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Sur les Comportements Collectifs de Systèmes Distribués Bio-Inspirés
Résumé

Récemment, la communauté algorithmique a manifesté un intérêt croissant pour l’utilisation de
ses outils théoriques à la compréhension des systèmes complexes, notamment biologiques, tels
que les colonies d’insectes, les volées d’oiseaux et les réseaux de neurones. Nous contribuons
à l’étude de ces systèmes dans trois directions différentes. Premièrement, nous analysons des
dynamiques computationnelles pour les tâches de coordination stochastique dans les systèmes
multi-agents. En particulier, nous nous focalisons sur le problème du consensus dans des en-
vironnements où la communication est bruyante : nous analysons deux dynamiques d’opinion,
les dynamiques UNDECIDED-STATE et 3-MAJORITY, et nous prouvons qu’elles présentent
une transition de phase à des seuils de bruit différents. En dessous du seuil, ces dynamiques
atteignent rapidement une phase métastable de quasi-consensus ; au-dessus, aucune forme de
consensus n’est possible. Deuxièmement, nous étudions les Lévy walks, des marches aléa-
toires qui modélisent des schémas de mouvement trouvés dans la nature, dont la distribution
de la longueur de pas suit une loi de puissance. Nous analysons leur temps d’arrêt (hitting
time) parallèle et les utilisons pour concevoir un algorithme optimal pour l’ANTS problem,
un problème de recherche distribuée sur Z2 qui capture certains aspects de la théorie du buti-
nage. Troisièmement, nous considérons l’Assembly Calculus, un modèle distribué du cerveau
récemment proposé, qui consiste en des neurones et des synapses stylisés, et nous testons ex-
périmentalement ses capacités, largement inexplorées, en mettant en œuvre des heuristiques
connues pour la tâche de planification du monde des blocs. Nous montrons empiriquement que
des programmes grands et complexes dans ce modèle s’exécutent correctement et de manière
fiable.

Mots-clés : Calcul distribué, Algorithmes naturels, Systèmes biologiques.

On the Collective Behaviors of Bio-Inspired Distributed Systems
Abstract

In recent years there has been a surge of interest on behalf of the algorithmic community in
applying its theoretical tools to the understanding of complex systems, in particular biological
ones, such as insect colonies, flocks of birds, and networks of neurons. We contribute to the
investigation of such systems in three different directions. First, we analyze computational
dynamics for stochastic coordination tasks in multi-agent systems: in particular, we focus
on the consensus problem in environments where communication is affected by some form
of noise. In this setting, we analyze two known opinion dynamics, the UNDECIDED-STATE

and the 3-MAJORITY dynamics, and prove that they exhibit a phase-transition at different
noise thresholds. Below the threshold, the two dynamics quickly reach an almost-consensus
metastable phase; above, no form of consensus is possible. Second, we study Lévy walks,
i.e., special random walks known to model many movement patterns found in nature, char-
acterized by a step-length density distribution proportional to a power-law. We analyze their
parallel hitting time and show how to use them to design an almost optimal algorithm for the
ANTS problem, a distributed search problem on Z2 which captures some aspects of animal
foraging theory. Third, we consider the Assembly Calculus, a recently proposed distributed
computational model of the brain which consists of stylized spiking neurons and synapses, and
we test experimentally its capabilities, largely unexplored. In particular, we implement known
heuristics for the Blocks World planning task; we empirically prove that reasonably large and
complex programs in the Assembly Calculus run correctly and reliably.

Keywords: Distributed computing, Natural algorithms, Biological systems.
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Preface

This thesis presents a major part of the research I conducted during my doctoral studies. During
these years, I mainly studied bio-inspired distributed systems and their collective behaviors, both
theoretically and experimentally. The purpose of this preface is to briefly list the main topics
covered in this thesis and the work that has not been included.

— Chapter 1 presents an overview of the interplay between biology and distributed compu-
ting, and then introduces the topics I investigate in the thesis and discusses related work.

— Chapter 2 provides the analysis of two opinion dynamics, the UNDECIDED-STATE and the
3-MAJORITY dynamics, in the presence of a communication noise feature. The results are
based on the papers [D’Amore et al., 2020], [D’Amore and Ziccardi, 2022], and [D’Amore
et al., 2022a].

— Chapter 3 is dedicated to the analysis of the hitting time of the so-called Lévy walks,
special random walks whose step-length density distribution follows a power law, and
shows how to use them to obtain an optimal solution for a distributed search problem.
These results are presented in the paper [Clementi et al., 2021].

— Chapter 4 investigates the Assembly Calculus, a distributed model of the brain, and pre-
sents the results of simulations testing its computational capabilities. Such experiments
have been presented in [D’Amore et al., 2022b].

In addition to this, during my doctoral studies, I also investigated other topics that are outside the
scope of this thesis. The most important one, which led to two currently submitted works, concerns
a randomized version of the subset sum problem in its one-dimensional [Carvalho Walraven da
Cunha et al., 2022] and multidimensional [Becchetti et al., 2022] formulations.
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CHAPTER 1
Introduction

Algorithmic research has classically focused on the design of efficient algorithms to solve well
defined problems in computer science, often arising from engineering and technology or, more in
general, from the theory of computation. However, in recent years, there has been a surge of inter-
est on behalf of the algorithmic community in applying its theoretical tools — the “computational
lens” [Karp, 2011] — to the understanding of complex systems. The study of complex systems lies
in an interdisciplinary field of research and aims at explaining how systems of relatively simple en-
tities organize themselves, into a collective whole that creates patterns, uses information, evolves
and learns in some cases, and achieves a common task without relying on any central controller.
The word complex comes from the Latin root plectere: to weave, entwine [Mitchell and Toroczkai,
2010]. Complex systems are composed of many simple parts that are entwined and interact giving
rise to complex, emergent behaviors, the latter being the objects of investigation of disciplines
such as physics, biology, chemistry, and, more recently, computer science.

Different complex systems in nature (understood in a broad sense), such as insect colo-
nies [Musco et al., 2017], flocks of birds [Chazelle, 2009], immune systems [Harris et al., 2012],
networks of neurons [Afek et al., 2011,Dasgupta et al., 2017,Papadimitriou et al., 2020], and social
networks [Mossel and Tamuz, 2017], benefit from and propose many challenges to computational
science [Feinerman and Korman, 2013]. The algorithmic processes that arise from the modeling of
complex systems have been called natural algorithms [Chazelle, 2012], and have been an hot topic
from which both computer science and biology have profited. On the one hand, the algorithmic
perspective — or computational lens — has helped catching behavioral properties of biological
systems (e.g., estimation of the bird flocking convergence time [Chazelle, 2009], proof that the
slime mold is able to compute shortest paths [Bonifaci et al., 2012]); on the other hand, biolo-
gical systems have helped designing new algorithms for well-known problems (e.g., design of a
distributed maximal independent set algorithm from the fly’s nervous system [Afek et al., 2011]).

Biological systems are often distributed in nature, which is why the main field of computer
science for which this line of research is particularly fruitful is distributed computing: its advance
in the understanding of topics such as dynamic networks, mobile agents, population protocols,
and network computing in general indicates that this field has reached the maturity level of being
useful also for the context of understanding large biological systems [Feinerman and Korman,
2013].

With respect to this, many important results related to natural algorithms have already been
established other than the already mentioned ones: a distributed model of how ants could estimate
their density in a bounded space has been proposed and studied [Musco et al., 2017]; some toy mo-
dels on how biological systems can spread information and reach agreement despite the presence
of communication noise have been analyzed [Feinerman et al., 2017]; a problem on multi-agent
systems that have to locate nearby treasures as fast as possible (the ANTS problem) has been for-
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2 CHAPTER 1 — Introduction

malized and investigated, with links to foraging theory [Feinerman et al., 2012, Feinerman and
Korman, 2017]; it has been discovered that the fly’s olfactory circuit solves the similarity search
problem using a novel variant of a traditional computer science algorithm (called locality-sensitive
hashing) [Dasgupta et al., 2017]; a distributed computational model of the brain based on assem-
blies of neurons has been designed [Papadimitriou et al., 2020]; etc.

In this thesis we investigate and contribute to three main lines of research which fall under
the broad natural algorithms field. The first one (Section 1.1 and Chapter 2) is about opinion
dynamics for quickly reaching agreement in multi-agent systems under a communication noise
feature inspired by the model proposed in [Feinerman et al., 2017]. Opinion dynamics are a class
of randomized protocols executed by systems of agents with limited power (bounded memory and
little communication capacities) which rely on simple, lightweight, elementary rules; they’re often
used to achieve tasks such as broadcast [Fraigniaud and Natale, 2019] or consensus [Becchetti
et al., 2020a]. The second one (Section 1.2 and Chapter 3) studies a specific type of random
walks, the Lévy walks, which have been established to model biological organisms movement
patterns [Reynolds, 2018]. We uses the properties of such walks to give an optimal solution to
the Ants Nearby Treasure Search (ANTS) problem [Feinerman and Korman, 2017]. The third and
final one (Section 1.3 and Chapter 4) investigates experimentally the computational capabilities of
the Assembly Calculus [Papadimitriou et al., 2020], a computational distributed model of the brain
which consists only in stylized spiking neurons and synapses, by implementing known heuristics
for the Blocks World planning task [Gupta and Nau, 1992].

Notation For us to continue, we need to introduce the notation used in the thesis: we make use
of the conventional Bachmann–Landau notation for asymptotic behaviors of function, which we
now recall. Let f : R → R and g : R → R be any two functions. We write f(x) = O (g(x))
if a constant M > 0 and a value x0 ∈ R exist such that |f(x)| ≤ M |g(x)| for any x > x0.
Similarly, we write f(x) = Ω (g(x)) if a constant m > 0 and a value x0 ∈ R exist such that
|f(x)| ≥ m|g(x)| for any x > x0; finally, we write f(x) = Θ (g(x)) if two constants 0 < m < M
and a value x0 ∈ R exist such that m|g(x)| ≤ |f(x)| ≤ M |g(x)| for all x > x0. Moreover, we
write f(x) = o (g(x)) if limx→∞

f(x)
g(x) = 0, and f(x) = ω (g(x)) if limx→∞

∣∣∣f(x)
g(x)

∣∣∣ = ∞. We
also mention the polylog function. By writing f(x) = polylog x, we mean that a constant m > 0
exists such that f(x) = Θ (logm x). We complete this paragraph by introducing the notion of high
probability. An event E depending on a parameter n holds with high probability (in short, w.h.p.)
with respect to n if a constant c > 0 exists such that Pr [E] ≥ 1−n−c. In general, we are interested
in stating theoretical results that hold with high probability with respect to some input parameter.

1.1 Consensus dynamics with uniform communication noise

The consensus problem. The consensus problem is a fundamental problem in distributed com-
puting in which we have a system of agents supporting some opinions that interact between each
other by exchanging messages over some communication graph, with the goal of reaching an
agreement on some valid opinion (i.e., an opinion initially present in the system) [Becchetti et al.,
2020a]. In particular, many research papers focus on the majority consensus problem where the
goal is to converge towards the initial majority opinion. The numerous theoretical studies in this
area are justified by many different application scenarios, ranging from social networks [Mossel
et al., 2014,Acemoglu et al., 2013], swarm robotics [Bayindir, 2016], cloud computing, communi-
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cation networks [Ruan and Mostofi, 2008], and distributed databases [Dietzfelbinger et al., 2010],
to biological systems [Feinerman et al., 2017, Fraigniaud and Natale, 2019]. As for the latter, the
goal of the majority consensus problem is to model some real-world scenarios where biological
entities need to communicate and agree in order to pursue some collective task. Many biological
entities in different real situations perform this type of process, e.g., molecules [Carroll, 2004],
bacteria [Bassler, 2002], flock of birds [Ben-Shahar et al., 2014], school of fish [Sumpter et al.,
2008], or social insects [Franks et al., 2002], such as honeybees [Reina et al., 2017].

In the aforementioned applicative scenarios, communication among agents is often affected
by some form of noise: that is why one of the main goal in network information theory is to
guarantee reliable communications in noisy networks [Gamal and Kim, 2011]. In this context,
error-correcting codes are very effective methods to reduce communication errors in computer
systems [Moon, 2005, Koetter and Kschischang, 2008], and this is why many theoretical studies
of the (majority) consensus problem assume that communication between entities occurs without
error, and instead consider some adversarial behavior (e.g., byzantine fault [Becchetti et al., 2016]).
Despite their effectiveness in computer applications, error-correcting codes are quite useless if
we want to model consensus in biological systems. Indeed, they involve sending complicated
codes through communication links, and it is reasonable to assume that biological type entities
communicate between each other in a simpler way. For this reason, in recent years many works
have been focusing on the study of the (majority) consensus problem where the communication
between entities is unreliable and subjected to some form noise [Feinerman et al., 2017,Fraigniaud
and Natale, 2019, Cruciani et al., 2021].

Opinion dynamics. Opinion dynamics are mathematical models to investigate the way a decen-
tralized multi-agent system is able to reach some form of consensus. Their study is a hot topic
touching several research areas such as distributed computing [Ghaffari and Lengler, 2018, Cru-
ciani et al., 2019, Becchetti et al., 2020a], social networks [Acemoglu et al., 2013, Mossel and
Tamuz, 2017], and system biology [Cardelli and Csikàsz-Nagy, 2012, Boczkowski et al., 2018b].
Typical examples of opinion dynamics are the VOTER model, the averaging rules, and the majo-
rity rules. Some of such dynamics share a surprising efficiency and resiliency that exploit common
computational principles, as they rely on simple, lightweight, local, elementary rules. A definition
of dynamics, as given in [Becchetti et al., 2020a], follows.

Definition 1.1.1 (Dynamics). A dynamics is a synchronous distributed algorithm characterized
by a very simple structure. In particular, the state of an agent at round t ∈ N only depends on its
state and a symmetric function 1 of the vector of states of its neighbors, while the update rule is
the same for every communication graph and for every agent, and it does not change over time.

The first consensus dynamics that have been studied in the presence of noise communication
are linear opinion dynamics, i.e., where the state-update function is linear in the neighbors states,
such as the VOTER dynamics and the AVERAGING dynamics: in the VOTER dynamics, an agent
samples a neighbor u.a.r. and simply adopts its opinion; in the AVERAGING dynamics, an agent
computes and adopts the average opinion of its neighbors (the set of opinions must be ordered).
In particular, they have been studied in the presence of uniform noise communication [Lin et al.,
2007] or in the presence of some communities of stubborn agents (i.e., agents that never change

1. A function f is symmetric if its value is the same no matter the order of its arguments.
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opinion) [Mobilia, 2003,Mobilia et al., 2007,Yildiz et al., 2013]. Due to the communication unre-
liability, only metastable forms of consensus can be achieved, where a large subset of the agents
agree on some opinion while other opinions remain supported by smaller subsets of agents, and
this setting lasts for a relatively-long time. However, the VOTER model has a slow convergence
time even in fully connected networks and a large initial bias towards some majority opinion [Has-
sin and Peleg, 2001], and the AVERAGING dynamics requires agents to perform non-trivial com-
putation and, more importantly, to have large local memory. For these reasons, linear opinion
dynamics struggle explaining the observed metastable consensus in multi-agent systems [Bocz-
kowski et al., 2019, Condon et al., 2019, Emanuele Natale, 2017], and many research papers have
begun to investigate new, more plausible, non-linear opinion dynamics.

In this thesis, we consider a network of n agents supporting opinions from a finite set of
opinions Σ, and we study the processes arising from the synchronous version of the UNDECIDED-
STATE and the 3-MAJORITY dynamics with uniform communication noise. In the UNDECIDED-
STATE dynamics there is an extra opinion, the undecided state, other than those in Σ, and works
as follows: at any round, every agent samples a neighbor uniformly at random (u.a.r.) and pulls
its opinion. If the opinion is different from the agent’s one, the agent becomes undecided. An
undecided agent, instead, just applies the VOTER rule and adopts any pulled opinion; we remark
that for an agent to change its opinion in Σ, the UNDECIDED-STATE dynamics needs at least two
rounds, as it must pass through the undecided state. Instead, in the 3-MAJORITY dynamics, at any
round, every agent samples u.a.r. three neighbors (with replacement) and pulls their opinions; then,
it adopts the majority opinion among the pulled ones, if there is any, while ties are broken u.a.r.
The noise model we consider is inspired from [Feinerman et al., 2017] and is defined as follows:
let p ∈ [0, 1] be any real value. For each pulled opinion, with probability 1 − p the opinion keeps
intact; instead, with probability p it is sampled u.a.r. among all possible ones.

In the following section, we state our main contributions, which are based on the works
[D’Amore et al., 2020], [D’Amore et al., 2022a], and [D’Amore and Ziccardi, 2022].

1.1.1 Our contribution

We consider the synchronous version of the dynamics in the binary opinion case over the
fully connected network of n agents. Even though the complete graph is a strong assumption for
such communication networks, we remark that, at every round, an agent pulls an opinion from a
constant number of neighbors: therefore, the round-by-round communication pattern results is a
dynamic graph with O (n) edges. Furthermore, such a model can be used to capture the behavior
of bio-inspired multi-agent systems in which mobile agents meet randomly at a relatively high
rate.

In the aforementioned setting, we prove that the processes induced by the UNDECIDED-STATE

and the 3-MAJORITY dynamics exhibits a phase-transition. At any time t ≥ 0, let st be the bias
of the system, i.e., the difference between the majority opinion community size and the minority
opinion one at time t. Our results are summarized in the following theorems.

Theorem 1.1.1 (Phase-transition of the U-dyn). Let {st}t≥0 be the bias of the process induced by
the UNDECIDED-STATE dynamics with uniform noise probability p. We prove the following.

— If p < 1/2, let s0 = Ω(
√

n log n) be the bias at the beginning of the process. Then, there
exists a time τ1 = O(log n) such that, w.h.p., the process at time τ1 reaches a metastable
almost-consensus phase characterized by a bias sτ1 = Θ (n) towards the initial majority
opinion. Moreover, the bias keeps of magnitude Θ (n) for exp(Θ (n)) rounds w.h.p.
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— If p < 1/2, let s0 = O(
√

n log n) be the bias at the beginning of the process. Then, there
exists a time τ2 = O(log n) such that, w.h.p. , the system becomes unbalanced towards an
opinion, i.e.,

|sτ2 | = Ω(
√

n log n).

— If p > 1/2, let s0 = Ω(
√

n log n) be the bias at the beginning of the process. Then, there
exists a time τ3 = O(log n) such that, w.h.p. , at time τ3 the majority opinion is lost, i.e.,
sτ3 = O(

√
n). In addition, for nΘ(1) additional rounds the absolute value of the bias is

bounded by O(
√

n log n) w.h.p.

Theorem 1.1.2 (Phase transition of the 3Maj-dyn). Let {st}t≥0 be the bias of the process induced
by the 3-MAJORITY dynamics with uniform noise probability p. We prove the following.

— If p < 1/3, let s0 = Ω(
√

n log n) be the bias at the beginning of the process, seq =
n

1−p

√
1−3p
1−p , and let ε > 0 be any sufficiently small constant. Then, there exists a time

τ1 = O(log n) such that, w.h.p., the process at time τ1 reaches a metastable almost-
consensus phase characterized by the equilibrium point seq, i.e.,

sτ1 ∈ [(1 − ε)seq, (1 + ε)seq].

Moreover, the bias oscillates in such interval for nΘ(1) rounds w.h.p.
— If p < 1/3, let s0 = O(

√
n log n) be the bias at the beginning of the process. Then, there

exists a time τ2 = O(log n) such that, w.h.p. , the system becomes unbalanced towards an
opinion, i.e.,

|sτ2 | = Ω(
√

n log n).

— If p > 1/3, let s0 = Ω(
√

n log n) be the bias at the beginning of the process. Then,
there exists a time τ3 = O(log n) such that, w.h.p., at time τ3 the majority opinion is
lost, i.e., sτ3 = O(

√
n). In addition, with constant probability, at time τ3 + 1 the majority

opinion changes. Moreover, for nΘ(1) additional rounds the absolute value of the bias is
O(

√
n log n) w.h.p.

A more exhaustive statement of our results and their analysis is given in Chapter 2. Theo-
rems 1.1.1 and 1.1.2 show that the 3-MAJORITY dynamics is less resilient to noise than the
UNDECIDED-STATE dynamics, despite in the 3-MAJORITY dynamics more communication per-
round are allowed. Indeed, the phase transition of the two dynamics are, respectively, at the thre-
sholds p = 1/3 and p = 1/2; the two-phases update-rule of the UNDECIDED-STATE dynamics
turns out to be more robust to noise and, hence, a swarm of agents would benefit from it. With
respect to this, in Chapter 2 we show that the UNDECIDED-STATE dynamics can be derived by a
discretization of the differential equations describing a best-of-N nest-site selection processes in
honeybees [Reina et al., 2017]. We remark that the obtained phase transitions separate qualitati-
vely the behaviors of the UNDECIDED-STATE and the 3-MAJORITY dynamics from that of the
VOTER model which is, to the best of our knowledge, the only linear opinion dynamics (with a
finite opinion set) which has been rigorously analyzed in the presence of uniform communication
noise or stubborn agents [Mobilia et al., 2007, Yildiz et al., 2013]. For this dynamics, it has been
shown that no form of consensus can be reached in the presence of uniform noise: this hints at
a more general phenomenon for non-linear dynamics with fast convergence to some metastable
consensus. We remind that in the (a)synchronous version of the VOTER model, any agent pulls
just a neighbor u.a.r. and adopts its opinion.
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Furthermore, in Chapter 2 we also show that the noise model we consider in the complete
network (for the general case of k opinions) is equivalent to a model without any communica-
tion noise and where pn

(1−p) stubborn agents (that is, they never change opinion), organized in k
communities where each the community holds a different opinion, are added to the network.

We remark that our result on the 3-MAJORITY dynamics is more complete than that on the
UNDECIDED-STATE dynamics. A first difference lies in the fact that in the 3-MAJORITY dynamics
we find a precise equilibrium value seq that is attractive for the bias when the noise is below the
phase-transition threshold. Secondly, we characterize in detail what happens in the metastable
almost-consensus phase: for every arbitrary small value ε > 0, we prove that the bias oscillates in
the interval [(1 − ε)seq, (1 + ε)seq] for polynomial time w.h.p. Instead, in the UNDECIDED-STATE

dynamics we could only prove the bias converges to a larger interval of width Θ(n), without
arbitrarily approaching an equilibrium state. On the other hand, when the noise probability is above
the threshold, we also show that in the 3-MAJORITY dynamics the majority opinion switches every
O (log n) rounds with constant probability. In order to prove this, some drift analysis results with
super-martingale arguments are used [Lehre and Witt, 2014]. The reason for the lack of such
refinements in the results for the UNDECIDED-STATE dynamics lies in the fact that this dynamics
is more difficult to analyze, as there is a third opinion to consider and the round-by-round update-
rule depends on the opinion of the agent. Nevertheless, we remark that we think the UNDECIDED-
STATE process should behave in such a way.

As future directions that interest us, sparser topologies are worth to be investigated theoreti-
cally. We believe that, as long as the communication graph shows strong connection properties,
similar phase transitions will be exhibited. Indeed, in Chapter 2 we also show some performed
simulations corroborating this hypothesis. Furthermore, it would be interesting to see whether the
UNDECIDED-STATE and the 3-MAJORITY dynamics with an arbitrary number of possible opi-
nions, with the same noise model, have the exact same phase transitions: in general, p = 1/2
for the UNDECIDED-STATE dynamics means that half of the round-by-round communications are
non-noisy, on average, while p = 1/3 in the 3-MAJORITY dynamics corresponds to the fact that,
for each node and at each round, exactly one communication among the three ones is noisy in
expectation.

We believe this thesis contributes to the research endeavor of exploring the interplay between
communication noise and stochastic interaction pattern in multi-agent systems.

1.1.2 Related works

On the UNDECIDED-STATE dynamics. The UNDECIDED-STATE dynamics has been origi-
nally studied as an efficient majority-consensus population protocol, that is, where the process is
asynchronous and at each round two agents sampled u.a.r. interact, by [Angluin et al., 2008] and
independently by [Benezit et al., 2009] for the binary opinion case. They prove that, w.h.p., wi-
thin a logarithmic number of parallel rounds, all agents support the initial majority opinion. Some
works have then extended the analysis of the UNDECIDED-STATE dynamics to non-complete to-
pologies. In the Poisson-clock model (formally equivalent to the population protocol model), the
authors of [Draief and Vojnovic, 2012] derive an upper bound on the expected convergence time
of the dynamics that holds for arbitrary connected graphs, which is based on the location of ei-
genvalues of some contact rate matrices. They also instantiate their bound for particular network
topologies. Successively, going back to the population protocol model, [Mertzios et al., 2016] pro-
vides an analysis when the initial states of agents are assigned independently at random, and they
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also derive “bad” initial configurations on certain graph topologies such that the initial minority
opinion eventually becomes the majority one. As for the use of UNDECIDED-STATE dynamics
as a generic synchronous consensus protocol for the binary opinion case, where all agents update
their state in parallel, [Clementi et al., 2018] shows that the convergence time of the UNDECIDED-
STATE dynamics is, w.h.p., logarithmic. In particular, whenever the initial bias towards some ma-
jority opinion is of order Ω

(√
n log n

)
, the process achieves majority consensus. Interestingly

enough, our results show that the behavior of the UNDECIDED-STATE dynamics in presence of
noise is qualitatively equivalent to the non-noisy case, except for the complete consensus as the
final configuration, when the noise is under the phase-transition threshold.

As for the many opinion case, the authors of [Becchetti et al., 2015] show that the
UNDECIDED-STATE dynamics in the complete graph is able to reach plurality consensus pro-
vided that the ratio between the initial plurality opinion community size and the second largest
one is at least some positive constant. More precisely, if the number of opinions is k and the
number of agents supporting opinion i is ci in the initial configuration, they define the monochro-
matic distance of the initial configuration to be md =

∑
i≤k

ci
c1

, where it is assumed wlog that
c1 ≥ c2 ≥ · · · ≥ ck; if c1 ≥ (1 + α)c2, with α > 0 being a constant, the convergence time to plu-
rality consensus is upper bounded by O(md log n) and lower bounded by Ω(md), w.h.p. Thus, the
convergence time is linear in the monochromatic distance of the initial configuration. We remark
that 1 ≤ md ≤ k, so the more general upper bound on the consensus time is O(k log n). Moreo-
ver, in [Becchetti et al., 2015] it is also shown how to adapt the UNDECIDED-STATE dynamics to
solve the plurality consensus on expander graphs.

More in general, the UNDECIDED-STATE dynamics has also been considered as a model of
some mechanism occurring in the biology of a cell [Cardelli and Csikàsz-Nagy, 2012] and it has
been employed as a sub-routine of efficient majority consensus protocols: indeed, [Ghaffari and
Parter, 2016], [Berenbrink et al., 2016], and [Elsässer et al., 2017] consider majority consensus in
the synchronous model, and design protocols (based on the UNDECIDED-STATE dynamics) which
w.h.p. converge in polylogarithmic time even if the number of initial opinions is very large. It is
worth mentioning the more recent work [Bankhamer et al., 2022], which analyzes a variant of the
UNDECIDED-STATE dynamics both in its asynchronous and synchronous versions, which solve
the plurality consensus in parallel time O(log2 n) for an arbitrary number of opinions, starting
from any initial configuration, at the cost of a per-agent memory capable of storing k · O(log n)
states. We remark that, in the former UNDECIDED-STATE dynamics, the agent needs a memory
capable of storing only k + 1 states, namely, the k opinions and the undecided state.

On of the 3-MAJORITY dynamics. The study of the 3-MAJORITY dynamics arises on the
ground of the results obtained for the MEDIAN dynamics in [Doerr et al., 2011]. The MEDIAN

dynamics considers a totally ordered opinion set, in which each agent pulls two neighbor opinions
i, j u.a.r. and then updates its opinion k to the median between i, j, and k. The dynamics turns out
to be a fault-taulerant, efficient dynamics for the majority consensus problem. However, as pointed
out in [Becchetti et al., 2020a], the MEDIAN dynamics may not guarantee with high probability
convergence to a valid opinion in case of the presence of an adversary, which is needed for the
consensus problem. Moreover, the opinion set must have an ordering, property that might not
be met by applicative scenarios such as biological systems [Becchetti et al., 2020a]. These facts
naturally lead researchers to look for efficient dynamics that satisfy the above requirements.

To the best of our knowledge, [Abdullah and Draief, 2015] is the first work analyzing the
h-MAJORITY dynamics. In detail, in the h-MAJORITY dynamics we have n nodes and, at every
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round, every node pulls the opinion from h random neighbors and sets his new opinion to the
majority one (ties are broken arbitrarily). More extensive characterizations of the 3-MAJORITY

dynamics over the complete graph are given in [Becchetti et al., 2017, Berenbrink et al., 2017,
Becchetti et al., 2016, Ghaffari and Lengler, 2018].

In [Becchetti et al., 2017] it is shown that the 3-MAJORITY dynamics is a fast, fault-tolerant
protocol for (valid) majority consensus in the case of k ≥ 2 opinions, provided that there is
an initial bias towards some majority opinion. Furthermore, [Becchetti et al., 2017] shows an
exponential time-gap between the 3-MAJORITY consensus process and the median process in
[Doerr et al., 2011], thus establishing its efficiency. In [Becchetti et al., 2016], the analysis is
extended to any (even balanced) initial configuration in the many-opinion case, in the presence of
a different kind of bounded adversaries. The authors of [Becchetti et al., 2016] emphasize how the
absence of an initial majority opinion considerably complicates the analysis, as it must be proved
that the process breaks the initial symmetry despite the presence of the adversary. Indeed, before
the symmetry breaking, the adversary is more likely to cause undesired behaviors. The strongest
result about the convergence of the 3-MAJORITY is that in [Ghaffari and Lengler, 2018]. The
authors show that in the case of k opinions, the process converges in time O(k log n) rounds, and
it is tight when k = O(

√
n). The 3-MAJORITY dynamics is also studied in different topologies:

[Kang and Rivera, 2019] analyzes the 3-MAJORITY process in graphs of minimum degree nα,
with α = Ω

(
(log log n)−1), starting from random biased binary configurations.

On the 2-CHOICES dynamics. Another important and efficient opinion dynamics for the ma-
jority consensus problem is the 2-CHOICES dynamics. A quick description of its update-rule fol-
lows: at each round, each agent samples two neighbors u.a.r. and updates its opinion to the majority
opinion among its former opinion and the two sampled neighbor opinions, if there is any. Other-
wise, it keeps its opinion. We just want to remark that the expected round-by-round behavior of the
2-CHOICES dynamics and that of the 3-MAJORITY are the same, while the actual behaviors differ
substantially in high probability [Berenbrink et al., 2017]. This is why mean-field arguments are
sometimes not sufficient to analyze such processes. For example, we have ran simple experiments
that suggest that our uniform noise model on the 2-CHOICES dynamics yields a threshold noise
value p = 1/2, just like the UNDECIDED-STATE dynamics. For an overview on the state of the art
about opinion dynamics in general, we defer the reader to [Becchetti et al., 2020a].

Consensus dynamics in the presence of noise or stubborn agents. The authors of [Wang
and Liu, 2009] initiate the study of the consensus problem in the presence of communication
noise. They consider the Vicsek model [Vicsek et al., 1995], in which they introduce a noise
feature and a notion of robust consensus. Subsequently, dynamics for the consensus problem with
noisy communications have received considerable attention. In particular, as mentioned in the
introduction, this direction is motivated, among many reasons, by the desire to find models for the
consensus problem in natural phenomena [Feinerman et al., 2017].

The communication noise studied in this type of problem can be devided in two types: uniform
(or unbiased) and non-uniform (or biased). The uniform case wants to capture errors in commu-
nications between agents in real-world scenarios. The non-uniform communication noise instead
describes the case in which agents have a preferred opinion. The authors of [Feinerman et al.,
2017] are the first to explicitly focus on the uniform noise model. In detail, they study the broad-
cast and the majority consensus problem when the opinion set is binary. In their model of noise,
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every bit in every exchanged message is flipped independently with some probability smaller than
1/2. As a result, the authors give natural protocols that solve the aforementioned problems effi-
ciently. The work [Fraigniaud and Natale, 2019] generalizes the above study to opinion sets of any
cardinality.

As for the non-uniform communication noise case, in [Cruciani et al., 2021] it is considered the
h-MAJORITY dynamics (where the majority update-rule is performed over a sample of h neigh-
bors) with a binary opinion set {Alpha, Beta}, where they have a probability p that any received
message is flipped towards a fixed preferred opinion, say Beta, while with probability 1 − p the
former message keeps intact. The authors suppose there is an initial majority agreeing on Alpha,
and they analyze the time of disruption, that is the time the initial majority is subverted. They
prove there exists a threshold value p⋆ (which depends on h), such that 1) if p < p⋆, the time of
disruption is at least polynomial, w.h.p., and 2) if p > p⋆, the time of disruption is constant, w.h.p.
Their result holds for any sufficiently dense graph. We remark that our work on the 3-MAJORITY

dynamics differs from the one in [Cruciani et al., 2021] as there is no preferred opinion, and the
noise affecting communications may result in any possible opinion.

As we show in Chapter 2, the noise feature we consider is equivalent to a model in which com-
munities of stubborn agents (i.e., they never change opinion) are added to the network. Hence, we
discuss some previous works that consider such a model. In [Yildiz et al., 2013], the authors fo-
cus on the VOTER model, and show that the presence stubborn agents with opposite opinions
precludes the convergence to consensus. The work [Mukhopadhyay et al., 2020] studies the asyn-
chronous VOTER rule and the asynchronous majority rule dynamics with Poisson clocks, when the
opinion set is binary using mean-field techniques, in presence of agents that either have a probabi-
lity (which depends on their current opinion) not to update when the clock ticks, or are stubborn.
In the second case, which directly relates with this thesis, they show that for the 3-MAJORITY

dynamics there are either one or two possible stable equilibria, depending on the sizes of the stub-
born communities, which are reached in logarithmic time. If the two sizes are close between each
other and not too large, then agreement on both opinions is possible in the steady state. Other-
wise, either no agreement is possible, or the process converges to an agreement towards a single
opinion (that of the largest stubborn community). This thesis includes the case in which the two
stubborn communities have equal size, which corresponds to the uniform communication noise
model. Nevertheless, we have some crucial differences: first of all, this thesis consider the syn-
chronous version of the 3-MAJORITY dynamics, which cannot be analyzed with the same tools.
Indeed, in each update round, the synchronous model has non-zero probability to reach any of the
two monochromatic configurations. This feature is absent in the asynchronous version, since at
each update, with probability equal to 1, at most one agent can change opinion. Furthermore, we
want to remark that mean-field arguments do not capture important aspects of the process, such
as metastability, which in [Mukhopadhyay et al., 2020] is shown only through simulations. For
example, the actual behavior of the process in the long-term is oscillation in a very small interval
around the equilibrium values, spending long times in those intervals, and eventually switching
between the two. We characterize the width of the oscillation interval and show there is high
probability of convergence, providing also a lower bound on the time the process spends in the
equilibrium interval.
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1.2 Lévy walks

A Lévy walk is a random walk process in which jump lengths are drawn from a power-law
distribution. Thus, the walk consists of a mix of long trajectories and short, random movements.
Over the last two decades, Lévy walks have attracted significant attention, as a result of increasing
empirical evidence that the movement patterns of various animal species resemble Lévy walks.
Examples of such species range from snails [Reynolds et al., 2017], bees [Reynolds et al., 2007],
and albatross birds [Viswanathan et al., 1996], to sharks [Humphries et al., 2010, Sims et al.,
2008], deers [Focardi et al., 2009], and humans [Boyer et al., 2006, Raichlen et al., 2014], among
others [Reynolds, 2018]. Nowadays, Lévy walks are the most prominent movement model in bio-
logy [Reynolds, 2018], at least among models with comparable mathematical simplicity and ele-
gance [Viswanathan et al., 2011].

The Lévy flight foraging hypothesis, put forward by Viswanathan et al. [Viswanathan et al.,
1999, Viswanathan et al., 2008], stipulates that the observed Lévy walk movement patterns in
animals must have been induced by natural selection, due to the optimality of Lévy walks in
searching for food. Indeed, it has been shown that Lévy walks achieve (near) optimal search time
in certain settings. In particular, Levy walks with exponent parameter α = 2 are optimal for
searching sparse randomly distributed revisitable targets [Viswanathan et al., 1999]. However,
these results were formally shown just for one-dimensional spaces [Buldyrev et al., 2001], and do
not carry over to higher-dimensions [Levernier et al., 2020]. Very recently, a new argument was
provided in [Guinard and Korman, 2021] supporting the optimality of Lévy walks with α = 2. In
the considered setting, the space is a two-dimensional square torus of area n, and the walk must
find a single, randomly selected target. Two critical model assumptions are that the target may
have an arbitrary diameter D, and that the Lévy walk is “intermittent,” i.e., cannot detect the target
during a jump, only at the end of the jump. Under these assumptions, the Cauchy walk (that is, a
Lévy walk with power-law exponent α = 2) was shown to achieve a (near) optimal search time of
Õ(n/D), whereas exponents α ̸= 2 are suboptimal. We remark that if the target has a fixed size
D = 1 or the walk is not intermittent, then all exponents α ≥ 2 or α ≤ 2, respectively, are optimal
as well. Currently, the latter is the only work (other than ours) that shows evidence supporting the
optimality of Lévy walks in d-dimensional spaces for d > 1.

In this thesis we focus on Lévy walks on two-dimensional spaces. Concretely, we assume the
infinite lattice Z2, and consider the Manhattan distance as the underlying metric. To determine
each jump of the Lévy walk, an integer distance d is chosen independently at random such that the
probability of d = j is inversely proportional to jα, where α ∈ (1, ∞) is the exponent parameter
of the walk. A destination v is then chosen uniformly at random among all nodes at distance d
from the current node u, and in the next d steps, the process moves from u to v along a shortest
lattice path approximating the straight line segment uv.

We evaluate the search efficiency of Lévy walks on Z2, by analysing the parallel hitting time
of multiple walks originating at the same node. Precisely, we assume that k ≥ 1 independent Lévy
walks start simultaneously from the origin (0, 0) of the lattice. Then the parallel hitting time for
any given target node u∗ is the first step when some walk visits u∗. This very basic setting can be
viewed as a model of natural cooperative foraging behavior, such as the behavior of ants around
their nest. In fact, our setting is as a special instance of the more general ANTS problem introduced
by Feinerman and Korman [Feinerman and Korman, 2017]. The ANTS problem asks for a search
strategy for k independent agents that minimizes the parallel hitting time for an unknown target,
subject to limited communication before the search starts. The related works are further discussed
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in Section 1.2.3. In the following section, we discuss our main results which are based on the
work [Clementi et al., 2021], while the detailed statements and their mathematical analyses are
given in Chapter 3.

1.2.1 Our results

Hitting time bounds for a single Lévy walk. A main technical contribution of this thesis is
an analysis of the hitting time τα(u∗) of a single Lévy walk with exponent α ∈ (1, ∞), for an
arbitrary target node u∗. We show the following bounds on τα(u∗), assuming the Lévy walk starts
at the origin (0, 0), and u∗’s distance to the origin is ℓ = ∥u∗∥1.

Consider first the super-diffusive regime, where α ∈ (2, 3). In this regime, jump lengths have
bounded mean and unbounded variance. Roughly speaking, we show that in the first tℓ = Θ(ℓα−1)
steps, 2 the walk stays inside a ball of radius (tℓ · polylog ℓ)

1
α−1 with significant probability, while

only a constant fraction of those steps are inside the smaller ball of radius ℓ. We also show a
monotonicity property, which roughly implies that the probability of visiting a node decreases as
the node’s distance from the origin increases. Therefore, a constant fraction of the tℓ steps visits
nodes at distances between ℓ and ℓ · polylog ℓ, and the visit probability of each of these nodes is
upper bounded by that of node u∗. We thus obtain that the probability of visiting u∗ within tℓ steps
is Ω

(
tℓ/ℓ2 polylog ℓ

)
.

If we consider a smaller number of steps, t = O (tℓ/ polylog ℓ), then it is very likely that the
walk stays in a ball of radius smaller than ℓ, and we show a simple bound of O

(
(t/tℓ)2 · tℓ/ℓ2)

for the probability of τα(u∗) ≤ t, i.e., ignoring polylog ℓ factors, the probability decreases by a
factor of O

(
(t/tℓ)2).

On the other hand, if we consider a larger number of steps (even if t → ∞), the probability
that u∗ is hit does not increase significantly, just by at most a polylog ℓ factor.

Therefore, in regime α ∈ (2, 3), Θ(ℓα−1) steps suffice to maximize the hitting probability
(within polylog ℓ factors), while reducing this time reduces the probability super-linearly.

The diffusive regime, α ∈ (3, ∞), is similar to the case of a simple random walk, as jump
lengths have bounded mean and bounded variance. We show that O

(
ℓ2 polylog ℓ

)
steps suffice to

hit the target with probability Ω (1/ polylog ℓ), while for a smaller number of steps t, the proba-
bility decreases by a factor of O

(
(t/ℓ2)2). The behavior is similar also in the threshold case of

α = 3, even though the variance of the jump length is unbounded in this case.
Finally, in the ballistic regime, α ∈ (1, 2], where jump lengths have unbounded mean and

unbounded variance, the behavior is similar to that of a straight walk along a random direction.
We show that the target is hit with probability Ω (1/ℓ polylog ℓ) in the first Θ (ℓ) steps, while
increasing the number of steps does not increase this probability significantly.

Below we give formal statements of these results, for the case where α is independent of ℓ, as
ℓ → ∞. More refined statements and their proofs are given in Chapter 3. (Sections 3.3 to 3.5).

Theorem 1.2.1. Let α be any real constant in (2, 3) and u∗ any node in Z2 with ℓ = ∥u∗∥1. Then:

(a) Pr
[
τα(u∗) = O

(
ℓα−1)] = Ω

(
1/ℓ3−α log2 ℓ

)
;

(b) Pr [τα(u∗) ≤ t] = O
(
t2/ℓα+1), for any step ℓ ≤ t = O

(
ℓα−1);

(c) Pr [τα(u∗) < ∞] = O
(
log ℓ/ℓ3−α

)
.

2. Note that tℓ is of the same order as the expected number of steps before the first jump of length greater than ℓ.
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Theorem 1.2.2. Let α be any real constant in [3, ∞) and u∗ any node in Z2 with ℓ = ∥u∗∥1.
Then:

(a) Pr
[
τα(u∗) = O

(
ℓ2log2 ℓ

)]
= Ω

(
1/log4 ℓ

)
;

(b) Pr [τα(u∗) ≤ t] = O
(
t2log ℓ/ℓ4), for any step t with ℓ ≤ t = O

(
ℓ2).

Theorem 1.2.3. Let α be any real constant in (1, 2] and u∗ any node in Z2 with ℓ = ∥u∗∥1. Then:

(a) Pr [τα(u∗) = O (ℓ)] = Ω (1/ℓlog ℓ);

(b) Pr [τα(u∗) < ∞] = O
(
log2 ℓ/ℓ

)
.

Parallel Lévy walks with common exponent. Consider k ≥ 1 independent identical Lévy
walks with exponent α ∈ (1, ∞), that start simultaneously at the origin. Let τk

a (u∗) denote the
parallel hitting time for node u∗, i.e., the first step when some walk visits u∗. It is straightforward
to derive upper and lower bounds on τk

a (u∗) from the corresponding bounds on the hitting time of
a single Lévy walk. For example, the next statement is a direct corollary of Theorem 1.2.1Part a.

Corollary 1.2.4. Let α be any real constant in (2, 3) and u∗ any node in Z2 with ℓ = ∥u∗∥1. Then

Pr
[
τk

α(u∗) = O
(
ℓα−1

)]
= 1 − e−Ω(k/ℓ3−αlog2 ℓ).

From the bounds we obtain for τk
α , it follows 3 that, for each pair of k and ℓ = ∥u∗∥1 with

polylog ℓ ≤ k ≤ ℓ polylog ℓ, there is a unique optimal exponent α = 3 − log k
log ℓ + O

(
log log ℓ

log ℓ

)
,

which minimizes τk
α(u∗), w.h.p. Moreover, increasing or decreasing this exponent by an arbitra-

rily small constant term, respectively increases the hitting time by a poly(ℓ) factor, or the walks
never hit u∗ with probability 1 − o(1). For the case of k ≤ polylog ℓ or k ≥ ℓ polylog ℓ, all ex-
ponents α ∈ [3, ∞) or α ∈ (1, 2], respectively, achieve the same optimal value of τk

α(u∗) (within
polylog ℓ factors). Formal statements of these results are given in Chapter 3 (Sections 3.3 to 3.5).
The theorem below bounds the parallel hitting time for (near) optimal choices of α.

Theorem 1.2.5. Let u∗ be any node in Z2, and ℓ = ∥u∗∥1.

(a) If log6 ℓ ≤ k ≤ ℓlog4 ℓ, then for α = 3 − log k
log ℓ + 5 log log ℓ

log ℓ , Pr
[
τk

α(u∗) = O
(

ℓ2log6 ℓ
k

)]
=

1 − e−ω(log ℓ);

(b) If k = ω(log5 ℓ), then Pr
[
τk

3 (u∗) = O
(
ℓ2)] = 1 − e−ω(log ℓ);

(c) If k = ω(ℓlog2 ℓ), then Pr
[
τk

2 (u∗) = O (ℓ)
]

= 1 − e−ω(log ℓ).

Observe that for any given k, ℓ with k = ω(log5 ℓ), if we choose the exponent α as in Theo-
rem 1.2.5, then

Pr
[
τk

α(u∗) = O
(
(ℓ2/k) log6 ℓ + ℓ

)]
= 1 − e−ω(log ℓ). (1.1)

3. In fact, we use more refined versions of Theorems 1.2.1 to 1.2.3, to obtain bounds on τk
α which allow α to be a

function of ℓ and k.
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Parallel Lévy walks with random exponents The right choice of α, according to Theo-
rem 1.2.5, requires knowledge of the values of k and ℓ (at least within polylogarithmic factors).
We propose a very simple randomized strategy for choosing the exponents of the k Lévy walks,
which almost matches the parallel hitting time bounds of Theorem 1.2.5, for all distances ℓ si-
multaneously. The strategy does not require knowledge of ℓ, and works as long as k ≥ polylog ℓ.
Interestingly, it does not require knowledge of k either. The strategy is the following:

The exponent of each walk is sampled independently and uniformly at random from
the real interval (2, 3).

The next theorem bounds the resulting parallel hitting time τk
rand(u∗), for an arbitrary node u∗. Its

proof is given in Chapter 3 (Section 3.6).

Theorem 1.2.6. Let u∗ by any node in ∈ Z2, ℓ = ∥u∗∥1, and k ≥ log8 ℓ. Then

Pr
[
τk

rand(u∗) = O
(
(ℓ2/k) log7 ℓ + ℓ log3 ℓ

)]
= 1 − e−ω(log ℓ). (1.2)

By comparing Eq. (1.1) and Eq. (1.2), we observe that indeed the hitting time of the rando-
mized strategy is only by a polylog ℓ factor worse than that of the deterministic strategy based
on Theorem 1.2.5, which knows ℓ and k. Moreover, this hitting time is optimal within a polylog ℓ
factor among all possible search strategies (deterministic or randomized) that do not know ℓ within
a constant factor, since a universal lower bound of Ω

(
ℓ2/k + ℓ

)
with constant probability applies

to all such strategies, as observed in [Feinerman and Korman, 2017].

1.2.2 Implications on Lévy Hypothesis and Distributed Search

As already mentioned, our setting of k independent walks starting from the same location,
aiming to hit an unknown target, can be viewed as a basic model of animals’ foraging behavior
around a central location, such as a nest, a food storage area, or a sheltered environment. The as-
sumption that walks are independent is approximately true for certain animal species such as ants
Cataglyphis, which lack pheromone-based marking mechanisms [Razin et al., 2013]. Our results
suggest that if the typical or maximum distance ℓ of the food (target) from the nest (source) is
fixed, then a group of animals executing parallel Lévy walks with the same exponent can opti-
mize search efficiency by tuning the exponent value and/or the number k of animals participating
in the foraging. In that setting, no universally optimal exponent value exists, as the optimal ex-
ponent depends on k and ℓ. An alternative, novel approach suggested by our last result is that each
animal performs a Lévy walk with a randomly chosen exponent. This strategy, which surprisin-
gly achieves near optimal search efficiency for all distance scales, implies that different members
of the same group follow different search patterns. The existence of such variation in the search
patterns among individuals of the same species requires empirical validation.

In the context of the related ANTS problem [Feinerman and Korman, 2017], our result on
parallel Lévy walks with randomly selected exponents directly implies a uniform solution to the
problem (i.e., independent of k and ℓ), which is extremely simple and natural, and is optimal within
polylog ℓ factors, w.h.p.

1.2.3 Related Work

On the Lévy walks. Lévy walks (also referred to as Lévy flights) have been studied mostly
by physicists, and mainly in continuous spaces [Zaburdaev et al., 2015,Reynolds, 2018]. The idea
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that biological organisms could perform Lévy walks was first suggested in the mid 80s [Shlesinger
and Klafter, 1986], as a potentially more efficient search strategy compared to Brownian motion.
Lévy walks attracted significant attention after experimental work in the mid 90s showed that
albatross birds follow Lévy walk-like trajectories [Viswanathan et al., 1996], a pattern that was
subsequently observed for various other organisms as well [Reynolds et al., 2017, Reynolds et al.,
2007, Humphries et al., 2010, Sims et al., 2008, Focardi et al., 2009, Boyer et al., 2006, Raichlen
et al., 2014]. Even though statistical and methodological flaws were later pointed out in several of
these works [Edwards et al., 2007], there is currently ample evidence that many animals do exhibit
Lévy walk movements [Viswanathan et al., 2011, Humphries et al., 2012].

The Lévy flight foraging hypothesis. A possible explanation for this phenomenon is the Lévy
foraging hypothesis [Viswanathan et al., 1999, Viswanathan et al., 2008]: “According to the opti-
mal foraging theory [Werner and Hall, 1974], natural selection drives species to adopt the most
economically advantageous foraging pattern. Thus species must have adapted to follow Lévy
walks because Lévy walks optimize search efficiency.” The main theoretical argument in sup-
port of this hypothesis was provided in [Viswanathan et al., 1999], stating that a Lévy walk with
exponent α = 2 (known as Cauchy walk) maximizes the number of visits to targets, when targets
are sparse and uniformly distributed. This result has been formally shown for one-dimensional
spaces [Buldyrev et al., 2001], but is not true for higher-dimensional spaces [Levernier et al.,
2020], at least not without additional assumptions [Buldyrev et al., 2021, Levernier et al., 2021].

Our results add a new perspective to the Lévy foraging hypothesis. Unlike [Viswanathan et al.,
1999] and [Guinard and Korman, 2021], we consider a collective search setting, where k indi-
viduals start from the same source and move independently. The space is two-dimensional as
in [Guinard and Korman, 2021] (but discrete and unbounded), and there is a single target (of unit
size). If rough information about the target’s distance ℓ to the source is known then letting all indi-
viduals execute identical Lévy walks with a specific exponent, which depends on k and ℓ, achieves
(near) optimal search time. If no information on ℓ is available, then using a random exponent for
each walk, sampled independently from the super-diffusive range (2, 3), still achieves near optimal
search time, for all distances ℓ.

The ANTS problem. In the Ants-Nearby-Treasure-Search (ANTS) problem [Feinerman and
Korman, 2017], k identical (probabilistic) agents starting from the same location, search for an
unknown target on Z2. Agents do not know k, and cannot communicate (or see each other). Ho-
wever, before the search begins, each agent receives a b-bit advice from an oracle. In [Feinerman
and Korman, 2017], matching upper and lower bounds are shown for the trade-off between the ex-
pected time until the target is found, and the size b of the advice. The proposed optimal algorithms
repeatedly execute the following steps: walk to a random location in a ball of a certain radius
(chosen according to the algorithm specifics), perform a spiral movement of the same radius as
the ball’s, then return to the origin. We shall compare our results only with those for the setting in
which no advice is given. In [Feinerman and Korman, 2017], it is shown that no uniform algorithm
(where each agent starts at the same state) provides expected hitting time O

((
ℓ2/k + ℓ

)
log k

)
, and

an algorithm achieving expected hitting time O
((

ℓ2/k + ℓ
)

log1+ε k
)

is given, for any constant
ε > 0, which has the same structure described above. However, as argued by the authors, such
algorithms are only relatively simple and, thus, a simpler one, the Harmonic Search Algorithm
(HSA), is provided. The HSA works as follows: if δ is any positive constant, each agent moves to
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a node u sampled with a power-law distribution proportional to d(u)−2−δ, where d(u) is the dis-
tance of the agent from u. Then it performs a spiral search around u for d(u)2+δ steps; 4 afterwards
it goes back to the origin and repeats the procedure. With probability 1−ε, for any constant ε > 0,
this algorithm achieves hitting time O

(
ℓ2+δ/k + ℓ

)
. Even if the algorithm we propose doesn’t

match the best hitting time shown in [Feinerman and Korman, 2017] for the case of no advice, it
does beat the HSA and it is arguably simpler: each agent performs a Lévy walk with a uniformly
random exponent sampled from (2, 3). Agents do not need to return to the origin periodically and,
more importantly, the search processes do not consist of different stages. Our algorithm is Monte
Carlo, and finds the target w.h.p. in time that is larger than the optimal by at most a polylogarithmic
factor.

Variants of the ANTS problem have been studied, where agents are (synchronous or asyn-
chronous) finite state machines, which can communicate during the execution whenever they
meet [Emek et al., 2014,Emek et al., 2015,Cohen et al., 2017,Lenzen et al., 2017]. Another variant,
involving parallel search on the line by k non-communicating agents, is considered in [Fraigniaud
et al., 2016].

Random walks in general and optimality results. In our analysis, we derive upper and lower
bounds on the hitting time of a Lévy walk on Z2. Bounds on the hitting time and related quantities
for Lévy walks on the (one-dimensional) real line are given in [Palyulin et al., 2019]. Bounds
for general random walks on Zd, for d ≥ 1, in the case where the walk has bounded second
(or higher) moments can be found in [Uchiyama, 2011]. Recall that Lévy walks have unbounded
second moment when α ≤ 3.

In [Boczkowski et al., 2018a, Guinard and Korman, 2020], tight bounds were shown for the
cover time on the cycle of a random walk with k different jump lengths. The optimal walk in this
case is one that approximates (using k levels) a Lévy walk with exponent α = 2.

When α ∈ (3, ∞), a Lévy walk on Zd behaves similarly to a simple random walk, as
the variance of the jump length is bounded. In particular, as α → ∞, the Lévy walk jump
converges in distribution to that of a simple random walk. Parallel independent simple random
walks have been studied extensively on finite graphs, under various assumptions for their starting
positions [Alon et al., 2011, Efremenko and Reingold, 2009, Elsässer and Sauerwald, 2011, Ivas-
kovic et al., 2017, Kanade et al., 2019]. A main objective of that line of work has been to quantify
the “speedup” achieved by k parallel walks on the cover time, hitting times, and other related
quantities, compared to a single walk.

Small-world networks. The following basic network model has been proposed by Klein-
berg to study the small world phenomenon [Kleinberg, 2000]. A square (or, more generally, d-
dimensional) finite lattice is augmented by adding one “long-range” edge from each node u, to
a uniformly random node v among all nodes at lattice distance k, where distance k is chosen in-
dependently for each u, from a power-law distribution with exponent α. That is, the distribution
of long-range edges is the same as the jump distribution of a Lévy walk with the same exponent.
It was shown that (distributed) greedy routing is optimized when α = 1, whereas for α ̸= 1 the

4. We remark that even if this step may seem complex, a simple random walk for the same amount of steps would
be substantially equivalent.
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expected routing time is slowed down by polynomial factors [Kleinberg, 2000]. 5 This result is
of similar nature as our result for the hitting time of k identical Lévy walks, where exactly one
exponent is optimal. However, in our case, this exponent depends on the target distance. In Klein-
berg’s network, exponent α = 1 ensures that the lengths of long-range links are uniformly distribu-
ted over all distance scales, which facilitates fast routing. In our randomized strategy, availability
of a sufficient number of walks with the right exponent is achieved by choosing the exponents
uniformly at random over the interval (2, 3).

1.3 The Assembly Calculus

Intelligence in all its forms is one of the most astounding phenomena of the brain whose func-
tioning, however, remains a mystery. How reasoning, problem-solving, decision-making, plan-
ning, empathy, language, art are achieved through the activity of neurons and synapses is undoub-
tedly an interesting question and is the subject of active research. Nevertheless, despite tremendous
advances over the past decades in our understanding of neural mechanisms, increasingly assisted
and propelled by machine learning, we are still very far from understanding how the brain be-
gets the mind. The difficulty lies in the huge gap of scale and methodology between Experimental
Neuroscience and Cognitive Science [Papadimitriou et al., 2020]. This frustration was articulated
in a most eloquent way by Nobel laureate Richard Axel, who declared in a 2018 interview [Axel,
2018]: “We do not have a logic for the transformation of neural activity to thought and action. I
consider discerning [this logic] as the most important future direction in Neuroscience”.

The Assembly Calculus (AC) is a recently proposed formal computational distributed sys-
tem [Papadimitriou et al., 2020]. As far as we know, it is the only computational system in the
literature whose explicit purpose is to bridge through computation the gap between neurons and
intelligence, that is to say, to function as Axel’s logic. The basic data item of the AC is the as-
sembly of neurons, a large stable set of neurons believed to represent an idea, object, word, etc.,
while its operations (project, associate, merge, etc.) create and manipulate assemblies in response
to stimuli and other brain events. Importantly, these operations can be provably simulated through
the activity of stylized neurons and synapses. Moreover, the AC is a Turing complete computatio-
nal distributed system that tries to found its basics on the principles of neuroscience. In the next
section, we provide a comprehensive introduction to the AC; however, the interested reader may
want to read [Papadimitriou et al., 2020].

Is the AC the bridging “logic” sought by Axel? One avenue for pursuing this important ques-
tion is to demonstrate empirically that reasonably complex cognitive phenomena can be formu-
lated and implemented in the AC framework. Indeed, in the original paper [Papadimitriou et al.,
2020] it was argued that aspects of language generation can be handled by the operations of the
AC, while in a subsequent work [Mitropolsky et al., 2021], a parser implemented in the AC was
demonstrated to analyze syntactically reasonably complex sentences of English, and it was argued
that it can be generalized to more complex features as well as other natural languages. Another
avenue is to show that assemblies can mediate learning: in a very recent paper [Dabagia et al.,
2022], it is shown both theoretically and experimentally that in the AC it is possible to develop

5. In the paper, the exponent considered is that of choosing the endpoint of u’s long-range link to be a given node v
at distance k, which is proportional to 1/kβ , where β = α + d − 1. Thus the optimal exponent is β = 2 for the square
lattice, and β = d for the d-dimensional lattice.
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mechanisms for learning to classify well-separated classes of stimuli, including clustered distribu-
tions and linear threshold functions with margin, under a very mild supervision.

Our contribution in this direction is to demonstrate that a program in the AC is capable of
implementing reasonably sophisticated stylized planning strategies – in particular, heuristics for
solving tasks in the blocks world [Gupta and Nau, 1991, Slaney and Thiébaux, 2001]. A blocks-
world configuration is defined by a set of stacks, where a stack is a sequence of unique blocks,
each sitting on top of the previous one. A stack of size one is just a block sitting on the table (see,
e.g., Fig. 4.1 in Chapter 4). A configuration can be manipulated by moving a block from the top of
a stack (or from the table) to the top of another stack (or to the table). A task in the blocks world is
the following: given a starting configuration Cinit and a goal configuration Cgoal, find a sequence
of actions which transforms Cinit into Cgoal. It was shown in [Gupta and Nau, 1992] that solving a
task in the blocks world with the smallest number of actions is NP-Complete, and it was observed
that the following provides a simple 2-approximation strategy: move to the table all blocks that
are not in their final positions, and then move these blocks one by one to their final positions.

Here we implement this strategy in the AC. From the exposition of this implementation and
demonstration, which happens to employ representations and structures of a different style from
those needed for language tasks [Papadimitriou et al., 2020, Mitropolsky et al., 2021], we believe
that it will become clear that more complicated heuristics for solving related tasks can be similarly
implemented in the AC.

In fact, the kind of representations needed for planning, involving long “chains” of assemblies
linked through strong synaptic connections, reveals a limitation of the AC which was not apparent
before: we find empirically that there are limits, depending on the parameters of the execution mo-
del, such as the number of excitatory neurons per brain area, synaptic density, synaptic plasticity,
and assembly size, on the length of such chains that can be implemented reliably. As chaining
is also used in the Turing machine simulation demonstrating the completeness of the AC [Papa-
dimitriou et al., 2020], such limitations are significant because they bound from above the space
complexity, and therefore the parallel time complexity, of AC computations. The model is for-
mally introduced in Chapter 4, where we also describe our implementation and our results; we
also discuss and quantify the aforementioned issue about chaining in the experimental validation
section. These results are based on our work [D’Amore et al., 2022b].

1.3.1 Related Work

Terry Winograd introduced the blocks world half a century ago as the context for his lan-
guage understanding system SHRDLU [Winograd, 1971], but since then blocks-world planning
has been widely investigated, primarily because such tasks appear to capture several of the diffi-
culties posed to planning systems [Gupta and Nau, 1991, Gupta and Nau, 1992]. There has been
extensive work in AI on blocks world problems, including recently on leveraging artificial neural
networks (ANNs) for solving them, and learning to solve them from examples (e.g., the Neural
Logic Machines of [Dong et al., 2019], or Neural Turing Machines, which are used for related
problem-solving tasks [Graves et al., 2014]).

Bridging the gap between low-level models of neural activity in the brain and high-level sym-
bolic systems modelling cognitive processes is a fundamental open problem in artificial intelli-
gence and neuroscience at large [Doursat, 2013, Chady, 1999]. Several computational cognitive-
science papers address the problem of solving (or learning to solve) block-worlds tasks in higher-
level computational models of cognition, such as ACT-R or SOAR (see for instance [Kennedy and
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Trafton, 2006, Kurup, 2008, Panov, 2017]). In contrast to this thesis, however, these papers utilize
high-level languages and data structures for the programming of these systems, without providing
a link, as we do, to the behavior of stylized neurons and synapses, in an effort to remain as faith-
ful as possible to the ways animal brains would solve these tasks. Furthermore, in this thesis the
brain does not learn how to solve the planning task: we simply implement known heuristics for
the problem.

Less related to our problem is the literature on block stacking (see, for example, [Hayashi,
2007, Tian et al., 2020]). These papers focus on the ability of humans and chimpanzees to place a
block on top of an existing tower without toppling it.

Finally, it is worth mentioning some previous works on solving planning tasks through spiking
neural networks, such as [Rueckert et al., 2016,Basanisi et al., 2020], in which the attention is more
focused on learning world models.

A spiking neural network framework not unlike ours is Nengo [Bekolay et al., 2014]. The
crucial difference is that our framework is based on the known behavior called assemblies which
enable higher levels of abstraction such as the AC, and carrying out far more advanced tasks such
as in [Mitropolsky et al., 2021] and the present thesis, while Nengo does not deal with assemblies.

1.3.2 An informal description of the AC

The Assembly Calculus (AC) [Papadimitriou et al., 2020] is a computational distributed sys-
tem for modeling a dynamical system of firing neurons. In this system, there is a finite number
of areas, each containing n neurons. The neurons of an area form a random Erdös-Rényi directed
graph Gn,p, where p is the probability that two neurons of the area are connected. Moreover, cer-
tain ordered pairs of areas are connected one to another through an Erdös-Rényi directed bipartite
graph Gn,p. The directed connections in and between areas are called fibers.

In the AC, neurons in an area A fire in discrete time steps, and are subject to stylized forms of
inhibition and plasticity. For what concerns inhibition, at any time step, we assume only kA of the
n neurons fire, that is, the ones that previously received the highest total input from all other areas;
these kA neurons are sometimes called the winners, as a result of some winner-take-all (WTA)
competition. Plasticity is modelled by assuming that, if, at a given time step, neuron x fires and, at
the next time step, an out-neighbor neuron y of x fires, then the weight of the synapse from x to y
(which is 1 at the beginning) is multiplied by (1 + βA), where βA > 0. In the original definition
of the AC, a process of homeostasis was also modelled through a periodic renormalization, at a
different time scale, of the synaptic weights, in order to avoid the generation of huge weights. Such
process is of course part of any realistic brain system, also providing a mechanism for forgetting.

Lastly, yet importantly, the AC allows inhibiting and disinhibiting areas and fibers at different
time steps. The exact mechanism through which areas and fibers are (dis)-inhibited may vary;
in a recent paper modeling syntactic processing using the AC, [Mitropolsky et al., 2021] model
specific neurons as having (dis)-inhibitory effects on areas or fibers. In this thesis, (dis)-inhibition
is always determined by which areas and fibers fired at the previous time step.

The most important emergent object in the AC is the assembly, that is, a stable set of kA

highly interconnected neurons in an area A. It is emergent in the sense that assemblies are not a
primitive of the model; instead, they are formed through its more basic operations. Assemblies are
by now well known and widely studied in neuroscience, and are thought to represent concepts,
ideas, objects, words, etc., and are increasingly believed in recent years to play a central role
in cognitive processes [Buzsáki, 2010], often called “the alphabet of the brain” [Buzsáki, 2021].
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In terms of classical thinking in AI, one could think of assemblies as the boundary in the brain
between sub-symbolic and symbolic computation.

The AC makes possible to perform certain operations with assemblies, described in Chap-
ter 4: in fact, it is through these operations that assemblies are created, in a way that guarantees
high connectivity. In [Papadimitriou et al., 2020], the authors demonstrate, both mathematically
and through simulation, that these operations are “possible” in the sense that they can be stably
performed with high probability in the dynamical system of neurons outlined in the previous pa-
ragraphs. In this thesis, we mostly make use of one of these operations: projection of an assembly
in an area into another assembly in another area, which works as follows. Let us assume that an
assembly x of kA neurons of the area A has just fired into an area B (presumably through a di-
sinhibited fiber going from A to B), and assume that B was quiescent at that time (no neurons
were firing). This will result in a set w1 of kB neurons (the winners) firing at the next time step.
Next, the neurons in B will receive inputs not only from the kA neurons of the assembly in A,
which will continue to fire, but also from the neurons in w1 through recurrent connections within
B: this will result in a set w2 of kB neurons (the new winners) firing at the next time step, and so
on. It has been proved that, under appropriate values of the parameters n, kA, kB, β, and p, this
process converges with high probability to an assembly y of kB neurons in B, which is called the
projection of x into B and can be thought as a copy of x in B such that, from now on, y will fire
every time x fires.

In theory, the projection and other operations are emergent behavior of the distributed system
as a direct or indirect response to external stimuli; in practice and for simplicity, it is a function we
call while coding.

For a complete description of the AC the reader is referred to [Papadimitriou et al., 2020],
where in addition to stability of various assembly operations, it is also proved that, under certain
assumptions, this computational system is capable of performing arbitrary computations as long
as the space required does not exceed n

kA
(under much milder assumptions,

√
n

kA
).

In this thesis, similarly to the parser of [Mitropolsky et al., 2021], the AC programs work
by projecting between all pairs of disinhibited areas along disinhibited fibers at each time step.
For brevity, this operation, i.e. a simultaneous set of projections between multiple areas, is called
strong projection. For a detailed description about the AC operations and our programs, we defer
the reader to Chapter 4 .
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2.1 Introduction

In this chapter we analyze two popular opinion dynamics in, the UNDECIDED-STATE dyna-
mics and the 3-MAJORITY dynamics, in presence of uniform communication noise and in the
synchronous setting, when the underlying communication network is the complete graph, with
two possible opinions.

We prove that both dynamics exhibit very similar phase-transitions: when the noise is below
some threshold, the dynamics are able to quickly break any initial symmetry and reach in loga-
rithmic time in the size of the network a metastable phase of almost-consensus which lasts for at
least a polynomial number of rounds, with high probability. When, instead, the noise exceeds the
threshold, no form of consensus is possible and any information about the initial majority opinion
is lost in logarithmic time, with high probability. The UNDECIDED-STATE dynamics turns out to
be more resilient to noise as its noise threshold is higher than that of the 3-MAJORITY: this as-
pect will be further discussed in the final section Section 2.8. Such results are based on our two
works [D’Amore et al., 2020] and [D’Amore and Ziccardi, 2022].

These similar behaviors hint at more general characterizations of simple non-linear opinion
dynamics that have a strong drift towards the agreement in noiseless settings.

Roadmap. In Section 2.2 we give the main definitions and characterizations of the processes
we study, as well as the definition of the noise model. We then state our results in Section 2.3;
Section 2.4 is devoted to the analysis of the UNDECIDED-STATE dynamics. In Section 2.5 we
show that the UNDECIDED-STATE dynamics turns out to be a specific case of a best-of-N nest site
selection process in honeybees [Reina et al., 2017]. The analysis of the 3-MAJORITY dynamics is
given in Section 2.6. The chapter concludes with some simulations (Section 2.7) and a discussion
on our results and potential research directions (Section 2.8).

2.2 Preliminaries

Opinion dynamics. Let G = (V, E) be a finite graph of n nodes (the agents), where each node
is labelled uniquely with labels in [n] := {1, . . . , n}. Furthermore, each node supports an opinion
from a set of opinions Σ. An opinion dynamics defines a stochastic process {Mt}t∈N which is
described by the opinion of the nodes at each time step, i.e., Mt = (i1(t), . . . , in(t)) ∈ Σn for
every t ≥ 0, where ij(t) is the opinion of node j at time t. For any given node and any given time
t ≥ 0, its state at time t + 1 is given by some update rule that is a symmetric function of the vector
of states of the node neighbors at time t, which is the same for all nodes of the graph and for any
time [Emanuele Natale, 2017]. Since Mt depends only on Mt−1, it follows that the process is a
Markov chain. In the following, we will call the state of the process also by configuration of the
graph. We remark that the latter definition is a tentative attempt, as it is still possible to come up
with very complex dynamics even respecting the above properties; instead, opinion dynamics are
characterized by simple update-rules.

The UNDECIDED-STATE dynamics. In the UNDECIDED-STATE dynamics there is an additio-
nal state/opinion, i.e., the undecided state, besides the possible opinions a node can support, and
the updating rule works as follows: at every round t ∈ N, each agent u samples a neighbor v
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independently and uniformly at random and, at the next round, it gets a new opinion according to
the rule given in Table 2.1.

u \ v undecided opinion i opinion j

undecided undecided i j
opinion i i i undecided
opinion j j undecided j

TABLE 2.1 – The update rule of the USD.

The 3-MAJORITY dynamics. The 3-MAJORITY update rule as follows: given any t ≥ 0, at
time t + 1 each node u ∈ V samples three neighbors in G independently uniformly at random
(with repetition) and updates its opinion to the majority one among the sampled neighbor opinions
at time t, if there is any. Otherwise, it adopts a random opinion among the sampled ones. For the
sake of clarity, we remark that when u samples a neighbor node twice, the corresponding opinion
counts twice.

The communication noise. We introduce an uniform communication noise feature in the dy-
namics as follows: let 0 < p < 1 be a constant. When a node pulls a neighbor opinion, there is
probability p that the received opinion is sampled u.a.r. in Σ; instead, with probability 1 − p, the
former opinion keeps intact and is received.

Opinion dynamics on the complete graph in the binary setting. The communication network
we focus on is the complete graph G = Kn with self loops in the binary opinion case, i.e.,
Σ = {Alpha, Beta}. For the symmetry of the network, the state of the process is fully characterized
by the number of nodes supporting each of the opinions, which implies that the nodes do not
require unique IDs. Hence, we can write Mt = (at, bt), where at is the number of the nodes
supporting opinion Alpha at time t, and bt is the analogous for opinion Beta. Moreover, since at
each time t, at + bt = n, it suffices to know {bt}t≥0 to fully describe the process. 1

We define the bias of the process at time t by

st = at − bt, (2.1)

which takes value in {−n, . . . , n}. We remark that st > 0 if the majority opinion at time t is
Alpha and st < 0 if it is Beta. We say that configurations having bias st ∈ {n, −n} are mono-
chromatic, meaning that every node supports the same opinion, while a configuration with st = 0
is symmetric. In the introduction, we took the bias to be |st| but, for the sake of the analysis, we
consider its signed version here. We finally remark that, conditional on any configuration at time
t−1, the random variable at (and, analogously, bt and qt) is the sum of i.i.d. Bernoulli r.v.s, which
allows us to make use of the popular Chernoff bounds (Lemmas B.1 and B.2 and Lemma C.1 in
Appendix B). In detail, if X

(t)
i is the r.v. yielding 1 if node i adopts opinion Alpha at round t + 1,

and 0 otherwise, then at =
∑

i∈[n] X
(t)
i . Similarly, we can write bt =

∑
i∈[n] Y

(t)
i , where Y

(t)
i is

1. For the UNDECIDED-STATE dynamics, Mt = (at, bt, qt), where qt is the number of nodes that are undecided at
time t, and at + bt + qt = n. Thus, the knowledge of at least two variables between {at, bt, qt} is required to describe
the configuration of the process.
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node u: round 0

neighborhood

node u: round 1

neighborhood

node u: round 2

neighborhood

?

Undecided-State dynamics 3-Majority dynamics

Figure 2.1 – Update rules of the two dynamics shown for a node u in two consequent rounds in
which we suppose that the neighbor opinions do not change. The full edges represent the sampled
neighbors at each round.

the r.v. yielding 1 if node i adopts opinion Beta at round t + 1, and 0 otherwise. Therefore, for
(2.1),

st =
∑
i∈[n]

X
(t)
i − Y

(t)
i , (2.2)

where the (X(t)
i −Y

(t)
i )i variables are i.i.d. taking values in {−1, 1}. For this reason, we can apply

the Hoeffding bound (Lemma B.3) to the bias. Notice that these dynamics requires no labeling of
the agents, i.e., the network can be anonymous.

2.2.1 Oblivious Noise and Stubborn Agents

In this section we show that our noise model is equivalent to a noiseless model in which
stubborn agents are added to the graph. We can now consider the following more general message-
oblivious model of noise.
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Definition 2.2.1 (Oblivious noise model). We say that the communication is affected by oblivious
noise if the value of any sent message changes according to the following scheme:

(i) with probability 1 − pnoise, independently of the value of the sent message, the message
remains unchanged;

(ii) otherwise, the noise acts on the message and it changes its value according to a fixed
distribution p = p1, ..., pm over the possible message values 1, ..., m.

In other words, the probability that the noise changes any message to message i is pnoise · pi.
It is immediate to verify that the definition of noise adopted in our model corresponds to the
aforementioned model of oblivious noise in the special case m = 3, pnoise = p, and pAlpha =
pBeta = pundecided = 1

3 for the UNDECIDED-STATE dynamics, and the special case m = 2,
pnoise = p, and pAlpha = pBeta = 1

2 for the 3-MAJORITY dynamics.
Recalling that an agent is said to be stubborn if it never updates its state [Yildiz et al., 2013],

we now observe that the process under the above noise model is in fact equivalent to the same
process in a noiseless setting with stubborn agents.

Lemma 2.2.1. Consider any opinion dynamics on the complete graph of n nodes with self-loops,
and opinion set Σ = {1, ..., m}. The following two processes are equivalent, i.e., their restrictions
on the former graph of n nodes have the same transition probabilities.

(a) the dynamics in the presence of oblivious noise with parameters pnoise and p = p1, ..., pm;
(b) the dynamics with nstub = pnoise

1−pnoise
n additional stubborn agents present in the system, of

which: nstub · p1 are stubborn agents supporting opinion 1, nstub · p2 are stubborn agents
supporting opinion 2, and so on.

Proof. Consider the complete graph of n nodes, Kn, over which the former process runs. Consider
also the complete graph Kn+nstub

, which contains a sub-graph isomorphic to Kn which we denote
by K̃n. Let H = Kn+nstub

\ K̃n be the subgraph of stubborn nodes. In the former model (a), the
probability an agent pulls opinion j ∈ {1, . . . , m} at any given round is

(1 − pnoise)
cj

n
+ pnoise · pj ,

where cj is the size of the community of agents supporting opinion j; in the model defined in (b),
the probability a non-stubborn agent pulls opinion j at any given round is

cj + nstub · pj

n + nstub
=

cj + pnoise
1−pnoise

n · pj

n + pnoise
1−pnoise

n
= (1 − pnoise) · cj

n
+ pnoise · pj .

Let C and C̃ be the set of all possible configurations of, respectively, Kn and K̃n. The latter result
implies there exists a bijection ϕ : C → C̃ such that the probability to go from configuration Mt

to y in C is the same as that of going from configuration ϕ(Mt) to ϕ(y) in C̃.

Basically, this equivalence implies that any result we state for the process defined in (a) has an
analogous statement for the process defined in (b).

2.3 Results

In this section we state our main theorems about the phase-transitions of the UNDECIDED-
STATE and the 3-MAJORITY dynamics. We remark that, for any two positive functions g(n), f(n),
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and for any positive constant c, by g(n) = Oc(f(n)) we mean that there exists a constant h(c) > 0
depending on c such that g(n) ≤ h(c)f(n) for n large enough. We will also write Ωc(f(n)) with
an analogous meaning.

Phase-transition of the UNDECIDED-STATE dynamics. The first theorem shows how the dy-
namics solves the majority consensus problem when the noise is below some threshold, even if in
a “weak” form (since only an almost-consensus is reached). Section 2.4.3 is devoted to the proof
of this theorem.

Theorem 2.3.1 (Victory of the majority). Let {Mt}t≥0 be the process induced by the
UNDECIDED-STATE dynamics with uniform noise probability p < 1/2. For any ε > 0, let
šε = n

1−p

√
(1 − 2p)(1 − 2p/3) − ε and ŝε = n

1−p

√
(1 − 2p)(1 − 2p/3) + ε. Furthermore, let

ε1 = (1−2p)2/2, ε2 = 2p(3−p)/9, and let γ > 0 be any constant. For any starting configuration
M0 having bias s0 ≥ γ

√
n log n, the following holds w.h.p.:

(i) there exists a time τ1 = Op,γ(log n) such that šε1(1 − 2p/3)2 ≤ sτ1 ≤ ŝε2;

(ii) there exists a value c = Θp(1) such that, for all k ≤ exp(cn), šε1(1−2p/3)2 ≤ sτ1+k ≤ ŝε2 .

A symmetric result for the case s0 ≤ −γ
√

n log n holds in the same way. Next theorem
characterizes the symmetry-breaking phase and is proved in Section 2.4.4.

Theorem 2.3.2 (Symmetry breaking). Let {Mt}t≥0 be the process induced by the UNDECIDED-
STATE dynamics with uniform noise probability p < 1/2, and let γ > 0 be any positive constant.
Then, for any starting configuration M0 such that |s0| ≤ γ

√
n log n, w.h.p. there exists a time

τ2 = Oγ,p(log n) such that |sτ2 | ≥ γ
√

n log n.

The next and final theorem shows the victory of noise when the noise parameter is above the
threshold, even starting from a monochromatic configuration. Section 2.4.5 is devoted to the proof
of this theorem.

Theorem 2.3.3 (Victory of noise). Let {Mt}t≥0 be the process induced by the UNDECIDED-
STATE dynamics with uniform noise probability p > 1/2. Let γ > 0 be any positive constant.
Then, for any starting configuration M0 such that |s0| ≥ γ

√
n log n, the following holds w.h.p. :

(i) there exists a time τ3 = Oγ,p(log n) such that |sτ3 | ≤ γ
√

n log n;

(ii) there exists a value c = Θγ,p(1) such that, for all k ≤ nc, it holds that |sτ3+k| ≤ γ
√

n log n.

Informally, although the analysis is technically complex, it can be appreciated from it that
the phase transition phenomenon in question is ultimately based on the exponential drift of the
dynamics toward the majority opinion in the absence of noise: as long as the noise is kept under
a certain threshold, the dynamics manages to quickly amplify and sustain the bias towards the
majority opinion; as soon as the noise level reaches the threshold, the expected increase of the
majority bias abruptly decreases below the standard deviation of the process and the ability of the
dynamics to preserves a signal towards the initial majority rapidly vanishes.

Phase-transition of the 3-MAJORITY dynamics. The 3-MAJORITY dynamics has a very si-
milar phase-transition but turns out to be less resilient to noise than the UNDECIDED-STATE dyna-
mics. Next theorem shows the victory of the majority whenever the noise is below some threshold,
and it is proved in Section 2.6.1.
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Theorem 2.3.4 (Victory of the majority). Let {Mt}t≥0 be the process induced by the 3-
MAJORITY dynamics with uniform noise probability p < 1/3. Let ε > 0 be any arbitrarily
small constant (such that ε < 1/3 and ε2 ≤ (1 − 3p)/2) and let γ > 0 be any constant. Let
seq = n

(1−p)

√
1−3p
1−p . Then, for any starting configuration M0 such that s0 ≥ γ

√
n log n the follo-

wing holds w.h.p. :

(i) there exists a time τ1 = Oγ,ε,p(log n) such that (1 − ε)seq ≤ sτ1 ≤ (1 + ε)seq;

(ii) there exists a value c = Θγ,ε,p(1) such that, for all k ≤ nc, (1−ε)seq ≤ sτ1+k ≤ (1+ε)seq.

Our second theorem shows how the dynamics is capable of quickly breaking the initial sym-
metry. By applying also Theorem 2.3.4, it shows that the consensus problem is solved. The proof
of the theorem is shown in Section 2.6.2.

Theorem 2.3.5 (Symmetry breaking). Let {Mt}t≥0 be the process induced by the 3-MAJORITY

dynamics with uniform noise probability p < 1/3, and let γ > 0 be any positive constant. Then,
for any starting configuration M0 such that |s0| ≤ γ

√
n log n and for any sufficiently large n,

w.h.p. there exists a time τ2 = Oγ,p(log n) such that |sτ2 | ≥ γ
√

n log n.

Our last theorem shows that no form of consensus is possible when p > 1/3, and it is proved
in Section 2.6.3.

Theorem 2.3.6 (Victory of noise). Let {Mt}t≥0 be the process induced by the 3-MAJORITY

dynamics with uniform noise probability p > 1/3. Let ε > 0 be any arbitrarily small constant
(such that ε < min{1/4, (1 − p), (3p − 1)/2}) and let γ > 0 be any positive constant. Then, for
any starting configuration M0 such that |s0| ≥ γ

√
n log n and for any sufficiently large n, the

following holds w.h.p. :

(i) there exists a time τ3 = Oε,p(log n) such that sτ3 = Oε(
√

n) and, moreover, the majority
opinion switches at the next round with probability Θε(1);

(ii) there exists a value c = Θγ,ε(1) such that, for all k ≤ nc, it holds that |sτ3+k| ≤ γ
√

n log n.

Stubborn process. All previous theorems have analogous statements in the stubborn model ac-
cording to Lemma 2.2.1. In particular, the UNDECIDED-STATE dynamics exhibits a phase transi-
tion at p = 1/2 while the 3-MAJORITY dynamics at p = 1/3.

2.4 Analysis of the UNDECIDED-STATE dynamics

In this section we analyze the UNDECIDED-STATE dynamics. In Section 2.4.1 we define some
notation and give some preliminary results for our analysis. Then, in Section 2.4.3 we prove Theo-
rem 2.3.1; in Section 2.4.4 we prove Theorem 2.3.2; finally, Section 2.4.5 is devoted to the proof
of Theorem 2.3.3.

2.4.1 Notation, Characterization, and Mean-Field Behavior.

In this subsection, we characterize the mean-field behavior of the UNDECIDED-STATE dyna-
mics. To do so, we introduce some notation and describe useful properties of the process. Let us
call UNDECIDED-STATE process the process induces by the UNDECIDED-STATE dynamics with
uniform communication noise starting from any given configuration. The UNDECIDED-STATE
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process at time t, Mt, is uniquely determined by the number of Alpha nodes, at and the number
of Beta nodes, bt. Accordingly to this notation, we call qt the number of undecided nodes at time
t, and st = at − bt the bias of the configuration at time t. Mt is thus a finite-state non-reversible
Markov chain with no absorbing states. Once a configuration at time t − 1 ≥ 0 is fixed, we use
lower case letters a, b, q, s to refer to random variables at−1, bt−1, qt−1, and st−1. Notice that we
consider the bias as a−b instead of |a − b| since the expectation of |at − bt| is much more difficult
to evaluate than that of at − bt.

The round-by-round expected behaviors of the above key random variables is described by the
following equations:

E [at | Mt−1] = a

n
(1 − p)(a + 2q) + p

3(2a + q); (2.3)

E [bt | Mt−1] = b

n
(1 − p)(b + 2q) + p

3(2b + q); (2.4)

E [st | Mt−1] = s

(
1 − p

3 + q

n
(1 − p)

)
; (2.5)

E [qt | Mt−1] = pn

3 + 1 − p

2n

[
2q2 + (n − q)2 − s2

]
. (2.6)

Proof of Equations (2.3) to (2.6). Conditional on any configuration at time t − 1, the probability
an agent pulls opinion Alpha at the next round is

(1 − p) a

n
+ p

3 ,

and symmetrical expressions hold for opinion Beta and the undecided state. An agent updates its
opinion to Alpha at time t if it is undecided at time t − 1 and pulls opinion Alpha, or if it supports
opinion Alpha at time t and pulls either opinion Alpha or the undecided state. If Vq and Va denote
the sets of agents supporting the undecided state and opinion Alpha, respectively, at time t, we
have

E [at | Mt−1] =
∑

u∈Va

(
(1 − p) a

n
+ p

3 + (1 − p) q

n
+ p

3

)
+
∑

u∈Vq

(
(1 − p) a

n
+ p

3

)

= a

(
(1 − p) a

n
+ p

3 + (1 − p) q

n
+ p

)
+ q

(
(1 − p) a

n
+ p

3

)
= (1 − p) a

n
(a + 2q) + p

3(2a + q).
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Similarly, we get the conditional expectation of B. Then

E [st | Mt−1] = E [at | Mt−1] − E [bt | Mt−1]

= 1 − p

n
[(a − b)(a + b) + 2q(a − b)] + 2p

3 (a − b)

= 1 − p

n
[s(n − q) + 2qs] + 2ps

3 = s

(
1 − p

3 + (1 − p) q

n

)
= s

(
1 − p

3 + (1 − p) q

n

)
,

E [qt | Mt−1] = + a

n

[
p

3(a + q) +
(

1 − 2p

3

)
b

]
+ b

n

[
p

3(b + q) +
(

1 − 2p

3

)
a

]
+ q

n

[
p

3(a + b) + (1 − 2p

3 )q
]

= p

3n

[
a2 + b2 + 2q(a + b)

]
+

1 − 2p
3

n

[
2ab + q2

]
= p

3n + 1 − p

n

[
2ab + q2

]
= p

3n + 1 − p

2n

[
2q2 + (n − q)2 − s2

]
.

2.4.2 Equilibria in expectation.

Notice that, from Eq. (2.5) the bias keeps constant in expectation iff s = 0 or

1 − p

3 + q

n
(1 − p) = 1

⇐⇒ q = pn

3(1 − p) .

If we substitute the latter value in Eq. (2.6) we get that q keeps constant, in expectation, iff

pn

3 + 1 − p

2n

[
2p2n2

9(1 − 3p)2 + (3 − 4p)2n2

9(1 − 3p)2 − s2
]

= pn

3(1 − p)

⇐⇒ s2 · 1 − p

2n
= 2p2n + (3 − 4p)2n − 6p2

18(1 − 3p)

⇐⇒ s2 = n2

3(1 − p)2 · (1 − 2p)(3 − 2p)

⇐⇒ s = ± n

1 − p

√
(1 − 2p)(3 − 2p)

3 .

Let

seq = n

1 − p

√
(1 − 2p)(3 − 2p)

3 and qeq = pn

3(1 − p) .

The configuration with s = ±seq and q = qeq is in equilibrium, in expectation. Theorems 2.3.1
and 2.3.2 show that, if p < 1/2, the latter is an “attractive” configuration, i.e., the process
converges and oscillates in an interval of width Θpn around the above configuration w.h.p., no
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matter what the initial parameters are. Instead, Theorem 2.3.3 shows taht if p > 1/2, the process
converges to a configuration with s = O

(√
n log n

)
w.h.p.

For the sake of the analysis, we define the following quantities for any ε > 0:

šε = n

1 − p

√
(1 − 2p)(3 − 2p)

3 − ε;

ŝε = n

1 − p

√
(1 − 2p)(3 − 2p)

3 + ε;

q̌ε =
(p

3 − ε
)

n

1 − p
;

q̂ε =
(p

3 + ε
)

n

1 − p
.

2.4.3 UNDECIDED-STATE dynamics victory of the majority

In this section we prove Theorem 2.3.1. Wlog, in the remainder, for a given configuration Mt,
we will assume a ≥ b. Indeed, as it will be clear from the results, if s = a − b ≥ γ

√
n log n, then

the plurality opinion does not change for exp (Ωp(n)) rounds, w.h.p., and the argument for the case
b > a is symmetric. Let p < 1/3. The key point to prove the first claim of the theorem is to show
that, if the bias of the configuration is less than šε, and the number of undecided nodes is above q̂ε,
then the bias at the next round increases by a constant factor and the number of undecided nodes
remains greater than q̂ε, w.h.p.

Lemma 2.4.1. Let Mt−1 be a configuration such that q ≥ q̂ε and s ≥ 0 for any arbitrarily small
constant ε > 0. Then, in the next round, st ≥ s (1 + ε/2), with probability 1−exp

(
−ε2s2/(23n)

)
.

Remark 2.4.1 – If s ≥ γ
√

n log n for any constant γ > 0, then the statement holds with probability
1 − n−ε2γ2/23

.

Proof of Lemma 2.4.1. We first notice that q ≥ q̂ε in eq. (2.5) implies

E [st | Mt−1] ≥ s (1 + ε) .

Let λ = (ε/2) · (s/n). Then, for the Hoeffding bound (Lemma B.3).

Pr
[
st ≥ s

(
1 + ε

2

) ∣∣∣∣Mt−1

]
= Pr [st ≥ s (1 + ε) − λn | Mt−1] ≥ 1 − exp

(
−2λ2n

4

)

= 1 − exp
(

−ε2s2

23n

)
.

Lemma 2.4.2. Let ε be any constant with (1 − 2p)2/2 ≤ ε < (1 − 2p)(1 − 2p/3). Let Mt−1
be a configuration such that s ≤ šε. Then, in the next round, qt ≥ q̂ε/12 with probability 1 −
exp

(
−ε2n/

(
2332(1 − p)2))
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Proof of Lemma 2.4.2. Notice that eq. (2.6) reaches its minimum in q = n/3. Combined with
s ≤ šε, we get

E [qt | Mt−1] ≥ pn

3 + 1 − p

2n

[
2n2

3 − (1 − 2p)(3 − 2p)n2 − 3εn2

3(1 − p)2

]

= pn

3 + 2(1 − p)2n − (1 − 2p)(3 − 2p)n + 3εn

6(1 − p)

≥ 2pn − 2p2n + 2n − 4pn + 2p2n − 3n + 6pn − 4p2n + 3εn

6(1 − p)

= −4p2n + 6pn − n + 3εn

6(1 − p) = −(1 − 2p)2n + 2pn + 3εn

6(1 − p) .

Now, for (1 − 2p)2/2 ≤ ε < (1 − 2p)(1 − 2p/3), we get

E [qt | Mt−1] ≥ −(1 − 2p)2n + 2pn + 3εn

6(1 − p) ≥ (2p + ε)n
6(1 − p) = p + ε/6

1 − p
n = q̂ ε

6
.

By the additive form of Chernoff bound (Lemma B.2), we get

Pr
[
qt ≤ q̂ ε

12

∣∣∣Mt−1
]

= Pr
[
qt ≤ q̂ ε

6
− ε

12(1 − p)n

∣∣∣∣Mt−1

]
≤ exp

(
− ε2n

2332(1 − p)2

)
.

As we will see at the end of this section, the two lemmas above ensure that the system even-
tually reaches a configuration with bias s > šε within O(log n) rounds, w.h.p. We now consider
configurations in which s > šε and derive a useful bound on the possible decrease of s.

Lemma 2.4.3. Let Mt−1 be any configuration such that s ≥ γ
√

n log n for any constant γ > 0.
Then, in the next round, it holds that st ≥ s (1 − 2p/3) with probability 1−exp

(
−p2s2/(2 · 32n)

)
.

Remark 2.4.2 – If s ≥ γ
√

n log n for any constant γ > 0, then the statement holds with probability
1 − n−p2γ2/(2·32).

Proof of Lemma 2.4.3. From eq. (2.5), we get

E [st | Mt−1] ≥ s(1 − p/3).

Let λ = p · (s/3n). Then, for the Hoeffding bound (Lemma B.3),

Pr [st ≥ s (1 − 2p/3) | Mt−1] = Pr [st ≥ s(1 − p/3) − λn | Mt−1] ≥ 1 − exp
(

− p2s2

2 · 32n

)
.

Lemma 2.4.3 is used to control the decrease of the bias, showing that it keeps of magnitude
Θ (n) for at least a polynomial number of rounds. The next two lemmas provide an upper bound
on the bias during this phase.
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Lemma 2.4.4. Let Mt−1 be any configuration, and let ε = (p/6) ·(1+p). Then, in the next round,
qt ≥ q̌ε, with probability 1 − exp

(
−p2n/2 · 32).

Proof of Lemma 2.4.4. From Eq. (2.6), we get

E [qt | Mt−1] ≥ pn

3 + 1 − p

2n

[
2q2 + (n − q)2 − (n − q)2

]
= pn

3 + (1 − p)q2

n
≥ pn

3 .

where we used that s ≤ n − q. Let λ = pn/6. For the additive form of Chernoff bound
(Lemma B.2), we get

Pr
[
qt ≥ pn

6

∣∣∣∣Mt−1

]
= Pr [qt ≥ pn/3 − λ | Mt−1] ≥ 1 − exp

(
−2λ2

n

)
= 1 − exp

(
−p2n

18

)
.

We conclude the proof by observing that

(p/3 − ε)n
1 − p

= p(1 − p)n
6(1 − p) = pn

6 .

Lemma 2.4.5. Let Mt−1 be a configuration with q ≥ q̌ε1 , for any constant 0 < ε1 <
p/3. Let ε2 = 2p(3 − p)/9. Then, in the next round, st ≤ ŝε2 with probability 1 −
exp

(
−(p2/2 · 32) · (p/3 − ε1)2n/(1 − p)2).

Proof of Lemma 2.4.5. From Eq. (2.4), we get that

E [bt | Mt−1] ≥ pq

3 ≥ p

3 q̌ε1 = p(p/3 − ε1)n
3(1 − p) .

Let λ = (p/12) · (p/3 − ε1)n/(1 − p). Then, Lemma B.2 implies that

Pr
[
bt ≥ p(p/3 − ε1)n

6(1 − p)

∣∣∣∣Mt−1

]
= Pr

[
bt ≥ p(p/3 − ε1)n

3(1 − p) − λ

∣∣∣∣Mt−1

]
≥ 1 − exp

(
−2λ2

n

)

= 1 − exp
(

−p2(p/3 − ε1)2n

2 · 32(1 − p)2

)
.

Notice that st ≤ n − 2bt. Since

n − p(p/3 − ε1)n
3(1 − p) ≤ šε2 ,

for ε2 = 2p(3−p)/9, then st ≤ ŝε2 with probability 1−exp
(
−(p2/2 · 32) · (p/3 − ε1)2n/(1 − p)2).

Proof of Theorem 2.3.1. Suppose the initial configuration bias is outside the interval I =
[šε1 , ŝε2 ]. By Lemmas 2.4.4 and 2.4.5, we have that in two rounds the bias is less than or equal to
ŝε2 with probability 1 − 2 exp

(
−p4n/2334) for the union bound, and keeps bounded by the same

value for T = exp
(
−p4n/2434) rounds with probability 1 − exp (−Ωp(n)) for Lemmas A.1

and A.2.
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Lemma 2.4.3 and Remark 2.4.2 imply that the bias at the second round is no less than
γ′√n log n with probability 1 − n−p2γ2/2·32

, with γ′ = γ(1 − 2p/3). Define the event

Bk =
{

sk ≥ sk−1

(
1 + ε1

2 · 12

)}
;

Ck =
{

sk ≥ γ′√n log n
}

∩
{

qk−1 ≥ q̂ε1/12
}

;

Dk = {sk ≥ šε1}
Ek = Bk ∩ Ck.

Notice that, conditional on Ek−1 ∩ DC
k−1, the probability of Ek+1 is 1 − 3n−(1/23)(ε1ps)2/32n for

Lemmas 2.4.1 to 2.4.3, Remarks 2.4.1 and 2.4.2, and the union bound, where ε1 depends only on
p. Let τ∗ = min{k ≥ 0 : sk ≥ šε1}. Notice that ∩T2

k=1(Fk ∪ Dk) ⊆ {τ∗ ≤ T2}, with T2 =
log n/ log (1 + ε1/24). Then, by Lemmas A.1 and A.2, we have that τ∗ ≤ T2 with probability
1 − nΩp,γ(1). Let τ be the first time st lies in the interval I = [šε1 , ŝε2 ]. For what we showed
above, τ = max{2, τ∗}, which is at most T2 with high probability for the union bound.

Suppose now we start in a configuration inside the interval I . Then, the bias keeps bounded by
ŝε2 for time T1 − 2 with probability 1 − exp (−Ωp(n)). Furthermore, it can decreases to, at most,
šε1(1 − 2p/3)2 for Lemma 2.4.3 with probability at least 1 − exp (−Ωp(n)) before starting to
increase again towards interval I with probability at least 1 − exp (−Ωp(n)). Thus, the bias keeps
inside the interval ∆ for exp(Ωp(n)) rounds, w.h.p. for the chain rule.

2.4.4 UNDECIDED-STATE dynamics: symmetry-breaking

In this section, we consider the UNDECIDED-STATE process starting from arbitrary initial
configurations: in particular, from configurations having no bias. Informally, Theorem 2.3.2 states
that when p < 1/3, the UNDECIDED-STATE process is able to break the symmetry of any
perfectly-balanced initial configuration; then, Theorem 2.3.1 applies and the system computes
almost consensus within O(log n) rounds, w.h.p.

Interestingly enough, Theorem 2.3.3 (proved in 2.4.5) implies that the same threshold p = 1/3
for computing almost-consensus is sharp as higher values of noise prevent any strong bias drift.
What follows is an outline of the proof of the theorem, while more details are given in the next
section.

Outline of Proof of Theorem 2.3.2. If the initial configuration M0 has bias s = Ω(
√

n log n) then
the claim of the theorem is equivalent to that of Theorem 2.3.1, so we are done. Hence, we next
assume the initial bias s be o(

√
n log n): for this case, our proof proceeds along the following

main steps.
Step I. Whenever the bias s is small, i.e., o(n), we prove that, within the next O(log n) rounds, the
number of undecided nodes turns out to keep always in a suitable linear range: roughly speaking,
we get that this number lies in (n/3, n/2], w.h.p.
Step II. Whenever s is very small, i.e., s = o(

√
n), there is no effective drift towards any opinion.

However, we can prove that, thanks to Step I, the random variable S, representing the bias in the
next round, has high variance, i.e., Θ(n). The latter holds since S can be written as a suitable
sum whose addends include some random variables having binomial distribution of expectation
0: so, we can apply the Berry-Esseen result (Lemma B.6) to get a lower bound on the variance
of S. Then, thanks to this large variance, classical arguments for the standard deviation imply
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that, in this parameter range, there is a positive constant probability that S will get some value of
magnitude Ω(

√
n) (see Claim 1 of Lemma 2.4.8). Not surprisingly, in this phase, we find out that

the variance of S is not decreased by the communication noise. We can thus claim that the process,
at every round, has positive constant probability to reach a configuration having bias s = ω(

√
n)

and q ∈ (n/3, n/2]. Then, after O(log n) rounds, this event will happen w.h.p.
Step III. Once the process reaches a configuration with s = ω(

√
n) and q ∈ (n/3, n/2], we

then prove that the expected bias increases by a constant factor (which depends on p). Observe
that we cannot use here the same round-by-round concentration argument that works for bias
over

√
n log n (this is in fact the minimal magnitude required to apply the Chernoff’s bounds

[Dubhashi and Panconesi, 2009]). We instead exploit a useful general tool [Clementi et al., 2018]
that bounds the stopping time of some class of Markov chains having rather mild conditions on
the drift towards their absorbing states (see Lemma 2.4.6). This tool in fact allows us to consider
the two phases described, respectively, in Step II and Step III as a unique symmetry-breaking
phase of the process. Our final technical contribution here is to show that the conditions required
to apply this tool hold whenever the communication noise parameter is such that p ∈ (0, 1/3).
This allows us to prove that, within O(log n) rounds, the process reaches a configuration with bias
s = Ω(

√
n log n), w.h.p.

2.4.4.1 Proofs: symmetry breaking

The proof of Theorem 2.3.2 essentially relies on the following lemma which has been proved
in [Clementi et al., 2018], for which we report a proof that corrects some minor mistakes.

Lemma 2.4.6. Let {Xt}t∈N be a Markov Chain with finite-state space Ω and let f : Ω 7→ [0, n]
be a function that maps states to integer values. Let c3 be any positive constant and let m =
c3

√
n log n be a target value. Assume the following properties hold:
(1) for any positive constant h, a positive constant c1 < 1 exists such that for any x ∈ Ω :

f(x) < m,
Pr
[
f(Xt+1) < h

√
n
∣∣ Xt = x

]
< c1;

(2) there exist two positive constants δ and c2 such that for any x ∈ Ω : h
√

n ≤ f(x) < m,

Pr [f(Xt+1) < (1 + δ)f(Xt) | Xt = x] < e−c2f(x)2/n.

Then the process reaches a state x such that f(x) ≥ m within Oc1,c3(log n) rounds with probabi-
lity at least 1 − 2/n.

Proof. Define a set of hitting times T := {τ(i)}i∈N, where

τ(i) = inf
i∈N

{
t : t > τ(i − 1), f(Xt) ≥ h

√
n
}

,

setting τ(0) = 0. By the first hypothesis, for every i ∈ N, the expectation of τ(i) is finite, which
implies Pr [τ(i) < +∞] = 1. Hence, τ(i) is well defined for any i ∈ N and is a stopping time.
Now, define the following stochastic process which is a subsequence of {Xt}t∈N:

{Ri}i∈N = {Xτ(i)}i∈N.



36 CHAPTER 2 — Opinion Dynamics with Uniform Communication Noise

Observe that {Ri}i∈N is still a Markov chain as the Markov property holds. Indeed, if
{x1, . . . , Xi−1} is a set of states in Ω, then

Pr [Ri = x | Ri−1 = xi−1, . . . , R1 = x1]

= Pr
[
Xτ(i) = x

∣∣∣ Xτ(i−1) = xi−1, . . . , Xτ(1) = x1
]

=
∑

t(i)>···>t(1)∈N
Pr
[
Xt(i) = x

∣∣∣ Xt(i−1) = xi−1, . . . , Xt(1) = x1
]

· Pr [τ(i) = t(i), . . . , τ(1) = t(1)]
(a)= Pr

[
Xτ(i) = x

∣∣∣ Xτ(i−1)=xi−1

]
= Pr [Ri = x | Ri−1 = xi−1] ,

where (a) holds for the Strong Markov property. By definition, the state space of R is {x ∈ Ω :
f(x) ≥ h

√
n}. Moreover, the second hypothesis still holds for this new Markov chain. Indeed:

Pr [f(Ri+1 < (1 + ϵ)f(Ri) | Ri = x]
= 1 − Pr [f(Ri+1 ≥ (1 + ϵ)f(Ri) | Ri = x]

= 1 − Pr
[
f(Xτ(i+1) ≥ (1 + ϵ)f(Xτ(i))

∣∣∣ Xτ(i) = x
]

≤ 1 − Pr
[
f(Xτ(i+1) ≥ (1 + ϵ)f(Xτ(i)), τ(i + 1) = τ(i) + 1

∣∣∣ Xτ(i) = x
]

= 1 − Pr
[
f(Xτ(i)+1 ≥ (1 + ϵ)f(Xτ(i))

∣∣∣ Xτ(i) = x
]

= 1 − Pr [f(Xt+1 ≥ (1 + ϵ)f(Xt) | Xt = x]

< e−c2f(x)2/n.

These two properties are sufficient to study the number of rounds required by the new Markov
chain {Ri}i∈N to reach the target value m. Indeed, by defining the random variable Zi = f(Ri)√

n
,

and considering the following “potential” function, Yi = exp
(

m√
n

− Zi

)
, we can compute its

expectation at the next round as follows. Let us fix any state x ∈ Ω such that h
√

n ≤ f(x) < m,
and define z = f(x)√

n
, y = exp

(
m√

n
− z

)
. We have

E [Yi+1|Ri = x] ≤ Pr [f(Ri+1) < (1 + ϵ)f(x)] em/
√

n

+ Pr [f(Ri+1) ≥ (1 + ϵ)f(x)] em/
√

n−(1+ϵ)z

(from Hypothesis (2)) ≤ e−c2z2 · em/
√

n + 1 · em/
√

n−(1+ϵ)z

= em/
√

n−c2z2 + em/
√

n−z−ϵz

= em/
√

n−z(ez−c2z2 + e−ϵz)

≤ em/
√

n−z(e−2 + e−2) (2.7)

<
em/

√
n−z

e

= y

e
,
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where in (2.7) we used that z is always at least h and thanks to Hypothesis (1) we can choose a
sufficiently large h.

By applying the Markov inequality and iterating the above bound, we get

Pr [Yi > 1] ≤ E [Yi]
1 ≤ E [Yi−1]

e
≤ · · · ≤ E [Y0]

eτR
≤ em/

√
n

ei
.

We observe that if Yi ≤ 1 then Ri ≥ m, thus by setting i = m/
√

n + log n = (c3 + 1) log n, we
get:

Pr
[
R(c3+1) log n < m

]
= Pr

[
Y(c3+1) log n > 1

]
<

1
n

. (2.8)

Our next goal is to give an upper bound on the hitting time τ(c3+1) log n. Note that the event
“τ(c3+1) log n > c4 log n” holds if and only if the number of rounds such that f(Xt) ≥ h

√
n (be-

fore round c4 log n) is less than (c3 + 1) log n. Thanks to Hypothesis (1), at each round t there
is at least probability 1 − c1 that f(Xt) ≥ h

√
n. This implies that, for any positive constant c4,

the probability Pr
[
τ(c3+1) log n > c4 log n

]
is bounded by the probability that, within c4 log n inde-

pendent Bernoulli trials, we get less then (c3 +1) log n successes, where the success probability is
at least 1 − c1. We can thus choose a sufficiently large c4 = c4(c1, c3) and apply the multiplicative
form of the Chernoff bound (Lemma B.1), obtaining

Pr
[
τ(c3+1) log n > c4 log n

]
<

1
n

. (2.9)

We are now ready to prove the Lemma using (2.8) and (2.9), indeed

Pr [Xc4 log n ≥ m] > Pr
[
R(c3+1) log n ≥ m ∧ τ(c3+1) log n ≤ c4 log n

]
= 1 − Pr

[
R(c3+1) log n < m ∨ τ(c3+1) log n > c4 log n

]
≥ 1 − Pr

[
R(c3+1) log n < m

]
+ Pr

[
τ(c3+1) log n > c4 log n

]
> 1 − 2

n
.

Hence, choosing a suitable large c4, we have shown that in c4 log n rounds the process reaches
the target value m, w.h.p.

Our goal is to apply the above lemma to the UNDECIDED-STATE process (which defines a
finite-state Markov chain) starting with bias of size o(

√
n log n) where we set f(Mt) = st, c3 =

γ > 0 for some constant γ > 0, and m = γ
√

n log n: this would imply the upper bound O(log n)
on the number of rounds needed to reach a configuration having bias Ω(

√
n log n), w.h.p., breaking

the symmetry because Theorem 2.3.1 then holds. To this aim, with the next two lemmas we show
that the UNDECIDED-STATE process satisfies the hypotheses of Lemma 2.4.6 in this setting, w.h.p.

Lemma 2.4.7. Let ϵ be any constant such that (1 − 2p)2/2 ≤ ϵ < (1 − 2p)(1 − 2p/3). Let
Mt−1 be any configuration in which s ≤ šϵ, and q ≤ n

2 . Then, in the next round, it holds that
q̂ϵ/12 ≤ qt ≤ n

2 with probability 1 − exp
(
−ϵ2p2n/(2434)

)
.
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Proof of Lemma 2.4.7. Lemma 2.4.2 implies that qt ≥ q̂ϵ/12 with probability 1 −
exp

(
−ϵ2n/

(
2332(1 − p)2)). At the same time, by Eq. (2.6) it holds that

E [qt | Mt−1] ≤ pn

3 + 1 − p

2n

[
2q2 + (n − q)2

]
= f(q).

For q ≤ n
2 , the maximum of f is obtained either at q1 = 0 or at q2 = n

2 . Then,

f(q1) =
(

p

3 + 1 − p

2

)
n = (3 − p)n

6 ;

f(q2) = pn + 1 − p

2n

[
n2

2 + n2 − n2 + n2

4

]
=
(

p

3 + 3(1 − p)
8

)
n

= (9 − p)n
24 .

Therefore, we have f(q) ≤ (3 − p)n/6 for q ≤ n
2 , since (3 − p)/6 > (9 − p)/24 for p < 1. By

the additive form of Chernoff bound (Lemma B.2),

Pr
[
qt ≥ n

2

∣∣∣∣Mt−1

]
= Pr

[
qt ≥ (3 − p)n

6 + pn

6

∣∣∣∣Mt−1

]
≤ Pr

[
qt ≥ E [qt | Mt−1] + pn

6

∣∣∣∣Mt−1

]
≤ exp

(
−p2n/2 · 32

)
.

Hence, the joint probability that qt ≤ n/2 and qt ≥ q̂ϵ/12 is at least 1 − exp
(
−ϵ2p2n/(2434)

)
,

since ϵ < 1 and p < 1.

Lemma 2.4.8. Let ϵ be any constant such that (1 − 2p)2/2 ≤ ϵ < (1 − 2p)(1 − 2p/3). Let Mt−1

be any configuration such that q ∈
[
q̂ϵ/12, n/2

]
. Then, it holds that

(1) for any constant h > 0 there exists a constant c1 > 0 (depending only on p) such that

Pr
[
|st| < h

√
n)
∣∣Mt−1

]
< c1;

(2) there exist two positive constants δ and c2 (depending only on p) such that

Pr [|st| ≥ (1 + δ)s | Mt−1] ≥ 1 − e−c2
s2
n .

Proof. As for the first item, let x = (a, b, q) and x′ = (a′, b′, q′) be two states such that |s| =
|a − b| < h

√
n log n, |s′| = |a′ − b′| = 0, q = q′. A simple domination argument implies that

Pr
[
|st| < h

√
n
∣∣Mt−1 = x

]
≤ Pr

[
|st| < h

√
n
∣∣Mt−1 = x′] .

Thus, we can bound just the second probability, where the initial bias is zero, which implies that
a = b.

Define aq
t , bq

t , qq
t the random variables counting the nodes that were undecided in the confi-

guration x′ and that, in the next round, get the opinion Alpha, Beta, and undecided, respectively.
Similarly, aa

t (bb
t) counts the nodes that support opinion Alpha (Beta) in the configuration x′ and

that, in the next round, still support the same opinion. Trivially, at = aq
t + aa

t and bt = bq
t + bb

t .
Moreover, observe that, among these random variables, only aq

t and bq
t are mutually dependent.
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Thus, conditional on the event {Mt−1 = x′}, if α = E [aa
t | Mt−1 = x′] = E

[
bb

t

∣∣∣Mt−1 = x′
]
, it

holds that

Pr
[
|st| ≥ h

√
n
]

≥ Pr
[
at ≥ bt + h

√
n
]

≥ Pr
[
aq

t ≥ bq
t + h

√
n
]

Pr [aa
t ≥ α] Pr

[
bb

t ≤ α
]

.

The random variables aa
t − α and bb

t − α follow binomial distributions with expectation 0 (recall
that a = b), and finite second and third moment. Thus, the Berry-Esseen inequality (Lemma B.6
in Appendix B) allows us to approximate up to an arbitrary-small constant ϵ1 > 0 (as long as n is
large enough) both the random variables with a normal distribution that has expectation 0. Thus,

Pr [aa
t ≥ α] = Pr

[
bb

t ≤ α
]

≥
(1

2 − ϵ1

)
.

As for the random variable aq
t − bq

t , notice that conditional on the event {q − qq
t = k}, it is the sum

of k Rademacher random variables. The hypothesis q ≤ n
2 allows us to use the Chernoff bound

on qq
t and show that qq

t ≤ 3
4q w.h.p. Thus, since q ≥ q̂ϵ/12, it holds that q − qq

t = Θ(n) w.h.p.
It follows that the conditional variance of aq

t − bq
t given q − qq

t yields Θ(n) w.h.p., and aq
t − bq

t

conditional on the event E = {q − qq
t = Θ(n)} can be approximated by a normal distribution up

to an arbitrary-small constant ϵ2 > 0. Then, we have that

Pr
[
aq

t ≥ bq
t + h

√
n
]

≥ Pr
[
aq

t ≥ bq
t + h

√
n
∣∣ E
]

Pr [E] ≥ ϵ2.

Setting c1 = ϵ1 · ϵ2, we get property (1). We can choose ϵ1, ϵ2 to be equal to p, so that c1 depends
only on p. As for property (2), by Eq. (2.5) and the hypothesis on q we have that

E [st | Mt−1] ≥ s (1 + ϵ/12) .

We can get the property applying the Hoeffding bound (Lemma B.3), getting that

Pr
[
st ≤ s

(
1 + ϵ

24

) ∣∣∣∣Mt−1

]
= Pr

[
st ≤ s

(
1 + ϵ

12

)
− ϵs

24

∣∣∣∣Mt−1

]
≤ exp

(
− ϵ2s2

2732n

)
,

which is the thesis.

The reader may notice that Lemma 2.4.7 requires the number of undecided nodes to be inside
the interval

[
q̂ϵ/12, n/2

]
. We will later take care of this issue with Lemma 2.4.11, showing that

whenever this number of undecided agents is not within the above interval, in at most O(log n)
rounds it will. Furthermore, Lemma 2.4.7 guarantees that the condition on the undecided nodes
holds “only” w.h.p., while Lemma 2.4.6 requires this condition to hold with probability 1. We
show this issue can be solved using a coupling argument similar to that in [Clementi et al., 2018].
The key point is that, starting from any configuration Mt with qt ∈

[
q̂ϵ/12, n/2

]
, the probability

that the process goes in one of those “bad” configurations with q outside the above interval is
negligible. Intuitively speaking, the configurations actually visited by the process before breaking
symmetry do satisfy the hypothesis of Lemma 2.4.6. In order to make this argument rigorous, we
define a pruned process, by removing all the unwanted transitions.

Let s̄ ∈ {0, 1, . . . , n}, and zs̄ = (ā, b̄, q̄) the configuration with bias s̄ = ā − b̄, and undecided
nodes q̄ = n/2. Let px,y be the probability of a transition from the configuration x = (ax, bx, qx)
to the configuration y = (ay, by, qy) in the UNDECIDED-STATE process. The PRUNED process
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behaves exactly as the original process but every transition from a configuration x such that qx ∈[
q̂ϵ/12, n/2

]
and sx = ax − bx = O(

√
n log n) to a configuration y such that qy < q̂ϵ/12 or

qy > n/2 has probability px,y = 0. Moreover, for any s̄ ∈ [n], starting from the configuration x,
the probability of reaching the configuration zs̄ is

p′
x,zs̄

= px,zs̄ +
∑

y: sy=s̄ and
qy /∈[q̂ϵ/12, n

2 ]

px,y.

All the other transition probabilities remain the same. Observe that the PRUNED process is
defined in such a way that it has exactly the same marginal probability of the original process
with respect to (in short, w.r.t.) the random variable st; thus, Lemma 2.4.8 holds for the PRUNED

process as well and we can apply Lemma 2.4.6. Then, the PRUNED process reaches a configuration
having bias Ω(

√
n log n) within O(log n) rounds, w.h.p., as shown in the following lemma.

Lemma 2.4.9. Let ϵ be any constant such that (1−2p)2/2 ≤ ϵ < (1−2p)(1−2p/3). Furthermore,
let γ > 0 be any constant. Starting from any configuration Mt such that qt ∈

[
q̂ϵ/12, n/2

]
and

st ≤ γ
√

n log n, the PRUNED process reaches a configuration having bias Ω(
√

n log n) within
Op,γ(log n) rounds with probability 1 − 2/n.

Proof of Lemma 2.4.9. Let γ > 0 be a constant and m = γ
√

n log n be the target value of the
bias in Lemma 2.4.6. Since qt ∈

[
q̂ϵ/12, n/2

]
and st = O(

√
n log n), the PRUNED process always

satisfies Lemma 2.4.8, and thus we can apply Lemma 2.4.6 (setting the function f(Mt) = st),
which gives us that the PRUNED process process reaches a configuration y having bias s ≥ m =
Ω(

√
n log n) within Op,γ(log n) rounds with probability 1 − 2/n.

We now want to go back to the original process. The definition of the PRUNED process suggests
a natural coupling between it and the original one. If the two process are in different states, then
they act independently, while, if they are in the same state Mt, they move together unless the
UNDECIDED-STATE process goes in a configuration y such that q /∈

[
q̂ϵ/12, n/2

]
. In that case,

the PRUNED process goes in zsy , where sy is the bias of configuration y. In the proof of the next
lemma, we show that the time the PRUNED process takes to reach bias Ω(

√
n log n) stochastically

dominates the one of the original process, giving the result.

Lemma 2.4.10. Let γ, ϵ be any two positive constants, with (1 − 2p)2/2 ≤ ϵ < (1 − 2p)(1 −
2p/3). Starting from any configuration M0 such that q0 ∈

[
q̂ϵ/12, n/2

]
and s0 ≤ γ

√
n log n,

the UNDECIDED-STATE process reaches a configuration having bias s ≥ γ
√

n log n within
Op,γ(log n) rounds with probability at least 1 − 3/n.

Proof of Lemma 2.4.10. Let {Mt} and {Yt} be the original process and the pruned one, respecti-
vely. Denote the set of possible initial configuration according to the hypothesis by H . Note that
if Mt = Yt, then

Yt+1 =
{

Mt+1 if Mt+1 ∈ H

zst+1 otherwise
.

Let τ = inf{t : N : |st| ≥
√

n log n}, and let τ∗ = inf{t ∈ N : |sYt | ≥
√

n log n}. For any
configuration x ∈ H , define ρt

x the event that the two processes {Mt} and {Yt} have separated
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at round t + 1, i.e., ρt
x = {Mt = Yt = x} ∩ {Mt+1 ̸= Yt+1}. Observe that, if the two couple

processes in the same configuration x ∈ H and τ > c log n, then either τ∗ > c log n or there
exists a round t ≤ c log n such that for some x ∈ H the event ρt

x has occurred. Hence, if P′
x0,x0 [·]

is the joint probability for the couple (Mt, Yt) which both start at x0, we have

P′
x0,x0 [τ > c log n]

≤ P′
x0,x0

[
{τ∗ > c log n} ∪ {∃t ≤ c log n, ∃x ∈ H : ρt

x}
]

≤ P′
x0,x0 [τ∗ > c log n] + P′

x0,x0

[
∃t ≤ c log n, ∃x ∈ H : ρt

x

]
.

We choose a suitable constant c which depends on p and γ, in order to apply Lemmas 2.4.6
and 2.4.7. As for the first item, since Lemma 2.4.6 holds for the PRUNED process, we have that it
is upper bounded by 2/n. As for the second term, we get that

P′
x0,x0

[
∃t ≤ c log n, ∃x ∈ H : ρt

x

]
≤

c log n∑
t=1

P′
x0,x0

[
∃x ∈ H : ρt

x

]

=
c log n∑
t=1

∑
x∈H

P′
x0,x0

[
ρt

x

] (a)
≤

c log n∑
t=1

n2

e− ϵ2p2n

2432

≤ 1
n

,

where in (a) the second inequality we used Lemma 2.4.7, and the fact that |H| is at most all the
combinations of parameters q and s.

Now, we take care of those cases in which the starting configuration Mt−1 is such that q /∈[
q̂ϵ/12, n/2

]
. If q < q̂ϵ/12 then, for Lemma 2.4.7, qt ∈

[
q̂ϵ/12, n/2

]
w.h.p. Next lemma takes care

of the case q > n/2.

Lemma 2.4.11. Let Mt−1 be any starting configuration such that q > n
2 . Then, at the next round,

it holds that qt ≤ q (1 − p/6) with probability 1 − exp
(
−p2n/23 · 32).

Proof of Lemma 2.4.11. From Eq. (2.6), we have that

E [qt | Mt−1] − q(3 − 2p)
3 ≤ pn

3 + 1 − p

2n

[
2q2 + (n − q)2

]
− q(3 − p)

3

= 3q2
(1 − p

2n

)
− q(6 − 4p)

3 + n

(3 − p

6

)
= f(q).

Now, f(q) takes its maximum either in q1 = n/2, or in q2 = n. Then,

f(q1) = 3n

4

(1 − p

2

)
− n(6 − 4p)

6 + n

(3 − p

6

)
= n · 9 − 9p − 24 + 16p + 12 − 4p

24

= n · −1 + p

8 ;

f(q2) = 3n

(1 − p

2

)
− n(6 − 4p)

3 + n

(3 − p

6

)
= n · 9 − 9p − 12 + 8p + 3 − p

6
= −pn

3 .
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Since p < 1/2, we have that f(q) < 0 for n/2 < q ≤ n. Thus,

E [qt | Mt−1] ≤ q

(
1 − p

3

)
,

and we can use the Chernoff bound (Lemma B.2).

Pr
[
qt ≥ q

(
1 − p

6

) ∣∣∣∣Mt−1

]
= Pr

[
qt ≥ q

(
1 − p

3

)
+ pq

6

∣∣∣∣Mt−1

]
≤ Pr

[
qt ≥ E [qt | Mt−1] + pn

12

∣∣∣∣Mt−1

]
≤ exp

(
− p2n

23 · 32

)
.

Finally, we are ready to prove Theorem 2.3.2.

Proof of Theorem 2.3.2: Wrap-Up. Let γ = p/3, and let m = γ
√

n log n be the target value of
the bias in Lemma 2.4.6. Let Mt−1 be any initial configuration having bias |s| < m. Let ϵ be any
constant such that (1 − 2p)2/2 ≤ ϵ < (1 − 2p)(1 − 2p/3). We have two cases.

(i) If the number of undecided nodes is such that qt ∈
[
q̂ϵ/12, n/2

]
, then Lemma 2.4.10

implies that the UNDECIDED-STATE process reaches a configuration having bias s ≥
γ

√
n log n in Op(log n) rounds with probability 1 − 3/n;

(ii) else, if the starting configuration is such that qt /∈
[
q̂ϵ/12, n/2

]
, then, for Lemmas 2.4.7

and 2.4.11, the UNDECIDED-STATE process reaches within Op(log n) rounds a confi-
guration having the number of undecided nodes q ∈

[
q̂ϵ/12, n/2

]
, with probability

1 − exp
(
−p2n/24 · 32) for Lemmas A.1 and A.2. Then, either the bias is s ≥ γ

√
n log n,

or we are in case (i). As Lemmas A.1 and A.2 in the preliminaries imply, the probability
that case (ii) and then case (i) take place is a high probability (in this case, with probability
at least 1 − 4/n).

Then, Theorem 2.3.1 gives the desired result.

2.4.5 UNDECIDED-STATE dynamics: victory of noise

This section provide all technical lemmas to prove Theorem 2.3.3. We assume the starting
configuration M0 to have bias s = a − b ≥ γ

√
n log n for some constant γ > 0; the case in which

b > a is analogous. Let 1/2 < p < 1 be the probability of noise, with p being a constant.
We first show that if the bias is positive, it can become negative but its absolute value will be

bounded by O (n log n). The same holds if it is negative, by symmetry.

Lemma 2.4.12. Let Mt−1 be any configuration such that s ≥ 0. Then, for any γ > 0, st ≥
−γ

√
n log n with probability 1 − n−γ2/2.

Proof of Lemma 2.4.12. From Eq. (2.5), we have that E [st | Mt−1] ≥ 0. If, Since p ≤ 1, we
have E [st | Mt−1] ≥ s (1 − p/3) ≥ 0. Let λ = γ

√
log n/n. Then, by the Hoeffding bound

(Lemma B.3), we have that

Pr
[
st ≥ −γ

√
n log n

∣∣∣Mt−1
]

= Pr [st ≥ −λn | Mt−1] ≤ exp
(

−γ2 log n

2

)
= n− γ2

2 .
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We distinguish two cases: p > 3/4 and 1/2 < p ≤ 3/4.

2.4.5.1 First case: p > 3
4 large noise.

Let ε > 0 be a constant such that 3/4 + ε < p ≤ 1. We first show a bound on the decrease of
the bias.

Lemma 2.4.13. Let Mt−1 be a configuration such that s ≥ γ
√

n log n for any constant γ > 0.
Then, in the next round, it holds that st ≤ s (1 − 2ε) with probability 1 − n−2ε2γ2/9.

Proof of Lemma 2.4.13. Equation (2.5) implies that

E [st | Mt−1] ≤ st

[
1 − 1

4 − ε

3 + 1 − 3
4 − ε

]
= st

(
1 − 4ε

3

)
,

since q/n ≤ 1. Let λ = 2ε(s/3n). From the Hoeffding bound (Lemma B.3), we have that

Pr
[
st ≤ s

(
1 − 2ε

3

) ∣∣∣∣Mt−1

]
= Pr

[
st ≤ s

(
1 − 4ε

3

)
+ λn

∣∣∣∣Mt−1

]
≤ exp

(
−2ε2s2

9n

)
≤ n− 2ε2γ2

9 .

2.4.5.2 Second case: 1/2 < p ≤ 3/4 small noise.

Let ε > 0 be a constant such that 1/2 + 3ε = p ≤ 3/4, 2 which implies that ε ≤ 1/12. We
remark that, in contrast to the previous case, here the parameter p for the noise is exactly 1/2 + 3ε
for the sake of the analysis.

The following lemma states that, if s ≥ 2
3n, the bias decreases exponentially at the next round,

w.h.p. On the other hand, if the bias is at most 2
3n, it cannot grow over 2

3n, w.h.p.

Lemma 2.4.14. Let Mt−1 be any configuration. The following holds:
(1) if s ≥ 2

3n, then st ≤ s(1 − ε) with probability 1 − exp
(
−2ε2n/9

)
;

(2) if s ≤ 2
3n, then st ≤ 2

3n with probability 1 − exp
(
−16ε2n/9

)
.

Proof of Lemma 2.4.14. We first address claim (1). Consider the first statement. If s ≥ 2
3n, then

q ≤ 1
3n. Thus, from Eq. (2.5), we get

E [st | Mt−1] ≤ s

[
1 − 1

6 − ε + 1
3 − 1

6 − ε

]
= s (1 − 2ε) .

Let λ = ε(s/n). By the Hoeffding bound (Lemma B.3), we conclude that

Pr [st ≤ s(1 − ε) | Mt−1] = Pr [st ≤ s(1 − 2ε) + λn | Mt−1] ≤ exp
(

−ε2s2

2n

)
≤ exp

(
−2ε2n

9

)
,

since s ≥ 2n/3.

2. The factor 3 in 3ε is useful for calculations.
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Now we prove claim (2). Since q ≤ n − s, from Eq. (2.5) we get that

E [st | Mt−1] ≤ s ·
[
1 − 1

6 − ε + n − s

n
·
(

1 − 1
2 − 3ε

)]
≤ 2n

3 ·
[
1 − 1

6 − ε + 1 − 1
2 − 3ε − 2

3 + 1
3 + 2

]
= 2n

3 · [1 − 4ε] .

Let λ = 4ε(2/3). For the Hoeffding bound (Lemma B.3), it holds that

Pr
[
st ≤ 2n

3

∣∣∣∣Mt−1

]
= Pr

[
st ≤ 2n

3 (1 − 4ε) + λn

∣∣∣∣Mt−1

]
≤ exp

(
−16ε2n

9

)
.

Thus, we just have to take care of cases in which the bias is no more than 2
3n. The key-point

to show the decrease of the bias, as long as it is Ω
(√

n log n
)
, it is the condition q ≤ q̌ε/2 =

(1 + 3ε)(n/3)/(1 − 6ε), as shown in the next lemma.

Lemma 2.4.15. Let Mt−1 be a configuration such that s ≥ γ
√

n log n for some constant γ > 0.
If q ≤ q̌ε/2, then in the next round it holds that st ≤ s

(
1 − ε

4
)

with probability 1 − n−ε2γ2/26
.

Proof of Lemma 2.4.15. From Eq. (2.5) it follows that

E [st | Mt−1] ≤ s ·
[
1 − 1

6 − ε + 1
6 + ε

2

]
= s

(
1 − ε

2

)
.

Let λ = (ε/4)(s/n). By the Hoeffding bound (Lemma B.3), we get

Pr
[
st ≤ s

(
1 − ε

4

) ∣∣∣∣Mt−1

]
= Pr

[
st ≤ s

(
1 − ε

2

)
+ λn

∣∣∣∣Mt−1

]
≤ exp

(
−ε2s2

26n

)
≤ n− ε2γ2

26 .

We now analyze the dynamics by partitioning the interval
(
0, 2

3n
]

and seeing what happens to

the bias in each element of the partition. Let β = 2
√

2ε√
(1+6ε)(1−6ε)

and define S−1 := (0, βn], Si the

sequence of intervals

Si :=
((3

2

)i

βn,

(3
2

)i+1
βn

]

for i = 0, 1, . . . , k − 2 where k =
⌈
log 2

3
(β) − 1

⌉
, and Sk−1 :=

((
3
2

)k−1
βn, 2

3n

]
. Furthermore,

just for completeness, we define Sk :=
(

2
3n, n

]
. In the next lemmas, we show that as long as

s ∈ Si for i = −1, . . . , k − 1, s = Ω(
√

n log n), and q̄i+1 ≤ q ≤ q̌ε/2 for some decreasing
sequence q̄−1, . . . , q̄k accurately chosen, then, at the next round, the bias decreases exponentially
w.h.p. and the number of undecided nodes moves to the interval

[
q̄i, q̌ε/2

]
w.h.p. Note that since ε

is a constant, so is k. The following lemma determines the sequence q̄i.

Lemma 2.4.16. Let Mt−1 be any configuration.
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1. If −1 ≤ i ≤ k−1 and s ≤
(

3
2

)i+1
βn, it holds that qt ≥ n

3 − 2nε
1+6ε

(
3
2

)2i+3
with probability

1 − exp
(
−2ε2(3/2)4i+4n/(1 + 6ε)2);

2. If s ≤ 2
3n, it holds that qt ≥ 2

9n + ε
3n with probability 1 − exp

(
−2ε2n/9

)
;

3. Without any condition on s, it holds that qt ≥ n
12 + εn with probability 1 − exp

(
−ε2n/2

)
.

Proof of Lemma 2.4.16. We start proving claim (1). From Equation (2.6), we have that

E [qt | Mt−1] ≥ n

3 − 1 − 6ε

n

(
s

2

)2
≥ n

3 − 1 − 6ε

4

(3
2

)2i+2
β2n

= n

[
1
3 − 2ε

1 + 6ε

(3
2

)2i+2
]

.

Thus, using the additive form of Chernoff bound (Lemma B.2) with λ = ε
1+6ε

(
3
2

)2i+2
n, we have

that qt ≥ n

(
1
3 − 2ε

1+6ε

(
3
2

)2i+3
)

with probability 1 − exp
(
−2ε2(3/2)4i+4n/(1 + 6ε)2).

As for claim (2), we have that

E [qt | Mt−1] ≥ n

3 − 1 − 6ε

n

(
s

2

)2
≥ n

3 − n
1 − 6ε

9 = 2 + 6ε

9 n

and we conclude by using the additive Chernoff bound with λ = εn/3, getting that qt ≥ 2
9n + ε

3n
with probability 1 − exp

(
−2ε2n/9

)
.

To prove claim (3), we use that s ≤ n and observe that

E [qt | Mt−1] ≥ n

3 − 1 − 6ε

n

(
s

2

)2
≥ n

3 − n
1 − 6ε

4 = 1 + 18ε

12 n.

We conclude with the additive Chernoff bound (Lemma B.2) with λ = εn/2, getting qt ≥ n
12 +εn

with probability 1 − exp
(
−ε2n/2

)
.

Define q̄i := n

(
1
3 − 2ε

1+6ε

(
3
2

)2i+3
)

for i = −1, ..., k−2, q̄k−1 := 2
9n+ ε

3n, and q̄k := n
12+εn,

and notice that they form a decreasing sequence. With the next lemmas, we take care of controlling
the behaviour of the number of undecided nodes when s > inf(Si) for −1 ≤ i ≤ k − 1.

Lemma 2.4.17. Let −1 ≤ i ≤ k − 1 and let Mt−1 be a configuration such that q̄i+1 ≤
q ≤ q̌ε/2 and s > inf(Si). Then, at the next round, q̄i ≤ qt ≤ q̌ε/2 with probability
1 − exp

(
−2ε2n/(1 − 6ε)2).

Proof of Lemma 2.4.17. Define f(q) equal to E [qt | Mt−1] = 3
4

(
1−6ϵ

n

)
q2 − 1−6ϵ

2 q + 5−6ϵ
12 n −

1−6ϵ
n

(
s
2
)2. We are going to evaluate f(q) in q̄i+1 and in q̄ = n(1+3ϵ)

3(1−6ϵ) . We take care of different
cases: first, we assume i = −1, with the condition that s > 0. Thus

f(q̄0) ≤ 3
4

(1 − 6ϵ

n

)
n2
[1

9 + 4ϵ2

(1 + 6ϵ)2

(3
2

)6
− 4ϵ

3(1 + 6ϵ)

(3
2

)3 ]
− 1 − 6ϵ

2 n

[1
3 − 2ϵ

1 + 6ϵ

(3
2

)3 ]
+ 5 − 6ϵ

12 n

= n

3 + n
3ϵ2(1 − 6ϵ)
(1 + 6ϵ)2

(3
2

)6
= n

3

[
1 + 38ϵ2(1 − 6ϵ)

26(1 + 6ϵ)2

]
;
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now, we observe that

1 + 38ϵ2(1 − 6ϵ)
26(1 + 6ϵ)2 − 1

1 − 6ϵ

<
−6ϵ

1 − 6ϵ
+ 38ϵ2

26(1 + 6ϵ)2

= −26 · 6ϵ(1 + 6ϵ)2 + 38ϵ2(1 − 6ϵ)
26(1 − 6ϵ)(1 + 6ϵ)2

= 3ϵ
(
−27 − 3 · 29ϵ − 32 · 29ϵ2 + 37ϵ − 2 · 38ϵ2)

26(1 − 6ϵ)(1 + 6ϵ)2

= 3ϵ
(
−27 + 3ϵ(36 − 29) − 2 · 32ϵ2(28 + 36)

)
26(1 − 6ϵ)(1 + 6ϵ)2 < 0

where in the last inequality we have used that −27 + 3ϵ(36 − 29) < 0 for ϵ ≤ 1
12 . Thus, f(q̄0) <

n
3(1−6ϵ) .

Second, we assume 0 ≤ i ≤ k − 3, with the condition that s >
(

3
2

)i
βn.

f(q̄i+1) ≤ 3
4

(1 − 6ϵ

n

)
n2
[1

9 + 4ϵ2

(1 + 6ϵ)2

(3
2

)4i+10
− 4ϵ

3(1 + 6ϵ)

(3
2

)2i+5 ]
− 1 − 6ϵ

2 n

[1
3 − 2ϵ

1 + 6ϵ

(3
2

)2i+5 ]
+ 5 − 6ϵ

12 n − 2ϵ

1 + 6ϵ

(3
2

)2i

n

= n

3 + n
3ϵ2(1 − 6ϵ)
(1 + 6ϵ)2

(3
2

)4i+10
− n

2ϵ

1 + 6ϵ

(3
2

)2i

= n

3

{
1 + 3ϵ

(1 + 6ϵ2)

(3
2

)2i [
3ϵ(1 − 6ϵ)

(3
2

)2(i+5)
− 2(1 + 6ϵ)

]}
;

for the evaluation of f(q̄i+1) we observe that β is a constant in (0, 1) and that

3ϵ(1 − 6ϵ)
(3

2

)2(i+5)
− 2(1 + 6ϵ) < 3ϵ

(
2
3

1
β

(3
2

)3
)2

− 2 <
35

27 − 2 < 0

because
(

3
2

)i+2
< 2

3β for i + 2 ≤ k; thus f(q̄i+1) ≤ n
3 .

Let now i = k − 2; thus s >
(

3
2

)k−2
βn. We now evaluate f(q̄k−1).

f(q̄k−1) ≤ 3
4

(1 − 6ϵ

n

)
n2
[

4
81 + ϵ2

9 + 4ϵ

27

]
− 1 − 6ϵ

2 n

[2
9 + ϵ

3

]
+ 5 − 6ϵ

12 n
2ϵ

1 + 6ϵ

(3
2

)2k−4
n

= −8(1 − 6ϵ) + 45 − 54ϵ

108 n − ϵ(1 − 6ϵ)
18 n − 2ϵ

1 + 6ϵ

(3
2

)2k−4
n

= 37 − 12ϵ + 36ϵ2

108 n − 2ϵ

1 + 6ϵ

(3
2

)2k−4
n

= n

3

[
1 + (1 − 6ϵ)2

36 − 6ϵ

1 + 6ϵ

(3
2

)2k−4
]

= n

3

[
1 +

(
1 − 6ϵ

6 −
√

6ϵ

1 + 6ϵ
· 3k−2

2k−2

)
·
(

1 − 6ϵ

6 +
√

6ϵ

1 + 6ϵ
· 3k−2

2k−2

)]
.
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Observe that, by definition of k, we have

1 − 6ϵ

6 −
√

6ϵ

1 + 6ϵ
· 3k−2

2k−2 ≤ 1 − 6ϵ

6 −
√

6ϵ

1 + 6ϵ
· 23

33β

= 1 − 6ϵ

6 −
√

3(1 − 6ϵ) · 22

33 = 9 − 54ϵ − 8
√

3(1 − 6ϵ)
54

<
9 − 8

√
3(1 − 6ϵ)
54 < 0

for ϵ ≤ 1
12 . Thus, f(q̄k−1) ≤ n

3 .

Let now i = k − 1, which implies that s >
(

3
2

)k−1
βn. We evaluate f(q̄k):

f(q̄k) ≤ 3
4

(1 − 6ϵ

n

)
n2
[ 1

144 + ϵ2 + ϵ

6

]
− 1 − 6ϵ

2 n

[ 1
12 + ϵ

]
+ 5 − 6ϵ

12 n − 2ϵ

1 + 6ϵ

(3
2

)2k−2
n

= −7(1 − 6ϵ) + 80 − 96ϵ

192 n − 3ϵ(1 − 6ϵ)
8 n − 2ϵ

1 + 6ϵ

(3
2

)2k−2
n

= n

3

[219 − 162ϵ − 216ϵ + 1296ϵ2

192 − 6ϵ

1 + 6ϵ

(3
2

)2k−2]
= n

3

[
1 + 27 − 378ϵ + 1296ϵ2

192 − 6ϵ

1 + 6ϵ

(3
2

)2k−2]
.

By definition of k, we have that

27 − 378ϵ + 1296ϵ2

192 − 6ϵ

1 + 6ϵ

(3
2

)2k−2
≤ 27 − 378ϵ + 1296ϵ2

192 − 1 − 6ϵ

2

(2
3

)3
< 0,

where the first and the second inequalities hold for ϵ ≤ 1
12 . Thus, f(q̄k) ≤ n

3 .
We finally evaluate f(q̄):

f (q̄) ≤ n

12

(
(1 + 3ϵ)2

(1 − 6ϵ)

)
− n(1 + 3ϵ)

6 + n(5 − 6ϵ)
12

= n

12

(
1 − 6ϵ + 9ϵ2

1 − 6ϵ
− 2 − 6ϵ + 5 − 6ϵ

)

= n

12(1 − 6ϵ)

(
1 − 6ϵ + 9ϵ2 − 2 + 6ϵ + 36ϵ2 + 5 − 36ϵ + 36ϵ2

)
= n

12

(
4 − 36ϵ + 81ϵ2

1 − 6ϵ

)
= n

12

(
(2 − 9ϵ)2

1 − 6ϵ

)
.

It holds that f(q̄) ≤ n
3(1−6ϵ) (remember that ϵ ≤ 1/12); in all cases, f is no more than n

3(1−6ϵ) ,
and, from an immediate application of the additive Chernoff bound (Lemma B.2) with λ = ϵn

1−6ϵ ,
and by observing that q̄i ≥ q̄i+1, we get that

q̄i ≤ qt ≤ q̌ϵ/2 = n(1 + 3ϵ)
3(1 − 6ϵ)

with probability 1 − exp
(
−2ϵ2n/(1 − 6ϵ)2).
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At the same time, the following lemma implies that the possible decrease of the bias cannot
move it from Si beyond Si−1.

Lemma 2.4.18. Let Mt−1 be a configuration such that s ≥ γ
√

n log n for some constant

γ > 0. If s >
(

3
2

)i
βn for some 0 ≤ i ≤ k, then st > inf(Si−1) with probability

1 − exp
(
−ε2(3/2)2iβ2n/2

)
.

Proof of Lemma 2.4.18. We have

E [st | Mt−1] ≥ s

(5
6 − ε

)
.

The Hoeffding bound (Lemma B.3) implies that st ≥ s
(

5
6 − 2ε

)
with probability 1 −

exp
(
−ε2(3/2)2iβ2n/2

)
. Observe that

s

(5
6 − 2ε

)
>

(3
2

)i

βn

(5
6 − 2ε

)
≥
(3

2

)i−1
βn = Si−1

since 3
2

(
5
6 − 2ε

)
≥ 1, which concludes the proof.

We still need to control the process when q > q̌ε/2. The next lemma addresses this issue
by showing that there is a decrease of the number of undecided nodes when they are more than
q̌ε = (n/3)/(1 − 6ε), and provides a lower bound on the decrease, depending on the bias.

Lemma 2.4.19. Let Mt−1 be a configuration such that q ≥ q̌ε. Then, it holds that
(1) qt ≤ q (1 − ε) with probability 1 − exp

(
−2ε2(n/3)/(1 − 6ε)2);

(2) if s ≤ sup(Si) for any −1 ≤ i ≤ k − 1, then qt ≥ q̄i+1 with probability
1 − exp

(
−ε2n/18

)
.

Proof of Lemma 2.4.19. Consider the first claim. We define f(q) = 3
4

(
1−6ϵ

n

)
q2 − 1−6ϵ

2 q+ 5−6ϵ
12 n.

We now show that f(q) ≤ q (1 − 2ϵ). Indeed, f(q) − q (1 − 2ϵ) is equal to

3
4

(1 − 6ϵ

n

)
q2 −

(1 − 6ϵ

2 + 1 − 2ϵ

)
q + 5 − 6ϵ

12 n

= 3
4

(1 − 6ϵ

n

)
q2 −

(3 − 10ϵ

2

)
q + 5 − 6ϵ

12 n.

This expression is a convex parabola which has its maximum in either q̄1 = n
3(1−6ϵ) or q̄2 = n. We

calculate f(q) − q (1 − 2ϵ) in these two points

3
4

(1 − 6ϵ

n

)
q2

1 −
(3 − 10ϵ

2

)
q1 + 5 − 6ϵ

12 n

= n2

12(1 − 6ϵ)
(
1 − 6 + 20ϵ + 5 − 36ϵ + 36ϵ2

)
= n2

12(1 − 6ϵ) [−4ϵ(4 − 9ϵ)] < 0
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for all 0 < ϵ ≤ 1
12 . At the same time it holds that

3
4

(1 − 6ϵ

n

)
q2

2 −
(3 − 10ϵ

2

)
q2 + 5 − 6ϵ

12 n

= n

12 [9 − 54ϵ − 18 + 60ϵ + 5 − 6ϵ]

= − −n

3 < 0.

Thus, E [qt | Mt−1] ≤ q(1 − 2ϵ). The additive form of Chernoff bound (Lemma B.2) with λ =
ϵn

3(1−6ϵ) implies that qt < q(1 − ϵ) with probability 1 − exp
(
−2ϵ2(n/3)/(1 − 6ϵ)2).

As for the second claim, we consider two cases. First, assume i < k − 1, thus s ≤
(

3
2

)i+1
βn.

From Eq. (2.6), we observe that

E [qt | Mt−1] ≥ 3
4

(1 − 6ϵ

n

)
n2

9(1 − 6ϵ)2 + 5 − 6ϵ

12 n −
(1 − 6ϵ

2

)
n

3(1 − 6ϵ) − 1 − 6ϵ

n

(
s

2

)2

≥ n

12

(
4 − 24ϵ + 36ϵ2

1 − 6ϵ

)
− 2nϵ

1 + 6ϵ

(3
2

)2i+2

≥ n

3(1 − 6ϵ) (1 − 3ϵ)2 − 2nϵ

1 + 6ϵ

(3
2

)2i+2

≥ n

3 − 2nϵ

1 + 6ϵ

(3
2

)2i+5
+ 19nϵ

4

(3
2

)2i+2

= q̄i+1 + 19nϵ

4

(3
2

)2i+2
.

We conclude applying the additive Chernoff bound with λ = 19ϵn
4

(
3
2

)2i+2
, obtaining qt ≥ q̄i+1

with probability 1 − exp
(
−192ϵ2(n/8)(3/2)4i+4).

Second, let i = k − 1; then s ≤ 2
3n. As before

E [qt | Mt−1] ≥ 3
4

(1 − 6ϵ

n

)
n2

9(1 − 6ϵ)2 + 5 − 6ϵ

12 n −
(1 − 6ϵ

2

)
n

3(1 − 6ϵ) − 1 − 6ϵ

n

(
s

2

)2

≥ n

12(1 − 6ϵ)
(
4 − 24ϵ + 36ϵ2

)
− n(1 − 6ϵ)

9 ≥ n (1 − 3ϵ)2

3(1 − 6ϵ) − n(1 − 6ϵ)
9

= n

9(1 − 6ϵ)
(
2 − 6ϵ − 9ϵ2

)
= n

12

(
4(2 − 6ϵ − 9ϵ2)

3(1 − 6ϵ)

)
≥ n

12(1 + 14ϵ) = q̄k + ϵn

6

since
4(2 − 6ϵ − 9ϵ2)

3(1 − 6ϵ) − (1 + 14ϵ) >
5 − 48ϵ

3(1 − 6ϵ) > 0

for ϵ ≤ 1
12 . Thus, we conclude applying the additive form of Chernoff bound with λ = ϵ

6n, obtai-
ning qt ≥ q̄k with probability 1 − exp

(
−ϵ2n/18

)
. Hence, the second claim holds with probability

at least 1 − exp
(
−ϵ2n/18

)
, which is less than 1 − exp

(
−192ϵ2(n/8)(3/2)4i+4).
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The next and last lemma guarantees that once the process reaches a configuration having bias
O(

√
n log n), then it “enters” a metastable phase that lasts Ω(nλ′) rounds w.h.p. in which the

absolute value of the bias remains O(
√

n log n), since it can be used symmetrically when the bias
is negative.

Lemma 2.4.20. Let Mt−1 be any configuration. If s ≤ γ
√

n log n for some constant γ > 0 and
q ≤ n

3

(
1+3ε
1−6ε

)
, then st ≤ 2γ

√
n log n with probability 1 − n−γ2/2.

Proof of Lemma 2.4.20. From Eq. (2.5), we have

E [st | Mt−1] ≤ γ
√

n log n

(5
6 − ε + 1

6 + ε

2

)
≤ γ

√
n log n.

We conclude applying the Hoeffding bound with λ = γ
√

log n/n, obtaining that st ≤ 2γ
√

n log n
with probability 1 − n−γ2/2.

2.4.5.3 Proof of Theorem 2.3.3

If p > 3/4, then there is an ε > 0 such that p > 3/4 + ε. Lemmas 2.4.12 and 2.4.13,
and Lemmas A.1 and A.2 imply that the process reaches a configuration y with bias |s(y)| ≤
(γ/2) ·

√
n log n within time Op,γ(log n) w.h.p., since ε can be chosen as (4p−1)/8. Furthermore,

the bias remains bounded by the same value for nΩp,γ(1) rounds, w.h.p.
Let us now assume 1/2 + 3ε = p ≤ 3/4 for any ε > 0. The proof is divided into different

cases. Let γ > 0 be any constant. We remark that ε depends only on p.
(1) s ∈ Si for some −1 ≤ i ≤ k − 1 and s ≥ (γ/2) ·

√
n log n,

(1.1) q̄i+1 ≤ q ≤ n(1+3ε)
3(1−6ε) : the bias decreases exponentially fast each round, w.h.p., until

|s| ≤ (γ/2) ·
√

n log n due to the combination of Lemmas A.1 and A.2, Lemma 2.4.12,
and Lemmas 2.4.15 to 2.4.18. This phase lasts Op,γ(log n) rounds;

(1.2) n(1+3ε)
3(1−6ε) < q: Lemmas A.1 and A.2, and Lemmas 2.4.16 and 2.4.19 imply that in

Op(log n) rounds the number of undecided nodes reaches the interval
[
q̄i+1, n

3(1−6ε)

]
where i is such that the round before the undecided nodes become less than n

3(1−6ε) ,
the bias is in Si: recall that during this whole process (which lasts Op(log n) rounds)
the bias never goes over 2

3n thanks to Lemma 2.4.14. At the same time, the value of
the bias will belong to one set between Si−1, . . . , Sk−1 due to Lemma 2.4.18. Since q̄i

is a decreasing sequence, we are in Case 1.1, and we conclude.
(1.3) q < q̄i+1: in this case, Lemma 2.4.16 implies qt ≥ q̄i+1 in the next round, w.h.p.

Since Lemma 2.4.14 guarantees that the bias remains under the value 2
3n w.h.p., either

we are in Case 1.1 or in Case 1.2, and we conclude.
(2) s > 2

3n: Lemma 2.4.14 implies that the bias gets less than or equal to 2
3n in Op(log n)

rounds, w.h.p.; then we are in Case 1 and we conclude.
Now, we can suppose the process starts from a configuration y having bias 0 ≤ s(y) ≤ (γ/2) ·√

n log n, and such that q̄0 ≤ q(y) ≤ n
3

(
1+3ε
1−6ε

)
, as Case 1.1 or 1.3 leaves it. In the next round, it

holds that the number of undecided nodes is q̄−1 ≤ qt ≤ n
3

(
1+3ε
1−6ε

)
, w.h.p., due to Lemma 2.4.17;

at the same time, w.h.p., |st| ≤ γ
√

n log n for Lemmas 2.4.12 and 2.4.20 (which can be used
symmetrically on A − B and B − A). Thus, the absolute value of the bias is either still less than
(γ/2) ·

√
n log n or has become greater than or equal to |st| ≥ (γ/2) ·

√
n log n, in which case it
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starts decreasing exponentially fast each round, w.h.p. for Lemma 2.4.15, until becoming smaller
than (γ/2) ·

√
n log n (as explained in Case 1.1, which works analogously if the bias is negative,

because of symmetry). This phase lasts nΩp,γ(1) rounds w.h.p. for Lemmas A.1 and A.2.

2.5 Best-of-N nest-site selection process in honeybees.

In both its non-noisy and noisy versions, the UNDECIDED-STATE dynamics can be seen as a
specific case of a best-of-N selection process in honeybees [Reina et al., 2017]. In this section, we
show how to derive it. We first describe an equation system that models the decision process of a
bee swarm to select a new nest among N possible ones (the options). This mathematical model has
been introduced in [Seeley et al., 2012] and also analyzed in [Reina et al., 2017] (see Eq.s (1) in
the latter work). In the next subsection, we show how to derive the UNDECIDED-STATE dynamics.

In detail, consider any population of bees. Let xi denote the proportion of bees agreeing on
(which are committed to) option i, and xu be the proportion of bees which are undecided (or
uncommitted). The dynamics is described by the following system{

dxi
dt = γixu − αixi + ρixuxi − xi

∑
1≤i≤N βjixj ;

xu = 1 −
∑

1≤i≤N xi.
(2.10)

We now provide an intuitive explanation of the equation system, and the description of the para-
meters. Uncommitted bees explore the environment and discover possible options. While encoun-
tering option i, the uncommitted bee estimates its quality νi and may commit to that option at a
rate γi, where γi ∝ νi (more frequent commitments to better quality nests). Committed bees may
spontaneously revert, through abandonment, to an uncommitted state at rate αi. The abandonment
rate is assumed to be inversely proportional to the option’s quality αi (∝ ν−1

i ). This abandonment
feature allows bees to quickly discard bad options, and endows the swarm with a degree of flexi-
bility since bees are not locked into their commitment state [Reina et al., 2017]. In addition to
these two spontaneous individual transitions, bees interact with each other to achieve agreement
in two forms: recruitment and cross-inhibition. The rate at which uncommitted bees are recruited
to option i depends on the number of bees committed to i and on the strength of the recruitment
process for i, that is ρi (∝ νi) . Thus, the recruitment process is a form of positive feedback. On
the other hand, cross-inhibition is a form of negative feedback: when a bee committed to option
i encounters another bee committed to another option j, (with j ̸= i), the first may deliver stop
signals to the second which reverts to an uncommitted state at a rate βji (∝ νi).

We discretize Eq. (2.10) by using the forward Euler method [Iserles, 2008] with dt = 1,
obtaining {

x
(t+1)
i = γix

(t)
u − (αi + 1)x(t)

i + ρix
(t)
u x

(t)
i − x

(t)
i

∑
1≤i≤N βjix

(t)
j ;

x
(t+1)
u = 1 −

∑
1≤i≤N x

(t+1)
i .

(2.11)

As we show in the next paragraph, a specific parameter choice yields exactly the mean-field beha-
vior of the UNDECIDED-STATE dynamics.
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Derivation of the UNDECIDED-STATE dynamics. Consider the equation system in Eq. (2.11),
and the following parameter choice 3 (for i, j = 1, ..., N )

ρi = 1 − p;

αi = p

N + 1;

γi = p

N + 1;

βi,i = 0;
βi,j = 1 − p; if i ̸= j,

which yields the following equations:

x
(t+1)
i = x

(t)
i + p

N + 1x(t)
u − p

N + 1x
(t)
i + (1 − p) x(t)

u x
(t)
i −

∑
1≤j≤N

j ̸=i

(1 − p) x
(t)
i x

(t)
j ; (2.12)

x(t+1)
u = 1 −

∑
1≤i≤N

x
(t+1)
i . (2.13)

We can now observe that Eqs. (2.12) and (2.13) are the mean-field equations of the UNDECIDED-
STATE process we consider in our work. Indeed, if yi represents the number of agents supporting
opinion i at some given configuration Mt, Yi is the r.v. yielding the number of agents supporting
opinion i at the next round (yu, Yu have analogous meaning for the undecided state), by substitu-
ting x

(t+1)
i = E [Yi | Mt], x

(t)
i = yi (the same for yu, Yu) we obtain the expected round-by-round

behavior of the UNDECIDED-STATE process. If N = 2, we get exactly Eqs. (2.3), (2.4) and (2.6).

Significance of the parameters. We assume that the two opinion/options (nest-sites) Alpha and
Beta have the same quality. The rate of the recruitment process for option i is, in our setting,
ρi = 1 − p, which implies that only noise is responsible for the non recruitment of uncommitted
bees by committed bees. Since all nests have the same qualities, we choose the rate at which a
bee committed to option i reverts to an uncommitted state when encountering a bee committed to
option j ̸= i to be Bj,i = 1 − p = ρi. The abandonment rate is the spontaneous reversion to an
uncommitted state from a committed state (say, committed to option i), and here it is assumed to
be governed only by noise at a rate αi = p/3. Such choices are reasonable in the setting described
in Section 2.5. The only difference lies in the choice of γi, the spontaneous commission rate to
option i for an uncommitted bee. Usually, such parameter is proportional to the nest quality. In
our setting, the nest quality plays no role in such a spontaneous phenomenon; instead, only noise
is responsible, which corresponds to the choice γi = αi = p/3. Even though, our setting is a
strong restriction of the more general framework described by Eq. (2.11) ( [Reina et al., 2017]),
we believe it effectively describes a realistic scenario in which there is a somewhat equivalence
between the option quality and the evolution of the system is dominated by another important
factor (i.e., noise). In particular, based on our analysis on the convergence time, this setting re-
presents a sort of worst-case scenario for the swarm system that, in general, requires a relatively
longer symmetry-breaking phase but still achieves an almost-agreement.

3. We remark that these parameter choice is not the common one indicated in [Reina et al., 2017].
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2.6 Analysis of the 3-MAJORITY dynamics

In this section we analyze the 3-MAJORITY dynamics: first, we give some preliminary results.
Afterwards, in Section 2.6.1 we prove Theorem 2.3.4, in Section 2.6.2 we prove Theorem 2.3.5,
while Section 2.6.3 is devoted to the proof Theorem 2.3.6.

Notice that in the 3-MAJORITY dynamics, a configuration of the system at time t is completely
determined by the value of the bias at time t, i.e., st = at − bt, since at = (n + st)/2 and
bt = (n − st)/2). Thus, in this section, we refer to the induced process by st instead of Mt.

We now give the expectation of the bias at time t, conditional on its value at time t − 1.

Lemma 2.6.1. Let {st}t≥0 be the process induced by the 3-MAJORITY dynamics with uniform
noise probability p ∈ (0, 1). The conditional expectation of the bias is

E [st | st−1 = s] = s(1 − p)
2

(
3 − s2

n2 (1 − p)2
)

. (2.14)

Proof. Let b = bt and a = at. Then s = b − a and n = a + b, which implies b = (n + s)/2 and
a = (n − s)/2. The probability that, when a node samples a neighbor, it receives opinion Beta is
b′ = (b/n) · (1 − p) + p/2, where (b/n) · (1 − p) is the probability to receive a non-noisy message
which contains opinion Beta, and p/2 is the contribution of the noise. Analogously, the probability
that it receives opinion Alpha is a′ = (a/n) · (1−p)+p/2. Then, the probability the node updates
its opinion to Beta is (b′)3 + 3a′(b′)2. So, for Eq. (2.1), we have that

E [st | st−1 = s] = 2n
(
(b′)3 + 3a′(b′)2

)
− n = s(1 − p)

2

(
3 − s2

n2 (1 − p)2
)

,

where the last equation follows from simple calculations.

By the lemma above, we deduce that there are up to three equilibrium configurations in expec-
tation. The first one corresponds to s = 0, and the other (possible) equilibrium correspond to the
condition

1 − p

2

(
3 − s2

n2 (1 − p)2
)

= 1

The latter condition results in

s = ± n

(1 − p) ·
√

3(1 − p) − 2
(1 − p) = ± n

(1 − p) ·
√

1 − 3p

1 − p
,

which is well defined if only if p ≤ 1/3. We will denote the absolute value of the latter two values
by seq.

2.6.1 3-MAJORITY dynamics: victory of the majority

The aim of this subsection is to prove Theorem 2.3.4: so, in each statement we assume that
{st}t≥0 is the process induced by the 3-MAJORITY dynamics with uniform noise probability
p < 1/3.

We first show a lemma which states that, for any small constant ε > 0, whenever st−1 ̸∈
[(1 − ε)seq, (1 + ε)seq], then st gets closer to the interval.
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Lemma 2.6.2. For any constant ε > 0 such that ε2 < (1 − 3p)/2 and for any γ > 0, if s ≥
γ

√
n log n, the following hold

(i) if s ≤ (1 − ε)seq, then Pr
[
st ≥ (1 + 3ε2/4)s | st−1 = s

]
≥ 1 − 1

nγ2ε4/32 ;
(ii) if, s ≥ (1 + ε)seq, then Pr

[
st ≤ (1 − 3ε2/4)s | st−1 = s

]
≥ 1 − 1

nγ2ε4/32 .

Proof. We first notice that

(1 − ε)seq ≤ n

1 − p

√
1 − 3p − 2ε2

1 − p
, (2.15)

which holds since ε2 ≤ (1 − 3p)/2 and can be proved with simple calculations.
For Lemma 2.6.1, if each s ≤ (1 − ε)seq, then

E [st | st−1 = s] = s(1 − p)
2

(
3 − s2

n2 (1 − p)2
)

≥ s

(
3 − 3p

2 − 1 − 3p − 2ε2

2

)
= s(1 + ε2).

where the inequality follows from (2.15). Since (2.2), for the Hoeffding bound (Lemma B.3), it
holds that

Pr
[
st ≤ s(1 + ε2) − sε2/4 | st−1 = s

]
≤ e−s2ε4/(32n) ≤ e−γ2ε4 log n/32 ≤ 1

nγ2ε4/32 .

The second inequality in the lemma follows by a symmetric argument, observing that

(1 + ε)seq ≥ n

1 − p

√
1 − 3p + 2ε2

1 − p
,

for ε such that ε2 < (1 − 3p)/2.

The following lemma serves to bound how far the bias can get from the interval [(1+ε)seq, (1−
ε)seq].
Lemma 2.6.3. For any constants ε > 0 and γ > 0, if s ≥ γ

√
n log n, the following hold

(i) if s ≤ (1 + ε)seq, then Pr
[
st ≥ (1 − ε − ε2)s | st−1 = s

]
≥ 1 − 1

nγ2ε2/16 ;

(ii) if s ≥ (1 − ε)seq with ε < 1, then Pr [st ≤ (1 + ε)s | st−1 = s] ≥ 1 − 1
nγ2ε2p2 .

Proof. The proof is similar to that of the previous lemma. From Lemma 2.6.1, we get that

E [st | st−1 = s] ≥ s

(
1 − ε − ε2

2

)
,

which follows since s ≤ (1+ε)seq by simple calculations. For the Hoeffding bound (Lemma B.3)
we get

Pr

[
st ≤ s

(
1 − ε − ε2

2

)
− ε2 · s

2

∣∣∣∣∣ st−1 = s

]
≤ e− γ2ε4

16 = 1

n
γ2ε2

16

.

The second claim comes symmetrically from Lemma 2.6.1 by observing that, since s ≥ (1−ε)seq

E [st | st−1 = s] ≤ s (1 + (1 − 3p)ε) .

The Hoeffding bound implies

Pr [st ≥ s (1 + ε) | st−1 = s] ≤ Pr [st ≥ s (1 + (1 − 3p)ε) + 2pε · s | st−1 = s] ≤ e−γ2ε2p2 = 1
nγ2ε2p2 .
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We provide another lemma to control the behavior of the bias. The proof consists in the appli-
cation of simple concentration bounds.

Lemma 2.6.4. For any constant k > 0, the following hold:

(i) if s ≥ seq, then Pr [st ≥ 2seq/3 | st−1 = s] ≥ 1 − 1/nk.

(ii) if 0 ≤ s ≤ 2seq/3, then Pr [st ≤ seq | st−1 = s] ≥ 1 − 1/nk.

Proof. Let k be any arbitrarily large constant. As for (i), Lemma 2.6.1 gives that

E [st | st−1 = s] ≥ s(1 − p) ≥ seq(1 − p),

since seq ≤ s ≤ n. Then, let δ = (1 − 3p)/3 > 0. By using the Hoeffding bound, it holds that

Pr
[
st ≤ seq(1 − p) − δ · seq

∣∣ st−1 = s
]

≤ e−
δ2s2

eq
4 ≤ 1

nk
,

where the latter inequality holds since seq = Θ (n) and seq > (2k/δ) log n for a sufficiently large
n. As for (ii), Lemma 2.6.1 implies that

E [st | st−1 = s] ≤ 3s(1 − p)
2 ≤ seq(1 − p),

which is true since 0 ≤ s ≤ 2seq/3. The Hoeffding bound then gives

Pr
[
st ≥ seq(1 − p) + pseq

∣∣ st−1 = s
]

≤ e−
p2s2

eq
4 ≤ 1

nk
,

where the latter inequality holds since seq = Θ (n) and so seq > (2k/p) log n for a sufficiently
large n.

We can piece together the above lemmas, which imply the following corollary.

Corollary 2.6.5. For any constant ε > 0 such that ε < 1/3 and ε2 < (1 − 3p)/2, the following
hold:

(i) if |seq − s| ≤ (ε/4)seq, then

Pr [|seq − st| ≤ εseq | st−1 = s] ≥ 1 − 1
nγ2ε2p2/25 ;

(ii) if (ε/4)seq ≤ |seq − s| ≤ seq/3, then

Pr

[
|seq − st| ≤ |seq − s| ·

(
1 − 3ε2

25

) ∣∣∣∣∣ st−1 = s

]
≥ 1 − 1

nγ2ε4p2/(21832) .

Proof. First, we prove (i). From Lemma 2.6.3 and the union bound, we have that

Pr

[(
1 − ε

4 − ε2

16

)
·
(

1 − ε

4

)
seq ≤ st ≤

(
1 + ε

4

)
·
(

1 + ε

4

)
seq

∣∣∣∣∣ st−1 = s

]
≥ 1− 1

nγ2ε2p2/25 .
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The claim follows by osberving that[(
1 − ε

4 − ε2

16

)
·
(

1 − ε

4

)
seq,

(
1 + ε

4

)
·
(

1 + ε

4

)
seq

]
⊆
[
(1 − ε)seq, (1 + ε)seq

]
.

As for claim (ii), we divide the proof in two different cases. Suppose, first, that 2seq/3 ≤ s ≤
(1−ε/4)seq. A constant ε/4 ≤ δ ≤ 1/3 exists such that s = (1−δ)seq. Then, from Lemmas 2.6.2
and 2.6.3

Pr

[
(1 − δ)

(
1 + 3ε2

26

)
seq ≤ st ≤ seq

∣∣∣∣∣ st−1 = s

]
≥ 1 − 1

nγ2ε4p2/214 .

Notice that ∣∣∣∣∣seq − (1 − δ)
(

1 + 3ε2

26

)
seq

∣∣∣∣∣ = seq − (1 − δ)
(

1 + 3ε2

26

)
seq

=
(
seq − (1 − δ)seq

)
·
[
1 −

(1 − δ) · 3ε2

26 · seq

δ · seq

]
≤ (seq − s) ·

[
1 − 3ε2

25

]
,

where in the last inequality we used that δ < 1/3. Hence,

Pr

[∣∣seq − st

∣∣ ≤
∣∣seq − s

∣∣ · [1 − 3ε2

25

] ∣∣∣∣∣ st−1 = s

]
≥ 1 − 1

nγ2p2ε4/214 . (2.16)

Second, suppose (1 + ε/4)seq ≤ s ≤ 3seq/2. Again, a constant ε/4 ≤ δ ≤ 1/3 exists such that
s = (1 + δ)seq. From Lemmas 2.6.2 and 2.6.3, it holds that

Pr

[
(1 + δ)

(
1 − δ − δ2

)
seq ≤ st ≤ (1 + δ)

(
1 − 3ε2

26

)
seq

∣∣∣∣∣ st−1 = s

]
≥ 1 − 1

nγ2ε4p2/(21832) ,

for the union bound, since δ ≤ 1/3. Notice that∣∣∣seq − (1 + δ)
(
1 − δ − δ2

)
seq

∣∣∣ = seq − (1 + δ)
(
1 − δ − δ2

)
seq

=
(
(1 + δ)seq − seq

)
·
[

(1 + δ)(δ + δ2)seq

δseq
− 1

]
≤
(
(1 + δ)seq − seq

)
·
[16

9 − 1
]

=
(
(1 + δ)seq − seq

)
·
[
1 − 2

9

]
,

where the inequality holds since δ ≤ 1/3. By simple calculations, it can be seen that (1 +
δ)
(
1 − 3ε2

26

)
≥ 1. Then, we have also that∣∣∣∣∣seq − (1 + δ)

(
1 − 3ε2

26

)
seq

∣∣∣∣∣ = (1 + δ)
(

1 − 3ε2

26

)
seq − seq

=
(
(1 + δ)seq − seq

)
·
[
1 −

(1 + δ) · 3ε2

26 seq

δseq

]
(a)
≤
(
(1 + δ)seq − seq

)
·
[
1 − 3

(
1 + ε

4

)
· 3ε2

26

]
(b)
≤
(
(1 + δ)seq − seq

)
·
[
1 − 9ε2

26

]
,
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where (a) holds since ε/4 ≤ δ ≤ 1/3, and (b) holds since ε > 0. Thus,

Pr

[∣∣seq − st

∣∣ ≤
∣∣seq − s

∣∣ · [1 − 9ε2

26

] ∣∣∣∣∣ st−1 = s

]
≥ 1 − 1

nγ2ε4p2/(21832) . (2.17)

Combining Eqs. (2.16) and (2.17), we get that, whenever (ε/4)seq ≤
∣∣seq − s

∣∣ ≤ seq/3, then

Pr

[∣∣seq − st

∣∣ ≤
∣∣seq − s

∣∣ · [1 − 3ε2

25

] ∣∣∣∣∣ st−1 = s

]
≥ 1 − 1

nγ2ε4p2/(21832) .

We are finally ready to prove the theorem.

Proof of Theorem 2.3.4. We divide the proof in different cases. First, suppose that (ε/4)seq ≤∣∣seq − s
∣∣ ≤ εseq. Let T1 = nγ2ε4p2/(21932). Then, from Corollary 2.6.5.(i) and (ii), for the chain

rule, we have that

Pr

[
T⋂

k=1

{∣∣seq − st+k

∣∣ ≤ εseq
} ∣∣∣∣∣ st = s

]
≥ 1 − 1

nγ2ε4p2/(22032) .

Second, suppose that εseq ≤
∣∣seq − s

∣∣ ≤ seq/3. Then, from Corollary 2.6.5.(ii), for the chain
rule, a time T2 exists, with

T2 = O

− log n

log
(
1 − 3ε2

25

)
 = O

(
log n/ε2

)

such that
Pr
[∣∣seq − st+T2

∣∣ ≤ εseq
∣∣ st = s

]
≥ 1 − 1

nγ2ε4p2/(22032) .

Third, suppose that s ≤ 2seq/3. From Lemma 2.6.2.(i) and Lemma 2.6.4.(ii), for the chain
rule and the union bound, there is a time

T3 = O

 log n

log
(
1 + 3ε2

4

)
 = O

(
log n/ε2

)

such that
Pr
[
2seq/3 ≤ st+T3 ≤ seq

∣∣ st = s
]

≥ 1 − 1
nγ2ε4/26 .

Then, we are in one of the first two cases, and we conclude for the chain rule.
Fourth, suppose that s ≥ (1+ 1

3)seq. From Lemma 2.6.2.(ii) and Lemma 2.6.4.(i), for the chain
rule, a time T4 exists, with T4 = O (log n), such that

Pr
[∣∣seq − sT4

∣∣ ≤ seq/3
∣∣ st = s

]
≥ 1 − 1

nγ234/26 .

The theorem follows with τ1 = O (T2 + T3 + T4)
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2.6.2 3-MAJORITY dynamics: symmetry-breaking

The aim of this section is to prove Theorem 2.3.5: so, in each statement we assume that {st}t≥0
is the process induced by the 3-MAJORITY dynamics with uniform noise probability p < 1/3. The
symmetry breaking analysis relies on the same lemma we exploited for the UNDECIDED-STATE

dynamics, Lemma 2.4.6 in Section 2.4.4, and the proof follows the same outline.
Again, the goal is to apply the above lemma to the 3-MAJORITY process, which defines a

Markov chain. In particular, we claim the hypothesis of Lemma 2.4.6 are satisfied when the bias of
the system is o

(√
n log n

)
, with f(Mt) = s(Mt), m = γ

√
n log n for any constant γ > 0. Then,

Lemma 2.4.6 implies the process reaches a configuration with bias greater than Ω
(√

n log n
)

within time O (log n), w.h.p. We need to prove that the two hypotheses hold.

Lemma 2.6.6. For any constant c3 > 0, let s be a value such that |s| < c3
√

n log n. Then,
(i) for any positive constant h > 0, there exists a positive constant c1 < 1 (which depends only

on h), such that
Pr
[
st < h

√
n
∣∣ st−1 = s

]
< c1;

(ii) two positive constants δ, c2 exist (depending only on p), such that if |s| ≥ h
√

n, then

Pr [st < (1 + δ)s | st−1 = s] < e− c2s2
n .

Proof. As for the first claim, a simple domination argument implies that

Pr
[
|st| < h

√
n
∣∣ st−1 = s

]
≤ Pr

[
|st| < h

√
n
∣∣ st−1 = 0

]
. (2.18)

Thus, we can bound just the second probability, where the initial bias is zero. As shown in ??, st

is a sum of n i.i.d. Rademacher r.v.s with zero mean and unitary variance. We can hence make use
of the Lemma B.6 (Berry-Esseen inequality). In particular, let Φ(x) be the cumulative function of
a standard normal distribution. A constant C > 0 exists such that∣∣Pr

[
st ≤ h

√
n
∣∣ st−1 = 0

]
− Φ(h)

∣∣ ≤ C√
n

.

Since Φ(h) = c for some constant c > 0 which depends only on h, we have that

c − C√
n

≤ Pr
[
st ≤ h

√
n
∣∣ st−1 = 0

]
≤ c + C√

n
.

Since Pr [|st| < h
√

n | st−1 = 0] ≤ Pr [st ≤ h
√

n | st−1 = 0], for n large enough we get

Pr
[
|st| < h

√
n
∣∣ st−1 = 0

]
< 2c.

By setting c1 = c/2 and from Eq. (2.18) we get claim (i).
As for the second claim, assume s > 0 and h

√
n ≤ s ≤ h

√
n log n. By Lemma 2.6.1 and the

fact that h
√

n ≤ s ≤ h
√

n log n ≤ (1 −
√

ε)seq, we have (as in Lemma 2.6.2)

E [st | st−1 = s] = s(1 − 2p)
2

(
3 − s2

n2 (1 − 2p)2
)

≥ s

(3
2 − 3p − 1 − 6p − 2ε

2

)
= s(1 + ε).

From the Hoeffding bound (Lemma B.3), we get that

Pr [st ≤ s (1 + ε) − sε/4 | st−1 = s] ≤ e−s2ε2/(32n).

Observe that Pr [|st| ≤ s (1 + 3ε/4) | st−1 = s] ≤ Pr [st ≤ s (1 + 3ε/4) | st−1 = s]. Thus, we
have the claim by setting δ = 3ε/4 and c2 = ε2/32.
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The symmetry breaking is then a simple consequence of the above Lemma.

Proof of Theorem 2.3.5. Apply Lemmas 2.6.6 and 2.4.6 with h = c3 = γ.

2.6.3 3-MAJORITY dynamics: victory of noise

In this subsection, we prove Theorem 2.3.6: so, in each statement, we assume that {st}t≥0 is
the process induced by the 3-MAJORITY dynamics with uniform noise probability p > 1/3.

We make use of tools from drift analysis (Lemma D.1) to the absolute value of the bias of
the process, showing that it reaches magnitude O (

√
n) quickly. Then, since the standard de-

viation of the bias is Θ (
√

n), we have constant probability that the majority opinion switches
Lemma 2.6.9. Finally, with Lemma 2.6.10, we show that the bias keeps bounded in absolute value
by O

(√
n log n

)
.

Lemma 2.6.7. For any constant ε > 0 such that ε < (1 − p), if s ≥ 2
√

n/
(
ε2), the following

holds
E [|st| | st−1 = s] ≤ E [st | st−1 = s] ·

(
1 + ε

2

)
.

Proof. Trivially, it holds that

|st| ≤ |st − E [st | st−1 = s]| + |E [st | st−1 = s]| .

Furthermore, from Lemma 2.6.1, we have that E [st | st−1 = s] ≥ 0 as long as s ≥ 0. By writing

|st − E [st | st−1 = s]| =
√

(st − E [st | st−1 = s])2,

and by using the Jensen’s inequality for a concave function (i.e., the square root), it follows that

E [|st| | st−1 = s] ≤
√
E
[
(st − E [st | st−1 = s])2

∣∣∣ st−1 = s
]

+ E [st | st−1 = s]

= σ (|st| | st−1 = s) + E [st | st−1 = s] , (2.19)

where σ(x) represents the standard deviation of a r.v. x. As pointed out in the preliminaries (??),
the bias can be written as the sum of i.i.d. random variables Y

(t)
i taking values in {−1, +1}. For

such sum of variables, the variance is linear:

σ (|st| | st−1 = s)2 =
n∑

i=1
σ
(
Y

(t)
i

∣∣∣ st−1 = s
)2

≤ n ,

where the latter inequality holds since σ
(
Y

(t)
i

∣∣∣ st−1 = s
)2

≤ 1 for every i. Furthermore, from
Lemma 2.6.1, we deduce that

E [st | st−1 = s] ≥ s(1 − p)(3 − (1 − p)2)
2 ≥ s(1 − p).

Since s ≥ 2
√

n
ε2 ≥ 2

√
n

ε(1−p) , we get that E [st | st−1 = s] ≥ 2
√

n
ε . By using the latter facts in

Eq. (2.19), we obtain

E [|st| | st−1] ≤ E [st | st−1 = s] ·
(

1 + σ (|st| | st−1 = s)
E [st | st−1 = s]

)
≤ E [st | st−1 = s] ·

1 +
√

n
2
√

n
ε


≤ E [st | st−1 = s] ·

(
1 + ε

2

)
.
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With next lemma, we show that the absolute value of the process quickly becomes of magni-
tude O (

√
n).

Lemma 2.6.8. For any constant ε > 0 such that ε < min{(1 − p), (3p − 1)/2} we define
smin =

√
n/ε2. Then, for any starting configuration s0 such that s0 ≥ smin, with probability at

least 1 − 1/n there exists a time τ = Oε(log n) such that |sτ | ≤ smin.

Proof. Let h(x) = ε·x
2 be a function. Let Xt = |st| if st ≥ smin, otherwise Xt = 0. We now

estimate E [Xt − Xt−1 | Xt−1 ≥ smin, Ft−1], where Ft is the natural filtration of the process Xt.
We have that

E [Xt − Xt−1 | Xt−1 ≥ smin, Ft−1] = E [Xt | Xt−1 ≥ smin, Ft−1] − Xt−1
(a)
≤ E [|st| | st−1 ≥ smin, Ft−1] − st−1

(b)
≤ E [st | st−1 ≥ smin, Ft−1] ·

(
1 + ε

2

)
− st−1

(c)
≤ st−1(1 − ε)

(
1 + ε

2

)
− st−1 ≤ −ε · st−1

2 ,

where (a) holds because Xt ≤ |st|, (b) holds for Lemma 2.6.7, and (c) holds for Lemma 2.6.1.
Thus,

E [Xt−1 − Xt | Xt−1 ≥ smin, Ft−1] ≥ h (Xt−1) .

Since h′(x) = ε/2 > 0, we can apply Lemma D.1.(iii) (B), which is a drift analysis result for
super-martingale-like processes. Let τ be the first time Xt = 0 or, equivalently, |st| < smin. Then

Pr [τ > t | s0] < exp
[
−ε

2 ·
(

t − 2
ε

−
∫ s0

smin

2
ε · y

dy

)]
≤ exp

[
−ε

2 ·
(

t − 2
ε

−
∫ n

smin

2
ε · y

dy

)]
= exp

[
−ε

2 ·
(

t − 2
ε

− 2
ε

(log n − log smin)
)]

= exp
[
−ε

2 ·
(

t − 2
ε

− 2
ε

((log n)/2 + 2 log ε)
)]

≤ exp
[
−ε · t

2 + 1 + log n

2

]
.

If t = 4(log n)/ε, then we get that Pr [τ > t | s0] < e−3(log n)/2+1 < 1/n.

Next lemma states that, whenever the absolute value of the bias is of order of O (
√

n), then
the majority opinion switches at the next round with constant probability.

Lemma 2.6.9. For any constant ε > 0 such that ε < 1/4, and let st−1 be a configuration such
that |st−1| = s ≤

√
n/ε. Then, the majority opinion switches at the next round with constant

probability.

Proof. Wlog we assume st−1 > 0. Now, st−1 = bt−1 −at−1, with n/2 < bt−1 ≤ n/2+
√

n/(2ε)
and n/2 −

√
n/(2ε) ≤ at−1 < n/2. Both bt−1 and at−1 can be expressed as the sum of i.i.d.

Bernoulli r.v.s. Since E [at | n/2 −
√

n/(2ε) ≤ at−1 < n/2] ≤ n/2, we have

Pr

[
at ≥ n

2 +
√

n

2ε

∣∣∣∣∣ st−1 = s

]
= Pr

[
at ≥ n

2 ·
(

1 + 1
ε
√

n

) ∣∣∣∣ st−1 = s

]
≥ e− 9

2ε2 ,
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where the latter inequality holds for the reverse Chernoff bound (Lemma C.1), whose hypothesis
is satisfied since ε < 1/4. Thus, there is at least constant probability that the majority opinion
switches.

Next lemma shows that the signed bias decreases each round.

Lemma 2.6.10. For any constant ε > 0 such that ε ≤ (3p − 1)/2, the following hold

(i) if s ≥ γ
2
√

n log n, then Pr [st ≤ (1 − 3ε/4)s | st−1 = s] ≥ 1 − 1
nγ2ε2/27 ;

(ii) if s ≥ 0, then Pr
[
−γ

2
√

n log n ≤ st ≤ s + γ
2
√

n log n | st−1 = s
]

≥ 1 − 2
nγ2/8 .

Proof. From Lemma 2.6.1, for each s ≥ 0 it holds that

E [st | st−1 = s] ≤ 3s(1 − p)
2 ≤ (1 − ε)s, (2.20)

where the second inequality is true since ε ≤ (3p − 1)/2. We now apply the Hoeffding bound
(Lemma B.3) to st:

Pr [st ≥ (1 − ε)s + ε · s/4] ≤ e−s2ε2/(32n) ≤ e−γ2ε2 log n/27 ≤ 1

n
γ2ε2

27

.

As for the second claim, we notice that, from Eq. (2.20), E [st | st−1 = s] ≤ s. The Hoeffding
bound (Lemma B.3) now implies that

Pr
[
st ≥ s + γ

2
√

n log n

]
≤ e−γ2 log n/8 ≤ 1

nγ2/8 .

Moreover, from Lemma 2.6.1, for any 0 ≤ s ≤ n, E [st | st−1 = s] ≥ 0. Applying again the
Hoeffding bound, we get that

Pr
[
st ≥ −γ

2
√

n log n | st−1 = s

]
≤ e−γ2 log n/8 ≤ 1

nγ2/8 ,

For the union bound, we get the second claim.

We are ready to prove Theorem 2.3.6.

Proof of Theorem 2.3.6. Claim (i) follows directly from Lemmas 2.6.8 and 2.6.9. As for claim (ii),
whenever the bias at some round t = τ+k becomes |st| ≥ (γ/2)

√
n log n, from Lemma 2.6.10.(ii)

(and its symmetric statement), we have that |st| ≤ γ
√

n log n with probability 1 − 2/n
γ2
8 . Then,

from Lemma 2.6.10.(i) it follows that the bias starts decreasing each round with probability 1 −
1/nγ2ε2/27

until reaching (γ/2)
√

log n. This phase in which the absolute value of the bias keeps
bounded by

∣∣γ√
n log n

∣∣ lasts for at least nγ2ε2/28
with probability at least 1 − 1/(2nγ2ε2/28) for

the chain rule.

2.7 Experiments

In this section, we describe the experiments we conducted on the two dynamics to show, in
practice, the behavior of the bias for different input sizes and noise parameters. We also tested our
results on different topologies.
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A B

C D
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Figure 2.2 – (A) Clique, victory of majority: average convergence time to almost consensus for
a clique with noise parameter p = 1/4. (B) Clique, victory of noise: average convergence time
to a symmetric configuration for a clique with noise parameter p = 3/5. (C) Erdös-Rényi graph,
victory of majority: same as in (A) but for an Erdös-Rényi graph. (D) Erdös-Rényi graph, victory
of noise: same as in (B) but for an Erdös-Rényi graph. (E) Clique, bias behavior: evolution of
the bias for different values of the noise parameter p ∈ {1/4, 3/8, 3/7, 1/2, 3/5} in the clique of
size 214. (F ) Erdös-Rényi graph, bias behavior: same as in (E) but for an Erdös-Rényi graph of
size 214. In (A), (B), (C), and (D) the x-axis shows the size of the graph in logarithmic scale and
the y-axis the average time of convergence over 1000 trials. In (E) and (F ), the x-axis shows the
time instant of the process, while the y-axis indicates the ratio of the bias, i.e., |st|/n for a given
configuration Mt. The dotted lines represent the expected equilibrium values for the clique. In all
figures, the starting configuration is symmetric and random for p < 1/2, and the monochromatic
one for p ≥ 1/2.
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2.7.1 UNDECIDED-STATE dynamics: simulations

We simulated the UNDECIDED-STATE dynamics with values of the input size in the range
n ∈ {210, 211, . . . , 214}, and for noise probabilities in the range p ∈ {1/4, 3/8, 3/7, 1/2, 3/5}.
Besides confirming the phase transition predicted by our theoretical analysis, the outcomes show
this behavior emerges even for reasonable sizes of the system. Fig. 2.2.(A) shows a convergence
time to almost-consensus 4 in the complete graph (equivalently, clique) for p = 1/4 which is
perfectly approximated by a logarithmic function. The convergence time has been calculated as
the average over 1000 trials. In Fig. 2.2.(B), the same process is shown for a “victory of noise”
case, i.e., for p = 3/5. The behavior of the bias for the different values of p over the clique with
214 nodes is shown in Fig. 2.2.(E). Our intuition suggests that our results carry on for sparser
topologies that exhibit good expansion properties. To establish experimentally this, we ran the
same simulations on the Erdös-Rényi graph model of size n, with edge probability log2(n)/n: it
is well-known that this setting generate, w.h.p., a connected graph with logarithmic node degree.
We briefly recall what an undirected Erdös-Rényi graph is.

Definition 2.7.1 (Undirected Erdös-Rényi graph). Let n ∈ N and p ∈ (0, 1). An undirected graph
G = (V, E) is constructed according to the Erdös-Rényi model if |V | = n and for any x, y ∈ V ,
{x, y} ∈ E with probability p. Such a graph is denoted by Gn,p.

When p ∼ log2(n)/n, each node has logarithmic degree w.h.p. The results in Fig. 2.2.(C)
and Fig. 2.2.(D) seem to show that even such a topology yields logarithmic convergence time;
moreover, Fig. 2.2.(F ) suggests that the phase-transition threshold either is very close or coincides
with the same value p = 1/2.

2.7.2 3-MAJORITY dynamics: simulations

We simulated the 3-MAJORITY dynamics with values of the input size in the range n ∈
{210, 211, . . . , 214}, and for noise probabilities in the range p ∈ {1/6, 1/5, 1/4, 1/3, 1/2} as we
did for the UNDECIDED-STATE dynamics in Section 2.7.1, The same observations of Section 2.7.1
carry on, as one can observe in Fig. 2.3.

2.8 Discussion and future work

While our mathematical analysis for the UNDECIDED-STATE and the 3-MAJORITY dyna-
mics does not directly apply to other opinion dynamics (even if for some of them, such as the
2-CHOICHES, we believe it does), it might suggest the emergence of a general phase-transition
phenomenon for a large class of dynamics characterized by an exponential drift towards consen-
sus configurations. Our works thus naturally pose the general question of whether it is possible
to provide a characterization of opinion dynamics with stochastic interactions, in terms of their
critical behavior with respect to uniform communication noise.

As for the specific mathematical questions that follow from our results, our assumption of a
complete topology as underlying graph is, for several real MAS, a rather strong condition. Ho-
wever, two remarks on this issue follow. On one hand, we observe that, according to the adopted
communication model, at every round, every agent can pull information from a constant number of

4. Both for the UNDECIDED-STATE dynamics and the 3-MAJORITY dynamics, we consider as convergence time
the first time the bias of the system reaches its expected equilibrium value.
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A B

C D

FE

Figure 2.3 – (A) Clique, victory of majority: average convergence time to almost consensus for
a clique with noise parameter p = 1/6. (B) Clique, victory of noise: average convergence time
to a symmetric configuration for a clique with noise parameter p = 1/2. (C) Erdös-Rényi graph,
victory of majority: same as in (A) but for an Erdös-Rényi graph. (D) Erdös-Rényi graph, victory
of noise: same as in (B) but for an Erdös-Rényi graph. (E) Clique, bias behavior: evolution of
the bias for different values of the noise parameter p ∈ {1/6, 1/5, 1/4, 1/3, 1/2} in the clique of
size 214. (F ) Erdös-Rényi graph, bias behavior: same as in (E) but for an Erdös-Rényi graph of
size 214. In (A), (B), (C), and (D) the x-axis shows the size of the graph in logarithmic scale and
the y-axis the average time of convergence over 1000 trials. In (E) and (F ), the x-axis shows the
time instant of the process, while the y-axis indicates the ratio of the bias, i.e., |st|/n for a given
configuration Mt. The dotted lines represent the expected equilibrium values for the clique. In all
figures, the starting configuration is symmetric and random for p < 1/3, and the monochromatic
one for p ≥ 1/3.
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other agents: the dynamic communication pattern is thus random and sparse. This setting may mo-
del opportunistic MAS where mobile agents use to meet randomly, at a relatively-high rate. On the
other hand, we believe that a similar transition phase does hold even for sparse topologies having
good expansion/conductance [Hoory et al., 2006]. Our conjecture is supported by the set of ex-
perimental tests we performed on the classic Erdös-Rénji model: the results confirm the presence
of a threshold behavior of the UNDECIDED-STATE and the 3-MAJORITY dynamics equivalent to
those we proved for the complete graph. We instead believe that the behavior of the dynamics over
non-expanding graphs cannot be directly exploited to get fast and reliable almost-consensus since
it strongly depends on the specific “geometric” shape of the initial configuration: hence, this study
requires to introduce further, more refined parameters. Furthermore, it would be interesting to in-
vestigate and characterize the same model in presence of many opinions. The phase-transitions
we have shown hint at phenomena that are independent from the number of opinions: in the
UNDECIDED-STATE dynamics, the threshold p = 1/2 corresponds to the setting where half of
the round-by-round communication are non-noisy, on average; as for the 3-MAJORITY dynamics,
the threshold p = 1/3 represents the case where exactly 2 out of 3 communications for each node
at each round are non-noisy, on average.

The UNDECIDED-STATE dynamics turns out to have a higher noise threshold than the 3-
MAJORITY dynamics: the feature of the UNDECIDED-STATE dynamics of changing opinion in at
least two rounds (first become undecided, then copy) may result in a higher resilience to uniform
communication disturbances, while in the 3-MAJORITY dynamics nodes change opinion more
easily and are, thus, more affected by noise.

Finally, the properties we show for the UNDECIDED-STATE and the 3-MAJORITY dynamics
in the case of the complete graphs might also result useful to perform another fundamental task
in MAS (which is not the subject of our work): that of distributed community detection [Cruciani
et al., 2019, Becchetti et al., 2020b]. Informally, if the MAS has a hidden community structure,
the evolution of the processes might have a long metastable phase where the opinion/state of each
agent is consistent with the hidden community it belongs to.
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3.1 Introduction

In this chapter we study the parallel hitting time of Lévy walks in the infinite two-dimensional
lattice and we employ the obtained bounds to design an almost-optimal search algorithm for the
Ants Nearby Treasure Search (ANTS) problem. Informally, a Lévy walk is just a random walk
whose step-length density distribution is proportional to a power-law, that is, f(d) ∼ 1

dα for
any α > 1, which moves at constant speed. In the ANTS problem, one is given k agents in Z2

initially placed at the origin, and a special node, the target, placed by an adversary at Manhattan
distance ℓ from the origin; the agents move independently and in parallel, crossing at most one
edge each round. The task is to design a search algorithm which finds the target as fast as possible.
In [Feinerman and Korman, 2017], a simple lower bound for the problem is shown: in particular,
any search algorithm that is oblivious to ℓ requires time Ω

(
ℓ2/k + ℓ

)
both in expectation and with

constant probability.

Roadmap. This chapter is organized as follows. In Section 3.2, we give some basic definitions
and facts, and investigate a monotonicity property that plays a key role in our analysis. In Sec-
tion 3.3, we provide the analysis of the regime α ∈ (2, 3] while in Sections 3.4 and 3.5, we
investigate the regimes α ∈ (1, 2] and α ∈ (3, ∞), respectively. Finally, in Section 3.6, we use
the results from Section 3.3 to analyze the efficiency of our simple distributed search algorithm.
We conclude with a discussion on the consequence of our result and future research directions in
Section 3.7.

3.2 Preliminaries

3.2.1 Main definitions and properties

For each point s = (x, y) ∈ R2, we write ∥s∥p to denote its p-norm (|x|p + |y|p)1/p. The p-
norm distance between points s = (x, y) and s′ = (x′, y′) is ∥s−s′∥p = (|x−x′|p + |y −y′|p)1/p.
We consider the infinite grid graph G = (Z2, E), where E = {{u, v} : ∥u − v∥1 = 1}. The
shortest-path distance between two nodes u, v ∈ Z2 in G equals ∥u − v∥1. In the following, we
will say just distance to refer to the shortest-path distance. We denote by Rd(u) the set of all nodes
v ∈ Z2 that are at distance exactly d from u, i.e., Rd(u) = {v ∈ Z2 : ∥u − v∥1 = d}. We also
define Bd(u) = {v ∈ Z2 : ∥u − v∥1 ≤ d} and Qd(u) = {v ∈ Z2 : ∥u − v∥∞ ≤ d}. See Fig. 3.1
for an illustration.

By uv we denote the straight-line segment on the real plane R2 between nodes u and v. A
direct-path between u and v in G is a shortest path that “closely follows” the real segment uv. See
Fig. 3.2 for an illustration.

Definition 3.2.1 (Direct-path). A direct-path from node u to v is a shortest path u, u1, . . . , uk = v,
where k = ∥u−v∥1, and for each 1 ≤ i < k, ui ∈ Ri(u) and ∥ui−wi∥2 = minv′∈Ri(u) ∥v′−wi∥2,
where wi is the (unique) point w in the real segment uv with ∥u − w∥1 = i.

It is not hard to verify that u, u1, . . . , uk is indeed a path of G. Also, unlike point wi, node ui

is not necessarily unique, since there may be two different nodes in Ri(u) that are closest to wi.
We prove the next simple fact about direct-paths.
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Figure 3.1 – Illustrations of Rd(u), Bd(u), and Qd(u), for d = 4.

u u1

u2
u3

u4

u5

u6

u7

u8 u9 = v

Figure 3.2 – Example of a line segment uv and the direct-path between u and v.

Lemma 3.2.1. Let u ∈ Z2 and d ≥ 1 be an integer. Suppose we sample a node v uniformly at
random from set Rd(u), and then sample a direct-path u, u1, . . . , ud = v from u to v uniformly at
random among all such paths. Then, for every 1 ≤ i < d and w ∈ Ri(u),

(i/d) · ⌊d/i⌋
4i

≤ Pr [ui = w] ≤ (i/d) · ⌈d/i⌉
4i

.

Proof. For 1 ≤ i < d, consider the real rhombus R̃i(u) which is the set {v ∈ R2 : ∥u − v∥1 = i}.
Project each element of Rd(u) on R̃i(u) as in Fig. 3.3. We obtain 4d equidistant points v̄1, . . . , v̄4d

in Euclidean distance. Then, for each w ∈ Ri(u), consider the set Cw ⊆ {v̄1, . . . , v̄4d} of points
that are closest to w than to any other node of Ri(u) in Euclidean distance. Note that each v̄j

belongs to either one or two sets Cw; in the latter case we say that v̄j is shared. For the cardinality
of set Cw, we have the following cases: (i) if d ≡ 0 (mod i) then |Cw| = d/i + 1, and two of the
elements of Cw are shared; (ii) if d ̸≡ 0 (mod i) then either |Cw| = ⌊d/i⌋ and no elements of Cw

are shared, or |Cw| = ⌈d/i⌉ and at most one element of Cw is shared.
Choose a node v ∈ Rd(u) u.a.r. and look at a node w ∈ Ri(u). The probability that w is on

a direct-path chosen u.a.r. is exactly the probability that the projection v̄ of v on R̃i(u) belongs to
Cw, where shared points contribute by 1/2. In all cases, this probability is between ⌊d/i⌋ /(4d)
and ⌈d/i⌉ /(4d).

A (discrete-time) jump process on Z2 is just an infinite sequence of random variables (Jt)t≥0,
where Jt ∈ Z2 for each integer t ≥ 0. We say that the process visits node v ∈ Z2 at step t ≥ 0 if
Jt = u. Our analysis will focus on the following two jump processes.
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Figure 3.3 – Projection from Rd(u) to R̃i(u), with d = 5, i = 3.

Definition 3.2.2 (Lévy flight). A jump process Lf = (Lf
t )t≥0 on Z2 is a Lévy flight with exponent

parameter α ∈ (1, ∞), and start node s ∈ Z2, if Lf
0 = s, and for each t ≥ 0, if Lf

t = u

then Lf
t+1 = v, where node v ∈ Z2 is selected as follows: First a jump distance d is chosen

independently at random such that

Pr [d = 0] = 1/2, and Pr [d = i] = cα/iα for i ≥ 1, (3.1)

where cα is a normalizing factor. Then, node v is chosen independently and uniformly at random
among all nodes in Rd(u) (i.e., all nodes at distance d from u).

Definition 3.2.3 (Lévy walk). A jump process Lw = (Lw
t )t≥0 on Z2 is a Lévy walk with exponent

parameter α ∈ (1, ∞), and start node s ∈ Z2, if Lw
0 = s, and the process consists of a infinite

sequence of jump-phases, where each jump-phase is defined as follows: Suppose that the jump-
phase begins at step t + 1 (the first jump-phase begins at the first step), and suppose also that
Lw

t = u. First a distance d and a node v at distance d from u are chosen, in exactly the same way
as in the Lévy flight. If d = 0 then the jump-phase has length 1, and Lw

t+1 = u, i.e., the process
stays put for one step. If d ̸= 0 then the jump-phase has length d, and in the next d steps the
process follows a path u, u1, . . . , ud = v chosen uniformly at random among all direct-paths from
u to v, i.e., Lw

t+i = ui, for all 1 ≤ i ≤ d. 1

We observe that a Lévy flight is a Markov chain, while a Lévy walk is not.

Remark 3.2.1 – Throughout the analysis, we assume α to be a (not necessarily constant) real value
greater than 1 + ϵ for some arbitrarily small constant ϵ > 0.

We will often use the following bound on the tail distribution of the jump length d chosen
according to (3.1):

Pr [d ≥ i] = Θ
(
1/iα−1

)
(3.2)

The next statement follows immediately from Lemma 3.2.1.

1. Our analysis works also if an arbitrary direct-path between u and v is selected, instead of a random one.
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Corollary 3.2.2. Let u, v ∈ Z2, and d = ∥u−v∥1 > 0. If a Lévy walk is at node u at the beginning
of a jump-phase, then the probability it visits v during the jump-phase is Θ (1/dα).

Definition 3.2.4 (Hitting Time). The hitting time for node u∗ ∈ Z2 of a jump process is the first
step t ≥ 0 when the process visits u. For a set of k independent jump processes that run in parallel,
their parallel hitting time for u∗ is the first step in which some (at least one) of the k processes
visits u∗.

We will denote by τα(u∗) the hitting time for u∗ of a single Lévy walk processes with ex-
ponent α starting from the origin 0 = (0, 0); and by τk

α(u∗) the parallel hitting time for u∗ of k
independent copies of the above Lévy walk. Unless stated otherwise, we will always assume that
the starting node of a jump processes is the origin 0 = (0, 0).

For a Lévy flight Lf = (Lf
t )t≥0, we denote by Zf

u (t) the number of times the process visits
node u ∈ Z2 until step t, i.e., Zf

u (t) = |{i : Lf
i = u} ∩ {1, . . . , t}|. We define Zw

u (t) similarly for
a Lévy walk.

3.2.2 Bounds via monotonicity

We will now describe an intuitive monotonicity property that applies to a family of jump
processes that includes Lévy flights (but not Lévy walks). We then use this property, and the
similarity between Lévy flights and walks, to show upper bounds on the probability that a Lévy
walk visits a given target. We start by defining the family of monotone radial jump processes.

Definition 3.2.5 (Monotone radial process). A jump process (Jt)t≥0 is monotone radial if, for
any pair of nodes u, v ∈ Z2, and any t ≥ 0, Pr [Jt+1 = v | Jt = u] = ρ(∥u − v∥1), for some
non-increasing function ρ.

Clearly, Lévy flights are monotone radial processes. For all such processes, we use geometric
arguments to prove the following property. The proof is deferred to Appendix F.1.

Lemma 3.2.3 (Monotonicity property). Let (Ji)i≥0 be any monotone radial jump process. For
every pair u, v ∈ Z2 and any t ≥ 0, if ∥v∥∞ ≥ ∥u∥1 then Pr [Jt = u] ≥ Pr [Jt = v].

Next, we use Lemma 3.2.3 to upper bound the probability that a target node is visited during a
given jump-phase of a Lévy walk, and then bound the probability that the target is visited during
at least one jump-phase.

Lemma 3.2.4. Let u∗ be an arbitrary node with ℓ = ∥u∗∥1. Let ϵ > 0 be an arbitrarily small
constant. For any α ≥ 1 + ϵ, the probability that a Lévy walk visits u∗ during its i-th jump-phase
is O

(
µ · (ℓ−2 + ℓ−α)

)
if α ̸= 2, where µ = min{log ℓ,

∣∣∣ 1
2−α

∣∣∣}, and O
(
log ℓ/ℓ2) if α = 2.

Proof. For any v ∈ Bℓ/4(u∗), the probability that the i-th jump starts in v is at most O(1/ℓ2)
due to Lemma 3.2.3, since the process restricted only to the jumps endpoints is a Lévy flight.
Moreover, for any 1 ≤ d ≤ ℓ/4, there are at most 4d nodes in Bℓ/4(u∗) located at distance d from
u∗. Then, from the chain rule and Corollary 3.2.2, the probability that the i-th jump starts from
Bℓ/4(u∗) and the agent visits the target during the jump-phase is bounded by

O
( 1

ℓ2

) ℓ/4∑
d=1

4d · O
( 1

dα

)
+ O

( 1
ℓ2

)
,
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the term O(1/ℓ2) being the contribution of u∗ itself. The above expression equals O
(
µℓ2−α/ℓ2)

if α ̸= 2, and O
(
log ℓ/ℓ2) if α = 2. For any fixed node v, denote by Fi event that that, during a

jump-phase starting in v, the agent visits the target. We now prove that Pr [Fi] = O (µ/ℓα).
Let Vi be the event that the starting point of the i-th jump is in Bℓ/4(u∗). Notice that Pr

[
Fi | Vi

]
is at most O (1/ℓα) for Corollary 3.2.2. Then,

Pr [Fi] ≤ Pr [Fi | Vi] Pr [Vi] + Pr
[
Fi | Vi

]
≤ Pr [F1 | Vi] + O

( 1
ℓα

)
.

Then, if α > 2,

Pr [Fi] = O
(

µ

ℓ2 + 1
ℓα

)
= O

(
µ

ℓ2

)
.

If α = 2, Pr [Fi] = O
(
log ℓ/ℓ2). And if 1 < α < 2,

Pr [Fi] = O
(

µ

ℓα
+ 1

ℓα

)
= O

(
µ

ℓα

)
.

Lemma 3.2.5. Let u∗ be an arbitrary node with ∥u∗∥1 = ℓ. Let ϵ > 0 be an arbitrarily small
constant. The probability that a Lévy walk with exponent 1 + ϵ ≤ α < 3 visits u∗ at least once (at
any step t) is O

(
µ log ℓ(ℓ−1 + ℓ3−α)

)
if α ̸= 2, where µ = min{log ℓ,

∣∣∣ 1
2−α

∣∣∣}, and O
(

log2 ℓ
ℓ

)
if

α = 2.

Proof. For each i ≥ 0, consider the first time ti the agent is at distance at least λi = 2iℓ from the
origin. From Eq. (3.2), the probability any jump has length no less than 2λi is at least c/λα−1

i , for
some constant c > 0. Define, for i ≥ 1, the values τi = 2c−1λα−1

i log λi. The probability that
ti ≥ nτi is bounded from above by the probability that no jump between the first nτi jumps has
length at least 2λi. Since the jump lengths are mutually independent, from Eq. (3.2) we get

Pr [ti ≥ nτi] ≤
[
1 − c

λα−1
i

] 2
c

nλα−1
i log λi

≤ exp (−2n log λi) = 1
λ2n

i

= 1
22niℓ2n

,

where we have used the well known inequality 1 − x ≤ e−x that holds for every real x. We next
bound the expected number of visits to the target node from time ti to time ti+1 as follows:

E [Zw
u∗ (ti+1) − Zw

u∗ (ti)] ≤ E [Zw
u∗ (ti+1) − Zw

u∗ (ti) | ti+1 ≤ τi+1] Pr [ti+1 ≤ τi+1] (3.3)

+
∑
n≥1

E [Zw
u∗ (ti+1) − Zw

u∗ (ti) | nτi+1 < ti+1 ≤ (n + 1)τi+1] · Pr [ti+1 ≥ nτi] .

We now proceed by analysing three different ranges for the exponent α and use Lemma 3.2.4.
Notice that the agent starts at distance Ω (λi) from the target.

If α > 2, the expression in Eq. (3.3) is equal to

O
(

µτi+1
λ2

i

)
+
∑
n≥1

O
(

µ(n + 1)τi+1
22niℓ2nλ2

i

)
= O

(
µτi

λ2
i

)
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since the sum
∑

n≥1(n + 1)
(
2iℓ
)−2n is less than a constant. If α = 2, the expression in Eq. (3.3)

is

O
(

τi+1 log λi

λ2
i

)
+
∑
n≥1

O
(

(n + 1)τi+1 log λi

22niℓ2nλ2
i

)
= O

(
τi log λi

λ2
i

)
.

And if 1 < α < 2, the expression is

O
(

µτi+1
(2 − α)λα

i

)
+
∑
n≥1

O
(

µ(n + 1)τi+1
22niℓ2nλα

i

)
= O

(
µτi

λα
i

)
.

The same bounds with i = 1 hold for the expected number of visits to the target until time t1.
From the facts above, for α > 2, the expected total number of visits to the target is bounded by

O
(

µτ1
λ2

1

)
+
∑
i≥1

O
(

µτi

λ2
i

)
= O

(
µ log ℓ

ℓ3−α

)
+
∑
i≥1

O
(

µ · log
(
2i
)

+ log ℓ

(22i(3−α)ℓ3−α)

)
= O

(
µ log ℓ

ℓ3−α

)
.

Similarly, for α = 2, we obtain the bound O
(
log2 ℓ/ℓ3−α

)
, while, for 1 < α < 2, we get

O
(

µ log ℓ

ℓ

)
+
∑
i≥1

O
(

µ · log
(
2i
)

+ log ℓ

(22i(3−α)ℓ)

)
= O

(
µ log ℓ

ℓ

)
.

Finally, we bound the probability the agent visits the target at least once using the Markov’s in-
equality.

3.3 The case α ∈ (2, 3]
In this section, we analyze the hitting time of Lévy walks when the exponent parameter α be-

longs to the range (2, 3]. In this case, the jump length has bounded mean and unbounded variance.
Recall that τα(u∗) is the hitting time for target u∗ of a single Lévy walk with exponent α,

and τk
α(u∗) is the parallel hitting time for u∗ of k independent copies of the above Lévy walk. All

walks start from the origin.
We will prove the following bounds on the hitting time τα.

Theorem 3.3.1. Let α ∈ (2, 3), u∗ ∈ Z2, and ℓ = ∥u∗∥1. Let µ = min{log ℓ, 1
α−2}, ν =

min{log ℓ, 1
3−α}, and γ = (log ℓ)

2
α−1

(3−α)2 . Then:

(a) Pr
[
τα(u∗) = O

(
µ · ℓα−1)] = Ω

(
1/(γ · ℓ3−α)

)
, if 3 − α = ω(1/ log ℓ);

(b) Pr [τα(u∗) ≤ t] = O
(
µν · t2/ℓα+1), for any step ℓ ≤ t = O

(
ℓα−1/ν

)
;

(c) Pr [τα(u∗) < ∞] = O
(
µ · log ℓ/ℓ3−α

)
.

Using Theorem 3.3.1, we can easily obtain the following bounds on the parallel hitting time
τk

α . The proof is given in Section 3.3.5.

Corollary 3.3.2. Let u∗ ∈ Z2 and ℓ = ∥u∗∥1, and let k be any integer such that log6 ℓ ≤ k ≤
ℓ log4 ℓ. Let α∗ = 3 − log k

log ℓ , and α = max{2, α∗ − 4 log log ℓ
log ℓ }. Then:
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(a) For α = α∗ + 5 log log ℓ
log ℓ , Pr

[
τk

α(u∗) = O
(
ℓ2 log6 ℓ/k

)]
= 1 − e−ω(log ℓ);

(b) For α < α < 3, Pr
[
τk

α(u∗) ≤ (ℓ2/k) · ℓ(α−α∗)/2/ log4 ℓ
]

= o(1);

(c) For 2 < α ≤ α∗, Pr
[
τk

α(u∗) < ∞
]

= O
(
log2 ℓ/ℓα∗−α

)
.

Corollary 3.3.2Part a states that τk
α(u∗) ≤ (ℓ2/k) · polylog ℓ, w.h.p., when α ≈ α∗ = 3 −

log k/log ℓ. One the other hand, Corollary 3.3.2Part b says that the lower bound τk
α(u∗) ≥ (ℓ2/k) ·

ℓ(α−α∗)/2/ polylog ℓ holds with probability 1 − o(1) for any α ≥ α∗ − O (log log ℓ/ log ℓ), and
Corollary 3.3.2Part c says that the target is never hit with probability at least 1 − polylog ℓ/ℓα∗−α,
if α ≤ α∗. Therefore, the optimal hitting time of ℓ2/k is achieved (modulo polylog ℓ factors) only
for values of α very close to α∗, precisely only if |α − α∗| = O (log log ℓ/ log ℓ).

For the threshold case α = 3, similar bounds to those of Theorem 3.3.1 apply, modulo some
polylog ℓ factors, as stated in the next theorem.

Theorem 3.3.3. Let u∗ ∈ Z2 and ℓ = ∥u∗∥1. Then:

(a) Pr
[
τ3(u∗) = O

(
ℓ2)] = Ω

(
1/ log4 ℓ

)
;

(b) Pr [τ3(u∗) ≤ t] = O
(
t2 log ℓ/ℓ4), for any step t with ℓ ≤ t = O

(
ℓ2/ log ℓ

)
.

The next corollary gives bounds on the parallel hitting time τk
3 . The proof is similar to that of

Corollary 3.3.2.

Corollary 3.3.4. Let u∗ ∈ Z∗ and ℓ = ∥u∗∥1 = ℓ, and let k be any integer such that ω
(
log5 ℓ

)
≤

k ≤ ℓ2/ log2 ℓ. Then:

(a) Pr
[
τk

3 (u∗) = O
(
ℓ2)] = 1 − e−ω(log ℓ).

(b) Pr
[
τk

3 (u∗) ≤ ℓ2/
√

k
]

= o (1).

Corollary 3.3.4.a says that τk
3 (u∗) = O

(
ℓ2), w.h.p., for any k ≥ polylog ℓ, and Corol-

lary 3.3.4.b provides a very crude lower bound indicating that increasing k beyond polylog ℓ,
can only result in sublinear improvement.

3.3.1 Proof of Theorems 3.3.1 and 3.3.3

We will use the following key lemma, which is shown in Section 3.3.2. The lemma provides
an upper bound on the hitting time of a Lévy flight, assuming the maximum jump length is capped
to some appropriate value.

Lemma 3.3.5 (Lévy flight with α ∈ (2, 3]). Let hf be the hitting time of a Lévy flight for tar-
get u∗ with ∥u∗∥1 = ℓ. Let Et be the event that each of the first t jumps has length less than
(t log t)1/(α−1). Then, there is a t = Θ

(
ℓα−1) such that:

(a) Pr [hf ≤ t | Et] = Ω
(
1/(γℓ3−α)

)
, if 2 < α ≤ 3 − ω(1/ log ℓ), where γ = (log ℓ)

2
α−1

(3−α)2 ;

(b) Pr [hf ≤ t | Et] = Ω
(
1/ log4 ℓ

)
, if α = 3.

The second lemma we need is an upper bound on the hitting time of a Lévy walk in terms of
the hitting time of the capped Lévy flight considered above. The proof proceeds by coupling the
two processes, and is given in Section 3.3.3.
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Lemma 3.3.6. Let hf and Et be defined as in Lemma 3.3.5, and let τα(u∗) be the hitting time of a
Lévy walk with the same exponent α, for the same target u∗. Then, for any 2 < α ≤ 3 and step t,
and for µ = min{log ℓ, 1

α−2},

Pr [τα(u∗) = O (µt)] ≥ (1 − O (1/log t)) ·
(

Pr [hf ≤ t | Et] − e−tΘ(1))
.

The last lemma we need is the following lower bound on the hitting time of a Lévy walk,
proved in Section 3.3.4.

Lemma 3.3.7. Let u∗ ∈ Z2 and ℓ = ∥u∗∥1. For any step t ≥ ℓ,

(a) Pr [τα(u∗) ≤ t] = O
(

νµt2

ℓα+1

)
if α ̸= 3 and t = O

(
ℓα−1/ν

)
, where ν = min{log ℓ, 1

3−α} and

µ = min{log ℓ, 1
α−2};

(b) Pr [τα(u∗) ≤ t] = O
(

t2 log ℓ
ℓα+1

)
if α = 3 and t = O

(
ℓ2/ log ℓ

)
.

Proof of Theorem 3.3.1. Lemmas 3.3.5 and 3.3.6 imply that, for some t = Θ
(
ℓα−1),

Pr [τα(u∗) = O (µt)] = Ω
(

(3 − α)2

ℓ3−α log
2

α−1 ℓ

)
,

obtaining (a). Parts (b) and (c) follow from Lemma 3.3.7 and Lemma 3.2.5, respectively.

Proof of Theorem 3.3.3. The proof proceeds in exactly the same way as the proof of Theo-
rem 3.3.1, using Lemmas 3.3.5 and 3.3.6 to show Part a, and Lemma 3.2.5 to show Part b.

3.3.2 Proof of Lemma 3.3.5

We first define some notation. Then we give an overview of the analysis, before we provide
the detailed proof.

Recall that (Lf
i )i≥0 denotes the Lévy flight process, and Zf

u (i) = |{j : Lf
j = u} ∩ {1, . . . , i}|

is the number of visits to node u in the first i steps. Let t = Θ
(
ℓα−1) be a step to be fixed later.

For each i ≥ 1, let Si be the length of the i-th jump of the Lévy flight, i.e.,

Si = ∥Lf
i − Lf

i−1∥1.

Define also the events
Ei = {Si ≤ (t log t)1/(α−1)},

and let Ei =
⋂i

j=1 Ej . For each node u and i ≥ 0, let

pu,i = Pr
[
Lf

i = u
∣∣∣ Ei

]
,

and note that E
[
Zf

u (i)
∣∣∣ Ei

]
=

∑i
j=0 pu,j . We partition the set of nodes into disjoint sets

A1, A2, A3 defined as follows:

A1 = {v : ∥v∥∞ ≤ ℓ}

A2 =
{

{v : ∥v∥1 ≤ 2(t log t)1/(α−1)} \ A1 if α ∈ (2, 3)
{v : ∥v∥1 ≤ 2

√
t log t} \ A1 if α = 3

A3 = Z2 \ (A1 ∪ A2).
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3.3.2.1 Proof overview

We discuss just the case of α ∈ (2, 3); the case of α = 3 is similar. We assume all proba-
bility and expectation quantities below are conditional on the event Et, and we omit writing this
conditioning explicitly.

First, we show a simple upper bound on the mean number of visits to A1 until step t =
Θ
(
ℓα−1), namely, ∑

v∈A1

E
[
Zf

v (t)
]

≤ ct,

for a constant c < 1: with constant probability the walk visits a node outside A1 in the first t/2
steps, and after that at most a constant fraction of steps visit nodes in A1, by symmetry.

To bound the mean number of visits to A2, we use the monotonicity property from Sec-
tion 3.2.2 and the fact that ∥v∥∞ ≥ ℓ = ∥u∗∥1 for all v ∈ A2, to obtain∑

v∈A2

E
[
Zf

v (t)
]

≤ |A2| · E
[
Zf

u∗ (t)
]

≤ 4(t log t)1/(α−1) · E
[
Zf

u∗ (t)
]

.

For the number of visits to A3 we obtain the following bound using Chebyshev’s inequality,
for a constant c′, ∑

v∈A3

E
[
Zf

v (t)
]

≤ c′t/((3 − α) log t).

From the above results, and the fact that the total number of visits to all three sets is t, we get

ct + 4(t log t)1/(α−1) · E
[
Zf

u∗ (t)
]

+ c′t/[(3 − α) log t] ≥ t,

which implies
E
[
Zf

u∗ (t)
]

= Ω
(
t

α−3
α−1 · (log t)− 2

α−1
)

if 3 − α = ω(1/ log t). We can express the probability of hf ≤ t in terms of the above mean as

Pr [hf ≤ t] = Pr
[
Zf

u∗ (t) > 0
]

= E
[
Zf

u∗ (t)
]

/E
[
Zf

u∗ (t)
∣∣∣ Zf

u∗ (t) > 0
]

.

We have
E
[
Zf

u∗ (t)
∣∣∣ Zf

u∗ (t) > 0
]

≤ E
[
Zf

0 (t)
]

+ 1.

We also compute
E
[
Zf

0 (t)
]

= O(1/(3 − α)2).

Combining the last four equations yields

Pr [hf ≤ t] = Ω
(
t

α−3
α−1 · (log t)− 2

α−1 · (3 − α)2
)

,

and substituting t = Θ
(
ℓα−1) completes the proof.
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Q`(0)

5
2`

Figure 3.4 – The disjoint zones at least as equally likely as Qℓ(0) to be visited.

3.3.2.2 Detailed proof

We give now the details of the analysis. Throughout the section 2 < a ≤ 3 − ω(1/ log ℓ).

Lemma 3.3.8 (Bound on the visits to A1). For any t = Θ(ℓα−1) large enough, there is a constant
c ∈ (0, 1) such that ∑

v∈Qℓ(0)
E
[
Zf

v (t)
∣∣∣ Et

]
≤ ct.

Proof. We bound the probability the walk has moved to distance 5
2ℓ at least once, within time

t = Θ
(
ℓα−1), by the probability that at least one of the performed jumps is no less than 5ℓ (we

denote this latter event by H). Indeed, if there is a jump of length at least 5λ, the walk moves
necessarily to distance no less than 5

2ℓ. Then,

Pr
[
Sj ≥ 5ℓ | Sj ≤ (t log t)

1
α−1

]
=

(t log t)
1

α−1∑
k=5ℓ

cα

kα

(∗)
≥ cα

α − 1

( 1
(5ℓ)α−1 − 1

t log t

) (⋆)
≥ cα

2(α − 1)(5ℓ)α−1 ,

where (∗) follows for the integral test (Lemma E.1), while (⋆) easily holds for a large enough ℓ
since t = Θ(ℓα−1). Thanks to the mutual independence among the random destinations chosen
by the agent, the probability of the event “the desired jump takes place within time c′ · 2(α −
1)(5ℓ)α−1/cα” is bounded by

1 −
[
1 − cα

2(α − 1)(5ℓ)α−1

]c′ 2(α−1)(5ℓ)α−1
cα ≥ 3

4 ,

for some constant c′ > 0 and for ℓ large enough. Hence, by choosing t ≥ 4c′ ·2(α−1)(5ℓ)α−1/cα,
the desired jump takes place with probability 3

4 , within time t
4 . Once reached such a distance

(conditional on the previous event), Fig. 3.4 shows there are at least other 3 mutually disjoint
regions which are at least as equally likely as Qℓ(0) to be visited at any future time.
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Thus, the probability to visit Qℓ(0) at any future time step is at most 1
4 . Observe that

E

 ∑
v∈Qℓ(0)

Zf
v (t) | Et

 = E

 ∑
v∈Qℓ(0)

Zf
v (t) | H, Et

Pr [H | Et]

+ E

 ∑
v∈Qℓ(0)

Zf
v (t) | HC , Et

Pr
[
HC | Et

]
≤
(1

4 t + 1
4 · 3

4 t

) 3
4 + t · 1

4

= t

4

(
1 + 3

4 + 9
16

)
= 37

64 t,

and the proof is completed.

For the rest of Section 3.3.2, let t = Θ
(
ℓα−1) as in Lemma 3.3.12

Remark 3.3.1 – The monotonicity property (Lemma 3.2.3) holds despite the conditional event Et.
The proof is exactly the same.

Notice that, from E
[
Zf

v (t) | Et

]
=
∑t

i=0 pv,i and the monotonicity property, we easily get the
following bound.

Corollary 3.3.9. E
[
Zf

u (t) | Et

]
≥ E

[
Zf

v (t) | Et

]
for all v /∈ Qdu(0).

Namely, the more the node is “far” (according to the sequence of squares {Qd(0)}d∈N) from
the origin, the less it is visited on average. Thus, each node is visited at most as many times as
the origin, on average. This easily gives an upper bound on the total number of visits to A2 until
time t, namely, by taking u = u∗ and by observing that each v ∈ A2 lies outside Qℓ(0), we get
that the average number of visits to A2 is at most the expected number of visits to the target u∗

(i.e., E
[
Zf

u∗ (t) | Et

]
) times (any upper bound of) the size of A2: in formula, it is upper bounded

by E
[
Zf

u∗ (t) | Et

]
· 4(t log t)

2
α−1 if α ∈ (2, 3), and by E

[
Zf

u∗ (t) | Et

]
· 4t log2 t if α = 3.

The next lemma considers A3.

Lemma 3.3.10 (Bound on visits to A3). It holds that∑
v=(x,y) :

|x|+|y|≥2(t log t)
1

α−1

E
[
Zf

v (t) | Et

]
= O

(
t

(3 − α) log t

)
if α ∈ (2, 3); (3.4)

∑
v=(x,y) :

|x|+|y|≥2
√

t log t

E
[
Zf

v (t) | Et

]
= O

(
t

log t

)
if α = 3. (3.5)

Proof. Let Lf
t′ be the two dimensional random variable representing the coordinates of the node

the agent performing the Lévy flight is located in at time t′. Consider the projection of the Lévy
flight on the x-axis, namely the random variable Xt′ such that Lf

t′ = (Xt′ , Yt′). The random
variable Xt′ can be expressed as the sum of t′ random variables Sx

j , j = 1, . . . , t′, representing
the jumps (with sign) that the projection of the walk takes at each of the t′ rounds. The partial
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distribution of the jumps along the x-axis, conditional on the event Et, can be derived as follows. 2

For any 0 ≤ d ≤ (t log t)
1

α−1 ,

Pr
[
Sx

j = ±d | Sj ≤ (t log t)
1

α−1
]

=

1
2 +

(t log t)
1

α−1∑
k=1

cα

2kα+1

1d=0 +

 cα

2dα+1 +
(t log t)

1
α−1∑

k=1+d

cα

kα+1

1d̸=0, (3.6)

where: 1d∈A returns 1 if d ∈ A and 0 otherwise, the term

1d=0
2 + cα

2dα+11d̸=0

is the probability that the original jump lies along the horizontal axis and has “length” exactly d
(there are two such jumps if d > 0), and, for k ≥ 1 + d, the terms

cα

2kα+11d=0 + cα

kα+11d ̸=0

are the probability that the original jump has “length” exactly k and its projection on the horizontal
axis has “length” d (there are two such jumps if d = 0, and four such jumps if d > 0). Observe
that (3.6) is of the order of

Θ

 1
dα+1 +

(t log t)
1

α−1∑
k=1+d

1
kα+1

 .

By the integral test (Lemma E.1 in E), we know that this probability is

Pr
[
Sx

j = ±d | Ej

]
= Θ

( 1
dα

)
.

Due to symmetry, it is easy to see that E [Xt′ | Et] = 0 for each time t′, while

Var (Xt′ | Et) =
t′∑

i=1
Var

(
Sx

j | Ej

)
= t′Var (Sx

1 | E1)

since Sx
1 , . . . , Sx

t′ are i.i.d.
As for the case α ∈ (2, 3), the variance of Sx

1 conditioned to the event E1 ={
S1 ≤ (t log t)

1
α−1

}
, can be bounded as follows

Var (Sx
1 | E1) ≤

(t log t)
1

α−1∑
k=1

O
(

k2

kα

)
(∗)= O

( 1
3 − α

[
(t log t)

3−α
α−1 − 1

])
= O

(t log t)
3−α
α−1

3 − α

 ,

where, in (∗), we used the integral test (Lemma E.1). Observe that the event Et =
⋂t

i=1 Ei has
probability

Pr [Et] = 1 − O
( 1

log t

)
.

2. We remark that in Appendix F.2 we estimate the unconditional distribution of the jump projection length on
the x-axis (Lemma F.1) for any α > 1. Nevertheless, in this case we are conditioning on the event the original two
dimensional jump is bounded, and thus we cannot make use of Lemma F.1.
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Then, for each t′ ≤ t, from the Chebyshev’s inequality and the fact that E [Xt′ | Et] = 0,

Pr
[
|Xt′ | ≥ (t log t)

1
α−1 | Et

]
≤ t′Var (Sx

1 | E1)
(t log t)

2
α−1

≤ tVar (Sx
1 | E1)

(t log t)
2

α−1
= O

( 1
(3 − α) log t

)
,

which implies that

Pr
[
|Xt′ | ≥ (t log t)

1
α−1

]
≤ Pr

[
|Xt′ | ≥ (t log t)

1
α−1 | Et

]
+ Pr

[
EC

t

]
= O

( 1
(3 − α) log t

)
.

Then, the probability that both Xt′ and Yt′ are less than (t log t)
1

α−1 (call the corresponding events
Ax,t′ and Ay,t′ , respectively) is

Pr
[
Ax,t′ ∩ Ay,t′

]
= Pr

[
Ax,t′

]
+ Pr

[
Ay,t′

]
− Pr

[
Ax,t′ ∪ Ay,t′

]
≥ 1 − O

( 1
(3 − α) log t

)
,

for any t′ ≤ t. Then, let Z ′(t) be the random variable indicating the number of times the Lévy
flight visits the set of nodes whose coordinate absolute values are both no less than (t log t)

1
α−1 ,

until time t. Then,

E
[
Z ′(t) | Et

]
=

∑
v=(x,y)

|x|+|y|≥2(t log t)
1

α−1

E
[
Zf

v (t) | Et

]
,

and

E
[
Z ′(t) | Et

]
=

t∑
i=1

Pr
[
(Ax,i ∩ Ay,i)C | Et

]
= t · O

( 1
(3 − α) log t

)
= O

(
t

(3 − α) log t

)
,

which proves Eq. (3.4).
As for the case α = 3, the variance of Sx

1 conditional on E1 is O (log(t log t)). Then, we look
at the probability that |Xt′ | is at least

√
t · log t conditional on Et, which is, again, O (1/ log t).

Finally, the proof proceeds in exactly the same way of the previous case, obtaining Eq. (3.5).

Lemma 3.3.11. For t = Θ(ℓα−1),

ct + E
[
Zf

u∗ (t) | Et

]
· 4(t log t)

2
α−1 + O

(
t

(3 − α) log t

)
≥ t if α ∈ (2, 3); (3.7)

ct + E
[
Zf

u∗ (t) | Et

]
· 4t log2 t + O

(
t

log t

)
≥ t if α = 3. (3.8)

Proof. Suppose the agent has made t jumps for some t = Θ(ℓα−1) (the same t of Lemma 3.3.8),
thus visiting exactly t nodes. Then,

E

∑
v∈Z2

Zf
v (t) | Et

 = t.

As for Eq. (3.7), we observe that, from Lemma 3.3.8, the number of visits to A1 = Qℓ(0) until
time t is at most ct, for some constant c ∈ (0, 1). From Lemma 3.3.10, the number of visits to A3
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is at most O (t/ ((3 − α) log t)). Thanks to Corollary 3.3.9, each of the remaining nodes, i.e., the
nodes in A2 (whose size is at most 4(t log t)

2
α−1 ), is visited by the agent at most E

[
Zf

u∗ (t) | Et

]
times. It follows that

ct + E
[
Zf

u∗ (t) | Et

]
· 4(t log t)

2
α−1 + O

(
t

(3 − α) log t

)
≥ t.

As for Eq. (3.8), we proceed as for the first case above, by noticing that the number of visits
to A2 is at most E

[
Zf

u∗ (t) | Et

]
· (4t log2 t). This gives Eq. (3.8).

The next two lemmas provide a clean relationship between the probability to hit a node u
within time t to the average number of visits to the origin and to the average number of visits to
u itself. In particular, the first lemma estimate the average number of visits to the origin. For any
t ≥ 0 and α ∈ (2, 3], let E

[
Zf

0 (t) | Et

]
= at(α).

Lemma 3.3.12 (Visits to the origin).
(a) If α ∈ (2, 3), then at(α) = O

(
1/(3 − α)2).

(b) If α = 3, then at(3) = O
(
log2 t

)
.

Proof. For the case α ∈ (2, 3), we proceed as follows. Since E
[
Zf

0 (t) | Et

]
=
∑t

k=1 p0,k, it
suffices to accurately bound the probability p0,k for each k = 1, . . . , t. Let us make a partition of
the natural numbers in the following way

N =
∞⋃

t′=1

[
N ∩

[
2t′ log t′, 2(t′ + 1) log

(
t′ + 1

)) ]
.

For each k ∈ N, there exists t′ such that k ∈ [2t′ log t′, 2(t′ + 1) log(t′ + 1)). Then, within

2t′ log t′ steps, we claim that the walk has moved to distance λ = (t′)
1

α−1

2 at least once, with

probability Ω
(

1
(t′)2

)
. Indeed, if there is one jump of length at least 2λ, then the walk has necessa-

rily moved to a distance at least λ from the origin. We now bound the probability that one jump is
at least 2λ. For the integral test and for λ > 0, we get

Pr
[
Sj ≥ 2λ | Sj ≤ (t log t)

1
α−1

]
≥ 1

Pr
[
Sj ≤ (t log t)

1
α−1

]
∫ (t log t)

1
α−1

2λ

cα

sα
ds


≥ cα

α − 1

( 1
t′ − 1

t log t

)
≥ cα

α − 1

1 − t′

t log t

t′


≥ cα

α − 1

1 − 1
2 log(t′) log t

t′

 = Ω
( 1

t′

)
,

where the last inequality holds since 2t′ log t′ ≤ t. Thus, the probability that the first 2t′ log t′

jumps are less than 2λ is

Pr
[
∩2t′ log t′

j=1 {Sj < 2λ} | Et

] (∗)=
[
1 − Pr

[
S1 < 2λ | S1 ≤ (t log t)

1
α−1

]]2t′ log t′

≥
[
1 − Ω

( 1
t′

)]2t′ log t′

= O
( 1

(t′)2

)
,
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where in (∗) we used the independence among the agent’s jumps. Once the agent reaches such a
distance, Lemma 3.2.3 implies that there are at least λ2 = Ω

(
(t′)

2
α−1

)
different nodes that are at

least as equally likely as 0 to be visited at any given future time. Thus, the probability to reach the

origin at any future time is at most O
(

1
(t′)

2
α−1

)
= O

(
1

(t′)1+ϵ

)
with ϵ = (3 − α)/(α − 1) > 0:

in particular the bound holds for p0,k. Observe that in an interval [2t′ log t′, 2(t′ + 1) log(t′ + 1))
there are

2(t′ + 1) log
(
t′ + 1

)
− 2t′ log t′ = 2t′

[
log

(
1 + 1

t′

)]
+ 2 log

(
t′ + 1

)
= O

(
log t′)

integers. Let Lf
t be the two-dimensional random variable denoting the node visited at time t by an

agent which started from the origin, and let Ht′ be the event ∪2t′ log t′

j=1 {Sj ≥ 2λ}. Observe that, by
the law of total probability,

p0,k = Pr
[
Lf

t = 0 | Ht′ , Et

]
Pr [Ht′ | Et] + Pr

[
Lf

t = 0 | HC
t′ , Et

]
Pr
[
HC

t′ | Et

]
.

Thus, if It′ = [2t′ log t′, 2(t′ + 1) log(t′ + 1)), we get

t∑
k=1

p0,k ≤
t∑

t′=1

∑
k∈It′

p0,k

≤
t∑

t′=1

[
Pr
[
Lf

t = 0 | Ht′ , Et

]
Pr [Ht′ | Et] + Pr

[
Lf

t = 0 | HC
t′ , Et

]
Pr
[
HC

t′ | Et

]]
O(log t′)

≤
t∑

t′=1

[
O
( 1

(t′)1+ϵ

)
+ O

( 1
(t′)2

)]
O(log t′)

=
t∑

t′=1
O
( log t′

(t′)1+ϵ

)
(⋆)= O

( 1
ϵ2

)
= O

( 1
(3 − α)2

)
,

where for ⋆ we used the integral test and partial integration. In particular, it holds that∫ t

1

log(x)
x1+ϵ

dx = 1
ϵ2

[
ϵ(1 − log x)

xϵ
− ϵ + 1

xϵ

]t

1
.

For the case α = 3, we can consider the same argument above for the previous case where we
fix λ =

√
t′. Then the proof proceeds as in the previous case by observing that the average number

of visits until time t is, now, of magnitude O
(
log2 t

)
.

Lemma 3.3.13. Let u ∈ Z2 be any node. Then,
(i) E

[
Zf

u (t) | Et

]
≤ at(α),

(ii) 1 ≤ E
[
Zf

u (t) | Zf
u (t) > 0, Et

]
≤ at(α),

(iii) E
[
Zf

u (t) | Et

]
/at(α) ≤ Pr

[
Zf

u (t) > 0 | Et

]
≤ E

[
Zf

u (t) | Et

]
.

Proof. Claim (i) is a direct consequence of (ii), since E
[
Zf

u (t) | Zf
u (t) > 0, Et

]
≥

E
[
Zf

u (t) | Et

]
. As for Claim (ii), let τ be the first time the agent visits u. Then, conditional
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on Zf
u (t) > 0, τ is at most t, and

E
[
Zf

u (t) | Zf
u (t) > 0, Et

]
= E

[
Zf

0 (t − τ) | τ ≤ t, Et

]
≤ E

[
Zf

0 (t) | Et

]
= at(α).

Notice that this expectation is at least 1 since we have the conditional event. As for Claim (iii), let
us explicitly write the term E

[
Zf

u (t) | Zf
u (t) > 0, Et

]
· Pr

[
Zf

u (t) > 0 | Et

]
:

t∑
i=1

iPr
[
Zf

u (t) = i | Zf
u (t) > 0, Et

]
· Pr

[
Zf

u (t) > 0 | Et

]

=
t∑

i=1
i
Pr
[
Zf

u (t) = i, Zf
u (t) > 0, Et

]
Pr
[
Zf

u (t) > 0, Et

] ·
Pr
[
Zf

u (t) > 0, Et

]
Pr [Et]

=
t∑

i=1
i
Pr
[
Zf

u (t) = i, Zf
u (t) > 0, Et

]
Pr [Et]

=
t∑

i=1
iPr
[
Zf

u (t) = i | Et

]
= E

[
Zf

u (t) | Et

]
.

Then,

E
[
Zf

u (t) | Et

]
≥ Pr

[
Zf

u (t) > 0 | Et

]
=

E
[
Zf

u (t) | Et

]
E
[
Zf

u (t) | Zf
u (t) > 0, Et

] ≥
E
[
Zf

u (t) | Et

]
at(α) ,

since, from Claim (ii), E
[
Zf

u (t) | Zf
u (t) > 0, Et

]
≤ at(α).

We can now complete the proof of Lemma 3.3.5, as follows. From Lemma 3.3.11 we have
that E

[
Zf

u∗ (t)
∣∣∣ Et

]
= Ω

(
(3 − α)2/

(
t(3−α)/(α−1)(log t)2/(α−1)

))
if α ∈ (2, 3) and 3 − α =

ω(1/ log t) and E
[
Zf

u∗ (t)
∣∣∣ Et

]
= Ω

(
1/ (log t)2

)
if α = 3. Then, Lemma 3.3.12 and claim (iii)

of Lemma 3.3.13 give the results by substituting t = Θ
(
ℓα−1).

3.3.3 Proof of Lemma 3.3.6

Let Sj be the random variable denoting the j-th jump-length. From Eq. (3.2), we get

Pr
[
Sj > (t log t)

1
α−1

]
= Θ

( 1
t log t

)
.

Let Ej be the event
{

Sj ≤ (t log t)
1

α−1
}

, and let Et be the intersection of Ej for j = 1, . . . , t.
Notice that, by the union bound, the probability of Et is 1 − O(1/ log t). We next apply the multi-
plicative form of the Chernoff bound to the sum of Sj , conditional on the event Et. This is possible
since the variable Sj/(t log t)

1
α−1 takes values in [0, 1]. To this aim, we first bound the expectation

of the sum of the random variables Sj , for j = 1, . . . , t conditional on Et.

E

 t∑
j=1

Sj

∣∣∣∣∣∣ Et

 =
t∑

j=1
E [Sj | Et] = Θ (t) + t

cα

Pr [Et]

(t log t)
1

α−1∑
d=1

d

dα

≤ Θ (t) + 2cαt

(t log t)
1

α−1∑
d=1

1
dα−1

(a)
≤ O (µt) ,
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where in (a) we have µ = min{log ℓ, 1
α−2} for the integral test (Lemma E.1). We now use the

Chernoff bound (Lemma B.1) on the normalized sum of all jumps, to show that such a sum is at
most linear in O (µt) with probability 1 − exp

(
−tΘ(1)

)
, conditional on Et. In formula,

Pr

 t∑
j=1

Sj ≥ Θ (µt)

∣∣∣∣∣∣ Et

 = Pr

[ ∑t
j=1 Sj

(t log t)
1

α−1
≥ 2Θ (µt)

(t log t)
1

α−1

∣∣∣∣∣ Et

]

≤ exp

− 2Θ (µt)
3
(
(t log t)

1
α−1

)


≤ exp

−Θ

 µt
α−2
α−1

(log t)
1

α−1

 ≤ exp
(

−Θ
(

t
α−2

2(α−1)

))
.

Then, define

A = {the Lévy walk finds the target within time Θ (µt)} = {τα(u∗) ≤ Θ (µt)},

A1 =


t∑

j=1
Sj = Θ (µt)

 , and

A2 = {the Lévy flight finds the target within t jumps} = {hf ≤ t}.

Observe that the event A1 ∩ A2 implies that the Lévy walk finds the target within t jumps, which,
in turn, implies the event A. Indeed, A1 ∩ A2 implies the target is found in one of the t jump
endpoints, and the overall amount of steps is Θ (µt). Let p(t) = Pr [hf ≤ t | Et]. Then

Pr [A] ≥ Pr [A1, A2] ≥ Pr [A1, A2, Et]
= Pr [Et] [Pr [A1 | Et] + Pr [A2 | Et] − Pr [A1 ∪ A2 | Et]]

≥
(

1 − O
( 1

log t

)) [
1 − exp(−tΘ(1)) + p(t) − 1

]
=
(

1 − O
( 1

log t

))(
p(t) − exp

(
−tΘ(1)

))
,

where in the second line we used the definition of conditional probability and the inclusion-
exclusion principle, and in the third line we used that Pr [Et] = (1 − O(1/ log t)), Pr [A1 | Et] ≥
1 − exp

(
−tΘ(1)

)
, and Pr [A1 ∪ A2 | Et] ≤ 1.

3.3.4 Proof of Lemma 3.3.7

Let Xi be the x-coordinate of the agent at the end of the i-th jump. For any i ≤ t, we bound the
probability that Xi > ℓ/4. The probability that there is a jump whose length is at least ℓ among the
first i jumps is Θ

(
i/ℓα−1). We first consider the case α ∈ (2, 3). Conditional on the event that the

first i jump-lengths are all smaller than ℓ (event Ci), the expectation of Xi is zero and its variance
is

Θ (1) + i ·
ℓ/4∑
d=1

Θ
(

d2

dα

)
= Θ

(
i · νℓ3−α

)
,
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for the integral test (Lemma E.1), where ν = min{log ℓ, 1
3−α}. Chebyshev’s inequality implies

that

Pr [|Xi| ≥ ℓ/4 | Ci] ≤ Θ
(
i · νℓ3−α

)
Θ(ℓ2) = Θ

(
iν

ℓα−1

)
.

Since the conditional event has probability 1 − Θ
(
i/ℓα−1), then the “unconditional” probability

of the event |Xi| ≤ ℓ/4 is[
1 − Θ

(
i

ℓα−1

)] [
1 − O

(
iν

ℓα−1

)]
= 1 − O

(
νt

ℓα−1

)
,

since i ≤ t, for t which is some O
(
ℓα−1/ν

)
. The same result holds analogously for Yi (the y-

coordinate of the agent after the i-th jump), thus obtaining |Xi| + |Yi| ≤ ℓ/2, with probability
1 − O

(
νt/ℓα−1) by the union bound.

During the first jump-phase, thanks to Corollary 3.2.2, the probability the agents visits the
target is O (1/ℓα). Let 2 ≤ i ≤ t. We want to estimate the probability that during i-th jump-phase
the agents visits the target, having the additional information that t = O

(
ℓα−1). As in the proof

of Lemma 3.2.4, we consider the node u∗ where the target is located on, and the rhombus centered
in u∗ that contains the nodes within distance ℓ/4 from u∗, namely Bℓ/4(u∗) . Let Fi be the event
that during the i-th jump-phase the agent visits the target; let Vi−1 be the event that the (i − 1)-th
jump ends in Bℓ/4(u∗), and let Wi−1 be the event that the (i − 1)-th jump ends at distance farther
than ℓ/2 from the origin. Finally, let Lf

i be the two-dimensional random variable denoting the
coordinates of the node the agent is located on at the end of the i-th jump-phase. Then,

Pr [Fi | Vi−1] Pr [Vi−1 | Wi−1] =
∑

v∈Bℓ/4(u∗)
Pr
[
Fi | Lf

i = v
]

Pr
[
Lf

i = v | Wi−1
]

≤ O
( 1

ℓ2

) ∑
v∈Bℓ/4(u∗)

Pr
[
Fi | Lf

i = v
]

,

where in the above inequalities we used the monotonicity property (Lemma 3.2.3, which holds
since the process restricted to the jump endpoints is a Lévy flight), and the fact that, for each
v ∈ Bℓ/4(u∗), there are at least Θ

(
ℓ2) nodes at distance at least ℓ/2 from the origin which are

more likely to be the destination of the i-th jump than v. Then, we proceed as in the proof of
Lemma 3.2.4 and obtain

Pr [Fi | Vi−1] Pr [Vi−1 | Wi−1] = O
(

µ

ℓ2

)
, (3.9)

where µ = min{log ℓ, 1
α−2}. By the law of total probabilities, we get

Pr [Fi] = Pr [Fi | Wi−1] Pr [Wi−1] + Pr
[
Fi | W C

i−1

]
Pr
[
W C

i−1

]
=
[
Pr [Fi | Wi−1, Vi−1] Pr [Vi−1 | Wi−1] + Pr

[
Fi | Wi−1, V C

i−1

]
Pr
[
V C

i−1 | Wi−1
]]

Pr [Wi−1]

+ Pr
[
Fi | W C

i−1

]
Pr
[
W C

i−1

]
≤
[
Pr [Fi | Vi−1] Pr [Vi−1 | Wi−1] + Pr

[
Fi | Wi−1, V C

i−1

]]
Pr [Wi−1] + Pr

[
Fi | W C

i−1

]
Pr
[
W C

i−1

]
≤
[
O
(

µ

ℓ2

)
+ O

( 1
ℓα

)]
O
(

νt

ℓα−1

)
+ O

( 1
ℓα

)
= O

(
νµt

ℓα+1

)
, (3.10)
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where for second-last inequality we used that Vi−1 ⊂ Wi−1 and that Pr
[
V C

i−1 | Wi−1
]

≤ 1, while

for the last inequality we used Eq. (3.9), and that Pr
[
Fi | Wi−1, V C

i−1

]
= O (1/ℓα), which is true

because the jump starts in a node whose distance form the target is Ω(ℓ), and that Pr
[
Fi | W C

i−1

]
=

O (1/ℓα), which is true for the same reason.
Thus, by the union bound and by Eq. (3.10), the probability that during at least one between

the t jump-phases, the agent finds the target is

O
( 1

ℓα

)
+ (t − 1)O

(
νµt

ℓα+1

)
= O

(
νµt2

ℓα+1

)

since t ≥ ℓ, which gives the first claim of the lemma by observing that within time t at most t
jumps can be performed.

Consider now the case α = 3. The proof proceeds exactly as in the first case, with the only
key difference that the variance of Xi is Θ (i log ℓ). This means that the probability that |Xi| is
at least ℓ/4 conditional to Ci is O

(
log ℓ/ℓ2), and the “unconditional” probability that |Xi| is less

than ℓ/4 is 1 − O
(
t log ℓ/ℓ2). It thus follows that

Pr [Fi] = O
(
t log ℓ/ℓ4

)
.

Then we get the second claimed bound of the lemma: O
(
t2 log ℓ/ℓ4) .

3.3.5 Proof of Corollary 3.3.2

From Theorem 3.3.1Part a and the independence among the agents, we get that

Pr
[
τk

α(u∗) = O
(
µℓα−1

)]
= 1 −

[
1 − Ω

( 1
γℓ3−α

)]k

≥ 1 − e
Ω
(

k
γℓ3−α

)
,

where we have used the inequality 1 − x ≤ e−x for all x ∈ R. Then, if α = α∗ + 5 log log ℓ
log ℓ ,

Pr

[
τk

α(u∗) = o

(
ℓ2 log6 ℓ

k

)]
= 1 − e−ω(log ℓ),

since µ ≤ 1
α−2 ≤ log ℓ

log log ℓ , ℓα−1 = ℓ2 log5 ℓ
k , γ = o

(
log4 ℓ

)
and ℓ3−α = k

log5 ℓ
, thus giving Claim

(a). From Theorem 3.3.1.Part b and the independence among the agents, we get

Pr
[
τk

α(u∗) > t
]

=
[
1 − O

(
µνt2

ℓα+1

)]k

,

for ℓ ≤ t = o
(
ℓα−1/ν

)
. Let t = ℓ2·ℓ

α−α∗
2

k log4 ℓ
which is a function in o

(
ℓα−1/ν

)
since α > α. If t ≥ ℓ,

we get

Pr
[
τk

α(u∗) > t
]

=
[
1 − O

(
µνℓ4

k2ℓα∗+1 log8 ℓ

)]k

≥ e
−O
(

1
log6 ℓ

)
= 1 − O

( 1
log6 ℓ

)
,
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since µν ≤ log2 ℓ, ℓα∗+1 = ℓ4/k. Notice that, in the inequality we have used that 1 − x ≥ e− x
1−x

if x < 1, and in the last equality we have used the Taylor’s expansion of the exponential function.
If t < ℓ, we get Pr

[
τk

α(u∗) > t
]

= 1 (at least ℓ steps are needed to reach the target). Therefore,
Claim (b) follows. Finally, from Theorem 3.3.1.Part c and the independence among the agents, we
get

Pr
[
τk

α(u∗) = ∞
]

=
[
1 − O

(
µ log ℓ

ℓ3−α

)]k

=
[
1 − O

(
log2 ℓ

kℓα∗−α

)]k

≥ exp
(

−O
(

log2 ℓ

ℓα∗−α

))
,

since µ ≤ logℓ, ℓ3−α = ℓ3−α∗ · ℓα∗−α = kℓα∗−α. Notice that in the last inequality we have used
that 1 − x ≥ e− x

1−x for x < 1, which is our case since k ≥ log6 ℓ. Hence, we have Claim (c).

3.4 The case α ∈ (1, 2]
We now analyze the hitting time of Lévy walks with parameter α ∈ (1, 2], which is the ex-

ponent range for which the jump length has unbounded mean and unbounded variance. We show
the following theorems.

Theorem 3.4.1. Let α ∈ [1 + ϵ, 2), where ϵ > 0 is an arbitrarily small constant. Let u∗ ∈ Z2, and
ℓ = ∥u∗∥1. Let µ = min{log ℓ, 1

2−α}. Then:

(a) Pr [τα(u∗) = O (ℓ)] = Ω (1/µℓ);

(b) Pr [τα(u∗) < ∞] = O (µ log ℓ/ℓ).

Theorem 3.4.2. Let u∗ ∈ Z2 and ℓ = ∥u∗∥1. Then:

(a) Pr [τ2(u∗) = O (ℓ)] = Ω (1/ℓ log ℓ);

(b) Pr [τ2(u∗) < ∞] = O
(
log2 ℓ/ℓ

)
.

The above theorems imply the following bounds on the parallel hitting time.

Corollary 3.4.3. Let α ∈ [1 + ϵ, 2], where ϵ > 0 is an arbitrarily small constant. Let u∗ ∈ Z2 and
ℓ = ∥u∗∥1. Let µ = min{log ℓ, 1

2−α}. Then:

(a) Pr
[
τk

α(u∗) = O (ℓ)
]

= 1 − e−ω(log ℓ), if k = ω
(
ℓ log2 ℓ

)
;

(b) Pr
[
τk

α(u∗) < ∞
]

= o(1), if k = o
(
ℓ/ log2 ℓ

)
.

Recall also that the trivial lower bound τk
α(u∗) ≥ ℓ holds.

3.4.1 Proof of Theorems 3.4.1 and 3.4.2

We first show the following lemma, which bounds the hitting time for a single Lévy walk.

Lemma 3.4.4. Let α ∈ (1, 2] and u∗ ∈ Z2 with ∥u∗∥1 = ℓ. Then,

(a) Pr [τα(u∗) = O(ℓ)] = Ω
(

1
µℓ

)
, if α ∈ [1 + ϵ, 2) for an arbitrarily small constant ϵ > 0, where

µ = min{ 1
α−2 , log ℓ}.

(b) Pr [τα(u∗) = O(ℓ)] = Ω
(

1
ℓ log ℓ

)
, if α = 2.
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Proof. Consider a single agent moving according the Lévy walk with parameter α ∈ (1, 2] .
By Equation (3.2) in Section 3.2, the probability the agent chooses a jump of length at least ℓ
is of the order of Θ

(
1/dα−1). Let c be some constant to be fixed later, and let µα be equal to

min{ 1
α−2 , log ℓ} if α < 2, and to log ℓ if α = 2. Then, the probability that all the first cℓα−1/µα

jumps have length less than ℓ is

(
1 − Θ

( 1
ℓα−1

)) cℓα−1
µα

which is greater than positive constant strictly less than 1 thanks to the inequality
exp(−x/(1 − x)) < (1 − x) for x < 1. Let Ei be the event that the i-th jump-length is less
than ℓ and Ei = ∩1≤j≤iEj . By what has been said before, we have

Pr [Ei] ≥ Θ (1) for all i ≤ cℓα−1/µα.

Conditional on Ei, the sum of the first i jumps is at most 3ℓ/4 with constant probability. Indeed, if
j < i, the expected value of Sj is, for the integral test (Lemma E.1)

E [Sj | Ei] = O (1) +
ℓ−1∑
d=1

cαd

dα
= O

(
µαℓ2−α

)
.

Thus,

E

 i∑
j=1

Sj | Ei

 ≤
cℓα−1/µα∑

j=1
E [Sj | Ei] = O (cℓ) .

We choose c small enough so that this expression is less than ℓ/2. Conditional on Ei, the {Sj}j≤i

random variables are non negative and we can use the Markov’s inequality to get that their sum is
bounded by 3ℓ/4 with constant probability. Indeed

Pr

 i∑
j=1

Sj ≥ 3ℓ

4

∣∣∣∣∣∣ Ei

 ≤ Pr

 i∑
j=1

Sj ≥
3E
[∑i

j=1 Sj

∣∣∣ Ei

]
2

∣∣∣∣∣∣ Ei

 ≤ 2
3 .

The latter implies there is at least constant probability the agent has displacement at most 3ℓ/4
from the origin during the first cℓα−1/µα jumps and in time O (ℓ) (since the sum of all jumps is
at most linear), without any conditional event:

Pr

∑
j≤i

Sj ≤ 3ℓ/4

 ≥ Pr

∑
j≤i

Sj ≤ 3ℓ/4

∣∣∣∣∣∣ Ei

Pr [Ei]

≥ Θ(1)

for each i ≤ cℓα−1/µα.
Define the event Wi = {

∑
j≤i Sj ≤ 3ℓ/4}. We now compute the probability that, given

i ≤ cℓα−1/µα, in the first i − 1 jumps the displacement has been at most 3ℓ/4 and during the i-th
jump-phase the agent finds the target. Let Fi be such the latter event. Since

Pr [Fi, Wi−1] = Pr [Fi | Wi−1] Pr [Wi−1] ,
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we estimate Pr [Fi | Wi−1]. Let Lw
t be the two-dimensional random variable representing the co-

ordinates of the nodes the Lévy walk visits at time t. If ti is the time the agent ends the i-th
jump-phase, we have

Pr [Fi | Wi−1] ≥
∑

v∈Q3ℓ/4(0)
Pr
[
Fi

∣∣∣ Lw
ti−1 = v, Wi−1

]
Pr
[
Lw

ti−1 = v
∣∣∣Wi−1

]
.

By Corollary 3.2.2, the term Pr
[
Fi

∣∣∣ Lw
ti−1 = v, Wi−1

]
is Θ (1/ℓα), and, since Lw

ti−1 ∈ Q3ℓ/4(0)
is implied by Wi−1, we have∑

v∈Q3ℓ/4(0)
Pr
[
Fi

∣∣∣ Lw
ti−1 = v, Wi−1

]
Pr
[
Lw

ti−1 = v
∣∣∣Wi−1

]

≥ Θ
( 1

ℓα

)
· Pr

[
Lw

ti−1 ∈ Q3ℓ/4(0)
∣∣∣Wi−1

]
= Θ

( 1
ℓα

)
,

implying Pr [Fi, Wi−1] = Ω
(

1
ℓα

)
for all i ≤ cℓα−1/

(
1 + log ℓ · 1[α=2]

)
. Then, for the chain rule,

the probability that none of the events Fi ∩ Wi−1 holds for each i ≤ ℓα−1/ log(cℓ) is

Pr

 ⋃
i≤ cℓα−1

µα

(Fi ∩ Wi−1)

 = 1 − Pr

 ⋂
i≤ cℓα−1

µα

(F C
i ∪ W C

i−1)


= 1 −

∏
i≤ cℓα−1

µα

Pr

F C
i ∪ W C

i−1
∣∣ ⋂

j≤i−1
(JC

j ∪ W C
j−1)



= 1 −
∏

i≤ cℓα−1
µα

1 − Pr

Fi ∩ Wi−1
∣∣ ⋂

j≤i−1
(JC

j ∪ W C
j−1)



(∗)
≥ 1 −

∏
i≤ cℓα−1

µα

1 − Pr

Fi ∩ Wi−1,
⋂

j≤i−1
(JC

j ∪ W C
j−1)


(⋆)= 1 −

∏
i≤ cℓα−1

µα

(1 − Pr [Fi ∩ Wi−1])

= 1 −
(

1 − Ω
( 1

ℓα

)) cℓα−1
µα

≥ 1 − e
−Ω
(

c
µαℓ

)
= Ω

(
c

µαℓ

)
,

where, (∗) holds since Pr [A | B] ≥ Pr [A, B], (⋆) holds since Wi−1 ⊆ (W C
j−1 ∪JC

j ) for j ≤ i−1,
and the last equality holds by the inequality e−x ≥ 1−x for all x, and by the Taylor’s expansion of
f(x) = ex. Then, there is probability at least Ω (c/ (µαℓ)) to find the target within time O(ℓ).

Lemma 3.4.4 gives Part a of Theorems 3.4.1 and 3.4.2, while Part b comes from Lemma 3.2.5.
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3.4.2 Proof of Corollary 3.4.3

First, suppose α ∈ [1 + ϵ, 2). From Corollary 3.4.3.Part a and the independence between
agents, we get that

Pr
[
τk

α(u∗) = O (ℓ)
]

= 1 −
[
Ω
( 1

µℓ

)]k

≥ 1 − e
−Ω
(

k
ℓ log ℓ

)
,

where we used the inequality 1 − x ≤ e−x for every real x and the bound µ ≤ log ℓ. From
Corollary 3.4.3.Part b and the independence between agents, we get that

Pr
[
τk

α(u∗) = ∞
]

=
[
1 − O

(
µ log ℓ

ℓ

)]k

≥ exp
(

−O
(

k log2 ℓ

ℓ

))
,

where we used again µ ≤ log ℓ and the inequality 1 − x ≥ e− x
1−x for every real x. Thus, if

k = o
(
ℓ/ log2 ℓ

)
, for the Taylor’s expansion of the exponential function, we get hitting time ∞

with probability 1 − o(1). For α = 2 the proof proceeds exactly in the same way.

3.5 The case α ∈ (3, ∞)
We analyze now the hitting time of Lévy walks with parameter α ∈ (3, ∞), which is the

exponent range for which the jump length has bounded mean and bounded variance.

Theorem 3.5.1. Let α ∈ (3, ∞) and u∗ ∈ Z2 with ℓ = ∥u∗∥1. Let ν = min{log ℓ, 1
α−3}, and

γ = α2

(α−3)2 . Then:

(a) Pr
[
τα(u∗) = O

(
ℓ2 log2 ℓ

)]
= Ω

(
1/(γ log4 ℓ)

)
, if α ≥ 3 + ω (log log ℓ/ log ℓ);

(b) Pr [τα(u∗) ≤ t] = O
(
ν · t2/ℓα+1), for any step ℓ ≤ t = O

(
ℓ2/ν

)
.

From the above result, we easily obtain the following bounds on the parallel hitting time.

Corollary 3.5.2. Let α ∈ (3, ∞), u∗ ∈ Z2, ℓ = ∥u∗∥1, and 1 ≤ k ≤ o
(
ℓ2). Let ν =

min{log ℓ, 1
α−3} and γ = α2

(α−3)2 . Then:

(a) Pr
[
τk

α(u∗) = O
(
ℓ2 log2 ℓ

)]
= 1 − e−ω(log ℓ), if k ≥ Ω

(
log6 ℓ

)
and α ≥ 3 + ω

(
log log ℓ

log ℓ

)
;

(b) Pr
[
τk

α(u∗) ≤ ℓ2/
√

k
]

= 1 − o(1).

Corollary 3.5.2.a says that τk
α(u∗) = O

(
ℓ2 log2 ℓ

)
, w.h.p., for k ≥ polylog ℓ and α ≥

3 + ω
(

log log ℓ
log ℓ

)
, and Corollary 3.5.2.b provides a crude lower bound indicating that increasing

k beyond polylog ℓ, can only result in sublinear improvement.

3.5.1 Proof of Theorem 3.5.1

The structure of the proof is similar to that for Theorems 3.3.1 and 3.3.3. We will use the next
three lemmas, which are analogous to Lemmas 3.3.5 to 3.3.7, respectively
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Lemma 3.5.3 (Lévy flight with α ∈ (3, ∞)). Let hf be the hitting time of a Lévy flight for target
u∗ ∈ Z2, and let ℓ = ∥u∗∥1. If α − 3 = ω (log log ℓ/ log ℓ), then

Pr
[
hf = O

(
ℓ2 log2 ℓ

)]
= Ω

(
(α − 3)3

α2 log4 ℓ

)
.

Lemma 3.5.4. Let hf be defined as in Lemma 3.5.3, and let τα(u∗) be the hitting time of a Lévy
walk with the same α ∈ (3, ∞), for the same target. Then, for every step t,

Pr [τα(u∗) = O (t)] ≥ Pr [hf ≤ t] − O
(

α

(α − 3)t

)
.

Lemma 3.5.5. Let α ∈ (3, ∞), u∗ ∈ Z2, and ℓ = ∥u∗∥1. For any step t such that ℓ ≤ t =
O
(
ℓ2/ν

)
,

Pr [τα(u∗) ≤ t] = O
(
νt2/ℓα+1

)
,

where ν = min{log ℓ, 1
α−3}.

The proofs of the above lemmas are given in Sections 3.5.2 to 3.5.4, respectively. Using these
lemmas can now prove our main result as follows. From Lemmas 3.5.3 and 3.5.4, by substituting
t = Θ

(
ℓ2 log2 ℓ

)
, we get

Pr
[
τα(u∗) = O

(
ℓ2 log2 ℓ

)]
= Ω

(
(α − 3)2

α2 log4 ℓ

)
− O

(
α

(α − 3)ℓ2 log2 ℓ

)
= Ω

(
(α − 3)2

α2 log4 ℓ

)

if 3 + ω (log log ℓ/ log ℓ) ≤ α, which is Part a of Theorem 3.5.1. Also, by applying Lemma 3.5.5,
we get Part b of Theorem 3.5.1.

3.5.2 Proof of Lemma 3.5.3

The proof is similar to that of Lemma 3.3.5, in Section 3.3.2. We reuse some of the notation
defined there. Namely, (Lf

i )i≥0 denotes the Lévy flight process, Si is the length of the i-th jump,
and Zf

u (i) is the number of visits to u in the first i steps. We also use the following modified
definitions: For each node u and i ≥ 0, we let

pu,i = Pr
[
Lf

i = u
]

,

thus E
[
Zf

u (i)
]

=
∑i

j=0 pu,j . We partition Z2 into sets A1, A2, A3 as follows. Let δ > 0 be some
value to be fixed later. Then,

A1 = {v : ∥v∥∞ ≤ ℓ}

A2 = {v : ∥v∥1 ≤ 4
√

2(1 + δ)t log t} \ A1

A3 = Z2 \ (A1 ∪ A2).
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3.5.2.1 Proof overview

First, we bound the mean number of visits to A1 until a given step t. We show that

E
[
Zf

0 (t)
]

= O
(
log2 t

)
.

The monotonicity property from Section 3.2.2 implies that∑
v∈A1

E
[
Zf

v (t)
]

≤ |A1| · E
[
Zf

0 (t)
]

≤ c(3 − α)(ℓ log t)2/α,

where c is a constant. To bound the mean number of visits to A2, as before, we use the monotoni-
city property again to obtain∑

v∈A2

E
[
Zf

v (t)
]

≤ |A2| · E
[
Zf

u∗ (t)
]

≤ 32(1 + δ)t log2 t · E
[
Zf

u∗ (t)
]

.

For the number of visits to A3, using a Chernoff-Hoeffding bound we show that∑
v∈A3

E
[
Zf

v (t)
]

≤ c′
(
t1−(α−3)/2 + 1

)
,

for some constant c′ and for δ = Θ
(
1/(α − 3)2) large enough. Combining the above we obtain

cℓ2 log2 t + 32(1 + δ)t log2 t · E
[
Zf

u∗ (t)
]

+ c′
(
t1−(α−3)/2 + 1

)
≥ t.

By choosing t = Θ
(
ℓ2 log2 ℓ

)
and α − 3 = ω (log log ℓ/ log ℓ), the above inequality implies

E
[
Zf

u∗ (t)
]

= Ω
(

1
(1 + δ) log2 ℓ

)
.

Since
Pr [hf ≤ t] = Pr

[
Zf

u∗ (t) > 0
]

= E
[
Zf

u∗ (t)
]

/E
[
Zf

u∗ (t)
∣∣∣ Zf

u∗ (t) > 0
]

,

and E
[
Zf

u∗ (t)
∣∣∣ Zf

u∗ (t) > 0
]

≤ E
[
Zf

0 (t)
]

+ 1 = O
(
log2 t

)
, we obtain Pr [hf ≤ t] =

Ω
(
(α − 3)2/(α2 log4 ℓ)

)
.

3.5.2.2 Detailed proof

Lemma 3.5.6. For any t ≥ 0, E
[
Zf

0 (t)
]

= bt = O
(
log2 t

)
.

Proof. First, we show the following. Let Lf
t′ be the two dimensional random variable representing

the coordinates of the agent performing the Lévy flight at time t′. Let Lf
t′ = (Xt′ , Yt′) and consider

the projection of the Lévy flight on the x-axis Xt′ : it can be expressed as the sum of t′ random
variables Sx

j , j = 1, . . . , t′, representing the projection of the jumps (with sign) of the agent on
the x-axis at times j = 1, . . . , t′. The partial distribution of the jumps along the x-axis is given by
Lemma F.1 in Appendix F.2, and states that, for any given d ≥ 1, we have

Pr
[
Sx

j = ±d
]

= Θ
( 1

dα

)
.
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Since E
[
Zf

0 (t)
]

=
∑t

k=1 p0,k, it suffices to accurately bound the probability p0,k for each k =
1, . . . , t. Let us partition the natural numbers in the following way

N =
∞⋃

t′=1

[
N ∩

[
2t′ log t′, 2(t′ + 1) log

(
t′ + 1

)) ]
.

For each k ∈ N, there exists t′ such that k ∈ [2t′ log t′, 2(t′ + 1) log(t′ + 1)). Then, within
2t′ log t′ steps the walk has moved to distance Θ

(√
t′
)

at least once, with probability Ω
(

1
(t′)2

)
.

Indeed, the sequence {Sx
j }1≤j≤t′ consists of i.i.d. r.v.s with zero mean and finite variance Ω (1).

Thus, the central limit theorem (Lemma B.5 in Appendix B) implies that the variable

Sx
1 + · · · + Sx

t

σ
√

t

converges in distribution to a standard normal random variable Z, with σ = Ω (1). Let ϵ > 0 be a
small enough constant, then there exists a t′ large enough, such that for all t′ ≥ t′ it holds that

Pr
[
Sx

1 + · · · + Sx
t′ ≥ σ

√
t′
]

≥ Pr [Z ≥ 1] − ϵ = c

2 > 0,

for some suitable constant c ∈ (0, 1). The symmetrical results in which the normalized sum is
less than −σ

√
t′ holds analogously. Thus, for all t′ ≥ t′, we have that

∣∣∣∑t′
j=1 Sx

j

∣∣∣ ≥ σ
√

t′ with
constant probability c > 0. In 2t′ log t′ jumps, we have 2 log t′ sets of t′ consequent i.i.d. jumps.
For independence, the probability that at least in one round before round 2t′ log t′ the Lévy flight
has displacement Θ

(√
t′
)

from the origin is at least

1 − (1 − c)2 log t′ = 1 − O
( 1

(t′)2

)
.

Once reached such a distance, there are at least λ2 = Θ (t′) different nodes that are at least
as equally likely as 0 to be visited at any given future time for the monotonicity property
(Lemma 3.2.3). Thus, the probability to reach the origin at any future time is at most O (1/t′).
Let Ht′ be the event that in any instant before time 2t′ log t′ the Lévy flight has displacement at
least Θ

(√
t′
)

. Observe that

p0,k = Pr
[
Lf

t = 0 | Ht′

]
Pr [Ht′ ] + Pr

[
Lf

t = 0 | HC
t′

]
Pr
[
HC

t′

]
,

by the law of total probability. We remark that in an interval [2t′ log t′, 2(t′ + 1) log(t′ + 1)) there
are

2(t′ + 1) log
(
t′ + 1

)
− 2t′ log t′ = 2t′

[
log

(
1 + 1

t′

)]
+ 2 log

(
t′ + 1

)
= O

(
log t′)

integers. Thus, if It′ = [2t′ log t′, 2(t′ + 1) log(t′ + 1)), we have
t∑

k=1
p0,k ≤

t∑
t′=1

∑
k∈It′

p0,k

≤
t∑

t′=1

[
Pr
[
Lf

t = 0 | Ht′

]
Pr [Ht′ ] + Pr

[
Lf

t = 0 | HC
t′

]
Pr
[
HC

t′

]]
O(log t′)

≤ t′ +
t∑

t′=t′

[
O
( 1

t′

)
+ O

( 1
(t′)2

)]
O(log t′) = O

(
log2 t

)
,
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since t′ is a constant.

We have also the following.

Lemma 3.5.7. For any node u ∈ Z2, it holds that
(i) E

[
Zf

u (t)
]

≤ bt;

(ii) 1 ≤ E
[
Zf

u (t) | Zf
u (t) > 0

]
≤ bt;

(iii) E
[
Zf

u (t)
]

/bt ≤ Pr
[
Zf

u (t) > 0
]

≤ E
[
Zf

u (t)
]
.

Proof. The proof is exactly as that of Lemma 3.3.13.

Thus, the total number of visits to A1 is upper bounded by mu∗bt, where mu∗ = |Qℓ(0)|.
Furthermore, from the monotonicity propert (Lemma 3.2.3), the following holds.

Corollary 3.5.8. For any node u in Z2, we have E
[
Zf

u (t)
]

≥ E
[
Zf

v (t)
]

for all v /∈ Qdu(0).

Namely, almost all the nodes that are “further” than u from the origin are less likely to be
visited at any given future time. This easily gives an upper bound on the total number of visits to
A2 until time t, namely, by taking u = u∗ and by observing that each v ∈ A2 lies outside Qℓ(0),
we get that the average number of visits to A2 is at most the expected number of visits to the target
u∗ (i.e., E

[
Zf

u∗ (t)
]
) times (any upper bound of) the size of A2: in formula, it is upper bounded by

E
[
Zf

u∗ (t)
]

· 32(1 + δ)t log2 t.

We also give a bound to the average number of visits to nodes that are further roughly
√

t · log t
from the origin.

Lemma 3.5.9. A sufficiently large positive real δ exists such that δ = Θ
(
1/(α − 3)2) and∑

v∈Z2 :
∥v∥1≥4

√
2(1+δ)t log t

E
[
Zf

v (t)
]

= O
(
t1− α−3

2 + 1
)

.

Proof. Since α > 3, the expectation and the variance of a single jump-length are finite. By
Equation (3.2) in the preliminaries (Section 3.2), the probability a jump length is at least

√
t is

Θ
(
1/t

α−1
2
)

. Let us call Aj the event that the j-th jump-length is less than
√

t. Let us recall that

Lf
j is the random variable denoting the coordinates of the nodes the corresponding Lévy flight vi-

sits at the end of the j-th jump. We can write Lf
j = (Xj , Yj), where Xj is x-coordinate of the Lévy

walk after the j-th jump, and Yj is the y-coordinate. Then, Xj can be seen as the sum
∑j

i=1 Sx
i

of j random variables representing the projections of the jumps along the x-axis. For symmetry,
E [Xj ] = 0 for each j, while Var (Xj) = jVar (Sx

1 ) = O (j/(α − 3) + j) = O (αj/(α − 3))
since Sx

1 has finite variance O (1 + 1/(α − 3)). This comes by observing that Sx
1 ≤ S1. Then,

conditional on A = ∩t
i=1Ai, we can apply the Chernoff bound (Lemma B.4) on the sum of the
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first j jumps, for j ≤ t. We have

Pr
[
|Xt| ≥ 2

√
2(1 + δ)t log t

∣∣ A

]
≤ 2 exp

− 8(1 + δ)t · log2 t

O
(

αt
α−3

)
+ Θ

(√
(1 + δ)t · log t

)√
t


≤ 2 exp

(
−Θ

(
α − 3

α

√
1 + δ · log t

))
≤ 2

tΘ( α−3
α

√
1+δ) ,

which is less than 1/t2 if we choose δ = Θ
(
1/(α − 3)2) large enough. The same result holds for

the random variable Xj for each j < t, since the variance of Xj is smaller than the variance of
Xt. Notice that

Pr
[
∩t

j=1{|Xj | < 2
√

2(1 + δ)t log t} | A

]
= 1 − Pr

[
∪t

j=1{|Xt| ≥ 2
√

2(1 + δ)t log t} | A

]
≥ 1 − t

t2 = 1 − 1
t
,

and that

Pr [A] = 1 − Pr
[
AC
]

= 1 − Pr
[
∪t

j=1AC
j

]
≥ 1 − O

(
t

t
α−1

2

)
= 1 − O

( 1
t

α−3
2

)
.

An analogous argument holds for the random variable Yt conditioned to the event A. Then,

Pr
[
∩t

j=1{∥Xj∥1 < 2
√

2(1 + δ)t · log t}, ∩t
j=1{∥Yj∥1 < 2

√
2(1 + δ)t · log t}

]
≥ Pr

[
∩t

j=1{∥Xj∥1 < 2
√

2(1 + δ)t · log t}, ∩t
j=1{∥Yj∥1 < 2

√
2(1 + δ)t · log t} | A

]
Pr [A]

≥
(

2Pr
[
∩t

j=1{∥Xj∥1 < 2
√

2(1 + δ)t · log t} | A

]
− 1

)
Pr [A]

(∗)
≥
[
2
(

1 − 1
t

)
− 1

](
1 − O

( 1
t

α−3
2

))
≥ 1 − O

( 1
t

α−3
2

+ 1
t

)
,

where (∗) holds for symmetry (the distribution of Yt is the same as the one of Xt) and for the
union bound. Thus, in t jumps (which take at least time t), the walk has never reached distance
4
√

2(1 + δ)t · log t, w.h.p. The average number of visits until time t to nodes at distance at least
4
√

2(1 + δ)t · log t is then less than t · O
(
1/t

α−3
2 + 1/t

)
= O

(
t1− α−3

2 + 1
)

.

The following puts together the previous estimations in order to get a lower bound on the
average number of visits the target u∗. Let δ > 0 be as given in Lemma 3.5.9 for the rest of the
section.

Lemma 3.5.10. For every node u∗ ∈ Z2 and every time t ≥ 1,

mu∗bt + E
[
Zf

u∗ (t)
]

· 32(1 + δ)(t log2 t) + O
(
t1− α−3

2 + 1
)

≥ t.
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Proof. Suppose the agent has made t jumps, thus visiting t nodes. Then,

E

∑
v∈Z2

Zf
v (t)

 = t.

We divide the plane in different zones, and we bound the number of visits over each zone in expec-
tation. From Lemma 3.5.7, the number of visits inside A1 = Qℓ(0) until time t is at most mu∗bt,
where mu∗ = |Qℓ(0)| = 4ℓ2. From Lemma 3.5.9, the number of visits A3 is at most O

(
t1− α−3

2
)

.

Each of the remaining nodes, i.e., the nodes in A2, which are at most 32(1 + δ)(t log2 t) in total,
is visited by the agent at most E

[
Zf

u (t)
]

times, for Corollary 3.5.8. Then, we have that

mu∗bt + E
[
Zf

u∗ (t)
]

· 32(1 + δ)(t log2 t) + O
(
t1− α−3

2 + 1
)

≥ t.

We can now complete the proof of Lemma 3.5.3 as follows. Lemma 3.5.10 implies that

E
[
Zf

u∗ (t)
]

= Ω
(

t − t1− α−3
2 − 1 − mu∗bt

(1 + δ)t log2 t

)
,

while Lemma 3.5.7 implies that

Pr [hf ≤ t] = Ω
(

t − t1− α−3
2 − 1 − mu∗bt

(1 + δ)t log2 t · bt

)
.

Lemma 3.5.6 gives bt = O
(
log2 t

)
, while Lemma 3.5.9 gives δ = Θ

(
1/(α − 3)2). If t =

Θ
(
ℓ2 log2 ℓ

)
is large enough and α−3 = ω (log log ℓ/ log ℓ), so that t−t1− α−3

2 −mu∗bt = Θ (t),
we get the result.

3.5.3 Proof of Lemma 3.5.4

If Si is the random variable yielding the i-th jump length, then it has expectation Θ (1)
and variance. This means that the sum S̄t =

∑t
i=1 Si has expectation Θ(t) and variance

O (t + t/(α − 3)) = O (αt/α − 3). Then, from Chebyshev’s inequality,

Pr
[
S̄t ≥ Θ(t) + t

]
≤

Var
(
S̄t

)
t2 = O

(
α

(α − 3)t

)
.

Hence,

Pr [hw = O (t)] ≥ Pr
[
hf ≤ t, S̄t ≤ Θ(t) + t

]
= Pr [hf ≤ t] − O

(
α

(α − 3)t

)
,

where the latter equality is obtained using the union bound.
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3.5.4 Proof of Lemma 3.5.5

Let Xi be the x-coordinate of the agent at the end of the i-th jump-phase. For any i ≤ t, we
bound the probability that Xi > ℓ/4. The probability that there is a jump whose length is at least
ℓ among the first i jumps is O(i/ℓα−1) for the union bound. Conditional on the event that the first
i jump lengths are all smaller than ℓ (event Ei), the expectation of Xi is zero and its variance is

i ·
ℓ/4∑
d=1

Θ
(
d2/dα

)
= O

(
iνℓ3−α

)
,

for the integral test (Lemma E.1), where ν = min{log ℓ, 1
α−3}. Chebyshev’s inequality implies

that

Pr [|Xi| ≥ ℓ/4 | Ei] ≤ O
(
iνℓ3−α

)
Θ(ℓ2) = O

(
iν

ℓα−1

)
,

Since the conditional event has probability 1−O(i/ℓα−1), then the “unconditional” probability
that of the event |Xi| ≤ ℓ/4 is[

1 − O
(

i

ℓα−1

)]
·
[
1 − O

(
iν

ℓα−1

)]
= 1 − O

(
νt

ℓα−1

)
,

since i ≤ t, with t which is some function in O
(
ℓα−1/ν

)
. The same result holds analogously

for Yi (the y-coordinate of the agent after the i-th jump), obtaining that |Xi| + |Yi| ≤ ℓ/2 with
probability 1 − O

(
νt/ℓα−1) by the union bound.

Consider the first jump-phase. The probability the agents visits the target during it is O(1/ℓα)
for Corollary 3.2.2 (Section 3.2). Now, let 2 ≤ i ≤ t. We want to estimate the probability the agent
visits the target during the i-th jump-phase. We recall that Bℓ/4(u∗) is the rhombus centered in u∗

that contains the nodes at distance at most ℓ
4 from u∗. We denote the event that the agent visits the

target during the i-th jump-phase by Fi. Furthermore, let Vi−1 be the event that the (i−1)-th jump
ends in Bℓ/4(u∗), and Wi−1 the event that (i − 1)-th jump ends at distance farther than ℓ/2 from
the origin. Then, by the law of total probabilities, we have

Pr [Fi] = Pr [Fi | Wi−1] Pr [Wi−1] + Pr
[
Fi | W C

i−1

]
Pr
[
W C

i−1

]
=
[
Pr [Fi | Wi−1, Vi−1] Pr [Vi−1 | Wi−1] + Pr

[
Fi | Wi−1, V C

i−1

]
Pr
[
V C

i−1 | Wi−1
]]

Pr [Wi−1]

+ Pr
[
Fi | W C

i−1

]
Pr
[
W C

i−1

]
(∗)
≤
[
Pr [Fi | Vi−1] Pr [Vi−1 | Wi−1] + Pr

[
Fi | Wi−1, V C

i−1

]]
Pr [Wi−1] + Pr

[
Fi | W C

i−1

]
Pr
[
W C

i−1

]
(⋆)
≤
[
O
( 1

ℓ2

)
+ O

( 1
ℓα

)]
O
(

νt

ℓα−1

)
+ O

( 1
ℓα

)
= O

(
νt

ℓα+1

)
(3.11)

where in (∗) we used that Vi−1 ⊂ Wi−1 and that Pr
[
V C

i−1 | Wi−1
]

≤ 1, while in (⋆) we used that

Pr [Fi | Vi−1] Pr [Vi−1 | Wi−1] = O
( 1

ℓ2

)
, (the proof is below)

that Pr
[
Fi | Wi−1, V C

i−1

]
= O (1/ℓα) because the jump starts in a node whose distance form

the target is Ω(ℓ), and that Pr
[
Fi | W C

i−1

]
= O (1/ℓα) for the same reason. As for the term
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Pr [Fi | Vi−1] · Pr [Vi−1 | Wi−1] we observe the following. Let ti be the time at the end of the i-th
jump phase. Then

Pr [Fi | Vi−1] Pr [Vi−1 | Wi−1] =
∑

v∈Bℓ/4(u∗)
Pr
[
Fi | Lw

ti
= v

]
Pr
[
Lw

ti
= v | Wi−1

]

≤ O
( 1

ℓ2

) ∑
v∈Bℓ/4(u∗)

Pr
[
Fi | Lw

ti
= v

]
,

since Lemma 3.2.3 holds in a consequent way conditional on Wi−1, and since, for each v ∈
Bℓ/4(u∗), there are at least Θ

(
ℓ2) nodes at distance at least ℓ/2 from the origin which are more

probable to be visited than v. Then, we proceed similarly to the proof of Lemma 3.2.4 to show that∑
v∈Bℓ/4(u∗) Pr

[
Fi | Lw

ti
= v

]
= O(1), and we obtain Pr [Fi | Vi−1] Pr [Vi−1 | Wi−1] = O

(
1/ℓ2).

Thus, by the union bound and by the inequality (3.11), the probability that at least during one
of the t jump-phases the agent finds the target is, for some t = O

(
ℓ2/ν

)
,

1
ℓα

+ O
(

νt2

ℓα+1

)
= O

(
νt2

ℓα+1

)
,

since t ≥ ℓ.

3.5.5 Proof of Corollary 3.5.2

From Theorem 3.5.1.Part a and the independence between agents we ge that

Pr
[
τk

α(u∗) = O
(
ℓ2 log2 ℓ

)]
= 1 −

[
1 − Ω

( 1
γ log4 ℓ

)]k

≥ 1 − e
−Ω
(

k
γ log4 ℓ

)
,

where we have used the inequality 1 − x ≤ e−x for all x. Then, part (a) follows. Let t = ℓ2/k ·√
k/ log2 ℓ; hence, we have t ≤ o

(
ℓα−1/ν

)
since k = o

(
ℓ2). If t < ℓ, then Pr

[
τk

α(u∗) > t
]

=
1, since ℓ steps are needed to reach distance ℓ. If t ≥ ℓ, from Theorem 3.5.1.Part b and the
independence between agents, we get that

Pr
[
τk

α(u∗) > t
]

=
[
1 − O

(
νt2

ℓα+1

)]k

≥ exp
(

−O
(

kt2 log ℓ

ℓα+1

))
,

where we have used the inequality 1 − x ≥ e− x
1−x for x < 1, that νt2/ℓα+1 = o (1), and that

ν ≤ log ℓ. Then, by substituting t = ℓ2/k ·
√

k/ log2 ℓ, and by the Taylor’s expansion of the
exponential function, we get

exp
(

−O
(

kt2 log ℓ

ℓα+1

))
= 1 − O

( 1
log3 ℓ

)
.

Corollary 3.5.2.Part b follows by observing that ℓ2/k ·
√

k/ log2 ℓ ≤ ℓ2/
√

k.
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3.6 Distributed search algorithm

In this section, we prove the following theorem, which provides a simple distributed search al-
gorithm, which allows k agents to find an arbitrary, unknown target on Z2 in optimal time (modulo
polylogarithmic factors).

Theorem 3.6.1. Consider k independent Lévy walks that start simultaneously from the origin,
and the exponent of each walk is sampled independently and uniformly at random from the real
interval (2, 3). Let τk

rand(u∗) be the parallel hitting time for a given target u∗. If k ≥ log8 ℓ, and
ℓ = ∥u∗∥1 is large enough, then

Pr
[
τk

rand(u∗) = O
(
(ℓ2/k) · log7 ℓ + ℓ log3 ℓ

)]
= 1 − e−ω(log ℓ).

We need the next lemma, which is a slight generalization of Corollary 3.3.2.a that bounds the
hitting time of a collection of Lévy walks with different exponent values.

Lemma 3.6.2. Consider k independent Lévy walks that start simultaneously from the origin, and
the exponent of each walk is in [α1, α2]. Let hdiff be the parallel hitting time for a target u∗ with
∥u∗∥1 = ℓ. If 2 < α1 ≤ α2 ≤ 3 − ϵ and ϵ = ω(1/ log ℓ), then

Pr

[
hdiff = O

(
ℓα2−1

α1 − 2

)]
= 1 − e

−Ω
(

(3−α2)2k

ℓ3−α1 log2 ℓ

)
.

Proof. First, we recall that the k agents move independently from each other. Let τα(u∗) be the
hitting time of a single walk. If α ∈ [α1, α2], then from Lemmas 3.3.5 and 3.3.6,

Pr

[
τα(u∗) = O

(
ℓα−1

α − 2

)]
= Ω

(
(3 − α)2

ℓ3−α log
2

α−1 ℓ

)
= Ω

(
(3 − α2)2

ℓ3−α1 log2 ℓ

)
,

provided that 3 − α2 = ω (1/ log ℓ). Observe that Pr
[
τα(u∗) = O

(
ℓα2−1

α1−2

)]
≥

Pr
[
τα(u∗) = O

(
ℓα−1

α−2

)]
. Then,

Pr

[
hdiff = O

(
ℓα2−1

α1 − 2

)]
= 1 −

(
1 − Ω

(
(3 − α2)2

ℓ3−α1 log2 ℓ

))k

≤ 1 − e
−Ω
(

(3−α2)2k

ℓ3−α1 log2 ℓ

)
.

We can now prove our main result.

Proof of Theorem 3.6.1. Fix k, ℓ such that k ≥ log8 ℓ, and let ϵ = log log ℓ/ log ℓ. Let α ∈
[2+ϵ, 3−2ϵ], and let kα be the number of Lévy walks whose exponent is in the interval [α, α+ϵ].
Then E [kα] = ϵk, and by the Chernoff bound (Lemma B.1),

Pr [kα ≥ ϵk/2] = 1 − e−Ω(ϵk).

Clearly, the parallel hitting time of the k Lévy walks is upper bounded by the parallel hitting time
of the kα Lévy walks whose exponent is in [α, α + ϵ]. Then, from Lemma 3.6.2, it follows that

Pr

[
τk

rand(u∗) = O
(

ℓα+ϵ−1

α − 2

) ∣∣∣∣∣ kα ≥ ϵk/2
]

= 1 − e
−Ω
(

(3−α−ϵ)2ϵk

ℓ3−α log2 ℓ

)
.
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Combining the last two equations, we obtain

Pr

[
τk

rand(u∗) = O
(

ℓα+ϵ−1

α − 2

)]
= 1 − e

−Ω
(

(3−α−ϵ)2ϵk

ℓ3−α log2 ℓ

)
. (3.12)

We distinguish the following two cases.

Case log7 ℓ ≤ k ≤ ℓ log3 ℓ. Choose some α ∈ [2 + ϵ, 3 − 2ϵ] such that

k = ℓ3−α · log2 ℓ

(3 − α − ϵ)2 · ϵ
· log ℓ · log log ℓ.

Such an α exists because the values of function f(α) = ℓ3−α·log3 ℓ·log log ℓ
(3−α−ϵ)2·ϵ at the extreme points of

α are f(2 + ϵ) ≥ ℓ log3 ℓ ≥ k and f(3 − 2ϵ) ≤ log8 ℓ ≤ k. Substituting the above value of α to
Eq. (3.12), we obtain

Pr

[
τk

rand(u∗) = O
(

ℓα+ϵ−1

α − 2

)]
= 1 − e−ω(log ℓ).

Thus, with probability 1 − e−ω(log ℓ),

k · τk
rand(u∗) = k · O

(
ℓα+ϵ−1

α − 2

)
= O

(
ℓ2 · log5 ℓ

(3 − α − ϵ)2(α − 2)

)
= o

(
ℓ2 · log7 ℓ

)
.

Case k ≥ ℓ log3 ℓ. In this case, we set α = 2 + ϵ and substitute this value of α to Eq. (3.12) to

obtain Pr
[
τk

rand(u∗) = O
(
ℓ1+2ϵ/ϵ

)]
= 1−e

−Ω
(

k log log ℓ

ℓ log2 ℓ

)
= 1−e−ω(log ℓ). Thus, with probability

1 − e−ω(log ℓ),
τk

rand(u∗) = O
(
ℓ1+2ϵ/ϵ

)
= o

(
ℓ · log3 ℓ

)
.

Combining the two cases completes the proof.

3.7 Discussion and future work

Our setting, that is also a specific instance of the ANTS problem, serves as an abstract and
simplified model of cooperative foraging, where a group of k walkers (that move approximately
independently between one another) is searching for some food location around a nest site, a food
storage area, or a sheltered environment. If the typical or maximum distance ℓ of the food (target)
from the nest (source) is fixed and known by the walkers executing parallel Lévy walks with the
same exponent, the latters can optimize search efficiency by tuning the exponent value and/or the
number k of animals participating in the foraging. Naturally, this would imply (partial) knowledge
of ℓ. In that setting, no universally optimal exponent value exists, as the optimal exponent depends
on k and ℓ. As an alternative, novel approach suggested by our last result, that does not require any
knowledge of ℓ, k, nor communication, is that each animal performs a Lévy walk with a randomly
chosen exponent. As discussed in Section 1.2.2, this strategy, which surprisingly achieves near
optimal search efficiency for all distance scales, implies that different members of the same group
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follow different search patterns, and offers an almost-optimal uniform solution (within a polylog ℓ
factor) to the ANTS problem that is extremely simple and natural. Our work mathematically cor-
roborates the Lévy flight foraging hypothesis by showing that Lévy walks are surprisingly efficient
movement models even in the parallel search.

What other studies that may further establish the optimal performances of Lévy walks deserve
to be addressed? What follows is an extremely partial answer. An obvious generalization of our
work to the n-dimensional space arises: we expect a generally different behavior. With respect
to this, notice that the simple random walk also undergoes changes in behavior as it becomes
transient when n ≥ 3. Moreover, we have the intuition that the properties of the super-diffusive
regime, i.e., when α ∈ (2, 3) in our formalization, can be further exploited in other distributed
problems: information dissemination in a thorus is an important task in distributed computing and
it has been studied extensively. While the behavior of simple random walks that spread information
is well known both in the two-dimensional case [Pettarin et al., 2011] and in the three-dimensional
one [Lam et al., 2012], that of power-law tail random walks is still unexplored. As for the latter,
we believe that for some density regimes (number of agents / size of the thorus), Lévy walks can
be of strong improvements.



CHAPTER 4
Planning with Biological

Neurons and Synapses
In this chapter we consider the Assembly Calculus and we test experimentally its capa-
bilities. In particular, we empirically demonstrate that complex programs such as heu-
ristics for the planning task in the Blocks World run correctly and reliably.
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4.1 Introduction

In this chapter we investigate the capabilities of the Assembly Calculus (AC) [Papadimitriou
et al., 2020], a recently proposed computational system for modeling a dynamical, distributed
system of firing neurons following biological principles. Our contribution in this thesis is to de-
monstrate that a program in the AC is capable of implementing reasonably sophisticated stylized
planning strategies – in particular, heuristics for solving tasks in the blocks world [Slaney and Thié-
baux, 2001]; in particular, we code the planning heuristics in the AC framework in the Julia pro-
gramming language [Bezanson et al., 2017]. The exposed results are based on the work [D’Amore
et al., 2022b].

Roadmap. In the following, we briefly describe the content of this chapter. In Section 4.2 we
define the Assembly Calculus (Section 4.2.1) and the Blocks World and the planning task (Sec-
tion 4.2.2). Afterwards, in Sections 4.3 and 4.4 we describe the AC programs we designed to im-
plement the planning heuristics, and discuss the experiments we ran, respectively. In Section 4.5
we summarize our results and open to further research directions that can strengthen the AC theory
and widen its application domain. Finally, in Section 4.6 we give some more technical details about
our experiments and their reproducibility, and further discuss the limits of the Assembly calculus.

4.2 Preliminaries

4.2.1 Crash course in the Assembly Calculus

In this section we formally introduce the Assembly Calculus framework, as it is described
in [Papadimitriou et al., 2020]. We start recalling what an Erdös-Rényi graph is.

Definition 4.2.1 (Directed Erdös-Rényi graph). Let n ∈ N and p ∈ (0, 1). A directed graph
G = (V, E) is constructed according to the Erdös-Rényi model if |V | = n and for any x, y ∈ V ,
(x, y) ∈ E with probability p. Such a graph is denoted by Gn,p.

We will equivalently denote any edge (x, y) of the graph by xy. We remark that we are making
an abuse of notation for the sake of simplicity as Gn,p represented the undirected Erdös-Rényi
graph in Definition 2.7.1 (Chapter 2). The following is the definition of brain area.

Definition 4.2.2 (Brain area). Given any nA ∈ N and pA ∈ (0, 1), a brain area A with nA neurons
and connection probability pA is a directed Erdös-Rényi GnA,pA .

Here, pA is the probability that two nodes/neurons of area A are connected. We are now ready
to define the brain.

Definition 4.2.3 (Brain). Let A = {A1, A2, . . . , Am} be a finite set of disjoint brain areas, and
let C ⊆ A × A be any set of different pairs of brain areas. Furthermore, for each (Ai, Aj) ∈ C,
let pAi,Aj ∈ (0, 1). Finally, let f : V × N → {0, 1} and w : E × N → R+ be two functions. The
brain is a graph B = (V, E, w, f) where V = ⊔m

i=1V (Ai) and 1 E = (⊔m
i=1E(Ai)) ⊔ E⋆, where

E⋆ is characterized as follows:

∀(Ai, Aj) ∈ C, ∀x ∈ Ai, ∀y ∈ Aj , (x, y) ∈ E⋆

1. ⊔ is the disjoint union.
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with probability pAi,Aj . The functions w and f are called, respectively, the edge weight function
and the neuron activation function.

We refer to brain edges as fibers and to brain nodes as neurons. In order to describe the AC
dynamics, we must specify how the neuron activation function and the edge weight function are
defined: we accomplish this recursively. We first remark that for each neuron x and any time t,
f(x, t) = 1 means that neuron x is firing (or, equivalently, active) at time t, and that for each edge
e = xy, w(e, t) yields the weight of e at time t.

For each area A ∈ A, let kA ∈ N be an integer called the k − CAP . At time t = 0, all weights
are initialized to be 1. At any time t, each neuron x receives an input I(x, t) that can either be
provided by the external environment, or depend on the neurons that are firing (active) at time
t − 1. In the latter case, the input for a neuron is the quantity

I(x, t) =
∑

y∈N (x)
w(yx, t − 1) · f(y, t − 1).

A neuron receiving an input is said to be excited. In any area A, a neuron x fires according to the
k-Winners Take All rule (k-WTA), that is, if and only if it belongs to the set of the kA neurons with
the highest input. This phenomenon tries to capture what happens in the brain though populations
of inhibitory neurons [Papadimitriou et al., 2020], but WTA dynamics that tackle this problem
in details are still missing; a further discussion on works related to this dynamics is given in
Section 4.5. Hence, we only postulate this aspect by assuming exclusively its final effect. Formally,
if F t

A is the set of the kA neurons with the highest input at time t in area A, 2

f(x, t) =
{

1 if x ∈ F t
A,

0 otherwise.

The behavior of the weights at time t ≥ 1 depends on the neurons that fired at time t − 1, as
the weight update rule follows Hebbian learning: for each area A ∈ A, upon the firing of both
endpoints in consequent rounds, the weight of an edge xy is multiplied by a factor (1 + β) where
β = βA > 0 is a constant which is specific for area A. If, instead, the edge connects different
areas, say Ai and Aj , then the Hebbian constant depends on the ordered pair, i.e. β = βAi,Aj .
Formally, for each edge (x, y) ∈ E,

w(xy, t) = [w(xy, t − 1)(1 + β)] · [f(y, t)f(x, t − 1)] + w(xy, t − 1) · [1 − f(y, t)f(x, t − 1)] .

As already mentioned in the introduction (Section 1.3), in the original definition of the AC, a
process of homeostasis was also modelled through a periodic renormalization, at a different time
scale, of the synaptic weights, in order to avoid the generation of huge weights. Such process is
of course part of any realistic brain system, also providing a mechanism for forgetting. We will
not implement here this feature of the model for simplicity, but its presence would not affect our
results.

Furthermore, an area of excitatory neurons can be inhibited, that is, its neurons cannot fire.
This aspect can also be accomplished trough populations of inhibitory neurons that send inhi-
bitory inputs to other neurons preventing them from firing. Similarly, an inhibited area can be
disinhibited, i.e. its neurons can now fire again; disinhibition can be realized by a second po-
pulation of inhibitory neurons that inhibits the first one. We also assume the same operations

2. Ties are broken uniformly at random.
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can be carried out on fibers, in accordance with [Mitropolsky et al., 2021]. For a set of areas
A, we write inhibitArea (A) to denote the operation of inhibiting all areas in A; similarly, by
disinhibitArea (A) we denote the operation f disinhibiting all areas in A. If, instead, F is a
set of pairs of areas, inhibitFiber (F) inhibits all fibers between any area pair in F , while
disinhibitFiber (F) disinhibits all fibers between the pairs in F . Here, (dis)inhibition is al-
ways determined by which areas and fibers fired at the previous time step. Such operators are
only stylized functions that are postulated in the model which capture some aspects of real neu-
ronal (dis)inhibition mechanisms; obviously, the use we make of them is a strong simplification,
even though it is justified in other works [Dabagia et al., 2022]. As we already discussed for the
projection operation in the introduction (Section 1.3), the (dis)inhibition operation is an emergent
behavior of the distributed system as a direct or indirect response to external stimuli, induced by
specific neurons firing; in practice and for simplicity, it is a function we call while coding.

In this framework, we are ready to give the definition of an assembly.

Definition 4.2.4 (Assembly). Given any disinhibited area A of a brain B, an assembly FA is a
stable set of kA neurons in A, where stable means that the firing of these kA neurons results
deterministically in the firing of the same set of neurons at the next round when no external inputs
are provided.

It is easy to verify that when a set of neurons is stable for two consecutive rounds according
to Definition 4.2.4, it will be stable in any other future round unless the network state is modified.
In the AC framework, we improperly call the stability of an assembly the ratio measuring the
overlap of two consecutives sets of neurons firing: while a set of neurons that is highly stable is
not formally an assembly w.r.t. Definition 4.2.4, the AC programs keep running realiably as long
as the overlap is high, and it is also realistic to suppose that a real brain assembly isn’t actually a
fixed set of neurons, but a highly stable set of neurons.

Usually, we denote the set of kA neurons an assembly consists of by x. An active assembly is
an assembly that has just fired, i.e. the set of neurons with the highest inputs in the area. We remark
that an active assembly is unique in a given area. Consequently, the activation of an assembly
corresponds to its firing. This operation is denoted by activate (x). We remark that we assume
the neurons keep track of their firing state when they’re inhibited, which implies that an assembly
that was active before inhibition is still active after disinhibition.

Intuitively, an assembly represents a particular concept or idea, and can be manipulated by
strengthening the connections between existing assemblies (association), or by creating new as-
semblies as a result of a projection of existing assemblies. For the purposes of our work, we
consider only the projection operation. By projection of an assembly x, we mean the creation of
an assembly y in a downstream area that can be thought of as a “copy” of x, and such that y
will henceforth fire every time x fires. We report the description of this operation as it is given
in [Papadimitriou et al., 2020].

Projection operation. Consider two distinct disinhibited brain areas A and B such that A is
connected to B. Let x be an active assembly in A. The operation project (A, x, B) entails ac-
tivating, repeatedly, assembly x while B is disinhibited. Such repeated activation creates, in the
disinhibited area B, a sequence of sets of kB cells, let us call them y1, y2, . . . , yt, . . . . The ma-
thematical details are quite involved, but the intuition is the following: cells in B can be thought
of as competing for synaptic input. At the first step, only x provides synaptic input, and thus y1
consists of the kB cells in B which happen to have the highest sum of synaptic weights originating
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in x; note that these weights are subsequently increased by a factor of (1 + β) due to plasticity. At
the second step, neurons in both x and y1 spike, and, as a result, a new set y2 of “winners” from
among cells of B is selected; for typical parameters, y1 overlaps heavily with y2. This continues
as long as x keeps firing, with certain cells in yt replaced by either “new winners” cells that never
participated in a yt′ with t′ < t, or by “old winners” cells that did participate in some yt′ with
t′ < t. We say that the process has converged when there are no new winners. For a large range
of parameters and for high enough plasticity, this process can be proved to converge exponentially
fast, with high probability, to create an assembly y, the result of the projection [Legenstein et al.,
2018].

Remark 4.2.1 – Upon further firing of x, yt may evolve further slowly, or cycle periodically, with
past winners coming in and out of yt; in fact, this mode of assembly firing (cells of the assembly
alternating in firing) is very much in accordance with how assemblies have been observed to fire
in Ca+ imaging experiments in mice; see, for example, [Carrillo-Reid et al., 2019].

It is theoretically possible that new winner cells may come up after convergence; but it can be
proved that this is an unlikely event [Papadimitriou et al., 2020], and in simulations the overlap of
sets of neurons firing consecutively in the projection operation is usually very large. The number
of steps required for convergence depends on the parameters, but, most crucially, on the plasticity
coefficient β. From now on, y will fire every time x fires.

An extension of the projection operation we consider is the strong projection operation, as it
is introduced in [Mitropolsky et al., 2021].

Strong projection operation. Consider all disinhibited areas of the dynamical system, and all
disinhibited fibers in and between them. This defines an undirected graph (which in our usage will
always be a tree). Call a disinhibited area active if it contains an active assembly. Now, suppose
that all these assemblies fire simultaneously, into every other disinhibited adjacent area through
every disinhibited fiber, and these areas fire in turn, possibly creating new assemblies and firing
further down the graph, until the process stabilizes (that is, the same neurons keep firing from
one step to the next). We denote this systemwide operation by strongProject(). Note that
strongProject() is almost syntactic sugar, as it simply abbreviates a sequence of projections
(which can be done in the AC model); however, the notion of an active area is a small addition
to the AC. Though this modification is minor, it simplifies our implementation, but it could be
removed at the expense of more AC brain areas and perhaps time steps.

During the strong projection operation, it is possible that two assemblies in adjacent areas
send synaptic inputs between the two areas. As a result, we may have three situations: the two
assemblies can just strengthen the connections between them without being modified; the two
assemblies are actually slightly modified by this process but stabilize quickly; new assemblies
arise. Experimentally, under a wide range of parameters, we lie in the first two cases (mostly, the
first one). This results in the association of assemblies, where the firing of one results in the firing
of the other.

Finally, we describe the readout mechanism that we postulate in the AC, following [Papadimi-
triou et al., 2020].

Readout mechanism. In [Buzsáki, 2010], the author proposes that, for assemblies to be func-
tionally useful, readout mechanisms must exist that sense the current state of the assembly system
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and trigger appropriate further action. We thus introduce another operation; for any given area A,
isAssembly (A) returns true if A contains an active assembly, and false otherwise. In the
code, this is accomplished making the set of kA neurons with the highest input fire and checking
whether, at the next round, the same set (or a set with a very large overlap with the former one) is
firing in turn.

On the convergence of the AC operations. As mentioned in 1.3.2, the AC makes possible to
perform such operations with assemblies: assemblies are created, in a way that guarantees high
connectivity, through such operations. In [Legenstein et al., 2018, Papadimitriou and Vempala,
2019, Papadimitriou et al., 2020], the authors give theoretical guarantees that some operations are
“possible" in the sense that they can be stably performed with high probability in the dynamical
system of neurons outlined in the previous paragraphs, at least under some restricted range of
parameters, and they also demonstrate the same through simulations. We here state the theoretical
guarantees of convergence of the projection operation, which are (arguably) the most interesting.

Theorem 4.2.1 (Projection convergence). Let A and B two brain areas with the same number of
neurons n, the same connection probability p, the same k-CAP, and the same plasticity β. Fur-
thermore, suppose A has outgoing fibers towards B like a one-way bipartite Erdös-Rényi graph
with probability p. Consider any assembly in A that fires repeatedly in B due to some continuous

external stimuli. Let B⋆ =
√ √

2−1
1+
√

pk
ln n

. Then, with high probability, the process converges 3 and

the total number of neurons in B activated during the entire process is bounded by

(i) k + o(k) if β > β⋆;

(ii) k ·
(

n
k

) 1
4β if β < β⋆.

Moreover, for β > β⋆, any future activation of the upstream assembly leads to the activation of all
but o(k) of the previously activated neurons in B with high probability.

Experimentally, the convergence speed is very fast. E.g., when n = 106, k = 50, β = 0.1, p =
0.1, we find that an assembly is formed with a projection operation after ∼ 35 spikes (firings)
(Section 4.4). We remark that in the more recent work [Dabagia et al., 2022], generalizations of
this theorem are provided in that the projection convergence is analyzed and proved for non-fixed
upstream assemblies, i.e., the source that is projecting comes from a distribution over the neurons
and changes over time.

Wrap-up. Our AC programs are described with the operations in defined in the previous para-
graphs. Inhibition and disinhibition are primitives of the AC system, whereas strong projection
(tantamount to a set of simultaneous projections) is an emergent property of the AC’s dynamical
system. We use other such “emergent" operations, i.e., the readout mechanism isAssembly (),
that are not primitives of the AC system, but can be stably implemented with its basic operations.
In Table 4.1, we summarize the operations (primitive and non primitive) of the AC system, that
we will use in our work. Note that the assembly activation operation is a special operation, which
causes an assembly in a special area fire. Such an area is said to be explicit, and is responsible
for the interaction with the external environment: e.g., when the subject is exposed to some idea,
concept, or sight, a unique corresponding assembly in an explicit area fires.

3. We remind that a projection is said to converge if there is a time t such that the sets of neurons firing in response
in the downstream area at time t and t + 1 are the same.
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Operation Input Semantics
activate (x) Assembly x Makes the assembly x fire in an explicit area
disinhibitArea (A) Set A of areas Disinhibit all the areas in A
disinhibitFiber (F) Set F of pairs of areas Disinhibit the fibers between any pair of areas in F
inhibitArea (A) Set A of areas Inhibit all the areas in A
inhibitFiber (F) Set F of pairs of areas Inhibit the fibers between any pair of areas in F
isAssembly (A) Area A Verify whether there is an active assembly in the area A
project (A, x, B) Areas A and B Executes a projection of (the active assembly in) the area A to the area B
strongProject() Executes a strong projection involving all the disinhibited areas and fibers

TABLE 4.1 – The AC operations (primitive and non primitive) used in our work.

For a complete description of the AC the reader is referred to [Papadimitriou et al., 2020],
where in addition to stability of various assembly operations, it is also proved that, under certain
assumptions, this computational system is capable of performing arbitrary computations as long
as the space required does not exceed n

k (under much milder assumptions,
√

n
k ), assuming k to be

the same k-CAP for all brain areas.

4.2.2 The Blocks World

A blocks world (BW) configuration C is a set of stacks C = {S1, . . . , Sm}, where each stack
Si is a sequence of blocks Si = (b(i)

1 , . . . , b
(i)
ki

), from top to bottom [Slaney and Thiébaux, 2001].

Each block b
(i)
j is assumed to be a unique integer between 1 and s (see Fig. 4.1).

7
1
2
4

5
6
8

3

Figure 4.1 – Example of a BW configuration with 8 blocks. Such a configuration is denoted as
{(4, 3, 1, 7, 5), (8, 6, 3)}.

Planning task. In the planning task [Gupta and Nau, 1991, Gupta and Nau, 1992], we are given
two blocks world configurations, an initial one Cinit and a target one Ctarget constituting in exactly
the same blocks (Fig. 4.2). Three possible actions are allowed: moving a block from the top of
a stack to the table (creating a new stack); moving a block from the top of a stack to the top
of another stack; moving a block from the table to the top of a stack. The goal is to output the
sequence of moves that transforms the Cinit into Ctarget. Among the many possible strategies that
solve this problem, the simplest one is to “demolish” all stacks by putting all blocks on the table,
and then build the final configuration from scratch.
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Figure 4.2 – Planning task input example.

In general, the problem of computing the minimum number of moves is NP -hard, but a very
simple 2-approximation algorithm exists [Gupta and Nau, 1992] and can be summarized as fol-
lows: move all blocks that are not in their final position to the table, and then place them on their
proper stack one by one.

The blocks world AC framework. All programs we write for the planning task work on a
common set of brain areas connected with bi-directional fibers; equivalently, we assume all Erdös-
Rényi graphs to be undirected. This assumption simplifies the implementation and it is also carried
on by previous works [Papadimitriou et al., 2020, Mitropolsky et al., 2021]. We work with one
single explicit area, BLOCKS, which already contains a fixed assembly for every possible block. As
we said, this type of area is special, as an assembly can be activated explicitly with the presentation
of the corresponding block (a number) in input. For a block b and its corresponding assembly
xb, we write activateBlock (b) = activate (xb). There are four other areas used in our AC
programs: HEAD, NODE0, NODE1, and NODE2. HEAD is connected to the NODE0 area via fibers,
while each NODE area is connected to BLOCKS, and to each other in the shape of a triangle:
NODE0 is connected with NODE1, which is connected with NODE2, which is connected with
NODE0 (see Fig. 4.3). All of these areas are standard brain areas of the AC system, containing the
same number of neurons n, of which at most k fire at any time, where k is the same among all
areas. Also, we make the assumptions that the plasticity β and the connection probability p is the
same for the whole brain to make the simulation coding easier. Such simplifications are assumed
also in the related works, such as [Papadimitriou et al., 2020, Mitropolsky et al., 2021, Dabagia
et al., 2022]; we remark that it is possible to work without these assumptions, but it would be more
challenging from a coding point of view and would burden the notation.

4.2.3 Our contribution

Our contribution in this work is to demonstrate that a program in the AC framework is capable
of implementing reasonably sophisticated stylized planning strategies — in particular, the two
aforementioned heuristics for solving tasks in the blocks world — and of running in reasonable
time. Furthermore, we empirically establish the functioning of chaining, that is, the encoding of
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BLOCKS

NODE0 NODE1 NODE2

HEADS

Figure 4.3 – The five main areas used by our programs, along with the connections through fibers.

an arbitrarily large number of non-overlapping assemblies in a constant number of areas; the latter
phenomenon was only hypothesized to work in [Mitropolsky et al., 2021], but left unexplored.
Further details are given in Section 4.3.1.

Roadmap. We shall at first concentrate on configurations with a single stack — already a mea-
ningful problem — and we shall eventually graduate to multiple stacks (see Section 4.3.5). We next
describe four AC programs: (a) a program that takes the input — a sequence of integers represen-
ting a stack — and creates a list-like structure, in a set of brain areas and fibers, for representing
the stack (Section 4.3.1); (b) a program that removes the top block of a stack thus represented
(Section 4.3.2); (c) a program that adds a new block to the represented stack (Section 4.3.3); and
(d) a program for computing the intersection of two stacks represented this way, that is, the longest
common suffix of the two sequences, read from bottom to top (Section 4.3.4).

4.3 The blocks world AC programs

In the following sections, we describe our programs and show example images for the initial
configuration in 4.1.

4.3.1 The Parser

The parser (see Algorithm 1) processes each block in a stack sequentially, starting from the
top. When it analyses the first block (see lines 2-4), the three areas BLOCKS, HEAD, and NODE0,
and the fibers between HEAD and NODE0 and between NODE0 and BLOCKS are disinhibited. The
block assembly is then activated and a strong projection is performed, thus creating a connection
between the assembly in BLOCKS corresponding to the block and an assembly in NODE0, and
between this latter assembly and an assembly in HEAD (see the red dashed lines in Fig. 4.4-C1).
Successively, the HEAD area and the fibers between HEAD and NODE0 and between NODE0 and
BLOCKS are inhibited. For each other block in the stack (see lines 6-11), the NODE area next
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Algorithm 1: PARSER (S)
input: a stack S of blocks b1, b2, . . . , bs.

1 disinhibitArea ({BLOCKS, HEAD, NODE0});
2 disinhibitFiber ({(HEAD, NODE0) , (NODE0, BLOCKS)});
3 activateBlock (b1); strongProject();
4 inhibitArea ({HEAD}); inhibitFiber ({(HEAD, NODE0) , (NODE0, BLOCKS)});
5 foreach i with 2 ≤ i ≤ s do
6 p = (i − 2) mod 3; c = (i − 1) mod 3;
7 disinhibitArea ({NODEc});
8 disinhibitFiber ({(NODEp, NODEc) , (NODEc, BLOCKS)});
9 activateBlock (bi); strongProject();

10 inhibitArea ({NODEp});
11 inhibitFiber ({(NODEp, NODEc) , (NODEc, BLOCKS)});
12 end
13 inhibitArea

({
BLOCKS, NODE(s−1) mod 3

})
;

to the one (i.e., NODEi mod 3) currently disinhibited (i.e., NODEi+1 mod 3) is disinhibited, and the
fibers between this NODE area and the BLOCKS area and between the two NODE areas are disin-
hibited. The next block assembly is then activated and a strong projection is performed, creating a
connection between the assembly in BLOCKS and an assembly in the NODE area just disinhibited,
and between this latter assembly and the assembly previously activated in the previous NODE area
(see the red dashed lines in the Fig. 4.4-C2,C3,C4). After this and before the next block, this latter
NODE area and the fibers between it and the NODE area after it, and those between the NODE area
after it and the BLOCKS area, are inhibited.

The final data structure is a chain of assemblies starting from an assembly in HEAD and passing
through assemblies in the NODE areas (see Fig. 4.4-C6). Note that this chain can contain more
than one assembly in the same NODE area: for instance, in Fig. 4.4-C6, the chain contains two
assemblies in NODE0 and NODE1. Each assembly in the chain is also connected to the assembly
in BLOCKS corresponding to a block in the stack. For instance, the sequence of such assemblies
in Figure 4.4-C6 corresponds to the sequence of blocks 4, 5, 3, 1, 2, which is exactly the sequence
of blocks in the stack from top to bottom (see the left part of Fig. 4.2). Note that Algorithm 1 uses
a constant number of brain areas (that is, five), independently of the number of blocks in the stack.
The number of blocks that can be robustly stored with the parser depends on the relation between
the number of neurons n and the k for the k-WTA rule. Further details on the limits of chaining is
given in Section 4.4.

4.3.2 Removing the Top Block

In order to implement in AC the algorithm which transforms an input stack of blocks into
a target stack of blocks, we start by describing an AC program to remove a block from the top
of a stack. This program uses the same areas and fibers of the parser described in the previous
section (see Figure 4.3-B), with the addition of fibers between HEAD with NODE1, and HEAD with
NODE2. Intuitively, these fibers are needed to allow changing the head of the chain representing
the current stack, without having to shift all the assemblies one position to the left.



114 CHAPTER 4 — Planning with Biological Neurons and Synapses

BLOCKS
Block 4

NODE0 NODE1 NODE2

HEADS

C1

BLOCKS
Block 4

Block 5

NODE0 NODE1 NODE2

HEADS

C2

BLOCKS
Block 4

Block 5
Block 3

NODE0 NODE1 NODE2

HEADS

C3

BLOCKS
Block 4

Block 5
Block 3
Block 1

NODE0 NODE1 NODE2

HEADS

C4

BLOCKS
Block 4

Block 5
Block 3
Block 1
Block 2

NODE0 NODE1 NODE2

HEADS

C5

BLOCKS
Block 4

Block 5
Block 3
Block 1
Block 2

NODE0 NODE1 NODE2

HEADS

C6

Figure 4.4 – C1-6. The behavior of the parser AC program for the initial configuration in 4.1. The
black solid lines denote the fibers of Fig. 4.3 which are disinhibited. The red dashed lines denote
the newly created connections between assemblies in different areas, while the black dotted lines
denote the connections previously created.
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Figure 4.5 – D1-2. The behavior of the AC program which removes the block from the top of a
stack, with input the data structure resulting from the parser execution (only the areas involved in
the remove operation are shown). The black solid lines denote the fibers which are disinhibited.
The red dashed lines denote the newly created connections between assemblies in different areas,
while the black dotted lines denote the already existing connections.

The AC program, which “removes” the block from the top of the stack, uses the connections
created by the parser in order to activate the assembly in the NODE1, which is connected to the
block just below the top block (that is block 5 in Figure 4.5-D1,D2). This is done by projecting
from the HEAD into NODE0, and projecting from NODE0 into the NODE1 (see Figure 4.5-D1).
Through strong projection, the program successively creates a new connection from the active
assembly in the NODE1 area to a new assembly in the HEAD area (see the red dashed line in
Figure 4.5-D2).

Note that the connections between the light gray assemblies in Figure 4.5-D2 are still active,
but they will not be used in the future since the last active assembly in the HEAD area is now
connected to the assembly in the NODE1 area. These connections, indeed, might later disappear
because of a process of homeostasis, which can be modeled in the AC system through a sort of
“renormalization” (as described in [Papadimitriou et al., 2020]). In a certain sense, the system will
slowly “forget” which block was on the top of the stack, before a removal operation.

The removal of the top block can be repeated as many times as the number of blocks in the
stack. The only difference is that the activation of the assembly in NODE corresponding to the
block below the top one is done by projecting HEAD into the NODE area corresponding to the top
block, and then projecting from this NODE area to the one following it (in modular arithmetic).

In order to maintain an updated representation of the blocks world configuration, we use four
additional brain areas to store the chain of blocks which have been removed and that, hence, are
currently on the table. This chain can be implemented in the AC system exactly the same way we
did when parsing a stack of blocks. Then, when we want to read the current data structure stored
in the AC system, we examine the stack of blocks represented in HEAD and the NODE areas, as
well as the chain of blocks on the table in the additional areas.



116 CHAPTER 4 — Planning with Biological Neurons and Synapses

4.3.3 Putting a Block on Top of the Stack

The second operation we need in order to implement a minimal planning algorithm for the
blocks world problem is putting a block on top of the stack. The AC program, for this operation
first projects the block from in BLOCKS into the NODE area preceding (in modular arithmetic) the
NODE area currently connected to HEAD, and then projects the newly created assembly into HEAD

(see Figure 4.6-E1). Successively, the program executes a strong projection between the four areas
in order to correctly connect them (see Figure 4.6-E2). Once again, an active connection between
the HEAD area and a NODE area will still exist after the execution of the AC program, but this
connection will not be used in the future.

BLOCKS
Block 4
Block 5

NODE0 NODE1

HEADS

E1

BLOCKS
Block 4
Block 5

NODE0 NODE1

HEADS

E2

Figure 4.6 – E1-2. The behavior of the AC program which put the block 4 on top of the stack,
above the block 5. The black solid lines denote the fibers which are disinhibited. The red dashed
lines denote the newly created connections (unidirectional and bidirectional) between assemblies
in different areas, while the black dotted lines denote the already existing connections.

4.3.4 Computing the Intersection of Two Stacks

The pop and put operations described in the previous two sections are sufficient to implement
a simple planning algorithm, which consists in moving all the blocks on the table (by using pop),
and by then moving the blocks on the table on top of the stack (by using put) according to the target
stack. We remark that the target stack is also stored through a parsing in an another, reserved set
of four areas connected to BLOCKS.

In order to improve this algorithm and execute the two-approximation algorithm described in
the Section 4.2.2, we need an AC program which implements a third operation, that is, finding
the intersection of two stacks. This operation looks for the common sub-stack of the two stacks
(starting from the bottom) and return the highest block in this sub-stack. Then only the blocks
above this block have to be moved on the table and reassembled in the right order.

In a nutshell, this can be achieved in AC by first reaching the bottom of the two stacks which
have to be compared, and then proceeding upwards until we find two different blocks, or the end
of one of the two stacks.
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4.3.5 Multiple Stacks

So far in this exposition we have concerned ourselves with configurations consisting of one
stack. In our experiments (see the next section) we have implemented up to five stacks by em-
ploying a different set of four areas for each stack. This is a bit unsatisfactory, because it implies
that the maximum number of stacks that can be handled by the brain is encoded in the brain
architecture.

With multiple stacks one has to solve the matching problem: identifying pairs of stacks in the
input and output that must be transformed one to the other. Naively, this can be done by comparing
all pairs of stacks, but this entails effort that is quadratic in the number of stacks. This latter strategy
is the one currently employed in our experiments.

4.4 Experiments

A software system for programming in the AC, as well as implementations of the algorithms
described in this work, have been written in Julia [Bezanson et al., 2017]. We make use of the Java
generator for BW configurations available at [Koeman, 2020], based on [Slaney and Thiébaux,
2001]. We ran experiments on over 100 blocks-world configurations, with up to five stacks and
10, 20, and 30 blocks. The algorithm worked correctly in every instance. We have used various
settings of the parameters n, k, p, β – a particularly good set of parameters is n = 106, k = 50, p =
0.1, β = 0.1. Interestingly, the algorithms do not work in all parameter settings, because of limits
on the chaining operation (see the next discussion). The Julia source code can be found at [jBrain,
2021].

In general, the amount of rounds of strong project (parallel spikings of neurons) needed to
carry out the BW tasks seems to be around 35 spikes per block processed (parse, popped, or
pushed), which, assuming roughly 50 Hz spikes for excitatory neurons in the brain, is around 1.4
seconds per operation.

Limits of the AC. An unexpected finding of our simulations is that they are stable only under
very specific parameter settings. The bottleneck of the planning algorithms is in parsing the chain
of blocks, that is, memorizing the sequence of blocks so they can be read out reliably. In isolation
we call this operation “chaining”.

The results in this section, which describe some properties and limits of chaining, can be
viewed as theoretical properties of the AC. First, we find it is only possible to chain a rather
limited number of blocks. For instance, even though with n = 106 and k = 50 there is, at least
in theory, space for 106/50 = 200000 non-overlapping assemblies, even with strong p and β,
we can only reliably chain up to 20 blocks. This is illustrated in Figure 4.7a, which shows how
many of s blocks were successfully read out after chaining. Generally, for higher values of n (and
a higher n : k ratio), longer portions of the chain tend to be correctly stored, but the operation
is highly noisy: in some trials it will fail and then succeed for a longer chain. Indeed, unlike the
assembly operations described in [Papadimitriou et al., 2020] (Project, Merge, and so on) which
are either stable with overwhelming probability under appropriate parameters, or do not succeed if
the parameters are not appropriately strong, chaining appears to push the computational power of
the AC to its limits, and often succeeds or fails between repeated trials with the same parameters.

One can also look at a related property: after chaining, how many of the assemblies in the
NODEi areas during readout are “strong” in the sense that they pass the isAssembly () test with
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(a)

(b)

(c)

Figure 4.7 – Experiments on the “chaining" operation, the bottleneck of the AC planning algo-
rithm. (a) shows number of blocks correctly chained for various chain length; (b) shows number
of “strong" assemblies formed in chaining; (c) shows maximal chain length that is correctly par-
sed for varying k. (b) and (c) show averages over 50 trials per parameter setting (exact numbers,
including sample standard deviation, are provided in the appendix). In these charts, p = β = 0.1
was used, in (a) and (b) k = 50.
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a high threshold (i.e., firing those k neurons recursively results in the same set of k winners)?
Interestingly, this proportion, which is significantly less than the maximum of s, does not change
significantly when we vary n, p, β– there appears to be a natural proportion of strong assemblies
formed during chaining (Figure 4.7b).

Finally, in Figure 4.7c we varied k and found the maximally long chain that succeeded com-
pletely. These experiments again showed that for higher n : k ratio, longer chains are possible,
and that for each setting of n there is a narrow window of optimal k that allows for the longest
chains– above of this range, as we increase k the maximum chain does not change, i.e. it appears
to settle to some natural lower bound. A more thorough analysis of chaining is an important di-
rection in AC theory, since such maneuvers could be subroutines in various cognitive processes
(for instance, [Mitropolsky et al., 2021] suggest using it for processing chains of identical parts of
speech, such as multiple adjectives in a noun phrase).

4.5 Discussion

The aim of this work is not so much to produce a performing system, but to demonstrate ex-
perimentally that reasonably large and complex programs in the AC can execute correctly and
reliably, and in particular can implement in a natural manner planning strategies for solving ins-
tances of the blocks world problem. In fact, the implementation of these strategies is based on the
realization of a list-like data structure which makes use of a constant number of brain regions.
Confirming theoretical insights, we have experimentally found that the structure’s reliability de-
pends on the ratio between the number of neurons and the size of the assemblies in each region —
even though the dependency was a bit more constraining than we had expected. The reasons and
extent of this shortcoming must be the object of further investigation.

We have also shown how simple manipulations of the data structure (such as the top, pop, and
append operations) can be realized by making use of a constant number of brain regions. These
manipulations allowed us to implement planning strategies based on two basic kinds of moves,
that is, moving the block from the top of a stack to the table, and putting a block from the table to
the top of a stack. All our programs work for an arbitrary number of blocks and a bounded number
of stacks, while a possible improvement involves implementing a version with an arbitrary number
of stacks.

After syntactic analysis in language and blocks world planning, what other investigations of
the AC can be carried out? On the one hand, one can ask what other stylized cognitive functions can
be described by and implemented in the assembly calculus. There is recent work dealing with lear-
ning though assemblies of neurons [Dabagia et al., 2022]. Two further realms of cognition come to
mind, and they happen to be closely related: reasoning, as well as planning and problem solving in
less specialized domains than BW. More interestingly for the distributed computing community,
one can strengthen the AC theory by proposing reasonable dynamics for the k-Winners Take All
rule. At this moment, no dynamics is known to run efficiently in such a network (even though
the k-WTA rule is well-established in neuroscience and there have been some attempts to design
k-WTA dynamics in different networks [Majani et al., 1988,Lynch et al., 2017]), and a theoretical
study on plausible solutions is necessary. In [Lynch et al., 2017], input neurons receive a signal
and a layer of output neurons must output the winner among all signals; in our case, we would
like to have a network where input and output neurons coincide. In [Dabagia et al., 2022] another
work [Binas et al., 2014] is cited, which proposes an implementation k-WTA circuits based on the
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interaction between excitatory and inhibitory neurons; nevertheless, the authors of the latter work
model a 1-WTA dynamics, where the nodes of the network are units representing the average be-
haviors of clusters of many neurons. Hence, there is just one winning unit which results in many
neurons firing together, a phenomenon which is far from the AC framework. In [Majani et al.,
1988], a continuous dynamics in the Hopfield model is proposed, which converges to a configura-
tion such that only the k neurons with the highest initial inputs carry positive weights: a possible
starting research direction may be discretizing this latter dynamics. Similarly, the (dis)inhibition
operations need a distributed, microscopic implementation.

4.6 More details on the experiments

The operation of parsing works in every possible instance we tried provided that the constraints
shown in the subsection on the limits of AC are met. We tried parsing randomly generated BW
configurations with 10, 20, and 30 blocks divided in multiple stacks, with the following parame-
ters: n = 4 × 106 neurons, p = 0.1, β = 0.1, k = 50. The intersect operation needs two parsed
stacks as input, and runs correctly each time the parsing operation of the stacks works correctly.
Removing the top block (that is, the pop operation) and putting on top of a stack (that is, the put
operation) run as well in the aforementioned settings. The used machine is a DELL laptop with
an Intel(R) Core(TM) i7-8665U CPU @ 1.90GHz processor, 32GB Ram, running Fedora 33. The
input BW configurations are specified in the bw_instances folder at [jBrain, 2021].

Stricter constraints are needed for the whole planning operation. Since the previous operations
have to be run many times and one after the other other, the graph representing the brain and its
connectivity grows quite quickly. On a machine like the one described above, only BW configu-
rations with at most 10 blocks are well handled (good parameters to test this are the same as for
parsing). Otherwise, the program requires too much time in order to be completed, even with the
same set of parameters. For the planning with 10 blocks, we used a machine Dell R940 quad-Xeon
SP Gold 6148 @ 2.40GHz (80 cores) with 1024 GB of RAM.

In the case of BW configurations with 10 blocks, we have verified the correctness of the
AC programs implementing the two planning algorithms (the one without and the one with
the intersect operation) on 100 BW configurations randomly chosen, such that each stack
has at most 7 blocks, to avoid chaining issues (these configurations are specified in the file
planning_inputs.txt). The execution on all these instances correctly run and finished in
reasonable time.

Due to the discussion on the limits of AC (i.e., the limits on the maximum chain lengths),
in the case of BW configurations between 20 and 30 blocks, we have limited ourselves to verify
the correctness of the implementation of the basic operations used by the two algorithms, that is,
the parser, the pop, the push, and the intersect operations (roughly 30 simulations). All runs were
completed in reasonable time (few minutes - up to 20 in the case of more demanding operations)
without errors. Also in this case, we used n = 4×106 neurons for each brain area. We remark that
the 20 and 30 blocks must be split among several stacks of maximum length up to 7, otherwise
the parsing procedure may fail with the above number of neurons (these BW configurations are
specified in the file operation_inputs.txt).

The verification of the entire planning algorithms in the case of 20 and 30 blocks (even split
among several stacks of up to 7 blocks each) requires more memory and time, due to the large
computations needed to represent “bigger” brains. After running the planning algorithms in these
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cases, nevertheless, we observed that the initial actions performed by the brain were correct, which
makes us believe that the algorithms would also correctly work in its entirety.

Limits of the AC. Table 4.2 shows the outcome of the experiments on chaining. In particular, it
shows the mean number of blocks (over 50 runs) we can chain with n = 105, 5×105, 106 neurons
for each brain area, k = 50 (the number of neurons an assembly is composed of), and the standard
deviation. With 106 neurons, we can reliably chain up to 10, 11 blocks, but it’s better if the number
of blocks is less than 8. If we lower the number of neurons, less blocks can be reliably parsed.

Table 4.3 shows the outcome of the experiments on the ratio between n and k which can chain
the higher number of blocks. The best reliability is obtained when k increases together with n. For
n = 105, 20 ≤ k ≤ 30 seems to be best. For n = 5 × 105, 106, 30 ≤ k ≤ 40 works better. The
means and the standard deviations are obtained over 50 runs of the experiment.

In order to execute these experiments, the reader can execute the following terminal command:

julia experiments/chaining_experiments.jl
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Neurons Blocks Mean Std Neurons Blocks Mean Std Neurons Blocks Mean Std
105 1 1 0 5 · 105 1 1 0 106 1 1 0
105 2 2 0 5 · 105 2 2 0 106 2 2 0
105 3 3 0 5 · 105 3 3 0 106 3 3 0
105 4 3,96 0,28 5 · 105 4 4 0 106 4 3,96 0,28
105 5 4,68 0,94 5 · 105 5 4,88 0,63 106 5 5 0
105 6 5,08 1,86 5 · 105 6 6 0 106 6 5,92 0,57
105 7 5,96 2,13 5 · 105 7 6,72 1,21 106 7 6,96 0,28
105 8 6,5 2,64 5 · 105 8 8 0 106 8 7,88 0,63
105 9 7,22 3,22 5 · 105 9 8,88 0,85 106 9 8,78 1,3
105 10 6,36 3,86 5 · 105 10 9,16 2,22 106 10 9,6 1,81
105 11 6,42 4,53 5 · 105 11 10,32 1,91 106 11 10,74 1,38
105 12 6,84 4,4 5 · 105 12 11,22 2,47 106 12 10,84 2,57
105 13 8,04 4,69 5 · 105 13 12,1 2,77 106 13 12,36 2,45
105 14 5,66 4,98 5 · 105 14 13,22 2,74 106 14 11,78 4,26
105 15 7,18 5,46 5 · 105 15 12,58 4,52 106 15 12,42 4,51
105 16 5,14 4,89 5 · 105 16 13,66 4,35 106 16 14,18 3,77
105 17 6,9 5,82 5 · 105 17 14,22 5,41 106 17 13,96 5,03
105 18 6,24 5,25 5 · 105 18 13,82 6,73 106 18 15,22 4,99
105 19 5,86 4,78 5 · 105 19 15,52 5,87 106 19 15,08 6,19
105 20 6,44 5,91 5 · 105 20 15,72 6,25 106 20 14,62 6,66
105 21 6,58 4,99 5 · 105 21 14,14 8,16 106 21 16,72 6,87
105 22 4,94 4,55 5 · 105 22 14,08 7,85 106 22 15,8 7,69
105 23 5,32 5,73 5 · 105 23 17,42 7,85 106 23 16,02 8,04
105 24 4,44 3,97 5 · 105 24 16,36 7,51 106 24 17,94 7,88
105 25 5,78 5,07 5 · 105 25 15,86 9,67 106 25 17,34 9,2
105 26 3,2 2,85 5 · 105 26 18,36 9 106 26 18,62 9,24
105 27 3,78 4,11 5 · 105 27 14,94 10,15 106 27 18,52 9,36
105 28 5,68 4,76 5 · 105 28 17,76 10,88 106 28 16,78 9,76
105 29 3,7 3,42 5 · 105 29 15,26 9,08 106 29 20,88 10,21
105 30 4,96 4,18 5 · 105 30 15,12 10,13 106 30 18,5 11,14
105 31 3,46 3,72 5 · 105 31 16,42 12 106 31 18,44 11,79
105 32 4,9 3,87 5 · 105 32 16,92 10,97 106 32 17,88 11,87
105 33 4,04 3,81 5 · 105 33 14,16 11,63 106 33 14,62 11,38
105 34 3,7 3,59 5 · 105 34 13,68 10,82 106 34 15,54 12,04
105 35 4,62 4,7 5 · 105 35 16,48 11,78 106 35 19,34 11,9
105 36 4,4 4,16 5 · 105 36 15,56 12,73 106 36 17,04 12,71
105 37 4,12 3,49 5 · 105 37 16,54 12,67 106 37 16,08 12,29
105 38 4,46 3,88 5 · 105 38 13,84 12,86 106 38 16,64 13,46
105 39 3,58 3,24 5 · 105 39 15 12,68 106 39 18,9 13,67

TABLE 4.2 – Table for the chain length experiment. We check if n ∈ {105, 5 · 105, 106} neurons
for brain area are sufficient to parse a stack of a given number of blocks. Here, the mean number
of correctly parsed blocks and its standard deviation are shown over 50 runs of the experiment.
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Neurons k Mean Std Neurons k Mean Std Neurons k Mean Std
105 10 1,04 0,28 5 · 105 10 1,04 0,28 106 10 1,04 0,28
105 20 8,36 4,25 5 · 105 20 8,32 5,22 106 20 8,96 4,47
105 30 8,68 3,03 5 · 105 30 15,04 6,38 106 30 19,4 6,93
105 40 7,24 2,93 5 · 105 40 17,24 5,68 106 40 17,76 6,13
105 50 7,32 2,47 5 · 105 50 14,68 5,53 106 50 15 5,51
105 60 6,56 2,43 5 · 105 60 12 4,15 106 60 13,68 5,01
105 70 5,4 2,06 5 · 105 70 10,04 2,98 106 70 13,48 4,92
105 80 5,92 1,99 5 · 105 80 9,04 3,86 106 80 12,12 4,34
105 90 5,52 1,97 5 · 105 90 9,16 3,1 106 90 11,52 3,87
105 100 4,92 1,98 5 · 105 100 7,92 2,83 106 100 10,08 3,96
105 110 5,28 1,57 5 · 105 110 8,52 2,82 106 110 10,36 3,73
105 120 4,56 1,58 5 · 105 120 8 2,92 106 120 10,24 3,38
105 130 4,52 1,64 5 · 105 130 6,6 2,56 106 130 8,52 4,05
105 140 4,24 1,33 5 · 105 140 7,4 2,71 106 140 8,04 2,78
105 150 3,88 1,15 5 · 105 150 7,2 2,43 106 150 8,16 2,97
105 160 4,12 1,08 5 · 105 160 6,32 2,12 106 160 8,16 3,23
105 170 3,68 1,19 5 · 105 170 6,08 2,18 106 170 7,8 3,21

TABLE 4.3 – Table for the max chain length experiment. We check, for a given number of k
(the number of neurons an assembly is composed of), the maximum chain length the brain can
correctly parse, with n ∈ {105, 5 · 105, 106} neurons in each area of the brain. Here, the mean
number of the maximum chain length correctly parsed blocks and its standard deviation are shown
over 50 runs of the experiment.





CHAPTER 5
Conclusion et

Perspectives
The myriad of dynamics and algorithms found in nature attract great interest from interdis-

ciplinary fields. In this thesis, we have studied them from a computational, mostly theoretical,
perspective, and tried to capture some properties with the hope of hinting at more general pheno-
mena and aspects.

Opinion dynamics are common models to describe how a system of agents achieves collective
tasks, such as consensus or community detection. Our results are in line with other recent works
showing how such systems are characterized by phase-transitions that depend on the parameters
of the considered settings and reflect characteristics of the surrounding environment [Cruciani
et al., 2018, Mukhopadhyay et al., 2020, Cruciani et al., 2021]. This phenomenon suggests that
in noisy-like environments biological organisms should be less likely to gather since collective
tasks are more difficult to carry out. In general, the study of opinion dynamics is still far from
exhausted: a research direction which we find very interesting consists in dynamics settings in
which the topology of the network changes over time. This can be achieved in various ways: one
of the simpler one, is imagining the agents as random walks over some graph, such as a thorus, and
the interaction/message exchange is concurrent with meeting at a node. Such temporal structure
of the underlying communication graph surely gives more plausibility to the investigated model
and can provide a more complete understanding of real dynamical systems.

As for movement patterns, in nature many cost functions are optimized for different reasons:
it can be the overall energy spent by a biological system, or the hitting time to find some targets.
Often, variations in such cost functions can make the difference between life and death. In the in-
troduction, we already discussed that it is no news that Lévy walks are excellent search strategies
in many different settings [Viswanathan et al., 1999, Reynolds, 2018], as they seem to optimize
hitting times of sparse targets. Nevertheless, to the best of our knowledge, we are the first to intro-
duce their parallel study and to show their optimal performance in a distributed search problem on
the infinite two-dimensional lattice [Feinerman and Korman, 2017]. Inspired by the Lévy flight fo-
raging hypothesis, we began to study Lévy walks and ended up corroborating it. We believe Lévy
walks must be further investigated as there’s still much to discover: e.g., how well do they per-
form in other distributed tasks? We think, for example, about information dissemination, epidemic
processes, etc.

Moving instead to neuronal computing, we observe that in the last decades there has been a
lot of interest in the study of neuronal networks in computer science. Understanding how the brain
works — at least, some aspects of it — has been beneficial to computer science: consider, e.g.,
the fly’s nervous system that led to the design of a distributed maximal independent set algorithm
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[Afek et al., 2011]), or its olfactory circuit that solves the similarity search problem using a novel
locality-sensitive hashing [Dasgupta et al., 2017]. Modeling cognitive phenomena is, of course,
a much more difficult task. The Assembly Calculus takes a step towards this direction and we
think it is able to capture some important functions of the brain that serve to cognition, such
as the projection or the association of assemblies. Our contribution here has been to empirically
prove that with the AC framework we are able to implement large and complex heuristics that
run relatively quickly and reliably. Nevertheless, we remark that for higher cognitive functions
(even the planning itself) the model needs to be strengthen at a microscopic level; with respect to
this, we think that interesting and open research directions are finding and modeling reasonable
k-Winners-Take-All dynamics, not only restricted to the AC framework but also more in general,
as the k-WTA dynamics seems to be a fundamental process in neuroscience. Furthermore, the AC
would benefit also from an accurate modeling of (dis)inhibition processes.
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A Chain rule and union bound

Lemma A.1. Let η > λ > 0 be two constants, and 0 < p ≤ 1 be a probability. Consider any
family of events {ξi}i≤M with M > 1 being some integer. Suppose Pr [ξ1] ≥ p, and, for i ≥ 2,
that Pr [ξi | ξ1, . . . , ξi−1] = Pr [ξi | ξi−1] ≥ p. The following holds.

(i) If p = 1 − n−η and M ≤ nλ, then ∩i≤M ξi holds with probability 1 − O
(
n−(η−λ)

)
.

(ii) If p = 1 − exp (−ηn) and M ≤ eλ. Then ∩i≤M ξi holds with probability 1 − O
(
e−(η−λ)n

)
.

Proof. We have that

Pr [∩i≤M ξi] = Pr [ξM | ∩i≤M−1ξi] · Pr [∩i≤M−1ξi]
= Pr [ξM | ξM−1] · Pr [∩i≤M−1ξi]

=
M∏

i=2
Pr [ξi | ξi−1] · Pr [ξ1]

≥ pM

Now, let f(n) = 1 − p = o(1). Notice that 1 − x ≥ e−x/(1−x) for |x| < 1. Then,

pM = [1 − f(n)]M

≥ exp
(

− Mf(n)
1 − f(n)

)
≥ exp (−2Mf(n))
(a)
≥ 1 − 4Mf(n),

where (a) holds of the exponential function Taylor’s expansion, since Mf(n) = o(1) by the
hypotheses. As for (i), we get

pM ≥ 1 − O
(

nλ

nη

)
= 1 − O

( 1
nη−λ

)
.

As for (ii), we get

pM ≥ 1 − O
(exp(λn)

exp(ηn)

)
= 1 − O

(
e−(η−λ)n

)
.

More easily, the union bound implies the following.

Lemma A.2. Let η > λ > 0 be two constants, and 0 < p ≤ 1 be a probability. Consider any
family of events {ξi}i≤M with M > 1 being some integer. Suppose Pr [ξi] ≥ p for all i. The
following holds.

(i) If p = 1 − n−η and M ≤ nλ, then ∩i≤M ξi holds with probability 1 − n−(η−λ).
(ii) If p = 1 − exp (−ηn) and M ≤ eλ. Then ∩i≤M ξi holds with probability 1 − e−(η−λ)n.
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B Concentration bounds

We recall the concentration results that we use in the analysis. For an overview on the forms
of Chernoff bounds see [Dubhashi and Panconesi, 2009] or [Doerr, 2018].

Lemma B.1 (Multiplicative forms of Chernoff bounds). Let X1, X2, . . . , Xn be independent
{0, 1} random variables. Let X =

∑n
i=1 Xi and µ = E[X]. Then:

(i) for any δ ∈ (0, 1) and µ ≤ µ+ ≤ n, it holds that

Pr [X ≥ (1 + δ)µ+] ≤ e− 1
3 δ2µ+ , (B.1)

(ii) for any δ ∈ (0, 1) and 0 ≤ µ− ≤ µ, it holds that

Pr [X ≤ (1 − δ)µ−] ≤ e− 1
2 δ2µ− . (B.2)

Lemma B.2 (Additive forms of Chernoff bounds). Let X1, X2, . . . , Xn be independent {0, 1}
random variables. Let X =

∑n
i=1 Xi and µ = E[X]. Then:

(i) for any 0 < λ < n and µ ≤ µ+ ≤ n, it holds that

Pr [X ≥ µ+ + λ] ≤ e− 2
n

λ2
, (B.3)

(ii) for any 0 < λ < µ− and 0 ≤ µ− ≤ µ, it holds that

Pr [X ≤ µ− − λ] ≤ e− 2
n

λ2
. (B.4)

We also make use of the Hoeffding bounds [Mitzenmacher and Upfal, 2005].

Lemma B.3 (Hoeffding bounds). Let 0 < a < b be two constants. Let X1, X2, . . . , Xn be inde-
pendent random variables such that Pr [a ≤ Xi ≤ b] = 1 and E [Xi] = µ/n for all i ≤ n, and let
X =

∑n
i=1 Xi. Then:

(i) for any λ > 0 and µ ≤ µ+, it holds that

Pr [X ≥ µ+ + λn] ≤ exp
(

− 2λ2n

(b − a)2

)
; (B.5)

(ii) for any λ > 0 and 0 ≤ µ− ≤ µ, it holds that

Pr [X ≤ µ− − λn] ≤ exp
(

− 2λ2n

(b − a)2

)
. (B.6)

Additive Chernoff bound using variance [Chung and Lu, 2006, Theorem 3.4].

Lemma B.4. Let X1, . . . , Xn be independent random variables satisfying Xi ≤ E [Xi] + M for
some M ≥ 0, for all i = 1, . . . , n. Let X =

∑n
i=1 Xi, µ = E [X], and σ2 = Var (X). Then, for

any λ > 0,

Pr [X ≥ µ + λ] ≤ exp
(

− λ2

σ2 + Mλ
3

)
. (B.7)
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Central limit theorem [Feller, 1968, Chapter X].

Lemma B.5. Let {Xk}k≥1 be a sequence of i.i.d. real random variables. Let µ = E [X1], σ2 =
Var (X1), and Sn =

∑n
k=1 Xk for any n ≥ 1. Let Φ : R → [0, 1] be the cumulative distribution

function of a standard normal distribution. Then, for any β ∈ R,

lim
n→∞

Pr
[

Sn − nµ

σ
√

n
≤ β

]
= Φ(β).

The Berry-Esseen theorem is well treated in [Korolev and Shevtsova, 2010], and it gives an
estimation on “how far” is the distribution of the normalized sum of i.i.d. random variables to the
standard normal distribution.

Lemma B.6 (Berry-Esseen). Let {Xk}k≥1 be a sequence of i.i.d. real random variables. Let
µ = E [X1], σ2 = Var (X1), and Sn =

∑n
k=1 Xk for any n ≥ 1. Let Φ : R → [0, 1] be the

cumulative distribution function of a standard normal distribution. Then, there exists a positive
constant C > 0 such that

sup
x∈R

∣∣∣∣Pr
[

Sn − nµ

σ
√

n
≤ x

]
− Φ(x)

∣∣∣∣ ≤ C√
n

for all n ≥ 1.

C Anti-concentration inequalities

Finally, we use some anti-concentration inequalities known as reverse Chernoff bounds. The
proof can be found in the appendix of [Klein and Young, 2015].

Lemma C.1 (Reverse Chernoff bounds). Let X1, X2, . . . , Xn be i.i.d. {0, 1} random variables.
Let X =

∑n
i=1 Xi and µ = E [X], with µ ≤ n/2. Furthermore, let δ ∈ (0, 1/2] be a constant. If

δ2µ ≥ 3, then:

(i) for any µ ≤ µ+ ≤ n, it holds that

Pr [X ≥ (1 + δ)µ+] ≥ e−9δ2µ+ ; (C.8)

(ii) for any 0 ≤ µ− ≤ µ, it holds that

Pr [X ≤ (1 − δ)µ−] ≥ e−9δ2µ− . (C.9)

D Hitting time for (sub/super)-martingales

We make use of the following general result on (super/sub)-martingales, which can be found
in [Lehre and Witt, 2014].

Lemma D.1. Let {Xt}t∈N be a stochastic process adapted to a filtration {Ft}t∈N, over some state
space S ⊆ {0} ∪ [xmin, xmax], where xmin ≥ 0. Let h : [xmin, xmax] → R+ be a function such that
1/h(x) is integrable and h(x) differentiable on [xmin, xmax]. Define T := min{t ∈ N | Xt = 0}.
Then, the following hold.
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(i) If E [Xt − Xt+1 | Xt ≥ xmin, Ft] ≥ h(Xt) for all t ∈ N and dh(x)
dx ≥ 0 for all x ∈

[xmin, xmax], then

E [T | X0] ≤ xmin

h(xmin) +
∫ X0

xmin

1
h(y) dy .

(ii) If E [Xt − Xt+1 | Xt ≥ xmin, Ft] ≤ h(Xt) for all t ∈ N and dh(x)
dx ≤ 0 for all x ∈

[xmin, xmax], then

E [T | X0] ≥ xmin

h(xmin) +
∫ X0

xmin

1
h(y) dy .

(iii) If E [Xt − Xt+1 | Xt ≥ xmin, Ft] ≥ h(Xt) for all t ∈ N and dh(x)
dx ≥ λ for some λ > 0 and

all x ∈ [xmin, xmax], then

Pr [T > t | X0] < exp
(

−λ

(
t − xmin

h(xmin) −
∫ X0

xmin

1
h(y) dy

))
.

(iv) If E [Xt − Xt+1 | Xt ≥ xmin, Ft] ≤ h(Xt) for all t ∈ N and dh(x)
dx ≤ −λ for some λ > 0

and all x ∈ [xmin, xmax], then

Pr [T < t | X0] <
eλt − eλ

eλ − 1 exp
(

−λ

(
xmin

h(xmin) +
∫ X0

xmin

1
h(y) dy

))
.

E Integral test

Lemma E.1. Let 0 < d < dmax be any integers. For any α > 1,

1
(α − 1)(d)α−1 ≤

∑
k≥d

1
kα

≤ 1
(α − 1)(d)α−1 + 1

dα
, and (E.10)

1
(α − 1)

( 1
dα−1 − 1

dα−1
max

)
≤

dmax∑
k=d

1
kα

≤ 1
(α − 1)

( 1
dα−1 − 1

dα−1
max

)
+ 1

dα
. (E.11)

Also,

log
(

dmax

d

)
≤

dmax∑
k=d

1
k

≤ log
(

dmax

d

)
+ 1

d
, (E.12)

and for any 0 < α < 1,

(dmax)1−α − d1−α

1 − α
≤

dmax∑
k=d

1
kα

≤ (dmax)1−α − d1−α

1 − α
+ 1

dα
. (E.13)

Proof. By the integral test, it holds that∫ dmax

d

1
kα

dk ≤
dmax∑
k=d

1
kα

≤
∫ dmax

d

1
kα

dk + 1
dα

.

Straightforward calculations give the result for Eqs. (E.11) to (E.13). As for Eq. (E.10), it comes
from the integral test letting dmax → ∞.
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u

D(u)

Q‖u‖1
(o)

Figure F.1 – The set D(u), consisting in all inner nodes of the “star”, and the square Qdu(0).

v2u

v1

D(u)

u

Figure F.2 – The “area” in which we take u, and the possible choices of v.

F Omitted proofs from Chapter 3

F.1 Proof of Lemma 3.2.3

For any node w, define D(w) as the set B∥w∥1
(0)∪Q∥w∥∞

(0). Notice that D(u) ⊆ Q∥u∥1
(0).

Then it suffice to prove that for all nodes v /∈ D(u) we have

Pr [Jt = u] ≥ Pr [Jt = v] .

Let u = (xu, yu) and, without loss of generality, suppose u is in the first quadrant and not
below the main bisector, i.e., in the set {(x, y) ∈ Z2 : y ≥ 0, x ≥ y} (Fig. F.2). If we show that, for
any v in {v1 = (xu −1, yu +1), v2 = (xu +1, yu)} (Fig. F.2)., we have Pr [Jt = u] ≥ Pr [Jt = v],
than we have the statement. Indeed, for any v /∈ D(u) that “lives” in the highlighted area in
Fig. F.2, there exists a sequence of nodes u = w0, w1, . . . , wk = v from u to v such that wi+1
belongs to the set

{(xwi − 1, ywi + 1), (xwi + 1, ywi)},

where wi = (xwi , ywi), as Fig. F.3 shows. Thus, if the thesis is true for v ∈ {v1, v2}, then it is true
also for all v /∈ D(u) in the highlighted area in Fig. F.2. At the same time, for any other v /∈ D(u),
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u u

v

w1 w2

w3

w4

w5 w6 v

w1

w2

w3

Figure F.3 – Two “path” examples.

u

D(u)
w

v
u′

Figure F.4 – Symmetrical argument.

outside the highlighted area in Fig. F.2, there exists a symmetrical argument explained in Fig. F.4.
Thus, if the thesis is true for all v /∈ D(u) in the highlighted area in Fig. F.2, then it is also true for
any v /∈ D(u). We now consider some geometric constructions which will be used in the proof,
one for each choice of v. The following description is showed in Fig. F.5 .

(i) v = (xu−1, yu+1): consider the strict line defined by r : y = x+(yu−xu)+1 (i.e., the line
in R2 which is the set of points that are equidistant from u and v in Euclidean distance). Call
V ⊂ Z2 the set of nodes that are “above” this line, namely the ones that are closer to v than u.
Define U = Z2\(V ∪r) the complementary set without line r. Consider the injective function
f : V → U such that f(x, y) = (y−(yu−xu)−1, x+(yu−xu)+1), which is the symmetry
with respect to r. It trivially holds that for any w ∈ V , ∥w − v∥1 = ∥f(w) − u∥1 and
∥w − u∥1 = ∥f(w) − v∥1. Furthermore, it holds that for each w ∈ V , either w /∈ D (f(w)),
or w lies on the “border” of D (f(w)). All these properties are well-shown in Fig. F.6.

(ii) v = (xu + 1, yu): the same construction can be done in this case. Indeed, the strict line will
be x = xu + 1

2 , and the injective function f(x, y) = (2xu + 1 − x, y). The same properties
we have seen in the previous case hold here too.
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Figure F.5 – Geometric constructions in the two cases.
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Figure F.6 – Left: equivalence between distances. Right: w /∈ D(f(w)).

Now we go for the proof. For any time i, and any two nodes u′, v′ ∈ Z2, define

pi(u′, v′) = Pr
[
Xi = v′ | X0 = u′] .

Let v ∈ {v1, v2}. We show that pt(0, u) ≥ pt(0, v) by induction on t. The base case is t = 1.
From the monotonicity, we know that

p1(0, u) − p1(0, v) ≥ 0

for any u and v in Z2 such that ∥u∥1 ≤ ∥v∥1. We now suppose t ≥ 2 and the thesis true for t − 1.
Fix u and v as in Fig. F.2; then, for the geometric construction we made above, it holds that

pt(0, u) − pt(0, v) =
∑

w∈Z2

pt−1(0, w)
(
p1(w, u) − p1(w, v)

)
≥
∑
w∈U

pt−1(0, w)
(
p1(w, u) − p1(w, v)

)
+
∑
w∈V

pt−1(0, w)
(
p1(w, u) − p1(w, v)

)
where last inequality is immediate for case (ii), indeed the line r does not contain elements of Z2,
while in case (i) the sum over nodes in line r is zero. Then, the previous value is equal to∑

w∈V

pt−1(0, f(w))
(
p1(f(w), u) − p1(f(w), v)

)
+
∑
w∈V

pt−1(0, w)
(
p1(w, u) − p1(w, v)

)
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because of the definition of f : V → U , and, changing the sign of the second sum, we obtain∑
w∈V

pt−1(0, f(w))
(
p1(f(w), u) − p1(f(w), v)

)
−
∑
w∈V

pt−1(0, w)
(
p1(w, v) − p1(w, u)

)
.

Now, observe that the definition of f implies that for each w ∈ V , ∥w − v∥1 = ∥f(w) − u∥1 and
∥f(w) − v∥1 = ∥w − u∥1 (Fig. F.6). Thus we can group out the term p1(f(w), u)−p1(f(w), v) =
p1(w, v) − p1(w, u), and we have∑

w∈V

(
pt−1(0, f(w)) − pt−1(0, w)

) (
p1(f(w), u) − p1(f(w), v)

)
. (F.14)

We observe that pt−1(0, f(w)) − pt−1(0, w) ≥ 0 by the inductive hypothesis, since either w /∈
D(f(w)) or w lies on the “border” of D (f(w)) (Fig. F.6), and p1(f(w), u) − p1(f(w), v) ≥ 0 by
definition of f , since the distance between f(w) and u is no more than the distance between f(w)
and v. It follows that (F.14) is non-negative, and, thus, the thesis.

F.2 Projection of a Lévy Flight Jump

Let Lf
t be the two dimensional random variable representing the coordinates of an agent per-

forming an α-Lévy flight at time t, for any α > 1. Consider the projection of the Lévy flight on
the x-axis, namely the random variable Xt′ such that Lf

t = (Xt, Yt). The random variable Xt can
be expressed as the sum of t random variables Sx

j , j = 1, . . . , t, representing the projection of the
jumps (with sign) of the agent on the x-axis at times j = 1, . . . , t. With the next lemma, we prove
that the jump projection length has the same tail distribution as the original jump length.

Lemma F.1. The probability that a jump Sx
j has length equal to d is Θ (1/dα).

Proof. The partial distribution of the jumps along the x-axis is given by the following. For any
d ≥ 0,

Pr
[
Sx

j = ±d
]

=
[

1
2 +

∞∑
k=1

cα

2kα+1

]
1d=0 +

 cα

2dα+1 +
∞∑

k=1+d

cα

kα+1

1d̸=0 , (F.15)

where 1d∈A returns 1 if d ∈ A and 0 otherwise, the term

1d=0
2 + cα

2dα+11d̸=0

is the probability that the original jump lies along the horizontal axis and has “length” exactly d
(there are two such jumps if d > 0), and, for k ≥ 1 + d, the terms

cα

2kα+11d=0 + cα

kα+11d ̸=0

are the probability that the original jump has “length” exactly k and its projection on the horizontal
axis has “length” d (there are two such jumps if d = 0, and four such jumps if d > 0). By the
integral test (Lemma E.1) we know that quantity (F.15) is

Pr
[
Sx

j = ±d
]

= Θ
( 1

dα+1

)
.





Sur les Comportements Collectifs de Systèmes Distribués
Bio-Inspirés

Francesco D’AMORE

Résumé

Récemment, la communauté algorithmique a manifesté un intérêt croissant pour l’utilisation de
ses outils théoriques à la compréhension des systèmes complexes, notamment biologiques, tels
que les colonies d’insectes, les volées d’oiseaux et les réseaux de neurones. Nous contribuons
à l’étude de ces systèmes dans trois directions différentes. Premièrement, nous analysons des
dynamiques computationnelles pour les tâches de coordination stochastique dans les systèmes
multi-agents. En particulier, nous nous focalisons sur le problème du consensus dans des en-
vironnements où la communication est bruyante : nous analysons deux dynamiques d’opinion,
les dynamiques UNDECIDED-STATE et 3-MAJORITY, et nous prouvons qu’elles présentent
une transition de phase à des seuils de bruit différents. En dessous du seuil, ces dynamiques
atteignent rapidement une phase métastable de quasi-consensus ; au-dessus, aucune forme de
consensus n’est possible. Deuxièmement, nous étudions les Lévy walks, des marches aléa-
toires qui modélisent des schémas de mouvement trouvés dans la nature, dont la distribution
de la longueur de pas suit une loi de puissance. Nous analysons leur temps d’arrêt (hitting
time) parallèle et les utilisons pour concevoir un algorithme optimal pour l’ANTS problem,
un problème de recherche distribuée sur Z2 qui capture certains aspects de la théorie du buti-
nage. Troisièmement, nous considérons l’Assembly Calculus, un modèle distribué du cerveau
récemment proposé, qui consiste en des neurones et des synapses stylisés, et nous testons ex-
périmentalement ses capacités, largement inexplorées, en mettant en œuvre des heuristiques
connues pour la tâche de planification du monde des blocs. Nous montrons empiriquement que
des programmes grands et complexes dans ce modèle s’exécutent correctement et de manière
fiable.

Mots-clés : Calcul distribué, Algorithmes naturels, Systèmes biologiques.

Abstract

In recent years there has been a surge of interest on behalf of the algorithmic community in
applying its theoretical tools to the understanding of complex systems, in particular biological
ones, such as insect colonies, flocks of birds, and networks of neurons. We contribute to the
investigation of such systems in three different directions. First, we analyze computational
dynamics for stochastic coordination tasks in multi-agent systems: in particular, we focus
on the consensus problem in environments where communication is affected by some form
of noise. In this setting, we analyze two known opinion dynamics, the UNDECIDED-STATE

and the 3-MAJORITY dynamics, and prove that they exhibit a phase-transition at different
noise thresholds. Below the threshold, the two dynamics quickly reach an almost-consensus
metastable phase; above, no form of consensus is possible. Second, we study Lévy walks,
i.e., special random walks known to model many movement patterns found in nature, char-
acterized by a step-length density distribution proportional to a power-law. We analyze their
parallel hitting time and show how to use them to design an almost optimal algorithm for the
ANTS problem, a distributed search problem on Z2 which captures some aspects of animal
foraging theory. Third, we consider the Assembly Calculus, a recently proposed distributed
computational model of the brain which consists of stylized spiking neurons and synapses, and
we test experimentally its capabilities, largely unexplored. In particular, we implement known
heuristics for the Blocks World planning task; we empirically prove that reasonably large and
complex programs in the Assembly Calculus run correctly and reliably.

Keywords: Distributed computing, Natural algorithms, Biological systems.
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