphically encrypted databases

In this section, we first introduce the encrypted database outsourcing framework we consider be-

fore presenting how to dynamically watermark an encrypted database along its lifecycle.

3.3.1 Database outsourcing framework

As shown in Fig.3.1, in our framework a user or data owner securely outsources his database into

the cloud, maintained by a cloud service provider (CSP). The database elements are independently

encrypted using a HE cryptosystem before being uploaded to the cloud. This encryption task can

be made with the help of one of the HE cryptosystems depicted above (fully or partially being

additive or multiplicative). By doing so, the user can ask CSP to conduct some data treatments or

analysis on his data while preserving their confidentiality.

Different security issues have to be considered in such a context. In a first time, it is common

to assume that CSP is honest but curious. That is to say, it honestly stores and follows all data

processing or updating operations requested by the data owner but may try to infer user’s data.

In order to ensure data confidentiality, we assume that all data stored in the cloud have been

encrypted homomorphically by their owners. To tackle the problem of integrity of data which

is the objective of this chapter. Herein, CSP is authorized to conduct storage and/or processing

of databases outsourced by their owners, even with the help of sub-contracted service providers.

From the point of view of CSP, data may face many attacks from external attackers as well as from

malicious or not well secured sub-contracted clouds. There is thus an interest for CSP to protect

homomorphically encrypted data that are under his responsibility in terms of integrity. To do so,

we propose a crypto-watermarking scheme which combines watermarking and encryption so as to
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3.3.2. Outsourced HE encrypted database

allow the integrity protection of encrypted database under the constraints: i) users can update their

data during time; ii) users’ data are not modified by the watermarking process as it usually does.

Thus, contrarily to common database watermarking schemes, additions, deletions or modifications

of tuples and/or attribute values are stated as authorized modifications while illegal modifications

caused by attackers or system errors (e.g., storage or transmission errors) should be detected. As

we will see, our solution responds these constraints by taking advantage of the homomorphic and

the semantic security properties of HE cryptosystems.

3.3.2 Outsourced HE encrypted database

As stated above, in our framework, encrypted outsourced data are supposed to be stored in rela-

tional databases. As defined in section 1.2.1.2, we note DB as relational database composed of a

list of T tables. If ti.aj is the jth attribute of the ith tuple in the database, the encrypted version

DBe of the databaseDB is obtained by independently encrypting the values {ti.aj}i=1,··· ,N ;j=1,··· ,M

using an HE cryptosystem as follows.

cij = E[ti.aj , rij ] (3.10)

where rij ∈ R is a random integer associated to ti.aj . Notice that in the case the Damgård-Jurik

cryptosystem is used, rij is taken in Z∗Kp
and (3.10) becomes

cij = E[ti.aj , rij ] = gti.ajr
Kn

p

ij mod Kn+1
p (3.11)

In the case where the ElGamal cryptosystem is exploited, rij is taken in Zn and (3.10) is such as

cij = E[ti.aj , rij ] = (grij , ti.ajg
rijKs) (3.12)

In the sequel, we first explain how to watermark such a static encrypted database before introdu-

cing our complete dynamic crypto-watermarking scheme.

3.3.3 Static database watermarking for homomorphically encrypted data

The solution we propose allows the embedding into an encrypted database DBe of a watermark

W , a proof of integrity, that will be available in the encrypted domain. As shown in Fig. 3.2, its

architecture relies on two main procedures: database protection and integrity verification of the

database. The protection stage, see Fig. 3.2a, is performed into three steps: i) a secret database

reorganization step where tuples ofDBe are rearranged into the databaseDBr
e based on the secret

watermarking key Kw; ii) a watermark embedding step which consists in embedding W into

DBr
e in order to produce the database DBwr

e ; iii) a back database reorganization step in which

DBwr
e is reorganized in order to get access to the watermarked and encrypted database DBw

e .

The verification stage is conducted in a similar way (see Fig. 3.2b). Let D̂B
w

e be a protected

database, to verify the integrity of this database, we first perform its secret reorganization based

on Kw. Then, the watermark Ŵ is extracted and compared to the watermark W . If Ŵ and W

are different, the original database was illegally modified. In addition to this, the verification stage

allows us the identification of the encrypted attribute values or element of D̂B
w

e that have been

altered. In the sequel, we enter into the details about these different stages.
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3.3.3.1. Database protection

3.3.3.1 Database protection
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Figure 3.2: System architecture of the proposed method. Kw, W , Ŵ represent the secret water-
marking key, the inserted watermark and the recovered watermark, respectively.

In case of a static database, this procedure is constituted of three main steps (see Fig. 3.2):

1. Secret database reorganization: The objective of this step is to ensure that an unauthor-

ized user cannot access to the watermark W . The basic principle of this step is to secret

reorganize the database DBe into DBr
e using the secret watermarking key Kw. To do so,

each database tuple is associated to secret cryptographic hash such that

hi = hash(ti) = hash(Kw||E[ti.PK, riPK ]) (3.13)

where: hi is the hash of the tuple ti and ti.PK its primary key, "‖" is the concatenation

operator, and hash a cryptographic hash function such as Secure Hash Algorithm 2 (SHA-

2) [274]. Tuples are simply reorganized in the ascending order of their hash values. The

security of this step relies on the diffusion and collision properties [275] of the cryptographic

hash function that is used, as well as on the knowledge of the watermarking key Kw.

2. Watermark insertion into the reorganized database: In this step, a binary watermark

W is inserted into the reorganized database DBr
e . More clearly, one bit of the water-

mark is embedded into the hash value of a subset constituted of homomorphically en-

crypted attribute values of DBr
e . Let us consider a reorganized encrypted database con-

stituted of k subsets and as watermark W , a binary sequence of k bits uniformly distributed

(W = {bl}l=1,··· ,k, bl ∈ {0, 1}) and secretly generated using the watermarking key Kw

with the help of a random number generator. The verification of the integrity of the data-

base will relies on the correct extraction of W from the hash values of the attribute subsets.

The interest in working with subsets rather that with the whole database, is that it becomes

possible to localize and identify which database parts or attribute values have been illegally

modified. This watermark embedding step relies on the two following sub-steps:

• Database partitioning into attribute value subsets - The secretly encrypted and re-

organized database DBr
e is divided into k overlapping "subsets" {Bl}l=1,··· ,k. We

conduct this database partitioning with the guarantee that each subset has at least one

element that is shared with other subset. Fig. 3.3 gives an example of such a table par-

titioning in the case of subsets of 3×3 elements. It can be seen that for one subset or
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3.3.3.1. Database protection

Figure 3.3: Partitioning of an encrypted and reorganized database DBr
e into overlapping and non-

overlapping subsets or blocks of 3×3 encrypted attributes values. Blue and dashed areas represent
overlapping subsets. Bl is one subset and E[ti.Aj , rij ] is its center element. Standalone encrypted
attribute values, identified by black crosses are regrouped into independent and non-overlapping
subsets.

"block" its center element is not shared with the other overlapping subsets. In general,

this partitioning can be made in different ways. However, as we will see in section

2.4, it strongly impacts our scheme performance in terms of detection and localization

precision.

• Embedding of one watermark bit into one attribute subset - Each subset Bl is then

watermarked into Bw
l by inserting one bit bl of W in Bl such that

bl = hash(Bw
l )v = sv (3.14)

where sv represents the vth bit of the cryptographic hash S of the subset Bw
l , i.e.,

S = hash(Bw
l ). The value of v is chosen based on the secret watermarking Kw. As

it is extremely difficult to predict the output of a cryptographic hash function (e.g.,

SHA-2) for a given input, an iterative procedure is used so as to watermark the subset

Bl into Bw
l . It is the center attribute value of the subset Bl (i.e., E[ti.aj , rij ], see Fig.

3.3) that is modified for bit insertion in the subset using the function f defined as

f : C ×M 7→ C

(3.15)

(E[ti.aj , rij ], e) 7→ f(E[ti.aj , rij ], e) = E[ti.aj , rij ]⊗ E[e, r] = E[ti.aj , rij ⊕ r]

where C , M are the spaces of the encrypted data and clear, data respectively, and r is

random integer taken in R. We recall that the operators ⊗ and ⊕ depend on the ex-

ploited HE cryptosystem. Moreover, when E is an additive homomorphic encryption

function (resp. a multiplicative homomorphic encryption function), then e = 0 (resp.

e = 1). More clearly, we take advantage of the semantic property of HE cryptosystems

to modify the encrypted value of an attribute without modifying the clear value of the

attribute. Our iterative procedure used to modify the center element of each subset
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3.3.3.2. Extraction of the watermark and integrity verification of the database

Algorithm 2 Iterative procedure for the modification of the center element of an encrypted subset
Bl for embedding of one watermark bit.

1: INPUT: A subset Bl, A watermark bit bl, HE cryptosystem with E its encryption function
2: procedure SUBSETWATERMARKING(Bl, bl)
3: Bw

l ← Bl
4: while bl 6= sv = hash(Bw

l )v do
5: α = rand(.) % rand(.) is a uniform random function in R
6: f(E[ti.aj , rij ], e) = E[ti.aj , rij ]⊗E[e, α] % E[ti.aj , rij ] is the center element of
Bw
l

7: E[ti.aj , rij ]← f(E[ti.aj , rij ], e)
8: end while
9: return Bw

l

10: end procedure

is illustrated in Algorithm 2. In this chapter, the secure hash algorithm 2 (SHA-2) is

used as cryptographic hash function. Due to its "strength", there is one chance in two

to insert one bit bl at each iteration, i.e., to have sv equal to bl (see (3.14)). Algorithm

2 can be refined depending on the cryptosystem used to encrypt the database. In the

case of the Damgård-Jurik cryptosystem, the value of f(E[ti.aj , rij ], e) in step 7 is

such as

f(E[ti.aj , rij ], e) = E[ti.aj , rij ]E[0, α] = E[ti.aj , rijα] = gti.aj (rijα)Kn
p mod Kn+1

p

(3.16)

where α ∈ Z∗Kp
is a random number. On the other hand, if the database has been

ElGamal encrypted, step 7 of Algorithm 1 becomes

f(E[ti.aj , rij ], e) = E[ti.aj , rij ]E[1, α] = E[ti.aj , rij+α] = (grij+α, ti.ajg
(rij+α)Ks)

(3.17)

where α ∈ Z∗n is a random integer.

3. Back reorganization of encrypted and watermarked database: Once all subsets of the

database DBwr
e have been watermarked, DBwr

e is reorganized back in order to obtain the

encrypted and watermarked database DBw
e .

3.3.3.2 Extraction of the watermark and integrity verification of the database

Watermark extraction for controlling the integrity of a protected database is performed in a similar

way as in the protection procedure. Therefore, let D̂B
w

e be a suspicious database, its integrity

verification is conducted accordingly following two steps:

1. The database D̂B
w

e is first reorganized into D̂B
rw

e using the secret watermarking key Kw.

After that, D̂B
rw

e is divided into multiple subsets.

2. The cryptographic hash values of all subsets are computed and one watermark bit is extrac-

ted from each of them using (3.14), extracted bits correspond to the watermark Ŵ .
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3.3.4. Dynamic database watermarking for updatable encrypted data

Once Ŵ obtained, it is compared to the a priori known watermark W , i.e., the watermark that

has been originally embedded. Any differences will indicate if the database has been illegally

modified. In addition, it is possible to identify and localize altered subsets. Beyond, in general

and as we will see in section 2.4, the protection we proposed allows the detection of different

malicious attacks [191] such as

• Tuple addition attack − it corresponds to the unauthorized introduction of tuples the attrib-

ute values of which are encrypted based on the public key of the database owner.

• Encrypted attribute value modification attack − herein, an attacker performs homomorphic

operations in order to falsify or damage some database element values.

• Tuple suppression attack − where some tuples are illegally removed from the database.

3.3.4 Dynamic database watermarking for updatable encrypted data

During the database lifecycle, tuples or attribute values of the database can be remotely added,

removed or modified. These tasks are conducted by CSP based on data owner’s requests. As

stated previously, these requests are considered as authorized. Unauthorized modifications we

want to detect are of same nature but conducted by malicious entities (e.g. malevolent data storage

subcontractors, badly securely data storage provided by CSP subcontractor) or may result from

errors of storage or communications.

With the previous static database watermarking scheme, it is necessary to re-watermark the whole

database if any database element is updated. Such complete re-watermarking has several lim-

itations such as computation overhead, etc. In this work, we thus propose a dynamic database

watermarking solution that allows the protection of the database integrity on the fly while still

making possible to localize illegal database modifications. To achieve this goal, the challenging

issue is to maintain a coherent watermark at each update operation. To do so, our dynamic water-

marking scheme while having verification and protection procedures quite similar to the previous

static scheme, takes advantage of a secure journal table Jt that contains historical details about all

suppressed or added tuples.

To make more clear how our proposal works, let us consider an already protected database DBw
e

along with its secure journal table Jt. As illustrated in table 3.1, record in Jt corresponds to one

update of one tuple in DBw
e (i.e., addition and suppression). It contains: the update order of

the tuple; the identifier of the added or suppressed tuple, this identifier can for instance be the

encrypted primary key E[ti.PK, riPK ]; the executed action the tuple undergone (addition (A) or

tuple suppression (S)); and, the watermark bits w that were embedded into the tuple.

As we will see the update of the attribute values of existing tuples does not require the addition

of specific information in Jt. Anyway, the journal table Jt is organized depending on the chrono-

logical order of the database updates and will be very helpful for secretly reorganizing database

element and, moreover for maintaining watermark coherence, allowing watermarking on the fly

and verifying database integrity (detection and localization). Being a sensitive element, the journal
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3.3.4.1. Database watermarking on the fly in the case of new tuple addition

Table 3.1: Example of a journal table Jt with some records, where A and S indicate tuple addition
and tuple suppression, Idi is the identifier of the ith tuple concerned by the action, w corresponds
to the bits of the watermark embedded after the suppression or addition of the ith tuple in the
database.

Update Order (UO) Executed action (EA) Tuple identifier (Id) Inserted watermark (w)

1 A Id1 w1
2 A Id2 w2
5 S Id5 w5

content is secret and should only be known from CSP. To do so, Jt record elements are encrypted.

We will discuss more about the security of the journal table in section 3.4.4.

In the sequel, we detail our solution by presenting in a first time how it works when: i) new tuples

are added; ii) some tuples are suppressed; iii) authorized encrypted attribute value modifications

are conducted.

3.3.4.1 Database watermarking on the fly in the case of new tuple addition

Let DBw
e be an encrypted and watermarked database that only contains two tuples t1 and t2 as

illustrated in Fig. 3.4. When a data owner wants to add one tuple in the database, he or she ho-

momorphically encrypts it before sending it to CSP. Let us assume that the new homomorphically

encrypted tuple CSP receives is ti. CSP adds it to DBw
e while performing the watermark update

as follows.

1. CSP performs the decryption of the journal table Jt where the tuples are organized in their

chronological order.

2. Following our example with subsets of 3× 3 elements, CSP uses Jt to identify the two last

tuples or lines that were previously added to DBw
e (see Fig. 3.4a) and places the new tuple

at the last position.

3. CSP computes the corresponding attribute subset partitioning as illustrated in Fig. 3.4b.

Still working with subsets of 3× 3 elements, it is possible to find the partition associated to

ti based on its index i (this value corresponds to the update order information in the journal

Jt) and the index j that corresponds to the position of attribute values of ti:

• If i = 0 or = 1 mod 4, then the subsets associated to ti are centered on the encrypted

attribute values ti.aj such as j = 0 mod 4.

• If i = 2 or 3 mod 4, the subsets associated to ti are centered on the elements ti.aj
that correspond to j = 2 mod 4.

Let us recall that it is the subset centered element we modify in the encrypted domain for

message embedding.

4. In the last step, CSP watermarks the previous set of tuples based on the two following sub-

steps:
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3.3.4.2. Database protection on the fly when one tuple is suppressed

Figure 3.4: (a) Protected database initialized with two tuples, the elements of which are encrypted
independently, and where subsets are constituted of 3 × 3 elements. Blue areas, B1 and B3
correspond to incomplete subsets while hashed grey areas correspond to elements of the subset
B2. Empty areas, where new tuples will be added, correspond to the tuples t3, t4 and t5. (b)
Protected database after the addition of the new tuple t3 into the database. In this situation, B1
and B3 in blue correspond to complete subsets while B4 is a new subset of three elements only.
In both cases, black crosses represent the standalone encrypted attribute values.

a) For already existing subsets - CSP extracts the already watermarked bits from pre-

existing and incomplete subsets, i.e., as for instance from B1 in Fig. 3.4a before tuple

addition, and re-insert them into the new subsets after the addition of new tuple (see

B1 in Fig. 3.4b).

b) For newly created subsets such as B4 in Fig. 3.4b, CSP uses the secret watermarking

key Kw so as to generate a sub-watermark w, a sequence of bits, and insert one bit per

new subset.

c) Finally, CSP adds to Jt the recordRti such thatRti =< 1, A, Idi = E[ti.PK, riPK ], wi >,

where wi corresponds to the newly embedded watermark bits in the database, and re-

encrypts Jt.

3.3.4.2 Database protection on the fly when one tuple is suppressed

In the case a data owner proceeds to the suppression of one tuple ti from the database DBw
e , our

dynamic database watermarking scheme works as follows:

1. CSP first performs the decryption of Jt and looks for the position of ti in the database as

well as of its two neighbors ti+1 and ti−1 in the case of subsets of 3× 3 elements.

2. CSP then computes the subset partition as for tuple addition (see previous section) and

extracts pre-existing watermark bits from these database subsets.

3. CSP substitutes the suppressed tuple by a "virtual tuple" that is to say an empty record and

re-inserts extracted watermark bits in the subsets by modifying one of their elements. Two

distinct situations should be considered when conducting their re-watermarking process:

a) In the cases the suppressed tuple ti includes the center attribute values of some data-

base subsets, as illustrated in Fig. 3.5a, with the subsetsBw
l andBw

l+1, the correspond-

ing watermark bits are re-inserted by modifying one of the encrypted attribute values
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3.3.4.3. Protecting database on the fly when encrypted attribute values are modified

Figure 3.5: (a) Protection of the database when the suppressed tuple contains center elements
of subsets. Outlines in red indicate database subsets that are concerned by the suppression of
the tuple ti, while red crosses represent database element values that will be modified by the
re-watermarking of the data subsets. (b) Protection of the database if the suppressed tuple does
not include center elements of subsets. Green and red outlines correspond to the subsets that
are concerned by the suppression of the tuple ti while black crosses represent single encrypted
attribute values.

of the tuples ti−1 and ti+1 that are out of the intersection of two subsets (see elements

marked by red cross in Fig. 3.5a for the subsets Bw
l and Bw

l+1). This encrypted at-

tribute value modification is commonly performed using the Algorithm 1 presented in

section 3.3.3.

b) In the case the suppressed tuple ti does not include center elements of subsets, as

depicted in Fig. 3.5b, watermark bits are normally re-inserted into subsets.

4. Finally, CSP constitutes the record Rti indicating that ti has been suppressed and this adds

it to Jt. Jt is then encrypted.

3.3.4.3 Protecting database on the fly when encrypted attribute values are modified

Let us consider the following scenario where one element, e.g., E[ti.aj , rij ], of the protected

database DBw
e is modified by its owner user. To update the watermark on the fly, CSP conducts

the following steps:

1. It first decrypts Jt and identifies the position of the tuple ti in the database as well as of its

two neighbors (ti−1 and ti+1) or four neighbors (ti−2, ti−1, ti+1 and ti+2) depending on its

position.

2. It then identifies the subsets associated to the attribute value that is modified by the user.

3. CSP extracts the pre-existing watermark bits that were inserted into the subsets to which

E[ti.aj , rij ] belongs. It then updates the database element and re-embeds the watermark

bits into the subsets using algorithm 2, as normally.
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3.3.4.4. Watermark extraction and verification of database integrity

It is important to notice that because this kind of modification does not add or suppress a tuple in

the database, the journal table Jt is not updated.

3.3.4.4 Watermark extraction and verification of database integrity

Let us consider CSP want to verify the integrity of an encrypted and watermarked database D̂B
w

e

so as to detect if this one has been tampered or not. It is important to recall that this verification

process is conducted at the level of database element subsets and not directly at the level of a tuple

or of a database element. To do so, while still considering our example with 3 × 3 subsets, CSP

performs the following steps:

1. The journal table Jt is first decrypted.

2. Integrity verification starts by verifying the latest updated tuple, i.e., added or suppressed,

and continues with the previous one and so on, going back in the history of the database.

For each tuple ti, CSP conducts the integrity verification taking into account its associated

record Rti in Jt as follows:

a) in the case the action EA performed to ti is suppression, then:

i. CSP adds an empty tuple at the position of ti in the database;

ii. to verify the integrity of the subset around ti CSP identifies from Jt the neighbors

of ti in the database while distinguishing two situations depending on the subset

partition around ti:

• If the suppressed tuple ti includes element centers of subsets as in Fig. 3.5a,

CSP retrieves the tuples ti−1 and ti+1 so as to re-build subsets that were

sharing elements with ti.

• If the suppressed tuple does not contain subset element centers, then CSP has

to retrieve the tuples ti−2, ti−1, ti+1 and ti+2 so as to rebuild subsets as in

Fig. 3.5b.

Once the subsets identified, watermarked bits are extracted using (3.14) and com-

pared with the ones reported in Jt i.e., wi. Any difference will indicate a loss of

integrity in this sub-region of the database and will help to localize the position of

the tamper accordingly to the subset partitioning.

b) in the case the tuple ti has been added, then:

i. CSP retrieves from Jt the two first neighbors of ti, that is to say ti−1, ti+1.

ii. CSP computes the subset partition around ti and extracts from each subset one

watermark bit. Extracted bits are next compared to the ones stored in Jt, i.e., w,

in order to detect if some subsets have been illegally altered.

From this standpoint, one can consider that the integrity of a tuple ti is verified if all the subsets

it belongs to are detected as un-modified with the above procedure. The same reasoning can be

followed from the database point of view that is to say that the database integrity is considered as

broken if even one of its subsets is detected as tampered.
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3.4. Experimental results and performance analysis

Table 3.2: Some tuples from our genetic database. One record or tuple contains information about
one variant at a given position in the genome and attributes Ik represent the individuals.

chrom pos ref alt gene I1 I2 · · · Ik · · · I55

1 861261 G A SAMD11 0 1 · · · 2 · · · 1
1 871334 G T SAMD11 2 1 · · · 1 · · · 0
9 135140020 A G SETX 0 0 · · · 0 · · · 1
21 16335402 C T NRIP1 1 0 · · · 0 · · · 1

It is important to notice that the previous detection and verification procedures allow CSP to detect

unauthorized modifications of homomorphically encrypted attribute values. Other unauthorized

modifications, such as tuple suppression or tuple addition, will be detected based on Jt. Indeed,

illegally added tuples will appear as extra data for CSP, while illegally suppressed tuples will not

be found in the database D̂B
w

e by CSP.

3.4 Experimental results and performance analysis

In this section, we evaluate the performance of our dynamic watermarking in terms computation

complexity, watermarking capacity, tampering detection and localization considering one real ge-

netic database.

3.4.1 Test database

Our dynamic database watermarking scheme was experimented using a real genetic relational

database constituted of one relation of 4000 tuples. This one contains information about genetic

variants of 55 individuals. Such a database is used by geneticists in genome-wide association

studies (GWAS) [6] so as to establish the relationships in-between genetic variants and diseases.

One tuple corresponds to one variant and is constituted of 60 attributes. The five first ones give

information about the genetic variant and correspond to: the name of the chromosome (chrom) to

which belongs the variant; the position of the variant (pos) in the chromosome; the reference allele

(ref ); the alternative allele (alt); and, the name of the gene (gene) in which the variant belongs.

For one individual and one variant, the genotype is an integer value stating if the individual allele

equals the reference allele (value "0") or not. In the case it is different the genotype takes its value

in the range {1, · · · , U} in case of U possible alternative alleles. In the following, we consider the

encrypted form of the attribute pos as tuple primary key ti.PK because it uniquely identifies each

database tuple.

Two homomorphic encryption cryptosystems were experimented: the Damgård-Jurik cryptosys-

tem which is an additive HE cryptosystem and ElGamal as multiplicative HE cryptosystem. For

both cryptosystems, we choose public and private keys of 1024 bits in order to ensure a high se-

curity level. In the following experiments, we still consider subsets of 3 × 3 encrypted attribute

values or elements. Thus, in the case of a static database, 33447 subsets can be defined on the

above test database of 4000 × 60 elements. In the case of dynamic watermarking Jt is encrypted
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3.4.2. Database watermarking attacks

Figure 3.6: A simple example of a tuple addition and a tuple suppression attacks. Red tuple
is supposed to be suppressed by an attacker while blue tuple represents illegally addition by an
attacker

using Advanced Encryption Standard (AES) [276]. In the following experiments, our static and

dynamic watermarking schemes were implemented using C/C++ with GMP library on a computer

equipped with 8 GB RAM running on Ubuntu 18.04 LTS. The cryptographic hash function used

in all the following experiments is SHA-2 [274].

3.4.2 Database watermarking attacks

As introduced in section 3.3.3.2, three types of database watermarking attacks are considered so as

to evaluate the efficiency of our dynamic watermarking schemes: the "tuple suppression attack",

the "tuple addition attack" and the "Encrypted attribute value modification attack". These attacks

can be caused by data transmission errors or attacks in the system. Let us recall that modifications

requested by the database owner are authorized

3.4.2.1 Tuple addition and tuple suppression attacks

In these types of attacks, an intruder adds or deletes some random tuples in the database. From

here on and for sake of simplicity, let us assume that an attacker deletes or adds one tuple in the

protected database DBw
e . As described in section 3.3.4, the verification of database integrity is

conducted using pieces of information that are reported in the journal table Jt. If an attacker has

added one tuple in the database, the tuple identifier will not be found in Jt by CSP, during the

verification procedure. More clearly, at the end of the procedure, CSP will identify an extra tuple

illegally added. To give a simple example, let us consider the protected database presented in Fig.

3.7. If an attacker illegally adds the tuple t5 (see Fig. 3.6), this addition will impact all subsets

around this tuple, and this modification is reported during the verification due to the fact that its

identifier 14744 is not found in Jt in Fig. 3.8. The situation where one tuple has been illegitimately

deleted from a protected databaseDBw
e is quite similar. The suppressed tuple, while existing in Jt

record, will not be retrieved by CSP in DBw
e . In order to continue the verification of the integrity

of the whole database, an empty or virtual tuple is just added in D̂B
w

e by CSP (i.e., the attacked

version of DBw
e ). Notice that one consequence of such a deletion is that all subsets to which

belongs the suppressed tuple will be considered as unauthentic. As an example, let consider the

protected database depicted in Fig. 3.7. If an attacker deletes the tuple t3 from the database, the

verification stage will give us an error as the corresponding identifier 1604 is no longer associated

to any tuple (see Fig. 3.8). Using the journal table Jt, especially the tuple identifiers that it stores,
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3.4.2.2. Attribute value alteration attack

Figure 3.7: A simple example of a protected database before its attack.

Figure 3.8: A simple example of journal table.

we have a detection rate of 100% for tuple addition and tuple suppression attacks.

3.4.2.2 Attribute value alteration attack

In this kind of attack, the attacker performs some homomorphic operations on some database ele-

ments so as to illegally modify the database. Indeed, as the database is homomorphically encrypted

using the database owner’s public key, and that this key is assumed to be known from everyone, an

attacker can make some operations in order to modify encrypted attribute values of the database.

In the integrity verification procedure, as stated in section 3.3.4, one can distinguish three levels of

control: the subset level, the tuple level and the database level. In a first time, let us consider the

modification of only one database element. At the subset level, based on the considered database

partitioning (see Fig. 3.3), if the modified encrypted attribute value is not at the intersection of

two overlapping subsets, the probability the modification is not detected is 1/2. This is due to fact

there is one in two chances that the watermark bit embedded in the cryptographic hash value of

subset changes (see section 3.3.3). On the other hand, if the modification consists in the alteration

of an encrypted attribute value in the intersection of two subsets, then the non-detection probabil-

ity equals to 1/4. Consequently, the probability that the alteration is not detected in one subset for

any of the two previous cases is bounded by 1/2. Regarding the database level, if the alteration

consists of z subsets of the database DBw
e , the detection rate is bounded by

P = 1− (1
2)z (3.18)

Notice that this probability converges rapidly to 1 with the increase of z. In order to verify the

previous results, we have randomly modified a given percentage of encrypted attribute values in

DBw
e : 0.0004% (or equivalently only one element), 0.001% (or equivalently three elements),

0.004% (ten elements), 12.5%, 25%, 50%, 75%, and 100%. To do so, a random number b is

selected and its encrypted version is multiplied by the original element to modify in the database.

More clearly, let us assume that the element E[ti.aj , rij ] has been selected. Its attacked version is

given by

E[ti.ajb, rij + rbe ] = E[ti.aj , rij ]E[b, rbe ] (3.19)
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3.4.2.3. Comparison of our method with other approaches

Table 3.3: Experimental and theoretical global detection rates for attribute value alteration attack.
DJEDR, EEDR, TDR and PE represent the Damgård-Jurik experimental detection rate, the El-
Gamal experimental detection rate, the theoretical detection rate and the percentage of elements
modified by an attacker. All experimental detection rates are given in average after 25 trials.

EP 0.0004% 0.001% 0.004% 12.5% 25% 50% 75% 100%
DJEDR 64% 88% 100% 100% 100% 100% 100% 100%
EEDR 68% 88% 100% 100% 100% 100% 100% 100%
TDR 50% 87.5% 99.9% 100% 100% 100% 100% 100%

for ElGamal HE cryptosystem, where rbe is chosen in Zn. For Damgård-Jurik HE cryptosystem,

this value is given by

E[ti.aj + b, rijrbd
] = E[ti.aj , rij ]E[b, rbd

] (3.20)

where rbd
is randomly selected in Z∗Kp

. Table 3.3 gives theoretical and experimental detection

rates. These results are given in average after 25 trials for both HE cryptosystems ElGamal and

Damgård-Jurik. It can be seen in the Figure 3.9 that, the successful detection depends on the

quantity of altered encrypted attribute values. If an attacker modifies only one encrypted attribute

value in the database, the detection rate is of 64% for Damgård-Jurik HE cryptosystem, and 68%
for ElGamal HE cryptosystem. The greater the number of modified elements, the higher the

detection rate is. It can be also seen that experimental results confirm the theoretical ones.

3.4.2.3 Comparison of our method with other approaches

In this section, we focus on the performance of our scheme compared to database watermarking

methods from the state of the art, that have been developed for the purpose of verifying the integrity

of databases. Before entering in the details of this discussion, let us remind that the main objective

of our watermarking scheme is to allow CSP to protect in terms of integrity encrypted databases

that are remotely outsourced and updated by their owners. It allows detection and localization

of unauthorized modifications of database elements such as tuple insertion, tuple suppression or

encrypted attribute value modification.

As stated in chapter 1, Section 1.2.1.2 many watermarking methods, especially fragile water-

marking schemes, have been proposed for securing relational databases in terms of integrity

[174,185,186,196–205]. Some of them like methods [199], [185], [174], [202], [205] only work at

the database level. [196], [203] and [186] can detect and localize database modifications but their

localization precision is limited to group of tuples. Furthermore, in the case of the suppression

of tuples, these schemes are going to detect it, but with no capacity to identify the exact num-

ber of suppressed tuples. [200] overcomes this issue but its localization remains limited to group

of tuples. Our scheme can work on subpart of tuples. A few schemes, like [197], [198], [204]

and [201] allows detecting any modification and localize them up to the attribute tuple level but

they only work on static databases and not with encrypted databases. We have also seen in section

3.1 that, to the best of our knowledge, the method proposed in [207] is the only one that combines

encryption and watermarking so as to protect outsourced databases. Even though it can be used for
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3.4.3. Computation complexity and watermarking capacity performance analysis
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Figure 3.9: A graphic comparison of theoretical and practical detection rates for Damgård-Jurik
and ElGamal cryptosystems

verifying the integrity of group of tuples in an encrypted database, it does not work in a dynamic

way. The database has to be entirely re-watermarked at each update. In addition, it is based on the

order preserving encryption cryptosystems, cryptosystems that are known to have several limita-

tions in terms of data security due to the fact that they are deterministic [277]. Contrarily to all of

the above methods, our method can properly detect and localize any unauthorized modification of

subsets of encrypted attribute values in a static or dynamic database. In the latter case, watermark-

ing and integrity verification processes are conducted along the database lifecycle and on the fly

without having to re-watermark the whole database. That is not the case of the previous methods.

Our scheme watermarks homomorphically encrypted databases taking advantage of the inherent

properties of HE cryptosystems without altering user’s data. As mentioned it can be deployed

with partially homomorphic encryption algorithms, additive or multiplicative. It can obviously be

implemented with fully homomorphic encryption cryptosystems, at the price however of a com-

putation complexity increase [154]. It is important to notice that the performance of our scheme

strongly depends on the computation complexity of such cryptosystems. Even if the data integrity

checking is fast, the watermarking process is time consuming. We thus recommend protecting

block of tuples at once rather than working tuple by tuple. In the case of a large database, we also

suggest to divide it into small tables, associating consequently one journal to each table.

At least, our scheme is used by CSP in order to protect the data of his/her clients while other

schemes from the literature are under the control of the database owner to protect the integrity of

the data he/she externalized. Nevertheless, our scheme can be used by a data owner to protect his

data locally, i.e., on his own server/computer.

3.4.3 Computation complexity and watermarking capacity performance analysis

In both our static and dynamic watermarking scheme, the complexity of watermark embedding

mainly depends on Algorithm 2 (see section 3.3.3). At each of its iterations, one watermark

bit is embedded into one subset by multiplying the subset center element (an encrypted attribute

value) by the encrypted value of e while making varying the HE cryptosystem random value until

the vth bit of the cryptographic hash subset value matches the bit value to be embedded. Let
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3.4.3. Computation complexity and watermarking capacity performance analysis

Table 3.4: Computation time for watermark protection and integrity verification of a test database
of 4000 × 60 elements ( 4000 tuples of 60 attributes) as well as for encrypting with Damgård-
Jurik or ElGamal. SWHED, WUHED, DJCT and ECT represent the static watermarking of an
homomorphically encrypted database, watermarking of an updatable homomorphically encrypted
database, Damgård-Jurik computation time and ElGamal computation time.

Watermarking
method

Computation stage DJCT ECT

Database encryption 33 min 23 s 4 min 58 s
SWHED Database watermark embedding 9 min 44 s 2 min 47 s

Database integrity verification 16 s 31 s

Insertion of a Watermark in one added tuple 0.31 s 0.06 s
WUHED Watermark update if one tuple is suppressed 0.37 s 0.06 s

Integrity verification if one tuple is added 0.0033 0.006 s
Integrity verification for one suppressed tuple 0.0032 s 0.007 s

us recall that e is equal to 1 or 0 depending on the type of HE cryptosystem, i.e., additive or

multiplicative, respectively. As one encryption operation of the value of e is of higher complexity

than one multiplication, the watermarking computation complexity for one subset is bounded by

O(L) encryptions where L is the number of iterations. Since there is one in two chances that the

bit of the cryptographic hash value of a subset equals the watermark bit at each iteration, there are

L = 2 iterations in average. As a consequence, the subset watermarking complexity is bounded by

O(2) encryptions. Beyond, if we have a dynamic or a static database constituted of n subsets, the

computation complexity is thus bounded by O(2n) encryptions. The computations complexity

of the integrity verification procedure depends on the computation of the subset cryptographic

hash values of subsets. Compared to homomorphic encryption operations, the complexity of these

computations is insignificant. We provide in table 3.4, the computation time for protecting our test

database and for verifying its integrity when using Damgård-Jurik and ElGamal cryptosystems. It

can be seen that most computation costs are related to HE operations, especially when protecting

the complete database at once. In the dynamic case, the watermarking of one tuple is greater

than in static case. This is due to the fact that the system has to access and update the journal

Jt. In both static and dynamic cases, the integrity verification process is quite fast. Indeed, its

complexity mainly depends on the cryptographic hash computations. It can also be seen that in

terms of complexity the advantage is given to the ElGamal cryptosystem. Such results confirm

that the complexity of our watermarking scheme depends on the used HE cryptosystem.

In terms of watermarking capacity, our method embeds one bit of watermark per encrypted attrib-

ute subset. Based on the database partitioning algorithm given in section 3.3.3 (see Fig. 3.4) and

for a given table of N ×M elements (N tuples of M attributes), such a capacity K in bits can be

approximated by:

K ≈
⌊
s+ t+

s+ t+ M
4 + N

4
9

⌋
bits (3.21)

where b.c is the floor function, and s and t are such that

s =
⌊
M − 1

4 + 1
⌋
×
⌊
N − 1

4 + 1
⌋

(3.22)
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3.4.4. Security analysis

t =
⌊
M − 3

4 + 1
⌋
×
⌊
N − 3

4 + 1
⌋

(3.23)

Notice that it is possible to increase the capacity by using more bits of the subset hash value in

order to encode several bits of the watermark. If l bits are used, the non-detection probability of

a subset modification will obviously decrease (it will be (1
2)l). However, this will greatly increase

the computation complexity, Algorithm 2 will have to conduct in average 2l iterations to make

such embedding possible.

3.4.4 Security analysis

The database watermarking method we propose in this chapter allows CSP to conduct the integ-

rity verification of homomorphically encrypted databases accessed and updated remotely by their

owners. Its security depends on various primitives and on the knowledge of the scheme paramet-

ers.

Encryption operations are performed using an additive or multiplicative HE cryptosystems, the

security analysis of which have been well investigated in [103]. In our watermarking scheme, we

do not intrinsically modify these cryptosystems as only exploit their homomorphic and semantic

security properties. More clearly, there is no access to HE cryptosystems’ private parameters such

as the private keys and user’s clear data. Therefore, the level of confidentiality they offer is still

ensured. In addition, even if the attacker has access to secret watermarking parameters such as: the

secret watermarking key or the database partition, there is no other information he or she can get

from these parameters about private parameters of HE cryptosystem. Also, database watermarking

does not compromise the database decryption as watermark embedding does not modify clear data

thanks to homomorphic encryption.

Regarding database integrity, different attacks can be conducted by an attacker in order to com-

promise the integrity of a protected database. In the case of a static database, both database pro-

tection and integrity verification procedures depend on the secret watermarking key Kw. Without

knowing Kw, an attacker can not conduct database reorganization, its partitioning into subsets as

well as the cryptographic hash bits into which the watermark is embedded. Our dynamic water-

marking scheme being derive from the static one, its security is the same. As stated in section

3.3.4, the journal table Jt is encrypted using AES and decrypted when necessary by CSP for a

database update. As for HE cryptosystems, the security of the AES cryptosystem has been intens-

ively investigated [276]. Notice that AES is nowadays widely used in many applications. As a

consequence, an attacker must have access to the AES encryption key of the journal table so as to

break the confidentiality of Jt.

3.5 Conclusion

In this chapter, we have addressed the control of the integrity by the cloud service providers,

for encrypted outsourced databases. This is an important issue as illegal modifications of these

84



3.5. Conclusion

data can come from several sources such as transmission errors, unauthorized modifications from

sub-contracted service providers or attackers.

We have proposed a database watermarking scheme, the purpose of which is to allow the cloud ser-

vices providers to conduct the verification of integrity for homomorphically encrypted databases.

It takes advantage of the semantic security property of homomorphic encryption cryptosystems

in order to embed a watermark, a binary message into homomorphically encrypted databases.

By making use of this property, the proposed method embeds a binary message or watermark in

encrypted databases without altering user’s clear data. It can be deployed with partially homo-

morphic encryption cryptosystems (additive or multiplicative) as well as with fully homomorphic

encryption cryptosystems. Beyond, our watermarking method is dynamic, i.e., it is possible to pro-

tect encrypted databases while allowing data owners to conduct update operations such as tuple

suppressions, tuple additions or encrypted attribute value modifications.

By using two cryptosystems (the Damgård-Jurik cryptosystem which is HE additive and the El-

Gamal cryptosystem which is multiplicative), we have experimentally shown that our solution

provides high detection and localization performance capabilities. In addition, obtained results

show that the proposed method has a better localization performance for illegal modifications than

database watermarking schemes proposed for clear data. However, its performance depends on

the computation complexity of homomorphic encryption cryptosystems. We have also given a de-

tailed theoretical performance analysis of our method in terms of watermarking capacity, and we

have proposed how the watermarking capacity can be increased by using more bits of the subset

hash value in order to encode several bits of the watermark.

Finally, We have analysed the performances of our method by conducting a comparison of our

solution and the state if the art, especially methods that have been proposed for integrity control

of outsourced databases.
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CHAPTER 4

Privacy-preserving GWAS for rare
mutations

In chapters 2 and 3, we have seen that homomorphic encryption (HE) is one of strong mechanisms

that are used in protecting outsourced genetic data. This is to the fact that, it allows processing

on these data without decryption them. However, HE-based solutions still have an important

overhead in terms of computation and communication complexities. The objective of this chapter

is to overcome this issue by proposing a privacy-preserving GWAS solution that allows the secure

computation of association tests and achieves the same performances and accuracy as its nonsecure

version.

We have proposed a scenario where a Genome Research Unit (GRU) that has collected genetic

data from cases and wants to compare them against genetic data from controls collected by a

Genomic Research Center (GRC). This requires a data sharing between the GRU and the GRC

and this operation is usually performed in open environments. Data are being exchanged through

internet and often processed by a third-party such as cloud service providers (CSP). As we have

seen in previous chapters, this induces several security problems, especially in terms of privacy

and data confidentiality. In the method we propose in this chapter, GRC is positioned as as a proxy

between GRU and the CSP. By doing so, it is possible to use classical cryptographic mechanisms

so as to securely conduct association tests with no computation complexity increase, contrarily to

actual state of the art solutions. We recall that most of these solutions are of very high complexity

being based on homomorphic encryption, for instance. In particular, we show how sensitive data

confidentiality can be ensured with secret key based cryptographic hashing with no need to modify

statistical algorithms. In our solution, the CSP simply conducts statistical analyses on partially

hashed data. Secondly, we introduce a novel privacy constraint: GRU’s identity should remain

unknown to the server as this knowledge can give it clues about GRU’s data (e.g., diseases and

genes of interest). We exhibit how Pretty Good Privacy (PGP) can be used to solve this problem,

and we illustrate our protocol in the case of one rare variant association test, the Weighted-Sum

Statistic (WSS) algorithm, carried out on real genetic data.

In the first time, we will explain how the proposed solution works for privacy-preserving WSS

algorithm. In addition, we have analysed communication and computation complexity of solution
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before conducting its security analysis.

4.1 Overview on related works and our contributions

Securing shared or externalized genetic association studies does not simply mean securing the

storage and transmission of genetic data [212, 278]. Indeed, parties involved in such studies may

not want that the other parties access their data, the objective and the conclusions of the study,

these ones being highly valuable assets. At the same time, the trust one can have in a cloud

service provider is quite relative. Thus, it is the data analysis algorithm itself and the way it is

shared between parties that have to be secured. As presented in Chapter 1, Section 1.2.2.4, dif-

ferent methods have been proposed in order to perform privacy-preserving association studies,

especially for common variants (these studies are usually referred to as Genome-Wide Associ-

ation Studies, GWAS). We refer the reader to Section 1.2.2.4 and table 1.3 for more details about

privacy-preserving GWAS methods. We recall that these methods are based on different cryp-

tographic techniques such as Differential Privacy (DP), Homomorphic Encryption (HE), Secure

Multiparty Computation (SMC) and Secure Hardware Computation (SHC).

Most HE cryptosystems that have been used are fully homomorphic (they allow the computation

of both addition and multiplication), like BGV, YASHE and FV. Due to their complexity, some

other works have been proposed to exploit the Paillier cryptosystem which is only additive. Other

encryption algorithms that have been used are AES and Lightweight computational footprints

(cryptosystems with low computation complexity). It is also important to notice that all these

proposals do not consider mutualizing genotypes. At the least, parties share frequency tables,

after having computed them locally on their respective data, that is to say without sharing these

data into a unique server for instance. Moreover, all the methods developed so far considered

single marker tests where each marker (SNP) is tested individually. These tests are not useful with

rare variants as they will lack power. Only in [251] is the case of rare variants considered but the

solution proposed is to still test for association at the single locus but use exact logistic regression

to deal with parse data. None of the methods proposed solution to perform rare variant burden test

at the gene level.

In this chapter, we present a new secure GWAS protocol adapted to various GWAS statistical

analysis, especially iterative ones based on large sets of genotypes provided and shared by different

parties in open and nonsecure environments. We were particularly interested by the analysis of

sequence data and testing association with rare variants since sequencing data are more informative

than genotyping data used to test for association with common variants and considered in all the

previous studies. Rare variants that can even be private to a single individual more easily allow

individual identification than common variants. To test for association with rare variants, they

need to be considered in group within a gene and a score is computed to measure the rare variant

burden in each individual and scores are then compared between cases and controls. The Weighted

Sum Statistics (WSS) is an example of method commonly used to test for association between

rare variants and disease. Like in common outsourced GWAS studies, this protocol considers

three distinct entities: a Genomic Research Unit (GRU) with genomes of individuals presenting
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Figure 4.1: PGP encryption on the Sender side.

a phenotype (case) who wants to conduct association studies in collaboration with a Genomic

Research Center (GRC) who possesses genomes of healthy people (used as control), using the

large computation of a cloud service provider (Server).

In our framework, in addition to the common security constraints (all entities are considered as

honest but curious (HBC); none of the parties want to disclose their confidential data), we intro-

duce a new constraint: GRU does not want to be identified by the Server. This constraint takes into

account the fact that most genomic research units are known for the diseases they are studying.

Under the HBC model, this information can for example give clues to an attacker about the name

of a gene and its expression for the individuals considered in a study.

The protocol we propose responds to these constraints and more. One originality stands on the fact

that GRC serves as an intermediary, similarly to a proxy, in communications between all entities.

By doing so, and as we will see, it becomes possible to come back to classical cryptographic tools

in order to secure the WSS algorithm, or any algorithm working in a similar way. In particular, our

solution takes advantage of the combination of Pretty Good Privacy (PGP) encryption with secure

cryptographic hash Functions. Our main idea is that GRC and GRU ensure data confidentiality

with the help of secure hash functions salted with a secret key. By using the same hashed data

values, GRC and GRU allow the Server to conduct WSS counting operations on their data without

accessing to their clear text values. More clearly, Server will run WSS on partially hashed data.

On its side, PGP is used to secure communications while considering GRC as proxy. As we

will see, GRC will never access GRU data while Server will never know GRU’s identity nor

his confidential data. Compared to actual solutions, our protocol preserves data and WSS result

confidentiality with no WSS computation complexity increase. It can be extended to any statistical

analysis equivalent to WSS, being iterative or not.

To go further, we extend our proposal under the malicious security model. It is important to no-

tice that all papers listed in table 1.3 as well as the vast majority of privacy-preserving GWAS

solutions, only consider the semi-honest security model where it is assumed that parties will not
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Figure 4.2: PGP decryption on the Receiver side.

alter data. This model is less constraint-full than the malicious model, and leads to computation

and communication complexities of lower orders of magnitude. We suggest considering the case

where Server is a malicious adversary, that is to say, it can deviate from the protocol and fails the

correctness of the output or the input. To overcome this issue, we propose a practical counter-

measure based on the zero-knowledge protocol, capable for instance to detect if a malicious server

modifies the result of a GWAS study.

4.2 Preliminaries

4.2.1 Pretty Good Privacy Encryption

Pretty Good Privacy (PGP) is a well-known secure protocol adapted to the exchange of a large

volume of data between two parties. It relies on the combination of a public key encryption (PKE)

with a symmetric encryption cryptosystem. As given in Fig. 4.1, to send a message with PGP,

the emitter first symmetrically encrypts it with a secret key. The same key will be used during the

decryption process (see Fig. 4.2). Then, it asymmetrically encrypts this secret key by the recipient

public key and sends both pieces of information (i.e., the symmetrically encrypted message and

the asymmetrically encrypted secret key). On its side, the recipient first accesses the secret key by

asymmetrically decrypting it using his private key. It just has to use this key to finally get access

to the message. In this work, PGP is implemented with RSA [279] and AES [123] algorithms, two

well-known PKE and symmetric encryption cryptosystems, respectively. RSA is parameterized

by a pair of keys (Kp,Ks) where Kp is the public key and Ks the private key while the secret key

of AES is noted by KAES . For a given message m and a recipient A, the PGP encryption is such

as

(me,Ke) = PGP(m,KA
p ,KAES) (4.1)
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Figure 4.3: Aggregation of cases and controls tables, i.e., of GRU .WSS and GRC .WSS respect-
ively, in order to produce the WSS table that servers will use as input of the WSS algorithm.

where me is the AES encryption version of m and Ke is the RSA encryption of KAES . m is

retrieved from me as follows:

m = PGP−1(me,Ke,KA
s ) (4.2)

4.2.2 Weighted-Sum Statistic algorithm (WSS)

WSS is one commonly used rare variant association test that was designed to identify the associ-

ation between a phenotype and rare variants located in a region of the genome (e.g., gene) using

sequence data on cases and controls [280]. WSS tests whether there exists an enrichment in rare

variant in a gene of interest in cases compared to controls. The input data are two WSS tables.

One contains case data, extracted from the database of the Genomic Research Unit (case table:

GRU.WSS), and the second table contains control data provided by the Genomic Research Cen-

ter (GRC.WSS). As shown in Fig. 4.3, both tables hold the information about genetic variants

for one or more individuals. One line corresponds to one variant uniquely indexed or identified

by: the chromosome (CHR) where it is located; its position in this chromosome (POS); the ref-

erence allele (REF ); the alternate alleles (ALT ); and, the name of the gene (GENE). Following

these five columns is the list of genotypes for the sample of individuals (see Pi and P ′j in Fig. 4.3).

The genotype of a patient at a given position is given by a positive integer indicating the number

of alternate alleles the patient has. "0" indicates that both chromosomes of this patient contain the

reference allele at this position, "1" indicates that the individual is heterozygous with one REF and

one ALT and "2" indicates that the individual is homozygous with 2 ALT alleles. If data is missing

then the value is "-1".

The WSS algorithm requires first to select genetic positions within the gene where there are vari-

ants of interest (based on their predicted effect on the gene protein product and on their frequen-

cies) and then to construct a genetic score for each individual based on their genotypes at these

different genetic positions and to contrast these genetic scores between cases and controls. To
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better explain how the WSS algorithm works and its complexity, let us consider one gene that

contains v genetic positions where there are variants of interest. The first step consists in merging

GRU.WSS and GRC.WSS tables in a single WSS table. To do so, and as illustrated in Fig. 4.3,

individual information on the same variants are grouped together. Genetic scores are then com-

puted as a linear combination of the number of rare alleles carried by the individual at each of the

v variants weighted by the minor allele frequency at this position in the control group. The idea

is to give more weight to the least frequent variants since these variants are expected to be more

often deleterious and thus more likely involved in disease. All individuals affected and unaffected

are ranked according to this genetic score and the sum of ranks Sobs for affected individuals is

calculated. To test the null hypothesis H0 that the gene is not associated to the disease, a per-

mutation procedure is then used where the case/control status are permuted between individuals

N times and the sum of ranks Srep is recomputed each time to obtain the distribution of S under

H0. A p-value which is the probability to reject H0 given H0 is true is estimated by determining

how many time the Srep value obtained on the permuted data exceeds Sobs. The null hypothesis

is rejected if this p-value is less than a fixed threshold value α. Since many different tests are

performed, it is necessary to account for multiple testing and fix a very small α value, typically

in the range [10−5, 10−8]. The WSS algorithm works in four iterative steps. We herein describe

them in details in order to give an idea about WSS complexity.

1. For each variant i ∈ {1, 2, · · · , v}, we calculate a weight wi that depends on the allele

frequencies

wi =
√
niqi(1− qi) (4.3)

where: ni is the number of individuals genotyped for the ith variant (cases and controls),

qi = mi+1
2di+2 where di is the number of control individuals genotyped for the ith variant, and

mi is the number of minor alleles observed at the ith variant in the control individuals.

2. A genetic score is computed for each individual j:

sj =
v∑
j=1

gij
wi

(4.4)

where gij is the genotype of individual j for the variant i (it takes values 0, 1 or 2 depending

on the number of minor alleles).

3. Individuals are ranked accordingly to their genetic scores (sj) and the rank sum x for af-

fected individuals (cases) is calculated

x =
∑

j∈Cases
rank(sj) (4.5)

4. A standard permutation test [281] is used to compute an empirical p-value. The statuses

(case/control) are permuted for all individuals and steps 1 to 3 are repeated k times to obtain

k rank sums x1, x2, · · · , xk. These values are compared to the observed rank sum x and the

number of permutations k0 where it exceeds x are determined to obtain the p-value:

p − value = k0 + 1
k + 1 (4.6)
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Figure 4.4: General framework of outsourced GWAS-WSS

where k0 is the number of permutations that give a rank sum xl at least as extreme as x, and

k is total number of permutations (this is a number that will determine the maximum level

of significance that can be reached).

4.3 Proposed privacy-preserving WSS algorithm

4.3.1 General GWAS framework and threat model

The scenario considered in order to conduct an outsourced GWAS study is described in Fig. 4.4

where both GRUs and GRC send their data to a server. Once Server has performed the computation

and obtained the p-value results, it sends them to the GRUs. In such a framework, and as seen in

section 4.1, different threats have to be considered. Beyond common security needs such as data

confidentiality, integrity and availability [282], data privacy is of major concern.

The GRU .WSS , GRC .WSS and WSS tables contain pieces of information that can be used to

identify individuals [80]. Indeed, they provide the genotypes of several individuals for a set of

variants, identified by their position (POS) on a specific chromosome (CHR) (see Section 4.2.1

and Fig. 4.3). Moreover, information is provided on the gene that contains the variants. As a

consequence, CHR, POS as well as GENE are very sensitive pieces of information from a privacy

point of view. They constitute a potential leak of information with important consequences for an

individual and his/her relatives and penalties for institutions [76]. Nevertheless, it is important to

notice that knowing genotypes with no information about the gene, the chromosome or the variants

they belong to, it is not possible to infer information about individuals. The result of a WSS test

along with the knowledge of the gene GRU is interested in, also leak important information [282].
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Figure 4.5: Our secure GWAS-WSS framework.

Unfortunately, in the classic framework depicted in Fig. 4.4, Server knows the identity of GRU,

by definition. As a consequence, it has clues about the disease the GRU study focuses on, and so

knows the p-values that measure the degree of association between all genes and this disease. This

can both lead to patient re-identification (if data were taken from a database related to this disease)

and to an intellectual property breach about the association of the gene X with the disease Y . As

we will see in the next Section 4.3.2, we propose a novel architecture to overcome this problem.

It is important to notice that, in a WSS study, even if the server has some knowledge about the

study results (i.e., p-values) and about unlocalized WSS genotypes, it can not infer significant

information without knowing details about the variant and the gene name.

Beyond the sensitivity of WSS data, in our framework, we further assume that first GRC and

Server are honest but curious and that they do not collude. More clearly, both of them may try to

infer information about confidential data but they will not exchange information they have to keep

secret.

To sum up the above discussion, to outsource a WSS computation in such an open environment,

the following security constraints have to be considered:

1. Confidential data of GRU (resp. GRC) that can help to identify individuals should not be

disclosed to GRC (resp. GRU) and Server.

2. Server should have no idea about the gene GRU is working on, nor on the GRU identity.

3. GRC should not know the results of the WSS (p-values of a set of genes) due to the fact it

knows the GRU identity and thus the disease the GRU might be interested in.
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Figure 4.6: Different steps of our secured WSS protocol in the case of one gene.

In the next section, we propose a new framework that satisfies these constraints while securing the

WSS algorithm. As we will discuss in Section 4.3.2, the following framework can be extended

to any other statistical analysis processes close to WSS, these ones being also concerned by the

above constraints and using the same type of inputs.

4.3.2 Proposed secured WSS algorithm

The implementation of our framework will guarantee that all point-to-point communications in-

between parties are secured with common security mechanisms (e.g., user authentication, access

control policy, firewalls, SSH protocol and so on). Furthermore, in order to escape a man-in-the-

middle attack, we assume that the key setup works correctly and that all entities obtain the correct

encryption key which can be enforced with appropriate use of Certificate Authorities and/or a

Public Key Infrastructure.

As stated above, the framework we propose takes into account a new constraint: Server should

not be able to identify GRU, as this knowledge can give clues about the possible disease of the

genotyped individuals. To achieve this goal, and as depicted in Fig. 4.5, we suggest that GRC plays

the role of a "proxy" between GRU and Server. More clearly, all communications from GRU to

Server and from Server to GRU go through GRC. Server thus has no idea about the GRU. In this

situation, we take advantage of PGP in order to ensure the confidentiality of GRC’s data. To do so

and as explained in Section 4.2, GRU firstly AES encrypts his data based on an AES secret key

it generates and, then sends these data along with the AES secret key asymmetrically encrypted

with the Server RSA public key. Only Server will be able to access the AES key and consequently

decrypt the data. Server can conduct this task without knowing the identity of GRU. As GRC

has no knowledge of the AES key nor Server’s Private Key, it is unable to decrypt GRU data
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while transmitting them to Server. The second important point to manage is to make it possible

for Server to compute the WSS algorithm without being able to identify the variants of GRU and

GRC. To ensure the confidentiality of GRC and GRU variants, the confidential attributes CHR,

POS, REF , ALT and GENE values in GRC .WSS and GRU .WSS tables are substituted

by secret hashed values, computed with a cryptographic hash function based on a secret hash key

Khash GRU and GRC previously agreed on through the use of a secure channel of communication.

This step allows the creation of secured WSS tables without compromising GRU and GRC data

security. Notice that genotype data in GRC .WSS and GRU .WSS are not modified. As seen in

Section 4.1, this does not endanger individual privacy as Server does not know the real variant’s

genetic location and alleles.

In the following, we give more details about this protocol when only one GRU collaborates with

GRC to conduct a WSS study, but it can easily be extended to support several GRUs. If GRC

provides several data sets, it is of course essential that GRU selects the one most suited to its

analysis and especially that cases and controls are matched on ethnicity to limit population strati-

fication bias. Thus, let us consider that one GRU wants to perform a WSS study with GRC for a

specific gene so as to see if this latter is associated to a phenotype. Prior to any security considera-

tion, we assume that GRU and GRC have followed common guidelines to produce their data, and

that similar quality controls have been applied on the data. Let us also assume that Server has a

RSA pair of key (KS
p ,K

S
s ). The main steps of our protocol which are depicted in Fig. 4.6 works

as follows:

1. Secret hash key management: GRC and GRU first have to agree on a unique secret hash

key Khash using a secure key exchange protocol like the SFTP protocol [283].

2. Data confidentiality: GRU and GRC substitute the confidential attribute values in their

WSS tables (i.e., GRU .WSS and GRC .WSS , respectively), by secure hash values using

the secret hash key Khash. More clearly, taking GRU .WSS as example, GRU computes:

hash(CHRi||POS i||REF i||ALT i||Khash)

||hash(GENE ||Khash) =

vHi ||hash(GENE ||Khash) = hi

(4.7)

where the confidential attributes CHRi, POS i, REF i, ALT i and GENE constitute what

we name in the following the variant vi. It can be noticed that in (4.7), we concatenate the

secret hashes of the variant confidential attributes with the one of the gene (i.e., ”GENE”).

This is due to the fact WSS computes one p-value per gene and not per variant (see Section

4.2.1). Server has thus to be able to discriminate the variants located on the same gene. In

the case GRU just wants to study one gene, then hi can be refined in

hash(CHRi||POS i||REF i||ALT i||Khash) = vHi

= hi

The resulting hash tables are referred to as GRU .WSSH and GRC .WSSH . An example of

this process is given in Fig. 4.7. Finally, GRC sends its hashed table GRC .WSS to Server

95



4.3.2. Proposed secured WSS algorithm

3. Data transmission-

a) GRC to Server: GRC sends GRC .WSSH to Server. Due to the fact that the com-

munication between GRC and Server is point-to-point, and by definition secured (see

above), there is no need to use PGP.

b) GRU to Server: GRU securely sends its secured table GRU .WSSH to Server using

PGP. To do so, it generates the PGP symmetric key KGRU
AES . Then it entirely PGP

encrypts them, that is to say (see Section 4.2.1).

(GRU .WSSH,e,Ke) =

PGP(GRU .WSSH ,KS
p ,K

GRU
AES )

where KS
p is the Server RSA public key. Next, GRU sends (GRU .WSSH,e,Ke) to

Server through GRC so as to preserve its privacy.

4. WSS computation- When Server receives

(GRU .WSSH,e,Ke), it first decrypts the AES key KGRU
AES from Ke using its RSA secret

key KS
s . Then, it AES deciphers GRU .WSSH,e to get access to GRU .WSSH . Server also

gets the data from GRC. As shown in Fig. 4.7, Server creates the WSS hashed table (WSSH )

from GRU .WSSH and GRC .WSSH (see Section 4.2.2). Due to the fact that genotype data

are not encrypted, Server can directly apply WSS on WSSH . Indeed, the WSS algorithm is

not modified. It will simply work with hashed values instead of real values, by comparing

hashed values of genes to group variants and hashed values of variants to group genotypes.

5. Transmission of WSS result- Once Server obtains the WSS results, that is to say the Gene’s

WSS p-value (see Section 4.2.2), it AES encrypts it using the GRU AES key (KGRU
AES ) and

sends it to GRU through GRC. Finally, GRU just has to decrypt this piece of data using the

same AES Key to get access to the results of its WSS study. By doing so, its identity is

never revealed to Server.

Notice that, in the case GRU wants to analyze several genes, it will receive as many p-values from

Server. In order to generalize this approach to more than one GRU willing to pool their data for

more powerful statistical studies, all GRUs will follow the same steps as above:

i) They hash their sensitive data (variants) by using GRC secret key Khash. Since all of them have

access to the public key of Server, they encrypt their WSS table with PGP parameterized with their

respective AES key and the public key of Server.

ii) The encrypted data are sent to Server through GRC.

iii) As shown in Fig. 4.5, Server decrypts the PGP encrypted WSS .GRU tables and merges them

with the WSS .GRC table.

iv) Finally, Server runs the WSS algorithm, encrypts the results using the AES Key of each GRUs

before sending it through GRC. The results received by each GRU contains only the p-values

associated to the genes that particular GRU provided.
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No: 

Confidential data (𝒗) Genotypes 
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𝑾𝑺𝑺𝑯 Table 

 

No: 

Confidential data (𝒗′) Genotypes 

CHR POS REF ALT GENE 𝑷′𝟏 𝑷′𝟐 

𝒗′𝟏 1

  

887651 A G NOC2L 0 1 

𝒗′𝟐 1

  

887651 C T NOC2L 2 1 

Figure 4.7: Creation of the secure WSS table from the hashed versions of GRU .WSS and
GRC .WSS . hi and h′i represent the hash values of vi and v′i, respectively.

4.4 Experimental results and discussion

The proposed secure GWAS framework was tested on real genetic data: exome data were com-

pared between (1) 100 healthy individuals from the FrEx project [284] that served as GRC control

data and (2) 59 individuals affected by a rare disease sequenced independently to the FrEx data

(GRU cases). Cases and controls were sequenced on the same platform (CNRGH, Evry, France)

at different times and using the Agilent SureSelect Human all exon V5 capture kit for the cases

and the Agilent SureSelect Human all exon V5+UTR capture kit for the controls. Sequence data

were processed using the exome analysis platform developed at CNG, which follows GATK best

practices. Coverage/depth statistics were as follow: for each sample a minimum of 20X coverage

for 80% of the targets was obtained and the average sequencing depth was of at least 70 to 80X.

Polymorphism detection for each sample was performed using read mapping procedure onto the

reference genome (hg19) followed by "SNP calling" algorithm implemented in GATK/samtools

software. Stringent quality controls were performed after variant and genotype calling. Only gen-

otypes with min GQ≥ 20 and min DP≥ 10 were kept and the other genotypes were set to missing.

Variants failing any of the following thresholds in any of the two datasets were discarded from

both GRC and GRU datasets: min callrate≥ 0.9, HQ variants (as define in ExAC : 80% of gen-

otype with DP > 10 & GQ> 20, at least one variant genotype with DP> 10 & GQ> 20), min

QD≥ 2, min inbreeding coef≥ −0.8, ABhet in the range [0.25; 0.75], min MQRanSum≥ −12.5,

max FS≤ 60 for SNV or ≤ 200 for INDEL, max SOR≤ 3 for SNV or ≤ 10 for INDEL, min

MQ≥ 40 for SNV or ≥ 10 for INDEL, min ReadPosRankSum≥ −8 for SNV or ≥ −20 for IN-

DEL. Note that each party is expected to perform this same QC on its own dataset and send to the

other party the list of variant sites excluded (only chromosome, position, reference and alternative

alleles and no individual data).

In our example, a total of 11196 genes contained at least two qualifying variants and were tested

for association. Qualifying variants kept in the analysis were those with an expected effect on the
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Table 4.1: Computational costs of the WSS algorithm with and without parallelism.

Number of gene Parallel WSS algorithm (56 cores) Standard WSS algorithm p− value k0 number of permutations (k)

1 20.22 s 14 min 5.504e-5 5 109000

encoded protein (i.e., variants that were annotated as transcript ablation, splice acceptor or donor,

stop gained or lost, start lost, frameshift, inframe insertion or deletion and missense) and variants

with a Minor Allele Frequency below 0.05. To compute the genetic score, missing genotypes were

replaced by the most frequent genotype in the sample at the variant position. The WSS algorithm

was run on each gene with a maximum of 109 permutations, and the overall runtime was 10 hours

and 18 minutes on a server with 56 processors at 2.40 GHz and 512 GB RAM running on Ubuntu

16.04 LTS. Since in our implementation no encrypted data are used in the actual computation,

runtime is the same as in the classical implementation of the algorithm. The only difference is

an overhead of a few seconds to hash, encrypt and decrypt the input tables. Furthermore, the

WSS p-values obtained for each gene are similar to the ones obtained from doing the same test on

non-distributed data.

To determine if batch effects could be a concern linked to the fact that cases and controls were

not sequenced together, we produced the corresponding QQ-plot as suggested in different works

[285–287] and we computed an inflation factor [288]. This inflation factor was obtained by trans-

forming the observed p-values into one degree-of-freedom χ2-statistic and computing the median

of these values divided by the expected median of the corresponding one degree-of-freedom χ2

distribution.

Visual inspection of the QQ-plot (see Fig. 4.8) suggests that the stringent QC performed was

efficient at correcting for batch effects and it even leads to conservative results with an inflation

factor below 1 (λ = 0.75). This was however a favorable situation as cases and controls were

sequenced on the same platform with capture kits that were only slightly different.

4.4.1 Computation and communication complexity

On the GRU and GRC sides, the computation complexity corresponds to the WSS table hashing

and encryption processes. Notice that SHA256 and AES computation complexities are low and

increase linearly with the size of the WSS table. To give an idea, it takes about 0.53s to both hash

and to AES encrypt the WSS table of 406 genes and 733 patients. Regarding Server, this one

has to: 1) decrypt the GRU .WSS table, 2) merge GRU .WSS and GRC .WSS into the complete

WSS table and 3) perform the WSS algorithm before AES encrypting the WSS results. Here, the

complexity of step 2) and 3) are the same as working with data in their clear form. The complexity

overhead stands on the AES decryption of WSS tables; complexity which is quite close to the AES

encryption process. We give in Table 4.2 experimental computational time of our solution where

it can be seen that the time and the accuracy performances of secure WSS as well as the nonsecure

WSS are the same.

One can also notice in this table 4.2 that our WSS implementation was parallelized in order to

increase its speed. As seen in Section 4.2.2 after computing the rank sum x at the step 2, the status
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Figure 4.8: Quantile-Quantile plot of the WSS test p-values obtained when comparing exomes
from 59 cases coming from one project against 100 controls coming from another project. Cases
and controls were sequenced on the same sequencing platform but at different times and using dif-
ferent capture kits. The same variant calling pipeline was used and stringent QC were performed.
Results are presented for each of the 11196 genes that contain at least two qualifying variant for
the association test. The genomic inflation factor is λ = 0.75.

(case/control) is permuted k times so as to compute the p-value.

To take advantage of a server with multiple processing units (e.g., PU1, · · · , PUn), this permuta-

tion test can be separated into k/n parts of n permutations, namely {x1,j , · · · , xn,j}j=1..k/n where

xi,j is the jth rank-sum permutation computed at processing unit PUi (see Section 4.2.2). As the

processing units PU1, · · · , PUn can run in parallel, the p-value computation at step 4 (see Section

4.2.2) becomes as follows:

p − value =

k/n∑
j=1

n∑
i=1

(x > xi,j) + 1

k + 1 (4.8)
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Table 4.2: Computational time of parallel Secure WSS algorithm vs nonsecure parallel version for
406 genes and 733 individuals

Number of Genes Hashing and encryption Time WSS algorithm Time (Clear form) Time (Secure WSS)

406 0.53 s 4 days 4 days

where k is the number of permutations. Therefore, the use of parallel computation significantly

increases the WSS algorithm speed, as experimentally shown in Table 4.1.

The communication complexity of our secure WSS algorithm for GRU or GRC is bounded by

O(n) bits where n is the size in bits of the WSS table. Compared to the nonsecured WSS al-

gorithm, the communication overhead corresponds to the size of the hash key Khash and to the

RSA encryption of the AES key. This overhead does not depend on the size of the WSS table and

is very small. Therefore, it is negligible compared to the rest of the WSS data to transmit.

4.4.2 Discussion and security analysis

The following analysis considers the semi-honest adversary model where it is assumed that parties

involved in the protocol do not collude but try to infer information about sensitive data; that is to

say GRU and GRC data. In our scheme, the confidentiality of WSS tables during their com-

munication is ensured by the AES cryptosystem, the security of which has been demonstrated

in [123]. GRC will never have any clues about the GRU data, these being PGP exchanged with

Server. Once decrypted on the Server side, the confidentiality of the sensitive attributes of these

tables (e.g., CHR, POS,GENE and so on, see Section 4.3.2) stands on the secure hash function

SHA256, the security level of which has been investigated in [275]. It is not possible for Server to

retrieve the original sensitive attribute values from their hash values without the knowledge of the

hash Key. This key is only known from GRC and GRU. Notice that, the fact GRC sends several

times its data to Server for different studies is not a problem at the condition a new secret hash

key is used. Doing so makes the computation of SHA256 values semantically secure (i.e., the

same variant has different hashes values for distinct studies). Notice that, as GRC has no know-

ledge about GRU AES key (KGRU
AES ), it can not access to the hashed GRU table nor to the results

provided by Server.

Beyond data confidentiality, one must also consider statistical inference techniques that can be

used for the re-identification of genetic data donors. These attacks have been extensively investig-

ated [237]. They depend on the a priori knowledge one can have of the frequencies of genotypes

for given variants or a gene. Homer et al [80] showed that inference techniques could be used to

identify the presence/absence of an individual in a genomic dataset from aggregate statistics (e.g.,

allele frequencies). In [76], authors presented an attack for genetic data sharing beacons (publicly

available genomic databases). This attack aims at seeing if an individual is in a beacon or not. To

do so, they assume that the attacker has the genomic profile of an individual and a VCF file [48]

listing all the variants for this individual. From the variants, and more specifically from the het-

erozygous alternate alleles of the victim, the attacker generates some queries he next addresses to
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the beacons. Based on the responses, he conducts a statistical hypothesis test so as to decide if the

victim is present in a particular beacon.

In our framework because GRU and GRC hash their confidential variants’ values, Server is not

able to conduct such an attack. In fact, Server has no idea about the variants and the genes being

evaluated. This statement is valid at the condition GRU or GRC do not collude with Server.

For instance, if Server and GRC collude, they have access to the AES and hash keys and can

consequently breach GRU data confidentiality. Nevertheless, it is hard to believe that GRC or

Server would collude, as their reputations are invaluable assets.

Although Genomic Research Units (GRUs) are known for the diseases they are working on, that

is to say the genes that they more frequently focus on, Server cannot deduce any clues from GRU

identity due to the fact Server only communicates with GRC; GRC which acts as a proxy.

To go further, one can notice that all papers listed in table 4.3, as well as the vast majority of

genome privacy solutions, only consider the semi-honest security model. This one assumes that

all entities involved follow the protocol and will not try to alter data or the result of a process. At

the same time, under this model, solutions are significantly easier to instantiate with computation

and communication of smaller complexities than under the malicious model. Under this latter

model, there is no guaranty that the association test or patient information are not going to be

altered. For instance, Server could modify the WSS algorithm or change the correct value of the

p-value. To overcome this issue and to extend our framework under such a malicious model, we

propose a zero-knowledge protocol. In this one, GRC sometimes plays the role of GRU and GRC

at the same time. By doing so, GRU sends to Server both the GRU.WSS and GRC.WSS tables

for which GRC has already the knowledge of the result (i.e., the p-value). If GRC finds that the

p-values computed by Server did not match the pre-computed p-values, it can then deduce that

Server is malicious.

It is important to notice that our framework is not limited to secure WSS association tests, it

can easily be extended to any other GWAS statistic algorithms that rely on the same kind of

data. CAST, SKAT [289] and SKAT-O [290] are association tests that can be implemented in our

framework. Another useful method that could be implemented is Principle Component Analysis

(PCA). This statistical method, run before the GWAS algorithm itself, can ensure that the merged

dataset can be used to perform such an analysis. Indeed, a PCA where GRU and GRC data are

separated indicates that any signal obtained through GWAS is unreliable and results from divergent

quality of the data or population stratification.

The pieces of data they rely on and which are sensitive from a confidentiality/privacy point of view

can also be replaced by secure hash values.

4.5 Comparison to the existing solutions

Comparing in terms of performance our framework with other proposals from the literature is a

nontrivial task because each work in the genome privacy does not necessarily secure the same

process. For this reason, we compare whenever is possible the secure versions to the nonsecure
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versions of the same functionality. Inspired by [291], we choose different criteria aiming at cap-

turing different aspects related to security, efficiency, and data utility. They correspond to:

4.5.1 Performance Criteria

• Privacy Overhead. It quantifies the overhead introduced by the security mechanisms used

to secure an association test. All solutions given in table 4.3 have been analyzed in order

to assess their efficiency in terms of communication, time and storage overhead in com-

parison with their nonsecured counterpart. We quantify these performances by means of

three values: Communication - L.C.O: Low Communication Overhead vs. H.C.O: High

Communication Overhead; Storage - L.S.O: Low Storage Overhead, H.S.O: High Storage

Overhead; Time - L.T.O: Low Time Overhead, H.T.O: High Time Overhead.

• Utility Loss. This criterion evaluates the impact of privacy tools on the utility of the asso-

ciation test. This measurement also includes the overall flexibility of the proposed solution

with the intended task. We quantify the utility loss on two levels: High or Low.

• Security model. It indicates which security model has been considered by the authors:

semi-honest model or malicious model.

As shown in table 4.3, all methods based on differential privacy (DP) induce a utility loss com-

pared to the same process over clear data. This is due to the fact these schemes add a noise to

the data. Homomorphic encryption (HE) can help to solve this problem but at the price of sig-

nificant computational and storage overheads. Most of the time, they are impractical for real life

applications [21]. Secure multiparty computation (SMC) constitutes a nice alternative due to its

lower computational overhead. However, garbled circuit-based need complex and optimized cir-

cuit design limiting its flexibility and usability, greatly. On its side, secret sharing involves huge

communication overhead and is not suitable for client server architecture. Secure hardware-based

approaches, like SGX based techniques, isolate sensitive data into a protected enclave for secure

computation. However, they remain sensitive to side-channel attacks [231]. Notice that the full

extent of SGX security has yet to be explored.

Compared to the previous solutions, our framework is based on PGP and SHA256, two crypto-

graphic mechanisms of very low complexity, contrarily to HE. Furthermore, we do not intrinsic-

ally modify the association test algorithm. Sensitive data in terms of confidentiality are substituted

by secret hash values. Thus, and as shown in Section 4.3, our framework preserves the accuracy

of the association test. That is not the case of DP [233, 239, 240]. Server can also conduct the

WSS algorithm without the need of additional communication as required in approaches based

on SMC [20, 243–247] or to encrypt homomorphically the genotypes as proposed in [17–20, 248]

which leads to high computation and storage complexity. Thus, our solution has no loss of accur-

acy and insignificant overheads (in memory, computation and communication) compared to the

original WSS algorithm.
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Table 4.3: Comparison of the most representative genomics privacy methodologies. Columns correspond performance criteria. Meaning of the acronyms:
(Security) - Sh - semi-honest model - NC Noncollude model; (Overhead) L.S.O: Low Storage Overhead, H.S.O: High Storage Overhead, L.T.O: Low Time
Overhead, H.T.O: High Time Overhead, L.T.O: Low Communication Overhead, H.T.O: High Comminication Overhead.

References Security Model Security Mechanisms Overhead Utility Loss
[233, 238, 239, 241, 242] – DP L.S.O, L.T.O, L.C.O High

[243] SH, NC Secret sharing L.S.O, H.T.O, H.C.O High
[244] SH Garbled circuit L.S.O, H.T.O, H.C.O Low
[245] SH Secret sharing, Lightweight computational footprints L.S.O, H.T.O, H.C.O High
[246] SH, NC Secret sharing L.S.O, H.T.O, H.C.O Low
[247] – Secret sharing L.S.O, L.T.O, H.C.O Low
[251] SH BGV H.S.O, H.T.O, H.C.O Low
[16] SH, NC FHE H.S.O, H.T.O High
[18] SH BGV, YASHE H.S.O, H.T.O High
[17] SH BGV H.S.O, H.T.O High
[19] SH BGV H.S.O, H.T.O, L.C.O Low
[20] SH Secret sharing, Blinding, FV H.S.O, L.T.O Low
[230] Malicious AES-GCM, SGX L.S.O, L.T.O, L.C.O Low
[252] Malicious AES-GCM, SGX L.S.O, L.T.O, L.C.O Low
[248] SH Paillier, SGX H.S.O, L.T.O, H.C.O Low

Our work SH or malicious, NC Hash, AES L.S.O, L.T.O, L.C.O Low
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4.5.2 Statistical Power Criteria

Implementations of secured association tests proposed in the literature have considered single

variant association tests that are mostly performed on genotyping data. In our work, we have

considered rare variant association tests where, rather than testing each variant individually, we

grouped them within a unit of analysis, here the gene. Rare variant association tests explore al-

ternative genomic architectures for common diseases than the classical «common disease-common

variant» model that was considered before. Indeed, different real examples and simulation stud-

ies have shown that rare variants might contribute more than common variants to common dis-

eases [292]. To study the impact of these rare variants on disease susceptibility, it is necessary

to sequence the genome of individuals and the sharing of sequence data is even more problem-

atic than the sharing of genotyping data since sequence data contain information on all the genetic

variants present in an individual genome including deleterious variants possibly involved in mono-

genic diseases that the individual could develop in the future and could transmit to offspring. It

is therefore important to specifically address the problem of rare variant association tests as we

have done here in a general framework that could also integrate common variant tests. This is the

case in our proposed framework that could easily be extended to include other statistical tests and

measures considered in previous works such as χ2-statistic, Fisher’s Exact Test, Logistic regres-

sion, MAF test, Cochran-Armitage Test for Trend, Goodness of Fit, Hardy-Weinberg Equilibrium.

In the same way, we have only implemented one rare variant association test here but our frame-

work is general enough to allow the easy implementation of other rare variant association tests

including variance component tests that are widely used in rare variant association studies [293].

Contrary to the WSS test we have implemented here, some of the tests can be adjusted on covari-

ates such as age or gender. Information on these covariates for each individual could be transmitted

by the GRU to the GRC and to the GRC to the Server together with the WSS tables. Some particu-

lar covariates on which adjustment could also be required to avoid false positives due to population

stratification are leading principal components (PCs) from the principal component analysis per-

formed on genotypes data of both cases and controls. To obtain these leading PCs, a possibility

will be to add ancestry informative SNPs and exchange information on individual genotypes at

these SNPs to perform principal component analysis on the Server. This will however involve the

sharing of genetic data. Another possibility could be to use spectral graphs in a manner similar

to the approach suggested by Bodea et al. [294] or the singular value decomposition suggested by

Artomov et al. [295]. This will however require some further developments that are beyond the

scope of this chapter. Another concern when comparing sequence data of cases and controls that

were not generated together is the possibility of systematic bias due to batch effects. The problem

is even more drastic when different platforms are used to sequence cases and controls. Different

studies have evaluated these biases and proposed some solutions to reduce them [285–287]. Strict

quality control is key in this process and it is also important to visualize QQ-plot in order to dia-

gnose any inflation of the statistics. We have illustrated this in the example provided and shown

that with the strict QC parameters we used the QQ-plot was not inflated. In this example however,

cases and controls were sequenced on the same platform and only the capture kits were slightly

different. In less favorable conditions, it might be necessary to test different QC parameters to de-
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termine the best combinations. This would require some extra-computations and a lighter version

of the test where cases and controls statuses are not permuted should perhaps then be considered

to fix the QC parameters. It might also be necessary to pre-select some different sets of parameters

with different levels of QC and evaluate the level of inflation by computing a statistics similar to

the genomic inflation factor [288].

4.6 Conclusion

Several genome-wide association studies are being conducted in order to identify associations

between genetic variants and certain diseases. We have seen that these studies are being outsourced

on the cloud as it allows more computation and storage capacity at a low cost. However, as we

have seen at the beginning of this chapter, this comes with several security issues. The objective of

this chapter is to allow the privacy-preserving computation of statistical algorithms used in GWAS

such as WSS.

We have proposed a new privacy-preserving GWAS framework that allows performing in a secure

way genome-wide association studies similar to the WSS algorithm. Our solution relies (1) on a

Genomic Research Center which acts as proxy in order to preserve the privacy of Genomic Re-

search Units, (2) on Pretty Good Privacy to secure communications and (3) on cryptographic hash

functions so as to ensure the confidentiality of sensitive data in WSS input tables. The security

analysis of our solution demonstrates that it is secure under the honest but curious adversarial

model and robust to statistical inference attacks. We also have extended our framework under the

malicious security model by means of zero-knowledge protocol. Experimental results conducted

on real genetic data demonstrate that the proposed solution achieves the same performances and

accuracy as the unsecured WSS algorithm. Consequently, it can be used in real world environ-

ments contrarily to other proposed solutions based on Homomorphic encryption. Furthermore,

this solution can be extended to any other GWAS algorithms similar to the WSS algorithm.
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CHAPTER 5

Robust database watermarking for
GWAS data

In previous chapters, we have seen that the deployment of genome-wide association studies on the

cloud requires a large amount of genetic data. As these data face several security threats during

their storage and/or processing, we have proposed in Chapter 4, a solution that allows the privacy-

preserving of genome-wide association study for rare mutations. In this method, data are extracted

from VCF files based of several predefined parameters and are stored in WSS files. These later are

sent to the server provider for WSS computations. However, as we have seen in chapter 1, these

data may face several security threats. The objective of this chapter is to ensure the security of

genetic data used in GWAS such as WSS data in terms of copyright protection or traitor tracing,

i.e., identifying the person or entity who is the origin of an illegal information disclosure.

Until now, authors have mainly focused on cellular DNA for various purposes such as stegano-

graphic reasons [33], copyright protection [29] or for data storage [24]. In this work, we are

the first to provide a watermarking method for genetic data (stored in VCF files) used in GWAS

without inference on their results (p-values). Our method is derived from database watermarking

due to closeness of VCF files with relational databases, and it is based on Quantization Index

Modulation (QIM) for watermark embedding and majority vote for the detection/extraction of the

watermark. More clearly, the watermark is secretly embedded within genetic data used in GWAS,

without violating the identification of candidate variants or genes involved in pathology. We eval-

uate the theoretically performance in terms of insertion capacity, distortion and robustness against

different attacks. Experimental results conducted on real genetic databases ensure the efficiency

of the proposed scheme, and demonstrate that it can be used for identifying the cloud service pro-

viders or geneticists at the origin of information disclosure even if the genotype data have been

modified.

5.1 Genetic data for Weighted sum statistic method

In order to conduct GWAS studies, individuals that are either affected (cases) and unaffected

(controls) are genotyped so as to produce thousands or up to millions of genetic variants that are
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Table 5.1: An example of weighted sum statistic (WSS) file. It stores genetic information that is
used in WSS method

chrom pos id ref alt NA00001 NA00002 NA00003

20 1234567 microsat1 GTC G 1 0 1
20 1234567 microsat1 GTC GTCT 0 2 0
20 17330 . T A 0 1 0
20 1110696 rs6040355 A G 0 -1 2
20 1110696 rs6040355 A T 2 2 2
20 1230237 . T . 0 0 -1
20 1234567 microsat1 GTC G 1 0 1
20 1234567 microsat1 GTC GTCT 0 2 0

then stored into VCF files. After that, an intermediary step is conducted so as to generate other

files that are specific for each association study. We are interested in watermarking WSS files

which contain extracted data from VCF files in order to conduct WSS method. As illustrated in

Table 5.1, WSS file is composed of several columns including CHROM, POS, REF, ALT, GENE

and an arbitrary number of individuals.

5.2 Overview of existing methods in genetic data watermarking

In this section, we present an overview of the state of the art in genetic data watermarking. Various

methods have been proposed for genetic data watermarking. These methods can be classified ac-

cordingly many criteria. They can be classified based on their robustness against any modification

illegal or not, the type of data to watermark, based on the imperceptibility of the watermark to

insert or the technique used to insert the mark. The first level of classification we consider is the

type of data to be watermarked. DNA watermarking schemes can be classified into two categories.

First, there are methods that watermark DNA of living organisms in order to ensure copyright pro-

tection, etc. These methods must be robust in order to be able to resist against attacks or different

biological modifications such as mutations. On the other hand, there are methods that watermark

digital DNA with the aim of ensuring copyright protection, integrity of data or using DNA as a

tool for pure storage of data only. In each of these categories, methods can be reversible or not;

blind or not and most of them are based on one of three main techniques that are substitution,

insertion or complementary between the bases.

5.2.1 Genetic data as medium for data storage

With rapid advances in genetic data processing, a large amount of data is available for various ge-

netic studies, in particular genome-wide association studies. These data can be also used as storage

medium due to their high information density and long-term storage. Therefore, digital informa-

tion such as text message, audio or image can be hidden in DNA for long-term storage. Herein,

we give some examples of methods that use DNA as storage medium. In the literature, several
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methods were proposed so as to ensure the data storage within DNA [22–25, 296]. Clelland et

al [22] proposed the first method for hiding secret messages into DNA. Inspired by the mocrodots

used during the world war II, authors constructed artificial DNA strands in which secret messages

are inserted. To do so, they construct a dictionary where each character is encoded using a triplet

of DNA bases. Then, a simple substitution is used in order to encode English characters into DNA

sequences. After that, these fake DNA sequences are mixed with human DNA sequences. In the

same idea, Church et al [296] proposed a scheme using high fidelity DNA microships in order to

encode 5.27 MB of data including a book, 11 JPEG images and a JavaScript program into DNA

sequences of 54 898 159 bases, for long term storage. All encoded data were recovered with only

10 bit errors. Blawat et al [24] improved the schema of Church et al [296] by developing forward

error correction codes so that they can recover all data without errors. In the following section we

will describe methods that have been proposed for DNA watermarking or DNA steganography in

order to ensures copyright protection, integrity, authenticity for DNA data as well as the protection

of the message itself.

5.2.2 DNA watermarking and DNA steganography

In the literature, there are many methods proposed for genetic data watermarking or steganography.

Herein, we give state of the art of these methods. As introduced before, genetic data watermarking

methods that proposed for protecting genetic data or data hiding in genetic data without altering

biological functionalities of the DNA. Theses method are divided in two categories: methods that

watermark DNA of living organisms and methods that watermark DNA in numerical format.

5.2.2.1 DNA Watermarking restrictions

DNA watermarking or DNA steganography must not add mutations, remove or reduce the bio-

logical functionalities of carrier organism. In order to avoid these issues, DNA watermarking

methods must ensure that watermarked DNA sequences are equivalent to those which are not

watermarked. We discuss in this section some constraints that must be considered before devel-

oping a DNA watermarking scheme which is secure and resistant to all types of mutations. These

constraints are as follows:

• Primary structure preservation: During message embedding, translation of amino acids

into proteins for a given gene may not be altered. This means that nucleotide insertions

and modifications must not alter the codons in such away that would change the original

amino acid sequence. Watermarking schemes are restricted to embed messages by replacing

synonymous codons i.e., codons which translate the same amino acid.

• Truly nonfunctional regions: As we will see in the next section, each DNA sequence has two

regions: a coding region that encodes proteins and a non-coding region that does not encode

proteins. For many years, the no-coding region which is called "junk DNA" was considered

as non-functional region. Therefore, this region can be modified without constraint and data

can be embedded in it without any restriction. However, recent studies have demonstrated
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that even though this region does not encode proteins, up to 80% of this region may have

other biochemical functions [39]. As a result, the message embedding in this region must

performed in only 20% of this region which remains with no function.

• Blindness without Appending: For each DNA watermarking method, a blind detection and

recovery which detects the watermark and/or recovers the original DNA sequence without

using the original DNA sequence or a reference sequence, should be practicable while pre-

serving the length of the DNA sequence.

• Codon count preservation: The other constrain to consider during DNA watermarking is

gene optimization or the distribution of codons in organisms. In coding regions, gene op-

timization dictates the gene expression levels in living being’s organisms, in particular, the

speed at which genes’ amino acids are translated into proteins [297]. Thus, it is desirable

that the codon count in a given coding region be preserved when such a region is modified

in order to embed messages.

• No start/stop codons: In DNA sequences, a non-coding region should not be mistaken as a

coding region during protein synthesis. This means that during DNA watermarking, inser-

tion or modification of nucleotides that introduce start codons should not be allowed.

• No homopolymers: Homopolymer is a region in a genome or DNA sequence where the

same base is repeated multiple times. As many repeats can cause errors during DNA replic-

ation [298], DNA watermarking scheme must not include many and homopolymers in DNA

sequences.

• Dynamic range: As explained in Chapter 1, nucleotide bases are described by one of four

character symbols A, T, C, and G for each DNA sequence (G is replaced by U for RNA

sequence). For most DNA watermarking methods, each nucleotide base is encoded with 2-

bit representation. The 2-bit capacity for nucleotide bases is extremely low for high-capacity

watermarking. A combination of nucleotide bases should be used to increase the dynamic

range for more effective processing. For example, a series of four nucleotide bases can be

coded with 8-bit values (256 levels).

In the sequel, we give a review on different methods that were proposed for DNA watermarking.

Some of these methods consider previous constraints during the message embedding but it is very

difficult for a DNA watermarking scheme to satisfy all of these constraints.

5.2.2.2 Watermarking of DNA data of living organisms

Several schemes were proposed in order to permit data hiding into DNA of living organisms. The

first method in this category was proposed by Arita et al. [299]. This scheme permit the insertion

of a digital signature in ncDNA regions of the genome of bacteria called Bacillus subtilis. To

do so, they modify the redundant nucleotides of the wobble codons in the gene stsZ. Thus, if the

message bit to insert is 0 the codon is not modified but if the bit to insert is 1, wobble nucleotide

of the codon is modified to any nucleotide with the respect of the redundant property. The major
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drawback of this method is that the method is non-blind, it requires the original DNA sequence

for the receive to extract the hidden message. In addition, if any mutation is occurred, there is non

proposed way to correct them and extract the message. To overcome this issue, Heider et al. [175]

proposed DNA-Crypt which consists two watermarking methods. These permit the insertion of a

message in ncDNA and pcDNA respectively. The method that inserts the message into ncDNA

is a simple substitution. To do so, a binary message is mapped to bases to produce a fake DNA

sequence before replaces some bases in ncDNA regions by the bases of the message. The pro-

posed method that insert message in pcDNA region is based on genetic code. In this method, the

message is inserted based on the modification of wobble nucleotide like Arita et al.’s method. To

correct mutations or other biological phenomena that can complicate the extraction of the mes-

sage, authors proposed a fuzzy controller that permit the correction of errors. It uses Hamming

code for mutations differ in only one bit, and WDH code for mutations that differ by multiples bit.

Authors tested their method in vivo using Saccharomyces cerevisiae [300]. Instead of using error

correction codes, Yachie et al. [301] proposed the use of repetition coding as during the message

embedding. More clearly, when a message is inserted, authors suggested that mutation errors may

be corrected by embedding redundant copies of the message throughout an organism’s genome.

To test their method, a binary message was inserted in ncDNA of the genome and the inserted

message was well recovered after some simulated mutations.

All above methods are not blind, the receiver must have the original sequence in order to extract the

message. To overcome this problem, Liss et al [302] proposed the first blind method that insert

messages in pcDNA especially into open reading frames (ORF) of synthetic genes considering

gene optimization. To do so, they designed ORFs of the watermarked genes using codon usage

table of host genes that were already optimized for protein expression. Then, all redundant codons

are ranked according to their natural occurrence. For instance, for a given amino acid, codons with

odd ranks in this table represent a binary 0 and codons with even ranks represent a binary 1. The

message bits are inserted into four or six synonymous codons that retain a high degree of codon

assignment flexibility. Even though this method is blind and retains gene optimization, it does not

consider the mutation resistance.

Haughton et al. [34] proposed two DNA watermarking methods a cpDNA based method and a

ncDNA based method which they called "BioCode ncDNA" for non coding regions and "BioCode

pcDNA" for coding regions. These methods were designed under many constraints in order to per-

mit the the insertion of messages in living organisms and reinforce the security of methods. For

"BioCode ncDNA", they proposed how to preserve no start codon. This means that the modifica-

tion of ncDNA bases during the message embedding could not introduce a start codon as explained

in previous section (See Section 5.2.2.1). This method is an extension of non-coding version of

DNA-crypt [175]. For "BioCode cpDNA", they ensure that the embedded message does not com-

promise the translations of amino acids into proteins and must preserve the codon count as each

species has its own codon rate. In order to do that, a lookup table was designed, and this table

maps a set of available codons to message bits according to a dynamic graduated mapping so as

to respect two previous constraints. First, the lookup table is initialized according to the codon

count. The codon of the DNA sequence to watermark is substituted with a codon that corresponds

to input message bits of the lookup table. The count of this codon is then decreased by one. If the
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count of any codon is zero, the lookup table is updated using dynamic graduated mapping. This

process is repeated continuously until the message bits or the host codon sequences end. In order

to correct mutations, authors proposed to marker codes or watermark codes for message bitframe

resynchronization. BioCode methods permits to preserve codon count, protein translation and no

start codons but do not efficiently resist to intentional mutations and are therefore not sufficiently

secure.

More recently, Wang et al. [33] proposed a DNA data hiding in living organisms. In this method, a

secret message is encoded in a DNA sequence by a certain coding rule. Then, the result is hidden

in DNA of a living organism by recombining DNA technique. Therefore, the proposed scheme

has two hidden layers, if one of the two layers is cracked, the other one can also ensure the security

of secret message.

5.2.2.3 Watermarking of DNA data in numerical format

In this section we discuss, DNA watermarking methods that watermark numerical data. These

methods were proposed for ensuring copyright protection, integrity of authenticity of data, as well

as the confidentiality of hidden messages.

Shiu et al [26] proposed three reversible data hiding methods in DNA data called the insertion,

the complementary pair and the substitution methods. In the insertion method, secret message

bits are inserted randomly in separated positions within a DNA sequence to watermark. In the

complementary pair method, authors proposed to choose the longest complementary pairs in a

DNA sequence. Therefore, secret message bits can be hidden before in these complementary

pairs. Finally, the substitution method which consists on substituting some part of chosen DNA

nucleotides in the sequence with others based on the message bits. These schemes could hold high

embedding capacity. However, both the complementary pair and the insertion methods expand

original DNA sequences. In addition, in each of these three methods, a reference DNA sequence

(original sequence is transmitted so as to permit the receiver to recover the hidden message), and

they did not focus on the expansion or DNA modification rate.

To reduce the modification rate and resolve the expansion problem of these methods, Huang et

al [303] proposed a new reversible data hiding scheme based on histogram technique. In this

method, the DNA sequence to watermark is first converted into a binary string. Then, several

bits are combined in order to produce a sequence {d1, d2, · · · , dn} of decimal integers and an

histogram is generated based on these decimal integers. After generating the histogram, the most

frequent integer h, the least frequent integer l1 and the second least frequent integer l2 are identified

and a location map is initialized. For embedding message bits, if the decimal integer di is equal

to l1, set di to l2 and set the value of location map to 1. If the decimal integer di is equal to l2,

the decimal integer di remains unchanged and the value of the location map is set to 0. Besides, if

the decimal integer di is not equal to l1 or l2, the decimal integer di remains unchanged and we do

not need to set the location map. In order to recover the original DNA sequence, the location map

must be concealed into the DNA sequence with secret message. If di is equal to h and the message

bit is equal to 0, di does not change. Otherwise, if di is equal to h and the message bit is 1, set
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di to be l1. We can then obtain new decimal integers. These decimal integers are converted into

binary string which is also converted into DNA sequence in order to obtain a watermarked DNA

sequence. Note that the message extraction is conducted in the same way. This method resolve

many problems of Shiu et al’s method but it still have several limitations such as sending the

original sequence for message extraction. This is also the case of methods proposed in [304–306].

These methods are not blind and this reduces their security.

Several methods have been proposed in order to overcome the problem of blindness in DNA

watermarking [27–33]. For instance, in [27], authors presented a blind reversible watermarking

method that prevent biological mutations. It is based on multilevel histogram shifting. In this

method, a DNA sequence is encoded into integer values using the numeric order. multiple bits

are embedded in each integer value by exploiting multilevel histogram shifting of noncircular

type (NHS) and circular type (CHS). During message embedding a verification of each codon is

conducted so as to prevent the generation of false start/stop codons. To do so, they check whether

a start/stop codon is included in an integer value or between adjacent integer values. Rahman

et al [29] proposed another reversible and blind DNA watermarking method that can embed a

secret identification message in order to ensure the authenticity and copyright protection of a

DNA sequence. In this method, a DNA sequence to watermark is divided into multiple segments

and these segments are used to construct a matrix of nucleotide bases. After that, a message to

embed is also divided into segments and each message segment is inserted in each line of the

matrix. Note that, positions in which message bits are embedded are chosen randomly based on a

pseudo-random generator which allows the generation of matrix indices.

All solutions presented in this section allow genetic data watermarking for various purposes but

have also several limitations. They were proposed for cellular DNA, and they can not be used

for genetic data that are outsourced for genome-wide associations studies (e.g., genetic variants

stored in VCF files). To overcome these issues, we are the first to propose a robust watermarking

for GWAS data. It allows ensuring traceability and traitor tracing for genetic data externalized for

GWAS studies. Our watermarking proposal is bling in the sense that to extract the watermark we

do not need the original VCF file, and the watermarked file has the same size that the original one.

5.3 Proposed database watermarking scheme for GWAS data

In this section, we first present a common chain of database watermarking [106], the way we have

exploited the modulation of Kuribayashi et al. [307] in order to watermark genomic data and,

by next, the watermarking solution we propose. Before entering into the details and in order to

simplify the comprehension of our scheme, we illustrate in table 5.2, the acronyms that we have

used in this chapter.

5.3.1 Database watermarking

As explained in Chapter 1, a database is an organized collection of data that are generally stored

and accessed from a computer system. As formally defined in chapters 1 and 3, we keep DB
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Table 5.2: Acronyms used in the watermarking method we propose

Acronyms according to WSS file

∆ Distortion factor

Nc Number of columns in the WSS file

D∆ Percentage of modulation for a given ∆

Ng Number of groups

Sg Number of rows for each group

Nr Number of rows in the WSS file (i.e Sg ×Ng )

dbsize Size of WSS file (i.e Nr ×Nc )

Pi Probability value of i in original group

Pwi Probability value i in watermarked group

as a database DB composed by NR relations {Ri}i=1,··· ,NR
. To give an overview on database

watermarking, let us consider un database DB that contains one single relation constituted of N

tuples {tu}u=1,··· ,N , each of M attributes {A1, A2, · · · , AM}. The attribute An takes its values

within an attribute domain and tu.An refers to the value of the nth attribute of the uth tuple of the

relation. The value tu.PK which is an attribute value or a set of attribute values, represents the

unique identifier of each tuple in the database, and is called primary key.

In the literature, most schemes that have been proposed for database watermarking follow the

process illustrated in Figure 5.1. This process is based on two fundamental procedures: watermark

embedding and watermark detection/extraction. The watermark embedding procedure includes a

pretreatment, the purpose of which is to make the watermark insertion/extraction independent of

the database structure or the way database’s data is stored. To do so, database tuples are grouped

into Ng non-overlapping groups {Gi}i=1,··· ,Ng . This grouping is usually conducted by computing

the index number nu ∈ [0, Ng − 1] of each group for the tuple tu [308] such that

nu = H(Kw|H(Kw||tu.PK)) mod Ng (5.1)

where H , Kw and || represent the cryptographic hash function, the secret watermarking key and

the concatenation operator, respectively. We use a cryptographic hash function, such as the Secure

Hash Algorithm (SHA), in order to ensure the secure grouping and the equal distribution of tuples

into different groups. After database partitioning, one bit of the watermark is inserted into each

group of tuples by modifying or modulating attribute values accordingly the rules of the retained

watermarking modulation such as the order of database tuples [196]. Therefore, within a database

of Ng groups, a watermark W = {wi}i=1,··· ,Ng of Ng bits can be embedded.

The Watermark detection works in a similar way. First, the protected database is partitioned

into Ng groups based on the secret watermarking key Kw. Then, one watermark bit is detected

and/or extracted from each group based on used modulation and the use of the scheme. In the

sequel, we explain the solution we have proposed. It follows the above procedures and is based on

Quantization Index Modulation (QIM) and majority vote.
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Figure 5.1: A common database watermarking chain.

5.3.2 Quantization Index Modulation (QIM) watermarking

Quantization Index Modulation (QIM) is a watermarking technique that is based on the quanti-

fying some elements (samples, group of samples or transform coefficients) of a host data (e.g.,

image [309], video [310], etc.) according to a set of quantizers based on codebooks in order to

embed the watermark. More clearly, to each message mi issued from a finite set of U possible

messages M = {mi}i=0,··· ,U , the QIM associates a codebook {Cmi}i=0,··· ,U such that

Cmi ∩ Cmj = ∅ if i 6= j (5.2)

For embedding the message mi into one element X of a given host data, this one is substituted by

Xw which is the nearest element of X in the codebook Cmi . This process is conducted using the

insertion function Qmi such that

Xw = Qmi(X,Cmi) (5.3)

This function determines the the nearest element Xw of X from the codebook Cmi . In this case,

the watermarking distortion corresponds to the distance between X and Xw. To give a simple

example which illustrates this process, let us consider the case of an image with X that represents

an image pixel. This latter may take its values from a one-dimensional space [0, 255]. This scalar

space is divided into non-overlapping cells or intervals of equal size. Each cell is then related

to only one codebook {Cmi}i=0,··· ,U so as to satisfy (5.2). Consequently, mi has several repres-

entations in [0, 255] and Qmi corresponds to a scalar quantizer. In the embedding process, if X

belongs to a cell that encodes the desired symbol mi, its watermarked version Xw corresponds to

the centroid of this cell. Otherwise, X is replaced by the centroid of the nearest cell encoding mi.

In the extraction process, the knowledge of the cell to which Xw belongs is enough to identify

the embedded message. This process is illustrated in figure 5.2 in the case of a binary message,

i.e., mi ∈ {0, 1} and two codebooks C0 and C1 for which the cells are defined according to a

uniform scalar quantization of quantization step ∆. In this example, X will be quantized to the

nearest square or circle in order to encodemi.uring message extraction, the watermark reader has

to determine the cell to which the received version X
′
w of Xw belongs. We explain in the next

section, how a modified version of QIM is adapted for watermarking genetic data.
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Figure 5.2: Example of QIM in the case whereX is a scalar value for the embedding of a sequence
of binary values . Codebooks are based on an uniform quantization of quantization step ∆. Cells
centered on crosses represent C0 (mi = 0) while cells centered on circles represent C1 (mi = 1).
d = ∆/2 establishes the measure of robustness to image perturbations.

5.3.3 Modified QIM for genetic data watermarking

Kuribayashi et al. [307] proposed a robust and secure data hiding scheme for PDF text documents,

by embedding a watermark into the spaces among characters in each line. The collection of the

space lengths in each line is denoted as a host vector and the watermark is embedded into its

frequency component based on Dither Modulation-Quantization Index Modulation (DM-QIM). In

using QIM, they propose to round the host frequency component to the nearest odd/even quantized

value according to the value of watermark bit w using step size ∆. Let w ∈ {0,1} be a watermark

bit, ∆ be a quantization step size that controls the level of distortion and d an element of the

selected host signal. In QIM method, according to the value of the watermark bit to be embedded in

frequency component, this operation consists in shifting±∆ the DCT ( Discrete cosine transform)

coefficient of the collection of the space length in the tth line.

In this work, we apply this QIM method in order to embed one watermark bit wi into each group

of tuples, i.e. {Gi}i=1,··· ,Ng . More clearly, let wi ∈ {0,1} be a watermark bit, ∆ be a quantization

step size that control the level of distortion and d be the difference between the cardinality of zero

values in sub-group GAi and sub-group GBi for each individual (Pi: i = 1, · · · , |patients|), where

d = |CA0 |Pi − |CB0 |Pi (5.4)

According to the value of wi, d is rounded to the nearest even/odd quantized value using step

size ∆. As illustrated in Figure 5.3, the global quantized values are in the multiple of ∆ either as

positive or negative, and embedding modulation is performed as follows:

d∗ = (b d∆c+ (b d∆c2! = w))×∆ (5.5)

5.3.4 Watermark embedding in WSS data

As explained in the previous chapter, in this work, we consider a framework which is composed

by threes entities: a Genomic Research Unity (GRU), a Genomic Research Center (GRC) and a
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Figure 5.3: An example of QIM modulation.

Cloud Services Provider (CSP). GRU and GRC decide to outsource their genetic data on the cloud

for storage and/or processing purposes. Before being outsourced, these data are watermarked so

as to ensure their copyright protection and traitor tracing. To do so, we describe in this section a

robust database watermarking scheme that allows message embedding for WSS data. Our solution

is implemented through six following steps:

• Step 1. The first step consists on reading genotypes data from the WSS file which consists

of many genes, into a database that composed by one table DB.

• Step 2. The table DB is secretly reorganized into the database DBr. To do so, data owner

assigns a primary key vu.PK for each variant vu ∈ {u = 1, · · · , |variants| }, where

vu.PK = CHROM‖POS‖GENE. Then, this primary key is used for partitioning the

database (WSS file variants) intoNg groups using a secret watermarking keyKw. The group

index number for each variant nvu is computed based on secure hash algorithm (SHA256)

using (5.6) and Ng groups {Gi}i=1,2,··· ,Ng , are constituted.

nvu = SHA256(Kw(SHA256(vu.PK|Kw)) mod Ng (5.6)

Once all groups are obtained, one bit of the watermark is embedded into each group.

• Step 3. The user or data owner (in our case GRU or GRC) generates a binary watermark

W = {w1, w2, · · · , wNg}, where Ng is the number of groups in the database DBr. W is

uniformly distributed where the probability p to have 0 is equal to probability to have 1..

• Step 4. Each group Gi of the database is divided into two tuple sub-groups GAi and GBi ,

based on the secret watermarking key Kw. To do so, the sub-group index number ngvu for

each variant vu in Gi, is computed using secure hash algorithm (SHA256) such that

ngvu = SHA256(Kw||(SHA265(vu.PK||Kw)) mod 2 (5.7)

If the value ngvu = 1, then the variant vu belongs to GAi , otherwise ( ngvu = 0), then it

belongs to GBi .

• Step 5. QIM modulation is used for embedding one watermark bit in these sub-groups so

as to produce the watermarked sub-groups GAWi and GBWi . The watermark embedding

process is illustrated in Algorithm 3.

• Step 6. After sub-group watermarking, the watermarked database DBw is constituted.
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Algorithm 3 Watermark embedding modulation in one group
1: INPUT: Subgroups GAi and GBi , A watermark bit wi, a quantization step size ∆
2: procedure GROUPWATERMARKING(GAi ,GBi ,wi,∆) d = ‖CA0 ‖ − ‖CB0 ‖
3: d← b d∆c
4:

5: if d % 2 == w then
6: d∗ = d̃ ×∆
7: else
8: d∗ = d ×∆ + ∆
9: modulationValue = abs(d∗ - d)

10: Case 1
11: if d∗ ≥ d and ‖CB0 ‖ ≥ modulationValue then
12: ‖CBW0 ‖ = ‖CB0 ‖ - modulationValue
13: Case 2
14: else if d∗ < d and ‖CA0 ‖ ≥ modulationValue then
15: ‖CAW0 ‖ = ‖CA0 ‖ - modulationValue
16: Case 3
17: else
18: not embeddable group
19: end if
20: end if
21: return GAWi ,GBWi
22: end procedure

Notice that during watermarking, one watermark bit is embedded in each database column. Thus,

during extraction stage a majority vote is performed in order to decide which watermark bit will

be extracted.

Watermark reading works in a similar way. The watermarked database is first reorganized into Ng

groups and each group is partitioned into two sub-groups. From each group, one message bit is

detected and extracted in each column according to the equation (5.8). After that, a majority vote

is conducted in order to decide which watermark bit is extracted. While tuple primary keys are

not modified, the knowledge of the watermarking key ensures synchronization between watermark

embedding and watermark detection/ extraction.

w = b
d∗ + ∆

2
∆ c%2 (5.8)

where

d∗ = |CAW0 |Pi − |CBW0 |Pi

We discuss theoretical performances of our solution in next section before presenting experimental

results.

5.4 Theoretical performance

In this section, we start by presenting the constraints of some parameters in the proposed model and

then present the theoretical performance of our scheme in terms of distortion introduced to data
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5.4.1. Parameter constraints

Figure 5.4: Embedding modulation cases

during watermarking embedding, embedding capacity and robustness against different database

watermarking attacks.

5.4.1 Parameter constraints

In our solution, in order to work properly and intuitively, some constraints such as distortion

factor (∆), number of groups in the database (Ng), number of tuples in the database (Nr) and the

probability to have 0 in one group (P0) must to be defined and respected. These constraints are

such that

Sg
2 > ∆

Nr

Ng
> 2×∆

Nr > 2×∆×Ng

P0 ×Nr > 2×∆×Ng

(5.9)

this constrain is important, because the number of zeros in a sub-group should be greater than the

distortion factor ∆. As we will see later, this constraint will help us in analysing the performance

of our watermarking method.

5.4.2 Distortion performance

Let us consider a database DB which contains Nc columns, Nr rows and dbsize attribute values.

During the watermarking process, this database is divided into Ng groups and each group is parti-

tioned into two sub-groups. If Sg is the number of rows in one group. Then, the distortion value

D∆ for the database DB corresponds to the number of modified attribute values in the database

for a given ∆, and can be computed as follows:

D∆ = Ng ×
∆
2 ×Nc (5.10)

D∆ = Nr

Sg
× ∆

2 ×Nc (5.11)
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D∆ = dbsize ×
∆

2× Sg
(5.12)

As example, if we take ∆ = 2 and Sg = 100, then we can say that the distortion is 1
50 of the dbsize.

This is due to symmetric distribution for the difference value of zero frequency between sub-group

GA and sub-group GB .

5.4.3 Robustness performance

In this section, we analyse the robustness of our watermarking scheme under three well-known

database attacks that are deletion attack and insertion attack. We evaluate the robustness of our

solution by means of the bit error rate (BER), which corresponds to the ratio of the number of

incorrectly extracted watermark bits to the number of the original watermark bits. BER is such

that

BER =
∑Ng

i=1wi ⊕ w
′
i

Ng
(5.13)

where wi and w
′
i are the embedded watermark bit and the extracted watermark bit, respectively.

Using BER, its lower value means that we have a higher watermarking robustness.

5.4.3.1 Deletion attack

In this section, let us consider an attack that consist at a randomly deletion of attribute values or

tuples in the database. We distinguish two cases for this attack and are described below.

• Column deletion: In this case, an attacker tries to delete Nc1 columns in the database. No

matter how many columns are deleted, one column is enough to detect the watermark if all

columns are watermarked.

• Tuple deletion: Let us consider the attacker randomly eliminates Nd tuples in the database.

In this case watermark may not be detected depending on the percentage of deleted data and

the group in which deleted elements belongs. We will come back to this case in section 5.5,

where we demonstrated the robustness of our solution against this attack using BER.

5.4.3.2 Insertion attack

In this kind of attacks, an attacker may tries to insert a certain number of columns or tuples in the

database. Two cases are distinguished as described below.

• Column insertion: In this attack, an attacker tries to insert a certain number if columns

in the database. By doing so, it requires to an attacker to duplicate at least one time the

number of columns (or individuals) so as to change the watermark bit. Assume that the

original group verifies the probability to have 1 values is greater than the probability to have

0 values (P1 > P0). Then, the watermarked group verifies Pw0 > Pw1 . Hence, we can define
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X = P1−P0 and Xw = Pw0 −Pw1 . There are three cases for which the data can be added by

attacker.

– Case 1: If P1 < P0, there is no problem as the attacker will be always detected.

– Case 2: If P1 = P0, as in the previous case, the attack will always be detected.

– Case 2: If P1 > P0, the attacker requires to add M elements in the database such that

M = Nc ×Xw

X
(5.14)

• Tuple insertion: This attack corresponds to the suppression a certain number of tuples in

the database. If N is the number of tuples that the attacker want to insert in the database. Let

k be the number of success out of the total number of trials and p the probability to succeed,

while q is the probability of failure. Thus, we have

p = 1
2×Ng

q = 1− p

The probability of k successes out of N trials when the probability of one success is p is

computed according to the equation (5.15)

P (N, k, p) =
(
N

k

)
pkqN−k (5.15)

In the previous equation (5.15), the binomial coefficient express the number of combinations

of N takes k. It is calculated according to equation (5.16).(
N

k

)
= N !

(N − k)!k! (5.16)

We give in next section, obtained results after simulating some attacks.

5.5 Experimental results and discussion

The purpose of this section is to evaluate our watermarking method in terms of distortion, robust-

ness and watermarking capacity in the framework of one real genetic database.

5.5.1 Test database

To experiment our watermarking method, we have used a genetic relational database constituted

of one table of 80 tuples issued from a real genetic database that contains pieces of information

related to genetic variants of 733 individuals. As we have in Chapter 4, such genetic variants are

used by researchers or/and geneticists in genome-wide association studies (GWAS) [6] in order

to determine if there is a relationship between these genetic variants and certain diseases. In our

test database, one tuple corresponds to one variant and is composed by 738 attributes including 5
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Figure 5.5: Distortion percentage of modulated data

first ones that give information about the genetic variant. They correspond to: the identity of the

chromosome (chrom) to which belongs the variant, the position (pos) of the variant at the chro-

mosome, the reference allele (ref ), the alternative allele (alt) and the name of the gene (GENE)

in which belongs the variant. The rest of attributes correspond to individual genotypes in the data-

base. As explained in Chapter 1, for each individual and each variant, the genotype corresponds to

an integer value that takes the value 0 if the alternative allele is equal to the reference allele, 1 to the

second alternative allele and k ∈ {1, · · · , g} in case of g possible alternative alleles. In the sequel,

a set of attributes that composed by the chromosome (chrom), the position (pos) and the gene

(GENE) is considered as the primary key. We chose these attributes because their combination

uniquely identifies each database tuple of variant. Our watermarking scheme was implemented in

Python and we conduct all experiments using a machine equipped with 8 GB RAM running on

Ubuntu 18.04 LTS.

5.5.2 Distortion results

As introduced at the beginning of this chapter, the objective of our watermarking method is to

ensure copyright protection and traitor tracing for genetic data used in GWAS. In order to test

the impact of watermarking method for GWAS results, we have conducted secure WSS method

presented in Chapter 4. It is one of GWAS algorithms that are used in order to conduct association

studies for rare variants. To test our watermarking method on the database presented in Section

5.5.1, this database is divided into Ng groups, considering several cases. These cases correspond

to Ng ∈ {1, · · · , 20}. We have also chosen different values of distortion step ∆ such that ∆ ∈
{2, 4, 6, · · · , 34} the each group is also divided into two sub-groups. After watermarking, we

conducted WSS method on the watermarked database in order to measure the distortion introduced

by the watermark into watermarked data. As it can be seen in in Figure 5.5 that contains the

values of p − value, results have the same significant value if they remain on the same order. In

addition, the variation of the p− value depends on the number of elements that are watermarked

in the database, and the value 0 corresponds to the original p − value. The table 5.3 presents all

p − value results for above chosen Ng and ∆, and most of them are still significant compared to

the original p− value.
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Table 5.3: P-value results.

∆
Ng

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
1 4.9× 10−4 3.5× 10−4 4.2× 10−4 4.4× 10−3 5.9× 10−4 2.9× 10−3 3.0× 10−4 5.9× 10−4 5.3× 10−4 5.4× 10−4 3.4× 10−3 7.9× 10−3 5.9× 10−4 3.9× 10−3 5.9× 10−3 3.9× 10−3 3.7× 10−4

2 5.9× 10−4 4.9× 10−4 6.6× 10−4 1.4× 10−3 4.2× 10−4 5.9× 10−3 5.9× 10−4 3.6× 10−4 9.9× 10−4 2.9× 10−3 3.8× 10−4 5.9× 10−3 2.9× 10−3 3.4× 10−3 2.3× 10−3 5.4× 10−3 9.9× 10−4

3 4.2× 10−4 1.9× 10−3 1.1× 10−3 4.9× 10−4 6.9× 10−4 1.1× 10−3 7.4× 10−4 1.1× 10−3 4.2× 10−4 5.8× 10−4 4.9× 10−4

4 6.6× 10−4 6.6× 10−4 3.9× 10−3 2.9× 10−3 5.2× 10−4 5.4× 10−4 5.9× 10−4 7.7× 10−4 2.4× 10−4

5 5.4× 10−4 7.4× 10−4 2.3× 10−4 8.5× 10−4 6.6× 10−4 2.9× 10−3 4.2× 10−4 8.7× 10−4

6 5.9× 10−4 5.4× 10−4 9.9× 10−4 2.9× 10−3 2.9× 10−3 2.3× 10−3

7 5.9× 10−4 6.6× 10−4 5.4× 10−4 1.3× 10−3 6.6× 10−4

8 5.4× 10−4 3.7× 10−4 4.6× 10−4 6.6× 10−4

9 1.1× 10−3 4.4× 10−3 6.6× 10−4

10 3.3× 10−4 1.9× 10−3 2.3× 10−4

11 2.3× 10−3 3.5× 10−4

12 7.7× 10−4 2.3× 10−3

13 9.9× 10−4 4.2× 10−4

14 2.6× 10−4 5.9× 10−4

15 1.4× 10−3 8.9× 10−3

16 7.4× 10−4

17 4.2× 10−4

18 1.9× 10−3

19 2.9× 10−3

20 4.2× 10−4
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Table 5.4: BER results against column deletion 10%

∆
Ng

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0.48 0.12 0.63 0.37 0.24
3 0 0 0 0 0 0 0 0 0.47 0.27 0.25 0.43
4 0 0 0 0 0 0.12 0.24 0.48 0.43
5 0 0 0 0 0.09 0.15 0.47 0.39
6 0 0 0 0.09 0.23 0.31
7 0 0 0.04 0.09 0.53
8 0 0 0.09 0.24
9 0 0 0.16
10 0 0
11 0 0
12 0 0.02
13 0 0.12
14 0 0.17
15 0.04
16 0
17 0
18 0.06
19 0.06
20 0.05

5.5.3 Capacity results

In a database watermarking scheme, watermarking capacity is evaluated by the ratio of database

elements that can be used for watermark embedding to the total number of elements in the data-

base. Higher watermarking capacity means that more watermark information that we can em-

bedded in the database. The watermarking capacity of our solution depends on the number of

embeddable groups that we have in the database. This capacity can reach 100 % depending on

genotypes that we have in the database. This means that in some cases, each group in the database

can embed a watermark bit. However, if the capacity is the maximum, the robustness is reduced.

5.5.4 Robustness results

To test the robustness of our solution against different attacks, we have simulated several attacks

including addition or deletion of columns in the watermarked database. We have considered an

attacker that can try to insert, delete 10%, 20% and 30% of the data in the database. Obtained

results are presented in tables 5.7,5.8, 5.9, 5.4, 5.5 and 5.6. In these results, watermark can be

correctly detected from the database when BER approaches zero. Moreover, our scheme do not

impact the p-value results of WSS after watermarking. The Figure 5.6 shows the variation of BER

in function of the rate of database elements that have been changed, during addition and deletion

attacks.

Since majority voting [35] is used during message extraction, these attacks will have no impact on

the watermark.

123



5.6. Conclusion

Table 5.5: BER results against column deletion 20%

∆
Ng

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0.48 0.12 0.44 0.37 0.24
3 0 0 0 0 0 0 0 0 0.47 0.27 0.25 0.43
4 0 0 0 0 0 0.12 0.24 0.48 0.43
5 0 0 0 0 0.13 0.15 0.47 0.39
6 0 0 0 0.09 0.23 0.31
7 0 0 0.04 0.09
8 0 0 0.09
9 0 0
10 0 0
11 0 0
12 0 0.05
13 0 0.12
14 0 0
15 0.04
16 0
17 0
18 0.05
19 0.06
20 0.05

Table 5.6: BER results against column deletion 30%

∆
Ng

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0.48 0.12 0.56 0.37 0.24
3 0 0 0 0 0 0 0 0.15 0.47 0.27 0.25 0.43
4 0 0 0 0 0 0.12 0.24 0.48 0.43
5 0 0 0 0 0.13 0.15 0.47
6 0 0 0 0.09 0.23 0.31
7 0 0 0.04 0.09 0.53
8 0 0 0.09 0.24
9 0 0 0.1
10 0 0
11 0 0
12 0 0.04
13 0 0.12
14 0 0.17
15 0.04
16 0
17 0
18 0.02
19 0.06
20 0.05

5.6 Conclusion

In this chapter, we have addressed the copyright protection and traitor tracing for genetic data

during their storage or processing on the cloud. As we have previously seen, these data may face

several security problems on the cloud such as illegal distribution of data or problem of copyright.

We have presented a robust database watermarking method that allows watermarking of genetic

data used in GWAS. It is the first method of this kind, and it can be used for statistical algorithms

such as WSS method. It can be used in protecting traitor tracing and copyright protection, and it

is based on Quantization Index Modulation (QIM) and majority vote. We have studied theoretical

performance and experimentally verified the performance of our solution in terms of robustness
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Figure 5.6: Robustness results against deletion and addition

Table 5.7: BER results against column addition 10%

∆
Ng

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0.48 0.12 0.69 0.37 0.24
3 0 0 0 0 0 0 0 0.19 0.47 0.27 0.25 0.43
4 0 0 0 0 0 0.12 0.36 0.48 0.43
5 0 0 0 0 0.14 0.15 0.47
6 0 0 0.04 0.09 0.23 0.31
7 0 0 0.09 0.24 0.53
8 0 0 0.19 0.24
9 0 0 0
10 0 0
11 0 0
12 0 0.10
13 0 0.12
14 0 0.17
15 0.04
16 0
17 0
18 0.06
19 0.06
20 0.05

Table 5.8: BER results against column addition 20%

∆
Ng

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0.40 0.48 0.12 0.69 0.37 0.24
3 0 0 0 0 0 0 0 0.51 0.47 0.27 0.45 0.43
4 0 0 0 0 0 0.12 0.36 0.48 0.43
5 0 0 0 0.05 0.14 0.24 0.47 0.39
6 0 0 0 0.09 0.24
7 0 0 0.04 0.24 0.53
8 0 0 0.19 0.24
9 0 0 0.22
10 0 0
11 0 0
12 0 0.12
13 0 0.14
14 0 0.17
15 0.04
16 0
17 0
18 0.06
19 0.06
20 0.05
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Table 5.9: BER results against column addition 30%

∆
Ng

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0.40 0.48 0.55 0.69 0.37 0.24
3 0 0 0 0 0 0 0.11 0.51 0.47 0.27 0.45 0.43
4 0 0 0 0 0 0.12 0.36 0.48 0.64
5 0 0 0 0.05 0.34 0.24 0.64 0.39
6 0 0 0 0.09 0.24
7 0 0 0.04
8 0 0 0.19
9 0 0 0.004
10 0 0
11 0 0
12 0 0.12
13 0 0.14
14 0
15 0.04
16 0
17 0
18 0.06
19 0.06
20 0.07

against two attacks that are deletion attack and addition attack, capacity watermarking and distor-

tion. In this method, a watermark is embedded in genetic data without altering results of associ-

ation tests that can be conducted on these data. This comfort its future use in real life applications,

especially in cloud environments.
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Nowadays, genetic sequencing has become more important as it allows generating large amount

of genetic data. As a consequence, these data are getting widely collected, stored, processed and

shared by health professionals, researchers or companies for various genetic applications such as

disease tendency tests. To do so, cloud computing is being used as it allows the flexibly compu-

tation of large amount of data at a low cost. However, this comes with several issues in terms of

data security. Indeed, a human genome has a sensitive nature and represents the unique biological

identity of each individual. In addition, it can reveal the genetic origins of patients and possible

corresponding diseases. What makes this information so sensible also makes it so valuable for

research and medical purposes. By sequencing many genomes and cross-comparing the results,

we can be able to understand new biological mechanisms, which leads to new diagnostic tools

and treatments. For instance, genome-wide association studies conducted to some genes can help

to study and prevent risks of illness or if there is no cure for the illness, anticipated genetic test-

ing allow some life decisions (e.g., mastectomy in case of breast cancer). Thus, genetic data are

submitted to satiric legislative and ethical rules and must be protected.

The protection of genetic data during their processing and storing on the cloud is the focus of this

thesis work. Genetic data security can be expressed in terms of various security objectives such

i) privacy, ii) confidentiality, iii) integrity and iv) traceability. Therefore, different security tools

(physical or logical) must be defined in order to respond to these security objectives. However,

choosing or developing a security mechanism for genetic data must respect several constraints

depending on type of data to secure. For example, we have seen that genetic variants are stored

on the cloud in order to be used for conducting different statistical algorithms that are used in

genome-wide association studies. In this case, security mechanisms which do not compromise

these studies must be preferred.

In this context, we have proposed a privacy-preserving method that based on fully homomorphic

encryption [15]. We recall that homomorphic encryption allows a data owner to store their en-

crypted data on the cloud and they can ask the cloud to conduct processing on these data without

need to decrypt them. After processing, obtained results are sent to the data owner in encrypted

form. The method we have proposed allows the secure computation of collapsing method using a

logistic regression model, and it uses fully homomorphic encryption, secure multiparty computa-

tion and multiplicative data masking so as to allow two entities that are a genomic research unity
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and a genomic research center, to perform collapsing method on their outsourced encrypted data

without decrypting them. In our solution, there is no estimations in statistical tests and thus, it

achieves exactly the same results as association test conducted on clear data. This method protects

the confidentiality of data but we have seen that these data may also face several security issues in

terms of data integrity.

Thus, a second contribution of this work corresponds to the watermarking of homomorphically

encrypted data [14], in order to ensure their integrity for the cloud service provider point of view.

This method takes advantage of semantic security property of homomorphic encryption schemes

so as to embed a watermark in encrypted databases without altering clear data. In addition, this

method is dynamic, in the sense that it makes possible the protection of databases while maintain-

ing them updated by their owners (e.g. tuple additions, tuple suppressions and encrypted attribute

value modifications). The watermark embedding is conducting by modifying the center element

of a subset of attribute values. This watermark which is a binary message can be used for database

integrity verification. In fact, any differences between the extracted and the embedded watermarks

will indicate the database integrity loss.

One of the constraints of the above schemes is that they are based on homomorphic encryption

and this one is still having an important overhead in terms of storage, computation and commu-

nication complexities. In order to overcome these issues, we have proposed a privacy preserving

method that the protection of gnomic data during their processioning and storage on the cloud, and

without increasing computation and communication time compared to non-secure version [311].

Our solution uses Pretty Good Privacy for securing communications and cryptographic hash func-

tions for securing the confidentiality of sensitive genetic data such as weighted-sum statistic input

tables. Our method achieves the same performances and accuracy as its nonsecure version. As a

consequence, contrarily to actual state of the art, our solution can be used in real world environ-

ments. This solution has given rise to a genetic platform that is being put in place in order to allow

the scientific community to securely perform genome-wide association studies.

Above method ensures the confidentiality and privacy of outsourced data, but in some cases, these

data are illegally disclosed. This is why we have proposed robust watermarking solution that

ensures the copyright protection as well as traitor tracing. It allows identifying the person or

entity who is the origin of an illegal information disclosure. This method combines Quantization

Index Modulation (QIM) for watermark embedding in the database, and majority vote during the

extraction of the watermark. In addition, we have embedded the watermark in genetic data used

in GWAS without compromising association tests that can be conducted on these data.

Even though all these methods provide some good contributions to genetic data security, there are

still several open issues or problems that can be considered in the future.

• The method we have presented in [15] has many limitations due to the use of fully homo-

morphic encryption. Several operations such as multiplicative data masking solution we

have proposed requires a higher computation time. This is due to the use of binary rep-

resentation of encrypted values. Possible areas of improvement for these operations and

for the overall solution can the use of parallelization computation that can allows the com-
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putations of many masking exchanges at the same time. Another idea can be the use of

a partially homomorphic encryption for multiplicative data masking as we have a limited

number of multiplication operations. In addition, in the implementation of our solution, we

were limited to the implementation the bootstrapping pre-implemented in HElib. This point

can be improved by using recent advances methods [263] that have significantly improved

bootstrapping operations in terms of computation time.

• The dynamic watermarking method [14] must be improved in order to offer a better localiza-

tion precision while reducing computation time. In fact, our database watermarking method

localize illegal modification at subset level, and an improvement can be a localization preci-

sion at tuple level. Our method is used by cloud service providers for protecting integrity of

encrypted databases. However, this method can be extended so as to allow watermarking on

the user side where data would be protected in encrypted and clear forms at the same time.

In addition, the embedded watermark is is accessible in encrypted domain. Thus, a gener-

alization of our method in order to allow the watermark reading or extraction in clear form

without impacting their use, would be a good improvement. In order to achieve dynamic

watermarking, our solution is based on a journal table which is used for storing historical

details about all added or suppressed tuples. However, this journal table comes with some

issues such as storage complexity. Thus, a same dynamic watermarking without a journal

table should be an important improvement.

• To continue our work in improving the computation complexity of previous methods, we

are working on a solution that allows secure computation of GWAS based on a combination

of different security mechanisms that are symmetric encryption, homomorphic encryption,

watermarking and Intel Software Guard Extensions (SGX).

• Contrary to the state of the art based on homomorphic encryption, the proposed method for

privacy-preserving genome-wide association studies for rare variants [311] achieves better

performances. As a consequence, it can be used in real world environments. Moreover, this

method can be extended to methods that are similar to WSS. However, some security can be

considered in order to improve the security of our framework, due to the fact that we assume

that all entities cannot collude with the Server. Thus, future works should focus on adapting

our solution by considering that all parties in the framework can collude.

• The robust database watermarking method that we have developed for GWAS data can be

improved by conducting its combination with [311]. This can help at protecting GWAS

data on each side. Another point that can be studied is a theoretical analysis of the method

in terms of distortion. As the method is developed for GWAS data, more tests for more

association tests can be conducted so as to validate its accuracy for each GWAS method.

• We have proposed methods for protecting confidentiality of outsourced genetic data and

their integrity in encrypted form. However, integrity of genetic data on user side should be

also considered. In other words, future work should consists in developing a fragile water-

marking method that can allow integrity control of genetic data in clear form. This method

can for instance be an adaptation of existing database watermarking methods on genetic
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5.6. Conclusion

data with the constraint that the inserted watermark does not interfere the interpretation of

results for association tests conducted on watermarked data.

130



Bibliography

[1] Pixabay.com. The structure of human DNA, 2013.

[2] Opanclipart.org. The genetic code, 2010.

[3] Annalisa Lonetti, Maria Chiara Fontana, Giovanni Martinelli, and Ilaria Iacobucci. Single

nucleotide polymorphisms as genomic markers for high-throughput pharmacogenomic

studies. In Microarray Technology, pages 143–159. Springer, 2016.

[4] Veronica Aedo Lopez, Athina Stravodimou, Sheila Unger, Lucien Perey, and Khalil Zaman.

Mutations de brca1/2: d’angelina jolie à la thérapie. Rev Med Suisse, pages 973–4, 2016.

[5] Geoffrey Ginsburg. Medical genomics: Gather and use genetic data in health care. Nature

News, 508(7497):451, 2014.

[6] Maggie Haitian Wang, Heather J Cordell, and Kristel Van Steen. Statistical methods for

genome-wide association studies. In Seminars in cancer biology, volume 55, pages 53–60.

Elsevier, 2019.

[7] Kerem Ayoz, Erman Ayday, and A Ercument Cicek. Genome reconstruction attacks against

genomic data-sharing beacons. arXiv preprint arXiv:2001.08852, 2020.

[8] Zaobo He, Jiguo Yu, Ji Li, Qilong Han, Guangchun Luo, and Yingshu Li. Inference at-

tacks and controls on genotypes and phenotypes for individual genomic data. IEEE/ACM

transactions on computational biology and bioinformatics, 2018.

[9] A Gutmann, J Wagner, Y Ali, AL Allen, JD Arras, BF Atkinson, N Farahany, A Garza,

C Grady, S Hauser, et al. Privacy and progress in whole genome sequencing. Presidential

Committee for the Study of Bioethical, (2012), 2012.

[10] Commission nationale de l’informatique et des libertés (CNIL). Les données génétiques.

Collection CNIL, September 2017.

[11] Dalel Bouslimi, Gouenou Coatrieux, Michel Cozic, and Christian Roux. Data hiding in

encrypted images based on predefined watermark embedding before encryption process.

Signal Processing: Image Communication, 47:263–270, 2016.

131



Bibliography

[12] Safwat Hamad, Ahmed Elhadad, and Amal Khalifa. Dna watermarking using codon

postfix technique. IEEE/ACM transactions on computational biology and bioinformatics,

15(5):1605–1610, 2017.

[13] Bingshan Li and Suzanne M Leal. Methods for detecting associations with rare variants for

common diseases: application to analysis of sequence data. The American Journal of Hum.

Genetics, 83(3):311–321, 2008.

[14] David Niyitegeka, Gouenou Coatrieux, Reda Bellafqira, Emmanuelle Genin, and Javier

Franco-Contreras. Dynamic watermarking-based integrity protection of homomorphically

encrypted databases–application to outsourced genetic data. In International Workshop on

Digital Watermarking, pages 151–166. Springer, 2018.

[15] David Niyitegeka, Reda Bellafqira, Emmanuelle Genin, and Gouenou Coatrieux. Secure

collapsing method based on fully homomorphic encryption. Studies in health technology

and informatics, 270:412–416, 2020.

[16] Kristin Lauter, Adriana López-Alt, and Michael Naehrig. Private computation on encrypted

genomic data. In International Conference on Cryptology and Information Security in Latin

America, pages 3–27. Springer, 2014.

[17] Yuchen Zhang, Wenrui Dai, Xiaoqian Jiang, Hongkai Xiong, and Shuang Wang. Foresee:

Fully outsourced secure genome study based on homomorphic encryption. In BMC medical

informatics and decision making, volume 15, page S5. BioMed Central, 2015.

[18] Miran Kim and Kristin Lauter. Private genome analysis through homomorphic encryption.

In BMC medical informatics and decision making, page S3. BioMed Central, 2015.

[19] Wen-Jie Lu, Yoshiji Yamada, and Jun Sakuma. Privacy-preserving genome-wide associ-

ation studies on cloud environment using fully homomorphic encryption. In BMC medical

informatics and decision making, page S1. BioMed Central, 2015.

[20] Charlotte Bonte, Eleftheria Makri, Amin Ardeshirdavani, Jaak Simm, Yves Moreau, and

Frederik Vercauteren. Privacy-preserving genome-wide association study is practical. IACR

Cryptology ePrint Archive, 2018:955, 2018.

[21] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomorphic encryption

be practical? In Proceedings of the 3rd ACM workshop on Cloud computing security

workshop, pages 113–124. ACM, 2011.

[22] Catherine Taylor Clelland, Viviana Risca, and Carter Bancroft. Hiding messages in dna

microdots. Nature, 399(6736):533, 1999.

[23] Robert N Grass, Reinhard Heckel, Michela Puddu, Daniela Paunescu, and Wendelin J Stark.

Robust chemical preservation of digital information on dna in silica with error-correcting

codes. Angewandte Chemie International Edition, 54(8):2552–2555, 2015.

132



Bibliography

[24] Meinolf Blawat, Klaus Gaedke, Ingo Huetter, Xiao-Ming Chen, Brian Turczyk, Samuel

Inverso, Benjamin W Pruitt, and George M Church. Forward error correction for dna data

storage. Procedia Computer Science, 80:1011–1022, 2016.

[25] SM Hossein Tabatabaei Yazdi, Yongbo Yuan, Jian Ma, Huimin Zhao, and Olgica Milen-

kovic. A rewritable, random-access dna-based storage system. Scientific reports, 5:14138,

2015.

[26] HJ Shiu, Ka-Lok Ng, Jywe-Fei Fang, Richard CT Lee, and Chien-Hung Huang. Data hiding

methods based upon dna sequences. Information Sciences, 180(11):2196–2208, 2010.

[27] Suk-Hwan Lee. Reversible data hiding for dna sequence using multilevel histogram shift-

ing. Security and Communication Networks, 2018, 2018.

[28] Guoyan Liu, Hongjun Liu, and Abdurahman Kadir. Hiding message into dna sequence

through dna coding and chaotic maps. Medical & biological engineering & computing,

52(9):741–747, 2014.

[29] Mohammad Saidur Rahman, Ibrahim Khalil, and Xun Yi. A lossless dna data hiding

approach for data authenticity in mobile cloud based healthcare systems. International

Journal of Information Management, 45:276–288, 2019.

[30] Juntao Fu, Weiming Zhang, Nenghai Yu, Guoli Ma, and Qi Tang. Fast tamper location of

batch dna sequences based on reversible data hiding. In 2014 7th International Conference

on Biomedical Engineering and Informatics, pages 868–872. IEEE, 2014.

[31] Ghada Hamed, Mohammed Marey, Safaa El-Sayed Amin, and Mohamed Fahmy Tolba.

Hybrid randomized and biological preserved dna-based crypt-steganography using generic

n-bits binary coding rule. In International Conference on Advanced Intelligent Systems and

Informatics, pages 618–627. Springer, 2016.

[32] Tianding Chen. A novel biology-based reversible data hiding fusion scheme. In Interna-

tional Workshop on Frontiers in Algorithmics, pages 84–95. Springer, 2007.

[33] Yanfeng Wang, Qinqin Han, Guangzhao Cui, and Junwei Sun. Hiding messages based

on dna sequence and recombinant dna technique. IEEE Transactions on Nanotechnology,

18:299–307, 2019.

[34] David Haughton and Félix Balado. Biocode: Two biologically compatible algorithms for

embedding data in non-coding and coding regions of dna. BMC bioinformatics, 14(1):121,

2013.

[35] Suah Kim, Xiaochao Qu, Vasily Sachnev, and Hyoung Joong Kim. Skewed histogram

shifting for reversible data hiding using a pair of extreme predictions. IEEE Transactions

on Circuits and Systems for Video Technology, 29(11):3236–3246, 2018.

[36] Muhammad Naveed, Erman Ayday, Ellen W Clayton, Jacques Fellay, Carl A Gunter, Jean-

Pierre Hubaux, Bradley A Malin, and XiaoFeng Wang. Privacy in the genomic era. ACM

Computing Surveys (CSUR), 48(1):1–44, 2015.

133



Bibliography

[37] Steven L Salzberg. Open questions: How many genes do we have? BMC biology, 16(1):94,

2018.

[38] Jian-Jun Shu. A new integrated symmetrical table for genetic codes. Biosystems, 151:21–

26, 2017.

[39] ENCODE Project Consortium et al. An integrated encyclopedia of dna elements in the

human genome. Nature, 489(7414):57, 2012.

[40] 1000 Genomes Project Consortium et al. A global reference for human genetic variation.

Nature, 526(7571):68, 2015.

[41] Council of Europe. Committee of Ministers et al. The Protection of Medical Data: Recom-

mendation No. R (97) 5 Adopted by the Committee of Ministers of the Council of Europe on

13 February 1997 and Explanatory Memorandum. Council of Europe Publ., 1997.

[42] HD Abbing. International declaration on human genetic data. European journal of health

law, 11(1):93–107, 2004.

[43] Protection Regulation. Regulation (eu) 2016/679 of the european parliament and of the

council. REGULATION (EU), 679:2016, 2016.

[44] Joshua T Burdick, Wei-Min Chen, Gonçalo R Abecasis, and Vivian G Cheung. In silico

method for inferring genotypes in pedigrees. Nature genetics, 38(9):1002–1004, 2006.

[45] Nicole Chavez and Sonya Hamasaki. He spent 14 years in prison for murder. now, he’s the

first person in california to be exonerated with the help of genetic genealogy. CNN, 2020.

[46] Patrícia Santana Correia, Pedro Vitiello, Maria Helena Cabral de Almeida Cardoso, and

Dafne Dain Gandelman Horovitz. Conceptions on genetics in a group of college students.

Journal of community genetics, 4(1):115–123, 2013.

[47] Nasim Mavaddat, Kyriaki Michailidou, Joe Dennis, Michael Lush, Laura Fachal, Andrew

Lee, Jonathan P Tyrer, Ting-Huei Chen, Qin Wang, Manjeet K Bolla, et al. Polygenic risk

scores for prediction of breast cancer and breast cancer subtypes. The American Journal of

Human Genetics, 104(1):21–34, 2019.

[48] Petr Danecek, Adam Auton, Goncalo Abecasis, Cornelis A Albers, Eric Banks, Mark A

DePristo, Robert E Handsaker, Gerton Lunter, Gabor T Marth, Stephen T Sherry, et al. The

variant call format and vcftools. Bioinformatics, 27(15):2156–2158, 2011.

[49] Jay Shendure and Hanlee Ji. Next-generation dna sequencing. Nature biotechnology,

26(10):1135, 2008.

[50] Tiffany Amariuta, Yang Luo, Rachel Knevel, Yukinori Okada, and Soumya Raychaudhuri.

Advances in genetics toward identifying pathogenic cell states of rheumatoid arthritis. Im-

munological reviews, 2019.

134



Bibliography

[51] J Vineela Krupanidhi Srirama, K Tejaswi, and MN Thanmayi. Huntington’s chorea, a neur-

ological disorder of all ages–bioinformatics approach for its precise diagnosis. International

journal of health sciences, 13(6):26, 2019.

[52] Thomas N Williams and Swee Lay Thein. Sickle cell anemia and its phenotypes. Annual

review of genomics and human genetics, 19:113–147, 2018.

[53] Katharina Weiss, Amelie Lotz-Havla, Katharina Dokoupil, and Esther M Maier. Manage-

ment of three preterm infants with phenylketonuria. Nutrition, 71:110619, 2020.

[54] Holm Schneider, Florian Faschingbauer, Sonia Schuepbach-Mallepell, Iris Körber, Sigrun

Wohlfart, Angela Dick, Mandy Wahlbuhl, Christine Kowalczyk-Quintas, Michele Vigolo,

Neil Kirby, et al. Prenatal correction of x-linked hypohidrotic ectodermal dysplasia. New

England Journal of Medicine, 378(17):1604–1610, 2018.

[55] Francis S Collins, Michael Morgan, and Aristides Patrinos. The human genome project:

lessons from large-scale biology. Science, 300(5617):286–290, 2003.

[56] Nayanah Siva. 1000 genomes project, 2008.

[57] Julian G Barwell, Rory BG O’Sullivan, Laura K Mansbridge, Joanna M Lowry, and Huw R

Dorkins. Challenges in implementing genomic medicine: the 100,000 genomes project. J

Transl Genet Genom, 2(10.20517), 2018.

[58] Francis S Collins and Harold Varmus. A new initiative on precision medicine. New England

journal of medicine, 372(9):793–795, 2015.

[59] Naomi E Allen, Cathie Sudlow, Tim Peakman, Rory Collins, et al. Uk biobank data: come

and get it, 2014.

[60] Andreas Menke, Katharina Domschke, Darina Czamara, Torsten Klengel, Johannes Hen-

nings, Susanne Lucae, Bernhard T Baune, Volker Arolt, Bertram Müller-Myhsok, Florian

Holsboer, et al. Genome-wide association study of antidepressant treatment-emergent sui-

cidal ideation. Neuropsychopharmacology, 37(3):797–807, 2012.

[61] Marc Fiume, Miroslav Cupak, Stephen Keenan, Jordi Rambla, Sabela de la Torre,

Stephanie OM Dyke, Anthony J Brookes, Knox Carey, David Lloyd, Peter Goodhand, et al.

Federated discovery and sharing of genomic data using beacons. Nature biotechnology,

37(3):220–224, 2019.

[62] Brett S Abrahams, Dan E Arking, Daniel B Campbell, Heather C Mefford, Eric M Mor-

row, Lauren A Weiss, Idan Menashe, Tim Wadkins, Sharmila Banerjee-Basu, and Alan

Packer. Sfari gene 2.0: a community-driven knowledgebase for the autism spectrum dis-

orders (asds). Molecular autism, 4(1):36, 2013.

[63] Michael D Edge and Graham Coop. Attacks on genetic privacy via uploads to genealogical

databases. eLife, 9, 2020.

135



Bibliography

[64] Pascal Su. Direct-to-consumer genetic testing: a comprehensive view. The Yale journal of

biology and medicine, 86(3):359, 2013.

[65] MA Allyse, DH Robinson, MJ Ferber, and RR Sharp. Direct-to-consumer testing 2.0:

Emerging models of direct-to-consumer genetic testing. In Mayo Clinic proceedings,

volume 93, page 113, 2018.

[66] QS Li, C Tian, GR Seabrook, WC Drevets, and VA Narayan. Analysis of 23andme an-

tidepressant efficacy survey data: implication of circadian rhythm and neuroplasticity in

bupropion response. Translational psychiatry, 6(9):e889–e889, 2016.

[67] Alec J Jeffreys, Victoria Wilson, and Swee Lay Thein. Individual-specific ‘fingerprints’ of

human dna. Nature, 316(6023):76–79, 1985.

[68] John M Butler. Genetics and genomics of core short tandem repeat loci used in human

identity testing. Journal of forensic sciences, 51(2):253–265, 2006.

[69] Elizabeth E Joh. Reclaiming abandoned dna: the fourth amendment and genetic privacy.

Nw. UL Rev., 100:857, 2006.

[70] David H Kaye and Michael E Smith. Dna identification databases: legality, legitimacy, and

the case for population-wide coverage. Wis. L. Rev., page 413, 2003.

[71] L Dusserre, H Ducrot, and FA Allaert. L’information médicale. L’ordinateur et la loi.

Deuxième edition Editions Médicales Internationales, 1999.

[72] Ganthan Narayana Samy, Rabiah Ahmad, and Zuraini Ismail. Security threats categories in

healthcare information systems. Health informatics journal, 16(3):201–209, 2010.

[73] Latanya Sweeney, Akua Abu, and Julia Winn. Identifying participants in the personal gen-

ome project by name (a re-identification experiment). arXiv preprint arXiv:1304.7605,

2013.

[74] Melissa Gymrek, Amy L McGuire, David Golan, Eran Halperin, and Yaniv Erlich. Identi-

fying personal genomes by surname inference. Science, 339(6117):321–324, 2013.

[75] Turi E King and Mark A Jobling. What’s in a name? y chromosomes, surnames and the

genetic genealogy revolution. Trends in genetics, 25(8):351–360, 2009.

[76] Suyash S Shringarpure and Carlos D Bustamante. Privacy risks from genomic data-sharing

beacons. The American Journal of Human Genetics, 97(5):631–646, 2015.

[77] Shuang Wang, Xiaoqian Jiang, Haixu Tang, Xiaofeng Wang, Diyue Bu, Knox Carey,

Stephanie OM Dyke, Dov Fox, Chao Jiang, Kristin Lauter, et al. A community effort

to protect genomic data sharing, collaboration and outsourcing. NPJ genomic medicine,

2(1):1–6, 2017.

[78] Andrew J Pakstis, William C Speed, Rixun Fang, Fiona CL Hyland, Manohar R Furtado,

Judith R Kidd, and Kenneth K Kidd. Snps for a universal individual identification panel.

Human genetics, 127(3):315–324, 2010.

136



Bibliography

[79] Eric E Schadt, Sangsoon Woo, and Ke Hao. Bayesian method to predict individual snp

genotypes from gene expression data. Nature genetics, 44(5):603–608, 2012.

[80] Nils Homer, Szabolcs Szelinger, Margot Redman, David Duggan, Waibhav Tembe, Jill

Muehling, John V Pearson, Dietrich A Stephan, Stanley F Nelson, and David W Craig.

Resolving individuals contributing trace amounts of dna to highly complex mixtures using

high-density snp genotyping microarrays. PLoS genetics, 4(8):e1000167, 2008.

[81] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page, and Thomas Risten-

part. Privacy in pharmacogenetics: An end-to-end case study of personalized warfarin

dosing. In 23rd {USENIX} Security Symposium ({USENIX} Security 14), pages 17–32,

2014.

[82] Jean Louis Raisaro, Florian Tramer, Zhanglong Ji, Diyue Bu, Yongan Zhao, Knox Carey,

David Lloyd, Heidi Sofia, Dixie Baker, Paul Flicek, et al. Addressing beacon re-

identification attacks: quantification and mitigation of privacy risks. Journal of the Amer-

ican Medical Informatics Association, 24(4):799–805, 2017.

[83] Arif Harmanci and Mark Gerstein. Quantification of private information leakage from

phenotype-genotype data: linking attacks. Nature methods, 13(3):251–256, 2016.

[84] Rui Wang, Yong Fuga Li, XiaoFeng Wang, Haixu Tang, and Xiaoyong Zhou. Learning

your identity and disease from research papers: information leaks in genome wide associ-

ation study. In Proceedings of the 16th ACM conference on Computer and communications

security, pages 534–544. ACM, 2009.

[85] Accountability Act. Health insurance portability and accountability act of 1996. Public

law, 104:191, 1996.

[86] Louise Slaughter. Genetic information non-discrimination act. Harv. J. on Legis., 50:41,

2013.

[87] R Guy Thomas. Genetics and insurance in the united kingdom 1995–2010: the rise and fall

of “scientific” discrimination. New Genetics and Society, 31(2):203–222, 2012.

[88] Rene Saint-Germain et al. Information security management best practice based on iso/iec

17799. Information management journal, 39(4):60–66, 2005.

[89] ISO ISO. 27799-health informatics-information security management in health using iso.

[90] IHE IT Infrastructure Technical Committee et al. Ihe it infrastructure (iti) technical frame-

work: integration profiles. integrating the healthcare enterprise, 2016.

[91] Dalel Bouslimi, Gouenou Coatrieux, Michel Cozic, and Ch Roux. Combination of water-

marking and joint watermarking-decryption for reliability control and traceability of med-

ical images. In 2014 36th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society, pages 4495–4498. IEEE, 2014.

137



Bibliography

[92] Suzy A Buckovich, Helga E Rippen, and Michael J Rozen. Driving toward guiding prin-

ciples: a goal for privacy, confidentiality, and security of health information. Journal of the

American Medical Informatics Association, 6(2):122–133, 1999.

[93] Yann Joly, Ida Ngueng Feze, Lingqiao Song, and Bartha M Knoppers. Comparative ap-

proaches to genetic discrimination: chasing shadows? Trends in Genetics, 33(5):299–302,

2017.

[94] Ellen Wright Clayton, Barbara J Evans, James W Hazel, and Mark A Rothstein. The law

of genetic privacy: applications, implications, and limitations. Journal of Law and the

Biosciences, 6(1):1–36, 2019.

[95] Mark A Rothstein. Genetic secrets: protecting privacy and confidentiality in the genetic

era. Yale University Press, 1997.

[96] Samuel J Aronson and Heidi L Rehm. Building the foundation for genomics in precision

medicine. Nature, 526(7573):336–342, 2015.

[97] Jongsik Chun, Aharon Oren, Antonio Ventosa, Henrik Christensen, David Ruiz Arahal,

Milton S da Costa, Alejandro P Rooney, Hana Yi, Xue-Wei Xu, Sofie De Meyer, et al.

Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes.

International journal of systematic and evolutionary microbiology, 68(1):461–466, 2018.

[98] EBIOS ANSSI. Ebios-expression des besoins et identification des objectifs de sécurité,

2016.

[99] Christopher J Alberts, Sandra G Behrens, Richard D Pethia, and William R Wilson. Oper-

ationally critical threat, asset, and vulnerability evaluation (octave) framework, version 1.0.

Technical report, CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGIN-

EERING INST, 1999.

[100] CLUSIF. Mehari 2010 : Guide de l’analyse et du traitement des risques, 2010.

[101] Niranchana Radhakrishnan and Marimuthu Karuppiah. An efficient and secure remote user

mutual authentication scheme using smart cards for telecare medical information systems.

Informatics in Medicine Unlocked, 16:100092, 2019.

[102] Wei Pan, Gouenou Coatrieux, Dalel Bouslimi, and Nicolas Prigent. Secure public cloud

platform for medical images sharing. In MIE, pages 251–255, 2015.

[103] Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, and Mauro Conti. A survey on ho-

momorphic encryption schemes: Theory and implementation. ACM Computing Surveys

(CSUR), 51(4):79, 2018.

[104] David W Archer, Dan Bogdanov, Yehuda Lindell, Liina Kamm, Kurt Nielsen, Jakob Ille-

borg Pagter, Nigel P Smart, and Rebecca N Wright. From keys to databases—real-world

applications of secure multi-party computation. The Computer Journal, 61(12):1749–1771,

2018.

138



Bibliography

[105] Saif Al-Kuwari, James H Davenport, and Russell J Bradford. Cryptographic hash functions:

recent design trends and security notions. IACR Cryptology ePrint Archive, 2011:565, 2011.

[106] Javier Franco-Contreras and Gouenou Coatrieux. Robust watermarking of relational data-

bases with ontology-guided distortion control. IEEE transactions on information forensics

and security, 10(9):1939–1952, 2015.

[107] EMC INC. Rsa securid, 2018.

[108] Afnan Binduf, Hanan Othman Alamoudi, Hanan Balahmar, Shatha Alshamrani, Haifa Al-

Omar, and Naya Nagy. Active directory and related aspects of security. In 2018 21st Saudi

Computer Society National Computer Conference (NCC), pages 4474–4479. IEEE, 2018.

[109] Thomas Matthew McCann and Kedar Kashinath Karmarkar. Methods, systems, and com-

puter readable media for remote authentication dial in user service (radius) message loop

detection and mitigation, March 20 2018. US Patent 9,923,984.

[110] Wei Pan. Protection des images médicales: tatouage réversible pour le contrôle d’accès et

d’usage. PhD thesis, 2012.

[111] Butler W Lampson. Protection. ACM SIGOPS Operating Systems Review, 8(1):18–24,

1974.

[112] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E Youman. Role-based

access control models. Computer, 29(2):38–47, 1996.

[113] Anas Abou El Kalam, R El Baida, Philippe Balbiani, Salem Benferhat, Frédéric Cuppens,

Yves Deswarte, Alexandre Miege, Claire Saurel, and Gilles Trouessin. Organization based

access control. In Proceedings POLICY 2003. IEEE 4th International Workshop on Policies

for Distributed Systems and Networks, pages 120–131. IEEE, 2003.

[114] Vincent C Hu, D Richard Kuhn, David F Ferraiolo, and Jeffrey Voas. Attribute-based access

control. Computer, 48(2):85–88, 2015.

[115] Yuanyu Zhang, Shoji Kasahara, Yulong Shen, Xiaohong Jiang, and Jianxiong Wan. Smart

contract-based access control for the internet of things. IEEE Internet of Things Journal,

6(2):1594–1605, 2018.

[116] Artem Voronkov, Leonardo A Martucci, and Stefan Lindskog. Measuring the usability of

firewall rule sets. IEEE Access, 8:27106–27121, 2020.

[117] Robert Zalenski. Firewall technologies. IEEE potentials, 21(1):24–29, 2002.

[118] William Stallings, Lawrie Brown, Michael D Bauer, and Arup Kumar Bhattacharjee. Com-

puter security: principles and practice. Pearson Education Upper Saddle River, NJ, USA,

2012.

[119] Jianguo Ren, Xiaofan Yang, Qingyi Zhu, Lu-Xing Yang, and Chunming Zhang. A novel

computer virus model and its dynamics. Nonlinear Analysis: Real World Applications,

13(1):376–384, 2012.

139



Bibliography

[120] Poonam Jindal and Brahmjit Singh. Rc4 encryption-a literature survey. Procedia Computer

Science, 46:697–705, 2015.

[121] Philipp Jovanovic. Analysis and design of symmetric cryptographic algorithms. 2015.

[122] Christof Paar and Jan Pelzl. Understanding cryptography: a textbook for students and

practitioners. Springer Science & Business Media, 2009.

[123] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the advanced encryption

standard. Springer Science & Business Media, 2013.

[124] D Mukhopadhyay. Cryptography: Advanced encryption standard (aes). Encyclopedia of

Computer Science and Technology, 279, 2017.

[125] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signa-

tures and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[126] Reda Bellafqira, Gouenou Coatrieux, Dalel Bouslimi, Gwénolé Quellec, and Michel Cozic.

Proxy re-encryption based on homomorphic encryption. In Proceedings of the 33rd Annual

Computer Security Applications Conference, pages 154–161. ACM, 2017.

[127] Ayantika Chatterjee and Khin Mi Mi Aung. Fully Homomorphic Encryption in Real World

Applications. Springer, 2019.

[128] Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to play mental poker

keeping secret all partial information. In Providing Sound Foundations for Cryptography:

On the Work of Shafi Goldwasser and Silvio Micali, pages 173–201. 2019.

[129] Andrew C Yao. Protocols for secure computations. In 23rd annual symposium on founda-

tions of computer science (sfcs 1982), pages 160–164. IEEE, 1982.

[130] T. Elgamal. A public key cryptosystem and a signature scheme based on discrete logar-

ithms. IEEE Transactions on Information Theory, 31(4):469–472, July 1985.

[131] Josh Benaloh. Dense probabilistic encryption. In Proceedings of the workshop on selected

areas of cryptography, pages 120–128, 1994.

[132] David Naccache and Jacques Stern. A new public key cryptosystem based on higher

residues. In Proceedings of the 5th ACM conference on Computer and communications

security, pages 59–66, 1998.

[133] Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key cryptosystem as secure

as factoring. In International conference on the theory and applications of cryptographic

techniques, pages 308–318. Springer, 1998.

[134] Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryptocomputing for nc/sup

1. In 40th Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039),

pages 554–566. IEEE, 1999.

140



Bibliography

[135] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In

Jacques Stern, editor, Advances in Cryptology — EUROCRYPT ’99, pages 223–238, Berlin,

Heidelberg, 1999. Springer Berlin Heidelberg.

[136] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts. In

Theory of Cryptography Conference, pages 325–341. Springer, 2005.

[137] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Multi-bit cryptosystems based on

lattice problems. In International Workshop on Public Key Cryptography, pages 315–329.

Springer, 2007.

[138] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In Theory

of Cryptography Conference, pages 575–594. Springer, 2007.

[139] Ivan Damgård and Mads Jurik. A generalisation, a simpli. cation and some applications of

paillier’s probabilistic public-key system. In International workshop on public key crypto-

graphy, pages 119–136. Springer, 2001.

[140] Ivan Damgård, Mads Jurik, and Jesper Buus Nielsen. A generalization of paillier’s public-

key system with applications to electronic voting. International Journal of Information

Security, 9(6):371–385, Dec 2010.

[141] Miaomiao Zhang and Steven Romero. Design and implementation of an e-voting system

based on paillier encryption. In Future of Information and Communication Conference,

pages 815–831. Springer, 2020.

[142] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single database,

computationally-private information retrieval. In Proceedings 38th Annual Symposium on

Foundations of Computer Science, pages 364–373. IEEE, 1997.

[143] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE transactions

on Information Theory, 22(6):644–654, 1976.

[144] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data banks and privacy

homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.

[145] Burt Kaliski. Quadratic Residuosity Problem, pages 493–493. Springer US, Boston, MA,

2005.

[146] Henry Corrigan-Gibbs and Dmitry Kogan. The discrete-logarithm problem with prepro-

cessing. In Annual International Conference on the Theory and Applications of Crypto-

graphic Techniques, pages 415–447. Springer, 2018.

[147] Tibor Jager. The generic composite residuosity problem. In Black-Box Models of Compu-

tation in Cryptology, pages 49–56. Springer, 2012.

[148] Michael Fellows and Neal Koblitz. Combinatorial cryptosystems galore! Contemporary

Mathematics, 168:51–51, 1994.

141



Bibliography

[149] Kristian Gjøsteen. Subgroup membership problems and public key cryptosystems. 2004.

[150] Carlos Aguilar Melchor, Guilhem Castagnos, and Philippe Gaborit. Lattice-based homo-

morphic encryption of vector spaces. In 2008 IEEE International Symposium on Informa-

tion Theory, pages 1858–1862. IEEE, 2008.

[151] Carlos Aguilar Melchor, Philippe Gaborit, and Javier Herranz. Additively homomorphic

encryption with d-operand multiplications. In Annual Cryptology Conference, pages 138–

154. Springer, 2010.

[152] Frederik Armknecht and Ahmad-Reza Sadeghi. A new approach for algebraically homo-

morphic encryption. IACR Cryptology ePrint Archive, 2008:422, 2008.

[153] Craig Gentry and Dan Boneh. A fully homomorphic encryption scheme, volume 20. Stan-

ford university Stanford, 2009.

[154] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic

encryption without bootstrapping. ACM Transactions on Computation Theory (TOCT),

6(3):13, 2014.

[155] Nigel P Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively

small key and ciphertext sizes. In International Workshop on Public Key Cryptography,

pages 420–443. Springer, 2010.

[156] Craig Gentry. Toward basing fully homomorphic encryption on worst-case hardness. In

Annual Cryptology Conference, pages 116–137. Springer, 2010.

[157] Peter Scholl and Nigel P Smart. Improved key generation for gentry’s fully homomorphic

encryption scheme. In IMA International Conference on Cryptography and Coding, pages

10–22. Springer, 2011.

[158] Naoki Ogura, Go Yamamoto, Tetsutaro Kobayashi, and Shigenori Uchiyama. An improve-

ment of key generation algorithm for gentry’s homomorphic encryption scheme. In Inter-

national Workshop on Security, pages 70–83. Springer, 2010.

[159] Marten Van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homo-

morphic encryption over the integers. In Annual International Conference on the Theory

and Applications of Cryptographic Techniques, pages 24–43. Springer, 2010.

[160] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. Fully ho-

momorphic encryption over the integers with shorter public keys. In Annual Cryptology

Conference, pages 487–504. Springer, 2011.

[161] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Scale-invariant fully homo-

morphic encryption over the integers. In International Workshop on Public Key Crypto-

graphy, pages 311–328. Springer, 2014.

142



Bibliography

[162] Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee, Tancrede Lepoint,

Mehdi Tibouchi, and Aaram Yun. Batch fully homomorphic encryption over the integers.

In Annual International Conference on the Theory and Applications of Cryptographic Tech-

niques, pages 315–335. Springer, 2013.

[163] Koji Nuida and Kaoru Kurosawa. (batch) fully homomorphic encryption over integers

for non-binary message spaces. In Annual International Conference on the Theory and

Applications of Cryptographic Techniques, pages 537–555. Springer, 2015.

[164] Steven D Galbraith, Shishay W Gebregiyorgis, and Sean Murphy. Algorithms for the

approximate common divisor problem. LMS Journal of Computation and Mathematics,

19(A):58–72, 2016.

[165] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-lwe

and security for key dependent messages. In Annual cryptology conference, pages 505–524.

Springer, 2011.

[166] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from

(standard) lwe. SIAM Journal on Computing, 43(2):831–871, 2014.

[167] Shai Halevi and Victor Shoup. Algorithms in helib. In Annual Cryptology Conference,

pages 554–571. Springer, 2014.

[168] Michael O Rabin. How to exchange secrets with oblivious transfer. IACR Cryptology ePrint

Archive, 2005:187, 2005.

[169] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[170] Sebati Ghosh and Palash Sarkar. Variants of wegman-carter message authentication code

supporting variable tag lengths. 2020.

[171] FRANCIS MORGAN Boland, Joseph JK O’Ruanaidh, and C Dautzenberg. Watermarking

digital images for copyright protection. 1995.

[172] Hector Santoyo-Garcia, Eduardo Fragoso-Navarro, Rogelio Reyes-Reyes, Clara Cruz-

Ramos, and Mariko Nakano-Miyatake. Visible watermarking technique based on human

visual system for single sensor digital cameras. Security and Communication Networks,

2017, 2017.

[173] Fred Mintzer, Jeffrey Lotspiech, Norishige Morimoto, and T Almaden. Safeguarding digital

library contents and users. D-lib magazine, 3(7/8), 1997.

[174] Gouenou Coatrieux, Emmanuel Chazard, Régis Beuscart, and Christian Roux. Lossless

watermarking of categorical attributes for verifying medical data base integrity. In 2011

Annual International Conference of the IEEE Engineering in Medicine and Biology Society,

pages 8195–8198. IEEE, 2011.

[175] Dominik Heider and Angelika Barnekow. Dna-based watermarks using the dna-crypt al-

gorithm. BMC bioinformatics, 8(1):176, 2007.

143



Bibliography

[176] Rajendra Acharya, UC Niranjan, S Sitharama Iyengar, N Kannathal, and Lim Choo Min.

Simultaneous storage of patient information with medical images in the frequency domain.

Computer methods and programs in biomedicine, 76(1):13–19, 2004.

[177] Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton Kalker. Digital

watermarking and steganography. Morgan kaufmann, 2007.

[178] Adnan M Alattar. Smart images using digimarc’s watermarking technology. In Security

and Watermarking of Multimedia Contents II, volume 3971, pages 264–273. International

Society for Optics and Photonics, 2000.

[179] Rakesh Agrawal and Jerry Kiernan. Watermarking relational databases. In VLDB’02: Pro-

ceedings of the 28th International Conference on Very Large Databases, pages 155–166.

Elsevier, 2002.

[180] Neal R Wagner. Fingerprinting. In 1983 IEEE Symposium on Security and Privacy, pages

18–18. IEEE, 1983.

[181] Yingjiu Li, Vipin Swarup, and Sushil Jajodia. Fingerprinting relational databases: Schemes

and specialties. IEEE Transactions on Dependable and Secure Computing, 2(1):34–45,

2005.

[182] Wade Trappe, Min Wu, Z Jane Wang, and KJ Ray Liu. Anti-collusion fingerprinting for

multimedia. IEEE Transactions on Signal Processing, 51(4):1069–1087, 2003.

[183] Ana Charpentier, Caroline Fontaine, Teddy Furon, and Ingemar Cox. An asymmetric finger-

printing scheme based on tardos codes. In International Workshop on Information Hiding,

pages 43–58. Springer, 2011.

[184] Saman Iftikhar, Sharifullah Khan, Zahid Anwar, and Muhammad Kamran. Genin-

foguard—a robust and distortion-free watermarking technique for genetic data. PloS one,

10(2), 2015.

[185] Ibrahim Kamel and Kareem Kamel. Toward protecting the integrity of relational data-

bases. In 2011 World Congress on Internet Security (WorldCIS-2011), pages 258–261.

IEEE, 2011.

[186] Jie Guo. Fragile watermarking scheme for tamper detection of relational database. In

2011 International Conference on Computer and Management (CAMAN), pages 1–4. IEEE,

2011.

[187] Farnaz Arab, Mazdak Zamani, Sofya Poger, Carol Manigault, and Songmei Yu. A frame-

work to evaluate the performance of video watermarking techniques. In 2019 IEEE 2nd

International Conference on Information and Computer Technologies (ICICT), pages 114–

117. IEEE, 2019.

[188] Javier Franco Contreras. Watermarking services for medical database content security.

PhD thesis, 2014.

144



Bibliography

[189] J. Franco-Contreras, G. Coatrieux, F. Cuppens, N. Cuppens-Boulahia, and C. Roux. Robust

lossless watermarking of relational databases based on circular histogram modulation. IEEE

Transactions on Information Forensics and Security, 9(3):397–410, March 2014.

[190] Donghui Hu, Dan Zhao, and Shuli Zheng. A new robust approach for reversible database

watermarking with distortion control. IEEE Transactions on Knowledge and Data Engin-

eering, 31(6):1024–1037, 2018.

[191] Muhammad Kamran and Muddassar Farooq. An optimized information-preserving rela-

tional database watermarking scheme for ownership protection of medical data. arXiv pre-

print arXiv:1801.09741, 2018.

[192] Zhi-hao Zhang, Xiao-Ming Jin, Jian-Min Wang, and De-Yi Li. Watermarking relational

database using image. In Proceedings of 2004 International Conference on Machine Learn-

ing and Cybernetics (IEEE Cat. No. 04EX826), volume 3, pages 1739–1744. IEEE, 2004.

[193] Fabian M Suchanek and David Gross-Amblard. Adding fake facts to ontologies. In Pro-

ceedings of the 21st International Conference on World Wide Web, pages 421–424. ACM,

2012.

[194] Damien Hanyurwimfura, Yuling Liu, and Zhijie Liu. Text format based relational data-

base watermarking for non-numeric data. In 2010 International Conference On Computer

Design and Applications, volume 4, pages V4–312. IEEE, 2010.

[195] Gaurav Gupta and Josef Pieprzyk. Database relation watermarking resilient against second-

ary watermarking attacks. In International Conference on Information Systems Security,

pages 222–236. Springer, 2009.

[196] Yingjiu Li, Huiping Guo, and Sushil Jajodia. Tamper detection and localization for categor-

ical data using fragile watermarks. In Proceedings of the 4th ACM workshop on Digital

rights management, pages 73–82. ACM, 2004.

[197] Huiping Guo, Yingjiu Li, Anyi Liu, and Sushil Jajodia. A fragile watermarking

scheme for detecting malicious modifications of database relations. Information Sciences,

176(10):1350–1378, 2006.

[198] Vahab Prasannakumari. A robust tamperproof watermarking for data integrity in relational

databases. Research Journal of Information Technology, 1(3):115–121, 2009.

[199] Sukriti Bhattacharya and Agostino Cortesi. A distortion free watermark framework for

relational databases. In ICSOFT (2), pages 229–234, 2009.

[200] Jung-Nan Chang and Hsien-Chu Wu. Reversible fragile database watermarking technology

using difference expansion based on svr prediction. In 2012 International Symposium on

Computer, Consumer and Control, pages 690–693. IEEE, 2012.

[201] Waheeb Yaqub, Ibrahim Kamel, and Zeyar Aung. Toward watermarking compressed data

in columnar database architectures. Security and Privacy, page e84, 2019.

145



Bibliography

[202] Aihab Khan and Syed Afaq Husain. A fragile zero watermarking scheme to detect and

characterize malicious modifications in database relations. The Scientific World Journal,

2013, 2013.

[203] Vidhi Khanduja and Shampa Chakraverty. A generic watermarking model for object rela-

tional databases. Multimedia Tools and Applications, pages 1–25, 2019.

[204] Meng-Hsiun Tsai, Hsiao-Yun Tseng, and Chen-Ying Lai. A database watermarking tech-

nique for temper detection. In 9th Joint International Conference on Information Sciences

(JCIS-06). Atlantis Press, 2006.

[205] Farah Naz, Abid Khan, Mansoor Ahmed, Majid Iqbal Khan, Sadia Din, Awais Ahmad, and

Gwanggil Jeon. Watermarking as a service (waas) with anonymity. Multimedia Tools and

Applications, pages 1–25, 2019.

[206] Shabir A Parah, Farhana Ahad, Javaid A Sheikh, and Ghulam Mohiuddin Bhat. Hiding

clinical information in medical images: a new high capacity and reversible data hiding

technique. Journal of biomedical informatics, 66:214–230, 2017.

[207] Shijun Xiang and Jiayong He. Database authentication watermarking scheme in encrypted

domain. IET Information Security, 12(1):42–51, 2018.

[208] David Niyitegeka, Gouenou Coatrieux, Reda Bellafqira, Emmanuelle Genin, and Javier

Franco-Contreras. Dynamic watermarking-based integrity protection of homomorphically

encrypted databases – application to outsourced genetic data. In Chang D. Yoo, Yun-Qing

Shi, Hyoung Joong Kim, Alessandro Piva, and Gwangsu Kim, editors, Digital Forensics

and Watermarking, pages 151–166, Cham, 2019. Springer International Publishing.

[209] Kee Sung Kim, Minkyu Kim, Dongsoo Lee, Je Hong Park, and Woo-Hwan Kim. Security of

stateful order-preserving encryption. In International Conference on Information Security

and Cryptology, pages 39–56. Springer, 2018.

[210] Liangliang Xiao and I-Ling Yen. Security analysis for order preserving encryption schemes.

In 2012 46th annual conference on information sciences and systems (CISS), pages 1–6.

IEEE, 2012.

[211] Konrad Karczewski and L Francioli. The genome aggregation database (gnomad). MacAr-

thur Lab, 2017.

[212] Murat Kantarcioglu, Wei Jiang, Ying Liu, and Bradley Malin. A cryptographic approach to

securely share and query genomic sequences. IEEE Transactions on information technology

in biomedicine, 12(5):606–617, 2008.

[213] Mustafa Canim, Murat Kantarcioglu, and Bradley Malin. Secure management of biomed-

ical data with cryptographic hardware. IEEE Transactions on Information Technology in

Biomedicine, 16(1):166–175, 2011.

146



Bibliography

[214] Reza Ghasemi, Md Momin Al Aziz, Noman Mohammed, Massoud Hadian Dehkordi, and

Xiaoqian Jiang. Private and efficient query processing on outsourced genomic databases.

IEEE journal of biomedical and health informatics, 21(5):1466–1472, 2016.

[215] Mohamed Nassar, Qutaibah Malluhi, Mikhail Atallah, and Abdullatif Shikfa. Securing

aggregate queries for dna databases. IEEE Transactions on Cloud Computing, 2017.

[216] Mohammad Zahidul Hasan, Md Safiur Rahman Mahdi, Md Nazmus Sadat, and Noman

Mohammed. Secure count query on encrypted genomic data. Journal of biomedical in-

formatics, 81:41–52, 2018.

[217] Mikhail J Atallah and Jiangtao Li. Secure outsourcing of sequence comparisons. Interna-

tional Journal of Information Security, 4(4):277–287, 2005.

[218] Somesh Jha, Louis Kruger, and Vitaly Shmatikov. Towards practical privacy for genomic

computation. In 2008 IEEE Symposium on Security and Privacy (sp 2008), pages 216–230.

IEEE, 2008.

[219] Gilad Asharov, Shai Halevi, Yehuda Lindell, and Tal Rabin. Privacy-preserving search

of similar patients in genomic data. Proceedings on Privacy Enhancing Technologies,

2018(4):104–124, 2018.

[220] João Sá Sousa, Cédric Lefebvre, Zhicong Huang, Jean Louis Raisaro, Carlos Aguilar-

Melchor, Marc-Olivier Killijian, and Jean-Pierre Hubaux. Efficient and secure outsourcing

of genomic data storage. BMC medical genomics, 10(2):46, 2017.

[221] Xiaofei Wang and Yuqing Zhang. E-sc: collusion-resistant secure outsourcing of sequence

comparison algorithm. IEEE Access, 6:3358–3375, 2017.

[222] Bing Wang, Wei Song, Wenjing Lou, and Y Thomas Hou. Privacy-preserving pattern

matching over encrypted genetic data in cloud computing. In IEEE INFOCOM 2017-IEEE

Conference on Computer Communications, pages 1–9. IEEE, 2017.

[223] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik.

Countering gattaca: Efficient and secure testing of fully-sequenced human genomes (full

version). arXiv preprint arXiv:1110.2478, 2011.

[224] J Raphael Gibbs and Andrew Singleton. Application of genome-wide single nucleotide

polymorphism typing: simple association and beyond. PLoS genetics, 2(10), 2006.

[225] Fons Bruekers, Stefan Katzenbeisser, Klaus Kursawe, and Pim Tuyls. Privacy-preserving

matching of dna profiles. IACR Cryptology ePrint Archive, 2008:203, 2008.

[226] Marina Blanton and Fattaneh Bayatbabolghani. Improving the security and efficiency of

private genomic computation using server aid. IEEE Security & Privacy, 15(5):20–28,

2017.

147



Bibliography

[227] Karthik A Jagadeesh, David J Wu, Johannes A Birgmeier, Dan Boneh, and Gill Bejerano.

Deriving genomic diagnoses without revealing patient genomes. Science, 357(6352):692–

695, 2017.

[228] Juan Ramón Troncoso-Pastoriza, Stefan Katzenbeisser, and Mehmet Celik. Privacy pre-

serving error resilient dna searching through oblivious automata. In Proceedings of the

14th ACM conference on Computer and communications security, pages 519–528, 2007.

[229] Paul J McLaren, Jean Louis Raisaro, Manel Aouri, Margalida Rotger, Erman Ayday, István

Bartha, Maria B Delgado, Yannick Vallet, Huldrych F Günthard, Matthias Cavassini, et al.

Privacy-preserving genomic testing in the clinic: a model using hiv treatment. Genetics in

medicine, 18(8):814–822, 2016.

[230] Feng Chen, Chenghong Wang, Wenrui Dai, Xiaoqian Jiang, Noman Mohammed, Md Mo-

min Al Aziz, Md Nazmus Sadat, Cenk Sahinalp, Kristin Lauter, and Shuang Wang. Presage:

privacy-preserving genetic testing via software guard extension. BMC medical genomics,

10(2):48, 2017.

[231] Michael Schwarz, Samuel Weiser, and Daniel Gruss. Practical enclave malware with intel

sgx. In International Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment, pages 177–196. Springer, 2019.

[232] Cynthia Dwork. Differential privacy: A survey of results. In International Conference on

Theory and Applications of Models of Computation, pages 1–19. Springer, 2008.

[233] Florian Tramèr, Zhicong Huang, Jean-Pierre Hubaux, and Erman Ayday. Differential pri-

vacy with bounded priors: reconciling utility and privacy in genome-wide association stud-

ies. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communica-

tions Security, pages 1286–1297. ACM, 2015.

[234] Latanya Sweeney. k-anonymity: A model for protecting privacy. International Journal of

Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570, 2002.

[235] Bradley Malin and Latanya Sweeney. How (not) to protect genomic data privacy in a dis-

tributed network: using trail re-identification to evaluate and design anonymity protection

systems. Journal of biomedical informatics, 37(3):179–192, 2004.

[236] Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthuramakrishnan Ven-

kitasubramaniam. l-diversity: Privacy beyond k-anonymity. In null, page 24. IEEE, 2006.

[237] Yaniv Erlich and Arvind Narayanan. Routes for breaching and protecting genetic privacy.

Nature Reviews Genetics, 15(6):409, 2014.

[238] Aaron Johnson and Vitaly Shmatikov. Privacy-preserving data exploration in genome-wide

association studies. In Proceedings of the 19th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’13, pages 1079–1087, New York, NY,

USA, 2013. ACM.

148



Bibliography
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Titre : Composition de mécanismes cryptographiques et de tatouage pour la protection de données génétiques 
externalisées 

Mots clés : Sécurité, données génétiques, études d’association pangénomiques, tatouage, chiffrement 
homomorphe 

Résumé :  De nos jours, le “cloud computing” permet 
de mutualiser et de traiter de grandes quantités de 
données génétiques à un coût minime et sans avoir à 
maintenir une infrastructure propre. Ces données sont 
notamment utilisées dans des études d'association 
pangénomiques (“Genome Wide Association Studies” 
ou GWAS) afin d’identifier des variants génétiques 
associées à certaines maladies. Cependant, leur 
externalisation induit de nombreux problèmes en 
matière de sécurité. Notamment, le génome humain 
représente l'unique identité biologique d’un individu et 
est donc par nature une information très sensible. 
L'objectif de ces travaux de thèse est de protéger des 
données génétiques lors de leur partage, stockage et 
traitement sur le cloud. Nous avons développé 
différents outils de sécurité fondés sur le tatouage, des 
mécanismes cryptographiques et leur combinaison. 
Dans un premier temps, en utilisant le chiffrement 
homomorphe, nous avons proposé une version 
originale sécurisée de l’approche GWAS fondée sur la 
technique dite “collapsing method” ; une technique qui 
s’appuie sur la régression logistique. Pour faire face  

aux problemes de complexité  de calcul et de 
mémoire liés à l’exploitation du chiffrement 
homomorphe, nous avons proposé un protocole qui 
profite de différents outils cryptographiques (PGP, 
fonctions de hachage) pour partager entre plusieurs 
unités de recherche, des GWAS sur des variants 
rares de manière sécurisée, cela sans augmenter la 
complexité de calcul. En parallèle, nous avons 
développé une méthode de crypto-tatouage qui 
exploite la sécurité sémantique des schémas de 
chiffrement homomorphe, pour permettre à un 
fournisseur de services cloud de protéger/vérifier 
l’intégrité de bases de données génétiques 
externalisées par différents utilisateurs. Ce schéma 
de crypto-tatouage est dynamique dans le sens où le 
tatouage est réactualisé au fil des mises à jour des 
données par leurs propriétaires sans cependant 
retatouer l’ensemble des jeux de données.  Dans le 
même temps, nous avons proposé la première 
solution de tatouage robuste qui permet de protéger 
la propriété intellectuelle et le traçage de traitres pour 
des données génétiques utilisées dans des GWAS.   

 

Title: Composition of cryptographic mechanisms and watermarking for the protection of externalized genetic 
data 

Keywords: Security, genetic data, genome-wide association studies, watermarking, homomorphic encryption 

Abstract:  Nowadays, cloud computing allows 
researchers and health professionals to flexibly store 
and process large amounts of genetic data remotely, 
without a need to purchase and to maintain their own 
infrastructures. These data are especially used in 
genome-wide association studies (GWAS) in order to 
conduct the identification of genetic variants that are 
associated with some diseases. However, genetic 
data outsourcing or sharing in the cloud environments 
induces many security issues. In addition, a human 
genome is very sensitive by nature and represents the 
unique biological identity of its owner. The objective of 
this thesis work is to protect genetic data during their 
sharing, storage and processing. We have developed 
new security tools that are based on watermarking and 
cryptographic mechanisms, as well as on the combin- 

ation of them. First, we have proposed a privacy-
preserving method that allows to compute the secure 
collapsing method based on the logistic regression 
model using homomorphic encryption (HE). To 
overcome the computational and storage overhead of 
HE-based solutions, we have developed a framework 
that allows secure performing of GWAS for rare 
variants without increasing complexity compared to 
its nonsecure version. It is based on several security 
mechanisms including encryption and hash functions. 
In parallel of these works, we have exploited the 
semantic security of some HE schemes so as to 
develop a dynamic watermarking method that allows 
integrity control for encrypted data. At last, we have 
developed a robust watermarking tool for GWAS data 
for traitor tracing purposes and copyright protection. 
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