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RÉSUMÉ EN FRANÇAIS

Modèles d’apprentissage profond régularisés pour la

segmentation multi-anatomie en imagerie pédiatrique

Contexte

Dans la pratique clinique, l’imagerie médicale est un outil précieux pour aider les clin-
iciens à diagnostiquer des pathologies, évaluer le suivi des traitements thérapeutiques et
planifier des interventions chirurgicales. Pour la gestion des troubles musculo-squelettiques
pédiatriques, l’analyse d’images médicales fournit des informations morphologiques et
fonctionnelles essentielles pour estimer la gravité du handicap, guider la chirurgie et opti-
miser les programmes de rééducation. Dans la chaîne de traitement des images médicales,
la segmentation est une technologie clef qui permet d’identifier et de localiser les struc-
tures anatomiques en délimitant leurs contours [1], [2]. La segmentation permet ainsi de
générer des modèles tridimensionnels (3D) solides ou surfaciques des muscles, os, carti-
lages et ligaments à partir d’images par résonance magnétique (RM) de l’appareil musculo-
squelettique pédiatrique. En retour, ces modèles 3D permettent une compréhension
plus précise de l’anatomie pédiatrique, qui est d’autant plus nécessaire car le
verdict clinique des pathologies musculo-squelettiques exige une connaissance
exacte de la déformation anatomique et du dysfonctionnement articulaire as-
socié [3]–[5]. De plus, les informations morphologiques et physiologiques ainsi extraites
permettent de concevoir des stratégies de rééducation plus efficaces et durables [6]. Les
approches de segmentation sont donc primordiales pour la population pédiatrique, où les
troubles musculo-squelettiques peuvent gravement entraver la croissance et le développe-
ment de l’enfant.

Cependant, la segmentation des images RM repose généralement sur un processus de
délimitation manuelle, qui est fastidieux, chronophage et souffre de la variabilité intra-
et inter-observateur [7], [8]. En outre, la segmentation de l’appareil musculo-squelettique
pédiatrique peut s’avérer plus difficile que celui adulte en raison de la finesse des struc-
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Ensembles d’images RM musculo-squelettiques pédiatriques

Images RM
de la cheville

Images RM
du genou

Images RM
de l’épaule

Défis : ensembles de données pédiatriques, hétérogènes et épars.
Capacités requises : précision et généralisation.

Figure A – Le contexte général de cette thèse est défini par : 1) les ensembles d’images
RM musculo-squelettiques pédiatriques disponibles, 2) les défis liés à ces données et 3) les
capacités requises pour la segmentation automatique.

tures anatomiques, du processus d’ossification progressive et de la plus grande variabi-
lité morphologique au sein des classes d’âge de l’enfant [7]–[9]. De leur côté, les images
pathologiques pédiatriques présentent également des structures anormales, irrégulières et
complexes qui sont difficiles à délimiter en raison des altérations de formes et d’apparences
[8], [9]. Le développement de techniques de segmentation robustes et entièrement automa-
tisées devient donc nécessaire pour améliorer la fiabilité et la robustesse des délimitations
générées, tout en réduisant le besoin d’intervention humaine dans les tâches de traitement
d’images médicales [3]–[5]. Dans ce contexte, cette thèse vise à développer des mé-
thodes de segmentation intégralement automatiques basées sur l’apprentissage
profond pour des ensembles de données d’images RM pédiatriques de trois ar-
ticulations musculo-squelettiques : la cheville, le genou et l’épaule (Figure A).
En particulier, nous ciblons la segmentation de multiples structures osseuses, et les en-
sembles de données pédiatriques considérés sont caractérisés comme étant hétérogènes,
non appariés (c’est-à-dire provenant de différentes cohortes de patients) et épars.

Au cours de la dernière décennie, les approches d’apprentissage profond ont atteint
des résultats prometteurs pour la résolution de tâches liées à l’imagerie médicale et ont
notamment surpassé les techniques traditionnels d’apprentissage automatique (par ex-
emple, les méthodes variationnelles, les modèles de contour actif ou les approches par
partitionnement de graphe) [1], [2], [10]–[12]. Plus précisément, les réseaux de neurones
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convolutifs (en anglais CNN pour convolutional neural networks) sont devenus des mé-
thodes de pointe dans de nombreuses applications d’imagerie médicale, en raison de leur
capacité à apprendre des représentations hiérarchiques encodant les caractéristiques des
images d’une manière purement fondée sur les données [13], [14]. Parmi les exemples
d’applications basées sur les CNN, citons la détection des lésions de Covid-19 dans les
radiographies thoraciques [15] ou le diagnostic de la rétinopathie diabétique à partir de
photographies du fond de la rétine [16]. Néanmoins, les techniques d’apprentissage profond
sont encore à un stade précoce de déploiement dans la pratique clinique [17]. En 2021, une
cinquantaine de dispositifs médicaux et d’algorithmes basés sur l’intelligence artificielle
ont été approuvés par la Food and Drug Administration états-unienne 1, mais aucun en
pédiatrie [18], [19]. En effet, les modèles profonds nécessitent généralement une grande
quantité de données annotées pour être entraînés de manière supervisée. Cependant, la
complexité du processus d’acquisition et d’annotation des images médicales rend difficile
la construction d’ensemble de données à grande échelle. En fin de compte, les modèles
d’apprentissage profond entraînés sur des ensembles de données médicales
épars peuvent présenter des performances médiocres sur les images rencon-
trées lors du déploiement clinique, en raison de capacités de généralisation
limitées.

Pour atténuer ces problèmes, de nouveaux paradigmes d’apprentissage profond ont
vu le jour, notamment des approches exploitant des données faiblement annotées ou non
annotées [20], [21]. On peut également citer l’apprentissage multi-domaine qui tire parti
des caractéristiques partagées entre des ensembles de données acquis à des fins différentes
[21] et les techniques de régularisation qui visent à éviter le sur-apprentissage [1]. Il a
été démontré que ces méthodologies avancées permettent d’améliorer les performances
des réseaux neuronaux standards et sont donc prometteuses pour rendre possible le dé-
ploiement généralisé de solutions d’apprentissage profond dans la pratique clinique [21].
Ainsi, cette thèse porte sur l’analyse automatique d’images pédiatriques qui
se révèle encore plus difficile que pour les cohortes adultes, principalement
due à la rareté inhérente des ressources d’imagerie pédiatrique. En effet, l’un
des principaux défis associés à l’analyse d’images pédiatriques réside dans la création
de grandes bases de données, car l’acquisition d’examens pédiatriques est entravée par le
besoin de personnel de santé spécialisé, de considérations éthiques plus strictes et, si néces-
saire, de protocoles d’acquisition dédiés [22]–[27]. Ainsi, la disponibilité limitée des

1. https://www.fda.gov/
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ressources d’imagerie pédiatrique rend d’avantage ardu le développement de
modèles généralisables qui pourraient être intégrés dans la pratique clinique.
Il apparaît donc d’autant plus essentiel de suivre ces nouveaux paradigmes
d’apprentissage profond lorsqu’on considère la population pédiatrique.

Objectifs de recherche

Motivé par les problèmes mis en évidence ci-dessus, l’objectif global de cette thèse
est de résoudre les problèmes d’erreurs de généralisation et de rareté des don-
nées, rencontrés lors du développement de modèles d’apprentissage profond
pour la segmentation d’images musculo-squelettiques pédiatriques. Dans cette
direction, cette thèse a proposé de tirer parti des nouvelles méthodologies
avancées d’apprentissage profond. En particulier, nous avons ciblé l’incorporation de
régularisations pendant l’optimisation afin d’éviter le sur-apprentissage et l’adoption de
schéma multi-anatomie pour bénéficier des caractéristiques partagées entre les ensembles
de données d’imagerie musculo-squelettique. Par conséquent, cette thèse vise à développer
et à valider des modèles d’apprentissage profond régularisés pour la segmentation multi-
anatomie en imagerie pédiatrique. Ce but a été divisé en deux objectifs de recherche
décrits ci-dessous :
• Objectif de recherche 1. Développer et valider une approche de segmentation

automatique multi-structure avec une régularisation combinée issue d’a priori de
formes et de réseaux antagonistes.
Cet objectif de recherche vise à développer un pipeline de segmentation osseuse
multi-structure pour les images RM pédiatriques. Le modèle a tiré parti d’une
combinaison de régularisations issue d’a priori de formes et d’un réseau antagoniste
pour atténuer les problèmes d’erreurs de généralisation et de rareté des données.
En outre, le modèle a exploité une architecture de l’état de l’art et un schéma
de d’apprentissage par transfert pour améliorer les performances de segmentation.
L’approche est validée et comparée à plusieurs stratégies de segmentation multi-
structure et divers architectures CNN sur deux ensembles de données d’imagerie
musculo-squelettique pédiatrique des articulations de la cheville et de l’épaule.
• Objectif de recherche 2. Développer et valider un pipeline de segmentation multi-

tâche et multi-domaine généralisable avec a priori de formes multi-articulation et
une régularisation contrastive multi-échelle.
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Cet objectif de recherche visait à développer et valider une méthode de segmen-
tation multi-tâche et multi-domaine pour l’imagerie musculo-squelettique pédia-
trique. Contrairement à l’objectif de recherche précédent, le modèle a simultané-
ment appris à segmenter plusieurs régions anatomiques afin d’atténuer le problème
de rareté des ressources pédiatriques. La généralisation du réseau neuronal a égale-
ment été améliorée grâce à l’intégration d’un encodeur pré-entraîné, d’a priori
de formes multi-articulation et d’une régularisation contrastive multi-échelle. Le
pipeline est validé et comparé à plusieurs approches de segmentation multi-tâche
et multi-domaine et divers réseaux convolutifs pour la segmentation de trois ensem-
bles de données d’imagerie pédiatrique des articulations de la cheville, du genou et
de l’épaule.

Contenu de la thèse

Étant donné les différentes contributions proposées dans cette thèse, ce manuscrit est
divisé en trois parties et la structure de cette thèse est la suivante :
• La Partie I présente le contexte et les défis de l’analyse d’images médicales basée

sur l’apprentissage profond, en mettant un accent particulier sur les difficultés spé-
cifiques à l’imagerie pédiatrique. Cette partie introduit également les motivations
cliniques de l’étude du système musculo-squelettique pédiatrique et le cadre math-
ématique de l’apprentissage profond pour la segmentation d’images médicales. Les
éléments établis dans cette partie fournissent les motivations générales et servent
de cadre pour la suite de cette thèse.

· Le Chapitre 1 présente le contexte général et les tendances récentes dans le
domaine de l’analyse d’images médicales et introduit les défis spécifiques aux
applications d’imagerie pédiatrique. En outre, ce chapitre positionne également
les méthodes de segmentation proposées dans les parties II et III par rapport
aux nouveaux paradigmes d’apprentissage profond développés pour l’analyse
d’images médicales.

· Le Chapitre 2 présente les motivations cliniques de l’étude du système musculo-
squelettique pédiatrique. Ce chapitre décrit les défis associés à l’acquisition et
à l’analyse des images musculo-squelettiques pédiatriques. En particulier, le
chapitre présente les pathologies visées et les ressources d’imagerie pédiatrique
employées dans les Parties II et III.
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· Le Chapitre 3 fournit un cadre mathématique général pour la segmentation
d’images basée sur l’apprentissage profond. Ce chapitre vise à fournir des infor-
mations de base sur l’apprentissage profond afin de construire des architectures
et des schémas d’apprentissage plus avancés. En particulier, ce chapitre présente
l’architecture de référence et les détails d’implémentation utilisés dans les ex-
périences réalisées dans les Parties II et III.

• La Partie II porte sur le développement et la validation d’un pipeline de seg-
mentation multi-structure incluant une régularisation combinée issue d’a priori de
formes et de réseaux antagonistes. (Objectif de recherche 1).

· Le Chapitre 4 présente une méthode de segmentation automatique et multi-
structure des os pédiatriques à partir d’images RM. Le pipeline exploite des a
priori de formes préalablement appris par un auto-encodeur afin de guider le
réseau de segmentation à produire des prédictions anatomiquement cohérentes
avec des ressources d’imagerie limitées. Ce chapitre montre que l’approche pro-
posée peut être facilement intégrée dans diverses stratégies de segmentation os-
seuse et démontre l’efficacité de l’utilisation d’un schéma d’apprentissage multi-
structure.

· Le Chapitre 5 étend l’approche du chapitre 4 en intégrant un encodeur pré-
entraîné et une régularisation antagoniste. Le modèle exploite simultanément
une combinaison d’a priori de formes et un cadre d’apprentissage antagoniste
pour réduire le problème de rareté des données tout en améliorant les capacités
de généralisation. Enfin, ce chapitre illustre la pertinence d’utiliser des mo-
dèles pré-entraînés et de combiner différents schémas de régularisation pour la
segmentation d’images médicales basée sur l’apprentissage profond.

• La Partie III porte sur le développement et la validation d’un pipeline de seg-
mentation multi-tâche et multi-domaine généralisable avec a priori de formes
multi-articulation et une régularisation contrastive multi-échelle (Objectif de
recherche 2).

· Le Chapitre 6 présente un cadre d’apprentissage multi-tâche et multi-domaine
qui comprend un unique réseau de segmentation optimisé sur l’union de plusieurs
ensembles de données d’imagerie. Contrairement aux méthodes précédentes de
la Partie II, le modèle ici proposé apprend à segmenter simultanément plusieurs
articulations anatomiques afin d’éviter un sur-apprentissage dû à la rareté des
données pédiatriques. Ce chapitre présente également des a priori de formes
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multi-articulaire qui encodent les caractéristiques anatomiques de plusieurs ar-
ticulations. Enfin, ce chapitre illustre l’adéquation de la mise en œuvre d’un
schéma d’apprentissage multi-anatomie pour des ensembles de données d’images
musculo-squelettiques pédiatriques.

· Le Chapitre 7 étend le cadre d’apprentissage multi-anatomie du Chapitre 6
en intégrant une régularisation contrastive multi-échelle qui améliore les ca-
pacités de généralisation des modèles de segmentation. En outre, ce chapitre
s’appuie sur des schémas d’apprentissage par transfert pour réduire davantage
les limitations liées à la rareté des données. Finalement, ce chapitre fournit une
évaluation approfondie du cadre d’apprentissage multi-tâche et multi-domaine
proposé.

Les différentes contributions proposées au cours de cette thèse ont été valorisées
au travers de conférences et revues internationales, et les publications issues de ces
projets de recherche sont listées à la fin du manuscrit.

Méthodes proposées

Nous commençons par présenter brièvement les éléments méthodologiques et expéri-
mentaux sur lesquels reposent le développement et la validation des deux pipelines pro-
posés durant cette thèse. Dans le cadre de l’apprentissage profond, la tâche
de segmentation visée dans cette thèse est formulée comme un problème
d’approximation de fonction dans lequel le but est d’établir une correspon-
dance entre le domaine des images RM pédiatriques et l’espace des segmen-
tations osseuses. On peut approximer cette fonction par un réseau de neurones dont
les paramètres doivent être appris lors d’une étape d’optimisation basée sur un ensemble
d’entraînement incluant les images RM et les segmentations vérités-terrains associées (pro-
duites manuellement). En pratique, l’étape d’optimisation des modèles profonds s’appuie
sur une fonction de perte (ou coût) permettant d’apprendre les paramètres (ou neurones)
du réseau. Dans le contexte de l’apprentissage supervisé, la fonction de perte mesure
généralement l’erreur entre les prédictions du modèle et les annotations vérités-terrains.
En pratique, il est conseillé de suivre le principe du maximum de vraisemblance et d’utiliser
une fonction de perte d’entropie croisée qui permet d’obtenir le meilleur modèle selon les
exemples d’apprentissage. La procédure d’apprentissage vise donc à trouver les paramètres
qui minimisent cette fonction de perte et l’algorithme de descente de gradient est un outil
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d’optimisation standard pour trouver un minimum local d’une telle fonction [13], [14]. Il
convient de noter que cette procédure d’apprentissage est entièrement générique et ne se
limite pas au cadre de la segmentation d’images médicales. Néanmoins, l’architecture des
réseaux de neurones utilisés est quant à elle spécifique à leurs applications et les réseaux
convolutifs sont ainsi les plus appropriés pour résoudre des tâches de traitement de l’image
[13], [14], [28].

Pour la segmentation d’images médicales, la plupart des modèles d’apprentissage pro-
fond sont conçus sur la base de UNet [29] en raison de ses performances surpassant
les autres réseaux convolutifs. Le modèle UNet est un CNN comportant un en-
codeur qui extrait les caractéristiques de l’image et un décodeur qui prédit
une segmentation à partir de la représentation encodée. Par ailleurs, l’ajout de
connexions par sauts (en anglais skip connections) entre l’encodeur et le décodeur permet
à UNet d’extraire les détails fins de l’image et de générer des segmentations plus précises
[29]. Ainsi, UNet et son homologue 3D VNet [30] ont déjà été appliqués à la segmentation
de structures musculo-squelettiques dans des images RM d’adultes, notamment les os, les
muscles, les cartilages et les ligaments du genou [31]–[36], les os de l’épaule [37], les carti-
lages du poignet [38] et les muscles de la cuisse [39]. Cependant, les études consacrées
à la segmentation d’images RM musculo-squelettiques pédiatriques restent
rares dans la littérature, à l’exception des travaux de Conze et al. ciblant les muscles
de l’épaule [40]. Ainsi, dans le contexte de la segmentation osseuse pédiatrique, la ques-
tion reste ouverte de savoir si des réseaux spécialisés pour chaque structure osseuse offrent
de meilleures performances qu’un unique modèle exploitant les caractéristiques partagées
entre les os. En parallèle, de nombreuses extensions du modèle UNet ont été récemment
proposées, notamment des modèles intégrant des couches de normalisation par lots (en
anglais batch normalization [41]) qui permettent d’améliorer la stabilité de l’optimisation.
On peut également mentionner l’Attention UNet (Att-UNet [42]) qui intègre le concept
d’attention (en anglais attention gate) aux skip connections favorisant une focalisation sur
les zones les plus pertinentes de l’image.

Les expériences menées dans cette thèse ont été réalisées sur des ensem-
bles de données d’imagerie RM pédiatrique de trois articulations musculo-
squelettiques : la cheville, le genou et l’épaule (Figure A). Les ensembles d’images
de la cheville et de l’épaule ont été acquis au Centre Hospitalier Régional Universitaire
(CHRU) La Cavale Blanche, Brest, France, à l’aide d’un scanner Achieva 3.0T (Philips
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Healthcare, Best, Pays-Bas) 2 tandis que les données d’imagerie du genou ont été obtenues
au Children’s Mercy Hospital, Kansas City, États-Unis 3. Les images du genou ont été ac-
quises à l’aide d’un scanner 3.0T MAGNETOM Skyra, Siemens Healthineers, Siemens
AG). L’acquisition des données d’imagerie par résonance magnétique (IRM) a été réal-
isée conformément aux principes de la Déclaration d’Helsinki. Les autorisations éthiques
ont été respectivement accordées par le Comité de Protection de Personnes Ouest VI du
CHRU de Brest (2015-A01409-40) et par le comité d’éthique de la recherche du Children’s
Mercy Hospital, Kansas City, États-Unis. Des informations supplémentaires sur les co-
hortes de patients et les structures osseuses ciblées sont fournies pour chaque ensemble
de données, comme suit :
• Ensemble de données de la cheville. L’ensemble de données d’images de la

cheville contient 20 examens RM acquis sur des individus pédiatriques âgés de 7
à 13 ans (âge moyen : 10, 1 ± 2, 1 ans). Toutes les images ont été annotées par
un expert médical (15 ans d’expérience) afin d’obtenir les segmentations vérités-
terrains du calcanéus, du talus et du tibia.
• Ensemble de données du genou. L’ensemble de données d’imagerie du genou

est constitué de 17 examens RM extraits d’une cohorte pédiatrique composée de
patients âgés de 13 à 18 ans (âge moyen : 15, 4 ± 1, 6 ans). Les masques de seg-
mentation des os du fémur, de la fibula, de la patella et du tibia ont été produits
manuellement.
• Ensemble de données de l’épaule. Des images RM de 15 articulations de

l’épaule ont été obtenues chez des enfants âgés de 5 à 17 ans (âge moyen : 11, 6±4, 4
ans). Les segmentations vérités-terrains des os de l’humérus et de la scapula ont
été réalisées en suivant le même protocole que pour les ensembles de données de la
cheville et du genou.

Au cours des expériences réalisées durant cette thèse, nous avons utilisé le modèle
Att-UNet avec couches de batch normalization comme modèle de référence pour com-
parer les performances des stratégies de segmentation proposées. Les capacités de
généralisation des modèles proposés ont été évaluées sur des données de test
non vues durant l’apprentissage et en utilisant des schémas de validation

2. Les données ont été acquises avec le soutien de la Fondation motrice (2015/7), la Fondation de
l’Avenir (AP-RM-16-041), le PHRC 2015 (POPB 282), et le programme Innoveo du CHRU Brest.

3. Nous tenons à remercier le Dr Antonis Stylianou de University of Missouri-Kansas City, Kansas
City, États-Unis, et le Dr Donna Pacicca du Children’s Mercy Hospital, Kansas City, États-Unis, pour
avoir partagé les images anonymisées de l’articulation du genou.
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croisée “un-contre-tous” (en anglais leave-one-out). Cette évaluation a été basée sur
six métriques calculées à partir des segmentations 3D vérités-terrains produites manuelle-
ment par l’expert. Ces mesures ont inclus le coefficient de Dice, la sensibilité, la spécificité,
la distance symétrique surfacique maximale, la distance symétrique surfacique moyenne
et la différence absolue de volume relatif. Les scores obtenus sont des indicateurs de la
similarité entre la vérité-terrain et la segmentation prédite, et permettent ainsi d’évaluer
la capacité du modèle à générer automatiquement les mêmes segmentations que celles
produites manuellement. Par ailleurs, un système de classement regroupant toutes les
mesures de segmentation en un score unique a été créé afin de faciliter la comparaison
quantitative de toutes les méthodes implémentées. Nous avons également calculé des tests
statistiques à partir des scores de segmentation pour estimer la différence statistique en-
tre les performances atteintes par les approches proposées et les modèles de référence.
Finalement, une validation qualitative approfondie de nos méthodes a été effectuée grâce
à une comparaison visuelle entre les segmentations générées.

Amélioration de la segmentation multi-structure par une régu-
larisation combinée issue d’a priori de formes et de réseaux an-
tagonistes

Pour atténuer les problèmes d’erreurs de généralisation et de rareté des données, des
travaux récents visent à intégrer des régularisations dans les modèles de segmentation pro-
fonds. En apprentissage profond, le concept de régularisation couvre des tech-
niques variées qui peuvent affecter l’architecture du réseau, les paramètres
appris, les données d’apprentissage ou la fonction de perte [43]. L’architecture
UNet [29] contient déjà de nombreuses régularisations de part la présence de couches
convolutionnelles qui contraignent le réseau à n’intégrer que des transformations équiv-
ariantes avec des interactions locales [13], [14], [28]. Par ailleurs, la batch normalization
peut être considérée comme une technique de régularisation basée sur les données qui
renforce la robustesse des paramètres appris de part ses propriétés inhérentes de stochas-
ticité [41]. Concernant les schémas de régularisation affectant les poids du réseau, on peut
également mentionner le transfert d’apprentissage qui fait référence à l’utilisation de poids
pré-entraînés sur un domaine d’images similaire [44]. Ainsi, le transfert d’apprentissage
à partir de grands ensembles de données d’images naturelles, en particulier ImageNet
[45], s’est révélé être une approche efficace pour l’analyse d’images médicales. En effet,
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celui-ci permet d’exploiter les caractéristiques de bas niveau (par exemple, les contours)
généralement partagées entre différents types d’images et les poids préalablement appris
fournissent une initialisation robuste pour l’optimisation [40], [44], [46].

Des schémas de régularisation spécifiques à l’imagerie médicale ont également émergés
et ceux-ci peuvent provenir de différentes informations a priori liées aux structures anato-
miques d’intérêt, telles que leur contour, leur forme ou leur topologie [47]–[49]. L’exploita-
tion de ces connaissances a priori s’est avérée efficace pour obtenir des résultats plus précis
et plus cohérents dans les techniques de segmentation d’images médicales traditionnelles
(c’est-à-dire par apprentissage automatique) [50]. Plus précisément, les techniques de régu-
larisation permettent notamment d’atténuer la présence d’artefacts qui sont intégrés à une
image pendant son acquisition [50]. Suite à cela, des travaux récents visent à incorporer
des contraintes de régularisation similaires dans des modèles profonds de segmentation.
Dans ce contexte, deux approches de régularisation basées sur des fonctions de perte ont
montré des résultats prometteurs : la régularisation issue d’a priori de formes (en anglais
shape priors) [51]–[55] et la régularisation antagoniste (en anglais adversarial) [46], [56]–
[58]. Ces approches reposent sur l’ajout d’un terme de pénalité à fonction de coût qui per-
met de régulariser, contraindre et guider le modèle durant l’apprentissage. Plus important
encore, ces techniques de régularisation apparaissent comme des stratégies clés
pour améliorer les résultats de segmentation et les capacités de généralisation
des modèles entraînés sur des ensembles de données épars.

En effet, des contributions récentes ont proposé d’utiliser un auto-encodeur convolutif
pour apprendre une représentation de l’anatomie à partir des annotations vérités-terrains.
En raison de la nature contrainte des structures anatomiques (par exemple, la position,
la taille et la forme globale des os), les modèles axés sur les données tels que les auto-
encodeurs sont particulièrement adaptés pour apprendre des a priori de formes [51]–[55].
La représentation de la forme anatomique ainsi apprise peut ensuite être intégrée dans
le réseau de segmentation pendant l’étape d’optimisation. Cette intégration s’effectue via
un terme de régularisation spécialement conçu qui oblige les segmentation prédites à être
proches des vérités-terrains dans l’espace de forme. Par conséquent, une telle régularisation
encourage des prédictions avec des formes anatomiques globalement cohérentes [53], [55].
En parallèle, des chercheurs en imagerie médicale ont également proposé d’utiliser des
réseaux antagonistes pour affiner les résultats de segmentation [46], [56]–[58]. Dans ces
pipelines, un réseau de segmentation et un discriminateur sont entraînés simultanément et
de manière compétitive. Le premier apprend à produire des segmentations valides tandis
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que le second apprend à discriminer entre les annotations générées et réelles. Un terme
antagoniste calculé par le discriminateur est ainsi ajouté pendant l’optimisation du réseau
de segmentation, ce qui encourage ce dernier à tromper le discriminateur et à produire
des segmentation de plus en plus réalistes [46], [56]–[58].

Pour le premier pipeline de cette thèse, nous avons proposé un encodeur-décodeur con-
volutif partiellement pré-entraîné intégrant une régularisation combinée issue d’a priori de
formes et d’un réseau antagoniste (CombRegMulti

Res-UNet). Notre approche a permis d’améliorer
les performances de segmentation multi-structure sur des ensembles de données d’imagerie
pédiatrique du système musculo-squelettique. Contrairement aux méthodes précé-
dentes [46], [52]–[58], le modèle exploite simultanément les deux régularisa-
tions pour réduire le problème de rareté des données tout en améliorant les
capacités de généralisation. En particulier, la régularisation basée sur les a priori de
formes, dérivés d’une représentation non linéaire de la forme osseuse, a guidé le réseau
de segmentation à prédire des segmentations anatomiquement cohérentes. De son côté, la
régularisation antagoniste calculée par un réseau discriminateur a encouragé des délimita-
tions plus précises avec des ressources d’imagerie limitées. En outre, le pipeline tire parti
d’un encodeur ResNet50 [59] issu de l’état de l’art et d’un schéma d’apprentissage par
transfert à partir de la base de données ImageNet [45] pour atténuer davantage les limi-
tations liées à la rareté des données. Finalement, la méthode proposée exploite également
des annotations multi-classes afin d’apprendre des caractéristiques spécifiques et partagées
entre les structures osseuses et ainsi améliorer les performances de segmentation.

Pour la première expérience, nous avons employé l’Att-UNet comme réseau de référence
pour étudier trois stratégies de segmentation osseuse : individuelle, globale et multiple.
Dans le schéma par classe individuelle, des réseaux distincts ont été optimisés sur chaque
classe d’intérêt, et les poids appris ont donc été spécifiques à un seul os. Pour l’approche
classe globale, les différentes structures osseuses ont été considérées comme une unique
classe globale sans distinction entre les os, et les poids appris ont été spécifiques à cette
classe. Enfin, dans la stratégie multi-classe, les réseaux ont été entraînés sur des segmenta-
tions contenant plusieurs classes, et les poids appris ont ainsi été partagés entre toutes les
structures anatomiques. Ainsi, l’approche individuelle a nécessité de segmenter chaque os
de manière séquentielle à l’aide de réseaux distincts, tandis que les schémas global et mul-
tiple ont chacun reposé sur un CNN unique, générant soit une classe osseuse globale, soit
des segmentations spécifiques à chaque os. En outre, pour chaque stratégie de segmenta-
tion osseuse (individuelle, globale et multiple), nous avons réalisé une étude par ablation
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afin d’évaluer les contributions des termes de régularisation. Nous avons ainsi comparé
Att-UNet [42], Att-UNet avec régularisation issue d’a priori de formes [53], Att-UNet avec
régularisation antagoniste [57] et Att-UNet avec la régularisation combinée proposée. Les
résultats obtenus ont montré que la méthode de segmentation basée sur un modèle multi-
classe avec régularisation combinée a obtenu les meilleurs performances. En particulier,
nous avons observé que, pour un schéma de régularisation fixé, la stratégie multi-classe a
surclassé la stratégie globale, qui à son tour a surpassé la stratégie individuelle. De son
côté, la régularisation combinée a constamment surpassé les autres méthodes
de régularisation, démontrant ainsi l’efficacité de l’approche proposée.

Dans un second temps, nous avons évalué les performances de notre méthode basée sur
un réseau Res-UNet pré-entraîné incorporant une stratégie de segmentation multi-classe
et la régularisation combinée proposée (CombRegMulti

Res-UNet). En particulier, nous l’avons
comparée à deux autres architectures avec des encodeurs pré-entraînés issus de l’état de
l’art (VGG-UNet [60] et Dense-UNet [61]). Nous avons uniquement utilisé la stratégie
multi-classe avec régularisation combinée car celle-ci a obtenu les meilleures performances
durant l’expérience précédente. La méthode CombRegMulti

Res-UNet a surpassé toutes les autres
approches avec encodeur pré-entraîné sur quasiment toutes les métriques des deux en-
semble de données de la cheville et de l’épaule. Le pipeline proposé a notamment
obtenu d’excellents scores de Dice : 94, 1% pour les os de la cheville et 89, 5%
pour les structures de l’épaule. CombRegMulti

Res-UNet s’est ainsi classé premier en
termes de performance pour les deux ensembles de données. En outre, les tests
statistiques réalisés ont indiqué que le modèle proposé a produit des améliorations sig-
nificatives sur chaque métrique. Enfin, les comparaisons visuelles ont fourni des preuves
qualitatives de l’amélioration progressive des performances de segmentation. L’approche
multi-classe a permis au réseau d’apprendre simultanément des caractéristiques osseuses
spécifiques (par exemple la position) et partagées (par exemple l’intensité et la forme),
et a ainsi produit des délimitations précises tout en évitant les problèmes d’os fusionnés
rencontrés avec le schéma par classe globale. Parallèlement, la régularisation combinée
proposée a exploité les avantages des deux régularisations précédentes et a permis une
extraction des os plus régulière et plus précise.

Bien que les résultats obtenus soient satisfaisants et apportent de nouvelles perspec-
tives pour la gestion des troubles musculo-squelettiques dans la population pédiatrique,
le développement de modèles d’apprentissage profond généralisables reste néanmoins un
défi. Dans cette direction, la prochaine méthode proposée durant cette thèse a pour but de
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formaliser et d’implémenter un cadre d’apprentissage multi-tâche et multi-domaine. En
effet, si le pipeline ici proposé a illustré les avantages de la segmentation multi-
structure pour tirer profit des caractéristiques partagées entre les os d’une
même articulation anatomique, on peut facilement étendre cette réflexion et
supposer que les os de régions anatomiques distinctes présentent également
des caractéristiques communes qui pourraient être exploitées.

Segmentation multi-tâche et multi-domaine généralisable avec a
priori de formes multi-articulation et une régularisation con-
trastive multi-échelle

Comme évoqué précédemment, le concept de régularisation, qui englobe toutes les
méthodes visant à réduire le sur-apprentissage, ne se limite pas à l’ajout de termes
de pénalité à la fonction de perte. Récemment, les approches d’apprentissage multi-
tâche [62]–[65] et multi-domaine [66]–[71] ont suscité l’intérêt des chercheurs en ana-
lyse d’images médicales. Intuitivement, les modèles multi-tâche et multi-domaine
bénéficient du partage de paramètres entre tâches ou domaines pour appren-
dre des représentations plus robustes et plus génériques que leurs homologues
individuels [72]–[74]. Ces approches sont particulièrement dignes d’intérêt dans le cadre
de la segmentation de multiples ensembles de données pédiatriques de régions musculo-
squelettiques distinctes. En effet, on peut facilement supposer que les ensembles de don-
nées pédiatriques RM provenant de différentes articulations anatomiques (par exemple,
la cheville, le genou et l’épaule) présentent des caractéristiques communes, en termes
de forme, de pose et d’intensité. En parallèle, il pourrait également être bénéfique de
concevoir des termes de régularisation spécifiques à l’apprentissage multi-tâche et multi-
domaine afin d’améliorer les performances de segmentation et d’obtenir des modèles avec
de plus grandes capacités de généralisation. Par exemple, les études portant sur les a
priori de formes n’ont jamais proposé d’encoder simultanément plusieurs ré-
gions anatomiques afin d’exploiter les corrélations de position, d’orientation,
de taille et de forme entre des objets anatomiques similaires, tels que des os
pédiatriques dans des articulations musculo-squelettiques séparées.

Les premiers cadres d’apprentissage multi-tâches et multi-domaines ont été dévelop-
pés pour l’analyse d’images naturelles. Dans le contexte de la segmentation, Fourure
et al. [75] ont proposé d’entraîner un seul réseau sur l’union de plusieurs ensembles de
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données pour faire face à la quantité limitée de données annotées. Dans leur approche,
chaque ensemble de données est caractérisé par sa propre tâche de segmentation et son
propre domaine d’images. Par conséquent, ce cadre est plus générique que les approches
multi-tâches traditionnelles qui se concentrent généralement sur plusieurs tâches dans le
même domaine ou que les techniques multi-domaines traditionnelles qui considèrent des
domaines contenant le même ensemble d’objets. Par la suite, des études ultérieures
ont proposé d’employer un modèle unique avec des couches convolutionnelles
agnostiques, puisque les primitives visuelles peuvent être partagées entre les
tâches et les domaines, et des couches spécifiques à chaque ensemble de don-
nées qui permettent une spécialisation pour chaque tâche et chaque domaine
[76]–[78]. Ces approches, basées sur des représentations partagées, ont permis d’atteindre
des performances égales ou supérieures aux modèles individuels traditionnels. A notre
connaissance, l’apprentissage multi-tâche et multi-domaine a cependant rarement été
appliqué à l’analyse d’images médicales, à l’exception des travaux de Moeskops et al.
[79] qui ont démontré qu’un seul réseau de neurones peut segmenter plusieurs anatomies
(cerveau, poitrine et cœur) simultanément. Néanmoins, de part l’absence de couches spé-
cifiques à chaque domaine, leur modèle n’a pu tenir compte de la différence de distribution
d’intensité entre les domaines.

Même si les modèles multi-tâches et multi-domaines peuvent intégrer des informations
spécifiques à chaque tâche et domaine par le biais de couches spécialisées, les connais-
sances préalables (ou a priori) pourraient être davantage exploitées pour améliorer les
capacités de généralisation des représentations partagées. Dans cette direction, Zhu et al.
[80] ont imposé une distribution de mélange gaussien sur la représentation partagée de
leur réseau afin de préserver les informations de bas niveau entre les domaines. Cependant,
une telle hypothèse peut se révéler trop restrictive en pratique. En effet, dans le cadre de
l’apprentissage de représentations, une bonne représentation peut être caractérisée par la
présence de clusters correspondant aux classes du problème (c’est-à-dire une représenta-
tion démêlée ou disentangled representation en anglais) [81]. Par conséquent, un certain
nombre de techniques d’apprentissage auto-supervisée proposent d’utiliser une métrique
contrastive afin de regrouper les données de la même classe et séparer celles de classes
différentes dans les représentations cachées (ou espaces latents) [82]–[84]. Une contribu-
tion récente a étendu cette idée au cadre de la classification supervisée en tirant parti de
l’information sur les classes des images [85]. Ainsi, la régularisation contrastive maximise
la performance du classificateur en imposant une cohésion intra-classe et une séparation
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inter-classe dans les couches latentes. Contrairement à l’approche de Zhu et al. [80], il n’est
pas nécessaire de définir, au préalable, une distribution pour les variables latentes. Par
conséquent, les techniques de régularisation contrastive semblent plus génériques et ap-
propriées pour imposer des clusters spécifiques à chaque domaine dans les représentations
partagées des modèles profonds multi-tâche et multi-domaine.

Pour le second pipeline de cette thèse, nous avons implémenté et évalué un cadre
d’apprentissage multi-tâche et multi-domaine pour la segmentation d’os pédiatriques à
partir d’images RM. Contrairement au pipeline précédent, cette approche multi-
anatomie bénéficie de représentations partagées apprises à partir d’articulations
anatomiques distinctes, afin d’atténuer le problème de rareté des ressources
pédiatriques. En particulier, le modèle de segmentation multi-tâche et multi-domaine a
intégré un encodeur pré-entraîné de la famille EfficientNet, des filtres convolutifs partagés,
des attention gates multi-domaine, des couches de batch normalisation spécifiques à chaque
domaine (en anglais DSBN pour domain-specific batch normalisation) et une couche de
segmentation spécifique à chaque tâche. En effet, dans le cadre de l’apprentissage multi-
domaine, sachant que les statistiques individuelles des domaines peuvent être très dif-
férentes les unes des autres, une unique couche de batch normalization partagée pourrait
conduire à négliger certaines caractéristiques et à apprendre des poids nuls. Pour calibrer
plus minutieusement les caractéristiques internes du modèle, nous avons utilisé des DSBN
[66]–[69]. Ainsi, les filtres convolutifs partagés exploitent les caractéristiques
partagées entre les tâches et les domaines pour être plus robustes que leurs
homologues individuels, tandis que les DSBN permettent de meilleures capac-
ités de généralisation grâce à un calibrage spécifique à chaque domaine. D’autre
part, une couche de segmentation agnostique pouvant prédire les classes de chaque articu-
lation est contre-productive puisque les tâches ciblées sont disjointes (par exemple, prédire
des os de cheville à partir d’une image d’épaule) [75]. Il a donc été essentiel d’utiliser une
couche finale dédiée pour chaque tâche de segmentation. En outre, les attention gates
multi-domaine ont permis d’améliorer l’interprétabilité du modèle de part leurs capac-
ités à produire des cartes d’attention qui mettent en évidence les régions d’intérêt dans
chaque domaine. Finalement, nous étendons le cadre d’apprentissage multi-tâche et multi-
domaine en définissant une régularisation contrastive multi-échelle (MSC en anglais pour
multi-scale contrastive) et des a priori de formes multi-articulation (MJSP en anglais
pour multi-joint shape priors) qui permettent d’améliorer les capacités de généralisation
du modèle de segmentation. Plus précisément, la régularisation contrastive multi-
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Évaluation des performances et analyse du modèle multi-anatomie

Images RM test Prédictions

Visualisation t-SNE

Échelle 1 Échelle 3 Échelle 5 Échelle 7 Échelle 9

Cartes d’attention

Cheville Genou Épaule

Comparaison à l’état de l’art

Individuel Partagé
+LMJSP

DSL + LMSC
+LMJSP

Figure B – Évaluation des performances et analyse du modèle de segmentation multi-tâche
et multi-domaine généralisable avec a priori de formes multi-articulation et régularisation
contrastive multi-échelle.

échelle vise à améliorer la similarité intra-domaine et à imposer des marges
inter-domaines dans les représentations latentes du réseau; tandis que les a
priori de formes multi-articulation encodent les caractéristiques anatomiques
de plusieurs articulations pour contraindre la tâche de segmentation.

Pour la première expérience, nous avons comparé différentes stratégies de segmentation
multi-tâche et multi-domaine avec Att-UNet comme architecture de référence. Les quatre
approches de segmentation proposées sont les suivantes : individuelle (entraînée sur des
domaines individuels), transfert (pré-entraînée sur un domaine et affinée sur les autres),
partagée (entraînée sur tous les domaines à la fois, avec tous les paramètres partagés
entre les domaines) et DSL (pour domain-specific layers en anglais, entraînée sur tous
les domaines à la fois, avec des paramètres partagés et des couches spécifiques à chaque
domaine). L’approche partagée diffère du schéma DSL par ses couches de batch normal-
ization et de segmentation partagées. En outre, nous avons réalisé une étude par ablation
pour évaluer les contributions des a priori de formes multi-articulation et de la régularisa-
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tion contrastive multi-échelle. Plus précisément, les a priori de formes multi-articulation
ont été incorporés dans les approches partagées (en utilisant un auto-encodeur multi-
articulation avec tous les paramètres partagés) et DSL (en utilisant un auto-encodeur
multi-articulation avec des paramètres partagés et spécifiques à chaque domaine). Pour
sa part, la régularisation contrastive multi-échelle n’a pu être intégrée que dans le schéma
DSL, puisque les domaines n’ont pas été différenciés dans l’approche partagée. D’après les
résultats obtenus, notre approche comprenant des représentations partagées, des
couches spécialisées, des a priori de formes multi-articulation et une régular-
isation contrastive multi-échelle a permis d’obtenir des améliorations de per-
formance par rapport aux modèles indépendants, par transfert et partagé sur
tous les ensembles de données. Par ailleurs, les schémas partagé et DSL offrent un
avantage supplémentaire de part leurs capacités à apprendre toutes les paires de tâches
et de domaines simultanément plutôt que de manière séquentielle, source d’oublis catas-
trophiques. Enfin, nous avons observé que les a priori de formes multi-articulation ont
amélioré les performances de segmentation dans les deux schémas partagés et DSL, et ce
pour chaque articulation anatomique. Cela a davantage illustré l’efficacité des a priori de
formes qui s’étaient déjà avérés bénéfiques dans le pipeline précédent, mais pour chaque
articulation anatomique séparée.

Dans un second temps, nous avons comparé les performances de notre méthode (Effic-
ient-UNet DSL+LMSC+LMJSP) basée sur Efficient-UNet avec encodeur pré-entraîné, DSL,
régularisation contrastive multi-échelle et a priori de formes multi-articulation face à deux
autres architectures avec des encodeurs pré-entraînés issus de l’état de l’art (Inception-
UNet [86] et Dense-UNet [61]). Plus précisément, les modèles pré-entraînés Inception-
UNet, Dense-UNet et Efficient-UNet ont été comparés en utilisant des schémas individuels,
partagés avec a priori de formes multi-articulation, et DSL avec a priori de formes multi-
articulation et une régularisation contrastive multi-échelle. Pour chacune des stratégies
partagées et DSL, nous n’avons retenu que la meilleure approche observée lors des expéri-
ences précédentes basées sur Att-UNet. Enfin, le schéma de transfert a été écarté dans ce
dispositif expérimental car les réseaux ont déjà été tous partiellement pré-entraînés sur la
base de données ImageNet. Le pipeline Efficient-UNet DSL + LMSC + LMJSP a surpassé
toutes les autres approches avec encodeur pré-entraîné sur quasiment toutes les métriques
des trois ensembles de données de la cheville, du genou et de l’épaule. La méthode pro-
posée a notamment obtenu d’excellents scores de Dice : 93, 8%, 95, 4% et 87, 9%
respectivement sur les ensembles de données de la cheville, du genou et de
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l’épaule. Efficient-UNet DSL +LMSC +LMJSP s’est ainsi classé premier en ter-
mes de performances pour la tâche de segmentation multi-anatomie. Les tests
statistiques ont confirmé que notre pipeline a conduit à des améliorations significatives
sur chaque métrique par rapport aux autres approches. Enfin, les comparaisons visuelles
(Figure B) ont permis de souligner de manière qualitative les améliorations progressives
de la précision des segmentations. Nous avons notamment observé que les a priori de
formes ont imposé des délimitations globalement plus anatomiquement cohérentes pour
toutes les structures osseuses ciblées, tandis que la régularisation contrastive a encouragé
une extraction plus précise des os dans tous les domaines grâce à des représentations
partagées plus robustes avec des clusters spécifiques à chaque domaine. En outre, nous
avons fourni une visualisation des cartes d’attention calculées par les attention gates multi-
domaine (Figure B). Cette visualisation a confirmé que les modèles de segmentation ont
exploité les informations spatiales et contextuelles pour se concentrer sur les os ciblés dans
chaque articulation anatomique. Finalement, nous avons utilisé l’algorithme de visualisa-
tion t-SNE [87] pour évaluer les effets de la régularisation contrastive multi-échelle sur les
représentations internes des réseaux multi-domaine (Figure B). Nous avons observé que
les représentations apprises à l’aide des schémas partagé et DSL n’ont pas présenté de
marges entre les domaines. Au contraire, l’ajout de la régularisation contrastive a con-
duit à des clusters distincts spécifiques à chaque domaine. Par conséquent, le domaine
de l’image d’entrée a été conservé au travers des différentes représentations partagées des
réseaux proposés, ce qui s’est traduit par de meilleures performances sur les images non
vues.

Conclusion

Les travaux de recherche menés dans le cadre de cette thèse visaient à résoudre les prob-
lèmes d’erreurs de généralisation et de rareté des données rencontrés lors du développe-
ment de méthodes d’apprentissage profond pour la segmentation d’images musculo-squelet-
tiques pédiatriques. Nous avons proposé et évalué des méthodes basées sur de
nouveaux paradigmes d’apprentissage profond qui ont atteint des performances
prometteuses pour la tâche de segmentation osseuse sur des ensembles de don-
nées d’imagerie RM épars et hétérogènes des articulations de la cheville, du
genou et de l’épaule. En particulier, les performances de généralisation des modèles
de segmentation ont été améliorées en exploitant des architectures de l’état de l’art, des
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schémas d’apprentissage par transfert, des approches multi-anatomie et des techniques de
régularisation.

Dans le cadre de cette thèse, nous n’avons pu évalué si les performances de généralisa-
tion obtenues par les deux pipelines proposés (CombRegMulti

Res-UNet et Efficient-UNet DSL +
LMSC + LMJSP) sont suffisantes pour permettre le déploiement dans la pratique clin-
ique de méthodes de segmentation osseuse d’images RM pédiatriques entièrement au-
tomatiques. Cependant, les résultats obtenus illustrent de façon significative que
l’utilisation collaborative des ressources pédiatriques et la conception intelli-
gente des modèles d’apprentissage profond peuvent améliorer les performances
de segmentation sur de petits ensembles de données d’imagerie musculo-
squelettique. Enfin, nos pipelines fournissent actuellement une description incomplète
du système musculo-squelettique pédiatrique qui englobe uniquement les tissus osseux.
Par conséquent, les travaux futurs visent à compléter nos modèles afin d’extraire d’autres
structures anatomiques (par exemple, les cartilages de la cheville, les ligaments du genou
ou les muscles de l’épaule). Ainsi, l’analyse morphologique et fonctionnelle reposera sur
une modélisation plus complète du système musculo-squelettique, en vue d’une meilleure
gestion des troubles pédiatriques.

La suite de ce manuscrit est rédigée en anglais (États-Unis).
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INTRODUCTION

Context

In clinical practice, medical imaging is a valuable aid for diagnosis, treatment plan-
ning, surgery assessment, and post-surgical monitoring. For the management of pediatric
musculoskeletal disorders, medical image analysis delivers morphological and functional
information essential for assessing the patient’s level of impairment, guiding surgery, and
optimizing rehabilitation programs. In the medical image analysis workflow, semantic
segmentation is a critical technology that allows identifying and localizing meaningful
anatomical structures by extracting their boundaries [1], [2]. Hence, segmentation enables
the generation of three-dimensional (3D) solid or surface models of muscles, bones, car-
tilages, and ligaments from pediatric musculoskeletal magnetic resonance (MR) images.
In turn, these 3D anatomical models provide an accurate understanding of the
pediatric anatomy, which is especially needed as the clinical verdict of muscu-
loskeletal pathologies requires precise knowledge of anatomical deformity and
associated joint dysfunction (Figure C) [3]–[5]. Additionally, the extracted morpho-
logical and physiological information allows the design of more efficient and sustainable
rehabilitation strategies [6]. Such approaches are paramount in the pediatric population,
where musculoskeletal disorders may seriously impede a child’s growth and development.

However, the process of segmenting MR images typically relies on manual delineation,
which is tedious, time-consuming, and suffers from the lack of intra- and inter-observer
reproducibility [7], [8]. Moreover, the pediatric musculoskeletal system may be more chal-
lenging to segment than its adult counterpart due to thinner structures, the ongoing bone
ossification process, and higher anatomical variability between age groups [7]–[9]. For
their part, pediatric pathological imaging examinations also exhibit irregular and com-
plex pathological structures which are difficult to delineate due to alterations in shape
and appearance [8], [9]. Developing robust and fully-automated segmentation techniques
becomes necessary to improve the generated delineations’ reliability and robustness while
reducing the need for human intervention in image processing tasks [3]–[5]. In this thesis,
we aim to develop deep learning-based fully-automatic segmentation methods
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Pediatric MR images Bone delineations Morphological study

Segmentation

3D

Bone models

Figure C – Pediatric MR images segmentation workflow and 3D bone models generation
for the morphological study of the three musculoskeletal joints of interest: ankle, knee,
and shoulder.

for pediatric MR image datasets of three musculoskeletal joints: ankle, knee,
and shoulder. In particular, we target the segmentation of multiple bone structures (Fig-
ure C), and the available pediatric datasets are characterized as heterogeneous, unpaired
(i.e., from different patient cohorts), and sparse.

In the last decade, deep learning approaches have achieved promising results for solving
medical imaging-based tasks compared to traditional variational, model-based, or graph-
partitioning learning schemes [1], [2], [10]–[12]. Specifically, convolutional neural networks
(CNNs) have become state-of-the-art methods in numerous medical imaging-based ap-
plications due to their ability to learn hierarchical representations of image features in
a purely data-driven manner [13], [14]. Examples of CNNs-based medical image analysis
applications include the detection of Covid-19 lesions in chest radiographs [15] or the di-
agnosis of diabetic retinopathy from retinal fundus photographs [16]. Nevertheless, deep
learning techniques are still at an early stage of deployment in clinical practice [17]. In
2021, about fifty artificial intelligence-based medical devices and algorithms have been
approved by the United States Food and Drug Administration 4, of which none in pedi-
atrics [18], [19]. Indeed, deep learning models usually require a large amount of annotated
data to be trained in a supervised manner. However, the complexity of the medical image
acquisition and annotation process makes it challenging to develop large-scale datasets. Ul-

4. https://www.fda.gov/
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timately, deep learning models trained on sparse medical datasets may present
poor performance on unseen images encountered in real-world deployment
due to limited generalization capabilities.

To mitigate these issues, novel deep learning paradigms have emerged, including
annotation-efficient approaches to leverage weakly labeled or unlabeled data [20], [21],
multi-domain learning to benefit from features shared across datasets acquired for dif-
ferent purposes [21], and regularization techniques to prevent over-fitting [1]. These ad-
vanced methodologies have been demonstrated to improve performance over standard
deep learning models and thus show promise in enabling the widespread deployment of
deep learning solutions in clinical practice [21]. Nevertheless, in this thesis, we target
the automatic analysis of pediatric images, which is even more difficult than
for adult cohorts, primarily due to the inherent scarcity of pediatric imaging
resources. Indeed, one of the major challenges associated with pediatric image analysis
resides in creating large-scale imaging databases, as the acquisition of pediatric examina-
tions is hindered by the need for specialized healthcare personnel, dedicated acquisition
protocols, and stricter ethical considerations [22]–[27]. The limited availability of pe-
diatric imaging resources makes it even more difficult to develop generalizable
models that could be integrated into clinical practice. It thus appears all the
more essential to follow novel deep learning paradigms when considering the
pediatric population.

Research objectives

Motivated by the problems highlighted above, the global aim of this thesis was
to address the generalization gap and data scarcity issues encountered when
developing deep learning models for pediatric musculoskeletal image segmen-
tation. In this direction, we proposed to leverage emerging advanced deep
learning methodologies. In particular, we targeted the incorporation of regularization
during optimization to prevent over-fitting and the adoption of multi-anatomy learning to
benefit from shared features across musculoskeletal imaging datasets. Hence, this thesis
aimed at developing and validating regularized deep learning models for multi-anatomy
segmentation in pediatric imaging. This aim was factorized into two research objectives
outlined below:
• Research objective 1. Develop and validate an automatic multi-structure seg-
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mentation framework with combined regularization from shape priors and adver-
sarial networks.
This research objective aimed to develop a multi-structure bone segmentation
pipeline for pediatric MR images. To mitigate the generalization gap and data
scarcity issues, we employed a combination of regularization from shape priors and
an adversarial network. In addition, the framework leveraged a state-of-the-art
architecture and transfer learning scheme to further improve segmentation per-
formance. We validated the framework using several multi-structure segmentation
strategies and backbone architectures on two pediatric musculoskeletal imaging
datasets of the ankle and shoulder joints.
• Research objective 2. Develop and validate a generalizable multi-task, multi-

domain segmentation pipeline with multi-joint shape priors and multi-scale con-
trastive regularization.
This research objective targeted the development and validation of a multi-task,
multi-domain segmentation framework for pediatric musculoskeletal imaging. As
opposed to the previous research objective, the framework simultaneously learned
to segment multiple anatomical regions to mitigate the scarcity issue of pediatric
resources. We further improved model generalizability by integrating a pre-trained
encoder, multi-joint shape priors, and multi-scale contrastive regularization. The
framework is validated and compared with several multi-task, multi-domain seg-
mentation approaches and backbone networks for the segmentation of three pedi-
atric imaging datasets of the ankle, knee, and shoulder joints.

Thesis outline

Considering the multiple research elements included in this thesis, the remainder of
this manuscript is divided into three parts, as summarized in the diagram of Figure D.
The structure of this thesis is as follows:
• Part I provides the context and challenges of medical image analysis using deep

learning, with a focus on pediatric imaging. This part also introduces the clin-
ical motivations for the analysis of the pediatric musculoskeletal system and the
mathematical framework for deep learning-based medical image segmentation. The
elements established in this part provide the general motivations and serve as the
backbone for the remainder of this thesis.
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Part I
Challenges of medical image analysis

using deep learning: focus on
pediatric musculoskeletal system segmentation

Chapter 1
Background and recent

trends in medical
image analysis

Chapter 2
Analysis of the

pediatric musculoskeletal
system

Chapter 3
Deep learning for

medical image
segmentation

Part II
Improved multi-structure segmentation

via combined regularization from shape priors
and adversarial networks

Chapter 4
Shape priors-based

regularization for multi-
structure segmentation

Chapter 5
Leveraging adversarial
networks and transfer
learning for improved

generalizability

Part III
Generalizable multi-task, multi-domain segmentation

with multi-joint shape priors and
multi-scale contrastive regularization

Chapter 6
Multi-joint shape
priors for multi-

anatomy segmentation

Chapter 7
Enhanced generalizability
via multi-scale contrastive

regularization

Context Clinical motivations Mathematical background

Method development and validation (Research objective 1)

Method development and validation (Research objective 2)

Draw elements from

Figure D – Diagram of the thesis structure. The thesis is organized into three parts, in
which each chapter draws elements from the previous chapters.

· Chapter 1 presents general background information and recent trends in the
field of medical image analysis, with a final emphasis placed on challenges spe-
cific to pediatric imaging applications. In addition, this chapter also positions
the segmentation methodologies of Parts II and III in relation to the novel and
emerging deep learning paradigms developed for medical image analysis.

· Chapter 2 introduces the clinical motivations for the study of the pediatric
musculoskeletal system. This chapter describes the challenges associated with
the acquisition and analysis of pediatric musculoskeletal images. In particu-
lar, the chapter presents the pathologies targeted and the pediatric imaging
resources employed in Parts II and III.
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· Chapter 3 provides a general mathematical framework for deep learning-based
image segmentation. This chapter aims to provide background on deep learning
to build more advanced architectures and training schemes. In particular, this
chapter introduces the baseline architecture and the implementation details
used in the experiments performed in Parts II and III.

• Part II targets the development and validation of the improved multi-structure
segmentation framework with combined regularization from shape priors and ad-
versarial networks (Research objective 1).

· Chapter 4 introduces an automatic and multi-structure pediatric bone seg-
mentation method. The framework leverages auto-encoder based shape priors
to guide the segmentation network to make anatomically consistent predictions
with restricted imaging resources. This chapter illustrates that the proposed ap-
proach can be easily integrated into various bone segmentation strategies, and
demonstrates the effectiveness of employing a multi-structure learning scheme.

· Chapter 5 extends the framework of Chapter 4 by integrating a pre-trained
encoder and an adversarial regularization. The framework simultaneously lever-
ages a combination of shape priors and an adversarial regularizer to reduce the
data scarcity issue while improving model generalizability. Finally, this chapter
demonstrates the usefulness of employing pre-trained models along with com-
bining different regularization schemes for deep learning-based medical image
segmentation.

• Part III targets the development and validation of the generalizable multi-task,
multi-domain segmentation pipeline with multi-joint shape priors and multi-scale
contrastive regularization (Research objective 2).

· Chapter 6 proposes a multi-task, multi-domain learning framework. Unlike the
previous methods of Part II, the framework simultaneously learns to segment
multiple anatomical joints to overcome the inherent scarcity of pediatric data.
This chapter also presents multi-joint shape priors which encode the anatom-
ical characteristics of multiple joints to further avoid over-fitting. Ultimately,
this chapter illustrates the effectiveness of employing a multi-anatomy learning
scheme.

· Chapter 7 extends the multi-anatomy learning framework of Chapter 6 by in-
tegrating a multi-scale contrastive regularization to improve the generalization
capabilities of segmentation models. In addition, this chapter leverages transfer
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learning scheme to further reduce data scarcity limitations. Finally, this chap-
ter provides an in-depth evaluation of the proposed multi-task, multi-domain
learning framework.

Although the thesis is structured so that each chapter uses elements from the previous
ones (Figure D), each chapter can also be read independently. Publications resulting from
research projects performed during this thesis and for which the author is the primary
author or a collaborator are listed at the end of the dissertation.
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Chapter 1

BACKGROUND AND RECENT TRENDS IN

MEDICAL IMAGE ANALYSIS

1.1 Introduction
Imaging of the human anatomy and function serves as an essential step in the medical

workflow, as the acquired images can significantly assist clinicians in diagnosing patholo-
gies, assessing morphological evolution over time, and optimally guiding surgeries [11].
Medical imaging has revolutionized medicine over the past few decades and
continues to progress rapidly, especially with the continuous improvements
in spatio-temporal resolution and signal-to-noise ratio [10]. However, the anal-
ysis of the obtained medical images is traditionally performed by radiologists through
visual inspection which is a time-consuming process sensitive to human subjectivity and
variability among interpreters (e.g., experience, fatigue) [11]. Most importantly, human-
based analysis of medical images can be extremely expensive as it requires strong expert
knowledge.

Therefore, as discussed by Rueckert and Schnabel [11], the automatic extraction
and analysis of quantitative information from medical images is of crucial im-
portance and has become an explosive research area in recent years. More pre-
cisely, robust and automatic derivation of anatomical and physiological information could
enable the generation of patient-specific modeling to support diagnostic and treatment
approaches appropriately tailored to each individual patient, leading to more personalized
medicine. In parallel, the analysis of large-scale population studies could also benefit from
such an automatic analysis pipeline to extract previously unknown biological patterns and
trends present within a specific population and to design new customized strategies for
early detection, prediction, and primary prevention of major diseases. In particular, the
standard inspection of medical images conducted by human experts is notably unable to
cope with such studies involving thousands of patients, contrary to computerized medical
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image analysis tools [11].

The work of Litjens et al. [2] provides background on the rich history of computerized
medical image analysis that spans from the 1970s to today and reflects the trends within
the fields of computer vision and artificial intelligence [14]. Indeed, healthcare and medical
image analysis are just one of the many application areas of artificial intelligence, which is
a very vast field of research aimed at developing intelligent systems that exhibit behavior
similar to human perception and reasoning (e.g., image perception and understanding).
The first computerized medical image analysis techniques developed from the 1970s to
the 1990s involved low-level pixel processing (e.g., edge filters, region growing) and simple
mathematical primitives (e.g., line, ellipsoid, or circle fitting) to derive rule-based systems
built upon conditional statements. However, these expert systems based on handcrafted
features and rules required extensive knowledge to solve a particular task and proved
difficult to transfer to new problems involving unseen images [2], [14].

Thus, a new kind of approach exploiting the knowledge of previously labeled training
images emerged in the late 1990s. One can notably mention active shape models which
iteratively deform to extract an instance of an object in a new image, with shape defor-
mations remaining consistent with the variability observed in the set of labeled examples.
Additionally, statistical classifiers (e.g., support vector machines, k-nearest neighbor, ran-
dom forests) trained using feature vectors extracted from the example data have been
employed for computer-aided detection and diagnosis. Contrary to previous rule-based
systems completely designed by practitioners, these machine learning approaches directly
learned from the data to identify patterns and provide predictions with minimal human
interventions. More precisely, the process of extracting discriminant features from the
images was still performed by human researchers (i.e., handcrafted features) while the
machine learning algorithms were employed to determine the optimal decision boundary
in the high-dimensional feature space [2], [14].

Following this, the next logical step was therefore based on the idea of letting the
algorithm directly learn the features that optimally represent the imaging data and the
considered task [2], [14]. This concept is at the core of deep learning models which were
developed and popularized by Yann Le Cun, Yoshua Bengio, and Geoffrey Hinton [13].
These neural networks are composed of a succession of layers that transform input data
(e.g., image, video, sound, text) to output predictions while learning hierarchical repre-
sentations with increasingly abstract features [13], [14]. Although initial works on deep
learning started in the first half of the 20th century, deep models only gained momentum in
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the 2010s when technological advancement allowed them to be efficiently developed and
optimized. Consequently, the medical image analysis community has gradually
adopted these methodologies and deep networks have now become state-of-
the-art methods in almost all medical imaging-based applications [2], [13], [14].

Indeed, an ever-increasing number of research studies have illustrated the numerous
applications of deep learning in healthcare, including diagnosing Covid-19 from chest ra-
diographs [15], detecting breast cancer in mammograms [88], predicting the development
of neurodegenerative diseases from brain positron emission tomography (PET) [89], an-
alyzing cardiovascular risk from ultrasound acquisition [90], assessing the morphology
of abdominal organs from computed tomography (CT) scans [91], or quantifying mus-
culoskeletal disorders from magnetic resonance imaging (MRI) [92]. Applications have
also been demonstrated in identifying skin cancer lesions [93], interpreting retinal fundus
images for diabetic retinopathy [94], and detecting tumor tissues in histopathological im-
ages [95]. This rapid overview of medical imaging applications illustrates the diversity of
medical image content originating from the multiplicity of imaging modalities,
acquisition protocols, anatomical structures of interest, studied pathologies,
and patient populations [1], [2], [17].

Furthermore, it is worth mentioning that medical applications employing non-image
data input have also emerged, such as: identifying heart disorders from electrocardiograms
[96], extracting semantic information from clinical transcripts [97], summarizing doctor-
patient consultations [98], or predicting 3D protein structures from amino acid sequences
[99]. To solve these clinical challenges, several key technologies have been developed with
the most predominant being: classification, detection, enhancement, reconstruction, regis-
tration, regression, and segmentation [1], [2]. Deep learning enables the definition of
all these technologies in a unified mathematical formalism (i.e., function ap-
proximation), which partly explains its rapid and widespread success among
very diverse medical applications [1], [2]. However, despite this wide array of
studies demonstrating its great potential, actual deployments of deep learning
in clinical practice remains rare and its applications are still at an early stage
of development [17]–[19]. Indeed, deep learning technology requires large amount of
imaging resources that are inherently scare in the clinical setting due to the complexity of
the medical image acquisition and annotation process. Moreover, neural networks trained
on available imaging data may present poor performance on new unseen images encoun-
tered in real-world deployment, due to potential differences in acquisition settings and
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image characteristics (i.e., generalization gap).

Regarding the automatic analysis of the pediatric population, the literature remains
scarce due to the limited availability of pediatric imaging resources which makes it even
more difficult to develop deep learning models. Indeed, one of the major challenges in
pediatrics resides in the creation of large-scale imaging databases, and consequently the
development of generalizable tools that could be integrated into clinical practice. In partic-
ular, the acquisition of pediatric images is hindered by the need for specialized healthcare
personnel and devices, while the amount of associated labels available for training deep
learning models is even more limited due to the demand for expert pediatric radiologists.
Pediatric image analysis also presents unique challenges associated with the rapidly grow-
ing anatomy of children, which differentiates it from that of adults [100], [101]. These
pediatric characteristics further aggravate the challenges associated with deep
learning-based medical image analysis and lead to the necessity to develop
specific computerized methods, which represents the goal of this thesis. In
particular, this thesis focuses on the analysis of pediatric musculoskeletal dis-
orders which will be introduced in the next Chapter 2 and we aim at developing novel
deep learning segmentation models, whose mathematical framework will be introduced
in Chapter 3. For its part, this chapter presents general background and recent trends
in medical image analysis, with a final focus on challenges specific to pediatric imaging
applications. In addition, this chapter also positions the deep learning methodologies de-
veloped in Parts II and III in relation to the global ongoing trends in medical image
analysis.

The remainder of this chapter is structured as follows. Section 1.2 provides a rapid
overview of medical image acquisition technologies, from X-ray and ultrasound (Section
1.2.1), to nuclear medicine (Section 1.2.2) and magnetic resonance imaging (Section 1.2.3).
Next, Section 1.3 presents the recent trends in medical image applications and focus on the
diversity of medical image domains (Section 1.3.1), multiplicity of medical image analysis
tasks (Section 1.3.2) and the resulting challenges for deep learning-based analysis (Section
1.3.3). In addition, more theoretical challenges with impact on healthcare are presented in
Section 1.3.4. Finally, Section 1.4 introduces the technical challenges specific to pediatric
image acquisition (Section 1.4.1) and analysis (Section 1.4.2), as well as advanced deep
learning techniques addressing these issues (Section 1.4.3).
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1.2 Background on medical image acquisition tech-
nologies

The history of medical imaging can be traced back to the discovery of X-rays by
Wilhelm Röntgen in 1895 and his experiments to image the bones in his wife’s hand [10],
[102]. Thereafter, European and North American physicists quickly started replicating
Röntgen’s research and improving his technique for visualizing the human body. At the
same time, physicians began to exploit the clinical potential of radiographs which allows
the study of the interior of the human body in a non-invasive manner. For instance, it was
possible to assess skeletal trauma using radiographs, a well-known example being Marie
Curie aiding doctors by visualizing shattered bones during World War I. One can also
mention the invention of mammography in 1913 and the first cerebral angiogram in 1927
[10], [103].

However, modern medical imaging did not begin to take shape until decades later,
with the development and creation of PET (in the 1950s) and ultrasound imaging devices
(in the 1960s). The field was then firmly established and clearly defined during the 1970s
with the beginning of new computational medical imaging techniques, namely: CT and
MRI. Nowadays, these technologies (i.e., X-ray, PET, ultrasound, CT, and
MRI) represent the most commonly used imaging modalities in daily clinical
routine and medical applications [10], [103]. Furthermore, the definition of medical
imaging also includes other type of images such as visible light images captured with
simple digital cameras that are notably employed in dermatology [93], ophthalmology
[94], or even during minimally invasive surgical procedures such as endoscopic surgery
[104]. However, in this chapter we only consider the most common imaging modalities
that are able to capture a visual representation of the internal anatomy (i.e., X-ray, PET,
ultrasound, CT, and MRI).

From a very general perspective, these medical imaging devices exploit physical phe-
nomena such as radioactivity, electromagnetic radiation, nuclear magnetic resonance,
sound waves, and their respective interaction with the internal tissues of the human body
in order to generate non-invasive visual representations of both anatomy and physiology.
The following brief summary strives to provide essential background information for each
modality and to present the diversity within the medical imaging field. We focus here on
the physical phenomena and the image generation process that characterize each modal-
ity, and provide some key clinical applications. Chapter 2 will provide clinical details on
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the applications of these modalities for the analysis of pediatric musculoskeletal disorders.

1.2.1 Earliest medical image modalities: X-ray and ultrasound

The process of exposing an object to X-rays and capturing the resulting remnant beam
allows to reveal its internal structures as part of the penetrating high-energy electromag-
netic radiation is absorbed in a process known as attenuation [105]. The absorption of
X-ray photons by denser structures such as bone will result in less exposed areas on the
image receptor, which can then be easily distinguished from low-density tissues, hence
the interest of X-rays in assessing bone fractures [102], [105]. Conventional radiography
thus corresponds to a projection of the 3D anatomy on a 2D image, and it is sometimes
necessary to acquire a supplementary X-ray from a different angle to obtain additional
spatial information [105].

To address this problem, CT devices use a rotating radiation source and a row of
detectors to measure X-ray attenuation from multiple angles [106]. These measurements
are then processed using reconstruction algorithms to produce tomographic (i.e., cross-
sectional) images of the human body and obtain a 3D representation of the anatomy
[102], [106]. Because of their effectiveness, CT scans have been widely employed to screen
diseases in several anatomical regions, including the head, the lungs, or the abdomen.
In addition, one can incorporate temporal information by using fluoroscopic imaging,
which employs a continuous source of radiation to obtain real-time moving images, which
in turn, make it possible to analyze the function of the anatomical structures of interest
[102]. Real-time CT techniques (or CT fluoroscopy) have thus emerged to obtain complete
4-dimensional imaging data, and have found applications in the guidance of interventional
procedures [106]. It is also possible to employ radio-contrast agents which absorb radia-
tion and consequently decrease the exposure on the detector to enhance the visibility of
targeted internal structures such as blood vessels (i.e., angiogram). Nevertheless, radia-
tion exposure remains one of the major concern when employing X-rays and
the required radiation dose must thus be kept as low as reasonably achievable
(i.e., ALARA guideline), especially in pediatrics [102].

For its part, the concept of medical ultrasound differs completely, as it operates on
high-frequency sound waves to image the human body by analyzing the echo of transmit-
ted signals over time. More precisely, sound waves propagating through the body will be
attenuated and reflected at separate intervals depending on the composition of the dif-
ferent tissues encountered. To produce an image, the ultrasound device must determine
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the propagation time and amplitude of the received echo signals in order to compute
the intensity of each pixel in the image. The different reflection and transmission prop-
erties of the anatomical structures will hence result in distinct echo amplitude and pixel
brightness, making it easy to distinguish the relative tissues in the image [107], [108].
Because of its effectiveness in soft tissue imaging, key applications of ultrasonography
include gastroenterology, gynecology, pulmonology, or cardiology.

While ultrasound images are typically two-dimensional (2D), one can capture a series
of ultrasound images and record the transducer orientation for each slice to create a 3D
representation. It is also possible to employ the Doppler effect to accurately assess the di-
rection and velocity of blood flow in arteries and veins, as in angiology. This information is
usually represented as a color scale displayed on ultrasound images for simultaneous visu-
alization of both anatomy and function. Finally, ultrasound imaging presents several
additional advantages for clinical practice: real-time acquisition to study the
function of moving structures, easily flexible scanning equipment, and most
importantly (especially in pediatrics), no emission of ionizing radiation. How-
ever, compared to other imaging modalities, ultrasound may provide less anatomical detail
as the depth propagation of sound waves is limited, and some structures (i.e., bone, air)
reveal to be challenging to penetrate [107], [108].

1.2.2 Nuclear medicine for functional imaging

Unlike X-ray and ultrasound imaging modalities which rely on external sources to
emit a physical signal interacting with human tissues, PET imaging and, more generally,
nuclear medicine involves injecting radioisotopes (i.e., radionuclides) directly into the pa-
tient and recording the resulting internal radiation with gamma cameras to provide a
visualization of the human body. Radionuclides are usually incorporated into molecules
whose properties cause them to bind and aggregate on specific types of tissues and act
as markers of metabolic use. These labeled chemical compounds, known as radiotracers,
are typically administered into the body by intravenous injection or aerosol inhalation.
Hence, differing from most other imaging modalities, nuclear medicine primarily focuses
on studying the physiology of the system being investigated [109]. Following the adminis-
tration of radiotracers, gamma cameras are then employed to capture the electromagnetic
radiation emitted by the radioisotopes and generate 2D images by extracting position
and intensity information from the interaction between the gamma ray and the external
detectors, in a process known as scintigraphy [110].
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Similar to CT, single-photon emission computed tomography (SPECT) techniques
employ a rotating gamma camera to acquire distinct 2D images from multiple angles and
then apply a tomographic reconstruction algorithm, yielding a 3D image [111]. Further-
more, in contrast with SPECT methods which directly measured the gamma radiation
emitted by the radioisotopes, the radiotracers used in PET emit positrons particles (i.e.,
by positive beta decay) that annihilate with neighboring electrons causing two gamma
photons to be emitted in opposite directions. The PET scanner thus collects a list of
simultaneous detection of pairs of photons (i.e., coincidence events) which can be grouped
into projection images referred to as sinograms. In turn, these 2D sinogram images can be
converted into a 3D physiological image by employing analytic techniques similar to CT
and SPECT image reconstruction algorithms [109], [110]. One key application of these
functional images provided by SPECT and PET devices is to help investigating tumor or
infection in multiple anatomical structures such as the lungs, heart, or bones.

Although nuclear medicine emphasizes on imaging the human function,
hybrid scanning systems (e.g., SPECT/CT or PET/MR scanners) were de-
veloped to simultaneously provide anatomical and physiological information
that would otherwise be unavailable or require a more invasive procedure or surgery [111],
[112]. While different imaging modalities collected at separate scanning sessions can be
superimposed thanks to image registration algorithms, a simultaneous acquisition using
hybrid cameras offers better alignment of images and direct correlation. Nevertheless,
as for radiography, the primary concern of nuclear medicine remains radiation exposure
which should be kept as low as reasonably practicable, with additional vigilance for pe-
diatric patients.

1.2.3 Magnetic resonance imaging

As opposed to CT and PET imaging modalities relying on X-rays or ionizing radiation,
MRI scanners use magnetic fields and electromagnetic signals to visualize the anatomy
and the physiological processes of organs inside the human body [113], [114]. Nuclear
magnetic resonance-based imaging techniques rely on the physical properties of hydrogen
atoms abundantly present in the human body, especially in water and fat, that are capable
of absorbing and emitting radio frequency energy when placed in an external magnetic
field.

More precisely, the magnetic moments of protons, subjected to the strong and uniform
magnetic field of the scanner, align to be either parallel or anti-parallel to the direction
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of the field, with the former corresponding to a lower energy state. Protons in parallel
alignment are then excited to an anti-parallel state using an external radio frequency
pulse, and a resultant electromagnetic signal is emitted as the protons return to the lower
energy state by the relaxation process. The spatial positions of the emitting protons are
subsequently encoded thanks to additional local gradient magnetic fields, and the 3D
intensity image is finally obtained by employing the Fourier transform on the signals
measured and sampled in k-space (i.e., spatial frequency domain) during scanning [113],
[114].

In addition, the rate at which excited atoms return to their equilibrium state varies
widely between different tissues due to distinct magnetic susceptibility, which in turn
determines the relative intensity and contrast between each tissue in the resulting image.
Thus, the appearance of an MR image can be directly defined by a particular setting
of the pulsed sequences and gradient fields. In particular, the radio frequency signals
are parameterized by their repetition time (TR) and echo time (TE), which respectively
define the interval between successive pulse sequences applied to the same slice and the
time between pulse emission and echo signal reception. As tissues can be characterized by
two different relaxation times (T1 and T2), employing either short or longer TR and TE
respectively produce T1-weighted or T2-weighted scans highlighting different anatomical
structures. While T1 and T2 are the most common MR sequences employed in practice,
other image sequences have been defined based on other physical properties and for a
variety of clinical applications (e.g., diffusion-weighted MRI to analyze brain and neuronal
activities, or proton density weighted MRI to study joint injuries) [113], [114]. As our
methodologies are developed on MR modality, the advantages and weaknesses of using
MR images to assess pediatric musculoskeletal disorders will be be described in Section
2.3.1.

Similar to CT, it is also possible to employ contrast agents to enhance image quality
and facilitate diagnosis by altering the magnetic resonance relaxation time of hydrogen
nuclei within a targeted structure. A key application of such contrast agent lies in the vi-
sualization of blood vessels and arteries (i.e., angiography). Additionally, the development
of dynamic MRI has made it possible to capture a fourth temporal dimension which is
essential for evaluating functional disorders. This technique is of particular interest in the
study of musculoskeletal disorders because it allows the study of joints in motion. From
a general perspective, MRI provides highly resolute volumetric images with-
out exposition to radiation which is advantageous in pediatric, nevertheless
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the long acquisition time remains a limitation. Finally, while radiation exposure
does not represent a safety concern in nuclear magnetic resonance imaging, this technique
remains contraindicated for patients with implants (e.g., cochlear implants and cardiac
pacemakers) as the scanners are built with powerful magnets [113], [114].

1.3 Recent trends in medical image applications

Through this brief overview, we have seen that medical image acquisition relies on
various technologies, each defined by specific characteristics, challenges and limitations.
While additional details could have been provided for each modality, such technical con-
siderations are out of scope here, this summary aimed at exhibiting the richness,
diversity, and heterogeneity of medical imaging in terms of involved physical
phenomena, image appearance, and image dimensionality (i.e., 2D/3D, dy-
namic, multi-modal). As previously mentioned, we also refrain from considering other
type of images such as images captured by digital cameras or through microscopy (i.e.,
histopathology) that do not provide internal anatomical representations. It should also
be emphasized that novel imaging modalities have been developed, such as near-infrared
[115] (in the 1990s) and magnetic particle [116] (in the 2000s) imaging techniques. How-
ever, their deployments remain limited in clinical practice, and these devices were thus
omitted from this survey.

Ultimately, there is a large number of medical image applications emerging from these
commonly used acquisition devices (i.e., X-ray, CT, ultrasound, PET, and MRI). Indeed,
in parallel with the progress in medical image acquisition, digital image processing, and
pattern recognition techniques (i.e., computer vision) have been developed and specifically
tailored to the characteristics and challenges of each imaging modality [2], [10].

1.3.1 Diversity of medical image domains

In clinical routine, medical imaging devices provide multi-dimensional anatomical
and/or functional information of the human body that is typically analyzed by a radiolo-
gist in a summary report and then used by a physician to define a diagnosis and treatment
plan. While each imaging modality presents particular challenges, continuous
technological advancements in spatio-temporal resolution, signal-to-noise ra-
tio, and image contrast allow for the acquisition of highly informative, dense,
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and sometimes dynamic or multi-modal imaging data [1], [10]. For instance, the
spatial resolution of CT and MRI scans has reached the sub-millimeter level while ul-
trasound temporal resolution exceeds real-time. At the same time, novel CT and MRI
reconstruction algorithms have led to increased acquisition speed and signal-to-noise ra-
tio, while improved PET analytical tools have enabled a diminution in radiation exposure
through the use of low-dose radioisotopes [1].

In turn, these improvements in image acquisition have resulted in more accurate and
robust clinical decisions and prognosis, as well as safer medical procedures for the patients
(i.e., lower radiation exposure). Nevertheless, the decision to employ a specific medical
imaging device remains subject to a compromise between multiple parameters, such as
the safety of the patient, the pathology to be examined, as well as the availability, cost
and duration of image acquisition. For example, ultrasound and MRI (without contrast
agents) are the techniques of choice for medical imaging during pregnancy, as these instru-
ments are not associated with any degree of exposure to ionizing radiation that, at high
doses, could result in miscarriage or congenital disabilities. Ultrasound is favored in clini-
cal routine for its ease of use, cost effectiveness and rapid acquisition time. Nevertheless,
MRI allows clinician to evaluate the fetal brain with greater detail and detect abnor-
malities not visible on ultrasound images. In some scenarios, it also may be needed to
employ more than one imaging modality to exploit complementary information. However,
obtaining images from a secondary modality may be difficult due the limited availability
and high cost of scanners. Moreover, as each imaging modality is characterized by specific
physical interactions, some happen to be more adapted to visualize specific anatomical
structures. For the diagnosis of Covid-19, chest X-rays and CT scans have been preferred
over ultrasound examination of the chest, which is difficult to interpret as sound waves
reflect strongly at the air-tissue boundaries of the lungs [1].

Furthermore, these distinct physical phenomena (i.e., radioactivity, electromagnetic
radiation, nuclear magnetic resonance, and sound waves) induce specific image charac-
teristics (e.g., intensity distribution, type of noise, contrast between tissues, artifacts) for
each modality. For its part, the type of scanner (e.g., manufacturer, model) and acquisi-
tion protocol (e.g., contrast agents, MRI sequence, scanner settings, patient positioning)
determine the image resolution, intensity distribution, signal-to-noise ratio, and contrast,
as well the position of the anatomical structures within the image. It should be empha-
sized that the dimensionality of imaging data can also vary, although typically 2D or 3D,
certain devices enable the acquisition of temporal information while hybrid scanners pro-
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vide multi-modal images. When this large number of acquisition parameters is combined
with the variety of structures to be imaged (e.g., brain, heart, lungs, abdomen, bones),
this results in a great variability of medical image appearance and content. Furthermore,
patient characteristics (e.g., gender, age, ethnicity, pathology) can introduce additional
image variations in appearance and content resulting from the difference in anatomies,
such as the divergence in bone morphology between infants and adults or the prevalence
of lung nodules in urban populations compared to rural ones. Finally, each of these
combinations between imaging modality, type of scanner, acquisition protocol,
targeted anatomical structure, and patient population defines a distinct med-
ical image domain corresponding to a specific mathematical intensity space.
The diversity of medical image domains represents one of the main characteristics of
medical imaging (Figure 1.1).

1.3.2 Overview of medical image analysis tasks

The applications of medical imaging found in clinical practice are numerous and di-
verse, reflecting the large number of diseases and pathologies present in the human pop-
ulation. As it is nearly impossible to present an exhaustive list, one can provide a few
critical applications: lung cancer diagnosis from chest CT/PET scans [117], prediction
of Alzheimer’s disease from PET neuroimaging [89], quantitative analysis of cardiac ves-
sels from CT angiography [118], lesions detection in abdominal organs from CT or MR
abdominal images [119], fetal heart rate monitoring using Doppler ultrasound [120], and
evaluation of (pediatric) musculoskeletal disorders from MR images [40]. In all cases, the
analysis of the acquired medical images is performed by radiologists whose interpretation
can be limited due to human subjectivity, fatigue, and variability among experts [1]. More-
over, radiologists have limited time to review an ever-increasing number of examinations,
which leads to missed findings, long turn-around times, and a paucity of numerical results
and quantification (i.e., a low amount of expert annotations). In turn, this drastically
reduces the ability of the medical community to advance towards more evidence-based
personalized healthcare or to analyze large-scale population studies [1], [11].

The development of computerized methodologies to provide automated medical im-
age analysis thus reveals essential to assist physicians in making faster and more reliable
diagnoses and clinical decisions. Specifically, computerized medical image analysis
consists of an array of technologies, including reconstruction, enhancement,
detection, classification, regression, segmentation, and registration that arise
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from the needs of each medical imaging application [2]. For instance, a lung cancer diag-
nosis can be formulated as an image classification task, while the quantitative analysis of
cardiac vessels or bone morphology can be based on segmentation tools. A brief overview
of these medical image analysis tasks is provided below:

• Reconstruction algorithms, as previously mentioned, aim at forming an image from
signals acquired by a medical imaging device (e.g., ultrasound, CT, PET, or MRI)
so that it can be visually interpreted, and consequently appear first in the image
processing pipeline [11]. While reconstruction of high-quality images is primordial
for further analysis, enhancement methods can also be employed to help adjusting
the intensities of an image via denoising, super-resolution, or harmonization.
• Detection, classification, and regression constitute the main tools to help clinical di-

agnosis. Detection aims at localizing an object of interest in an image (e.g., tumor,
metastasis) by providing a bounding box that frames the structure [2]. Classifica-
tion and regression tools are then usually applied to either classify the detected
structure among predefined categories (e.g., lesion types, benign or malign tumor)
or predict a continuous value characterizing the localized structure (e.g., tumor or
lesion size). Classification and regression techniques can also estimate discrete (e.g.,
healthy or impaired patient) or continuous (e.g., degree of impairment) properties
defined at the scale of the whole image.
• Segmentation is considered as the “holy grail” of medical image analysis as it aims

at providing fine-grained information. Segmentation is the process of assigning a
label to every pixel in an image so that pixels with the same label share certain
characteristics, thus resulting in multiple segments corresponding to distinct struc-
tures [2], [121]. Unlike detection, classification, and regression, segmentation is a
low-level (i.e., pixel-wise) task that provides quantitative information about the
volume and morphology of targeted anatomical structures, essential for interven-
tion and surgical planning. Deep learning-based segmentation and its mathematical
formalism will be introduced in more details in Chapter 3.
• Medical image registration aims at aligning the spatial coordinates of one or more

images into a common coordinate system, which reveals useful for performing
population-based analysis, longitudinal analysis, and multi-modal fusion [2].

Following these definitions, it appears that each task is associated with a specific
type of predicted output defined in a distinct mathematical space. Typically, segmenta-
tion maps are multidimensional objects, while a classification label can be formulated as
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a unique integer value. Furthermore, depending on the targeted anatomical structures
and patient population characteristics, the labels may differ for a given type of task. For
instance, from the same domain of abdominal MR images, one can target separate abdom-
inal organs (e.g., liver, spleen) for segmentation or classify different lesions (e.g., tumor,
metastasis, cyst) associated with distinct pathologies. The multiplicity of image analysis
tasks is also a key feature of medical imaging (Figure 1.1).

Ultimately, with large-scale imaging datasets and sufficient corresponding annotations,
it has been illustrated that deep learning networks can achieve accurate and robust per-
formance, for a specific task and in a dedicated medical imaging domain [2]. Hence, the
major challenge of computerized medical image analysis resides in the mul-
tiplicity of imaging acquisition protocols and medical applications, making
it difficult to develop tools applicable in diverse clinical scenarios (e.g., across
different hospitals) [1]. In particular, deep learning models tend to be task and domain-
specific (i.e., “specialists” model) and necessitate dedicated training data which may be
not readily available or only available in limited quantities [21]. While our work focuses on
the segmentation of pediatric musculoskeletal images (see Chapters 2 and 3), we believe
that it is important to provide the general limitations of deep learning-based approaches
for medical image analysis. Because these limitations are inherent to the data-driven na-
ture of deep learning, they are present in all clinical applications regardless of the image
domain and task, and hinder the deployment of deep learning technologies in real-world
scenarios.

1.3.3 Technical challenges of deep learning-based medical image
analysis

Deep learning is a machine learning method based on artificial neural networks. In
particular, it is a representation learning technique that aims to automatically learn the
most relevant features of the image domain and task at hand [13], [14]. As mentioned
in Section 1.1, deep learning methodologies contrast with traditional machine learning
approaches based on handcrafted features. The principle of deep learning techniques will
be detailed in Chapter 3.

Although deep learning has been successfully applied and proven to outperform pre-
vious machine learning methodologies in numerous medical image applications, the de-
ployment of deep learning solutions in real-life scenarios remains scarce [17]. At its core,
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Figure 1.1 – Summary of the main characteristics of medical imaging, the major techni-
cal challenges associated with medical image analysis (based on deep learning), and the
advanced deep learning techniques developed to address these issues. Each technical chal-
lenge is characterized by a specific color: the generalization gap in green ( ), the paucity
of ground truth label in pink ( ), and the scarcity of imaging data in blue ( ). This thesis
targets the generalization gap and imaging data scarcity issues, circled in red ( ) and the
deep learning techniques employed in work are highlighted in orange ( ).

deep learning is a data-driven technology requiring large amounts of training
data, and optimized models tend to be task-specific and display poor domain
generalization capabilities on unseen imaging domains. Meanwhile, medical imag-
ing is characterized by a wide variety of acquisition settings (see Section 1.3.1) leading
to a problem known as distribution or domain shift, which is defined by the difference in
data distribution between the training dataset and data encountered during deployment
(i.e., different medical image domains, Figure 1.1). This shift in data distribution is multi-
factorial and may be due to, among other things, differences in acquisition parameters or
differences in the imaged population [17]. One could hope that collecting large and repre-
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sentative medical imaging datasets could solve this issue, however such approach is highly
challenging given the diversity of imaging protocols, imaging devices, and patient popu-
lations [21]. In addition to the lack of standardized acquisition protocols, the dispersion
of imaging data among different hospitals and imaging centers, as well as data privacy
and clinical data management requirements, make it challenging to construct large-scale
open-source medical imaging databases (Figure 1.1) [1]. For its part, the data annotations
process is all the more costly and laborious in the context of large-scale dataset, as mul-
tiple experts are usually involved. In particular, it is preferable to define a standardized
annotation protocol beforehand to limit labeling inconsistency.

It should be emphasized that works addressing the domain shift observed in clinical
routine are part of an emerging field known as domain generalization or out-of-distribution
generalization. Indeed, a common hypothesis in traditional deep learning is that the train-
ing and test data originate from the same data distribution. On the contrary, domain
generalization methods propose to address the more challenging setting in which the goal
is to learn a model that can generalize to an unseen test domain [72], [74]. In this thesis,
we will refrain from considering this distribution shift issue between training and test data
and we position our work in a more traditional deep learning setting. The “standard”
generalization gap, which is defined as the difference between the model’s per-
formance on training data and its performance on unseen images drawn from
the same distribution, still represents a current limitation of deep learning
models in medical imaging, especially when associated with the scarcity of
imaging data (Figure 1.1) [1], [2]. Indeed, deep models can present poor performance on
test images presenting features (e.g., highly irregular deformities, lower contrast between
tissues) different from the ones observed in the training set. From a more mathematical
perspective, neural networks can learn to approximate arbitrary functions, but only in
the manifold where there is enough density of training data. This notion of density and
therefore of distance between data point is extremely challenging to define in medical
imaging, where images are highly dimensional objects (i.e., number of pixels typically
in the order of thousands or millions). In fact, this problem is closely linked with the
“curse of dimensionality”, which states that the amount of data needed to approximate a
function grows exponentially with the dimensionality. However, a common hypothesis is
that medical images lie on a lower-dimensional manifold, which is supposed to ’break’ the
curse of dimensionality [28]. Indeed, medical images present common features and shared
characteristics due to the relative constrained nature of the human anatomy. Hence, it is
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crucial to construct imaging datasets with sufficient variability to obtain enough samples
in the manifold (and prevent over-fitting), which may be highly challenging with limited
imaging resources. In this direction, an ideal model could adapt to the diversity of imaging
domains as well as the variability within each domain.

For its part, optimization of deep networks can be hindered by the lack and
poor quality (i.e., paucity) of available labels associated with medical images
(Figure 1.1). As previously mentioned, annotating medical images is a time consuming
and expensive process even for moderately sized medical imaging datasets [21]. Because
of the variability in experience and environment, both inter-user and intra-user labeling
inconsistency is high, and labels must therefore be considered noisy [1], [2]. Moreover,
different types of annotations exist in practice, reflecting the variety of feasible tasks,
with pixel-wise annotations (i.e., segmentation mask) being extremely tedious to create
compared to global image labels, especially when considering the continuous improve-
ments in spatio-temporal resolution [1]. It is also important to note that segmentation is
an inherently ambiguous process and a group of annotators typically produces a set of
plausible but diverse delineations. It is thus essential that neural networks can integrate
and provide such uncertainty in their segmentation predictions.

An additional challenge specific to medical image analysis resides in the long-tailed
distribution of diseases. While a small number of common pathologies have sufficient
observed cases for large-scale analysis, most disorders are rare in clinical routine. It is
also important to note that novel contagious diseases that are not represented in the
current ontology may arise (i.e., Covid-19) and thus require the development of new
dedicated tools [1]. In particular, it is highly challenging to adapt data-hungry deep
learning models to detect and diagnose rare diseases whose low prevalence
may limit data collection to very few subjects (Figure 1.1) [21]. Furthermore, each
pathology presents a large variation among the affected population in terms of severity and
development, thus resulting in a great heterogeneity of image content. The population,
as a whole, also exhibits a significant diversity due to considerable variation in anatomy
and function between individuals. All of these, therefore, reinforce the generalization gap
observed in practice (Figure 1.1) and confirm the need to incorporate such variability in
deep learning models [1], [2].

The attempts of the medical image community to collect large and representative
datasets could represent a solution to solve these issues caused by the data-driven nature
of deep learning (Figure 1.1). One primary example of such a large-scale publicly avail-
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able dataset is the multimodal brain tumor segmentation challenge (BRATS) dataset 1

[122]. This dataset is composed of multimodal (i.e., T1 and T2) MR scans, acquired from
multiple international institutions, and the corresponding expert annotations of brain
tumors (i.e., glioblastoma and lower grade glioma). The BRATS dataset represents hun-
dreds of volumetric MR images and associated labels acquired and curated from several
imaging centers using multiple scanners. Hence, one could believe such a dataset to be
sufficiently representative of the variability encountered in real-world deployment. Deep
learning models trained on the BRATS dataset show overall great performance (e.g.,
≈ 90% Dice), which might indicate that for this specific dataset, automatic segmentation
with per human-level performance is almost reached. We will introduce the metrics, such
as Dice, used to assess quantitatively the performance of segmentation models in Section
3.5.2. However, it remains an open question whether these models could generalize well
on unseen domains not present in the training set and hence be actually deployed in clin-
ical practice. It should also be emphasized that networks trained on BRATS can solely
perform one task: glioblastoma and lower grade glioma segmentation. Furthermore, such
attempts at building large-scale datasets are highly expensive as it requires the collabo-
ration of numerous international experts and research centers. It also appears infeasible
to build such a large dataset for every pathology encountered in clinical practice due to
the low prevalence of some rare diseases.

Hence, to address the scarcity of imaging data, the paucity of associated
imaging labels, and the generalization gap (Figure 1.1), several advanced
methodologies and paradigms have emerged in the deep learning field, includ-
ing state-of-the-art network architectures (e.g., recurrent layers, attention mechanisms)
[1], [2], annotation-efficient approaches (e.g., self-supervision, semi-supervision, weakly-
supervision, zero/few shot learning, active learning, interactive learning, synthetic data
augmentation) [1], [2], [20], [21], multi-domain learning (e.g., multi-modal, multi-anatomy,
multi-site, multi-scanner, domain adaptation) [2], [21], multi-task schemes (e.g., multi-
anatomy segmentation, detection and classification, enhancement and segmentation) [21],
transfer learning (e.g., from large natural or medical image databases) [20], federated
learning (e.g., via distributed computing, model aggregation strategies) [1], and prior
knowledge embedding (e.g., via a regularized loss, directly encoded in the architecture)
[1]. All these approaches have been demonstrated to improve performance over more tra-
ditional and conventional deep learning models. It should be emphasized that this list is

1. http://braintumorsegmentation.org/
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not exhaustive. One could also mention other approaches such as those exploiting clinical
information present in medical reports in conjunction with medical imaging (i.e., learning
shared text and image representation) to address the paucity of pixel-wise annotations.

As depicted in Figure 1.1, this thesis will only focus on some advanced deep learning
techniques which will be presented and employed in the remainder of the thesis, as follows:
state-of-the-art network architectures (Chapters 5 and 7), multi-domain learning (Chap-
ters 6 and 7), multi-task schemes (Chapters 6 and 7), transfer learning (Chapters 5 and
7), and prior knowledge embedding (Chapters 4, 5, 6, and 7). Therefore, our methods
are primarily aimed at addressing the generalization gap and data scarcity
issues.

1.3.4 Theoretical challenges with impact on healthcare

Before introducing the technical challenges specific to pediatric image analysis, it is
worth mentioning that there also exist more general theoretical challenges in deep learning
that may significantly impact medical image analysis. Indeed, due to a complex succession
of layers, the black-box nature of deep learning models makes it difficult to
analyze and understand how the decision process is conducted and how the
inputs affect the final output prediction. In healthcare, it is particularly essential
to ensure that deep learning decisions are driven by clinically relevant features and to
understand possible failure of network predictions. In this direction, methods and studies
enabling the explanation of neural network decisions (i.e., explainable or interpretable
deep learning) have thus emerged into an active area of research [123]. It should be
noted that the distinction between explainable and interpretable model is not yet clearly
defined in the literature, the former generally relying on a post-hoc step to analyze the
model while the latter make the decision inherently explicit. In parallel, one can also
mention techniques aiming to understand and quantify the uncertainties in the predictions
generated by neural networks [124]. Indeed, it is essential that clinician can access the
confidence and reliability of the model’s predictions for future diagnosis.

From a more general perspective, one of the major theoretical challenges of
deep learning resides in the lack of a rigorous mathematical formalism to
design, optimize and analyze deep learning architecture in a principled way.
A notable example that attempts to address this problem is geometric deep learning,
which proposes to build a common mathematical framework to study neural networks
by analyzing pre-defined regularities through unified geometric principles. If successful,
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such novel mathematical formalism could redefine deep learning as a whole and modify the
artificial intelligence landscape, with obvious implications for computer vision and medical
image analysis [125]. Nevertheless, we refrain from considering these emerging peripheral
topics in this thesis, and focus on challenges specific to pediatric image analysis which is,
as presented in the next section, the context of our research work.

1.4 Technical challenges specific to pediatric imaging
applications

The analysis of pediatric pathologies faces all of the mentioned technical problems
(see Section 1.3), which are exacerbated by the pediatric status of the considered popula-
tion, especially the scarcity of imaging resources, as the acquisition of pediatric imaging
is an even more challenging process than for adult cohorts. In addition, unique pediatric
disorders may necessitate the development of dedicated tools, while the smallness, thin-
ness, and continued growth of children’s anatomical structures can make detection and
identification difficult [100], [101].

1.4.1 Pediatric image acquisition

Imaging represents an extremely valuable diagnostic tool in the pediatric population,
but it is followed by a number of distinct challenges as compared to image acquisition in
adults. Pediatric imaging requires, among other things, dedicated acquisition
protocols, specific training for the healthcare personnel involved, and extensive
knowledge and expertise in pediatric anatomy and physiology for accurate
image analysis [22]–[27]. In clinical practice, pediatric diagnosis relies on the same
image modalities and acquisition technologies as for adults (see Section 1.2). However,
specific devices are sometimes needed to adapt to the morphology of children, for example,
to maintain infants or toddlers in position to improve image quality (e.g., chest X-ray).

Most importantly, protection and safeguarding against radiation exposure are param-
ount in this age group, as children have a greater risk for the manifestation of possible
harmful effects of radiation. Therefore, the ALARA principle (i.e., As Low As Reasonably
Achievable) should be strictly followed, and appropriate imaging modality should be used
depending on the clinical indication (e.g., using ultrasound instead of CT in a suspected
case of appendicitis). Moreover, numerous recommendations exist to produce qualitative
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pediatric images using low radiation dose, typically consisting of specific settings for X-
ray/CT equipment such as reduced exposure time or detector coverage proportional to
body size. In functional imaging, designing novel PET radiotracers enabling lower radi-
ation dose as well as employing hybrid PET/MR scanners are active research topics for
pediatrics [23], [24].

Because ultrasound and magnetic resonance imaging modalities emit no
ionizing radiation, these technologies are considered safe for use in pedi-
atrics, especially for longitudinal follow-up [25]. Nevertheless, the smaller and thin-
ner anatomical structures of children can create a challenge in terms of available signal and
image resolution. For instance, a higher signal-to-noise ratio is needed in MRI, which can
be achieved using pediatric specific coils, high field strengths and by optimizing the field
of view (FOV) and slice thickness. It is also worth mentioning that the major challenge
with lengthy MRI acquisition procedures, as opposed to rapid ultrasound examinations, is
the need for sedation or general anesthesia in younger children, which can involve further
health complications and stricter ethical considerations [26].

For clinical care workers, specific training is crucial to manage all of these pediatric im-
age acquisition procedures as well as to obtain children’s cooperation before and through-
out the duration of an examination in order to guarantee the acquisition of qualitative
images and prevent repeated scans [23]. Despite all these acquisition challenges, pediatric
imaging is rich in content, and numerous medical image-based applications have been
deployed in practice. We will see in Section 2.3.1 the advantages and weaknesses of each
imaging modality for the analysis of pediatric musculoskeletal disorders.

1.4.2 Difficulties in pediatric image analysis

Although providing an exhaustive list of pediatric medical image applications is out of
scope here, notable examples include quantification of the development of post-treatment
myocardial ischemia from cardiac PET/CT scans [22], assessment of knee joint injuries
in young athletes from MR images [126], presurgical localization of seizure focus using
PET/MRI [127], diagnosis of soft-tissue vascular anomalies and lesions from MR scans
[128], and detection of hemodynamic abnormalities associated with congenital heart dis-
eases using Doppler echocardiography [25]. These pediatric disorders may be acquired or
congenital, and while most are also present in the adult population, it should be em-
phasized that the specificity of the pediatric anatomy and physiology results in
unique pathological patterns and a distinct appearance of pediatric images.
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Moreover, as the entire body of children is rapidly developing, this can lead to medical
image applications specific to pediatricians, such as the monitoring of bone growth from X-
rays [100] or brain development from MRI scans [101]. Nevertheless, as with adult imaging,
automated analysis based on computing tools is crucial to help physicians provide a more
reliable diagnosis. Radiologists reporting pediatric cases must have in-depth knowledge
and expertise of the mechanisms modifying the human anatomy from early childhood to
adolescence, and the pathologies afflicting children that can differ from those in adults or
be unique to the pediatric population [100], [101]. Specifically, the developing anatomy can
have many healthy variations that must be distinguished from pathological development.

Like in the rest of the medical image research community, deep learning has become
the standard computerized method for pediatric image analysis. We have already pre-
sented in Section 1.3.3 the major challenges associated with deep learning for
medical image analysis (i.e., the scarcity of imaging data, the paucity of associ-
ated imaging labels, and the generalization gap), and these technical problems are
heightened when considering the pediatric population. For instance, as pediatric
imaging typically involves specific protocols and specialized healthcare personnel, these
requirements can limit the number of acquisitions performed in practice. Furthermore,
ethical considerations (e.g., sedation) and the relatively small-scale of children cohorts
compared to adult studies can also impact the scarcity of pediatric images. It is generally
more difficult (and sometimes even impossible) to recruit healthy child volunteers than to
recruit adults through an ethics committee. For its part, the undersupply of radiologists
with expertise in pediatric anatomy and function can aggravate the paucity and quality
of associated labels [26], [27].

Furthermore, the many healthy variations observed in the pediatric anatomy
may induce poor generalization performance on unseen images. For instance, let’s
consider the bone ossification process observed during childhood, which typically results
in altered bone intensity in MR images. In the context of segmentation, deep models
may produce poor bone delineations if the test sample presents a delayed ossification
stage (linked with modify intensity patterns), as compared with the pediatric cohort used
for training. Finally, it should be emphasized that due to the heterogeneity in anatomy
and function between age groups, images acquired in infancy typically present extremely
different features than images extracted from adolescent cohorts. Consequently, models
trained on childhood imaging data would generally fail and be inapplicable to the analysis
of adolescent images, each corresponding to a distinct image domain (see Section 1.3.1).
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1.4.3 Advanced deep learning techniques for pediatric image
analysis

Because of all these intrinsic technical challenges, the deployment of deep learning tools
for pediatric image analysis remains rare in clinical practice. As the generalization gap, the
paucity of ground truth labels, and the scarcity of imaging data issues are exacerbated in
pediatrics, advanced deep learning techniques (see Section 1.4.3) appear essential to build
image analysis tools applicable in real-world scenarios. To the best of our knowledge,
these novel approaches have rarely been applied to pediatric image analysis, with the
exception of multi-task scheme in combination with semi-supervision for early prediction
of neurodevelopment [129], multi-center model with Inception modules for pediatric bone
age prediction [130], transfer learning and Xception models for pediatric otitis media
classification [131], and quality assessment of pediatric MR images via semi-supervised
models [132]. Hence, this thesis proposes to develop and apply computerized
techniques belonging to these novel deep learning paradigms for the analysis
of the pediatric musculoskeletal system.

Therefore, the segmentation methodologies developed in this thesis rely on state-of-
the-art architectures, multi-domain learning, multi-task scheme, transfer learning, and
prior knowledge embedding (see Parts II and III). Most significantly, our method-
ologies leverage multi-anatomy learning and shape priors regularization inte-
gration. Indeed, multi-anatomy learning appears as a natural way to combine informa-
tion about human anatomy acquired for different purposes and to leverage features across
datasets in order to build more powerful and robust models, as well as to drastically
reduce the cost of curating task-specific datasets [21]. For their part, shape priors have
been studied extensively since the work of Kendall et al. [133], and have found numerous
applications in medical imaging due to the constrain nature of anatomical objects. Nev-
ertheless, deep learning-based shape priors slightly differ from the traditional definition
given in Kendall et al. [133], as we will see in Chapter 4.

1.5 Conclusion

This first chapter provided a general and historical background for medical
imaging to allow a better understanding of the current issues facing medical
image analysis in the age of deep learning. The main technical challenges that hinder
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the development and deployment of deep learning solutions in clinical practice can be
grouped under the following concepts: the generalization gap, the paucity of ground truth
labels, and the scarcity of imaging data. To address these challenges, novel paradigms and
advanced deep learning techniques have emerged, which appear all the more essential for
the analysis of pediatric images. Indeed, as illustrated in this chapter, pediatric imaging
acquisition and analysis characteristics reinforce these technical challenges, particularly
the scarcity of imaging resources.

In this thesis, we propose to develop methodologies following recent paradigms in the
context of pediatric musculoskeletal image analysis. In particular, we aim at addressing
the generalization gap and data scarcity issues which are aggravated in pediatric. The
clinical motivations for the study of the pediatric musculoskeletal system are introduced
in subsequent Chapter 2, while Chapter 3 introduces the mathematical formalism and
backbone neural networks used for deep learning-based medical image segmentation.

68



Chapter 2

ANALYSIS OF THE PEDIATRIC

MUSCULOSKELETAL SYSTEM

2.1 Introduction
The human musculoskeletal system refers to the organ system that allows the body to

move, support itself, and maintain stability during locomotion. This complex system is
constituted of various tissues, including bones (i.e., skeleton), muscles, cartilage, tendons,
ligaments, and other connective tissue that support and bind tissues and organs together.
From a global perspective, the skeleton serves as a framework for tissues and or-
gans, giving shape to the body and protecting vital organs, while the primary
function of skeletal muscles is to enable movement. It is worth mentioning that
cardiac and smooth muscles, found in the heart and abdominal organs, are not part of
the musculoskeletal system but are instead controlled by the automatic nervous system.
For their part, bones are covered and protected from directly rubbing against each other
at musculoskeletal joints by articular cartilage, a resilient, smooth, and viscoelastic tis-
sue. Cartilaginous tissues, also present in other structures such as the ears, nose, ribs,
or intervertebral discs, are softer and more flexible than bones, while being stiffer and
more rigid than muscles or tendons. At last, tendons are tough, flexible fibrous tissues
connecting muscle to bones, whereas ligaments are small, dense, elastic fibrous tissues
that tether bones together. Both tendinous and ligamentous tissues are primarily com-
posed of collagen fibers, giving them mechanical resistance to stretching. Similarly, one
can also mention fasciae which are bands of connective tissues (i.e., primarily collagen)
that attach, stabilize, and separate muscles and other internal organs [134].

An anatomical joint defines an articulation between bones allowing various degrees
and types of movement, and is characterized by the number and shapes of the articular
surfaces as well as the type of connecting tissue [134]. This chapter focuses on syn-
ovial joints that permit free movement between the articulating bones at the
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point of contact. There exist several types of synovial joints (e.g., condyloid, bicondy-
loid, spheroid), each allowing different types of movements among abduction, adduction,
extension, flexion, and rotation. In a simplified manner, movement originates from muscle
contraction stimulated by a motor neuron, and the resulting force is then transmitted
to the connected bone via the tendon, in turn resulting in movement of the correspond-
ing joint. Ligaments and tendons thus maintain joint stability and control joint range of
motion limits. Meanwhile, articular cartilage protects bone and allows smooth contact be-
tween bones during movement, thanks to its viscoelastic properties. Specifically, cartilage
transmits and distributes the mechanical forces when the joints are solicited. It should be
noted that the provided description of the anatomical joint and the role of its constituents
is very simplified [134]. For instance, one should distinguish between positional tendons
that position limbs and energy-storing tendons that act as springs to make locomotion
more efficient.

We illustrate the definition of anatomical joints with the knee as an example. The knee
consists of four bones (femur, fibula, patella, and tibia), and is composed of two joints: the
tibiofemoral joint and the patellofemoral joint (Figure 2.1) [134], [135]. Both permit flexion
and extension of the leg, as well as slight rotations movements, which are all controlled by
muscles and enabled by tendons present in the leg. For instance, the quadriceps femoris
muscle, which covers the front and sides of the femur, is a powerful extensor of the knee
joint and is crucial for walking, running, jumping, and squatting. The quadriceps insert
into the tibia via the patella, where the quadriceps tendon becomes the patellar ligament.
During movement, cartilage present at the end of long bones (femur, fibula, and tibia)
and surrounding the patella ensure supple knee movement, while several ligaments (e.g.,
anterior cruciate ligament connecting the femur and tibia) help in stabilizing the joint
[134], [135]. As previously mentioned, there exist other structures (e.g., meniscus, bursae,
articular capsule) supporting movement that we will refrain from considering here.

From a historical perspective, the study and analysis of the musculoskeletal system
originated with the ancient Greek and Roman philosophers. In particular, the Greek physi-
cian Galen (2nd century) was the first to describe the muscle system as a complex but
unified organ of locomotion and to define the brain as the center of the neuromuscular
system. Most notably, his studies on muscle contraction, based on the dissection of ani-
mals, laid the foundations of muscle mechanics. Galen’s views dominated and influenced
Western medical science for more than a millennium. Indeed, very few medical advances
were achieved during the Middle Ages, as medical research was generally discouraged.
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Figure 2.1 – Anatomical representation of the ankle, knee, and shoulder joints. Im-
ages extracted from the BioDigital Human Plateform™ visualization software: https:
//human.biodigital.com/. Visualization of bone, muscle, and tendon tissues using the
adult male anatomical model.

During the Renaissance, scientific approaches were again accepted in medical research,
with whole-body dissections and experimental approaches more commonly performed.
During this period, two anatomists made lasting contributions to the current understand-
ing of muscles: Leonardo Da Vinci and Andreas Vesalius. Indeed, Da Vinci’s sketchbook,
“Anatomical Manuscript B” (1511), contained at the time the most comprehensive phys-
ical description of the human body, with practically every muscle being reported and
drawn. For its part, Vesalius’ book on human anatomy, “De Humani Corporis Fabrica
Libri Septem” (1543), was a significant advance in the history of anatomy over the long-
dominant work of Galen. For instance, Vesalius studied the link between nerves and muscle
action. From the 17th century until today, many medical advances resulted from progress
in chemistry, physics, and mathematics. Numerous scientists have provided an increased
understanding of the musculoskeletal system. One can mention the work of Albrecht von
Haller which showed nerve impulses to be a physiological reaction separate from but con-
trolling muscle contraction. In orthopedics, Jacques Mathieu Delpech examined the role of
muscle and ligaments in joint stability and proposed a surgical process (i.e., tenotomy or
tendon lengthening) to correct contracture abnormalities. Finally, Guillaume Duchenne
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and Jean-Martin Charcot, who established the field of neurology, discovered that the
nervous system controlled purposeful muscle movements. The understanding of muscu-
loskeletal structures and metabolic processes further progressed during the second half
of the 20th century, mainly through muscle-tendon modeling [136] and movement sim-
ulations [137] that became fundamental tools. Nevertheless, comprehension of the
musculoskeletal system is incomplete especially when considering the pedi-
atric anatomy whose growth can induce many healthy variations among bone
and muscle structures. Similarly, the origins of neuromuscular disorders and
their treatments remain mostly undetermined.

Following this brief overview, it appears essential to distinguish morphological analysis
from physiological analysis: the former focuses on form and structures (e.g., shape of a
muscle or bone, components of a joint) while the latter is concerned with function (e.g.,
biomechanical interaction during movement). Morphology and physiology are extremely
close and interlinked, due to the evident relationship between form and function. Indeed,
studies have reported that joint congruence, defined as the morphological adequacy of
an articular surface with the opposing surface, is in part determined by its motion. Con-
versely, the morphology of the bones forming the joint can constrain their relative position,
and thus regulating the joint’s range of motion and function [138]–[140].

For its part, anatomical analysis allows to describe and characterize organs through, for
instance, simple anatomical measurements (i.e., organ length and orientation) [141]–[143],
regions of interest (i.e. muscle insertion area) [144], or global morphological characteris-
tics (i.e., quadratic surface fitting) [145]. In turn, these descriptors help to compare the
shape of musculoskeletal tissues (typically bones) and have proven useful in distinguish-
ing healthy from pathological shape as well as guiding surgeons during the pre-planning
phase. In this direction, statistical shape models (SSMs) are a popular tool to represent
the shape distribution of bones and to perform morphological analysis of osseous struc-
tures. In particular, SSMs can model the shape correlation between distinct part of a
bone (i.e., distal and proximal femur), as well as between multiple bones from the same
joint (i.e., femur and tibia) [138], [146]. Therefore, such approaches could help understand
morphological modifications occurring in the joint following an injury or a pathology.

As presented by Unal et al. [147], musculoskeletal biomechanics enables the under-
standing of the behavior of the musculoskeletal system under external and internal forces
that are applied during movements. From a general perspective, biomechanics consists
in the study of biological systems (e.g., cardiovascular or musculoskeletal systems) based
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on the applications of the fundamental principles of mechanics, including statics, dynam-
ics, deformable-body, and fluid mechanics. For instance, in kinematic analysis, Newton’s
laws, the work-energy relationship, and the principle of energy conservation can be used
to document the relationship between force, moment, and motion. One can also perform
an analysis at the material level to obtain stress and strain relations which reveal material
properties such as elasticity, resilience, strength, and toughness. In turn, this information
provides an assessment of the resistance of the material to trauma or fatigue. However,
the analysis of biological tissues (in our case, bone, muscle, tendons, ligaments, carti-
lage) can be hindered by, among other things, their complex viscoelastic, composite, and
anisotropic properties. Nevertheless, musculoskeletal biomechanics is highly relevant for
predicting physiological ranges of forces acting on musculoskeletal tissues during daily
activities, especially for post-surgery rehabilitation. Such analysis allows to design novel
implants with specific materials, dimensions, and positioning to improve patient reha-
bilitation outcomes. Finally, in the context of pediatric musculoskeletal disorders, mus-
culoskeletal biomechanics enables the study of abnormal gaits and movements resulting
from muscle weakness or impaired bone growth [147].

Most pathologies affecting the musculoskeletal system result in reduced joint range of
motion and impaired movements. Typical injuries caused by traumatic events encompass
bone fracture, ligament rupture, muscle tear, or joint dislocation, while disorders such
as cartilage wear (i.e., osteoarthritis) and tendon inflammation (i.e., tendinopathy) can
arise from sudden exertion, repeated motion, or previous injuries, and result in pain and
swelling [148], [149]. These injuries and disorders have a lasting impact on the muscu-
loskeletal system and can be associated with other medical complications. As previously
stated, understanding these pathologies is thus essential and relies on morphological and
physiological analysis of the impaired system, which in turn allows the design of more
efficient and sustainable treatment and rehabilitation strategies. In this context, it is
notably crucial to compare impaired patients to the healthy population to assess the
anatomical and functional modifications induced by the pathology [6]. In this direction,
information provided by medical imaging could help generating anatomical
and physiological patient-specific models of the musculoskeletal system, as
well as performing population-wise quantitative comparisons. Such approaches
are especially needed in the pediatric population, where musculoskeletal disorders may
have a debilitating effect on a child’s growth and development. Indeed, as explained in
Section 1.4.2, large anatomical and physiological variations exist between the pediatric
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and adult body systems. These differences can produce unique and variable responses to
injuries and healing that are not seen in the mature skeletons of adults.

This chapter is organized as follows. First, Section 2.2 provides an overview of pedi-
atric musculoskeletal pathologies, including: bone growth complications (Section 2.2.1),
neuromuscular disorders (Section 2.2.2), sports-related injuries (Section 2.2.3), and the
two musculoskeletal conditions present in the imaging resources employed in this thesis
(Section 2.2.4). Next, Section 2.3 presents the techniques and challenges associated with
pediatric musculoskeletal image acquisition (Section 2.3.1) and analysis (Section 2.3.2).
Finally, Section 2.4 introduces the clinical motivations (Section 2.4.1), pediatric imaging
resources (Section 2.4.2), and technical challenges (Section 2.4.3) of this thesis.

2.2 Pediatric musculoskeletal pathologies

2.2.1 Bone growth complications

The pediatric musculoskeletal system differs significantly from that of adults,
and these anatomical and physiological differences result in unique disorders
and injury patterns. Like all parts of the child’s body, the musculoskeletal system is
considered immature and still in development, so pathologies affecting any of its compo-
nent tissues (i.e., bones, muscles, cartilages, ligaments, tendons) could result in growth
disturbance and possible disabling complications [149]–[151]. For instance, bone growth
is a complex process that involves a cartilage plate at the end of long bones (i.e., physis
or growth plate) of children with an immature skeleton. The physis can be divided into
three layers based on histology and function: the germinal zone, which contains stem cells
of chondrocytes (i.e., cells constituting the cartilage) and an abundance of extracellular
matrix; the proliferative zone, where chondrocytes are rapidly dividing, allowing for lon-
gitudinal bone growth; and the hypertrophic zone, where chondrocytes are expanding and
will undergo apoptosis (i.e., programmed cell death). The bone is formed in the succeed-
ing zone of provisional calcification, where hyaline cartilage is converted into bone during
the mineralization process [150], [152].

A second ossification center localized in the epiphysis (i.e., rounded end of long bone) is
surrounded by a spherical growth plate that undergoes enchondral ossification analogous
to that of the primary physis. The second ossification center is initially spherical, but with
growth it conforms to the contours of the epiphysis and becomes more hemispherical and
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eventually borders the physis [152]. Bone growth continues until a physeal line replaces
the physis in a process known as physeal closure or growth plate fusion, that typically
occurs during adolescence [150]. Therefore, direct injury to the physis from a fracture or a
chronic disorder can lead to premature physeal closure with bone bridge formation, one of
the most common growth disturbances. Specifically, longitudinal injury across the physis
may allow for the formation of transphyseal vessels, along which osteoprogenitor cells can
deposit bone, thus forming a bridge across the physis that disturbs bone growth [150],
[152]. Growth complications of physeal bridges depend upon the location of the bridge
within a particular physis, with bridges located within the central portion of the physis
leading to longitudinal growth restriction, while bridges located at the periphery of the
physis can cause angular deformities [150]. In turn, lesions of epiphysis may also result in
the loss of the discoidal shape of its growth plate and the curvature of the slowed growth
zone with consequent angular deformation [150], [152].

Although fracture is the most common bone-related trauma, other pathologies af-
fecting pediatric bones may include: osteochondrosis (e.g., Legg-Calvé-Perthes or Blount
diseases), osteomyelitis (i.e., inflammation or swelling due to an infection), juvenile idio-
pathic arthritis (i.e., type of arthritis in children), or bone tumors (i.e., abnormal growth
of bone tissue) [150]. While the mechanisms of these pathologies vastly differ,
each can be associated with disturbed bone growth and result in bone bridge
formation if the physis is damaged. Therefore, imaging diagnosis of bone patholo-
gies is essential in the juvenile population, as these disorders can impact the rest
of the musculoskeletal system, leading to limb length disparity and eventually permanent
extremity dysfunction.

2.2.2 Pediatric neuromuscular disorders

While bone disorders can lead to localized growth restriction, pathologies affecting
muscles and, more generally, the motor system can result in more serious disability, with
locomotion and movement becoming almost impossible [151], [153]. Pediatric neuromus-
cular disorders encompass the spectrum of diseases affecting the peripheral nervous sys-
tem, neuromuscular junction, or skeletal muscle. Neuromuscular disorders can generally
lead to abnormal muscle function, muscle atrophy, muscle weakness, impaired movement,
skeletal deformities or respiratory failure, and are frequently associated with severe debil-
itation and premature mortality. In pediatrics, the majority of neuromuscular disorders
are genetic, with the most commonly encountered condition being Duchenne muscular
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dystrophy, spinal muscular atrophy, and Charcot-Marie-Tooth disease [151], [153], [154].

Specifically, Duchenne muscular dystrophy is characterized by progressive weakness
and breakdown of skeletal muscles over time due to fat replacement of muscle fiber, with
the thighs and calves usually being first affected, resulting in difficulty walking. Eventu-
ally, the disorder progresses to all muscles, and complications typically consist of skeletal
deformities and respiratory impairment. For its part, spinal muscular atrophy results in
the loss of motor neurons and progressive muscle wasting, while Charcot-Marie-Tooth
disease affects the peripheral nervous system and is characterized by progressive loss of
muscle tissue and touch sensation. Both disorders are also associated with locomotion
trouble, skeleton deformities, and respiratory failure. It should be noted that while there
is no known cure for these disorders, supportive care, including physical therapy, occu-
pational therapy, respiratory support, nutritional support, orthopedic interventions, and
mobility support, may help relieving some symptoms and improve life expectancy [151],
[153], [154].

Another special type of pathology affecting the pediatric musculoskeletal system is
cerebral palsy, a group of movement disorders that appear in early childhood
caused by damage to the motor cortex of the developing brain during preg-
nancy, delivery, or shortly after birth [155], [156]. Cerebral palsy is the most common
movement disorder in the pediatric population and is characterized by abnormal motor de-
velopment, posture, and balance. The most frequent movement disorders associated with
cerebral palsy are spasticity (i.e., muscle tightness), dyskinesia (i.e., involuntary muscle
movements), and ataxia (i.e., clumsy voluntary movements). These movement disorders
and associated muscle weakness may result in secondary problems, including hip disloca-
tion, hand dysfunction, joint contractures, articular cartilage atrophy, tendon tightness,
equinus deformity, and thinner bones. In turn, these musculoskeletal injuries cause gait
abnormalities such as tip-toeing gait due to tightness of the Achilles tendon and scissor-
ing gait due to tightness of the hip adductors, which are typical of children with cerebral
palsy. Similar to other neuromuscular disorders, there is no known cure for cerebral palsy,
but supportive treatments, medication, and surgery may help many individuals. In clini-
cal practice, medical imaging can help analyze the impaired musculoskeletal system, and
evaluate abnormal development or damage to the motor cortex in the pediatric brain
[155], [156].
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2.2.3 Sports-related injuries in young athletes

A notable trend in the pediatric population is the increasing number of sport-related
trauma affecting the musculoskeletal system, as sports activities have become an inte-
gral part of children’s extracurricular activities [157]. These lesions encompass acute and
chronic injuries such as joint dislocation, bone fracture, muscle contusion, tendon inflam-
mation, or ligament tear [157], [158]. As previously explained, bone fracture and chronic
repetitive trauma can lead to injuries to the growth cartilage and may involve the forma-
tion of a bone bridge.

For instance, a little leaguer’s shoulder refers to a stress-related injury characterized
by the widening and irregularity of the proximal humeral physis due to repetitive and
poor throwing practice. Repetitive stress is also associated with osteochondritis, as in
Osgood-Schlatter syndrome (i.e., inflamed bone or cartilage), while joint dislocation can
result in recurrent and global instability. These injuries and resulting conditions are rarely
followed by lasting growth impairment but are typically associated with pain and swelling,
and may restrict movement. Hence, medical imaging is needed to provide robust clinical
diagnosis and optimally plan physical therapy [157], [158].

2.2.4 Equinus and obstetrical brachial plexus palsy conditions

This thesis focuses on two pediatric musculoskeletal conditions: equinus
and obstetrical brachial plexus palsy (OBPP), which are briefly introduced
below:
• Equinus deformity is a clinical condition that affects the ankle joint’s function by

restricting its range of motion [159]–[161]. The ankle joint (or talocrural joint) refers
to the articulation of the talus between the lateral and medial malleoli of the fibula
and tibia (Figure 2.1) and its movements allow for dorsiflexion and plantarflexion
of the foot. The subtalar joint between the calcaneus and talus also contributes
significantly to foot positioning (i.e., inversion and eversion) but plays a minimal
role in dorsiflexion or plantarflexion movements. Calf muscles attached to the cal-
caneus via the Achilles tendon are responsible for the plantarflexion movement.
Additionally, the joint surfaces of all bones in the ankle are covered with articular
cartilage, and each joint is bounded by strong and supporting deltoid and lateral
ligaments. Ankle equinus is most notably characterized by reduced dorsiflexion,
with the magnitude of diminution in movement being variable among patients
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[159]. However, the etiology of this condition is poorly understood, and numerous
causes have been discussed, such as muscle spasticity due to cerebral palsy, bone
block in ankle joint, and tendon or calf muscle stiffness [160]. Moreover, ankle equi-
nus is typically associated with increased forefoot loading, aggravated risk of ankle
sprain, and, more importantly, possible bony deformity due to excessive and repet-
itive compensation for the unstable and inefficient gait (i.e., toe-walking) induced
by reduced dorsiflexion [160].

• For its part, obstetrical brachial plexus palsy is a common birth injury as-
sociated with complex or assisted delivery during which the peripheral nervous
system is disrupted [162]. The brachial plexus is formed by cervical and thoracic
nerves that innervate the upper limb, and despite having the same mechanism of
injury, the severity of nerve lesions can largely differ among individuals. Indeed, the
various possible sequelae affecting the shoulder, elbow, or forearm depend on the
localization and intensity of the nerve damage. This thesis focuses on complications
involving the shoulder joint, as this nerve injury may result in shoulder muscle at-
rophy, impedes bone growth, and osseous deformity [163]. More precisely, OBPP is
associated with delayed ossification and malformed bones, including hypo-plastic
humeral head, non-spherical humeral head, hypoplastic scapula, elevated scapula,
and abnormal scapula glenoid [164]. It should be noted here that the shoulder joint
defines the articulation between the glenoid fossa of the scapula and the head of
the humerus (Figure 2.1), which allows for free movement of the arm. Rotator cuff
muscles and tendons enable different types of movements (i.e., flexion, extension,
abduction, adduction, circumduction, and rotation) and, along with ligaments,
maintain the glenohumeral joint stability. The articular cartilage at the interface
of the scapula and humerus provides smooth joint motion with minimal friction.
Modifications in muscle and bone morphology thus lead to shoulder strength im-
balance and joint range of motion reduction, which consequently limit the function
of the pediatric shoulder [165].

For both pathologies, medical imaging enables the acquisition of patient-
specific information related to the degree of organ deformity, which is key
to understanding morphological modifications for better diagnosis, treatment
planning and follow-up [166].
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2.3 Acquisition and analysis of pediatric musculo-
skeletal images

2.3.1 Background on pediatric musculoskeletal image acquisi-
tion

Imaging of the pediatric musculoskeletal system is required in a variety of clinical sce-
narios. Nevertheless, as introduced in Section 1.3.1, the image modality (i.e., X-ray, PET,
ultrasound, CT, and MRI) and acquisition protocol may differ depending on the medical
application [148]. For instance, X-ray imaging techniques are used for studying osseous
structures and their disorders. However, the low contrast between soft tissues remains in-
adequate for the complete diagnosis and evaluation of most musculoskeletal pathologies.
Consequently, plain radiographs are typically limited to the assessment of bone fractures
and injuries, while CT and fluoroscopy can be used to guide and assist surgeons during
therapeutic procedures [148]. Meanwhile, the evaluation of bone and soft tissue tumors
and, to a lesser degree, the monitoring of bone infection in pediatric patients can be per-
formed via PET/CT hybrid scanners [167]. However, following the ALARA 1 principle,
ionizing radiation should be restricted when acquiring images of pediatric patients. CT
and PET scans should therefore only be employed based on informed clinical indications
[168].

For their part, ultrasound and magnetic resonance devices enable imaging of soft mus-
culoskeletal tissues (i.e., muscles, cartilage, ligaments, tendons). Ultrasound is a particu-
larly useful technology for studying muscular injuries due to its relative inexpensiveness
and wide availability, as well as, its ability to capture real-time and functional information
via the Doppler effect [169], [170], as mentioned in Section 1.2.1. Moreover, the presence
of non-ossified cartilage portions in pediatric bones can improve the diagnostic capability
of ultrasound through better visibility of muscle, tendon, and cartilage structures [169].
However, ultrasound examinations strongly depend on the physician and require necessary
background experience and knowledge [157], [169], [170].

In clinical practice, MRI is thus preferred over ultrasound despite its high equipment
cost and long scanning time [7], [171]. Indeed, as opposed to ultrasonography which is
limited by the range of sound waves, magnetic resonance scanners can efficiently
capture deep and complex osseous structures [7], [157], [168]. Moreover, the high

1. As Low As Reasonably Achievable, as defined in Chapter 1.
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spatial resolution and superior soft-tissue contrast make MR imaging the most
suitable technique to depict a complete picture of the pediatric musculoskele-
tal system [157], [168], [171], [172]. Most notably, thanks to its ability to image the
cartilaginous structures of developing bones, MRI has become the modality
of choice for evaluating children with growth disorders and directing surgi-
cal management [157]. The absence of radiation exposure during MRI scans makes it
particularly recommended in the management of pediatric patients, especially when sev-
eral scanning sessions are needed to evaluate disorders’ progression or to assess complete
restoration after a traumatic injury. Nevertheless, sedation may be required to perform
the scan, raising practical issues and ethical considerations.

For its part, dynamic MRI devices allow to capture the moving anatomy and provide
an informed diagnosis based on joint kinematics. Nevertheless, the use of real-time dy-
namic MRI to evaluate joints remains limited in clinical routine [173], [174]. Additionally,
although both T1 and T2 MRI sequences are employed in practice, the visualization of
the pre-ossification centers in T2-weighted images may present in-homogeneous signal in-
tensity that, in turn, may induce diagnostic errors [171]. Therefore, due to all of its
imaging specificity, the analysis of pediatric musculoskeletal images requires
specialized radiologists and dedicated computerized tools.

2.3.2 Recent trends in pediatric musculoskeletal image analysis

The analysis of pediatric musculoskeletal images relies on a precise knowledge of the
anatomical characteristics that differentiate it from an adult and the pathological pro-
cesses that impact the development of children [169], [171], [175]. For example, radiolo-
gists evaluating pediatric bone deformity must understand bone growth mechanisms and
associated disorders [148], and a comparison to the healthy population may be necessary
to assess the magnitude of morphological abnormalities and resulting impairment. Addi-
tionally, the growth plate can display several confusing but normal appearances, including
normal physeal undulations or focal periphyseal edema, which should not be mistaken for
pathological findings such as physeal fracture, infection, or bridge [171]. As for the rest
of medical imaging, human-based analysis of pediatric musculoskeletal images
involves a considerable workload, large resource consumption, and is prone to
practitioner errors, the latter being especially aggravated by these developing
and sometimes confusing anatomical features [171]. All of these aspects reinforce
the need for automated and reliable computerized techniques.
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Even though deep learning has become the standard approach for pediatric muscu-
loskeletal image analysis, studies remain scarce compared to the corpus on adult imaging,
which may be due to the challenges specific to pediatrics. Nevertheless, some key applica-
tions of deep learning technologies (defined in Section 1.3.2) in pediatric musculoskeletal
imaging include bone age prediction via regression [176], landmarks localization via de-
tection [177], and muscle and bone shape extraction via segmentation [40], [178], [179].
Bone age prediction is a common technique based on the determination of bone devel-
opment characteristics to obtain a numerical assessment of human development [176].
This information is typically extracted by medical experts from X-ray images (e.g., hand
bones X-ray) and is in turn used to assess the physical development of adolescents and to
discover or prevent growth disorders [176].

For its part, localization aims at positioning anatomical landmarks or biologically
meaningful loci that must be unambiguously defined and repeatedly located with a high
degree of accuracy and precision [177]. Such analysis can be performed on 2D (e.g., plan
radiographs) or 3D (e.g., CT or MR scans) images, and the obtained landmarks are then
typically used to compute lengths and angles characterizing the degree of impairment and
deformity of a given patient. For instance, one can extract femoral and tibial landmarks
from full-length anteroposterior X-ray radiographs to measure the respective bone lengths.
Based on this anatomical information, clinicians can monitor growth and alignment of
the lower extremities, as well as assess limb length discrepancy disorders that may be
congenital or acquired [177].

Finally, segmentation of musculoskeletal tissues, particularly from 3D CT or MRI
scans, can provide comprehensive surface and volumetric information through the gen-
eration of polygon meshes. In turn, these can be used to create patient-specific models
for further kinematic, mechanical and morphological analysis. For example, muscle seg-
mentation can help assessing both fat replacement and the degree of muscle weakness
caused by neuromuscular disorders [40], [179]. In contrast, bone segmentation may pro-
vide an accurate understanding of the pathomechanics of joints [173], [174]. As previously
mentioned, all of these tasks are typically performed manually by radiologists, but neural
networks have recently been shown to automatically achieve these types of outcomes [40].
Nevertheless, it should be emphasized that the literature on cartilaginous, ligamentous,
and tendinous pediatric tissue segmentation remains limited.
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2.4 Clinical motivations, pediatric imaging resources,
and technical challenges

2.4.1 Clinical motivations

This thesis aims at automatically extracting and segmenting bone shapes from pedi-
atric MR images. For the analysis of pediatric musculoskeletal disorders, segmentation
helps clinicians in effectively quantifying morphology and possible deformity by provid-
ing 3D solid or surface models of bones [3]–[5]. As with all medical image segmentation
tasks, delineating pediatric bone is difficult, tedious, and time-consuming. However, it
also presents additional challenges, such as the ongoing bone ossification process, the
large anatomical variability between age groups, and the thinness of osseous structures.
Hence, segmentation automation could improve the reliability and robustness of the gen-
erated delineations while reducing the need for human intervention in image processing
tasks. More precisely, this thesis aims at developing fully-automatic bone seg-
mentation methods from pediatric MR image datasets of three musculoskele-
tal joints: ankle, knee, and shoulder (Figure 2.2). It should be emphasized that MR
scanners provide complete and highly resolved 3D imaging of each anatomical joint, with
the growth plate visible inside bones, especially in T1-weighted images.

In any case, fully-automated and reliable bone segmentation of pediatric examina-
tions could provide a rapid evaluation of the patient’s level of impairment, guide surgery,
and help optimize rehabilitation programs. Furthermore, patient-specific 3D bone models
could also assist clinicians in analyzing strength imbalance and the kinematics and dy-
namics of pathological and healthy joints [3]–[5]. For instance, it has been reported a clear
relationship between muscle atrophy and strength loss in the context of OBPP. Hence, ac-
curately quantifying muscle morphology can directly translate to a better understanding
of shoulder muscles strength imbalance and other biomechanical properties [40], [165].

2.4.2 Pediatric imaging resources

Ankle and shoulder imaging datasets were acquired at Centre Hospitalier Régional
Universitaire (CHRU) La Cavale Blanche, Brest, France, using a 3T Achieva scanner
(Philips Healthcare, Best, Netherlands) 2 while knee imaging datasets were obtained ret-

2. Data were acquired with the support of Fondation motrice (2015/7), Fondation de l’Avenir (AP-
RM-16-041), PHRC 2015 (POPB 282), and Innoveo (CHRU Brest).
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Pediatric Imaging Datasets

Ankle Knee Shoulder
Segmentation Targets

Calcaneus,
Talus, Tibia

Femur, Fibula,
Patella, Tibia

Humerus,
Scapula

Figure 2.2 – Samples from the pediatric ankle, knee, and shoulder joint imaging datasets
and their respective segmentation masks consisting of the following bones: [calcaneus,
talus, tibia (distal)], [femur (distal), fibula (proximal), patella, tibia
(proximal)], and [humerus, scapula]. Ground truth delineations are in red ( ).

rospectively from the Children’s Mercy Hospital, Kansas City, United States 3. The knee
data was acquired using a 3T MRI scanner (MAGNETOM Skyra, Siemens Healthineers,
Siemens AG). MRI data acquisition was performed in line with the principles of the
Declaration of Helsinki. Ethical approvals were respectively granted by the Ethics Com-
mittee (Comité Protection de Personnes Ouest VI) of CHRU Brest (2015-A01409-40) and
by the research ethics committee of the Children’s Mercy Hospital, Kansas City, United
States. Additional information on the imaging acquisition protocols and patient cohorts
is provided for each dataset, as follows:
• Ankle joint dataset. The ankle joint dataset contained 20 MR examinations ac-

quired on pediatric individuals aged from 7 to 13 years (average age: 10.1 ± 2.1
years). A T1-weighted gradient echo sequence was employed during image acqui-
sition (TR: 7.9 ms, TE: 2.8 ms, FOV: 140 × 161 mm2), with resolutions varying
from 0.25× 0.25× 0.50 mm3 to 0.28× 0.28× 0.80 mm3.
• Knee joint dataset. The knee imaging dataset consisted of 17 MR examinations

extracted from a pediatric cohort composed of patients aged from 13 to 18 years
old (average age: 15.4 ± 1.6 years). Images were acquired using a 3D Gradient

3. We would like to acknowledge Dr. Antonis Stylianou from the University of Missouri-Kansas City,
Kansas City, United States and Dr. Donna Pacicca from Children’s Mercy Hospital, Kansas City, United
States for sharing the anonymized knee joint image dataset.
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Recall Echo (GRE) sequence (TR: 13.0 ms, TE: 4.4 ms, FOV: 320 × 320 mm2),
with resolutions ranging from 0.47× 0.47× 0.5 mm3 to 0.625× 0.625× 0.63 mm3.
• Shoulder joint dataset. MR images of 15 shoulder joints were obtained from

pediatric individuals aged from 5 to 17 years old (average age: 11.6 ± 4.4 years).
Images were acquired using an eTHRIVE (enhanced T1-weighted High-Resolution
Isotropic Volume Examination) sequence (TR: 8.4 ms, TE: 4.2 ms, FOV: 260×210
mm2). Image resolution varied across subjects from 0.24 × 0.24 × 0.60 mm3 to
0.37× 0.37× 1.00 mm3.

As previously indicated, ankle and shoulder images were respectively acquired to study
the equinus condition and OBPP disorder. More precisely, both ankle and shoulder imag-
ing datasets presented a mixture of healthy and pathological examinations, including 9
pathological and 11 healthy ankle joints, and respectively 7 pathological and 8 healthy
shoulder joints. For its part, the pediatric knee dataset only comprised healthy cases, which
are essential in understanding the development of the normal and unimpaired morphology.
Furthermore, the imaging datasets were acquired from three unpaired and distinct pedi-
atric cohorts, which included both male and female patients. The children ranged in age
from 5 to 18 years old, with on average, older patients in the knee cohort (mean age 15.4
years) and younger patients in the ankle cohort (mean age 10.1 years), while the shoulder
cohort presented the largest age variability (age ranging from 5 to 17 years). Imaging
data thus included a large anatomical variability due to the presence of examinations
from early childhood to late adolescence.

To provide a quantitative assessment of each joint, we targeted the segmentation of
three ankle bones (calcaneus, talus, and tibia), four knee bones (femur, fibula, patella,
and tibia) and two shoulder bones (humerus and scapula), as seen in Figure 2.2. Indeed,
this allows us to study the ankle talocrural and subtalar joints, both tibiofemoral and the
patellofemoral knee joints, as well as the glenohumeral shoulder joint. It should be noted
that all images were annotated by a medically trained expert (15 years of experience)
using the ITK-SNAP software 4 to get ground truth labels of each bone. The growth
cartilage was simultaneously included with completely ossified areas in the ground truth
labels of each bone. These ground truth segmentation masks are needed for algorithm
optimization and performance evaluation. Finally, although the T1 MRI sequence allows
for soft tissue (i.e., muscle, cartilage, tendons) visualization, the ground truth labels of
these structures were not manually produced due to resource and time constraints.

4. http://www.itksnap.org/
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Ultimately, following the definitions given in Chapter 1, each pediatric MR dataset
defines a distinct image domain and segmentation task. However, it should be noted
that these datasets present similar characteristics: pediatric population, targeted bone
structures, and MR modality with T1 sequence.

2.4.3 Technical challenges

Following their widespread success in medical imaging [1], [2], we propose to employ
deep learning algorithms for the segmentation of pediatric bone in MR images. However,
we face numerous technical challenges that can be divided into three categories.
• First, generic challenges present in all medical image applications including the

scarcity of imaging data, the paucity of labels, and the generalization gap, which
are reinforced due to the pediatric nature of our imaging resources (see Section
1.3.3).
• Second, challenges specific to pediatric musculoskeletal analysis such as the ongoing

bone ossification process, the large anatomical variability between age groups, and
the thinness and smallness of osseous structures (see Section 2.3.2).
• Third, challenges specific to our datasets: high level of shape heterogeneity due to

a mixture of healthy and pathological examinations, varying ages from childhood
to adolescence (see Section 2.4.2), as well as motion noise present in some sample
images due to patient movement during acquisition.

This thesis, therefore, aims to address these challenges by developing novel deep learn-
ing techniques following recent paradigms, including multi-anatomy learning and regular-
ization integration as explained in Chapter 1. In particular, multi-anatomy learning and
shape priors regularization appear natural in the context of the pediatric musculoskele-
tal image segmentation. Indeed, one can assume that multi-anatomy learning could be
beneficial to leverage shared features (e.g., shape, pose, intensity) present in MR imaging
datasets arising from distinct anatomical joints (i.e., ankle, knee, shoulder). Moreover,
even considering healthy and pathological variations, anatomical structures, especially
bones, are globally constrained in terms of shape and position. It is thus relevant to learn
shape priors in a data-driven manner, as we will see in Chapter 4.

While the methodologies developed in this thesis share certain global limitations which
will be discussed in Parts II and III (e.g., amount of imaging data, number and types of
annotated structures, evaluated joints and pathologies), we believe that our approaches are
generic enough to have a great impact for the analysis of other pediatric musculoskeletal
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pathologies (e.g., impeded bone growth, neuromuscular disorders) and structures (e.g.,
joint, tissues, age-group). This thesis also provides some insights on possible directions
for better management of pediatric imaging resources and associated ground truth labels.

2.5 Conclusion
This second chapter introduced the clinical context of this thesis which aims at pro-

viding segmentation tools for the analysis of the pediatric musculoskeletal system. The
pediatric musculoskeletal is a complex system that largely differs from that of adults
and which can be affected by numerous disorders and conditions. Therefore, the unique
anatomical features and pathologies patterns present in pediatrics can hinder the analy-
sis of medical images by radiologists and reinforce the need for automatic tools to assist
clinical diagnosis. While this thesis targets the segmentation of ankle, knee, and shoulder
bones, we believe that our methodologies could have a greater impact on the analysis of
other pediatric musculoskeletal structures.

Following its widespread success in medical image analysis, we propose to develop
deep learning-based methods for pediatric bone segmentation. Chapter 3 introduces the
basic concepts of medical image segmentation using deep learning that will be employed
throughout this thesis manuscript.
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Chapter 3

DEEP LEARNING FOR MEDICAL IMAGE

SEGMENTATION

3.1 Introduction
Although the success of deep learning methodologies over traditional machine learn-

ing dates back nearly a decade, the inception and implementation of the first artificial
neural networks emerged in the 1960s. Indeed, the perceptron model, which Rosenblatt
implemented in 1962, is generally considered as the starting point of the deep learning
field [14], [180]. At its core, the perceptron was an algorithm for learning a linear binary
classifier in a supervised manner. The perceptron was the simplest neural network, com-
posed of a single “neuron” predicting a binary value. This model was indeed limited and
was notably unable to represent the XOR logical function that is not linearly separable.
To address this issue, researchers developed a two-layer perceptron where the first layer
learned a hidden representation of the data. This “hidden neuron” encompassed an affine
transformation controlled by learnable parameters, followed by a fixed non-linear function
called an activation function. Specifically, this layer learned to map the input into a new
space where the data was linearly separable and from which a second neuron could now
solve the problem [14]. Following this idea, multi-layer perceptron (MLP), defined by a
cascade of hidden layers, were implemented to solve more complex problems. Currently,
the architecture of an MLP is determined by its depth and width, which respectively
correspond to the number of hidden layers and the dimension (or number of features) of
each neuron. These values are set empirically by practitioners and generally depend on
the nature of the problem to be solved. It should be noted that the design of the percep-
tron was initially motivated by the study of biological neurons, hence the term “neural”
network, but the comparison with the human neuronal system does not go any further
[14], [180].

In computer vision, the Neocognitron developed by Fukushima in 1980 is typically
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considered as the first successful implementation of a neural network for an image pro-
cessing task [181]. In turn, this model, which targeted handwritten character recognition,
later inspired LeCun to design his LeNet in 1989 [182]. In retrospect, the LeNet in-
tegrates and combines all the essential components of modern convolutional
neural networks (CNNs) [13], [14]. In particular, CNNs are special neural net-
works that use convolution operators as linear transformations. This enforces a
desirable characteristic in neural networks for pattern recognition: translation-equivariant
representations. Furthermore, while each convolutional layer only learns local interac-
tions, the cascade of convolutions allows these simple blocks to build complex hierarchical
representations. The network also incorporates downsampling layers to obtain representa-
tions with separated spatial scales incorporating fine-grained to global features [13], [14].
Last but not least, LeCun employed the back-propagation method, which was freshly in-
troduced by Rumelhart in 1986 [183], to learn the weights of LeNet using the gradient
descent algorithm [184]. While this approach was successful in solving handwritten digit
recognition tasks, other machine learning algorithms such as support vector machines
(SVMs) were typically preferred due to their lower computational requirement and better
interpretability [1], [2], [14]. Indeed, the LeNet training required multiple days of compu-
tation, and it remained difficult to interpret the weights learned during the optimization
steps. This lack of interpretability is commonly known as the “black-box” nature of neural
networks [13], [14], as discussed in Section 1.3.4.

In parallel, more theoretical works led from 1989 to 1999 [185]–[188], demonstrated
that neural networks with one hidden layer could approximate any continuous functions
on compact subsets of Rd. However, this universal approximation theorem states that the
cost of such approximation is an arbitrarily large network’s width. It should be noted that
this theorem requires only that the activation function of the neural network be point-wise
and non-polynomial, which is a very mild condition [187]. Nevertheless, to approximate
a function with a given precision, the width of the network is exponential with respect
to the dimension d of the input data. For image analysis, the dimensionality of the data,
which corresponds to the number of pixels, is typically large. The required number of
neurons, therefore, makes any practical implementation infeasible. Moreover, while this
theorem suggests that neural networks can represent a wide variety of functions, it fails to
provide a way to obtain the network’s weights. Ultimately, this theorem has very limited
practical insights for the design of CNNs and their optimization.

In the 2000s, machine learning algorithms (e.g., SVMs, random forests, active contour
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models) were still favored over neural networks for computer vision tasks and medical im-
age analysis. At the time, deep learning researchers aimed at improving the performance
of CNNs through better hardware implementation or more carefully designed activation
functions. In particular, one can mention the introduction of the rectified linear unit
(ReLU), which lead to more stable optimization by preventing vanishing gradient prob-
lems encountered with previous non-linearity [189]. The deep learning field experienced a
resurgence in 2012 when AlexNet [190] surpassed traditional machine learning approaches
on the ImageNet natural image dataset [45]. The ImageNet challenge evaluates the image
classification performance over 1000 classes, and in the past decade, deep learning ap-
proaches improved the top-1 accuracy from 63.3% for AlexNet to 84.3% for EfficientNet
[191]. This resurgence is multi-factorial and can be partly explained by the experimenta-
tion made during the 2000s (e.g., better hardware implementation and integration of ReLU
non-linearity). One can also mention global technological advancements, such as the wider
availability and better performance of graphical processing units (GPUs) or the collection
of large-scale open-access image databases (i.e., big data). Both were required to acceler-
ate deep neural networks optimization and enhance image processing tasks’ performance
[13], [14]. Following this success, deep learning methodologies were largely applied to med-
ical image analysis tasks [1], [2]. As a first step, CNNs were developed and optimized for
medical image classification (e.g., detecting tumors or metastasis) [192]. For its part, im-
age segmentation represents a more challenging task. Indeed, instead of returning a single
class prediction, segmentation aims at providing pixel-wise class prediction. Hence, novel
convolutional encoder-decoder architectures have been designed, the best-known example
being the UNet model [29]. The UNet is one of the most successful deep learning
models and has been declined in many variants. Thanks to its efficiency, it has
been employed in various clinical applications, including the segmentation of
brain tumors, abdominal organs, or lungs [1], [2], [91], [117], [193].

In the context of pediatric musculoskeletal imaging, the morphological information
obtained through segmentation can help clinicians assess disorder progression and design
novel treatment strategies (see Chapter 2). Hence, this chapter presents a general
mathematical framework for deep learning-based image segmentation. As men-
tioned in Chapter 1, the novel architectures and training schemes proposed in this thesis
are based on UNet and aim to mitigate the generalization gap and data scarcity issue
present in pediatric medical imaging. We also introduce the baseline architecture used in
the rest of this thesis, as well as implementation details for the experiments performed
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in Parts II and III. Most importantly, we aim to provide background on deep learning to
build more advanced architectures and training schemes in the following chapters.

The remainder of this chapter is organized as follows. First, Section 3.2 provides the
mathematical framework for deep segmentation, which is formulated as a function ap-
proximation problem (Section 3.2.2) and thus necessitates optimization tools to be solved
(Section 3.2.3). Then, we present the convolutional encoder-decoder architecture for image
segmentation in Section 3.3. We briefly recall the role of the convolution operator (Section
3.3.1), non-linear activation, pooling layer (Section 3.3.2), segmentation decoder (Section
3.3.3), and skip connections (3.3.4) of the UNet model. Next, Section 3.4 introduces stan-
dard modifications of the UNet model, such as batch normalization (Section 3.4.1) and
spatial attention gates (Section 3.4.3). Finally, Section 3.5 provides technical details on
deep learning model implementation (Section 3.5.1) and performance assessment (Section
3.5.2).

3.2 Mathematical framework for deep segmentation

3.2.1 Image domain and label space

Let x = {xu ∈ R, u ∈ Ω} be a grayscale image embedded in the image grid Ω ⊂ Z×Z
with xu the intensity value of the pixel at position u in the grid. The corresponding image
class labels y = {yc,u ∈ {0, 1}, c ∈ {0, ..., C}, u ∈ Ω} (or pixel-wise annotation maps)
represent the C + 1 different anatomical objects of interest (plus background) present
within the image. Although we consider a 2D setting (i.e., image grid Ω ⊂ Z × Z),
the following can easily be extended to volumetric images or higher dimensional objects
(e.g., volumetric dynamic images). We make the traditional assumption that the C + 1
classes are mutually exclusive, as each class c represents a distinct anatomical structure
(or background). Specifically, for each pixel position u in the image, only one class is
present and assigned the value 1, while the remaining classes are set to 0 (i.e., absent).
More formally, the segmentation label y must respect the following condition of mutual
class exclusion: ∀u ∈ Ω : ∑

c yc,u = 1.
In the rest of this thesis, we will refrain from employing such a pixel-level description

of the image x and label y. Nevertheless, it is important to emphasize that an image is
characterized by a highly organized data structure arising from the image grid Ω, which
naturally induces a notion of distance (and therefore locality) between pixels [14], [28].
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Moreover, an image’s content is highly organized because an image typically comprises
distinct objects and structures defined by specific characteristics. These objects are also
interrelated or correlated to each other and can present shared features between them. This
is even more relevant in the context of medical imaging, where the human body is highly
organized with global and local systems and structures (see the the musculoskeletal system
definition in Chapter 2). These properties specific to images (i.e., highly organized data
structure and content) have motivated the design of initial CNNs for image processing,
as we will explore in Section 3.3.

Furthermore, one can define the image x and label annotations y as respec-
tively belonging to the intensity space I and the label space C. As introduced in
Chapter 1, the image intensity domain and segmentation label task are defined by multi-
ple characteristics, including the imaging modality, the setting of the acquisition device,
the anatomical region of interest, and the targeted anatomical structures. Hence, in this
thesis, the intensity domain I typically corresponds to the space spanned by
pediatric musculoskeletal MR images of a specific anatomical joint, while the
label space C is the space spanned by the segmentation maps of the associated
pediatric bones, as defined in Chapter 2.

3.2.2 Segmentation as a function approximation problem

In deep learning, segmentation is formulated as a function approximation problem
in which the goal is to learn a mapping S∗ between the image intensity domain I and
the segmentation label space C. The function S∗ is approximated by a neural network S

parameterized by the weights Θ, and which generates a segmentation prediction ŷ given
an intensity image x, as follows:

S : I −→ C
x 7→ ŷ = S(x; Θ) (3.1)

The network S can be typically decomposed in a succession of simple and
generic functions (i.e., layers), which can be organized into a directed acyclic
graph whose length defines the depth of the model. In particular, the intermediate hidden
(or latent) layers extract more and more abstract information and characteristics (i.e.,
features) from the input image, while the final output layer generates the prediction
segmentation. For image processing, we will see in Section 3.3.1 that neural networks are
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usually built upon convolutional layers.
These layers are parameterized by the weights Θ which must be learned during an

optimization step thanks to a dataset of n training samples D = {xi, yi}1≤i≤n. From this
perspective, deep learning is considered as a data-driven technology, as stated earlier in
Chapter 1. The training set is composed of n couples of images xi and corresponding
ground truth segmentation maps yi ≈ S(xi), which provide noisy approximate of the
function S∗ evaluated at different data points. The training procedure encourages
the network to produce prediction ŷi as close as possible to the ground truth
yi for each image xi, and adjust (or tune) the weights Θ to produce the desired
output and implement the best approximation of the desired segmentation
mapping S∗. This setting is known as a supervised learning framework. As the behavior
of the latent layers is not directly specified during optimization, the learned weights are
typically not interpretable, which makes deep learning models and their training proce-
dure, difficult to analysis as previously discussed in Chapter 1.

In practice, the training procedure of deep learning models leverages a loss function
L to learn the parameters Θ (or neurons) of S and approximate S∗. In the context of
supervised learning, the loss or cost function typically measures the error between the
model output predictions and the ground truth annotations. It should be noted that more
advanced learning schemes can include additional regularization terms, as we will explore
in Parts II and III. Regularization is a key concept in deep learning, which encompasses
all the techniques aimed at reducing over-fitting and improving generalization [14], [43].
One such technique relies on the addition of a penalty term to the loss function which
will constrain the optimization procedure to enforce suitable characteristics in the neural
network. The traditional training procedure thus aims at finding the parameters Θ∗ that
minimize the loss function L, as follows 1:

Θ∗ = arg min
Θ

L(Θ) (3.2)

If we assume that L is differentiable with respect to Θ, the gradient descent algorithm
is a standard optimization tool for finding a local minimum of such a function [184]. By
applying the chain rule of calculus, this condition signifies that each layer of the neural
network and the loss must be differentiable with respect to their inputs. If one follows
standard deep learning practices, this condition is always respected, and gradient descent

1. The expression of the regularized optimization problem is given by Θ∗ = arg minΘ L(Θ) +R(Θ),
where R is a regularization penalty.
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is thus the standard approach to optimize neural networks. In particular, computing the
gradient of the loss allows us to “tune” the weights to decrease the loss. Specifically, we
iteratively update the weights in the direction of steepest descent, which is the opposite
direction of the gradient, to find the local minimum, as follows:

Θ← Θ− α∇ΘL(Θ) (3.3)

The learning rate α hyper-parameter controls the step size at each iteration while con-
verging towards the minimum of the loss function. This hyper-parameter is set by a deep
learning practitioner and typically represents a trade-off between convergence speed and
unstable optimization.

Computing the gradient of the loss with respect to the weights ∇ΘL(Θ) can be
challenging due to the number of parameters and usually requires the use of the back-
propagation algorithm [183]. This popular algorithm leverages the chain rule to evaluate
the gradient of one layer at a time and iterates backward to avoid redundant calculations
of intermediate terms in the chain rule. In essence, back-propagation refers only to
the method for computing the gradient, while the gradient descent algorithm
is used to perform learning based on this gradient. These algorithms are already
implemented in most deep learning software libraries and are easily operational, as we
will see in Section 3.5.1.

3.2.3 Challenges of optimization in high-dimension

Although the combination of back-propagation and gradient descent is a successful
approach to train deep learning models in many applications [13], optimizing neural
networks remains a very challenging task due to the high-dimensional and
non-convex nature of their loss function. In the following, we will present some
limitations of neural network optimization, without being exhaustive:
• First, computing the gradient over the whole training set proves intractable in most

scenarios. However, the loss function usually decomposes as a sum over the training
examples. Hence one can approximate the gradient by computing an expected value
of the cost function estimated using only a subset of samples from the dataset.
This approach is referred to as mini-batch stochastic gradient descent or simply
stochastic gradient descent [13], [14], [184]. Most modern deep learning models are
trained using this scheme, and the size of the mini-batch is typically a compromise
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between memory limitations and performance. Interestingly, some deep learning
guidelines suggest defining the batch size, the number of convolutional filters, and
the image resolution as a power of two to more efficiently fit the mini-batch data in
the memory during optimization. It is worth mentioning that larger batches provide
a more accurate estimate of the gradient, while smaller batches may provide a
regularization effect, perhaps due to the noise they add to the learning process, but
at the cost of unstable learning due to the high variance of the gradient estimate.
• Second, in practice, each image in the batch usually undergoes random geometric

transformations, including translation, rotation, scaling, shear, or flipping, in addi-
tion to random intensity modifications such as normalization, blurring, or contrast
adjustment. This technique, known as data augmentation, helps reduce over-fitting
during optimization by increasing the amount of data with slightly modified copies
of already existing images [13], [14]. It has been noted that data augmentation,
such as random translations by a few pixels in each direction, can often greatly
improve generalization, even if the model has already been designed to be partially
translation invariant by using the convolution and pooling techniques (see Section
3.3).
• Third, for high-dimensional non-convex functions such as neural networks, it is

possible to have many local minima as well as saddle points, plateaus, and other
flat regions. The learning process may get “stuck” in those regions as the gradient
can become very small (i.e., vanishing gradient). On the contrary, neural networks
may also present steep regions (i.e., cliffs), resulting in exploding gradient that can
“move” the parameters extremely far from the optimal solution. In both cases, the
learning process may converge to a poor estimate of Θ∗ or even diverge. To address
these issues, several gradient descent strategies have been devised, most notably,
the momentum which accumulates an average of past gradients to continue mov-
ing in the same direction, and adaptive learning rates that apply separate learning
rates α for each parameter to adapt these hyper-parameters throughout the course
of learning. It has been illustrated that both strategies help preventing high vari-
ance (i.e., noise) in the stochastic gradient, “moving” through flat regions, and
avoiding areas with high curvature. Thus, many gradient descent algorithm have
been designed based on variants and combinations of these techniques, including
Adadelta [194], AdaGrad [195], Adam [196], and RMSprop, which are widely used
to optimize modern deep learning networks [13], [14].
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• Fourth, because the gradient descent is an iterative algorithm, it is needed to ini-
tialize the parameters Θ to start the optimization. However, most deep learning
networks are strongly affected by the choice of initialization. Indeed, the initial
point can determine whether the algorithm converges at all, how quickly learn-
ing converges and whether it converges to a point with high or low cost. Hence,
several initialization strategies have been devised to achieve some properties when
the network is initialized. For instance, one can mention the Xavier initialization
[197], which respectively imposes the same activation variance and the same gra-
dient variance for all layers. Specifically, the general goal of Xavier initialization
is to prevent the gradients of the network from vanishing or exploding. However,
assessing whether these properties are preserved after learning began, remains dif-
ficult. Furthermore, a difficulty is that some initial points may be beneficial from
the optimization point of view but detrimental from the generalization viewpoint.
The understanding of the relationship, between initial point selection and general-
ization, remains very limited, offering little practical guidance on how to initialize
deep learning models [14].

Understanding and designing optimization strategies for deep learning models remains
a challenge, but these are active fields of research. While not the focus of this thesis, it re-
mains essential to recognize the limitation of modern gradient descent algorithms that are
mostly heuristic, especially with respect to initialization strategies. Most importantly, it
should be emphasized that there exist a lack of standardized approaches to optimize neu-
ral networks and ensure the best generalization performance when learning has ended. In
parallel, there are also no clear guidelines on how to determine the most adapted gradient
descent algorithm given a network architecture and training dataset. The selection of op-
timal hyper-parameters, typically learning rate and batch size, remains entirely empirical.
We will see in Section 3.3 that, in the same way, there exist general motivations behind
the design of CNNs for image segmentation, but the guidelines used to build modern
architectures remain empirical.

3.2.4 The principle of maximum likelihood and cross-entropy
loss function

The last ingredient needed to optimize our segmentation network lies in the definition
of a suitable loss function. In the context of image segmentation, our parametric model S
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defines a probability distribution pmodel(y|x; Θ) over the segmentation masks. Specifically,
since the segmentation task corresponds to a pixel-wise classification task, our model
outputs a probability value between 0 and 1 for each pixel and each class. If we suppose
that the training dataset D consists of samples drawn from a true distribution pdata(y|x),
our goal is thus to model the true distribution using our parametric model. Assuming that
samples are independent and identically distributed, the maximum likelihood estimator
allows to obtain the best Θ that yields the most similar distribution pmodel(y|x; Θ) to
pdata(y|x). In particular, for independent and identically distributed random variables,
the likelihood function can be directly decomposed as a product of univariate density
functions [14].

Hence, by using the principle of maximum likelihood, the cost function is the nega-
tive log-likelihood, equivalently described as the cross-entropy between the training data
and the model distribution. Minimizing the cross-entropy loss thus leads to the
maximum likelihood estimator of the parameter Θ∗ that yields the best model
according to the training examples. The cross-entropy loss LCE is defined as below 2:

L = LCE := 1
n

n∑
i=1
−yi log(ŷi) (3.4)

We adopt the notation L = L(Θ), as the parameter Θ appears implicitly in ŷi = S(xi, Θ).
The cross-entropy loss ranges from −∞ to 0, with a perfect model characterized by a zero
cross-entropy loss. Due its logarithmic nature, for yi = 1, the loss will slowly decreases as
ŷi approaches 1, however, the loss will rapidly increases as ŷi decreases (i.e., LCE penalizes
confident and wrong predictions).

It should be noted that the cross-entropy loss can be used with any deep learning
architecture and for any segmentation task. This loss is typically implemented in all
deep learning software packages (see Section 3.5.1). Hence, it has been widely used in
numerous medical image segmentation applications [1], [2]. Although the architecture of
the employed segmentation networks can differ, the core of their designs follow common
and shared principles which will present in the next section.

2. The full expression of the loss is given by LCE = 1
n(C + 1)|Ω|

∑n
i=1

∑C
c=0

∑
u∈Ω−yi,c,u log(ŷi,c,u),

corresponding to an average over classes and pixels, with |Ω| as the cardinality of the image grid.

96



3.3. Convolutional encoder-decoder for image segmentation

3.3 Convolutional encoder-decoder for image segmen-
tation

3.3.1 The convolution operator

As previously mentioned, most deep segmentation models belong to the family of
CNNs, which are based on convolutional filters particularly suited to process data with
a grid-like Euclidean topology, such as images embedded in a pixel grid (Ω ⊂ Z × Z).
Each convolution operator is parameterized by a kernel which extracts a specific pattern
and transforms the input data into a feature map localizing the pattern in the image.
The learnable parameters Θ thus include the kernel weights of each convolutional oper-
ator at each layer of the network. Each convolutional layer typically consists of multiple
convolutional operators applied in parallel, and the number of filters defines the channel
size (i.e., number of features) of the succeeding feature map (Figure 3.1). For its part, the
size of each supporting kernel is typically small (e.g., 3 × 3, 5 × 5, or 7 × 7 pixels), and
each convolution operation thus involves very few pixels (i.e., sparse interaction). This
property is contrary to traditional neural networks, which employ dense matrix multi-
plication where each output depends on every input. In CNNs, the first layer aims at
detecting small meaningful features (e.g., edges), while convolutions in deeper layers may
indirectly interact with a larger portion of the image through a larger receptive field. This
allows the network to efficiently learn complex interactions between many structures in
the image and construct a hierarchical representation from simple building blocks, each
describing only sparse interactions. As one can expect a greater number of complex and
global features than simple and local ones, practitioners typically increase the number of
channels in deeper convolutional layers (Figure 3.1) [13], [14], [28].

Furthermore, each convolution operation is applied with the same kernel weights at
every pixel position of the input image (i.e., weight sharing). The pattern to be detected
is thus translated across the whole image. This property is again unlike traditional neu-
ral networks based on matrix multiplication, where each element of the weights matrix is
used only once per input. It is important to emphasize that weight sharing causes the net-
work representation to be translation-equivariant, a characteristic highly desired in image
analysis as feature maps should shift with their input. In particular, the model does not
need to learn separate detectors for the same object occurring at different positions in
an image. Nevertheless, the convolution is not equivariant to other transformations such
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Input image
1 channel
128×128

Convolution
3×3 kernel

Feature map
8 channels
128×128

Max-pooling
2×2 kernel

Feature map
8 channels

64×64

Convolution
3×3 kernel

Feature map
16 channels

64×64

Max-pooling
2×2 kernel

Feature map
16 channels

32×32

Figure 3.1 – Architecture of a CNN with convolutional and max-pooling layers. The input
image is a grayscale 2D image. Each feature map is defined by its number of channels
and spatial resolution. The convolution and max-pooling transformations are applied in
cascade and each operates on a small 2×2 or 3×3 kernel. Schematic generated using the
open-access illustration tool: https://alexlenail.me/NN-SVG/LeNet.html.

as rotation or scaling. Finally, the combination of sparse interaction and param-
eter sharing greatly reduces the number of parameters to learn by acting as
a strong prior on the network. Specifically, this prior states that the function
that S should approximate, contains only local interactions and is equivariant
to translation. These properties can be seen as regularization constraints imposed on
the network architecture, and they partly explain the success of CNN for image process-
ing tasks. However, as stated in Chapter 1, the literature is currently lacking a better
mathematical understanding of these models. For instance, finding the optimal number
of filters per layer (i.e. network width) and, the optimal number of layers (i.e. network
depth) for a given imaging dataset and task, remains primarily based on an empirical
search and heuristic approach [13], [14], [28].

3.3.2 Non-linearity and pooling layer

To recapitulate, CNNs are built on a cascade of convolutional filters producing more
and more abstract representations with larger and larger receptive fields. Nevertheless,
convolution remains a linear transformation, and cascading convolutions will only be
able to approximate linear functions. It thus becomes essential to employ non-linearity
between each convolution layer in order to approximate highly non-linear image processing
tasks such as segmentation. Hence, convolutional networks integrate point-wise non-linear

98

https://alexlenail.me/NN-SVG/LeNet.html


3.3. Convolutional encoder-decoder for image segmentation

activation functions ρ (e.g., ReLU, SiLU, Sigmoid) after each filter to act as features
detector. This combination of convolution operator and non-linearity transformation can
be expressed as below:

ui,l+1 = ρ(Θl ∗ ui,l + bl) (3.5)

where ui,l+1 is the output activations map generated by the lth block with the ith image
of the dataset D as input, ρ is a non-linearity, Θl is the convolution filter of the lth layer,
and bl is the associated bias. As a convention, the input image corresponds to the input
of the first layer ui,0 = xi.

During optimization, the network learns all the weights {Θl, bl}l present at each layer.
As the non-linearity is usually centered around zero, the role of the bias is only to shift the
activation function. Activation functions were originally inspired by the biological process
of brain neurons and were an abstract representation of the cell action potential acting as
a binary switch. Nowadays, activation functions depart from this concept, and research
is now focused on seeking non-linearity that helps stabilize optimization (e.g., ReLU and
LeakyReLU reduce vanishing gradient problems compared to Sigmoid [189]) or improve
performance (e.g., SiLU for deeper models [198]). Once more, such guidelines are based
on empirical findings and, in the literature, few studies investigate the role of point-wise
non-linearity in deep network.

Furthermore, while convolutions allow obtaining translation-equivariant representa-
tions, one may also desire to build hidden representations invariant to small translations,
particularly in deeper layers that extract more abstract and global features. Pooling layers
(e.g., max-pooling, average-pooling) yield such property by computing summary statistics
of nearby pixels (e.g., 2×2 kernel) resulting in latent representations with smaller spatial
resolution (Figure 3.1). Pooling also induces scale separation between representa-
tions, with coarser resolutions in deeper layers extracting image-wise features.
Moreover, from a practical perspective, pooling allows for reduced memory consumption
for storing and optimizing the network weights, especially considering the standard rec-
ommendation to increase the number of filters in deeper layers. Practitioners also employ
strided-convolution to down-sample the feature map. Nevertheless, the translation invari-
ance property no longer holds in such a case. Once again, the exact role and benefits of
pooling and down-sampling layers are not yet clearly understood, and it remains difficult
to assess which strategy one should employ in a given setting [13], [14], [28].
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3.3.3 Segmentation decoder

In the end, the cascade of convolution, non-linearity, and occasional pooling or down-
sampling layers allows for extracting more and more abstract features from the image
(Figure 3.1). However, image segmentation aims to obtain pixel-wise classification, with
the output prediction characterized by the same spatial dimension as the input. To address
this issue, inverse transformations have been defined to increase the spatial dimension of
features maps, including max-unpooling, transpose convolution (or up-convolution), and
up-sampling. In essence, max-unpooling corresponds to the inverse operation of max-
pooling and leverages the indices of the maxima extracted from the pooling layer, while
the transpose convolution is an extension of the convolution, which can handle output
with larger spatial dimensions than its input. More specifically, transpose convolution is
based on a learnable kernel and maintains a connectivity pattern as opposed to max-
unpooling. Finally, up-sampling layers are based on nearest-neighbor, linear, or bi-linear
interpolations and thus require no additional trainable parameters [29], [199]–[202].

Hence, convolutional segmentation networks are typically divided into two
components: an encoder that extracts abstract features and a decoder that
generates the segmentation given the encoded representations. The encoder
thus progressively increases the number of features and reduces the spatial dimension
(i.e., contracting path), while the decoder is symmetric and performs the opposite trans-
formations (i.e., expanding path). In the end, the decoder produces a feature map with
the same spatial dimension as the input. In order to perform pixel-wise classification, the
last layer is usually based on a point-wise convolution W (i.e., 1× 1 kernel which serves
as a linear projector) with associated bias b, followed by a Softmax non-linearity. The last
convolution comprises C + 1 filters to extract the desired number of targeted objects [29],
[199]–[202]. Specifically, if ui denotes the output of the penultimate layer, then:

ŷi = Softmax(W ∗ ui + b) (3.6)

The Softmax function results in a probability distribution pmodel(y|x; Θ) over the segmen-
tation masks defining the C + 1 classes of interest (see Section 3.2.4). More specifically,
each pixel is assigned a vector whose values represent the probability of each of the C + 1
classes, and the vector is normalized to one. At inference, the class with maximum prob-
ability is assigned as the final prediction using an arg max function.

For convolutional encoder-decoder based segmentation networks, the trainable param-
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Figure 3.2 – Architecture of the UNet segmentation network [29]. Each black box cor-
responds to a multi-channel feature map, with the number of channels denoted at the
bottom. White boxes represent feature map copied by the skip connections. The colored
arrows indicate the different operation including, convolution with non-linearity (i.e., ReLU
or Softmax), max-pooling, and up-convolution.

eters Θ encompass all the convolutional filters (i.e., classical, point-wise, up-convolution)
and associated bias. It should be noted that, in the context of binary segmentation (i.e.,
typically one anatomical structure and background), the Sigmoid function is preferred
as the last non-linearity, and in this scenario, the loss function is based on binary cross-
entropy. Finally, convolutional encoder-decoders are not limited to segmentation and can
perform other tasks requiring dense pixel-wise predictions, such as computing optical flow
[203] or disparity maps [204] notably used in computer vision.

3.3.4 UNet for medical image segmentation

The motivations and key layers (i.e., convolution, non-linearity, pooling, un-pooling)
of the convolutional encoder-decoder architecture have been introduced in the previous
section. We should reinforce that the design of deep learning architectures (including con-
volutional encoder-decoders) remains mostly empirical and based on heuristic approaches.
Nowadays, the convolutional encoder-decoder is one of the most popular back-
bones for medical image segmentation due to its ability to model the features
(e.g., shape, appearance) of multiple objects and the long-range spatial rela-
tionships between these structures. Although the UNet architecture [29] is the most
well-known encoder-decoder architecture applied in medical imaging, it is worth men-
tioning some precursors such as DeconvNet [202], SegNet [200], DeepLab [201], and FCN
[199]. While these architectures employed a similar encoder branch based on a traditional
succession of convolution, non-linearity, and pooling, the architecture of their decoder
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slightly differed, with models based on either max-unpooling (DeconvNet, SegNet), up-
sampling (DeepLab), and up-convolutional layers (FCN). Moreover, both DeepLab and
FCN employed similar concepts of reusing finer resolution features of the encoder to re-
fine the final output segmentation. In particular, the combination of semantic information
from deep, coarse layers with appearance information from shallow, fine layers improved
the accuracy of the segmentation [199], [201].

For its part, the UNet architecture [29] employed up-convolutional layers to retrieve
the original spatial resolution of the input, as depicted in Figure 3.2. Most importantly,
the addition of skip connections, which copy and concatenate features between
the encoder and decoder branches (Figure 3.2), allowed UNet to recover fine-
grained details in the prediction and supplement previous architectures. In
particular, the combination of high-resolution features from the contracting path with the
up-convolution output resulted in enhanced segmentation localization, with the successive
convolution layer learning to assemble a more precise output based on this information
(Figure 3.2). Furthermore, it has been empirically noticed that the skip connections help
stabilize optimization and convergence by preventing vanishing gradient issues in shallow
layers. Nevertheless, there is no theoretical justification for the success and incredible ef-
ficiency of symmetrical long skip connections in dense prediction tasks, such as medical
image segmentation. Finally, unlike patch-based approaches, UNet is able to simultane-
ously use the context of the whole image and provide good location prediction [29].

Recently, the medical image research community has employed the UNet architecture
(and recent derivatives, Section 3.4) in countless medical applications, each defined by
imaging modality (e.g., X-ray, PET, ultrasound, CT, and MRI), anatomical region of
interest (e.g., brain, heart, lung, abdomen), and targeted structure to segment (e.g., tu-
mor, metastasis, cyst) [1], [2]. For instance, methods based on UNet were developed for
the detection and segmentation of multiple brain metastases on MR images [205] or the
distinct bone segmentation from upper-body CT scans [206]. One can consider each
of these application as corresponding to a different function approximation
problem with a distinct imaging domain I and segmentation label space C.
The enhanced segmentation performance obtained in these multiple scenarios illustrates
the incredible versatility of the UNet encoder-decoder convolutional architecture. How-
ever, it should be emphasized that the architecture and training hyper-parameters (e.g.,
number of layer, number of features per layer, learning rate, optimizer) need to be fine-
tuned by a deep learning practitioner and the weights learned during optimization are
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domain and task specific. As mentioned in Chapter 1, these limitations, that are inherent
to the data-driven nature of deep learning, can hinder the deployment of such models in
real-world scenario. It is worth mentioning that the nn-UNet (no-new-UNet) [207] frame-
work offers the ability to configure some hyper-parameters automatically but is currently
limited to the standard UNet architecture as a backbone.

From a more practical perspective, one common limitation, specific to UNet, is its
ability to process 2D data, while medical images usually comprise three spatial dimensions
(e.g., PET, CT, and MRI). This can limit the accuracy of the segmentation prediction
due to the lack of complete spatial context. Furthermore, the network is biased in one
spatial direction and would provide poor performance if applied along another axis. Hence,
3D counterparts of UNet based on 3D convolutional layers have been proposed, such as
VNet [30] and 3D UNet [208]. Nevertheless, these 3D architectures typically require more
computational power and memory consumption than standard 2D UNet. In practice, this
results in a more unstable training procedure due to smaller batch size. Moreover, it has
been noticed that the performance improvements of 3D models over 2D UNet may not be
consistent and rather depend on the task, targeted structures, available imaging data, and
computational capacity [209]. This partly explains the ongoing popularity of the 2D UNet
over its 3D counterpart among the medical image research community. Consequently, all
the segmentation models employed during this thesis (see Parts II and III)
will be based on 2D architectures.

3.4 Standard modifications of the UNet model

Following its success for medical image segmentation, the UNet model has been adapted,
modified, and extended by the research community to improve performance further or
tackle new challenges. While providing an exhaustive list is out of scope here, we aim to
introduce some key standard extensions of the UNet model, which will be relevant for the
rest of this thesis.

3.4.1 Batch normalization

Batch normalization [41], which was independently developed the same year as UNet,
aims at improving the convergence speed of CNNs by normalizing their internal activa-
tions. Although the first implementation of UNet [29] did not incorporate batch normal-
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ization layers, this transformation has now become ubiquitous in the computer vision and
medical imaging fields. As previously mentioned, optimizing deep models is a challenging
task, partly due to the large number of learnable parameters that are organized into a
cascade of layers. During training, the distribution of each layer’s inputs changes as the
parameters of the previous layers are updated, and this problem is known as the inter-
nal covariate shift. This slows the training by requiring lower learning rates and careful
parameter initialization [41].

To address these issues, batch normalization provides an elegant way to reparameter-
ize the layers and reduce the problem of coordinating updates across many layers. Batch
normalization allows practitioners to use much higher learning rates and to be less care-
ful about initialization, while acting as a regularizer [14], [41]. The batch normalization
transformation (BN) is defined as follows 3:

BNβl,γl
(vi,l) = γl

vi,l − µl√
σ2

l + ϵ
+ βl (3.7)

where vi,l = Θl ∗ui,l denoted the feature-map at the lth layer produced by the ith image, µl

and σl are the mini-batch mean and standard deviation. ϵ = 1e-5 is a small positive value
added for numerical stability. However, normalizing the mean and standard deviation of
a layer can reduce the expressive power of the neural network. To maintain this power,
batch normalization employs learnable shift βl and scale γl at each layer. This new param-
eterization can represent the same family of functions as the previous parameterization,
but it is much easier to learn with gradient descent [14], [41].

Following the definition of BN, one can update Equation 3.5 given in Section 3.3.2:

ui,l+1 = ρ(BNβl,γl
(Θl ∗ ui,l)) (3.8)

It should be noted that the bias bl of the convolutional layer can be ignored, as its role
is subsumed by the shift βl of the batch normalization transformation. This succession
of convolution, batch normalization, and non-linearity thus defines a new building block
for convolutional models. Following its widespread success in computer vision, the batch
normalization layer has been adopted in medical imaging, with most recent UNet imple-

3. In practice, batch normalization is performed with respect to the feature m at layer l, as follows:
BNβl,m,γl,m

(vi,l,m) = γl,m
vi,l,m − µl,m√

σ2
l,m + ϵ

+ βl,m
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mentations leveraging this normalization [1], [2]. Finally, it should be emphasized that
while initial motivation aimed at mitigating the internal covariate shift issue, the exact
reasons for the effectiveness of batch normalization are still poorly understood. Recent
works argue that batch normalization does not, in fact, reduce internal covari-
ate shift but instead smooths the objective function, which in turn, induces
a more predictive and stable gradients behavior, allowing for faster training
and better generalization capabilities [210]. In any case, we integrate batch
normalization in the baseline segmentation architecture employed in the re-
mainder of this thesis (see Parts II and III), and we present an extension of
this layer for multi-domain learning (see Chapter 6).

3.4.2 Loss functions specific to image segmentation

In parallel, several works have introduced new loss functions in the context of medical
image segmentation. In particular, it has been observed that when the segmentation pro-
cess targets rare objects, the cross-entropy loss LCE can result in sub-optimal performance
due to the severe class-imbalance occurring between foreground and background labels. In
order to mitigate these imbalanced class scenarios, strategies such as the weighted cross-
entropy loss, the focal loss, the Dice loss, or the Tversky loss have been proposed [211],
[212]. It should be emphasized that these approaches do not involve any modifications of
the UNet encoder-decoder architecture. In particular, the novel loss functions still rely on
the Softmax activation layer to provide the segmentation output prediction.

One loss function has been of particular interest for the medical imaging community:
the Dice loss. The LDice loss is based on the Dice coefficient, which is a widely used metric
in computer vision assessing the similarity between two areas labeled by segmentation.
The definition of the loss is given below 4:

LDice = 1− 1
n

n∑
i=1

2yiŷi

yi + ŷi + ϵ
(3.9)

The Dice loss ranges from 1 denoting completely dissimilar labelisations to 0 for perfect
overlap. Minimizing this loss thus encourages the network to produce segmented images
with labels ŷi similar to the reference labels yi (considered as ground truth) in the training
set. The loss comprises a small positive value ϵ added for numerical stability, needed

4. The full expression of the loss is given by LDice = 1− 1
n(C + 1)

∑n
i=1

∑C
c=0

∑
u∈Ω 2yi,c,uŷi,c,u∑

u∈Ω yi,c,u + ŷi,c,u + ϵ
.
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during optimization. It should be noted that LDice is sometimes referred to as soft or
fuzzy Dice loss as it is based on the real value ŷi prediction, rather than on binary masks
(i.e., Boolean set) obtained after applying a threshold (or arg max function). Indeed, the
Dice coefficient metric, whose definition will be given in Section 3.5.2, usually operates on
binary masks for both ground truth and prediction segmentation. However, to be able to
use the gradient descent algorithm, one must define a differentiable loss. For this reason,
the non-differentiable threshold is omitted, and instead of using an intersection between
Boolean sets, one uses the element-wise product to approximate this non-differentiable
operation.

While the Dice loss has been reported to improve class imbalance issues, it also allows
for directly maximizing the Dice coefficient value during optimization, which is one of
the most common metrics used to assess the performance of a segmentation model. In
particular, this offers a better comprehension of the optimization process, as opposed to
the cross-entropy loss LCE which is derived from probability theory and lacks practical
insight on the expected performance of a segmentation model. However, the gradients as-
sociated with LDice are more complex and can lead to unstable training compared to LCE.
In addition, other metrics than the Dice coefficient are used in practice and it is unclear
whether minimizing the Dice loss maximizes the performance of the Dice coefficient at
the expense of other metrics. Hence, practitioners may use a linear combination of LCE

and LDice, known as combo loss.

Finally, with the same goal of optimizing a network to maximize a segmentation met-
ric directly, some works have proposed loss functions leveraging the Hausdorff distance.
This metric, which will be presented in Section 3.5.2, is an indicator of the largest seg-
mentation error and, as such, is used extensively in evaluating segmentation algorithms.
However, this metric computed between predicted and ground truth segmentation con-
tours is non-differentiable. Hence, various approaches based on boundary distance maps
or morphological operations have been developed to obtain differentiable approximations
of the Hausdorff distance [213]. Nevertheless, such losses are unstable during training
and must be used in combination with LCE or LDice losses, especially at the start of the
optimization procedure.

In the context of pediatric bone segmentation, we did not observe class
imbalance issues and we preferred the LCE over LDice which leads to more
unstable training. Furthermore, instead of employing a loss based on Hausdorff dis-
tance surrogates, our approaches, presented in Parts II and III, leverage shape priors

106



3.4. Standard modifications of the UNet model

regularization to enforce globally consistent segmentation predictions and maximize the
performance of the network.

3.4.3 Spatial attention gate

Gating
signal 1×1

Input
features 1×1

1×1

Attention
coefficients

Filtered
features

ReLU Sigmoid

Figure 3.3 – Schematic of the spatial attention gate [42]. The input features are multiplied
with attention coefficients to focus on salient regions. Spatial regions are selected by
analysing both the activations and contextual information provided by the gating signal.
Feature transformations include 1× 1 convolution and ReLU and Sigmoid non-linearity.

One simple extension of the UNet model consists of the addition of spatial attention
gates to the skip connections between the encoder and decoder branches. The Attention-
UNet (Att-UNet) [42] model exploits attention gates to automatically learns to focus on
the anatomical structures of interest. In particular, the attention gates filter the features
propagated through the skip connections to suppress irrelevant regions while highlighting
salient features useful for the segmentation task. As shown in Figure 3.3, the output of
an attention gate is the element-wise multiplication of the input feature-maps originating
from the skip connection and attention coefficients. The attention coefficients are com-
puted using both the input features and the gating signal, which are linearly mapped
using 1 × 1 convolutions, then combined through an addition and a ReLU non-linearity
(i.e., additive attention). The resulting signal contains contextual information to prune
lower-level feature responses and determine focus regions. The following 1×1 convolution
transforms the signal into a 1-channel dimensional map, and a Sigmoid activation then
results in the attention coefficient map. Thus, attention coefficients which range from 0
to 1, identify salient image regions (i.e., value close to 1) and prune irrelevant areas (i.e.,
value close to 0). It has been illustrated that the attention gates consistently improve the
sensitivity and prediction accuracy of UNet with minimal computational overhead. Most
importantly, the visualization of the obtained attention maps enables us to examine the
inference process of segmentation networks. Specifically, one can verify that the network
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learns to focus on the correct structures of interest at different scales, as attention gates
typically provide a rough outline of the targeted organs [42].

Due to its ability to provide better segmentation localization and inter-
pretable attention maps, the Att-UNet will constitute the baseline model for
the experiments performed in Parts II and III. It should be noted that, we
also integrate batch normalization (see Section 3.4.1) in our baseline Att-UNet
model.

3.5 Technical aspects of deep segmentation in medi-
cal imaging

3.5.1 Implementation details

Nowadays, most neural network implementations are based on GPUs due to their
high memory bandwidth and massively parallel computing capabilities. Indeed, as neural
networks usually involve millions of parameters that must be updated during every step of
optimization, the high memory bandwidth of GPUs allows training deep learning models
efficiently compared to traditional central processing units (CPUs). Additionally, since
each individual parameter can be processed independently from the other parameters in
the same layer, neural networks easily benefit from the parallelism of GPU computing.
One can also distribute the workload of training and inference across many GPUs in a
large-scale distributed system (i.e., data/model parallelism) with more computation power
than on a single machine. While GPU hardware was originally specialized for graphics
tasks, it has become more flexible over time. In particular, the advent of general purpose
GPU, which could execute arbitrary code, is an other important factor in the popularity
of graphics cards for neural network training. One should mention the CUDA framework,
which provides a way to write and implement code for Nvidia’s GPUs. This platform was
rapidly adopted by deep learning researchers and used to develop deep learning software
such as PyTorch 5 [214], TensorFlow 6 [215], or Keras 7 [216]. These libraries have been of
particular interest to deep learning practitioners, as they offer a free, open-source, and
simple Python interface to develop their own deep learning algorithms. In particular, Keras

5. https://pytorch.org/
6. https://tensorflow.org/
7. https://keras.io/
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libraries uses TensorFlow as backend and provides a modular and extensible framework
to implement neural networks, while PyTorch offers more flexibility through its dynamic
computational graph used to optimize deep learning models. It should be noted that other
deep learning software and libraries have been developed. Nevertheless, we refrain from
providing such an exhaustive list which is outside the scope of this thesis. These software
have been used in endless applications, including computer vision, speech recognition,
natural language processing, and most notably in the context of this thesis, medical image
analysis [14], [214]–[216].

The neural networks developed during this thesis were implemented in Python using
either PyTorch, Tensoflow, or Keras libraries. Although the combination of Tensoflow
and Keras libraries provided a simple framework for implementing the multi-structure
segmentation methods developed in Part II. For multi-task, multi-domain learning
(see Part III), it was essential to employ the PyTorch library to implement the
domain-specific layers (see Section 6.2.2) which relied on a dynamic computa-
tional graph. Indeed, in the Tensoflow and Keras coding paradigms, the computational
graph that defines a deep learning model is static and cannot be modified during train-
ing or inference [215], [216]. On the contrary, PyTorch allowed us to implement dynamic
graphs that enabled us to use control flow statements and to change the operations per-
formed at every iteration [214]. In practice, the domain-specific layers needed to be selected
according to the domain of the input domain and the computational graph of the model
is thus dynamically modified during learning.

As previously mentioned, these deep learning packages provide access to traditional
layers (e.g., convolution, activation, pooling), loss functions (e.g., cross-entropy, mean-
squared error), and optimization algorithms (e.g., Adadelta, AdaGrad, Adam, or RM-
Sprop). Each of these can be easily parameterized and tailored for very diverse scenarios.
For instance, one can define a convolutional layer with a specific number of filters, kernel
size, and stride. Ultimately, one can assemble these simple building blocks into complex
deep learning models. It should be noted that no matter the depth and complexity of the
model, the gradients used to optimize the models are computed automatically without any
user intervention. In particular, a reverse automatic differentiation system keep records of
the operations (i.e., layers) applied on the input data, and provides the directed acyclic
computational graph used to back-propagate the gradients (see Section 3.2.2). Hence,
once the model, loss function, and optimization algorithm have been selected, the train-
ing procedure is straightforward for the deep learning practitioner. Furthermore, these
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deep learning software packages give access to state-of-the-art architectures (e.g., VGG19,
DenseNet121, ResNet50, InceptionV3, EfficientB3) with weights pre-trained on large
natural image datasets [214]–[216]. We will employ these models in Chapters 5 and 7, in
the context of transfer learning.

All the deep learning architectures implemented in this thesis were optimized using a
Nvidia RTX 2080 Ti GPU with 12 GB of RAM. As previously mentioned, the amount
of available memory is an important factor in the design of neural networks and the
selection of optimization hyper-parameters. Most notably, the depth and width of the
employed networks, as well as their respective batch size, were selected based on a com-
promise between performance and hardware capacity. Hence, the results obtained in this
thesis could be potentially improved if one had access to a higher computational power
and memory capacity. In the same line of thought, it should also be emphasized that we
did not employ any multi-GPU computing techniques due to resource constraints. Nev-
ertheless, all networks were trained with extensive on-the-fly data augmentation to teach
the models the desired invariance, covariance, and robustness properties, consequently
improving generalization performance. Data augmentation comprised random geometric
deformations, which were applied to both grayscale intensity images and corresponding
annotation maps (reference labels).

Following standard machine learning guidelines, our frameworks included pre-processing
and post-processing steps. For each dataset introduced in Chapter 2, we extracted 2D
images from the 3D MR imaging data along a fixed axis (axial for shoulder images and
sagittal for ankle and knee images). The corresponding 2D annotations were extracted in a
similar manner from the 3D ground truth labels. As previously mentioned, all the networks
developed in this thesis were based on 2D architectures. In the following pre-processing
step, the obtained 2D images and annotation maps were downsampled to 256× 256 pix-
els. This specific value was chosen due to memory limitations. The grayscale intensity
images were then normalized to have zero-mean and unit variance for each dataset, while
the ground truth segmentations were encoded as one-hot vectors with C + 1 classes. At
inference, the predicted 2D segmentation were stacked to form a 3D volume. The pre-
dicted probabilities resulting from the Softmax last layer were transformed to final class
prediction using an arg max function. Finally, post-processing also included connected
component analysis to ensure that each predicted bone was represented by a connected
set and binary morphological operations [217] to smooth the resulting boundaries.
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3.5.2 Performance metrics for medical image segmentation

As for any machine learning algorithm, the performance of deep learning medical image
segmentation models is evaluated on unseen test data to assess the model’s generalization
capabilities. In machine learning, it is also recommended to build an additional separated
validation set that can be used to fine-tune the hyper-parameters of the segmentation
algorithm (e.g., learning rate, batch size). Therefore, during experimentation, medical
imaging datasets must be split between training, validation, and testing sets. In practice,
when developing 2D models for 3D image segmentation, the partition between training,
validation, and test data is performed with respect to the 3D examinations to avoid any
data leakage issues during experiments. Furthermore, in the context of this thesis, due
to the low amount of 3D examinations in each pediatric dataset (see Section 2.4.2), we
employed a leave-one-out strategy in which one 3D examination was retained for testing,
one for validation, and the rest consisted in the training set. We iterated through the
dataset so that each sample was used once for testing and once for validation. This allowed
us to obtain a reliable and unbiased estimate of the model performance.

To assess the performance of segmentation algorithms, medical image researchers have
access to a wide array of metrics based on region overlap (e.g., Dice coefficient, intersection
over union, sensitivity, specificity, Jaccard index, F1 score), distance between boundaries
(e.g., maximum symmetric surface distance, average symmetric surface distance, Haus-
dorff distance 95% percentile, normalized surface distance), volume metrics (e.g., relative
absolute volume difference, symmetric relative volume difference), or connectivity metrics
(e.g., centerline Dice similarity coefficient). These metrics are computed between the seg-
mentation prediction generated by the algorithm and the ground truth produced by an
expert. These scores can be extracted from either 2D or 3D masks. Each of these met-
rics aims at quantifying distinct information about the prediction errors provided by the
segmentation model, and each presents its own advantages and drawbacks. In medical
imaging, it is thus essential to employ multiple metrics to have a complete
assessment of the performance and errors of a segmentation model [218].

In this thesis, we used six metrics to assess the performance of the models
developed in Parts II and III. The metrics were computed using the 3D segmentation
masks to provide clinically relevant evaluation of the performance of our models. These
metrics included the Dice coefficient, sensitivity, specificity, maximum symmetric surface
distance (MSSD), average symmetric surface distance (ASSD), and relative absolute vol-
ume difference (RAVD). The metrics were defined as follows, let GT and P be the ground
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truth and predicted 3D segmentation masks of one specific structure of interest and let
SGT and SP be the surface voxels of the corresponding sets.

Dice = 2|GT ∩ P |
|GT |+ |P | (3.10)

Sensitivity = |GT ∩ P |
|GT | (3.11)

Specificity = |GT ∩ P |
|GT | (3.12)

MSSD = max(h(SGT , SP ), h(SP , SGT )) (3.13)
with h(S, S ′) = max

s∈S
min
s′∈S′
∥s− s′∥2

ASSD = 1
|SGT |+ |SP |

 ∑
s∈SGT

d(s, SP ) +
∑

s∈SP

d(s, SGT )
 (3.14)

with d(s, S ′) = min
s′∈S′
∥s− s′∥2

RAVD = | |GT | − |P | |
|GT | (3.15)

Here, |.| denoted the number of elements equal to 1 in the binary set and . indicated
the complement of the set. It should be emphasized that GT anf P corresponded to a
binary set representing only one targeted structure and P was obtained after applying
the post-processing steps described in Section 3.5.1.

As previously mentioned, the Dice coefficient is the most widely used metric in medical
image analysis. It measures the similarity between two sets ranging from 0 (completely
dissimilar) to 1 (perfect overlap). The Dice coefficient is identical to the F1 score and
closely related to the intersection over union (also referred to as the Jaccard index). In
practice, it is sufficient to calculate only one of these measures [218]. For their part, sen-
sitivity and specificity evaluate the true positive and true negative rates, which provide
complementary information with respect to Dice. The sensitivity and specificity metrics
indicate the proportion of targeted object and background correctly detected, respectively.
As for Dice, sensitivity and specificity range from 0 for completely incorrect detection,
to 1 for perfect detection. The MSSD and ASSD assess the models’ ability to generate
the same contours as those produced manually. In particular, the MSSD calculates the
maximum of all shortest distances for all points from one object boundary to the other,
while the ASSD measures the average of all distances for every point from one object to
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the other. For both metrics, a value of 0 refers to a perfect prediction (i.e., distance of 0
to the reference boundary), while no fixed upper bounds exist [218]. It should be noted
that the MSSD is also referred as the symmetric Hausdorff distance. A major problem re-
lated to these boundary-based metrics is the error-prone reference annotations, as domain
experts often disagree on the definition and annotation of objects and their boundaries.
Finally, the RAVD metric determines the volumetric difference between volumes, with 0
indicating that the prediction presents the same volume as the ground truth. This met-
ric is of particular interest in pediatric musculoskeletal segmentation as bone volumetric
information allows clinicians to assess impaired development quickly or easily compare
pathological and healthy patients. However, it should be noted that this metric does not
consider the location of the objects as opposed to region overlap and boundary-based
metrics [218]. In this thesis, Dice, specificity, sensitivity, and RAVD metrics are
denoted as percentages. For their part, MSSD and ASSD distance measures
are transformed to millimeters using voxel size information extracted from
DICOM metadata.

After computing segmentation metrics, one usually needs to assess whether the per-
formance of a proposed segmentation algorithm corresponds to a statistically significant
improvement over the baseline method. To do so, one must perform a statistical analysis
of the results obtained by each model. In this thesis, due to the scarcity of 3D pe-
diatric examinations, we used metrics computed on 2D slices to perform tests
with enough statistical power. Additional details on the statistical analyses
are provided in Chapters 5 and 7. Furthermore, although it is essential to employ
complementary metrics to assess the performance of segmentation models, it can reveal
challenging to simultaneously compare the performance of various segmentation strate-
gies across multiple metrics [218], [219]. Hence, a common approach to mitigate this issue
involves designing a ranking system that aggregates all the segmentation metrics into a
unique score. The different segmentation algorithms can then be ranked using this score.
Creating a ranking system can be arduous and strongly depends on the targeted applica-
tion and employed metrics. In the context of this thesis, we employed 3D metrics
to conceive our ranking system, which will be further developed in Chapter
5. Finally, for segmentation it is also essential to perform visual comparison
between the algorithms. In this direction, we performed extensive qualitative
validation of our methods in Parts II and III.
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3.6 Conclusion
This chapter introduced the mathematical framework for deep learning-based im-

age segmentation, which is formulated as a function approximation problem. However,
solving this optimization problem is a challenging task due to the highly dimensional
and non-convex nature of deep learning models. Moreover, we have seen that almost all
deep learning segmentation models rely on the convolutional encoder-decoder architec-
ture, UNet being a widely used example. We also presented standard modifications of the
UNet model, which will be used as a baseline in the rest of this thesis (see Parts II and
III). Finally, this chapter described the more technical aspects of this thesis, including
the hardware and software implementation details and the metrics and schemes used to
assess the performance of the proposed models.

As mentioned in Chapter 1, despite the great potential of deep learning, real-world
deployment of neural networks remain limited in clinical practice. We previously identified
three main technical challenges of medical image analysis at the age of deep learning, as
well as novel deep learning paradigms to mitigate these issues. In this thesis, we pro-
pose to develop novel methodologies addressing the generalization gap and
data scarcity issues in the context of pediatric musculoskeletal image analysis
(see Chapter 2). These methods are built upon novel deep learning paradigms, including
state-of-the-art network architectures (Chapters 5 and 7), multi-domain learning (Chap-
ters 6 and 7), multi-task schemes (Chapters 6 and 7), transfer learning (Chapters 5 and
7), and prior knowledge embedding (Chapters 4, 5, 6, and 7).
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Chapter 4

SHAPE PRIORS-BASED REGULARIZATION

FOR MULTI-STRUCTURE SEGMENTATION

4.1 Introduction
This chapter focuses on the data scarcity issue associated with pediatric imaging

databases, which makes it challenging to develop deep learning models that produce
robust delineations on unseen images. As discussed in Part I, since deep learning is a
data-driven methodology requiring a large amount of training data, the lack of pediatric
imaging resources can induce over-fitting issues and insufficient generalization capabilities
on new examinations. In particular, the trained neural networks may be unable to produce
accurate segmentation predictions on test images, limiting their applications in real-life
clinical scenarios.

To mitigate these issues, recent works aim to incorporate regularization into
deep learning-based segmentation models to further avoid over-fitting and im-
prove generalizability. In deep learning, the regularization concept covers techniques
that can affect the network architecture, the learned weights, the training data, or the
loss function [43]. As introduced in Chapter 3, the UNet architecture [29] already contains
regularization in the form of convolutional layers which enforce local and translation-
equivariant hidden units, pooling-layers that impose translation invariant feature extrac-
tion, and skip-connections which assume a correlation between low-level and high-level
features [13], [14], [28]. Moreover, data augmentation and batch normalization are two
data-based regularization techniques that are commonly incorporated into deep learning
models. Data augmentation incites the network to learn invariance, covariance, and ro-
bustness properties [14] while the randomization inherent in batch normalization enforces
robust data representations [41].

Concerning regularization schemes affecting network weights, one can mention trans-
fer learning [44] and dropout [220]. In deep learning, transfer learning refers to employing
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weights pre-trained on a similar image domain or task. Transfer learning from natural
image datasets, particularly ImageNet, has proven to be a successful approach for med-
ical image analysis. Indeed, transfer learning assumes that low-level features are shared
between image domains and tasks, and the pre-trained weights provide a robust initializa-
tion for optimization [44]. For its part, the key idea of dropout is to randomly drop layers
from the neural network during training. The motivation is to prevent model over-fitting,
and dropout can thus be considered as a bagging (i.e., bootstrap aggregating) approach
involving multiple sub-networks [220].

Finally, in machine learning, one of the simplest and most common loss function-based
regularization is the L2 norm penalty, known as weight decay or Tikhonov regularization.
This regularization strategy consists in enforcing the weights of the model to be close to
zero and preventing over-fitting [14]. Weight decay was initially introduced to regularize
ill-posed linear regression problems, and the theoretical motivations for using this type
of regularization have been extensively studied (i.e., existence, uniqueness, and stability
of the solution) [221]. In the context of deep learning, weight decay has been applied
to neural networks and often leads to improved performance in practical settings [222].
However, the mathematical motivation for its use is less clear [223]. Similarly, one can
mention the L1 norm penalty, which enforces sparse weights (i.e., most weights equals to
zero). The properties of this regularization are clearly understood in the linear case, but
its effect on deep learning models remains uncertain [14]. Even though studies dedicated
to loss function-based regularization are infrequent, defining a suitable loss function for
training deep learning models can lead to improved performance. In particular, recent
works aim at designing regularization terms specific to deep learning-based
medical image segmentation.

In medical imaging, such regularization schemes can arise from different prior informa-
tion related to the anatomical structures of interest, such as boundaries [47], shape models
[48], atlas models [49], or topology. Exploiting prior knowledge is found to be effective in
achieving more precise and consistent results for traditional (i.e., machine learning) med-
ical imaging segmentation applications [50]. Specifically, regularization techniques can
alleviate the presence of image artifacts that are inherently embedded in an image during
its acquisition [50]. Following this, recent works aim at incorporating similar regularization
constraints into deep learning-based segmentation models. In this context, one particu-
lar loss function-based regularization methodology has shown promising results: shape
priors-based regularization [51]–[55]. Most importantly, shape regularization appears
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as a key strategy to enhance segmentation outcomes and model generalization
abilities when targeting scarce pediatric imaging datasets.

Incorporating shape information into medical imaging segmentation algorithms has
already proven to be useful in reducing the effect of noise, low contrast, and artifacts
[53]. Recent contributions have proposed to learn a representation of the anatomy di-
rectly from ground truth annotations using a deep auto-encoder [51]–[55]. Due to the
constrained nature of anatomical structures (global position and shape of bones, see Chap-
ter 2), data-driven models are suitable for learning shape prior information. It should
be emphasized that as opposed to the definition of shape given by Kendall,
which does not consider (i.e., quotients out) translations, rotations, and di-
lations [133], shape priors-based on deep auto-encoders and 2D segmentation
masks integrate position, orientation, and size characteristics in addition to
“pure Kendall” shape features. The learned non-linear shape representation can then
be integrated into the segmentation network during optimization, thanks to specifically
designed regularization schemes. For instance, Dalca et al. employ the decoder component
of the auto-encoder as a shape prior during training [51], while other works propose to
directly regularize the segmentation network by projecting the predicted segmentation
into the shape space using the encoder component of the auto-encoder [53], [55]. These
approaches rely on a regularization term based on a distance loss (e.g., Euclidean) which
enforces the predicted segmentation to be close to the ground truth in shape space [53],
[55]. Consequently, such regularization encourages globally consistent shape predictions.

Standard deep learning architectures (e.g., UNet [29] or VNet [30], see Section 3.3.4)
have already been applied for the segmentation of musculoskeletal structures in MR im-
ages, including knee bones, muscles, cartilages, and ligaments [31]–[36], shoulder bones
[37], wrist cartilage [38], and thigh muscle [39]. One can also mention works targeting the
segmentation of musculoskeletal structures in other imaging modalities such as metacarpal
bones in CT scans [224], knee cartilage in ultrasound images [225], temporal bone skull in
CT images [226], [227], whole-skeleton bones in upper-body CT scans [206], [228], metas-
tasis in thorax bone SPECT images [229], bone and bone lesion in PET/CT scans [230],
and bone tumors in X-ray radiographs [231]. However, all of these models were devel-
oped for the adult population. As discussed in Chapter 2, studies dedicated to pediatric
musculoskeletal image segmentation remain scarce in the literature, except for following
works targeting pediatric elbow in X-ray [178], pediatric abdominal skeletal muscles in
CT [179], and pediatric shoulder muscles in MR [40]. To the best of our knowledge, the
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literature on deep learning-based pediatric bone segmentation remains rare.
For bone segmentation, post-processing schemes based on conditional random field

[232], deformable models [32], or statistical shape models [31] have been developed to
constrain the predicted shapes. However, these methods fail to regularize and incorporate
shape information directly into the segmentation network as opposed to loss function-
based regularization techniques [53], [55]. Furthermore, as segmentation of the muscu-
loskeletal system typically involves multiple anatomical structures and tissues, two seg-
mentation strategies emerge in the literature: in the first one, a single network predicts
all segmentation classes [31], [32], [37], whereas, in the second one, specific networks are
trained for each object of interest [40]. In the context of pediatric bone segmen-
tation, it remains an open question whether bone structure specialization or
exploitation of features shared between bones provide better performance.

4.1.1 Contributions

In this chapter, we propose an automatic and multi-object pediatric bone segmentation
method for scarce MR images. To address this limitation, our framework leverages auto-
encoder based shape priors to guide the segmentation network to make anatomically
consistent predictions with restricted imaging resources. Furthermore, we illustrate that
the proposed approach can be easily integrated into various bone segmentation strategies,
and we demonstrate the effectiveness of employing a multi-structure learning scheme.
Finally, we assess the learned shape representations and model’s interpretability through
the t-SNE dimensionality reduction algorithm [87] and attention map visualization.

The research conducted in this part has been published in the Artificial Intelligence
in Medicine journal [233] and substantially extends a preliminary work presented at the
IEEE International Symposium on Biomedical Imaging (ISBI) [234].

The remainder of this chapter is structured as follows. Section 4.2 consists of an
overview of the baseline deep learning segmentation framework (Section 4.2.1) and the
integration of shape priors-based regularization (Section 4.2.2). The experiments are ex-
plained in Section 4.3 and encompass the assessment of multiple multi-structure learning
schemes (Section 4.3.2) and the description of the implementation details (Section 4.3.3).
Finally, the results are reported and discussed in Section 4.4. Most importantly, we validate
the proposed multi-bone pediatric segmentation method based on shape priors (Section
4.4.1) and assess the learned shape representations (Section 4.4.2).
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4.2 Integrating shape priors-based regularization into
deep segmentation networks

4.2.1 Baseline deep segmentation framework

As introduced in Section 3.2, let {xi, yi}1≤i≤n be a training set of n couples of images
and corresponding labels (segmentation maps). The grayscale image xi is in the intensity
space I while the corresponding image class labels yi represent different anatomical objects
of interest (plus background) in label space C. In CNN-based segmentation approaches,
the aim is to learn a mapping S : xi 7→ S(xi; Θ) between intensity xi and class labels yi

images. The function S is a segmentation network composed of a succession of layers whose
parameters Θ must be optimized during training. In the following, we note ŷi = S(xi; Θ)
as the estimate of yi having observed xi. During training, we optimized the loss function
L using stochastic gradient descent to estimate the optimal Θ∗ weights.

The segmentation network S is based on the Att-UNet architecture [42] which ex-
tends the standard UNet convolutional encoder-decoder [29] with additional attention
gates embedded into the skip connections (see Section 3.4.3). Spatial attention gates
leverage contextual information from the decoding branch to focus on salient features
while suppressing irrelevant areas. More importantly, the attention coefficients for each
skip connection aggregate information from multiple imaging scales to achieve better per-
formance [42]. For their parts, the encoder and decoder branches follow the design of
UNet [29], with a 512 dimensional feature map corresponding to the central part between
the contracting and expanding paths. Encoding layers are composed of a set of convo-
lutional filters with 3×3 kernel followed by batch normalization (BN), ReLU activation
function, and max-pooling with stride 2×2. Similarly, decoding layers are composed of a
set of up-convolutional filters with a kernel 2×2 followed by symmetric convolution filters,
BN, and ReLU. A final 1×1 convolutional layer with Softmax activation function achieved
pixel-wise segmentation.

We employed a loss function based on cross-entropy defined as follows:

LCE = 1
n

n∑
i=1
−yi log(ŷi) (4.1)

The segmentation model is trained through a loss function that operates on individual
pixel-level class predictions. As mentioned in Section 3.2, in practice, the full expression
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Figure 4.1 – ShapeRegMulti
Att-UNet optimization framework composed of multi-structure seg-

mentation network S based on Att-UNet [42] exploiting cross-entropy loss LCE and shape
priors-based LShape regularization computed by a shape encoder F with fixed weights.
The shape encoder corresponds to the encoder component of an auto-encoder previously
optimized on ground truth segmentation masks and λ1 is an empirical weighting hyper-
parameter.

of the loss is an average over classes and pixels. However, this pixel-wise loss function
fails to exploit contextual inter-structure relationships arising from segmentation masks.
Indeed, this loss integrates regional context through the receptive field of the network
but fails to include global context [53]–[55]. Hence, we propose to incorporate additional
regularization terms which assess the global similarity between predicted and ground truth
masks.

4.2.2 Incorporating shape priors-based regularization

In the context of medical image segmentation, one can assume that the ground truth
segmentation masks lie in a manifold of true shape, due to the constrained nature of
anatomical structures. However, the output prediction of a segmentation network may
not lie on the true shape manifold, and it is hence needed to perform a projection onto
the correct manifold [53], [55]. While many choices exist for linear and non-linear represen-
tations of segmentation shape priors, a convolutional auto-encoder allows us to efficiently
learn such low-dimensional shape representation from ground truth segmentation masks,
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and to easily compute the projection of segmentation masks using its encoder component
[55].

Specifically, an auto-encoder is a neural network composed of an encoder F : yi 7→
F (yi; ΘF ) and a decoder G : F (yi; ΘF ) 7→ G(F (yi; ΘF ); ΘG). ΘF and ΘG are respectively
the learnable parameters of F and G. The encoder F maps the input to a low-dimensional
feature space and the decoder G reconstructs the original input from the compact repre-
sentation. After optimizing the auto-encoder, its encoder component is able to produce
a feature map F (y; ΘF ) which compactly encodes the most salient characteristics of the
input mask and each value represents a global feature of a crop of the input binary mask.

The auto-encoder consists of several encoding and decoding layers. Encoding layers are
composed of a set of convolutional filters with 3×3 kernel followed by BN, ReLU activation
function, and max-pooling with stride 2×2. Similarly, decoding layers are composed of a
set of deconvolutional layers with kernel 2×2 followed by symmetric convolution filters,
BN, and ReLU. A final 1×1 convolutional layer followed by a Sigmoid activation function
produces the final reconstruction. Following this architecture design, we hypothesize that
the learned shape representation is invariant to small translation due to the presence of
max pooling layers which induce translation-invariance properties.

The auto-encoder training procedure minimizes a loss function LAE which penalizes
the reconstruction (G ◦ F )(yi) = G(F (yi; ΘF ); ΘG) for being dissimilar from the original
input yi. Usual training schemes are based on mean-squared error, Dice, or cross-entropy
loss to enforce the auto-encoder to learn the global shape features arising from ground
truth annotations [53], [55]. The cross-entropy loss function is employed to optimize both
encoder and decoder weights ΘF and ΘG, as follows:

LAE = LCE := 1
n

n∑
i=1
−yi log(G(F (yi; ΘF ); ΘG)) (4.2)

As a first step, the auto-encoder was trained on ground truth annotations using cross-
entropy to learn a shape space in the form of a non-linear low-dimensional manifold which
is simply represented by the latent space at the output of its encoder component. While
some approaches leverage contour information (e.g., Hausdorff distance) to enforce shape
constraints [213], our shape representation is based on complete segmentation masks. In
practice, an auto-encoder would have difficulty to learn a shape representa-
tion based on contours due to the high imbalance between contours and back-
ground pixels. Hence, we employed a mask-based shape regularization and
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the architecture of the convolutional auto-encoder incorporated traditional
convolutional and up-convolutional layers.

After training the auto-encoder, we integrated its encoder component into the baseline
segmentation network by computing a shape regularization term LShape. To this end,
both predictions and ground truth labels were projected onto the latent shape space
by the shape encoder with learned weights ΘF (Figure 4.1). The shape regularization
term computed the Euclidean distance between both latent shape representations [53], as
follows:

LShape = 1
n

n∑
i=1
∥F (ŷi; ΘF )− F (yi; ΘF )∥2

2 (4.3)

The shape regularization loss enforced the predicted segmentation to be in the same
low-dimensional manifold as the ground truth mask (i.e., true shape manifold) and thus
encouraged anatomically consistent class label prediction [53]. More precisely, minimizing
the Euclidean distance led to similar feature maps at the output of the shape encoder
(i.e., shape codes) for both segmentation masks. It should be emphasized that because
the weights of the shape encoder were fixed, the two feature maps were in
correspondence, with each value encoding the same global shape feature for
both ground truth and predicted segmentation masks. However, due to the
black-box nature of deep learning models, the interpretability of each shape
feature remained limited in practice. We combined both cross-entropy and shape
regularization losses during training, and the updated optimization problem was defined
as follows:

L = LCE + λ1LShape (4.4)

where λ1 was an empirically set weighting factor. The optimization framework of the
model ShapeRegMulti

Att-UNet is summarized in Figure 4.1.

4.3 Multi-structure segmentation experiments

4.3.1 Imaging datasets

Experiments were conducted on the ankle and shoulder datasets presented in Section
2.4.2, both composed of a mixture of pathological and healthy examinations. We extracted
17 ankles MR images from the ankle joint database including 7 pathological (AP,1, ..., AP,7)
and 10 healthy (AH,1, ..., AH,10) cases. For their part, the 15 MR images of shoulder joints

124



4.3. Multi-structure segmentation experiments

consisted of 7 pathological (SP,1, ..., SP,7) and 8 healthy (SH,1, ..., SH,8) examinations. The
knee dataset introduced in Chapter 2 was omitted during these experiments as access was
granted only to develop our multi-task, multi-domain framework, which will be presented
in Part III. For each dataset, all 2D slices were downsampled to 256 × 256 pixels and
intensities were normalized to have zero-mean and unit variance.

4.3.2 Experimental setups
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Figure 4.2 – Proposed bone segmentation strategies: (a) individual strategy comprising a
specific network for each bone of interest, (b) global strategy constituted of a unique bone
class, and (c) multi strategy based on segmentation maps containing multiple classes. The
shape encoder was omitted for brevity.

We employed the Att-UNet as backbone architecture to investigate three bone seg-
mentation strategies and to assess which approach would enforce better segmentation
outcomes. The segmentation strategies were based on individual-class, global-class, and
multi-class labels (Figure 4.2). In the individual-class scheme, we trained an Att-UNet
and an auto-encoder for each anatomical class of interest on the individual-class binary
masks. The individual-class networks were optimized on each class of interest, and the
learned weights were thus specific to a single bone. For the global-class approach, we con-
catenated the different bone classes into a unique bone-class (i.e., no distinction between
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bones), and the learned weights were specific to the global bone class. Finally, in the
multi-class strategy, the networks were trained on ground truth segmentation maps con-
taining multiple classes, and the learned weights were shared across all anatomical struc-
tures. We evaluated whether the multi-class strategy promoted more accurate
bone segmentation than individual and specific networks, while the global-
class approach corresponded to an intermediate strategy between multi-class
and individual-class schemes.

Due to the presence of individual-class (respectively global-class) binary masks in the
individual (global) scheme, we modified the last activation function of the individual
(global) Att-UNet and auto-encoder from a Softmax function to a Sigmoid activation
resulting in a binary one-channel prediction map. Consequently, we used a binary cross-
entropy loss instead of a multi-class cross-entropy loss function during optimization (see
Section 3.3.3). The input of the auto-encoder (i.e., segmentation mask) was also char-
acterized by one channel. Moreover, in the individual-class scheme, as the predictions
produced by the different networks were independent, a pixel could be predicted as be-
longing to several classes simultaneously. In this eventuality, we selected the class with
the highest probability (i.e., prediction with the highest confidence). Finally, to perform
a fair comparison between bone segmentation strategies, predicted individual and multi
segmentation masks were transformed into global segmentation masks (i.e., global bone
class and background).

Furthermore, to evaluate the contributions of the regularization term, we performed an
ablation study for each bone segmentation strategies and compared the baseline Att-UNet
and Att-UNet with shape priors-based regularization. The hyper-parameters λ1 was fixed
to 0 to train baseline Att-UNet to ensure a fair comparison. All training hyper-parameters
(except λ1) remained fixed across all methods and all networks were trained from scratch,
without relying on any transfer learning and fine-tuning scheme.

The proposed method based on a multi-class Att-UNet with shape priors regularization
is referred to as ShapeRegMulti

Att-UNet. Ultimately, we simultaneously compare baseline Att-
UNet and Att-UNet with regularization in individual, global, and multi bone segmentation
strategies.

4.3.3 Implementation details

Our training method consisted of two steps. The auto-encoder was first trained using
the cross-entropy loss. We explored different hyper-parameters: Adam optimizer with
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4.3. Multi-structure segmentation experiments

Network Batch
Size #Epochs Learning

Rate #Param.

Auto-encoder 32 10 1e−2 3.1M
Att-UNet 32 20 1e−3 7.9M

Table 4.1 – Summary of the networks employed during experiments: auto-encoder and Att-
UNet [42]; along with their corresponding number of trainable parameters and training
hyper-parameter values (batch size, number of epochs and learning rate).

initial learning rate 1e-2, batch size set 32 and 10 epochs were found to be optimal. As a
second step, we trained the segmentation network using the Adam optimizer with initial
learning rate set to 1e-3, batch size set to 32 and number of epochs set to 20 (Table 4.1).

We explored different regularization weighting parameters values and observed λ1 =
1e-1 to be the optimal value. All networks were trained on 2D slices with extensive on-the-
fly data augmentation due to limited available training data. Data augmentation com-
prised random scaling (±20%), rotation (±20◦), shifting (±20%), and flipping in both
directions to teach the networks the desired invariance, covariance and robustness prop-
erties. Deep learning architectures were implemented using Keras (on top of TensorFlow)
and optimized using a Nvidia RTX 2080 Ti GPU with 12 GB of RAM (see Section 3.5.1).

As a post-processing step, the obtained 2D segmentation masks were stacked together
to form a 3D volume. In the individual-class and multi-class schemes, for each anatomical
structure, we selected the largest connected set as final 3D predicted mask. In the global-
class scheme, we retained the C largest connected sets with C corresponding to the number
of bones of interest (3 for ankle and 2 for shoulder). Finally, we applied morphological
closing (5×5×5 spherical kernel) to smooth the resulting boundaries.

4.3.4 Assessment of predicted segmentation

To assess the performance of the different methods, the accuracy of the generated
3D segmentation masks were evaluated against manually annotated ground truths. We
computed the Dice coefficient, sensitivity, specificity, maximum symmetric surface dis-
tance (MSSD), average symmetric surface distance (ASSD) and relative absolute volume
difference (RAVD), as described in Section 3.5.2. We emphasize that although the meth-
ods were based on 2D architectures, the segmentation metrics were calculated on 3D
volumes. As already mentioned in Section 4.3.2, to perform a fair comparison between
bone segmentation strategies, all metrics were computed on global segmentation masks
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Method Dice ↑ Sens. ↑ Spec. ↑ MSSD ↓ ASSD ↓ RAVD ↓
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Indiv Base 84.0± 6.4 82.7± 9.5 99.3± 0.8 20.4± 12.2 2.0± 1.4 17.9± 16.0
ShapeReg 87.1± 3.9 85.8± 7.3 99.5± 0.4 18.4± 11.2 1.5± 0.6 11.5± 7.5

Glob Base 87.6± 7.8 92.6± 5.4 99.0± 1.2 19.9± 14.7 1.8± 1.6 17.9± 27.5
ShapeReg 87.8± 6.2 90.6± 7.7 99.1± 1.0 18.0± 12.3 1.7± 1.4 13.7± 14.3

Multi Base 88.4± 6.2 86.6± 10.1 99.6± 0.4 17.0± 12.4 1.3± 0.9 12.5± 10.8
ShapeReg 89.9± 6.2 89.1± 9.1 99.6± 0.3 11.1± 4.3 1.0± 0.6 10.1± 7.0
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ou
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tt
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et

Indiv Base 82.6± 8.9 82.7± 10.9 99.8± 0.2 59.9± 31.1 4.6± 3.9 12.3± 12.3
ShapeReg 84.5± 7.3 81.4± 11.2 99.9± 0.1 38.1± 27.9 2.3± 1.7 11.1± 11.6

Glob Base 82.6± 9.1 80.3± 8.7 99.8± 0.3 30.2± 17.1 2.0± 1.5 11.0± 7.5
ShapeReg 84.5± 9.1 83.5± 13.7 99.8± 0.2 21.6± 9.9 1.5± 1.3 14.9± 12.1

Multi Base 84.0± 12.3 82.8± 16.5 99.8± 0.2 24.7± 16.6 2.0± 3.3 14.8± 17.4
ShapeReg 86.9± 5.9 84.8± 9.1 99.9± 0.1 21.7± 10.5 1.2± 0.9 8.8± 9.2

Table 4.2 – Leave-one-out quantitative assessment of Att-UNet [42] on ankle and shoul-
der datasets. Regularization methods include: baseline and shape priors [53]; while bone
segmentation strategies comprise: individual, global and multi. Metrics encompass Dice
(%), sensitivity (%), specificity (%), MSSD (mm), ASSD (mm) and RAVD (%). First and
second best results for each dataset and for each metric are in bold and underlined italic
respectively.

(i.e., global bone class and background). In addition, we performed visual comparison of
the regularization methods (baseline and shape priors only) by employing a multi-class
Att-UNet.

To evaluate the generalization abilities of each method, experiments were performed
in a leave-one-out fashion such that one examination was retained for validation, one for
test and the remaining data were used to train the model. The procedure was repeated
over all the samples in the dataset to compute the mean and standard deviation for each
metric. The hyper-parameters values (e.g., λ1, batch size, learning rate) were selected
based on the performance of the model on the validation set. Moreover, an expert (15
years of experience) visually validated the global anatomical consistency and plausibility
of each predicted segmentation.

4.4 Results and discussion

4.4.1 Quantitative and qualitative assessment

The ShapeRegMulti
Att-UNet segmentation method based on a multi-class model with shape

priors-based regularization achieved the best results on all metrics, except for sensitivity
on ankle dataset and MSSD on shoulder dataset. For the ankle dataset, the method im-
proved Dice (+1.5%), MSSD (−5.9 mm), ASSD (−0.3 mm) and RAVD (−1.4%) metrics
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Figure 4.3 – Visual comparison of regularizations methods using Att-UNet with
multi-structure strategy. Automatic segmentation of ankle and shoulder bones based
on Att-UNet [42] with multi-structure strategy using baseline and shape priors [53] reg-
ularization. Ground truth delineations are in red ( ) while predicted bones comprising
calcaneus, talus, tibia, humerus and scapula appear in green ( ), blue ( ), yellow ( ), ma-
genta ( ) and cyan ( ) respectively.

while remaining 3.5% lower than the best in sensitivity metric (Table 4.2). For shoulder
examinations, the method outperformed other approaches in Dice (+2.4%), sensitivity
(+1.3%), MSSD (−0.5 mm), ASSD (−0.3 mm) and RAVD (−2.2%) while being 0.1 mm
higher than the best in MSSD metric. The specificity metric was excellent in all methods
(> 99.3%). Most importantly, results obtained using the Att-UNet architecture demon-
strated that shape priors-based regularization improved the performance for each bone
segmentation strategy including individual, global, and multi. Finally, we observed that
for a fixed regularization scheme, the multi-class strategy outperformed both the global
and individual-class strategies except for ankle MSSD and RAVD, as well as shoulder
sensitivity. Hence, the proposed multi-class approach leveraged the benefits of
simultaneously learning specific and shared bone features to enhance segmen-
tation performance.

The visual comparison of the baseline and shape priors regularization approaches
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Ankle Shoulder

Global Multi Global Multi

Figure 4.4 – Visualization of the latent shape spaces learned by the global-class
and multi-class auto-encoders on ankle and shoulder datasets. The visualization
was obtained using the t-SNE algorithm [87] in which each colored dot corresponds to a
2D binary mask of one of the anatomical objects of interest. The projection included 2D
masks originating from the training (train) and validation (val) sets for each joint.

using multi-class Att-UNet provided the qualitative evidence of gradual improvements
in segmentation performance (Figure 4.3). The BaseMulti

Att-UNet was notably prone to both
over-segmentation (AH,5 tibia) and under-segmentation (AP,4 calcaneus and SH,1 scapula)
errors. For instance, the intensity difference between ossified and non-ossified areas in the
scapula bone resulted in erroneous delineations from baseline Att-UNet (SH,1), while the
shape regularization (ShapeRegMulti

Att-UNet) enforced the model to follow the learned shape
representation resulting in complete scapula segmentation. As discussed in Chapter 2, it
is crucial in the clinical workflow to extract both ossified and non-ossified areas during the
automatic segmentation process. In general the shape regularization promoted smoother
bone delineations (AP,4), nevertheless some bone contours remained difficult to extract
(AH,5 calcaneus).

4.4.2 Latent shape space analysis

While the work of Biffi et al. [235] demonstrated that a deep auto-encoder could learn
to differentiate pathological from healthy cardiac shapes, our study focused on compar-
ing shape representations arising from two different bone segmentation strategies. The
pattern recognition behavior of the deep learning networks can be analyzed by visual-
izing the compact space learned during training. We analyzed the latent representation
learned by the global-class and multi-class auto-encoders using the t-SNE dimensionality
reduction algorithm [87]. The t-SNE algorithm is a non-linear method for visualizing high-
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dimensional data, and it involves an optimization step to construct a 2D visualization.
In the resulting visualization, each high-dimensional vector is modeled as a 2D point,
with similar vectors represented by nearby points and distant points corresponding to
dissimilar vectors. In practice, the L2 Euclidean norm is employed to assess the similarity
between feature vectors in high dimensions [87].

We used the auto-encoders trained on ground truth annotations and employed their
encoder components to create latent codes of the bones of both training and validation
subjects. We then applied global max pooling and obtained 512 dimensional codes from 2D
bone masks. Finally, in order to visualize the 512 dimensional feature vectors, we applied
a two-step dimensionality reduction as recommended in [87]. We first employed principal
component analysis, which reduced the representations to 50 dimensional feature vectors,
then the t-SNE algorithm embedded the data into a 2D space (Figure 4.4). It should
be emphasized that the obtained visualizations depend on the selected t-SNE algorithm
hyper-parameters [87]. During experiments, the perplexity (i.e., number of nearest neigh-
bor points used for computation during optimization) and learning rate (i.e., gradient
descent learning rate) of the t-SNE algorithm were set to 30 and 200, respectively.

For both ankle and shoulder examinations, the latent representation learned by
the global-class auto-encoder did not differentiate shape structures, contrary
to the shape representation obtained by the multi-class auto-encoder, which
presented different clusters for each bone (Figure 4.4). Thus, ankle bones were aggregated
into a unique cluster in the global-class representation, as opposed to the multi-class one
which presented distinctive calcaneus, talus, and tibia clusters. The obtained visualiza-
tions reinforced our assumption that the global-class auto-encoder imposed the extraction
of shared bone features. In contrast, the multi-class auto-encoder learned to extract dis-
criminative bone features while complying with inter-bone relationships.

4.4.3 Limited interpretability

Although incorporating regularization through the loss function successfully constrains
the network’s parameters and promotes the desired characteristics for robust bone extrac-
tion, it fails to provide a better understanding of the inference process. Additionally, as
the computation of the proposed regularization losses is based on a deep learning model
(an auto-encoder), the interpretability of the regularization remains also limited. Hence,
it would be beneficial to develop more interpretable models (segmentation network and
shape encoder) in order to better analyze the internal behavior of the pipeline. More
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Figure 4.5 – Visualization of the attention maps computed by the multi-class
Att-UNet employed on ankle and shoulder joint images. Pixel-wise coefficients
ranging from 0 in blue to 1 in red indicated low to high attention.

precisely, such interpretable an segmentation model is crucial in medical image analysis
applications, as it would allow a better analysis of the network failures (see Section 1.3.4).

Attention maps computed by the attention gates successfully provide a coarse lo-
calization of the anatomical structures of interest (Figure 4.5). This confirmed that the
segmentation models leveraged the contextual information from the encoder branch to
focus on the targeted ankle and shoulder bones. Indeed, attention maps clearly sup-
pressed irrelevant regions while highlighting calcaneus, talus, and tibia ankle
bones as well as humerus and scapula shoulder bones. Furthermore, one can note
that the tibial bone was not uniformly highlighted which may result in less efficient shape
extraction. However, these visualizations fail to explain the representation learned by
the segmentation models. In this direction, the visualization of the learned feature maps
represents the first step toward understanding the internal behavior of the "black box"
type CNN models. An example is the work of Kamnitsas et al. [236], which shows that
CNN learns concepts similar to the ones used by clinical experts. However, the learned
convolutional layer can be activated by a mixture of patterns. Hence Zhang et al. [237]
have devised an interpretable CNN in which each filter explicitly memorizes a specific ob-
ject part without ambiguity and provides a clear semantic representation which could be
of great interest for computed-aided musculoskeletal system analysis. Finally, one could
mention the work of Biffi et al. [235] on explainable anatomical shape analysis which
employed a variational auto-encoder with a two-dimensional latent space, enabling the
direct visualization of the classification space and the discrimination of distinct clinical
conditions. Thus, it may be thus beneficial to replace our convolutional auto-encoder with
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such a model to reinforce the interpretability of the shape priors regularization.

4.5 Conclusion
In this chapter, we proposed and validated an automatic multi-bone segmentation

framework that achieved promising performance on scarce and heterogeneous pediatric
imaging datasets. The generalization capabilities of the segmentation model were en-
hanced by exploiting shape priors-based regularization, which enforced globally consistent
shape predictions. Furthermore, the proposed method exploited specific as well as shared
bone features arising from multi-class annotations in order to improve segmentation per-
formance.

Nevertheless, even though the shape regularization enforces global anatomical consis-
tency in model predictions, it fails to assess the global accuracy of generated masks given
intensity images. Indeed, this regularization only exploits mask-based information and
does not allow to evaluate the accuracy of the segmentation with respect to the input
intensity image. However, pediatric pathological imaging examinations also exhibit irreg-
ular and complex pathological structures which are difficult to delineate due to alterations
in shape and appearance [8], [9] (see Chapter 2). We will see how to mitigate this issue
in Chapter 5. We propose to incorporate into the pipeline a conditional discriminator to
reinforce the global realistic aspect of predicted delineations and employ transfer learning
to reinforce the model generalizability.
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Chapter 5

LEVERAGING ADVERSARIAL NETWORKS

AND TRANSFER LEARNING FOR

IMPROVED GENERALIZABILITY

5.1 Introduction
In this chapter, we continue to explore and design regularization approaches to limit

over-fitting in the context of the management of sparse pediatric imaging datasets. In par-
ticular, we focus on two regularization techniques: through a penalty on the loss function
(as seen in Chapter 4) and by means of novel neural network architecture designs. We
first begin with modifications to the architecture of segmentation networks allowing for
better generalization performance. Indeed, recent UNet extensions have been proposed
based on more complex architectures incorporating dense, Inception, residual, or, more
recently, Transformers-based [238]–[240] modules to provide more efficient optimization
and enhanced performance. Additionally, networks integrating encoders (e.g., VGG19 [46],
ResNet34 [241]) pre-trained on ImageNet [242] leverage low-level features typically shared
between different image types to obtain more robust feature extraction. More specifically,
transfer learning and fine-tuning from large non-medical datasets has become a widespread
method in medical image analysis and has revealed improved performance compared to
models with randomly initialized weights [40], [44], [46], [241]. However, the results of
transfer learning depend on the task and dataset characteristics, with larger impact in
very small data regimes [44]. Hence, employing pre-trained models appears essen-
tial to address the data scarcity issue encountered in pediatric imaging.

As discussed and illustrated in Chapter 4, regularization penalties incorporated in the
optimization scheme allow us to guide the deep models and to promote more consistent de-
lineation predictions in the context of medical image segmentation. In particular, the pro-
posed shape regularization approach enforced the model to follow the learned non-linear
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shape representation and thus limited under- and over-segmentation issues (see Figure
4.3). Nevertheless, images of the pediatric and pathological population may also contain
irregular and complex pathological structures which are difficult to delineate due to al-
terations in both shape and appearance [8], [9]. In this context, shape priors-based
regularization may be insufficient and to tackle this limitation, we propose
to employ an adversarial regularization based on a conditional discrimina-
tor to reinforce the accuracy of predicted delineations. Specifically, inspired by
image-to-image translation approaches [243], medical imaging researchers have employed
adversarial networks to refine segmentation outputs. In these frameworks, a segmentation
network and a discriminator are concurrently trained in a two-player game fashion in
which the former learns to produce valid segmentation while the latter learns to discrim-
inate between synthetic and real data [46], [56]–[58]. The adversarial term computed by
the discriminator is added during the segmentation network optimization, which in turn,
encourages UNet to fool the discriminator, and produces more plausible segmentation
masks given input intensity images.

5.1.1 Contributions

In this chapter, we propose a multi-structure bone segmentation frame-
work based on a partially pre-trained deep learning architecture combining
shape priors with adversarial regularization (Figure 5.1). Unlike previous methods
[46], [52]–[58], our framework simultaneously leverages both regularizations to guide the
segmentation network to make anatomically consistent predictions and produce precise
delineations. Specifically, our framework exploits a combination of shape priors and an
adversarial regularizer to reduce the data scarcity issue while improving model general-
izability. Furthermore, we demonstrate the usefulness of employing pre-trained models
along with combining different regularization schemes for deep learning-based medical
image segmentation. Finally, we provide an in-depth evaluation of the proposed method’s
performance by extending the experiments performed in Chapter 4.

As previously mentioned, the research conducted in this part has been published in the
Artificial Intelligence in Medicine journal [233] and substantially extends a preliminary
work presented at the IEEE International Symposium on Biomedical Imaging (ISBI) [234].
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5.2 Incorporating adversarial priors into multi-stru-
cture segmentation framework

In this section, we explain the proposed segmentation network built upon Res-UNet
and additional regularization terms incorporated into the loss function. We first briefly
recall the partially pre-trained Res-UNet architecture (Section 5.2.1). Then, we combine
regularization from shape priors and a conditional adversarial network (Section 5.2.2).

Res-UNet
S

Shape
encoder

F

Shape
encoder

F

Discriminator
D

LShapeLCE

LAdv

MRI Prediction

Ground truth

Forward
propagation

Backward
propagation

L

λ1

λ2

Figure 5.1 – Proposed regularized segmentation network S based on Res-UNet [59] ex-
ploiting cross-entropy loss LCE, shape priors-based LShape and adversarial LAdv regulariza-
tions respectively computed by a shape encoder F with fixed weights and a discriminator
D trained in competition with Res-UNet. The shape encoder corresponds to the encoder
component of an auto-encoder previously optimized on ground truth segmentation masks,
while the discriminator learns the plausibility of segmentation masks conditioned by their
corresponding intensity image. λ1 and λ2 are two empirical weighting hyper-parameters.
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Figure 5.2 – Proposed multi-structure deep architectures with C structures of interest:
auto-encoder comprising encoder F and decoder G (top), segmentation network S based
on Res-UNet [59] (bottom left), and discriminator D (bottom right). The auto-encoder
allows learning a non-linear shape representation from ground truth segmentations, while
the discriminator outputs a one-channel likelihood map consisting of values ranging from
0 (fake) to 1 (real). During S training, the shape encoder F and discriminator D respec-
tively compute the shape priors-based and adversarial regularizations to constrain the
segmentation network (Figure 5.1). Finally, S integrates ResNet50 as a pre-trained en-
coder and to fit the image dimensions, we extended input MR images from single grayscale
channel to 3 channels.

5.2.1 Residual segmentation network with pre-trained encoder

We briefly recall the segmentation framework developed in Chapter 4, which incor-
porates a segmentation network S parameterized by Θ and a shape encoder F with ΘF

weights. The optimization procedure of S minimizes a loss based on cross-entropy and
integrates a shape priors regularization computed by F with fixed weights, as follows:

L = LCE + λ1LShape (5.1)

Although we previously employed Att-UNet [42] as a backbone architecture (see Sec-
tion 4.2.1) for the segmentation network S, it should be emphasized that our training
strategy is architecture-independent. Hence, following works on transfer learning and fine-
tuning from large datasets such as ImageNet, we modified the network design and replaced
its encoder component with a classification network with weights previously trained on an
image classification task. We assumed that leveraging a pre-trained encoder would lead to
better generalization capabilities compared to models with randomly initialized weights
[40]. Performance improvements have been particularly reported in low data regimes [44]
similar to our scarce pediatric dataset setting.

138



5.2. Incorporating adversarial priors into multi-structure segmentation framework

The neural network S is now based on the UNet architecture [29], and we replaced its
encoder branch with the ResNet50 network, which incorporates residual blocks to allow
faster convergence, increase network depth and improve predictive performance. First, to
fit the ResNet50 image dimensions, we concatenated 3 copies of each MR slice to extend
the input from a single grayscale channel to 3 channels. The encoder branch built on
residual convolutional and identity blocks [59] generated a 1024 dimensional feature map,
which corresponds to the central part (i.e., bottleneck) between both contracting and
expanding paths (Figure 5.2). We then constructed a symmetrical decoder branch with
additional convolutional layers, features channels and residual blocks (Figure 5.2). Finally,
it should be noted that contrary to encoder weights that are pre-trained on ImageNet,
the decoder weights were randomly initialized.

With respect to the training procedure, while the shape regularization allows to im-
prove the global shape consistency of the predicted segmentation, it is unable to assess the
global accuracy of generated masks given intensity images. Hence, to address this prob-
lem, we propose to leverage an adversarial regularization reinforcing the realistic global
aspect of predicted delineations.

5.2.2 Combining shape priors with adversarial regularization

For semantic segmentation, a conditional discriminator D : yi, xi 7→ D(yi, xi; ΘD) can
assess whether a binary mask is fake or not, given the corresponding grayscale image,
which is provided as a condition. The discriminator D is a neural network that returns
a one-channel likelihood map D(yi, xi; ΘD). Each value of the likelihood map (Figure
5.2) represents the degree of likelihood of correct segmentation of a crop of the input
image, ranging from 0 (fake) to 1 (plausible or real). The likelihood is learned from the
ground truth and generated data, and the discriminator architecture consisted of 4 × 4
convolutional layers to obtain a large receptive field.

Specifically, the architecture of D consists of five encoding layers with convolutional
filters with a kernel of 4×4, stride 2×2 at the first three layers and stride 1×1 at 4th and
5th layers (see Figure 5.2). Batch normalization (BN) is applied after 2nd, 3rd convolutional
filter and 4th and ReLU is applied after each layer except the last. The Sigmoid activation
function is used after the last convolutional filter. The network input is the concatena-
tion of the 2D MR slice and the associated binary mask to be evaluated (ground truth
or predicted). The output segmentation is an array of 32×32 values, each one from 0
(completely fake) to 1 (perfectly plausible or true).
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Although traditional GAN approaches aim at generating new images with the same
characteristics (i.e., statistics) as the training set, in a segmentation context, the dis-
criminator instead enables to constrain the segmentation network through an adversarial
regularization. Specifically, instead of generating new images, the segmentation model
predicts synthetic (i.e., fake) masks from intensity images, which should be indistinguish-
able from ground truth (i.e., real) segmentation. Following typical adversarial learning
schemes, the discriminator and the segmentation networks are trained alternatively and
competitively, with the role of S being similar to that of the generator. More precisely, the
optimization of weights Θ (respectively ΘD) is done using the loss function L (respectively
LD) while parameters ΘD (respectively Θ) are fixed. These losses are defined in such a
way that the discriminator learns to differentiate real from synthetic segmen-
tation masks while the segmentation network learns to generate increasingly
plausible masks.

The binary cross entropy loss LBCE is typically used to train the discriminator, with
real and fake labels for the likelihood maps of ground truth and generated masks respec-
tively. LBCE maximizes the loss value associated with the likelihood map of ground truth
masks and minimizes the loss corresponding to the likelihood map of predicted masks,
given the intensity image. Therefore, the discriminator learns to discriminate ground truth
(i.e., real) from generated (i.e., fake) segmentations during the optimization of ΘD [46],
[56]–[58]. More precisely, the discriminator is optimized to yield a likelihood map with
values equal to 1 (respectively 0) for ground truth (respectively predicted) masks.

LD := LBCE = 1
n

n∑
i=1
− log(1−D(ŷi, xi; ΘD))− log(D(yi, xi; ΘD)) (5.2)

The discriminator was integrated into our segmentation framework by computing an
adversarial term LAdv derived from the probability that the network considered the gen-
erated mask to be the ground truth segmentation for a given grayscale image (Figure 5.1)
[46], [56]–[58]. The loss computed from the discriminator likelihood map given ŷi, xi and
with fixed weights ΘD was defined as follows:

LAdv = 1
n

n∑
i=1
− log(D(ŷi, xi; ΘD)) (5.3)

We modified the segmentation training strategy to combine shape priors-based and
conditional adversarial regularizations. The optimization of the adversarial term encour-
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aged the segmentation network to fool the discriminator (i.e., discriminator predicting a
likelihood map equals to one for a synthetic mask), resulting in a more plausible segmen-
tation mask with respect to the conditional intensity image. At first, the segmentation
network will provide a rough prediction of the mask shape, and as the training process
progresses, the discriminator will foster an increasingly accurate mask outline, resulting
in more precise delineations of the targeted structures [46], [56]–[58]. The proposed loss
function was a linear combination of cross-entropy, shape priors, and adversarial regular-
izations. The novel optimization procedure was defined as follows:

L = LCE + λ1LShape + λ2LAdv (5.4)

where λ1 and λ2 were empirically determined.

5.3 Experiments
Experiments were performed on ankle and shoulder pediatric MR datasets (see Section

2.4.2) following the same setting as described in Chapter 4. Furthermore, we extend the
ablation study conducted using Att-UNet backbone architecture to include the adversarial
regularization. Specifically, for each bone segmentation strategies (i.e., individual, global,
and multi), we compared the baseline Att-UNet [42], Att-UNet with shape priors-based
regularization [53], Att-UNet with adversarial regularization [57] and Att-UNet with pro-
posed combined regularization scheme. Both hyper-parameters λ1 and λ2 were fixed to
0 to train baseline Att-UNet. We set λ1 (respectively λ2) to 0 to train Att-UNet with
adversarial (respectively shape priors-based) regularization.

5.3.1 Pre-trained architectures performance

In addition to the previous experiments performed on the Att-UNet architecture, we
also evaluated several other backbone architectures with and without the proposed com-
bined regularization. In particular, we assessed the performance of our method based on
a pre-trained Res-UNet with a multi-class strategy and proposed combined regularization
(CombRegMulti

Res-UNet) against other backbone architectures pre-trained on a large natural
image database. Specifically, we employed two backbone architectures (VGG-UNet [60]
and Dense-UNet [61]) and compared pre-trained models with and without combined reg-
ularization. Moreover, as the work of Raghu et al. provided an in-depth study of the
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benefits of employing transferred weights compared to randomly initialized ones for med-
ical image analysis, especially in low data regimes [44], we omitted such evaluation in our
experiments.

The VGG-UNet (respectively Dense-UNet) architecture referred to a UNet model
whose encoder was replaced by a VGG19 [60] (respectively DenseNet121 [61]) classifier
network pre-trained on ImageNet. Similarly to Res-UNet, the decoder components of
VGG-UNet and Dense-UNet were extended by adding convolutional filters and more fea-
tures (as well as dense blocks [61] for Dense-UNet) to get symmetrical networks. Finally,
we employed only the multi-class strategy with combined regularization in these trans-
fer learning experiments, as this scheme reached the best performance in the previous
comparisons (see Section 5.4.2).

5.3.2 Implementation details

Network Pre-trained
Encoder

Batch
Size #Epochs Learning

Rate #Param.

Auto-encoder – 32 10 1e−2 3.1M
Discriminator – 32 10/20 1e−3 0.7M

Att-UNet – 32 20 1e−3 7.9M
VGG-UNet VGG19 32 10 1e−4 34.7M
Dense-UNet DenseNet121 16 10 1e−4 18.5M
Res-UNet ResNet50 16 10 1e−4 13.6M

Table 5.1 – Summary of the networks employed during experiments: auto-encoder, dis-
criminator, Att-UNet [42], VGG-UNet [60], Dense-UNet [61], and Res-UNet [59]; along
with their corresponding number of trainable parameters and training hyper-parameter
values (batch size, number of epochs and learning rate).

As discussed in Chapter 4, our training method consisted of two steps. The auto-
encoder was first trained using the cross-entropy loss with batch size set 32 and 10 epochs.
As a second step, the segmentation network and the discriminator were trained alterna-
tively, one optimization step for both networks at each batch. We used Adam optimizer
with initial learning rate set to 1e-3 for Att-UNet and to 1e-4 for VGG-UNet, Dense-UNet
and Res-UNet. The batch size and number of epochs were set to 32 and 20 for Att-UNet, 32
and 10 for VGG-UNet, 16 and 10 for Dense-UNet and Res-UNet (Table 5.1). Additionally,
each architecture was characterized by distinct model complexity (i.e., number of train-
able parameters): auto-encoder (3.1 million), discriminator (0.7 million), Att-UNet (7.9
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Metric Best Worst Threshold
Dice (%) 100 0 > 80

Sensitivity (%) 100 0 > 80
MSSD (mm) 0 δ < 30
ASSD (mm) 0 δ < 4
RAVD (%) 0 100 < 10

Table 5.2 – Metrics wise threshold values employed in the ranking system. Metrics in-
cluded Dice, sensitivity, MSSD, ASSD and RAVD. δ is the longest possible distance in
3D examinations.

million), VGG-UNet (34.7 million), Dense-UNet (18.5 million), and Res-UNet (13.6 mil-
lion). Finally, since the individual scheme involved individual-class networks, this scheme
thus involved C times more networks and parameters than the global- and multi-class
strategies (with C = 3 in ankle and C = 2 in shoulder datasets).

We explored different regularization weighting parameters values and observed λ1 =
1e-1 and λ2 = 1e-2 to be the best combination across all backbone models. As mentioned
in Chapter 4, all architectures were trained on 2D slices with extensive on-the-fly data
augmentation due to limited available training data, and we employed the same post-
processing based on largest connected set selection and morphological closing.

5.3.3 Ranking system

As mentioned in Section 3.5.2, although it is essential to employ complementary
metrics to assess the performance of each segmentation model, simultaneously
comparing the performance of each segmentation strategy across multiple met-
rics can be challenging. Hence we propose to employ a metric-based ranking
system. More specifically, we converted the metrics outputs to normalized scores and used
the average scores from all the datasets as a ranking system [91]. The proposed ranking
system was created based on Dice, sensitivity, MSSD, ASSD, and RAVD (3D metrics
defined in Chapter 3). Specificity was disregarded since excellent results were obtained
for all methods (> 99.3% in Tables 5.3 and 5.4). Furthermore, a threshold was defined
for each metric based on expert knowledge to remove non-satisfactory results. Then, we
mapped the metric value between the corresponding best value and the threshold (Table
5.2) to the normalized interval [0, 100]. Metric values outside this acceptable range were
assigned zero scores. The score of the predicted 3D segmentation corresponded to the av-
erage over all metric scores, and methods were ranked according to their obtained scalar
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score. Separate rankings were performed for each dataset (i.e., shoulder and ankle).
Ranking results via multiple metrics is an arduous task as the selection of thresholds

may have an impact on the final ranking [219]. Hence, to assess the robustness of the
ranking system, we analyzed the effect of the modification of the threshold values (each
resulting in a different ranking system). We tested different threshold values for each
metric: Dice (75− 85%), sensitivity (75− 85%), MSSD (20− 40 mm), ASSD (3− 5 mm)
and RAVD (5−15%). Thresholds were modified independently. Metric values between the
corresponding best value and the modified threshold were mapped to the interval [0, 100].

5.3.4 Quantitative and qualitative assessment of predicted seg-
mentation

Assessment of the predicted segmentation relied on the 3D metrics introduced in
Chapter 3 (i.e., Dice, sensitivity, specificity, MSSD, ASSD, and RAVD) and experiments
followed the same leave-one-out evaluation design described in Chapter 4.

Furthermore, due to the scarce amount of 3D examinations, we performed the statisti-
cal analysis between methods on 2D MR images. We employed the Wilcoxon signed-rank
non-parametric test [244] using Dice, sensitivity and specificity scores obtained from the
1446 ankle (respectively 3357 shoulder) 2D slices containing at least one bone of interest
and which corresponded to the 17 ankle (respectively 15 shoulder) 3D MR images. The
statistical tests were conducted using only the 2D slices containing at least one bone of
interest. We preliminary verified the non-normality of the 2D results distributions using
the D’Agostino and Pearson normality test [245], [246]. We then performed the statistical
analysis between methods and compared the obtained p-values to the typical 0.05 thresh-
old. Due to the skew of the non-normal distributions of 2D scores, we reported as in [228]
their mean and the distances from the mean to the upper and lower bound of the 68%
confidence interval, which corresponds to the 16 and 84 percentiles. However, we did not
perform an preliminary non-parametric analysis of variance such the Kruskal-Wallis test
by rank [247]. This represents a limitation of our work.

Finally, we performed visual comparison of predicted segmentation masks at three lev-
els. First, we compared the results of the bone segmentation strategies (individual, global,
and multi) using Att-UNet with combined regularization. Second, we extend the visual-
ization of the regularization methods conducted with multi-class Att-UNet in Chapter 4
by including the adversarial and proposed combined methods. Third, we compared the
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pre-trained backbone architectures, including VGG-UNet, Dense-UNet, and Res-UNet,
employed with multi-class segmentation strategy and combined regularization.

5.4 Results
The proposed CombRegMulti

Res-UNet method based on pre-trained multi-class Res-UNet
with combined regularization was evaluated on two pediatric datasets. In this section we
report quantitative results (Section 5.4.1), ranking scores (Section 5.4.2), and qualitative
comparisons (Section 5.4.4) for each dataset.

5.4.1 Quantitative assessment

Method Dice ↑ Sens. ↑ Spec. ↑ MSSD ↓ ASSD ↓ RAVD ↓

A
nk

le
D
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et

A
tt
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N

et

Indiv

Base 84.0± 6.4 82.7± 9.5 99.3± 0.8 20.4± 12.2 2.0± 1.4 17.9± 16.0
ShapeReg 87.1± 3.9 85.8± 7.3 99.5± 0.4 18.4± 11.2 1.5± 0.6 11.5± 7.5
AdvReg 86.4± 3.8 83.8± 8.4 99.5± 0.4 16.5± 9.4 1.5± 0.7 15.1± 8.8

CombReg 88.0± 5.4 86.9± 8.0 99.5± 0.3 18.0± 13.3 1.4± 0.7 9.1± 5.8

Glob

Base 87.6± 7.8 92.6± 5.4 99.0± 1.2 19.9± 14.7 1.8± 1.6 17.9± 27.5
ShapeReg 87.8± 6.2 90.6± 7.7 99.1± 1.0 18.0± 12.3 1.7± 1.4 13.7± 14.3
AdvReg 87.8± 5.0 93.0± 3.8 99.1± 0.7 18.2± 11.3 1.7± 1.2 14.4± 11.4

CombReg 89.8± 2.4 90.9± 4.9 99.4± 0.3 18.3± 12.4 1.3± 0.7 7.3± 4.8

Multi

Base 88.4± 6.2 86.6± 10.1 99.6± 0.4 17.0± 12.4 1.3± 0.9 12.5± 10.8
ShapeReg 89.9± 6.2 89.1± 9.1 99.6± 0.3 11.1± 4.3 1.0± 0.6 10.1± 7.0
AdvReg 89.9± 3.5 88.9± 6.8 99.6± 0.3 13.6± 7.5 1.1± 0.5 9.5± 5.3

CombReg 90.7± 3.2 88.8± 6.3 99.7± 0.2 11.1± 3.4 0.9± 0.3 7.1± 5.7

Sh
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Indiv

Base 82.6± 8.9 82.7± 10.9 99.8± 0.2 59.9± 31.1 4.6± 3.9 12.3± 12.3
ShapeReg 84.5± 7.3 81.4± 11.2 99.9± 0.1 38.1± 27.9 2.3± 1.7 11.1± 11.6
AdvReg 84.3± 6.4 82.0± 10.0 99.8± 0.1 28.6± 16.0 1.7± 1.0 10.8± 8.0

CombReg 85.7± 5.6 83.4± 9.7 99.8± 0.1 30.5± 19.7 1.8± 1.3 9.4± 10.0

Glob

Base 82.6± 9.1 80.3± 8.7 99.8± 0.3 30.2± 17.1 2.0± 1.5 11.0± 7.5
ShapeReg 84.5± 9.1 83.5± 13.7 99.8± 0.2 21.6± 9.9 1.5± 1.3 14.9± 12.1
AdvReg 84.3± 9.3 84.5± 13.0 99.8± 0.3 26.7± 11.3 1.7± 1.3 13.6± 15.0

CombReg 86.1± 5.2 85.5± 7.1 99.8± 0.2 25.8± 8.9 1.4± 0.7 8.2± 11.1

Multi

Base 84.0± 12.3 82.8± 16.5 99.8± 0.2 24.7± 16.6 2.0± 3.3 14.8± 17.4
ShapeReg 86.9± 5.9 84.8± 9.1 99.9± 0.1 21.7± 10.5 1.2± 0.9 8.8± 9.2
AdvReg 85.7± 7.1 86.4± 8.2 99.8± 0.3 23.7± 18.5 1.6± 1.5 10.4± 11.5

CombReg 87.8± 5.2 87.1± 5.9 99.9± 0.1 21.2± 13.3 1.2± 1.1 4.8± 4.7

Table 5.3 – Leave-one-out quantitative assessment of Att-UNet [42] on ankle and shoulder
datasets. Regularization methods include: baseline, shape priors [53], adversarial [57] and
proposed combined; while bone segmentation strategies comprise: individual, global and
multi. Metrics encompass Dice (%), sensitivity (%), specificity (%), MSSD (mm), ASSD
(mm) and RAVD (%). First and second best results for each dataset and for each metric
are in bold and underlined respectively.
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Method Dice ↑ Sens. ↑ Spec. ↑ MSSD ↓ ASSD ↓ RAVD ↓

A
nk

le

V
G

G Multi Base 92.9± 1.4 93.6± 3.7 99.7± 0.2 9.1± 4.2 0.7± 0.1 7.3± 3.1
CombReg 93.1± 1.6 93.6± 3.6 99.7± 0.2 8.1± 2.6 0.7± 0.1 5.9± 4.0

D
en

se Multi Base 93.6± 2.0 91.7± 4.7 99.8± 0.1 7.9± 3.9 0.7± 0.2 6.8± 4.9
CombReg 93.9± 1.8 92.2± 4.5 99.8± 0.1 6.8± 3.4 0.6± 0.2 6.1± 4.4

R
es Multi Base 93.8± 1.8 92.4± 4.3 99.8± 0.1 7.3± 3.2 0.6± 0.2 5.3± 4.4

CombReg 94.3± 1.1 93.6± 3.1 99.8± 0.1 6.1± 2.8 0.6± 0.1 4.7± 2.9

Sh
ou

ld
er V

G
G Multi Base 88.7± 4.5 91.5± 5.0 99.8± 0.2 24.6± 26.9 1.3± 1.6 8.9± 11.6

CombReg 89.2± 3.7 92.1± 3.5 99.8± 0.1 21.7± 22.1 1.0± 0.8 6.8± 6.1

D
en

se Multi Base 90.5± 3.2 91.1± 3.0 99.9± 0.1 29.8± 26.4 1.1± 0.9 4.5± 4.0
CombReg 90.7± 3.0 90.2± 3.6 99.9± 0.1 21.8± 21.0 0.8± 0.6 4.4± 2.2

R
es Multi Base 90.1± 3.5 90.4± 3.1 99.9± 0.1 23.7± 22.6 1.0± 1.2 3.5± 3.7

CombReg 90.7± 3.0 90.7± 3.6 99.9± 0.1 19.3± 14.2 0.8± 0.5 3.5± 3.4

Table 5.4 – Leave-one-out quantitative assessment of the three pre-trained architectures:
VGG-UNet [60], Dense-UNet [61] and Res-UNet [59] on ankle and shoulder datasets. Base-
line and combined regularization methods are employed along with the multi-structure
strategy. Metrics encompass Dice (%), sensitivity (%), specificity (%), MSSD (mm), ASSD
(mm) and RAVD (%). First and second best results for each dataset and for each metric
are in bold and underlined respectively.

The results obtained using the Att-UNet architecture, which complete the experiments
performed in Chapter 4, demonstrated that the segmentation method based on a multi-
class model with proposed combined regularization achieved the best results on all metrics,
except for sensitivity on ankle dataset (Table 5.3). For the ankle dataset, the method
improved Dice (+0.8%), specificity (+0.1%), MSSD (−2.5 mm), ASSD (−0.1 mm) and
RAVD (−0.2%) metrics while remaining 4.2% lower than the best in sensitivity metric.
For shoulder examinations, the method outperformed other approaches in Dice (+0.9%),
sensitivity (+0.7%), specificity (+0.1%), MSSD (−0.5 mm), ASSD (−0.2 mm) and RAVD
(−3.4%).

Furthermore, the proposed CombRegMulti
Res-UNet method outperformed state-of-the-art

pre-trained methods on all metrics, except for sensitivity on shoulder dataset (Table
5.4). All methods reached excellent specificity scores (> 99.7%). For ankle examinations,
the proposed CombRegMulti

Res-UNet method ranked best in Dice (94.3%), sensitivity (93.6%),
MSSD (6.1 mm), ASSD (0.6 mm) and RAVD (5.1%) metrics. For the shoulder dataset,
the proposed CombRegMulti

Res-UNet method achieved the best results in Dice (90.7%), MSSD
(19.3 mm), ASSD (0.8 mm) and RAVD (3.5%) metrics while remaining marginally lower
in sensitivity (0.4% lower than the best). It is also worth mentioning that, while the per-
formance improvements are lower than in Att-UNet experiments (Table 5.3), the proposed
combined regularization consistently improved performance across all architectures and
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metrics except for VGG-UNet and Dense-UNet shoulder sensitivity, and the proposed
CombRegMulti

Res-UNet method was associated with the lowest variance in all metrics except for
ankle MSSD and shoulder sensitivity and RAVD.

5.4.2 Rankings

Method Ankle Dataset Shoulder Dataset
Mean ± STD Rank Mean ± STD Rank

A
tt

-U
N

et

Indiv

Base 33.3± 16.2 18 25.2± 18.8 18
ShapeReg 40.4± 10.9 16 33.0± 23.9 15
AdvReg 37.7± 13.2 17 31.9± 16.3 16

CombReg 44.2± 16.3 15 36.8± 21.3 14

Global

Base 46.2± 18.3 14 28.7± 20.4 17
ShapeReg 47.4± 20.7 13 37.2± 22.6 12
AdvReg 47.6± 17.2 12 37.2± 18.3 13

CombReg 50.9± 12.7 9 40.9± 18.6 11

Multi

Base 47.9± 21.9 11 41.6± 23.3 10
ShapeReg 54.4± 18.5 8 42.4± 20.3 9
AdvReg 49.3± 15.7 10 42.5± 23.4 8

CombReg 56.7± 16.2 7 48.7± 21.3 7

V
G

G Multi Base 63.0± 7.8 6 53.7± 18.4 6
CombReg 66.5± 9.2 4 54.6± 16.0 5

D
en

se Multi Base 65.2± 13.8 5 55.2± 12.0 4
CombReg 67.7± 13.3 3 56.4± 10.6 3

R
es Multi Base 68.5± 14.2 2 56.7± 12.9 2

CombReg 71.4± 10.0 1 59.2± 13.9 1

Table 5.5 – Scores of the four backbone architectures: Att-UNet [42], VGG-UNet [60],
Dense-UNet [61], and Res-UNet [59] on ankle and shoulder datasets. Regularization meth-
ods include: baseline, shape priors [53], adversarial [57] and proposed combined; while bone
segmentation strategies comprise: individual, global and multi. Results encompass mean,
standard deviation (STD) and associated rank. Methods were ranked according to their
mean score. Best results are in bold.

CombRegMulti
Res-UNet ranked first in performance (Table 5.5) for both datasets with mean

scores of 71.4 on ankle dataset and 59.2 on shoulder dataset. Baseline Res-UNet ranked
second on both datasets, while individual-class baseline Att-UNet ranked last on ankle
(mean score of 33.3) and shoulder (mean score of 25.2) datasets. It was observed in
the experiments based on Att-UNet architecture that for a fixed regularization scheme,
the multi-class strategy outperformed the global-class strategy, which in turn outranked
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Method Rankings
Dice75 Dice85 Sens75 Sens85 MSSD20 MSSD40 ASSD3 ASSD5 RAVD5 RAVD15

A
nk

le
D

at
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et A
tt

-U
N

et

Indiv

Base 18 18 18 18 18 18 18 18 18 18
ShapeReg 16 16 16 16 16 16 16 16 16 16
AdvReg 17 17 17 17 17 17 17 17 17 17

CombReg 15 15 15 15 15 15 15 15 15 15

Global

Base 14 14 14 14 14 14 14 14 14 14
ShapeReg 13 12 13 13 12 13 12 13 12 12
AdvReg 12 13 12 12 13 11 13 12 11 13

CombReg 9 9 9 9 9 9 9 9 9 9

Multi

Base 11 11 11 11 11 12 11 11 13 11
ShapeReg 8 8 8 8 8 8 8 8 8 8
AdvReg 10 10 10 10 10 10 10 10 10 10

CombReg 7 7 7 7 7 7 7 7 7 7

V
G

G Multi Base 6 6 6 6 6 6 6 6 6 6
CombReg 4 4 4 4 4 4 4 4 4 4

D
en

se Multi Base 5 5 5 5 5 5 5 5 5 5
CombReg 3 3 3 3 3 3 3 3 3 3

R
es Multi Base 2 2 2 2 2 2 2 2 2 2

CombReg 1 1 1 1 1 1 1 1 1 1
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Indiv

Base 18 18 18 18 18 18 18 18 18 18
ShapeReg 15 15 15 15 15 16 15 15 16 15
AdvReg 16 16 16 16 16 15 16 16 15 16

CombReg 13 14 13 13 12 14 14 12 14 14

Global

Base 17 17 17 17 17 17 17 17 17 17
ShapeReg 12 12 14 12 14 13 13 14 12 13
AdvReg 14 13 12 14 13 12 12 13 13 12

CombReg 10 11 11 11 11 11 11 11 10 11

Multi

Base 11 10 10 10 10 10 10 10 11 10
ShapeReg 8 9 8 9 9 9 9 9 8 8
AdvReg 9 8 9 8 8 8 8 8 9 9

CombReg 7 7 7 7 7 7 7 7 7 7

V
G

G Multi Base 6 6 6 6 6 6 6 6 6 6
CombReg 5 5 5 5 5 5 5 5 5 5

D
en

se Multi Base 4 4 4 4 4 4 4 4 4 4
CombReg 3 3 3 3 3 3 3 3 3 2

R
es Multi Base 2 2 2 2 2 2 2 2 2 3

CombReg 1 1 1 1 1 1 1 1 1 1

Table 5.6 – Transformed rankings of the four backbone architectures: Att-UNet [42],
VGG-UNet [60], Dense-UNet [61], and Res-UNet [59] on ankle and shoulder datasets.
Regularization methods include: baseline, shape priors-based regularization [53], adver-
sarial regularization [57] and the proposed combined regularization; and bone segmen-
tation strategies comprise: individual, global and multi. Rankings were computed using
different threshold values: Dice = 75 or 85%, Sensitivity = 75 or 85%, MSSD = 20 or 40
mm, ASSD = 3 or 5 mm and RAVD = 5 or 15%. Modified ranks are in bold.

the individual-class scheme. Furthermore, for a fixed bone segmentation strategy, shape
priors-based and adversarial regularizations improved the baseline performance, while a
combined regularization resulted in the best overall performance. Additionally, the ranks
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achieved by the pre-trained architectures (VGG-UNet, Dense-UNet, and Res-UNet) fur-
ther demonstrated that the proposed combined regularization promoted better perfor-
mance as compared to baseline training. Hence, the combined regularization con-
sistently outperformed the compared methods covering various segmentation
strategies (individual, global, and multi) and distinct architectures (Att-UNet,
VGG-UNet, Dense-UNet, and Res-UNet), demonstrating the effectiveness of
the proposed approach. Finally, to assess the robustness of our ranking system and
these observations, several threshold values were tested as reported in Table 5.6 with
modified ranks in bold and our conclusions remained unchanged on every transformed
ranking. For instance, Dice threshold modification to 85% (Dice85) led to a permutation
of ShapeRegGlobal

Att-UNet and AdvRegGlobal
Att-UNet ranks (12th and 13th) on ankle dataset. More im-

portantly, CombRegMulti
Res-UNet ranked first on both datasets, whatever the selected threshold

values, which further confirms the efficiency of the proposed contributions.

5.4.3 Statistical analysis

The statistical analysis performed on 2D slices using Dice, sensitivity and specificity
metrics (Table 5.7) indicated that the proposed CombRegMulti

Res-UNet model produced signifi-
cant improvements (p-values < 0.05), except compared with: BaseGlobal

Att-UNet and AdvRegGlobal
Att-UNet

on ankle datasets using sensitivity 2D metrics; as well as CombRegMulti
Dense-UNet, BaseMulti

Res-UNet

and ShapeRegMulti
Att-UNet on shoulder datasets using 2D Dice, 2D sensitivity and 2D speci-

ficity metrics respectively. In these particular cases, the difference between results obtained
by our model and compared methods was not statistically significant. However, in each
case CombRegMulti

Res-UNet produced statistically significant improvements on the remaining
2D metrics. Hence, we considered the overall improvements achieved by our model to be
statistically significant.

It should be noted that in this thesis, we did not take into account the problem of
multiple comparisons when reporting the p-values. This a limitation of our work, we could
have employed a multiple testing correction such the Holm-Bonferroni method [248] to
adjust the rejection criteria for each of the individual hypotheses. However, as most p-
values were lower than 1×10−6, we assumed that such corrections would not have impacted
our final conclusions.

Furthermore, the results reported from 2D slices were consistent with the performance
achieved on 3D examinations. For ankle datasets, our proposed model CombRegMulti

Res-UNet

ranked best in 2D Dice (86.2%) and 2D sensitivity (86.2%) metrics while remaining 0.1%
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Method Dice 2D p-value Sens. 2D p-value Spec. 2D p-value

A
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Indiv

Base 70.9+22.1
−28.0 <1×10−6 72.3+22.1

−26.3 <1×10−6 98.4+1.5
−1.6 <1×10−6

ShapeReg 74.3+19.6
−18.2 <1×10−6 75.1+21.2

−20.3 <1×10−6 98.7+1.2
−1.5 <1×10−6

AdvReg 74.6+18.6
−20.6 <1×10−6 74.4+20.6

−21.5 <1×10−6 99.0+1.0
−1.1 <1×10−6

CombReg 76.6+17.9
−19.4 <1×10−6 77.1+18.8

−22.3 <1×10−6 99.0+0.9
−0.7 <1×10−6

Global

Base 77.9+16.7
−16.0 <1×10−6 85.3+13.6

−8.2 8.7×10−2 97.7+2.0
−1.8 <1×10−6

ShapeReg 77.3+17.1
−16.0 <1×10−6 82.1+16.2

−16.1 <1×10−6 98.1+1.7
−1.7 <1×10−6

AdvReg 77.9+15.9
−16.1 <1×10−6 85.8+12.4

−8.0 6.4×10−1 97.9+1.7
−1.5 <1×10−6

CombReg 79.9+14.0
−10.3 <1×10−6 82.3+15.4

−7.9 <1×10−6 98.7+1.1
−1.2 <1×10−6

Multi

Base 76.2+19.3
−23.0 <1×10−6 76.7+19.9

−22.8 <1×10−6 99.1+0.8
−0.7 <1×10−6

ShapeReg 80.5+15.4
−11.2 <1×10−6 81.4+16.3

−17.2 <1×10−6 99.2+0.8
−0.7 <1×10−6

AdvReg 79.0+16.3
−13.6 <1×10−6 79.5+18.3

−16.6 <1×10−6 99.0+0.9
−1.1 <1×10−6

CombReg 78.1+17.4
−15.9 <1×10−6 77.0+19.7

−19.7 <1×10−6 99.3+0.7
−0.6 <1×10−6

V
G

G Multi Base 81.7+14.9
−10.7 <1×10−6 83.7+14.9

−11.8 1.9×10−3 99.2+0.7
−0.7 <1×10−6

CombReg 82.9+13.6
−9.7 <1×10−6 84.2+14.4

−12.3 2.0×10−4 99.2+0.7
−0.6 <1×10−6

D
en

se Multi Base 84.8+12.1
−7.8 <1×10−6 83.7+13.8

−10.1 <1×10−6 99.6+0.4
−0.3 <1×10−6

CombReg 84.9+12.0
−5.4 1.2×10−4 84.2+13.4

−7.2 <1×10−6 99.6+0.4
−0.4 <1×10−6

R
es Multi Base 83.9+13.1

−6.8 <1×10−6 83.5+14.1
−8.2 <1×10−6 99.5+0.4

−0.3 <1×10−6

CombReg 86.2+10.8
−6.0 86.2+11.5

−6.5 99.5+0.4
−0.3

Sh
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A
tt
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Indiv

Base 82.6+13.0
−12.2 <1×10−6 83.6+12.8

−9.3 <1×10−6 99.8+0.2
−0.2 3.3×10−2

ShapeReg 82.6+13.4
−8.9 <1×10−6 81.4+15.2

−15.2 <1×10−6 99.9+0.1
−0.1 <1×10−6

AdvReg 83.8+11.8
−7.7 <1×10−6 83.1+13.9

−11.23 <1×10−6 99.8+0.2
−0.1 <1×10−6

CombReg 83.6+11.9
−7.9 <1×10−6 83.2+13.4

−10.7 <1×10−6 99.8+0.2
−0.1 1.4×10−5

Global

Base 82.8+13.1
−13.0 <1×10−6 82.7+14.3

−14.7 <1×10−6 99.8+0.2
−0.1 3.5×10−2

ShapeReg 84.7+11.3
−6.2 <1×10−6 85.1+12.6

−8.1 <1×10−6 99.8+0.2
−0.2 <1×10−6

AdvReg 84.6+11.3
−9.3 <1×10−6 85.7+11.8

−8.1 <1×10−6 99.8+0.2
−0.1 <1×10−6

CombReg 86.4+9.4
−8.0 <1×10−6 87.2+10.1

−7.3 <1×10−6 99.8+0.2
−0.1 <1×10−6

Multi

Base 84.8+11.5
−6.4 <1×10−6 84.7+13.0

−9.2 <1×10−6 99.8+0.2
−0.1 <1×10−6

ShapeReg 86.5+9.7
−7.1 <1×10−6 85.9+11.7

−8.7 <1×10−6 99.9+0.1
−0.1 5.5×10−1

AdvReg 85.9+10.2
−8.6 <1×10−6 87.6+10.2

−8.0 <1×10−6 99.8+0.2
−0.2 <1×10−6

CombReg 87.1+9.2
−6.3 <1×10−6 87.1+10.4

−7.7 <1×10−6 99.8+0.2
−0.1 <1×10−6

V
G

G Multi Base 89.1+7.0
−3.6 <1×10−6 91.4+6.5

−4.0 <1×10−6 99.8+0.2
−0.2 <1×10−6

CombReg 89.6+6.2
−4.1 <1×10−6 92.3+6.1

−4.2 <1×10−6 99.8+0.2
−0.2 <1×10−6

D
en

se Multi Base 90.4+5.5
−4.0 <1×10−6 91.1+6.0

−3.8 9.0×10−4 99.9+0.1
−0.1 1.4×10−4

CombReg 90.4+5.3
−3.7 1.6×10−1 90.2+6.9

−4.5 1.2×10−5 99.9+0.1
−0.1 <1×10−6

R
es Multi Base 89.9+5.8

−4.0 7.3×10−5 90.5+6.8
−4.2 8.5×10−1 99.9+0.1

−0.1 2.3×10−2

CombReg 90.5+5.4
−3.3 90.8+6.6

−5.1 99.9+0.1
−0.1

Table 5.7 – Statistical analysis between the proposed model and the four backbone archi-
tectures: Att-UNet [42], VGG-UNet [60], Dense-UNet [61] and Res-UNet [59] on ankle and
shoulder datasets. Regularization methods include: baseline, shape priors-based regular-
ization [53], adversarial regularization [57] and the proposed combined regularization; and
bone segmentation strategies comprise: individual, global and multi. Statistical analysis
performed through Wilcoxon signed-rank non-parametric test using Dice (%), sensitivity
(%) and specificity (%) computed on 2D slices. Bold p-values (< 0.05) highlight statisti-
cally significant results for each dataset and for each metric.
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CombRegIndiv
Att-UNet CombRegGlobal

Att-UNet CombRegMulti
Att-UNet

AH,1 AH,1 AH,1

AP,3 AP,3 AP,3

SH,3 SH,3 SH,3

SP,6 SP,6 SP,6

Figure 5.3 – Visual comparison of bone segmentation strategies using Att-UNet
[42] with combined regularization. Automatic segmentation of ankle and shoulder
bones based on Att-UNet with combined regularization using individual-class, global-
class and multi-class strategies. Ground truth delineations are in red ( ) while predicted
bones comprising calcaneus, talus, tibia, humerus and scapula appear in green ( ), blue
( ), yellow ( ), magenta ( ) and cyan ( ) respectively. Predicted global bone class is in
orange ( ).

lower than the best method in specificity 2D metric. For shoulder datasets, CombRegMulti
Res-UNet

outperformed other approaches in 2D Dice (90.5%) and 2D specificity (99.9%) metrics,
and ranked 1.5% lower than the best model in 2D sensitivity metric.

5.4.4 Qualitative assessment

We first visually compared the combined regularization method using individual-class,
global-class, and multi-class Att-UNet models to assess the anatomical validity of the
segmentation predictions (Figure 5.3). The individual-class Att-UNet models produced
masks based on weights specific to each bone, the global-class Att-UNet models exploited
shared features between bones, and multi-class Att-UNet models utilized both specific and
shared bone features. It was observed that the global-class mask predictions included fused
bone errors in both ankle and shoulder datasets (AH,1, AP,3, SH,3 and SP,6 examinations).
Thus, exploiting specific bone annotations was necessary to prevent fused-bone errors in
predicted delineations. Moreover, shared feature learning in the global-class strategy en-
forced more accurate delineations (AH,1 and SH,3). Hence, multi-class Att-UNet leveraged
the benefits of learning specific and shared bone features simultaneously, and avoided
fused-bones in estimated segmentation masks while producing precise delineations.

151



Chapter 5 – Leveraging adversarial networks and transfer learning for improved generalizability

Ba
se

M
ul

ti
A

tt
-U

N
et

Sh
ap

eR
eg

M
ul

ti
A

tt
-U

N
et

A
dv

R
eg

M
ul

ti
A

tt
-U

N
et

C
om

bR
eg

M
ul

ti
A

tt
-U

N
et

AP,4

AP,4

AP,4

AP,4

AH,5

AH,5

AH,5

AH,5

SH,1

SH,1
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Figure 5.4 – Visual comparison of regularizations methods using Att-UNet with
multi-structure strategy. Automatic segmentation of ankle and shoulder bones based
on Att-UNet [42] with multi-structure strategy using baseline, shape priors [53], adver-
sarial [57], and combined regularizations. Ground truth delineations are in red ( ) while
predicted bones comprising calcaneus, talus, tibia, humerus and scapula appear in green
( ), blue ( ), yellow ( ), magenta ( ) and cyan ( ) respectively.

Visual comparison of the four regularization approaches (baseline, shape priors, adver-
sarial, and the proposed combined regularizations) completed the evaluation performed in
Figure 4.3. It provided visual evidence of step-wise improvements in segmentation qual-
ity from baseline to combined regularization (Figure 5.4). It was clearly observed that
each additional regularization improved the segmentation predictions over baseline Att-
UNet. Furthermore, baseline Att-UNet did not segment the complete non-ossified area
of the scapula, contrary to the compared regularized methods, which incorporated prior
knowledge (SH,1). More specifically, the shape regularization enforced the model to follow
the learned shape representation and promoted smoother bone delineations (AP,4), while
the adversarial regularization encouraged the model to generate more realistic masks and
incited more precise bone delineations (AH,5). Meanwhile, the proposed combined regu-
larization fostered the advantages of both former regularizations and provided smoother
and more realistic bone extraction (AP,4, AH,5 and SH,1).

Visual comparisons of the pre-trained models (VGG-UNet, Dense-UNet, and Res-
UNet) demonstrated that networks benefiting from transfer learning produced highly
accurate delineations and captured complex bone shapes (Figure 5.5). The qualitative
results further confirmed the advantages of employing networks pre-trained on large non-
medical databases along with a combination of shape priors and adversarial regularization
to train more generalizable models on scarce pediatric datasets (AP,2 and SH,4). Most im-
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CombRegMulti
VGG-UNet CombRegMulti

Dense-UNet CombRegMulti
Res-UNet

AP,1 AP,1 AP,1

AP,2 AP,2 AP,2

SH,2 SH,2 SH,2

SH,4 SH,4 SH,4

Figure 5.5 – Visual comparison of pre-trained architectures using multi-class
strategy with combined regularization. Automatic segmentation of ankle and shoul-
der bones based on VGG-UNet [60], Dense-UNet [61], and Res-UNet [59] using combined
regularization with multi-class strategy. Ground truth delineations are in red ( ) while
predicted bones comprising calcaneus, talus, tibia, humerus and scapula appear in green
( ), blue ( ), yellow ( ), magenta ( ) and cyan ( ) respectively. Predicted global bone class
is in orange ( ).

portantly, the proposed pre-trained CombRegMulti
Res-UNet model together with regularization

approaches effectively segmented non-ossified areas in addition to ossified bones
by dealing efficiently with the corresponding intensity variations within a sin-
gle bone structure (AP,1 and SH,2). This outcome can be seen as a crucial need for the
image analysis of pediatric musculoskeletal systems (see Chapter 2).

5.5 Discussion

5.5.1 Segmentation performance

This study explored various bone segmentation strategies, regularization methods and
backbone architectures and provided an insight into how combination of regularizations
can improve the bone segmentation quality in a pediatric, sparse, and heterogeneous
MR datasets. We analyzed the performance of each multi-structure strategy with fixed
combined regularization (Figure 5.6), the impact of each regularization scheme with the
multi-class scheme (Figure 5.7) and the performance of pre-trained models with fixed
combined regularization (Figure 5.8) for each MRI dataset.
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Figure 5.6 – Spider graphs showing scores obtained within ankle and shoulder datasets
based on Att-UNet [42] with combined regularization using individual, global and multi
strategies. Scores were computed for pathological AP,1, ..., AP,7 and healthy AH,1, ..., AH,10
ankles, as well as for pathological SP,1, ..., SP,7 and healthy SH,1, ..., SH,8 shoulders.

From the results obtained on Att-UNet models, we first observed that the multi-class
strategy outperformed or at least achieved similar performance compared to individual-
class and global-class approaches, on almost all ankle and shoulder examinations (Figure
5.6). However, for two subjects (AP,1 and SH,8), the multi-class strategy achieved the
lowest scores, wherein the extremity of one bone was poorly segmented compared to the
other approaches. While, class-wise segmentation provided by the multi and individual
strategies yielded bone-specific meshes essential in morphological analysis (see Chapter
2), global bone tissue masks could also be transformed into class-wise predictions using
positional or shape information. However, such post-processing proved difficult to imple-
ment in practice due to the fused-bone errors observed in the global scheme (Figure 5.3).
Secondly, our proposed combined regularization outscored or obtained similar scores as
the other regularization schemes on almost all ankle and shoulder examinations (Figure
5.7). However, for AH,4 and SP,4 subjects, CombRegMulti

Att-UNet ranked last and produced poor
delineations in which the bone extremities were not well segmented either. From these
observations, it appeared that bone extremities remained challenging to be managed by
Att-UNet models. A possible explanation relies on the fact that compared to 3D or multi-
view fusion models for segmentation [30], [249], our 2D slice-by-slice approaches do not
benefit from 3D spatial information. Although our 2D models do not include 3D con-
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Figure 5.7 – Spider graphs showing scores obtained within ankle and shoulder datasets
based on multi-class strategy using Att-UNet with baseline [42], shape priors [53], adver-
sarial [57] and proposed combined regularizations. Scores were computed for pathological
AP,1, ..., AP,7 and healthy AH,1, ..., AH,10 ankles, as well as for pathological SP,1, ..., SP,7
and healthy SH,1, ..., SH,8 shoulders.

textual information, it is less computationally expensive and requires less GPU memory
consumption than 3D approaches.

We reported two outlier examinations SP,6 and SH,2 for which the Att-UNet models
produced poor segmentation results (Figures 5.6 and 5.7). The condition of the patients
did not influence the poor segmentation performance, as the two samples were of different
types: one pathological (SP,6) and one healthy (SH,2). However, both 3D MR images
presented a higher level of noise as well as a smaller bone-muscle intensity dif-
ference than in the rest of our shoulder dataset (Figure 5.9). The relatively poor
quality of these examinations was due to patient movements during acquisi-
tion. Hence, the Att-UNet models did not generalize well on these samples. However,
we observed that pre-trained models produced more adequate delineations (mean score
of 37.5) on these outlier examinations (Figure 5.8). More generally, pre-trained models
induced better overall performance than Att-UNet models on all 3D MR images, with
CombRegMulti

Res-UNet producing the best results (e.g., AH,4 and SP,4). From these observa-
tions, we can assume that pre-training on a large set of non-medical images attenuates
the effect of noise on segmentation predictions and imposes more robust and generaliz-
able representations. Specifically, approaches based on transfer learning (i.e., VGG-UNet,
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Figure 5.8 – Spider graphs showing scores obtained within ankle and shoulder datasets
based on VGG-UNet [60], Dense-UNet [61] and Res-Net [59] employed with multi-class
strategy and combined regularization. Scores were computed for pathological AP,1, ..., AP,7
and healthy AH,1, ..., AH,10 ankles, as well as for pathological SP,1, ..., SP,7 and healthy
SH,1, ..., SH,8 shoulders.

Dense-UNet, and Res-UNet) exploit the knowledge (i.e., network’s weights) previously
gained while solving an image classification problem to provide better initialization for
optimization and extract more robust image features that are then used by the decoder
to generate segmentation masks. In this study, more complex and deeper architectures
with wider convolutional layers (i.e., VGG-UNet), dense modules (i.e., Dense-UNet) and
residual blocks (i.e., Res-UNet) allowed for more efficient optimization and enhanced per-
formance compared to the standard Att-UNet architecture.

The scores obtained also demonstrated that the performance of the dif-
ferent approaches was not influenced by the pathological or healthy status of
patients (Figures 5.6, 5.7 and 5.8). For instance, the proposed CombRegMulti

Res-UNet achieved
mean scores of 74.0 and 69.6 on pathological and healthy ankle examinations respectively.
As deep models were optimized using a mixture of healthy and impaired joint images,
networks were therefore not biased toward any specific population. Moreover, the major
differences between pathological and healthy patients was in the shape and relative posi-
tioning of the bones rather than in grayscale intensity values. Indeed, both ankle equinus
and shoulder OBPP conditions result in osseous deformity and joint malformation [160],
[164], while images in each joint dataset were acquired using the same acquisition proto-
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SP,6 - High noise SH,3 - Low noise

SP,6 - High noise SH,3 - Low noise
SP,6 - High noise SH,3 - Low noiseFigure 5.9 – Comparison between image samples from SP,6 and SH,3 examinations. SP,6

presented a higher level of noise as well as a smaller bone-muscle intensity due to patient
movements during acquisition.

col (see Chapter 2). For example, the shoulder examination SP,6 (Figure 5.3) exhibited a
deformity of the scapular glenoid shape which resulted in an abnormal positioning of the
scapula with respect to the humerus bone. It should be emphasized that the difference
in bone intensity due to non-ossified areas were present in both healthy and pathological
populations (Figure 5.4, AP,4 and SH,1), while the motion noise observed in two outlier
examinations (SP,6 and SH,2) were not related to the joint status but were rather due
to patient movement during acquisition. Hence, a unique fully automatic segmentation
model could be developed for bone segmentation in pediatric MR images, regardless of
the presence of bone deformity due to musculoskeletal disorders. Furthermore, because
of its generic nature, our method could be applied to other anatomical joints
such as the knee or the hip, as well as on adult imaging datasets. Such generic
framework could provide new perspectives for the management of musculoskeletal disor-
ders, by helping to evaluate treatment response and disease progression as well as being
integrated into bio-mechanical models for surgery planning.

5.5.2 Perspectives

Avoiding over-fitting is one of the key problems in machine learning, especially when
considering pediatric datasets whose small sample size may induce limited generalizabil-
ity in deep learning models. Models with too much capacity (i.e., number of trainable
parameters) are one typical cause of over-fitting as they may learn the dataset and task
too well. In practice, it is therefore essential to design models with optimal capacity which
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depends on the task considered and available imaging resources. In this sense, we observed
that the employed Res-UNet model (13.6 million parameters) achieved better performance
through the leave-one-out evaluation (Table 5.4) compared to VGG-UNet (34.7 million
parameters). The multi-class segmentation strategy also allowed us to reduce the number
of trainable parameters while transfer learning aimed at reducing over-fitting by using
weights learned on a large scale non-medical database. Most importantly, we proposed
a combined regularization methodology based on shape priors and an adversarial net-
work to enhance the generalization capabilities of the model during optimization. It was
observed during experiments (Tables 5.3 and 5.4) that all these novel deep
learning techniques (as defined in Chapter 1) led to progressive improvement
in segmentation performance on unseen images. Nevertheless, the obtained results
still reflect the difficulties of developing generalizable tools without large scale datasets.

Following the performance improvements obtained by the models with a pre-trained
encoder on the ImageNet dataset, this approach could be pursued by leveraging large-scale
medical imaging datasets extracted from adult cohorts. Indeed, pediatric musculoskeletal
imaging datasets can be assumed to share more features with adult musculoskeletal images
than natural images. Therefore, transfer learning from large-scale adult musculoskeletal
datasets could provide better initialization and generalization capabilities. In the context
of pediatric bone segmentation, the MR image dataset from the MICCAI SKI10 knee
segmentation challenge [250] could have been used, but this dataset has not been pub-
licly available since 2018 1. One could also consider other publicly available large-scale
MR image datasets, such as those associated with the KNOAP2020 knee osteoarthritis
(OA) prediction challenge 2 or the National Institutes of Health (NIH) knee osteoarthritis
initiative (OAI) 3. Nevertheless, these challenges target the prediction of osteoarthritis
severity (i.e., a classification task), and no ground truth segmentation mask is provided.
Hence, with the available imaging data and OA grade labels, one can pre-train an encoder
but not a full segmentation convolutional encoder-decoder. Furthermore, as mentioned in
Section 1.4.2, models trained on adult imaging data would be inapplicable to analyzing
pediatric images, each corresponding to a separate image domain. A fine-tuning phase is
thus necessary to “adapt” the network weights to the image domain and task considered.

As already discussed in Chapter 4, the interpretability of the learned representation
and the analysis of the regularization schemes remain limited, even more so when con-

1. https://ski10.grand-challenge.org/
2. https://knoap2020.grand-challenge.org/
3. https://nda.nih.gov/oai/
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sidering an adversarial learning scheme which introduce a competitive optimization pro-
cedure between the segmentation network and discriminator. Such training procedure is
also prone to numerical instability as simultaneous gradient descent on two neural net-
works loss functions is not guaranteed to reach an equilibrium [14], [251]. Finally, as
already mentioned in Chapter 2, the proposed framework is currently limited to bone
tissues segmentation. Future work may therefor aim at improving our model to detect
other anatomical structures such as shoulder muscles or ankle cartilages. The severity of
the pathologies will then be computed on the basis of a more complete musculoskeletal
modeling.

5.6 Conclusion
In this chapter, we proposed and evaluated a partially pre-trained convolutional encoder-

decoder with combined regularization from shape priors and an adversarial network,
which achieved promising performance for the task of multi-structure bone segmenta-
tion on scarce heterogeneous pediatric imaging datasets of the musculoskeletal system.
The generalization abilities of the segmentation model was enhanced by exploiting shape
priors-based regularization which enforced globally consistent anatomical predictions and
an adversarial regularization which encouraged precise delineations. We also employed a
transfer learning scheme to provide more robust weight initialization and enhanced per-
formance. In addition, the proposed method exploited specific as well as shared bone fea-
tures arising from multi-class annotations in order to improve segmentation performance.
Finally, we present an original score-based ranking system to simultaneously evaluate
multiple architectures, bone segmentation strategies, and regularization schemes.

The obtained results bring new perspectives for the management of musculoskele-
tal disorders in pediatric population. Nevertheless, the development of generalizable deep
learning models remains challenging. In this direction, Part III of this thesis focuses on for-
malizing and implementing a multi-task, multi-domain framework based on shared repre-
sentations. Indeed, while this part illustrated the benefits of multi-structure seg-
mentation to leverage shared features between bones from the same anatom-
ical joint, one may easily assume that bones located in distinct anatomical
regions also present common characteristics.
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Chapter 6

MULTI-JOINT SHAPE PRIORS FOR

MULTI-ANATOMY SEGMENTATION

6.1 Introduction
As introduced in Part I, the implementation and optimization of supervised neural

networks typically requires a large amount of annotated data. However, the conception
of imaging datasets is a slow and onerous process [252] that is even more challenging for
pediatric databases [3]. Hence, the inherent scarcity of pediatric imaging resources can
induce limited generalization capabilities in neural networks and reduce their performance
on unseen images, which in turn may restrict their integration into regular clinical ap-
plications. In Part II, we illustrated the effectiveness of two regularization terms, namely
shape priors based and adversarial regularizations, to avoid over-fitting issues and im-
prove the performance of multi-structure segmentation models by imposing constraints
during training. In particular, shape priors-based regularization has proven to be simple
and effective in achieving more accurate and consistent outcomes for medical image seg-
mentation [51]–[53], [55], while adversarial training led to more precise delineations [46],
[56]–[58] but revealed to be prone to optimization instability [14].

In deep learning, the concept of regularization, which encompasses all methods aimed
at reducing over-fitting, is not limited to techniques based on penalty terms added to the
loss function (see Chapter 4). Recently, multi-task [62]–[65] and multi-domain [66]–[71]
learning approaches have attracted significant interest from the medical image research
community. Intuitively, multi-task and multi-domain models benefit from pa-
rameter sharing to learn more robust and generic representations than their
individual counterparts [72]–[74]. These approaches are of particular interest when
targeting the segmentation of multiple sparse pediatric datasets of distinct musculoskele-
tal regions. Indeed, as mentioned in Chapter 2, one can easily assume that MR pediatric
datasets arising from distinct anatomical joints (i.e., ankle, knee, shoulder) present shared
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features, in terms of shape, pose, and intensity.
For their part, penalty terms can also leverage different prior information to alleviate

over-fitting. Thus, we can distinguish between regularization terms imposing constraints
on the segmentation generated by the deep model (e.g., shape, boundaries, or topological
priors [50]), and those that directly penalize the weights of the network (e.g., L1 norm
to enforce weight sparsity [14]). Since the common goal of these approaches is to reduce
over-fitting, it could be beneficial to combine them, as well as to design regularization
terms specific to multi-task, multi-domain learning to further improve performance and
to build more generalizable models. For instance, to the best of our knowledge, studies on
shape priors have never proposed to simultaneously encode multiple anatomical regions
in order to leverage position, orientation, size, and shape correlations between similar
anatomical objects, such as pediatric bones across distinct musculoskeletal joints.

6.1.1 Multi-task and multi-domain learning

For medical image analysis, multi-task learning aims at leveraging heterogeneous forms
of annotations, from global image labels (e.g., healthy versus impaired musculoskeletal
joint) to finer-grained and pixel-level segmentation, to improve the performance of deep
models [63]. An additional advantage of these approaches is that a variety of tasks (e.g.,
classification, detection, regression, segmentation) can be solved simultaneously to provide
a more complete clinical diagnosis [62]. Certain frameworks have also proposed to incor-
porate supplementary sub-tasks (e.g., contour prediction or distance map estimation) to
refine coarse, non-smooth, and discontinuous segmentation predictions from convolutional
models [64]. Additionally, Chen et al. [65] designed an attention-based reconstruction
task to leverage unlabeled medical images in a semi-supervised segmentation framework.
Hence, two types of multi-task strategies emerge in the literature: cascade of task-specific
sub-networks [62], or networks with shared encoder and task-specific decoders [63]–[65].
The former is characterized by sub-models dedicated for each task that can leverage the
output of the previous network as input, while the latter defines models with partial pa-
rameters sharing between tasks. Both approaches have been reported to perform better
than traditional independent models by enabling a better cooperation between tasks [62]–
[65]. However, the developed pipelines remain specific to a given intensity domain.

In parallel, recent contributions have proposed to train models over multiple intensity
domains (e.g., multi-modal, multi-scanner, multi-center, multi-protocol) with the same
segmentation task, in order to leverage a greater amount of training data [66]–[71]. These
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architectures aim at benefiting from the correlation between intensity domains to learn
more robust domain-invariant feature representations and prove to be particularly use-
ful when dealing with datasets containing a limited number of samples [67]. Numerous
multi-domain schemes have been thus implemented and reported to achieve better per-
formance than individual approaches. In particular, one can mention models exploiting
transfer learning and fine-tuning between domains [67], models integrating adversarial
networks to learn domain-invariant features [71], models that share their latent space
only [69], [70], and models composed of domain-specific encoders and a shared decoder
[70]. Following this trend to re-use and share an increasing number of parameters, Dou et
al. [69] developed a single encoder-decoder segmentation network using shared convolu-
tional kernels and domain-specific internal feature normalization parameters (i.e., batch
normalization). While this highly compact architecture reaches superior performance for
multi-modal segmentation, their methodology is specific to a given anatomical region of
interest (e.g., abdomen or cardiac) and the segmentation task involved the same organs
of interest across various intensity domains.

Furthermore, multi-task, multi-domain learning frameworks have been concurrently
developed for natural image analysis. In the context of semantic scene labeling, Fourure
et al. [75] proposed to train a single network over the union of multiple datasets to address
the limited amount of annotated data. In their approach, each dataset is characterized
by its own task (segmentation label set) and domain (intensity distribution). Hence, this
framework is more generic than traditional multi-task approaches which usually focus on
multiple tasks in the same domain or, traditional multi-domain techniques which con-
sider domains containing the same set of objects. Following this, studies on universal
representations in computer vision proposed to employ a single model with
agnostic kernels, as visual primitives may be shared across tasks and domains,
and dataset-specific layers which enable task and domain specialization [76]–
[78]. These approaches, based on shared representations, have been reported to perform at
par or superior to traditional independent models. However, to the best of our knowledge,
multi-task, multi-domain learning has rarely been applied to medical image analysis, with
the exception of the work of Moeskops et al. [79] which demonstrated that a single neural
network can segment multiple anatomies (i.e., brain, breast, and cardiac) simultaneously.
Nevertheless, instead of generating pixel-wise segmentation masks, their model relied on
a triplanar patches-based approach that predicted the class of a single pixel per input
patch, which proved to be computationally expensive. In particular, their architecture
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did not comprise a decoder and associated skip connections as in UNet [29], to directly
provide whole image segmentation leveraging the global context. Most importantly, patch-
wise training lacks the efficiency of fully convolutional training to provide dense output
predictions [199]. Their methodology also failed to account for the difference in intensity
distribution between domains, as evidenced by the absence of internal domain-specific
feature normalization.

6.1.2 Contributions

In this chapter, we propose to implement and optimize a single segmentation network
over the union of multiple pediatric imaging datasets arising from separate regions of the
anatomy. Unlike previous methods (developed in Part II) that operate on in-
dividual pediatric musculoskeletal joint, our framework simultaneously learns
multiple intensity domains and segmentation tasks emerging from distinct
anatomical joints. This approach allows to overcome the inherent scarcity of
pediatric data while benefiting from more robust shared representations. To
convert and adapt to the multi-task and multi-domain setting, we formalize a segmenta-
tion model which incorporates shared representations, domain-specific batch normaliza-
tion [66]–[69], and domain-specific output layers. Furthermore, we extend the multi-task,
multi-domain segmentation learning framework by incorporating multi-joint shape priors
which encode the anatomical characteristics of multiple joints and further constrain the
delineation tasks to avoid over-fitting. Finally, we illustrate the effectiveness of our ap-
proach on three sparse, unpaired (i.e., from different patient cohorts), and heterogeneous
pediatric musculoskeletal MR imaging datasets.

The research conducted in this part has been published in the Medical Image Analysis
journal [253] and substantially extends a preliminary work presented at the International
Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
[254].

The remainder of this chapter is structured as follows. Section 6.2 introduces the math-
ematical formalism defining multi-task, multi-domain learning. The domain-specific layers
(Section 6.2.2) and multi-joint shape priors (Section 6.2.3) are subsequently presented.
The experiments are explained in Section 6.3 which encompass the assessment of various
multi-domain learning schemes (Section 6.3.2) and the description of the implementation
details (Section 6.3.3). Finally, the results are reported and discussed in Section 6.4. Most
importantly, we evaluate the proposed multi-anatomy segmentation model with multi-
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joint shape priors (Section 6.4.2) and discuss the limitations of the proposed methodology
(Section 6.4.3).

6.2 Deep segmentation with domain-specific layers
and multi-joint shape priors

6.2.1 Multi-task, multi-domain deep segmentation

We reformulate the baseline segmentation learning framework already introduced in
Chapters 3 and 4 for the novel multi-task, multi-domain setting. Let D1, ...,DK be K

different datasets organized such that the kth dataset Dk = {xk
i , yk

i }nk
i=1 contains nk pairs

of greyscale images xk
i in intensity domain Ik and their corresponding class label images

yk
i in label space Ck. Each intensity domain I1, ..., IK is characterized by its own intensity

distribution, while the label spaces C1, ..., CK represent separate segmentation tasks consti-
tuted of different anatomical structure of interest (additionally to the background). Hence,
the goal of multi-task, multi-domain deep segmentation is to learn a single mapping S

between each intensity domain and its corresponding label space, formally ∀k ∈ [1, ..., K],
S : Ik → Ck.

In what follows, the function S is approximated by a segmentation network composed
of a succession of layers whose parameters must be learned during training. More specif-
ically, S : xk

i 7→ S(xk
i ; Θ, Γ) is composed of shared parameters Θ and domain-specific

weights Γ = {Γk}K
k=1 selected based on the domain k of the input image. During train-

ing, we used the stochastic gradient descent algorithm to optimize the cross-entropy loss
defined in a multi-task and multi-domain fashion:

LCE = − 1
K

K∑
k=1

1
nk

nk∑
i=1

yk
i log(ŷk

i ) (6.1)

where ŷk
i = S(xk

i ; Θ, Γ) was the predicted segmentation. As mentioned in Section 3.2, in
practice, the full expression of the loss is an average over classes and pixels. The shared
parameters and domain-specific weights were simultaneously derived through this novel
optimization scheme. In consequence, the network S learned to segment all structures of
interest defined in label spaces C1, ..., CK across all intensity domains I1, ..., IK . In the
following, we employed the Att-UNet architecture [42] as backbone for the segmentation
network S. The Att-UNet is an extension of the baseline UNet convolutional encoder-
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Multi-joint
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Figure 6.1 – As a first step, a multi-joint auto-encoder learns multi-joint shape priors (1)
arising from ground truth segmentation of each joint. As a second step, we optimize a
segmentation network S based on Att-UNet [42] in a multi-task, multi-domain framework
(2) defined by imaging datasets of three pediatric joints (ankle, knee, and shoulder). The
auto-encoder and segmentation networks comprise shared convolutional filters, domain-
specific batch normalization (DSBN) (2.b) and domain-specific input/output segmentation
layers. Their training procedures rely on the cross-entropy loss function LCE. In addition,
Att-UNet incorporates multi-domain attention gates attached to its skip connections (2.c)
and its optimization scheme is combined with multi-joint shape priors LMJSP (2.a).

decoder [29] which integrates spatial attention gates into its skip connections to highlight
salient features (see Section 3.4.3).

168



6.2. Deep segmentation with domain-specific layers and multi-joint shape priors

6.2.2 Domain-specific layers (DSL)

Batch normalization is an ubiquitous transformation found in deep convolutional mod-
els which aims at improving convergence speed and generalization abilities of neural net-
works by normalizing their internal features [41]. However, in multi-domain learning, as
the individual statistics of the intensity domains I1, ..., IK can be very different from each
other (Figure 6.1), a domain-agnostic batch normalization layer could lead to defective
features [66]–[69]. Specifically, if we consider the lth layer, the mean activation over do-
mains K−1 ∑K

k=1 µk
l could be null while the domain-specific means µk

l are non-zero, making
a domain-agnostic normalization meaningless.

Thus, to more carefully calibrate the internal features of the model, we employed
domain-specific batch normalization functions (DSBN) [66]–[69]:

DSBNβk
l

,γk
l
(vk

i,l) = γk
l

vk
i,l − µk

l√
(σk

l )2 + ϵ
+ βk

l (6.2)

where vk
i,l denoted the feature-map of the lth layer produced by the ith image of the kth

dataset, µk
l and σk

l the domain-specific mini-batch mean and standard deviation respec-
tively. ϵ = 1e-5 was added for numerical stability. As mentioned in Section 3.4.1, batch
normalization is performed for each features at layer l independently in practice. The
DSBN weights Λk = {βk

l , γk
l }l thus comprised the domain-specific trainable shift and scale

of each feature, at each layer.
Following the definition of DSBN, we modified the elementary block of convolutional

models (i.e., sequence of convolution, batch normalization, and activation) for multi-
domain learning. This novel multi-domain block was based on shared convolution, DSBN,
and an activation function 1:

uk
i,l+1 = ρ(DSBNβk

l
,γk

l
(Θl ∗ uk

i,l)) (6.3)

Here, uk
i,l,m was the output activations generated by the lth block with the ith image of

the kth dataset as input, ρ was a non-linearity (e.g., ReLU, SiLU, Sigmoid), and uk
i,l was

the output of the lth layer. As a convention, the input image corresponded to the input
of the first layer uk

i,0 = xk
i , and we have the relation vk

i,l = Θl ∗ uk
i,l). As indicated in [41],

the bias of the convolutional layer can be ignored, as its role is subsumed by the shift of

1. This notation can be easily extended to include skip connections or residual layers in which the
input is a concatenation or sum of the outputs of previous layer.
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the subsequent normalization transformation. Thus, the shared convolutional parameters
Θ = {Θl}l comprised solely the convolutional filters. Based on this new multi-domain
block, attention gates [42] were consequently adapted to the multi-domain setting (Figure
6.1). In practice, this corresponded to the modification of each batch normalization layer
into its domain-specific equivalent. For instance, as attention gates select spatial regions
based on feature activations (e.g., Sigmoid activation) [42], we hypothesized that their
multi-domain counterpart could help highlight different areas in each domain thanks to
domain-specific feature calibration (Figure 6.1).

As intensity domains and segmentation tasks were similar in nature (i.e., pediatric
bone in MR images), we assumed that low-level features (e.g., edges, gradients) as well as
high-level features (e.g., bone texture, bone shape) were similar across tasks and domains.
We therefore hypothesized that shared convolutional kernels would leverage
features shared among tasks and domains to be more robust than their individ-
ual counterparts, while the DSBN would enable better generalization capabilities
thanks to the domain-specific calibration of the internal features.

Furthermore, as the K segmentation tasks were distinct, a domain-agnostic segmenta-
tion layer may predict classes from each label space C1, ..., CK , which is counterproductive
[75] (e.g., predicting ankle bones from a shoulder image). Hence, it was essential to em-
ploy a dedicated output layer for each domain and task pair. Specifically, if uk

i denotes
the output of the penultimate layer, then:

ŷk
i = Softmax(Wk ∗ uk

i + bk) (6.4)

was a domain-specific segmentation layer which produced a segmentation mask ŷk
i with

Ck + 1 classes. Here, the weights of the domain-specific output segmentation layer Ξk =
{Wk, bk} corresponded to the final 1×1 (i.e., point-wise) convolutional filter and associated
bias.

To recapitulate, the domain-specific layers (DSL) Γk = {Λk, Ξk} comprised the DSBN
weights Λk and the weights Ξk of the domain-specific output segmentation layers, whereas
the shared parameters Θ corresponded to the classical convolutional filters. Most notably,
the domain-specific weights represented a minimal supplementary parameterization with
regards to the total number of shared convolutional kernels.
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6.2.3 Multi-joint shape priors

As illustrated in Chapter 4, recent works have proposed to integrate into the segmen-
tation network a shape representation of the anatomy, which is learned from ground truth
segmentation masks by a deep auto-encoder [51], [53], [55]. To summarize, an auto-encoder
is a neural network composed of an encoder F which maps its input to a low-dimensional
feature space that compactly encodes the characteristics of the anatomy and a decoder G

which reconstructs the original input from the compact representation [51], [53], [55].

We extended the standard shape priors framework (Chapter 4) to the multi-task, multi-
domain setting by designing a multi-joint auto-encoder AE : yk

i 7→ G(F (yk
i ; ΘF , ΓF ); ΘG, ΓG)

which simultaneously learns the shape representation of multiple joints (Figure 6.1). The
weights ΘF and ΘG corresponded to the shared convolutional kernels of F and G, whereas
ΓF and ΓG comprised the weights of the DSBN and domain-specific input and output seg-
mentation layers of F and G respectively. Similar to the design of the segmentation
network, the multi-joint auto-encoder integrated DSBN functions to efficiently normalize
its internal feature distributions, while the input and output convolutional filters operated
on the distinct anatomical structures of interest.

As all segmentation tasks solely comprised pediatric bones, we assumed that our
multi-joint learning scheme would leverage shape features common between
musculoskeletal joints to obtain a more robust representations of the anatomy.
Following the definition given in Chapter 4, the multi-joint auto-encoder (MJAE) training
procedure was based on the cross-entropy loss function which penalizes the reconstruction
of each joint to be dissimilar from the original input [53], [55]. Hence, the loss of the auto-
encoder becomes:

LMJAE = LCE := − 1
K

K∑
k=1

1
nk

nk∑
i=1

yk
i log(G(F (yk

i ; ΘF , ΓF ); ΘG, ΓG)) (6.5)

After training the multi-joint auto-encoder, we integrated its encoder component F

into the segmentation framework by computing a multi-joint shape priors term (Figure
6.1). To this end, both predictions and ground truth labels of each joint were projected
onto the multi-joint latent shape space by F with learned weights ΘF and ΓF . Extending
the definition given in Chapter 4, the multi-joint shape priors loss computed the Euclidean
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distance between both latent shape representations [53], as follows:

LMJSP = 1
K

K∑
k=1

1
nk

nk∑
i=1

∥∥∥F (yk
i ; ΘF , ΓF )− F (ŷk

i ; ΘF , ΓF )
∥∥∥2

(6.6)

The minimization of this loss enforced the predicted segmentation of each joint to be in
the same low-dimensional manifold as the corresponding ground truth mask [53] and thus
encouraged anatomically consistent delineations (Figure 6.1). More precisely, minimizing
the Euclidean distance led to similar shape codes for each pair of segmentation masks. As
stated in Chapter 4, it should be emphasized that shape codes were represented as 2D
feature maps (i.e., auto-encoder bottleneck) with each value encoding a distinct feature
of the anatomy. As the weights of the shape encoder remained fixed during this step,
the two feature maps were in correspondence, with each value encoding the same global
anatomical feature for both ground truth and predicted segmentation masks. Anatomical
features typically encompass position, orientation, size, and shape information of each
structure of interest as well as their respective intra- and inter-structure correlations.
However, as noted in Chapter 4, due to the black-box nature of deep learning models, the
interpretability of each anatomical feature remained limited in practice.

The segmentation network S was ultimately trained using the proposed loss function
based on a combination of cross-entropy and multi-joint shape priors losses:

L = LCE + λ1LMJSP (6.7)

where λ1 was an empirically set weighting factor.

6.3 Multi-domain segmentation experiments

6.3.1 Imaging datasets

Experiments were conducted on the ankle, knee, and shoulder datasets presented in
Chapter 2, and that comprised 20 ankle (A1, ..., A20), 17 knee (K1, ..., K17), and 15
shoulder (S1, ..., S15) 3D MR examinations respectively. It should be emphasized that
compared to our previous experiments performed in Part II, we included three additional
pediatric ankle examinations (two pathological and one healthy). These examinations
were not available at the time of previous experiments. Furthermore, as results obtained
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in Part II demonstrated that segmentation networks did not present any population-
bias (i.e., better performance on either impaired or healthy examinations), we did not
pursue this analysis for the current experiments. Finally, all 2D slices were downsampled
to 256× 256 pixels and intensities were normalized to have zero-mean and unit variance
for each dataset.

6.3.2 Experimental setups
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Figure 6.2 – Proposed multi-task, multi-domain segmentation strategies: (a) individual
strategy constituted of domain-specific networks, (b) transfer strategy in which weights
learned on one domain were transferred to other domains for initialization, (c) shared
strategy comprising a single network with all parameters shared between domains, and
(d) domain-specific layers (DSL) strategy based on a model with shared convolutional fil-
ters along with domain-specific batch normalization (DSBN) and segmentation layers. The
transfer strategy encompassed all possible combinations of transfer learning between the
three domains including transferAnkle (as depicted here), transferKnee, and transferShoulder
(both omitted for brevity).

In this chapter, we investigated various multi-task, multi-domain segmenta-
tion strategies with Att-UNet [42] as backbone architecture to assess which
one would provide the best segmentation results. The compared methods built
upon Att-UNet comprised four approaches (Figure 6.2): individual (trained on individ-
ual domains), transfer (pre-trained on one domain and fine-tuned on the others), shared
(trained on all domains at once, with all parameters shared between domains) and DSL
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(trained on all domains at once, with shared and domain-specific parameters). The shared
approach differed from the DSL scheme by its domain-agnostic batch normalization and
shared segmentation layer which predicted bones of interest from all domains with dis-
tinct labels (plus background). In this sense, the shared approach was analogous to that
developed by [79], although their network architecture differed from Att-UNet and lacked
the efficiency to provide dense segmentation predictions. In addition, all networks were
trained from scratch with randomly distributed weights except in the transfer scheme in
which weights learned on one domain were transferred to other domains for initialization
(Figure 6.2). In the transfer scheme, models were not tested on their domain of origin
because re-training on the same dataset would not have corresponded to a transfer of
knowledge between domains. Hence, transferAnkle denoted models pre-trained on ankle
images and fine-tuned on either knee or shoulder domains. We investigated all possible
combinations of transfer learning between the three datasets, and defined transferKnee and
transferShoulder schemes in a similar manner.

It should be emphasized that the individual approach of this part, referred to the multi
bone segmentation strategies developed in Part II.

Furthermore, to evaluate the contributions of multi-joint shape priors, we performed an
ablation study by setting the hyper-parameters weighting factors λ1 to zero. Specifically,
the multi-joint shape priors LMJSP were incorporated in both shared (using a multi-joint
auto-encoder with all parameters shared) and DSL (using a multi-joint auto-encoder with
shared and domain-specific parameters) approaches. In this part, we did not employ the
shape priors regularization LShape in the individual dataset scheme as performance im-
provement were already reported in Chapter 4.

6.3.3 Implementation details

Network AG Batch
Size #Epochs Learning

Rate
#Parameters

Individual Shared DSL
Auto-encoder – 24 8 1e−4 – 7.9M 7.9M

Att-UNet ✓ 18 6 5e−4 3×8.7M 8.7M 8.7M

Table 6.1 – Summary of the networks employed during experiments (i.e., multi-joint auto-
encoder and Att-UNet [42]) along with their corresponding training hyper-parameter val-
ues: batch size, number of epochs and learning rate.

As previously introduced in Chapter 4, our training procedure included two steps:
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first, the multi-joint auto-encoder was trained on ground-truth segmentation, and second
we optimized the segmentation network to produce delineations of the desired structures
of interest (Figure 6.1). The networks were optimized using the Adam optimizer with
distinct batch size, number of epochs and learning rate for both (Table 6.1), and these
hyper-parameters values remained fixed across all multi-task, multi-domain segmentation
strategies (individual, transfer, shared, and DSL). It should be noted that the domain-
specific weights introduced marginal supplementary parameterization over the shared ap-
proach, while individual schemes represented K = 3 times more parameters (Table 6.1).
Furthermore, we employed an auto-encoder with more features as compared to Part II in
order to accommodate to the multi-joint learning schemes. In shared and DSL schemes,
the image batch was equally split between each dataset to prevent domain-bias during
optimization. Finally, we explored various values for the multi-joint shape priors LMJSP

and found λ1 = 0.1 to be optimal.
Implementation of the deep learning architectures was carried out in PyTorch. As

mentioned in Section 3.5.1, we leverage the dynamic computation graphs of PyTorch to
implement the DSL operations. Training and inference were performed using an Nvidia
RTX 2080 Ti GPU with 12 GB of RAM. All the models were trained on 2D slices with
extensive on-the-fly data augmentation due to limited available training data. Data aug-
mentation comprised random rotation (±22.5◦), shifting (±10%), and flipping in both
directions to teach the networks the desired invariance, covariance and robustness proper-
ties. Furthermore, the same post-processing as in Part II was employed after each method:
first, the obtained 2D segmentation masks were stacked together to form a 3D volume,
then we selected the largest connected set of each anatomical structure as final 3D pre-
dicted mask, and we finally applied morphological closing by mean of a 5×5×5 spherical
kernel to smooth the resulting boundaries.

6.3.4 Assessment of predicted segmentation

Assessment of the 3D delineations generated by the different methods relied on a com-
parison against manually annotated ground truths using the same metrics employed in
Part II. For each dataset, Dice coefficient, sensitivity, specificity, maximum symmetric
surface distance (MSSD), average symmetric surface distance (ASSD), and relative ab-
solute volume difference (RAVD) metrics were computed for each bone and we reported
the average scores (see Section 3.5.2). It should be noted that this is contrary to metrics
evaluated in Part II, which were computed on global segmentation masks (i.e., global bone
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class and background, see Section 4.3.2).
Due to the scarce amount of pediatric examinations, experiments were performed in

a leave-one-out manner such that, for each dataset, one examination was retained for
validation, one for test, and the remaining data were used to train the model. We iterated
through the datasets simultaneously to compute the mean and standard deviation of
each metric, and used each examination at maximum once for test. We did not test all
combinations between datasets, as this would have introduced redundant observations in
the results and drastically increased computation time (i.e., 20× 17× 15 = 5100 possible
combinations). Consequently, as the shoulder joint dataset contained the fewest number of
MR image volumes, 5 ankle (A16-A20) and 2 knee (K16-K17) joint examinations were never
included in the test sets since all 15 shoulder samples were already tested. Specifically, the
imaging dataset with the fewest samples defined the total number of steps in the leave-
one-out evaluation, as we refrained from testing examinations from this dataset multiple
times to avoid redundant results and associated bias. All experiments followed the same
protocol and imaging examinations with the same index (i.e., Ai, Ki, and Si) indicated
3D samples tested in the same ith fold of the leave-one-out evaluation. Following standard
machine learning practice, the hyper-parameters values (τ , λ1, λ2, λ3, batch size, epochs,
learning rate) were selected based on the performance of the model on the validation set.

It should be emphasized that this multi-domain leave-one-out scheme is unlike exper-
iments performed in Part II, in which the leave-one-out evaluation was achieved indepen-
dently for each dataset.

Finally, we performed visual comparison of predicted segmentation masks. In partic-
ular, we evaluated the benefits in segmentation quality of the proposed multi-joint shape
priors (LMJSP) using Att-UNet [42] as backbone architecture in shared and DSL schemes.

6.4 Results and discussion

6.4.1 Quantitative assessment

Assessment of the multi-task, multi-domain segmentation strategies illustrated the
advantages of the proposed DSL + LMJSP approach over its individual and shared coun-
terparts. The method achieved first or second best performance in ankle and knee datasets,
except for ankle MSSD (1.7 mm higher than the best) and knee RAVD (0.8% higher than
the best). However, while the proposed method achieved performance at par with individ-
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Method Dice ↑ Sens. ↑ Spec. ↑ MSSD ↓ ASSD ↓ RAVD ↓

A
tt
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N

et
A

nk
le

Individual 88.2± 1.9 88.1± 5.4 99.8± 0.1 17.9± 10.8 1.9± 1.1 14.1± 4.6
TransferKnee 89.5± 5.7 88.3± 6.0 99.9± 0.1 12.6± 10.2 1.6± 1.7 14.0± 10.9

TransferShoulder 89.3± 4.2 87.5± 6.5 99.9± 0.1 11.6± 5.0 1.3± 0.6 12.9± 8.6
Shared 88.8± 2.5 87.6± 6.3 99.9± 0.1 13.4± 8.1 1.5± 0.8 12.5± 7.0

Shared + LMJSP 89.6± 1.6 90.6± 5.3 99.8± 0.1 13.4± 4.2 1.3± 0.3 13.1± 4.9
DSL 90.6± 2.3 88.5± 4.6 99.9± 0.1 11.0± 7.4 1.2± 0.8 10.9± 5.6

DSL + LMJSP 90.9± 1.9 89.1± 4.6 99.9± 0.1 12.7± 9.2 1.3± 1.2 10.5± 4.4

K
ne

e

Individual 91.1± 3.6 88.9± 5.5 99.9± 0.1 16.5± 12.1 1.6± 1.5 10.7± 6.1
TransferAnkle 92.8± 2.9 91.1± 3.3 99.9± 0.1 12.4± 10.3 1.0± 0.9 7.6± 5.4

TransferShoulder 92.5± 2.4 90.7± 4.0 99.9± 0.1 13.1± 11.3 1.0± 0.8 7.8± 4.5
Shared 91.7± 3.2 88.5± 4.8 99.9± 0.1 12.5± 9.0 1.4± 1.4 9.5± 6.0

Shared + LMJSP 93.6± 1.8 91.9± 3.1 99.9± 0.1 7.9± 8.4 0.8± 0.9 6.4± 3.1
DSL 93.3± 2.5 92.8± 3.5 99.9± 0.1 12.8± 12.1 1.1± 1.3 6.0± 4.0

DSL + LMJSP 93.8± 2.5 93.0± 4.2 99.9± 0.1 9.4± 5.9 0.7± 0.4 6.8± 4.1

Sh
ou

ld
er

Individual 80.9± 10.1 77.7± 14.9 99.9± 0.1 26.9± 14.1 2.4± 1.8 15.2± 16.7
TransferAnkle 82.6± 8.8 79.8± 12.5 99.9± 0.1 26.9± 17.2 2.2± 1.8 17.0± 10.1
TransferKnee 83.3± 10.1 80.5± 12.5 99.9± 0.1 24.0± 14.3 2.1± 2.4 13.7± 13.2

Shared 80.1± 9.6 76.6± 12.9 99.9± 0.1 28.1± 12.2 2.7± 1.8 18.3± 12.4
Shared + LMJSP 80.7± 9.0 79.2± 12.3 99.9± 0.1 25.0± 15.6 2.3± 1.8 19.4± 12.0

DSL 80.9± 7.3 77.6± 11.6 99.9± 0.1 34.4± 19.1 3.3± 2.3 19.4± 12.2
DSL + LMJSP 81.4± 9.0 79.2± 14.3 99.9± 0.1 31.0± 18.5 2.5± 2.2 15.7± 12.2

Table 6.2 – Leave-one-out quantitative assessment of Att-UNet [42] using individual, trans-
fer, shared, and DSL strategies employed with multi-joint shape priors LMJSP on ankle,
knee, and shoulder datasets. Metrics include Dice (%), sensitivity (%), specificity (%),
MSSD (mm), ASSD (mm), and RAVD (%). Mean scores and standard deviations re-
ported in bold and underlined respectively correspond to the first and second best results
obtained for each dataset.

ual and shared schemes on shoulder joint examinations, the transferknee and transferankle

approaches respectively ranked first and second best on nearly all metrics, with the ex-
ception of MSSD and RAVD for transferankle which reached the third and fourth ranks
respectively. In particular, the performance of DSL + LMJSP were 1.9% lower than the
best in Dice, 1.3% lower in sensitivity, 7.0 mm higher in MSSD, 0.4 mm higher in ASSD,
and 2.0% higher in RAVD.

6.4.2 Qualitative assessment

Visual comparison of the multi-joint shape priors LMJSP provided visual evidence of
gradual improvements in segmentation quality for both shared and DSL Att-UNet mod-
els (Figure 6.3). Shape priors were clearly observed to promote globally more
consistent and smoother contours for all anatomical joints by forcing the model
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Figure 6.3 – Visual comparison of the multi-joint shape priors LMJSP using Att-
UNet architecture. Automatic segmentation of ankle, knee, and shoulder bones based
on Att-UNet [42] employed in shared and DSL strategies. Ground truth delineations are
in red ( ) while predicted bones appear in green ( ) for calcaneus, blue ( ) for talus,
yellow ( ) for tibia (distal), orange ( ) for femur (distal), pink ( ) for fibula (proximal),
light green ( ) for patella, light blue ( ) for tibia (proximal), magenta ( ) for humerus,
and cyan ( ) for scapula.

to follow the learned non-linear multi-joint shape representation. More specifically, in-
corporation of shape priors allowed the segmentation of the complete talus (A14), fibular
(K5), and scapular shapes (S11 and S12), which were previously partially detected by both
shared and DSL Att-UNet models.

6.4.3 Limitations

Regarding the performance of the multi-task, multi-domain strategies, we observed
that all transfer learning schemes (TransferAnkle, TransferKnee, and TransferShoulder) pro-
vided performance improvements compared to individual models on all datasets (Table
6.2), indicating a better initialization than randomly set weights by exploiting features
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correlation and knowledge transfer between each task and domain pair. Compared to in-
dividual and transfer approaches, the results of shared and DSL schemes on both ankle
and knee datasets indicated noticeable improvements while the results on shoulder exam-
inations were less evident (Table 6.2). Nevertheless, both shared and DSL schemes
offer an additional advantage compared to transfer approach by learning all
task and domain pairs simultaneously rather than in a sequential manner that
is prone to catastrophic forgetting. It should also be noted that in the shared seg-
mentation scheme, predicted segmentation output that did not belong to the image task
were considered as background in order to obtain a fair comparison against individual,
transfer, and DSL strategies. In practice, confusion between tasks was very low, with the
mean percentage of voxels per 3D examination labeled with a class foreign to the target
segmentation classes (e.g., humerus identified in ankle MR images) being less than 0.001%
for all tasks. A low confusion between tasks was also reported by [79] in their multi-tasks
segmentation framework.

These results illustrated that learning to simultaneously segment multiple anatomical
regions is a challenging setting, and the possible limitations of the Att-UNet architecture
due to its low complexity, depth and width. Indeed, one could leverage more advanced
state-of-the-art architecture (e.g., from the Inception, DenseNet, or EfficientNet family) to
achieve better performance on all datasets. Nevertheless, we observed that the multi-joint
shape priors LMJSP improved the segmentation performance for each anatomical joint and
in both shared and DSL schemes. This further demonstrated the benefits of shape priors
scheme based on deep auto-encoder which were already proven effective in Part II, but
within each separate anatomical joint.

6.5 Conclusion

In this chapter, we proposed a multi-task, multi-domain segmentation framework
which achieved promising performance on three scarce pediatric imaging datasets of dis-
tinct musculoskeletal joints. We formalized a framework based on shared representations,
domains-specific batch normalization (DSBN), and domain-specific output segmentation
layers which allow to easily adapt any convolutional segmentation network to a multi-
task, multi-domain learning setting. Finally, we incorporated multi-joint shape priors to
enforced globally consistent segmentation predictions and reduce over-fitting issue.

Nevertheless, even though the proposed multi-task and multi-domain model integrate
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task- and domain-specific information through specialized layers and multi-joint shape
priors LMJSP constraints, domain prior knowledge could be further exploited to improve
the generalizability of learned shared representations. To address this issue, we propose
in Chapter 7 a contrastive regularization which impose domain-specific clusters in the
shared representations of the model.
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Chapter 7

ENHANCED GENERALIZABILITY VIA

MULTI-SCALE CONTRASTIVE

REGULARIZATION

7.1 Introduction
In this chapter, we extend our approach to reduce over-fitting issues through multi-

task, multi-domain learning for the segmentation of sparse pediatric imaging datasets
originating from separate musculoskeletal joints. The methodology previously presented
in Chapter 6 is expanded following two regularization schemes: through transfer learning
from non-medical images, as already illustrated in Chapter 5, and through a penalty term
on the learned shared representation, tailored specifically to multi-task, multi-domain
learning framework. In particular, transfer learning leverages low-level features shared be-
tween image types to improve generalization capabilities, especially when targeting small
datasets [44]. Hence, a standard practice in medical image analysis relies on exploiting the
weights of state-of-the-art neural networks (e.g., EfficientNet [191] or Transformers [255])
trained on the ImageNet large-scale natural images database [242]. On the other hand,
even though multi-task and multi-domain models can integrate task- and domain-specific
information through specialized layers, task and domain prior knowledge could be further
exploited to improve the generalizability of learned shared representations.

In this direction, the work of Dou et al. [69] introduced a knowledge distillation regu-
larization loss whose goal is to constrain the prediction distributions of their multi-modal
segmentation model to be similar across domains. Similarly, Zhu et al. [80] imposed a
Gaussian mixture distribution on the shared latent representation of their image transla-
tion network to preserve fine structures between domains. However, such a hypothesis may
be too restrictive. Indeed, in representation learning, a good representation can be char-
acterized by the presence of natural clusters corresponding to the classes of the problem
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(i.e., disentangled representation) [81]. Hence, a number of self-supervised representation
learning techniques focus on pulling together data points from the same class and push-
ing apart negative samples in embedded space using a contrastive metric [82]–[84]. A
recent contribution extended this idea to fully-supervised image classification setting by
leveraging the label information and considering many positive anchors simultaneously
[85]. Thus, the contrastive regularization maximizes the performance of the classifier by
imposing intra-class cohesion and inter-class separation in latent space. In the context
of semi-supervised medical image segmentation, Hu et al. [256] exploited unannotated
data by designing a contrastive loss forcing pixels from the same class to assemble in
embedded space. Unlike [80], in these non-parametric contrastive approaches, it is not
necessary to define a prior distribution (e.g., Gaussian, Poisson) for the latent variables.
Hence, contrastive regularization techniques appear more generic and appro-
priate to impose domain-specific clusters in the shared representations of deep
multi-task, multi-domain models.

7.1.1 Contributions

In this chapter, we propose a multi-task, multi-domain segmentation framework to
address the scarcity issue associated with pediatric imaging data by leveraging multi-
ple anatomical regions. Our method learns multiple intensity domains and segmentation
tasks arising from separate musculoskeletal joints. We extend the multi-anatomy learn-
ing framework by integrating a multi-scale contrastive regularization during optimization
to improve the generalization capabilities of neural networks. Following classical con-
trastive approaches that operate on image classes, we leverage dataset label
information to enhance intra-domain similarity and impose inter-domain mar-
gins. However, compared to standard contrastive learning, our contrastive regularization
is applied in a multi-scale fashion, in the same spirit as deep supervision [257]. In addi-
tion, we leverage a pre-trained Efficient encoder [191] as backbone for the segmentation
network to further reduce data scarcity limitations. Finally, we extend the evaluation of
the multi-task, multi-domain learning framework initiated in Chapter 6.

As previously mentioned, the research conducted in this part has been published in
the Medical Image Analysis journal [253] and substantially extends a preliminary work
presented at the International Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI) [254].
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7.2 Efficient segmentation network with multi-scale
contrastive regularization

In this section, we first describe the proposed multi-task, multi-domain segmentation
network built upon Efficient-UNet (Section 7.2.1). We then incorporate the multi-scale
contrastive regularization into our model (Section 7.2.2).

7.2.1 Efficient segmentation network with pre-trained encoder

We briefly recall the multi-task, multi-domain segmentation framework developed in
Chapter 6 which incorporates a segmentation network S and a multi-joint shape encoder
F parameterized by shared convolutional filters Θ and domains specific layers Γ including
domain-specific batch normalization (DSBN) and domain-specific input/output segmenta-
tion layers. The optimization of S minimizes a loss based on cross-entropy defined in a
multi-task, multi-domain setting and multi-joint shape priors computed by F with fixed
weights, as follows:

L = LCE + λLMJSP (7.1)

The framework developed in Chapter 6 relied on the Att-UNet [42] as backbone archi-
tecture for the segmentation network S, nevertheless our training strategy is architecture
independent. The previous methodologies developed in Chapter 5 illustrated that leverag-
ing transfer learning and fine-tuning from the ImageNet database [242] lead to improved
segmentation outcomes, especially in the low data regime specific to pediatric imaging
resources [40], [44]. Hence, as in Chapter 5, the architecture of the neural network S

was based on UNet [29] whose encoder branch was replaced by a classification network
with weights previously trained on ImageNet classification task (Figure 7.2). We further
advanced this strategy by integrating an Efficient classification network from the Efficient-
Net family as encoder [191]. Specifically, we employed the EfficientNetB3 encoder which
incorporates mobile inverted bottlenecks convolutional blocks (MBConv [258]) to simulta-
neously balance the network depth, width, and resolution while improving predictive per-
formance [191]. The EfficientNetB3 represents a good compromise between complexity
and performance compared to other model versions (from EfficientB0 to EfficientB7).

To fit the EfficientNetB3 image dimensions, we concatenated three copies of each
MR slice to extend them from single greyscale channel to three channels. The encoder
branch was then built on classical convolution, batch normalization, and sigmoid linear
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Figure 7.1 – The first step of the proposed method involves a multi-joint auto-encoder that
learns multi-joint shape priors (1) arising from ground truth segmentation. As a second
step, we optimize a segmentation network S based on Efficient-UNet [191] in a multi-task,
multi-domain framework (2) defined by imaging datasets of three pediatric joints. The
auto-encoder and segmentation networks comprise shared convolutional filters, domain-
specific batch normalization (DSBN) calibrating the internal features statistics (2.c) and
domain-specific input/output segmentation layers delineating distinct anatomical regions.
Their training procedures rely on the cross-entropy loss function LCE and integrate a
multi-scale contrastive regularization LMSC to promote inter-domain separation in the
shared representations (2.a). In addition, Efficient-UNet incorporates multi-domain at-
tention gates (2.d) and multi-joint shape priors LMJSP computed by the multi-joint shape
encoder F to enforce anatomically consistent predictions (2.b).
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Figure 7.2 – Proposed neural network architectures: multi-task, multi-domain segmenta-
tion network S based on Efficient-UNet (top) [191] and multi-joint auto-encoder (bot-
tom) comprising encoder F and decoder G. The multi-scale embedding (zs1 , ..., zs9) and
(z̃s1 , ..., z̃s9) are obtained via GlobalAveragePooling. Ck+1 denotes the number of classes
(plus background) in the kth segmentation task while activations (activ) correspond to ei-
ther SiLU (Efficient-UNet) or ReLU (auto-encoder) functions. The multi-domain MBConv
block integrates shared point-wise (1×1) and depth-wise (DW) convolutions, domain-
specific batch normalization (DSBN) and squeeze-and-excite (SE) modules [191].

unit (SiLU) non-linearity along with MBConv blocks (MBConv1-6, Figure 7.2) consist-
ing of point-wise and depth-wise convolutions, as well as additional squeeze-and-excite
modules [191]. Specifically, combination of point-wise and depth-wise convolutions layers
allows to reduce the number of parameters by leveraging the decoupling of cross-channel
correlations and spatial correlations [259]. For their parts, squeeze-and-excite modules aim
at improving performance by adaptively recalibrating channel-wise features through ex-
plicit modeling of interdependencies between channels [260]. The overall architecture (i.e.,
depth, width, and resolution) of EfficientNetB3 encoder is then defined in a principled
way using a compound scaling coefficient [191]. Ultimately, EfficientNetB3 produced a
384 dimensional output and the resulting feature-map corresponded to the central part
between the contracting and expanding paths of S (Figure 7.2). Next, we constructed
a symmetrical decoder branch with up-sampling layers, classical convolutions and MB-
Conv blocks (Figure 7.2). Contrary to encoder weights that are pre-trained on ImageNet
[242], the decoder weights were randomly initialized. Finally, to improve both model
interpretability and performance, we employed spatial attention gates to implicitly sup-
press irrelevant regions of the input images while highlighting salient features [42]. These
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modules attached to the skip connections selected important features using contextual
information from the decoding branch (Figure 7.1).

As illustrated in Chapter 6, we adapted the segmentation network S, including MB-
conv modules and spatial attention gates (Figure 7.2), to the multi-domain setting by
modifying each batch normalization layer into its domain-specific equivalent (i.e., DSBN).

7.2.2 Multi-scale contrastive regularization

We consider the multi-domain convolutional block introduced in Chapter 6, which
was based on shared convolution filters Θ, DSBN transformations with domain-specific
trainable shift βk

l and scale γk
l , and an activation function ρ:

uk
i,l+1 = ρ(DSBNβk

l
,γk

l
(Θl ∗ uk

i,l)) (7.2)

The multi-domain block mapped its inputs to a shared representation in which features
were shifted and scaled according to their domain before applying a non-linear activation.
Here, we hypothesized that learning shared representations with domain-specific clusters
would enhance the generalization capabilities of the model (i.e., segmentation network or
multi-joint auto-encoder) and improve the accuracy of the predicted delineations. More
precisely, we assumed that a local variation in the output of each multi-domain block
should preserve the category of the domain [81]. Hence, we designed a novel regu-
larization term aimed at disentangling domain representations by conserving
intra-domain cohesion and inter-domain separation in the shared latent space
(Figure 7.1). The proposed contrastive regularization was adapted from image classifica-
tion [85] to multi-task, multi-domain segmentation using the known domains labels.

However, rather than applying the contrastive regularization after each multi-domain
block (i.e., after each non-linearity), we imposed the clusterization constraints at each
scale of the model (i.e., in a multi-scale manner) to reduce computational complexity.
To this end, we considered an ensemble of layers indices S corresponding to the different
spatial scale of the segmentation network, which were symmetrically distributed between
the encoder and the decoder (Figure 7.2). Our multi-scale approach untangled the domain
representations at each stage of the encoder and decoder modules in a deeply-supervised
manner. Since the semantic information extracted and captured by the neural network
differed at each scale as well as across scales, we hypothesized that it was necessary to
enforce a multi-scale regularization to achieve better generalization capabilities compared
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to the single scale constraint.

Let zk
i,s = GlobalAveragePooling(uk

i,s) be the embedding of xk
i at scale s ∈ S to which

we applied GlobalAveragePooling to project the data in a lower-dimensional space Rd

invariant to spatial transformations (e.g., rotation, translation, flipping), allowing global
comparison of image representations originating from different domains (Figure 7.2). The
dimensionality d of the representations were thus distinct at each scale and zk

i,s was then
normalized to lie on the unit hyper-sphere, which enabled to measure distances by using
an inner product [85].

We note Pk
i = {j ∈ [1, ..., nk] : j ̸= i} the set of indexes of all images from the same

domain as xk
i (i.e., positive pairs) and n = ∑K

k=1 nk the total number of images across
domains. The multi-scale contrastive loss was defined as follows:

LMSC = − 1
n|S|

∑
s∈S

∑
1≤k≤K
1≤i≤nk

1
|Pk

i |
∑

j∈Pk
i

log


exp(zk

i,s · zk
j,s/τ)∑

(k′,i′)
̸=(k,i)

exp(zk
i,s · zk′

i′,s/τ)

 (7.3)

where zk
i,s · zk

j,s denoted the inner product between two L2 normalized representations
(i.e., cosine similarity) and τ was the temperature hyper-parameter which controlled the
smoothness of the loss as well as imposed hard negative/positive predictions [83], [85]. As
the cosine similarity was bounded in the interval [−1, 1] regardless of the dimensionality
of the representations, we assumed that the temperature τ should be constant over scales.
Optimization of LMSC encouraged the model to produce, at each scale, closely
aligned representations for all pairs from the same domain and orthogonal
representations for negative couples. Thus, the multi-scale contrastive regularization
gathered the embedding from the same domain, while simultaneously separating clusters
from different domains (Figure 7.1).

Based on our multi-scale contrastive regularization, we imposed a clusterization con-
straint on the shared representations of both the multi-joint auto-encoder (z̃s1 , ..., z̃s9 as
denoted in Figure 7.2) and segmentation network (zs1 , ..., zs9 as denoted in Figure 7.2).
In particular, the loss of the auto-encoder integrated the contrastive term to promote
separated low-dimensional manifolds for each anatomical joint:

LMJAE = LCE + λ1LMSC (7.4)
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with λ1 as an empirically set weighting factor.
For its part, the segmentation network S was ultimately trained using the proposed loss

function based on a combination of cross-entropy, multi-scale contrastive regularization
and multi-joint priors losses:

L = LCE + λ2LMSC + λ3LMJSP (7.5)

where the weighting factors λ2 and λ3 were empirically set.

7.3 Experiments
Experiments were performed on ankle, knee, and shoulder pediatric MR datasets (see

Section 2.4.2) following the same setting as described in Chapter 6. Furthermore, we
extended the ablation study conducted using Att-UNet backbone architecture to include
the single scale LSSC and multi scale LMSC contrastive regularizations. Specifically, as the
intensity domains I1, ..., IK were not differentiated in the shared approach, the multi-scale
contrastive regularization LMSC could only be integrated in the DSL (i.e., domain-specific
layers) scheme. We also assessed the advantages of the multi-scale contrastive over a
single-scale contrastive (LSSC) method which only constrains the network bottleneck (i.e.
encoder output). The ablation study was performed by setting the hyper-parameters
weighting factors λ1, λ2, and λ3 to zero respectively.

7.3.1 Pre-trained architectures

In the next experiment, we evaluated the performance of our method based on Efficient-
UNet with pre-trained EfficientNetB3 encoder [191], DSL, multi-scale contrastive reg-
ularization and multi-joint shape priors against Inception-Net [86] and Dense-Net [61]
backbone architectures similarly pre-trained on large natural image database [242]. Specif-
ically, the pre-trained models Inception-UNet [86], Dense-UNet [61] and Efficient-UNet
[191] were compared using individual, shared with multi-joint shape priors (shared +
LMJSP), and DSL with multi-scale contrastive regularization and multi-joint shape priors
(DSL +LMSC +LMJSP) schemes. For the shared and DSL strategies, we only retained the
best approach observed within each during Att-UNet experiments (i.e., shared + LMJSP

and DSL + LMSC + LMJSP, Section 7.4.1). Finally, the transfer scheme was discarded in
this experimental setup as networks were already partially pre-trained on the ImageNet
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database [242].
Following the same design as in Chapter 5, the compared Inception and Dense-UNet

architectures referred to UNet models with encoder respectively replaced by either an
InceptionV3 [86] or a DenseNet121 [61] classifier network pre-trained on a natural image
classification task (Table 7.1). Similarly to Efficient-UNet, the decoder components of both
Inception-UNet and Dense-UNet were designed to be symmetrical from their respective
encoder branches. Consequently, their decoders were extended from original UNet design
by adding convolutional filters and more features, as well as Inception modules [86] and
dense blocks [61] respectively. In addition, as for Efficient-UNet, spatial attention gates
were incorporated to the skip connections of both Inception-UNet and Dense-UNet pre-
trained architectures (Table 7.1).

7.3.2 Implementation details

Network Pre-trained
Encoder AG Batch

Size #Epochs Learning
Rate

#Parameters
Individual Shared DSL

Auto-encoder – – 24 8 1e−4 – 7.9M 7.9M
Att-UNet – ✓ 18 6 5e−4 3×8.7M 8.7M 8.7M

Inception-UNet InceptionV3 ✓ 18 6 5e−4 3×48.1M 48.1M 48.3M
Dense-UNet DenseNet121 ✓ 12 4 1e−4 3×23.3M 23.3M 23.6M

Efficient-UNet EfficientNetB3 ✓ 12 4 5e−4 3×14.6M 14.6M 14.8M

Table 7.1 – Summary of the networks employed during experiments and their correspond-
ing architecture design, including: pre-trained encoder [61], [86], [191], attention gate (AG)
[42] and number of trainable parameters in individual, shared and DSL learning schemes;
along with their corresponding training hyper-parameter values: batch size, number of
epochs and learning rate.

Each of the networks employed through the experiments was characterized by specific
implementation and architecture designs (Table 7.1). As previously indicated, all networks
integrated attention gates with the exception of the auto-encoder due to the lack of skip
connections. Moreover, ReLU and SiLU non-linear activation functions were implemented,
in accordance with the original design of the employed models [42], [61], [86], [191]. As
in Chapter 6, all networks were optimized using the Adam optimizer with distinct batch
size, number of epochs and learning rate for each (Table 7.1), and these hyper-parameters
values remained fixed across all multi-task, multi-domain segmentation strategies (indi-
vidual, transfer, shared, and DSL). In shared and DSL schemes, the image batch was
equally split between each dataset to prevent domain-bias during optimization.
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The number of scales employed in the multi-scale contrastive regularization LMSC re-
mained fixed across the networks with |S| = 9. Meanwhile, the single-scale contrastive
constraint LSSC only involved the 5th spatial scale corresponding to the network bottleneck
(i.e., encoder output). Additionally, model complexity (i.e., number of trainable param-
eters) varied across architectures and learning schemes with a maximum of 3 × 48.1M
(millions) parameters for individual Inception-UNet (Table 7.1). Most notably, domain-
specific weights represented at maximum 3.0% of the total of trainable parameters and
DSL frameworks were highly compact compared to individual schemes which required
K = 3 times more parameters.

Finally, we explored various values for the hyper-parameters of the multi-scale con-
trastive regularization LMSC and multi-joint shape priors LMJSP, and found τ = 0.1,
λ1 = 0.05, and λ3 = 0.1 to be optimal. The optimal value of λ2 varied between architecture
with λ2 = 0.5 for Att-UNet and Inception-UNet whereas λ2 = 0.05 for Dense-UNet and
Efficient-UNet. For its part, the single scale contrastive regularization LSSC was weighted
by an hyper-parameter set to 0.1. As mentioned in Chapter 6, all networks were trained on
2D slices with substantial data augmentation, and we employed the same post-processing
based on the selection of largest connected set to which we applied morphological closing.

7.3.3 Quantitative and qualitative assessments

The quantitative assessment of the generated segmentation relied on the metrics de-
scribed in Chapter 6 (Dice, sensitivity, specificity, MSSD, ASSD, and RAVD) and exper-
iments followed the same leave-one-out evaluation design within multiple datasets.

Similarly to Chapter 5, the limited amount of 3D examinations forced us to perform the
statistical analysis between methods on the 2D MR images. To compare the multi-task,
multi-domain strategies, we concatenated the 2D scores obtained on each dataset to create
a unique distribution per metric. Specifically, we employed the Kolmogorov-Smirnov non-
parametric test [261], [262] using Dice, sensitivity, and specificity scores obtained from
the 2649 ankle, 3041 knee, and 3682 shoulder 2D slices which corresponded to the 45 MR
image volumes in the test sets. Nevertheless, to avoid distorting the scores distributions,
we retained only the scores obtained from the 1294 ankle, 2283 knee, and 3357 shoulder
2D images with at least one anatomical structure of interest. The non-normality of the
2D results distributions was preliminary verified using D’Agostino and Pearson normality
test [245], [246]. Moreover, due to the skew of the non-normal distributions, we reported
their mean and the distances from the mean to the upper and lower bound of the 68%
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confidence interval, which corresponds to the 16 and 84 percentiles, as in [228]. Since
transfer models (transferAnkle, transferKnee, and transferShoulder) were not tested on their
original domain, we used the 2D scores obtained in the individual scheme as substitute. For
each backbone architecture (Att-UNet, Inception-UNet, Dense-UNet, and Efficient-UNet)
we evaluated the statistical significance of the performance obtained by our methodology
based on DSL with multi-scale contrastive regularization and multi-joint shape priors
(DSL+LMSC+LMJSP) compared to other multi-task, multi-domain strategies and reported
the results in Table 7.4.

Finally, we performed visual comparison of predicted segmentation masks at two levels.
First, we extend the visualization conducted in Chapter 6 to assess the benefits in segmen-
tation quality of the proposed multi-scale contrastive regularization (LMSC) along with
multi-joint shape priors (LMJSP) using Att-UNet as backbone architecture in shared and
DSL schemes. Second, we compared the segmentation obtained by the proposed Efficient-
UNet pre-trained architecture in individual, shared + LMJSP, and DSL + LMSC + LMJSP

optimization schemes. We also provide attention maps computed by multi-domain atten-
tion gates to assess the interpretability of the proposed multi-task, multi-domain deep
learning architectures (Att-UNet, Inception-UNet, Dense-UNet, and Efficient-UNet in
DSL + LMSC + LMJSP learning scheme). Specifically, we visualized the attention maps
extracted by the spatial attention gate with highest resolution, which were up-sampled to
original image resolution (i.e., 256× 256) for Inception-UNet, Dense-UNet, and Efficient-
UNet models.

7.3.4 Multi-joint ranking system

To simultaneously compare the performance of each segmentation strategy across mul-
tiple metrics and datasets, we defined a multi-joint ranking system inspired by the one
proposed in Section 5.3.3. In particular, we individually compared the methods on ankle,
knee, and shoulder datasets, and to assess the best multi-task, multi-domain method, we
used a multi-joint ranking defined as the average score over all three joints. As opposed
to the rankings obtained in Part II which were based on global-class metrics, the rank-
ings of the present part relied on multi-class bone scores. Moreover, since transfer models
(transferAnkle, transferKnee, and transferShoulder) were not tested on their original domain,
we used the scores obtained in the individual scheme as substitute. Finally, to assess the
robustness of the multi-joint ranking system, we analyzed the effect of the modification
of the threshold values (each resulting in a different ranking system) as in 5.
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7.3.5 Assessment of learned shared representations

To assess the benefits of the proposed multi-scale contrastive regularization
on the internal features of multi-domain neural networks, we compared the
shared representations learned by Att-UNet and the multi-joint auto-encoder
in shared, DSL, and DSL + LMSC schemes. First, we computed the multi-scale
embeddings zs1 , ..., zs9 of Att-UNet (respectively z̃s1 , ..., z̃s9 of the multi-joint auto-encoder,
Figure 7.2) using ankle, knee, and shoulder 2D MR images (respectively 2D segmentation
masks) originating from the training and validation sets. The 2D segmentation masks
consisting of solely background were discarded during the process. Then, we applied the
dimensionality reduction procedure recommended in [87], to visualize the high dimensional
feature vectors belonging to Rd with d ranging from 32 to 512 (Figure 7.2). For vector
space dimension d > 50, we first employed principal component analysis to reduce the
representations to 50 dimensional feature vectors. We ultimately used the t-SNE algorithm
with perplexity and learning rate respectively set to 30 and 200, to embed the data into
a 2D space (see Section 4.4.2 for additional details on the t-SNE algorithm).

Finally, to provide a quantitative validation of the multi-scale contrastive regulariza-
tion, we computed and compared the mean inter- and intra-domain cosine similarity of
Att-UNet representations learned in shared, DSL + LSSC, and DSL + LMSC schemes. As
evaluating the similarity measure of each possible data points pairs was too computa-
tionally expensive, we randomly selected 105 pairs within and between each domain, and
reported their respective mean cosine similarity and standard deviation in Table 7.8.

7.4 Results
The proposed method based on Efficient-UNet with pre-trained encoder, DSL, multi-

scale contrastive regularization, and multi-joint shape priors was evaluated on three pedi-
atric imaging domains and segmentation tasks. In this section, we report the quantitative
results (Section 7.4.1) and qualitative comparisons (Section 7.4.3) of the multi-task, multi-
domain strategies with different backbone architectures.

7.4.1 Quantitative assessment

Assessment of the multi-task, multi-domain segmentation strategies using Att-UNet
architecture as backbone demonstrated that the segmentation method based on DSL with
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Method Dice ↑ Sens. ↑ Spec. ↑ MSSD ↓ ASSD ↓ RAVD ↓

A
tt

-U
N

et
A

nk
le

Individual 88.2± 1.9 88.1± 5.4 99.8± 0.1 17.9± 10.8 1.9± 1.1 14.1± 4.6
TransferKnee 89.5± 5.7 88.3± 6.0 99.9± 0.1 12.6± 10.2 1.6± 1.7 14.0± 10.9

TransferShoulder 89.3± 4.2 87.5± 6.5 99.9± 0.1 11.6± 5.0 1.3± 0.6 12.9± 8.6
Shared 88.8± 2.5 87.6± 6.3 99.9± 0.1 13.4± 8.1 1.5± 0.8 12.5± 7.0

Shared + LMJSP 89.6± 1.6 90.6± 5.3 99.8± 0.1 13.4± 4.2 1.3± 0.3 13.1± 4.9
DSL 90.6± 2.3 88.5± 4.6 99.9± 0.1 11.0± 7.4 1.2± 0.8 10.9± 5.6

DSL + LMJSP 90.9± 1.9 89.1± 4.6 99.9± 0.1 12.7± 9.2 1.3± 1.2 10.5± 4.4
DSL + LSSC 90.6± 2.1 87.7± 4.9 99.9± 0.1 9.0± 3.0 1.0± 0.3 11.3± 4.7
DSL + LMSC 91.5± 2.0 90.7± 4.7 99.9± 0.1 9.7± 3.7 1.0± 0.3 9.6± 4.2

DSL + LMSC + LMJSP 91.8± 1.8 90.7± 4.8 99.9± 0.1 9.0± 2.9 0.9± 0.3 8.8± 4.7

K
ne

e

Individual 91.1± 3.6 88.9± 5.5 99.9± 0.1 16.5± 12.1 1.6± 1.5 10.7± 6.1
TransferAnkle 92.8± 2.9 91.1± 3.3 99.9± 0.1 12.4± 10.3 1.0± 0.9 7.6± 5.4

TransferShoulder 92.5± 2.4 90.7± 4.0 99.9± 0.1 13.1± 11.3 1.0± 0.8 7.8± 4.5
Shared 91.7± 3.2 88.5± 4.8 99.9± 0.1 12.5± 9.0 1.4± 1.4 9.5± 6.0

Shared + LMJSP 93.6± 1.8 91.9± 3.1 99.9± 0.1 7.9± 8.4 0.8± 0.9 6.4± 3.1
DSL 93.3± 2.5 92.8± 3.5 99.9± 0.1 12.8± 12.1 1.1± 1.3 6.0± 4.0

DSL + LMJSP 93.8± 2.5 93.0± 4.2 99.9± 0.1 9.4± 5.9 0.7± 0.4 6.8± 4.1
DSL + LSSC 93.7± 1.6 92.8± 2.3 99.9± 0.1 11.3± 8.9 1.1± 1.2 6.4± 3.7
DSL + LMSC 94.3± 2.0 93.2± 3.9 99.9± 0.1 8.9± 9.7 0.8± 0.7 5.5± 4.0

DSL + LMSC + LMJSP 94.3± 1.4 92.5± 2.5 99.9± 0.1 5.6± 2.1 0.5± 0.2 5.9± 3.0

Sh
ou

ld
er

Individual 80.9± 10.1 77.7± 14.9 99.9± 0.1 26.9± 14.1 2.4± 1.8 15.2± 16.7
TransferAnkle 82.6± 8.8 79.8± 12.5 99.9± 0.1 26.9± 17.2 2.2± 1.8 17.0± 10.1
TransferKnee 83.3± 10.1 80.5± 12.5 99.9± 0.1 24.0± 14.3 2.1± 2.4 13.7± 13.2

Shared 80.1± 9.6 76.6± 12.9 99.9± 0.1 28.1± 12.2 2.7± 1.8 18.3± 12.4
Shared + LMJSP 80.7± 9.0 79.2± 12.3 99.9± 0.1 25.0± 15.6 2.3± 1.8 19.4± 12.0

DSL 80.9± 7.3 77.6± 11.6 99.9± 0.1 34.4± 19.1 3.3± 2.3 19.4± 12.2
DSL + LMJSP 81.4± 9.0 79.2± 14.3 99.9± 0.1 31.0± 18.5 2.5± 2.2 15.7± 12.2
DSL + LSSC 81.3± 9.1 78.1± 12.2 99.9± 0.1 25.4± 13.7 2.7± 2.7 17.1± 13.3
DSL + LMSC 82.1± 8.0 79.8± 9.1 99.9± 0.1 27.5± 11.6 2.7± 1.8 15.6± 13.1

DSL + LMSC + LMJSP 84.9± 6.3 82.9± 9.2 99.9± 0.1 17.6± 8.0 1.5± 1.1 13.5± 10.5

Table 7.2 – Leave-one-out quantitative assessment of Att-UNet [42] using individual, trans-
fer, shared, and DSL strategies employed with single-scale contrastive regularization LSSC,
multi-scale contrastive regularization LMSC, and multi-joint shape priors LMJSP on ankle,
knee, and shoulder datasets. Metrics include Dice (%), sensitivity (%), specificity (%),
MSSD (mm), ASSD (mm), and RAVD (%). Mean scores and standard deviations re-
ported in bold and underlined respectively correspond to the first and second best results
obtained for each dataset.

multi-scale contrastive regularization LMSC and multi-joint shape priors LMJSP achieved
the best results on all metrics, except for sensitivity (0.7% lower than the best) and RAVD
(0.4% higher than the best) on the knee dataset (Table 7.2). For ankle examinations, the
method outperformed other approaches in Dice (+0.3%), MSSD (−0.7 mm), ASSD (−0.1
mm) and RAVD (−0.8%), while reaching sensitivity performance (90.7%) comparable to
DSL+LMSC strategy. With respect to the scores obtained for knee bone segmentation, our
approach improved MSSD (−2.3 mm) and ASSD (−0.2 mm), while achieving same Dice
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Method Dice ↑ Sens. ↑ Spec. ↑ MSSD ↓ ASSD ↓ RAVD ↓

In
ce

pt
io

n-
U

N
et A

nk
le Individual 91.4± 2.6 92.2± 3.3 99.9± 0.1 8.5± 4.2 0.9± 0.4 9.7± 5.9

Shared + LMJSP 91.3± 2.2 91.6± 5.1 99.9± 0.1 9.8± 4.1 1.0± 0.3 10.0± 5.0
DSL + LMSC + LMJSP 93.2± 1.5 92.2± 3.8 99.9± 0.1 6.5± 2.0 0.7± 0.2 7.4± 3.4

K
ne

e Individual 93.9± 2.2 92.1± 3.7 99.9± 0.1 5.5± 2.6 0.5± 0.2 6.9± 4.5
Shared + LMJSP 94.2± 2.1 93.0± 3.7 99.9± 0.1 6.4± 3.0 0.5± 0.2 6.0± 3.4

DSL + LMSC + LMJSP 94.5± 1.1 93.6± 2.0 99.9± 0.1 6.3± 2.2 0.5± 0.2 5.2± 2.7

Sh
ou

ld
er Individual 82.8± 7.3 79.6± 9.3 99.9± 0.1 21.8± 10.9 2.1± 1.5 15.9± 10.7

Shared + LMJSP 83.1± 5.8 81.2± 10.6 99.9± 0.1 20.0± 11.2 1.7± 1.5 16.4± 10.5
DSL + LMSC + LMJSP 84.5± 5.8 80.5± 9.2 99.9± 0.1 20.2± 6.5 1.6± 0.7 14.7± 9.7

D
en

se
-U

N
et A

nk
le Individual 92.4± 1.7 91.4± 4.7 99.9± 0.1 7.4± 2.4 0.8± 0.2 7.9± 4.5

Shared + LMJSP 93.4± 1.5 92.8± 4.4 99.9± 0.1 6.9± 2.1 0.7± 0.2 6.6± 4.6
DSL + LMSC + LMJSP 93.4± 1.3 92.5± 4.0 99.9± 0.1 6.4± 1.7 0.7± 0.2 6.6± 4.1

K
ne

e Individual 94.3± 1.3 92.6± 2.5 99.9± 0.1 5.2± 2.2 0.5± 0.1 5.6± 2.9
Shared + LMJSP 95.1± 1.6 94.9± 2.4 99.9± 0.1 4.6± 1.8 0.5± 0.2 4.5± 3.2

DSL + LMSC + LMJSP 95.1± 1.2 93.7± 2.5 99.9± 0.1 4.5± 1.4 0.5± 0.1 4.7± 2.2

Sh
ou

ld
er Individual 82.5± 9.2 79.5± 12.4 99.9± 0.1 22.1± 11.6 1.9± 1.5 16.2± 14.4

Shared + LMJSP 84.9± 4.8 85.2± 8.1 99.9± 0.1 20.2± 13.0 1.4± 1.0 14.9± 8.2
DSL + LMSC + LMJSP 86.6± 4.3 87.0± 5.3 99.9± 0.1 16.0± 6.5 1.2± 0.6 11.5± 6.5

Effi
ci

en
t-

U
N

et A
nk

le Individual 92.3± 1.5 92.0± 3.8 99.9± 0.1 7.0± 2.1 0.8± 0.2 8.2± 4.1
Shared + LMJSP 93.8± 0.9 93.5± 2.8 99.9± 0.1 6.5± 1.6 0.6± 0.1 5.9± 2.2

DSL + LMSC + LMJSP 93.8± 1.3 93.5± 4.0 99.9± 0.1 5.6± 1.8 0.6± 0.2 6.9± 3.7

K
ne

e Individual 94.1± 1.3 93.0± 2.9 99.9± 0.1 4.7± 1.2 0.5± 0.1 5.7± 2.5
Shared + LMJSP 95.0± 1.2 94.3± 2.4 99.9± 0.1 4.8± 1.7 0.5± 0.2 4.1± 2.3

DSL + LMSC + LMJSP 95.4± 1.1 95.0± 2.0 99.9± 0.1 4.2± 1.3 0.4± 0.1 3.8± 1.6

Sh
ou

ld
er Individual 87.7± 4.0 86.8± 5.7 99.9± 0.1 16.0± 5.4 1.0± 0.5 8.4± 6.1

Shared + LMJSP 86.9± 4.1 89.0± 4.8 99.9± 0.1 14.3± 5.1 0.9± 0.3 10.7± 8.2
DSL + LMSC + LMJSP 87.9± 3.8 87.4± 4.8 99.9± 0.1 15.6± 5.5 1.0± 0.5 7.3± 5.0

Table 7.3 – Leave-one-out quantitative assessment of the pre-trained architectures:
Inception-UNet [86], Dense-UNet [61], and Efficient-UNet [191] on ankle, knee, and shoul-
der datasets. Individual, shared, and DSL strategies are employed with multi-scale con-
trastive regularization LMSC and multi-joint shape priors LMJSP. Metrics include Dice (%),
sensitivity (%), specificity (%), MSSD (mm), ASSD (mm), and RAVD (%). Mean scores
and standard deviations reported in bold and underlined respectively correspond to the
first and second best results obtained for each dataset and each backbone.

results (94.3%) as DSL+LMSC scheme. Additionally, for the shoulder dataset, our method
outperformed other approaches in Dice (+1.6%), sensitivity (+2.4%), MSSD (−6.4 mm),
ASSD (−0.6 mm), and RAVD (−0.2%). All methods achieved excellent specificity scores
on all datasets (> 99.8%, Table 7.2). Moreover, the statistical analysis performed on 2D
slices using Dice, sensitivity and specificity metrics indicated that the proposed method
(DSL + LMSC + LMJSP) produced significant improvements in segmentation performance
(p-values < 0.01, Table 7.4). The 2D results also confirmed the overall performance im-
provements produced by our approach on Dice (+2.1%) and sensitivity (+0.8%) scores.
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Method Dice 2D ↑ p-value Sens. 2D ↑ p-value Spec. 2D ↑ p-value

A
tt

-U
N

et

Individual 84.1+13.9
−14.6 <1×10−6 84.8+13.7

−14.2 <1×10−6 99.8+0.2
−0.1 <1×10−6

TransferAnkle 85.1+13.1
−12.5 <1×10−6 85.8+12.5

−13.5 <1×10−6 99.8+0.2
−0.1 <1×10−6

TransferKnee 84.7+13.3
−13.8 <1×10−6 85.4+13.3

−13.7 <1×10−6 99.9+0.1
−0.1 <1×10−6

TransferShoulder 84.8+13.4
−15.4 <1×10−6 85.0+13.6

−15.7 <1×10−6 99.9+0.1
−0.1 <1×10−6

Shared 83.6+14.3
−15.0 <1×10−6 83.3+15.1

−15.9 <1×10−6 99.9+0.1
−0.1 <1×10−6

Shared + LMJSP 85.4+12.8
−12.7 <1×10−6 87.5+11.4

−13.8 <1×10−6 99.9+0.1
−0.1 <1×10−6

DSL 84.2+13.9
−16.8 <1×10−6 84.3+14.4

−16.6 <1×10−6 99.9+0.1
−0.1 <1×10−6

DSL + LMJSP 84.8+13.6
−16.2 <1×10−6 86.6+12.3

−14.5 <1×10−6 99.9+0.1
−0.1 <1×10−6

DSL + LSSC 85.1+13.1
−15.2 <1×10−6 84.9+13.6

−15.9 <1×10−6 99.9+0.1
−0.1 <1×10−6

DSL + LMSC 86.1+12.2
−12.8 <1×10−6 86.2+12.3

−13.4 <1×10−6 99.9+0.1
−0.1 <1×10−6

DSL + LMSC + LMJSP 88.2+10.2
−10.9 – 88.3+10.4

−12.9 – 99.9+0.1
−0.1 –

In
ce

pt
. Individual 86.4+11.8

−12.1 <1×10−6 86.4+12.1
−12.2 <1×10−6 99.9+0.1

−0.1 <1×10−6

Shared + LMJSP 86.5+11.8
−11.8 <1×10−6 87.8+10.9

−13.2 <1×10−6 99.9+0.1
−0.1 <1×10−6

DSL + LMSC + LMJSP 88.2+10.3
−11.0 – 87.7+11.0

−12.6 – 99.9+0.1
−0.1 –

D
en

se Individual 87.7+10.6
−9.8 <1×10−6 87.4+11.1

−12.2 <1×10−6 99.9+0.1
−0.1 <1×10−6

Shared + LMJSP 89.0+9.4
−8.9 2.3×10−4 90.7+8.3

−8.6 <1×10−6 99.9+0.1
−0.1 <1×10−6

DSL + LMSC + LMJSP 89.5+8.8
−6.9 – 89.8+8.9

−8.4 – 99.9+0.1
−0.1 –

Effi
ci

en
t Individual 89.6+8.7

−6.0 <1×10−6 90.0+8.5
−7.9 <1×10−6 99.9+0.1

−0.1 1.2×10−1

Shared + LMJSP 90.0+8.3
−6.5 3.1×10−5 91.7+6.9

−5.3 <1×10−6 99.9+0.1
−0.1 <1×10−6

DSL + LMSC + LMJSP 90.1+8.4
−6.9 – 90.6+8.2

−8.7 – 99.9+0.1
−0.1 –

Table 7.4 – Statistical analysis between the proposed methods using the four backbone
architectures: Att-UNet [42], Inception-UNet [86], Dense-UNet [61], and Efficient-UNet
[191]. Multi-task, multi-domain strategies include: individual, transfer, shared, and DSL
employed with single-scale contrastive regularization LSSC, multi-scale contrastive regular-
ization LMSC, and multi-joint shape priors LMJSP. Statistical analysis performed through
Kolmogorov-Smirnov non-parametric test using Dice (%), sensitivity (%), and specificity
(%) computed on 2D slices from ankle, knee and shoulder datasets. Bold p-values (< 0.01)
highlight statistically significant results for each metric and each backbone, while best 2D
results are reported in bold. Mean 2D scores and the distances from the mean to the
upper and lower bound of the 68% confidence interval are reported.

We then evaluated the performance of the backbone architectures with an encoder
pre-trained on ImageNet using individual, shared + LMJSP, and DSL + LMSC + LMJSP

learning schemes (Table 7.3). Results obtained with Inception-UNet, Dense-UNet, and
Efficient-UNet models further illustrated the benefits of the proposed learning scheme
based on DSL, multi-scale contrastive regularization LMSC, and multi-joint shape priors
LMJSP. In Inception-UNet experiments, the DSL+LMSC +LMJSP scheme ranked best in all
metrics and in all datasets except for knee MSSD (0.8 mm higher than the best), shoulder
sensitivity (0.7% lower than the best), and shoulder MSSD (0.2 mm higher than the best).
Similarly, Dense-UNet backbone with DSL + LMSC + LMJSP approach ranked best in all
metrics and in all datasets except for ankle sensitivity (1.3% lower than the best), knee
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sensitivity (1.2% lower than the best), and knee RAVD (0.2% higher than the best).
For its part, the proposed Efficient-UNet with DSL + LMSC + LMJSP achieved the best
performance in all metrics and in all datasets except for ankle RAVD (1.0% higher than the
best), shoulder sensitivity (1.6% lower than the best), and shoulder MSSD (1.3 mm higher
than the best). Moreover, with respect to the 2D results, the proposed DSL+LMSC+LMJSP

scheme consistently reached the best Dice performance while Shared+LMJSP achieved the
best sensitivity within each backbone (Table 7.4). The obtained p-values indicated that
the proposed DSL + LMSC + LMJSP produced statistically significant different results (p-
values < 0.01), except compared with the individual scheme using the Efficient backbone
on the sensitivity metric. In this particular case, the difference between the 2D scores
distributions was not statistically significant. However, as DSL +LMSC +LMJSP produced
statistically significant improvements on the remaining 2D metrics, we considered the
overall improvements to be statistically significant.

Finally, when comparing the four backbone architectures (Att-UNet, Inception-UNet,
Dense-UNet, and Efficient-UNet) with fixed DSL+LMSC +LMJSP learning scheme (Tables
7.2 and 7.3), we observed that the proposed Efficient-UNet DSL +LMSC +LMJSP reached
the best performance in all metrics and in all datasets except for ankle RAVD (0.3%
higher than Dense-UNet DSL + LMSC + LMJSP).

7.4.2 Multi-joint rankings

Efficient-UNet DSL + LMSC + LMJSP ranked first in performance (Table 7.5) on the
knee dataset (mean score of 77.8) and on the multi-joint segmentation task (mean score of
64.4), while achieving the second best performance on the ankle (mean score of 67.6) and
shoulder (mean score of 47.8) datasets. The proposed framework was marginally outper-
formed by Shared + LMJSP model on ankle (+0.3 mean score) and shoulder (+0.3 mean
score) segmentation tasks. Individual Att-UNet ranked last on ankle (mean score of 36.7),
knee (mean score of 47.4), shoulder (mean score of 30.3), and multi-joint (mean score of
38.2) datasets. It was observed in the experiments based on Att-UNet architecture that
transfer learning between pediatric datasets consistently outperformed the standard ap-
proach. For their part, the results of shared and DSL schemes on both ankle and knee
datasets indicated noticeable score improvements while the results on shoulder examina-
tions were less evident. Additionally, the ranks achieved by the pre-trained architectures
(Inception-UNet, Dense-UNet, and Efficient-UNet) further demonstrated that the pro-
posed DSL + LMSC + LMJSP learning scheme promoted better performance as compared
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Method Ankle Knee Shoulder Multi-joint
Score Rank Score Rank Score Rank Score Rank

A
tt

-U
N

et

Individual 36.7± 12.0 19 47.4± 22.3 19 30.3± 20.5 11 38.2± 20.1 20
TransferAnkle – – 58.2± 19.0 16 27.1± 16.2 15 40.6± 20.6 18
TransferKnee 48.3± 22.0 15 – – 34.4± 21.8 7 43.4± 22.9 17

TransferShoulder 47.4± 17.7 16 56.9± 19.0 17 – – 44.9± 22.0 15
Shared 44.4± 15.7 18 51.0± 21.4 18 22.6± 19.3 18 39.4± 22.5 19

Shared + LMJSP 46.9± 8.5 17 64.3± 15.1 13 29.0± 23.7 13 46.7± 22.2 13
DSL 50.1± 16.2 12 62.3± 19.3 14 18.9± 14.4 19 43.8± 24.8 16

DSL + LMJSP 49.7± 12.9 14 64.8± 14.9 12 27.5± 19.0 14 47.4± 22.0 12
DSL + LSSC 50.0± 11.9 13 61.8± 17.1 15 25.8± 20.0 17 45.9± 22.4 14
DSL + LMSC 54.8± 11.0 11 68.5± 16.9 10 26.2± 20.2 16 49.8± 24.1 11

DSL + LMSC + LMJSP 57.2± 10.9 9 68.8± 11.6 8 37.8± 20.9 5 54.6± 19.8 7

In
ce

pt
. Individual 58.2± 11.0 8 67.6± 13.7 11 30.1± 21.9 12 52.0± 22.7 10

Shared + LMJSP 55.8± 12.3 10 68.7± 13.0 9 32.0± 18.7 9 52.2± 21.3 9
DSL + LMSC + LMJSP 63.7± 10.3 5 70.5± 9.9 5 31.7± 14.1 10 55.3± 20.5 6

D
en

se Individual 61.2± 11.3 7 70.1± 9.2 7 32.1± 21.2 8 54.5± 22.0 8
Shared + LMJSP 66.9± 12.2 3 75.8± 10.7 2 35.4± 18.0 6 59.3± 22.3 5

DSL + LMSC + LMJSP 66.0± 11.0 4 73.9± 8.9 4 41.3± 17.6 4 60.4± 19.0 3

Effi
ci

en
t Individual 61.3± 8.5 6 70.4± 8.5 6 46.4± 14.8 3 59.4± 14.8 4

Shared + LMJSP 67.9± 7.5 1 75.5± 9.3 3 48.1± 14.3 1 63.8± 15.8 2
DSL + LMSC + LMJSP 67.6± 10.5 2 77.8± 7.0 1 47.8± 16.7 2 64.4± 17.3 1

Table 7.5 – Multi-joint scores and rankings of the four backbone architectures: Att-
UNet [42], Inception-UNet [86], Dense-UNet [61], and Efficient-UNet [191] on ankle, knee,
and shoulder datasets. Multi-task, multi-domain strategies include: individual, transfer,
shared, and DSL employed with single-scale contrastive regularization LSSC, multi-scale
contrastive regularization LMSC, and multi-joint shape priors LMJSP. Results encompass
mean, standard deviation and associated rank. Methods were ranked according to their
mean score. Best results are in bold.

to individual training. Finally, assessment of the robustness of the multi-joint ranking
further confirmed the efficiency performance of the multi-task, multi-domain proposed
model. Indeed, Efficient-UNet DSL + LMSC + LMJSP ranked first whatever the selected
threshold values (Table 7.6).

7.4.3 Qualitative assessment

Visual comparison of the multi-scale contrastive regularization LMSC and multi-joint
shape priors LMJSP completed the evaluation performed in Chapter 6 and provided visual
evidence of gradual improvements in segmentation quality for both shared and DSL Att-
UNet models (Figure 7.3). As noted in Chapter 6, we observed that shape priors enforce
globally more consistent delineations for all targeted anatomical structures. Additionally,
the contrastive regularization encouraged more precise bone extraction in all
domains (A12, K3, and S11) through more robust shared representations with
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Method Multi-joint rankings
Dice75 Dice85 Sens75 Sens85 MSSD20 MSSD40 ASSD3 ASSD5 RAVD5 RAVD15

A
tt

-U
N

et

Individual 20 20 20 20 20 20 20 20 20 20
TransferAnkle 18 18 18 18 18 18 18 18 18 18
TransferKnee 17 17 17 17 17 17 17 17 17 17

TransferShoulder 15 15 15 15 15 15 15 15 15 15
Shared 19 19 19 19 19 19 19 19 19 19

Shared + LMJSP 13 13 13 13 13 13 13 13 12 13
DSL 16 16 16 16 16 16 16 16 16 16

DSL + LMJSP 12 12 12 12 12 12 12 12 13 12
DSL + LSSC 14 14 14 14 14 14 14 14 14 14
DSL + LMSC 11 11 11 11 11 11 11 11 11 11

DSL + LMSC + LMJSP 7 7 7 7 8 7 8 7 7 7

In
ce

pt
. Individual 10 10 10 10 9 10 10 10 10 10

Shared + LMJSP 9 9 9 9 10 9 9 9 9 9
DSL + LMSC + LMJSP 6 6 6 6 6 6 6 6 6 6

D
en

se Individual 8 8 8 8 7 8 7 8 8 8
Shared + LMJSP 5 4 5 4 4 5 4 4 4 5

DSL + LMSC + LMJSP 3 3 3 3 3 3 3 3 3 3

Effi
ci

en
t Individual 4 5 4 5 5 4 5 5 5 4

Shared + LMJSP 2 2 2 2 2 2 2 2 2 2
DSL + LMSC + LMJSP 1 1 1 1 1 1 1 1 1 1

Table 7.6 – Transformed multi-joint rankings of the four backbone architectures: Att-
UNet [42], Inception-UNet [86], Dense-UNet [61], and Efficient-UNet [191] on ankle, knee
and shoulder datasets. Multi-task, multi-domain strategies include: individual, transfer,
shared, and DSL employed with single-scale contrastive regularization LSSC, multi-scale
contrastive regularization LMSC, and multi-joint shape priors LMJSP. Rankings were com-
puted using different threshold values: Dice = 75 or 85%, Sensitivity = 75 or 85%, MSSD
= 20 or 40 mm, ASSD = 3 or 5 mm and RAVD = 5 or 15%. Modified ranks are in bold.

domain-specific clusters. Meanwhile, the proposed DSL + LMSC + LMJSP approach
fostered the benefits of both previous terms and generated smoother and more realistic
bone delineations (A14, K5 and S11).

We then visually compared the pre-trained Efficient-UNet models employed in indi-
vidual, shared + LMJSP, and DSL + LMSC + LMJSP learning strategies (Figure 7.4). First,
the qualitative comparison demonstrated that models with pre-trained encoder benefited
from transfer learning to achieve robust feature extraction and produce highly accurate
delineations in the three considered anatomical regions (A2, K11, and S8). However, we
observed that individual models produced segmentation errors in several imaging exami-
nations, for instance, by over-segmenting the femoral shape in knee joint (K11) or under-
segmenting the scapular bone in shoulder joint (S3). Specifically, because the boundary
between bone and ligament was not detected by the individual model, ligamentous tissues
were erroneously classified as femur bone (K11). Furthermore, the thin structure of scapu-
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Figure 7.3 – Visual comparison of the multi-scale contrastive regularization
LMSC and multi-joint shape priors LMJSP using Att-UNet architecture. Auto-
matic segmentation of ankle, knee, and shoulder bones based on Att-UNet [42] employed
in shared and DSL strategies. Ground truth delineations are in red ( ) while predicted
bones appear in green ( ) for calcaneus, blue ( ) for talus, yellow ( ) for tibia (distal),
orange ( ) for femur (distal), pink ( ) for fibula (proximal), light green ( ) for patella,
light blue ( ) for tibia (proximal), magenta ( ) for humerus, and cyan ( ) for scapula.

lar bone led to its partial misclassification as background (S3). Additionally, the calcaneus
shape was also under-segmented due to intensity difference within the bone (A11). While
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Figure 7.4 – Visual comparison of the pre-trained Efficient-UNet models em-
ployed in individual, shared + LMJSP, and DSL + LMSC + LMJSP strategies on
ankle, knee, and shoulder bones. Automatic segmentation of ankle, knee, and shoul-
der bones based on Efficient-UNet [191] employed in individual, shared + LMJSP, and
DSL +LMSC +LMJSP strategies. Ground truth delineations are in red ( ) while predicted
bones appear in green ( ) for calcaneus, blue ( ) for talus, yellow ( ) for tibia (distal),
orange ( ) for femur (distal), pink ( ) for fibula (proximal), light green ( ) for patella,
light blue ( ) for tibia (proximal), magenta ( ) for humerus, and cyan ( ) for scapula.

the shared +LMJSP model produced segmentation improvements over its individual coun-
terparts, it was essential to employ the DSL + LMSC + LMJSP model incorporating layer
specialization along with multiple regularizers to learn robust shared representations and
achieve precise bone shape predictions on unseen images (A11, K15, and S8).

Finally, we provide visualization of the attention maps computed by the multi-domain
attention gates of the Att-UNet, Inception-UNet, Dense-UNet, and Efficient-UNet archi-
tectures employed in DSL + LMSC + LMJSP learning scheme (Figure 7.5). As indicated
in Chapter 4, these attention maps were crucial in interpreting the inference process of
deep neural networks. This visualization confirmed that the segmentation models
exploited the spatial and contextual information from the encoder branch to
focus on the bone of interest in each anatomical joint. Indeed, knee attention
maps clearly equally highlighted each bone of interest (femur, fibula, patella, and tibia),
and suppressed most of the irrelevant regions. In some cases, background elements were
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Figure 7.5 – Visualization of the attention maps computed by the multi-domain
attention gates using DSL + LMSC + LMJSP learning scheme. Architectures en-
compassed Att-UNet [42], Inception-UNet [86], Dense-UNet [61], and Efficient-UNet [191]
employed on ankle, knee, and shoulder joint images. Pixel-wise coefficients ranging from
0 in blue to 1 in red indicated low to high attention.

also included (e.g., A9 with Inception-UNet and S12 with Dense-UNet) and may help the
inference process which remains difficult to interpret. We can note that attention maps
computed on shoulder joint images highlighted the scapula less than the humerus bone.
Meanwhile, ankle joint attention maps focused on the calcaneus, talus, and tibia bones,
with some background structures also being highlighted. Finally, for each bone of inter-
est, we observed a discontinuity in the attention coefficients at the bone borders (e.g., K3

with Efficient-UNet), that allowed the network to effectively distinguish and extract their
shape from the rest of the image.
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7.5 Discussion

In this chapter, we developed and evaluated a novel multi-task, multi-domain deep
segmentation framework with multi-scale contrastive regularization and multi-joint shape
priors. To the best of our knowledge, the proposed multi-task, multi-domain segmentation
method is the first illustration to optimize a single neural network over multiple pediatric
musculoskeletal joints. Experiments performed on the ankle, knee, and shoulder joint
imaging datasets demonstrated improved bone segmentation performance compared to
individual, transfer, and shared learning schemes. The statistical analysis validated the
significance of the results, while visual comparison of the predicted delineations further
confirmed the enhancements in segmentation quality of the proposed framework. The
proposed methodology could provide significant benefits to the management of pediatric
imaging resources and can have a major impact for any deep learning-based medical image
analysis framework.

7.5.1 Segmentation performance

From the extension of the Att-UNet experiments performed in Chapter 6, it appeared
essential to employ both LMJSP and LMSC terms to benefit from the shared representa-
tion and layer specialization, and reach performance improvements over independent and
transfer models on all datasets. This outcome was also supported by the results obtained
on Inception-UNet, Dense-UNet, and Efficient-UNet models (Tables 7.3 and 7.5). It is also
worth emphasizing that the multi-scale contrastive LMSC regularization outperformed its
single-scale LSSC counterpart on all datasets (Tables 7.2 and 7.5), indicating that disen-
tangling representations at each scale provided better generalization performance than
focusing only on the features within the network’s bottleneck. For instance, the ankle
Dice score increased from 90.6% to 91.5%, while knee and shoulder Dice metrics improved
by 0.7% and 0.8% respectively. Finally, we observed that, within Att-UNet models, the
proposed DSL + LMSC + LMJSP scheme achieved important improvements in MSSD and
ASSD metrics (Table 7.2), indicating lower surface errors. Qualitative assessment (Figure
7.3) further confirmed this observation as compared methods were reported to partially
segment the talus, fibular, and scapular shapes. In contrast, our method provided com-
plete bone segmentation resulting in substantial surface metric (i.e., MSSD and ASSD)
improvements.

When comparing the performance of the four employed backbone architectures in
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the individual learning scheme (Tables 7.2, 7.3, and 7.5), we observed that Inception-
UNet, Dense-UNet, and Efficient-UNet outperformed Att-UNet in all metrics and in all
datasets. As also highlighted in Chapter 5, this clearly indicated that designing a segmen-
tation model with a pre-trained encoder resulted in better initialization through features
learned on ImageNet and better segmentation performance by mean of a more complex
and deeper CNN architecture. Indeed, compared to the complexity of the Att-UNet model,
the number of trainable parameters in Inception-UNet, Dense-UNet and Efficient-UNet
corresponded to an increase by a factor of five, three, and two respectively (Table 7.1).
However, to avoid over-fitting, it is also crucial to limit the number of trainable parameters,
as models with too much capacity may learn the dataset and task too well. In practice, the
optimal model capacity depends on the considered task and available imaging resources
which are limited in the context of sparse pediatric datasets. In this sense, we observed
step-wise performance improvements from Inception-UNet (48.3M parameters) to Dense-
UNet (23.6M parameters) and ultimately Efficient-UNet (14.8M parameters) networks
(Table 7.3). For instance, shoulder Dice score increased from 84.5% for Inception-UNet
to 86.6% for Dense-UNet and ultimately to 87.9% using Efficient-UNet. Finally, the pro-
posed multi-task, multi-domain approach also allowed us to reduce the number of learn-
able parameters by a factor of K = 3, and to consequently minimize over-fitting and
improve generalizability. Meanwhile, the supplementary parameterization introduced by
the domain-specific layers was considered marginal (i.e., less than 3.0%).

As demonstrated through our experiments, the proposed DSL+LMSC +LMJSP learning
scheme is architecture-independent, and thus can be effortlessly integrated into various
existing CNN models and can improve the overall performance in all datasets. Indeed,
although the obtained Dice and ASSD performance gains can be considered
limited, these improvements are consistent and robust (i.e., lower standard
deviation). Most importantly, experiments performed on Inception-UNet, Dense-UNet,
and Efficient-UNet illustrated that the multi-scale contrastive regularization can be com-
puted from the internal representations of networks composed of distinct building blocks
(i.e., Inception, dense, or MBConv blocks) and diverse feature transformation operation
(i.e., classical, point-wise, depth-wise, or asymmetrical convolutions and ReLU or SiLU
non-linearity functions).

As indicated by the high variance in shoulder results (Tables 7.2 and 7.3), the shoul-
der dataset was more challenging to segment than those from ankle and knee
joints, due to more complex bone shapes (i.e thin scapular blade), higher vari-
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Method Dice ↑ Sens. ↑ Spec. ↑ MSSD ↓ ASSD ↓ RAVD ↓

A CombRegMulti
Res-UNet † 94.1± 1.1 93.5± 3.1 99.9± 0.1 5.3± 2.3 0.6± 0.2 6.2± 2.4

Efficient-UNet DSL++ 93.8± 1.3 93.5± 4.0 99.9± 0.1 5.6± 1.8 0.6± 0.2 6.9± 3.7

K CombRegMulti
Res-UNet – – – – – –

Efficient-UNet DSL++ 95.4± 1.1 95.0± 2.0 99.9± 0.1 4.2± 1.3 0.4± 0.1 3.8± 1.6

S CombRegMulti
Res-UNet † 89.5± 3.3 89.3± 4.0 99.9± 0.1 18.5± 16.9 1.2± 1.5 6.1± 3.3

Efficient-UNet DSL++ 87.9± 3.8 87.4± 4.8 99.9± 0.1 15.6± 5.5 1.0± 0.5 7.3± 5.0

Table 7.7 – Quantitative comparison of CombRegMulti
Res-UNet framework proposed in Part II

and Efficient-UNet DSL+LMSC +LMJSP (DSL++) pipeline of Part III on ankle (A), knee
(K), and shoulder (S) datasets. Metrics encompass Dice (%), sensitivity (%), specificity
(%), MSSD (mm), ASSD (mm) and RAVD (%). Bold results correspond to the best per-
formance for each dataset and for each metric. † indicates that results previously reported
using global-class masks (Table 5.4) have been transformed into multi-class scores.

ability among pediatric patients (i.e., different age groups), and the presence
of examinations with a higher level of noise due to patient movements during
acquisition. A similar comment was noted in Chapter 5 with respect to the presence
of two outliers examinations, one healthy and one pathological, in the shoulder dataset.
Interestingly, the attention maps (Figure 7.5) could explain the lower performance for seg-
menting the scapular shape which appeared more challenging to detect than the humerus
bone. Finally, compared to our previous experiments performed in Chapters 4 and 5, we
incorporated three additional ankle pediatric examinations with a higher level of noise in
the test sets which led to a marginal drop in performance for ankle bone segmentation.
Nevertheless, we still observed that for the ankle joint segmentation, the DSL scheme
outperformed the shared approach, which in turn outranked the individual scheme.

Finally, we compared the performance of the frameworks proposed in Parts II and III
(respectively CombRegMulti

Res-UNet and Efficient-UNet DSL + LMSC + LMJSP) on ankle, knee,
and shoulder datasets (Table 7.7). To obtain a fair comparison, we transformed the score of
CombRegMulti

Res-UNet previously reported in Table 5.4 into multi-class bone metrics. From this
comparison, it appeared that both frameworks achieved similar results on all ankle metrics,
whereas a larger difference in performance was reported on the shoulder dataset. Indeed,
CombRegMulti

Res-UNet reached better Dice (+1.6%), sensitivity (+1.9%), and RAVD (−1.2%)
scores, while Efficient-UNet DSL + LMSC + LMJSP scored best in MSSD (−2.9 mm) and
ASSD (−0.2 mm), with lower variance for both metrics. With respect to the knee dataset,
only Efficient-UNet DSL+LMSC+LMJSP could be evaluated, as access to the pediatric knee
imaging database was granted solely to develop our multi-task, multi-domain framework.
It should be emphasized that experiments performed in Part III included three additional
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pediatric ankle examinations (two pathological and one healthy) which were not available
at the time of the experiments of Part II. Moreover, the leave-one-out evaluation schemes
differed between experiments, it was achieved independently for each dataset in Part II,
whereas Part III employed a multi-domain leave-one-out scheme (see Sections 4.3.4 and
6.3.4). Although this comparison is not completely fair as all implementation details were
not strictly identical, the following conclusion can be formulated.

Ultimately, as CombRegMulti
Res-UNet leveraged a combination of shape priors and adversar-

ial regularization, one could expect performance gain by integrating a discriminator net-
work in the Efficient-UNet DSL+LMSC +LMJSP multi-anatomy framework. However, this
proved difficult due to the unstable simultaneous optimization of the segmentation and ad-
versarial networks. But most importantly, the multi-task, multi-domain Efficient-
UNet DSL +LMSC +LMJSP model simultaneously learned to segment all three
datasets, whereas CombRegMulti

Res-UNet was limited to segment one dataset at a
time.

7.5.2 Assessment of learned shared representations

Similarly to the experiments performed in Chapter 4, the present visualization of the
shared representation provided an indirect analysis of the inference process of deep neural
networks and a qualitative validation of the benefits of the additional multi-scale con-
trastive regularization on both intra-domain cohesion and inter-domain separation (Figure
7.6). In both Att-UNet and auto-encoder networks, the shared representation learned us-
ing shared and DSL schemes did not present margins between domains. More specifically,
shared models presented mixed features with most discriminative domain disentangle-
ment in the network bottleneck (s5) which corresponded to the higher dimensional vector
space (d = 512) allowing more robust differentiation between domains. On the contrary,
the addition of the contrastive regularization led to distinctive domain-specific clusters
at each scale of both networks. Hence, the shared representations of our proposed
neural networks were invariant to local variations and preserved the category
of the input domain through the different scales of the models. Moreover, the
generalization capabilities of the networks were visually attested as validation data points
were located inside their respective domain clusters.

The quantitative evaluation (Table 7.8) further supported the visualizations obtained
through the t-SNE algorithm (Figure 7.6). Indeed, the shared Att-UNet representations
presented inter-domain cosine similarity measures with high mean (> 0.58) and standard
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Figure 7.6 – Visual comparison of the shared representations learned in shared,
DSL and DSL + LMSC learning schemes. Architectures encompassed Att-UNet [42]
and the multi-joint auto-encoder (MJAE). The multi-scale contrastive regularization LMSC
promoted intra-domain cohesion and inter-domain margins in embedded spaces at each
scale. This visualization was obtained using the t-SNE algorithm [87] in which each colored
dot represented a 2D MR slice or segmentation mask from the training or validation set
of the ankle, knee, or shoulder datasets.

deviation (> 0.06) suggesting entangled domain representations with low cohesion. More-
over, as previously mentioned, the network bottleneck corresponding to the representation
zs5 (Figure 7.6) presented better domain disentanglement due to higher dimensionality.
Additionally, the multi-scale contrastive regularization expectedly led to, at each scale,
an increase in intra-domain similarity (> 0.98) indicating more closely aligned representa-
tions from the same domain and a decrease in inter-domain similarity (< 0.47) reflecting
more discriminative (i.e., orthogonal) representations between different domains. However,
we observed that domain representations were less disentangled at scale s9 (inter-domain
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Cosine
similarity

zs1 (d = 32) zs5 (d = 512) zs9 (d = 32)
Ankle Knee Shoulder Ankle Knee Shoulder Ankle Knee Shoulder

A
tt

-U
N

et

Sh
ar

ed Ankle 0.84(0.16) 0.84(0.11) 0.83(0.10) 0.82(0.16) 0.58(0.20) 0.69(0.12) 0.86(0.14) 0.73(0.17) 0.86(0.09)

Knee 0.84(0.11) 0.93(0.07) 0.93(0.06) 0.58(0.20) 0.88(0.12) 0.71(0.11) 0.73(0.17) 0.90(0.10) 0.83(0.12)

Shoulder 0.83(0.10) 0.93(0.06) 0.97(0.03) 0.69(0.12) 0.71(0.11) 0.93(0.05) 0.86(0.09) 0.83(0.12) 0.95(0.05)

D
SL

+
L S

SC

Ankle 0.84(0.17) 0.83(0.11) 0.84(0.08) 0.99(0.01) 0.25(0.02) 0.21(0.02) 0.90(0.11) 0.82(0.10) 0.83(0.08)

Knee 0.83(0.11) 0.93(0.07) 0.93(0.05) 0.25(0.02) 0.99(0.01) 0.21(0.02) 0.82(0.10) 0.90(0.10) 0.85(0.08)

Shoulder 0.84(0.08) 0.93(0.05) 0.98(0.02) 0.21(0.02) 0.21(0.02) 0.99(0.01) 0.83(0.08) 0.85(0.08) 0.97(0.04)

D
SL

+
L M

SC Ankle 0.99(0.01) 0.31(0.05) 0.29(0.04) 0.99(0.01) 0.29(0.02) 0.22(0.03) 0.98(0.02) 0.47(0.05) 0.39(0.03)

Knee 0.31(0.05) 0.99(0.01) 0.34(0.03) 0.29(0.02) 0.99(0.01) 0.27(0.02) 0.47(0.05) 0.98(0.01) 0.47(0.05)

Shoulder 0.29(0.04) 0.34(0.03) 0.99(0.01) 0.22(0.03) 0.27(0.02) 0.99(0.01) 0.39(0.03) 0.47(0.05) 0.99(0.01)

Table 7.8 – Quantitative analysis based on cosine similarity of the shared representations
learned by Att-UNet in shared, DSL + LSSC, and DSL + LMSC strategies using ankle,
knee, and shoulder datasets. The included scales correspond to the encoder first layer
(s1), network bottleneck (s5), and decoder last layer (s9). Mean and standard deviation
similarity measures are reported.

similarity greater than 0.39) than at scales s1 and s5 (inter-domain similarity lower than
0.34). Therefore, the effectiveness of contrastive learning to disentangle domain represen-
tations varies at each scale, as we observed a quantitative difference in the cosine similarity
of the learned representations. Finally, we also assessed the representations learned with
the single-scale contrastive regularization which only constrained the network bottleneck
(i.e., encoder output or zs5). Compared with LMSC, only the representation associated
with the 5th scale was disentangled while zs5 and zs9 were not affected by the single-scale
contrastive constraint. This further supported the necessity to employ a multi-scale con-
trastive LMSC regularization to disentangle representations at each layer, as opposed to
LSSC term.

7.5.3 Benefits for clinical practice

As mentioned in Part I, current deep learning models are typically specific to anatom-
ical region of interest and may suffer from the limited availability of imaging data, which
is exacerbated in pediatric clinical workflows. Our approach demonstrated that de-
signing a collaborative framework incorporating multi-anatomy datasets with
close intensity domains and related segmentation tasks can lead to perfor-
mance improvements on each dataset. In turn, this could lead to a more efficient
use of imaging resources (pediatric or adult), most notably for the treatment of muscu-
loskeletal disorders affecting different anatomical joints (see Chapter 2). Several patient
cohorts impaired by distinct pathologies could be leveraged to optimize a single model
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with enhanced generalization capabilities, thus reducing the overall cost of medical image
acquisition. More generally, our approach could be transposed to other sets of anatomical
structures sharing common characteristics, such as blood vessels in brain, liver, and retina
images [263]. Additionally, the multi-scale contrastive regularization could be integrated
to enhance vascular segmentation by imposing domain-specific clusters in the embedded
spaces of the shared neural network.

Similarly to earlier studies employing highly compact multi-domain models [66]–[69],
our work demonstrated that deep neural networks can easily learn related segmentation
tasks across multiple intensity domains. Specifically, this further confirmed the use-
fulness of employing DSBN functions for multi-domain learning, which were
previously successfully applied for multi-modal, multi-scanner, multi-center,
or multi-protocol segmentation [66]–[69] and have now proven to be equally
effective in a multi-anatomy scenario. Furthermore, when dealing with pediatric
patients, it may be beneficial to define domains corresponding to different age groups,
as anatomy is significantly modified during child development. However, in this thesis,
we were unable to explore such multi-age setting due to the limited amount of imaging
resources per age group. Finally, as opposed to previous plain UNet models developed
in [66]–[69], our model relied on a more complex architecture based on an pre-trained
EfficientNetB3 encoder to achieve more accurate segmentation and integrated multi-
domain spatial attention gates to improve its interpretability.

7.5.4 Limitations

This work has certain limitations which are categorically listed in this section. First,
as previously mentioned in Chapter 4, although the coarse localization of the anatom-
ical structures of interest computed by attention gates and the t-SNE visualizations of
the learned shared representations provide some interpretability of the network inference
process, these approaches do not fully explain the features learned by the segmentation
model. Similarly, even though incorporating regularization through the loss function suc-
cessfully constrains the network parameters and promotes the desired generalizable char-
acteristics during training, the optimization procedure of deep neural networks remains
difficult to analyse. Specifically, while the constraints computed by the multi-scale
contrastive regularization are explicit, the interpretability of the multi-joint
shape priors, on its part, is limited as it is based on a deep auto-encoder. This
limitation of the deep auto-encoder based shape priors method was already described in
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Chapter 4. It is thus essential to develop more interpretable models allowing a finer anal-
ysis of the internal behavior of the framework during training and inference. In Chapter
4, we briefly referenced the work of Zhang et al. on interpretable CNN which provides a
clear semantic representation by assigning to each filter a specific object part to explic-
itly memorize during the learning process [237]. One can also mention the ExplAIn [264]
framework which introduces an intermediate pixel-level labeling task to directly explain
the final image-level lesion classification prediction. Such interpretable and explainable
models could therefore be of great interest for medical image analysis applications, as it
would allow a better analysis of the network failures. It should be mentioned, that the
terms of interpretability and explainability are usually used interchangeably within the
community, as these concepts are not rigorously mathematically defined [265].

Second, as introduced in Chapter 1, while a common hypothesis in machine learning
is that the training and test data originate from the same data distribution, an emerging
field (i.e., domain generalization or out-of-distribution generalization) has proposed to
address the more challenging setting in which the goal is to learn a model that can
generalize to an unseen test domain [72]–[74]. In this thesis, although our model
managed multiple domains, we only addressed plain generalizability within
each domain (i.e., unseen test image from the same distribution as the training
data). While the performance improvements obtained during the leave-one-
out evaluation indicated better generalization abilities within each domain,
our model is currently unable to generalize well on new unseen domains (e.g.,
new modality or anatomical joint). In the context of life-long learning in which a
single model continuously learns new domains, Karani et al. [67] have demonstrated that
DSBN parameters could be fine-tuned with limited amount of training data from the novel
domain, while the convolutional filters remained fixed. We assumed that our model could
be similarly fine-tuned on a new domain without forgetting the knowledge learned on the
previous domains. However, this approach still requires access to labeled imaging data
from the new domain, unlike domain generalization frameworks in which data from the
new test domain is assumed to be unavailable. Out-of-distribution generalization is thus
more generic than traditional domain adaption techniques or life-long learning schemes.
Therefore, domain generalization appears crucial for medical image segmentation, where
each anatomical region and acquisition protocol defines a new domain in which imaging
resources are not necessarily available for network training or fine-tuning purposes.
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7.5.5 Perspectives

As our experiments were conducted on only one imaging modality (i.e., T1-weighted
MR), we were unable to evaluate the genericity of our approach over multiple modali-
ties (e.g., T2-weighted MR, CT) because of the lack of available data. However, previous
studies have already demonstrated that a single neural network incorporating shared con-
volutional filters and DSBN functions can effectively process both CT and MR modalities
simultaneously [69]. So, we assumed that our model could be easily extended to multiple
modalities. Similarly, we limited our experiments to bone tissue segmentation without
considering other musculoskeletal tissues such as muscles, ligaments, or cartilages due
to the unavailability of annotations. We also hypothesized that our framework could be
upgraded to multi-tissue segmentation since previous works [31], [32], [40] have already
demonstrated that deep learning models can effectively segment knee cartilages, knee
muscles, and shoulder muscles, respectively. More generally, whereas methods developed
on natural images employed up to ten domains [77], our experiments involved only three
imaging domains due to the scarcity of pediatric imaging resources and the lack of open
access pediatric databases. Hence, future studies are aimed at incorporating sup-
plementary MR imaging sequences to further promote generic features during
optimization and segmenting additional tissues to provide a more complete
description of the musculoskeletal system.

In this direction of including an increasing number of imaging datasets, it may be
beneficial to adapt our framework to federated learning schemes or annotations efficient
approaches (see Figure 1.1). Indeed, a federated learning scheme similar to the one devel-
oped by Shen et al. [266] for multi-task pancreas segmentation, would allow optimization
of a single model using training data from multiple institutions without centralizing imag-
ing resources. This would consequently prevent data privacy and security issues, which is
crucial in medical workflows [266]. For their part, annotation-efficient approaches such as
[267], would allow to include imaging datasets with weak labels (e.g., scribbles) and large
amount of unlabeled data. In turn, this would reduce the burden of producing large-scale
and high-quality annotated segmentation dataset, which is laborious to obtain.

Furthermore, as previously noted noted in Chapter 5, we did not consider 3D ar-
chitectures in our experiments due to their higher computational complexity and GPU
memory consumption compared to their 2D counterparts [30]. Although our models did
not integrate a third spatial dimension, we observed smooth delineations in all direc-
tions, indicating continuous segmentation predictions between adjacent 2D slices. Addi-
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tionally, our experiments were performed using only four neural network architectures
(Att-UNet, Inception-UNet, Dense-UNet, and Efficient-UNet), hence it would be bene-
ficial to include supplementary comparisons based on additional deep learning models
including Transformers-based ones [268] to further evaluate the genericity of our con-
tributions. Interestingly, the architecture of vision Transformers initially originates from
natural language processing and, unlike every model presented in this thesis, does not rely
on convolutional layers [255]. One could also consider an ensemble approach integrating
all backbone architectures to combine the advantages of each model.

With respect to the contrastive learning, we assumed that the temperature hyper-
parameter τ should be constant at each scale, as the cosine similarity between represen-
tations was bounded in [−1, 1] regardless of scale. However, we observed in Table 7.8 that
contrastive learning was less efficient at certain scales. Specifically, in the DSL+LMSC

learning scheme, the shared representation of the 9th scale was less disentangled than
in 1st and 5th scales. Hence, one could also propose to employ different temperatures at
each scale and to learn such parameters during training, so that the contrastive metric
be more sensitive at each scale and better disentangle representation between domains.
Nevertheless, such a training procedure might be more challenging to optimize due the
numerical instability associated with learnable temperature parameters.

7.6 Conclusion

Developing generalizable deep segmentation model is fundamental to provide accurate
and reliable delineations on unseen images for clinical and morphological evaluation of
the pediatric musculoskeletal system. We introduced a multi-task, multi-domain learning
framework for pediatric bone segmentation in sparse MR imaging datasets acquired on
separate anatomical joints. This multi-anatomy approach simultaneously benefited from
robust shared representations and specialized layers that fitted to the domain-specific
intensity distributions and task-specific segmentation label sets. Furthermore, the gener-
alization capabilities of the segmentation model were enhanced by exploiting a multi-scale
contrastive regularization to enforce domain clustering in the shared representations and
multi-joint shape priors which encouraged anatomically consistent shape predictions.

An important perspective from this thesis is that collaborative utilization of
pediatric resources and intelligent design of deep learning models can improve
the segmentation performance on small musculoskeletal imaging datasets. Nev-
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ertheless, our framework currently provides an incomplete description of the pediatric
musculoskeletal system which solely encompass bone tissues. Hence, future work is aimed
at improving our model to segment other anatomical structures (e.g., ankle cartilages,
knee ligaments, or shoulder muscles). Thus, morphological and functional analysis will
rely on a more complete modeling of the musculoskeletal system, towards a better man-
agement of pediatric disorders.
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General conclusion

The research conducted in this thesis aimed to address the generalization gap and data
scarcity issues encountered when developing deep learning methods for pediatric muscu-
loskeletal image segmentation. We proposed and evaluated frameworks based on
emerging deep learning paradigms which achieved promising performance for
the task of bone segmentation on scarce and heterogeneous pediatric MR
imaging datasets of the ankle, knee, and shoulder joints. In particular, the gen-
eralization performances of the segmentation models were enhanced by exploiting state-
of-the-art architectures, transfer learning schemes, multi-anatomy approaches, and regu-
larization techniques. The contributions of this work were categorized into two research
objectives, as summarized below:
• Research objective 1. We developed and evaluated a partially pre-trained con-

volutional encoder-decoder with combined regularization from shape priors and an
adversarial network, which improved performance for multi-structure bone segmen-
tation on pediatric imaging datasets of the musculoskeletal system. The framework
benefited from the proposed combined regularization to reduce the data scarcity
issue while improving model generalizability. In particular, the shape priors-based
regularization, derived from a non-linear shape representation learned by an auto-
encoder, guided the segmentation network to make anatomically consistent pre-
dictions (Chapter 4). For its part, the adversarial regularization computed by a
discriminator network encouraged more precise delineations with limited imaging
resources. Additionally, the framework leveraged a state-of-the-art residual encoder
and a transfer learning scheme from the ImageNet database to further alleviate
data scarcity limitations (Chapter 5). The proposed CombRegMulti

Res-UNet achieved ex-
cellent performance on both ankle and shoulder datasets, with 94.1% and 89.5%
Dice scores respectively (Table 7.7).
• Research objective 2. We implemented and assessed a multi-task, multi-domain

learning framework for pediatric bone segmentation in sparse MR imaging datasets
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acquired on separate anatomical joints. This multi-anatomy approach simultane-
ously benefited from robust shared representations and specialized layers that fitted
to the domain-specific intensity distributions and task-specific segmentation label
sets to mitigate the scarcity issue of pediatric resources (Chapter 6). In particular,
the multi-task, multi-domain segmentation model integrated a pre-trained Efficient
encoder, shared convolutional filters, multi-domain attention gates, domain-specific
batch normalization, and domain-specific output layers. Furthermore, the general-
ization capabilities of the segmentation model were enhanced by exploiting a multi-
scale contrastive regularization and multi-joint shape priors. The multi-scale con-
trastive regularization leveraged dataset label information to enhance intra-domain
similarity and impose inter-domain margins, while the multi-joint shape priors en-
coded the anatomical characteristics of multiple joints to constrain the segmenta-
tion task (Chapter 7). The proposed Efficient-UNet DSL +LMSC +LMJSP achieved
excellent multi-anatomy segmentation performance, reaching 93.8%, 95.4%, and
87.9% Dice scores on ankle, knee, and shoulder datasets (Table 7.7).

In this thesis, we could not evaluate whether the generalization perfor-
mances achieved by the two proposed frameworks (CombRegMulti

Res-UNet and Effi-
cient-UNet DSL + LMSC + LMJSP) are sufficient to enable the deployment of
fully-automatic bone segmentation methods for pediatric MR imaging in clin-
ical practice. Nevertheless, the obtained results illustrate that collaborative
utilization of pediatric resources and intelligent design of deep learning models
can improve the segmentation performance on small musculoskeletal imaging
datasets.

General limitations

This research work presented certain limitations, which are categorically listed in this
section. First, a limitation intrinsic to current deep learning models is the limited in-
terpretability of both the training and inference steps (see Section 1.3.4). Although the
regularization terms presented in this thesis (shape priors LShape, adversarial LAdv, multi-
joint shape priors LMJSP, and multi-scale contrastive LMSC) successfully constrained the
network’s weights and promoted enhanced generalization capabilities for robust bone ex-
traction, these advanced training methods did not provide a better comprehension of the
optimization process. In particular, at this time, one cannot understand the ef-
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fects of the regularization terms on the highly-dimensional landscape of the
loss function and the repercussions on the gradient descent algorithm. Ideally,
the regularizations should promote smoother loss functions and prevent the presence of lo-
cal minima leading to over-fitting issues, but this is extremely challenging to verify in such
a highly-dimensional setting. Moreover, since the computation of the LShape, LAdv, and
LMJSP regularization losses, was itself based on deep learning models (i.e., an auto-encoder
or a discriminator), the interpretability of these regularizations was even more limited.
For instance, it remains difficult to assess which shape features were constrained by LShape

or LMJSP during optimization. For their part, the constraints computed by the multi-scale
contrastive regularization LMSC were explicit and their effects on the learned representa-
tions were easier to validate (see Section 7.5.2). In addition, attention gates allowed us
to gain some insights into the inference process of segmentation models, but remained
insufficient in understanding networks’ failures. Finally, it should be emphasized that
the “black-box” nature of deep learning also presents ethical issues for potential deploy-
ment in clinical practice. Indeed, following the European Union General Data Protection
Regulation 1, patients have a right to an explanation of how an automated medical sys-
tem reached a clinical decision. While the extent of such an “explanation” is not clearly
defined, this could limit the deployment of current deep learning models as it remains
unclear whether neural networks learn clinically relevant features [269]. In this context,
interpretable and explainable artificial intelligence methods [237], [264] seem all the more
essential to enable the explanation of neural network decisions and to understand the
possible failure of network predictions.

Second, the experiments performed in this thesis had limitations, some of which have
already been mentioned in Parts II and III. For instance, all of our frameworks relied on 2D
slice-by-slice approaches that do not benefit from 3D spatial information. We favored 2D
approaches due to their lower computational complexity and GPU memory consumption
over their 3D counterparts (e.g., VNet [30] or 3D UNet [208]). Although our models did
not integrate complete spatial context, we observed continuous segmentation predictions
between adjacent 2D slices, indicating smooth delineations in all directions. Nevertheless,
our models presented a bias along a certain acquisition direction, and it remains unclear
whether 3D models could improve segmentation performance. Additionally, it should be
noted that combining transfer learning schemes from the 2D ImageNet database with 3D
models is challenging due to the difference in data dimensionality. To circumvent this

1. https://gdpr-info.eu/
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problem, it would be beneficial to employ 3D models pre-trained on 3D computer vision
or medical image analysis tasks. In this direction, initiatives such as the ModelZoo 2 aim
to curate and provide platforms to easily find pre-trained models for various deep learn-
ing software and applications. For its part, the open-source MONAI framework 3, which
is specific to medical image applications, also offers access to pre-trained 3D models.
Leveraging knowledge (i.e., weights) obtained from large-scale medical databases could
be highly relevant in the context of small-scale pediatric imaging dataset segmentation.
Nevertheless, fine-tuning these 3D models with limited GPU computational capacity re-
mains challenging. Ultimately, experiments performed in this thesis were restricted by the
computational capacity of the available GPU, and we could not evaluate whether models
implemented on multi-GPUs may achieve more stable optimization or better results at
inference.

Third, our experiments presented additional limitations directly related to the nature
of the pediatric imaging resources available for this thesis. In particular, due to the scarcity
of pediatric imaging resources and the lack of open access pediatric databases, we only
employed three sparse MR image datasets of the ankle, knee, and shoulder joints. Hence,
we limited our experiments to only one imaging modality (i.e., T1-weighted MR), without
considering other modalities such as T2-weighted MR, X-ray, or CT. However, previous
studies have illustrated that deep learning can successfully segment musculoskeletal struc-
tures in CT scans [206], [224], [226]–[228], X-ray radiographs [178], [231], ultrasound [179],
[225], or PET/CT scans [230]. Similarly, our experiments were only conducted for the seg-
mentation of bone tissues, and we were unable to evaluate the genericity of our approach
to other musculoskeletal tissues (i.e., muscles, ligaments, or cartilages) due to the un-
availability of annotations. Nevertheless, neural networks have also been demonstrated to
efficiently extract multiple tissues simultaneously, such as knee bones, muscles, cartilage,
and ligaments [31]–[36]. So, we assumed that our models developed in Parts II and III
could be easily extended to other modalities and upgraded to multi-tissue segmentation
due to the versatility of deep learning. Ultimately, the clinical impact of the meth-
ods presented in this thesis could be considered limited as our experiments
only targeted the segmentation of pediatric bones and consequently failed to
provide a complete description of the musculoskeletal system.

2. https://modelzoo.co/
3. https://monai.io/
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General perspectives

Based on the methods developed and results obtained in this thesis, the following fu-
ture research perspectives can be considered. First, as mentioned in the previous section,
a straightforward extension of our models lies in the integration of other musculoskeletal
tissues to provide a more detailed assessment of the pediatric anatomy. Ideally, the ex-
tracted 3D meshes of bones, muscles, cartilages, and ligaments could be employed in the
subsequent morphological and functional analyses to better manage pediatric disorders.
For instance, volumetric or anatomical information provided by the generated segmenta-
tion could help clinicians assess the patient’s level of impairment [166]. For its part, the
multi-task, multi-domain learning framework had specific benefits and perspectives for
clinical practice. In particular, the results obtained in Part III illustrated that the col-
laborative utilization of pediatric resources and intelligent design of deep learning models
could improve the segmentation performance on small musculoskeletal imaging datasets.
Hence, future studies could leverage additional patient cohorts impaired by
distinct pathologies to optimize a single model with enhanced generalization
capabilities, thus reducing the overall cost of medical image acquisition. In
this direction of including an increasing number of imaging datasets, it may be benefi-
cial to consider federated learning approaches [21]. This would allow optimization of a
single model using training data from multiple institutions without centralizing imag-
ing resources, thus allowing to prevent data privacy and security issues, which is crucial
in medical workflows. However, it should be mentioned that training models over large
datasets spread across multiple imaging centers can also raise ecological concerns. Indeed,
optimizing deep learning models requires GPUs whose energy consumption and associ-
ated carbon footprint can be substantial when considering large datasets. Interestingly,
the carbon emissions can vary drastically depending on the location and time at which the
training is performed. Recent studies have thus proposed guidelines for reducing carbon
emissions during model development [270].

Second, while our experiments included several state-of-the-art pre-trained encoders
(VGG19 [60], DenseNet121 [61], ResNet50 [59], InceptionV3 [86], EfficientNetB3 [191]),
Transformers-based architectures have recently shown promising results in computer vi-
sion [255] and medical image analysis tasks [268]. Similarly, the self-configuring method
nn-UNet has also attracted the attention of the medical image research community due to
its ability to configure some hyper-parameters automatically and provide robust perfor-
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mance on diverse segmentation challenges [207]. It would therefore be beneficial to
perform supplementary comparisons and further evaluation of the genericity
of our contributions by employing Transformer or nn-UNet models as backbones. Inter-
estingly, unlike every model proposed in this thesis, vision Transformers are not based on
convolutional layers but employ attention mechanisms originating from natural language
processing. Hence, vision Transformers lack the inductive bias resulting from convolutional
operators (i.e., equivariant representations) and can capture global and wider range re-
lations in the image, but at the cost of a more onerous training and complex network
architecture [255]. Indeed, the baseline vision Transform encompasses 86 million learn-
able parameters while its “huge” equivalent necessitates 632 million parameters. It can
thus be impractical to train or fine-tune such models using a single GPU. Nevertheless,
recent works have proposed hybrid pipelines combining vision Transformers and CNNs, to
learn long-range dependencies and effectively capture global contextual representation at
multiple scales while reducing memory consumption [268], [271]. This research direction
could thus be highly relevant to design more efficient models for medical image analysis
tasks.

Third, while our approaches targeted the generalization gap and data scarcity is-
sues, the paucity of ground truth annotations remains an important challenge for deep
learning-based medical image analysis. It would thus be beneficial to incorporate
annotations-efficient approaches into our frameworks to reduce the burden of
producing labels for pediatric examinations, which are laborious to obtain.
Hence, semi- or self-supervision would allow leveraging a large amount of unlabeled data,
while weakly-supervised schemes would enable the inclusion of weak segmentation labels,
such as contours scribbles. For its part, the combination of interactive segmentation tools
and few-shot learning methods has the potential to reduce the annotation burden by en-
abling the user to make minor corrections interactively [21]. In this direction, one could
also consider out-of-distribution generalization schemes to reduce the need for annotated
imaging resources [72]–[74]. Indeed, while the networks developed in this thesis only ad-
dressed plain generalizability within each domain, out-of-distribution generalization aims
to learn a model that can generalize to an unseen test domain. This appears crucial for
medical image segmentation, where each anatomical region and acquisition protocol de-
fines a new domain in which imaging resources are not necessarily available for network
training or fine-tuning purposes. Ultimately, an ideal medical image segmentation system
should be an intelligent and domain-agnostic model capable of automatically delineating
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any anatomical structures. Such a system could be integrated seamlessly into any imag-
ing device and provide morphological and functional information, regardless of the clinical
application, with little to no user interaction.
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NOMENCLATURE

This section provides a list of abbreviations and mathematical notations employed
throughout this thesis.

Abbreviations
2D, 3D Two-, Three-Dimension

CT Computed Tomography

PET Positron Emission Tomography

SPECT Single-Photon Emission Computed Tomography

ALARA As Low As Reasonably Achievable

MR, MRI Magnetic Resonance (Imaging)

TR, TE Repetition Time and Echo Time

FOV Field Of View

OBPP Obstetrical Brachial Plexus Palsy

CNN Convolutional Neural Network

SVM Support Vector Machine

SSM Statistical Shape Model

ReLU Rectified Linear Unit

SiLU Sigmoid Linear Unit

CE Cross-Entropy

BCE Binary Cross-Entropy

BN, DSBN (Domain-Specific) Batch Normalization

DSL Domain-Specific Layer
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AE, MJAE (Multi-Joint) Auto-Encoder

MJSP Multi-Joint Shape Priors

SSC, MSC Single-, Multi-Scale Contrastive

ASSD Average Symmetric Surface Distance

MSSD Maximum Symmetric Surface Distance

RAVD Relative Absolute Volume Difference

CPU Central Processing Unit

GPU Graphics Processing Unit

Notations
Ω Image grid

K Number of domains

Ik kth image domain 1

Ck kth label space

Ck Number of structures of interest in Ck

Dk kth imaging dataset

nk Number of image in Dk

xk
i ith image of Dk

yk
i Ground truth label associated with xk

i

ŷk
i Predicted label associated with xk

i

S Segmentation network

Θ Shared parameters of S 2

Γ Domain-specific parameters of S

Θl Convolution filter of the lth layer

bl Bias of the lth layer

vk
i,l Feature map of the lth layer with input xk

i
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µk
l Domain-specific mini-batch mean of the lth layer

σk
l Domain-specific mini-batch standard deviation of the lth layer

βk
l Domain-specific learnable shift of the lth layer

γk
l Domain-specific learnable scale of the lth layer

Λk Domain-specific batch normalization parameters of S

ρ Activation function

uk
i,l Activation map of the lth layer with input xk

i

uk
i Activation map of the penultimate layer with input xk

i

Wk Domain-specific 1× 1 convolution of the final layer

bk Domain-specific bias of the final layer

Ξk Domain-specific parameters of the final layer

F, G Shape encoder and decoder

ΘF , ΘG Shared parameters of F and G

ΓF , ΓG Domain-specific parameters of F and G

D Discriminator

ΘD Parameters of D

L Loss function

LCE Cross-entropy loss function

LBCE Binary cross-entropy loss function

LDice Dice coefficient loss function

LAE, LMJAE (Multi-joint) auto-encoder loss function

LShape, LMJSP (Multi-joint) shape priors regularization

LD Discriminator loss function

LAdv Adversarial regularization

S Set of layers indices corresponding to the different spatial scale of S
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Pk
i Set of indexes of all images from the same domain as xk

i

zk
i,s Embedding of xk

i at scale s

LMSC,LSSC Multi-scale and single scale contrastive regularization

τ Temperature hyper-parameter of LMSC and LSSC

λ1,2,3 Regularization weighting hyper-parameters

α Learning rate hyper-parameter

pdata True probability distribution of the data

pmodel Probability distribution parameterized by the segmentation model

GT, P Ground truth and predicted 3D segmentation masks

SGT , SP Surface voxels of GT and P

∇ Gradient operator

∗ Convolution product

· Scalar product

∥.∥2 Euclidean or L2 norm

|.| Cardinality of a set

1. In Chapters 3, 4, and 5, the index k is omitted because only one domain is considered.
2. In Chapters 3, 4, and 5, shared and domain-specific parameters are not dissociated because only

one domain is considered.
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Titre : Modèles d’apprentissage profond régularisés pour la segmentation multi-anatomie en
imagerie pédiatrique

Mot clés : Segmentation multi-domaine, Apprentissage multi-tâche, A priori de formes, Régu-

larisation contrastive, Réseaux antagonistes, Système musculo-squelettique

Résumé : En imagerie médicale, la segmen-
tation basée sur l’apprentissage profond per-
met de générer automatiquement des mo-
dèles anatomiques qui sont cruciaux pour
l’évaluation morphologique. Cependant, la ra-
reté des ressources d’imagerie pédiatrique
peut entraîner une diminution de la précision
et des performances de généralisation des
réseaux de segmentation. Pour atténuer ces
problèmes, notre première approche consiste
en un nouveau schéma d’optimisation exploi-
tant des a priori de formes visant à imposer
des prédictions globalement cohérentes et un
réseau antagoniste qui encourage des déli-
mitations plus précises. Dans notre deuxième
stratégie, nous concevons un nouveau ré-

seau multi-tâche et multi-domaine optimisé
sur des ensembles de données d’imagerie
multi-anatomie. Pour améliorer la générali-
sation, nous démêlons les représentations
des domaines en utilisant une régularisation
contrastive et nous étendons les a priori de
formes à l’apprentissage multi-anatomie. Nos
contributions sont évaluées pour la segmen-
tation osseuse de trois articulations (cheville,
épaule, genou). Les méthodes proposées ont
obtenu des résultats supérieurs ou égaux à
ceux des modèles de l’état de l’art. Ces ré-
sultats ouvrent de nouvelles perspectives pour
une utilisation collaborative des ressources
d’imagerie pédiatrique et une meilleure ges-
tion des troubles musculo-squelettiques.

Title: Regularized deep learning models for multi-anatomy segmentation in pediatric imaging

Keywords: Multi-domain segmentation, Multi-task learning, Shape priors, Contrastive regular-

ization, Adversarial networks, Musculsokeletal system

Abstract: In medical imaging, segmentation
using deep learning enables an automatic
generation of anatomical models that are cru-
cial for morphological evaluation. However, the
scarcity of pediatric imaging resources may
result in reduced accuracy and generaliza-
tion performance of segmentation networks.
To mitigate these issues, our first approach
consists in a novel optimization scheme lever-
aging shape priors to enforce globally consis-
tent predictions and an adversarial network to
encourage precise delineations. In our second
strategy, we design a novel multi-task, multi-

domain network optimized over multi-anatomy
imaging datasets. To improve generalizability,
we disentangle the domains representations
using a contrastive regularization and extend
the shape priors to multi-anatomy learning.
Our contributions are evaluated for the bone
segmentation of three anatomical joints (an-
kle, knee, shoulder). The proposed methods
performed either better or at par with state-of-
the-art models. These results bring new per-
spectives towards a collaborative utilization of
pediatric imaging resources and better man-
agement of musculoskeletal disorders.
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