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Abstract

Biological oscillators are present in most living organisms and play major roles
in their development and regulation. Synthetic biology is a rising multidisciplinary
field that aims to create new circuits from biomolecular elements, with the goal to
better understand the dynamics underlying complex biological systems. Mathemat-
ical models play a crucial role in the study and improvement of synthetic design, to
ensure the desired functionality of the new genetic circuits, as well as to provide pre-
dictions on the efficient and robust performance of the implementation. To contribute
to the design and analysis of synthetic oscillators, in a first step, we analytically study
a two-gene synthetic oscillator, applying both bifurcation analysis and the piecewise
affine (PWA) framework, and propose a variant of the model to enhance its oscilla-
tory capacity. In a second step, inspired by circadian rhythms, we study a network of
N two-gene synthetic PWA oscillators, and compare the effect of three different cou-
pling topologies on the dynamics and synchronization properties of the network. In a
third step, motivated by the interconnection of the cell cycle and circadian clock, we
analyze the coupling of the two-gene oscillator with two other synthetic oscillators:
the repressilator and a reduced cell cycle model. Two main bidirectional coupling
schemes are considered and we perform a "controler-follower" analysis to charac-
terize the capacity of each system to determine or control the period of the coupled
system. Based on this analysis, we can identify the coupling schemes admitting a
wider range of dynamical responses, as well as suggest strategies for period-control
of two coupled oscillators and tunability of a system through the coupling with an-
other system.

Keywords: piecewise affine systems; synthetic biology; biological oscillators;
bifurcation analysis; coupled oscillators.





Résumé

Les oscillateurs biologiques jouent un rôle majeur dans le développement et la
régulation de la plupart des organismes vivants. La biologie synthétique est un do-
maine multidisciplinaire qui vise à construire de nouveaux circuits à partir d’éléments
biomoléculaires, pour recréer et mieux comprendre la dynamique de ces systèmes bi-
ologiques complexes. Dans ce contexte, les modèles mathématiques sont indispens-
ables pour étudier et prédire le comportement des nouveaux circuits génétiques, ainsi
que pour fournir des prévisions sur la performance efficace et robuste de l’impléme-
ntation. Dans un premier temps, nous étudions analytiquement un oscillateur syn-
thétique à deux gènes, par des techniques d’analyse de bifurcation et en utilisant les
modèles affines par morceaux (PWA). Nous proposons une variante du modèle qui
augmente la région de paramètres admettant des oscillations périodiques. Dans un
second temps, par analogie avec les rythmes circadiens, nous étudions un réseau de N
oscillateurs synthétiques à deux gènes et comparons la dynamique et les propriétés
de synchronisation du réseau pour trois topologies de couplage différentes. Par la
suite, pour décrire l’interconnexion du cycle cellulaire et de l’horloge circadienne,
nous analysons le couplage de l’oscillateur à deux gènes avec deux autres oscilla-
teurs synthétiques : le répressilateur et un modèle réduit du cycle cellulaire. Par une
analyse du type « contrôleur-suiveur » nous avons caractérisé la capacité de chaque
système à contrôler la période du système couplé. Sur la base de cette analyse, nous
suggérons des techniques et des schémas d’interconnexion pour affiner et contrôler
la période d’un système de deux oscillateurs couplés.

Mots-clés : systèmes affines par morceaux, biologie synthétique, oscillateurs
biologiques, analyse de bifurcation, oscillateurs couplés.
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Glossary: Some Basic Definitions in
Dynamical Systems Theory

Phase space Considering a dynamical system ẋi = fi(x1,x2, . . . ,xn), the phase space
is the n-dimensional space with coordinates the components xi, i = 1,2, . . . ,n of a
state vector of the system. A fixed point of a dynamical system is given by ẋi = 0,
for all i.

Trajectory The curve that corresponds to the change of position in the phase
space of a state of a dynamical system at a given time frame.

Stability An orbit (a trajectory) is characterized Lyapunov stable if the course
in time of any point stays in a small neighborhood: for a trajectory X(t) with ini-
tial condition X0 for any ε > 0 there exists δ (ε) > 0 such that for all X̃(t) it holds
‖X(t)− X̃(t)‖< ε for any X̃(t) with ‖X0− X̃0‖< δ (ε).

Bifurcation In a dynamical system, a bifurcation can occur with variations in the
parameter values that cause a qualitative change in the system’s behavior.

Hopf Bifurcation A Hopf bifurcation is a critical point where a change in a sys-
tem’s stability occurs and a periodic solution emerges. Criterion derived from the
linerization around a fixed point of a system: a pair of complex conjugate eigenval-
ues crosses the complex plane imaginary axis.

Poincaré map A first return map or Poincaré map of a continuous dynamical
system, is a map that represents the transversal intersection of a periodic orbit in the
phase space, with a subspace of dimension smaller by one than the phase space di-
mension (Poincaré section). Considering a periodic orbit initiated within a section
of the space, which exits that section after a period of time, one can fix the point at
which this orbit first returns to this section, and create a map (first return map) to link
the first point to the second.

Phase lock Phase lock or synchronization occurs when two or more periodic sys-
tems oscillate with a constant pattern of relative phase angles.

Network synchronization A network of coupled dynamical systems with pe-
riodic behavior is considered to achieve synchronization when all the nodes of the
network (all systems) start to evolve in time at the same frequency (synchronization
in frequency). Additionally, if all the systems (with the same frequency) have also
identical phase angles (phase synchronization), then the coupled oscillators in the
network are considered to be synchronized in frequency and phase.
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Chapter 1

Introduction

1.1 Introducing the thesis topic and motivation
The goal of this thesis is to study models of biological genetic oscillators and their
coupling for applications in synthetic biology. A topic that lies at the interdisciplinary
crossing between mathematical and computational analysis, systems and synthetic
biology, hence three main perspectives need to be discussed in order to introduce the
thesis main idea and motivation:

From a mathematical perspective: mathematical modeling provides predic-
tions of how a synthetic circuit will operate when it is implemented in living cell
conditions; and what will be the impact of certain modifications on the system. De-
sired functionalities of synthetic circuits often include oscillatory behavior. For the
successful and effective implementation of synthetic oscillators, mathematical mod-
eling and analysis are required for the improvement of the circuit design, with main
goal of enhancing the performance of the system by increasing robustness of the pe-
riodic solutions with respect to parameter variations. Thus, for a given model of an
oscillator, it is important to establish the existence and uniqueness of periodic so-
lutions, as well as characterize the regions of parameters where periodic solutions
exist.

Recent approaches in synthetic gene circuits design, are directed at the study of
combined or coupled modules, to model more complex natural pathways and com-
prehend experimental observations. Studying mathematically the coupling of two or
more dynamical systems with oscillatory behavior raises several important questions
that will be addressed in this thesis: what type of dynamic behavior characterizes the
coupled system; in which way the coupling scheme affects the system response; do
the dynamical features of the systems as individuals have an impact on the coupled
system response; how to characterize the potential of the coupled system for period
control or tunability; can one of the systems control the other’s period and amplitude,
through suitable coupling schemes.

From a synthetic biology perspective: research in the rapid developing field
of synthetic biology and molecular engineering seeks to study, design and construct
new biological circuits. In this context, synthetic models that represent the core
function of complex biological processes have been developed with the objective
to be implemented in a living cell environment. The systems studied in this thesis
follow the principles of synthetic biology, in terms of design, dynamical features and
capacities. Employing both mathematical analysis and numerical simulations, we
wish to provide predictions and suitable conditions, with the potential to be utilized
as directions for synthetic circuit design and improvement.



2 Chapter 1. Introduction

From a biological perspective: the thesis is motivated by studies of complex bi-
ological mechanisms with rhythmicity, such as the cell cycle and the circadian clock.
These biological processes have been modelled and studied to a great extent, not only
as individual biological oscillators, but more recently, also as interconnected mech-
anisms. Breakthroughs in molecular biology suggest bidirectional links between the
two oscillators. The deeper comprehension of this interconnection aims to contribute
to the development and improvement of medical treatments for several diseases, in-
cluding cancer.

In the next sections of this chapter, we present principles of mathematical model-
ing of molecular processes based on the literature; we describe the synthetic biology
concepts in which we aim to contribute with this thesis, and present the basic defini-
tions and characteristics of the biological oscillators that motivate our work.

1.2 Synthetic biology approaches
Synthetic biology is a rapidly growing field, which coupled with computational sys-
tems biology, seeks to design and create new biological circuits in order to understand
the complex pathways in living organisms and open new horizons in the approach to
biology. Production of "green" biofuels, clinical diagnostics, medical treatments and
construction of artificial micro-organisms and genetic devices are some of the nu-
merous synthetic biology applications (Weber and Fussenegger, 2011).

This relatively new area requires engineering concepts for the synthetic circuit
design, improvement and efficient performance. The conceptual basis and objectives
of the synthetic biology approaches rely mainly on new findings in molecular biol-
ogy. Theoretical knowledge extracted from experimental studies sets the principles
to follow and the hypotheses to investigate about molecular networks and interac-
tions. Current experimental observations have major contributions to synthetic cir-
cuit design and modeling. Hence the latest developments in the field of synthetic bio-
engineering include systems composed of pathways designed to tackle challenges in
modeling, such as the complexity and the means of regulation in the natural biolog-
ical networks (Cheng and Lu, 2012,Brophy and Voigt, 2014,Hsiao, Swaminathan,
and Murray, 2018).

The construction of synthetic gene circuits in a living cell environment (in vivo)
attempt to clone biological pathways, with the main purpose to studying and com-
prehending their features and behavior, gaining insight into the complex way of their
functioning. At the same time, numerical simulations and computations (implemen-
tation in silico), combined with theoretical knowledge, contribute to experimental
synthetic biology set-up and design by providing guidelines, validation and predic-
tion (He, Murabito, and Westerhoff, 2016,Del Vecchio, Dy, and Qian, 2016,Hsiao,
Swaminathan, and Murray, 2018).

After the engineering part of the circuit design, the scientists face the challenge
of the suitable choice, configuration and supervision of the components for the im-
plementation. In this context, control theory techniques are employed to complement
the joint effort of biologists and bio-engineers for efficient design and enhanced per-
formance. The objective is to deploy control theoretical tools that will contribute to
the intended activity of the circuits and would potentially be part of the synthetic im-
plementation. Feedback control is of a great interest to the field of bio-engineering,
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since it appears to follow observations of natural regulation, and it provides promis-
ing results in terms of robustness of the synthetic circuits performance under di-
verse conditions (Del Vecchio, Dy, and Qian, 2016,Hsiao, Swaminathan, and Mur-
ray, 2018). Furthermore, synthetic biologists use enhancers that can be considered
as external inputs or control tools, such as drugs or inducers, to regulate molecu-
lar activities and interactions, in order to promote their robustness and performance
(Hsiao, Swaminathan, and Murray, 2018).

A plethora of research in synthetic biology patterns, tools, techniques and frame-
works has been published since 2000, showing intriguing results, with main focus
on gene regulation and molecular interactions (Hsiao, Swaminathan, and Murray,
2018). In particular, on biological mechanisms and interactions that act as switches
and oscillators regulating the cellular activity (Tyson et al., 2008).

The implementation of new synthetic circuits in a cell, uses basic molecular com-
ponents such as pieces of DNA, and relies in gene expression and its regulatory
mechanisms. The next section very briefly refers to basic definitions and descrip-
tions of biological processes, at the basis of gene regulatory networks.

1.3 Gene Regulatory Networks

1.3.1 Gene expression
In all organisms, a gene is a chain of organic molecules that contains all the neces-
sary information for the gene expression, i.e. the synthesis of a functional product.
A gene product can be transformed into messenger RNA through the biochemical
process of transcription. The messenger RNA is used to synthesize the correspond-
ing protein, through the process of translation (for a reference used throughout this
section see, for instance, Bruce Alberts and Walter, 2002). The gene expression is
initiated with the enzyme RNA polymerase, which creates the gene product using the
DNA pattern. This enzyme must bind to a specific site of the gene, the promoter,
see Fig.1.1. A promoter is a sequence of DNA and it is an essential module of the
gene expression, along with other elements of the gene structure, due to its location
near the gene binding sites for the transcription factors. The transcription factors are
proteins that regulate the gene expression, determining whether a gene is active or
not ("on" or "off"). The transcription factors that bind to the gene in order to enhance
the transcription rate or its synthesis, are called activators; conversely, the proteins
that block the transcription rate are called repressors.

In Fig. 1.1 we present an abstract illustration of the transcription-translation pro-
cess. When an activator binds to the gene, (additionally to the binding of RNA
polymerase to the promoter), it enhances the gene expression. Whereas if a repressor
binds to the gene, it blocks the transcription process, preventing mRNA synthesis.

A gene regulatory network (GRN) is defined as a group of molecular components
or regulators, that are linked to each other and with other cellular structures to control
the gene expression and its products, i.e. proteins and functional RNA.

Mathematical modeling is employed for the analysis, study and comprehension
of the core functions and gene regulations that underlie complex biological mecha-
nisms. The next section recalls basic steps for the representation of gene expression
processes by mathematical models.
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FIGURE 1.1: A simplified scheme illustrating gene expression in bac-
teria.

1.3.2 Modeling gene regulatory networks
Basic definitions In mathematical models of gene regulatory networks, the molec-
ular links between the components of the network can be expressed through a system
of ordinary differential equations (ODEs): ẋi = fi(x1, . . . ,xn), where xi, ∈ [0,+∞),
i = 1, . . . ,n, represents the the concentration of molecular species j (such as mRNA
or proteins) and the fi : Rn

≥0→ R≥0 depend on the nodes x j that have an effect on
species xi.

Throughout this thesis, we will focus on some of the most common forms of
interactions between the molecular elements of a regulatory network: inhibition
or activation of gene transcription and synthesis or degradation of gene products.
These interactions can commonly be expressed by mathematical formulations based
on mass-action laws, saturation or Hill functions (Jong, 2002). Analytically, an in-
creasing Hill function is defined as:

h+(x j,θ j,m j) =
xm j

j

θ
m j
j + xm j

j
(1.1)

with x j ∈ [0,+∞), m j ∈ R>0, and is well suited to represent the activation or syn-
thesis rate of a given gene as a function of a transcription factor x j. The activity
threshold θ j > 0 characterizes the concentration of species x j which is needed to ef-
fectively activate transcription. The Hill exponent m j represents a cooperative effect.

Respectively, in the case of repression of the given gene by a species x j, the
inhibition function can be represented as decreasing Hill function:

h−(x j,θ j,m j) =
θ

m j
j

θ
m j
j + xm j

j
= 1−h+(x j,θ j,m j) (1.2)

also with x j ∈ [0,+∞), m j ∈ R>0 and θ j > 0. The synthesis rate of a species xi is
represented by a function g : Rn

+→ R+, gi(x) > 0. In general, functions gi can be
written as sums of products of Hill functions. The natural decay or degradation rate
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of a species xi is frequently described by a linear function d : R+ → R+, di(x) =
γix, where the parameter γi ≥ 0 represents the velocity of degradation of species xi.
Finally, the concentration of species xi is governed by the equation:

ẋi = gi(x)−di(x). (1.3)

Example: negative feedback loop Indicatively, we give an example of a negative
feedback loop, that is a common motif in genetic networks; it consists of two antago-
nistic components, the proteins A and B, with concentrations x1, x2: A promotes the
synthesis of the protein B (activation) and B inhibits A (repression): A→ B, B a A.
This interaction can be mathematically modeled through the ODE system:

ẋ1 = κ10 +κ11
θ

m2
2

θ
m2
2 + xm2

2
− γ1x1

ẋ2 = κ20 +κ21
xm1

1
θ

m1
1 + xm1

1
− γ2x2

(1.4)

x1 x2

FIGURE 1.2: A negative feedback loop of two genes, an activator (x1)
and a repressor (x2).

The parameters κ i1 denote maximal synthesis rates and κ i0 denote basal activity.
To study the dynamical behavior of this system, a qualitative analysis is shown in
Fig. 1.3, which depicts the phase space with the two nullclines intersecting at the
single steady state, the direction of the vector field in each region, and one trajectory.

Under the following parameter conditions: γ1 < (k10+k11), θ2 < (κ20+κ21)/γ2
and mi, i = {1,2} large, there is one single steady state x∗ for system 1.4, which is
stable.

Piecewise affine systems To facilitate the analysis and further study of continuous
models for gene regulatory networks with higher order of complexity, the piecewise
affine framework introduced by Glass and Kauffman, 1973 is very useful (see also
Casey, Jong, and Gouzé, 2006). In this framework, Hill functions are approximated
by step functions. To qualitatively relate this approximation with species concen-
trations, consider large values of the Hill exponent (mi → ∞), then it follows that
for xi above the threshold θi (respectively, below the threshold θi), the Hill function
converges to 1 (respectively to 0).

We recall the Hill functions and notation of §1.3.2. Define N the set of species
i = 1, . . . ,n composing a gene regulatory network. The function (1.1), that expresses
activity of some species j, is now approximated by the increasing step function s+ :
R+×R+→{0,1}:
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FIGURE 1.3: The phase portrait of system 1.4 is divided by the null-
clines into four regions. One trajectory converging to the steady state
is shown in black. The red arrows represent the direction and sign
of the vector field in each of the four regions of the phase portrait.
Parameters used: κ10 = 0.02, κ11 = 1, θ1 = 0.3, γ1 = 1, κ20 = 0.05,

κ21 = 2, θ2 = 0.6, γ2 = 1.3, m1 = m2 = 2.

s+(x j,θ j) =

{
1, if x j > θ j

0, if x j < θ j.
(1.5)

Respectively, the step function representing inhibition is given by s− : R+ ×
R+→{0,1}, s−(x j,θ j) = 1− s+(x j,θ j).

The synthesis rate of species xi, which is regulated by species x j, j ∈J , J ⊂
N and is represented by the function gi : R+→R+, can now be written as:

gi(x) = ∑
j∈J

κi jδi j(x), (1.6)

where κi j > 0 are synthesis parameters, and δi j : R+→ {0,1}, is a combination of
step functions expressing the effect of species j on species i. It takes values {0,1} as
the regulations are expressed by combinations of step functions.

For the example 1.3.2 of the negative feedback loop, the piecewise affine system
associated with (1.4), is therefore defined as:

ẋ1 = κ10 +κ11s−(x2,θ2)− γ1x1

ẋ2 = κ20 +κ21s+(x1,θ1)− γ2x2
(1.7)

The phase space of the system is now partitioned into the following regular do-
mains (Casey, Jong, and Gouzé, 2006):

• D10 = {(x1,x2) ∈R2
+ : x1 ∈ [0,θ1],x2 ∈ [0,θ2)}
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• D11 = {(x1,x2) ∈R2
+ : x1 ∈ [θ1,+∞),x2 ∈ [0,θ2)}

• D01 = {(x1,x2) ∈R2
+ : x1 ∈ [θ1,+∞),x2 ∈ [θ2, (κ20 +κ21)/γ2)}

• D00 = {(x1,x2) ∈R2
+ : x1 ∈ [0,θ1], [θ2, (κ20 +κ21)/γ2)}

Here, each regular domain is labeled by the corresponding value of the step func-
tions: for instance, in D10, since both x1 and x2 are below their thresholds, it follows
that synthesis of x1 is turned on, s−(x2,θ2) = 1, while synthesis of x2 is turned off,
s+(x1,θ1) = 0. In each of the four domains the system is affine and the solution can
be explicitly computed in terms of the focal points, which are given in Table 1.1. In
D10 the solution of the system has the form:

x1(t) = φ
1
10 +(x1(t0)−φ

1
10)exp(−γ1(t− t0))

x2(t) = φ
2
10 +(x2(t0)−φ

2
10)exp(−γ2(t− t0)),

(1.8)

and similarly for the other domains. The global solution is given by a concatenation
of the solutions in each region, in the appropriate sequence.

TABLE 1.1: Focal points for system 1.7.

φ10 = ((κ10 +κ11)/γ1,κ20/γ2)
φ11 = ((κ10 +κ11)/γ1, (κ20 +κ21)/γ2)

φ01 = (κ10/γ1, (κ20 +κ21)/γ2)
φ00 = (κ10/γ1,κ20/γ2)

More complex dynamics, such as multistability or periodic behavior, can be iden-
tified depending on the interaction between the system components. For instance,
positive or negative feedback loops are two of the most common motifs in biological
systems, and they combine in various ways to produce different regulatory network
topologies and different dynamical behavior (Tsai et al., 2008). Both of these mo-
tifs have been implemented in synthetic biology, leading to fresh interpretations of
molecular regulations and natural pathways.

In this thesis we study classic and novel synthetic models characterized by os-
cillatory dynamics. The next section is dedicated to giving a brief description of
well studied synthetic oscillators that contributed to bringing insight into molecular
interactions and dynamics.

1.4 Synthetic genetic oscillators
Two paradigms of synthetic genetic circuits appeared in 2000, in the same issue
of the journal Nature: the repressilator by Elowitz and Leibler, which is a circuit
exhibiting oscillatory behavior (see §1.4.1 below), and the toggle switch designed by
Gardner, Cantor, and Collins, 2000. The toggle switch is a gene regulatory network
synthetically constructed in bacteria E. coli. It consists of two genes that mutually
inhibit each other, forming a positive feedback loop as illustrated in Fig. 1.4. The
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dynamics exhibits two stable steady states, allowing the system to switch from one
stable steady state to another, following a suitable external stimulus.

x y

FIGURE 1.4: Toggle switch network.

Biological oscillators govern crucial physiological pathways and mechanisms,
such as the cell cycle, the circadian rhythms, the neuronal system, the heart rate
and many others (Goldbeter, 2008). Here we discuss oscillatory circuits that came
from research developments in synthetic biology and appear frequently in the litera-
ture. We consider two generic categories of circuits: the first consists of repressilator
models and the second of two-gene circuits with additional auto-regulation of the
components.

1.4.1 Repressilators
A repressilator generally consists of a group of genes, organized in a cyclic topology,
where each gene represses transcription of the next (Fig. 1.5).

Goodwin oscillator The first synthetic circuit, the Goodwin oscillator (Goodwin,
1963), consists of one gene that represses itself leading to oscillatory behavior under
certain conditions, with robust period according to simulations. However, the in vivo
implementation showed non-robust oscillations (Stricker et al., 2008, Purcell et al.,
2010).

Repressilator A successor of the Goodwin oscillator is a well known synthetic
circuit, the repressilator, implemented by Elowitz and Leibler, 2000. It was first in-
troduced as a synthetic regulatory network of three genes each of which inhibits the
next gene of the network, successfully formulating a negative feedback loop. Math-
ematical analysis of the model indicates oscillatory behavior with suitable parame-
ters, generated by a Hopf bifurcation (Müller et al., 2006). The system represents
networks with cyclic topology, Fig. 1.5 and it has applications to genetic networks,
neuroscience and engineering.

x3

x1 x2

FIGURE 1.5: Repressilator network.
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Following the analysis of Müller et al., 2006, the term "repressilator" covers a
wider range of models; in particular, as repressilators can be considered the net-
works of one or more genes (an odd number of genes) that formulate a cycle or
ring of genes, in which each gene represses its successor in the network. The
three-gene repressilator has been implemented numerically in different frameworks
(ODEs, stochastic modeling), showing oscillatory capacity, as well as tunable ampli-
tude and period by increasing the time delay in the system (Wang, Jing, and Chen,
2005, Purcell et al., 2010).

The in vivo implementation of the circuit was performed using proteins of differ-
ent type bacteria and it was embedded in E.coli. Several questions arise from the in
vivo implementation of synthetic circuits, for instance how the synthetic network is
integrated in the whole organism. In the repressilator network, the results indicated
a correlation between the repressilator activity and the global cell growth regulation.
However, the overall view showed noisy oscillatory behavior (Elowitz and Leibler,
2000). In 2016, the repressilator was newly implemented, using several modifica-
tions in the biological system, which lead to more regular and robust oscillations
(Potvin-Trottier et al., 2016).

Recently, studies on the improvement of the repressilator design in terms of dy-
namical behavior and robust oscillatory behavior provide new results (Tyler, Shiu,
and Walton, 2019). Moreover, the repressilator was initially designed to act as bio-
logical clock (Elowitz and Leibler, 2000), and it has shown to capture features of the
circadian clock, in terms of oscillations and core molecular interactions (Pett et al.,
2016).

1.4.2 Two-gene oscillators with auto-regulation
Amplified feedback oscillators This category of two-gene oscillators comprises
synthetic circuits composed of a gene that activates the transcription of the second
gene, while the latter inhibits the first gene. There is an additional positive loop acting
on the gene activator, promoting its own transcription (auto-regulation) (Fig. 1.6).

Mathematical analysis of models with such topology (Atkinson et al., 2003,
Guantes and Poyatos, 2006,Conrad et al., 2008), suggest that oscillations occur from
saddle-node bifurcation on an invariant circle or a subcritical Hopf bifurcation as a
result of great difference between the activator and repressor dynamics. Numeri-
cal simulations also reveal oscillations with large period due to conservation of the
components high concentration levels for an extended time (Guantes and Poyatos,
2006). For realistic parameter values, numerical simulations of the model studied by
Atkinson et al., 2003, showed dumped oscillations and in vivo implementation of the
model follows these observations.

Various amplified synthetic oscillators with different hypotheses for the compo-
nents interactions, including intermediate links with detailed molecular pathways,
have been studied and implemented. In general, although the mathematical analysis,
the simulations of the models, and the hypotheses tested imply capacity for oscilla-
tory behavior, no robust or sustained oscillations were observed when implemented
in vivo (Purcell et al., 2010). However, the topology in Fig. 1.6 is of great inter-
est to the synthetic biologists that intend to design models with sustained oscillatory
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dynamics. In the next paragraphs we present the synthetic circuits that supported
oscillatory behavior when implemented in a living cell environment.

g1 g2

FIGURE 1.6: The two-gene oscillator by Tigges et al., 2009: g1 repre-
sents the first gene whom the sense copy is translated into protein, g2
represents the second gene that acts as a repressor through activation
of the antisense of gene 1, which represses the translation of gene 1.

Two-gene oscillator with positive auto-regulation

The successful in vivo implementation of a synthetic two-gene oscillator in eukary-
otic cells was an innovative achievement in synthetic biology, made by Tigges et al.,
2009. The two-gene oscillator is designed as a synthetic mammalian circadian clock,
i.e. as a synthetic oscillator with dynamical features that imitate core functions of
a complex biological mechanism. The circuit is formed by a pair of genes of type
sense-antisense (DNA sequences that are reverse copies of each other). The sense
copy or transcript of the first gene (activator) is translated into a protein that pro-
motes its own transcription (auto-regulation) and that of the other gene. The second
gene activates the antisense copy of the first gene, while the antisense copy represses
the transcription of the first gene through hybridization during the step of translation.
The process of hybridization is the combination of the two sense-antisense molecules
to form a single molecule. The circuit can be schematically represented as illustrated
in Fig. 1.6.

The model was calibrated from in vivo experimental data and it includes time-
delay. Numerical simulations indicate that the system is characterized by tunabable
period. Oscillations are robust to variations of degradation rates, yet affected by the
gene dosage (amount of gene copies). The gene dosage was also shown to influence
the amplitude of the limit cycle and the period. In addition, control by repression
of the sense-gene activation leads the oscillations to start or shut down. In vivo im-
plementation is in accordance with the discussed predicted dynamical characteristics
and showed sustained oscillations with a period of 170 ± 71 (mean ± s.d.) min
(Tigges et al., 2009, Purcell et al., 2010).

In the study of Tigges et al., 2010, an alternative configuration of the initial model
was implemented as an attempt to obtain an oscillator with large period (approxi-
mately 26h). The system showed sustained oscillations, though it lost the period tun-
ability. On top of that, only a minor percentage of the cells underwent oscillations.
Overall, simulations and in vivo implementation of the two-gene oscillators intro-
duced by Tigges et al., highlight results on molecular interactions (sense-antisense),
dynamical behaviors (gene dosage and period tunability) and capacities (sustained
oscillations).
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Two-gene oscillator with positive and negative auto-regulation

Consistency and robustness of the desired oscillatory behavior is crucial for in vivo
implementation of synthetic networks. A synopsis on extensively studied and im-
plemented synthetic oscillators suggests that the two-gene oscillator introduced by
Smolen, Baxter, and Byrne, 1998, has shown reliability and robust performance when
compared to other implemented circuits. Its topology is described as a two-gene os-
cillator composed of a transcriptional factor (activator) that activates the transcription
of itself and of the other gene; the latter represses the transcription of the activator,
while it also represses its own activity.

A R

FIGURE 1.7: Smolen oscillator network.

Mathematical analysis of the system in different types of models have shown
capacity for diverse dynamical behaviors (Smolen, Baxter, and Byrne, 1998,Purcell
et al., 2010). In the model of Hasty et al., 2002 oscillations occur with supercritical
or subcritical Hopf bifurcation due to faster degradation rate of the activator. For
a comprehensive model based on experiments using an inducer for the activation,
coexistence of two periodic orbits -with longer and shorter period respectively ap-
pears for higher inducer levels. Whereas lower inducer levels result in one periodic
orbit and one stable equilibrium point leading to damped oscillations (Stricker et al.,
2008).

Numerical simulations suggested a period of approximately 40 min for the ODE
models of Smolen oscillator (Smolen, Baxter, and Byrne, 1998, Stricker et al., 2008).
Regarding the form of the limit cycle and the oscillations characteristics, a feature
that has been observed is the much higher concentration of the activator. By adding
time delay in the models with larger period, the oscillations of the system were re-
placed by new periodic orbits induced by the delay, hence with the same period as the
delay (Smolen, Baxter, and Byrne, 1999). Furthermore, in the version of the model
based on experimental data (Stricker et al., 2008), increasing the time delay, the pa-
rameter region in which oscillations occur also increased. On top of that, this detailed
system has shown to have the capacity for tunable period. In particular, higher levels
of the inducers for repression and activation, are in favor of period increase, decrease
or stabilization accordingly. In addition, with the use of parameters to express the
temperature, it was observed that the period decreases as the temperature becomes
higher (Stricker et al., 2008, Purcell et al., 2010).

The circuit was implemented using the araC and lacI genes for the activator and
the repressor respectively. Surprisingly, more than 99% of cells yielded oscillations,
the period of which was the same as predicted in simulations, approximately 40 min.
Moreover, the tunability of the period and its correlation with the temperature, were
also observed in the experimental results (Stricker et al., 2008). Ultimately, robust
oscillatory behavior is of great significance for in vivo implementation of synthetic
oscillators, and indeed Smolen oscillator has shown to possess this capacity.
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1.5 Circadian rhythms and intercellular connections
Among the natural biological oscillators, throughout this thesis we will be especially
motivated by circadian rhythms and its interactions with other cellular oscillators,
in particular, the cell cycle. This is partly in the context of interdisciplinary project
ICycle, whose goal is to study and understand the interconnections between cell cy-
cle and circadian clock, using both mathematical and computational analysis and
synthetic biology approaches.

Circadian rhythms Internal rhythms that govern biological activities, they are
ubiquitous in nature: endogenous rhythmicities have been observed in plants, in-
sects, animals, humans. The word circadian comes from the latin "circa" and "diēm",
which means "around a day", pointing to the fact that the rhythmicity is related to
the day-night cycle (24h). Circadian rhythmicities are endogenous and autonomous
mechanisms that can be adjusted by external or internal factors, like (sun) light, tem-
perature, or hormones (Harmer, Panda, and Kay, 2001,Herzog, 2007).

In mammalian tissues, circadian rhythms are driven by a central mechanism, the
circadian clock, which is a biochemical complex mechanism with oscillatory prop-
erties. The circadian system in mammals is organized hierarchically: the central
circadian clock receives signals from external stimuli, for example light, it trans-
lates the information making suitable adaptations and transmits this information to
the peripheral clocks of individual cells and organs. In humans, the central clock
is situated in the brain, in a group neurons called the suprachiasmatic nuclei (SCN)
(Ralph et al., 1990,Reppert and Weaver, 2002). The SCN maintains the rhythmicity
in physiological activities through the regulation of a large amount of genes.

The interactions of the circadian clock molecular components lead to rhythmic-
ity of 24h (Czeisler et al., 1999). The oscillations are driven by a core negative
feedback loop, that involves transcriptional factors for repression (Per/Cry) and ac-
tivation (Bmal1/Clock) (Gekakis et al., 1998). There are also secondary feedback
loops related to the core loop: the complex of proteins Bmal1/Clock promotes the
transcription of Rev-erbα and RORα genes (Preitner et al., 2002,Sato et al., 2004),
while the produced REV-ERB protein acts as repressor of Bmal1, and ROR proteins
as activator.

Disruptions of circadian rhythms are linked to several problems and diseases.
For instance, the jet lag is a common experience for people travelling across time
zones. More importantly, desychrony of circadian rhythms is linked to more serious
conditions, like tumorigenesis and cancer.

Cell cycle and circadian clock The most important events during the life of a cell
(cell cycle) are the DNA synthesis, growth and preparation for cell division (mitosis)
and finally the cell division into two daughter cells. These events are driven by a net-
work of proteins that form large complexes, the cyclin-dependent kinases (CDKs).
It has been observed that genes playing major role in cell division and proliferation,
are regulated by the circadian clock (indicatively, for references see the reviews of
Hunt and Sassone-Corsi, 2007, Gaucher, Montellier, and Sassone-Corsi, 2018). Ex-
perimental observations indicate that the molecular links between the circadian clock
and the cell cycle are formed -among others- by the transcriptional factor Bmal1 that

https://project.inria.fr/icycle/
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promotes the expression of the kinase inhibitor Wee1 (Matsuo et al., 2003), crucial
component of mitotic phase. More recently, new experimental evidence shows that
there exist bidirectional interactions between the cell cycle and the clock (Feillet et
al., 2014,Bieler et al., 2014). For the molecular links characterizing the cell cycle
effect on the circadian clock, there are indications of interaction from the cyclin-
dependent kinase CDK1 to the protein REV-ERBα , through phosphorylation (Zhao
et al., 2016). However, the molecular interactions and means of bidirectional con-
nection of the the cell cycle and circadian clock are not yet fully understood (Feillet
et al., 2015). Model-based studies explore the mutual coupling of the two biological
oscillators indicating robust synchronization under strong bidirectional interconnec-
tion (Gérard and Goldbeter, 2012,Yan and Goldbeter, 2019).

Circadian clock and chronotherapy As a result of the circadian rhythms crucial
role as a controller of individual cells normal activities, several diseases and drug
effects can also be regulated by the circadian system. Chronotherapy refers to ther-
apies based on timing drug-taking relative to the phases of the circadian cycle, with
the main purpose to improve treatments and patient response. Hence the study and
comprehension of the molecular interconnections of the circadian clock and cell cy-
cle can contribute to developments in chronotherapeutics.

1.6 Coupling of biological oscillators
Coupled oscillators are connected oscillators in a fashion that their individual activ-
ity is diffused between them. Coupled oscillators are subject of study and applica-
tion in many fields: mathematics, physics, mechanics and biology. The dynamics
of coupled oscillators has been extensively studied and analyzed, yet questions on
the mechanisms establishing their interaction remain open. Synchronization in fre-
quency, synchronization in phase, chaotic behavior or stabilization are phenomena
observed in a coupled system of oscillators. The synchronization was first described
by Christian Huygens in 1665, with two pendulum clocks of identical frequency that
operate close enough on the same wall, and in this way they synchronize.

Coupled circadian clocks The coupling of biological oscillators appears in sev-
eral physiological mechanisms. An outstanding example is the circadian system in
mammals, (as we mention in previous paragraph) with the central clock SCN to con-
sist of approximately 20,000 neural cells organized in a fashion that allows their
communication and synchronization (Herzog, 2007,Brancaccio et al., 2014), while
it is also connected to peripheral clocks across the organism (Mohawk, Green, and
Takahashi, 2012). The circadian rhythm is responsible for the synchronization and
collective activity of brain cells (Hastings, Maywood, and Brancaccio, 2018). Exper-
imental studies of the coupled network of neurons in the mammalian SCN (Aton et
al., 2005,Welsh, Takahashi, and Kay, 2010), and model-based investigations on the
schematic way of interaction between the oscillators, (Kunz and Achermann, 2003,
Bernard et al., 2007, Hafner, Koeppl, and Gonze, 2012), seek to comprehend its com-
plex underlying mechanisms generating sustained oscillations and synchronization.
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Also, several models for a coupled network of circadian oscillators investigate condi-
tions and individual dynamics under which synchronization of oscillators is achieved
(Gonze et al., 2005, To et al., 2007, Komin et al., 2011).

The network of coupled circadian oscillators has inspired several theoretical stud-
ies in the literature for synchronization and network dynamics of coupled identical
oscillators (Mirollo and Strogatz, 1990,Matthews, Mirollo, and Strogatz, 1991, Ash-
win, 1992,Glass, 2001). Recent works on networks of identical oscillators, provide
a classification of clusters of synchronized elements to the same state (Sorrentino
et al., 2016, Chen, Engelbrecht, and Mirollo, 2017).

The circadian clock constitutes by itself a coupled network of neurons and pe-
ripheral clocks. In parallel, major events in the life of the cell are controlled by
circadian rhythms (Khapre, Samsa, and Kondratov, 2010,Panda, 2016), thus raising
the question of the synchronization of the two mechanisms. Apart from experimen-
tal studies pointing towards this bidirectional interaction (recall §1.5), this relation
has also attracted much attention motivating many mathematical modeling and com-
putational/simulation studies. Remarkably, studies based on realistic models for the
cell cycle regulation of the circadian clock, have shown entrainement for the cell
cycle (Zámborszky, Hong, and Csikász Nagy, 2007, Gérard and Goldbeter, 2012,
El Cheikh, Bernard, and El Khatib, 2014). On the other hand, numerical simulations
of detailed bidirectionally coupled models including the indicated molecular inter-
actions, have partly reproduced experimental observations (Traynard et al., 2016,
Almeida, Chaves, and Delaunay, 2020). Moreover, model-based investigations for
the dynamics of the coupled system cell cycle-circadian clock, have shown capac-
ity for robust synchronization under suitable conditions on the bidirectional coupling
(Yan and Goldbeter, 2019).

Coupled synthetic circuits Recent research in synthetic biology is set to explore
the next stage in the construction of synthetic circuits, which is directed at coupling
two (or more) known circuits. This will allow the (re)construction of systems with
more complex dynamics, aimed at capturing physiological regulations or improve-
ment and control purposes.

Computational studies of designs for combined synthetic modules (Teng et al.,
2014) or coupled synthetic circuits (Perez-Carrasco et al., 2018) yield complex dy-
namical behaviors. Moreover, the repressillator is designed to model a biological
clock, hence networks of repressilator representing the circadian clock coupled with
other components, have been applied highlighting specific gene regulations (Pett et
al., 2018). Furthermore, the coupling of synthetic systems can also serve for syn-
thetic design enhancement, for instance for period modulation through a coupled
element (Tomazou et al., 2018).

1.7 Thesis structure
Having described the thesis motivation and thematic background, we now present
the organization of the main manuscript, consisting of the following chapters:

• Chapter 2
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Based on bifurcation analysis, we first study different configurations of the
Smolen oscillator, and then propose a variant with an extended parameter re-
gion for oscillations. We study the system with piecewise affine approximation
and we prove existence and uniqueness of the periodic orbit under suitable ana-
lytical conditions on the parameters of the system. This chapter is partly based
on the paper:

Firippi and Chaves, 2020. “Topology-induced dynamics in a network of synthetic
oscillators with piecewise affine approximation”. In: Chaos: An Interdisciplinary
Journal of Nonlinear Science 30.11, p. 113128.

• Chapter 3
Using the variant of the Smolen oscillator developed in Chapter 2, we present
a network of N identical two-gene oscillators with piecewise affine approxima-
tion, with coupling schemes based on three different topologies. Our study pro-
vides analytical results for the coupled network dynamics, showing that new
behavior may emerge due to the coupling, depending on parameter conditions.
Numerical simulations for large N, illustrate and complement the theoretical
part of our study. This chapter is also part of the paper:

Firippi and Chaves, 2020, “Topology-induced dynamics in a network of synthetic os-
cillators with piecewise affine approximation”. In: Chaos: An Interdisciplinary Jour-
nal of Nonlinear Science 30.11, p. 113128.

• Chapter 4
Motivated by breakthroughs in molecular biology pointing towards the bidi-
rectional connection between the cell cycle and the circadian clock through
specific components, we study the coupling of the proposed variant of Smolen
oscillator to act as a biological clock, and a reduced model of the mammalian
cell cycle, calibrated from experimental data. We analyze different coupling
schemes seeking to understand the role of the involved components on the
coupled system response. Also, we relate the coupled system response with
individual system dynamics. Moreover, we provide results for the coupled
system period response based on a "controller-follower" analysis. This chapter
is based on the paper:

Firippi, Eleni and Madalena Chaves (Oct. 2019). “Period -control in a coupled sys-
temof two genetic oscillators for synthetic biology”. In: IFAC-PapersOnLine 52, pp.
70-75.

• Chapter 5
Using numerical simulations, we explore the coupling of the proposed variant
of Smolen oscillator and a well-studied synthetic oscillator, the three-gene re-
pressilator. We apply one of the coupling schemes studied in chapter 4, for
purposes of comparison and supplementation. The study of the coupled sys-
tem under different coupling conditions, highlights the case of strong coupling
between two robust oscillators. In this case, our analysis indicates that the cou-
pled system has a period larger than each of the individual systems, thereby
suggesting ways of tuning the period of one system by suitable coupling with
the other system.



16 Chapter 1. Introduction

We close the manuscript with a conclusion on the results and contribution of
our study, and a discussion on the perspectives, potential applications and possible
extensions of our work.

Some of the perspectives are related to preliminary work that we incorporate in
the manuscript as last sections. Notably, we present preliminary work on experimen-
tal data coming from the collaboration with Franck Delaunay, whose chronobiology
laboratory is a partner in the interdisciplinary project ICycle (https://project.
inria.fr/icycle/. Diffusion not authorized/ Diffusion non autorisée.

Finally, we also include a preliminary work on the coupling of N two-gene oscil-
lators considering the continuous proposed model, and applying topological coupling
schemes analogous to those studied in Chapter 3.

https://project.inria.fr/icycle/
https://project.inria.fr/icycle/
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Chapter 2

Analysis and Improvement of
Synthetic Circuit Design

From synthetic biology perspective we are interested in developing strategies for the
improvement of circuits design. To improve the performance and robustness of the
oscillatory dynamics in a living cellular environment, we consider the problem of
augmenting the parameter region admitting periodic solutions.

We study the dynamics of a two-gene synthetic oscillator which has been im-
plemented in living cellular conditions, the Smolen oscillator (Smolen, Baxter, and
Byrne, 1998). This circuit has already shown capacity for robust oscillatory behavior
when implemented in vivo, as we discuss in Introduction §1.4.2. Having as main
objective to enhance its potential for effective implementation, we focus on the en-
largement of the parameter intervals for sustained oscillations.

In a first step, to characterize the region of parameters which admits sustained
oscillations for the two-gene oscillator, we first compute numerically the limit cycle
solutions of the system as a function of its parameters, and then propose one way to
increase the region of oscillations, based on bifurcation analysis.

As a second step, we analyze the proposed variant of Smolen oscillator in the
piecewise affine framework. We study the piecewise affine system proving existence
and uniqueness of the periodic solution. Furthermore, we analytically characterize
the appropriate parameter conditions for the periodic solution.

2.1 The Smolen Oscillator
The two dimensional model introduced by Smolen, Baxter, and Byrne, 1998 is com-
posed of two transcription factors TF-A and TF-R and models a negative feedback
circuit of a form that appears for instance in the mechanism of the circadian clock:
TF-A is a transcriptional activator that can bind to responsive elements DNA se-
quences (REs) and TF-R is a protein that represses transcription by competing with
TF-A for binding to REs. Besides the core negative feedback loop there are also
additional negative and positive autoregulations to the activator and the repressor.
For simplicity, TF-A and TF-R are denoted A and R respectively. Considering that
A activates both components and R represses both components in a similar way the
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model of the oscillator becomes:

dA
dt

= VA
A2

A2 + θ0(1+ R/θ2)
− γAA+ rbas

dR
dt

= VR
A2

A2 + θ1(1+ R/θ2)
− γRR

(2.1)

The parameters VA, VR > 0 express the synthesis rate of the two transcriptional
factors and are measured in min−1. The degradation rate parameters γA, γR > 0 are
also measured in min−1. The term rbas denotes basal activity. The concentration
and activity thresholds θ0, θ1, θ2 > 0 are considered to be dimensionless. For the
parameter set given by Smolen, Baxter, and Byrne, 1998 (we call it pS) the model
has a periodic solution.

System (2.1) is a good candidate for implementation in synthetic biology, due to
its reduced dimension. However, in a neighbourhood of pS, the region of parameters
where oscillations are observed is rather small. In this study, our first goal is to
better understand the effect of each parameter in generating oscillations, and propose
a more efficient design.

2.1.1 An improved Smolen Oscillator
Three alternative cases for the model have been explored with the objective of im-
proving the design of system (2.1), such that periodic solutions are observed for a
larger region of the parameter set: (a) eliminating the autoregulation of the activa-
tor (positive self-loop on A), (b) eliminating both self-loops and (c) eliminating the
autoregulation of the repressor (negative self-loop on R). From our analysis and sim-
ulations only the third case (c) appeared to admit periodic solutions.

c.Removing self-inhibition If the self-inhibition loop on R is removed the system
(2.1) becomes:

dA
dt

= VA
A2

A2 + θ0(1+ R/θ2)
− γAA+ rbas

dR
dt

= VR
A2

A2 + θ1
− γRR

(2.2)

The time solution and the phase portrait for system 2.2 are depicted in Fig. 2.2.

A R

FIGURE 2.1: Smolen oscillator without repressor autoregulation.

In the next paragraphs, we will compare the dynamics of the original system (2.1)
with the alternative (2.2).
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FIGURE 2.3: Bifurcation analysis for the VA parameter (synthesis rate
of A) and the the amplitude of the limit cycle, for the two systems,
the Smolen model and case (2.2). The red stars indicate critical Hopf
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FIGURE 2.2: Activity of the Smolen oscillator eliminating the au-
toregulation of the repressor, model (2.2). The parameter values are:
VA = 13.5 min−1, VR = 0.3 min−1, γA = 1 min−1, γR = 0.2 min−1,

rbas = 0.4 min−1, θ0 = 10,θ1 = 10,θ2 = 0.2.

2.1.2 Bifurcation analysis
Using the numerical toolbox MatCont for MATLAB, developed by Govaerts, Kuznetsov,
and Dhooge, 2005, we perform bifurcation analysis for the model parameters given
by Smolen, Baxter, and Byrne, 1998. First, we performed bifurcation analysis for
the activator synthesis rate parameter VA, for the original model (2.1) and case (2.2),
shown in Fig. 2.3. Comparing the results we observe that the interval in which pe-
riodic solutions exist for the system, increased significantly for the case (2.2): the
length of the interval increased by a factor 6. A second observation is that the ampli-
tude of the limit cycle increased -approximately doubled- for (2.2).

We also perform two parameter bifurcation analysis for the repressor parameters
of (2.1) and (2.2). The results are in an agreement with the one parameter analysis
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regarding the increase of the oscillations interval. From the comparison we con-
clude that removing the autoregulation of the repressor increases the parameter re-
gion where oscillations exist, by approximately doubling the range allowed for each
parameter.

We next further analyse the system (2.2) in the context of the piecewise affine
formalism (PWA), introduced by Glass and Kauffman, 1973. The general idea of this
formalism is to approximate the Hill functions expressing activation and inhibition
by step functions: the state space is partitioned into rectangular domains, in which
the vector field is affine. From our analysis, we will establish suitable parameter
configurations and compute the first return map of the PWA system and prove that
there exists a unique stable periodic orbit for certain parameter conditions.

2.2 Piecewise affine formalism
The piecewise affine (PWA) systems studied first by Glass and Kauffman, 1973 facil-
itate the system further study and analysis. This formalism is based on the approxi-
mation of the Hill functions that express the activation and inhibition (or repression),
by increasing and decreasing step functions.

A synopsis of the PWA formalism based on the study by Casey, Jong, and Gouzé,
2006 is recalled in this section: if xi is the concentration of the gene i and θ

j
i the

concentration threshold that characterises the effect of xi on x j, the increasing step
function s+ : R+×R+→{0,1} is defined:

s+(xi,θ
j

i ) =

{
1, if xi > θ

j
i

0, if xi < θ
j

i
(2.3)

Accordingly, the step function to express inhibition (or repression) will be: s− : R+×
R+→{0,1}, s−(xi,θ

j
i ) = 1− s+(xi,θ

j
i ). The superscript j indicates the interaction

of species i on species j of the network.
The production rate of variables xi ∈ [0,+∞), i = 1, . . . ,n is given by the function

fi : Rn
+→R+:

fi(x) = ∑
1≤l≤m

κilDil(x) (2.4)

where κil > 0 are the synthesis rate parameters and Dil : Rn
+→ {0,1} are Boolean-

valued functions that express the regulation of variable xi by other variables (m≤ n).
The functions Dil(x) may be products of increasing or decreasing step functions
s+/−(xi,θ

j
i ).

A general form of the system will be:

ẋi = κ i0 + fi(x)− γixi (2.5)

where κ i0 is a basal term, x = (x1, . . . ,xn)t > 0 contains the species concentrations
and γixi > 0 expresses the degradation rate of species xi.

The thresholds θ
j

i define hyperplanes and divide the phase space into regular
domains. The regions such that xi = θ

j
i for some i and j are called switching domains
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and form the boundaries of the regular domains. In each regular domain B, the vector
field is uniquely defined, the synthesis rate is constant (κ i0 +κiB):

ẋi = κ i0 +κiB− γixi

where κiB is the value of fi(x) in B and the computation of the system solution, while
x ∈ B, is straightforward, with trajectories moving towards the corresponding focal
point φiB = (κi0 + κiB)/γi. As the trajectory reaches the boundary of B, the vector
field changes and the solution must be computed in the new domain.

In PWA systems, a general property is that a focal point belonging to its own do-
main (i.e., φiB ∈ B) is a locally stable steady state. The connection between continu-
ous and piecewise affine models has been closely studied by Casey, Jong, and Gouzé,
2006. In the general approach the continuous activation and inhibition functions
given by Hill functions are approximated by step functions and lead to a partition
of the state space into rectangular domains. In contrast, for the two-gene oscillator
(2.2), this approximation leads to a partition defined by a quadratic curve.

2.3 Piecewise Affine system approximates a Two-gene
Synthetic Oscillator

In system (2.2), the function expressing synthesis of the repressor hR : R+→R+ is
simply:

hR(A;θ1) =
A2

A2 + θ1
, (2.6)

while the function expressing synthesis of the activator is given by a composition of
two Hill functions hA : R2

+→R+:

hA((A,R); (θ0,θ2)) =
A2

A2 + θ0(1+ R/θ2)
. (2.7)

Synthesis of the repressor (2.6) can be straightforwardly approximated by s+R :
R+→{0,1}:

s+R (A;θ1) =


1, if A2 > θ1

0, if A2 < θ1

(2.8)

The case of (2.7) is more complex to deal with. A multiplicative approximation
of the form s+(A;θ1)s−(R;θ2) does not faithfully represent the dynamics of the con-
tinuous system. So, we chose to approximate the activation part by an increasing step
function with a switching value that depends on R, as follows s+A : R2

+→{0,1}:

s+A ((A,R); (θ0,θ2)) =


1, if A2 > θ0(1+R/θ2)

0, if A2 < θ0(1+R/θ2).
(2.9)
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This is a step function with a coordinate-dependent switching value. This induces
a partition of the state space with non-rectangular regular domains, as analyzed in
the next section. Applying these approximations, the PWA associated with (2.2)
becomes:

dA
dt

= VAs+A ((A,R); (θ0,θ2))− γAA+ rbas

dR
dt

= VRs+R (A;θ1)− γRR.
(2.10)

5 10 15

0

1.2

FIGURE 2.4: An initial PWA system with activity thresholds θ0 and
θ1 equal.

2.3.1 Regular domains and the role of the activity thresholds in
generating oscillations

The phase space of the PWA system (2.10) will be divided in domains by the two
threshold hyperplanes A2 = θ1 and A2 = θ0(1+R/θ2), R ∈ [0,VR/γR]. However,
these domains are no longer rectangles, but instead are defined by a quadratic curve:

µ(A) = θ2(A2−θ0)/θ0. (2.11)

According to the original parameter set by Smolen, Baxter, and Byrne, 1998 it
holds that

√
θ1 =

√
θ0, and with this condition the phase space is partitioned into

three domains:

• D̃00 = {(A,R) ∈R2
+ : A ∈ [0,

√
θ1],R ∈ [0,+∞)}

• D̃10 = {(A,R) ∈R2
+ : A ∈ [

√
θ1,
√

θ0(1+(VR/γR)/θ2)],R > µ(A)}

• D̃11 = {(A,R) ∈R2
+ : A ∈ [

√
θ1,+∞),R ∈ [0, µ(A))}
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FIGURE 2.5: PWA system of the Smolen model with θ1 > θ0, other
parameter values as in Fig. 2.2.

It is not difficult to compute the focal points in each of these three domains and
check that, for a large range of parameters, φ00,φ01 ∈ D̃00 and φ11 ∈ D̃11 (see also
Fig. 2.4). Therefore, trajectories in the domain D̃00 converge to the locally stable
fixed point φ00 = (φ A

00,φ R
00) = (rbas/γA,0). Similarly, trajectories in D̃01 are attracted

by the focal point φ01 = (φ A
01,φ R

01) = (rbas/γA,VR/γR) and trajectories in D̃11 con-
verge to the locally stable fixed point φ11 = (φ A

11,φ R
11) = ((VA + rbas)/γA,VR/γR),

see Fig. 2.4. It is not difficult to see that this state space conformation prevents the
existence of periodic oscillations.

A closer look shows that requiring
√

θ1 >
√

θ0 will shift the line A =
√

θ1 to the
right of the plane and introduce a fourth region in the state space. Four domains Di j,
i, j ∈ {0,1} will be formed under the condition

√
θ1 >

√
θ0:

• D10 = {(A,R) ∈R2
+ : A ∈ [0,

√
θ1],R ∈ [0, µ(A))}

• D11 = {(A,R) ∈R2
+ : A ∈ [

√
θ1,+∞),R ∈ [0, µ(A))}

• D01 = {(A,R) ∈R2
+ : A ∈ [

√
θ1,+∞),R > µ(A)}

• D00 = {(A,R) ∈R2
+ : A ∈ [0,

√
θ1],R > µ(A)}

The focal points in each of the four domains are given in Table 2.1 where, for an
appropriate but still very large range of parameters, it is possible to place each focal
point outside its domain.

Indeed, if the focal point φ00 in domain D00 is shifted to the domain D10 and
similarly φi j to the following domain in anti-clockwise sense, then the trajectories
will be attracted to the corresponding focal point in the neighbor domain. In this
way, trajectories are expected to cross the threshold hyperplanes and, since the vector
field is uniquely defined in each domain, an oscillatory behavior will eventually be
formed by the four trajectory parts.
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TABLE 2.1: Focal points, and their location under conditions (a)-(c).

φ10 = (φ A
10,φ R

10) = ((VA + rbas)/γA,0) D11
φ11 = (φ A

11,φ R
11) = ((VA + rbas)/γA,VR/γR) D01

φ01 = (φ A
01,φ R

01) = (rbas/γA,VR/γR) D00
φ00 = (φ A

00,φ R
00) = (rbas/γA,0) D10

2.4 Analysis of the Piecewise Affine Two-gene system
We now choose suitable parameter conditions so that the focal points will be shifted
as: φ00 is in the domain D10, φ10 ∈ D01, φ11 ∈ D01 and φ01 ∈ D00, see Fig. 2.6 and
Table 2.1. For this conformation of the focal points, we will next show that system
(2.10) does admit sustained periodic oscillations.

To prove the existence of a limit cycle we will compute the Poincaré map of
system (2.10) and show that it has a unique fixed point. In each of the four domains
Di j there is a map Gi j that establishes a correspondence between an entry point at
one boundary of Di j and a corresponding exit point after the solution crosses Di j.
The Poincaré map is given by the composition of these four maps.

2.4.1 Parameter Conditions
The configuration listed in Table 2.1 is obtained from the conditions on the param-
eters (a) to (f), stated below and assumed to hold throughout the remainder of this
chapter. For simplicity, let γ denote γR/γA and let δ > 0 be small. Condition (a)
guarantees the existence of four regions (compare Figs. 2.4 and 2.6), while (b) and
(c) guarantee, respectively, that φ11 ∈ D01 and φ00 ∈ D10:

(a)
√

θ0 <
√

θ1 and γR < γA,

(b)
√

θ0 + δ <
rbas

γA
<
√

θ1−δ

(c)
√

θ1 + δ <
VA + rbas

γA
<

√
θ0

(
1+

VR/γR

θ2

)
−δ

The inequalities (d)-(f) will be applied below in Lemma 3 to determine the signs
of the first and second derivatives of the crossing maps Gi j, which will help to estab-
lish the existence of periodic orbits. Condition (d) guarantees that the map G11 has a
negative first derivative:

(d)

∣∣∣∣∣−γ
µ(
√

θ1)−φ R
11√

θ1−φ A
11

∣∣∣∣∣> 2φ A
11

θ2

θ0
.

Conditions (e) establish the size of the first derivatives of the maps Gi j at the
point x =

√
θ1:

(e) i.

∣∣∣∣∣−γ
µ(
√

θ1)−φ R
i j√

θ1−φ A
i j

+ 2
√

θ1
θ2

θ0

∣∣∣∣∣> 1, i j ∈ {10,01}
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1

0

1

1.4

FIGURE 2.6: A trajectory of the PWA system following a periodic
orbit with parameter values: VA = 0.43 min−1, VR = 0.3 min−1, γA =
0.2 min−1, γR = 0.18 min−1, rbas = 0.3 min−1, θ0 = 0.7, θ1 = 7.84,

θ2 = 0.06

ii.

∣∣∣∣∣−γ
µ(
√

θ1)−φ R
i j√

θ1−φ A
i j

+ 2
√

θ1
θ2

θ0

∣∣∣∣∣< 1, i j ∈ {00,11}.

Conditions (f) establish the sign of the second derivatives of Gi j at the point
x =
√

θ1:

(f) i.

∣∣∣∣∣(γ2 + γ)
µ(
√

θ1)

φ A
11−
√

θ1

∣∣∣∣∣> 2
θ2

θ0
(2γ
√

θ1 +φ A
11−
√

θ1)

ii.

∣∣∣∣∣(γ2 + γ)
µ(
√

θ1)−φ R
01

(
√

θ1−φ A
01)

2 −4γ
θ2

θ0

√
θ1√

θ1−φ A
01

∣∣∣∣∣> 2
θ2

θ0

iii. (γ2 + γ)
µ(
√

θ1)√
θ1−φ A

00
+ 2

θ2

θ0
(
√

θ1−φ A
00) > 4γ

√
θ1

θ2

θ0
.

It can be easily checked that a set of parameters such as indicated in the caption of
Fig. 2.6 verifies these conditions.

2.4.2 The first return map of the system
Lemma 1. The following functions characterize the correspondence between entry
and exit points of Di j:

Gi j(x) =

(√
θ1−φ A

i j

x−φ A
i j

)γR

γA
(µ(x)−φ

R
i j)+φ

R
i j

(2.12)
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for i, j ∈ {0,1} referring to the corresponding domain Di j, and defined in the follow-
ing sets:

• {(x,G10(x)) ∈R2
+ : x ∈ (φ A

00,
√

θ1),G10(x) < µ(x)}

• {(x,G11(x)) ∈R2
+ : x ∈ (

√
θ1,φ A

10),G11(x) < µ(x)}

• {(x,G01(x)) ∈R2
+ : x ∈ (

√
θ1,φ A

11),G01(x) > µ(x)}

• {(x,G00(x)) ∈R2
+ : x ∈ (φ A

01,
√

θ1),G00(x) > µ(x)}

Proof. To obtain these functions, note that in each domain Di j, equations (2.10) can
be written as

dA
dt

= γA(φ
A
i j−A),

dR
dt

= γR(φ
R
i j−R).

Then, the trajectory crossing Di j from a point (A0,R0) to a point (A,R) is given by:{
A(t) = (A(t0)−φ A

i j)e
−γA(t−t0)+φ A

i j

R(t) = (R(t0)−φ R
i j)e
−γR(t−t0)+φ R

i j
(2.13)

and solving with respect to time yields the equalities

e−(t−t0) =

(
A−φ A

i j

A0−φ A
i j

) 1
γA

=

(
R−φ R

i j

R0−φ R
i j

) 1
γR

. (2.14)

In addition, for i j ∈ {11,00}, we have A0 =
√

θ1 and R0 = µ(A0). It follows that
R0 = Gi j(A0). Conversely, for i j ∈ {01,10}, let R = µ(A) and A =

√
θ1. Then it

follows that R = Gi j(A0). �

For a trajectory starting at the point P̃2 = (Ã2, R̃2) = (Ã2, µ(Ã2)) and returning to
another point P2, both at the boundary between domains D11 and D01, the first return
map of the system can be computed as follows.

Lemma 2. The Poincaré map of the system (2.10) is given by the function:

G(x) = G−1
11 ◦G10 ◦G−1

00 ◦G01(x) (2.15)

defined on the interval G : [
√

θ1,φ A
10)→ [

√
θ1,φ A

10).

Proof. Applying the system’s solution for each transition in the phase space from P̃2
to P2 as it is described in the Proof of Lemma 1 and after some computation follows
the Poincaré map of the system.

�

The first and second derivatives of the Poincaré map G, to be used in the next
section, can be computed from those of the four crossing maps. The first derivative
of each map Gi j is given by:

dGi j

dx
=

(√
θ1−φ A

i j

x−φ A
i j

)γ[
− γ

µ(x)−φ R
i j

x−φ A
i j

+ 2x
θ2

θ0

]
(2.16)
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and the second derivative is given by:

d2Gi j

dx2 =

(√
θ1−φ A

i j

x−φ A
i j

)γ[
(γ + γ

2)
µ(x)−φ R

i j

(x−φ A
i j)

2 −4xγ
θ2

θ0
+ 2

θ2

θ0

]
. (2.17)

2.4.3 Existence and uniqueness of limit cycle
By definition, the fixed points G(x∗) = x∗ of the Poincaré map indicate the number
of periodic orbits of the PWA system (2.10), and their stability indicates the stability
of the orbit. Our main result is thus:

Theorem 1. Assume conditions (a)-(f) hold. Then the first return map (2.15) of
system (2.10) has a unique fixed point in the open interval (

√
θ1,φ A

0 ).

To analyse the fixed points of G, we will first compute the signs of the first and
second derivatives of its components, and show that G is a strictly increasing and
concave function. The following properties are easy to check:

Lemma 3. Assume conditions (a)-(f) hold. For each function Gi j, i, j ∈ {0,1}, the
following inequalities hold:

(i)
dGi j

dx
> 0, i j ∈ {10,01}

(ii)
dGi j

dx
< 0, i j ∈ {00,11}

(iii)
d2Gi j

d2x
> 0, i j ∈ {10,00}

(iv)
d2Gi j

d2x
< 0, i j ∈ {11,01}

(v)
∣∣∣∣dGi j

dx
(
√

θ1)

∣∣∣∣> 1, i j ∈ {10,01}

(vi)
∣∣∣∣dGi j

dx
(
√

θ1)

∣∣∣∣< 1, i j ∈ {00,11}.

We can now state the monotonicity properties of G (see also Fig. 2.7):

Lemma 4. Assume conditions (a)-(f) hold. Then map G defined as in (2.15) is an
increasing and concave function.

Proof. First, from Lemma 3 (i) we have that G11, G00 are strictly decreasing func-
tions in their domains, and since they are invertible, G−1

11 and G−1
00 are also strictly

decreasing. Conversely, by Lemma 3 (ii), the functions G10, G01 and their inverse
functions are strictly increasing in their domains. Therefore, both G−1

11 ◦G10 and
G−1

00 ◦G01 are strictly decreasing, meaning that G is itself strictly increasing as a
composition of two decreasing functions.
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y=G(x)

y=x

FIGURE 2.7: The map G, defined in the interval [
√

θ1,φ A
10), computed

for the same parameters as in Fig. 2.6. Its fixed points are given by the
intersection with the straight line y = x. The point

√
θ1 corresponds

to an unstable fixed point of system (2.10) while x∗ corresponds to a
locally stable periodic orbit.

For the concavity, recall that the inverse f−1 of a strictly monotone convex (resp.,
concave) function f in an open domain D is concave (resp., convex) in its correspond-
ing domain.

Since G10, G00 are convex functions and G11, G01 are concave (by Lemma 3 (iii)
and (iv)), set f1 = G−1

00 ◦G01 and note that

f1
′′
= (G−1

00 )
′′
◦G01(G

′
01)

2 +(G−1
00 )

′
◦G01G

′′
01 > 0

and so f1 is convex and decreasing as a composition of an increasing and a decreasing
function. Similarly

f2
′′
= [G10 ◦ f1]

′′
> 0

so it follows that f2 is a convex and decreasing function. Lastly, we have that

G
′′
= [G−1

11 ◦ f2]
′′
< 0

implying that G is concave. �

Extremal values G(
√

θ1) and G(φ A
10)

Before proving our main result, we will evaluate map G at the two endpoints of its
interval of definition, that is

√
θ1 and φ A

10. Let us first study the map at x =
√

θ1,
which is equivalent to the point A =

√
θ1, R = µ(

√
θ1) at the boundary of the four

regions. At this point, the system (2.10) must be defined as a differential inclusion
and should be written as a convex combination of the vector fields fi j in each of the
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four domains Di j: 
dA
dt

dR
dt

=
1

∑
i, j=0

αi j fi j(
√

θ1, µ(
√

θ1)) (2.18)

where ∑
1
i, j=0 αi j = 1. It is easy to see that the zero vector is included in this convex

combination, hence the point (
√

θ1, µ(
√

θ1)) is a Filippov-type equilibrium point of
(2.10) (Filippov, 1960). Moreover, by definition of the partial crossing maps:

Gi j(x)−φ R
i j

µ(x)−φ R
i j

=

(√
θ1−φ A

i j

x−φ A
i j

)γR

γA

it follows that Gi j(
√

θ1) = µ(
√

θ1) for all i j, hence G(
√

θ1) =
√

θ1 and
√

θ1 is a
fixed point of the first return map. However, the combination of Lemma 3 (v) and (vi)
implies that G′(

√
θ1)> 0, which in turn implies that

√
θ1 corresponds to an unstable

fixed point of (2.10).
At the other endpoint x= φ A

10, by definition of focal point, it follows that G(φ A
10)<

φ A
10, since φ A

11 = φ A
10 and for A0 ∈D11 dA/dt =−γA(φ

A
11−A) implies A(t;A0)< φ A

10
for all t and A < A0.

Proof of Theorem 1

We want to show that there exists a unique
√

θ1 < x∗ < φ A
10 such that x∗ = G(x∗).

From the above discussion, G is strictly increasing and concave in [
√

θ1,φ A
0 ) and

satisfies G(
√

θ1) =
√

θ1 and G(φ A
10) < φ A

10. Therefore G intersects the line y = x
exactly once in the open interval.

To show that this fixed point x∗ is stable, i.e. dG/dx(x∗) < 1, consider the
function L(x) = G(x)− x on [

√
θ1,φ A

10). This function has exactly two zeros on
this interval,

√
θ1 and x∗. By the Intermediate Value Theorem, L′(x) has one zero

at r ∈ (
√

θ1,x∗) and L is decreasing between r and x∗+ δ for some δ > 0 (since
G(x) is continous and G(x) < x in (x∗,φ A

10)). Therefore, L′(x) = G′(x)−1 < 0 and
0 < G′(x) < 1 for all x ∈ (r,x∗+ δ ).

2.4.4 Focal points shift due to basal synthesis rate for the repres-
sor

This Section generalizes system (2.10) by adding a basal production rate to the re-
pressor equation. This result will be useful later on in next Chapter Section 3.2.1,
where we need to characterize the shift in the focal points due to the network cou-
pling. Define the following PWA system associated with (2.10):
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dA
dt

= VAs+A ((A,R); (θ0,θ2))− γAA+ rbas

dR
dt

= VRs+R (A;θ1)− (γR +β )R+βC,
(2.19)

with s+A , s+R , as defined in Section 2.3.1; β > 0 is a constant that controls the shift
of φ R

i j coordinates in the phase space and C > 0 expresses a basal term that remains
constant. The other parameters are those of system (2.10).

The system domains are defined as in Section 2.3.1 and the coordinates φ R
i j can

be computed as a shift of the corresponding focal points R-coordinates of system
(2.10):

φ
R
00 = φ

R
10 =

βC
γR +β

φ
R
01 = φ

R
11 =

VR +βC
γR +β

(2.20)

Note that the φ A
i j coordinates remain the same as in Table 2.1.

Additionally to parameter conditions (a)-(f), we next introduce conditions on β ,
for which the location of the focal points (the domain in which φi j is located) is the
same as in Table 2.1); these conditions will imply that the system (2.19) also admits
a unique periodic solution as shown in Section 2.4.3. Introduce first the notation:

abas =
rbas

γA
, amax =

VA + rbas

γA
. (2.21)

For system (2.19), the following holds:

(i) φ00 ∈ D10 if and only if φ R
00 < µ(abas),

(ii) φ11 ∈ D01 if and only if φ R
11 > µ(amax).

From (2.20), these inequalities become:

(i) β < β1(C) := µ(abas)γR/(C−µ(abas)), whenever C > µ(abas),

(ii) β < β2(C) := (µ(amax)γR−VR)/(C−µ(amax)), whenever C < µ(amax).

Combining these two inequalities, yields the following condition on β :

β <


β1(C), if C > µ(amax)

β2(C), if C < µ(abas)

min{β1(C),β2(C)}, if µ(abas) <C < µ(amax)

(2.22)

If β does not satisfy these conditions, it follows that the shift in R- coordinates
of the focal points induces a change in the dynamic of system (2.19) from sustained
oscillations to stability: for C > µ(amax), if the condition on β is not satisfied, then
φ00 shifts to its corresponding domain D00 and becomes locally stable solution for
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the system (2.19). Analogously, for C < µ(abas) and the corresponding condition
on β not satisfied, φ11 changes location to D11 and becomes steady state. Lastly, for
µ(abas) < C < µ(amax), φ00 shifts to D00 for β > β1 and φ11 to D11 for β > β2. In
either of these three cases, the periodic solution disappears.

Note: This observation will be used in the next Chapter (Section 3.2.1) to show
stability of a network under some conditions.

2.5 Discussion

2.5.1 Applying activity thresholds separation (θ0 < θ1) to the
continuous model

As an application of the theoretical analysis in this chapter, we now check the effect
of the new parameter inequalities on the dynamics of continuous system.

The analysis of the piecewise system highlights a crucial factor for the existence
of a periodic solution: the separation of the activity thresholds. We apply this con-
dition to the continuous system (2.2) providing a new parameter set for the proposed
(continuous) model, see Table 2.2.

TABLE 2.2: Parameters of improved Smolen
model

VA = 12.5 min−1 VR = 0.3 min−1

γA = 1 min−1 γR = 0.2 min−1

θ0 = 10 θ1 = 16
rbas = 0.4 min−1 θ2 = 0.2

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Original

FIGURE 2.8: Two parameter bifurcation diagrams for synthesis and
degradation rate of R, for the original model (in black) and for model
(2.2) with θ0 = θ1 and θ0 < θ1. Inside of each circle of the parameter
values the periodic solutions occur. GH indicates a generalized Hopf

point.
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We perform bifurcation analysis to establish the parameter space for oscillations.
From the bifurcation diagrams we extract information about the influence of the ac-
tivity thresholds separation (θ0 < θ1) to the oscillations parameter space of system
2.2. Indicatively, Fig. 2.8 depicts two parameter bifurcation analysis for the synthesis
and degradation rate of the repressor VR,γR. Comparing the bifurcation diagrams for
the three cases: a) original Smolen model, b)proposed model with activity thresholds
equal and c)proposed model with thresholds separation, we conclude that the region
that admits periodic solution substantially increases for the proposed system (2.2) in
case b) with θ0 = θ1 = 10, and extends further in case c) with θ0 = 10,θ1 = 16.

2.5.2 Conclusion
In this chapter we study an improved model of a synthetic biology oscillator using
a piecewise affine approximation and prove existence and uniqueness of periodic
solution for this PWA system, in a suitable region of parameters. This qualitative
characterization of the system allows us to better understand the influence of each
parameter on the dynamical behaviour, crucial factors to help guide system design
and synthetic implementation.

The two most important steps for the improvement of the system design are:
first, separate the activation thresholds. The activator should act much faster on it-
self than on the repressor (θ0 < θ1). Second, the maximal rate for the activator
synthesis (VA + rbas)/γA should be smaller than the maximal repressor modulating
factor

√
1+VR/(γRθ2). Moreover, we apply the parameter condition on the activity

thresholds in the associated continuous system, to illustrate further the results of our
analysis. Applying the condition θ0 < θ1, the oscillations region increases further.
These results can be useful guidelines for synthetic circuit implementation.
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Chapter 3

Dynamics in a Network of N Coupled
Two-gene Oscillators: the Effect of
the Topology of Interactions

As an application of our two-gene oscillator analysis, we then study a network of
N identical piecewise affine two-gene oscillators, linked by diffusion of one of the
variables. There are still few studies of coupled identical oscillators in a piecewise
affine formalism: for instance, Edwards and Gill, 2003 prove synchronization un-
der a weak coupling, and Nicks, Chambon, and Coombes, 2018 study clusters of
synchronized elements, with applications to neuron networks. More generally, net-
works of identical linear systems under diffusive coupling are studied by Scardovi
and Sepulchre, 2008, who give conditions for synchronization depending on the com-
munication graph. Sorrentino et al., 2016 and a review by Golubitsky and Stewart,
2016 examine the relationship between network topology and patterns of synchrony
among the oscillators, in a more theoretical context.

Motivated by the synchronization of mammalian circadian clocks in tissues and
organs, we will consider a network of N two-gene oscillators interconnected ac-
cording to three different topologies. Experiments have shown that the mammalian
suprachiasmatic nucleus (SCN), that consists of neurons and is located in the brain,
is the central synchronizer of the circadian rhythms, (Ralph et al., 1990). In paral-
lel, in cultured cells and tissue explants, there have been observed self-sustained and
autonomous circadian clocks (Balsalobre, Damiola, and Schibler, 1998), (Yamazaki
et al., 2000). The suprachiasmatic nucleus (SCN) is the central circadian synchro-
niser, sending signals to the rest of the brain and to the pheripheral clocks in the
body. The exact means of communication of the clocks in the circadian system is
not yet fully understood. In the present work, we investigate the dynamics of a cou-
pled network of identical oscillators with local connection. Thus, for the form of the
interaction between the SCN and the peripheral clocks, as a first approach we will
consider diffusive exchanges between cells. This hypothesis follows experimental
studies implying the presence of this type of interaction in intercellular connections
(Silver et al., 1996), (Durand, Park, and Jensen, 2010). Similar way of coupling is
also studied in model-based investigations and simulations (Kunz and Achermann,
2003), (Silva, Lopes, and Viana, 2016).

In the context of the hierarchical organisation of the circadian system, we explore
a network N two-gene oscillators coupled through diffusion terms. In a first case, we
consider one PWA system (2.10) to represent the SCN and the other N− 1 identi-
cal systems as peripheral clocks, leading to an “one-to-all” or “star” topology where
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of the Topology of Interactions

oscillator i = 1 is connected to all others, as in Fig. 3.1. In a second case, we con-
sider all oscillators to play identical roles, as in a homogeneous tissue, and study an
“all-to-all” topology where each oscillator is connected to all others. As an interme-
diate case, we will consider randomly chosen connections, within certain parameters.

3.1 PWA oscillator network and location of focal points
Consider N identical oscillators of the form (2.10), with coordinates (Ai,Ri) i ∈
{1,2, . . . ,N}, coupled through Ri according to some topology L and a diffusion pa-
rameter κ:

dAi

dt
= VAs+A,R(Ai,Ri;θ0,θ2)− γAAi + rbas

dRi

dt
= VRs+A (Ai;θ1)− γRRi +κ ∑

j∈L
(R j−Ri), i = 1, . . . ,N,

(3.1)

where the set L contains all systems j that are connected to i. It will be useful to
define the vectors A = (A1, . . . ,AN)′ and R = (R1, . . . ,RN)′, as well as the state of the
coupled system as X = (A1,R1, . . . ,Ai,Ri, . . . ,AN ,RN)′ ∈R2N

≥0. We further define

shA,R = [s+A ((A1,R1); (θ0,θ2)), . . . ,s+A ((An,Rn); (θ0,θ2))]
′

and
shA = [s+A (A1;θ1), . . . ,s+A (An;θ1)]

′

to be N-dimensional Boolean vector functions, evaluated according to the state X .
The coupled system (3.1) can be rewritten as:

dA
dt

= VAshA,R−ΓAA+ rbas

dR
dt

= VRshA− (ΓR +L)R,
(3.2)

where ΓA, ΓR are diagonal N×N matrices with elements γA, γR > 0 respectively, and
(by abuse of notation) rbas is an N-dimensional vector with elements rbas. L is the
symmetric N×N Laplacian matrix of the connection topology, to be defined for each
case. Analogously to Section 2.3.1, we define the domains of system (3.2) as DC =
Dc1 × ·· · ×DcN , where ci belongs to {00,01,10,11}, so that each Dci corresponds
to a regular domain of the 2-dimensional system (2.10). The focal points for each
domain DC are denoted by φC = (ÃC, R̃C)′ and they are given by:

ÃC = VAΓ−1
A shA,R[DC]+Γ−1

A rbas

R̃C = VR(ΓR +L)−1shA[DC]
(3.3)

where shA,R[DC] and shA[DC] are the synthesis rate vectors evaluated at domain DC.
As before, the location of the focal points determines the dynamics of the system.

In Section 2.4.3 we have shown that the (single) two-gene oscillator (2.10) admits
a unique periodic solution for certain parameter conditions. This periodic solution,
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R1

R2

R3 R4

R5

R6

RN

FIGURE 3.1: Star topology scheme: coupling N two-gene oscillators
of the form (2.10), through variable R.

which we call (ϕA(t),ϕR(t)), extends to naturally as a solution to the coupled system
with ϕ i

A(t) = ϕA(t) and ϕ i
R(t)) =ϕR(t)) for all i. This can be seen by taking identical

initial conditions for all systems i. Intriguingly, our analysis shows that diffusive
coupling generates new locally stable steady states for the coupled system. Notice
that only the coordinates R̃C depend on the coupling parameter κ , as well as on the
number N of oscillators, while ÃC are independent of the coupling topology and can
be computed for i = 1, . . . ,N as follows

ÃC
i =

{
abas, DCi ∈ {D00,D10}
amax, DCi ∈ {D11,D01}

(3.4)

where we used notation (2.21). This implies that regular domains DC whose product
includes {D01,D10} for some i cannot contain their own focal point φC. Conversely,
for regular domains DC which are products of D00 and D11 only, the location of the
focal points depends on the value of each R̃C

i relative to the curve µ(A) (see Fig. 2.6),
as stated in the next Lemma.

Lemma 5. For each oscillator i, the following hold:

(a) Let Dci = D00, R̃C
i ∈ D00 if and only if R̃C

i > µ(abas),

(b) Let Dci = D11, R̃C
i ∈ D11 if and only if R̃C

i < µ(amax).

Consider a regular domain DC with Dci ∈ {D00,D11} for all i = 1, . . . ,N. Then
φC = (ÃC, R̃C)′ ∈ DC if and only if either (a) or (b) are satisfied for each i.

The inequalities (a) and (b) follow directly from the expressions (3.4) for ÃC and
the geometry of the phase space. The result on φC is an immediate consequence of
(a) and (b).

3.2 Star Topology
This simplified interconnection scheme naturally assumes that SCN (represented by
R1) is connected to all other peripheral clocks, but the latter do not communicate
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among themselves, as in the network depicted in Fig. 3.1. The corresponding Lapla-
cian matrix L is defined as

L = κ


N−1 −1 −1 . . . −1
−1 1 0 . . . 0
−1 0 1 . . . 0

...
...

−1 0 0 . . . 1

 (3.5)

In each of the 4N regular domains of the coupled system the coordinates of the focal
points can be computed as in (3.3), where the matrix (ΓR +L)−1 is strictly positive
and has the form 

Q S S · · · S
S P T · · · T
S T P · · · T
...

...
...

...
S T T · · · P

 (3.6)

where the entries are given by:

S =
κ

γR(γR +Nκ)
(3.7)

Q =
γR

γR(γR +Nκ)
+ S

T =
κ

γR +κ
S

P =
(γR +κ)2 +(N−2)γRκ

κ2 T .

Based on Lemma 5, we can now show that new steady states may be generated due
to the coupling scheme. In addition, using (3.7), we can estimate the number of these
new steady states in terms of the coupling parameter and the number of oscillators in
the network. Introduce the notation:

D00× (Dm
11×DN−m−1

00 )prm, D11× (Dm−1
11 ×DN−m

00 )prm

to denote products of m domains of the form D11 and N−m of the form D00, where
only the first component Dc1 is fixed, and the other components are any permutation
of the remaining domains. For example, in the case N = 3, m = 2 we have: D00×
D11×D11 and D11×D11×D00, D11×D00×D11.

Theorem 2. Consider system (3.2) in a star-coupled topology, with L defined as in
(3.5). Assume that conditions (a)-(f) hold.

Case (i) Define the positive integers:

mmin =

⌈
1

TVR
µ(abas)

⌉
(3.8)

mmax =

⌊
1

TVR
µ(amax)−

(γR +κ)2 +(N−2)γRκ

κ2 + 1
⌋

.
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If mmin < mmax, then system (3.2) has exactly ∑
mmax
m=mmin

(N− 1)/(m!(N−m− 1)!)
locally stable steady states corresponding to focal points φC ∈ DC = D00× (Dm

11×
DN−m−1

00 )prm.
Case (ii) Define the positive integers:

mmin =

⌈
1

TVR
µ(abas)−

γR

κ

⌉
(3.9)

mmax =

⌊
1

TVR
µ(amax)−

γR

κ
− 1

γR +κ

1
T

max
{

γR

VR
µ(amax),1

}⌋
.

If mmin < mmax, then system (3.2) has exactly ∑
mmax
m=mmin

(N−1)!/((m−1)!(N−m)!)
locally stable steady states corresponding to focal points φC ∈DC = D11× (Dm−1

11 ×
DN−m

00 )prm.
Case (iii) Let

κ̂ =


max

{
γR(µ(amax)γR−VR)

VR−NγRµ(amax)
,

γ2
Rµ(abas)

VR−NγRµ(abas)

}
, if N ≤ N∗

VR

µ(amax)−µ(abas)
− γR, if N > N∗

with N∗ = d VR
γRµ(abas)

− γR(µ(amax)−µ(abas))
VR−γR(µ(amax)−µ(abas))

e. Then no new steady states exist for
any κ ≤ κ̂ .

Proof. First, recall that a focal point φC is a locally stable state if and only if it
belongs to its own domain DC: since the eigenvalues of the matrices −ΓA and
−(ΓR + L) have strictly negative real part, the Hurwitz condition holds, hence the
focal points that lie in their own domains are locally asymptotically stable. Second,
Lemma 5 provides the conditions required to guarantee φC ∈DC. Consider a general
domain DC consisting of the product of m regions of the form D11 and N−m of the
form D00, in any order. Since oscillator 1 has a special role, we need to consider two
cases, depending on whether c1 = 00 or c1 = 11:

Case (i) DC = D00× (Dm
11×DN−m−1

00 )prm. In this case, the vector shA[DC] has m
entries equal to 1, and (3.6) and (3.3) lead to

R̃C
1 = mSVR

R̃C
i =

{
(P+(m−1)T )VR, if shA,i = 1, i = 2, . . . ,N
mTVR, if shA,i = 0, i = 2, . . . ,N.

By Lemma 5, the conditions to guarantee φC ∈ DC become

mSVR > µ(abas)

(P+(m−1)T )VR < µ(amax)

mTVR > µ(abas)
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From (3.7), it follows that S > T so, combining these inequalities leads to

1
TVR

µ(abas) < m < 1+
1

TVR
µ(amax)−

P
T

,

and (3.7) shows that P/T = ((γR + κ)2 + (N − 2)γRκ)/κ2 which yields mmin <
m < mmax. If there exists an integer m in this interval, this means that any choice of
m oscillators in D11 implies that the corresponding focal point belongs to DC. Now,
there are several ways of choosing m oscillators among the N. In this first case, Dc1 =
D00 is fixed, so the formula is “N−1 choose m”, that is (N−1)!/(m!(N−1−m)!)
ways for each m. Since there is one focal point for each of these choices and this is
valid for any integer m in the interval [mmin,mmax], obtain the given sum for the total
number of new steady states.

Case (ii) DC = D11×(Dm−1
11 ×DN−m

00 )prm. The coordinates R̃C of the focal points
are now given by

R̃C
1 = (Q+(m−1)S)VR

R̃C
i =

{
(S+P+(m−2)T )VR, if shA,i = 1, i = 2, . . . ,N
(S+(m−1)T )VR, if shA,i = 0, i = 2, . . . ,N.

Applying Lemma 5 yields,

(Q+(m−1)S)VR < µ(amax)

(S+P+(m−2)T )VR < µ(amax)

(S+(m−1)T )VR > µ(abas).

Combining the first two inequalities

m < min
{

1+
1

SVR
µ(amax)−

Q
S

, 2+
1

TVR
µ(amax)−

P+ S
T

}
,

using (3.7) to obtain Q/S = 1+ γR/κ , (S+P)/T = 2+ γR/κ + 1/(κS)

m < min
{

1
SVR

µ(amax)−
γR

κ
,

1
TVR

µ(amax)−
γR

κ
− 1

κS

}
,

and noticing that T /S = κ/(γR + κ) = 1− γR/(γR + κ) yields mmin < m < mmax.
In this case, the first oscillator is fixed at Dc1 = D11 so the formula becomes “N−1
choose m−1”, that is (N−1)!/((m−1)!(N−m)!) for each m.

We note that if the inequalities

QVR < µ(amax) (3.10)
(S+P+T )VR > µ(amax)

SVR > µ(abas)

are satisfied and mmin ≥ mmax for the values defined in (3.8), then there is exactly
one locally stable steady state for the system (3.2), that is of the form DC = D11×
(D00)N−1. This derives from the inequalities satisfied in Case (ii), for m = 1.
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Case (iii) To prove the last statement of Theorem 2, observe that κ̂ is the value
of κ that renders mmin > mmax for the values as defined by (3.8) and (3.10), that is
the intersection of { 1

TVR
µ(amax)−

P
T
+ 1 <

1
TVR

µ(abas)
}

(3.11)

∩
{

QVR > µ(amax)
}

∩
{

SVR < µ(abas)
}

gives an interval for κ such that no focal point belongs to its own domain. Solving
µ(amax)/TVR−P/T +1< µ(abas)/TVR with respect to κ and using (3.7) yields the
value of κ̂c = VR/(µ(amax)−µ(abas))− γR, which is constant ∀N. Solving SVR <
µ(abas) with respect to N for κ̂c to obtain

N∗ = d VR

γRµ(abas)
− γR(µ(amax)−µ(abas))

VR− γR(µ(amax)−µ(abas))
e,

that is the maximum value of N for which, the value of κ̂ is given by solving {QVR >
µ(amax)}∩{SVR < µ(abas)} with respect to κ . �

Example 1: N = 2. System (3.2) has 16 regular domains and the corresponding
focal points are given in Table (3.1).

In this case, for a coupling constant κ = 0.25, and the other parameters as in
Fig. 2.6, we have S = 2.0425, T = 1.1875, Q = 3.5131, P = 3.5131, µ(abas) =
0.1336, µ(amax) = 1.0865, κ̂ = 0.21 and the bounds (3.8) and (3.9):

0.375 < m < 1.0914
QVR = 1.05 < µ(amax) and SVR = 0.6127 > µ(abas).

According to Theorem 2, m = 1 thus implying at most 1!/(1!0!) = 1 new steady
state in D0011 and 1!/(0!1!) = 1 new steady state in D1100, in agreement with Ta-
ble 3.1. The value of κ̂ also agrees with simulations, see Fig. 3.3.

Example 2: N = 10. Similarly, the computations of the m bounds in Theorem
2 case (i) yield 1.4783 < m < 4.3013, thus mmin = 2, and mmax = 4. We expect
∑

4
j=2(9)!/(( j)!(9− j)!) = 246 steady states in domains of the form D00× (D11)4×

(D00)N−5. Applying the inequalities of case (ii) to obtain 0.7583 < m < 3.5813, with
mmin = 1 and mmax = 3, we expect ∑

3
j=1(9)!/(( j−1)!(10− j)!) = 46 steady states

in domains of the form D11× (D11)3× (D00)N−3. Our estimations are exact as it is
illustrated by comparison with numerical computations in Fig. 3.2.

3.2.1 Star-coupled network stabilization
In this section we show that the star topology does not admit “mixed” dynamics: if
any of the two-dimensional systems converges to a steady state, then all the network
stabilizes.
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TABLE 3.1: Focal points of 2 systems coupled and their correspond-
ing location in the domains for κ = 0.25.

Φ1010 D1111 Φ1011 D1111
Φ1001 D1100 Φ1000 D1110
Φ1110 D1111 Φ1111 D0101
Φ1101 D0100 Φ1100 D1100
Φ0110 D0011 Φ0111 D0001
Φ0101 D0000 Φ0100 D0000
Φ0010 D1011 Φ0011 D0011
Φ0001 D0000 Φ0000 D1010

Theorem 3. Consider system (3.2) in a star-coupled topology, with L defined as in
(3.5). Assume that conditions (a)-(f) hold. If any 2D system k converges to a steady
state (away from the domain boundaries), then the full network converges to a steady
state.

Proof. Suppose that 2D system k 6= 1, converges a to steady state in a regular domain,
R̃k = constant. Then, from (3.4), there are two possible values for Ãk:

Ãk =

{
abas, which implies shA,R = 0 and shA = 0
amax, which implies shA,R = 1 and shA = 1.

For simplicity we denote δ j = (shA) j ∈ {0,1}.
By assumption, R̃k must remain constant (or within an interval of length ε as

small as desired), δk remains fixed, and Ṙk ≈ 0, thus (3.1) implies:

κLkkR̃k + γRR̃k ≈VRδk(t)+κ ∑
j∈L

R̃ j, (3.12)

Since oscillator k is only connected to system j = 1, from (3.3) and (3.5), it follows
that Lkk = 1 and ∑ j∈L R̃ j = R̃1. Solving (3.12) with respect to R̃1 gives :

R̃1 ≈
κ + γR

κ
R̃k−

VR

κ
δk(t) (3.13)

Since both R̃k and δk(t) are fixed, the latter implies that R̃1 = constant, and so
(A1(t),R1(t)) converges to a steady state.

Next, for an oscillator i of the coupled network, with i 6= 1,k, from (3.1) it holds
that

dRi

dt
= VRδi(t)− (γR +κ)Ri +κR̃1. (3.14)

Since R̃1 remains constant and the coupling parameter κ is fixed, the term κR̃1
acts like a basal term for all components Ri, i = 2, . . . ,N. This implies that systems
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(Ai,Ri) become decoupled, and are described by the following equations:

dAi

dt
= VAs+A,R(Ai,Ri;θ0,θ2)− γAAi + rbas

dRi

dt
= VRs+A (Ai;θ1)− (γR +κ)Ri +κR̃1,

(3.15)

This implies that each i-th system (3.15) is equivalent to system (2.19) with β =
κ , C = R̃1 and other parameters as in Fig. 2.6.

Since there are at least two oscillators in the network (k and 1) that converge to
steady states, it holds that κ > κ̂ (Theorem 2). From Lemma 5, it follows that either
µ(abas) < R̃1 or R̃1 < µ(amax). Recalling (2.22), we have that

R̃1 > µ(amax) ⇒ β1(R̃1) <
γRµ(abas)

µ(amax)−µ(abas)
< κ̂ ,

R̃1 < µ(abas) ⇒ β2(R̃1) <
VR− γRµ(amax)

µ(amax)−µ(abas)
< κ̂ ,

with the κ̂ expression for N sufficiently large.
For the range R̃1 ∈ (µ(abas), µ(amax)), note that β1(C) is a decreasing function

in the interval (µ(abas),+∞), with limC→µ(abas) β1(C) = +∞ and, conversely, β2(C)
is an increasing function in the interval (0, µ(amax) with limC→µ(amax) β2(C) = +∞.
Therefore, in the interval C ∈ (µ(abas), µ(amax)), the two functions intersect at a
single point Ĉ and it is easy to check that:

min{β1(R̃1),β2(R̃1)}< β1(Ĉ) = β2(Ĉ)

with

β1(Ĉ) = β2(Ĉ) =
VR− γR(µ(abas)−µ(amax))

µ(abas)−µ(amax)
≡ κ̂ .

Thus, from (2.22), the i-th system (3.15) does not admit a periodic solution, meaning
that all systems in the star-coupled network converge to a (locally) stable steady
state.

�

3.3 All-to-all topology
An alternative configuration mimics the network of interconnections that might be
found between the cells in a living tissue, where each cell communicate with all the
others. This is a fully symmetrical network, since no oscillator can be distinguished
from another. The corresponding ΓR +L matrix and its inverse are:

ΓR +L = κ(NI−11’)+ γRI (3.16)

(ΓR +L)−1 =
1

Nκ + γR
I +

κ

γR(Nκ + γR)
11’, (3.17)
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where I is the N×N identity matrix, 1 is the vector with all entries equal to 1 and
11’ is the matrix with all entries 1.

As for the star topology, we can count the number of new steady states due to the
coupling. Since all oscillators have an equal role, let (Dm

11×DN−m
00 )prm denote any

permutation of m D11 and N−m D00 domains.

Theorem 4. Consider system (3.2) coupled in an all-to-all topology, with L defined
as in (3.16). Assume that conditions (a)-(f) hold. Define:

mmin =

⌈
γR

κ

Nκ + γR

VR
µ(abas)

⌉
(3.18)

mmax =

⌊
γR

κ

(Nκ + γR

VR
µ(amax)−1

)⌋
,

If mmin < mmax, then system (3.2) has exactly ∑
mmax
m=mmin

N!/(m!(N−m)!) locally sta-
ble steady states corresponding to focal points φC ∈ DC = (Dm

11×DN−m
00 )prm. Fur-

thermore, let

κ̂ =
1
N

( VR

µ(amax)−µ(abas)
− γR

)
(3.19)

then none of the focal points corresponds to a steady state for any κ ≤ κ̂ .

Proof. As in the proof of Theorem 2, we will provide conditions such that regular
domains of the form DC = (Dm

11×DN−m
00 )prm contain their own focal points. In this

case, all oscillators play a similar role. By (3.3) and (3.16), the R̃C coordinates of the
focal point of DC are given by

R̃C
i =


VR

κ

γR(Nκ + γ)
m, if shA,i = 0

VR
1

Nκ + γR
+VR

κ

γR(Nκ + γR)
m, if shA,i = 1.

By Lemma 5, the conditions to guarantee that φC ∈ DC

VR
κ

γR(Nκ + γR)
m > µ(abas)

VR
1

Nκ + γR
+VR

κ

γR(Nκ + γR)
m < µ(amax),

immediately yield the values (3.18). Since the interconnection scheme is fully sym-
metric, the maximal number of new steady states equals all the possible combinations
of the form DC, that is N!/(m!(N−m)!), for each mmin ≤ m≤ mmax.

The value κ̂ is the highest value that implies mmin > mmax in (3.18). It follows by
solving the inequality with respect to κ:

γR(γR +Nκ)(µ(amax)−µ(abas))−VRγR < 0.

�
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FIGURE 3.2: The number of new steady states (log scale) generated
by each topology.

A fundamental difference arises between the star and the all-to-all topology: the
upper bound on the diffusion constant decreases to zero with N in the all-to-all topol-
ogy, while it remains constant in the star topology (Fig. 3.3). For large N, we can
expect to avoid new steady states in the star topology by assigning a small but finite
and reasonable diffusion constant (on the order of the degradation constants); how-
ever, steady states will appear for sufficiently large N in all-to-all topology, possibly
contributing to disrupt synchronization of the oscillators to the periodic orbit. In any
case, the periodic orbit is preserved: in the last section we give the basin of attraction
for the periodic solution. Therefore, considering clusters of cells connected in all-
to-all topology, for a reasonable number of cells in each cluster the oscillations are
preserved regardless the large number of the steady states generated by the coupling,
see Fig.3.4.

3.4 Random topology
Star and all-to-all topologies are standard network architectures in graph theory with
numerous applications. When it comes to biology, in particular to intercellular cou-
pling, it becomes important to explore a larger class of interconnection structures.

In the work of Hafner, Koeppl, and Gonze, 2012, a comprehensive mathemati-
cal model of the circadian clock is used to simulate the cells inside the SCN with
different types of interconnections.

The results of this study suggest that cells with problematic oscillatory behaviour
synchronize more efficiently in a random topology than in other topologies tested.
Motivated by this result, we introduce a random topology for the network (3.2), with
degree of connectivity d. The cell i is randomly bidirectionally connected to cell j,
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FIGURE 3.3: The upper bound κ̂ on the diffusion constant that guar-
antees no new steady states for κ < κ̂ .

with i, j = 1, . . . ,N, i 6= j, and each cell (node) has exactly d connections (edges). We
will denote this bidirectional connection as : i↔ j. The elements of the Laplacian
matrix L are defined as

lk j =

{
κ(N−1−d), j = k
−κ , if j↔ k, j 6= k,

The numerical results for the total number of new locally stable steady states in ran-
dom connected networks of N oscillators, with degree of connectivity fixed for each
network at 25%−50% of N, are illustrated in Fig. 3.2, along with the corresponding
numbers for the two other topologies.

The comparison of the total number of steady states for the three topologies,
shows that random connections generate more steady states than star topology but
less than all-to-all. This is an intuitively reasonable result since, for the average
degree of connectivity δ , for the three types of connections, we have that δstar <
δrandom < δall−to−all .

3.5 Initial conditions to guarantee convergence to the
periodic solution

The generation of new stable steady states due to the diffusive coupling may be a
disrupting factor in a network where the goal is synchronization towards the biolog-
ical rhythm present in each single cell. Thus, in addition to the lower bound on
the coupling constant, which prevents the generation of new stable steady states, it
is also crucial to define initial conditions that guarantee convergence to the periodic
orbit. Due to the specific form of the domains of system (2.10), and consequently
of system (3.1) (that are defined by the quadratic curve µ(A)), the explicit definition
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TABLE 3.2: Phase space of system (3.1) partitioned in three regions
to test convergence of initial conditions. Parameters as in Fig. 2.6,

lθ (A) = cA+ b, c = 0.8482, b = −0.7082.

Zones
1 {Ri ∈ [0,VR/γR),Ai ≤ l−1

θ
(Ri)}

2 {Ri ∈ [0,VR/γR),Ai > l−1
θ

(Ri)∩ (
√

θ1 + ε , µ−1(Ri))}
3 Ai ∈ (

√
θ1 + ε , µ−1(VR/γR)),Ri ∈ [0, µ(Ai))

TABLE 3.3: Percentage of the initial conditions that lead the trajec-
tories to the steady states, N = 10, κ = 0.25, and the initial states for
each system to slightly vary as: (Ai,Ri) = α(A1,R1), with (A1,R1) ∈

zone j, α ∈ [0.8,1.2], i = 2, . . .N and j = 1,2,3.

Topology Star All-to-all Random
Zone 1 0% 0% 0 %
Zone 2 15.2 % 43.6 % 27 - 39 %
Zone 3 4.7% 25.8% 15 - 21.7 %

of the basins of attraction for the limit cycle and the locally stable steady states is
not straightforward. Instead, numerical simulations were performed to identify the
basins of attraction for the two types of attractors in three regions (zones) of the phase
space, as defined in Table 3.2. Table 3.3 shows the percentage of initial conditions
that converge to the steady states in each zone.

To facilitate the characterization of our results, first we define the line lθ (A) =
cA + b, that passes through the point (

√
θ0,0) and intersects the R-nullcline A =√

θ1 and the R threshold-line R = VR/γR, with c = VR/γR(
√

θ1−
√

θ0) and b =
−VR
√

θ0/γR(
√

θ1−
√

θ0). This line is used to define the zones of Table 3.2.
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FIGURE 3.4: Activity in time of N = 200 coupled two-gene oscilla-
tors of the form (2.10) in all-to-all topology, initial conditions in zone
1, κ = 0.25 and other parameters as in Fig. 2.6. Trajectories converge

to the periodic solution.

The results of Table 3.3 imply that trajectories starting in zone 1 have the highest
probability to oscillate, with 100 % of the initial conditions tested leading to the
periodic orbit. We note that the other two zones both intersect the basins of attraction
of more than one attractor. Initial conditions in the region

C = {(A,R) ∈R2N
≥0},Ri ∈ [0,VR/γR),Ai ≤ l−1

θ
(Ri), i = 1, . . .N (3.20)

lead trajectories of system (3.1) to the periodic solution, for the three topologies
tested. Indicatively for star topology, initial conditions in zone 1 are depicted in Fig.
3.5; trajectories starting from the marked superimposed points (Ai,Ri) converge to
the periodic orbit.
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FIGURE 3.5: For all initial conditions tested in zone 1 (blue + sym-
bols), trajectories converge to the periodic orbit. Here are shown the

numerical tests for star topology with N = 10.

3.6 Discussion
Interconnection of identical oscillators generates new dynamics A network of syn-
thetic oscillators was next constructed by connecting N identical elements through
diffusive coupling, organized according to different interconnection structures: one-
to-all or star, all-to-all and random. All three forms of interconnection preserve the
periodic orbit but acquire additional attractors: new locally stable steady states. We
give the exact total number of the new stable states, which increases with the num-
ber N of the systems in the network. In addition, we provide a lower bound on the
diffusion constant that prevents the generation of new steady states due to the cou-
pling. Numerical simulations show that oscillators synchronize towards some (new)
stable steady states in groups, i.e. some oscillators converge to the same stable state
and therefore form a group or "cluster". Indicatively see for instance, in Fig. 3.6 for
N = 5, we observe convergence to locally stable steady states in two groups for all to
all topology, and in three groups for star topology. Similar behavior is also observed
in the analysis of Nicks, Chambon, and Coombes, 2018 for PWA systems. Cluster
synchronization patterns and their properties are analytically studied by Sorrentino
et al., 2016 in a more general framework. We also identify a region of the state space
which prevents convergence to any of the steady states, for the three forms of inter-
connections applied. Numerical simulations show that, in the case of convergence to
the periodic orbit, the N systems synchronize both in period and in phase, even for a
small value of the coupling constant. An interesting question to be addressed in fu-
ture work is whether the coupled systems still synchronize if the individual systems
are not identical but have different parameters and periods.
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FIGURE 3.6: Projection of the activity of Ai, Ri, i=1,. . . ,5 simultane-
ously: phase portrait of the coupled system for κ = 0.25. Trajectories
of the system converge to locally stable steady states in two groups
for all to all topology (left) and three groups for star (right). Red dots

indicate the locally stable steady states.

Network topologies and robustness of oscillations The three interconnection topolo-
gies lead to similar qualitative dynamical behaviours and raise the problem of the
robustness of the periodic behavior, when the goal is, for instance, the synchroniza-
tion of a cluster of cells to the same periodic rhythm. The analysis of the new steady
states and their basins of attraction indicates that, for a large amount of initial condi-
tions, the network elements will not synchronize to a similar asymptotic behaviour.
Star topology has fewer new steady states and a finite lower bound on the diffusion
constant that prevents locally stable steady states and guarantees the existence of pe-
riodic oscillations. Moreover, this lower bound has physiologically reasonable values
and is independent of the number of cells in the network. In constrast, the all-to-all
topology creates locally stable steady states for any value of diffusion constant, for
sufficiently large N. This analysis indicates that a star interconnection, resembling a
central synchronizer with peripheral clocks, has the capacity to more robustly main-
tain a synchronized oscillatory behaviour, while in an all-to-all network, representing
identical cells in a homogeneous tissue, it will be difficult to synchronize to a peri-
odic orbit as the number of cells increases. In random interconnections, reminiscent
of a network of circadian oscillators inside the SCN, the total number of locally sta-
ble states lies in between the corresponding numbers of the two other topologies,
making this type of connection more robust to oscillations than all-to-all topology.

Conclusion Our results show that the architecture of interconnections induces
new dynamics in a network of identical oscillators, creating new steady states and
interfering with synchronization properties, which can be undesirable in synthetic
biology applications. Our analysis provides useful guiding lines for choosing net-
work design and implementation showing that, by carefully adjusting the coupling
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strength or tuning initial conditions, it is still possible to synchronize the network of
N biological oscillators, in all architectures. However, a star-shaped network has the
potential to more robustly maintain oscillators synchronized.

Acknowledgments We gratefully thank Luca Scardovi for many interesting and
useful discussions on the coupling and synchronization of oscillators, during his ex-
tended visit to Inria.
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Chapter 4

Period response to different
interconnection schemes for two
coupled genetic oscillators

Biological complex mechanisms with oscillatory behavior are often modeled by high
dimensional nonlinear ODEs systems, which makes the analysis and understanding
the dynamics of the system difficult. In this chapter, we consider two reduced models
that mimic the oscillatory dynamics of the cell cycle and the circadian clock, and
study their coupling from a synthetic biology perspective. Moreover, we study the
capacity for mutual period regulation and control of the coupling between the two
reduced oscillators.

4.1 Introduction
Biological oscillators often involve a complex network of interactions, as in the case
of circadian rhythms or cell cycle. Mathematical modeling and especially model
reduction help to understand the main mechanisms behind oscillatory behavior. Low
dimensional systems can be found at the core of oscillatory dynamics, such as a
basic 3-dimensional negative feedback loop or a 2-dimensional negative loop with
self-regulation (Smolen, Baxter, and Byrne, 1998). Moreover, both of these systems
have been synthetically constructed in living cell environment and indeed shown to
oscillate (Elowitz and Leibler, 2000, Stricker et al., 2008, Purcell et al., 2010).

A new challenge in synthetic biology is to study the behavior of an oscillator
when coupled to another system (Tomazou et al., 2018, Perez-Carrasco et al., 2018).
Interesting questions include the tuning capacity and period control for the coupled
system. In this context, we perform a model-based investigation for the coupling
between two oscillators, mimicking the cell cycle and circadian clock. This analysis
aims to contribute to gain further intuition on the interactions between these oscilla-
tors (Feillet et al., 2015) and their mutual regulation of the period of oscillations.

A simple model proposed by Smolen, Baxter, and Byrne, 1998, consists of two
transcriptional factors that compete with each other in a negative feedback loop,
possibly generating oscillatory behavior. Such a system is able to describe com-
plex autonomous mechanisms like the circadian clock, in terms of their function and
properties, i.e. oscillatory behavior, feedback, autoregulation of the transcriptional
factors.
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A two-dimensional model for the cell cycle was recently proposed by Almeida
et al., 2017. It represents the concentration of cyclin B and a complex APC that
promotes exit from mitosis. This model was calibrated from experimental data and
its region of oscillations can also be characterized in terms of the parameters.

A short outline of this chapter is as follows: in Sections 2 and 3 we introduce
the two models with an improved version of Smolen oscillator. Section 4 contains
the coupling schemes for the two models. Section 5 explores the coupled system
dynamics and its period response. Lastly, in Section 6 we give an overall view of our
results and some aspects for their application in synthetic biology.

4.1.1 The Smolen oscillator models the circadian clock
One version of the Smolen oscillator Smolen, Baxter, and Byrne, 1998 was imple-
mented using the gene lacI as a repressor and araC as an activator (see Stricker et al.,
2008, Purcell et al., 2010). In this study we consider the improved Smolen model as
described in 2.1.1.

To establish that (2.2) can be interpreted as a minimal mammalian clock model
we consider that the activator A represents the fundamental protein BMAL1 which
activates the transcription of several clock proteins, including REV-ERBα , PER and
CRY. In turn, there is also an auxiliary loop of REV-ERBα which inhibits BMAL1
making it a good candidate for the repressor R. The proteins CRY and PER form a
complex (PC) which binds to BMAL1 to inhibit the transcription of genes that are
regulated by CLOCK-BMAL1, as well as their own transcription (autoregulation) Ye
et al., 2014. Describing in a simplified way, BMAL1 and PC mutually inhibit each
other’s activities by binding. The positive self-regulation of A can be interpreted as
the result of this double negative loop.

4.1.2 A cell cycle reduced model
The reduced model of the mammalian cell cycle developed by Almeida et al., 2017
is a system of two variables: MPF (mitosis promoting factor) which is a cyclin-Cdk
complex that phosphorylates multiple proteins during mitosis phase, and APC:cdc20,
(subunit of the anaphase-promoting complex) which is a large complex of proteins
that promote exit from mitosis phases through MPF and other kinases degradation.
The network consists of an activator (MPF) and an inhibitor (APC:cdc20), both of
them crucial components of cell division. This two-variable model was calibrated
from experimental data, Pomerening, Kim, and Ferrell, 2005 and shown to reproduce
the observations in a very reasonable way. The two dimensional model is as follows:

d[APC : cdc20]
dt

= Vm[MPF ]− Vk[APC : cdc20]

d[MPF ]
dt

= SGF +Vc
MPFmax− [MPF ]

MPFmax− [MPF ]+ kc

[MPF ]m

[MPF ]m + km
m

− Vw
[MPF ]

[MPF ]+ kw

kn
n

[MPF ]n + kn
n

− γ1[APC : cdc20][MPF ],
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with parameters given in Table 4.1. Very briefly, the constant SGF represents
growth factor, the term in Vc represents the positive feedback loop involving cdc25,
while the term in Vw represents the double negative loop involving wee1.

TABLE 4.1: Parameters of cell cycle model

Vm = 0.0168 min−1 Vk = 0.0107 min−1

SGF = 5.6917 min−1 Vc = 225.71 min−1

Vw = 747.61 min−1 MPFmax = 284.1087
kc = 130.3331 km = 98.5219
kw = 137.9830 kn = 0.1164

γ1 = 0.0162 min−1 m, n = 2

4.2 Interactions between the two oscillators
In mammalians, it is known that the circadian clock affects the cell cycle, and more
recently there has been evidence that the cell cycle may also directly affect the clock
Feillet et al., 2014. Thus, in addition to their specific characteristics as biological
processes, a very important aspect to be studied is their interaction: in some tissues,
the pace with which the cell divides into two daughter cells (mitosis phase) is reg-
ulated by the cell circadian clock, Feillet et al., 2014, Ünsal-Kaçmaz et al., 2005.
More precisely, the regulation of one specific kinase-inhibitor of the cell cycle,Wee1,
by the clock genes, has been observed and explains the circadian control of cell cycle
division Gérard and Goldbeter, 2012, Matsuo et al., 2003.

4.2.1 A scheme for bidirectional coupling
To model the interaction from the circadian clock to the cell cycle we have that:
the activator A in the Smolen model, that stands for the complex CLOCK/BMAL1,
influences the cell cycle through activation of the kinase Wee1 that inhibits MPF,
Gérard and Goldbeter, 2012 , Matsuo et al., 2003.

The influence of the cell cycle on the clock is less clear, but an hypothesis is that
of Feillet et al., 2015: the protein MPF inhibits the nuclear receptor REV-ERBα that
is assumed as the component R (repressor) of the Smolen oscillator. We mention that
there is no specific evidence on the form of clock regulation by the cell cycle, see in
Feillet et al., 2015, so our current study will explore several possibilities for coupling
schemes. A general scheme for bidirectional coupling between the two oscillators is
shown in Fig. 4.1.

4.2.2 Period-response analysis
To better analyse the period response of the coupled system, and to identify whether
either of the oscillators has a dominant contribution, we develop the following crite-
ria.

We characterize the two systems as controller and follower comparing the 3 pe-
riod values, the cell cycle period Tcc, the Smolen oscillator period TSmolen and the
coupled system period Tbi. Then define:
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A R

MPF APC

FIGURE 4.1: Cell cycle and Smolen oscillator coupled network.

Definition 1. Let Tmin = min{Tcc,TSmolen,Tbi},
Tmax = max{Tcc,TSmolen,Tbi} and Tint be the intermediate of the three period values.
Then the controller is defined to be the oscillator with the period closer to that of the
coupled system:

(a) If Tbi = Tmin or Tbi = Tint and

Tbi

Tmax
� min

{ Tbi

Tint
,
Tmin

Tbi

}
then the controller is the oscillator with lower period.

(b) If Tbi = Tmin or Tbi = Tint and

Tbi

Tmax
� max

{ Tbi

Tint
,
Tmin

Tbi

}
then the controller is the oscillator with higher period.

(c) If Tbi = Tmax and
Tint

Tmax
≈ 1 then the controller is the oscillator with higher

period.
(d) If Tbi = Tmin or Tbi = Tint and∣∣∣∣∣Tmin

Tint
− Tmin

Tmax

∣∣∣∣∣< ε or

∣∣∣∣∣Tmin

Tint
− Tint

Tmax

∣∣∣∣∣< ε

for ε = 0.1, then no oscillator is considered as controller.

4.3 Two coupling mechanisms
Following the discussion in Section 3, we investigate two general cases: the oscilla-
tors affect each other through synthesis or through degradation rates.

4.3.1 Coupling through synthesis rate
First, we consider the case where the clock acts on the cyclin complex MPF synthesis
rate, i.e. BMAL1/CLOCK modulates parameter Vc, which expresses the activation
of the kinase cdc25. The coupling is expressed through a saturation function:
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FIGURE 4.2: Activity of variables MPF (cell cycle) and R (clock),
with or without couplig (respectively, solid and dashed lines). Strong
coupling from the side of the clock, initial period TSmolen = 30 min,
Tcc = 126.77 min, period of the coupled system: Tbi = 27.78 min.

Coupling parameters used: v1, v2 = 1.5, δ1 = 1.5, δ2 = 100.

C1 = v1
δ1

δ1 + A
(4.1)

where δ 1 represents the coupling strength and v1 guarantees that the concentra-
tions remain at sufficient levels. The term C1 multiplies Vc.

Conversely, the complex MPF acts on REV-ERBα synthesis rate by inhibition:

C2 = v2
δ2

δ2 + MPF
(4.2)

The term C2 multiplies VR in (2.2).
We study the interaction between the two oscillators as a function of the coupling

strength. First, our results show that, through bidirectional coupling the two oscilla-
tors lock at phase 1:1. Second, varying the coupling parameters, the clock tends to
play the role of controller, see Fig. 4.3, top. Indicatively, for v1, v2 = 1.2, and for
coupling strengths δ1 = 0.5 and δ2 = 100, (corresponding to 0.14 % of the maximum
value of A and 91.65 % of the maximum value of MPF in the uncoupled systems),

there is strong effect from the clock and weaker from the cell cycle :
Tbi

Tcc
= 0.22

while
Tbi

TSmolen
= 0.92.

In this case, we see that varying the coupling strength from the side of clock δ1,
the period of the coupled system stays close to that of the clock. Thus, according to

Definition 4.2.2, the clock is the controller in this case, with
Tbi

TSmolen
≈ 1, Fig. 4.3 top.

We also observe that δ2 (cell cycle → clock) does not greatly affect the qualitative
period response.
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4.3.2 Coupling through degradation
We now investigate the case where the clock acts directly on the degradation rate of
the MPF component of the cell cycle. The coupling term now is expressed through
an increasing function since A promotes degradation rate of MPF:

C1 = v1
A

δ1 + A
(4.3)

This function will multiply the term−γ1APC MPF, in MPF equation of cell cycle
model.

Likewise, MPF now promotes the degradation rate of the REV/ERB-α . The
coupling term will be:

C2 = v2
MPF

δ2 + MPF
(4.4)

The term C2 will multiply the degradation rate −γR R, in R equation of the
Smolen model, see (2.2).This scheme of interactions allows a wider range of pe-
riod responses, as illustrated in Fig. 4.3, bottom. For instance, we now present a case
where both oscillators strongly contribute to the coupling. With coupling parameters
v1, v2 = 1, δ1 = 0.5, δ2 = 100 and uncoupled periods TSmolen = 30 min, Tcc = 126.77

min, the period of the coupled system is Tbi = 63.68 min, with ratios:
Tbi

Tcc
= 0.5 and

TSmolen

Tbi
= 0.43. Two ratios are very close so, according to Definition 4.2.2, none of

the oscillators is a controller.
In this case, the coupled system period varies with both δ1 and δ2 (Fig. 4.3,

bottom). We see that the cell cycle is able to play the role of the controller, as δ2
increases and δ1 remains low. This result can be interpreted as a stronger action from
the cell cycle on the coupling: δ1≤ 0.5, is less than the minimum concentration value
of the uncoupled A and δ2 ≤ 109.1 lower than the maximum uncoupled MPF, so it is
likely that the term C2 (4.4) contributes to significantly decrease the degradation rate
of R. The latter results in the decrease of concentration of A, which finally can only
weakly inhibit the cell cycle through MPF. In a simplified way, weak action from the
side of clock allows the cell cycle to control the coupled system period; indicatively,

our results show
Tbi

Tcc
≈ 1, for δ2 = 100 and 0.2 < δ1 ≤ 0.5, Fig. 4.3 bottom. Con-

versely, the clock is the controller with
Tbi

TSmolen
≥ 0.6, for certain coupling parameter

intervals, Fig. 4.3 bottom.

4.3.3 Analysis of Controller-follower results
To interpret the controller - follower results in both coupling cases, we extract infor-
mation from the bifurcation analysis for the synthesis and degradation parameters of
the two systems. (Bifurcation analysis performed using Matcont.)
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FIGURE 4.3: Coupled system period - response in the two interaction
cases, as the coupling strengths δ1, δ2 vary. Remaining parameters
used: see Table 2.2 for the Smolen model, Table 4.1 for the cell cycle,

v1,v2 =1.

Cell cycle controls For a deeper analysis of this scenario, we perform bifurcation
analysis for the synthesis and degradation parameters of the uncoupled Smolen sys-
tem. In Fig. 4.4 right we indicate the parameter region where the uncoupled Smolen
oscillates. We note that for the initial VA = 12.5 min−1 the system becomes stable
for γR < 0.077 min−1. Hence, as the coupling strength δ2 from the side of cell cycle
increases the term −γRC2 decreases and the system has no longer periodic solutions.
The cell cycle in this case is able to play the role of the controller when the Smolen
system is close to exit the oscillatory region. For instance, if δ2 = 80 (δ1 = 0.5), we

have that −γRC2 < 0.14 and
Tbi

Tcc
= 0.8, see Fig. 4.5 (bottom).

Cell cycle 

Oscillations

Improved Smolen model

Oscillations

FIGURE 4.4: Bifurcation analysis for cell cycle synthesis and degra-
dation parameters (left) and the improved Smolen model (right). The

red stars indicate Generalized Hopf points.

Clock controls As we observe in Fig.4.4 (left) the uncoupled cell cycle becomes
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stable for γ1 < 6.4× 10−3 if Vc = 225.71 min−1. In the case of coupling through
degradation, the term C1 (4.3) becomes very small as δ1 increases, (Fig. 4.5 top), thus
it forces the cell cycle to become stable: for δ1 > 1, (δ2 = 100) we have that−γ1C1 <
5×10−3. Under these coupling parameter conditions, the clock is the controller with

Tbi

TSmolen
≥ 0.7, Fig. 4.3 bottom. This observation can be interpreted as: the clock

is more likely to be the controller of the coupled system period when the cell cycle
starts to loose its instability (i.e. loose its periodic orbit) due to the coupling strength.

In the case of coupling through MPF synthesis rate the cell cycle looses instabil-
ity much faster than in the case of degradation: the initial γ1 value is 0.0162 min−1

and for Vc < 210 min−1 system (4.1) has no longer periodic behavior, see the bifur-
cation analysis in Fig. 4.4 left. Since the initial Vc value is 225.71 min−1 the term
VcC1 decreases immediately as δ1 increases, C1 as in (4.1). Altogether, this analysis
suggests that an oscillator A becomes a controller when its coupling term induces
oscillator B to enter a parameter region where sustained oscillations disappear.
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0.2
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0.9

FIGURE 4.5: The term C1 in coupling through degradation, as a
function of the activator A concentration amplitude (top) v1, v2 = 1,
δ2 = 100. The term C2 in coupling through degradation, as a function

of MPF concentration amplitude (bottom) v1, v2 = 1, δ1 = 0.5.
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4.3.4 Effect of Synthesis rate parameters
We now investigate the effect on the coupled system period of varying each oscillator
period. This is done separately by varying the synthesis rate parameters Vc of MPF
and VA of A.

In Fig. 4.6 (top), we observe that increasing Vc the coupled system period re-
mains constant for both interaction cases. However, in the case of coupling through
degradation, the coupled system period is greater than in case of coupling through
synthesis. An interesting observation is that even when the cell cycle is at a stable
steady state (for Vc < 209 min−1), the coupled system manifests oscillations in both
interaction cases.

Varying now the synthesis rate of A (at bottom of Fig. 4.6), we notice that for
VA > 12 min−1 the uncoupled clock period increases and so does the coupled period.
The latter is strongly controlled by the clock when the coupling is through synthesis
rate. In the case where the coupling is through degradation rate, Tbi takes higher
values reflecting the cell cycle contribution.

It is surprising though, that for VA > 15.5 min−1 the clock (Smolen system) is at
a stable steady state, whereas the coupled system oscillates with period around 50
min. In this way the cell cycle forces the clock (Smolen system) to oscillate. This
observation can be interpreted as the capacity of the cell cycle to induce oscillations
of the coupled system even when the clock is at a steady state.

In the bifurcation diagram for the parameters VA, γR of Fig. 4.4 we observe that
as γR reaches values lower than 0.02 min−1 the interval for periodic solutions of VA
shifts to the right and increases. Indeed, with coupling through degradation rate,
the term −γRC2 decreases as δ2 increases, see Fig. 4.5 bottom, C2 as in (4.4). For
example, for δ1 = 1 and δ2 = 100 ⇒ 0.05 < −γRC2 < 0.7, so R degradation rate
decreases allowing VA to take higher values in the oscillatory region, see Fig. 4.4
right. Thus, although the uncoupled Smolen system is at a stable steady state, the
coupled system oscillates as it is shown in Fig. 4.6 (bottom).
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FIGURE 4.6: Coupled system period as a function of Vc (synthesis
rate of MPF) and VA (synthesis rate of A, right) in the two interaction

cases. Coupling parameters used: v1, v2 = 1, δ1 = 1, δ2 = 100.
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4.4 Conclusion
In this chapter we present a model-based investigation of the cell cycle and circadian
clock coupling, using two reduced models. We consider two bidirectional schemes
for the coupled system and observe that: (i) generally, in the case of coupling through
synthesis rates, the coupled system closely follows the clock period, (ii) in the case
of coupling through degradation rates, the cell cycle may have a higher contribution
on the coupling. In either scheme, it is interesting to note that each of the oscilla-
tors can alone induce oscillations in the coupled system, implying that the coupling
contributes to increase the parameter region where oscillations happen.

Many different coupling schemes remain to be discussed and tested. However,
the current analysis provides some indications on how to couple the two systems so
that the joint periodic behavior is improved and also suggests ways of regulating the
period of the coupled system through one of the oscillators. These are promising
directions to consider in the context of synthetic biology.
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Coupled synthetic genetic oscillators:
comparison and analysis of period
tunability and control

Recent developments in synthetic biology engineering include the improvement of
synthetic circuit design, the precise control of the output and the implementation
of coupled circuits with robust oscillatory behaviour. In our work we consider a
theoretic coupling scheme for the bidirectional interaction of two classic synthetic
oscillators.Using different pairs of classic oscillators (an improved Smolen oscilla-
tor, coupled with either a cell cycle model or a repressilator), we compare the effect
of the same coupling scheme on the period response of the coupled system, in terms
of the properties of each individual oscillator. In our methodology we use compu-
tational tools and bifurcation analysis,to propose tuning of the coupling parameters
and period control of the coupled circuit through bidirectional coupling.

5.1 Introduction
Research in synthetic biology aim to understand the function of complex biologi-
cal processes utilizing minimal circuits that capture the basic characteristics of het-
erogeneous mechanisms. To improve the performance of a synthetic circuit imple-
mentation, external control is required to better support the actions of the biolo-
gists/scientists/researchers. The efficient design of a synthetic circuit combined with
the comprehension of the system dynamics, has the most important contribution to
the improvement and the robustness of the system performance in a living-cell envi-
ronment (Del Vecchio, Dy, and Qian, 2016,Hsiao, Swaminathan, and Murray, 2018).

Biological oscillators and their coupling are part of these complex mechanisms in
living organisms, such as calcium oscillations, NFκB oscillations, circadian rhythms,
cell cycle, and others (Tsai et al., 2008). Among these, the interactions between the
mammalian cell cycle and circadian clock have been a topic of much recent research
but many unknown questions still remain (Gérard and Goldbeter, 2012 , Matsuo et al.,
2003, Feillet et al., 2015). Experimental and theoretical studies seek to understand
possible ways that the oscillators interact and their potential for sustained oscillations
as a coupled system.

Recent studies in synthetic bio-engineering (Tomazou et al., 2018,Perez-Carrasco
et al., 2018) focus on recasting and improvement of synthetic circuit design through
coupling approaches. In our previous work (Firippi and Chaves, 2019), we study
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the bidirectional coupling of two synthetic genetic oscillators, an improved Smolen
oscillator (Smolen, Baxter, and Byrne, 1998), and a reduced model of the mammalian
cell cycle calibrated from experimental data (Almeida et al., 2017). Our results aimed
at giving directions on the implementation dynamical behavior of the coupled circuit
where the coupling scheme was based on the experimental observations of Feillet
et al., 2015.

For the implementation of a circuit that consists of several systems-components
linked to each other, it is crucial to provide controllable design of each individual
system along with predictions on the system response to the coupling scheme and
strength. In this context, we seek to study in more detail the mechanism behind the
coupled period response in a coupled system of two synthetic oscillators. In particu-
lar, we wish to explore the relationship between the properties of each oscillator (pe-
riod length, peak amplitude, form of the oscillations) and those of the coupled system
(control-follower classification, period control, etc.). More specifically, choosing a
coupling scheme where the oscillators regulate each other’s degradation rates, as in
our previous work, we now apply this scheme to a different pair of classic synthetic
oscillators: the same improved configuration of the Smolen oscillator (as in Firippi
and Chaves, 2019) and a specific form of the repressilator, introduced by Elowitz and
Leibler, 2000. We study the coupled system response to the control on the degrada-
tion rate of the repressilator by the Smolen system. We provide coupling parameters
range for controller-follower analysis of the coupled period response.

Furthermore, our results show the capacity of the studied coupling scheme to
induce a joint period which is larger than both the initial uncoupled periods.

5.2 Three classic synthetic genetic oscillators
We investigate the coupling of the improved version of the Smolen model (2.2) and
a classic genetic oscillator, a form of repressilator, Elowitz and Leibler, 2000. One
of the goals in this chapter is to provide a comparison of the coupling behavior of
different pairs of oscillators, to explore how the properties of the coupled system are
related to the properties of the individual systems. To do this, it is useful to first
recall some of the characteristics of each of the three oscillators to be used in this
chapter: the improvement Smolen oscillator, a reduced model of the cell cycle, and
the repressilator.

The improved Smolen oscillator and the cell cycle model are those studied in
Chapter 4.

The repressilator is a well known synthetic circuit that consists of three genes in
a negative feedback loop generating oscillations. It was first implemented in E. coli
by Elowitz and Leibler, 2000. In this work we use a specific form of the repressilator
where one gene repressses an other gene of the network, as illustrated in the following
scheme:
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FIGURE 5.1: A form of repressilator.

The model is described by the following system of ODEs:

dA1

dt
= V1

k3
3

k3
3 +A3

3
− γ1A1

dA2

dt
= V2

A3
1

k3
1 +A3

1
− γ2A2

dA3

dt
= V3

A3
2

k3
2 +A3

2
− γ3A3

(5.1)

We denote Trepress the period of the repressilator. The following Table contains
the parameters used for the repressilator model:

TABLE 5.1: Parameters of repressilator

Case I & II V1 = 0.2 min−1 V2 = 3 min−1 V3 = 3 min−1

Case I & II θ1 = 3 θ2 = 2 θ3 = 2
Case I γ1 = 0.08 min−1 γ2 = 0.1 min−1 γ3 = 0.1 min−1 Trepress = 40.7
Case II γ1 = 0.03 min−1 γ2 = 0.1 min−1 γ3 = 0.1 min−1 Trepress = 54.54 min

5.2.1 Parameter sensitivity and birfucation analysis
Fig. 5.2 shows the form of the oscillations and peak amplitudes for all variables of
each oscillator. The cell cycle is close to a relaxation oscillator while the repressilator
has quite symmetric sinusoidal-like oscillations. The form of the Smolen oscillatory
solutions is in between. All three oscillators have one variable which exhibits a much
larger peak amplitude.

Fig. 5.3 shows the period sensitivity for variations in the degradation rate of the
regulated variable, within a region admitting oscillations. The regulated variables
are, respectively, MPF , A1 and R, for the cell cycle, the repressilator, and the Smolen
oscillators. The corresponding degradation rates will be the connection points of the
coupling scheme (see Figs. 4.1 and 5.5) It follows that, although exhibiting different
period ranges, each of the three oscillators admits roughly a 25% change in its period
in response to a two-fold increase in the degradation rate of the regulated variable.

From the numerical analysis of the repressilator, we conclude that the system
period is significantly more sensitive to variations of the degradation parameters (γi),
than to variations of the synthesis rates (Vi). As observed in Fig. 5.3, the repressilator
has the capacity for larger period: as the degradation rate increases 6-fold, the period
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FIGURE 5.2: Solutions of the three classic oscillators along time: Cell
cycle (top left), repressilator (top right), Smolen oscillator (bottom).
The corresponding periods: Tcc = 126.77 min, Trepress = 40.7 min,
TSmolen = 30 min. The parameters used for the numerical simulations

are those of Tables 4.1, 5.1/Case I, 2.2.

decreases to about half. In particular, the period can be tuned by the degradation
parameters γi,i = 1,2,3.

To characterize the parameter regions for oscillations, we perform bifurcation
analysis for the synthesis and degradation parameters of the regulated variable, as
illustrated in Fig. 5.4. The two-parameter bifurcation diagrams show that the repres-
silator admits a much larger region of oscillatory behavior. For the repressilator, the
synthesis parameter V1 has a weaker effect on establishing osccillatory behavior.
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FIGURE 5.3: Period of the Cell cycle model, the repressilator and the
Smolen oscillator, Tcc,Trepress,TSmolen, as a function of the involved in

the corresponding coupling schemes degradation parameters.

In Chapter 4, we study the period-response of the cell cycle - Smolen coupled
system, using the information from the two-parameter bifurcation analysis. Our con-
clusion is that the controller of the coupled system period is more likely to be the
system that has more robust individual oscillatory behaviour than the other, in the
sense that its parameters are further away from the boundary between the oscillatory
and stability regions.

As we observe in Fig. 5.4, the Smolen system parameters (red cross) are inside
the region for sustained oscillations defined by parameters (VR,γR), whereas the cell
cycle model parameters (red cross)are very close to the stability boundary on an
extreme value of the VC parameter. In analogy with the study of Chapter 4 and for a
more meaningful comparison of coupled systems behaviors, two different values of
γ1 are chosen for the repressilator: one for robust oscillations (Case 1) and the other
close to the stability boundary (Case 2). Two separate sets of numerical experiments
will be performed for the repressilator-Smolen coupling.
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FIGURE 5.4: Bifurcation analysis for cell cycle synthesis and degra-
dation involved parameters (top left), the repressilator model (top
right) and the Smolen oscillator (bottom). The red stars indicate Gen-

eralized Hopf points.

5.2.2 One bidirectional coupling scheme
Comparison of the two coupling schemes for the cell cycle-Smolen oscillator (Chap-
ter 4) indicate that the coupling through degradation rates has a richer dynamical
behavior than the coupling through synthesis rates. In addition, as remarked in Sec-
tion 5.2.1, the period of the repressilator is more sensitive to degradation parameters.
Thus, from now on, we focus more on the coupling through the degradation rates of
the regulated variables (respectively, MPF , A1 and R, for the cell cycle, the repressi-
lator, and the Smolen oscillators.

To choose the regulated variables, we consider that A1 and MPF play analogous
roles, since both are repressed by the previous component and activate the next com-
ponent of their respective models. Therefore, in the coupling scheme of Fig. 5.5, A1
is regulated by A and regulates R.
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FIGURE 5.5: Smolen oscillator and repressilator coupled network.

To express the coupling strength we use the parameters δi, i = 1,2 along with
vi that express the maximum regulation rate of the given component. The coupling
terms are expressed by saturation functions as follows:

C1 = v1
A

δ1 + A
(5.2)

where activator A increases the degradation rate of the repressilator component A1,
thus the term C1 multiplies the degradation rate γ1 in system 5.1.Likewise,

C2 = v2
A1

δ2 + A1
(5.3)

represents the inhibition of the repressor R by component A1, where C2 multiplies
the degradation rate γR, in 2.2.

We note that the parameter values for the Smolen model are those of Table 2.2.

5.3 Period-response for the coupled Smolen-repressilator
system

In this section, we describe two separate experiments performed for the coupling of
the improved Smolen oscillator and repressilators: first with the repressilator param-
eter values for sustained oscillations (Case I) and second with the repressilator to be
very close to enter the region of stability (Case II), as it is the case for the cell cycle
model.

For the controller-follower analysis we recall the criteria (1) used in Section 4.2.2.

5.3.1 Controller-follower analysis under strong coupling
The repressilator parameters used for the numerical simulations can be found in Table
5.1, while those for the improved Smolen are given in Table 2.2.
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Case I. The value of the degradation rates is chosen so that the parameter set of
each system is well within the region for sustained oscillations (see Table 5.1 and
Fig. 5.4).

We investigate the coupled period response to bidirectional coupling for the pa-
rameters range δ1 and δ2, using strong coupling constants v1 = 10 and v2 = 1. To
establish the range of the coupling parameters δ1, δ2 > 0 we consider the maximal
concentration rates of the Smolen system activator A and the repressilator activator
A1, max{A} and max{A1} respectively. The region in which the coupled system ad-
mits sustained oscillations is defined approximately by the following intervals : δ1
∈ [12%,128.6%]max{A}, δ2 ∈ [5.34%,64.1%]max{A1}. In these intervals, for all
parameter sets tested, the two systems lock in a 1:1 period ratio. Moreover, both
systems have the capacity to play the role of controller in certain regions of δ1, δ2, as
shown in Fig. 5.6.

FIGURE 5.6: Coupling parameter regions for controller-follower re-
sults, v1 = 10, v2 = 1.

An interesting observation here is that, for mutually strong coupling effects (i.e.,
both δ1 and δ2 large), corresponding to lower degradation rates for each system, the
joint period of the coupled system increases (upper right region in Fig. 5.6), i.e. the
coupled period appears to be larger than the two individual periods. In this rose-
colored region, the controller-follower analysis is not conclusive, and a new type of
coupled dynamical behavior emerges, to be further explored below in Section 5.3.2.

Case II. Now, for the repressilator system, the degradation rate γ1 is chosen so
as the system dynamics is very close to the boundary between the oscillatory and
stability regions (see Fig. 4.4). In this configuration, it may be expected that the
coupling link (through the term γ1C1(t)) will “force” the repressilator towards the
stability region, an analogous situation to that obtained in Chapter 4, for the Smolen
- cell cycle coupling.



5.3. Period-response for the coupled Smolen-repressilator system 69

Regarding the controller-follower analysis, for the coupling parameter range δ1,
δ2 as depicted in Fig. 5.7, we observe that the Smolen system plays the role of
controller for a wider region than in Case I.

This capacity of the Smolen system to be the controller in a wider region can be
interpreted as the result of the choice of low γ1: by pushing the repressilator out of
its oscillatory region, it becomes easier for the Smolen system to set its own period
to the oscillations.

This response can be compared to the results of Section 4.3.3, where the set of
parameters of the cell cycle was also very close to the boundary between oscillatory
behavior and stability, thus allowing the Smolen system to be the controller in a wide
region of coupling parameters.
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FIGURE 5.7: Coupling parameter regions: Smolen system controls in
the green region and repressilator in the blue, v1 = 10, v2 = 1.

The controller-follower analysis illustrates the crucial role that plays each system
individual dynamics in the response to the coupling. More specifically, our results
indicate that when one of the two systems is closer to the stability boundary than the
other, then it allows the latter to take over and be the controller of the coupled joint
period.

Furthermore, comparing the results of Cases I and II, another intriguing obser-
vation is that the larger joint period occurs when both systems as individuals admit
sustained oscillations, to be explored in the next section.

5.3.2 Strong coupling of two robust oscillators
From our controller-follower analysis of Case I, Fig. 5.6, we extract the qualitative
information that for a wide coupling parameter range the coupled system obtains
a joint period larger than both the individual periods. Indicatively, in Fig. 5.8 we
observe the two coupled systems locked in a larger period value than those of each
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individual system. This observation suggests the idea that a new system is generated
from the coupling of two systems with robust oscillatory behaviour.
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FIGURE 5.8: Left: Activity of the coupled system towards time.
Right: the phase portrait of the coupled system. Initial repressila-
tor period Tr = 40.70 min (γ1 = 0.08, Case I), initial Smolen period,
TSmolen = 30 min. Coupling parameters δ1 = 10, δ2 = 0.8, v1 = 10,

v2 = 1. Coupled joint period: 48 min.
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FIGURE 5.9: Activity of the coupled Smolen system before and after
coupling (dashed), as a comparison of the amplitude of the limit cycle.
Original periods: TSmolen = 30 min, Trepress = 47.7 min. Coupling
parameters δ1 = 10, δ2 = 0.9, v1 = 10, v2 = 1.5. Coupled period:

41.7 min.

We now investigate the sensitivity of the coupled system period (for the 1:1
locked period case) to variations of the regulated degradation parameters. Varia-
tions of the degradation rates result in change -increase or decrease- of the individual



5.3. Period-response for the coupled Smolen-repressilator system 71

period for each system. However, as we observe in Fig. 5.3, the Smolen oscillator
period appears to be relatively robust to variations of the degradation parameter γR.
Whereas this is not the case for variations of the degradation rate γ1 for the repressi-
lator that appears to admit a wider period range.

0.1 0.15 0.2 0.25
20

25

30

35

40

45

50

55

60

65

0.02 0.04 0.06 0.08 0.1 0.12
20

25

30

35

40

45

50

55

60

65

FIGURE 5.10: Coupled joint period and the individual period of each
system as a function of γ1 (degradation rate of A1, right) and γR (degra-
dation rate of R,left). Coupling parameters used: v1 = 10, v2 = 1,
δ1 = 10, δ2 = 0.8. Trepress and TSmolen refer to the individual periods

that remain fixed in each experiment.

The coupled systems lock in a 1:1 period ratio, and their common period is robust
with respect to variations of the two regulated degradation parameters, γ1 and γR.
More specifically, the coupled period Tbi varies from 40 min to 49.2 min for the
range of γ1 degradation rate.

Similarly, Tbi takes values from 43 min to 48.3 min in the interval for oscillations
of γR. This result indicates that the coupled system of two robust oscillators (Case I)
for large coupling parameters, evolves as a new system with larger period, relatively
robust to variations of individual systems parameters. This larger period is due in
part to the strong coupling that implies lower degradation rates (higher δi imply Ci(t)
lower than 1, which multiply γ1 and γR).

Comparison of the time solutions in Figs. 5.2 and 5.8(right) shows that, in the
coupled system, the Smolen variables A, R becomes closer to a relaxation oscillator
with variable A exhibiting a wide low platform followed by a very narrow peak. Note
also that the variable R has a very slow degradation (due to the term γRC2(t) with low
C2(t)), reflected in a longer descent after the maximal peak. The fact that R takes
longer to decrease is responsible for the wider low platform of A and, consequently,
for a longer period of the variables A, R. The repressilator variables still have a
sinusoidal form, but their period locks in a 1:1 ratio to that of A, R

These results point to a new application of the coupling of synthetic circuit, which
is to obtain a large period oscillator from two low period oscillators. Motivated by
this outcome, we next consider the Smolen oscillator with a larger individual period,
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and discuss its effect on the period of the coupled system as a function of the coupling
parameter δ2.

5.3.3 Coupled dynamics in the case of a controller with large pe-
riod

Following the discussion in the previous section, we now investigate the coupling
using an alternative parameter set for the Smolen oscillator, (in ??, we explain in
more detail our choice of parameters), implying in particular a larger period TSmolen≈
92 min.

To test the effect of this new controller configuration in the period of the coupled
system, we vary δ2 from very small to very large values, corresponding respectively
to a small to large decrease in the R degradation rate. As illustrated in Fig. 5.11, the
coupled system appears to admit a joint period significantly larger than the periods
of the two component systems. As before, two experiments were performed, (Case I
and II): first, for initial repressilator period Trepress = 40.7 min (the red circles), the
coupled joint period increases to approximately 144 min for δ2 > 0.65. Second, for
Trepress = 54.5 min (the blue circles) we notice a joint period that overpasses the 100
min for δ2 > 0.1 and goes up to 139 min for δ2 = 0.7.

These results confirm the observations of Section 5.3.1 showing that, as the cou-
pling parameter increases and the degradation term becomes smaller, the joint period
of the coupled system may increase by more than 50% relative to the periods of the
uncoupled systems. In this case, the slow degradation of the repressor R implies a
slow activation of the variable A, which also slows down inhibition of A1, thereby
entraining an increase in the period of the coupled system.
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FIGURE 5.11: Coupled period as a function of the coupling parameter
δ2. Other parameters (for strong coupling): δ1 = 10, v1 = 1.5, v2 = 1.
Initial uncoupled periods: TRepress = 54.5 (blue), 40.7 (red), TSmolen =

92 min.
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Fig. 5.12 illustrates the activity of the coupled system with larger (joint) period.
Remarkably, the form of the activity curves of the Smolen system components, re-
veals a response (to the coupling) similar to that of a time delay: narrow peak and
plateau; the amplitude is not greatly affected, Fig. 5.9 and Fig. 5.13.

However, here the overall dynamics has already been tuned due to the increase
of Smolen individual period (TSmolen = 92 min). In the first comparison (Fig.5.9),
where the Smolen system is still fast, the effect of "slowing down" the rhytmicity of
the activator is more apparent.

These observations might indicate that the coupling through the repressilator (a
symmetric oscillator) introduces to the Smolen system, (which is characterized by a
much higher concentration of the activator), a sort of time delay.
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FIGURE 5.12: Time solution of the coupled system with Tcoupled =
109.3 min. Individual periods: TRepress = 54.5, TSmolen = 92 min, cou-

pling parameters: v1 = 5, v2 = 1, δ1 = 0.3, δ2 = 15
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FIGURE 5.13: Time solution of the uncoupled (solid line) and cou-
pled (dashed) Smolen system in an amplitude comparison. Periods:
TSmolen = 92 min and Tcoupled = 109.3 min. Coupling parameters:

v1 = 5, v2 = 1, δ1 = 0.3, δ2 = 15
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FIGURE 5.14: The range of the repressilator period and the corre-
sponding coupling parameter value v1 for period 61.10 min. The
Smolen system period is fixed at 30 min. Other parameters: δ1 = 1,

δ2 = 0.1, v2 = 1.

5.3.4 Weak coupling dynamics
Finally, we briefly analyze the case of weak coupling parameters, setting v1 = 1 (as
opposed to v1 = 10 in Case I and II) but keeping v2 = 1. The use of a much smaller
coupling constant, in particular v1 = 1, results in a coupled system composed of
two oscillators with different frequencies. Although the coupling is bidirectional,
the fact that v1 is small implies that the Smolen system is only weakly affected by
the repressilator, and thus the Smolen system period in the coupled system is hardly
changed relative to its individual period. In contrast, the repressilator is under strong
regulation of the Smolen system and its period can be tuned by the coupling constant
v1.

Fig. 5.14 essentially reflects the fact that γ1v1 is a single parameter in the coupled
system equations. While γ1 changes the period of the individual repressilator, v1 can
be used to maintain the same period for the coupled system.



5.4. Conclusion 75

TABLE 5.2: Comparison of dynamical proper-
ties of oscillators and different coupled pairs.

Model Dynamics Coupling Schemes with Smolen oscillator

Smolen
Oscillator

much
higher
concentra-
tion of the
activator

Diffusion coupling. Generation of new system dy-
namics: steady states, unstable limit cycles.

Cell Cycle
Reduced
Model

relaxation
oscillator

Coupling through synthesis rates.
Controller: the more robust oscillator of the two sys-
tems, i.e. Smolen oscillator.

Coupling through degradation rates.
1. Controller-follower for both systems,
2. Smolen oscillator (more robust) controls for a
wider coupling parameter range.

Repressilator
symmetric
oscillations

Coupling through degradation rates.
Case I, repressilator as robust oscillator:
1. controller-follower for both systems,
2. the coupled system admits a new period for a wide
coupling parameter range.

Case II, repressilator close to stability:
1.controller-follower for both systems,
2. Smolen oscillator, that is more robust compared to
repressilator in this case, controls for a wider coupling
parameter range.

5.4 Conclusion
Table 5.2 presents the oscillators studied throughout this thesis, characterized by their
individual dynamics, as well as a synopsis of the coupling results for the different
pairs of oscillators tested. Namely, in Chapter 3 we investigate the coupling of N
piecewise Smolen oscillators by diffusion, and the main result is the generation of
new dynamics for the network. In Chapters 4 and 5, we study the coupling of pairs
of synthetic circuits, the Smolen oscillator with a reduced cell cycle model (Chapter
4) and the repressilator (Chapter 5). In the referred table, we include a synopsis of
the results and some important observations: the coupling schemes studied (coupling
through synthesis and degradation), the capacity of the systems to control the coupled
period as a relation to the individual dynamics, and the new periodic behavior that is
generated by the coupling (new joint period).

In this Chapter, we investigate the effects of the same coupling scheme on the
dynamical behavior of two different pairs of synthetic oscillators. This schemes ex-
ploits the potential of the degradation rates to tune the period of an oscillator. Apply-
ing bidirectional coupling for different parameter sets and strengths of the coupling
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constants, we present mainly two new intriguing observations along with a result that
agrees with the study in Chapter 4.

Strong bidirectional coupling results in a coupled system where both systems
are locked in a 1:1 period ratio. Defining as the controller the system that succeeds
in forcing its own individual period to the coupled system, we conclude that the
Smolen system is more likely to act as a controller when the repressilator is close to
the stability region. This observation closely agrees with the results of the cell cycle
and Smolen oscillator coupling scheme in our previous study.

However, when both systems admit robust oscillations (that is, the parameter sets
are well away from the boundary with the stability region), it is surprising to see
that the coupled system period obtains a value (possibly much) larger than both the
individual periods, and for a wide range of coupling parameter.

This can be an interesting direction for the development and implementation of
coupling strategies for synthetic oscillators or even the coupling between a synthetic
and a “natural” oscillator. The possibility of regulating the period of a given oscillator
over a large range of values is very appealing for chronotherapy approaches (Lévi,
2001,Gery and Koeffler, 2010, Bernard et al., 2010). For disease treatment it is
important for the biologist and the biomedical engineer to have several possibilities
for regulating the system response. Here, the regulation or control is performed by
the means of another synthetic oscillator.

Another interesting observation concerns the weak coupling configuration. In this
case, the coupled oscillators do not lock into a 1:1 ratio but have different frequencies:
the period of the repressilator is about twice the period of the Smolen oscillator.
The latter is only weakly affected by the coupling and continues to oscillate with
approximately its individual period.

The numerical results presented in this Chapter suggest new ways to tune or
control the period of an oscillator by coupling it with a second oscillator with suitable
dynamical properties. These ideas can be useful in the context of synthetic biology
and chronotherapy strategies.
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Chapter 6

Discussion and Perspectives

6.1 General discussion and conclusion
In this thesis we studied coupling schemes of biological oscillators representing the
circadian clock and the cell cycle in the context of synthetic biology. We developed
strategies to improve the synthetic circuit design and methods to couple two oscilla-
tors for joint coupled period provided by one of the systems-contributors. We also
studied analytically the outcome of different network topologies in the dynamics of
N two-gene piecewise oscillators. Finally, we simulated coupling scenaria for pairs
of three synthetic models, to investigate the dynamics and period response of the
systems as individuals and of the coupled circuit.

Improvement of synthetic circuit design: increase of the potential for
oscillations
The first step was the study of a two-gene synthetic oscillator (Smolen oscillator),
for which we propose a system modification that serves as enhancement of its os-
cillatory behavior. We propose the elimination of the negative loop that acts on the
repressor. The model becomes a two-variable negative feedback loop, with a positive
auto-regulatory loop on the activator. This configuration appears often in biological
systems, as reviewed in Tsai et al., 2008, where it is suggested that a positive loop
in a negative feedback loop can induce the robustness of oscillations, and more im-
portantly the tunability of the period without affecting the overall amplitude. This
implies that the dynamics of the proposed system, that is negative feedback loop
with one positive auto-regulation, is likely to fulfill conditions for robust oscillatory
behavior and controllable period. Indeed, period tunability without affecting the am-
plitude manifests itself in the coupling of the proposed two-gene oscillator -variant of
Smolen model- with the repressilator. Furthermore, a topologically equivalent model
-considerably more detailed though- was also introduced by Tigges et al., 2009 to
model the mammalian circadian clock.

Bifurcation analysis for the variant model, shows that oscillations emerge through
a Hopf bifurcation. The latter was also observed by Smolen, Baxter, and Byrne,
1999 and so we see the conservation of system qualitative dynamical characteristics
regardless the removal of the negative self-loop. In fact, with this alternative con-
figuration the periodic solution is effectively preserved and more importantly, the
corresponding parameter space significantly increases. Our objective is to propose
an improved version of a model that has already shown oscillatory capacity for in
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vivo implementation (Stricker et al., 2008), so as to induce its potential for robust
performance.

In a second step, we provide mathematical analysis of the proposed variant sys-
tem introducing a piecewise affine approximation of the model. In this framework,
we analytically prove the existence of a unique periodic solution under appropriate
parameter conditions, from which we identify those that may further promote the
capability of sustained oscillations for the continuous system.

Ultimately, from the analysis of the Smolen oscillator utilizing both analytical
and computational tools, we exploit qualitative information for the model parameters
for periodic solution and we make variations to the parameters accordingly.

Coupling of N identical piecewise systems: maintenance of oscilla-
tions and generation of new steady states
The analysis of the two-gene oscillator in the context of piecewise affine formalism
is followed by the study of a network of N identical two-gene oscillators, inspired by
the network of biological oscillators in circadian rhythms. The main characteristics
of the circadian oscillators that is crucial to preserve for the normal functionality of
the biological clock and the mechanisms it regulates, is the sustained rhythmicity and
synchronization.

We investigate the effect of three network topologies, "all-to-all", "one-to-all" and
"random", on the coupled system dynamics under diffusive coupling. Our analysis of
the two more "strictly" defined schemes of interconnection (all-to-all and one-to-all),
show that new stable steady states occur through the coupling. The type of systems
that we study (PWA) combined with a diffusive linear connection, allow to explicitly
compute the number of the new stable steady states for a given number of systems in
the network, in both interconnections (all-to-all and one-to-all).

Furthermore, we also provide the exact lower bound for the coupling parameter
for the two topologies, for which the appearance of the steady states is prevented. For
the one-to-all topology, our computations point that the lower bound is independent
from the number of the coupled oscillators and reasonable in terms of biology. On
the contrary, in the case of a global connection (all-to-all) this lower bound becomes
small as the number of the oscillators increases. An interpretation of the latter is that
with all to all connection of the oscillators, it is possible to lose oscillatory behavior
for the coupled system, due to the generation of a large number of steady states.
This observation implies that a more locally oriented connection (one-to-all) is an
advantage for robust oscillations and synchronization in a network of oscillators.

In the case of random links between the oscillators, numerical simulations show
results that might be intuitively expected: the number of the new steady states lies
between the two others. Indeed, the all-to-all and one-to-all topologies set, respec-
tively, upper and lower limits on the number of stable steady states, on the order of
10

4
5 N−2 for the former.
The new steady states form different patterns of protein expression throughout the

network. Convergence of the network solutions to one of these steady states implies
that distinct groups of oscillators converge to distinct protein expression levels (see
Fig. 3.6) In our numerical results, we observe clusters of oscillators that synchronize
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to the same values. Some results concerning the synchronization of clusters of oscil-
lators in a network, for coupled piecewise systems, are also found in the analysis of
Nicks, Chambon, and Coombes, 2018. Also, the phenomenon of synchronization in
"clusters" is analyzed in other theoretical studies of coupled systems, as in the work
of Sorrentino et al., 2016 (see also the review of Golubitsky and Stewart, 2016).

The topologies and coupling schemes tested serve as investigations of a coupled
network of oscillators that may be biologically interpreted as individual neural cells
in the SCN or a central pacemaker linked to peripheral oscillators. However, the
study of the dynamics of a coupled network comprising N oscillators belongs to a
more general context.

On the whole, our results can be later exploited as directions and predictions for
synthetic biology applications.

Coupling of two topologically equivalent circuits for synthetic biol-
ogy: period response to different coupling schemes
The circadian rhythms, the organization of which motivated us for the study of N
identical oscillators, is also related to an other biological oscillator, the cell cycle.
In this thesis, we investigated this relationship in model-based contexts for synthetic
biology.

In our study, the Smolen oscillator represents the circadian clock. For the cell
cycle we use a two-gene model, developed for synthetic biology applications and
calibrated from experimental data. Although we studied the coupling of two topo-
logically equivalent circuits -negative feedback loop of two genes with additional
positive loop on the activator-, our results indicate that only the Smolen oscillator (as
circadian clock) is capable of entrainement of the cell cycle model, in both coupling
schemes tested. This result may be related to systems’ individual dynamics: the
Smolen oscillator admits sustained and robust oscillations in terms of parameters,
whereas the cell cycle system is very close to the stability boundary. Other studies
that develop sufficient conditions for effective synchronization and entrainement as
a result of forced to damped oscillations (in a network of N identical oscillators) can
be found in the computational studies of Gonze et al., 2005, Bernard et al., 2007.

We introduced a “controller-follower” classification which, roughly, indicates
that the controller system is the one whose natural (uncoupled) period is closer to
the period of the coupled system. Our exploration towards the control of the cou-
pled system period indicates that a bidirectional connection through the degradation
rates of the two systems yields a wider range for the coupled period response, than
the coupling through synthesis rates. In the former case, both systems play the role
of the controller for appropriate coupling parameter conditions. As a first approach
to comprehend this behavior, bifurcation analysis of the two systems show that the
more robust oscillator forces the other to exit the region of susteained oscillations,
thus "enslaving" it. This observation may be useful not only as a prediction for the
way of implementing a coupled synthetic circuit, but also as a control tool.

To conclude, our simulations show that both systems can play th role of con-
troller -at least for the coupling scheme where the systems are connected through
degradation rates. This general result agrees with experimental observations for mu-
tual influence between the two mechanisms, circadian clock and cell cycle.
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Combining two synthetic oscillators: an improved (larger) joint pe-
riod
Recent designs in bio-engineering include coupling of synthetic elements or circuits
so as the synthetic elements acquire combined or more complex dynamics, in order to
generate novel genetic modules (see also the discussion in Introduction §1.6). In this
context, we studied the coupling of two synthetic circuits with oscillatory capacity,
the Smolen oscillator and the repressilator.

We performed simulations testing the coupling through degradation rates for a
robust and non-robust repressilator in terms of choice of parameters. Our results
complement the observations of the previous coupling scenario (circadian clock/cell
cycle), pointing towards the fact that the more robust oscillator controls the coupled
period. More importantly, for a repressilator close to stability region, the coupled
system obtains a new -larger from both individuals- period. Additionally, for weak
bidirectional coupling, the Smolen system appears to regulate the repressilator period
to double of its individual period; this observation highlights the capacity of the
Smolen system to tune the period of the repressilator.

The dynamics of the coupled system along time, for the cases where the coupled
period increases, reveals that the Smolen system, behaves closer to a relaxation os-
cillator, with the activator showing a very narrow peak with fast decrease towards a
low expression level. This observation can be interpreted as the effect of time delay.
Our results also suggest that the period of the proposed system can be moderated
without significantly affecting the maximal amplitude. This delay effect may be in-
troduced through the coupling with the repressilator system. For comparison, in the
study of Stricker et al., 2008, time delay was established to the implemented circuit
of Smolen oscillator to effectively regulate the system period without compromising
the amplitude of oscillations. On top of that, the robustness of oscillations was also
enhanced by the time delay. These are directions for exploration in future work.

To conclude, the observations reflected by the numerical results of the coupling
of the two synthetic circuits provide suggestions for further study and analysis on
how to combine two oscillators and use their respective characteristics for period
control through the coupling with an other system.

6.2 Perspectives

Two-gene synthetic oscillators implementation
From a synthetic biology perspective, we studied a circuit and suggested directions to
increase the prospects that its implementation shows sustained oscillatory behavior.
In fact, the first steps towards implementing this circuit in living cellular environ-
ment are taking place in the laboratory of Frank Delaunay. Interestingly, preliminary
experiments appear to support oscillations (unpublished data). Furthermore, we fit-
ted the proposed model to experimental observations on the concentration levels of
the activator, as a part of preliminary work (see Appendix A). In addition, we also
tested different parameter sets in order to obtain different forms of the orbits, such as,
narrower versus wider peaks, or difference between maximal amplitudes of both vari-
ables. On the whole, our results concerning the improvement of system design with
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robust oscillatory behavior as a desired functionality, constitute testable predictions.
As new experimental data becomes available, more complete parameter estimations
of the model can be performed, to provide more accurate information and predictions
for future work in synthetic biology.

Dynamical behavior and synchronization in a network of N oscilla-
tors
Exploring the coupling of more than two oscillators in a network with certain topol-
ogy, reveals observations that can be useful for further analysis alongside with syn-
thetic biology applications. To be more specific, in the study of the coupled network
of N two-gene (piecewise) oscillators, our simulations show that initiating the sys-
tems with a certain difference between the concentrations of the components, namely
higher levels for the repressors and lower for the activators, the coupled network
yields oscillations despite the existence of multiple (locally stable) steady states.
From a more theoretical perspective, a control strategy so as the system is initiated
within the bassin of attraction for the periodic solution would be of interest for ana-
lytical study. From synthetic biology perspective, a possible way to control/lead the
systems towards the periodic orbit, would be by promotion of the repressor’s activity
through external cue.

Induction of certain circadian genes can be attained by serum shock (Balsalo-
bre, Damiola, and Schibler, 1998) or other drug treatments, for instance foskolin and
dexamethasone. In the work of (Yagita and Okamura, 2000), foskolin has shown to
effectively promote the rhythmic activity of Per1 and other circadian genes. Also, in
the study of Balsalobre et al., 2000, there is experimental evidence that dexametha-
sone acts on Per1 of peripheral clocks. However, this drug does not have the same
effect on the SCN neurons (Balsalobre et al., 2000). The clock gene Per1 combined
with Cry proteins, inhibits the Bmal1 transcriptional activator of the circadian clock,
therefore its role in the generation of circadian oscillations could be represented by
the repressor R in the Smolen model. Thus, focusing on the abstract representation
of the central clock synchronizer (SCN) and the peripheral clocks that we studied in
this thesis, a suggestion with the potential to be tested for in vivo implementation,
would be a drug treatment on the repressor. In this way, the repressor could initially
reach higher concentration levels, and therefore increase the chances for synchro-
nized oscillations of the coupled system.

From a theoretical perspective, our analysis can be further continued to search
for and prove appropriate conditions for synchronization. Numerical simulations for
large number of systems-contributors, reveal synchronization in phase and in period
for the coupled oscillators under diffusive coupling, for three type of connections.

Dynamical behavior and synchronization for coupled continuous sys-
tems
This thesis was mainly concerned with the analysis of oscillators in the piecewise
affine framework. An immediate question is whether simmilar results also apply
for the continuous case. As an extension of this thesis work it will be interesting
to explore diffusive coupling for the continuous two-gene system 2.2. Preliminary
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-numerical- results of this coupling scheme are briefly presented in Appendix B,
highlighting new dynamics, namely co-existence of limit cycles and synchronization.
These results are similar to other studies of synchronization in networks of biological
oscillators, that we already mentioned (Sorrentino et al., 2016, Nicks, Chambon, and
Coombes, 2018). Furthermore, experimental observations as well, reveal collective
"cooperative" behavior in neural cells. It will be interesting to further analyze the
coupled system, proving sufficient conditions for synchronization and characteriza-
tion of its dynamics.

Period control for the coupled system
Another topic that could be further developed is the comparison between the dynami-
cal behavior of different pairs of coupled oscillators, as started in Chapter 5. It would
be interesting to do a more systematic characterization of the links between the nat-
ural properties of individual oscillators and the corresponding induced properties in
a coupled pair. For instance, to better understand and extend the characterization of
properties such as the “controller-follower” definition. In the light of our numerical
experiments, these properties may provide new means for controlling and tuning the
period of synthetic oscillators, as well as give intuition on the coupling properties of
different physical oscillators.
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Preliminary studies: comparison with
experimental observations
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Diffusive coupling of two-gene
oscillators: the continuous case

This preliminary study is a complement to Chapter 3, where we studied analytically
the diffusive coupling of N piecewise two-gene oscillators. Here, we explore numer-
ically the same way of coupling for two continuous systems.

B.1 Bidirectional coupling of two oscillators
Considering two identical systems (2.2) interconnected by diffusive coupling through
the repressor R, leads to the coupled network illustrated in Fig. B.1.

The bifurcation diagram for the coupling parameter κB is depicted in Fig. B.2.
As we can observe, for κB > 0.1 the system undergoes a pitchfork bifurcation: in ad-
dition to the initial stable periodic solution of system (2.2), two new unstable steady
states are generated (in blue). Our results indicate the generation of different new
steady states due to the diffusive coupling. First, for low κB, we observe synchro-
nization of the coupled system in a stable limit cycle, as a continuation of the original
periodic orbit. Second, there exists a point κB ≈ 0.08 where new unstable states ap-
pear, implying two new periodic orbits; third, for κB > 0.55, the two additional steady
states become stable and coexist with a stable limit cycle. An example of the cou-
pled system trajectories for κB = 0.4 is shown in Fig. B.3, and for κB = 1 in Fig.
B.4. These are interesting observations in terms of the system dynamics analysis,
and useful for the design of synthetic systems.
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A1 R1 A2 R2

κB(R1−R2)

κB(R2−R1)

FIGURE B.1: Coupled oscillators of the form (2.2).
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FIGURE B.2: Bifurcation diagram for the coupling parameter κB. LC:
Limit cycle, BP: Branch point, H: Hopf bifurcation.
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FIGURE B.3: Projection of the phase portrait of the coupled system
for κB = 0.4: different trajectories converge to two new stable limit

cycles and the original one, depending on the initial conditions.
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FIGURE B.4: Phase portrait of the coupled system for κB = 1: trajec-
tories converge to two stable steady states and one stable limit cycle

depending on the initial conditions.

B.2 Network of N coupled two-gene oscillators
We now consider a network associated to that of Chapter 3, but for the continuous
proposed model, as we present above for N = 2. We perform numerical tests to
explore the dynamics of the coupled system with respect to the network topology
and the strength of the interconnection. To obtain intuition, we performed numeri-
cal simulations to explore the effect in the coupled system response of two factors
separately: i)for a range of the coupling parameter and ii)for a range of number of
systems-contributors.
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In general, our results suggest that for sufficiently large coupling constant (in
terms of biology) and relatively narrow connections, the oscillators in the network
synchronize in the same periodic orbit. Likewise for global connection (all to all)
under weak coupling (κ = 0.01), the network yield synchronized oscillations, in-
dicatively see Fig. B.6. In star topology, as the number of oscillators becomes larger,
the central element (R1 interconnected with all others) seems to desynchronize from
the other oscillators for relatively strong coupling (κ = 0.15) Fig. B.5, from our
computations they do synchronize in period though.

The above observations also related to the initial conditions. Depending on the
region in which the coupled system is initiated, it is possible to have diverse behav-
iors: synchronized oscillations under suitable conditions for the coupling constant
and the network topology, or loss of oscillations after a period of time, or immediate
stabilization, are some of the behaviors observed in the numerical tests.

FIGURE B.5: Network of N = 100 oscillators with star connection
and coupling constant κ = 0.15, towards the periodic solution.

In general, the numerical results suggest that, for stronger connection either in
terms of coupling constant or network topology, the oscillations can be rapidly elim-
inated. In other words, for strong exchanges between the systems or for a big network
of robust oscillators, it is likely for the oscillations to be compromised.

However, we have to take into account possible numerical errors introduced by
the coupling, thus one cannot conclude for the dynamical properties of such a net-
work relying solely on results provided by numerical simulations.

In a more general context, the results that we quote here, may constitute interest-
ing observations pointing out directions or give intuition for analysis.

Note: Numerical simulations in this section were performed using the parameter
set of Table 2.2.
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FIGURE B.6: Network of N = 100 oscillators with all to all connec-
tion and coupling constant κ = 0.01, towards the periodic solution

(zoom to a short time frame).
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