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Résumé en français

Les naissances prématurées sont définies par l’Organisation mondiale de la santé comme
survenant avant 37 semaines d’âge gestationnel [1]. Chaque année dans le monde, environ 15
millions de bébés naissent prématurément, soit plus d’un bébé sur dix. En France, cela représente
un total de 60 000 naissances soit 8% chaque année et en raison de l’augmentation de l’âge
moyen des femmes enceintes, de l’évolution des modes de vie ou du recours à la procréation
médicalement assistée, ce nombre est en augmentation [2].

Un enfant né prématurément n’a pas fini de se développer, ses organes ne sont pas encorematures,
fonctionnels, ou autonomes. L’immaturité des fonctions vitales telles que les fonctions digestives,
cardio-respiratoires, immunologiques ou neurologiques entraînent une prise en charge particulière
du nourrisson en Unités de Soins Intensifs Néonatals (USIN). Dans celles-ci le personnel assure
une surveillance médicale élevée pour garantir le développement optimal du nourrisson.

Au début de sa vie extra-utérine, un grand prématuré
est accueilli en couveuse, un espace qui tente de repro-
duire celui dont il bénéficiait dans le ventre de sa mère
et où la température et le taux d’humidité y sont régulés
(Figure 1). En fonction de ses besoins, il peut obtenir
de l’aide i) respiratoire par intubation, ii) alimentaire
ou médicamenteuse par perfusion intraveineuse cen-
trale et/ou iii) alimentaire par sonde naso-gastrique. De
plus, ses constantes vitales, c’est-à-dire sa respiration,
son rythme cardiaque et son taux d’oxygène, sont con-
stamment surveillées grâce à des électrodes placées
sur son torse et à une sonde placée sur son pied. Ces
dispositifs, illustrés sur la Figure 2, sont progressive-
ment retirés au fur et à mesure que le nouveau-né se
développe. Figure 1: Couveuse au CHU de Rennes.

À la lumière de ces informations, il semble que de nouvelles solutions pour assurer une surveil-
lance neuro-comportementale continue pourraient améliorer la prise en charge des nouveau-nés.
C’est dans ce contexte que le projet européen Digi-NewB a vu le jour. Son objectif était de pro-
poser un nouveau système de surveillance pour les soins des prématurés en s’appuyant à la
fois sur des signaux traditionnels (signaux électrophysiologiques, signes cliniques) et à la fois
sur de nouveaux capteurs non-invasifs encore jamais déployés en unités de soins intensifs tels
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Figure 2: Illustration d’équipements médicaux nécessaires à la survie d’un nourrisson en USIN.

que des caméras et des microphones. Grâce à ces dispositifs, le projet Digi-NewB avait deux
cibles cliniques : la détection précoce de l’infection nosocomiale et l’évaluation de la maturation
cardio-respiratoire et neuro-comportementale des prématurés pendant leur hospitalisation. Ce
projet a été réalisé grâce à la collaboration de sept partenaires européens publics et privés situés
en Finlande, en France, en Irlande et au Portugal. Il a permis de recueillir des données sur plus de
600 nouveau-nés prématurés dans six centres hospitaliers de la région Grand Ouest en France.

Le travail décrit dans ce manuscrit se concentre sur l’un des objectifs de Digi-NewB : la détection
et l’analyse de vocalisations de nourrissons prématurés. En effet, pleurer implique l’activation du
système nerveux central et requiert des efforts coordonnés entre plusieurs régions du cerveau.
En pleurant ou en ne pleurant pas, un nouveau-né alerte et informe sur son état physique et
psychologique. C’est à partir de ce principe que de nombreuses études ont vu le jour sur le
sujet. D’abord concentrés sur l’analyse des pleurs induits par la douleur [3–9], les scientifiques et
cliniciens se sont ensuite tournés vers l’analyse des pleurs spontanés [10–12], notamment en
tentant d’expliquer les différences observées entre les pleurs de prématurés et ceux d’enfants nés
à terme [13–15]. Grâce au dispositif audio du projet Digi-NewB, c’est la première fois qu’autant
de données ont été enregistrées. Aussi, l’objectif de ce travail de thèse était de développer une
chaîne de traitement automatique pour la détection et la caractérisation des vocalisations des
nouveau-nés prématurés dans un contexte hospitalier.
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Comme nous l’avons mentionné précédemment, l’environnement des USIN est très chargé en
matériel de soins. Les différentes machines utiles à la survie des nourrissons peuvent être très
bruyantes et parfois émettre de nombreuses alarmes lorsqu’elles nécessitent une intervention
de la part des infirmières. La difficulté de ce travail était donc l’automatisation du processus
d’analyse des signaux de pleurs enregistrés dans cet environnement sonore parfois très bruité.
Pour exemple, les différentes sources sonores apparaissant dans les bandes-son sont présentées
en Figure 3.

Figure 3: Sources sonores susceptibles de produire du son dans les chambres des nouveau-nés.

Pour répondre à cette problématique, nous avons choisi de développer une chaîne de traitement
composée de trois étapes. D’abord à l’aide d’une segmentation des enregistrements, on extrait les
portions d’audio qui contiennent les évènements sonores, puis grâce à unmodèle d’apprentissage
profond, on détecte parmi les segments isolés ceux qui contiennent des pleurs. Enfin, on estime
la fréquence fondamentale (F0) de ces derniers à l’aide d’une méthode de détection de contours
dans le spectrogramme. Ce processus est illustré sur la Figure 4.

Figure 4: Chaîne de traitement automatique proposée pour l’analyse automatique des pleurs.

SEGMENTATION - La méthode de segmentation développée s’est inspirée de celle proposée par
Orlandi et al. qui repose sur un calcul de l’énergie à court terme suivi d’un seuillage par la
méthode d’Otsu [16]. Après avoir éliminé les fichiers audio de 30 minutes ne contenant pas de
son, deux étapes sont ajoutées à la méthode pour l’améliorer. La première étape est un double
filtre fréquentiel, la seconde est une re-segmentation.
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L’évaluation de la méthode de segmentation en comparaison à des annotations manuelles, réal-
isées sur trois fichiers, a donné de bons résultats. En effet, nous avons montré qu’elle permet une
bonne extraction des évènements contenant des pleurs tout en réduisant le nombre de segments
audio extraits. Pour aller plus loin, nous avons également proposé d’utiliser les informations
de mouvements des nouveau-nés calculés par une autre équipe du LTSI au cours du projet
Digi-NewB [17, 18]. En nous limitant aux sons apparaissant dans les intervalles détectés comme
du mouvement, nous avons montré qu’il était possible de réduire considérablement la quantité
de données à traiter tout en conservant des périodes riches en vocalisations. Ces dernières sont
également très présentes dans les périodes de présence d’adultes. Cependant, nous avons choisi
de les ignorer par souci de quantité et de complexité des données (superposition des voix et
de pleurs, beaucoup de bruits liés aux soins, etc). L’évaluation de cette stratégie sur 303 heures
d’enregistrements audio réalisés auprès de 22 nourrissons a montré que les nourrissons sont
très peu en mouvement (12% du temps) et qu’en ne retenant que les sons issus de ces seules
périodes cela permettait de supprimer jusqu’à 87% des segments initialement extraits.

CLASSIfiCATION - La classification, après l’étape de segmentation, est nécessaire pour identifier
les pleurs parmi les segments sonores extraits. Nous avons choisi d’utiliser une représentation
temps-fréquence des pleurs (spectrogrammes) en entrée d’un algorithme de réseau de neurones
convolutifs Resnet. La classification est ainsi réalisée en quatre étapes : I) calcul du spectro-
gramme par transformée de Fourier à l’aide de fenêtres de Hamming successives de 0.04 ms
et d’un recouvrement de 95%, II) découpage des spectrogrammes en images de même durée
avec un recouvrement de 50%, III) utilisation du réseau de neurones convolutifs pour la prédiction
de la présence de pleurs dans les images, et IV) reconstitution des prédictions pour les sons en
retenant la prédiction majoritaire sur l’ensemble des images. Grâce à un apprentissage réalisé
par transfert, les poids initiaux de modèle ResNet ont été pré-entraînés avec ImageNet puis
optimisés à notre tâche, c.-à-d., la classification pleurs vs non-pleurs, en réalisant un nouvel
apprentissage. Pour adapter le modèle à nos données, les paramètres de durée des images
d’entrées, de profondeur du réseau de neurones ainsi que le taux d’apprentissage initial ont été
optimisés. Après une stratégie en deux étapes permettant d’abord de fixer le taux d’apprentissage,
une évaluation de plusieurs combinaisons à l’aide d’une validation croisée a permis d’identifier le
modèle avec la meilleure précision. Celui-ci correspond à des images d’entrée d’une durée de
0.25 s, une architecture ResNet34 et un taux d’apprentissage initial de 10-4. Après avoir été à
nouveau entraîné sur 30 bébés (17 042 sons), le modèle a obtenu de bonnes performances de
classification sur un ensemble de trois nouveaux bébés (2 765 sons). Les résultats montrent que
86% des pleurs initialement annotés ont été détectés (sensibilité) et que 93% des sons classés
comme pleurs sont effectivement des pleurs (précision).
CARACTÉRISATION DU F0 - Pour l’estimation du suivi de la fréquence fondamentale F0, nous avons
proposé une nouvelle méthode de suivi de la fréquence fondamentale des pleurs de nourrissons
dans le contexte d’un suivi en temps réel dans les unités de soins intensifs néonatales. Si les
méthodes de la littérature fixent généralement la bande de fréquence dans laquelle effectuer le
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suivi du F0 [11, 16, 19, 20], nous avons proposé une étape initiale pour identifier automatiquement
cette bande. Une fois calculé, le suivi de la fréquence fondamentale est effectué en utilisant une
détection de contour dans le spectrogramme.

Pour valider notre méthode, nous avons comparé nos résultats d’estimation F0 à ceux calculés
par le logiciel BioVoice que nous avons identifié comme le programme de référence pour l’analyse
de pleurs de nouveau-nés. En effet, la méthode développée par Manfredi et al. a obtenu de
bonnes performances sur des formes mélodiques synthétiques de cris de nouveau-nés : [20, 21].
La comparaison qualitative des suivis de la fréquence fondamentale obtenus sur 806 pleurs a
montré des estimations correctes dans 87% des cas avec BioVoice et 97% des cas avec notre
méthode.

Finalement, la chaîne automatique de traitement a été déployée sur une base de données de 57
bébés nés prématurément et à terme et correspondant à 232 jours d’enregistrement. Grâce aux
traitements successifs des trois méthodes proposées, nous avons été capables de détecter et de
caractériser automatiquement 117 947 pleurs. Lors d’une comparaison avec la littérature, nous
avons montré que nos résultats sont cohérents avec deux études qui observent la fréquence fon-
damentale I) des prématurés en fonction de leur âge gestationnel ou de leur poids de naissance
[11] et II) des nourrissons prématurés et des nourrissons nés terme à unmême âge post-menstruel
[14]. Ensuite, grâce aux enregistrements longitudinaux réalisés auprès des bébés tout au long
de leur hospitalisation, nous avons présenté les évolutions de la durée et de la fréquence fonda-
mentale des pleurs en fonctions des âges post-menstruels et postnatals. Enfin, pour la première
fois l’évolution de la fréquence fondamentale pour une population de nourrissons prématurés
d’évolution normale est décrite et tracée. Ces résultats sont une avancéemajeure pour l’évaluation
de la maturation des nouveau-nés prématurés pendant leur hospitalisation.

En conclusion, si ce travail de thèse apporte les outils pour l’évaluation de la maturation et des
tendances d’évolution des paramètres des pleurs en fonction de l’âge dans un contexte de soin
courant en unités de soins intensifs, il n’en reste pas moins que beaucoup d’améliorations sont à
apporter. Les perspectives s’inscrivent naturellement dans la dynamique déjà étudiée et auront
comme volonté de traiter le plus de données pour confirmer, renforcer les tendances observées
et couvrir la plus large période d’hospitalisation possible dans l’objectif d’apprécier les déviations
éventuelles liées à des infections ou des pathologies. Ces travaux seront alors le socle des
développements futurs afin de progresser vers une solution entièrement automatique pour une
nouvelle génération de systèmes non-invasifs de surveillance en temps réel des nouveau-nés
prématurés par l’intermédiaire de l’analyse audio.
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Atteindre le sommet leur prit encore deux heures.
Deux heures durant lesquelles Ellana batailla ferme pour avancer.

Batailla contre la montagne et contre ses chaînes.
Deux heures de combat épuisant où elle prit des risques incroyables.

Deux heures passées sans échanger le moindre mot avec Jilano.
Deux heures de bonheur.

Après une ultime traction, elle se retrouva à plat ventre dans la neige.
Il n’y avait plus rien au-dessus d’elle que l’infini du ciel.

Elle se leva lentement.
Le pic qu’ils venaient de gravir se dressait isolé, comme unique prétendant à l’absolu et,
debout à son sommet, Ellana eut soudain l’impression qu’elle pouvait tutoyer le soleil.

Elle ouvrit la bouche pour une exclamation ravie...
La referma.

Jilano se tenait près d’elle et dans ses yeux bleu pâle brillait une lumière nouvelle.
Intense et feutrée, forte et douce, rayonnante et triste. Humaine et tellement plus que cela.

Il s’approcha d’Ellana, la contempla comme s’il la découvrait pour la première fois,
puis, doucement, il lui ôta ses chaînes.

Les jeta au loin.
- Tu es libre, annonça-t-il.

...

Le Pacte des MarchOmbres, Tome 2 : Ellana, l’envol
Pierre BOTTERO
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Introduction

Preterm births are defined by the World Health Organization as babies born alive before 37 weeks
of pregnancy are completed [1]. Each year in the world, approximately 15 million babies are born
prematurely, that is to say more than one baby out of ten. In France, it is 165 births per day with a
total of 60,000 births which represent 8% of the births each year. Moreover, due to the increase in
the average age of pregnant women, the evolution of lifestyles or the use of medically assisted
reproduction, this number is rising [2].

Prematurity is the leading cause of newborn death worldwide and the second leading cause of
child death after pneumonia. Most premature infants who survive face a lifetime of disability [3].
All newborns are vulnerable, but premature babies are even more fragile because early birth has
prevented complete organ development. Thus, these babies have immature functions such as
digestive, cardiorespiratory, immunological or neurological and require special care to stay alive.
Therefore, these babies are cared for in Neonatal Intensive Care Units (NICU), where high medical
supervision is provided by the medical staff to ensure their optimal development.

Although each infant’s development is unique, the journey of a very premature baby begins in
an incubator where she/he is usually given various aids such as respiratory intubation, central
intravenous infusion or feeding tubes. These invasive devices are removed as the newborn
develops and becomes more independent. Unfortunately, infants born very early have a very
immature immune system and are therefore more exposed to nosocomial infections from these
invasive procedures [4, 5].

However, scientific and clinical advances in perinatology and neonatology have improved the
chances of survival of preterm infants. In order to detect markers of possible developmental
deficits, clinical and ethical demands have emerged regarding the early assessment of these
newborns. Hence, the evaluation of the development of the extreme (i.e., born before 32 weeks)
and very preterm (i.e., born before 34 weeks) newborns by the monitoring their unique behavioral
communications was proven to be relevant to adapt the care and the caregiving environment [6, 7].
In addition, the continuous monitoring of sleep stages, vocal, motor, or facial activities was shown
to be relevant for the detection of various neurological disorders [8–10]. Thus, nowadays, nurse
observations are performed in the presence of the newborn as part of the Newborn Individualized
Developmental Care and Assessment Program (NIDCAP) [11]. However, several limitations hinder
the generalization of these procedures since they are very time-consuming and only a small
proportion of newborns can benefit from it. Furthermore, although it is performed by specially
trained nurses, these observations remain subjective.
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In light of this information, it seems obvious that new solutions for monitoring neurobehavioral
development could improve the care of newborns. In regard to the already very intrusive care
machines, it is important to consider non-invasive monitoring methods.

Among the non-invasive techniques, the use of cameras associated with microphones seems to
be one of the most relevant to provide a behavioral characterization close to the observations
made by nurses. Indeed, that way, vocal, motion or facial activities can be captured. In addition,
their set-up requires no interaction and no contact with the newborn. The analysis of acoustic
parameters development of infant cries might offer a non-invasive tool since these characteristics
reflect the development and possibly the integrity of the central nervous system. Indeed, crying is
a functional expression of basic biological needs, and emotional or psychological conditions and
requires a coordinated effort of several brain regions, mainly brainstem and limbic system and
is linked to the breath and the lung mechanisms. Thus, acoustic analysis of newborn infant cry
appeared to be a good indicator to assess neurophysiological parameters. Moreover, being easy
to perform, cheap and completely non-invasive, it can be easily applied in many circumstances.

This thesis was conducted in the context of the European Project Digi-NewB started in March
2016 which proposed a new approach of monitoring based on the acquisition of three sources
(electrophysiological, clinical and audio-video data) to help clinicians in their diagnosis. During
four years, seven teams worked on a decision support system proposed to gather composite
indices collected from clinical data and multi-signal analysis, including heart rate, respiration rate,
video, and sound signals. The two main aspects of neonatal health targeted were sepsis and
neuro-behavioral maturation.

From an audio perspective, this is the first time that such a device has been implemented and so
much data has been recorded. This is why the objective of this work was to develop an automatic
processing chain for the detection and characterization of premature newborns spontaneous
cries recorded in routine care environments. The resulting manuscript is divided in six chapters.

CHAPTER 1 - We review the basic concepts and terms related to prematurity used throughout
the manuscript. Next, we present the anatomy and physiological phenomena involved in the
production of crying as well as the definitions of the acoustic parameters of crying. Finally, we
review the literature of different clinical and methodological studies on the topic.

CHAPTER 2 - We present the neonatal intensive care units where the recordings are performed
as well as the usual cares provided to preterm newborns. Then, we describe in more details the
Digi-NewB project, in which all subsequent studies presented in the thesis are framed. Finally, we
describe the complex noise environment we have to face and prove the interest of our strategy.

CHAPTER 3 - We propose a segmentation step used to separate the useful sound segments
containing audio information from the background noise. Originally based on the study proposed
by [12], it was then improved to better process our data. In addition, we propose to use video
signal processing to extract only sounds occurring in infant motion periods.
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CHAPTER 4 - We propose a recurrent neural network model, which uses sound segment spectro-
grams to detect whether it contains crying. This method was developed with a population of 43
neonates and 21 340 sounds that were annotated by SoundAnnoT software that was designed
for this.

CHAPTER 5 - We propose a new method for fundamental frequency characterization based on
contouring techniques on spectrogram after an automatic frequency band of analysis detection
step.

CHAPTER 6 - We deploy the complete processing chain combining the three methods described
in Chapter 3, 4 and 5 and we present the clinical results computed for 57 newborns. First, we
propose to compare our results with existing studies, then, we provide new approaches of data
visualizations especially with longitudinal studies that have never been done before.

Finally, in Conclusion, we give some final remarks about the outcome of the research presented
in this dissertation. Furthermore, we present a summary of our findings regarding the three
proposed methods, as well as the strength and limitations of our study. At last, we introduce new
insights regarding possible future directions to continue this line of research.
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About infant crying

Chapter

1

1.1 Introduction

The purpose of this chapter is to present the background and interest in the analysis of infant
crying. After an overview of prematurity in terms of definitions and care in real-life conditions,
we give a brief description of the infant’s mechanical and neural activities responsible for the
production of crying. Next, we define key terms and features used in this work. Then, through a
state of the art, we review the clinical analyses of crying in term and preterm newborns, as well
as the methods commonly used in acoustic signal processing. Finally, we present our strategy.

1.2 Prematurity

This section provides several definitions that will be used throughout this document. Therefore it
is important to introduce these terms first.

Pregnancy is the term used to describe the period in which a fetus develops inside a woman’s
uterus. From a medical perspective, it is defined as the period measured from the first day of the
last normal menstrual period until delivery, it is measured in weeks of amenorrhea. When lasting
about 40 weeks, or 9 months, infants are considered full-term (FT). However, pregnancy can be
shortened for various reasons. In the case of birth occurring before 37 weeks of gestation, it is
defined by the World Health Organization as preterm birth (PT) [1].

TERMINOLOGY - In this work, we use the standard terminology proposed by the American Academy
of Pediatric [2], which we define in the following and in Figure 1.1.

Figure 1.1: Age terminology during the perinatal period according to the American Academy of
Pediatrics definitions [2].
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• Gestational Age (GA): the duration (or term) of pregnancy measured from the first day
of the last normal menstrual period until the birth date (in weeks of amenorrhea). It is a
valuable definition since it proposes a fixed age to refer to and to identify premature babies
independently from their current age at the assessment.

• Post-Natal Age (PNA): the duration elapsed since birth (in days, weeks, or months).

• Post-Menstrual Age (PMA): the duration between the first day of the last normal men-
strual period and the date of assessment (usually in weeks + days). It can be seen as the
summation of the GA and PNA.

• Corrected age: the duration elapsed between the expected date of birth and the date
of assessment (in days, weeks, or months). In fact, this term only exists in the case of
premature birth, otherwise corrected age and postnatal age are identical.

PREMATURITY BASED ON GA - According to severity, prematurity is subdivided into three categories.
They are defined according to the pregnancy duration (in weeks) and represent respectively 5, 10,
and 85% of the total premature births [3]:

• Extremely Preterm (EP), newborns born before 28 weeks;

• Very Preterm (VP), newborns born between 28 and 32 weeks;

• Moderate to Late Preterm (MLP) newborns born between 32 and 37 weeks;

CAUSES - A birth can be premature for many causes that can be classified into two main triggers:

• provider-initiated, defined as the induction of labor or elective cesarean due to maternal or
fetal indications or other non-medical reasons,

• spontaneous, with spontaneous onset of labor or premature rupture of membranes. The
main factors, in that case, are multiple pregnancies, infections, chronic maternal conditions
(diabetes, hypertension, anemia, asthma, thyroid disease), nutrition, lifestyle, maternal
psychological state, genetics, or even age at pregnancy.

However, in up to half of all cases the cause remains unidentified [4].

RISK OF COMPLICATIONS - Premature birth interrupts the newborn’s in utero development resulting
mainly in the immaturity of four essential organs: the brain and brainstem, the lungs, the digestive
tract, and the ductus arteriosus [3].

Thus, preterm infants are exposed to severe cardiorespiratory events (associating apnea with
bradycardia and oxygen desaturation) and to an excessive risk of unexpected sudden infant
death. The more severe the prematurity, the greater the risk of health problems or sequelae. For
instance, the chances of survival of an extremely preterm newborn vary greatly (i.e., between 0
and 90%), whereas an infant born after 29 weeks GA has a much better chance of survival (i.e.,
95%) [5].
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In addition, prematurity sequelae can also have several long-term effects on both physical and
neurological developments such as visual, hearing, or learning impairments, cardiovascular or
respiratory disorders, and, global developmental delay.

CARES - However, most of these vulnerabilities are resolved with a good maturation (i.e., develop-
ment during hospitalization). This is why, since the 1970s, infants are cared for in specialized units
called Neonatal Intensive Care Units (NICU). There, they can benefit from thermal, respiratory,
and nutritional assistance. Tracking physiological conditions in the perinatal period is of utmost
importance to provide the appropriate care and clinical setting to each newborn. Therefore,
during their complete hospitalization, infants benefit from careful monitoring of their vital and
physiological constants [6].

In addition, in some cases, human observations are performed in the presence of the newborn
by trained nurses in the Newborn Individualized Developmental Care and Assessment Program
(NIDCAP) [7]. This program aims to improve infant development through behavioral monitoring.
Further details on NICU care and configurations are provided in Chapter 2.

1.3 About crying

1.3.1 Anatomy and physiology

Contrary to most mammals, newborns remain dependent on adults for a while to eat, move,
care, ... This is why babies produce distress signals in order to warn their caregivers. Crying is
their primary mode of communication. Shortly after birth, this innate survival mechanism should
not be interpreted as a demand for emotional attention but rather for someone to meet their
basic needs (absence of caregivers, weariness, colic, fear, fatigue, hunger) [8, 9]. The following
paragraphs address the cryingmechanical and neurological productionwhich are topics explained
in more detail in [10] and [11].

Mechanical production

Breathing is the first step of crying. During the expiration, air comes out of the lungs and travels
through the trachea into the larynx located in the throat (see the anatomy of cry in Figure 1.2). This
organ, composed of the vocal folds and the glottis, is involved in the swallowing, breathing, and
voice production functions. Vocal folds are muscular organs composed of two membranes that
can be completely relaxed (as for free-breathing), totally blocked, or in an intermediate position
(see illustration in Figure 1.3). In this case, the increase in air velocity in the narrow passage
between the folds results in a drop in air pressure causing them to open and close rapidly. This
vibration is responsible for phonation and has a fundamental frequency defined as F0.
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Figure 1.2: Infant crying mechanisms. Body and brain anatomy and nervous system parts respon-
sible for crying.
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Figure 1.3: Open and close vocal chords positions.

Then the sound is shaped by the different areas it crosses. Thus, after havingmet the aerodigestive
crossroads between the airways and the digestive tract at the level of the pharynx, it reaches the
sub-glottal or vocal tract area. The latter is divided into the oral and nasal tracts and it is their
size and contour that carve the sound to produce resonant frequencies or formants.

Neurological production

Neonatal crying is triggered by internal or external stimulation and is produced by the coordination
of several brain regions (see Figure 1.2 for part of the brain’s anatomy).

While cry initiation has been associated with the limbic system, hypothalamus, and sympathetic
arousal, the crying configuration is controlled by the midbrain.

Indeed, the lower brainstem controls the muscles involved in sound production through the
network of neurons called the reticular activating system. It is the tension’s variation of these
various muscles (i.e., larynx, pharynx, chest) that is responsible for the fundamental frequency
and crying modes. The brainstem also controls the size and shape of the supraglottal system
(upper vocal tract) which carves formant frequencies.

Finally, a cry can occur thanks to the nervous system responsible for processing sensation
and controlling movement, action, and response to the environment (see the illustration in Fig-
ure 1.2). In particular, crying is controlled by the autonomic nervous system which manages the
coordination between the vagal innervation and the central nervous system.

Furthermore, modulation of the overall contour of F0 as well as the amplitude or intensity of the
cry reflects autonomic mechanisms. Thus, atypical F0 patterns, rapid changes, or high variabil-
ity suggest neural control system instability or cranial vagal nerve complex lesions (carrying
information for the parasympathetic system that help to calm the body).

Amore exhaustive review of the crying characteristics with the associated biological mechanisms
is presented in [11].
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1.3.2 Prosodic feature definitions

This section is intended for the definition of terms and crying prosodic features with which the
reader is likely to be unfamiliar and for common terms that have a specific definition in the context
of this manuscript.

• Cry unit: sound resulting from the passage of air through the vocal folds during a single
inspiratory/expiratory cycle.

• Cry: total sound response, which may contain many cry units.

• Fundamental frequency (F0): a physical characteristic of all periodic waveforms. It is measured
in hertz (Hz) and refers to the number of times a complex waveform repeats itself in one
second.

• Pitch: the hearing subjective tone perception of highness or lowness that depends on the
number of vibrations per second produced by the vocal cords. Its unit is the Mel.

• Cry type or mode: identifiable acoustic output an infant can produce, based on the vibration of
the vocal cords. There are three expiratory and one inspiratory modes which are illustrated in
Figure 1.4 and described below.

(a) Phonation. (b) Hyperphonation.

(c) Dysphonation. (d) Inspiratory phonation.

Figure 1.4: The four crying modes illustrated using spectrograms.
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- Phonation or basic cry: resulting from periodic vocal fold vibration occurring with a F0 between
250–750 Hz and produced thanks to neural control of muscular tension and airflow.

- Hyperphonation or high-pitched cry: caused by a sudden upward shift with F0 greater than
1000 Hz due to a neural constriction of the vocal tract.

- Dysphonation or turbulent cry: caused by noisy or inharmonic vibration of the vocal folds due
to unstable respiratory control. Such cry unit is not periodic.

- Inspiratory phonation: any sound produced during inspiration.

Phonation and hyperphonation cries have additional frequency characteristics related to their
periodic acoustic content, we can mention the essential ones:

• Harmonics: multiples of the fundamental frequency. For example, if the fundamental frequency
is 100 Hz, then the first harmonic would be 200 Hz, the second 300 Hz, etc.

• Formant frequencies: the resonance frequencies of the vocal tract. Formant frequencies are
usually independent of the fundamental frequency and its harmonics. Only the first two formants
are typically measured.

• Melody: identifiable variation of the fundamental frequency along with a cry unit.

Some of the mentioned prosodic features are depicted in Figure 1.5 along a basic cry unit. The
signal is represented in time, frequency and time-frequency domains. The usual basic cry formant
frequencies are:

• First formant (F1) between 1000 and 1500 Hz;
• Second formant (F2) between 2500 and 3500 Hz.

Figure 1.5: Crying features along a cry unit.
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1.4 State of the art

1.4.1 Clinical investigations of crying

Research on infant crying started with auditory analysis in the 1960s thanks to the Finnish
Wasz–Hockert research group when it was shown, by spectrographic analysis, that four distinct
types of cries could be distinguished as birth, pain, hunger, and, pleasure [12]. Then, crying
analysis was studied in newborns and small infants with good or poor health conditions, but
also in premature newborns (see [13] for a historical review). From there, two other research
groups largely contributed to this topic: Lester’s team in Providence (USA) and Manfredi’s team
in Firenze (Italy). Led by these three groups, several studies have later shown that cry signals
hold valuable information in the infant health status evaluation according to the clinical context,
both, for children and full-term or premature newborns (see [6] for a review).

Full-term newborns and infants

Infant cries were studied for the differentiation between normal and pathological cries. For
instance, the similarity between the cry of a malnourished infant and the cry of a brain-damaged
one suggested that malnutrition might affect the regulatory function of the central nervous
system [14]. Moreover, equivalent results suggested that heavy marijuana use also affects the
neurophysiological integrity of the infant [15].

In [16] and [17], cries of newborns with prenatal and perinatal complications (such as low birth
weight, respiratory symptoms, jaundice, apnea, ...) were detected and acoustical properties
presented differences when compared to that of healthy newborns. Furthermore, a comparison
was performed between normal and high-risk subjects to find possible early signs of autism [18].
Differences were seen in the fundamental frequency value, the number and the length of episodes,
and in their melody.

Then, cries were evaluated either to discriminate, with facial expressions, behavioral reactions
between invasive and non-invasive procedures [19] or to measure pain after a heel-prick stimulus.
In the latter case, the conclusion was that crying can be used to measure pain in newborn infants
only when the cause of crying is known [20].

Finally, it is worthwhile to notice that most of the previously mentioned studies were based on
the analysis of pain-induced cries, which were easier to analyze because no processing to detect
them was needed. Therefore, the investigation of infants’ spontaneous cries was only recently
studied in several contexts, such as profound hearing loss and/or perinatal asphyxia [21–23],
early detection of autistic signs [24], monitoring [25] or comprehension of vocal development
and early communication [26].
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Premature newborns

Characterization of crying episodes in preterm infants was also largely explored either solely
or in comparison with full-term newborns where neurophysiological maturity differences were
observed as well as a later impact on speech development.

Once again, early studies focused on the analysis of pain-induced cries. Although differences
were shown between the cries of premature and full-term infants at the time of birth, it was also
shown that as preterm newborns grew, their cries became more like those of full-term infants [27].
The same kind of conclusion was reached in a pain evaluation study, based on facial expressions
and crying, when comparing newborns to 2- and 4-month-old infants [28].

As for full-term, analysis of spontaneous cries of preterm infants has been less investigated and
is recent. The comparison between spontaneous cries of six premature children (three pairs of
twins) recorded at different ages showed essential changes in the cries from the 8th–9th week
of life up to the 23rd–24th week of life, and were interpreted as an intentional articulatory activity
[29].

In a study, Orlandi et al. presented a correlation between central blood oxygenation and the
distress occurring when crying [24]. For a similar decrease in oxygenation levels in both groups,
results showed that, after the crying episode, full-term had a faster and more stable recovery
time than preterm newborns.

Eventually, effects of gestational age, body size at the recording, and intrauterine growth retarda-
tion (IUGR) were investigated in [30]. Cries were recorded before feeding in both healthy preterm
and full-term newborns at term-equivalent ages and showed that shorter gestational age was
significantly associated with higher F0 regardless of the smaller body size at recording or IUGR.

1.4.2 Methods for acoustic signal processing

Crying analysis involves three steps which are data acquisition, signal processing, and feature
extraction (Figure 1.6). In this section, we review the literature on these steps to give the methodo-
logical background and thus propose our strategy.

Figure 1.6: Framework of the acoustical processing chain used in cry analysis.
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Crying data acquisition and databases

Collecting infant cries is a challenging task since it is difficult to create and implement an audio
acquisition protocol as well as to find infants to record since it requires parental consent. In
addition, crying analysis requires data annotation to assess the automatic methods. Therefore,
in this paragraph, we review several procedures and databases cited in the literature.

So far, most of the cry analysis studies have been conducted on real audio signals recorded in a
hospital or at home with microphones placed near infants. While recordings used to be performed
occasionally (i.e., to capture crying events one by one), they are now used for long time to record
all sound events, this is called monitoring.

Then, these recordings are usually split into small cry/sound signals (a few seconds) that are
then annotated by the doctors, nurses, or parents. However, this task is very time-consuming and
remains annotator-dependent due to the perceptual aspect and the lack of crying type definitions.
Hence, every author constructed their own specific clinical annotated database.

Moreover, due to resource limitations and the sensitivity of the infant data, which have to be
anonymized during the collection process, there are few available databases. A review of those
is proposed in [31].

To date, the most commonly used database in cry analysis is the Baby Chillanto database with
data collected by the National Institute of Astrophysics and Optical Electronics, CONACYTMexico
[22]. Initially developed by Reyes-Garcia et al., it divides the cries according to their cause and
proposes five types, including pain, hunger, normal, asphyxia, and deafness. Cries are equally
segmented into 1-s duration with a total number of 2268 cries recorded from infants ranging from
newborns to nine months of age.

Otherwise, cohort size varied from few infants crying to 12 914 cries in [32] (collected in hospital
from 127 babies) or 19 691 cries in [33] (recorded by parents using a smartphone). However, very
few crying databases have been recorded in the NICU [34–38], and there is little information
about the recordings and the subjects processed, which are gathered in Table 1.1.

Finally, synthetic signals have also been used, and sometimes compared with a real dataset, to
increase the number of processed data [36, 39–41].

Audio signal processing

Once the recordings have been made, the signal processing step consists in extracting the cries
from the recorded signal. Initially called cry segmentation, because the cries were manually
extracted from recordings made in quiet controlled environments, this step was then enhanced
as the recordings became more complex.
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Paper Fs Cohort Data

[34] 16kHz
5 premature babies 535 audio segments
28 to 34+2 GA cry units dur. 2 to 150 s
2 to 208 days PMA CU tot. duration: 45 min and 55 s

[35] 44.1kHz 26 babies 48 audio segments
3 days to 6 months PMA 971 cry units

[36] 16kHz 1 baby 10 audio segments
234 cry units, tot. dur. 122.95 s

[37] 44kHz

38 babies (28 FT, 10 PT) 38 audio segments
23+5 to 42 GA 6844 cry units, dur. > 0.26s
FT: 2 days PMA (extracted with Biovoice)
PT: 35+1 to 43+1 PMA

[38] - more than one baby 175 cry units
0 to 9 months PMA

Table 1.1: Databases recorded in NICU.

With the development of technologies, the duration of recordings increased, with a consequent
increase in the amount of data to be handled. Therefore automated processing methods emerged
with the objective to extract the cries from the background noise. They are usually based on
energy computation techniques derived from speech processing.

Then, more recent studies investigated spontaneous cries of infants in real-life monitoring
context at home or in the NICU. This uncontrolled environment led to new issues, such as
cries occurring at unknown times, as well as unpredictable sounds occurring in the record-
ings (e.g., voices, doors, ...).

To date, two strategies are commonly used to process such data (Figure 1.7):

• Based on cry segmentation methods, the first strategy extracts in the audio signal all
sound events from background noise; then classifiers are used to detect sound segments
containing cries [42–46].

• The second strategy only relies on classifiers that run through the windowed signal and
detect the windows containing crying [36, 47–51].

Crying feature extraction

Feature extraction is the stage to extract discriminative components fromaudio signals to perform
cry analysis. It can be local features extracted from short frame intervals of cry signal or global
features computed over the whole cry unit. Due to the high instability of a cry, it is better to use
local features to be robust enough to cover variation within the signal. Although the human voice
is a subject that has been widely studied, specific cry acoustic and prosodic features need to be
defined since infant and adult voice productions differ in terms of energy, intensity, and formants.

Audio signals are usually represented in time and frequency domains, and, recently several studies
investigated the time-varying frequency features along with a cry unit. The characteristics derived
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Figure 1.7: Scheme of the two strategies used to automatically extract cries fromnoisy recordings.

from the three domains are described hereafter.

TIME FEATURES - Duration is the most common time feature which has been investigated. It has
been derived in several definitions such as cry unit duration [52] with its mean [53, 54], total cry
duration (including one or more cry units) [11, 20, 53] and, the ratio of cry duration within audio
signal [53, 55]. Pauses between cry units have also been examined through similar duration
metrics [52, 53].

Another commonly used parameter is the latency time, described as the time from known stimulus
[11] or pain stimulus [19, 20, 56, 57] (in case of pain-induced cry) to the first cry. In addition intensity,
zero-crossing rate, amplitude, and energy-based features have also been proposed in [11, 17].

However, even if time-domain features are easy and straightforward to compute, they are not
robust enough to cover the variations within infant cry signals because of their sensitivity to
background noises.

FREQUENCY FEATURES - On the contrary, frequency-domain features have a strong ability to model
the characteristics within infant cry signals. The spectral energy features have been computed
through different approaches such as the overall spectral energy of the signal [28, 58] or the
energy only induced by low or high frequencies [55].

Yet, the most relevant clinical parameter to date is the fundamental frequency (F0) which was
investigated in virtually all the mentioned works. Indeed, as explained before, this prosodic
feature offers a direct measurement of vocal development since it corresponds to the rate of
glottal opening and closing in the vocal tract (see Section 1.3.1). The fundamental frequency is
usually studied through statistical parameters calculated on several cries, such as mean [25, 57],
maximum and minimum [30], standard deviation [37] or variation coefficient [54]. Moreover,
resonance frequencies were usually investigated through the first two formants F1 and F2 in
[25, 29, 54], but some authors also proposed to assess the third one (F3) [37, 54, 59].
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Moreover, the common and well-known acoustic features Mel-frequency cepstral coefficients
(MFCCs) [48, 60–62] and Linear Prediction Cepstral Coefficients (LPCCs) [23] have proven to
be efficient to detect cry within the signal [47]. MFCCs are obtained through a signal projection
on the Mel-scale with frequency bands equally spaced inspired by the human auditory system,
whereas LPCCs are based on the vocal tract modelization.

TIME-VARYING FREQUENCY FEATURES - Actually, due to the highly non-stationary cry signal charac-
teristics, it is better to represent the energy contents of a signal in a joint time-frequency domain.
In practice, it means that frequency features are extracted locally (from short frame intervals of
the cry signal) and displayed with respect to time.

Thanks to this representation, one can see the melodic shape of a cry which describes the
pattern of F0 as it varies with time (see Figure 1.5). It is the most common time-varying frequency
descriptor and four main melodic shapes were firstly defined in [63]: falling, rising, falling–rising
(or rising-falling) and flat.

In [64], Várallyay reduced these shapes to three fundamental units (i.e., falling, rising, and flat)
that were further used as the basis for the definition of 77 melodic shapes. Later, the “complex”
shape was introduced in [40, 41, 65] to cover all melodic patterns composed of more than two
fundamental units. Nowadays, six basic melodic forms of crying are retained and are illustrated
schematically in Figure 1.8.

(a) Falling. (b) Rising. (c) Flat.

(d) Rising-Falling. (e) Falling-Rising. (f) Complex.

Figure 1.8: Basic and schematic melody shapes of infant cries in the time-frequency plane.

In addition, several other features were defined to assess variations in F0 along a cry unit or during
a cry event (succession of cry units). To mention a few, there is jitter (cycle-to-cycle variations of
F0) [59, 66, 67], shift (sudden change in F0) [11, 20, 57] and glide (rapid variations in F0) [20, 57, 68].
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1.5 Our strategy

In this chapter, we addressed the subject of prematurity as well as the relevance of acoustic
monitoring in the infant’s maturation assessment. We showed that the coordination between
mechanical and neurological systems is necessary for cry production. Moreover, we saw that
the crying analysis has been widely reported in the literature in both term and preterm infants.
However, spontaneous crying analysis, especially recorded inNICU, is quite recent andwe reported
a few studies.

The lack of spontaneous cry analysis is due to several major obstacles related to data. First, we
mentioned the sensitivity of human data, where anonymization is crucial, making it difficult to
create large databases. Secondly, the long recordings with unpredictable cry onsets led to the
use of automated methods. Finally, recording real data in a clinical environment, such as the
NICU, remains a real challenge and requires robust signal processing since transitory random
noises can occur in the signal (doors, voices, machines, ...).

Although some teams have already proposed methods [25, 34, 36, 50, 69], to date and to our
knowledge, no one has realized a continuous processing chain for long recordings performed in
such a noisy environment. Therefore, the thesis’s objective is to address this topic by proposing
a workflow for automated cry analysis and the evaluation of maturation from long recordings
made in the NICU.

Due to the many issues mentioned above, we developed a three-step strategy, detailed step by
step in the following chapters, illustrated in Figure 1.9 and briefly described hereafter:

1. sound segment extraction;

2. cry detection among the extracted sound segments;

3. fundamental frequency characterization.

Figure 1.9: Workflow of the proposed cry analysis automated processing chain.

In order to achieve efficient automatic sound processing, it is essential to have a good knowledge
of the acoustic environment. Therefore, in the following chapter, we describe the intensive care
given in NICU through a review of the assistance and monitoring generally performed during sick
or premature infants’ hospitalization. Then, we present the European project Digi-NewB in which
the acquisition system and the data collection protocols were designed. Finally, we present the
acoustic environment that is valuable to understanding our choice of processing strategy.
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Work context

Chapter

2

2.1 Introduction

Developing an automated cry analysis processing chain from audio monitoring requires the
knowledge of the neonatal intensive care unit. These units, designed to provide specialized
medical care for premature newborns or sick infants, have different configurations that depend on
the newborn’s developmental status. Therefore, in this chapter, we discuss themedical equipment
available in NICU and its usefulness during the infant’s maturation process. Then, we present the
audio-video acquisition system designed for the newborns’ contactless monitoring as well as the
database created thanks to the European project Digi-NewB. Finally, we address the subject of the
acoustic environment in NICU that makes the data automatic processing particularly challenging.
After identifying the sound sources heard in the bedrooms, we present two analyses performed
on manually annotated recordings. The first one is the quantification of voices, and alarms in
a 15-hour recording performed on a premature baby staying in an incubator. The second one
shows the sound content’s great variability within the recordings. This context is essential for
understanding the strategies and methods developed in this work.

2.2 Description of the NICU

Formerly, mothers used to give birth and care
for their infants at homewithout anymedical as-
sistance. Physicians started to take an interest
in providing care to reduce mortality due to pre-
maturity during the 1880s, especially with the
creation of the first incubator by Dr. Stephane
Tarnier at Paris’s Maternité Hospital (illustration
in Figure 2.1). This new technology aimed to
prevent many premature newborns from suc-
cumbing to hypothermia (low body tempera-
ture). However, at this point caring for prema-
ture babies was expensive and, many thought,
pointless.

Figure 2.1: Tarnier’s incubators in the Mater-
nité Hospital, Paris, 1884. Source: Illustrated
London News, 8 March 1884, p. 228.

31



Thus, despite the technological progress brought by the Industrial Revolution, it was necessary to
wait for Dr. Hess’s intervention in 1920 so that these techniques are finally recognized. With his
chief nurse’s help, Evelyn Lundeen, he initiated the establishment of trained nurse teams following
specific protocols. Finally, it was in the 1970s that neonatal intensive care units flourished and
became hospitals’ integral part of the developed world, which helped to drastically decrease
neonatal mortality (see [1] for a historical review).

Nowadays these units are designed and used to provide specialized medical care for sick and
premature newborns to ensure their development. During hospitalization, newborns go through
different configurations depending on their physiological state. To be discharged home, infants
must meet the following criteria:

• be thermally independent to maintain the body at a normal temperature;
• have self-sufficient respiratory control;
• be able to feed by mouth to support appropriate growth.

When infants do not yet meet these criteria, and according to their disabilities and development,
they may benefit from thermal, respiratory, and nutritional assistance in different bedroom config-
urations. Depending on their functional immaturity, at birth but also throughout the hospitalization,
they join the care process at the appropriate step. These steps are detailed below and then the
physiological and neuro-behavioral monitoring in NICU are presented.

THERMAL ASSISTANCE - A baby born extremely premature (i.e., before 28 GA) is not ready to
face the extra-uterine life. Her or his thermal system is not able to regulate body temperature
properly and her or his skin is still too thin to ensure its protective function. Therefore, at this
stage, the baby is always placed in an incubator in the NICU for several weeks. An incubator is
a bed enclosed by a plastic shield in which the environment is controlled to keep the baby at
the right temperature and humidity level (see Figure 2.2 - 1). In addition to avoiding hypothermia
and dehydration, it minimizes exposure to germs and external noise. The use and parameters
of an incubator depend on each infant’s specific needs. Thermal regulation is based either on
the temperature measured on the baby’s skin (large variations) or a configured targeted ambient
temperature. Then, according to the thermal regulation capacity of the baby, he or she can be
transferred to different environments, from a radiant warmer (see Figure 2.2 - 2) to a cradle (i.e.,
without thermal regulation, see Figure 2.2 - 3).

Figure 2.2: Three examples of beds in NICU.
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RESPIRATORY ASSISTANCE - Several respiratory support techniques are used to meet the oxygen
needs. Very premature infants may have respiratory distress, such as apnea or bradycardia (slow
heart rate), that requires immediate intervention. For the most dependent, an invasive procedure
such as intubation supplemented by a ventilator assistance device may be used. Then, depending
on respiratory autonomy level, intubation is gradually replaced by less invasive devices such as
nasal masks or cannulas (see Figure 2.3). Throughout the hospitalization, clinicians daily assess
the newborn’s needs by various means, such as evolution analysis of respiratory distress or blood
tests (twice a day).

NUTRITIONAL ASSISTANCE A similar strategy is applied to feeding. Initially, premature infants are
not able to digest food. They are therefore fed (i.e., given essential nutrients) through a central
venous catheter, which is connected to the heart through the arm or leg. Next, thanks to a
naso-gastric tube (i.e., a tube connecting the nose to the stomach, see Figure 2.4), they are fed
with very small milk quantities. As they develop, infants consume more milk and less infusion.
Then, when they are sufficiently developed and after they began to suckle, food administration
is gradually replaced with breastfeeding. In general, the feeding capacity remains the last step
before discharge.

Figure 2.3: Non-invasive respiratory assistance:
air (enriched or not with oxygen) is delivered to the
infant’s airway through a nasal mask. The mask is
attached to the nose/face with headgear.

Figure 2.4: The naso-gastric tube is connecting
the nose to the stomach. Milk is delivered by auto-
matic syringes.

A journey example of an extremely preterm infant who was cared for at the Rennes University
Hospital (i.e., Rennes CHU) is illustrated in Figure 2.5. This baby was born at 27+6 GA with a
weight of only 930 grams, and first spent 47 days in the intensive care department during which he
became more independent. Then, he finished his full development in the neonatology department
and was discharged at 38+5 PMA with a weight of 2.590 kg. This picture chronologically depicts
the required medical equipment evolution, as well as the interactions with the parents.
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Figure 2.5: The journey of an extremely premature baby in the NICU. TOP - In an incubator with feeding
assistance, i.e., a naso-gastric tube (coming out of the nose) and a venous catheter (with cable surround-
ing the head) connected to an automatic syringe. The cardiac, respiratory, and pulse oximeter sensors are
invisible but present and the respiratory assistance was removed at the time of the picture. The arterial
blood pressure armband is visible in the bottom right corner. BOTTOM - In a radiant warmer with non-
invasive ventilation and naso-gastric tube. The pulse oximeter is visible with the cardiac and respiratory
sensor wires.
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PHYSIOLOGICAL MONITORING - The newborn is monitored continuously throughout the hospital-
ization. This monitoring is essential to understand the infant’s needs and to provide the best
care. Cardiac, respiratory, oxygen, and temperature sensors are used to collect physiological
information. A review of the physiological signals advanced analyses performed in NICU is given
in [2].

Asmentioned earlier, the newborn’s skin temperature can bemeasured to regulate the temperature
of the incubator or the radiant warmer. Heart and respiratory rates are continuously acquired
through electrodes set on the infant’s body, while arterial blood pressure is measured with an
armband. In case of cardiorespiratory distress, alarms are triggered for nurses who can perform
immediate interventions.

Non-invasive pulse oximetry is also used tomeasure blood oxygen saturation and pulse rate using
a photodetector. It is used in most neonatal intensive care units as a detector of de-saturation
(sudden loss of oxygen in the blood).

These sensors are kept for most newborns throughout their hospitalization. An example of a
radiant warmer infant bedroom configuration is shown and described in Figure 2.6. Sometimes
at the end of the stay, when the infant goes into the parents’ arms or in the parents’ presence, the
sensor’s wires can be disconnected from the scope.

Figure 2.6: Intensive care medical equipment at the Rennes CHU for a radiant warmer from two
different points of view. LEFT - Bedroom global equipment overview. RIGHT - Zoom on the crib.
CENTER - Physiological signal representations on a scope.
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NEURO-BEHAVIORAL MONITORING - Unlike physiological monitoring, neuro-behavioral monitoring is
performed on a more punctual basis at the doctors’ request. It is performed to evaluate possible
brain lesions, and it is mainly based on sleep analysis. Since premature babies have low electrical
activity in the brain, the neuro-behavioral monitoring through electroencephalography can only
be achieved after a good development. To perform such a measure, an ambulatory system is
deployed in the newborn’s room and electrodes are placed on her/his head to acquire the signal.

Moreover, in some cases, human observations are performed in the presence of the newborn
as part of the Newborn Individualized Developmental Care and Assessment Program (NIDCAP)
[3]. Since it has proven to be relevant to adapting the care and the caregiving environment,
this program aims to evaluate the development of the extreme and very preterm newborns by
monitoring their unique behavioral communications [4, 5].

In practice, a one-hour examination is performed by a trained nurse who visually annotates,
within 2-minute steps, several components such as sleep stages, vocal, motor, or facial activities.
These components have also been shown to be relevant for the detection of various neurological
disorders [6–8].

However, several limitations hinder the generalization of these procedures. Indeed, this operation
is very time-consuming and only a small proportion of newborns can benefit from this monitoring.
Furthermore, although it is performed by specially trained nurses, these observations remain
subjective.

2.3 The Digi-NewB proposal

The Digi-NewB project aimed to improve neonatal care thanks to the development of a new gener-
ation of non-invasive monitoring systems in neonatology. Particularly, this setup was intended to
assist clinicians in the early sepsis diagnosis and the analysis of newborns’ cardiorespiratory and
neuro-behavioral maturation. On a larger scale, the main purpose was to decrease the mortality,
and morbidity rate, reduce the risk of neurodevelopmental disorders as well as diminish the
hospitalization health cost and duration. To fulfill these objectives, the French clinical network
Hôpitaux Universitaires du Grand Ouest (HUGO), and our laboratory (LTSI-INSERM) collaborated
to recruit five partners from four European countries composed of two companies and four
university groups with multidisciplinary expertise. The Figure 2.7 shows the key figures of the
Digi-NewB project, which received funding from the European Union’s Horizon 2020 research and
innovation program under grant agreement No. 689260 and was carried out between March 2016
and May 2020. The aim was to propose a decision support system gathering composite indices
collected from clinical data and multi-signal analysis, including heart rate, respiration rate, video,
and sound signals. Audio and video were chosen, on the one hand, because they have proven
their relevance in the evaluation of the problems addressed by the European project (see [9] for a
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review), on the other hand, because their non-invasive acquisition does not disturb the medical
staff or the baby by being contactless. However, unlike traditional signals that can be received
from the machines already present in the hospital rooms, audio and video signals require the
design of a specific acquisition system with protocols.

ACQUISITION SYSTEM - The proposed audio-video acquisition system designed for the project was
developed by the Voxygen company in collaboration with Feichter Electronics and is composed
of two devices (see Figure 2.8) with a total of 4 video streams recorded at a rate of 25 frames
per seconds (1 colored, 1 thermal, and 2 black and white cameras, see [10] for more details) and 2
audio channels. Regarding acoustics, omnidirectional microphones (FG-23329-P07) were chosen
from Knowles Acoustics, with recordings made at a sampling rate of 24 kHz.

Figure 2.8: Digi-NewB acquisition device components.

DATA - Audio and video data were stored independently in 30-minute files, respectively in "WAV"
and "MP4" formats. It is worthwhile to remind that the prototype of the recording device was
created during the initial phase of the project and some problems were encountered on the first
recordings. Thus, despite the availability of two microphones, only one of the two channels is
used in this work. In addition, several video modalities were explored at first to select the best
ones for the sepsis and maturation purposes.

RECORDING PROTOCOL IN NICU - Concerning the recording protocol, nurses from the six partner
hospitals received training to place the devices on either side of the infants. Due to the room
layout diversity and the available equipment, it has not been possible to establish a strict protocol
for the system position and distance. Moreover, microphones were placed differently depending
on the type of bed: in a closed bed, they were placed inside the incubator at the newborn’s feet,
while in an open bed, they were set near the head in a perimeter ranging from 30 cm to 1 meter.
Examples of the Digi-NewB devices used to collect data in real context are shown in Figure 2.9
that presents the system installed in the NICU at the Rennes CHU.
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(a) Incubator. (b) Radiant warmer.

Figure 2.9: Digi-NewB data acquisition system in real-life settings in NICU.

1 Digi-NewB main recording device, including microphone and video cameras,

2 auxiliary microphone and camera,

3 scope, monitoring the physiological signals (heart rate, respiration and oxygen saturation),

4 Digi-NewB computer, handling acquisition and monitoring systems.

In the pictures, babies are connected to the traditional physiological monitoring systems while
cameras and microphones are set up to record the infants’ movement and sound without any
contact. This continuous real-time monitoring has the advantage of not affecting the infants’ envi-
ronment in the NICU, which could be detrimental to their maturation, neither imposing additional
difficulties for health care staff or parents to interact with the newborns.

COHORT - In this work, we focused on the second objective of the Digi-NewB project, i.e., the
evaluation of maturation therefore we assess only healthy infants. The protocols established
for these newborns consisted in recording for several consecutive days, between birth and the
date of central line removal, and then every 10 days for approximately 24 hours until discharge
(Figure 2.10).

Figure 2.10: Digi-NewB maturation recording protocol.

Although during the Digi-NewB project 750 babies were recorded, only a small cohort is analyzed
in this work. This is because a careful and time-consuming selection was made by the medical
team to identify healthy newborns who had no complications during their entire hospitalization.
As a result, a base of 57 healthy babies including 24 girls and 33 boys born between 27+1 and
41+6 GA recorded between 27+5 and 42+1 PMA were involved in this thesis work.
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2.4 Acoustic environment in the NICU

To ensure the proper newborn development, the NICU environment should be similar as far as
possible to what it would have been in an intrauterine pregnancy. However, as mentioned before, a
lot of medical devices are needed to take care of the newborn’s health. Alarms are activated when
the infants’ states are unstable (i.e., cardiac, respiratory distress, ...) or when the machines require
human intervention (i.e., warnings for empty syringes, empty ventilation water tanks, missing
equipment connection, ...). In addition, several adults are also present around the baby, mainly
the medical staff and the parents. As a consequence, the acoustic environment surrounding
newborns in the NICU is quite noisy and has already been investigated [11–13].

Hence, the sound environment contains many disturbing noises of short duration and at irregular
intervals that deeply corrupt the audio recordings. Furthermore, several of these sound sources
are overlapping in time, which makes the automatic processing of recordings in the NICU very
challenging. In this context, Raboshchuk et al. presented the acoustic environment of a preterm in-
fant in NICU (see Figure 2.11), and addressed extensively the problem of acoustic alarm detection
[14–16].

Figure 2.11: A general sound taxonomy of a typical NICU. Taken from Raboshchuk et al. [17].

The recordings made in the framework of the Digi-NewB project are no exception. Therefore, in
the following sections, we review the main sound sources occurring in the audio signal that we
identified with the help of the medical team. Then, we quantify some of these noises through the
annotation of a 15-hour recording performed in the NICU for a very premature infant staying in an
incubator. Finally, we introduce the high variability of sound content within a single recording by
annotating all the sound events occurring in three WAV files.

2.4.1 Sounds in Digi-NewB recordings

After listening to many audio recordings made during the Digi-NewB project, we gathered the
sound sources into six categories that are illustrated in Figure 2.12 and detailed hereafter. Since
very premature require more medical assistance than full-term newborns, the sound environment
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is generally more prominent in incubator recordings and becomes less important as the infants
develop.

Figure 2.12: The noise sources occurring in the NICU and heard in the Digi-NewB recordings.

MONITOR - During hospitalization, newborns are monitored through sensors measuring their
heartbeat, oxygen saturation, and respiratory frequency signals. When an abnormality is detected,
such as an irregular heartbeat (bradycardia) or lack of oxygen (de-saturation), the monitor starts
ringing through different alarm levels to inform of either an important or a critical situation.

MEDICAL DEVICES - The medical devices surrounding the baby’s cradle are designed to recreate
the intrauterine environment and provide all the care needed. Furthermore, the more premature is
the baby, themoremachines are needed for her/his good development and the noisier is the room.
The machines aim to warm up the water infusion, warm up the bed, help the infant’s respiratory
system, feed, etc.

In addition to the fact that some of these machines produce noise during their use, they all have
one or more specific alarms to inform nurses of their status when they require human action (i.e.,
problems or maintenance such as filling the water infusion or the feeding syringe driver). While
noises are usually wide frequency bands, alarms are narrow-frequency bands with each of them
having a different tone, duration, and time of repetition.

VENTILATION - There are several types of ventilation devices in the NICU that are chosen according
to the preterm infant’s particular needs. Ventilation produces noise that strongly interferes with
the acoustic environment. This noise is usually spread over a wide frequency and is not constant
over a recording since it can be turned on or off at irregular intervals. As a result, ventilation
introduces a lot of variability to the data.

DOORS - Mainly sliding glass doors that make noise when they open and close and have poor
sound insulation properties. A door sound is short in time and has a wide frequency range.

ADULT VOICES - Parents and nurses can be talking or whispering when being in the bedroom. The
human voice is a harmonic signal located in the low-frequency range (i.e., 300 up to 3000 Hz).
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CARES - Several times a day, care is given to the newborn, for change, wash, feed, ... during these
moments noises can be emitted by medical plastic bags, drawers, hand washing, ... Usually very
short in time, these noises have a wide frequency band.

For readers who may not be familiar with the NICU environment, a typical neonatal health care
unit bedroom is depicted in Figure 2.13.

Figure 2.13: A typical NICU bedroom layout at the Rennes CHU.

It is worthwhile to mention that during his/her shift, a nurse is in charge of several newborns.
To ensure an intervention when necessary, all the monitors corresponding to those babies are
related one to another. Thus, when caring for one baby, the nurse can listen to alarms related
to the other newborns she/he is responsible for through the monitor located next to her/him.
Therefore, besides the alarms related to the monitored baby, slightly different alarms can occur in
the acoustic background coming either from other close bedrooms or from the central reminder
(where nurses monitor all newborns). Moreover, although nurses are paying close attention to all
the assigned babies, they cannot be everywhere whenever an alarm occurs, therefore, it can lead
to long, noisy periods. It is the most harmful and common sound source in the bedroom.

In addition, it is worthwhile to mention that even more complex environments were recorded
with co-bedding for twins or shared bedrooms with several babies. Particular attention will be
paid to these recordings since we cannot know if the recorded cries are actually produced by the
monitored baby.

2.4.2 Noise quantification in a 15-hour annotated recording

To show how noisy the acoustical environment can be in NICU, we studied a 15-hour recording
performed in the incubator of a very premature infant 1.

After listening to the recording (i.e., 15 hours corresponds to 30 WAV files in the Digi-NewB

1. i.e., baby 010049 recorded between 5:00 PM and 8:00 AM the 2017-07-12.
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database), we decided to manually annotate two noise categories, i.e., alarms and adult voices
which are themost representative. These annotationswere performed through a careful subjective
listening recognition according to the sound level and spectral content.

Alarms also called beeps are short and often repetitive noises that alert nurses about the status
of either the machines or the infant’s health. All alarms have different tones allowing the nurses
to quickly detect the problem source and fix it. Since the physiological monitor can relay alarms
unrelated to the observed baby (see the previous section Sounds in Digi-NewB recordings), we
discriminate the alarms into two subcategories:

• baby alarm: alarms that directly concern the infant’s health status (high intensity level);
• reminder alarm: alarms coming from the physiological monitor that correspond to the other

neonates under the nurse’s care (low intensity level).

We inspected the recording through 1-minute windows. In practice, it means that for each of
the 900 minutes, we annotated whether an adult voice, a baby alarm, and/or a reminder alarm
occurred. Therefore, when at least one of these sounds occurs in the analyzedminute, we consider
it "noisy", whereas when no sound is found, minutes are considered "clear". A resulting timeline is
illustrated in Figure 2.14 for a 30-minute WAV file.

Figure 2.14: Illustration of the annotations performed on the one-minute windowed timeline for a
30-minute audio file. A minute is labeled in red when at least one adult voice or one alarm occurs,
otherwise, the minute is labeled in blue. The "reminder" and "baby alarms" lines are combined in
the "alarms" line, itself combined with the "adult voice" to form the "total" line.

The annotations’ distribution over the 15 hours is presented in Figure 2.15. From a global point of
view, results show that 62% of the minutes are considered "noisy", meaning that from the 900
analyzed minutes, 561 of them contain at least an adult voice or an alarm.

Among these noisy minutes, 62% of them correspond to alarms, 19% correspond to adult voices,
while 19% are a combination of these two sources.

Since alarms were discriminated through two subcategories, one can see the unexpected distri-
bution. Indeed, only 62% of the minutes are related to the monitored infant, whereas 26% of them
come from reminder alarms corresponding to the other neonates under the nurse’s care. The
remaining 12% corresponds to a combination of both sources.

To go further, we also studied the alarms and identified ten different types. For each of them,
the duration between two occurrences is different, as well as the frequency spectrum, which is
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Figure 2.15: Left: Percentage of minutes considered as "noisy" by voices or alarms within the
15-hour recording. Middle: Distribution of the noise categories polluting the sound environment.
Right: Alarms distribution after discrimination.

composed of a fundamental frequency that ranges from 400 Hz to 2.4 kHz and may contain
several higher components. Furthermore, it is worthwhile to mention that most alarms do not
consist of a single beep, but rather of several beeps. Also, this list may not be exhaustive since
the study was conducted during the night (5:00 PM - 8:00 AM) for a preterm infant in an incubator.
Other alarm types may be encountered during the day and/or in other NICU rooms, depending on
the bed and care equipment.

In addition, the author would like to point out the risk of such a noisy environment on newborns.
Indeed, it has been recognized that babies are very sensitive to high surrounding variations such
as light [18], odors [19], or noise [20] and high exposure can lead to potential neuronal circuits
wire damage of the newborn brain. Moreover, premature infants have an underdeveloped auditory
system that is not able to adapt to an extrauterine acoustic environment in the same manner
as a full-term infant. While the fetus begins to respond to low-frequency sounds after 19 weeks
of gestational age [21], the cochlea’s response to sound continues to mature between 24 and
35 weeks. As a result, loud noise can create neonate stress responses [22] that may lead to
hair-cell damage and subsequent auditory impairments [23–26]. Nevertheless, the problem of
the noise level in NICU is well known by the medical staff who suffer from it as well. Hence,
improvements are required and the internal review at the Rennes CHU suggested for the future
the use of portable alarm systems, the development of new alarm algorithms, or the development
of new devices. To date, the neonatology health service in Rennes suggests improving acoustic
conditions through alarm management protocols and wishes to consider acoustic improvements
during the reconstruction of its site.

In this section, we proposed to quantify the noise that can be present in a NICU bedroom. This
characterization, although considering only voices and alarms, showed once again the difficulty
of automating crying detection treatments in such an environment.
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2.4.3 Sounds variability in recordings

Through this study, we want to show the great variability of the sound content encountered
in the different WAV files that constitute a recording. Therefore, three 30-minute sound files
were selected from a 20-hour recording made for one baby 2. Their content is briefly described
hereafter:

• 21h25: some sound events with few cries;
• 21h55: a lot of cries with few sound events;
• 01h25: very few sounds, no cry.

Thanks to the knowledge of acoustical environment in the NICU, five labels were chosen according
to the possible sound activities and are defined as follows:

• cry: infant crying;
• baby other: infant vocalization (e.g., cooing), coughing or hiccups;
• alarm: alarms produce by medical devices;
• voice: adult voices, whispering;
• other: background, footsteps, doors, cares, any other noise.

The recordings were manually labeled using the free and open-source digital audio editor and
recording software Audacity through start- and end-points identification of all audible sound
events in the soundtrack. In practice, it means that even when some sounds occur at the same
time and are mixed we annotate each of them individually. The boundaries were set at the points
where the sound could no longer be heard. A total of 1 774 sound events have been labeled
through the three files. An example of the annotations performed in Audacity software is given
in Figure 2.16 and the resulting distribution of segment duration by labels for the three files is
illustrated in Figure 2.17.

Figure 2.16: Examples of annotations performed in Audacity.

2. i.e., baby 010075 recorded during night time the 2018-02-20.
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Figure 2.17: Duration of sound events by the label category for all three recordings combined
(1 774 sounds). The four annotated sounds, longer than four seconds, are not displayed.

From these distributions, it appears that sounds do not last longer than 4 seconds and that cries
are mostly longer than 0.25 s. Although the sounds Baby other and Other are slightly shorter, all
labels have a similar range of duration. Therefore, it is not possible to distinguish crying from other
sounds by their duration. Moreover, we remind that we have considered the sounds individually.
Therefore, longer durations are to be expected when considering mixed sounds, i.e., when we
place limits on the points where all the sounds together can no longer be heard.

During the process, we decided to ignore short sounds with a duration of less than 0.25 s which
are more difficult to identify. The resulting 1 593 selected sounds are presented by labels in terms
of total segment quantities and duration in Table 2.1.

21H25 21H55 01H25
qty dur. (s) qty dur. (s) qty dur. (s)

Cry 155 106.51 776 717.39 - -
Baby Other 140 64.15 91 37.18 6 2.84

Alarm 50 41.23 255 257.98 4 2.46
Voices 11 11.79 14 17.11 - -
Other 53 31.13 25 24.56 13 7.06
TOTAL 409 254.81 1161 1054.21 23 12.36

Table 2.1: Labeled sound events for three 30-minute files.

Based on these results one can see the file diversity and the great variability of the sound contained
within the same recording. Naturally, the sound environment is not always noisy and if sometimes
a 30-minute recording contains almost no sound (i.e., 1:25 a.m. - 23 sounds, 12.36 s), it can
also contain a lot (i.e., 9:55 p.m. - 1161 sounds, 1054.21 s). These distributions show once again
the complexity of the sound environment and the difficulty to set up a completely automatic
processing chain which, however, would be absolutely necessary to perform cry analysis in the
NICU.
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2.5 Conclusion

The main objective of this chapter was to learn about the neonatal intensive care unit. Indeed,
to perform cry analysis, it is necessary to understand this environment, which is designed and
used to provide specialized medical care to sick and premature newborns. After a review of the
medical equipment that may be used to assist the newborns, we also presented the physiological
and neuro-behavioral monitoring usually performed there.

Next, we introduced the European project Digi-NewB in which an audio-video acquisition system
was designed and used to record more than 750 infants providing a very large multi-signal
database (i.e., heart rate, respiratory rate, video, and audio signals). We also detailed the recording
protocols used and illustrated the system’s set-up in two NICU configurations.

Then, we presented the acoustic environment in the NICU, which was recorded during the Digi-
NewB project, and we reviewed the main sound sources occurring in the audio signal. Through
the quantification of the noises occurring within a 15-hour recording on a very premature infant
staying in an incubator, we showed the acoustical complexity of the environment. Moreover, to
survive the infant needs medical equipment that produces alarms in 62% of the minutes for this
recording, which shows that the files can sometimes be very noisy. Finally, with the annotation of
three WAV files from a 20-hour recording, we showed the great variability of the sound content
between the different 30 minutes files. Indeed, while some contain a few sounds, some others
can contain a lot.

With knowledge of the environmental context and the sounds occurring within the recording, it
appears that using the three-step processing chain proposed in the first chapter (see Section 1.5)
is a good approach. Indeed, using a sound event segmentation step seems to be a relevant
strategy considering the large amount of data to be processed. Actually, such a procedure
is essential to reduce the quantity of data to analyze in order to detect crying. Therefore, in
the following chapters, we present the different steps implemented in this work, including the
segmentation, classification, and fundamental frequency estimation methods.
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Audio-Video segmentation

Chapter

3

3.1 Introduction

Traditional cry segmentation methods are based on energy thresholding. When applied in a
controlled and non-noisy environment these methods lead to accurate cry detection. However,
in the context of this work we are dealing with long audio recordings and a large database. In
addition, recordings are performed in NICU where the sound environment is very noisy and many
sounds occur besides the infant’s cries (see Chapter 2). In this case, it is important to understand
that using traditional techniques, all the sounds will be extracted and we should therefore call this
approach sound segmentation. Hence, to detect the cries in such signals, a two-step strategy was
adopted during the Digi-NewB project, including a sound segmentation step and a subsequent
classification step.

This chapter introduces the first step of this strategy. After a review of the state of the art, we
describe the method proposed by Orlandi et al. [1] that inspired our own. Then, we introduce the
improvements, which have been done, to adapt the method to our data. Finally, we also propose
to use the motion information computed by another team of our laboratory (LTSI) during the
Digi-NewB project [2, 3]. We suggest collecting only the sounds appearing in newborns’ motion
intervals to reduce the data quantity to be further processed.

3.2 State of the art

If in the literature, cry segments used to be manually recorded or selected, some recent studies,
proposed automated solutions. Indeed, when working with long recordings it is necessary to
apply appropriate processing to extract cries from the signal. The preliminary step, defined as
the segmentation step, is a must to separate cries from the background soundtrack.

In the context of speech processing, it is common to perform audio segmentation tasks. Indeed,
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it is widely used in speech detection in the audio signal or in voiced/unvoiced part detection,
resulting in both case in the extraction of relevant parts of the acoustic signal. The same principle
is used for infants, it is called the detection of cry units (CU). As in speech, where the initial and
final points of a word are located, the objective in cry unit detection is to find the initial and final
points of a cry unit. As words in speech, the cry units have higher energy than unvoiced segments.

In the following, we describe traditional segmentation methods and then discuss the new strate-
gies that have emerged to process long-term audio monitoring which has recently grown in
popularity.

3.2.1 Methods for cry segmentation in short recordings

At first, cries used to be manually recorded in controlled quiet environments. Thus, most of
the traditional methods were based on the computation of Short Time Energy (STE) and Zero
Crossing Rate (ZCR). While the first one provides an energy envelope of the sound signal, which
helps to distinguish audible sounds from silence, the second one allows to detect the voiced
parts.

Methods based on STE thresholding were investigated in [1, 4–8]. Additionally, Orlandi et al. used
two thresholds calculated through the Otsu’s method to perform the segmentation [1]. Since
this segmentation inspired our own, an overview of this method is proposed in this chapter (see
Section 3.3.1).

Cry segmentation was also performed in combining the two short-time methods, STE and ZCR,
[9] and applying a threshold to extract CU. In the continuity of this study, a third step was added
to distinguish harmonic and non-harmonic audio segments [10]. Some authors also investigated
Simple Inverse Filter Tracking (SIFT) [11] or word reliability [12].

3.2.2 Methods for cry segmentation in long and noisy recordings

Then, with the advancement of technologies, longer recordings were made and required new
processing methods. Thus, the recent approaches have considered cry segmentation as a classi-
fication problem. In these methods, the whole signal is considered and cut into frames. These
frames are then classified into different categories according to the studies. For example, Reg-
giannini et al. [13] started with a KNN classifier and proposed the three basic classes: voiced part,
unvoiced part, and silence.

However, it appeared that in long recordings, besides cries surrounding soundswere also recorded
in the signals. Therefore, new sound classes emerged. It the case in [14], where Abou-Abbas et
al. considered six classes dividing infant voiced parts (i.e. cries) into expiratory and inspiratory
phases with a HiddenMarkov Model (HMM). Later, these results were improved by decreasing the
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number of classes and gathering the non-cry sounds in a class called "others" [15] or "residuals"
[16].

The discrimination of the three classes achieved with the KNN resulted in an Area Under the
Curve (AUC) of 0.88 [13]. In comparison to HMM, Gaussian Mixture Model (GMM) gave the best
results with a classification error rate of 8.9% [15], while Naithani et al. reached a total accuracy
of 89.2% with HMM [16].

Then, researchers began to perform long recordings in real-life settings which are much less
controlled. Thus, once again, new methods emerged to deal with the many other sound events
occurring, besides the infant’s cries, in the recordings.

Most of these methods, based on deep learning approaches, are used to detect cries in domestic
environment [17–20] or in the NICU [21, 22]. All these studies worked with a Convolution Neural
Network (CNN) and the input layer is computed fromMel-FrequencyCepstral Coefficients (MFCCs)
associated with either the Mel-Filter Bank (MFB) [17, 18, 20–22] or the Linear-Filter Bank (LFB)
[23].

However, to reach good performances, these processes require large amounts of data, and some
authors proposed to introduce normalization and regularization to adapt CNN to a limited data
set [18], or to enhance the data set with simulated data [21].

As a result, automatic cry classification in domestic environment led to AUC over 90% in [18] and
an averaged Area Under Precision-Recall Curve (PR-AUC) of 90% in [23]. Moreover, the promising
results in [17] were confirmed with considerably better performance compared to a traditional
machine learning classifiers (SVM and logistic regression) in [20], especially for low false-positive
rates. While, in the NICU, an average accuracy of 86.58% was obtained [21] and a PR-AUC of
97.50% was reached on real data in [24].

3.2.3 Discussion

Therefore, when processing recordings performed in controlled quiet environments, an automatic
cry segmentation can be easily computed based on energy thresholdingmethods. However, these
techniques are no longer sufficient when it comes to recordings in a routine hospital environment.
In fact, in such a noisy environment, all occurring sounds are segmented and must be sorted to
find those that contain crying.

To date, only a few studies have achieved cry segmentation methods in a monitoring context,
and none have involved long recordings in a routine hospital care setting. Moreover, while frame-
by-frame classification methods work well, they are computationally intensive to process long
records. As this work focuses on the large Digi-NewB database, we proposed a two-step strategy
including an audio segmentation step and a classification step to reduce the data quantity to be
processed.
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3.3 Audio segmentation method

The first step of our strategy is therefore to segment the sound events that occur in the recordings.
We choose to exploit the method proposed by Orlandi et al [1] which is based on energy and
threshold calculations, the process is described and discussed below. Subsequently, we propose
improvements due to the issues encountered during the application to our data.

3.3.1 Orlandi’s method

This traditional segmentation method based on energy thresholding is described in details in [1]
where a long term audio analyzer was proposed. The process was compared to existing software
tools commonly used in biomedical applications using two synthetic signals sets: the first one
was based on adult voice excerpts and the second one was obtained from newborn cries. This
method is now deployed in the user-friendly voice analysis software BioVoice also developed by
the Italian team [6, 8, 25].

This method, illustrated in an exhaustive workflow in Figure 3.1, is described in the following and
can be decomposed into three main steps:

• pre-processing: band pass filtering and down-sampling of the recording;
• automatic segmentation: detection of sound intervals in the signal;
• duration filtering: exclusion of short sounds.

Figure 3.1: Segmentation workflow proposed by Orlandi et al. in [1]

54 Chapter 3 • Audio-Video segmentation



PRE-PROCESSING - First, the recorded signal is band-pass filtered by a 5th-order Butterworth
filter and cut-off frequencies set between 50 and 1000 Hz. Then, the resulting signal is also
down-sampled to 11.25 kHz to speed up processing.

AUTOMATIC SEGMENTATION - SHORT-TERM ENERGY (STE) The pre-processed signal is then divided
into 20-millisecond windows with 50% overlap between adjacent windows. On each window the
short time energy is evaluated as:

ste= log10


n∑

i=1
s(i)2

n
+ ε

 (3.1)

where n is the number of samples in the window, s is the signal and ε is a small constant to avoid
log(0). The resulting values of all windows are stored in an energy vector named ste. An example
of this vector is given in Figure 3.2 for a 3-second signal containing two cry units. We can see
that STE values increase during the cries and decreases during silences.

Figure 3.2: STE values (blue) computed on a 3-second signal (grey) containing two cry units.

AUTOMATIC SEGMENTATION - OTSU’S THRESHOLDS - Suitable thresholds are required to determine
the boundaries, i.e., sound events start and stop points. They are obtained using a modified
version of Otsu’s method [26] applied on the STE value histogram. While the original method is
described in the APPENDIX of this chapter, Orlandi’s proposal [1] is detailed hereafter.

1. First, the histogram of the STE values is calculated through 2000 levels for a reasonable
compromise between sufficient detail and computing speed.

2. Next, the upper threshold (TU) detects the sound event apparition. It is computed on the
whole STE value distribution and is illustrated with the corresponding histogram in Fig-
ure 3.3a. The segments of value lower than TU are considered as silences and those higher
than TU as sound segments. The application of the threshold on the signal containing
the two cries is presented in Figure 3.3b. We can see that by considering only the upper
threshold, the second cry is mis-segmented and divided into two segments.
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(a) TU and STE histogram
(for all values). (b) UP - short time energy vector with upper threshold,

BOTTOM - segmented audio signal through upper threshold only.

Figure 3.3: Upper threshold (TU) computation.

3. Therefore, to enhance the segmentation a second lower threshold named (TL) is com-
puted also based on Otsu’s method but with STE values included between zero and the
upper threshold TU. Applying both thresholds requires a segmentation step using the upper
threshold to detect sounds and the lower threshold to find their start- and end-points. This
segmentation process is illustrated in Figure 3.4a and detailed hereafter.

(a) First, when several successive points of the ste have values higher than TU we call the
gathering of these points an interval which we consider as a detected sound.

(b) Then, the initial point is determined as the first point under TL located to the left of the
sound start. In practice, all the elements preceding the first point of the interval, are
checked and the first element for which the energy value is lower than TL is defined as
the starting sample of the sound.

(c) Finally, the same principle is applied to find the final point which is defined as the first
element occurring below TL after the sound offset.

The two thresholds segmentation is illustrated with the the lower threshold computation
and the corresponding histogram in Figure 3.4b. The application of both thresholds on the
signal containing the two cries is presented on figure Figure 3.4c. This time, we can see
that the two cries are correctly segmented.

4. Finally the two thresholds are multiplied by a factor d given by the ratio of the differences
between the maximum and minimum values of energy and the number of levels of the
histogram. This gives the upper TU and the lower TL thresholds required to determine if a
frame is voiced or not. Then, minimum value of the signal energy is added to TU to guarantee
that TU is above the minimum.

56 Chapter 3 • Audio-Video segmentation



(a) Segmentation technique illustration where boundary points are detected for all STE intervals that surpass TU. In
the picture, the initial point is determined as the first point under TL located on the left side with respect to the sound
onset. The final point corresponds to the first point occurring below TL after the sound offset. In this example, the
resulting segmentation returns two segments. While segment 1 matches the first cry, segment2 gathers (thanks to
the double threshold method) two detected sounds corresponding to the second cry unit that has lower energy in
the middle.

(b) TU, TL and STE histogram
(for values from zero to TU).

(c) UP - short time energy vector with upper and lower thresholds,
BOTTOM - segmented audio signal through both thresholds.

Figure 3.4: Lower threshold (TL) computation.

Using a double threshold prevents sound split and improves the segmentation by finding better
boundaries and extracting the complete sound event.

DURATION fiLTERING All detected sounds with a duration of less than 250 ms are removed, so
that inspiratory sounds are not taken into account [6]. Moreover, this duration was chosen for its
relation to the physiological infant voice properties as four times a second is how fast the vocal
cords can change and is what is needed to obtain a complete acoustic profile of the newborn
[27].
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Thresholds computation on Digi-NewB data

As described in Chapter 2, in the framework of the Digi-NewB project the audio signals recorded
are performed in a routine hospital care environment, and data are stored in 30-minute WAV files
(i.e. 24 hours recordings = 48 wav files). Hence, there are several ways to apply the automatic
segmentation on our data with the thresholds that can be calculated:

• locally - with new computation for each 30-minute file;
• longitudinally - with a single computation for each recording (i.e., several hours);
• generally - with a single computation for all recordings.

We decided to use the first strategy with local thresholds because the sound contents are
very variable within a single long recording (several hours) and especially between different
recordings/babies with distinct configurations. For example, newborns in incubators require
a lot of assistance and the sound environment can be disturbed by noisy machines (such as
ventilators, heaters, ...) while the surroundings of infants in a regular cradle can be very quiet.

Therefore, since Otsu’s method is sensitive to the environmental audio content (based on the
fact that thresholds are computed over the signal energy values distribution), it was decided
to compute local thresholds to ensure crying detection in any acoustical context. In practice,
the method applied to our data consists in computing the short-time energy vector and Otsu’s
thresholds for each 30-minutes file.

The signal resulting from the segmentation process for a 23-second noisy audio signal is illus-
trated in Figure 3.5 with the different sound sources occurring in the recording. We can observe
that some extracted segments are very long (e.g., more than 5 seconds).

Figure 3.5: Sound segments resulting from the segmentation process for a 23-second noisy
audio signal represented on its original time axis.

Indeed, the deployment of the method proposed by Orlandi et al. on the Digi-NewB database
resulted in issues related to i) a poor boundaries (i.e., initial and final points) detection in different
cases as well as ii) the replication of the method. Both subjects are addressed in the following
sections.

58 Chapter 3 • Audio-Video segmentation



Issues related to poor boundaries detection

After applying the segmentation method on our data, we noticed several errors in the detection
of the initial and final points in the following three cases:

• First, in the case of crying bout (several consecutive cries) and when the pause between
two cries is very short only one audio segment might be extracted. This is due to the fact
that the energy signal is calculated using sliding windows and that the STE values cannot
decrease. An example is given in Figure 3.6a where the resulting audio segment is a signal
containing a crying bout composed of six cries.

• Then, once again it is worthwhile to remember that the recordings are performed in the
NICU, a routine care environment where many sounds can occur besides infants’ cries (i.e.
alarms, voices, doors, ...). Therefore, it is normal that in such a noisy environment several
sounds mix. Thus, the segments resulting from the segmentation might gathers several
overlapping sounds since once again the STE values cannot decrease. An example is given
in Figure 3.6b where the resulting audio segment is composed of alarm, voice and cry
signals.

(a) Sound segment containing several cry units. (b) Sound segment containing several types of sounds.

Figure 3.6: Examples of extracted sounds poorly segmented and lasting more than 5 seconds.

• At last, some noise sources are activated for long period and considerably influence the
energy value distribution. This case can occur when a ventilation system is used to assist a
newborn in an incubator. The machine produces a constant background noise that is ran-
domly turned on and off during the whole recording. Impacting the energy value distribution
can lead to the detection of very long sound events matching the ventilator activation. In
that case, the extracted sound events can last several seconds or more.
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Issues with replication

In addition, we faced a problem when reproducing step 4 of Orlandi’s method (see Section 3.3.1).
Indeed, in this step, the authors propose to adjust the thresholds in particular with the help of a
ratio using the minimum of the energy. According to them, this step is used to guarantee that TU

is above the minimum. However, in our case, the minimum of energy is very small, with values
close to zero. Therefore, we have not implemented this step in the replication.

In fact, this type of step is necessary when processing signals containing very few sound events,
because the majority of the energy values are located in the low amplitudes. Thus, the thresholds,
which are computed on the data distribution, do not allow to separate the few sounds from the
background noise.

The case of a signal extracted from a recording containing very few sound events is illustrated in
Figures 3.7. On the left image, we can see the histogram of energy values that are concentrated
around a small amplitude. If the two thresholds calculated with this distribution are too low to
separate sound from silence, they are sufficient to segment silence (i.e., noise) such as illustrated
in the right picture.

(a) STE histogram with low
energy values.

(b) STE with thresholds. (c) Segmentation vector with many
silence/noise segments are detected.

Figures 3.7: Segmentation example with an extract from a quiet recording. Since few sound
events occur, STE values are mostly located around low amplitude (a) thus, thresholds cannot
help to detect sound events (b) leading instead to the detection of many silences/noises during
the segmentation step (c).

Conversely, the example of a signal extracted from a recording containing many sound events is
illustrated in Figures 3.7. The energy value are spread over the histogram and the two thresholds
allow to separate sound from silence.

Therefore, in the next section we propose improvements so that the method correctly handles
i) the resulting segments of long duration that are likely to be part of the three cases described
above and ii) the recordings that do not contain many sounds.
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(a) STE histogram with
values spread over the

whole range.

(b) STE with thresholds. (c) Segmentation vector with sounds
properly detected from silence.

Figures 3.8: Segmentation examplewith an extract from a recording containing numerous sounds.
In this case, STE values are spread over the whole range (a) thus, thresholds help to detect sound
events (b) that are correctly extracted from the background silence during the segmentation step
(c).

3.3.2 Improvement of the method

Regarding the extracted segments of long duration, we propose a re-segmentation step. Then, in
order to manage sound detection in recordings with little sound content, we introduce a modified
workflow that better takes into account the sound environment thanks to new frequency filters.
Finally, to reduce the amount of data to be processed, we suggest a supplementary step to ignore
recordings containing very few sounds. These three improvements are presented below.

Re-segmentation (RS)

Aswe showed, the segmentation sometimes results in the extraction of long segments containing
several cry units (see Figure 3.6a), overlapping sounds (see Figure 3.6b), or noisy periods. In
order to process these segments efficiently, we propose a re-segmentation step within the final
duration filtering step (see Figure 3.1).

After applying the pre-processing and automatic segmentation steps, the segments of duration
longer than five seconds are identified. For each of them, the corresponding pre-processed signal
is extracted and new local thresholds are computed. These local thresholds are then applied to
the extracted signal to find new initial and final points. Eventually, among the resulting segments,
only those with a duration between 0.25 and 5 seconds are retained. This re-segmentation step
is illustrated in Figure 3.9.

Narrowing STE frequency band (NFB)

To better handle the recordings that do not contain many sounds, we propose to modify the
pre-processing and automatic segmentation steps of the initial workflow by using a double
frequency filter.
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Figure 3.9: Flowchart of the duration filtering step with the re-segmentation procedure for each
segment with duration greater than five seconds.

The idea is to filter at the same time the original signals in two different frequency bands:

• the first one is based on the default frequency band used by Orlandi et al. [1]: 50-1000 Hz
which is a proper band to consider the surrounding sounds such as human voice and low
pitch noises.

• the second band-pass is set between 200 and 1000 Hz, which is a reasonable frequency
band where an infant can be expected to cry [28].

Once both signals are pre-processed, the two thresholds can be computed between 50 and
1000 Hz to be more sensitive to the acoustical environment. However, the short-time energy on
which the thresholds are applied is computed on the signal filtered between 200 and 1000 Hz.
This strategy allows a better segmentation in recordings that do not contain many sounds and
has the advantage to reduce the segment detection to sounds with energy located within the
infant crying frequency band. Therefore, the final workflow is illustrated in Figure 3.10.

Long-term threshold (LTT)

First, to detect variations in sound content in the recordings, we suggest using a threshold T
computed on sliding window of two hours. To do so, T is computed like TU over the concatenation
of 4 ste vectors calculated on the pre-processed signal filtered between 50 and 1000 Hz. Then,
the files with less than 10 intervals detected above this threshold are discarded. This step allows
to reduce the number of resulting segments by ignoring 30-minutes files with very little detected
sound content.
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Figure 3.10: Workflow of the updated segmentation method.

3.4 The use of motion for audio segmentation

It is quite natural to consider that a baby is moving when she/he cries. Indeed crying, which
requires a deep respiratory activity, helps the newborn to communicate discomfort. Thus, both
of these aspects can lead to movement. Studies investigating the correlation between crying
and movement in preterm infants are mostly related to the assessment of the behavioral sleep
stages [29]. The three usual categories are: active sleep, quiet sleep, and wake. According to
a recent study, while the sleep states include reflexive body movements with sobs, sights, and
distressing noises, the wake behavioral state includes high body activity level and crying [30].
Therefore, information about the infant’s movements could be used to reduce the amount of data
to be processed during automated crying analysis.

In addition, Orlandi et al. proposed a contactless system for audio-video infant monitoring (AVIM)
in which both modalities are considered separately [6]. In their study, the motion analysis is
semi-automatic since the user needs to select points to track on the video frame, and automatic
crying analysis is performed after the manual removal of interfering sounds.

In this work, the automatic sound segmentation allows extracting the sounds with energy located
between 200 and 1000 Hz (i.e., crying, adult voices, monitor beeps...) and thanks to the work
of another team of the laboratory, the automatic motion segmentation allows identifying the
intervals of movement and non-movement.
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Therefore, after presenting the video segmentationmethod in the following section, we propose to
use joint audio and video processing to reduce the number of segments to be further processed in
the classification step such as illustrated in Figure 3.11. To our knowledge, it is the first time that
video signals are used for crying segmentation. In practice, it means to collect sound segments
occurring in specific motion segmentation intervals. Nevertheless, in order to evaluate the validity
of this approach, we propose a preliminary study to investigate i) the amount of motion in the
recordings, ii) the sound distribution and iii) the cries distribution.

Figure 3.11: Audio segmentation strategy by extracting sounds occurring within infant’s motion
intervals.

3.4.1 Video segmentation

The video segmentation method was developed during the Digi-NewB project by Cabon et al. [31].
It relies on video analysis to extract different infantmovement states and is based on the following
steps:

1. First, the infant’s movement is calculated by an inter-image difference [31, 32]. An example
of a motion signal is presented in Figure 3.12 with frame samples of the movement states.

Figure 3.12: Example of a motion signal with two sample frames acquired when the infant
is still (left) and in movement (right).
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2. Then, the intervals when the baby is not present in the bed, as well as those including the
presence of adults (parents or caregivers) in the field are automatically excluded. This
essential step is performed thanks to a Deep Learning approach (see [3] for more details).
The different configurations are presented in Figure 3.13.

(a) baby is still. (b) baby is moving. (c) adult is present. (d) baby is absent.

Figure 3.13: Illustration of the possible configurations of images in the recordings. The
intervals corresponding to baby presence such as images (a) and (b) are processed, while
the intervals with adult presence (c) and/or baby absence (d) are excluded.

3. Finally, the movement and non-movement intervals are segmented using an approach
based on a Random Forest classification. To do so, a pre-processing step is applied to clean
the noise within the raw motion signal. Then movement and non-movement intervals are
detected and a synthetic signal is constructed. It is equal to 1 during movement intervals, 0
during non-movement intervals and “NaN” in case of absence of the baby or presence of
adults. A last step allows to eliminate or merge the periods where these intervals are very
short [31]. The segmentation steps are illustrated in Figure 3.14.

Figure 3.14: Illustration of the motion and non-motion interval segmentation steps (from top
to bottom): the raw motion signal, the clean motion signal, the synthetic motion signal resulting
from the segmentation, the final segmented motion signal.
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3.4.2 Database

We selected a set of data representing a large part of the diversity encountered in the project.
Hence, 36 recordings were selected from the Digi-NewB database. They involve 10 girls and 12
boys born between 25+6 and 40+3 GA and recorded between 28+1 and 41+3 PMA.

In total, 243 hours (i.e. 487 audio and 487 video files of 30 minutes) were processed. Recordings
were generally performed overnight periods, between 9:00 PM and 6:00 AM, and lasted about 8
hours each.

Using the audio segmentation method (see Section 3.3.2), 191 533 sound segments were auto-
matically extracted corresponding to 1 day, 10 hours, 26 minutes and 53 seconds duration.

To check the cries distribution within movement, a part of these sound segments was anno-
tated manually. Finally, a total of 4 150 cry segments were identified through human listening,
corresponding to a duration of 1 hour, 18 minutes and 46 seconds.

3.4.3 Motion quantification

First, we quantify the percentage of motion in each recording. To do so, we apply motion seg-
mentation to all 36 video recordings of the 22 infants.

Motion distribution averaged over all recordings is presented in Figure 3.15a and shows that
newborns do not move much (i.e. 11% of time on average) and are mostly immobile (i.e. 53% of
time on average). The remaining time corresponds to intervals where an adult is present or when
the baby is absent from the image.

While the quantity of non-movement and NaN intervals vary greatly between the 36 recordings
(see Figure 3.15b), the movement intervals are steadier and remain lower than 40%.

3.4.4 Sounds within infants’ movement

In this section we consider all the automatically extracted sound segments resulting from the
audio segmentation step and we quantify their distribution within motion segmentation. In
practice, it means that for each sound, we observe the corresponding motion segmentation signal
and consider the sound with the following conditions:

sound is


in motion when motion segmentation equals 1,

in non-motion when motion segmentation equals 0,

in NaN when motion segmentation equals NaN.

(3.2)
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(a) Averaged distribution for the 36 recordings. (b) Overall distribution for the 36 recordings.

Figure 3.15: Distribution of motion segmentation
(including 22 babies, 36 recordings, 191 533 sound segments).

Since audio and video signals have different sampling rates, we have chosen to apply a simple
decision which consists in considering a sound within motion if at least one point of the corre-
sponding motion segmentation is equal to 1 and in the majority category otherwise. Results of
the sound distribution in motion are presented in Figures 3.16.

(a) Sound segment quantity in recordings. (b) All sound segment durations accumulated.

Figures 3.16: Sound segments distribution in motion segmentation
(including 22 babies, 36 recordings, 191 533 sound segments).

The distribution within motion segmentation of sound segments in each recording (Figure 3.16a)
shows that there are generally more sounds extracted in non-motion and NaN intervals (i.e., baby
absence and/or adult presence) than sounds in motion intervals. In addition the quantification of
the accumulated sound durations (Figure 3.16b) show that the extracted sounds appear:
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• in non-motion phase during 40% of the time and should correspond mostly to machine
noises;

• in NaN intervals during 41% of the time which correspond to the baby’s absence and/or
the presence of adults in the image field. It is important to note that in the latter case, it is
normal to observe a significant sound contribution since adults are usually there to take
care of the newborn. Hence sounds occurring in this interval should mostly correspond to
adult voice, cares and newborn cries;

• in motion intervals during 19% of the time and should contains infant cries.

Thus, the purpose of the following section is to assess the cries distribution within motion
segmentation.

3.4.5 Cries within infants’ movement

In this section we consider the 4 150 cries manually identified. In the same way as before we
observe, for each cry, the corresponding motion segmentation signal. Results are presented in
Figure 3.17.

(a) Cries quantity in recordings. (b) All cry durations accumulated.

Figures 3.17: Cries distribution in motion segmentation
(including 22 babies, 36 recordings, 4 150 cries).

The distribution of cries within motion segmentation in each recording (Figure 3.16a) shows that
most of the cries occur in motion and NaN intervals. In addition, according to the quantification
of the accumulated cries duration (Figure 3.17b), cries were included in non-movement intervals
in 12% of the time. Therefore we investigated these recordings and we identified that they were
performed in shared-bedroom or co-bedding configurations (see Section 2.4.1). Hence, some of
the detected cries occurring in non-motion intervals are not produced by the monitored baby but
rather by a neighboring baby.
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Therefore after identifying the recordings matching this condition, we removed them and com-
puted one more time the crying distribution within the motion segmentation. The new results are
presented in Figure 3.18a.

(a) Cries quantity in recordings. (b) All cry durations accumulated.

Figures 3.18: Cries distribution in motion segmentation
(including 12 babies, 17 recordings, 1591 cries).

These new results showed that only few cries occur when the baby is not moving (i.e. less than
1% within the non-movement intervals). After a new investigation, we found that it correspond to
video segmentation errors especially with the detection of non-movement intervals instead of
baby absence intervals.

3.4.6 Discussion

In light of the preliminary study results, we can conclude that cries never occur in the non-motion
intervals. Hence, video segmentation can be used to reduce the amount of signal to be processed.
Indeed, limiting the sound segmentation within motion intervals reduces by 80% the sounds to
be classified afterwards (see Figure 3.16b). However, if it is easy to ignore the non-movement
intervals, special attention should be paid to the NaN intervals.

On the one hand, these data must be analyzed differently depending on the application. When the
goal is to detect asmuch crying as possible, theymust be kept, however, whenmotion information
is required, they can be removed. This is the case in sleep stage estimation [29], where signal
information are combined to define the infants’ sleep states. In this case, the NaN intervals are
unusable anyway for motion analysis, hence, audio processing is not performed during these
intervals either. On the other hand, these intervals correspond to complex data, especially in the
presence of adults. Indeed caring can produce a lot of sounds that may be mixed with the crying.

Hence, in the framework of this work although many cries occur during NaN intervals, we decided
to collect the sounds occurring within motion intervals only. In addition, this strategy can be
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useful to process recordings made in shared-bedrooms since it should limit the detected crying
amount that does not belong to the monitored infant.

In regards to the studied database, considering only infant’s movement intervals would reduce to
19% of the total duration of the sounds automatically segmented. In terms of duration, it means
processing 5 hours instead of the 34 hours initially segmented. Therefore the video segmentation
can be a valuable strategy especially when processing very large database such as the Digi-NewB.

3.5 Evaluation strategy

To assess our segmentationmethod, three 30-minute files weremanually annotated by identifying
the start and end points of all audible sounds and their type (crying or not crying). The proposed
strategy is to perform a comparison between cries manually identified and the sound segments
derived from the automatic segmentation methods.

To perform such a comparison, two detection signals are created for both cases: manual and
automatic. Designed with the audio recording sampling rate (i.e., 24 kHz), these signals are filled
with 0 and 1 values such as:

detection signal =


1

within manual annotations (cries) or
audio automatic segmentation (sounds),

0 otherwise (silence).
(3.3)

The annotated cries and segmented sounds are compared in terms of segment quantities and
durations. Moreover, for consistency with the method, annotated segments with a duration lower
than 0.25 second and greater than 5 seconds are not taken into account. The parameters used
to evaluate the segmentation are described hereafter.

3.5.1 Segment comparison

To compare the manual annotation and the automatic segmentation in terms of segment quantity
we define four segment parameters, which are illustrated in Figure 3.19.

Figure 3.19: Illustration of the segments comparison parameters.

For each manually annotated segment, we evaluate the corresponding automatic detection
signal. When at least 50% of the manual annotation samples are equal to 1 within the automatic
segmentation signal, the audio segment is considered detected, otherwise it is not.
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• True Positive Annotations (TPM): the number of annotated segments overlapping one or
more segment detected by the segmentation,

• False Negative (FN): the number of segments annotated but not detected.

The same process is symmetrically repeated for the segments resulting from the automatic
segmentation. In that case, a segment is considered detected when at least 50% of the samples
within the annotated detection signal are equal to 1, otherwise not.

• True Positive Segmentation (TPA): the number of detected segments overlapping one or
more annotated segment,

• False Positive (FP): the number of segments detected but not annotated.

Based on the previously defined segment parameters, we can describe the segmentation method
performance through the sensibility and precision, defined as:

• Sensibility (S): percentage of annotated segments that have been detected through segmen-
tation. It answers the question: “How much of the annotated segments were detected?”:

S = TPM
TPM + FN

(3.4)

• Precision (P): percentage of segmented sounds that are actual annotated cries. It answers
the question: “How much of the extracted segments are really cries?”:

P = TPA
TPA + FP

(3.5)

3.5.2 Duration comparison

Manual annotation and automatic segmentation are compared in terms of duration through three
parameters, which are illustrated in Figure 3.20 and defined as:

• ∆M - the manual annotation total time;

• ∆A - the total time of segments resulting from the automatic segmentation.

• ∆M∩A - the total manual and automatic segmentations overlapping time.

Figure 3.20: Illustration of the duration comparison parameters.
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The total annotation or segmentation time is obtained by counting the number of samples equal
to 1 in each detection signal while the overlapping time is computed by counting the number of
samples equal to 2 in the signal resulting from the two detection signals summation. Then the
length of the detected samples is converted to duration using the sampling frequency.

Once again, the segmentation method performance are assess in terms of sensibility and preci-
sion, defined for durations as:

• Sensibility (∆S): percentage of cries detected through the automatic segmentation:

S = ∆M∩A
∆M

(3.6)

• Precision (∆P): percentage of segmented sounds that are actual annotated cries:

P = ∆M∩A
∆A

(3.7)

3.6 Results

In this section, we deploy our segmentation method on three 30-minute audio files. After a
description of the database, we evaluate the various improvements brought to the method initially
proposed by Orlandi et al. [1] thanks to the parameters defined previously.

3.6.1 Database

To observe and evaluate the performance of this segmentation method, three 30-minute files
were manually annotated using the Audacity software (see Section 2.4.3 for exhaustive acoustic
environment annotations). The start- and end-points of each audible cry event in the soundtrack
were identified and the annotation boundaries were set at the point where the cries could no longer
be heard. It is worthwhile to remind that only cry annotations whose duration is between 0.25
and 5 seconds are considered to be consistent with the segments derived from the automatic
methods.

The three 30-minute sound files were selected from a 20-hour recording made for one baby 1.
These files were selected for their sound event variety and show once again the acoustic environ-
ment variability in a single recording:

• WAV 1 - 01h25 - 23 sounds (0 cries and 23 non-cries);
• WAV 2 - 21h25 - 409 sounds (155 cries and 254 non-cries);
• WAV 3 - 21h55 - 1161 sounds (776 cries and 385 non-cries).

1. i.e., baby 010075 recorded during night time the 2018-02-20.
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In the following, we propose to review the results derived from the different improvements
provided to the reproduction of the method proposed by Orlandi et al. as well as the results
derived from the proposed audio-video segmentation.

The results of the three annotated 30-minute WAV files processed by all steps and methods are
presented in the Table 3.1 in terms of segment and the Table 3.2 in terms of duration.

The results are presented according to the methods used, whose acronyms are given below:

• REP: reproduction of the method proposed by Orlandi et al.;

• NFB: results obtained after applying the Narrowing Frequency Band solution;

• NFB+RS: results obtained after applying both, the Narrowing Frequency Band and Re-
Segmentation solutions.

• LTT: results obtained after identifying audio files with enough sound content. True if more
than 10 sounds are detected above the threshold T calculated over two-hour slidingwindows,
false otherwise.

• AV: results obtained with the proposed enhancements (i.e., NFB+RS+LTT) and after collect-
ing the sounds included in infants’ motion intervals only.

3.6.2 Audio segmentation improvements evaluation

Reproduction of Orlandi’s method

With these results, we can justify the remarks made earlier in Section 3.3.1 when discussing the
issues encountered when applying the reproduction of Orlandi et al. method on our data.

First, we saw that Otsu’s method does not work on recordings containing few sound events and
no cry. This issue is illustrated by processing the file WAV 1 whose audio content is poor and
where no less than 1977 segments are extracted.

Then, what can also be observed is the difference between the quantity of manually annotated
cries and the number of segments resulting from the automatic segmentation. In the case of the
WAV 3 file we can notice that 707 cries are automatically detected (TPM) by the segmentation (out
of the 776 that were manually annotated), however only 591 segments are extracted (TPA). This
means that the method gathers sounds in the resulting segments (i.e., 1 automatically extracted
segment = n annotated segments).
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REP NFB NFB+RS LTT AV
TPM - - - -

WAV 1 - 01h25 FN - - - -

ncries = 0 TPA - - - false -
nnon-cries = 23 FP 1977 23 23 0

TOTAL 1977 23 23 0
S - - - -
P - - - -

TPM 118 109 109 107
WAV 2 - 21h25 FN 37 46 46 48

ncries = 155 TPA 121 114 114 true 112
nnon-cries = 254 FP 100 55 55 48

TOTAL 221 169 169 160
S 76% 70% 70% 69%
P 54% 67% 67% 70%

TPM 707 706 706 571
WAV 3 - 21h55 FN 70 70 70 205

ncries = 776 TPA 591 621 638 true 466
nnon-cries = 385 FP 42 42 42 31

TOTAL 633 663 680 497
S 91% 91% 91% 74%
P 93% 94% 94% 94%

Table 3.1: Segmentation comparison in terms of segments quantity.

REP NFB NFB+RS LTT AV
∆M 0

WAV 1 - 01h25

∆A 897.81 9.69 9.69 false 0
∆M∩A - - - -

∆S - - - -
∆P - - - -
∆M 106.51

WAV 2 - 21h25

∆A 131.77 101.86 101.86 true 97.36
∆M∩A 74.56 73.17 73.17 71.60

∆S 70% 69% 69% 67%
∆P 57% 72% 72% 74%

WAV 3 - 21h55

∆M 716.57
∆A 670.40 659.40 656.34 true 477.91

∆M∩A 620.80 620.80 618.81 447.99
∆S 87% 87% 86% 63%
∆P 92% 94% 94% 94%

Table 3.2: Sound segment durations comparison (in seconds).
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Narrowing Frequency Band (NFB) improvement

As mentioned before, this step improves the threshold computation and helps to better take into
account the acoustical environment. Its impact on the three files is detailed below.

• In WAV 1: the number of false detections (which are mostly noise) particularly decreased.
Indeed, this step allows extracting 23 segments instead of the 1977 ones extracted with the
reproduction method. In terms of duration, it is a matter of extracting 9.69 s instead of the
897.81 s previously extracted.

• In WAV 2: the number of detected segments that are not cries diminished (i.e., FP decreased
from 100 to 55 segments). Moreover, we can also notice that the number of detected cries
has slightly decreased without impacting the total duration of the extracted cries (i.e., ∆S

decreased from 70% to 69%).

• In WAV 3: the number of extracted segment increased (i.e., TPA increased from 591 to 621
segments) without impacting the sensibility).

Re-Segmentation (RS) improvement

The re-segmentation step is applied to the resulting segments obtained through the NFB method.
First, we saw in section Section 2.4.3 that the annotated cries did not last more than a few
seconds (see Figure 2.17). Then, we showed some issues related to the poor segmentation of cry
bouts (several consecutive cries) and mixed sounds. Therefore, this is why the re-segmentation
step proposes to re-cut the detected segments whose duration is longer than five seconds.

This step allows both to normalize the extracted segment duration and to better segment the
sound events. This can be noticed with the WAV 3 file for which the amount of automatically
extracted crying segments increased (i.e., TPA increased from 621 to 638 segments) without
affecting the total duration of the extracted cries (i.e., ∆S decreased from 87% to 86%).

Long-term threshold (LTT)

As a reminder, we proposed to use this step to reduce the amount of data to be processed by
ignoring recordings containing very few sounds.

In order to illustrate this procedure, we computed the thresholds for all 30-minute audio files
of the recording performed on baby 010075 (i.e., 40 files). They are presented in Figure 3.21a.
First, one can see the considerable variability with TU, represented in grey, and TL represented
in red. These variations are due to the signal energy value distribution related to the acoustic
environment. Thus, files containing minimal audio content have low thresholds (e.g., WAV 1) while
files containing many sounds have higher thresholds (e.g., WAV 2 & WAV 3).
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Then, to be able to detect WAV files with poor acoustic content, we suggested to use a sliding
threshold T computed over up to a two-hour window. This threshold is illustrated with the black
line in Figure 3.21b and we can note that it varies less abruptly than the TU and TL thresholds.
Then, for each audio file, the number of intervals whose STE values exceed the corresponding
threshold level T is estimated (such as performed to detect sound event intervals with STE values
over TU. Files with less than 10 intervals are represented by dots while the others are represented
by squares. In this 20-hour recording example, seven WAV files are detected as files with minimal
audio content (such as WAV 1) and 33 are further processed through the segmentation (such
as WAV 2 and WAV 3). The three annotated WAV files used in this study are highlighted in blue.
Therefore, when considering the whole recording including 40 WAV files (i.e., 14 166 sounds
extracted with NFB+RS), the Long-term threshold step helps to reduce the file quantity to be
processed to 33 (i.e., 11 435 sounds extracted with NFB+RS+LTT).

(a) Upper (grey) and lower (red) thresholds.

(b) Illustration of the sliding threshold T computed up to two-hours window depicted by the black line.
Files containing less than 10 energy intervals above T are discarded (black squares), while the others are
processed (black dots).

Figure 3.21: Thresholds computed for every 30-minute files over a 20-hours recording1. The three anno-
tated WAV files used in this study are highlighted in blue.

It should be mentioned that this step is presented in this results section after the NFB and RS
steps to show the interest of these improvements on the three annotated files. However, in the
processing chain it is applied before these steps.
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Audio-Video segmentation

Regarding the results derived from the complete audio-video segmentation by collecting only the
sounds occurring in infants’ motion intervals, we can see that it reduced the number of extracted
segments to be further processed without seriously affecting the total duration of the extracted
cries. Indeed, when comparing the REP step with the AV step, we can see that the sensibility
decreased in both files (i.e., ∆S diminished from 70% to 67% for WAV 2 and from 87% to 63% for
WAV 3) while the precision increased (i.e., ∆P increased from 57% to 74% for WAV 2 and from 92%
to 94% for WAV 3).

We remind that it is normal that the sensitivity (i.e., the number of extracted cries) decreases since
we do not collect sounds contained in NaN intervals (i.e., adult presence and/or baby absence) in
which cries can occur.

3.7 Conclusion

We have seen that most of the studies conducted in the literature concern recordings made in
specific, non-noisy environments. Thus, the usual pre-processing step called "cry segmentation"
cannot be used in our case since the recordings studied contain many other sounds than infant
cries. This is due to the NICU environment which hosts care activities and machines required to
help premature or sick newborns. Therefore, we proposed a two-step crying extraction method.
While the first step segment all the sounds occurring in the signal, the second step will classify
the extracted sounds and detect those containing crying.

In this chapter, we have presented the first step, which allows extracting sounds from background
noise. This approach is based on the one originally proposed by Orlandi et al. in [1] and improve-
ments were proposed to better process our database. Thus, after removing 30-minute audio file
containing a poor audio content, we included a frequency filtering as well as a re-segmentation
steps. These enhancements were applied consecutively to three different 30-minute annotated
files and we compared the results in terms of segment and duration. We showed that the method
is relevant for cry extraction and also helps to reduce the amount of data to be further processed
(i.e., sensibility greater than 60% and precision greater than 70%).

Finally, since motion segmentation was also performed during the European Digi-NewB project,
we proposed to extract exclusively the sounds occurring within infant’s movements intervals.
The relevance of this strategy, which naturally suggests that a baby is moving when crying, was
confirmed in a preliminary study with an evaluation on a large database including 243 hours
from 36 recordings of 22 newborns (see Section 3.4). First, we showed that infants are most of
the time immobile (i.e., 53% on average) and that they don’t cry during those periods. However,
the cries may be produced in motion intervals or in intervals with adult presence and/or baby
absence. However, in the latter case, it is more complicated to process the audio recordings since
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it correspond to care periods in which many other sounds are produced. Yet, to minimize and
facilitate at most the process, we decided limit the audio segmentation within motion intervals.
Considering the studied database, this strategy led to discarding 87% of the sound segment total
duration initially extracted.

The use of motion for audio segmentation is however not a mandatory step and has some
limitations due to interval detection errors. Nevertheless, this strategy was never performed
before and seems relevant for our data processing.

At this stage, all sounds whose energy is included in the newborn’s fundamental frequency
band are extracted. Thus, the next step consists in classifying these sounds to detect those
containing cries. This is the purpose of the following chapter which proposes a binary classifier
by a Deep-Learning approach using spectrograms.
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APPENDIX A - OTSU’S METHOD

Otsu’s thresholding concept is coming from image processing and is used to binarize an image based
on pixel intensities. In other words, it manages to convert an image composed of several gray levels into
black and white, such as illustrated in Figure 3.22.

(a) Before. (b) After.

Figure 3.22: Otsu’s method application.

To do so, the algorithm assumes that the picture is composed of two classes and tries separating the
foreground pixels from the background ones. The optimal threshold is determined by minimizing intra-
class intensity variance (defined as a weighted sum of the two classes’ variances) or equivalently, by
maximizing inter-class variance σ2

B defined as:

σ2
B(t) = ω0(t)ω1(t) [µ0(t) − µ1(t)]2

where weights ω0 and ω1 are the two class probabilities and µ0 and µ1 are the means of these classes
separated by the threshold t.

Therefore, by computing iteratively inter-class variance through all possible thresholds based on the im-
age pixel distribution (i.e., histogram), it is possible to determine the optimal threshold located where the
inter-class variance is maximum, see Figure 3.23.

Figure 3.23: Optimal threshold computation through Otsu’s method.

Computed with a recursion relation it permits fast calculation and gives an effective algorithm with the
advantage of reduced processing time.

Since the procedure to determine an optimal threshold based on the global histogramproperties is simple,
automatic, and stable, the method was implemented for mono sound signals in [1].
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Classification for cry detection

Chapter

4

4.1 Introduction

The previous chapter has demonstrated that the audio segmentation is not sufficient to extract
cries in recordings performed in a noisy environment such as the NICU. Whatever the efficiency
of the segmentation step, due to the real context with many sound sources, the resulting audio
segments are not just crying but also voices, alarms, etc. Therefore, it is of great interest to
classify the segments derived from the previous chapter to detect the ones containing cries.

In this chapter, we propose a framework based on a feature learning scheme powered by a
pre-trained discriminative Convolution Neural Network (CNN) using spectrograms. After a review
of the state of the art of methods investigated in the literature, we present the main components
of the proposed framework. Then, we introduce our two-step training strategy to fine-tune some
of the model hyperparameters. Finally, since supervised neural network approaches expect
dedicated training and testing sets of annotated data, we introduce the annotation software
created to design such a database.

4.2 State of the art

As mentioned in Chapter 1, studies have shown that important information related to infant
health status, emotions, and needs can be interpreted by analyzing the acoustics of infant crying.
Therefore, in the last decades, many studies have focused on the detection or classification of
infant vocalizations. In fact, the different approaches can be divided into four categories which
are described below.
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• Pathology detectionwhich is a binary classification task where a cry is classified as normal
or pathological [1, 2].

• Pathology identification which aims to determine the type of pathology the infant is suffer-
ing from. It has been used, for example to detect deaf newborns [1, 3, 4], those who have
suffered from perinatal asphyxia [5], both conditions [6, 7], hypothyroidism [8, 9] or even
cleft palate [10].

• Crying cause identification which aims to discover the reason that triggered the cry, for
example, hunger, pain, sleep, or many other causes [11–15].

• Crying detection which consists in identifying crying in the signal, either by determining the
temporal limits of vocalization when processing the entire audio signal or by determining
the presence of crying in segmented sounds.

In this work, we are interested in this last applicationwhere the goal is to detect the infant cry signal
efficiently and accurately in a noisy environment. Studies that address this topic investigated data
recorded over a long time, either at home to develop systems to detect crying and alert parents
[16–20] or in hospital. In the latter case, crying detection is performed to investigate infants’
reaction to auditory stimuli of the NICU environment [21], to quantify the amount of time an infant
cries [22] or to serve as a pre-processing stage for deeper analysis (i.e., related to pathology or
cause identification) [23–27].

A cry detection system is usually composed of two steps: i) a pre-processing step that extracts
the most suitable features from sound signals and ii) a classifier to recognize the cry features in
an audio signal. This section provides an overview of existing feature extraction methods and
classification strategies (see [28] for an extensive review).

4.2.1 Feature extraction

The challenge in cry detection systems is to select acoustic features that allow clear discrimi-
nation between a cry and other sounds. As mentioned in Chapter 1, the acoustic and prosodic
characteristics of crying signals are often studied in time and frequency domains. However, it is
the combination of the two, i.e., the time-frequency, that is most interesting. This domain involves
dividing the sound signals into several small chunks called frames and constructing a feature
vector for each frame. Thus, it allows following the variations of the frequency characteristics
of the signal as a function of time. The most commonly used features are cepstral coefficients
(MFCCs and LPCCs), wavelet transforms and Fourier transforms (illustrated in Figure 4.1).

Cepstral coefficients are widely used in the literature for audio signal processing and are rec-
ognized as performing well for tasks such as speech recognition or music genre classification.
In particular, MFCCs represent the short-term power spectrum of an audio clip based on the
discrete cosine transform of the logarithmic power spectrum on a non-linear Mel scale.
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(a) FFT Spectrogram. (b) Mel-filterbank energy features.

Figure 4.1: Illustration of the usual audio features used in sound classification methods. In both
examples, four cry harmonic sequences are separated by unvoiced breath of the baby which
produces noisy-like sounds in the lower frequency.

Thus, the frequency bands are equally spaced on the mel scale, which very closely mimics the
human auditory system, making MFCCs a key feature in various audio crying detection systems,
especially when associated with either the Mel-filter bank [16, 17, 19, 22, 24–26] or linear-filter
bank [18]. For their part, Abou-Abbas et al. proposed a solutionwith empiricalmode decomposition
and MFCCs associated with Mel-filter bank [23], while a previous work of our team proposed
harmonic plus noise modeling before computing MFCCs and associated them with temporal
parameters and modeling parameters. The feature set dimensionality was then reduced using
principal component analysis [27].

Otherwise many studies were based on Fourier transforms. Indeed, spectrograms are commonly
used to represent the whole audio signal spectral decomposition over time. More precisely, a
spectrogram is a two-dimensional image in which the x-axis represents time and the y-axis
represents frequency. Depending on the brightness of the image, we can observe the energy
level of different frequencies as a function of time. Thus the brighter an area is, the more excited
the corresponding frequency at that time. In particular, spectrograms were used for infant cry
classification [12, 14, 15], infant cry detection [20], infant speech recognition [13], and also in
other domains such as bird species identification [29, 30], or even in speech emotion recognition
[31–34].

In both cases, i.e., using MFCCs or spectrogram, authors had to calculate the Fourier transform.
Hence, the reported windowing parameter values in the literature are: i) frames of 20 ms with
50% overlap [22, 25, 26]; ii) frames of 25 ms and Hamming window with 50% overlap [24] or
Hanning window [34]; iii) frames of 30 ms with an 10 ms step [21] or a 21 ms overlap [23]; iv) other
parameter such as frames of 23.2 ms and 50% overlapping with Hamming windows [21], frames
of 32 ms with 50% overlap [17] and frames of 1.5 s with 0.5 s overlap [18]. Therefore, there is no
consensus about the window parameters to use when computing the Fourier Transform to date.

4.2. State of the art 85



4.2.2 Classification methods

As mentioned, only a few studies have addressed the problem of crying detection in a real-
life context (i.e., home or NICU) and all of them propose different solutions. Some authors
investigated traditional machines learning methods such as hidden Markov model [21], Gaussian
mixture model [24], a combination of both [23] or even K-nearest neighbor [27]. In recent years,
much research on deep learning has been conducted in image and speech recognition with
results sometimes surpassing classical methods. Thus, researchers suggested neural network
algorithms based on Convolutional Neural Network (CNN) [15–20] or proposed their own deep
neural network architecture [22, 25, 26].

Although the reported results appear reliable, strong limitations regarding the representativeness
of the training and assessment datasets prevent them from being considered sufficiently robust
for deployment in the clinic [15]. Indeed, recordings can be severely affected by various sound
sources from the surroundings, in particular in the NICU where those sounds are very diversified
due to the type of room/bed and the required medical equipment [35]. Hence, the previous studies
have worked with limited short audio recordings, recording environments, and ranges of neonatal
PMA and GA. To overcome the lack of real-world recorded data, Ferretti et al. generated simulated
data to improve their deep neural network training model [22]. However, the solution remains
limited, since only one room was simulated and the final model was tested on only a few 30-
second sequences of real-world data from a single newborn. Furthermore, in the previous work
of our team, although a wide variety of real-world sounds were included, limitations regarding the
ability of our approach to characterize high-frequency sounds were raised [27].

Thus, a method that takes into account all NICU challenges has yet to be proposed. Such a
solution will provide a robust continuous monitoring tool to improve newborn health care through
crying analysis.

4.2.3 Evaluation metrics

Performance evaluation is an important aspect of the machine learning process. Metrics are
mandatory to compare the results of the different trained models. Moreover, depending on the
classification objectives, attention may be focused on different metrics. Therefore, in this section,
we review the ones used later in this chapter to assess the model performance. While some of
the definitions have already been described in Chapter 3, they are reported here in the context
of a binary classification for the purpose of cry detection (i.e., the two classes being cry and
non-cry).

CONFUSION MATRIX - is a very practical tool used to present the performance of a supervised
learning algorithm. It quantifies the number of correct and incorrect classifications by comparing
predictions to actual labels. A confusion matrix for a binary classifier is reported in Table 4.1. It

86 Chapter 4 • Classification for cry detection



is composed of four numbers described hereafter.

• True Positive (TP): number of samples accurately predicted as cry;
• True Negative (TN): number of samples accurately predicted as non-cry;
• False Positive (FP): number of samples predicted as cry instead of non-cry;
• False Negative (FN): number of samples predicted as non-cry instead of cry.

All of the following evaluation parameters are calculated based on the confusion matrix and their
values are between 0 (i.e., worst) and 1 (i.e., perfect).

PREDICTIONS

cry non-cry

ACTUAL
cry True Positive False Negative

non-cry False Positive True Negative

Table 4.1: Confusion matrix for a binary classifier.

SENSITIVITY (Se) OR RECALL (R) describes how well cry sounds were classified as cry. It answers
the question: “How much of the actual cries were correctly classified ?”:

Se = TP
TP + FN

(4.1)

SPECIfiCITY (Sp) describes how well actual non-cry sounds were correctly classified as non-cry. It
answers the question: "How much non-cry sounds were correctly classified ?”:

Sp = TN
TN + FP

(4.2)

BALANCED ACCURACY (BAcc) describes how good the classifier is in predicting if a sound belongs
to the cry or non-cry class. It is especially useful when the classes are unbalanced and it is
computed as the arithmetic mean of the two previous metrics:

BAcc = Se + Sp

2
(4.3)

PRECISION (P) describes how well sounds detected as cry were actual cries. It answers the
question: "How mush of non-cry is classified as cry?":

P = TP
TP + FP

(4.4)

F1-SCORE (F1) describes also how good the classifier is in predicting if a sound belongs to the cry
or non-cry class. It is computed as the harmonic mean of the model’s precision and recall.

F1 = 2 × P × R
P + R

(4.5)

4.2. State of the art 87



4.3 Proposed method

In this work, we propose an infant cry detector using a framework based on a feature learn-
ing scheme powered by a pre-trained discriminative CNN using spectrograms. The latter are
computed on sounds collected in the NICU and derived from the segmentation method (see
Chapter 3). Thus to identify cries in all the resulting audio segments we chose the spectrogram
feature for its efficiency to represent a wide spectral decomposition in time. The final framework is
a binary classifier composed of the two classes: cry and non-cry. The classification is performed
in four steps illustrated in Figure 4.2 and described hereafter:

• for each extracted sound, the spectrogram is computed by a short term Fourier transform;

• since the extracted sounds have variable durations, the resulting spectrogram is cut into
frames of the same duration;

• these images are used in the input of a convolutional neural network;

• for each initial extracted sound, the decision taken is the majority prediction on all the
images.

Figure 4.2: Binary cry classification framework based on CNN using spectrograms.

4.3.1 Spectrogram computation

First, spectrograms were computed for each sound file using Short-Time Fourier Transform
(STFT) of successive 0.04 ms long (1000 samples) Hamming-windowed frames with 95% overlap.
Since signals have a sample rate of 24 kHz, the configuration provides a frequency resolution
of 23.4 Hz (ranging from 0 to 12 kHz) and a time resolution of 4.2 ms (illustrated in Figure 4.3).
To have a good image contrast, the magnitude of the spectrogram is converted to a logarithmic
scale and an image quantization of 256 levels is performed on a fixed colormap.

Then, the spectrograms were divided into several smaller spectrograms of the same size with
a 50% overlap such as proposed in speech emotion recognition in [31]. We named a small
spectrogram: frame and the set of small spectrograms extracted from the big one: frame group.
Therefore, the number of frames depends on the cry duration. Before the split, the frame group is
centered on the spectrogram since the acoustic characteristics are generally more interesting in
the middle of it.
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Figure 4.3: Resulting spectrogram with temporal and frequency resolutions for cry unit sampled
at 24kHz.

This spectrogram division serves two purposes, on the one hand, it normalizes the size of the
images at the input of the CNN (since the sounds all have different durations), on the other
hand, it increases the number of spectrograms which allows us to design a powerful model. The
spectrogram division process is illustrated with 0.20-second duration frames by a scheme of
the frame group centered in Figure 4.4a and by the resulting frames numbered in Figure 4.4b.
Finally, each frame is saved with a resolution of 224x224 pixels with three channels (RGB).

(a) Resulting frames. (b) Resulting frames.

Figure 4.4: Illustration of the spectrogram division process with 0.20s duration frames.

Since there is no consensus in the literature about the Fourier Transform windowing parameters,
we decided to explore the spectrogram division with two different frame durations:

• 0.20 s which corresponds to the most common value found in the literature (see Sec-
tion 4.2.1).

• 0.25 s which is the minimum duration of the sound segments resulting from the segmenta-
tion (see Chapter 3).
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4.3.2 Transfer learning using ResNet architectures

Image classification tasks have seen breakthroughs in terms of performance, thanks to the
rise of CNN. These networks are composed of a sequence of filters on the raw pixel data of an
image to extract and learn high-level features. The analysis of the visual field is done through
a set of overlapping sub-regions, this is called convolutional processing. The model then uses
the extracted features to perform classification. The three main components of a CNN are
convolutional, pooling, and fully connected layers. These layers are usually arranged in the form
of a hierarchy where one can use any number of convolutional layers followed by pooling layers
and at the end fully-connected layers. This type of architecture is defined by the number of layers
in each component as well as the connections between them. For its part, the ResNet architecture
was firstly proposed in 2015 to overcome the issues encountered when using a large number of
layers [36]. Indeed, it solved the problem of the vanishing gradient by introducing the concept
called Residual Network (ResNet). This technique, which allows skipping connections of a few
layers, showed convincing performance in many computer vision applications and is now widely
used for image classification.

In light of the ResNet performance, we decided to perform learning by transfer. This principle
consists in reusing convolutional neural networks previously trained on a large image database.
Hence, the ResNet weights were pre-trained with ImageNet to initialize the classification model
[37]. Then weights are optimized to our task (i.e., the crying vs. non-crying classification), by
performing a new training through the last fully-connected layer. In our case, this step aims to
minimize the cross-entropy loss associated with a class-weighting. In addition, we decided to ex-
plore two network depths using the Resnet18 and Resnet34 architectures illustrated in Figure 4.5.
This approach may appear unusual since it uses natural images to classify sound spectrogram.
However, it should be noted that this particular strategy was used for the identification of crying
cause in [15] and that the strategy itself was experimentally verified in [38].

Figure 4.5: Residual Network or ResNet architectures used in this work. All layers are described
with the convolution kernel, the number of output channels and the stride value except the last
one which is a fully connected layer with one predicted class in output: cry or non-cry.
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The input data for the CNN are the spectrogram images resized to the shape 224x224 pixels.
To adapt the model to our data, some parameters were fixed (see Table 4.2) while the following
parameters have been optimized:

• the spectrogram division with frame durations of 0.20 or 0.25 s ;
• the depth of the neural network through ResNet architectures (i.e., 18 or 34);
• the learning rate : from 10-2 to 10-5.

HYPERPARAMETER CHOICE
Cost function cross entropy
Optimization algorithm stochastic gradient descent
Learning rate scheduler standard decay
Momentum of the optimizer 0.9
Regularization by weight decay 5.10−5

Regularization by batch learning 16
Number of learning iterations (epoch) 200
Class imbalance management non-cry 0.66, cry 0.33(class weighting according to data distribution, see Section 4.5.1)

Table 4.2: Fixed hyperparameters used to train the last layer of the CNN.

Moreover, since the inputs of the CNN are spectrogram frames, the final sound prediction (Psound)
is computed based on the distribution of the frame predictions (Figure 4.6) such as:

Psound =
{

1 i.e., cry if the frame majority decision is 1 or balanced,
0 i.e., non-cry if the frame majority decision is 0.

(4.6)

To limit the number of calculations, we carried out a two-step parameter optimization strategy
with defined combinations of parameters which are explained in the next section.

Figure 4.6: Sound prediction reconstruction using majority voting.
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4.3.3 Model training

As mentioned above, the parameter optimization was done in two steps. For this purpose, we
defined four combinations grouping the frame duration (i.e., 0.20 and 0.25 s) and network depth
(i.e., ResNet18 and ResNet34) parameters. The four combinations assessed during this model
training steps are given in Table 4.3 with their designations, the step they have been optimized,
as well as their parameter values.

The first training is used to identify the learning rates giving the the highest precision for each
of the four combinations. Then, using these learning rates, the best combination, i.e. the best
model, was identified by 5-folds cross-validation. The best combination is defined with the best
average precision because we want to maximize the number of true positives in the classifier
output (i.e., to ensure that the sounds predicted as cries are actual cries).

BEST CANDIDATE COMBINATIONS fiNAL COMBINATION
COMBINATIONS SELECTION SELECTION

DESIGNATION LEARNING-RATE FRAME DUR. RESNET DEPTH
W020_RESNET18

10−2, 10−3, 10−4, 10−5
0.20s

18
W020_RESNET34 34
W025_RESNET18

0.25s
18

W025_RESNET34 34

Table 4.3: Definition of the assessed combinations.

All models are trained for a maximum of 200 epochs. However, to reduce the calculation time,
three thresholds were set up and the training is automatically stopped when:

• the loss value is not improving for 5 consecutive epochs;
• the differences of the 5 consecutive epochs are less than 10−3.
• the loss value is less than 10−5.

Best candidate combinations selection

This step is used to limit the number of calculations. Therefore, we compare 16 models corre-
sponding to the four defined combination (i.e., frame durations and network depths) trained with
the following learning rates: 10−2, 10−3, 10−4, and 10−5. Through a simple train/validation strategy,
we want to identify, the learning rates associated with the highest precision achieved on the
validation set for each combination (i.e., W020_RESNET18, W020_RESNET34, W025_RESNET18,
and W025_RESNET34). For that purpose, the 16 models are trained with the same train/validation
datasets which are presented later in this chapter.
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Final combination selection

Once the learning rates are identified for each combination, we use 5-folds cross-validation to
select the best model. Cross-validation is the most popular method used to detect problems such
as under- or over-fitting and to ensure the robustness of the model. It is a resampling method
that uses different parts of the data to test and train a model over different iterations.

In our case, the database is re-sampled into 5 folds, which, during iterations, are successively
placed in the train or test sets, the process is depicted in Figure 4.7.

Finally, the cross-validation is performed for the four combinations, and the one resulting with
the least variation in performance and with the highest averaged precision is considered the best
and final model.

Figure 4.7: Illustration of the 5-folds cross-validation strategy.

4.4 SoundAnnoT: database creation

A convolutional neural network is a supervised type of Deep learning algorithm which means
that annotated data are required to train and validate the model. In this section, we present the
SoundAnnot software 1 that we specifically designed for annotating sound segments to create a
training database for our network.

Thanks to SoundAnnoT it is possible to carry out simple and fast annotation of sound segments
derived from the segmentation method with predefined labels. Annotations are performed only
one time for each sound segment by a human through hearing and visual inspection of audios.
Initially created to simplify the process of annotating sound events, SoundAnnot was then de-
signed to allow non-expert users to handle it. Based on MATLAB software, it requires version
R2018a or later ones. The main interface is depicted in Figure 4.8.

1. SoundAnnoT - IDDN.FR.001.020001.000.S.P.2021.000.31230
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Figure 4.8: SoundAnnoT user-friendly interface.

4.4.1 Interface

The software is composed of two main panels with the left one related to the audio information
while the right one is dedicated to the annotations. In particular, SoundAnnoT is composed of the
following components:

1. an audio player for listening to the current sound and navigating within the previous annota-
tions (see Figure 4.9);

2. a spectrogram of the sound with a representation of the spectral components between 0
and 5000 Hz as they vary over time, useful for visual support;

3. an annotation panel for label selection of the sound currently played.

Figure 4.9: Functions of the audio player buttons.
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4.4.2 Labels

As we have discussed in the previous chapter, the sound segments resulting from the segmen-
tation step are not just cries but includes also many other sounds which occur in the NICU
environment. Thus, seven labels were defined to annotate sounds including cries, cries with
other sounds, other baby sounds, alarms, other human sounds, other sounds, and mixtures of
non-cry sounds. Detailed descriptions of these categories are given in Table 4.4. Although in this
work we focused on infant crying, annotating subcategories can help to know better the sound
environment and to analyze and understand what leads to incorrect detection.

Hence, the annotation panel is composed of two sub-panels corresponding to the two classes of
the binary classifier:

• upper panel for sounds containing crying (cry) ;
• lower panel for sounds unrelated to crying (non-cry).

LABEL DESCRIPTION

cr
y cry pure cry sound

cry+ cry sound mixed with another sound source: beep, voice, other ...

no
n-
cr
y

baby others sounds produced by the baby: moan, cough, ...

alarms
short usually high-pitched sounds (from health electronic device) that serves as
a signal or warning

voices sounds produced by nurses or parents when talking/whispering

others
sounds produced by none of the previous mentioned categories: care
procedures, tv, door, ...

mixtures mix of non-cry sounds

Table 4.4: Details of predefined labels in SoundAnnoT software.

4.4.3 Annotations

One annotation consists in assigning a label to a sound segment. When clicking on one of the
annotation buttons, the following actions occur:

• the selected label is automatically saved;
• a new sound segment is automatically played and its spectrogram displayed.

In case a mistake has been done in label selection, annotation can be corrected by going back to
the previous audio segment using the previous button in the audio player panel. Corrections are
automatically saved when clicking on the new label.

In addition, when the sound source is not clear and it is difficult to choose the label, it is possible
to click on the "?" button next to the label that seems most relevant. This allows us to take into
account the fact that the annotator doubted while still requiring a label choice.
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4.4.4 User procedure

To annotate a large number of sound segments, SoundAnnoT was provided to 10 non-expert
volunteers who signed a confidentiality agreement. As the users were not familiar with the sounds
occurring in the NICU environment, a procedure was set up (Figure 4.10) to guide them in order
to obtain homogeneous annotations.

The software is composed of a homepage allowing user identification. Thus, any new user needs
to complete a mandatory training phase before starting an official annotation session used to
build the database. These two sessions are described below.

Figure 4.10: SoundAnnoT user procedure diagram.

Training session

The purpose of the training session is to familiarize the user with the software and the sound
environment present in the NICU. When registering for the first time, the user goes through the
following steps:

• a software tutorial, explaining the different components and how to annotate;
• sound samples to listen to for each of the defined label categories;
• the training session in which 100 sounds have already been annotated by an expert.

Once the user has annotated all the sounds, a score page allowing to listen again to the 100
sounds is displayed. Sounds whose annotations differ from the experts are highlighted in red,
yellow, or blue depending on the severity of the error. An example of this page is provided in
Figure 4.11.
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Figure 4.11: Annotation training score page.

Official session

In an official session, the user is invited to annotate consecutively 150 sounds chosen randomly
from the database of unannotated sound segments. Each sound segment is annotated only once,
however, the user can indicate uncertainty by clicking on the "?" button corresponding to the label
that seems the most relevant (see the interface in Figure 4.8.

At any time the user can leave the session which is automatically saved. Once the session is
closed, a statistics page is displayed with the duration and amount of annotations made during
the current session as well as the overview of all previous sessions.

The database annotated thanks to the SoundAnnot software is described with the number of
volunteers, babies, and sounds in the following section.

4.5 Results

This section presents the database annotated with SoundAnnoT software on a population of
infants detailed in the first section. Then the learning strategies recently explained are evaluated.
The first step aims to identify the best combination candidates while the second one aims to
select the best final combination, i.e., the best model according to the averaged sound precision
performance. At last, the chosen model is also assessed on a new cohort of infants never seen
before.
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4.5.1 Annotated data

We selected a dataset representing a large part of the diversity encountered in the framework of
the European project Digi-NewB. Hence, 58 recordings were selected, performed in four hospitals:
Rennes, Angers, Brest, and Tours, in both types of beds: open or close. They involve 20 boys
and 13 girls born between 25+6 and 41+4 GA and recorded between 27+5 and 41+5 PMA. Some
babies were recorded up to four different dates at least 48 hours apart. The data distribution for
all babies is depicted in Figure 4.12 with the dots representing the dates of the recordings used.
In the top part of the figure, all recordings are merged in terms of GA where one can see the lack
of recordings of babies born between 30 and 33 GA, and in terms of PMA where the distribution
is quite homogeneous.

Figure 4.12: Data distribution used for sound annotation.

From each audio recording, sound segments were extracted using the segmentation method
(see Chapter 3). Among the resulting audio segments, a total of 21 340 sounds were annotated
by a cohort of 10 volunteers using the SoundAnnoT software. Therefore sounds were classified
according to the seven labels defined previously in Section 4.4.2. We mention here that sounds
annotated with a doubt "?" were not taken into account in this database to avoid training the
model with false labels.

In addition, for each annotated sound, spectrograms were computed and frames of 0.20 and
0.25 s duration were extracted and saved leading to the construction of two datasets including
respectively 202 137 and 145 827 frames. Each frame was given the same label as the sound
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it was originally extracted from. Thus, the sound and frame databases are detailed in terms of
quantities and percentages according to the seven labels in Table 4.5.

SOUNDS FRAMES 0.20S FRAMES 0.25S
CLASS QTY PERC. QTY PERC. QTY PERC.

cr
y cry 5476 25.66% 58 708 29.04% 42 194 28.93%

cry+ 1533 7.18% 26 238 12.98% 19 244 13.20%

no
n-
cr
y

baby others 573 2.69% 2 051 1.01% 1 385 0.95%
voices 119 0.56% 1 293 0.64% 927 0.64%
alarms 444 2.08% 1 779 0.88% 1 254 0.86%
others 12 476 58.46% 96 185 47.58% 69 042 47.35%

mixtures 719 3.37% 15 883 7.86% 11 781 8.08%

TOTAL 21 340 100.00% 202 137 100.00% 145 827 100.00%

Table 4.5: Sound and frame databases annotated according to seven defined labels.

During the two training steps, we chose to ignore sounds with the cry+ label (i.e., sounds of cries
mixed with other sounds) to derive a confident model trained on pure cries. We believe that this
strategy helps the model to learn the intrinsic cry characteristics. Thus, the binary classifier is
composed of the cry class containing the sounds labeled cry, while the non-cry class merges the
remaining sounds, i.e., those with labels: baby others, voices, alarms, mixtures, and others.

We divided the database into two sets. A training set composed of 30 babies is used to optimize
the models through two training steps and a test set is used to ensure the generalization of the
model. The data distribution of the two classes and the two sets is reported in Table 4.6. In this
table, one can see that there are more sound segments labeled as non-cry than cry. Since the
dataset is imbalanced, we chose to use a weighted argument in the calculation of the cross-
entropy loss with values corresponding to the data distribution, i.e., 0.66 for the non-cry and 0.33
for the cry class (see Table 4.2)..

At last, the best combination is trained on all the data in the training set. Then, the trained model is
deployed on the test set composed of sounds from three babies never seen before. To assess the
good generalization of the model the test is performed twice, first excluding cry+, then including
cries mixed with other sounds. The detailed dataset is also reported in Table 4.6.

4.5.2 Best candidate combinations selection

The selection of the four best combinations is performed using a simple strategy with data
divided into two sets: 29 babies used for the training and 1 baby for the validation. While the
detailed training and validation sets are reported in APPENDIX A, the metric performance (obtained
based on the predictions on sounds resulting from the validation) are detailed for the 16 models
in Table 4.7.
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SOUNDS FRAMES 0.20S FRAMES 0.25S
CLASS QTY PERC. QTY PERC. QTY PERC.

TRAINING SET (N=30)

TR
AI

N cry 4 851 28.46% 53 312 32.68% 38 346 32.61%
non-cry 12 191 71.54% 109 833 67.32% 79 259 67.39%
TOTAL 17 042 100.00% 163 145 100.00% 117 605 100.00%

TEST SET (N=3)

TE
ST

cry 625 20.38% 5 396 29.21% 3 848 30.18%
cry+ 302 9.85% 5 119 27.71% 3 774 29.6

non-cry 2 140 69.78% 7 358 43.08% 5 130 40.23%
TOTAL 3 067 100.00% 18 473 100.00% 12 752 100.00%

TOTAL
20 109 100.00% 181 618 100.00% 130 357 100.00%

Table 4.6: Subsets of the data used in this study.

LR
BALANCED

PRECISION RECALL F1-SCOREACCURACY

0.
20

s Re
sN

et
18 10−2 0.8506 0.8049 0.7500 0.7765

10−3 0.8681 0.8500 0.7727 0.8095
10−4 0.9271 0.8163 0.9091 0.8602
10−5 0.9105 0.8444 0.8636 0.8539

Re
sN

et
34 10−2 0.8135 0.7692 0.6818 0.7229

10−3 0.8506 0.8049 0.7500 0.7765
10−4 0.9157 0.8125 0.8864 0.8478
10−5 0.8983 0.7755 0.8636 0.8172

0.
25

s Re
sN

et
18 10−2 0.8392 0.8000 0.7273 0.7619

10−3 0.8991 0.8409 0.8409 0.8409
10−4 0.9044 0.8085 0.8636 0.8352
10−5 0.9332 0.8511 0.9091 0.8791

Re
sN

et
34 10−2 0.8650 0.8293 0.7727 0.8000

10−3 0.9302 0.8333 0.9091 0.8696
10−4 0.8908 0.8571 0.8182 0.8372
10−5 0.9324 0.7885 0.9318 0.8542

Table 4.7: Performance of the 16 candidate combinations based on sound predictions obtained
on the validation set.
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One can see that the four best candidate combinations with the associated learning rates giving
the highest precision score have also high recall values ranging from 77% up to 90%. The best
combinations retained for the following training step, compared in Figure 4.13, are:

• W020_RESNET18 with a learning rate of 10−3 and a precision of 85%,
• W020_RESNET34 with a learning rate of 10−4 and a precision of 81%,
• W025_RESNET18 with a learning rate of 10−5 and a precision of 85%,
• W025_RESNET34 with a learning rate of 10−4 and a precision of 86%.

Figure 4.13: Performance of the four best candidate combinations based on sound predictions
obtained on the validation set.

4.5.3 Final combination selection

Once the four best candidate combinations are identified, the second step of training is performed
on the cohort of 30 babies divided into 5-folds of six babies. The distribution received particular
attention so that in each set there is a variety of centers, types of beds, PMA, and GA so that
there is a good balance in the amount of available data (APPENDIX B). Results of the averaged
5-fold cross-validation are presented with numerical results in Figure 4.14a and illustrated in
Figure 4.14b.

The model with the highest averaged precision score is the one using the database with spectro-
grams framed over 0.25 s, using a ResNet34 architecture and an initial learning rate of 10−4.

From the results, one can see the high prediction score of 86% meaning most of the sounds
predicted in the cry class were actual cries. Moreover, it can be noticed that the recall value is
also quite good (sensitivity of 81%), which proves that only a few cries will not be detected. Hence,
this model meets our objectives for sound classification since it gives sufficient prediction of
whether a sound belongs to the cry or non-cry class based on the values of balanced accuracy
and f1-score which reach 88% and 83% respectively.
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NETWORK
BALANCED

PRECISION RECALL F1-SCOREACCURACY
W020_RESNET18_LR1E-02 0.87 ± 0.04 0.84 ± 0.07 0.81 ± 0.08 0.82 ± 0.05
W020_RESNET34_LR1E-03 0.87 ± 0.04 0.85 ± 0.07 0.80 ± 0.08 0.82 ± 0.05
W025_RESNET18_LR1E-04 0.86 ± 0.05 0.84 ± 0.08 0.78 ± 0.09 0.80 ± 0.07
W025_RESNET34_LR1E-03 0.88 ± 0.05 0.86 ± 0.07 0.81 ± 0.11 0.83 ± 0.06

(a) Results in numerical values.

(b) Results in barplots.

Figure 4.14: Performance of the 5-folds cross-validation for the four best candidate combinations
based on sound predictions.

4.5.4 Deployment of the final combination

Finally, the selected model is trained on the 30 babies and evaluated on the test set composed
of three new babies. To assess the good generalization of the model, the test is performed
twice. Firstly by excluding cry+ (Table 4.8a) and then by including cries mixed with other sounds
(Table 4.8b). The detailed confusion matrix with all labels and the resulting binary confusion
matrices excluding the cry+ labeled sounds and including them are reported in Section 4.5.4.

Thanks to a training achieved on the full training set (i.e., 30 babies), the results are better than
those of the cross-validation, with 92% precision and 88% recall when cry+ is not taken into
account. These results demonstrate the good ability of the model to generalize when deployed
on new data. As for the deployment with the cries mixed with other sounds, one can see that
the precision increased reaching a score of 95% whereas the sensitivity decreased a little (86%).
These results indicate that the model is relatively good at detecting crying in sounds containing
multiple sound sources.
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BALANCED
PRECISION RECALL F1-SCOREACCURACY

0.9287 0.9242 0.8784 0.9007
(a) Excluding the sound labeled cry+ in the cry class.

BALANCED
PRECISION RECALL F1-SCOREACCURACY

0.9194 0.9466 0.8598 0.9011
(b) Including the sound labeled cry+ in the cry class.

Table 4.8: Performance of the final model on the test set including three babies.

PREDICTIONS
cry non-cry TOTAL

RE
FE

RE
NC

ES

cry 549 76 625
cry+ 248 54 302

baby others 38 97 135
voices 0 26 26
alarms 1 79 80
others 2 1824 1826

mixtures 4 69 73
(a) Detailed confusion matrix with the seven labels.

PREDICTIONS
cry non-cry TOTAL

RE
F. cry 549 76 625

non-cry 45 2095 2140
TOTAL 594 2171 2765
(b) Confusion matrix without cry+.

PREDICTIONS
cry non-cry TOTAL

RE
F. cry 797 130 927

non-cry 45 2095 2140
TOTAL 842 2225 3067

(c) Confusion matrix with cry+.

Table 4.9: Confusion matrix results for the test-set.
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4.6 Conclusion

This chapter was the natural continuation of the previous one focused on segmentation in which
we observed that several sound segments were extracted including cries but also other sounds.
Thus, we proposed in this chapter a classification approach based on deep learning.

To fulfill the objective, we presented the SoundAnnoT software that we created to annotate sound
segments derived from the segmentation step. Thanks to this program, a database was designed
to gather a total of 21 340 sounds annotated according to seven labels. This database was very
useful for the training of the CNN which requires a lot of data to achieve good performance.

This database constitutes the first and quite important result of this chapter as it contains a
large variety of sound events recorded in the NICU in four different hospitals. It offers, to our
knowledge, probably the first large annotated database of sounds and cries acquired in a real
environment.

Moreover, thanks to this database, we assessed the designed cry classifier with different pa-
rameter combinations. Based on the ResNet34 architecture, known to have good performances
in image classification, the final model was trained on spectrograms divided into 0.25 s frame
duration and with an initial learning rate of 10−4. This model gave good validation results. In
addition, its robustness was evaluated through a deployment on a test set composed of three
new babies. Once again, the results showed good performance either when excluding or including
cries mixed with other sounds by reaching up to 94.6% of precision and 85.9% recall, with a
balanced accuracy of 91.9%.

Therefore, our model accuracy achieved equivalent performance to those reported in the literature
(91.1% accuracy in [23], 82.8% F1-score in [24], and 86.6% accuracy-precision score in [22]) and it
is worthwhile to mention that we overcome the given limitations regarding the representativeness
of the training and evaluation datasets thanks to our annotated database. Then, although the
deployments are different, we can notice that we also obtain a higher accuracy (i.e., 95%) than
the previous study conducted by our team which achieved a score of 92.2% [27]. In addition, by
selecting spectrograms with a full frequency band as input to the CNN, we overcame the problem
encountered in the classification of some sounds whose spectral energy was not in the frequency
band considered.

Furthermore, even if the two-step parameter optimization strategy is not very common, it has
proven to be relevant since it avoided the long computation times associated with classical
strategies (e.g., grid search) while obtaining a final model with very good performance. Of course,
it is also thanks to the transfer learning approach that this strategy could be applied. Indeed, as
the ResNet models were already finely optimized, a less greedy optimization could be undertaken.
Having identified that this architecture gives good results, we can consider going further in the
optimization of hyper-parameters to obtain an even more efficient model. For now, ours meets the
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goal to design a robust classifier for deployment in clinics with a good precision score. Indeed,
by ensuring that the sounds predicted as cries are actual cries, we ensure the reliability of the
further cry analyses.
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APPENDIX A - BEST CANDITATE COMBINATIONS SELECTION

SOUNDS FRAMES 0.20S FRAMES 0.25S
CLASS QTY PERC. QTY PERC. QTY PERC.

TRAIN SET (N=29)
cry 4 807 28.56% 52 681 32.77% 37 892 32.69%

non-cry 12 027 71.44% 108 095 67.23% 78 012 67.31%
TOTAL 16 834 100.00% 160 776 100.00% 115 904 100.00%

VALIDATION SET (N=1)
cry 44 21.15% 631 26.64% 454 26.69%

non-cry 164 78.85% 1 738 73.36% 1 247 73.31%
TOTAL 208 100.00% 2 369 100.00% 1 701 100.00%

TOTAL
17 042 100.00% 163 145 100.00% 117 605 100.00%

Table 4.10: Detailed database used during the best candidate combinations selection using a
simple-validation with a train set including 29 babies and a validation set of 1 baby.

LR
BALANCED

SPECIfiCITY RECALL F1-SCOREACCURACY

0.
20

s Re
sn

et
18 10−2 0.8213 0.8385 0.6910 0.7576

10−3 0.8310 0.8558 0.7052 0.7732
10−4 0.8649 0.8390 0.7845 0.8108
10−5 0.8375 0.8460 0.7227 0.7795

Re
sn

et
34

10−2 0.8103 0.8221 0.6735 0.7404
10−3 0.8094 0.8510 0.6609 0.7440
10−4 0.8655 0.8612 0.7765 0.8167
10−5 0.8460 0.8363 0.7448 0.7879

0.
25

s Re
sn

et
18 10−2 0.8255 0.8431 0.6982 0.7639

10−3 0.8578 0.8564 0.7621 0.8065
10−4 0.8510 0.8645 0.7445 0.8000
10−5 0.8485 0.8454 0.7467 0.7930

Re
sn

et
34

10−2 0.8326 0.8541 0.7093 0.7750
10−3 0.8879 0.8472 0.8304 0.8387
10−4 0.8628 0.8722 0.7665 0.8159
10−5 0.8648 0.8396 0.7841 0.8109

Table 4.11: Performance of the classifier for the frame database during the best candidate
combinations selection using a simple-validation on one baby.
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APPENDIX B - fiNAL COMBINATION SELECTION

GA PMA SET CRY NON-CRY TOTAL

SET 1
mean 32+6 mean 36+6 sounds 885 2 142 3 027

s.d 5+1 s.d 3+4 frames (0.20s) 11 774 12 428 24 202
range 27+0-40+3 range 29+6-41+3 frames (0.25s) 8 514 8 512 17 026

SET 2
mean 32+5 mean 32+6 sounds 830 1 978 2 808

s.d 4+3 s.d 4+2 frames (0.20s) 7768 18 208 25 976
range 27+5-39+1 range 28+1-39+2 frames (0.25s) 5 525 13 236 18 761

SET 3
mean 35+3 mean 35+7 sounds 1 094 2 917 4 011

s.d 4+4 s.d 4+3 frames (0.20s) 15 940 38 795 54 735
range 27+5-41+4 range 28+2-41+5 frames (0.25s) 11 633 28 363 39 996

SET 4
mean 30+5 mean 31+3 sounds 993 2 933 3 926

s.d 4+4 s.d 4+1 frames (0.20s) 8 701 15 233 23 934
range 25+6-39+4 range 27+5-39+6 frames (0.25s) 6 179 10 774 16 953

SET 5
mean 33+5 mean 34+3 sounds 1 049 2 221 3 270

s.d 4+4 s.d 4+5 frames (0.20s) 9 129 25 169 34 298
range 29+0-40+3 range 29+0-40+5 frames (0.25s) 6 495 18 374 24 869

Table 4.12: Detailed database used during the final combination selection using a cross-validation
with 5 folds including six babies each.
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Fundamental frequency characterization

Chapter

5

5.1 Introduction

In Chapter 1, we saw that crying is produced by a complex biological phenomenon that is a
combination of neural and physiological mechanisms. Thus, the vocal cords variation or the fun-
damental frequency analysis is particularly interesting since it is intimately related to the infant’s
neurological development. Hence, it is of great interest to develop methods to automatically track
this acoustic parameter to perform infant cry analyses.

This chapter is therefore part of the continuity of our processing chain whose objective is the
automatic analysis of infant crying. Indeed, we present a new fundamental frequency characteri-
zation method to track the main spectral component of infant cries which were automatically
extracted thanks to the methods proposed previously.

After a review of the state of the art, we introduce the automated method based on contour
detection in spectrograms for the tracking of the fundamental frequency. Furthermore, a validation
of the method is carried out by comparing our results with those obtained with the BioVoice
software whose performances were validated on synthetic basic melodic shapes of the newborn
cry [1].

5.2 State of the art

A cry signal is known to be a periodic signal, which is a signal that repeats itself at a specific time
interval called the period. The fundamental frequency is defined as the inverse of this period,
while the harmonic frequencies are defined as integer multiples of F0.

When working with continuous, stable, periodic signals, acoustic analysis can be quite simple.
However, real-world signals, such as speech or infant cries, are not perfectly periodic, which
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makes their analysis more complex. Indeed, due to the intrinsic periodic variations in time, it is
not relevant to characterize these signals with a single frequency parameter. However, according
to the quasi-periodicity assumption, it is possible to assume that these signals are periodic in
very small time frames. Therefore the most common cry characterization consists to track the
frequency components along the cry unit by computing features for each of these frames.

5.2.1 Methods

There are several techniques to solve the problem of fundamental frequency estimation, such as
temporal, spectral, wavelet, and image domain approaches. Below is an overview of the most
common methods used in the field of infant crying analysis.

Time domain

Regarding the time domain, the auto-correlation function is the most largely used method to
estimate the fundamental frequency in cries. It is a measure of self-similarity of a signal in the
time domain when compared to a delayed version of itself. Designed to determine the periodicity
of the signal, it was firstly used in [2] and was then implemented in 2002 in the famous PRAAT
software [3] widely adopted nowadays for the F0 characterization of crying [1, 4–8]. However,
described as hard to manipulate [1], it can require manual correction of the F0 estimation tracking
errors [6]. For their part, Naithani et al. proposed to use the YIN algorithm which is known to be
more robust on quasi periodic signals [9].

Spectral domain

In early studies, frequency feature characterization used to be based on spectrographic analysis
through visual inspection of sound spectrograms [10–15]. Then, through the emergence of com-
puter audio signal processing methods, it has become possible to use automatized estimation
methods. The analysis of a signal in terms of frequency is done thanks to the conversion of the
signal from the time to the frequency domain by using Fourier Transform.

Most of the time, energy features are directly computed from spectrum and peak-picking pro-
cedures were implemented to extract F0 or resonance frequencies [16]. Although simple to
implement, these methods are not suitable for complex cases such as when there is background
noise in the recording or when the harmonics of the cry have a much higher intensity than the
fundamental frequency.

In speech analysis, Long Time Average Spectrum (LTAS) is used for the identification of patho-
logical speech. The calculation of average spectra allows LTAS to eliminate short-term variations
present in the human voice due to the filtering properties of the vocal tract. In particular, it has
been proven that this method provides a good representation of the acoustic signal with minimal
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influence of the vocal tract in order to better distinguish between different types of vocal behavior
in infants, as well as between healthy and unhealthy infants [17–19].

For their part, Varallyay et al. used the smoothed spectrum method which is a very accurate
algorithm for detecting the most probable value of the fundamental frequency. It is based on the
spectral analysis and is usually combined with noise filtering and statistical processing [20, 21].

Wavelet domain

The wavelet transform is another way to transform the audio signal from the time domain into a
time-frequency (more precisely time-scale) representation. It calculates the inner product of the
signal with a wavelet family. There are two types of wavelets: the continuous and the discrete
wavelet transform. Both have the ability to extract information from non-stationary signals such
as audio. In addition, thanks to their variable time-frequency resolutions these transforms can
overcome the shortcomings of STFT which has a uniform resolution.

Although this approach has proven to be useful in the estimation of the fundamental frequency
in adult voices [22, 23], it is still very little used in infant cry analysis. Only the Italian team of
Manfredi et al. proposes continuous wavelet transform approaches, known for their robustness
to noise [24, 25].

Image domain

Eventually, some methods are based directly on the extraction of parameters in the spectrogram
image. This is for example the case of the Scale Invariant Feature Transform (SIFT) which is
initially a feature extraction algorithm in computer vision used to detect local information in
images. Manfredi et al. also proposed a tuned method of the algorithm [26] which gave better F0

estimation than the original method [27] also used in [28].

5.2.2 Softwares

Nowadays, the most popular software in acoustic analysis is PRAAT [3]. Initially designed for
adult voice by Boesrma in 2002, it was then used in [1, 4–8] for fundamental frequency estimation,
in [29–32] for frequency features (such asMFCCs) and in [28] for noise filtering and segmentation
of the recordings into useful and non-useful categories. Next, the openSMILE tool also allows
the extraction of acoustic parameters [33–35]. Both of these programs perform the automatic
calculation of a wide variety of features (e.g., F0, formants, MFCC, LPCC, jitter, shimmer) but must
be initialized manually to give a meaningful analysis, particularly when analyzing infant cries.

For their part, Manfredi et al. developed BioVoice [1, 26, 36] and WInCA [37], two programs
developed for infant cry analysis, where different estimation methods of F0 (respectively, SIFT
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and wavelet) and resonance frequencies (respectively, peak picking in the power spectral density
and wavelet) were implemented.

5.2.3 Limitations on the fundamental frequency estimations

Cries are quasi-periodic signals with high-energy harmonic components. Therefore it can be
difficult to estimate the fundamental frequency with the reported methods which are based on
signal energy computation. Indeed, methods such as auto-correlation sometimes detect peaks
that may correspond to harmonic components. To prevent such jumps in the tracking, authors
usually limit the F0 estimation within a fixed frequency band which is mostly set between 150
and 1000 Hz [5, 25, 26] corresponding to phonation cries [38]. As a consequence, this frequency
band in which the tracking is performed is of utmost importance and has a great influence on
the results [1]. The only method proposed to our knowledge without frequency limit is the YIN
algorithm which has been developed for speech or musical sounds. It was used to extract F0

features for the purpose of automatic segmentation of infant cry signals [9].

To illustrate this issue, we give two specific cry examples for which the fundamental frequency
tracking was performed using the BioVoice software. This program is a user-friendly software
tool for the acoustical analysis of the human voice and is described later in this manuscript
(see Section 5.4.1). In both cases, the F0 was computed within the fixed frequency band ranging
from 150 to 900 Hz [1]. In the first sample, one can see that around the edges the high energy
harmonic components affect the tracking with a shift of the estimation up to these components
(Figure 5.1). While, in the second sample, the F0 is impossible to track since the fundamental
frequency of the hyperphonation cry is outside the analyzed frequency band (Figure 5.2).

(a) Expected estimation. (b) Resulting estimation.

Figure 5.1: Sample 1 - phonation cry with high
energy harmonic components.

(a) Expected estimation. (b) Resulting estimation.

Figure 5.2: Sample 2 - hyperphonation cry
with F0 outside the analysed band.

In addition, although some fundamental frequency tracking methods have been adapted to the
infant cry analysis, none has been performed for the purpose of continuous monitoring in a
clinical context.
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5.3 Proposed method

Therefore, in this section, we propose a new method to extract the fundamental frequency
component of the cries automatically extracted with the automated methods presented in the
previous chapters. Furthermore, we focused on the development of an initial step for the automatic
selection of a relevant frequency band in which to perform the F0 tracking. The fundamental
frequency estimation is achieved through a contour detection in the spectrogram. A similar
procedure has already been carried out on underwater audio recordingswith a two-steps algorithm
including a peak-picking and a contour detection steps [39]. The whole framework of the proposed
method is illustrated in Figure 5.3 and described hereafter.

Figure 5.3: Fundamental frequency tracking flowchart.

5.3.1 Spectrogram computation

First of all, the cry unit is filtered by a Kaiser Window finite impulse response filter with cut-off
frequencies between 250 and 1500 Hz. These bounds correspond to a wide variability range in
which to expect an infant cry fundamental frequency considering hyperphonation cries (F0 higher
than 1000 Hz). Then, the spectrogram calculation is the same as the one done in Chapter 4 (i.e.,
STFT of successive 1000 samples Hamming-windowed frames with a 90% overlap). Since the
audio data are recorded at a 24 kHz sampling rate, the given configuration provides a spectrogram
with a frequency resolution of 23.4 Hz (n = 53 frequency bins per frame) and a time resolution of
4.2 ms (Figure 5.4).

Figure 5.4: Spectrogram computation with frame resolution for signal sample at 24kHz.
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5.3.2 Automatic frequency band selection

Once the spectrogram is calculated, the frequency bounds are automatically found by detecting
the fundamental frequency location and surroundings in the maximum value distribution. This
strategy is based on the four steps (Figure 5.5) described below.

Figure 5.5: Automatic frequency band selection framework.

• Extraction of the spectrogram maximums For each frequency row of the spectrogram,
the point with the maximum amplitude is extracted. Result is called the maximum curve
(cmax) which is, therefore, of the same size n=53 than the frequency vector.

• Local maxima detection Local maxima are sought in the cmax curve. In order to avoid
detection of peaks that are not main frequency components, only peaks whose amplitude is
greater than 5% of the maximum amplitude are detected. Furthermore only peaks separated
by more than 300 Hz are retained since infant cries are harmonic signals. The fundamental
frequency is detected at the lowest peak based on the frequency scale.

• Local minima detection Local minima are also sought in the cmax curve. In order to avoid
detection of irrelevant minima, a threshold is chosen as 20% of the amplitude of the selected
maximum peak. Local minima surrounding this peak are chosen to be the new limits for
the chosen frequency band.

When the first maximum has been detected close to the initial bound (250 or 1500 Hz),
one surrounding minimum might be missing. In this case, the missing bound is set to the
initial corresponding one (such as illustrated in Figure 5.5 where the lower bound is set to
250 Hz).

• Spectrogram filtering Spectrogram values with corresponding frequency above or under
the new limits are removed (i.e., set to NaN).
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5.3.3 Contour detection

Contours are detected using a low-level contour matrix computation where isolines are calculated
over cross-sections of the spectrogram magnitude with respect to the time-frequency plane
Figure 5.6a. Main spectral components contours are obtained by selecting the low-height isolines.
Moreover, as the melody tends to be continuous over the cry unit width, contours of duration less
than 0.05 s are disregarded. At last, contours included inside another contour are neglected and
when two or more contours are temporally overlapping, only the wider one is kept Figure 5.6b.

5.3.4 Fundamental frequency tracking

Fundamental frequency tracking is performed by computing the average of the contours with a
time step of 4 ms. Finally, a vector (v0) of the size of the cry unit is created and filled with :

v0 =
{

averaged contours as they appear over time,
NaN otherwise.

(5.1)

An example of the resulting fundamental frequency vector is provided in Figure 5.6c.

(a) Detected contours. (b) Selected contours. (c) Fundamental frequency tracking.

Figure 5.6: Illustration of the contour detection step with the detected contours (left) and the
selected ones (middle). The small right contour is discarded since it is shorter than 0.05 s other-
wise only the wider contours are kept (i.e., those including other contours). Then, fundamental
frequency tracking (right) is computed within the selected contours. Thus, in this example, the
resulting vector v0 is filled with two averaged contours.

5.4 Evaluation strategy

To validate the proposed method, we chose to compare our results with those obtained with a
method from the literature. While PRAAT is today the most common software used in speech
analysis, we computed the frequency estimation with BioVoice. Indeed, this software has proven
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to be relevant for infant cries analysis since their performances were validated on synthetic basic
melodic shapes of the newborn cry [1].

First we present the BioVoice software tool for acoustic analysis. Then, we propose to perform a
qualitative comparison based on visual annotations as well as a statistical comparison of the
usual parameters evaluated in such a study, i.e., min, max, mean and median values of the F0

estimation.

5.4.1 BioVoice software

BioVoice is a user-friendly software tool for the acoustic analysis of various vocal emissions,
from newborns to adults and singers [1]. It is designed in MATLAB and distributed free of charge
on GitHub. First, a sound file must be loaded. It can either be:

• a long recording in which case BioVoice applies a segmentation and then characterizes all
the extracted sounds;

• sound segments which are directly characterized.

In both cases, an initialization step is necessary to inform the software of the type of signals to
process (i.e., newborn, child, adult).

Software execution

In case of a long recording, the software automatically process a segmentation step to detect
the voiced and unvoiced segments in the input signal [40].

Then pressing "Start" button launch the estimation of more than 20 acoustic temporal and
frequency parameters based on advanced and robust analysis techniques. We can mention the
following ones: detecting the number, length, and percentage of voiced and unvoiced segments
and calculating the fundamental frequency, formant frequencies (F1-F3) [37], noise level, and
jitter [41]. Specifically, for newborn cry and child voice, it computes the melodic shape of F0,
automatically identifying up to 12 melodic shapes [37, 42, 43].

As for the F0 tracking it is performed by means of a two-step algorithm [26]. After applying the
SIFT to time windows of short and fixed length, the fundamental frequency is then adaptively
estimated on signal frames of variable length through the average magnitude difference function
within the range provided by the SIFT. Therefore, the resulting estimation vectors all have different
time steps varying, according to our observation on the processed cries, from 4 to 500 ms.

The computed acoustic parameters are saved in 13 Excel files for each sound segment. The one
containing the F0 estimation is saved in a file named {audioname}_F0.xls.

118 Chapter 5 • Fundamental frequency characterization



Cry characterization for comparison

To perform themethod comparison, cries are directly loaded in the platform usingwith parameters
adapted to infant crying analysis Age - Range: Newborn/Infant and Voice Emission: Cry (see
Figure 5.7). Then cries are characterized by the 20 acoustic parameters.

Figure 5.7: BioVoice setting interface - Newborn cry analysis selection.

Limitations

Despite the real interest of the BioVoice system, this platform is not adapted for real-time pro-
cessing in the NICU environment since it requires manual interactions. In addition, the calculation
of the numerous acoustic parameters proposed can be very long.

5.4.2 Qualitative comparison with BioVoice

The proposed method is compared to the BioVoice through a visual annotation of both funda-
mental frequency trackings superimposed on the spectrogram.

Thanks to a graphical interface developed under Python, we annotated the F0 estimations consid-
ering two aspects:

• first, the accuracy of the estimates. In practice, it means that through a visualization of the
signals, we judge if one, both or none of the resulting estimation are correctly tracking the
fundamental frequency;

• in a second step we assess whether one method is better than the other or if both estima-
tions are equivalent.
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To remain as objective as possible, the signals were anonymized in the interface. During the
annotation step the signals were displayed randomly in blue or black without any distinction
criteria.

The annotation procedure is illustrated in Figure 5.8 with both method estimations anonymized
and superimposed a spectrogram. In this example we considered that both estimations correctly
tracked the fundamental frequency and that they are equivalent, i.e., there is not one better than
the other.

Figure 5.8: Python interface designed for the annotation of anonymized signals (randomly af-
fected to blue or black color). In this example, both methods achieved similar good F0 tracking.

5.4.3 Statistic parameters comparison

Usually in cry analysis, fundamental frequency is described in terms of statistical parameters.
Therefore, for each cry, the F0 mean, median, standard deviation, maximum, and minimum values
are calculated for bothmethods. Then the Pearson correlation coefficient is computed tomeasure
the linear correlation between the two datasets.

5.5 Results

This section presents the cry database annotated with the Python interface. Then the qualitative
and statistic comparisons are performed.
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5.5.1 Annotated database

The SoundAnnoT software (see Section 4.4) was used to identified cries to evaluate the funda-
mental frequency tracking method. A total of 806 cries recorded in a preterm female infant 1 (GA:
29 weeks + 6 days) were collected from three different recordings in open and closed bed with
characteristics described in Table 5.1.

PMA (w+d) BED TYPE CRIES
RECORDING 1 30+0 closed 281
RECORDING 2 32+2 closed 309
RECORDING 3 38+3 open 216

TOTAL 806

Table 5.1: Annotated cries database for the fundamental frequency estimation evaluation.

5.5.2 Qualitative comparison with BioVoice

The qualitative comparison of the 806 cries, based on the visual annotation of the anonymized
results, shows that both fundamental frequency tracking methods have good accuracy with 702
(87%) cries correctly estimated by BioVoice and 779 (97%) by the proposed method (Figure 5.9a).

When comparing the two methods with each other (Figure 5.9b), 360 cry estimations were
considered equivalent (44.67%). While BioVoice appeared to give better results for 85 cries
(10.55%), our method was reported with a better estimation in 361 cases (44.79%).

Since fundamental frequency tracking estimations vary greatly according to the acoustical cries
characteristics (energy components, type, melody), the following section presents examples for
the three comparison types: when i) both estimations are equivalent, ii) BioVoice is better and, iii)
the proposed method is better.

(a) Accuracy of both methods. (b) Comparison of the two methods.

Figures 5.9: Qualitative F0 methods annotation results.

1. 030035 recorded between 9:00 PM and 7:00 AM the 2018-06-23 (1), 2018-07-09 (2), and 2018-08-21 (3).
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Both estimations are equivalent

In many cases, both estimations correctly track the fundamental frequency, some examples are
given in Figures 5.10 for several types of cries with different melodies. Since both methods are
correct, it can be hard to see both estimations as they are fitting. BioVoice is depicted in red
dotted line whereas our estimation method is in blue dashed line.

Figure 5.10: Correct estimation examples for both F0 tracking methods.
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BioVoice method is better

PARTIAL ESTIMATION - The BioVoice method happens to be better in some cases where the
proposed method failed to track the fundamental frequency along with the whole cry unit. The F0

tracking can be missing at the end (left), in the middle (center) or at the start (right) of the cry
such as in illustrated in Figures 5.11.

Figures 5.11: Partial estimation with the proposed method.

SMALL FREQUENCY SHIFT - In some cases, the proposed method estimates the fundamental
frequency with a small shift in favor of low frequencies Figures 5.12.

Figures 5.12: Small frequency shift with the proposed method.

BAD AUTOMATIC FREQUENCY BAND SELECTION - In limited cases, the frequency band automatic
selection has failed. Therefore it is not possible to follow the fundamental frequency which is
then outside the analysis band. Three examples are given in Figures 5.13 with the frequency
bounds and frequency ranges illustrated by horizontal lines and a colored patch respectively.

Figures 5.13: Bad frequency band selections in the first step of the proposed method.
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The proposed method is better

HIGH ENERGY HARMONICS - Harmonics are defined as multiples of the fundamental frequency,
they occur in phonation cries and can have high energy. Therefore, the estimation resulting from
BioVoice, which is based on energy, tends to jump to these upper high energy frequencies whereas
the proposed method provides continuity in the estimation. (Figures 5.14).

Figures 5.14: Cries with high energy harmonics.
HIGH ENERGY SUBHARMONICS - Subharmonics or double harmonic breaks are defined as a simul-
taneous parallel series of harmonics in-between the harmonics of the fundamental frequency
[14, 44, 45]. In the case of such cries, the proposed method provides continuity in the estimation
whereas BioVoice tends to jump to these in-between frequencies (Figures 5.15).

Figures 5.15: Cries with subharmonics.

VIBRATIONS - It is common for babies to produce vibrations when crying. Three examples are
given in Figures 5.16 with vibrations occurring at the start (left), middle (center), or end (right)
of the cries. In such cases, the BioVoice method tends to track something within the vibration
region while the proposed method correctly estimates the phonation parts only.

Figures 5.16: Cries with breaks are estimated in the middle by BioVoice.
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MULTIPLE CRY UNITS - Due to the segmentation method, some audio segments may contain
several cries. In such case, the proposed method correctly detects and estimates the cry units
whereas BioVoice tends to track the whole segment as a single cry unit (Figures 5.17).

Figures 5.17: Segments with multiple cry units estimated as a single one by BioVoice.

EXTENDED SEGMENTATION - In addition, some of the audio segments resulting from the segmen-
tation method are longer than the original cries. Due to this extended segmentation, only a part
of the audio segment corresponds to the cry unit with the fundamental frequency to track. Here
again, the proposed method seems to be better at detecting the fundamental frequency start
and stop points whereas BioVoice estimation tracks F0 along the whole segment (Figures 5.18).

Figures 5.18: Cries with partial F0 are estimated over the whole cry unit by BioVoice.

LOW-FREQUENCY NOISE - The proposed method seems to work better in the case of cries with
low-frequency noise where BioVoice tends to jump in unclear lower frequencies. (Figures 5.19).

Figures 5.19: Cries with jumps in the BioVoice frequency estimations due to low-frequency noise.
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5.5.3 Performance and parameters comparison

The qualitative comparison showed good results, yet it remains a visual assessment, annotator
dependent. To investigate further, we also propose a statistical parameters comparison of the
tracking obtained with the two methods. Results of the parameters computed on each cry for
all the 806 cries, defined as CASE 1, are illustrated in Figure 5.20a with the proposed method
designated as PM.

(a) CASE 1. (b) CASE 2.

Figure 5.20: Fundamental frequency tracking parameters comparison between BioVoice (left)
and the proposed method (right) with F0 parameter values computed for each cry for the 806
cries.

At this stage we computed Pearson’s coefficient (Table 5.2) which did not reveal a linear cor-
relation between the different parameters of the two methods. Therefore we investigated the
same comparison by taking into account only the cries that were correctly estimated by both
methods (CASE 2). The new results computed on 695 cries are illustrated in Figure 5.20b and the
new Pearson’s coefficients are also given in Table 5.2.

CRIES MIN MAX MEAN MEDIAN
CASE 1 806 0.21 0.56 0.50 0.49
CASE 2 695 0.31 0.84 0.78 0.83

Table 5.2: Person’s coefficient for both cases.

This time, Pearson’s coefficient revealed a high positive linear correlation between the maximum,
mean, and median values. Indeed, the overall comparison shows similar results for these three
parameters in both methods. One can note that values resulting from the BioVoice method tend
to be lower than ours and this result is exacerbated for the minimum parameter. According to the
examples given when our method is better Section 5.5.2 this tendency can be explained by the
many cases where the BioVoice F0 estimation drop to low-frequency noise.
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5.6 Conclusion

In this chapter, we introduced a new method for fundamental frequency tracking of infant cries
in the context of real-time monitoring in the NICU. The particularity of the proposed method
consists of an initial step performed to automatically find the relevant frequency band in which to
perform the F0 tracking. Indeed, this band has been proven to be very important to achieve good
estimations. Then, once this band is computed, the fundamental frequency tracking is performed
using a contour detection in the spectrogram.

For validation of the proposed method, we compared our F0 estimation results to those computed
by the BioVoice software which we identified as the reference program for cry analysis. Indeed,
the method developed by Manfredi et al. achieved good performances on synthetic basic melodic
forms of newborn cries [37, 42].

With a selection of 806 cries recorded in a preterm infant, we evaluated results, both, in terms
of a quantitative visual comparison as well as a common parameters comparison. First, our
visual inspections of the fundamental frequency tracking superimposed on the cry spectrograms
showedgood resultswith correct estimation rates of 87%with BioVoice and97%with the proposed
method. Then, comparing both methods, we reported that F0 estimations were equivalent for
44.67% of the cries evaluated and that one of the twomethods was better than the other in 10.55%
of the cases for BioVoice and in 44.79% for our method.

In addition, the visual comparison of the common parameter distribution showed similar results
for both methods except for the minimum which was generally lower in BioVoice. We explain this
difference by the fact that despite some jumps in the F0 estimations, cries were considered as
correctly detected during the visual annotation. Indeed, for some of the BioVoice mis-detections,
we considered the whole signal without taking into account the small jumps occurring in the
cases of high energy harmonics, vibrations, or low-frequency noises for example. Nevertheless,
through a calculation of the Pearson coefficient, we found a linear correlation for the maximum,
mean, and median parameters when comparing the cries which were judged with a correct visual
estimation.

Therefore, in this chapter, we presented a new automatic fundamental frequency tracking method
for the purpose of long-time monitoring in the NICU. Thanks to the initial step, we ensure that
we perform an estimation of the F0 in a relatively relevant frequency band selection, which
has been proven by results consistent with the literature. Yet, if this step seems relevant for
future calculations of harmonics, we also believe that the parameters defined here through
experimentation will require optimization later.
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Automatic processing for cry analysis:
deployment

Chapter

6

6.1 Introduction

In the last three chapters, we have presented the methods developed to build an automatic
processing chain for the automatic analysis of infant crying. As we have seen, the automation of
such a process is a real challenge considering the complexity of the sound environment where
the recordings are made as well as the quantity of data to be processed. Therefore, we proposed
a two-step crying segmentation method composed of a sound event extraction step followed
by a classification of these events to detect crying. Once the cries are extracted, it remains to
characterize them, thanks to the fundamental frequency tracking which is performed by a contour
detection in the spectrogram.

The objective of this last chapter is therefore to present results from the deployment of the
automatic processing chain for the purpose of crying analysis in a routine care environment. After
a brief review of the literature on previous studies on the topic, we present the database used
and the work that was done to manage the data. Then, in a first step, we propose to compare
our results with those presented in the literature and performed by semi-automatic methods
on preterm infants. These assessments are important because they compare the results of
well-defined trials with our results obtained in the NICU environment. Thus, they show a real
interest in using our strategy in a clinical context. Finally, we present new insights into the duration
and fundamental frequency trends in time for the whole studied database. These results have
also a very valuable clinical impact because this is the first time that such longitudinal trends of
normal evolution cohorts are drawn.
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6.2 State of the art

In this review, we focus on the studies related to our objective which is the evaluation of the
maturation through cry analysis in preterm newborns. The characterization of crying in preterm
infants has been extensively explored for i) the assessment of the evolution, ii) the early detection
of pathologies, and iii) the comparison between full-term newborns. For the latter case, stud-
ies attempted to explain the differences observed in their neurophysiological maturity and the
subsequent impact on their language development. As mentioned in Chapter 1, while studies
investigated pain-induced crying, studies in recent decades concern the analysis of spontaneous
crying and both topics are described in the following sections.

6.2.1 Pain induced cries

The first studies were not automatic and consisted of audio recordings performed at the induction
of pain followed mostly by spectrographic analysis [1–3] or dedicated methods [4–7]. The pain
cries were induced by a pinch at the infant arm [1], rubber band hit [4], pinch in the infant ear [2, 3],
or during health check-ups such as heel-stick procedure [5, 6] and auditory brainstem response
hearing screening test [7].

When comparing sick and healthy infants, Michelsson et al. showed in 1971 that the sick infant’s
cries were higher-pitched than those of symptomless premature babies, which were themselves
higher pitched than those of healthy full-term newborns [1]. Later, Stevens et al. included two
variables, severity of illness and behavioral state (sleep or awake) in the analysis [6]. The behavioral
state was found to influence the facial action variables, and the severity of illness modified the
acoustic cry variables.

Regarding the comparison between preterm and full-term infant crying, Tenold et al. could not
show significant differences in fundamental frequency between the two groups. Yet, they did
show greater variability in the preterm infant cry spectra which was interpreted as likely reflecting
differences in neurophysiological maturity [4]. Later, Michelsson et al. showed that the cries of the
smallest premature newborns were shorter, with higher fundamental frequency, and included bi-
phonation and glidemore often compared to control newborns [3]. Such results were also reported
in [2], which shows that pain cries in preterm infants, observed between 31 and 33 weeks PMA,
are higher-pitched than those of full-term infants. In addition, with increasing post-menstrual age
comes an increase in the pain-cry duration and a decrease in the pain-cry fundamental frequency,
which can represent a maturation of the central nervous system. Both last studies indicated
that the cry characteristics changed with increasing post-menstrual age and the older the infant
the more the crying pattern resembled that of the full-term [2, 3]. For their part, Goberman et al.
identified clear differences in first spectral peak, mean spectral energy, and spectral tilt between
full-term and preterm infants [7]. According to them, the observation of higher F0 in the preterm
infant’s cries may either be related to smaller vocal folds, resulting from physical size differences
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at birth or because preterm infants display a more stressful response to pain stimuli. In addition,
through the evaluation of pain from facial expressions and crying performed in premature infants,
but also in full-term and 2- and 4-month-old infants, Johnston et al. showed that: i) premature
infants were different from older infants, ii) full-term newborns were different from others, but iii)
2- and 4-month-old were similar [5].

6.2.2 Spontaneous cries

The analysis of spontaneous crying is much more recent and only a few studies have investigated
the subject [8–13]. In 2002, Wermke et al. compared the spontaneous crying of six preterm
infants (three pairs of twins) recorded at different PMA (8-9 weeks, 15-17 weeks, and 23-24
weeks) [8]. Essential changes in the cries were observed from the 8th-9th week of life up to
the 23rd-24th week of life, where they showed that the melody increased in complexity, from
simple rising-falling patterns to composed patterns. This development was interpreted as an
intentional articulatory activity related to neurophysiological maturation. In 2012, Orlandi et al.
investigated if the distress occurring during crying in preterm newborns was related to central
blood oxygenation. The results indicate that a similar decrease in oxygenation level occurs in
both groups of patients, but that the recovery time after the crying episode is more stable and
rapid in term infants than in preterm newborns. For their part, Shinya et al. inspected the effects
of gestational age, body size at recording, and intrauterine growth retardation [11]. The acoustic
analysis of spontaneous cries before feeding in both healthy preterm infants at term-equivalent
ages and full-term newborns showed that shorter gestational age was significantly associated
with a higher fundamental frequency, although no relation was found with smaller body size at
recording or IUGR. Regarding the fundamental frequency and formants of preterm newborns,
Manfredi et al. showed a decrease in frequency with increasing age that can be explained by
increasing length and structural changes of both vocal folds and vocal tract [9] and Orlandi et
al. showed that preterm newborn cries were generally higher than those of full-term infants [12].
Finally, in 2020, André et al. proposed the first vocal repertoire of preterm newborns in non-painful
resting contexts [13]. They observed a broad range of vocalizations that they separated into nine
vocal types distinguishable acoustically and non-randomly associated with behaviors.

6.3 Deployment of the proposed methods

In the following sections, we present the deployment of the overall processing chain for the
purpose of crying analysis in a routine care environment. After presenting the data processed by
the three methods, namely i) audio-video segmentation, ii) classification for cry detection, and
iii) fundamental frequency characterization, we present our results. First, we propose to replicate
existing studies, and then we give new perspectives for longitudinal tracking.
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6.3.1 Database

A part of the Digi-NewB database was selected to drive a maturation study. To perform this
selection, a rigorous examination of clinical records was made by clinicians in order to identify
a subset of newborns without pathological development. Such a medical inspection is time-
consuming as it requires observing the entire journey of the infants during their hospitalization.
As a result, 57 newborns were selected and divided into five groups depending on the prematurity
severity:

• EXTREME PRETERM (EP) - 7 newborns with GA between 24 weeks and 27 weeks + 6 days;

• VERY PRETERM (VP) - 12 newborns with GA between 28 weeks and 31 weeks + 6 days;

• LATE PRETERM (LP) - 16 newborns with GA between 32 weeks and 36 weeks + 6 days;

• EARLY TERM (ET) - 8 newborns with GA between 37 weeks and 38 weeks + 6 days;

• HEALTHY FULL-TERM (FT) - 14 newborns with GA greater than 39 weeks.

For each newborn, we processed all available recordings ranging in duration from a few hours to
10 consecutive days (related to the birth date, see the maturation recording protocol described in
Section 2.3). It corresponds to 235 recordings with a total duration of 232 days, 13 hours, and 30
minutes or 11 163 WAV files of 30-minute duration. The database is illustrated in Figure 6.1 with
the detailed available recordings for each baby.

Since we work on a very large database, special attention was paid to data management. In the
following sections, we give details of the data used through the whole processing chain.

6.3.2 Audio-Video segmentation

The sound segmentation step applied to the 235 recordings belonging to the 57 babies returned
3 548 006 sound segments corresponding to 27 days, 19 hours, 14 minutes, and 17 seconds.
Thus, this step considerably reduces the amount of data to be further processed since the total
duration of the sound segments corresponds to almost 12% of the total recording duration.

Then, when collecting only the sound segments occurring within motion periods, the number was
reduced to 1 142 148, corresponding to a total duration of 9 days, 19 hours, 30 minutes, and 28
seconds. This step also reduces the data since only 32% of the sound segments occurred within
the periods detected with babies’ motion.

6.3.3 Classification for cry detection

To perform the automatic classification step, the selected sound segments are transformed into
spectrograms and split in windows of 0.25 s with a 50% overlap, which gives a total of 5 432 892
images. After the classification of these spectrograms and the reconstruction of the predictions
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Figure 6.1: Illustration of the maturation database detailed for each of the 57 newborns. Babies
with stars are recorded in shared-bedroom or co-bedding settings.
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for the sounds, 117 947 audio segments were detected as crying among the 1 142 148 processed
corresponding to a total duration of 1 day, 5 hours, 3 minutes, and 16 seconds. It has to be noticed
that no crying was detected for one baby 1.

6.3.4 Data management

As the recordings vary in duration (from a few hours to 10 consecutive days), we decided to
arrange the data in, what we decided to call, periods of up to 24 hours. Thus, the records whose
duration exceeds this limit are split into several periods. Therefore, we now consider 278 periods
recorded in 56 babies. For each period, the post-menstrual and postnatal ages are computed at
the starting date of the corresponding periods.

From there, the detected cry distribution in a period varies from one cry to 2 687 cries. To ensure
consistency in the cry analysis, we chose to remove periods in which fewer than 10 cries were
detected. In addition, after listening to some recordings with overlapping cries, we realized that
some rooms had several infants. With the help of the clinicians, these recordings (usually in the
case of twins) were identified and removed from this study. Removing the recordings guarantees
that the cries studied correspond to the selected babies, which is very important for the analyses
performed later.

Therefore, the resulting database is composed of 221 periods recorded in 43 babies with cry
distribution in a period varying from 10 to 2 687 cries with a total of 93 691 cries corresponding
to a duration of 21 hours 31, minutes and 51 seconds.

6.3.5 Fundamental frequency characterization

The proposed fundamental frequency tracking method is applied to the 93 691 detected cries,
then, for each cry, the minimum, maximum, mean, median, and standard deviation values are
computed. Next, for each period statistical values are combined through mean and median
values. Finally, all further studies are based on these extracted values considering either periods
or infants, in that case, period values are averaged for each infant. This process is illustrated in
Figure 6.2.

1. No crying was detected for baby 010038.
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Figure 6.2: Fundamental frequency statistical parameters computation workflow.

6.4 Reproduction of existing studies

The proposed work is the first one, to our knowledge, to propose a fully automatic processing
chain for crying analysis in the NICU. Nevertheless, as mentioned in the state of the art, very few
studies have focused on the crying analysis in preterm infants. In this section, we would like to
reproduce some studies from the literature in order to validate the proposed cry analysis process-
ing chain from recordings performed in a noisy context of a routine hospital care environment.
Two important studies for further clinical uses are reported. The first evaluates the fundamental
frequency for newborns by comparing two groups with distinct ages and birth weights [9] while
the second proposes to observe the minimum, maximum, and mean parameters of the F0 at term
equivalent age [11].

6.4.1 Fundamental frequency according to GA and birth weight

In their study, Manfredi et al. tried to understand if gestational age (g.a.) and/or weight at birth
(w.a.b.) can influence newborn cries [9]. They analyzed a group of 18 preterm newborns without
relevant pathology, with gestational age ranging from 23 to 38 weeks and birth weight between
590 and 3 020 g and a small control group composed of 2 full-term healthy infants (GA greater
than 37 weeks, weight at birth greater than 3 000 g). Through several audio recordings for each
infant (with PNA less than one month and in an open bed) they manually selected about 60 cry
episodes, defined as a sequence of high energy utterances of approximately 5–6 s each. The
analysis of all available data provided consistent indication for a cut-off point of 34 weeks GA and
2500 g for weight at birth. They showed a decrease in frequency with increasing age or weight for
all the parameters (i.e., F0, F1, F2) and explained this result with increasing length and structural
changes of both vocal folds and vocal tract. Their results are presented in Figure 6.3 for a F0

comparison between the groups.
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Figure 6.3: From Manfredi et al. [9], boxplots comparing the fundamental frequency for the
newborn cry data, divided according to gestational age (g.a.) and weight at birth (w.a.b.). Results
consistently show a decrease in frequency with increasing age or weight.

To replicate this study, we extracted our data into two subsets that matched at best the conditions
of the Manfredi et al. dataset. Considering the gestational age, we selected all the periods
corresponding to preterm infants while for birth weight, we selected periods corresponding to
newborns for whom weight information was available. In both cases, periods were selected with
recordings performed during the first month of life (i.e., PNA less than 30 days), the databases
used are described in Table 6.1.

≤ 34 w. 34 < GA < 37 w. TOTAL
BABIES 19 3 22

PERIODS 131 5 136
CRIES 35 239 2 371 37 610

(a) Database considering gestational age.

≤ 2.5 kg > 2.5 kg TOTAL
BABIES 25 16 41

PERIODS 139 16 155
CRIES 39 369 6 763 46 132

(b) Database considering weight at birth.

Table 6.1: Databases for the comparison of fundamental frequencies with gestational age and
weight at birth cut-offs.

Fundamental frequency results of our database are presented in Figure 6.4a considering the
gestational age and in Figure 6.4b considering the weight at birth. We decided to show all the
statistical parameters since we don’t know which one is presented in Figure 6.3. In our case,
statistical parameters are averaged for each infant, and cry values are combined per period
throughmedian values. These results show a decrease in frequency with increasing age or weight
for all statistical parameters, which is consistent with what Manfredi et al. reported in their study
[9]. However, the results when comparing infants with a birth weight of less or greater than 2500 g
are less significant.

Moreover, it has to be mentioned that the F0 value distribution is located in much lower funda-
mental frequency values in our case, which is surprising since our frequency range of analysis is
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much larger and higher (250-1500 Hz) than the one used by Manfredi et al. (150-900 Hz).

It is worthwhile to mention that the results proposed in this section are important and introduce
a range of possible values for some babies presenting a normal evolution. Further studies would
be to assess the fundamental frequency of abnormal babies.

(a) F0 comparison considering GA. (b) F0 comparison considering w.a.b.

Figures 6.4: Boxplots comparing the fundamental frequency for the newborn cry data, divided
according to gestational age and weight at birth.

6.4.2 Fundamental frequency at term-equivalent age

In their study, Shinya et al. proposed to observe the crying fundamental frequency minimum,
mean and maximum values in preterm and full-term newborns at an equivalent age [11]. The
analysis performed on 2 321 manually extracted cries recorded in 64 babies with a PMA greater
than 37 weeks and lower than 42 weeks, showed that shorter gestational age was significantly
associated with higher F0. These results are illustrated in Figure 6.5a, where the very preterm
newborns (white circles) have higher fundamental frequency values than the full-term infants
(black circles).

To reproduce this study, we selected all the periods recorded at the same equivalent age (i.e.,
PMA between 37 and 42 weeks). In addition, since Shinya et al. used a frequency range between
150 and 900 Hz, we decided to remove all cries with a fundamental frequency maximum above
900 Hz. The database used is divided according to the GA into three groups (i.e., two preterm
groups and one full-term) and is described in Table 6.2.

Results of the fundamental frequency are presented in terms of minimum, mean, and maximum
for Shinya et al. in Figure 6.5a, and with statistical parameters averaged for each infant with cries
values combined per period for our database through the mean in Figure 6.5b and the median
values in Figure 6.5c.
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GA < 32 w. 32 w. ≤ GA < 37 w. GA ≥ 32 w. TOTAL
BABIES 13 3 20 36

PERIODS 20 4 21 45
CRIES 15 614 1 625 8 870 26 109

Table 6.2: Crying duration evolution database according to GA divided in two preterm and one
full-term infant groups.

Unfortunately, by removing the babies in double rooms, we have reduced the number of moderate-
to-late preterm infants to be analyzed. In addition, in the chosen baby subset, no preterm infant
was born before 27 weeks. Therefore, the data distribution is quite sparse and does not cover the
gestational age range with the same efficiency as in the original study [11]. However, where Shinya
et al. offer analysis for 64 babies with 2 321 manually selected cries, our analysis is performed
for 26 109 cries automatically extracted from 36 babies.

When comparing the results, the trends of the three parameters are the same for both cases
(mean and median). However, we qualitatively observe that the median case offers results closer
to those proposed by Shinya et al. (Figure 6.5a). This interpretation is, of course, subjective since
it is inconsistent to compare mean and median values.

One can also observe a very similar decay in the regression line for the median of the minimum
F0 but with a significant shift in high frequencies for our method. Indeed, based on the numerical
results presented in Table 6.3 most of our parameters have higher values than those of the
original method, especially for the minimum and the mean. This might be due to the frequency
range where the fundamental frequency analysis is performed which is lower for Shinya et al.
(150–900 Hz) than us (250-1500 Hz).

While Shinya et al. showed that shorter gestational age was significantly associated with higher
F0 we were unable to retrieve such a conclusion. Nevertheless, despite a total automatic analysis
performed in the routine care environment, we were able to reproduce the same evolution.

This opens the door to future comparison to better understand why preterm birth is associated
with an increase in the fundamental frequency of spontaneous cries at term-equivalent age. From
a clinical perspective, Shinya et al. suggested several explanations. First, it might be due to a
longer postnatal period. Second, it might reflect the reduced vagal activity in preterm infants.
They reported that the vagal input has an inhibitory effect on laryngeal contraction and results in
vocal fold tightening. Thus, the decreased vagal activity is assumed to cause increased vocal
fold tension and higher F0.

TheDigi-NewBdatabase, composedof ECG, respiratory signals, and cries simultaneously recorded,
opens the door to exciting studies that could be performed with our proposed method to assess
the influence of vagal activity.
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(a) Averaged for each infant of the mean values (n=64), from Shinya et al. [11].

(b) Averaged for each infant of the mean values (n=36), Digi-NewB database.

(c) Averaged for each infant of the median values (n=36), Digi-NewB database.

Figures 6.5: Scatter plots showing the relationships between gestational age and minimum
(left), mean (center) and maximum (right) fundamental frequency F0 of spontaneous cries at
term-equivalent age. The groups of infants were VP (white circles), MLP (grey circles) and FT
(black circles).
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PRETERM FULL-TERM
GA < 32 weeks (n = 22) 32 ≤ GA < 37 weeks (n = 22) GA ≥ 37 weeks (n = 20)
mean s.d. range mean s.d. range mean s.d. range

minimum F0 (Hz) 356 48 268-450 306 44 217-390 321 35 259-387
mean F0 (Hz) 458 47 381-548 425 40 348-491 403 38 318-463

maximum F0 (Hz) 539 59 460-642 511 44 435-609 460 44 361-524

(a) Results from Shinya et al. [11].

PRETERM FULL-TERM
GA < 32 weeks (n = 14) 32 ≤ GA < 37 weeks (n = 8) GA ≥ 37 weeks (n=21)
mean s.d. range mean s.d. range mean s.d. range

minimum F0 (Hz) 406 34 356-482 383 32 339-422 382 34 333-452
mean F0 (Hz) 466 37 415-544 448 41 398-501 445 37 385-522

maximum F0 (Hz) 517 41 464-602 506 46 448-566 499 44 431-597

(b) Our results.

Table 6.3: Comparison of the fundamental frequency of spontaneous crying according to GA
divided into two preterm and one full-term infant groups for both methods.

6.5 New cry characterization insights

In this section, we propose new visualizations of the fundamental frequency and duration evolution
of the spontaneous cries from our database. First, in their study, Shinya et al. suggested that the
increased F0 of spontaneous cries is not related to the body size, but rather might be owed to
their different intrauterine and extrauterine experiences [11]. Thus, we propose to investigate the
difference between F0 values of preterm newborns recorded at birth and after some time living an
extrauterine to a group of infants newly born at term. Then, we investigate the general evolution
of cry duration and fundamental frequency with increasing post-menstrual for all populations
and with increasing postnatal age for the extreme preterm group. Finally, we propose to observe
a longitudinal evolution of the fundamental frequency with increasing post-menstrual age, a
representation that has never been done before to our knowledge.

6.5.1 Fundamental frequency comparison at two postnatal ages

The objective of this study is to compare the fundamental frequency of preterm newborns at
birth and with a certain experience of extra-uterine life to infants newly born at term. To perform
this study, we separate the database into three subsets corresponding to:

• preterm newborns recorded at birth with a PNA less than 10 days;

• preterm newborns recorded with a PNA greater than 30 days;

• full-term newborns recorded at birth with a PNA less than 10 days.

The data used are described in detail in Table 6.4.
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PRETERM FULL-TERM
PNA ≤ 10 days PNA > 30 days PNA ≤ 10 days

BABIES 24 19 19
PERIODS 81 64 19

CRIES 22 881 46 604 7 775

Table 6.4: Database used to assess F0 at two postnatal ages.

Results of the fundamental frequency are computed with statistical parameters (i.e., minimum,
maximum, mean, and median) averaged for each infant and cries values combined per period
through median values. The results are presented in Figures 6.6 as two pairs of violin plots, with
preterm newborns represented by the left-hand sides and full-term infants by the right-hand sides.
A violin plot is an attractive way to represent the data distribution since it draws a combination of
a boxplot and a kernel density estimate. In the left pair, preterm newborns registered at birth are
compared to full-term newborns while, in the right pair, preterm newborns with a postnatal age
greater than 30 days are compared to full-term newborns. In both pairs, we use the same full-term
infant distributions (i.e., PNA less than 10 days), which are duplicated for better visualization.

(a) F0 minimum. (b) F0 mean. (c) F0 median. (d) F0 maximum.

Figures 6.6: Violinplots comparing the fundamental frequency for the newborn cry data, divided
according to post-natal age and prematurity status. For each pair, left-hand side distributions
(light) represent preterm newborns while right-hand side distributions (dark) represent infants
newly born at term. In the left pair, preterm newborns are observed at birth and in the right pair
preterm newborns are observed with a postnatal age greater than 30 days.

The results are in agreement with Shinya et al. who suggested that intrauterine and extrauterine
experiencesmight have an impact on the fundamental frequency of spontaneous cries [11]. Indeed,
the results show that the fundamental frequency is quite similar when comparing preterm to
full-term infants newly born. However F0 is higher in preterm infants who have already experienced
an extra-uterine life.
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For their part, Orlandi et al. showed higher parameter values for preterm than those of full-term
infants even when the preterm reaches a post-menstrual age similar or equal to that of the term
infant (between 35 weeks and 43 weeks) [12]. They suggested that prematurity might create a
delay in the neuromotor control development in the preterm infant, who would therefore need
more than the expected birth age to fully recover.

6.5.2 Crying evolution with age

This study aims to observe the fundamental frequency and duration of spontaneous crying
evolution for all infants, preterm and full-term newborns, and for all recordings included in the
maturation database. Data used in this study are described in Table 6.5.

EP VP LP ET FT TOTAL
BABIES 7 10 5 8 13 43

PERIODS 92 90 18 8 13 221
CRIES 41 338 34 244 8 632 3 917 5 560 93 691

Table 6.5: Database used to assess crying evolution.

Fundamental frequency evolution with PMA

Here we present values of the fundamental frequency in preterm and full-term newborns with
increasing post-menstrual age. Results of the F0 are computed with statistical parameters (i.e.,
minimum, maximum, mean, andmedian) combined per period throughmedian values. The results
are presented in Figures 6.7.

We can observe that mean F0 tends to decrease with increasing PMA and that the values are
more dispersed for low PMA. This is in agreement with the literature. Actually, Tenold et al.
suggested that the differences observed in spectral variability between cries of premature and
full-term infants probably reflect neurophysiological maturity [4]. In addition, in their study, Thoden
et al. showed, in the case of pain cries, that the more premature a newborn is, the higher the
fundamental frequency and that it decreases with increasing post-menstrual age [2]. A statement
in accordance with the previous work proposed by Michelsson et al. who also mentioned that
even if the cries of the smallest premature babies were generally high-pitched, they were also
sometimes lower-pitched and thus look like the cries of infants born at term [3].
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(a) Minimum fundamental frequency. (b) Maximum fundamental frequency.

(c) Mean fundamental frequency. (d) Median fundamental frequency.

Figures 6.7: Cry F0 evolution considering all newborns according to the PMA.

(a) Mean duration. (b) Maximum duration.

Figures 6.8: Cry duration evolution considering all newborns according to the PMA.
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Duration evolution with PMA

To our knowledge, the duration of evolution in preterm infants has not been studied on spon-
taneous crying, however, studies performed on induced crying showed that crying duration
increases with age [2, 3, 6]. In addition, preterm infant cries were considered almost identical to
those of the full-term when reaching the age of 38 conceptual weeks [3] or when comparing the
crying duration between preterm with PMA greater than 37 weeks and full-term newly born [7].

Cry duration results are presented with the mean (left) and maximum (right) duration values
averaged for each 24-hour period as the function of the PMA in Figures 6.8. One can see that the
mean cry duration is increasing with the post-menstrual age, in other words, the older the infant
is the longest cry she/he can produce. When considering the maximum of the crying, one can
see that the value is increasing with post-menstrual age. As a reminder, during the segmentation
stage, only the sound segments whose duration is between 0.25 and 5 seconds are kept, which
is why the maximum duration values are limited to 5 seconds. Although only a few periods of
preterm newborns were recorded after 37 weeks of PMA, we can see, both for the mean and
maximum durations, that the values tend to be closer to those of infants born at term.

Duration evolution with PNA in extreme preterm newborns

This study aims to focus on the spontaneous crying duration evolution during the hospitalization
of the 7 extreme preterm infants (GA between 24 weeks and 27+6 weeks+days) included in the
maturation database (i.e., 7 babies, 92 periods, and 41 338 cries). Results are presented with the
mean (left) and maximum (right) duration values averaged for each 24-hour period as a function
of the postnatal age in Figures 6.9.

(a) Mean duration. (b) Maximum duration.

Figures 6.9: Cry duration evolution focusing on the EP newborns according to the PNA.
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From Figure 6.9, we can see that the average crying time increases after birth and throughout the
hospitalization period. It can also be seen that the maximum crying duration also increases with
age, which is probably due to an increase in vocal power acquired during the infant’s development.

From a clinical point of view, these results are interesting and could be useful to detect in real
time certain states of the infant since sequences of crying of long duration are associated with
states of stress [13] while crying with high fundamental frequencies are associated with pain [14]
or pathologies [15]. In future works, this information could also be coupled with melody analyses
that also allow a good detection of these different states.

6.5.3 Fundamental frequency longitudinal evolution

The comparison with studies from the literature as well as the previous sections clearly showed
evolution with GA and PMA. Therefore, in this section, we wonder if a longitudinal visualization
of the fundamental frequency with increasing post-menstrual age could be interesting. As the
normalized weight and height curves are used to monitor the growth of children, we propose to
observe the general evolution of the fundamental frequency when combining all the available
data. Therefore, the database used is based on the one described in Section 6.3 including 43
babies, 221 periods, and 93 691 cries.

To carry out this study, additional statistical values are calculated for each cry, namely, the four
quartiles Q1, Q2, Q3, and Q4. Based on the same process as before, the cry parameters are
combined by period through the median values and all the fundamental frequency statistical
values are averaged over the PMA through a two-day rolling average. The resulting process
presenting the pseudo-normal evolution of the fundamental frequency observed in infants with
no complication during their hospitalization in NICU is depicted in Figure 6.10a.

Once these evolutionary trends are defined, we propose to superimpose the minimum, maximum,
and median parameters for an extreme preterm (Figure 6.10b) and a very preterm newborn
(Figure 6.10c) from the cohort.

These results are the first to observe the longitudinal evolution of spontaneous crying in preterm
infants. Although we have no conclusion to draw on the proposed examples, we think that, with
such visualization, it would be interesting to follow infants and check whether abnormal courses
have any impact on cry production.
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(a) Averaged fundamental frequency evolutionary trends.

(b) Extrem preterm - 010148.

(c) Very preterm - 010066.

Figures 6.10: Averaged fundamental frequency evolutionary trends of the 43 healthy babies
without reported complication during their hospitalization in NICU (a). Additional minimum,
median and maximum values are superimposed for two babies: (b) an extreme preterm and (c) a
very preterm.
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6.6 Conclusion

Thanks to the deployment of the complete automatic processing chain, we reached in this
chapter some relevant conclusions. First, we showed a comparison with the literature through
two interesting and well-designed studies. While the first one compares preterm newborns for
different post-menstrual ages and weights at birth, the second one compares preterm and full-
term infants at term equivalent age. In both cases, our results are consistent with the literature
which seems to demonstrate that the proposed signal processing chain is robust even in a noisy
environment. Considering this powerfulness, we can encourage further clinical applications as
well as the exploration of new issues.

Then, through new visualization of the duration and fundamental frequency evolution, we showed
that the cry duration is increasing with increasing PNA and PMA while the fundamental frequency
tends to decrease with PMA. Last but not least, we proposed to assess the pseudo-normal
evolution of the fundamental frequency observed in infants without complications during their
hospitalization in the NICU. This work has never been done before and gives new issues for the
evaluation of sepsis and pathology during monitoring in the NICU.

It is worthwhile to remind that this is the first automatic processing chain created and deployed
on such a large scale. In fact, while previous studies were based on the analysis of a few hundred
cries or a few thousand (see Table 1.1), we presented results obtained on more than 90 000 cries.
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Conclusions & perspectives

In this manuscript, we focused on the presentation of a complete processing chain for the
automatic characterization of cries in preterm newborns. This objective is in line with those of
the European project Digi-NewB which aimed at combining clinical signs, physiological signals,
and video and sound recordings in a decision support system for the monitoring of newborns.
As a reminder, its two clinical targets were the early diagnosis of late sepsis and the objective
assessment of maturation in premature babies cared for in neonatal intensive care units. If
physiological signals (cardiac, respiration, . . . ) have already been widely studied to evaluate the
risks and evolutions, the analysis of audio and video signals is more recent and tries to bring new
clinical indicators. Thus, the work done during this thesis is the first one, to our knowledge, on the
analysis of vocalizations in premature infants in a routine care setting in the NICU. This explains
why it focused on the development of relevant methods for the automation of audio processing
of the data collected during the Digi-NewB project.

The analysis of the literature showed that many studies underlined the interest of analyzing crying
in infants to evaluate their neurobehavioral development and thus analyze their maturation stage.
Although teams have already been interested in the spontaneous crying of premature infants, this
is the first time that such an audio recording device has been set up in a NICU and that such a
database has been created. The acquisition of data in a routine hospital care environment led us
to the design of a new automatic processing chain composed of three steps. This chain gathers
i) an audio segmentation step using video signal processing to extract only the sounds occurring
within the infant’s movement; ii) a classification step using a deep-learning approach for the
detection of crying among the extracted sounds (adult voices, alarms, etc. and iii) a fundamental
frequency characterization step using a contour detection in the spectrogram to track the cry F0.

The segmentation method developed was inspired by the one proposed by Orlandi et al. which is
based on a calculation of the short-term energy followed by the Otsumethod thresholding [1]. After
removing the 30-minute audio files that do not contain sound, two steps are added to the method
to improve it. The first step is a double frequency filter and the second step is a re-segmentation.
The evaluation of the segmentation method in comparison with manual annotations, performed
on three 30-minute files, gave good results. Indeed, we showed that it allows a reliable extraction
of events containing cries while reducing the number of extracted audio segments. To go further,
we also proposed to use the newborns’ motion information computed by another team of our
laboratory during the project [2, 3]. By focusing only on the sounds appearing in the periods
detected as motion, we showed that it is possible to reduce considerably the amount of data to be

151



processed while keeping the vocalizations. Babies also produce a lot of sounds in the presence
of adults. However, we have chosen to ignore these periods because of the data quantity and
complexity (superimposition of voices and cries, lots of care-related noise, . . . ). The evaluation of
this strategy on 303 hours of audio recordings performed on 22 newborns showed that they are
very little in motion (12% of the time). We showed that collecting the sounds within these motion
periods helped to remove up to 87% of the segments initially extracted.

Then, the classification method, after the segmentation step, is necessary to identify the cries
among the extracted sound segments. We chose to use a time-frequency representation of the
cries (spectrograms) as input to a Resnet convolutional neural network algorithm. The classifica-
tion is thus performed in four steps: I) calculation of the spectrogram by Fast Fourier Transform
(FFT) using successive Hamming windows of 0. 04 ms and an overlap of 95 %, II) slicing the
spectrograms into images of the same duration with an overlap of 50 %, III) using the convo-
lutional neural network for the prediction of cries in the images, and IV) reconstruction of the
sound predictions by retaining the majority prediction on the whole set of images. Thanks to
transfer learning, the initial weights of the ResNet model were pre-trained with ImageNet and then
optimized to our task (i.e., the crying vs. non-crying classification) by performing new learning. To
adapt the model to our data, the parameters of input image duration, neural network complexity,
and learning rate were optimized. In a two-step strategy, we first set the learning rate, then the
evaluation of several combinations using cross-validation allowed us to identify the model with
the best precision. This model corresponds to input images of 0.25 s duration, a ResNet34
architecture, and an initial learning rate of 10−4. After being trained again on 30 babies (17 042
sounds), the classification performance obtained on three new babies (2 765 sounds) showed
that 85.9% of the initially annotated cries were detected (sensitivity) and that 94.6% of the sounds
classified as cries were indeed cries (precision).

The particularly noisy hospital sound environment (beep, machine, voice, etc.) complicates
the task of automating crying detection. Even if by proposing a two-step strategy through the
sound segmentation and classification for cry detection, we succeeded in extracting segments
containing crying, there are some interesting issues to explore.

First, it is worth remembering that infants can be recorded in an open bed or in an incubator. In the
latter case, very fragile premature newborns may have respiratory difficulties and will not be able
to produce the same cries as older infants. It could therefore be possible to train a deep-learning
model for both bed configurations. It would also be necessary to optimize more parameters of
the neural network such as the optimization algorithm, the cost function, or the regularization by
degradation of the weights which, in our case, have been fixed a priori.

Secondly, we are interested in sounds that contain several superimposed sound sources. Indeed,
in an environment as noisy as the neonatal intensive care unit, it is normal that several sounds are
mixed. In this thesis, we focused only on the periods when the baby was moving to limit this type
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of data to be processed. It is surely appropriate to consider methods of source separation that
will allow broadening the periods studied and to study the vocalizations of babies in the presence
of adults. Once the different sources are separated, it may be easier to detect and characterize
the crying segments.

For the estimation of the fundamental frequency characterization, we proposed a new method
for tracking the infant cry F0 in the context of real-time monitoring in the NICU. While methods
in the literature typically set the frequency band in which to perform the tracking F0Orlandi13,
Manfredi09, Orlandi15a, orlandi2017testing, we proposed an initial step to automatically identify
this band. Once computed, the fundamental frequency tracking is performed using contour
detection in the spectrogram.

To validate the method, we compared our estimation results to those computed by the software
BioVoice which we identified as the reference program for the analysis of newborn cries. In fact,
the method developed byManfredi et al. obtained good performances on synthetic melodic forms
of newborn cries [4, 5]. A qualitative comparison of the fundamental frequency tracks performed
on 806 cries showed correct estimations in 87% of cases with BioVoice and 97% of cases with
our method.

Although the proposed method offers good results in a large part of the cases, it could never-
theless be improved. The relevance of this method lies mainly in the automatic detection of the
frequency band. This step is very little implemented in the literature and yet allows to improve
considerably the estimation performances. Indeed, by concentrating the analysis band on a
reduced frequency range, it avoids jumping to high energy frequency components. The currently
proposed method is based on empirical parameters optimized experimentally which should be
refined in order to allow the estimation of hyperphonations whose F0 can be well beyond 1 000 Hz.

In addition, many studies sought to identify crying either to know the cause [6–10] or to identify
pathologies [11–19]. If these analyses necessarily involve characterization of the fundamental
frequency, it is especially based on the characterization of the cry melodies produced by the
infants [5, 20–22]. Melody detection and evaluation could not be studied in this thesis but is a
necessary step for anyone wishing to continue on the subject.

Finally, the automatic processing chain was deployed on a database of 57 babies born prematurely
and at term for a total of 232 days of recording. Thanks to the successive treatments by the three
proposed methods, we were able to automatically detect and characterize 117 947 cries. In a
comparison with the literature, we showed that our results are consistent with two studies that
inspect the fundamental frequency of crying in I) preterm infants according to their gestational
age and birth weight [23] and II) preterm and term infants at an equivalent post-menstrual age
[24]. Through the analysis of longitudinal recordings from infants during their hospitalization,
we presented changes in the duration and fundamental frequency of crying as a function of
post-menstrual and postnatal ages. Finally, for the first time, the evolution of the fundamental
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frequency for a population of preterm infants of normal evolution has been described and traced.
These results are a major advance for the evaluation of the maturation of preterm infants during
their hospitalization.

In conclusion, if this thesis brings the tools for the evaluation of thematuration and the tendencies
of the cry parameters evolution according to the age in neonatal intensive care units, there is
still much to be done. Some of these technical improvements have already been listed in this
conclusion, but more clinical perspectives are also to be drawn. They are naturally part of the
dynamics already studied and will aim to process as much data as possible in order to confirm
and reinforce the trends observed and to cover the widest possible period of hospitalization with
the aim of assessing possible deviations linked to infections or pathologies. This work will then
be the basis for future developments in order to develop a fully automatic solution for a new
generation of non-invasive monitoring systems for premature newborns through audio analysis.
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Titre : Détection et caractérisation des vocalisations chez des nouveau-nés prématurés.

Mot clés : nouveau-nés prématurés, développement neuro-comportemental, surveillance, unités de soins néo-
natales, analyse audio, pleurs spontanés

Résumé : Le nombre de naissances prématurées est
estimé à 15 millions par an dans le monde et repré-
sente 7% des naissances en France. Ces bébés sont
pris en charge en Unités de Soins Intensifs Néonatales
(USIN) et font l’objet d’une surveillance particulière du
fait de l’immaturité de leurs organes et des complica-
tions qui peuvent en découler.
De nombreuses études ont montré que l’analyse des
pleurs de nourrissons permettait d’obtenir des infor-
mations sur leur état de santé et dans le cas des pré-
maturés sur leur maturation. Si les premiers travaux
se basaient sur une segmentation manuelle de pleurs
souvent induits (généralement par la douleur), les tra-
vaux actuels s’intéressent aux pleurs spontanés, ce qui
nécessite le développement de méthodes d’extraction
automatiques. Cette approche non-invasive de moni-
toring apparaît comme extrêmement pertinente au vu
de la fragilité des sujets étudiés. Cependant, l’environ-
nement hospitalier particulièrement bruité où se dé-
roulent les enregistrements complexifie grandement
l’automatisation des méthodes.

Dans ce contexte, et dans le cadre du projet euro-
péen Digi-NewB, l’objectif de ces travaux est de présen-
ter une chaîne complète de traitements automatiques
pour l’analyse des pleurs des prématurés enregistrés
en USIN. Cette chaîne regroupe : i) une nouvelle ap-
proche de détection des pleurs composée d’une seg-
mentation, réalisée à partir de la fusion de vidéos et
de bandes son ; ii) une classification par deep-learning
pour l’identification des pleurs parmi tous les sons
segmentés (voix d’adultes, alarmes. . . ) ; iii) l’estima-
tion de la fréquence fondamentale des pleurs détec-
tés par une nouvelle approche basée sur la détection
de contours dans le spectrogramme.
Le déploiement de la chaîne de traitements sur une
base de données de pleurs enregistrés enUSINmontre
des résultats en accord avec ceux publiés dans la
littérature. Cette validation est encourageante et an-
nonce la possibilité d’observer automatiquement sur
des grandes cohortes l’évolution des pleurs des pré-
maturés, notamment en vue de caractériser leur déve-
loppement.

Title: Detection and characterization of vocalizations in preterm newborns.
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Abstract: The number of premature births is estimated
at 15 million per year worldwide and represents 7% of
births in France. These babies are cared for in Neona-
tal Intensive Care Units (NICU) and are subject to spe-
cial surveillance because of the immaturity of their or-
gans and the complications that may arise.
Numerous studies have shown that the analysis of in-
fant crying provides information on their health status
and, in the case of premature infants, on their matura-
tion. While early work was based on manual segmen-
tation of often induced crying (usually by pain), cur-
rent work focuses on spontaneous crying, which re-
quires the development of automatic extraction meth-
ods. This non-invasive monitoring approach appears
to be extremely relevant given the fragility of the sub-
jects studied. However, the particularly noisy hospital
environment where the recordings are made makes
the automation of the methods very complex.
In this context, and within the framework of the

European project Digi-NewB, the objective of this work
is to present a complete chain of automatic treat-
ments for the analysis of the cries of premature ba-
bies recorded in NICU. This chain gathers: i) a new
approach of crying detection composed of a segmen-
tation, realized from the fusion of videos and sound-
tracks; ii) a classification by deep-learning for the iden-
tification of crying among all the segmented sounds
(adult voices, alarms...); iii) the estimation of the fun-
damental frequency of the detected crying by a new
approach based on the detection of contours in the
spectrogram.
The deployment of the processing chain on a database
of cries recorded in NICU shows results in agreement
with those published in the literature. This validation
is encouraging and announces the possibility of auto-
matically observing the evolution of crying in prema-
ture babies on large cohorts, in particular in order to
characterize their development.
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