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RÉSUMÉ

Les graphes de connaissances contiennent une collection de faits sur monde réel, où

les nœuds représentent des entités liées par certaines relations. Ils sont utilisés dans

de nombreuses applications, notamment la recherche d’informations, l’intégration de

données ou les agents conversationneles. Cependant, les graphes de connaissances

sont souvent incomplets. La prédiction de liens sur les graphes de connaissances

est alors utilisée pour inférer de nouveaux faits à partir de ceux existants. Plusieurs

modèles existent pour effectuer la prédiction de liens sur les graphes de connaissances.

Une méthode actuellement étudiée est l’utilisation de réseaux convolutifs de graphes

relationnels (RGCNs). Mais ces modèles sont essentiellement traités comme des bôıtes

noires, où aucune information n’est donnée à l’utilisateur sur la raison pour laquelle

le modèle a fait une prédiction particulière.

Souvent, la prédiction seule n’est pas suffisante pour les utilisateurs du modèle

qui doivent prendre des décisions. Sans explication sur la raison pour laquelle le

modèle a fait une prédiction, ces modèles ne peuvent pas être adoptés dans des con-

textes réels tels que la banque, le marketing et le diagnostic médical. Récemment, des

chercheurs ont proposé plusieurs algorithmes, ou méthodes, pour expliquer pourquoi

un modèle de prédiction de liens RGCN a pris une décision particulière. Ces méthodes

d’explication sont appliquées à posteriori à un modèle de prédiction. Mais, les

différentes méthodes d’explication ne renvoient pas toujours la même explication pour

la même entrée. De plus, plusieurs méthodes d’explication existent pour expliquer

les résultats des RGCN pour la prédiction de liens sur les graphes de connaissances.

Le principal inconvénient de ces méthodes d’explication est l’évaluation empirique de

la qualité de l’explication. Il n’existe aucun ensemble de données standard pour

comparer quantitativement les explications entre les méthodes d’explication. De

plus, il n’existe aucune mesure d’évaluation standard pour quantifier la qualité de
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l’explication donnée à l’utilisateur. Cela rend les comparaisons entre les méthodes

d’explication difficiles.

Dans cette thèse, nous proposons une méthode permettant de générer plusieurs

ensembles de données avec une vérité terrain pour les explications afin d’évaluer

quantitativement la qualité des explications produites par les méthodes d’explication

post hoc pour les RGCNs. De plus, nous proposons plusieurs mesures de notation

pour quantifier la qualité de l’explication donnée à l’utilisateur. Les résultats du

benchmark de plusieurs méthodes d’explication de pointe montrent que ces méthodes

ne produisent souvent pas d’explications de haute qualité. Nous proposons un RGCN

qui incorpore les explications de la vérité terrain dans l’intégration des graphes. Nous

constatons cependant que la qualité des explications reste faible, en particulier pour

les explications longues. Enfin, nous proposons un modèle Séquence-à-Séquence qui

apprend à générer des explications pour un RGCN. Nous constatons des améliorations

significatives de la qualité des explications par rapport aux méthodes d’explication

de l’état de l’art, en particulier pour les explications plus longues.

Mots-clés

graphe de connaissances, apprentissage automatique, évaluation des explications,

prédiction de liens, Réseaux neuronaux de graphes, modèles de séquence à séquence
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ABSTRACT

Knowledge Graphs contain a collection of real world facts, where nodes represent

entities linked by some relationship. They are used in many applications, including

information retrieval, data integration, and chat-bots. Knowledge Graphs are often

incomplete. Link prediction on Knowledge Graphs is used to infer new facts from

existing ones. Several models exist to perform link prediction on Knowledge Graphs,

one popular method is the use of Relational Graph Convolutional Networks (RGCNs).

These models are treated as a black box, where no information is given to the user

as to why the model has made a particular decision.

Often the prediction alone is not enough for users of the model who need to

make decisions. Without an explanation as to why the model has made a prediction,

these models cannot be adopted into real world settings such as banking, marketing,

and medical diagnosis. Recently researchers have proposed several algorithms, or

explanation methods, to explain why a black box link prediction model has made a

particular decision. These explanation methods are applied to a model post hoc. The

different explanation methods do not always return the same explanation for the same

input. Moreover, multiple explanation methods exist to explain the results of RGCNs

for link prediction on Knowledge Graphs. The main drawback of these explanation

methods is the empirical evaluation of explanation quality. No standard dataset exists

to quantitatively compare explanations across explanation methods. Additionally, no

standard evaluation metrics exist to quantify the quality of explanation given to the

user. This makes comparisons across explanation methods difficult.

In this thesis, we propose a method to generate several datasets with ground truth

explanations to quantitatively evaluate the quality of explanation produced by post

hoc explanation methods for RGCNs. Additionally, we propose several scoring metrics

to quantify the quality of explanation given to the user. Benchmark results of several
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state-of-the-art explanation methods show that these methods often do not produce

high quality explanations. We propose an RGCN that incorporates ground truth

explanations into the graph embeddings. We find however that explanation quality

was still low, especially on longer explanations. Lastly, we propose a Sequence-to-

Sequence model that learns to generate RGCN explanations. We find significant

improvements of explanation quality over state-of-the-art explanation methods, par-

ticularly on longer explanations.

Keywords

knowledge graph, machine learning, explanation evaluation, link prediction, graph

neural networks, sequence to sequence models

ii



ACKNOWLEDGMENTS

First I would like to thank my supervisors, Fabien Gandon and Freddy Lecue, for

their advice, patience, and support throughout the duration of this thesis. Thank

you Fabien, for your guidance, and helping me make my research the very best it can

be. Your dedication throughout this thesis has shaped me into the researcher I am

today. Thank you Freddy, for your mentorship, and providing me the opportunity to

intern on your team at CortAIx in Montreal. This experience had a big impact on

my research career, and will be invaluable going forward.

I would like to express gratitude to each member of the jury, Andrea Tettamanzi,
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I thank Gaël Varoquaux for your mentorship. Your tutelage taught me invaluable

lessons about how to be a researcher.

Lastly, I thank my parents for their constant support, and my brother, Derek,

who will now have to address me as “Dr. Halliwell.”

iii



Contents

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 On the need to explain automated decisions . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Evaluating explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Published results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Knowledge Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Link Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Feedforward Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.2 Prototype Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.3 Long short-term memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.4 Sequence to Sequence Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.5 Graph Convolutional Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Explanation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 ExplaiNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 GNNExplainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.3 Datasets and metrics used for RGCN explanations evaluation 18

3 MOTIVATING THE NEED FOR GROUND TRUTH EXPLANATIONS 20

3.1 Introducing a Post Hoc Explanation Approach for Prototype Net-

works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iv



3.2 Proposed Approach: Leveraging Prototype Networks for Post Hoc

Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Experiments of Proposed Approach using Multiple Data Types. . . . . 22

3.3.1 Image Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.2 Tabular Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 On the Development and Evaluation of Post Hoc Explanation Meth-

ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Concluding Remarks on the Empirical Evaluation of Post Hoc Ex-

planations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 BENCHMARKING EXPLANATION METHODS FOR RGCN-BASED

LINK PREDICTION WITH UNIQUE EXPLANATIONS . . . . . . . . . . . . . . . 28

4.1 Introduction to Explanation Generation for RGCN-based Link Pre-

diction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Shortcomings of Explanation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Generating Ground Truth Explanations for Evaluation . . . . . . . . . . . . . 31

4.3.1 Inference Traces as Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.2 Explanation Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Extracting and Generating the Royalty Datasets . . . . . . . . . . . . . . . . . . . 35

4.4.1 Royalty Datasets Rule Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.2 Dataset Specifics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Benchmark Explanation Methods on Royalty Datasets . . . . . . . . . . . . . 39

4.5.1 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.2 RGCN Link Prediction-Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

v



4.5.3 Quantitative Evaluation of RGCN Link Prediction Expla-

nations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5.4 Qualitative Evaluation of RGCN Link Prediction Explana-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5.5 Discussion of Royalty Benchmark Results . . . . . . . . . . . . . . . . . . . 45

4.6 Limitations of Royalty Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.7 Concluding Remarks on Royalty Datasets. . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 BENCHMARKING EXPLANATION METHODS FOR RGCN-BASED

LINK PREDICTION WITH MULTIPLE GROUND TRUTH EXPLA-

NATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 Introduction to Multiple Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Shortcomings of RGCN Explanation Methods and Contributions . . . 49

5.3 Generating a User Evaluated Dataset with Multiple Ground Truth

Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3.1 Inference Traces as Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3.2 Ensuring Completeness of Explanations . . . . . . . . . . . . . . . . . . . . 52

5.3.3 Logical Derivation and Partial Explanation Rules . . . . . . . . . . . 53

5.3.4 Users’ Evaluation of Explanation Scores . . . . . . . . . . . . . . . . . . . . 55

5.4 Evaluation of Multiple Ground Truth Explanations . . . . . . . . . . . . . . . . 60

5.4.1 Scoring Metrics for Multiple Explanations . . . . . . . . . . . . . . . . . . 60

5.4.2 Benchmark Setup and Protocol for Multiple Explanations. . . 64

5.4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Concluding Remarks on Multiple Explanation Benchmark. . . . . . . . . . 70

vi



6 IMPACT OF INJECTING GROUND TRUTH EXPLANATIONS INTO

RGCN EMBEDDINGS ON EXPLANATIONMETHOD PERFORMANCE 71

6.1 Introduction to Explanation Aware RGCNs . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Injecting Ground Truth Explanations into RGCN Embeddings . . . . . 72

6.2.1 Constraining the Loss Function of RGCNs . . . . . . . . . . . . . . . . . . 72

6.2.2 Explanation Aware Loss Function for Unique Explanations . 74

6.2.3 RGCN Loss Summing all Possible Explanations . . . . . . . . . . . . 75

6.2.4 RGCN Loss Weighting each Possible Explanations . . . . . . . . . . 76

6.2.5 RGCN Loss Selecting the Highest Score . . . . . . . . . . . . . . . . . . . . 77

6.3 Explanation Aware RGCN Benchmark Results and Evaluations . . . . 77

6.3.1 Results with Non-Ambiguous Explanations . . . . . . . . . . . . . . . . . 80

6.3.2 Results with Non-Unique Explanations . . . . . . . . . . . . . . . . . . . . . 81

6.4 Error Analysis: Quantitative Evaluation of Explanations . . . . . . . . . . . 81

6.4.1 Royalty-20k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4.2 Royalty-30k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4.3 FrenchRoyalty-200k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.5 Discussion of Explanation Aware RGCN Benchmark Results . . . . . . . 89

6.6 Concluding Remarks on Explanation Aware RGCNs . . . . . . . . . . . . . . . 91

7 SEQUENCE TO SEQUENCE MODELS FOR EXPLAINING RGCN-

BASED LINK PREDICTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.0.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.1 Knowledge Graphs and their explanations as a Corpus . . . . . . . . . . . . . 93

7.1.1 Generating a Synthetic Corpus from a KG. . . . . . . . . . . . . . . . . . 94

7.1.2 Adding Valid Counter-Examples to the Corpus . . . . . . . . . . . . . 95

vii



7.2 Sequence to Sequence Models for Explaining Link Predictions in

Knowledge Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2.1 Task Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2.2 Seq2Seq Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3 Evaluation of Seq2Seq Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.3.1 Protocol and Metrics for Seq2Seq Explanations . . . . . . . . . . . . . 101

7.3.2 Seq2Seq Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.3.3 Sanity Checks for Model Robustness. . . . . . . . . . . . . . . . . . . . . . . . 104

7.3.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.4 Concluding Remarks on Seq2Seq models for RGCN Explanations . . 107

8 CONCLUSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

viii



List of Tables

2.1 Breakdown of popular explanation methods for different types of data . 16

4.1 Royalty datasets: Breakdown of each predicate in the dataset . . . . . . . . . 38

4.2 Benchmark results on Royalty-20k and Royalty-30k . . . . . . . . . . . . . . . . . . . 40

4.3 Royalty datasets: Most frequent predicate across incorrectly predicted

explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Royalty datasets: ExplaiNE’s most frequently missing predicate . . . . . . . 43

5.1 FrenchRoyalty-200k dataset: Breakdown of all predicates each possible

explanation, and its score given by users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 FrenchRoyalty-200k dataset (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Benchmark results on FrenchRoyalty-200k . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 FrenchRoyalty-200k: Distributions of user scores amongst incomplete

attempts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1 Results on Royalty-20k, Royalty-30k datasets: Link prediction results

for baseline RGCN and proposed loss functions, along with explanation

evaluation for GNNExplainer and ExplaiNE. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Results on FrenchRoyalty-200k: Link prediction results for baseline

RGCN and proposed model, along with explanation evaluation for GN-

NExplainer and ExplaiNE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Most frequent predicate across incorrectly predicted explanations for

explanation aware RGCNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Most frequently missing predicate for explanation aware RGCNs . . . . . . 85

6.5 Distributions of user scores amongst errors for Lsum′ relative to the

LRGCN on FrenchRoyalty-200k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.1 Seq2Seq benchmark results on Royalty-30k dataset . . . . . . . . . . . . . . . . . . . . 103

7.2 Sanity Checks for Seq2Seq model with counter-examples . . . . . . . . . . . . . . 106

ix



List of Figures

Figure Page

2.1 Prototype Network Architecture Li et al. [2018]. . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Structure of LSTM cell Hochreiter and Schmidhuber [1997] . . . . . . . . . . . . 12

2.3 Seq2Seq model Sutskever et al. [2014] for Neural Machine Translation. . 13

3.1 MNIST Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Saliency maps: Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Saliency maps: Proposed approach-randomly initialized untrained net-

work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Saliency maps: Proposed approach-network trained on randomly per-

muted labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Explanations generated by Lime and proposed approach on California

Housing dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Royalty datasets: A candidate triple plotted with it unique explanation 35

4.2 Royalty datasets: Predicate Frequency Count on Incorrectly Predicted

Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 FrenchRoyalty-200k: A candidate triple plotted with its non-unique

explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Example question from user survey on hasSister relation. . . . . . . . . . . . . . . 58

5.3 Native languages of user survey participants. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 ExplaiNE FrenchRoyalty-200k: Most frequently predicted predicates

amongst incomplete attempts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 GNNExplainer FrenchRoyalty-200k: Most frequently predicted predi-

cates amongst incomplete attempts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1 RGCN with Lsum: Predicate Frequency Count on Incorrectly Predicted

Explanations on each Full Dataset.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

x



7.1 Seq2Seq: Generating Explanations on Positive Triples . . . . . . . . . . . . . . . . . 96

7.2 Seq2Seq: Training with counter-examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xi



Chapter 1

INTRODUCTION

1.1 On the need to explain automated decisions

Deep learning models are used to serve automated decisions in applications such

as fraud detection Dhankhad et al. [2018], Randhawa et al. [2018], credit scoring Du-

mitrescu et al. [2022], Lessmann et al. [2015], Henley and Hand [1997], and medical

diagnosis Patŕıcio et al. [2022], Choudhury and Gupta [2019], Varoquaux and Chep-

lygina [2022]. Users receiving an automated decision such as hospital patients, credit

applicants, and practitioners debugging the model want to know why the model pre-

ferred one outcome over another. No user is willing to receive a medical diagnosis

from an automated system unless the outcome is explained and justified.

In 2016, Defense Advanced Research Projects Agency (DARPA) launched an ex-

plainable AI initiative calling on researchers to create machine learning techniques

that produce more explainable models, where humans could understand and trust

their rationale. In 2018, the European Union enacted the General Data Protection

Regulation (GDPR) to give individuals protective rights to their personal data, in-

cluding a “right to explanation” of automated decisions.

Deep learning models can be applied to many tasks, including image classification,

machine translation, and link prediction. These models are too often treated as black

boxes, where no insight is given as to how they make decisions. Recently, researchers

have proposed algorithms, or explanation methods, that explain to the user why a

model makes a given decision. The weak point of these explanation methods is the

empirical evaluation of explanations returned to the user.
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1.2 Evaluating explanations

In many domains, there is no benchmark to quantitatively evaluate the quality

of explanation produced by the model. Current state-of-the-art explanation methods

do not use any common datasets or scoring metrics to quantitatively evaluate expla-

nation quality. Consequently, it is difficult to determine if an explanation method is

producing accurate explanations, and when to prefer one method over another. One

solution is to create a standard dataset with ground truth explanations, which would

allow researchers to develop standard scoring metrics that could be used to evaluate

the explanations from state-of-the-art explanation methods.

Ground truth explanations can be difficult to define for some domains. Even if

they could be defined, there can be more than one way to explain the prediction of

a black box model. Some natural questions stem from this idea of defining ground

truth explanations:

• How do current state-of-the-art explanation methods perform when there is only

one ground truth explanation to choose from? That is, does one explanation

method produce more accurate explanations when each observation has one and

only one ground truth explanation?

• How do current state-of-the-art explanation methods perform when there are

multiple ground truth explanations to choose from? In other words, does one

explanation method produce more accurate explanations when each observation

has more than one ground truth explanation to choose from?

• Can ground truth explanations be used during training to improve the quality

of post hoc explanations?

• Lastly, can an explanation method be developed that outperforms current state-
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of-the-art explanation methods?

1.3 Contributions of this thesis

This thesis is outlined as follows; Chapter 2 provides an overview of all related

work used in this thesis. Chapter 3 justifies the need for ground truth explanations,

and we discuss the difficulties that arise when measuring explanation quality. In

Chapter 4, we construct two datasets where each observation has one and only one

ground truth explanation. We then benchmark state-of-the-art explanation methods

on these datasets. In Chapter 5, we construct a dataset where each observation has

multiple ground truth explanations. We then benchmark state-of-the-art explanation

methods on this dataset. Chapter 6 proposes to train a model using information

from ground truth explanations. Empirical results show improved explanation pre-

diction performance for several explanation methods. In Chapter 7, we propose a

sequence model that generates explanations, and propose sanity checks to verify what

the model has learned. Empirical results show improved performance over state-of-

the-art, specifically on explanations where previous approaches struggled. Lastly,

Chapter 8 concludes the thesis and provides opportunities for future work.

1.4 Published results

The results of this thesis were published in several international venues:

• N. Halliwell, F. Gandon, and F. Lecue. A Simplified Benchmark for Non-

ambiguous Explanations of Knowledge Graph Link Prediction using Relational

Graph Convolutional Networks. International Semantic Web Conference, Oct.

2021a. URL https://hal.archives-ouvertes.fr/hal-03339562. Poster

• N. Halliwell, F. Gandon, and F. Lecue. Linked Data Ground Truth for Quan-

titative and Qualitative Evaluation of Explanations for Relational Graph Con-
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volutional Network Link Prediction on Knowledge Graphs. In International

Conference on Web Intelligence and Intelligent Agent Technology, Melbourne,

Australia, Dec. 2021c. doi: 10.1145/3486622.3493921. URL https://hal.

archives-ouvertes.fr/hal-03430113

• N. Halliwell, F. Gandon, and F. Lecue. User Scored Evaluation of Non-Unique

Explanations for Relational Graph Convolutional Network Link Prediction on

Knowledge Graphs. In International Conference on Knowledge Capture, Virtual

Event, United States, Dec. 2021b. doi: 10.1145/3460210.3493557. URL https:

//hal.archives-ouvertes.fr/hal-03402766

• N. Halliwell, F. Gandon, and F. Lecue. A Simplified Benchmark for Ambigu-

ous Explanations of Knowledge Graph Link Prediction using Relational Graph

Convolutional Networks. 36th AAAI Conference on Artificial Intelligence, Feb.

2022a. URL https://hal.archives-ouvertes.fr/hal-03434544. Poster

• N. Halliwell. Evaluating Explanations of Relational Graph Convolutional Net-

work Link Predictions on Knowledge Graphs. In AAAI 2022 - 36th AAAI

Conference on Artificial Intelligence, Vancouver, Canada, Feb. 2022. URL

https://hal.archives-ouvertes.fr/hal-03454121

• N. Halliwell, F. Gandon, F. Lecue, and S. Villata. The Need for Empirical

Evaluation of Explanation Quality. In AAAI 2022 - Workshop on Explainable

Agency in Artificial Intelligence, Vancouver, Canada, Feb. 2022c. URL https:

//hal.archives-ouvertes.fr/hal-03591012

• N. Halliwell, F. Gandon, and F. Lecue. Impact of Injecting Ground Truth Ex-

planations on Relational Graph Convolutional Networks and their Explanation

Methods for Link Prediction on Knowledge Graphs. In WI-IAT 2022 - The
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21st IEEE/WIC/ACM International Conference on Web Intelligence and In-

telligent Agent Technology, Niagara Falls / Hybrid, Canada, Nov. 2022b. URL

https://hal.archives-ouvertes.fr/hal-03771424
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Chapter 2

RELATED WORK

This chapter outlines related work and concepts used throughout the thesis, in-

cluding the type of data used, Knowledge Graphs, the machine learning task used in

the thesis, link prediction, the algorithms used to perform the link prediction task,

Deep Learning, and the algorithms used to explain the predictions of Deep Learning

models, and black box explanation methods.

2.1 Knowledge Graphs

Knowledge Graphs (KGs) Hogan et al. [2020], Ji et al. [2020] are used on tasks

such as search engine enhancement, question answering, and product recommenda-

tion. Knowledge Graphs represent facts as triples in the form (subject, predicate,

object), where a subject and object represent a real-world entity, linked by some pred-

icate. In other words, KGs represent nodes (entities) in a graph, where the links

connecting the nodes are not necessarily the same. Resource Description Framework

(RDF) Cyganiak et al. [2014] defines a graph based Linked Data model to represent

KGs on the Web. The Semantic Web uses several standards, including RDF, to link

data found on the Web. Linked Data Berners-Lee [2006], is a specific type of KG

following a set of principles for publishing the data on the Web, ensuring the KG is

machine and human readable, freely accessible, and non-proprietary.

2.2 Link Prediction

Knowledge Graphs often do not explicitly contain every available fact. Link pre-

diction on Knowledge Graphs is used to identify unknown facts from existing ones.
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Recently, researchers have proposed the use of graph embeddings Yang et al. [2015],

Bordes et al. [2013], Wang et al. [2014], Trouillon et al. [2016], Nickel et al. [2016]

for link prediction on Knowledge Graphs. Such algorithms learn a function mapping

each subject, object, and predicate to a low dimensional space. A scoring function is

defined to quantify if a link (relation) should exist between two nodes (entities).

Rule based link prediction approaches Barati et al. [2017], Galárraga et al. [2013,

2015], Muggleton [1995], Ott et al. [2021] can also be used on Knowledge Graphs,

where logical rules are extracted by the model. This thesis focuses on Graph Neu-

ral Network based link prediction models, detailed below. For more details on link

prediction methods, we refer the reader to a recent survey Wang et al. [2017].

Another common approach to link prediction on Knowledge Graphs involves the

use of Graph Neural Networks (GNNs) such as Graph Convolutional Networks Kipf

and Welling [2017] (GCNs) or Relational Graph Convolutional Networks Schlichtkrull

et al. [2018] (RGCNs) that learn a function mapping each subject, object, and pred-

icate to a low-dimensional space. This thesis focuses on the use of RGCNs for link

prediction on Knowledge Graphs.

2.3 Deep Learning

2.3.1 Feedforward Neural Network

In general, deep learning models (neural networks) perform supervised learning,

where some function f is learned to map a set of inputs X ∈ Rn×m to a set of labels

y ∈ Rn. Typically f is parameterized by some set θ, and an optimal set of parameters

θ∗ are found by minimizing a loss function L, hence θ∗ = argmin
θ

L(f(X, θ),y). For

neural networks, a given parameter θi ∈ θ corresponds to one node (neuron) in the

network.
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The most common form of neural network consists of a sequence of consecutive

layers, where the output of the previous layer is passed as input into the next layer.

Neural network layers can fall into one of three categories; input, hidden, and output

layers. Input layers take training data as input, and pass this data through to the

next layer. Hidden layers take the previous layer as input, and perform a nonlinear

transformation. Lastly, output layers, typically consist of softmax layer, which takes

the nonlinear representation from the hidden layer as input, and converts this repre-

sentation into a probability distribution across each possible label. Neural networks

with many hidden layers are termed deep neural networks.

A common type of neural network layer is a fully connected layer, where every

neuron in the current layer connects to a neuron the next layer. Formally, a fully

connected layer i is defined by ai = ϕ(Wixi−1+bi), where ai ∈ Ra is the output vector

with dimensionality a, Wi ∈ Ra×b is the parameter matrix for layer i, xi−1 ∈ Rb is

the output from the previous layer with dimensionality b, bi is the bias, and ϕ is

a non-linear activation function such as a ReLu, sigmoid, hyperbolic tangent, etc.

These models are typically optimized using Stochastic Gradient Descent, or one of its

variants Duchi et al. [2011], Zeiler [2012], Kingma and Ba [2015]. Neural network with

only fully connected layers as hidden layers are termed feedforward neural networks.

2.3.2 Prototype Network

Prototype networks Li et al. [2018] are a specific type of neural network archi-

tecture that learn “prototype” vectors, representing typical observations from the

training data. These prototype vectors serve as explanations for why the model made

a decision. The Prototype network architecture can be visualized in Figure 2.1. It

consists of an autoencoder (the encoder defined as f ∶ Rp → Rq and the decoder,

defined as g ∶ Rq → Rp), a prototype layer p ∶ Rq → Rm, and a dense (fully-connected)

8



Figure 2.1: Prototype Network Architecture Li et al. [2018].

layer w ∶ Rm → RK that feeds into a softmax layer. The prototype layer takes as

input encoded training points, denoted f(xi), and computes the L2 distance between

f(xi) and m prototype vectors, denoted p1, . . . ,pm ∈ Rq. The overall network is given

by h ∶ Rq → RK . In this prototype network architecture, observations are classified

based on their distance to a prototypical observation, and the loss function ensures

that each prototype vector is similar to an encoded training point. We denote the

data set D = {(xi, yi)}ni=1, where yi ∈ {1, . . .K}, and K being the number of classes.

The Prototype loss function Li et al. [2018] is broken down into the following four

parts below. First, E(h ○ f, D) (Equation 2.1) penalizes misclassified observations,

and R(g ○ f, D) (Equation 2.2) is the reconstruction error of the autoencoder.

E(h ○ f, D) = 1

n

n

∑
i=1

K

∑
k=1

−1[yi = k]log((h ○ f)k(xi)), (2.1)

R(g ○ f, D) = 1

n

n

∑
i=1
∣∣(g ○ f)(xi) − xi∣∣2, (2.2)

9



Two regularization terms are used, i.e., R1 (Equation 2.3), which forces each

prototype vector to be as close as possible to one encoded training point, and R2

(Equation 2.4), which forces every encoded training point to be as close as possible

to one prototype vector.

R1(p1, . . . ,pm, D) =
1

m

m

∑
j=1

min
i∈[1,n]

∣∣pj − f(xi)∣∣2, (2.3)

R2(p1, . . . ,pm, D) =
1

n

n

∑
i=1

min
j∈[1,m]

∣∣f(xi) − pj ∣∣2. (2.4)

The complete loss function is given by

L((f, g, h),D) = E(h ○ f, D) + λ0R(g ○ f, D)+

λ1R1(p1, . . . ,pm, D) + λ2R2(p1, . . . ,pm, D),
(2.5)

where λ0, λ1, λ2 are hyperparameters.

2.3.3 Long short-term memory

Indeed fully connected layers are not the only type of layer used in deep learning

models. For data such as stock prices, speech, or text, the order of the observations

must be considered, as there is correlation across observations. Feedforward lay-

ers cannot model data with time dependencies. Recurrent neural networks (RNNs)

were developed to model sequential data by sharing weight matricies across time

steps. These models struggled with the vanishing gradient problem, where the gra-

dient of some parameters can become too small, preventing the parameter value

from being updated. Additionally, RNNs suffer from the exploding gradient prob-

lem, where the gradient of some parameters become too large, resulting in very large
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parameter updates, and in some cases numerical overflow. Long short term memory

(LSTM) Hochreiter and Schmidhuber [1997] layers were developed to combat theses

issues. An LSTM uses an input gate, output gate, forget gate, and memory cell to

determine what information to preserve across time steps. Formally, the forward pass

of the LSTM is defined by

it = σg(Wixt +Uuht−1 + bi), (2.6)

ot = σg(Woxt +Uoht−1 + bo), (2.7)

ft = σg(Wfxt +Ufht−1 + bf), (2.8)

c̃t = σc(Wcxt +Ucht−1 + bc), (2.9)

ct = ft ⊙ ct−1 + it ⊙ c̃t, (2.10)

ht = ot ⊙ σc(ct), (2.11)

where xt ∈ Rd is the input vector to the LSTM (with input dimensionality d),

it ∈ (0,1)h is the input gate’s output vector, ot ∈ (0,1)h is the output gate’s out-

put vector, ft ∈ (0,1)h is the forget gate’s output vector (using h hidden units),

c̃t ∈ (−1,1)h is the input to the cell state, ct ∈ Rh is the cell state’s output vector,

σg denotes the sigmoid function, σc denotes the hyperbolic tangent function, ⊙ de-

notes the element-wise product, and lastly, ht ∈ (−1,1)h is the hidden state’s output

vector (with dimensionality h). Figure 2.2 shows the structure of an LSTM cell,
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Figure 2.2: Structure of LSTM cell Hochreiter and Schmidhuber [1997]

including the input gate (Equation 2.6), output gate (Equation 2.7), and the forget

gate (Equation 2.8), and outputting the cell state (Equation 2.10), and hidden state

(Equation 2.11).

2.3.4 Sequence to Sequence Models

In the field of Natural Language Processing (NLP), Sequence to Sequence models

(Seq2Seq) Sutskever et al. [2014] are commonly used for tasks such as Neural Machine

Translation (NMT) Bahdanau et al. [2015], Cho et al. [2014]. Seq2Seq models con-

sist of an encoder-decoder architecture, where the encoder takes a source sequence

(typically a sentence) as input, and passes this into the decoder, which outputs a

translated sequence. A Seq2Seq model typically uses two LSTMs, an encoder for the

input data, and a decoder to generate a prediction at each time step. An example

of this architecture can be seen in Figure 2.3. For English to French translation, the

encoder takes as input an English sentence “The cat is black.” The output of the en-

coder is passed into the decoder, and the model is trained to output the target French

sentence “Le chat est noir.” A Seq2Seq model computes a conditional probability of

12



Figure 2.3: Seq2Seq model Sutskever et al. [2014] for Neural Machine Translation.

the sequence y1, ..., yT with T time steps given the input X, i.e. P (y1, ..., yT ∣X). In

this example, the output of the decoder at each time step is a predicted word in the

sequence.

2.3.5 Graph Convolutional Networks

Graph Convolutional Networks (GCNs) Kipf and Welling [2017] are an extension

of neural networks to graph data. These models are commonly used for tasks such as

graph classification, node classification, and link prediction. Generally, GCNs learn

an embedding representation for each node in the graph, and update the embedding

of each node by aggregating features of its neighbors. Different variants of aggregation

are used to learn properties of the graph. The standard GCNs are not intended to

be used on Knowledge Graphs, as they do not take into account the different types

of links.

RGCNs Schlichtkrull et al. [2018] have recently been proposed to learn embeddings
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and perform link prediction on Knowledge Graphs. For any given entity, RGCNs

performs embedding updates by multiplying neighboring entity embeddings with a

weight matrix for each relation in the dataset, and summing across each neighbor

and relation. A weight matrix for self connections is also learned, and added to

the neighbor embedding summation. Formally, for some entity vi, the embedding

representation h for some layer l + 1 is given by

h
(l+1)
i = σ

⎛
⎝∑r∈R

∑
j∈N r

i

1

ci,r
W
(l)
r h

(l)
j +W

(l)
0 h

(l)
i

⎞
⎠
, (2.12)

where r ∈ R is a relation from the set of relations, and N r
i denotes the set of

neighbors of entity i. The weight matrix learned for relation r is denoted Wr, the

weight matrix learned for self connections is denotedW0, and ci,r is a problem-specific

normalizing constant.

This layer is used in the neural network to update embeddings for each entity. In

order to perform link prediction, Schlichtkrull et al. [2018] use a DistMult layer Yang

et al. [2015] as the succeeding layer, serving as a scoring function. For some triple

(s, r, o) whose embeddings have been updated by the RGCN layer, the DistMult

layer predicts the probability that this triple is a fact. Formally, the DistMult layer

is defined by

f(s, r, o) = eTs Rreo, (2.13)

where es and eo are the updated embeddings for the subject and object respec-

tively, Rr is a diagonal parameter matrix for relation r, and f is the RGCN model.

In this work, we use the term RGCN to describe a neural network with an RGCN

layer and DistMult layer. The RGCN uses the cross entropy loss function, which is

given by
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LRGCN = −
1

(1 + ω)∣Ê ∣
∑

(s,p,o,y)∈T
ylog(f(s, p, o)) + (1 − y)log(1 − f(s, p, o)), (2.14)

where T is the set of all real (positive) and corrupted (negative) triples, ω is the

number of negative triples, ∣Ê ∣ is the number of unique predicates, f is the function

learned by the RGCN, and for positive triples, the label y = 1 for positive triples and

y = 0 for negative triples.

2.4 Explanation Methods

Deep learning models are typically treated as a black box, where no explanation

is given to the user to describe the why the model made a particular decision. This

lack of transparency has hindered adoption of these models into real world settings.

Recently, researchers have proposed algorithms, or explanation methods, to explain

the predictions of these black box models. Explanation methods are typically applied

to a model post hoc, and explanations are given to users of the deep learning system,

practitioners implementing and debugging the models, or any anyone wanting an

understanding of how the black box model makes decisions.

Indeed there are many approaches for producing post hoc explanations. Feature

importance methods Lundberg and Lee [2017], Ribeiro et al. [2016, 2018] are com-

monly used on tabular datasets, where relevant input dimensions are identified and

assigned a score to rank its importance relative to the other dimensions. For image

data, saliency maps Simonyan et al. [2014], Springenberg et al. [2015], Bach et al.

[2015], Selvaraju et al. [2016], Shrikumar et al. [2017, 2016], Zeiler and Fergus [2014],

Smilkov et al. [2017], Sundararajan et al. [2017], Montavon et al. [2017] identify rele-

vant pixels in the input image. Counterfactual explanations Wachter et al. [2017] give

the smallest possible perturbation to the given input that will change the prediction
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Data type

Explanation Method Image Tabular Graph Text

Lundberg and Lee [2017] X X - X

Ribeiro et al. [2016] X X - X

Ribeiro et al. [2018] X X - X

Simonyan et al. [2014] X - - -

Springenberg et al. [2015] X - - -

Bach et al. [2015] X - - -

Selvaraju et al. [2016] X - - -

Shrikumar et al. [2017] X - - -

Shrikumar et al. [2016] X - - -

Zeiler and Fergus [2014] X - - -

Smilkov et al. [2017] X - - -

Sundararajan et al. [2017] X - - -

Montavon et al. [2017] X - - -

Wachter et al. [2017] - X - -

Ming et al. [2019] - X - X

Chen et al. [2019] X - - -

Li et al. [2018] X X - -

Kang et al. [2019] - - X -

Ying et al. [2019] - - X -

Table 2.1: Breakdown of popular explanation methods for different types of data

to a desired target outcome. Counterfactual explanations are commonly used when

users receiving an explanation want to know which attributes to change in order to be

given a particular target outcome. Lastly, prototype explanations Chen et al. [2019],

Li et al. [2018], Ming et al. [2019] learn a continuous vector that represents a “typical”

training example, where explanations are given based on their relative distance to a

prototype vector. Table 2.1 outlines all of the aforementioned explanation methods

based on their applications. This thesis focuses on explanation methods designed

to explain the predictions of RGCNs post hoc, ExplaiNE Kang et al. [2019], and

GNNExplainer Ying et al. [2019], detailed below.

16



2.4.1 ExplaiNE

For some model with scoring function g, ExplaiNE Kang et al. [2019] computes

the gradient of g with respect to each element of the adjacency matrix. In our case,

the scoring function g is defined as the function learned by the RGCN model, and

the adjacency matrix is a binary matrix that specifies which nodes are neighboring.

The gradient quantifies then the change in score due to a small perturbation in the

adjacency matrix, that is, how much will the score (i.e. RGCN predictions) change,

if a link is added or removed between two given nodes. Given two nodes i, j serving

as candidate predictions, and two nodes k, l serving as a candidate explanation, the

score assigned to node pair k, l is given by

∂gij
∂akl
(A) = ∇Xgij(X∗)T ⋅

∂X∗

∂akl
(A), (2.15)

where X∗ is the optimal embedding matrix, and akl is an element of the adjacency

matrix A.

2.4.2 GNNExplainer

GNNExplainer Ying et al. [2019] learns a mask over the input adjacency matrix

to identify the most relevant subgraph. This is achieved by minimizing the cross

entropy between the predicted label using the input adjacency matrix, and the pre-

dicted label using the masked adjacency matrix. The objective function minimized

by GNNExplainer is given by

min
M

−
C

∑
c=1

1[y = c] logPΦ(Y = y∣Ac ⊙ σ(M),Xc), (2.16)

where Φ is the GNN model, M is a mask learned, ⊙ denotes element-wise multi-

plication, Ac is the adjacency matrix, Xc is the feature matrix, and σ is the sigmoid
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function. Lastly, PΦ indicates the probability of nodes belonging to each of the C

classes.

2.4.3 Datasets and metrics used for RGCN explanations evaluation

The original authors of GNNExplainer perform experiments on several synthetic

datasets, along with the MUTAG Debnath et al. [1991] and REDDIT-BINARY Ya-

nardag and Vishwanathan [2015] datasets for the task of node classification. For this

task, the authors measure explanation quality using accuracy, that is, the average

number of times the explanation method correctly predicted the correct edge in the

ground truth explanation. This scoring metric is limited to the task of node classifi-

cation, and cannot be used for tasks such as link prediction on Knowledge Graphs.

At the time of writing this thesis, we are not aware of any papers benchmarking

GNNExplainer on the task of link prediction on Knowledge Graphs.

The authors of ExplaiNE perform experiments on four datasets, Karate Zachary

[1977], DBLP Tang et al. [2008], MovieLens Harper and Konstan [2016], and Games

of Thrones 1 . These datasets do not include ground truth explanations, and the

scoring metrics used rely on the assumption that good explanations for some node i

are derived from first degree neighbors of i. Different scoring metrics are defined for

several datasets, as assumptions made on the MovieLens dataset do not generalize to

the DBLP, Karate, and Game of Thrones datasets.

There exists no standard datasets or scoring metrics to quantitatively compare the

quality of explanations from explanation methods for link prediction on Knowledge

Graphs using Graph Neural Networks. In this thesis, we choose to explain the predic-

tions of an RGCN, as it can be used with multiple explanation methods without the

need for any further adaptations. GNNExplainer is only defined for Graph Neural

1https://github.com/mathbeveridge/asoiaf
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Networks, hence a GNN must be used on the link prediction task. ExplaiNE requires

a model that takes an adjacency matrix as input. The RGCN meets both of these

requirements. Additionally, the scoring function has a meaningful interpretation,

returning the probability that the input triple is a fact.

In the next chapter, we justify the need for ground truth explanations.

19



Chapter 3

MOTIVATING THE NEED FOR GROUND TRUTH EXPLANATIONS

Prototype networks Li et al. [2018] provide explanations to users using a prototype

vector; that is, a vector learned by the network representing a “typical” observation.

In this chapter, we propose an approach that identifies relevant features in the input

space used by the Prototype network. We find however that empirical evaluation

of explanation quality is difficult, as there is no consistent way to determine if the

predicted explanations are accurate without ground truth explanations. We include

a discussion about developing methods for generating explanations, identifying when

one explanation method is preferable to another, and the complications that arise

when measuring explanation quality.

3.1 Introducing a Post Hoc Explanation Approach for Prototype Networks

The Prototype network architecture Li et al. [2018] combines an autoencoder with

a prototype layer, where each observation in the training set is classified based on its

distance to a prototype vector. The encoded input from the autoencoder is used as

features for predictions downstream. The prototype vectors learned by this network

are defined as typical observations in the training set, and, because they are learned

in the same space as the encoded input, they can be mapped back into the original

input space for visualization using the decoder. Explanations are given in the form

of a most similar prototype vector. The specific architecture of this network allows

us to further develop and improve the types of explanations generated post hoc.

In this chapter, we expand the type of explanations generated by the Prototype

network to identify relevant features in the input space. Due to the architecture of this
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network, the latent features learned by the model can be exploited to identify relevant

input space features. We make use of the network’s encoded input by randomly

setting latent features to zero, and using the network’s decoder to determine which

input space values changed the most. Finally, this chapter allows us to open a general

discussion about generating explanations, identifying when one explanation method

is preferable to another, and the complications that arise when measuring explanation

quality.

3.2 Proposed Approach: Leveraging Prototype Networks for Post Hoc

Explanations

The encoder function f maps a p dimensional vector to a q dimensional vector

where p > q. This encoded input contains relevant information for classification, as

it is used as features downstream, and is using a lower dimensional representation of

the input data. Identifying relevant information in the encoded latent space should

provide further insight into how the model is making decisions. For some observation

x we want an explanation for, we encode the input using the Prototype network’s

encoder f . We then make m copies of the encoded input f(x), and apply m different

masks element-wise. Each mask, denoted mi, is the same dimensions as the encoded

input f(x), where each element of a mask is assigned a 1 with 90% probability and

a 0 with 10% probability. The element-wise product is then averaged across the m

masks, given by

f̂(x) = 1

m

m

∑
i=1

f(xi)⊙mi. (3.1)

The result f̂(x) is then decoded by the Prototype network’s decoder g for visual-

ization, given by
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ĝ = g(f̂(x)). (3.2)

To identify the relevant dimensions in the input space, the input is mapped

through the encoder and then decoded, denoted g(f(x)). We then compute the

absolute difference between the decoded input and the decoded masked input given

by

x∗ = ∣ĝ − g(f(x))∣, (3.3)

where x∗ gives the feature importance scores of x for each dimension. Here the

absolute difference gives the features in the input space with the largest change. Code

for this chapter is available online. 1

3.3 Experiments of Proposed Approach using Multiple Data Types

3.3.1 Image Data

With image data, we have the ability to visualize the explanation. We train a

Prototype network on the MNIST dataset LeCun et al. [1998] with 3 encoding layers,

3 decoding layers, 1 prototype layer, and 1 fully connected layer. This model learns

10 prototype vectors (one for each class), achieving 99.1% accuracy on the test set.

Figure 3.2 shows saliency maps of the proposed approach for each image in Fig-

ure 3.1. We can see that the proposed approach produces saliency maps that outline

the digit in the original image. We perform the model parameter randomization and

data randomization test Adebayo et al. [2018]. The model parameter randomization

test generates saliency maps from a model with untrained, random parameters. The

1https://github.com/halliwelln/prototype-explanations/
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Figure 3.1: MNIST Images

(a) 0 (b) 1 (c) 2 (d) 3 (e) 4 (f) 5 (g) 6 (h) 7 (i) 8 (j) 9

Figure 3.2: Saliency maps: Proposed approach

(a) 0 (b) 1 (c) 2 (d) 3 (e) 4 (f) 5 (g) 6 (h) 7 (i) 8 (j) 9

Figure 3.3: Saliency maps: Proposed approach-randomly initialized untrained net-

work

resulting saliency maps should be random noise. The data randomization test trains

a model where the training labels have been randomly shuffled. Similar to the model

parameter randomization test, the resulting saliency maps should be random noise,

and the end user should not be able to determine the object in the image. Figure 3.3

shows saliency maps from an untrained Prototype network with randomly initialized

parameters (model parameter randomization test). Figure 3.4 shows saliency maps

for a model trained on random labels (data randomization test). From these figures,

we can see the proposed approach passes the model parameter randomization test

but fails the data randomization test. In other words, the proposed approach to

generating explanations is not providing insight into what the model has learned.
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Figure 3.4: Saliency maps: Proposed approach-network trained on randomly per-

muted labels
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Figure 3.5: Explanations generated by Lime and proposed approach on California

Housing dataset.

3.3.2 Tabular Data

We demonstrate our approach on a well known tabular dataset, the California

Housing dataset Pace and Barry [1997]. Here, we are tasked with determining if

houses should be sold above or below the median price. We train a Prototype network

on the California Housing dataset with 2 encoding layers, and 2 decoding layers, 1

prototype layer, and 1 fully connected layer. This model learns 2 prototype vectors,

achieving 84.2% accuracy on the test set.

Figure 3.5 compares relevant features identified by Lime Ribeiro et al. [2016] to

our proposed approach for selected observations. For both observations, we can see

that the top 3 dimensions with the highest attribution scores are the same for both

explanation methods. Although both explanations are similar, they are not exactly

equal. From these examples, which explanation method is actually displaying what
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the model has learned? In other words, which explanation method is preferable to

the other? These questions are difficult to answer without ground truth explanations

to quantitatively compare against.

3.4 On the Development and Evaluation of Post Hoc Explanation Methods

From the experiments on tabular and image data, we found our approach produced

what looked like faithful explanations on both types of data. After using several san-

ity checks Adebayo et al. [2018] on an image dataset, we were able to determine that

this was not the case. For image data, we have the ability to visually verify any

explanation generated in the input space. With tabular data, we do not have this

luxury. Depending on the type of data used for experimentation, researchers can be

mislead into thinking the explanations their model is generating are faithful because

they are similar to a state-of-the-art method. With ground truth explanations, re-

searchers would not have to rely on previous state-of-the-art explanation methods to

determine if their approach is generating faithful explanations.

In general, this is a common problem in the field of XAI. When a new explana-

tion method is proposed, researchers often show several “good looking” examples to

display to the reader the capability of the proposed method. Comparisons against a

state-of-the-art method typically involve a small number of cherry-picked examples to

demonstrate the ability of an explanation method. This can be misleading. Indeed a

small number of selected examples do not truly represent how the explanation method

is performing on the entire test set. As we demonstrated on the tabular dataset, our

proposed approach can compete with Lime on “selected” examples, however, this is

not conclusive evidence that this explanation method is preferable to Lime. In or-

der to accurately determine which explanation method is preferable, ground truth

explanations are needed.
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Defining ground truth explanations may be more difficult for different tasks, and

different types of data. Additionally, there may be more than one way to explain

a particular observation. Datasets with ground truth explanations must include all

possible ways to explain each observation. Failing to include all possible ground truth

explanations can unfairly penalize an explanation method for identifying a correct

explanation not included in the ground truths.

There is existing work on qualitative evaluation of explanations. Poursabzi-Sangdeh

et al. [2021] perform a user experiment to determine what makes a model inter-

pretable. Jeyakumar et al. [2020] perform a user experiment to determine what style

of explanation is preferred by users. Adebayo et al. [2020] develop a series of debug-

ging tests, and include a user experiment to determine if users can identify defective

models. Not much existing research focuses on quantitatively evaluating all test set

explanations for quantitative comparisons across explanation methods. Relying on

users to evaluate each explanation in the test set does not scale to large datasets, and

cannot be performed on certain types of data (tabular data for example users shown

an explanation would not know if its an accurate explanation or not). Additionally,

users without a background in machine learning may not be able to determine a

good explanation. For quantitative evaluations of explanations that scales to large

datasets, scoring metrics must be defined that give an accurate representation of the

explanation method’s performance. Scoring metrics that measure explanation quality

can be formally defined with ground truth explanations.

3.5 Concluding Remarks on the Empirical Evaluation of Post Hoc Explanations

In this chapter, we proposed a method to expand Prototype networks to identify

relevant features in the input space. We compared selected examples against a state-

of-the-art explanation method on tabular data and verify that the explanations are
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similar. On image data however, our approach passed the model parameter random-

ization test but failed the data randomization test. It is common practice in the field

of XAI to compare explanation methods using a few selected examples. This is not a

thorough evaluation of explanation quality.

We discussed the development of explanation methods, identifying when one ex-

planation method is preferable to another, and the complications that arise when

measuring explanation quality. Much research in the field of XAI is devoted to de-

veloping new explanation methods. This chapter points out that more work should

be devoted to evaluating the quality of explanation generated. Many of these issues

can be solved with ground truth explanations. We recognize this can be difficult with

tabular data. Research should be devoted to defining ground truth explanations for

all domains in order to quantitatively evaluate explanations.

In the next chapter, we address this issue by proposing a method to construct

datasets with ground truth explanations for link prediction on Knowledge Graphs.

We also propose several scoring metrics, allowing researchers and practitioners to

quantitatively compare explanations across different explanation methods for RGCNs.
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Chapter 4

BENCHMARKING EXPLANATION METHODS FOR RGCN-BASED LINK

PREDICTION WITH UNIQUE EXPLANATIONS

Practitioners and researchers typically apply multiple explanation methods to an

RGCN post hoc and compare the quality of explanation from each method. Com-

parisons across explanation methods remains difficult, as there is neither a method

nor dataset to compare explanations against. Furthermore, there exists no standard

evaluation metric to identify when one explanation method is preferable to the other.

In this chapter, we leverage linked data to propose a method, including two datasets

(Royalty-20k, and Royalty-30k), to benchmark explanation methods on the task of

explainable link prediction using Graph Neural Networks. In particular, we rely on

the Semantic Web to construct explanations, ensuring that each predictable triple has

an associated set of triples providing a ground truth explanation. Additionally, we

propose the use of a scoring metric for empirically evaluating explanation methods,

allowing for a quantitative comparison. We benchmark these datasets on state-of-

the-art link prediction explanation methods using the defined scoring metric, and

quantify the different types of errors made with respect to both data and semantics.

4.1 Introduction to Explanation Generation for RGCN-based Link Prediction

Recently, there has been a push to explain the predictions of link prediction al-

gorithms, creating the task of explainable link prediction. The term explanation is

commonly defined as a statement that makes something clear. Throughout this thesis,

we use the term explanation to refer to a set of observations (triples) that provides

an understanding of the black-box model’s predictions. In other words, we define
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ground truth explanations as a set of triples that cannot be ignored when justifying

the suggestion of adding a targeted link to the graph.

State-of-the-art explanation methods such as ExplaiNE Kang et al. [2019], and

GNNExplainer Ying et al. [2019] have no common datasets used as benchmarks, and

have no standard evaluation metrics to measure explanation quality. This prevents

quantitative evaluation and comparisons across explanation methods. In this chap-

ter, we propose a method, along with two datasets, Royalty-20k, and Royalty-30k,

to quantitatively evaluate explanation methods on the task of link prediction using

Graph Neural Networks. These datasets includes ground truth explanations, allowing

for comparisons with predicted explanations. Additionally, we propose the use of an

evaluation metric, leveraging a similarity between the predicted and ground truth

explanation to measure the quality of explanation. Lastly, we benchmark state-of-

the-art explanation methods using the proposed dataset and evaluation metric, and

quantify the different types of errors made in terms of both data and semantics.

This chapter is organized as follows: Section 4.2 provides an overview of the

shortcomings of state-of-the-art explanation methods on the task of explainable link

prediction along with our contributions. Section 4.3 describes a generic approach to

generate datasets with ground truth explanations, and a metric for empirical evalua-

tion. Section 4.4 applies this approach to construct two datasets, outlining the rules

that define each dataset. Section 4.5 details the benchmark performed on the Royalty

datasets, and reports the results. Section 4.6 discusses the limitations of the Royalty

datasets. Lastly, Section 4.7 provides a summary of the contributions in this chapter.

All the resources used and produced in this chapter are available online including the

download link for the reasoner, code, and datasets. 1

1https://github.com/halliwelln/Explain-KG
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4.2 Shortcomings of Explanation Methods

Explanation quality The weak point of the empirical evaluation of these expla-

nation methods is often explanation quality. The authors of ExplaiNE acknowledge

the difficulty in measuring the quality of explanation generated and a lack of avail-

able datasets with ground truth explanations Kang et al. [2019]. Moreover, they rely

on the assumption that the explanation can be found using one of the 1st degree

neighbors. On the task of movie recommendation, ExplaiNE measures the quality

of explanations using the average Jaccard similarity between the genres for a given

recommended movie, and the set of genres from the top 5 ranked explanations com-

puted. A p-value is computed to estimate the significance of the average. It is unclear

how this evaluation method generalizes to tasks outside of movie recommendation.

Ideally, a performance metric would not have to rely on such assumptions and would

generalize to other tasks.

Ground truth In general, ground truth does not exist for explanations. For the

task of node classification, GNNExplainer uses simulated data with ground truth ex-

planations in the form of connected subgraphs. The explanation accuracy of each

node’s predicted label is then computed. However, no insight is provided on how

to simulate ground truth data for the task of link prediction. Furthermore, GN-

NExplainer has not been benchmarked by its authors on the task of explainable link

prediction on Knowledge Graphs.

Datasets Datasets with explanations are not available for the previously mentioned

approaches to measure the quality of explanations. The authors of ExplaiNE bench-

mark their approach with 4 datasets: Karate, DBLP, MovieLens, and Game of

Thrones networks. These datasets do not include ground truth explanations. Ad-
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ditionally, it is non-trivial to define ground truth explanations on these networks.

Without a dataset containing ground truth explanations, it is difficult to recognize

if explanation methods such as ExplaiNE and GNNExplainer, are generating high

quality explanations. Furthermore, these algorithms use different approaches to eval-

uating explanations. There is no standard quantitative metric to measure the quality

of explanations generated, making comparisons of the methods difficult.

Contributions Our contributions in this chapter include a method to quantita-

tively evaluate explanation methods on the task of link prediction on Knowledge

Graphs. Additionally, we propose two datasets, Royalty-20k, and Royalty-30k, that

include ground truth explanations for each observation. Furthermore, we propose

the use of a scoring metric leveraging the similarity between predicted and ground

truth explanations, allowing for quantitative comparisons across explanation meth-

ods. Lastly, we benchmark state-of-the-art explanation methods, using the proposed

dataset and metrics, and quantify the different types of errors made in terms of both

data and semantics.

4.3 Generating Ground Truth Explanations for Evaluation

4.3.1 Inference Traces as Explanations

We introduce a generic approach to generate datasets with ground truth explana-

tions. We propose to view the ground truth generation as equivalent to computing a

single justification for an entailment. We selected the single-all-axis glass-box cate-

gory of algorithms Horridge [2011] that computes a single justification for a triple we

will then try to predict instead of inferring. A small and exact set of explanations are

needed, that of which must be precisely controlled and selected. Therefore, we select

an open-source semantic reasoner with rule-tracing capabilities Corby et al. [2012] to
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generate ground truth explanations for chosen rules, without needing manual annota-

tions. In essence, this tracing pinpoints the input triples that caused the generation

of a triple we will then try to predict and explain.

We rely on a set of rules equivalent to strict Horns clauses i.e. disjunctions of

literals with exactly one positive literal lc, all the other li being negated: ¬l1∨...∨¬ln∨

lc. The implication form of the clause can be seen as an inference rule assuming that,

if all li hold (the antecedent of the rule), then the consequent lc also holds, denoted

lc ← l1∧ ...∧ln. In our case, each literal is a binary predicate capturing a triple pattern

of the Knowledge Graph with variables universally quantified for the whole clause.

For instance, hasGrandparent(X,Z)← hasParent(X,Y ) ∧ hasParent(Y,Z).

For a given Knowledge Graph and a given set of rules, the semantic reasoner

performs a forward chaining materialization of all inferences that can be made. Each

time the engine finds a mapping of triples T1, . . . , Tn making the antecedent of a rule

true, it materializes the consequent triple Tc, and records the explanations in the

form Tc ← (T1, . . . , Tn), where Tc is a generated triple, and triples T1, . . . , Tn are its

explanation. Note that using reasoning to generate explanations is independent of

the algorithm used on the link prediction task.

Indeed this forms an intuitive explanation for graph data, a recent study shows

users prefer example based explanations Jeyakumar et al. [2020]. This generic ap-

proach to generating ground truth explanations can be applied to many Knowledge

Graphs and many sets of rules. In this chapter, we focus on non-ambiguous ex-

planations i.e. logical rules that are carefully constructed to give only one ground

truth explanation. These rules and datasets were designed to construct explanations

containing triples that cannot be ignored when justifying the suggestion of adding

a targeted link to the graph. To our knowledge, this approach to generate ground

truth explanations has not been previously applied to the task of explainable link
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prediction on Knowledge Graphs using Graph Neural Networks.

4.3.2 Explanation Evaluation Metric

To our knowledge, there is no standard evaluation metric to measure the quality

of explanations generated by link prediction explanation methods. A standard eval-

uation metric is needed to identify when one explanation method is preferable to the

other. This metric must compare the predicted explanation set to a ground truth

explanation set, and assign a similarity score to these two sets.

One way to measure the similarity between a predicted and ground truth expla-

nation set would be to use the Jaccard similarity between a ground truth explanation

set E and a predicted set of explanations Ê is:

J(E, Ê) = ∣E ∩ Ê∣
∣E ∪ Ê∣

= ∣E ∩ Ê∣
∣E∣ + ∣Ê∣ − ∣E ∩ Ê∣

. (4.1)

In this context, a Jaccard similarity of 1 means the predicted set of the explanation

method Ê exactly matches the ground truth set E. Similarly, when E and Ê have no

elements in common, the Jaccard similarity is 0. We feel this metric is appropriate,

as both ExplaiNE and GNNExplainer are asked to only identify existing triples in

the graph to serve as an explanation, therefore only set similarity need be considered.

As an example, let E ={(Abel, King of Denmark, hasParent, Berengaria of Por-

tugal), (Berengaria of Portugal, hasParent, Sancho I of Portugal)} and Ê ={(Abel,

King of Denmark, hasParent, Berengaria of Portugal), (Valdemar II of Denmark,

hasParent, Sophia of Minsk)}. Hence J(E, Ê) = 0.333, as they share only one triple

in common.

This metric has several nice properties; the Jaccard similarity penalizes a set of

candidate explanations when the cardinality differs from the ground truth explana-
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tion set. Additionally, the order of the explanations is not considered. Metrics like

ROUGE-N Lin and Hovy [2003] or BLEU Papineni et al. [2002] used in Natural

Language Processing (NLP) to compare translations against multiple references adds

complexity with no immediate benefit in our case.

A second way to measure explanation quality is to consider the precision, recall

and F1-Score of each explanation method, where

precision = tp

tp + fp
, (4.2)

recall = tp

tp + fn
, (4.3)

F1 = 2 ⋅
precision ⋅ recall
precision + recall

. (4.4)

In this context, a false positive (fp) corresponds to a triple predicted to be in

the explanation set but shouldn’t be. Similarly, a false negative (fn) corresponds to

a triple that is predicted to not be in the explanation set but should be. Lastly a

true positive (tp) corresponds to a triple that is correctly predicted to belong in the

explanation set.

The precision answers the following question; given that a triple is predicted to be

in the explanation set, what are the chances that it actually belongs in the explanation

set? Furthermore, the recall can be interpreted as how many triples the model was

able to correctly identify as belonging in the explanation set. The traditional F1-Score

computes the harmonic mean between the precision and recall, incorporating both of

these metrics when evaluating the effectiveness of explanation retrieval. To compare
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Figure 4.1: A triple (Princess Marie Anne of France, hasGrandparent, Anne of Aus-

tria) plotted in red with its explanation set in green {(Princess Marie Anne of France,

hasParent, Louis XIV of France), (Louis XIV of France, hasParent, Anne of Aus-

tria)}, and neighboring triples.

two sets, the Jaccard similarity forms a more intuitive scoring metric, thus we use

this metric in addition to precision, recall and F1-Score in comparing explanation

methods.

4.4 Extracting and Generating the Royalty Datasets

Applying the method of Section 4.3.1, we build two datasets (Royalty-20k and

Royalty-30k), a collection of 20,080 and 30,734 triples respectively, containing royal

family members from DBpedia Lehmann et al. [2015]. The triples and explanations

are derived from a set of rules introduced later in this section. We use family members

to construct datasets with ground truth explanations, as the logical rules can be easily

understood, and no prior domain knowledge is needed.

An example from the Royalty-30k can be seen in Figure 4.1. Take two entities

Princess Marie Anne of France, and Anne of Austria, that we wish to predict the

link hasGrandparent between. Anne of Austria is the grandparent of Princess Marie

Anne of France, because Louis XIV of France is the parent of Princess Marie Anne

of France, and Anne of Austria is the parent of Louis XIV of France.

Each example in the Royalty datasets consists of a triple e.g. (Princess Marie
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Anne of France, hasGrandparent, Anne of Austria) and a set of triples defining its

ground truth explanation e.g. {(Princess Marie Anne of France, hasParent, Louis

XIV of France), (Louis XIV of France, hasParent, Anne of Austria)}.

4.4.1 Royalty Datasets Rule Generation

In this chapter, we focus on 4 logical rules based on family relationships: has-

Spouse, hasSuccessor, hasPredecessor, and hasGrandparent. The predicate of each

triple used on the link prediction task is in the consequent of one of these rules. The

associated explanation set consists of the triples that triggered the rule.

Indeed there may be several ways to define these logical rules. For example, has-

Successor can be defined using its inverse relation hasPredecessor. However, hasPre-

decessor in some cases, could be correlated to the hasParent relation and therefore

considered an explanation. Both explanations could be correct in many cases, thus

the optimal explanation would be ambiguous. Therefore in this chapter, we define all

rules in both datasets such that there is one and only one possible explanation set for

each predicate. This prevents an explanation method from having to arbitrarily select

between alternative explanations, and ensures a better evaluation and understanding

of the explanation techniques.

We define the Royalty-20k dataset using rules for hasSpouse, hasSuccessor, and

hasPredecessor predicates. The Royalty-30k dataset is defined using rules for has-

Spouse and hasGrandparent predicates. We create two datasets, separating hasSuc-

cessor and hasPredecessor from hasGrandparent, to avoid having multiple ways to

explain a predicate. Each rule is detailed below.

Spouse Some entity X is the spouse of Y if Y is the spouse of X, for example,

hasSpouse(X,Y ) ← hasSpouse(Y,X). This is a symmetric relationship. There are
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7,526 triples with the hasSpouse predicate in each dataset, 3,763 of which are gener-

ated by rules. Note this rule is the same for both datasets.

Successor and Predecessor A successor in the context of royalty is one who im-

mediately follows the current holder of the throne. X is the successor of Y if Y is

the predecessor of X. Equivalently, hasSuccessor(X,Y ) ← hasPredecessor(Y,X).

Likewise, a predecessor is defined as one who held the throne immediately before the

current holder. X is the predecessor of Y if Y is the successor of X. Equivalently,

hasPredecessor(X,Y ) ← hasSuccessor(Y,X). Indeed hasSuccessor and hasPrede-

cessor follow an inverse relationship, therefore triples with the hasSuccessor predicate

are used to explain the triples with the hasPredecessor predicate and vice-versa. There

are 6,277 triples with hasSuccessor predicate, 2,003 of which are generated by rules.

Similarly, there are 6,277 triples with hasPredecessor predicate, 2,159 of which are

generated by rules.

Grandparent We define hasGrandparent to use a chain property pattern, detailed

in Section 4.4.2. Y is the grandparent of X if Y is the parent of X’s parent P .

Equivalently, hasGrandparent(X,Y )← hasParent(X,P )∧hasParent(P,Y ). There

are 7,736 triples with hasGrandparent predicate, all of which are generated by rules.

Note hasParent is provided by the DBpedia data and not defined by any external

logical rule.

4.4.2 Dataset Specifics

Many of these rules have similar structures because of the algebraic properties of

the predicate of the triples they generate. A predicate p is said to be symmetric for

some subject s and object o if and only if (s, p, o) ← (o, p, s). A predicate p1 is the
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Dataset Predicate # Triples

# Rule

Generated

Triples

# Unique

Entities

Explanation

Cardinality

Predicate

Property

Royalty-20k

hasSpouse 7,526 3,763 6,114 1 Symmetric

hasSuccessor 6,277 2,003 6,928 1 Inverse

hasPredecessor 6,277 2,159 6,928 1 Inverse

Full data 20,080 7,924 8,861 - -

Royalty-30k

hasSpouse 7,526 3,763 6,114 1 Symmetric

hasGrandparent 7,736 7,736 4,330 2 Chain

hasParent 15,472 0 - - -

Full data 30,734 11,499 11,483 - -

Table 4.1: Royalty datasets: Breakdown of each predicate in the dataset. # of Triples

denotes the total number of triples with that predicate. Explanation Cardinality

denotes the number of triples in the ground truth explanation set.

inverse of p2 if and only if (s, p1, o) ← (o, p2, s). Lastly, a predicate p is a chain of

predicates pi if and only if (s, p, o)← (s, p1, s2) ∧ ... ∧ (sn, pn, o).

Table 4.1 gives the details of each predicate. The “# Triples” column denotes the

total number of triples in the dataset with that predicate. The “# Rule-Generated

Triples” column denotes the number of triples that were generated from a triggered

rule. These are triples not listed on DBpedia, and thus generated by the semantic

reasoner. The “# Unique Entities” column denotes the number of unique nodes in

the graph for a given predicate, including the nodes in the associated explanation

triples. Furthermore, the explanation cardinality (Expl. Cardinality) column gives

the number of triples in the ground truth explanation sets for each triple inferred

by a given rule. This is determined by the definition of the logical rule. Lastly,

the Predicate property column describes the algebraic properties of the relations

generated by the rules.
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4.5 Benchmark Explanation Methods on Royalty Datasets

4.5.1 Experiment Details

For a fair comparison of explanation methods, both approaches must use the same

embeddings. We fix the number of dimensions to 25, and use a learning rate of 0.001

for all rules. The number of epochs used to train the RGCN varied per rule, we use

between 50 and 2000, as this gave the best performance on the task of link prediction.

We use ExplaiNE Kang et al. [2019] and GNNExplainer Ying et al. [2019] to

explain the predictions of the RGCN. Model performance is reported on the full

dataset, and for each predicate subset. We report the accuracy of the RGCN as a

performance metric on the task of link prediction.

ExplaiNE relies on the assumption that an optimal explanation can be found

using one of the adjacent neighbors. We drop this assumption on our experiment,

and allow ExplaiNE to pick any observed triple in the graph as a possible explanation

candidate. Note that using the gradient of the scoring function with respect to the

adjacency matrix, ExplaiNE requires no hyper-parameter tuning.

We train the GNNExplainer using a learning rate of 0.001 for each rule, which

was the best performing learning rate from the set {0.00001,0.0001,0.001}. We use

between 10 and 30 iterations for each observation. We use 3-fold cross validation for

both models, and report results of the best performing fold.

4.5.2 RGCN Link Prediction-Results

The first section of Table 4.2 reports results on the Royalty-20k dataset. The

topmost row reports the performance of the RGCN on the task of link prediction.

We observe the highest accuracy on the hasSuccessor predicate, and performance

dropping across each of the other predicates. Overall, we see similar results for
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Predicates

Dataset Models Metrics Spouse Successor Predecessor Grandparent Full set

RGCN Accuracy 0.682 0.696 0.692 - 0.623

Royalty-20k

GNN

Explainer

Precision 0.656 0.182 0.182 - 0.277

Recall 1.0 1.0 1.0 - 1.0

F1 0.792 0.307 0.308 - 0.433

Jaccard 0.328 0.178 0.178 - 0.184

ExplaiNE

Precision 0.754 0.319 0.368 - 0.397

Recall 0.571 0.317 0.365 - 0.577

F1 0.65 0.318 0.366 - 0.47

Jaccard 0.388 0.314 0.363 - 0.274

RGCN Accuracy 0.682 - - 0.713 0.621

Royalty-30k

GNN

Explainer

Precision 0.656 - - 0.067 0.261

Recall 1.0 - - 1.0 1.0

F1 0.792 - - 0.125 0.414

Jaccard 0.328 - - 0.133 0.174

ExplaiNE

Precision 0.754 - - 0.101 0.363

Recall 0.571 - - 0.135 0.412

F1 0.65 - - 0.115 0.386

Jaccard 0.388 - - 0.135 0.216

Table 4.2: Benchmark results on Royalty-20k and Royalty-30k: Link prediction re-

sults for RGCN, and explanation evaluation for GNNExplainer and ExplaiNE. Best

F1 and Jaccard scores per predicate denoted in bold.

hasSuccessor, and hasPredecessor.

The second section of Table 4.2 reports results on the Royalty-30k dataset. From

the topmost row we can see the performance of the RGCN on the task of link predic-

tion. We observe the highest accuracy on the hasGrandparent predicate, which follows

a chain property. We observe the lowest performance on the hasSpouse predicate.
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4.5.3 Quantitative Evaluation of RGCN Link Prediction Explanations

GNNExplainer From Table 4.2, we can see the performance of GNNExplainer on

the task of explainable link prediction. On both datasets, we observe its best Jaccard

and F1-Score performance on the hasSpouse predicate. Note that these predicates,

hasSpouse, hasSuccessor and hasPredecessor all have an explanation cardinality of

1, meaning the ground truth explanation set contains 1 triple. On the Royalty-30k

dataset, we observe performance drops on the hasGrandparent predicate. Recall this

predicate follows a chain property and has an explanation set with 2 triples, forming

a path.

Note GNNExplainer has a recall of 1 for all rules. Indeed this means GNNEx-

plainer was able to correctly identify triples that belong to the explanation. However,

the predicted explanation sets were often too large (up to 20 triples on average, for

some rules), and had many false positives: a recall of 1 can be trivially achieved

by including the entire input graph in the predicted explanation. This was not the

case for the predicted explanations of GNNExplainer, however, the cardinality of the

predicted explanation set of GNNExplainer was often larger than the ground truth

cardinality.

ExplaiNE Lastly, Table 4.2 reports the performance of ExplaiNE on the task of

explainable link prediction. On both datasets, again we observe the best Jaccard and

F1-Score performance on the hasSpouse predicate. In general, we observe that rules

with a similar explanation structure had similar performance. On the Royalty-30k

dataset, we see lower relative performance on the predicates where larger explanations

need to be predicted, e.g. hasGrandparent.
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Most Frequently Predicated Predicate

ExplaiNE GNNExplainer

Dataset Predicate
Most Frequent

Predicate

% of Error
Most Frequent

Predicate

% of Error

Royalty − 20k

hasSpouse hasSpouse 100% hasSpouse 100%

hasSuccessor hasSuccessor 78% hasPredecessor 50%

hasPredecessor hasPredecessor 73% hasSuccessor 50%

Royalty − 30k
hasSpouse hasSpouse 100% hasSpouse 100%

hasGrandparent hasParent 54% hasParent 50%

Table 4.3: Most frequent predicate across incorrectly predicted explanations, along

with the percentage of error by subset.

GNNExplainer vs. ExplaiNE Overall, we find ExplaiNE outperformed GN-

NExplainer in terms of Jaccard score for all rules across both datasets. Additionally,

we find GNNExplainer outperforms ExplaiNE in terms of F1 score on the hasSpouse,

and hasGrandparent predicate subsets, along with the Royalty-30k full dataset. This

is likely due to the high recall of GNNExplainer’s predicted explanations. This is

evidence the F1 score is not a good metric in that specific configuration.

4.5.4 Qualitative Evaluation of RGCN Link Prediction Explanations

Table 4.3 gives a breakdown of each explanation method’s most frequent error by

subset. Each row of this table can be read as follows: Under the hasSpouse subset for

example, the most common predicate across ExplaiNE’s incorrectly predicted expla-

nations was hasSpouse, and this predicate was observed in 100% of errors. This error

occurs when ExplaiNE predicts the wrong subject or object in the explanation. For

GNNExplainer, hasSpouse was also the most common predicate amongst incorrectly

predicted explanations, also accounting for 100% of errors. Indeed this is possible on
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ExplaiNE: Most Frequently Missing Predicate

Dataset Predicate Ground Truth % Missing

Royalty − 20k

hasSpouse hasSpouse 0%

hasSuccessor hasPredecessor 78%

hasPredecessor hasSuccessor 73%

Royalty − 30k

hasSpouse hasSpouse 0%

hasGrandparent
hasParent

hasParent

27%

27%

Table 4.4: ExplaiNE’s most frequently missing predicate. Each row denotes the

predicate subset, the ground truth predicates defining the rule, and the percentage

of triples not containing the ground truth predicate(s)

the hasSpouse subset, as under this subset, there is only one possible predicate to

predict (hasSpouse).

As an example of one of ExplaiNE’s errors, for some triple (Albert III, Count

of Everstein, hasSpouse,Richeza of Poland) and its explanation (Richeza of Poland,

hasSpouse,Albert III, Count of Everstein), ExplaiNE predicted a first degree neighbor

(Richeza of Poland, hasSpouse,Alfonso VIII of Leon and Castile) to be its explanation.

Note the incorrectly predicted triple uses the hasSpouse predicate but in a wrong way.

Table 4.4 reports the most frequently missing predicate from ExplaiNE’s errors.

Each row denotes the predicate subset, the ground truth predicates defining the rule,

and the percentage of triples not containing the ground truth predicate(s). For ex-

ample, under the hasSuccessor subset of the Royalty-20k dataset, 78% of ExplaiNE’s

errors did not contain hasPredecessor. Note we do not report the most frequently

missing predicate for GNNExplainer, as the recall for each subset was 1, the ground

truth triple(s) were always included in the predicted explanation. Therefore, the

percent missing is 0 for each subset.
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Figure 4.2: Predicate Frequency Count on Incorrectly Predicted Explanations. Note

hasSpouse was omitted as only one predicate could be predicted (hasSpouse).

The first row of Figure 4.2 shows histograms of predicate counts of ExplaiNE’s

incorrectly predicted explanations. For example, under the hasSuccessor subset of

the Royalty-20k dataset, hasSuccessor was the most frequently predicted predicate

amongst ExplaiNE’s incorrect explanations. From this we can conclude on this subset

that ExplaiNE’s most frequent error occurred by predicting the wrong predicate.

We also observe this phenomenon under the hasPredecessor subset of the Royalty-

20k dataset, and the hasGrandparent subset of the Royalty-30k dataset. ExplaiNE

incorrectly predicts explanations to have the same predicate as the input triple (the

triple we want an explanation for). Furthermore, on the Royalty-20k and Royalty-30k
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full data, ExplaiNE’s errors most frequently contained the hasSpouse predicate. We

can conclude that ExplaiNE’s use of the gradient of the score with respect to the

adjacency matrix assigns a large gradient to triples with the same predicate as the

input, and to first degree neighbors of the input subject and object.

The second row of Figure 4.2 shows histograms of predicates counts of GNNEx-

plainer’s incorrectly predicted explanations. Under the hasSuccessor, hasPredecessor

subsets, GNNExplainer’s errors were uniform. Incorrectly predicting an explanation

to contain either hasSuccessor or hasPredecessor predicates was equally likely. We

can conclude from this that a triple with an incorrect predicate was equally likely to

be predicted by GNNExplainer as a triple with the correct predicate and incorrect

subject and/or object. Similar to ExplaiNE, the most frequent error on hasGrandpar-

ent occurred by incorrectly predicting the same predicate as the input triple. On the

Royalty-30k full dataset, the majority of GNNExplainer’s errors were triples using

the hasGrandparent predicate.

4.5.5 Discussion of Royalty Benchmark Results

From GNNExplainer’s high recall, we conclude the explanations of this method

identifies all triples belonging in the explanation set. However, many irrelevant triples

are also included in the predicted explanation set that shouldn’t be, and often the

size of the true explanation set is overestimated.

More generally, our method allows us to see that GNNExplainer and ExplaiNE

do not always make the same types of mistakes: one may often choose an irrelevant

relation type while the other may often pick the right type of relation but with

the wrong arguments. This is useful to evaluate the impact of the choices made in

Equations 2.15 and 2.16, and to propose and evaluate new methods addressing the

shortcomings.
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From this experiment, we can see the importance of the Royalty-20k and Royalty-

30k datasets, along with the method we use to generate it. This experiment shows

that state-of-the-art explanation methods do not always give accurate explanations.

There are many approaches to generating explanations, however, they must be eval-

uated with a ground truth dataset and quantitative metric. Our method, dataset,

and metric allow researchers to develop new explanation methods and quantitatively

evaluate their explanations in a way they were previously unable to.

4.6 Limitations of Royalty Datasets

The Royalty-20k and Royalty-30k datasets provide a ground truth explanation for

each observation in the training and test sets. The main drawback of these datasets is

that they do not evaluate explanation method performance when there is more than

way to explain an observation. That is, how do current state-of-the-art explanation

methods perform when there are multiple ground truths to choose from. Additionally,

the scoring metrics in this chapter were proposed only for use when there is one and

only one ground truth explanation. These scoring metrics will not generalize to the

case of multiple explanations, hence additional scoring metrics must be proposed to

handle the case of multiple explanations.

4.7 Concluding Remarks on Royalty Datasets

On the task of explainable link prediction, there is no standard dataset available

to quantitatively compare explanations, as no standard method exists to generate

datasets with explanations. Additionally, there is no standard evaluation metric to

determine when one explanation method is preferable to the other. In this chapter,

we proposed a method, including two datasets (Royalty-20k, and Royalty-30k), to

compare predicted and ground truth explanations. Furthermore, we proposed the use
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of an evaluation metric, leveraging the Jaccard similarity between the predicted and

ground truth explanation for quantitative comparisons across explanation methods.

Lastly, we benchmarked two state-of-the-art explanation methods, ExplaiNE and

GNNExplainer, and perform a quantitative analysis on their predicted explanations

using the Royalty datasets and the aformentioned evaluation metric. As a result, we

are able to identify and quantify the different types of errors they make in terms of

both data and semantics.
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Chapter 5

BENCHMARKING EXPLANATION METHODS FOR RGCN-BASED LINK

PREDICTION WITH MULTIPLE GROUND TRUTH EXPLANATIONS

The previous chapter showed how ExplaiNE and GNNExplainer perform when

there was one and only one ground truth explanation to choose from. Indeed there

can be multiple explanations for a given prediction in a KG. No dataset exists where

observations have multiple ground truth explanations to compare against. Addi-

tionally, no standard scoring metrics exist to compare predicted explanations against

multiple ground truth explanations. In this chapter, we introduce a method, including

a dataset (FrenchRoyalty-200k), to benchmark explanation methods on the task of

link prediction on KGs, when there are multiple explanations to consider. We conduct

a user experiment, where users score each possible ground truth explanation based on

their understanding of the explanation. We propose the use of several scoring met-

rics, using relevance weights derived from user scores for each predicted explanation.

Lastly, we benchmark this dataset on state-of-the-art explanation methods for link

prediction using the proposed scoring metrics.

5.1 Introduction to Multiple Explanations

In the previous chapter, we proposed several datasets with ground truth expla-

nations, where each observation has one and only one ground truth. Ground truth

explanations however can be non-unique. There can be multiple, logically correct

ways to explain why a link could exist between two nodes. Consider an example

where a model predicts the hasChild link between two entities Louis VII of France,

and Agnes of France, i.e. (Louis VII, hasChild, Agnes of France). One way to explain
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why this link could exist between these two entities is because Agnes of France is the

child of Louis VII’s spouse Adela of Champagne. This is not the only way to explain

why the hasChild link exists between Louis VII and Agnes. Agnes could be the child

of Louis VII because Agnes’ grandparent, Louis VI is the parent of Louis VII. Both

of these explanations are correct, it is unclear as to which explanation is optimal.

State-of-the-art explanation methods for link prediction on Knowledge Graphs

have no common dataset or performance metrics to quantitatively evaluate explana-

tion quality when there are multiple ways to explain the model’s prediction. In this

chapter, we propose a method, including a dataset (FrenchRoyalty-200k), to quan-

titatively evaluate explanation methods on the task of link prediction using Graph

Neural Networks, when there are multiple explanations. This dataset includes all

possible ground truth explanations for each triple, allowing for quantitative compar-

isons across every possible explanation. Additionally, we perform a user experiment,

where users decide which explanations are optimal. Furthermore, we propose the use

of several scoring metrics using these user scores as relevance weights for each pre-

dicted explanation. Lastly, we benchmark this dataset on state-of-the-art explanation

methods using the proposed dataset and evaluation metrics.

5.2 Shortcomings of RGCN Explanation Methods and Contributions

Explanation quality The weakness of these explanation methods is the empirical

evaluation of explanation quality. The authors of ExplaiNE acknowledge the diffi-

culty in measuring the quality of explanation due to the lack of available datasets

with ground truth explanations Kang et al. [2019]. Recall that ExplaiNE relies on

the assumption that an explanation can be found using one of the 1st degree neigh-

bors. On the task of movie recommendation, ExplaiNE measures the quality of

explanations using the average Jaccard similarity between the genres for a given rec-
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ommended movie, and the set of genres from the top 5 ranked explanations computed.

A p-value is then computed to estimate the significance of the average. It is unknown

how this evaluation method generalizes to tasks outside of movie recommendation.

ExplaiNE has been previously benchmarked with 4 datasets: Karate, DBLP, Movie-

Lens, and Game of Thrones networks. These datasets do not include ground truth

explanations, and defining ground truth explanations for these networks is non-trivial.

GNNExplainer has not been benchmarked on the task of explainable link prediction

on Knowledge Graphs due to the lack of available datasets. Both GNNExplainer and

ExplaiNE lack a common dataset and metric to evaluate explanation quality.

Multiple ground truths There can be multiple ways to explain why a link could

exist between two nodes. Not all explanations are equally informative about the

model’s decision, some explanations can be arbitrarily more complicated than others.

Explanation methods could generate an explanation when a more intuitive expla-

nation could exist. Datasets containing only one ground truth explanation for each

observation are insufficient to quantitatively evaluate explanation methods. With-

out considering all possible explanations, an explanation method could be incorrectly

penalized for identifying a correct explanation not included in the ground truths.

Therefore, a predicted explanation must be evaluated against all possible ground

truth explanations. To our knowledge, there exists no dataset for link prediction

on Knowledge Graphs where all possible ground truth explanations are included.

Additionally, there are no standard quantitative metrics to measure the quality of

explanations generated when there are multiple explanations to consider, making

quantitative comparisons across explanations difficult.
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Contributions Our contributions include a method to quantitatively evaluate ex-

planation methods on the task of link prediction on Knowledge Graphs, when there

are multiple ground truth explanations to consider. Additionally, we propose a

dataset, FrenchRoyalty-200k, that includes every possible ground truth explanation

for each observation. We perform a user experiment to determine which ground

truth explanations are most intuitive. Furthermore, we propose the use of sev-

eral performance metrics that score predicted explanations based on how intuitive

users found the explanation, allowing for quantitative comparisons across explana-

tion methods. Lastly, we benchmark state-of-the-art explanation methods using the

proposed dataset and metrics.

5.3 Generating a User Evaluated Dataset with Multiple Ground Truth

Explanations

5.3.1 Inference Traces as Explanations

In a Knowledge Graph, the available formal semantics allow us to view ground

truth explanations as equivalent to computing justification for an entailment. We se-

lect an open-source semantic reasoner with rule-tracing capabilities Corby et al. [2012]

to generate ground truth explanations for each defined rule, without needing manual

annotations. This tracing pinpoints the input triples that caused the generation of a

triple we will then try to predict and explain.

We rely on a set of rules equivalent to strict Horns clauses i.e. disjunctions of

literals with exactly one positive literal lc, all the other li being negated: ¬l1 ∨ ... ∨

¬ln ∨ lc. The implication form of the clause can be seen as an inference rule assuming

that, if all li hold (the antecedent of the rule), then the consequent lc also holds,

denoted lc ← l1 ∧ ... ∧ ln. Each literal is a binary predicate capturing a triple pattern
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of the Knowledge Graph with variables universally quantified for the whole clause.

For instance, hasGrandparent(X,Z)← hasParent(X,Y ) ∧ hasParent(Y,Z).

For a given Knowledge Graph and a given set of rules, the semantic reasoner

performs a forward chaining materialization of all inferences that can be made. Each

time the engine finds a mapping of triples T1, . . . , Tn making the antecedent of a rule

true, it materializes the consequent triple Tc, and records the explanations in the

form Tc ← (T1, . . . , Tn), where Tc is a generated triple, and triples T1, . . . , Tn are its

explanation.

Indeed this forms an intuitive explanation for graph data, a study shows that non-

personalized feature-based explanations are efficient Tintarev and Masthoff [2012].

This generic approach to generating ground truth explanations can be applied to

many Knowledge Graphs and many sets of rules. In this chapter, we focus on non-

unique explanations, i.e. logical rules constructed to include all possible ground truth

explanations. To our knowledge, this approach to generating non-unique ground

truth explanations has not been applied to the task of explainable link prediction

on Knowledge Graphs using Graph Neural Networks. All the resources used and

produced in this chapter are available online including the download link for the

reasoner, code, and dataset. 1

5.3.2 Ensuring Completeness of Explanations

In this chapter, we focus on providing a dataset with non-unique explanations. We

chose to describe family relations as no prior domain knowledge is needed. The ex-

planation methods we want to evaluate provide their explanations as a set of triples

that justify a prediction. In order to construct a dataset that includes all possi-

ble explanations for a given predicted triple, we first enumerated all possible paths

1https://github.com/halliwelln/multiple-explanations/
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between the two nodes involved in this predicted triple. To exhaustively list all

possible cases, we defined a small synthetic family graph systematically using all

the possible types of family relations. This graph describes some individual Paul,

and all family members within a 2-hop neighborhood, this includes aunts, grand-

parents, children, etc. This complete synthetic graph is then used to identify all

possible paths with a maximum length of 2 linking the subject and objects of its

triples. This graph is purposely kept small, to ensure each possible path can be

verified manually. Each of these paths corresponds to one possible explanation as

to why a link could exist between two given nodes e.g., Paul and Tom are brothers

because Paul and Tom both have the same parent Jim. Indeed some of these paths

can be turned into the antecedent of an inference rule for that type of triple e.g.

hasGrandparent(X,Z) ← hasParent(X,Y ) ∧ hasParent(Y,Z). We define paths

that can always be turned into the antecedent of an inference rule as logical ex-

planations. In other words, these explanations are always true. Other paths do

not always logically imply the targeted triple but still provide a good indication

that could have triggered a human guess or a statistical prediction. For instance,

hasParent(X,Y ) ∧ hasParent(Z,Y ) could indicate X and Z are brothers or sisters

or any combination of these relations. Without additional knowledge (e.g. the gen-

der) the explanation is not always logically true. We define these paths as partial

explanations. Some explanations will be more convincing than others to a user, es-

pecially among partial explanations. A score is needed for each possible explanation

to distinguish good, intuitive explanations from bad, unintuitive ones.

5.3.3 Logical Derivation and Partial Explanation Rules

In this chapter, we focus on 6 family relationships: hasSpouse, with 3 possible

explanations, hasBrother, with 7 possible explanations, hasSister, with 7 possible
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explanations, hasGrandparent, with 6 possible explanations, and hasChild, and has-

Parent with 9 possible explanations. As we have two types of explanations (logical

vs. partial), there are also have two types of rules (logical derivation vs. partial

explanation). We define a logical derivation rule as one that is always true, and a

partial explanation rule as one that is not always true without additional information,

such as gender. The predicate of each triple used on the link prediction task is in

the consequent of one or more of these rules. The associated explanation consists of

the all possible triples that triggered each rule. The logical derivation rules trigger

every time their antecedent is matched, and its corresponding triple and logically true

explanation are generated. The partial explanation rules trigger only if the triple is

already known (asserted or inferred by other rules) and are just adding alternative

partial explanations, therefore preventing any false triples from being included in

the graph. In addition, each rule (both logical derivation and partial explanation)

associates a score to the explanations it generates. The score is defined at the per

rule level, and is the same for all the explanations generated by that rule. The score

captures how intuitive a given pattern of explanation is for a given type of predicted

triple, detailed in the next section.

We apply all rules to the entire Knowledge Graph of the French Royalty families

found in DBpedia Lehmann et al. [2015] to build the FrenchRoyalty-200k dataset.

Included with each triple in the training and test sets are all possible explanations as

to why a given link could exist between the two nodes. Figure 5.1 shows an example of

a candidate triple along with several possible explanations. A candidate triple (Louis

VII of France, hasChild, Agnes of France) plotted in red with its non-unique explana-

tions in green: {(Agnes of France, hasGrandparent, Louis VI of France), (Louis VII

of France, hasParent, Louis VI of France)}, {(Adela of Champagne, hasChild, Agnes

of France), (Louis VII of France, hasSpouse, Adela of Champagne)}, and neighboring
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Figure 5.1: A candidate triple (Louis VII of France, hasChild, Agnes of France) plot-

ted in red with its non-unique explanations in green: {(Agnes of France, hasGrand-

parent, Louis VI of France), (Louis VII of France, hasParent, Louis VI of France)},

{(Adela of Champagne, hasChild, Agnes of France), (Louis VII of France, hasSpouse,

Adela of Champagne)}, and neighboring triples.

triples.

Table 5.1 outlines all rules defined in the FrenchRoyalty-200k dataset. Included

in this table is the number of total triples for each predicate, the predicates used to

define every possible explanation, the user score assigned to each predicate, and a

column to indicate whether a rule is logically true or provides a partial explanation.

5.3.4 Users’ Evaluation of Explanation Scores

Although ExplaiNE and GNNExplainer have many possible explanations to choose

from, these explanations are not equal. Some explanations may be easier to under-

stand than others. When benchmarking explanation methods with non-unique ex-

planations, a scoring metric should assign a high score when an explanation method

correctly predicts an intuitive explanation, and a low score when an unintuitive, overly

complicated explanation is predicted.

We conducted a user experiment to score each possible explanation. This allows

us to distinguish explanations that are intuitive from those that are not without re-

lying on any prior assumptions. One could rely on the assumption that for example
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Predicate # Triples Explanations
User

Score

Explanation

Type

hasBrother 6, 067

hasSister 0.8 Partial

hasChild, hasParent 0.8 Partial

hasGrandparent (x2) 0.3 Partial

hasBrother, hasSister 0.6 Logical

hasBrother, hasBrother 0.7 Logical

hasSister, hasSister 0.7 Partial

hasParent, hasParent 0.9 Partial

hasChild 52,399

hasParent 0.9 Logical

hasChild, hasSister 0.7 Logical

hasBrother, hasChild 0.7 Logical

hasChild, hasSpouse 0.7 Logical

hasGrandparent, hasParent 0.4 Partial

hasChild, hasGrandparent 0.4 Partial

hasBrother, hasParent 0.7 Logical

hasParent, hasSpouse 0.7 Logical

hasParent, hasSister 0.7 Logical

hasSpouse 31,984

hasSpouse 0.8 Logical

hasChild,hasParent 0.5 Logical

hasChild,hasChild 0.9 Logical

Table 5.1: FrenchRoyalty-200k dataset: Breakdown of all predicates each possible

explanation, and its score given by users. # Triples column denotes the total number

of triples with that predicate. User Score column gives the score assigned to each

explanation by users. Explanation Type column denotes whether this explanation is

a logical (always true) or only partial.

the shortest path, i.e., the explanation that uses the fewest number of predicates,

is the most intuitive explanation. This assumption would fail when predicting the
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Predicate # Triples Explanations
User

Score

Explanation

Type

hasSister 4,433

hasBrother 0.8 Partial

hasChild, hasParent 0.8 Partial

hasGrandparent (x2) 0.2 Partial

hasBrother, hasSister 0.7 Logical

hasBrother, hasBrother 0.7 Partial

hasSister, hasSister 0.7 Logical

hasParent, hasParent 0.9 Partial

hasParent 48,241

hasChild 0.9 Logical

hasChild, hasSister 0.7 Logical

hasBrother, hasChild 0.7 Logical

hasChild, hasSpouse 0.7 Logical

hasGrandparent, hasParent 0.3 Partial

hasChild, hasGrandparent 0.3 Partial

hasBrother, hasParent 0.7 Logical

hasParent, hasSpouse 0.7 Logical

hasParent, hasSister 0.7 Logical

hasGrandparent 61,333

hasGrandparent, hasSister 0.6 Logical

hasChild, hasParent 0.9 Logical

hasBrother, hasGrandparent 0.6 Logical

hasParent,hasParent 0.9 Logical

hasGrandparent, hasSpouse 0.7 Logical

hasChild, hasChild 0.9 Logical

Table 5.1: FrenchRoyalty-200k dataset (continued)

hasGrandparent predicate, as there are no 1 hop paths, but many 2 hop paths. Re-

lying on the shortest path would treat all 2 hop paths as equally intuitive, while the

hasParent/hasParent path is by far the best explanation for hasGrandparent.

Using Google Survey, we conduct an experimental evaluation where for each predi-

cate, users are shown all possible explanations on the Paul’s Family graph, and asked

to assign a score to each path based on if the explanation is intuitive. Users are
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Figure 5.2: Example question from user survey on hasSister relation. Users are asked

to determine how intuitive hasBrother is as an explanation.

given the following definition: “An explanation is considered intuitive if it is easily

and immediately understood.” For each predicate, and for each possible explanation,

users are given an example of the predicate and its explanation used in a sentence.

For example, for the hasSister predicate, one explanation uses the hasParent, and

hasChild relations. Users are asked to score the following explanation: “Ruth is the

sister of Paul because Mary is the parent of Paul, and Ruth is the child of Mary.”

Figure 5.2 shows an example hasSister question from the survey. In this example,

users are asked to score how intuitive they find the hasBrother explanation.

Users scored each of these explanations on a five-point Likert scale: (4) Very

intuitive, an explanation I could give or expect; (3) Intuitive; (2) Neither intuitive or
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Figure 5.3: Native languages of user survey participants

unintuitive; (1) Unintuitive ; (0) Not intuitive at all, not an explanation I would give

or expect.

In total, 42 users responded from 11 different nationalities, consisting of both com-

puter science and non-computer science backgrounds. Figure 5.3 gives a breakdown

of the native languages of survey participants. The most common native languages

were French, English, and Italian. We normalized the average scores between 0 and 1

for each possible explanation, and round them to the nearest tenth. These user scores

are used in the rules and in the benchmark, detailed below, to penalize unintuitive

predicted explanations, and reward intuitive predicted explanations. User scores for

each predicate and explanation can be found in Table 5.1.

This survey also showed that, even for humans, explanations can be difficult to

define and assess. Users had difficulty deciding which explanations were intuitive.

Even when presented equivalent explanations for two different predicates, for exam-
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ple, using hasBrother, hasSister to explain a hasBrother link, and using hasBrother,

hasSister to explain a hasSister link, users on average did not assign these explana-

tions the same score. This lack of symmetry can be seen for multiple predicates in

Table 5.1.

5.4 Evaluation of Multiple Ground Truth Explanations

5.4.1 Scoring Metrics for Multiple Explanations

To our knowledge, there is no standard evaluation metric to measure the quality

of explanations generated by explanation methods when there are non-unique expla-

nations available to predict. A standard evaluation metric is needed to identify when

one explanation method is preferable to the other. The binary precision and recall

could be used for this task, however, these metrics fail to account for the fact that

some explanations can be more intuitive than others to users. Both metrics would

give a score of 1 when a predicted explanation exactly matches a ground truth expla-

nation. However, an explanation method could predict an unintuitive explanation,

and receive the highest possible evaluation score, potentially misleading practitioners

into thinking the predicted explanation is of high quality. Therefore, scoring metrics

used for this task must compare a predicted explanation to all possible explanations,

and account for the fact that explanations have different degrees of relevance. Ideally,

a scoring metric for this task should assign a lower score to an unintuitive predicted

explanation, and a higher score to an intuitive predicted explanation.

We propose to score explanation methods with non-unique explanations by adapt-

ing the generalized precision and generalized recall Kekäläinen and Järvelin [2002].

Originally proposed for document retrieval, generalized precision and generalized re-

call measure precision and recall based on the relevance score assigned to each re-
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trieved document. Generalized precision is defined by the sum of relevance scores for

each retrieved document divided by the number of retrieved documents. Generalized

recall is defined by the sum of relevance scores for each retrieved document divided

by the sum of relevance scores for all documents in the database.

We adapted these metrics in the context of link prediction on Knowledge Graphs.

Formally, let ti be a triple, ei = {t1, . . . , tn} be one of the possible ground truth

explanations for triple ti. Let êi ∈ Êi be the predicted explanation for ti, and Ei be

defined as all possible explanations for ti. Lastly, let s(.) gives the relevance score

(determined by the user experiment) for a given explanation. First, the best possible

user score for an explanation is given by Equation 5.1:

si =max
ei∈Ei

s(ei). (5.1)

The generalized precision between a predicted explanation and a ground truth

explanation is given by Equation 5.2:

gp(êi, ei) =
∣êi ∩ ei∣ × s(ei)
∣êi∣ × si

. (5.2)

Intuitively, it is a sum of the user scores of the triples shared by the prediction and

the ground truth, divided by the number of triples in the prediction, and the largest

possible user score. For a given triple ti, we take the highest generalized precision

across all of ti’s ground truth explanations, given by Equation 5.3:

gp(êi,Ei) =max
ei∈Ei

gp(êi, ei). (5.3)

We compute the maximum generalized precision for each triple, and average across

the dataset. For the set of all predicted explanations Ê, and the set of all ground
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truth explanation sets E, the generalized precision for an explanation method across

the entire dataset is given by Equation 5.4:

GP (Ê,E) =
∑êi∈Ê,Ei∈E gp(êi,Ei)

∣Ê∣
. (5.4)

The generalized recall sums the relevance scores for each predicted explanation

that exists in the ground truth explanations, divided by the number of triples in the

ground truth explanation, and the largest possible user score, given by Equation 5.5:

gr(êi, ei) =
∣êi ∩ ei∣ × s(ei)
∣ei∣ × si

. (5.5)

Similar to generalized precision, we propose to compute a maximum generalized

recall for each triple in the dataset (Equation 5.6) and average it across the dataset

(Equation 5.7).

gr(êi,Ei) =max
ei∈Ei

gr(êi, ei), (5.6)

GR(Ê,E) =
∑êi∈Ê,Ei∈E gr(êi,Ei)

∣Ê∣
. (5.7)

Note that we normalize the generalized precision and recall by the largest possible

user score for each explanation to ensure they take values between 0 and 1.

We compute the generalized F1 score, defined as the harmonic mean between the

generalized precision and generalized recall. To ensure the recall and precision are

computed on the same explanation, we compute them before we select the maximum

(Equation 5.8) and average it (Equation 5.9)

gf1(êi,Ei) =max
ei∈Ei

2 × gr(êi, ei) × gp(êi, ei)
gr(êi, ei) + gp(êi, ei)

, (5.8)
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GF1(Ê,E) =
∑êi∈Ê,Ei∈E gf1(êi,Ei)

∣Ê∣
. (5.9)

Finally we propose the use of the max-Jaccard metric to identify which explanation

had the most in common with the predicted explanation. Formally, for triple ti, we

compute the Jaccard similarity between predicted explanation êi with one of the

possible ground truth explanation sets ei, given by Equation 5.10:

j(ei, êi) =
∣ei ∩ êi∣
∣ei ∪ êi∣

= ∣ei ∩ êi∣
∣ei∣ + ∣êi∣ − ∣ei ∩ êi∣

. (5.10)

We compute this Jaccard similarity across all possible explanations in set Ei for

triple ti (Equation 5.11) and average the result over the dataset (Equation 5.12):

mj(êi,Ei) =max
ei∈Ei

j(êi, ei), (5.11)

MJ(Ê,E) =
∑êi∈Ê,Ei∈E mj(êi,Ei)

∣Ê∣
. (5.12)

The max-Jaccard compares a predicted explanation with all possible explanations

available to choose from. Intuitively it identifies the ground truth explanation that

shares a maximum number of triples with the predicted explanation, therefore indi-

cating which explanation a method may have tried to predict.

We argue these metrics are sufficient to quantitatively compare explanation meth-

ods when there are multiple explanations to consider. The max-Jaccard score mea-

sures if the explanation method is able to accurately predict one of the possible

explanations to choose from. The generalized precision and generalized recall mea-

sure if the predicted explanation was given a high intuitive score assigned by users.
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Both metrics prevent an explanation method from only predicting low scored, unin-

tuitive explanations, and receiving a high score. Lastly, the generalized F1 provides

an overview of performance on the generalized precision and recall.

5.4.2 Benchmark Setup and Protocol for Multiple Explanations

In this benchmark, we fix the number of dimensions to 10, the best performing in

terms of accuracy from the set {3,5,10}. We use a learning rate of 0.01, the best per-

forming from the set {0.01,0.001,0.0001}. Lastly, we train the RGCN on 1000 epochs

for all rules, found to the best performing from the set {50,100,500,1000,2000}. We

report the accuracy of the RGCN on the link prediction task. For each data subset

and each explanation method, we report the generalized precision, generalized recall,

generalized F1, and max-Jaccard.

We train GNNExplainer using a learning rate of 0.001 for each rule. We use 20

iterations for each observation. 3-fold cross validation is performed for both explana-

tion methods, and we report the results of the best performing fold.

5.4.3 Results and Discussion

Results per Subset We benchmark the FrenchRoyalty-200k dataset by splitting

the full data into subsets where only one type of predictable predicate is included.

The top half of Table 5.2 reports performance results of each predicate subset. For

example, the Spouse subset included only triples in the training and test sets with

the hasSpouse predicates, and their associated explanations.

First, the topmost row of Table 5.2 reports the results of the RGCN on the link

prediction task. We observe the highest accuracy on the hasSpouse relation, and a

drop in performance across the other predicates. We observe the lowest accuracy on

the hasChild relation.
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Statistics in separated subsets focused on one predicate

Models Metrics Spouse Brother Sister Grandparent Child Parent Full data

RGCN Accuracy 0.903 0.877 0.825 0.787 0.767 0.805 0.81

GNN

Explainer

Generalized Precision 0.261 0.366 0.281 0.17 0.137 0.123 0.11

Generalized Recall 0.434 0.395 0.31 0.17 0.158 0.152 0.121

Generalized F1 0.318 0.376 0.291 0.17 0.144 0.133 0.114

Max-Jaccard 0.275 0.372 0.373 0.137 0.166 0.161 0.11

ExplaiNE

Generalized Precision 0.296 0.407 0.353 0.21 0.181 0.202 0.173

Generalized Recall 0.546 0.458 0.459 0.21 0.223 0.243 0.2

Generalized F1 0.378 0.424 0.388 0.21 0.195 0.216 0.182

Max-Jaccard 0.315 0.447 0.417 0.179 0.22 0.252 0.174

Individual predicate statistics on the full dataset

Models Metrics Spouse Brother Sister Grandparent Child Parent Full data

RGCN Accuracy 0.786 0.878 0.826 0.822 0.804 0.8 0.81

GNN

Explainer

Generalized Precision 0.071 0.174 0.117 0.129 0.109 0.091 0.11

Generalized Recall 0.106 0.192 0.142 0.129 0.125 0.102 0.121

Generalized F1 0.083 0.18 0.126 0.129 0.114 0.095 0.114

Max-Jaccard 0.066 0.2 0.151 0.102 0.125 0.12 0.11

ExplaiNE

Generalized Precision 0.138 0.25 0.194 0.177 0.166 0.182 0.173

Generalized Recall 0.221 0.263 0.214 0.177 0.207 0.222 0.2

Generalized F1 0.165 0.253 0.2 0.177 0.18 0.195 0.182

Max-Jaccard 0.133 0.27 0.237 0.145 0.187 0.225 0.174

Table 5.2: Benchmark results on FrenchRoyalty-200k: Link prediction results for

RGCN, and explanation evaluation for GNNExplainer and ExplaiNE. Highest scores

per predicate denoted in bold.

Additionally, the top half of Table 5.2 reports the results of GNNExplainer on the

task of explainable link prediction. We can see GNNExplainer performed the best

on the hasBrother predicate explanation in terms of the generalized F1 score. Note

that the RGCN link prediction also performed well on the hasBrother predicate. We

observe performance drops on the relations hasChild and hasParent, and on the full

65



dataset, with all predicates included. Indeed the hasChild and hasParent explanations

follow a similar structure and definition of being logically inverse relations of each

other.

The top half of Table 5.2 reports the results of ExplaiNE on the task of explain-

able link prediction. This method performed the best on the hasBrother and hasSister

predicate subsets in terms of generalized F1 score. We see the lowest performance

on the full datset, followed by the hasGrandparent and hasChild predicate subsets.

Across all metrics and predicate subsets, we find ExplaiNE outperformed GNNEx-

plainer.

Full Data Results The bottom half of Table 5.2 further breaks down the results

on the full dataset (Full data column of the top half table). We filter the results on

the full data for each predicate and compare performance metrics to each predicate

subset. For example, the Spouse column from the bottom half of Table 5.2 reports

the benchmark performance of all input triples with the hasSpouse predicate from

an RGCN trained on the full data. This RGCN is exposed to all possible predicates,

whereas the Spouse column from the top half reports benchmark performance on an

RGCN trained only on the input triples with the hasSpouse predicate.

Comparing the two halves of Table 5.2, we can see the generalized precision, recall

and F1 scores generally decreased. These large changes across explanation perfor-

mance metrics suggest that embeddings learned by the RGCN play a significant role.

The RGCN trained on the hasSpouse subset is learning embeddings using only triples

with hasSpouse and explanations containing hasSpouse, hasChild, and hasParent. In

other words, the RGCN trained on this subset only has access to these predicates.

The RGCN trained on the full dataset however has access to all predicates listed in

Table 5.1. This could suggest, for instance, the embeddings from the full data is
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User Scores

Models Rule 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

GNN

Explainer

Spouse 0 0 0 50 0 0 276 59

Brother 0 21 0 0 0 2 10 23

Sister 19 0 0 0 0 3 13 7

Grandparent 0 0 0 0 61 504 0 1104

Child 0 0 353 0 0 585 0 91

Parent 0 192 0 0 0 515 0 152

Full data 11 195 312 59 47 1668 301 1499

ExplaiNE

Spouse 0 0 0 17 0 0 327 47

Brother 0 20 0 0 0 5 7 19

Sister 13 0 0 0 0 6 13 10

Grandparent 0 0 0 0 32 850 0 788

Child 0 0 389 0 0 516 0 118

Parent 0 264 0 0 0 437 0 154

Full data 16 274 336 62 30 1765 267 1333

Table 5.3: Distributions of user scores amongst incomplete attempts. For example, of

ExplainE’s incorrect predictions on the hasSpouse predicate, ExplaiNE unsuccessfully

attempted to predict an explanation with a user score of 0.8 on 327 observations.

incorporating additional, useless information into the embedding causing a drop in

explanation metrics.

Error Analysis We define an incomplete attempt to be a predicted explanation

where the max-Jaccard score across all possible explanations is less than 1. If two

explanations have the same max-Jaccard score, we take the explanation with the

highest user score. An incomplete attempt is considered to be a mistake made by the

explanation method. Table 5.3 reports the distributions of user scores amongst the

incomplete attempts of GNNExplainer and ExplaiNE for each predicate subset. On

the hasSpouse subset, GNNExplainer unsuccessfully attempted to predict an expla-

nation with a user score of 0.5 on 50 observations in the test set. From this table,
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Figure 5.4: ExplaiNE FrenchRoyalty-200k: Most frequently predicted predicates

amongst incomplete attempts

we can see both explanations methods attempted many times but failed to predict

explanations with user scores of 0.7. Both explanation methods do not always at-

tempt to predict explanations with the highest user scores (0.9). We recognize the

imbalance of user scores, with 0.7 being the most common user score assigned to an

explanation. Still, we bring to attention the fact that these explanation methods do

not always try to predict the best possible explanation (those with the highest user

scores).

Finally, the proposed method and dataset allows us to perform an error analysis on

the most frequently predicted predicates amongst incomplete attempts. For instance,

Figure 5.4e shows a histogram of ExplaiNE’s incomplete attempts on the hasSpouse

predicate. The most frequently predicated predicate was hasSpouse, accounting for

83% of incomplete attempts. As an example, for an input triple (Eadhild, hasSpouse,
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Figure 5.5: GNNExplainer FrenchRoyalty-200k: Most frequently predicted predicates

amongst incomplete attempts

Hugh the Great), and its ground truth explanations (Hugh the Great, hasSpouse,

Eadhild), ExplaiNE predicted a first degree neighbor (Hugh the Great, hasSpouse,

Hedwig of Saxony). This incorrect predicted explanation uses the hasSpouse predicate

but in the wrong way. Similarly, Figure 5.5e shows a histogram of GNNExplainer’s

incomplete attempts on the hasSpouse predicate.

We can see the importance of the FrenchRoyalty-200k dataset from this bench-

mark, along with the method we use to construct it, and the metrics we provide.

State-of-the-art explanation methods do not always give accurate explanations. Ex-

planation methods must be evaluated with ground truth explanations and quantita-

tive metrics that consider all possible explanations. Our method, dataset, and metrics

allow researchers to do so, and to develop new explanation methods and quantitatively

evaluate their explanations in a way they were previously unable to.
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On all three datasets benchmarked so far in this thesis (Royalty-20k, Royalty-30k,

and the FrenchRoyalty-200k), we observe that both ExplaiNE and GNNExplainer

struggle to produce explanations that match the ground truth. These explanation

methods are applied post hoc, thus it can be difficult to determine what is causing

an error. In order to improve the quality of explanation produced by these explana-

tion methods, one must first understand what is causing the error. Are the RGCN

embeddings lacking the necessary information needed for GNNExplainer/ExplaiNE

to produce an accurate explanation? Or are GNNExplainer/ExplaiNE to blame for

an incorrect explanation?

5.5 Concluding Remarks on Multiple Explanation Benchmark

On the task of explainable link prediction, there is no standard dataset available

where there are multiple ground truth explanations to choose from. Additionally,

no standard method exists to generate datasets with all possible explanations. Fur-

thermore, there is no standard evaluation metric to compare a predicted explanation

with all possible ground truths. In this chapter, we proposed a method, including

a dataset, FrenchRoyalty-200k, to compare predicted and ground truth explanations

when there are multiple ground truths. We proposed the use of several evaluation

metrics, leveraging the use of graded precision and recall for quantitative comparisons

across explanation methods. Lastly, we benchmarked two state-of-the-art explana-

tion methods, ExplaiNE and GNNExplainer using the proposed dataset and scoring

metrics. This method can be used to generate other Knowledge Graphs with a variety

of different domains, size, density, etc., to support the qualitative and quantitative

evaluation of explanations for RGCN link prediction.
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Chapter 6

IMPACT OF INJECTING GROUND TRUTH EXPLANATIONS INTO RGCN

EMBEDDINGS ON EXPLANATION METHOD PERFORMANCE

As we saw in the previous chapters, benchmark results of state-of-the-art explana-

tion methods showed the difficulties in predicting explanations. Performance metrics

for both methods on all three Royalty datasets were low. In this chapter, we leverage

prior knowledge to further constrain the loss function of RGCNs, by penalizing node

embeddings far away from the node embeddings in their associated ground truth ex-

planation. Empirical results show improved explanation prediction performance of

state-of-the-art post hoc explanations methods for RGCNs, at the cost of predictive

performance. Additionally, we quantify the different types of errors made both in

terms of data and semantics.

6.1 Introduction to Explanation Aware RGCNs

In previous chapters, we proposed several datasets with ground truth explana-

tions for link prediction on Knowledge Graphs, allowing for quantitative comparisons

of predicted explanations. For state-of-the-art explanation methods such as ExplaiNE

and GNNExplainer, initial benchmark results showed these methods do not always

correctly predict ground truth explanations. Previous approaches to learning Knowl-

edge Graph embeddings did not have access to ground truth explanations, hence do

not incorporate information from explanations into the embedding.

In this chapter, we adapt RGCNs to incorporate prior knowledge from ground

truth explanations into each embedding. This is done by constraining the cross en-

tropy loss functions used by RGCNs. We compare several different explanation-
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constrained loss functions to an RGCN using the standard binary cross entropy.

Results show improved predicted explanation performance of post hoc explanation

methods for RGCNs, at the cost of predictive performance. Additionally, we quantify

the different types of errors made in terms of data and semantics.

6.2 Injecting Ground Truth Explanations into RGCN Embeddings

In this section, we outline several proposed approaches to train RGCNs with

prior knowledge from ground truth explanations. We describe each approach using a

penalty associated with the explanations and adapted to different datasets. Code for

this chapter is available online. 1

6.2.1 Constraining the Loss Function of RGCNs

In the context of Image classification, Rieger et al. [2020] show that interpreta-

tions are useful and that we can penalize explanations to align neural networks with

prior knowledge. To do so, they constrain the loss functions of deep neural networks

by introducing an explanation penalty term, which teaches the model to generate

correct explanations. This additional constraint was shown to increase classification

performance. The explanations generated by this approach however were not empiri-

cally evaluated. Without ground truth explanations, this paper relies on assumptions

made by either manually annotating explanation labels, or rules to define correct ex-

planations for image data. Indeed manual annotation is difficult with large datasets.

For link prediction on Knowledge Graphs, the standard RGCN optimizes a cross

entropy loss function (Equation 2.14) to learn embeddings. In recent work, Halliwell

et al. [2021c,b] used a standard RGCN in a benchmark of three datasets to determine

the quality of explanations generated post hoc by GNNExplainer and ExplaiNE.

1https://github.com/halliwelln/penalized-rgcn
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Until recently, benchmarks did not include ground truth for explanations, and the

loss functions used by the standard RGCN do not include any constraints that account

for them. This lack of constraints on the standard RGCN loss function causes subject

and object embeddings in each triple to be mapped far away in the embedding space

from the subject and object embeddings in its associated explanation. The Royalty

datasets from Halliwell et al. [2021c,b] gives us the opportunity to train the predictors

with the prior knowledge of ground truth explanations.

We propose a loss function for RGCNs to improve post hoc explanation method

performance on the Royalty datasets. This is achieved by adding an explanation

constraint that pushes subject and object embeddings from each input triple closer

to subject and object embeddings in the input triple’s explanation. This is captured

by the penalty expressed in Equation 6.1 where, for some input triple tp = (s, p, o)

and an explanation triple tj = (sj, pj, oj), we propose an explanation aware constraint

that can be added to the binary cross entropy used by RGCNs:

P(tp, tj) =max(∣∣Emb(s) −Emb(sj)∣∣2, ∣∣Emb(s) −Emb(oj)∣∣2)

+max(∣∣Emb(o) −Emb(sj)∣∣2, ∣∣Emb(o) −Emb(oj)∣∣2).
(6.1)

This penalty sums the maximum ℓ2 distances between embedding Emb(.) of the

subjects and objects of the input triple tp and an explanation triple tj. Penalizing

the maximum allows us to push the subject embedding Emb(s) from the input triple

closer to subject and object embeddings from its ground truth explanation.

The ℓ2 maximum distance computations accounts for the fact that the direction

of the links is an arbitrary modelling decision that should not impact the compar-

ison of the embeddings of subjects and objects. Consider the case when the input

triple tp = (John,hasParent, Tom), and its associated ground truth explanation tj =

(Tom,hasChild, John). Simply summing the distance between subject and objects
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gives ∣∣Emb(John)−Emb(Tom)∣∣2+ ∣∣Emb(Tom)−Emb(John)∣∣2 = 2∗ ∣∣Emb(John)−

Emb(Tom)∣∣2. If however, the direction of the predicate in the explanation changes,

for example, if tj = (John, isChildof, Tom), the distance summation then becomes

∣∣Emb(John) −Emb(John)∣∣2 + ∣∣Emb(Tom) −Emb(Tom)∣∣2 = 0. Certainly the triple

pair (John,hasParent, Tom), and (Tom,hasChild, John) contains the same amount

of information as (John,hasParent, Tom), and (John, isChildof, Tom), however, a

simple summation over distances results in two times the distance or zero. In order

to account for this ambiguous case, we compute the maximum between the subject

distances and add this to the maximum between the object distances.

We can now augment the standard RGCN binary cross entropy loss with the

penalty term in Equation 6.1 in several ways and to account for several types of prior

knowledge from explanation ground truth.

6.2.2 Explanation Aware Loss Function for Unique Explanations

The Royalty-20k and Royalty-30k datasets Halliwell et al. [2021c] contain one

and only one unique explanation per predicted triple, describe as the case of non-

ambiguous explanations. We introduce the first loss function incorporating the penalty

term from Equation 6.1 for non-ambiguous explanations. Formally, let tp ∈ T + be a

positive triple in the form (s, p, o), let ep be its explanation that contains a set of

explanatory triples tj for the prediction of tp. The equation our proposed approach

optimizes is given by

Lsum = LRGCN + 1

∣T +∣ ∑tp∈T +
1

∣ep∣
∑
tj∈ep
P(tp, tj), (6.2)

where ∣ . ∣ denotes the cardinality, for example ∣ep∣ denotes the number of triples

in ep. Intuitively, Equation 6.2 takes a training set triple tp = (s, p, o), and its asso-
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ciated explanation ep, and applies an ℓ2 penalty for subject and object embeddings

in the explanation of tp that are far away from tp’s subject and object in the embed-

ding space. In other words, the subject and object embeddings found in each triple’s

ground truth explanation should be “similar” in the embedding space to the subject

and object embeddings, as they are used to explain why a predicate exists between

the triple’s subject and object. Using the standard RGCN loss function, this rela-

tionship between a triple and its ground truth explanation may not be captured in

the embedding space without the additional constraint from Equation 6.2. We apply

this loss function to the Royalty-20k and Royalty-30k datasets, results are reported

in the following section.

6.2.3 RGCN Loss Summing all Possible Explanations

The FrenchRoyalty-200k dataset Halliwell et al. [2021b] contains multiple expla-

nations for each predicted triples, described as the case of non-unique, or ambiguous

explanations. We introduce a loss function including a penalty term for these ambigu-

ous explanations. Formally, let Ep = {e1, ...el} be the set of l explanations available

for tp and ei = {(s1, p1, o1), ..., (sk, pk, ok)} be ith explanation for triple tp. Explanation

ei contains a set of explanatory triples tj for the prediction of tp. The proposed loss

function is given by

Lsum′ = LRGCN + 1

∣T +∣ ∑tp∈T +
1

∣Ep∣
∑

ei∈Ep

1

∣ei∣
∑
tj∈ei
P(tp, tj). (6.3)

Similarly, Equation 6.3 takes a training set triple tp = (s, p, o), and its associated

explanations Ep, and applies an ℓ2 penalty for subject and object embeddings from

all explanations of tp that are far away from tp’s subject and object in the embedding

space. The subtle difference between this loss function and Equation 6.2 is that
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Ep = {ep}, that is, there is only one explanation available for Equation 6.2, hence

the inner summation can be dropped. Equation 6.3 however must sum across all

explanations available to tp, hence is used for the FrenchRoyalty-200k dataset.

6.2.4 RGCN Loss Weighting each Possible Explanations

We also consider a loss function that weights the distance penalty term by the rel-

evance score of each explanation. This approach again pushes the subject and object

embeddings of tp closer to the subject and object embeddings from all triples in Ep.

However, this distance penalty term is weighted by the user score of each explanation

in Ep, therefore making the embeddings in tp more similar to the embeddings from

explanations with high relevance scores. This equation is given by

Lweight =
1

∣T +∣ ∑tp∈T +
1

∣Ep∣
∑

ei∈Ep

1

∣ei∣
∑
tj∈ei

score(ei) ∗P(tp, tj), (6.4)

Lweight = Lweight +LRGCN , (6.5)

where score(ei) is the relevance score of ei taking values between 0 and 1 of

the explanation as provided by the FrenchRoyalty-200k dataset. Intuitively, large

distances from embeddings in highly relevant explanations are given a larger penalty

than large distance from embeddings in less relevant explanations. This loss function

considers all triples in the ground truth explanation set Ep, but focuses on intuitive

explanations. This loss function relies on the user assigned scores for each explanation

included in the FrenchRoyalty-200k, and is thus limited only to applications on this

dataset.
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6.2.5 RGCN Loss Selecting the Highest Score

Lastly, we consider a loss function that penalizes subject and object embeddings

in tp that are far away from the subject and object embeddings of the best available

explanation ei, as determined by the given user relevance score. This equation is

given by

Lmax =
1

∣T +∣ ∑tp∈T +
∑

tj∈ei;score(ei)=max
e∈Ep

score(e)

P(tp, tj)
∣ei∣

, (6.6)

Lmax = Lmax +LRGCN . (6.7)

This loss function pushes the subject and object embeddings from tp close to the

subject and object embeddings in the best explanation ei in the embedding space,

making these embeddings more similar to each other than the standard RGCN. Em-

beddings from all other available ground truth explanations are not factored in. Sim-

ilar to Equation 6.5, this loss function relies on the user assigned scores from the

FrenchRoyalty-200k, hence this loss function is limited only to applications on this

dataset.

6.3 Explanation Aware RGCN Benchmark Results and Evaluations

In this section, we evaluate the proposed loss functions on three datasets. The

Royalty-20k dataset contains 3 types of predicates: hasSpouse, hasSuccessor, and

hasPredecessor. The Royalty-30k dataset also contains 3 types of predicates including

hasSpouse, hasGrandparent, and hasParent, where hasParent is only used to explain

hasGrandparent. These datasets are used to evaluate explanation quality when there

is one and only one explanation for each predicted triple. The FrenchRoyalty-200k
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contains 6 types of predicates also based on family relations, hasSpouse hasBrother,

hasSister, hasGrandparent, hasChild, and hasParent. Each predicted triple in this

dataset includes all possible explanations, and is used to evaluate explanation qual-

ity when there are multiple to choose from. We compare all loss functions with a

standard RGCN (using the loss function from Equation 2.14). We apply two state-of-

the-art explanation methods, GNNExplainer Ying et al. [2019] (Equation 2.16), and

ExplaiNE Kang et al. [2019] (Equation 2.15) to all RGCNs post hoc, and compare

the quality of explanation generated by GNNExplainer and ExplaiNE.

For all experiments in this work, we fix the number of embedding dimensions

to 10 as done in Halliwell et al. [2021b]. Additionally, for GNNExplainer, we use

a learning rate of 0.001, and use 20 iterations for each observation on all datasets.

Across all three datasets, we subset the data by each predicate, and report results

on each subset. For example, on the Royalty-20k dataset, the Spouse column from

Table 6.1 gives performance results on a subset of data using only hasSpouse triples

and their associated explanations. Additionally, we report results on the full dataset,

with all predicates included.

On the Royalty-20k and Royalty-30k datasets, predicted explanation performance

is measured using the Jaccard score between each predicted and ground truth expla-

nation. We also report precision, recall and F1 scores, however, Halliwell et al. [2021c]

recommend measuring explanation quality on these datasets using the Jaccard score.

On the FrenchRoyalty-200k dataset, predicted explanation performance is measured

using the Generalized Precision, Recall, and F1 scores Kekäläinen and Järvelin [2002],

along with the Max-Jaccard score Halliwell et al. [2021b].
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6.3.1 Results with Non-Ambiguous Explanations

The top two rows of Table 6.1 report the link prediction results for the standard

RGCN and the loss function in Equation 6.2 on the Royalty-20k dataset. We can

see the standard RGCN outperformed the proposed approach on the full dataset,

along with the hasSpouse subset. The proposed approach outperformed the standard

RGCN on the hasSuccessor and hasPredecessor subsets.

Rows three and four of Table 6.1 report the results of GNNExplainer applied to a

standard RGCN, and applied to the proposed RGCN in Equation 6.2 on the task of

explainable link prediction. We observe the GNNExplainer applied to the proposed

RGCN outperformed or matched the GNNExplainer applied to the baseline in terms

of the Jaccard score on all subsets, and the full dataset.

Rows five and six of Table 6.1 report the results of ExplaiNE applied to a standard

RGCN, and applied to the proposed RGCN in Equation 6.2. On the hasSpouse,

hasSuccessor and hasPredecessor subsets, we find ExplaiNE when applied to the

RGCN in Equation 6.2 improved all performance metrics. On the full dataset, we

found using the proposed approach resulted in an improved Jaccard score.

The three rightmost columns of Table 6.1 report the performance metrics for the

standard RGCN and the proposed approach on the Royalty-30k dataset. On the task

of link prediction, we again find the proposed approach decreased the accuracy on all

subsets, including the full dataset.

Rows three and four of Table 6.1 report the results of GNNExplainer applied to

the baseline RGCN, and proposed RGCN on the task of explainable link prediction.

We find equal or better performance across all metrics. The precision, recall, and F1

score remain relatively unchanged on the full dataset.

Rows five and six of Table 6.1 report the results of ExplaiNE applied to the
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baseline RGCN, and the proposed RGCN. Here we see improved performance on all

metrics, and across all data subsets, including the full dataset. We observe a large

increase in Jaccard score on the full dataset.

6.3.2 Results with Non-Unique Explanations

The top four rows of Table 6.2 report the link prediction results of the baseline and

proposed methods. In general, the baseline RGCN from Equation 2.14 outperformed

the proposed methods in terms of accuracy on the task of link prediction, with the

exception of the hasSpouse, hasSister, and hasChild subsets.

Rows five through eight of Table 6.2 report the results of GNNExplainer applied

the baseline RGCN, and the proposed approaches from Equations 6.3, 6.5, 6.7 on

the task of explainable link prediction. Overall, we found all approaches had similar

performance metrics, with two proposed approaches having a small increase in Max-

Jaccard score on the full dataset.

Rows nine through twelve of Table 6.2 report the results of ExplaiNE applied

to the baseline RGCN, and the proposed approaches on the task of explainable link

prediction. We found the proposed approach improved performance on almost all

metrics. Most notably, a large increase in Max-Jaccard score on the full dataset and

hasSister subset.

6.4 Error Analysis: Quantitative Evaluation of Explanations

In this section, we evaluate the errors made by GNNExplainer and ExplaiNE, after

being applied post hoc to the baseline RGCN, and the models using Equations 6.2, 6.3,

and 6.5. In this work, we define an error to be a predicted explanation with a Jaccard

score strictly less than 1 (for the Royalty-20k and Royalty-30k datasets), and a Max-

Jaccard score strictly less than 1 for the FrenchRoyalty-200k dataset.

81



FrenchRoyalty-200k Results

Models Metrics Spouse Brother Sister Grandparent Child Parent Full data

LRGCN Accuracy 0.935 0.909 0.853 0.858 0.792 0.838 0.928

Lsum′ Accuracy 0.973 0.864 0.999 0.599 0.8 0.639 0.877

Lmax Accuracy 0.966 0.75 0.824 0.648 0.793 0.697 0.878

Lweight Accuracy 0.966 0.909 0.971 0.615 0.801 0.706 0.897

GNN Explainer

G. Precision 0.246 0.323 0.34 0.162 0.142 0.131 0.109

with G. Recall 0.415 0.333 0.353 0.162 0.167 0.154 0.119

LRGCN G. F1 0.302 0.327 0.344 0.162 0.15 0.139 0.112

Max-Jaccard 0.256 0.345 0.299 0.128 0.16 0.161 0.109

G. Precision 0.243 0.324 0.34 0.162 0.142 0.13 0.108

with G. Recall 0.411 0.335 0.353 0.162 0.166 0.154 0.118

Lsum′ G. F1 0.299 0.328 0.344 0.162 0.14 0.138 0.111

Max-Jaccard 0.254 0.345 0.299 0.128 0.161 0.16 0.109

G. Precision 0.246 0.324 0.34 0.164 0.143 0.128 0.108

with G. Recall 0.414 0.335 0.353 0.164 0.167 0.151 0.118

Lmax G. F1 0.302 0.328 0.344 0.164 0.151 0.136 0.112

Max-Jaccard 0.255 0.345 0.299 0.13 0.161 0.159 0.11

G. Precision 0.243 0.324 0.328 0.163 0.144 0.13 0.11

with G. Recall 0.411 0.335 0.342 0.163 0.168 0.153 0.12

Lweight G. F1 0.299 0.328 0.333 0.163 0.152 0.138 0.113

Max-Jaccard 0.254 0.345 0.299 0.129 0.162 0.161 0.11

ExplaiNE

G. Precision 0.336 0.48 0.379 0.234 0.221 0.255 0.192

with G. Recall 0.637 0.49 0.418 0.234 0.279 0.27 0.218

LRGCN G. F1 0.435 0.483 0.392 0.234 0.24 0.26 0.2

Max-Jaccard 0.363 0.504 0.417 0.201 0.241 0.27 0.193

G. Precision 0.37 0.585 0.536 0.244 0.231 0.247 0.188

with G. Recall 0.726 0.605 0.667 0.244 0.291 0.258 0.232

Lsum′ G. F1 0.488 0.591 0.58 0.244 0.251 0.25 0.203

Max-Jaccard 0.41 0.598 0.539 0.211 0.246 0.273 0.209

G. Precision 0.338 0.433 0.487 0.224 0.224 0.267 0.177

with G. Recall 0.66 0.471 0.592 0.224 0.283 0.286 0.213

Lmax G. F1 0.444 0.444 0.522 0.224 0.243 0.273 0.189

Max-Jaccard 0.377 0.523 0.402 0.189 0.242 0.303 0.196

G. Precision 0.351 0.538 0.485 0.232 0.227 0.263 0.189

with G. Recall 0.69 0.567 0.629 0.232 0.287 0.275 0.23

Lweight G. F1 0.463 0.547 0.533 0.232 0.247 0.267 0.203

Max-Jaccard 0.39 0.557 0.407 0.196 0.243 0.295 0.208

Table 6.2: Results on FrenchRoyalty-200k: Link prediction results for baseline RGCN

and proposed model, along with explanation evaluation for GNNExplainer and Ex-

plaiNE. Highest scores in bold, and G. being an abbreviation for Generalized.
82



M
o
st

F
re
q
u
en

tl
y
P
re
d
ic
a
te
d
P
re
d
ic
a
te

E
x
p
la
iN

E
w
it
h
L
s
u
m

E
x
p
la
iN

E
w
it
h
L
R
G
C
N

G
N
N
E
x
p
la
in
er

w
it
h
L
s
u
m

G
N
N
E
x
p
la
in
er

w
it
h
L
R
G
C
N

D
a
ta
se
t

P
re
d
ic
a
te

M
o
st

F
re

q
u
e
n
t

P
re

d
ic
a
te

%
o
f
E
rr
o
r

M
o
st

F
re

q
u
e
n
t

P
re

d
ic
a
te

%
o
f
E
rr
o
r

M
o
st

F
re

q
u
e
n
t

P
re

d
ic
a
te

%
o
f
E
rr
o
r

M
o
st

F
re

q
u
e
n
t

P
re

d
ic
a
te

%
o
f
E
rr
o
r

R
o
y
a
lt
y
−
2
0
k

h
a
sS

po
u
se

h
a
sS

po
u
se

1
0
0
%

h
a
sS

po
u
se

1
0
0
%

h
a
sS

po
u
se

1
0
0
%

h
a
sS

po
u
se

1
0
0
%

h
a
sS

u
cc
es
so
r

h
a
sP

re
d
ec
es
so
r

9
4
%

h
a
sP

re
d
ec
es
so
r

6
7
%

h
a
sS

u
cc
es
so
r

5
2
%

h
a
sP

re
d
ec
es
so
r

5
2
%

h
a
sP

re
d
ec
es
so
r

h
a
sP

re
d
ec
es
so
r

6
4
%

h
a
sP

re
d
ec
es
so
r

5
5
%

h
a
sP

re
d
ec
es
so
r

5
7
%

h
a
sP

re
d
ec
es
so
r

5
1
%

R
o
y
a
lt
y
−
3
0
k

h
a
sS

po
u
se

h
a
sS

po
u
se

1
0
0
%

h
a
sS

po
u
se

1
0
0
%

h
a
sS

po
u
se

1
0
0
%

h
a
sS

po
u
se

1
0
0
%

h
a
sG

ra
n
d
pa

re
n
t

h
a
sP

a
re
n
t

5
6
%

h
a
sG

ra
n
d
pa

re
n
t

5
5
%

h
a
sG

ra
n
d
pa

re
n
t

6
4
%

h
a
sG

ra
n
d
pa

re
n
t

6
4
%

h
a
sS

po
u
se

h
a
sS

po
u
se

9
2
%

h
a
sS

po
u
se

8
4
%

h
a
sS

po
u
se

5
1
%

h
a
sS

po
u
se

5
0
%

h
a
sB

ro
th
er

h
a
sP

a
re
n
t

7
2
%

h
a
sG

ra
n
d
pa

re
n
t

5
3
%

h
a
sG

ra
n
d
pa

re
n
t

4
7
%

h
a
sG

ra
n
d
pa

re
n
t

4
5
%

F
r
en

ch
R
o
y
a
lt
y

h
a
sS

is
te
r

h
a
sP

a
re
n
t

6
0
%

h
a
sP

a
re
n
t

5
3
%

h
a
sG

ra
n
d
pa

re
n
t

3
2
%

h
a
sG

ra
n
d
pa

re
n
t

3
2
%

h
a
sG

ra
n
d
pa

re
n
t
h
a
sG

ra
n
d
pa

re
n
t

4
4
%

h
a
sG

ra
n
d
pa

re
n
t

5
6
%

h
a
sG

ra
n
d
pa

re
n
t

5
7
%

h
a
sG

ra
n
d
pa

re
n
t

5
6
%

2
0
0
k

h
a
sC

h
il
d

h
a
sP

a
re
n
t

3
0
%

h
a
sP

a
re
n
t

3
3
%

h
a
sG

ra
n
d
pa

re
n
t

4
1
%

h
a
sG

ra
n
d
pa

re
n
t

4
1
%

h
a
sP

a
re
n
t

h
a
sP

a
re
n
t

4
5
%

h
a
sP

a
re
n
t

4
6
%

h
a
sG

ra
n
d
pa

re
n
t

3
7
%

h
a
sG

ra
n
d
pa

re
n
t

3
8
%

T
ab

le
6.
3:

M
os
t
fr
eq
u
en
t
p
re
d
ic
at
e
ac
ro
ss

in
co
rr
ec
tl
y
p
re
d
ic
te
d
ex
p
la
n
at
io
n
s,
al
on

g
w
it
h
th
e
p
er
ce
n
ta
ge

of
er
ro
r
b
y
su
b
se
t.

N
ot
e
L s

u
m
′
is
u
se
d
fo
r
F
re
n
ch
R
oy
al
ty
-2
00
k
.

83



6.4.1 Royalty-20k

The top row of Table 6.3 gives a breakdown of each explanation method’s most

frequent error by subset for the Royalty-20k dataset when applied to LRGCN and

Lsum. Each row reports the most frequent predicate, and the percentage of errors this

predicate occured in. For example, under the hasSpouse subset, the most common

predicate across ExplaiNE’s incorrectly predicted explanations (when applied to the

RGCN in Equation 6.2) was hasSpouse, and this predicate was observed in 100% of

errors. This error occurs when ExplaiNE predicts the wrong subject or object in the

explanation. This can occur on the hasSpouse subset, as under this subset, there is

only one possible predicate to predict (hasSpouse).

On the Royalty-20k dataset, we can see on the hasSuccessor subset that the 94% of

ExplaiNE with Lsum errors contained the hasPredecessor predicate. This type of error

occurs when the subject and/or object in the predicted explanation are incorrect. We

can deduce this due to the fact that on the hasSuccessor dataset, the RGCNs and

explanation methods only observe two predicates, hasSuccessor and hasPredecessor.

GNNExplainer when applied to both RGCNs however produce more uniform errors,

where 52% of errors occurred by using the wrong subject and/or object, and the

remaining errors occurred by identifying the wrong predicate. For GNNExplainer

applied to both RGCNs, we observe a similar phenomenon on the hasPredecessor

subset as well.

Note there are three types of explanation errors, one where the predicate in the

predicted explanation is incorrect, one where the subject and/or object in the pre-

dicted explanation is incorrect, or both. From Tabe 6.3, we can see that ExplaiNE,

when applied to the RGCN from Lsum, has an increased number of errors using the

wrong subject and object on the hasSuccessor subset. Recall each hasSuccessor pred-
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Most Frequently Missing Predicate

Dataset Predicate Ground Truth

ExplaiNE

with

Lsum

% Missing

ExplaiNE

with

LRGCN

% Missing

GNNExplainer

with

Lsum

% Missing

GNNExplainer

with

LRGCN

% Missing

Royalty − 20k

hasSpouse hasSpouse 0% 0% 0% 0%

hasSuccessor hasPredecessor 6% 33% 52% 48%

hasPredecessor hasSuccessor 64% 55% 57% 49%

Royalty − 30k

hasSpouse hasSpouse 0% 0% 0% 0%

hasGrandparent
hasParent

hasParent

44%

44%

55%

55%

64%

64%

64%

64%

Table 6.4: Most frequently missing predicate. Each row denotes the predicate sub-

set, the ground truth predicates defining the rule, and the percentage of triples not

containing the ground truth predicate(s)

icate has an associated hasPredecessor ground truth. Here, the proposed approach

produces more errors using the hasPredecessor predicate.

The first row of Table 6.4 reports the most frequently missing predicate from

the explanation method’s errors for the Royalty-20k dataset. Each row denotes the

predicate subset, the ground truth predicates defining the rule, and the percentage

of triples not containing the ground truth predicate(s). For example, under the has-

Successor subset of the Royalty-20k dataset, 6% of ExplaiNE’s errors (when applied

to Lsum) did not contain hasPredecessor.

Lastly, Figures 6.1a and 6.1b show histograms of the most frequently predicted

predicate amongst errors for ExplaiNE and GNNExplainer with Lsum on the Royalty-

20k dataset. We can see GNNExplainer made a similar number of errors on the

hasPredecessor, and hasSuccessor subsets, confirming the findings from Tables 6.3
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and 6.4.

6.4.2 Royalty-30k

The second row of Table 6.3 gives a breakdown of each explanation method’s most

frequent error by subset for the Royalty-30k dataset when applied to LRGCN and

Lsum. After applying ExplaiNE to Lsum, we can see on the hasGrandparent subset,

the most frequently predicted predicate was hasParent, accounting for 56% of errors.

Conversely, for ExplaiNE with the baseline LRGCN , the most frequently predicted

predicate is hasGrandparent. We can conclude from this that the explanation aware

loss function Lsum changed the most frequent type of error made by ExplaiNE. Rather

than predict the wrong predicate, the explanation aware loss instead produces errors

using the correct predicate but wrong subject and/or objects.

The second row of Table 6.4 reports the most frequently missing predicate from

each explanation method’s errors for the Royalty-30k dataset. On the hasGrandparent

subset, we find a decreased number of errors missing the hasParent explanation,

consistent with Table 6.3. In general, we found GNNExplainer when applied to an

explanation aware RGCN had minimal changes in errors metrics.

6.4.3 FrenchRoyalty-200k

The last row of Table 6.3 gives a breakdown of each explanation method’s most

frequent error by subset for the FrenchRoyalty-200k dataset when applied to LRGCN

and Lsum′ . On the hasBrother subset, we can see the errors produced by ExplaiNE

with Lsum′ results in errors using the hasParent predict, instead of hasGrandparent

produced by the baseline.

Figures 6.1e and 6.1f show frequency counts of the most frequently predicted pred-

icates amongst predictions made by Lsum′ with a Max-Jaccard score less than 1. We
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Figure 6.1: RGCN with Lsum: Predicate Frequency Count on Incorrectly Predicted

Explanations on each Full Dataset.

can see both ExplaiNE and GNNExplainer’s most frequently predicte predicate is

hasGrandparent. Additionally, both explanation methods least frequently predicted

predicate amongst errors were hasBrother, and hasSister. We found ExplaiNE had dif-

ficulty predicting hasSpouse explanations, while GNNExplainer had fewer hasSpouse

errors, and more errors with hasChild explanations. The number of errors made by

GNNExplainer on the hasParent and hasChild subsets were nearly equal.

Table 6.5 reports the distributions of user scores amongst the errors of GNNEx-
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User Scores

Models Rule 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

GNN

Explainer

with

LRGCN

Spouse 0 0 0 28 0 0 214 48

Brother 0 18 0 0 0 8 4 13

Sister 5 0 0 0 0 6 16 7

Grandparent 0 0 0 0 35 419 0 805

Child 0 0 165 0 0 541 0 69

Parent 0 135 0 0 0 464 0 48

Full data 8 150 212 52 24 1315 186 1122

GNN

Explainer

with

Lsum′

Spouse 0 0 0 28 0 0 214 48

Brother 0 18 0 0 0 7 5 13

Sister 5 0 0 0 0 6 16 7

Grandparent 0 0 0 0 40 408 0 812

Child 0 0 172 0 0 534 0 72

Parent 0 133 0 0 0 466 0 47

Full data 7 146 216 53 22 1296 188 1141

ExplaiNE

with

LRGCN

Spouse 0 0 0 11 0 0 252 29

Brother 0 13 0 0 0 0 1 19

Sister 4 0 0 0 0 2 14 10

Grandparent 0 0 0 0 28 711 0 506

Child 0 0 203 0 0 456 0 115

Parent 0 142 0 0 0 470 0 33

Full data 4 240 262 34 11 1441 208 862

ExplaiNE

with

Lsum′

Spouse 0 0 0 8 0 0 263 22

Brother 0 4 0 0 0 0 2 21

Sister 0 0 0 0 0 0 18 7

Grandparent 0 0 0 0 16 753 0 468

Child 0 0 196 0 0 467 0 115

Parent 0 194 0 0 0 430 0 27

Full data 3 222 269 12 8 1379 263 835

Table 6.5: Distributions of user scores amongst errors for Lsum′ relative to the LRGCN

on FrenchRoyalty-200k. Ex. of ExplainE with Lsum′ ’s incorrect predictions on the

hasSpouse predicate, ExplaiNE unsuccessfully attempted to predict an explanation

with a user score of 0.8 on 263 observations.
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plainer and ExplaiNE applied to Lsum′ and the baseline LRGCN for each predicate

subset. For example, on the hasSpouse subset, ExplaiNE applied to Lsum′ unsuccess-

fully attempted to predict an explanation with a user score of 0.8 on 263 observations

in the test set. From this table, we can see both explanations methods attempted

many times but failed to predict explanations with user scores of 0.7. Both expla-

nation methods do not always attempt to predict explanations with the highest user

scores (0.9). Indeed there is an imbalance of user scores, with 0.7 being the most

common user score assigned to an explanation Halliwell et al. [2021b]. We note the

fact that these explanation methods do not always try to predict the best possible

explanation (those with the highest user scores). A similar phenomenon is observed

in Halliwell et al. [2021b]. On the full dataset, we can see ExplaiNE with Lsum′

made more errors with user scores of 0.8 than its respective baseline. Additionally,

GNNExplainer Lsum′ made more errors with user scores of 0.9 than its respective

baseline.

6.5 Discussion of Explanation Aware RGCN Benchmark Results

On all three datasets, we found the proposed approaches matched or increased

the Jaccard (or Max-Jaccard) scores on ExplaiNE when training on the full dataset

with all predicates included. We found however, the baseline RGCN outperformed

the proposed approach on the task of link prediction on the same datasets. From

these experiments, we observe a trade off between black box model performance and

explainability. Including prior information from ground truth explanations into the

embeddings of RGCNs improves the quality of explanations generated by ExplaiNE

and GNNExplainer. However, this comes at the cost of predictive power. Our ap-

proach allows practitioners and researchers to find a balance between predictive power

and model explainability that the standard RGCN is unable to provide.
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Additionally, we found our approach had the biggest impact on ExplaiNE’s ex-

planations, and a minimal impact on GNNExplainer’s explanations. Understanding

why the proposed approach had a larger impact on ExplaiNE’s performance metrics

than that of GNNExplainer would require a further understanding of what properties

of the graph the embedding has learned. We leave this task for future work.

We recognize the difficulties in predicting explanations, even after making im-

provements, Jaccard (and Max-Jaccard) scores were still low. In fact, we found many

of the Jaccard scores to be less than 0.5. Applying explanation methods post hoc to a

black box model creates difficulties in diagnosing errors in predicted explanations, as

there are many possible sources of error. When an explanation method produces an

incorrectly predicted explanation, there are no available techniques to our knowledge

that can identify if the explanation method is flawed, or if the error is due to a bad

embedding that has not capturing the necessary information. Recent research has

raised a similar concern, and that explanation methods for black boxes can be mis-

leading Rudin et al. [2021], Rudin [2019], Laugel et al. [2019], Lakkaraju and Bastani

[2020], Dimanov et al. [2020].

The lack of significant changes in performance metrics of GNNExplainer is likely

due to the large number of parameters used by the model for each observation. Per-

turbations to the RGCN embedding are less influential on the predicted explanation,

hence we can conclude GNNExplainer is less dependent on the RGCN embeddings

for explanation predictions than ExplaiNE.

This work contributes to being able to identify where in the pipeline errors are

caused. Injecting knowledge into the graph embedding shows GNNExplainer’s errors

are likely due to its parameters learned and not the RGCN embeddings, where as

ExplaiNE’s error are due to the embeddings.

We are aware that there are few Knowledge Graphs providing a ground truth for
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explanations, however we wanted to evaluate the impact of such knowledge on differ-

ent methods before investing resources in campaigns to manually annotate Knowledge

Graphs with explanations. This work focuses on the case of supervised explanation

prediction, where ground truth explanations are available. We provide a theoretical

study of the behaviour of several explanation methods in the presence of explanation

aware embeddings.

6.6 Concluding Remarks on Explanation Aware RGCNs

In this chapter, we applied the explanation-constrained loss function similar to

that of Rieger et al. [2020] to RGCNs for link prediction on Knowledge Graphs. We

added a penalty term for subject and object embeddings far away from the subject

and object embeddings found in the ground truth explanation. We compared several

different explanation-constrained loss functions to a baseline RGCN, and evaluate

performance on three datasets with ground truth explanations. Results showed im-

proved performance of post hoc explanation methods. We performed an error analysis

on the Royalty datasets, quantifying errors in terms of both data and semantics.
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Chapter 7

SEQUENCE TO SEQUENCE MODELS FOR EXPLAINING RGCN-BASED

LINK PREDICTIONS

In the previous chapter, we saw that even with prior knowledge injected into the

embeddings, current state-of-the-art explanation methods struggled to generate accu-

rate explanations. In particular, when several RDF triples appear in the explanations.

To cope with this issue, in this chapter, we use a Sequence to Sequence (Seq2Seq)

model to generate explanations for RGCNs on the task of link prediction on KGs,

no matter the number of triples in the explanations. In order to properly apply and

evaluate this model, we convert RDF triples from the Royalty-30k dataset into se-

quences, thus generating a corpus of synthetic explanations. Experiment results show

significant improvements in the quality of explanation compared to state-of-the-art

methods. Furthermore, we propose an approach to construct false RDF triples to

guide the Seq2Seq model during training. We observe a further performance increase

when training with these valid synthetic counter-examples. Lastly, we propose several

sanity checks to verify the robustness of the Seq2Seq model.

Benchmarks on the Royalty-20k, Royalty-30k, and FrenchRoyalty-200k have shown

that many state-of-the-art explanation methods do not accurately predict ground

truth explanations, in particular, these methods struggled to generate accurate ex-

planations when there are more than one explanation in the ground truth.

In this chapter, we propose a Sequence-to-Sequence model to generate explana-

tions for RGCNs on the task of link prediction on KGs. We benchmark this approach,

along with the aforementioned state-of-the-art explanation methods, and find signif-

icant performance improvements with the proposed Seq2Seq model, specifically on
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explanations that require more than one triple in the ground truth. Furthermore,

we propose an approach to constructing false triples used during training to improve

performance. Lastly, we propose several sanity checks to verify the robustness of the

Seq2Seq model.

We propose to focus on Seq2Seq models to generate explanations for RGCNs.

Indeed a Transformer could be considered in this work, however the main drawback of

Transformers is that the architecture has to be very large in order to preserve memory

across long sequences, at the cost of requiring large amounts of training data. When

sequences are relatively short, for example, in the dataset used in this paper, a model

built to handle long sequences is not necessary, and Seq2Seq models are competitive.

To the best of our knowledge, Seq2Seq models have not been previously applied on

Knowledge Graphs to learn to generate explanations.

7.0.1 Contributions

In this chapter, our first contribution is to propose the generation of a synthetic

corpus explaining links from a Knowledge Graph. The sequences of the corpus include

explained true links and example of false links. We then train a Seq2Seq model on this

ground truth to predict and explain links at the same time, initializing a sequence with

a candidate link and asking the model to complete that sequence. We demonstrate the

performance of this approach against state-of-the-art methods, and perform several

sanity checks to verify model robustness.

7.1 Knowledge Graphs and their explanations as a Corpus

In this section, we describe the process of converting a KG to a corpus to be used

by NLP models, and a description of how counter-examples are constructed.
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7.1.1 Generating a Synthetic Corpus from a KG

As shown in previous chapters, state-of-the-art explanation methods struggle to

predict explanations with multiple triples, such as the hasGrandparent relation, de-

fined as hasGrandparent(X,Z) ← hasParent(X,Y ) ∧ hasParent(Y,Z). Indeed

Chapters 4, 5, and 6 showed that even if ExplaiNE can identify more than one pair

of triples, the largest gradients when dealing with multiple triples were not, most

of the time, in the ground truth explanation. ExplaiNE is almost always producing

large gradients when triples are first degree neighbors, while for some predicates like

hasGrandparent, one of the triples is not a first degree neighbor but a second degree

neighbor. This behavior is confirmed in Table 7.1 by the low value of Jaccard sim-

ilarity for ExplaiNE on the hasGrandparent predicate. Similarly, GNNExplainer’s

approach of learning a mask over the adjacency matrix struggles to learn a subgraph

that included multiple triples of both first and second degree neighbors. In Chap-

ters 4, we saw performance metrics drop on predicates like hasGrandparent. Similar

to ExplaiNE, this behavior is confirmed in Table 7.1 by the low Jaccard metric for

GNNExplainer on the hasGrandparent predicate.

Both ExplaiNE and GNNExplainer operate on the adjacency matrix of a KG.

For a small KG such as the Roylaty-30k dataset, the adjacency matrix contains more

than 395 million elements. For each observation, the number of parameters learned by

GNNExplainer is equal to the size of the adjacency matrix. ExplaiNE computes the

gradient of the scoring function for each element of the adjacency matrix. Operating

on the adjacency matrix could be why these explanation methods struggled to produce

accurate explanations when there are more than one triple in the ground truth.

We thus want to design a model which is not based on the adjacency matrix,

while still being able to generate multiple triples as an output. As mentioned pre-
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viously, Seq2Seq models are perfect candidates in this case, but then training sets

have to be adapted to train a sequential model. We thus propose to transform the

Royalty-30k KG into a synthetic corpus of logical sequences describing implications

between triples and their explanations. We then use this corpus to learn a model

to complete sequences, and predict missing triples together with their explanations.

We consider each subject, object and predicate in the KG as a token to be used in a

Seq2Seq model. In other words, each triple in the Royalty-30k KG is converted into

a sequence, as well as its associated ground truth explanation, resulting in a train-

ing set of pairs of sequences. For example, the triple (Louis VII, hasSpouse, Adela of

Champagne) becomes the sequence [Louis VII, hasSpouse, Adela of Champagne], and

its associated ground truth explanation (Adela of Champagne, hasSpouse, Louis VII )

becomes also a sequence starting with the truth value of the triple and its explanation

[Start,True,Adela of Champagne, hasSpouse, Louis VII,End]. The True token in the

explanation represents whether or not (Louis VII, hasSpouse, Adela of Champagne)

is a true or false triple. Converting the KG into a corpus allows us to apply sequential

models to a Knowledge Graph in a controlled manner, such an example can be seen in

Figure 7.1. Our Seq2Seq model functions as language translation model: it encodes

the initial triples in a latent representation (the last blue LSTM Encoder Cell on

Figure 7.1), which is then input to the decoder that “translates” the encoded triples

into its explanation.

7.1.2 Adding Valid Counter-Examples to the Corpus

Recall a true triple is defined as one that is a known fact, such as (Louis VII,

hasSpouse, Adela of Champagne). Similarly, a false triple is one that is known to not

be a fact, such as (Louis VII, hasGrandparent, Adela of Champagne). In the original

RGCN paper Schlichtkrull et al. [2018], a corresponding false triple is generated for
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Figure 7.1: Seq2Seq: Generating Explanations on Positive Triples

each positive (true) triple in the training set. This is done by randomly selecting

the subject or object of each positive triple, and replacing the selected entity with a

randomly selected entity. One drawback to this approach is that randomly replacing

one of the entities could, unfortunately, construct a triple that is true. Consequently,

the RGCN would then be trained with some true triples that are wrongly seen as

false.

In this work, we construct false triples to guide the Seq2Seq model during train-

ing. The Royalty-30k dataset includes explanations for each observation, and ex-

planations are constructed using rules. Knowing that the only available predicates

in the Royalty-30k dataset are hasSpouse, hasParent, and hasGrandparent, we can

construct false triples to help training. For every hasSpouse triple, hasSpouse(X,Y ),

we construct a new false triple hasParent(X,Y ) using the same subject and object.

This creates a false triple because two spouses X and Y cannot be the parent of one

another (we know there are no cases of this in this particular KG). For each true
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Figure 7.2: Seq2Seq: Training with counter-examples

triple in the dataset, we generate an associated false triple to be used in training.

As an example, for some false triple (Louis VII, hasParent, Adela of Champagne)

we generate the sequence starting with [Louis VII, hasParent, Adela of Champagne],

and followed by [Start,False,End]. Note that no false triples are used during test

time.

During training, when a false triple is passed through the encoder, the decoder

output at the first time step is a True or False token. For positive triples, the

Seq2Seq model outputs an explanation for why some predicate exists between the

two entities in the candidate triple. For negative triples however, no explanation

is generated by the decoder. If the model determines the candidate triple is false,

only the False token is outputted by the decoder, and the generation of the decoded

sequence is terminated. An example of this can be seen in Figure 7.2. The candidate

triple (Louis VII, hasParent, Adela of Champagne) is a false triple, as we can see from

Figure 7.1, that (Louis VII, hasSpouse, Adela of Champagne) is a true triple. Each

subject, predicate, and object of the candidate triple is passed into the encoder, and
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the decoder outputs a False token, indicating the candidate triple is false, and the

sequence generation ends.

7.2 Sequence to Sequence Models for Explaining Link Predictions in Knowledge

Graphs

7.2.1 Task Description

Given a subject and object, the task is to predict the correct predicate that should

exist between the two entities. Additionally, we want to identify which entities and

relations in the graph are influencing the existence of that particular predicate, that

is, we want to identify an explanation for why that predicate exists between the

two entities. We are interested in a model that learns the structure of the re-

lationship between a given predicate and its explanation, without relying on any

prior assumptions about the structure. In other words, can we learn the fact that

hasGrandparent(X,Y )← hasParent(X,P )∧hasParent(P,Y ), using only observed

data. Of course, a rule based link prediction approach could easily achieve the best

performance on a rule-generated dataset such as the the Royalty datasets. However,

the sole purpose of these datasets is to evaluate the quality of explanation produced

from the explanation methods of embedding based link prediction approaches.

Formally, let ti ∈ X be a triple in the training/test set, let ei = {t1, . . . , tn}, be

one of the possible ground truth explanations for ti, where ei ∈ Ei, and Ei is the set

of all possible ground truth explanations for ti. Let êi = {t̂1, . . . , t̂n}, be a predicted

explanations for a predicted triple t̂i. We define the prediction task as learning the

function f(t̂i) = (ŷ, êi) where ŷ ∈ {True,False} indicates if t̂i is predicted correctly,

and êi is the explanation of the predicted triple. For the Royalty-30k dataset,ei = Ei,

in other words, there is only one possible ground truth explanation for each triple ti.
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Recall a Seq2Seq model computes a conditional probability of the sequence y1, ..., yT

with T time steps given the input X, i.e. P (y1, ..., yT ∣X). In our case, this could

be modeled as computing the probability that some triple ti is true, along with an

explanation for ti, i.e. P (True, ei∣ti).

7.2.2 Seq2Seq Architecture

The approach we propose to generate explanations is to adapt an NLP approach

such as a Sequence to Sequence (Seq2Seq) model to produce explanations as synthetic

sentences describing the Knowledge Graph. We propose the use of a Seq2Seq model

that learns to generate explanations for RGCNs on the task of link prediction on

Knowledge Graphs. This architecture takes a triple that we want to predict and

explain as input (candidate triple), and the model is trained to output either the

True of False token to determine if the candidate triple is a true of false triple,

and either a subject, predicate, or object at each remaining time step. The resulting

generated sequence serves as the explanation for why a predicate exists between the

subject and object of the candidate triple.

Figure 7.1 gives an overview of the architecture. A candidate triple passed into

the encoder ti = (Louis VII, hasSpouse, Adela of Champagne). For any given triple

passed into the encoder, a lookup operation is performed on the subject, predicate,

and object to obtain the graph embedding. In this model, the graph embeddings are

taken from a pre-trained RGCN, trained on the task of link prediction. The graph

embeddings are then passed into the LSTM layer. The encoder, denoted Enc, takes

a triple as input Enc(ti), and outputs the cell and hidden states, denoted c and h,

respectively. Additionally, the proposed model is asked to output a True or False in

the first time step, to predict whether the input triple is a true or false triple.

The decoder of the Seq2Seq model is trained to generate the ground truth expla-
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nation ei associated with each input triple ti. The decoder takes the ground truth

explanation ei as an input, along with the cell and hidden states c and h from the

encoder. A lookup operation is performed for the subject, predicate, and object

embeddings of the explanation, similar to the encoder. Additionally, at the first

time step after the Start token, the Seq2seq model is trained to output whether

the input triple is a true of false triple. If the input triple is true, the following

time steps output the explanation for the input triple. Note during testing, only the

Start token is passed as input to the decoder. We denote the decoder Dec, following

the previous example, let ei = (Adela of Champagne, hasSpouse, Louis VII ), hence

Dec(ei,h,c) = P (True, ei∣ti).

For all experiments in this paper, we use a Bidirectional LSTM Schuster and

Paliwal [1997] for the encoder and decoder. The main drawback to using an LSTM

(and Bidirectional LSTM) is the ability to maintain memory across long sequences.

On the Royalty-30k, the longest possible explanation occurs when explaining the

hasGrandparent relation, which requires 2 hasParent triples. Therefore, the longest

possible sequence the model has to predict is 9 tokens in total, including 6 for the

two hasParent triples, 2 for the Start and End tokens, and 1 for the True or False

token. An LSTM will not have memory issues with sequences of this length. Note,

the Seq2Seq model does not perform updates to the graph embeddings. We freeze the

graph embedding parameters and use pre-trained embeddings for best performance.

This allows the Seq2Seq model to learn the structure of explanations.

Using a Seq2Seq model to learn to generate explanations has several advantages.

First, a Seq2Seq model can learn to generate sequences of arbitrary length. The

Royalty-30k dataset requires an explanation method to predict a set of triples, in

some cases more than one. Second, the internal length of the recurrent neural network

(here a bi-LSTM) is fixed and not linked to the size of the input or output data,
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while it is the case for other architectures such as Convolutional Neural Networks,

or Transformers, that are constrained by the size of the analysis window. Thus such

models are really light in terms of resources required for training and inference.

ExplaiNE computes the gradient of the adjacency matrix with respect to the

score. This approach does not learn a representation of the structure of explanations,

instead computing a gradient that is used to rank explanations. GNNExpainer learns

a mask over the adjacency matrix to identify a relevant subgraph. This explanation

method is not able to learn the structure of explanations. A Seq2Seq model uses the

information from the RGCN embeddings, and uses parameters from the Bidirectional

LSTMs to learn the structure of explanations.

7.3 Evaluation of Seq2Seq Explanations

7.3.1 Protocol and Metrics for Seq2Seq Explanations

We compare the propose Seq2Seq model against the same explanation meth-

ods from previous chapters, ExplaiNE (Equation 2.15) and GNNExplainer (Equa-

tion 2.16). For both ExplaiNE and GNNExplainer, explanations are extracted using

the top k scores, where k = 1 for hasSpouse triples, and k = 2 for hasGrandpar-

ent triples. We include results of a Seq2Seq model trained without using counter-

examples. For all experiments, we set the number of RGCN dimensions to 200, all

models are trained from 1500 to 2000 epochs, and the learning rate is 0.001. These

are the best performing hyperparameters obtained by validation.

Regarding the performance metrics, we report the Jaccard similarity between the

predicted and ground truth explanations (Equation 4.1), precision (Equation 4.2),

recall (Equation 4.3) and F1-Score (Equation 4.4). As mentioned in Chapter 4, a

recall of 1 can be achieved by outputting the entire KG as a prediction, thus the
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resulting F1-Score can be biased. The accuracy of the RGCN counts the number of

times on average the model predicts the correct relation between two entities. The

Seq2Seq accuracy however determines how often on average the model predicts the

correct True or False token in the first time step after the Start token.

7.3.2 Seq2Seq Benchmark Results

The results of the experiment can be found in Table 7.1. Each predicate column

gives the results of all performance metrics when trained only on triples with that

given predicate. The top row gives the accuracy of the RGCN trained on the task of

link prediction. The following rows give the results of each explanation method. The

best Accuracy, F1 and Jaccard scores per predicate are denoted in bold.

Chapters 4, 5, and 6 showed that GNNExplainer and ExplaiNE struggled to ex-

plain when there was more than one triple in the explanation. Using a different num-

ber of dimensions, we also find that both ExplaiNE and GNNExplainer performed

best on the hasSpouse subset, and performed their worst on the hasGrandparent sub-

set, where 2 triples are required to explain each candidate triple, plus one of the triple

is of second degree.

Overall we see the Seq2Seq model outperformed both GNNExplainer and Ex-

plaiNE in terms of Jaccard similarity on all subsets, and the full dataset. Additionally,

we find large performance jumps on precision, recall, and F1 score, with the excep-

tion of the F1 score on the hasSpouse subset. For the Seq2Seq model trained without

counter-examples, we see a small decrease in Jaccard similarity on the hasSpouse sub-

set, and a slight increase in performance on the hasGrandparent subset. This is due to

the way false triples are constructed. Whenever a hasSpouse(X,Y) triple is observed, a

false hasParent(X,Y) triple is constructed using the same entities. For the hasSpouse

subset, training is done using positive triples that use hasSpouse, and false triples that
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Predicates

Models Metrics Spouse Grandparent Full data

RGCN Accuracy 0.991 0.837 0.85

GNN

Explainer

Precision 0.324 0.031 0.074

Recall 0.355 0.042 0.081

F1 0.339 0.035 0.077

Jaccard 0.171 0.042 0.075

ExplaiNE

Precision 0.761 0.067 0.192

Recall 0.566 0.089 0.21

F1 0.649 0.076 0.201

Jaccard 0.371 0.089 0.209

Seq2Seq

with

counter-examples

Accuracy 0.986 0.978 0.948

Precision 0.473 0.364 0.404

Recall 0.464 0.702 0.552

F1 0.468 0.479 0.467

Jaccard 0.455 0.702 0.551

Seq2Seq

without

counter-examples

Accuracy 1.0 1.0 1.0

Precision 0.454 0.369 0.298

Recall 0.452 0.719 0.451

F1 0.453 0.488 0.359

Jaccard 0.451 0.719 0.448

Table 7.1: Seq2Seq benchmark results on Royalty-30k dataset: Link prediction re-

sults for RGCN, and explanation evaluation for GNNExplainer and ExplaiNE. Best

Accuracy, F1, and Jaccard scores per predicate denoted in bold.

use hasParent. In other words, no positive triples use hasParent, hence the model is

not learning a representation of this predicate from positive examples. The same can

be said for the hasGrandparent subset, as false triples contain the hasSpouse predi-

cate, but the model does not learn from positive hasSpouse predicates. Training with

the counter-examples shows its largest impact on the full dataset, where the model

is asked to generate explanations for hasSpouse and hasGrandparent triples. On the
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full dataset, the model learns from positive and negative examples from all predicates

in the dataset. We see a large increase in Jaccard score on the Seq2Seq trained with

counter-examples compared to the Seq2Seq trained without counter-examples. Note

the accuracy is the highest on the Seq2Seq without counter-examples, as every triple

in the training set contains the True token in the time step immediately after the

Start token. Additionally, only true triples are evaluated in the test set, hence this

model is able to always correctly predict the True token.

We find the Seq2Seq performed the best in terms of Jaccard similarity on the

hasGrandparent subset. From this we see the Seq2Seq model is able to generate high

quality explanations when there are multiple triples in the ground truth explanation.

We argue this is the strength of using a Seq2Seq model to generate explanations.

7.3.3 Sanity Checks for Model Robustness

Recent research in the field of XAI has shown that explanation methods do not

always give accurate explanations, and can be misleading Rudin et al. [2021], Rudin

[2019], Dimanov et al. [2020], Halliwell et al. [2021b]. On the task of image classifica-

tion, some researchers have proposed a series of sanity checks Adebayo et al. [2018] for

saliency map algorithms to test if the saliency map is truly dependent on the model

parameters. Many well known saliency map algorithms failed these sanity checks.

When an explanation method generates an incorrect explanation, it can be difficult

to understand where the error came from. When GNNExplainer or ExplaiNE make

a predicted explanation error, it is unclear if this error is a result of bad RGCN

embebddings that have not captured the structure of the graph, or if the explanation

method is flawed. We propose 2 sanity checks to verify the explanations generated

by the Seq2Seq model are truly dependent on the ground truth explanations, and the

RGCN embeddings. We report the Accuracy, which is the number of times on average
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the model is able to correctly predict a True or False token in the first time step.

We also report precision, recall, F1 and Jaccard scores for explanation evaluation of

the Seq2Seq model trained with counter-examples.

Shuffled Explanations Test

The first sanity check we perform is to train the Seq2Seq model using shuffled expla-

nations. Ground truth explanations are randomly assigned to each candidate triple.

That is, each candidate triple passed into the encoder is asked to generate an expla-

nation that is selected randomly from the set of all ground truth explanations. If

a Seq2Seq model generating explanations can generate accurate explanations while

trained on random explanations, the model has learned noise. This test is used to

determine whether or not the Seq2Seq model has learned noise, and if there is truly

a relationship between the input triples and their ground truth explanations. This

test takes inspiration from the Data Randomization Test Adebayo et al. [2018].

Random Embeddings Test

The second sanity check we perform is to train the Seq2Seq model using random

RGCN embeddings. As described in earlier sections, the proposed approach uses

an RGCN embeddings to capture information about the graph. These embeddings

are not updated during training, hence not learned by the Seq2Seq model. In this

sanity check, we randomly initialize RGCN embeddings, freeze them, then train the

Seq2Seq model. This test is used to determine if the Seq2Seq model is incorporating

information from the graph into each explanation, or if the sequence model does not

require graph embeddings in order to learn to generate explanations. This test takes

inspiration from the Model Parameter Randomization Test Adebayo et al. [2018].

105



Predicates

Models Metrics Spouse Grandparent Full data

Shuffled

Explanations

Accuracy 0.982 0.996 0.961

Precision 0.0 0.0 0.0

Recall 0.0 0.0 0.0

F1 0.0 0.0 0.0

Jaccard 0.0 0.0 0.0

Random

Embeddings

Accuracy 0.784 0.999 0.553

Precision 0.0 0.004 0.0

Recall 0.0 0.006 0.0

F1 0.0 0.005 0.0

Jaccard 0.0 0.006 0.0

Table 7.2: Sanity Checks for Seq2Seq model with counter-examples

Sanity Checks Discussion

The results of the sanity checks can be found in Table 7.2. For the shuffled explana-

tions test, we observe high accuracy, that is, the Seq2Seq model accurately predicts a

True of False token as the first time step correctly. This makes intuitive sense as the

Seq2Seq model parameters should be able to learn where the True or False tokens

belong, but still should not be able to learn to generate explanations. We observe the

precision, recall, F1, and Jaccard scores are zero for all subsets. We can conclude the

Seq2Seq model passed the shuffled explanations sanity check.

For the random embeddings test, we observe similar results to the shuffled expla-

nations test. The model is able to accurately predict a True or False token as the

first time step, but performs poorly on all explanation evaluation metrics. Again this

makes intuitive sense, as the Seq2Seq parameters can learn where the True and False

tokens belong, however, it cannot learn to generate explanations without information

from the graph. We conclude the Seq2Seq model passed the random embeddings test.
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7.3.4 Limitations

We recognize the limitations of the proposed Seq2Seq model that relies on the

availability of a ground-truth. For instance, the construction of counter-examples

requires knowledge of the rules used to generate the KG. Indeed this model relies

on ground truth explanations which are not always available in real world settings.

However, the purpose of this chapter is to demonstrate that Seq2Seq models can be

used to generate explanations for RGCNs with competitive performance. We hope the

ideas in this paper can help future researchers develop a Seq2Seq model that generates

accurate RGCN explanations without using ground truth triples in training.

7.4 Concluding Remarks on Seq2Seq models for RGCN Explanations

In this chapter, we transformed selected aspects of a Knowledge Graph into a cor-

pus of sequences to be used by recurrent neural models to predict and explain links.

We proposed the use of a Seq2Seq model to learn to jointly generate predictions and

explanations for RGCNs on the task of link prediction. Additionally, we proposed an

approach to generate false triples in order to help train the Seq2Seq model. Empiri-

cal results show significant improvements over state-of-the-art explanation methods.

Furthermore, we found the Seq2Seq model performed better on explanations with

more than one triple in the ground truth explanation. Lastly, we propose several san-

ity checks to verify how sensitive the generated explanations are to the ground truth

explanations and RGCN embeddings. We recognize that there are few KGs provid-

ing a ground truth explanations, however, with this chapter, we want to evaluate the

ability to learn to generate explanations before investing resources in campaigns to

manually or semi-automatically annotate KGs with such explanations. We showed it

is possible to learn to predict and explain links in a KG as one task.
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Chapter 8

CONCLUSION

8.1 Contributions

Deep learning models are too often treated as black boxes, where no insight is

given as to why they make a prediction. Users of the deep learning model, including

patients receiving a medical diagnosis, families applying for a bank loan, and machine

learning practitioners debugging the model, want to know why the model has made a

particular suggestion. Without an explanation as to why a result was obtained, users

of the system will not trust it.

Recently, researchers have proposed explanation methods that explain to the user

why a deep learning model makes a given decision. Without ground truth expla-

nations, these explanation methods are not able to properly evaluate the quality of

explanations returned to the user.

For current state-of-the-art explanation methods, there are no common datasets

or scoring metrics available to quantitatively evaluate explanations. As a result, it is

difficult to determine if an explanation method is producing accurate explanations,

and when to prefer one method over another.

In this thesis, we address the lacking empirical evaluation of explanations from

state-of-the-art explanation methods. Chapter 1 provides an introduction to the the-

sis, giving an overview of the need to explain and evaluate automated decisions, and

outlines the contributions of this thesis. Chapter 2 gives an overview of the related

work used in the thesis, including Knowledge Graphs, link prediction models, deep

learning models, and state-of-the-art explanation methods. Chapter 3 motivates the
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need for ground truth explanations, as explanation methods can produce inaccurate

explanations and fool practitioners into thinking these inaccurate explanations are of

high quality. In Chapter 4, we define two datasets, Royalty-20k, and Royalty-30k,

with ground truth explanations, where each observation has one and only one ground

truth. We propose the use of several scoring metrics, and benchmark two state-of-

the-art explanation methods on these datasets. In Chapter 5, we define a dataset,

FrenchRoyalty-200k, with ground truth explanations, where each observation includes

all possible ground truth explanation. We propose the use of several scoring metrics

derived from user scores calculated from a user experiment, and benchmark two state-

of-the-art explanation methods on this dataset. In Chapter 6, we incorporate prior

knowledge from ground truth explanations into RGCN embeddings. We find improved

predicted explanation performance of post hoc explanation methods for RGCNs, de-

spite a small decrease in classification performance. Lastly, Chapter 7 proposes a

Seq2Seq model to generate RGCN explanations. Experimental results show signifi-

cant performance improvements, notably on explanations that require more than one

triple in the ground truth explanation. We verify the robustness of this model by

proposing several sanity checks.

8.2 Perspectives

The work in this thesis provides several opportunities for future research. With

multiple datasets including ground truth explanations, and several suitable scoring

metrics, future researchers can now properly evaluate the explanations produced by

their algorithms. One difficulty of applying an explanation method such as ExplaiNE

or GNNExplainer post hoc to an RGCN is that it can be difficult to determine where

explanation errors are coming from. That is, when a predicted explanation does

not match the ground truth explanation, does this error come from the RGCN or
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ExplaiNE/GNNExplainer? Has the RGCN learned a bad embedding representation,

or is there an fundamental flaw with ExplaiNE or GNNExplainer? This research

question relates to another open research question: when an RGCN is trained, what

information is incorporated into the embedding? Indeed a practitioner or researcher

may want to verify that the embedding captures the relationship between each triple

and all possible ground truth explanations.

The Seq2Seq model proposed in Chapter 7 also provides opportunities for future

work. The proposed model in the previous chapter uses pre-trained RGCN embed-

dings used in the sequence generating task. When training the RGCN embeddings

with the Seq2Seq model, we observed poor explanation performance. We observed

large performance improvements when using pre-trained RGCN embeddings. One

possible extension of this model would be to identify why the model performs well

with pre-trained RGCN embeddings, and find a way to adapt the model to learn

RGCN embeddings.

The Seq2Seq model is tested only on the Royalty-30k dataset, where each obser-

vation has one and only one ground truth explanation. An interesting extension of

this work would be to adapt this Seq2Seq model to the case of multiple explanations,

where each observation has all possible ground truth explanations included. This

would involve training the model on the FrenchRoyalty-200k dataset to output the

best explanation. Additionally, this task may require incorporating the user assigned

scores into the model’s loss function, in order to assign a large penalty to low user

scored explanations.

This approach uses counter-examples during training to help the sequence model

learn. One interesting contribution to this approach could be to train the Seq2Seq

model without counter-examples, while maintaining competitive performance. That

is, can the architecture or loss function of the Seq2Seq model be adapted to have
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similar performance metrics without having to train with counter-examples?

Lastly, a difficult but significant contribution could be made to the Seq2Seq model

if the model could be learned to generate accurate explanations without using ground

truth explanations. In other words, could the Seq2Seq model learn to generate ac-

curate explanations without specifically feeding ground truth explanations into the

decoder during training. This idea can be though of as an unsupervised approach, as

the ground truth explanations exist in the dataset, but the model is not specifically

trained on them. If this could be accomplished, the explanation method could then be

applied to datasets from other domains where ground truth explanations are difficult

to define, while still generating accurate explanations. The work completed in this

thesis may provide the necessary tools for future researchers trying to answer these

questions.
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