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Abstract

Coherent and strong coupling between photons and solid-state qubits, in the
form of circuit quantum electrodynamics (QED), has been harnessed for two-qubit
gates mediated by photons and high-fidelity quantum non-demolition readout,
which are the building blocks of large-scale quantum computation. Recently, cir-
cuit QED has been extended to gate-defined semiconductor quantum dots. In this
thesis, we develop a novel hybrid circuit QED architecture composed of a high-
impedance superconducting microwave resonator and spins localized in silicon-
MOS quantum dots. To control and measure the spin degrees of freedom, this
hybrid system needs to operate at finite magnetic field. Consequently, we develop
and characterize microwave resonators based on thin niobium nitride (NbN) films
featuring a high kinetic inductance. We demonstrate the magnetic field resilience
and low photon loss rates of high-impedance resonators. We then co-integrate
the NbN resonators on silicon spin qubit chips. With a hole confined in a double
quantum dot (DQD), we report the first realization of a strong hole charge-photon
interaction bordering the ultra-strong coupling regime. At finite magnetic field,
putting the spin transition energy in resonance with the microwave cavity, we
observe large vacuum Rabi mode splittings, signature of a strong spin-photon cou-
pling. Our findings are well captured by the modelling of a hole in a DQD with
different anisotropic Zeeman response in each dot and spin-orbit coupling depen-
dent tunnel rates. We also find a sizeable spin-photon coupling when the hole is
localized in the single quantum dot, in line with recent theoretical predictions.
The different works presented in this manuscript pave the way for circuit QED
with hole spins in gate-defined semiconductor quantum dots.
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Résumé

Le couplage cohérent et fort entre les photons et les qubits basés sur des maté-
riaux solides, sous la forme de l’électrodynamique quantique de circuit (en anglais
circuit QED), a été exploité notamment pour les portes logiques à deux qubits
et la lecture haute fidélité sans démolition d’état formant les blocs fondateurs
du calcul quantique. Récemment, la circuit QED a été étendue aux boîtes quan-
tiques définies par des grilles dans des matériaux semiconducteurs. Dans cette
thèse, nous développons une nouvelle architecture hybride de circuit QED com-
posée d’un résonateur micro-onde supraconducteur à haute impédance et de spins
localisés dans des boîtes quantiques en silicium-MOS. Afin de contrôler et mesurer
le degré de liberté de spin, ce système hybride doit opérer dans un champ magné-
tique fini. Par conséquent, nous avons développé et caractérisé des résonateurs à
haute impédance micro-ondes formés dans un film mince de nitrure de niobium
(NbN) comportant une haute inductance cinétique. Nous avons démontré que ces
résonateurs résistent à de forts champs magnétiques tout en gardant une faible
perte de photons. Nous avons ensuite co-intégré ces résonateurs sur les puces des
qubits de spin en silicium. Avec le confinement d’un trou dans une double boîte
quantique, nous présentons ici la première démonstration d’une interaction forte
entre une charge de trou et un photon à la limite du régime de couplage ultra-fort.
Sous champ magnétique fini, nous avons observé des répulsions des états de Rabi
du vide caractéristiques d’un couple fort spin-photon. Nos résultats sont bien re-
produits par la modélisation d’un trou dans une double boîte quantique avec une
réponse anisotrope différente dans chaque boîte et des taux de tunnel dépendants
du couplage spin-orbite. Nous avons également mesuré un couplage spin-photon
conséquent lorsque le trou est localisé dans une boîte quantique unique, en accord
avec les prédictions théoriques récentes. Ces différents travaux présentés dans ce
manuscrit ouvrent la voie à une circuit QED avec des spins de trous dans une
boîte quantique semi-conductrice définie par des grilles.
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Introduction

I
n 1981, Richard Feynman formulated the idea of using quantum com-
puters to simulate quantum systems which are too complex for classi-
cal computers [45] and gave birth to the field of quantum computing.
The ambition to realize a quantum computer, way more powerful than

its classical digital counterpart, inspired many physicists in the 80s, notably Pe-
ter Shor. Shor developed in 1994 a quantum algorithm to find prime factors for
integers [129], the so-called Shor algorithm. Two years later, Shor also came up
with the theory of error correction codes and fault tolerant quantum computations
which set the long-term goal of the quantum computing field. The aspiration of a
quantum computer is based on its promise of very powerful computational meth-
ods. Indeed, it can help to solve problems much faster in drug design, generative
chemistry, energy storage and production, cryptography for instance [92, 115].

Experimentally, the building block of a quantum computer, a quantum bit
(qubit), can be created from any two-level quantum system. Over the past decades,
theoretical and experimental demonstrations of qubits have flourished using for
example ion traps, nuclear spins, photons, superconducting circuits or semicon-
ductor quantum dots. Among these different platforms, entangled photons enable
the realization of a quantum cryptography system [68] while the first implementa-
tion of the Shor algorithm is demonstrated using seven nuclear spins to factorize
the number 15 [140]. More recently, in 2019, Google Quantum AI team claimed
the quantum supremacy with the Sycamore chip composed of 53 superconducting
qubits [8]. In this experiment, the control and read out of each qubit is performed
by a superconducting resonator and based on light-matter interactions in a circuit
quantum electrodynamics (QED) architecture. It proves therefore the importance
of circuit QED for large scale quantum computation. In this thesis, we explore
the circuit QED for spins in gate-defined silicon quantum dots, which present long
lifetime [137], fault tolerant control fidelity [100, 108, 154] and massive production
using classical microelectronics fabrications [139].
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Cavity to circuit quantum electrodynamics

The foundation of circuit QED lays on the cavity QED which explores the co-
herent interaction between a two-level atom and a photon [60]. In cavity QED, the
atom is placed in a cavity which reflects photons inside back and forth many times
before they leak out. In this way, the cavity confines photons to a small volume,
increasing their energy density and giving them many chances to interact with the
atom, and thereby enhancing the effective light-matter interaction strength. When
the photon is resonant with the atom, and if the interaction strength is larger than
the relaxation time of the photon and the atom, then the strong coupling regime is
attained. In this regime, the atom can emit and reabsorb a single photon several
times before the atom decays or the photon escapes from the cavity. A periodic
oscillation of the photon and atom excitation therefore appears, known as the vac-
uum Rabi oscillation [60]. This regime is of particular interest as a single energy
quantum is shared coherently between the photon and the atom.

Later on, QED experiments were implemented with superconducting circuits
as artificial atoms and the circuit QED field emerged from it [18]. Superconducting
qubits are anharmonic oscillators based on Josephson junctions which have a non
linear inductance [32]. This non-linearity results in a different energy spacing
between the ground state to the first excited or to the higher states in the system.
Compared to cavity QED, circuit QED devices are much more compact as the
cavity is now a coplanar waveguide resonator which can be fabricated on the same
chip than the superconducting qubits [17]. The strong coupling regime in circuit
QED has also found its interest in the quantum computing field. The coherent
photon-qubit interaction can be used as a quantum non-demolition measurement
[87] or long-range qubits coupling using virtual photons [89, 76]. In the latter
experiment, if a very large photon-coupling rate is achieved, then when two qubits
are dispersively coupled to the same cavity, there will be a transverse exchange
interaction between both qubits which depends on the coupling strength and the
detuning of both qubits with respect to the cavity. As the qubits are detuned from
the cavity, no real photons are emitted or absorbed, then it is insensitive to the
photon loss of the cavity. These experiments are essential for large-scale quantum
information processing and explain the great success of circuit QED in this field.

Semiconductor spin qubits

Superconducting qubits have proven their great potential notably with the
Google 53-qubit chip [8] but also with the 127-qubit processor of IBM [31]. How-
ever in the perspective of large-scale quantum computations requiring millions
physical qubits [46], semiconductor qubits may appear to be more suitable plat-
forms. Indeed the semiconductor qubits can benefit from a smaller footprint size
and a possible mass production by the semiconductor microelectronics industries
[139].

The first theoretical proposal of spin qubits in semiconductor quantum dots
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(QD) was formulated by Loss and DiVincenzo in 1998 [86]. The spin degree of free-
dom of a single charge carrier is one of the most fundamental natural two-level sys-
tem that is insensitive to electric fields noise, leading to long coherence times and it
can be isolated and controlled in semiconductor quantum dots within nanometer-
scale. Early realizations of spin qubits were demonstrated with on gallium-arsenide
(GaAs) heterostructrures [111] with very high charge carrier density. However, in
GaAs structures there is a nuclear spin bath which magnetic moment fluctuations
destroy the dephasing coherence of the spin states. To address this limitation, the
spin qubit community began to explore silicon (Si) based devices. The natural
isotope of silicon, 28Si, has zero nuclear spin, providing a clean magnetic environ-
ment and therefore Si-based spin qubits have much longer dephasing time, which
can be increased even more with isotopically enriched 28Si [137]. A single spin
qubit can achieve a dephasing time T2 as long as 2ms [137] and a single qubit con-
trol fidelity of 99.9% [155]. Due to the environmental isolation of electronic spin
states, the relaxation times T1 of QD spin qubits are typically very long, ranging
from 100 ms to as long as a few seconds [153, 130]. Different implementations of
two-qubit gates have been demonstrated as well [143, 150], with fidelities up to
99% [64, 154, 100, 108].

However, due to its degree of environment isolation, spin qubits are typically
difficult to address and couple. In addition, the very long coherence times are
obtained only for qubits controlled with magnetic fields leading to low Rabi fre-
quencies. To circumvent this limitation, electrical control can be achieved using
intrinsic or artificial spin-orbit coupling (SOC) of a material and electric-dipole
spin resonance (EDSR) [54, 23]. More recently hole states in silicon and germa-
nium gained a lot of attention as a potential candidate for quantum information
technology [125]. The stronger SOC of the valence bands enables fast and all-
electric control of the spin state via the EDSR mechanism. Following the first
experimental demonstration of a hole spin qubit in silicon [91], a 2× 2 hole qubit
processor in germanium has also been realized [63] paving the way toward the
large scale quantum computation.

Parallel to the realization of quantum processors, there is also a need of con-
nectivity between the qubits. Indeed, the Heisenberg exchange interaction, which
has enabled the demonstration of two-qubit gates [100, 108, 154] and a six-qubit
processor in silicon [112], is limited to an effective distance of about 100 nm. A
long-range coupling of spin qubits is then needed to achieve the individual readout
of each qubit and the connectivity for quantum error correction. This challenge
can be addressed by the integration of spin qubits with circuit QED, as a coplanar
waveguide cavity can couple spin qubits over microns to millimeters distances [17].

Coupling spins to microwave photons

Whereas charges in QDs readily couple to the electric field of a microwave
cavity through the electric-dipole interaction [47, 110] resulting in strong charge-
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photon coupling [96, 132], a spin only couples to the magnetic field component
through magnetic-dipole interaction, which is too weak to allow coherent exchange
between a photon and a spin [66, 16]. Therefore, a coherent spin-photon inter-
face needs to rely on the indirect interaction of the spin with the electric field of
the cavity through a hybridization between the charge degrees of freedom with
the spin degrees of freedom. This coherent spin-photon coupling via spin-charge
hybridization has been recently accomplished for electron spins in silicon double
quantum dots (DQDs) by introducing transverse magnetic field gradients [124, 95]
or by exchange interactions within a double or triple QDs [82]. Working with hole
states in the valence band, the spin-charge hybridization mechanism is naturally
given by the SOC, offering a priori a stronger coupling strength [136, 74, 106, 104].
It is therefore of fundamental interest to integrate a hole spin qubit with circuit
QED elements, which can enable remote spin-spin interactions [15] and single-shot
high fidelity dispersive spin readout [39].

Thesis outline

In this thesis, we explore a novel spin circuit QED architecture with a hole
spin qubit in silicon. Chap. 1 introduces the microwave engineering of coplanar
waveguide resonators and the theoretical background of circuit QED applied to
hole spin qubits. Chap. 2 provides the experimental methods of this work, from
the fabrication of the silicon devices and their co-integration with the circuit QED
elements, to the experimental measurement set-up. Chap. 3 focuses on the super-
conducting microwave resonators and their behaviour at zero and finite magnetic
fields, we also discuss about the challenges of the integration of the resonators
on the silicon qubit chips. With this, we have all the ingredients to define a cir-
cuit QED system with hole states, which is explored in Chap. 4 by studying the
hole charge-photon interaction. In Chap. 5, we operate at finite magnetic fields
to explore the spin-photon interaction and demonstrate the dependence of the in-
teraction strength on the magnetic field orientation as predicted by the Rashba
SOC for 1-dimensional devices. Finally we conclude this work and discuss about
perspectives to further explore the circuit QED architecture with hole spin qubits.
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I
n this thesis, we study the light-matter interactions between a single
hole spin and a microwave photon as a first step towards long-range
interactions of two distant hole spins. In this chapter, we therefore
present the microwave engineering of superconducting resonators used
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to trap single photons. After we derive the Jaynes-Cummings Hamiltonian describ-
ing the light-matter interaction and focus on the strong coupling regime where co-
herent exchange of energy between light and matter becomes reversible. We then
describe the quantum dots physics and how a charge in a double quantum dot can
interact with a microwave photon. Finally we present the hole spin flopping mode
qubit model, namely a hole spin in a double quantum dot, and the spin-photon
interaction enabled by the spin-orbit coupling.

1.1 Superconducting coplanar waveguide resonators

A single photon and a single two-level system lay at the heart of circuit QED
experiments. In this section, we focus on the cavity in the microwave frequency
regime in order to be able to match the spin transition energy. We first intro-
duce the transmission line model and then present the half-wavelength coplanar
waveguide resonators used to trap single photons.

1.1.1 Transmission line model

The transmission line theory asserts that an infinitesimal length ∆z of the
transmission line can be modelled as a lumped-element circuit, i.e. the voltage
and current can be estimated constant over this small length. The lumped-element
description of a infinitesimal line is shown in Fig. 1.1 with ∆z ≪ λ, the electric
wavelength.

R��z L��z

G��z C��z

Figure 1.1 – Lumped-element circuit model for an infinitesimal length ∆z of a
transmission line with the resistance Rℓ, inductance Lℓ, capacitance Cℓ and con-
ductance Gℓ per unit length.

From the lumped-element model, the circuit can be described by the telegra-
pher equations [117]

∂v(z, t)

∂z
= −Rℓi(z, t)− Lℓ

∂i(z, t)

∂t
, (1.1)

∂i(z, t)

∂z
= −Gℓv(z, t)− Cℓ

∂i(z, t)

∂t
, (1.2)
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with the resistance Rℓ, inductance Lℓ, capacitance Cℓ and conductance Gℓ per unit
length, v(z, t) the voltage and i(z, t) the current flowing through the transmission
line at position z.

Assuming that the system is in a sinusoidal steady-state, the equations can
then be simplified as

V (z) = V +e−γz + V −eγz, (1.3)

I(z) = I+e−γz + I−eγz, (1.4)

where γ = α + jβ =
√

(Rℓ + jωLℓ)(Gℓ + jωCℓ) is the complex propagation con-
stant, with α the attenuation constant and β the phase constant [117].

From Eq. (1.3) and Eq. (1.4), the characteristic impedance of the transmission
line can be written as

Zc =
V +

I−
= −V −

I+
=

√
Rℓ + iωLℓ

Gℓ + iωCℓ
. (1.5)

The electric wavelength of the line is defined as

λ =
2π

β
, (1.6)

and the phase velocity is given by

vp =
ω

β
. (1.7)

The series resistance Rℓ represents the resistivity of the individual conductors,
which can be neglected for superconducting circuits. The shunt Gℓ is the dielectric
loss in the material between the conductors, which is usually also neglected. Thus
we can rewrite the characteristic impedance as

Zc =

√
Lℓ

Cℓ
, (1.8)

and the phase velocity as

vp =
1√
LℓCℓ

. (1.9)

1.1.2 Coplanar waveguides

In this work, we are interested in coplanar waveguide (CPW) geometry res-
onators, which have the advantage of an one-step fabrication process. A CPW
consists of a center strip line of width w as the central conductor of the trans-
mission line, which is separated from the ground planes by a gap of width s as
illustrated by Fig. 1.2.(a). The electromagnetic distribution on a cross-section is
shown in Fig. 1.2.(b), the electric field is oriented from the central conductor to
the ground planes.
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Figure 1.2 – Coplanar waveguide geometry. (a) Coplanar waveguide design with
a central strip of width w and a gap to ground of width s. (b) Cross section with
the electromagnetic field distribution.

The geometric inductance and capacitance per unit length of a coplanar waveg-
uide can be calculated using the conformal transformations [131, 50]:

Cℓ = 4ε0εeff
K(k0)

K(k′0)
, (1.10)

Lℓ =
µ0

4

K(k′0)

K(k0)
(1.11)

with k0 = w/(w + 2s), k′0 =
√

1− k20, K the complete elliptic integral of the first
kind, ε0 the vacuum permittivity, εeff the effective permittivity of the substrate
and µ0 the vacuum permeability. If we consider a substrate of thickness h, then
εeff can be written as

εeff = 1 +
(εr − 1)

2

K(k1)

K(k′1)

K(k′0)

K(k0)
, (1.12)

with εr the permittivity of the substrate and k1 = sinh (πw/4h)/ sinh (π(w + 2s)/4h).
The characteristic impedance is [131]

Z0 =
1

c
√
εeffCair

, (1.13)

where
Cair = 4ε0

K(k0)

K(k′0)
. (1.14)

Then using the numerical approximations that ε0 =
1

36π
.10−9 F/m and c =

3.108 m/s, we obtain

Z0 =
30π

√
εeff

K(k′0)

K(k0)
=

√
Lℓ

Cℓ
, (1.15)

which is in agreement with the characteristic impedance given by the transmission
line model.
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As in circuit QED experiments, the coupling between the charge degree of
freedom of the hole and a microwave photon depends on the zero point fluctuation
(ZPF) voltage of the cavity with VZPF ∝

√
Zc [29, 98]. To enhance the charge-

photon coupling we can then use a high-impedance resonator. To do so, either we
can decrease the capacitance Cℓ of the line by either reducing the central width
of the CPW to a nanowire or increasing the gap width, or we can increase the
inductance Lℓ. Here again, two solutions are possible to increase the inductance.
First, we can boost the geometric inductance by reducing the central conductor’s
width, which is in line with decreasing the capacitance. Second, we can select
disordered superconducting films such as NbN [105], NbTiN [123], TiN [83, 128, 4],
InOx [9, 41] or granular Al [161, 56], which possess a large kinetic inductance
contribution. Indeed, kinetic inductance can be observed in superconductors as
the manifestation of the inertial mass of the Cooper pairs and can be estimated
from [135]

Lkin(H/□) =
ℏR□

π∆0
(1.16)

with R□, in the unit of Ω/□, the sheet resistance, ∆0 the superconducting gap
and ℏ the reduced Planck constant.

For a coplanar waveguide where s ≫ w, we can approximate it as a nanowire,
then the kinetic inductance per unit length can be approximated as

Lkin
ℓ =

Lkin(H/□)

w
. (1.17)

We can then subsequently increase the characteristic impedance when adding a
kinetic inductance component.

1.1.3 Half-wavelength CPW resonators

We have introduced the coplanar waveguides but so far it does not form a
cavity to trap photons. There are two common categories of coplanar waveguide
resonators, which are half-wavelength [57] or quarter wavelength [50]. Both geome-
tries have their advantages. A λ/4 resonator presents a lower capacitance, which
would be an asset to boost the characteristic impedance. However, the voltage
distribution of a λ/2 resonator has two anti-nodes, which will be important when
coupling two distant qubits to the same resonator as the voltage fluctuations are
maximal at both ends. In Fig. 1.3 is displayed the voltage and current variations
of both geometries.

Once we have decided for the half-wavelength resonators, we still have other
decisions to make in terms of design. The open-ended (ZL = +∞) half-wavelength
resonators used in the previous reports of spin-photon coupling in silicon are of two
different kinds. The first one is a capacitively coupling to the input and output
feedline by a capacitance gap on each end of the resonator [57, 97]. The second
one is a capacitively coupling to a 50Ω transmission line in a hanger geometry
[121, 124].
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��� ���
voltagevoltage current

a. b.

Figure 1.3 – Voltage and current variations along a half-wavelength and a quarter-
wavelength coplanar waveguide resonator. (a) Open-ended half-wavelength res-
onator with two voltage anti-nodes. (b) Short-ended quarter-wavelength resonator
with one voltage anti-node.

We have chosen the hanger geometry for our devices with the simple reason that
there is the possibility of probing several different resonators connected to different
quantum dots with the same input and output RF ports. Hence, the discussion
now focuses on a half-wavelength open-ended transmission line resonator coupled
capacitively to a 50Ω transmission line read in transmission. The length of the
resonator is set as ℓ = λ/2. The lumped-element description of such a resonator
is shown in Fig. 1.4.

Cc

Lλ/2Cλ/2 Rλ/2

Figure 1.4 – Lumped-element circuit model of a resonator, as a parallel RLC cir-
cuit, coupled to a feedline via a coupling capacitor Cc. The resonator is described
by a capacitance Cλ/2, an inductance Lλ/2 and a resistance Rλ/2, which can be
neglected for a superconducting resonator.

10



1

Chapter 1. Circuit quantum electrodynamics with Si hole spins

The parameters of the equivalent RLC circuit are given by [117]

Rλ/2 =
Zc

αℓ
, (1.18)

Cλ/2 =
π

2ωrZc
, (1.19)

Lλ/2 =
1

ω2
rCλ/2

, (1.20)

with ωr the resonance frequency of the resonator, ℓ its length, α its attenuation
constant and Zc the characteristic impedance.

The resonance frequency is given by

fr =
ωr

2π
=

1

2π
√

Lλ/2Cλ/2

. (1.21)

Around resonance, we can write fr as a function of the capacitance and induc-
tance per unit length, as these values can be extracted by simulation or calculation.
Using Eq. (1.8) and vp = λ · fr = 1/

√
LℓCℓ, the equivalent lumped-element can be

transformed into a distributed λ/2 resonator with

Cλ/2 =
ℓ

2
Cℓ, (1.22)

Lλ/2 =
2ℓ

π2
Lℓ. (1.23)

thus the resonance frequency can be written as

fr =
1

2ℓ

1√
LℓCℓ

. (1.24)

Note that Eq. (1.24) does not consider the coupling capacitance to the feedline
Cc. This is justified only if Cλ/2 ≫ Cc, meaning that the transmission line is long
compared to the coupling length. Otherwise, Eq. (1.24) has to be corrected as

fr =
1

2π

1√
Lλ/2(Cλ/2 + Cc)

. (1.25)

The resonators performance is quantified by its quality factor which is defined
as [117]

Q = ωr
total energy stored

total power dissipated
. (1.26)

Q can be directly measured with the transmission spectrum of the resonator as
Q = fr/∆fr where ∆fr is the linewidth of the resonance where the signal is
attenuated by −3 dB.

When the resonator is coupled to an environment, the losses are split into two
categories:
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— The internal quality factor Qint which is the resistive and dielectric losses.
For a superconducting resonator, the resistive loss is negligible and the di-
electric loss is commonly referred as the loss tangent tan δ.

— The external quality factor Qext which is the radiative loss, depends on the
coupling of the resonator to its environment. This includes the capacitive
coupling of the resonator to the feedline, to the quantum dots and all the
fanout lines present on the chip.

The total quality factor is then given by

1

Q
=

1

Qint
+

1

Qext
. (1.27)

We can also translate the quality factors as a photon loss rate such that κ/2π =
fr/Q. We will characterize experimentally in Sec. 3.2 all these loss mechanisms
that limit the quality factors of the resonators coupled to quantum dots and try
to minimize them.

1.2 Light matter interaction in circuit QED

Circuit QED emerged with the extensive research on superconducting circuits
[17], it allowed the study and control of quantum interaction at an unprecedented
level. Thereafter, the circuit QED has been extended to hybrid systems such as
spins, charges, magnons or Rydberg atoms [33]. Here we introduce the formalism
of the Jaynes-Cummings model which sheds light on the light-matter interaction.
In this section, we consider a simple two-level system, which can be called a qubit,
coupled to a superconducting cavity. We derive the Jaynes-Cummings Hamil-
tonian governing the interaction and then we discuss about the strong coupling
regime where coherent exchange happens between the photon and the qubit.

1.2.1 Jaynes-Cummings Hamiltonian

The most famous light-matter interaction description is the Jaynes-Cummings
model. The model was first developed in 1963 by Edwin Jaynes and Fred Cum-
mings [67] for a quantum mechanical treatment of the interacting system between
an atom and a single mode of an electromagnetic field. It can naturally be trans-
posed to our circuit QED system with a single particle in a double quantum dot
(DQD) considered as a charge two-level system or charge qubit and a single mode
of the microwave cavity.

The Hamiltonian description of such system is given by

H = H0 +Hfield +Hint, (1.28)

with H0 the Hamiltonian of the qubit, Hfield the Hamiltonian of the field and the
interaction Hamiltonian Hint.
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Before further investigations, we introduce the following operators in the {|L⟩,
|R⟩} basis of the DQD

τ− =

(
0 0
1 0

)
, (1.29)

τ+ =

(
0 1
0 0

)
, (1.30)

τz =

(
1 0
0 −1

)
, (1.31)

where τ− (τ+) is the operator that moves the particle from left (right) to right
(left) and τz the Pauli matrix associated to the charge qubit subspace.

The different components of the Hamiltonian are

Hfield = ℏωra
†a, (1.32)

HDQD =

(
ε/2 tc
tc −ε/2

)
, (1.33)

Hint =

(
gc(a+ a†) 0

0 −gc(a+ a†)

)
= gc(a+ a†)τz, (1.34)

where a and a† are the annihilation and creation operators of the electromagnetic
field mode at ωr inside the resonator, ε is the detuning between the two dots and
tc is the tunnelling rate, and gc = E0d01 the charge-cavity coupling rate with d01
the dipole moment associated to the transition from the ground to the excited
state and E0 the ZPF of the cavity. In the circuit QED architecture, the resonator
is connected to one dot. The ZPF of the cavity will then induce a detuning
fluctuation of the DQD by gc(a+ a†), which affects on τz.

One can write the total Hamiltonian in the eigenbasis of HDQD. The eigenen-
ergies of HDQD are

E± = ±
√
t2c +

(ε
2

)2
= ±1

2

√
4t2c + ε2 = ±Ω

2
. (1.35)

One can deduce normalized eigenvectors associated with E±

λ+ =

 ε+Ω√
(ε+Ω)2+4t2c

2tc√
(ε+Ω)2+4t2c

 ,

λ− =

 ε−Ω√
(ε−Ω)2+4t2c

2tc√
(ε−Ω)2+4t2c

 .
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We can rewrite the Hamiltonians in the new eigenstates basis. HDQD =
Ω

2
τz

and Hfield remain unmodified. The interaction Hamiltonian becomes

Hint = gc(a+ a†)

(
ε
Ω

2tc
Ω

2tc
Ω − ε

Ω

)
. (1.36)

Thus,

Hint = gc(a+ a†)

[
ε

Ω
σz +

2tc
Ω

(τ+ + τ−)

]
(1.37)

is the interaction term of the quantized field with the two-level system. Be careful
that now τ− and τ+ are different from Eq. (1.29) and Eq. (1.30) due to the basis
change. This interaction term has first been introduced by Isidor Rabi [118], which
becomes the Rabi model with the following Hamiltonian

HRabi =
Ω

2
τz + ℏωra

†a+ gc(a+ a†)

[
ε

Ω
τz +

2tc
Ω

(τ+ + τ−)

]
. (1.38)

In most of systems we can neglect the counter-rotating terms and transform the
Rabi Hamiltonian into the Jaynes-Cummings Hamiltonian. To derive the Jaynes-
Cumming Hamiltonian, we have to change the dynamical representation of the
system. Indeed, there are three different dynamical representations of the quan-
tum mechanics [34], known as the Schrödinger, Heisenberg and Dirac pictures. Up
to now, we are in the Schrödinger’s picture of quantum mechanics representation
where the time-dependence is on the wave-vectors. To apply the counter-rotating
wave approximation of Jaynes-Cummings model we switch to the Heisenberg rep-
resentation. We then attribute the time-dependence to the field operators, while
the state vectors become time-independent. The, we introduce the following op-
erators

â = a e−iωrt,

â† = a† eiωrt,

τ̂z = τz,

τ̂− = τ−e
−iΩt/ℏ,

τ̂+ = τ+e
iΩt/ℏ.

The interaction Hamiltonian can be rewritten as

Hint = gc(a e
−iωrt + a† eiωrt)

[
ε

Ω
τz +

2tc
Ω

(τ+e
iΩt/ℏ + τ−e

−iΩt/ℏ)

]
. (1.39)

Using the rotating wave approximation (RWA) by neglecting the fast oscillating
terms, Eq. (1.39) becomes

Hint = gc
2tc
Ω

(a τ+ ei(Ω−ωr)t + a† τ− ei(ωr−Ω)t). (1.40)
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One last transformation to get rid of the time-dependency of the operators and go
back to the Schrödinger picture

Hint = g̃c(a τ+ + a† τ−), (1.41)

with g̃c = 2gctc/Ω.

Finally the famous Jaynes-Cummings Hamiltonian is given by

HJC =
Ω

2
τz + g̃c(a τ+ + a† τ−) + ℏωra

†a. (1.42)

The Jaynes-Cummings Hamiltonian is derived in the framework of the RWA.
However, if the coupling strength is comparable with the cavity or qubit energies,
then this approximation is not valid and the system has to be modelled by the
Rabi Hamiltonian [48].

1.2.2 Dressed eigenstates

The dressed state, i.e. the hybrid state between the single photon and the
qubit, of the Jaynes-Cummings Hamiltonian (under RWA) is given by the Bogoliubov-
like unitary transformation [19]

U = exp[Λ(NT )(a
†τ− − aτ+)], (1.43)

with

Λ(NT ) =
arctan(2λ

√
NT )

2
√
NT

, (1.44)

NT = a†a+ τ+τ− is the operator associated with the total number of excitations
and λ = g/∆, with ∆ = ωq − ωr the qubit-resonator detuning.

Under this transformation, Eq. (1.42) becomes

Hdressed = U †HU

= ℏωra
†a+

ℏωq

2
τz −

ℏ∆
2

(1−
√
1 + 4λ2NT)τz.

(1.45)

From Eq. (1.45), the energy of the dressed states |g, n⟩ and |e, n− 1⟩ can be
written as

Eg,n = ℏnωr −
ℏ
2

√
∆2 + 4g2n, (1.46)

Ee,n−1 = ℏnωr +
ℏ
2

√
∆2 + 4g2n (1.47)

If the energy of the photon matches the energy of the qubit state (∆ = 0), then
we can reach a hybridized state, then the two dressed states energies are split by
2g

√
n, with n the number of photons. The energy spectrum is depicted in Fig. 1.5

with the bare and dressed states representation.
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Figure 1.5 – Energy spectrum of the bare (in red) and dressed (in blue) states at
zero qubit-resonator detuning. The qubit states are labelled as |g⟩ and |e⟩ while
the number of photon is labelled as |n⟩ with n ∈ N. The dressed states are split
by 2g

√
n.
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Figure 1.6 – Vacuum Rabi splitting for a strongly coupled qubit-resonator system.
The bare energies of the qubit and the resonator are showed in dashed lines. The
dressed states are spectroscopically resolved are split by the quantity of 2g. The
simulation is made using the quantum toolbox QuTip [69].
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1.2.3 Strong coupling regime

The strong coupling is of particular interest as quantum information can be
coherently exchanged between the qubit and the photon before being lost by de-
coherence processes . We then define the loss of the interacting system as κ the
photon loss rate of the cavity and γ the qubit decoherence rate. The strong cou-
pling, g > κ, γ, can then be observed under two conditions [17]:

— the splitting between the two dressed states 2g is larger than κ/2+γ, which
is the linewidth of the dressed states

— the dressed states have to be resolved spectroscopically

When these two conditions are fulfilled, we can observe a doublet of peaks at
ωr ± g which is called the vacuum Rabi splitting. This is the hallmark of the
strong coupling regime. Fig. 1.6 shows the simulation of such a vacuum Rabi
splitting. Such a 2D map can be measured by probing the microwave transmission
and analysed using the input-output theory which is derived in Appendix A.

1.3 Circuit QED with a charge qubit

The Jaynes-Cummings Hamiltonian derived in the previous section can be
implemented with a single photon and a hole in a DQD which behaves as a charge
qubit. In this section, we briefly describe the physics of a DQD, for a more
extensive review readers can refer to [138, 59], and how a charge qubit can be
coupled to a photonic mode of the superconducting resonator.

1.3.1 Quantum dots physics

Single quantum dot

A quantum dot (QD) can be seen as an island where electrons or holes can
tunnel in. The dot is tunnel coupled to Fermi reservoirs, so-called source and drain,
which are filled with either electrons or holes. To tune the electrostatic potential
of the dot with respect to the reservoirs, the QD is capacitively coupled to one
or more gate electrodes. A schematic picture of a quantum dot with one gate
electrode is represented in Fig. 1.7.(a). The formalism presented in this chapter is
equivalent for electrons or holes.

The quantum dot physics is dominated by two phenomena [59]:

• due to Coulomb repulsion between electrons, adding an electron in the dot
costs a charging energy EC such that the current-voltage relation of the dot
is no longer a Ohm’s law due to Coulomb blockade [79].

• the 3D confinement of the hole/electron in the dot leads to a discrete energy
spectrum of the hole/electron bound states.

The charging of the quantum dot can be described by the constant interaction
model [78] with two assumptions. The first one assumes that the coupling between
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Figure 1.7 – Representation of a quantum dot. (a) Schematic picture of a quantum
dot coupled to the reservoirs with electrons or holes. The source is biased with
the voltage VSD, the gate is biased by a voltage VG and the current I is measured
through the dot. (b) Constant interaction model of the quantum dot, with N
charges, tunnel coupled to the source, drain and capacitively coupled to the gate
electrode. The tunnel barrier is equivalent to a capacitance parallel to a resistance.

the dot and the gates or reservoirs are modelled by a constant capacitance (see
Fig. 1.7.(b)). The total capacitance C is the sum of the capacitances from the gate
CG, the source CS and the drain CD: C = CG +CS +CD. The tunnel barrier can
be modelled as a capacitance in parallel with a resistance. The second assumption
is that the single particle energy level spectrum is independent of the number of
electrons. Under these assumptions, the total energy a dot filled with N electrons
U(N) is given by

U(N) =
[−e(N −N0) + CSVS + CDVD + CGVG]

2

2C
+

N∑
n=1

En(B), (1.48)

with e the elementary charge, N0e is the charge in the dot compensating the
background charge originating from impurities in the structure, B the applied
magnetic field, and En(B) is the energy of an occupied level.

The electrochemical potential µ(N) is defined as

µ(N) ≡ U(N)− U(N − 1). (1.49)

If the electrochemical potential of the dot is alignment with the one of the reservoirs
then particles can tunnel in or out of the dot. The bias voltage VSD = VS − VD

defines a bias window between the reservoirs such that µS − µD = −eVSD. If the
electrochemical potential of the dot lies within this window, then a particle can
tunnel from one reservoir to the dot and to an empty state of the other reservoir.

There are two possible configurations of the bias window: the low-bias regime
and the high-bias regime. At low-bias voltage, transport is only possible when the
energy level of the dot is in the bias window. If not, the number of particles in
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Figure 1.8 – Coulomb blockade in a single quantum dot with holes. (a) The
electrochemical potential level diagram in the Coulomb blockade regime. All the
levels are outside the bias window, then there is no hole tunnelling event and the
number of holes in the dot is fixed. (b) The level µ(N) lies in the bias window
then a single particle can tunnel through the dot. (c) The current ISD through the
dot as a function of the gate voltage showing Coulomb peaks related to single hole
tunnelling events. The peaks separation is directly proportional to the addition
energy Eadd, which can be related to the gate voltage by the lever arm α. The
gate voltages where (a) and (b) occur are indicated. (Schematic from [43])
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the dot remains unchanged and no current flows across the dot. This is called the
Coulomb blockade regime. The Coulomb blockade can be lifted by changing the
gate voltage, this tunes the electrochemical potential of the dot and can enable
single-particle tunnellings. Fig. 1.8 shows the Coulomb peaks measured in current
as a function of gate voltage. The distance between two peaks is proportional to
the addition energy

Eadd = µ(N + 1)− µ(N) = EC +∆E, (1.50)

with EC the charging energy and ∆E the energy spacing between two levels. The
proportionality between the energy and the applied gate voltage is given by the
lever arm α, also called the lever-arm coefficient as depicted in Fig. 1.8.(c). In the
following, we assume that the temperature is negligible compared to the energy-
level spacing kBT ≪ Eadd, such that only one state of the dot can contribute to
current.

At high-bias voltage, multiple dot levels can participate in the tunnelling pro-
cess. When the bias voltage is highly increased, excited states also falls in the bias
window and two paths become possible for the particles to tunnel through the
dot: the ground or the excited state. If we sweep the gate voltage across multiple
charge transitions and for positive and negative bias voltage, then the Coulomb
blockade regions appear as diamonds, as shown in Fig. 1.9. These patterns are
called Coulomb diamonds.
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Figure 1.9 – Coulomb diamonds of a single quantum dot with N charges in the
Coulomb blockade region.
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Figure 1.10 – Representation of a double quantum dot in series. (a) Schematic
picture of a double quantum dot coupled to reservoirs. The source is biased with
the voltage VSD, the gate 1(2) is biased by a voltage VG1(VG2) and the current I is
measured through the dots. (b) Constant interaction model for a double quantum
dot, with N1(N2) particles in the dot 1(2). The dots are tunnel coupled to the
reservoirs and capacitively coupled to the gate electrodes. The coupling between
the dot is also governed by a tunnel barrier.

Now we consider a DQD as represented in Fig. 1.10. The dots are controlled by
two distinct gate voltages, Vg1 and Vg2, the gate electrode associated to dot 1 (2)
is also capacitively connected to dot 2 (1) such that there is a cross-capacitance.
The coupling between the two dots is given by a tunnel barrier characterized by a
capacitance Cm and a resistance Rm. Fig. 1.11 shows the number of holes (N1, N2)
in the dot 1 and 2 as a function of Vg1 and Vg2 for different interdot coupling. Such
a plot is called the charge stability diagram.

Fig. 1.11.(a) shows the stability diagram of an uncoupled double dot, C12,21 =
0. The vertical and horizontal lines correspond to the dot to lead transitions at
a given gate voltage value. These lines correspond to values of the gate voltages
at which a hole tunnels from the reservoir to the dot, hence the number of holes
in the dot grows as the gate voltage decreases. Since there is no coupling between
the two dots, the lines are exactly vertical and horizontal as each gate electrode
only affects its corresponding dot.

When the dots are capacitively coupled, see Fig. 1.11.(b), the shape of the
diagram changes into a hexagonal honeycomb lattice. Indeed, addition of a hole
in one dot will affect the electrostatic energy of the other dot meaning that the
gate voltage Vg1(Vg2) has a capacitive coupling on the dot 2(1). Hence the dot-lead
transitions (in blue) have a finite slope now. The lines in magenta correspond to
interdot charge transitions. There, the total number of holes in the DQD is kept
constant while one hole moves from one dot to another. The length of the interdot
charge transition is tuned by the interdot capacitance Cm. Now the electrochemical
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Figure 1.11 – Charge stability diagram of a double quantum dot with holes for
different interdot coupling. (a) Uncoupled double quantum dots. (b) Intermediate
coupled DQD with the dot-lead transition in blue and interdot charge transition in
magenta. (c) Single dot limit for a very large cross-capacitance with the dot-lead
transitions oriented at 45 °.

potential of dot 1 is given by [59]

µ1(N1, N2) ≡ U(N1, N2)− (N1 − 1, N2)

=

(
N1 −

1

2

)
EC1 +N2ECm

− EC1

|e|
(CSVS + CG1VG1 + C12VG2)

+
ECm

|e|
(CDVD + CG2VG2 + C21VG1),

(1.51)

where Cij is the cross-capacitance of the gate j on the dot i, CGi is the capacitance
of the gate i on the dot i and ECi is the charging energy of the dot i. All the
variables are defined in Fig. 1.10.(b). Similarly, the electrochemical potential of
dot 2 can be obtained by interchanging 1 with 2 and CDVD with CSVS.

Fig. 1.11.(c) shows the limit when C12,21 ≫ CG1,2. In this case, the transitions
to reservoirs merge into a single line and the distance between triple points is
maximal. The double dot behaves like a single dot and the dot-lead transitions
are oriented at 45 °.

1.3.2 Charge-photon coupling via electric-dipole interaction

A charge qubit

Now we consider a single charge in a DQD. We denote |L⟩ (|R⟩) the left (right)
dot. Then in the (|L⟩, |R⟩) basis, the eigenstates are

E|+⟩/|−⟩ = ±1

2

√
4t2c + ε2, (1.52)
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Figure 1.12 – Energy diagram of a single charge in a double quantum dot as a
function of the detuning. The left (right) charge state is plotted in blue (orange).
At zero detuning, the two charge states are hybridized and the energy levels are
separated by 2tc with tc the tunnelling coupling between the two dots.

with ε the detuning between the two dots and tc the tunnelling rate. Fig. 1.12.(a)
depicts the energy of a single charge in a DQD as a function of the detuning
energy between the two dots. The energy diagram features a bonding |−⟩ and an
antibonding |+⟩ state defining a charge qubit of energy splitting Ω(ε) =

√
4t2c + ε2,

see Fig. 1.12.(b).
At zero detuning, ε = 0 eV, the particle is delocalized between the two dots.

It also corresponds to the charge sweet spot, with ∂Ω/∂ε = 0, since in this case
small variation of detuning ε will barely affect the qubit energy.

Electric-dipole interaction

The charge degree of freedom of a single hole readily couples to a photonic
mode thanks to the electric-dipole interaction [54]. At ε = 0, the dipole moment
of a single hole in the DQD is increased as the hole is delocalised between the two
QDs [47, 110]. The coupling strength of a single photonic mode to the electric
dipole of the charge qubit is given by [40]

gc =
1

2
|e|αVZPF, (1.53)

with e the elementary charge, α the lever-arm to detuning of the gate which is
connected to the cavity and VZPF the zero-point fluctuation (ZPF) of the cavity

with VZPF = ωr

√
ℏZc

π
[29, 98], where Zc is the impedance of the cavity and ωr

its resonance frequency. The charge-photon coupling is therefore device geometry
dependent which can be modulated only with a tunable resonance frequency of
the cavity as in [132].
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Figure 1.13 – Dispersive and resonant charge-photon coupling. (a) Dispersive
charge-photon coupling for ℏωq > ℏωr: the cavity (charge qubit) energy is down-
shifted (upshifted) by the quantity χ = g2c/(ωq − ωr) (valid in the rotating wave
approximation). (b) Resonant charge-photon coupling for ℏωq < ℏωr: when the
photon is resonant with the charge qubit, there is an avoided crossing split by
2gc/2π.

To achieve the strong coupling regime, gc has to be greater than the photon
loss κ of the cavity and γc the decoherence rate of the charge qubit. This regime
has been attained with electrons in silicon QDs in [96, 132]. Experimentally, the
charge-photon coherent interaction is illustrated in Fig. 1.13 for ℏωq > ℏωr and
ℏωq < ℏωr, with ωq the charge qubit energy. When ℏωq > ℏωr and gc ≫ κ, γc, then
the photon energy in the cavity will downshift by χ/2π as a consequence of the
charge-photon interaction, while the qubit energy will up shift also by χ/2π. The
quantity χ is called the dispersive shift. When ℏωq < ℏωr, then at the resonance
energy ℏωq = ℏωr, an avoided crossing occurs and the separation between the two
states is 2gc/2π. Both situations highlight a charge-photon interaction.

1.4 Circuit QED with a hole spin

Compared to the charge qubit, the spin of a single carrier appears to be an even
more promising candidate due to its large coherence time [137] and its insensitivity
to electrical noise [114]. However, compared to the charge degree of freedom of a
single hole or electron, the spin degree of freedom is not a natural candidate for
circuit QED experiments as it only has a small magnetic moment, which does not
couple naturally and efficiently to photons. In this section, we first describe the
theory of a DQD when the spin degeneracy is lifted and introduce the mechanisms
which allow spin-photon couplings.

24



1

Chapter 1. Circuit quantum electrodynamics with Si hole spins

1.4.1 Hole spin in a DQD

In the previous section, we were focusing on spinless particles. Here we discuss
the spin physics in a DQD. Two configurations are possible, either there is an even
number of particles in the DQD or an odd one. In this thesis we only focus on
the odd configuration. Compared with electrons, holes have some specificity such
as an anisotropic gyromagnetic matrix (g-matrix) [147, 38, 85, 114] and spin-orbit
coupling (SOC) [88, 152]. The SOC is a relativistic effect that couples the spin of
the hole to its motion and it is our key ingredient to couple the spin to a photon.

We consider the same charge qubit with a single hole in a DQD described in
Sec. 1.3.2. At zero magnetic field, the two spin states are degenerated. At finite
magnetic field, the spin up |↑⟩ and the spin down |↓⟩ are split by the Zeeman
energy EZ with four possible spin states: |L, ↓⟩, |L, ↑⟩, |R, ↓⟩ and |R, ↑⟩. We also
introduce the Pauli operators for the spin σ = (σx, σy, σz) and dot basis τ with
τx = |R⟩ ⟨L|+ |L⟩ ⟨R|, τy = i(|R⟩ ⟨L| − |L⟩ ⟨R|) and τz = |L⟩ ⟨L| − |R⟩ ⟨R|.

First, we can write the detuning contribution as

Hε =
ε

2
τz,

=
ε

2
(|L, ↓⟩ ⟨L, ↓|+ |L, ↑⟩ ⟨L, ↑| − |R, ↓⟩ ⟨R, ↓| − |R, ↑⟩ ⟨R, ↑|).

(1.54)

The second mechanism comes into play is the Zeeman splitting of the spin states
due to an external magnetic field B

HZ =
1

2
µBgL/R ·B · σ,

=
1

2
gLµBB(|L, ↑⟩ ⟨L, ↑|+ |L, ↓⟩ ⟨L, ↓|)

+
1

2
gRµBB(|R, ↑⟩ ⟨R, ↑|+ |R, ↓⟩ ⟨R, ↓|),

(1.55)

with gL/gR the g-matrix of the left/right dot, µB the Bohr magneton and B
the static external magnetic field. The g-matrices have 3 × 3 components and
generalize the isotropic gyromagnetic response of an electron spin (g ∼ 2× 13×3)
to the anisotropic response of hole spins. The gyromagnetic response of the hole
results of the interplay between the confinement of the hole, the SOC and the
magnetic field [144, 38, 114]. The confinement shapes an anisotropic hole wave
function down to the atomic scale. The SOC mixes the orbitals of the silicon
atoms with the spin of the hole, as the valence band wave functions are a mixture
of heavy hole and light hole components, it results in anisotropic hole properties.
Last, the magnetic field acts on the spin and orbital degrees of freedom of the hole.

The detuning and the Zeeman Hamiltonians characterize each dot individually.
We have to model the tunnelling event of the hole spin from one dot to the other.
To do so we separate two situations, the hole spin can keep the same spin state
or flip after tunnelling in the DQD. We can then introduce the spin conserving
Hamiltonian and the spin flip one at a given external magnetic field
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Hsc = tscτx,

= tsc(|L, ↑⟩ ⟨R, ↑|+ |R, ↑⟩ ⟨L, ↑|+ |L, ↓⟩ ⟨R, ↓|+ |R, ↓⟩ ⟨L, ↓|),
(1.56)

and

Hsf = tsfτyσy,

= tsf(|L, ↑⟩ ⟨R, ↓| − |L, ↓⟩ ⟨R, ↑| − |R, ↑⟩ ⟨L, ↓|+ |R, ↓⟩ ⟨L, ↑|),
(1.57)

with tsc/tsf the spin conserving/flip tunnelling coupling. Note that Eq. (1.56) and
Eq. (1.57) are only valid for a given magnetic field and the Zeeman states |↑⟩
and |↓⟩ in the left and right dot are the eigenstates of the uncoupled dots. For
dots with similar g-matrices, the tunnelling physics is governed by the Rashba
spin-orbit interaction that we present in Sec. 1.4.2.

The total Hamiltonian of the hole spin in the DQD is then

H = Hsc +Hsf +HZ +Hε, (1.58)

which can be expressed in the the orbital ground state basis { |L, ↑⟩, |L, ↓⟩, |R, ↑⟩,
|R, ↓⟩} as

H =



ε

2
− 1

2
gLµBB 0 tsc tsf

0
ε

2
+

1

2
gLµBB −tsf tsc

tsc −tsf −ε

2
− 1

2
gRµBB 0

tsf tsc 0 −ε

2
+

1

2
gRµBB


. (1.59)

By diagonalizing the Hamiltonian of Eq. (1.59), we can plot its eigenenergies
as a function of detuning as shown in Fig. 1.14 with and without SOC. For these
energy diagrams the g-factors are taken to be equal in both dots and the magnetic
field is set at 200mT.

Fig. 1.14.(a) is the energy diagram of the spin states without SOC where the
spin degeneracy is lifted and the split by the Zeeman energy. With non SOC,
the |−, ↑⟩ will not interact with the |+, ↓⟩ and the energy of the spin transition
from the ground state to the first excited state is constant over detuning and given
by the Zeeman energy (see Fig. 1.14.(b)). It is therefore a pure spin transition
without any electric dipole moment.

Whereas in Fig. 1.14.(c) SOC is introduced and the first excited state becomes
a mixture of |−, ↑⟩ and |+, ↓⟩ states at zero detuning. The spin transition from the
ground to the first excited state now has an electric dipole moment. It also gives
rise to the spin conserving and spin flip tunnelling coupling. The balance between
tsf and tsc results from a competition between the Zeeman Hamiltonian and the
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Figure 1.14 – Energy diagram of a single charge in a double quantum dot in a
finite magnetic field as a function of the detuning with identical g-factors (g = 2)
and at B = 200mT. (a) In a finite magnetic field, there are four different states
available. The spin |↑⟩ and the spin |↓⟩ are split by the Zeeman energy EZ. The
transition energy from ground state |−, ↓⟩ to the first excited state |−, ↑⟩ is plotted
in (b). This transition energy is independent of ε which makes it insensitive to
charge noise. (c) Energy diagram of the spin states with a spin-orbit interaction
plotted in colour (the black dashed lines shows the spin states without spin-orbit
interaction) with the spin-flip and spin conserving tunnel couplings. The |−, ↑⟩
state now mixes with |+, ↓⟩ and the transition from |−, ↓⟩ to |−, ↑⟩ has a charge
flavour. The energy of this transition is plotted in (d) and has a detuning sweet
spot at ε = 0GHz.
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tunnelling Hamiltonians Hsc and Hsf . In presence of SOC, the spin transition
from the |−, ↓⟩ to the first excited state becomes dependent of ε and dips at zero
detuning. The dip in energy is directly related to the strength of the SOC and is
a spin sweet spot in detuning.

1.4.2 Rashba spin-orbit coupling (SOC)

The single dots physics is well described by the detuning and the g-matrices.
Now we focus on the tunnelling of the hole spin between the two dots. Spin-
dependent tunnelling may arise because the Larmor vectors are different in each
dot and/or the hole experiences Rashba spin-orbit interaction. In the former case,
a hole with a given spin in the left dot projects onto a different spin in the right
dot, which gives rise to a spin-flip process in the tunnelling Hamiltonian [113, 13].
This mechanism thus becomes ineffective if the two dots are sufficiently similar. On
the contrary, Rashba-like spin-orbit interactions act even if the dots are identical.
The Rashba spin-orbit Hamiltonian typically takes the form (for a motion along
x-axis) [90, 73, 99, 49]:

Hso =
ℏ2

m∥ℓso
kxnso · σ, (1.60)

where ℓSO is the spin-orbit length, m∥ is the effective mass of the hole, σ is the
spin Pauli operator and nso is the unit vector of an effective spin-orbit magnetic
field Bso which is ∝ E× k with E the electrical field introduced by the gates and
k the hole momentum vector of the hole. As we work with nanowire devices, we
can assume that the motion of the hole is along one axis, the x-axis.

The Rashba Hamiltonian can be interpreted as a spin-dependent field, which
induces a spin rotation around Bso associated with the motion of the hole. Bso

is given by the geometry of the device, which is enhanced with 1-dimensional
device [73, 21, 98]. The spin-photon coupling results hence from an interplay of
the Zeeman interaction and the Rashba SOC such that gs ∝ |gB × gBso| with g
the average g-matrix of the two dots. It is then expected to be the most effective
when the spin Larmor vector gB is perpendicular to the spin-orbit field. On the
other hand, if both vectors point in the same direction, the spin will not rotate.

We can translate the SOC mechanism into a spin-charge mixing parameter θ,
which is given by

tsf = tc · sin θ (1.61)

and
tsc = tc · cos θ, (1.62)

such that
tc =

√
t2sc + t2sf , (1.63)

we retrieve the tunnelling coupling of the charge qubit.
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1.4.3 Spin-photon coupling via intrinsic SOC

We summarize in this section the underlying mechanisms allowing for spin-
photon coupling with hole spins. A schematic of the hole spin flopping mode
qubit [104] coupled to a cavity can be found in Fig. 1.15.

L R

Figure 1.15 – Schematic of the spin-photon flopping mode experiment. The electric
component of the cavity is coupled to the motion of the hole via electric dipole
interaction and the spin couples to the hole’s motion via spin-orbit interaction and
g-matrix anisotropy.

An in-plane magnetic field B lifts the spin degeneracy of the DQD charge
states as sketched Fig. 1.14. The two lowest spin-polarized states define a flopping
mode spin qubit [104] that we want to couple to a single photon.

Spin-photon coupling is a two steps process. First the single photon is coupled
to the electric dipole of the hole in a DQD, which can be tuned with the detuning
between the two dots. Second, a hybridization between the charge degrees of
freedom to the spin degrees of freedom is needed to enable the "indirect" spin-
photon coupling. The spin-charge hybridization can be achieved through exchange
interactions in a double or triple QDs [24, 82] or using spin-orbit interactions,
which can be intrinsic to the QDs [73, 103, 104, 98] or induced by a magnetic field
gradient [136, 36, 14]. For hole spins, we harness the intrinsic SOC in the valence
band to achieve the spin-photon interaction. As the g-matrix of hole spins depends
on the confinement in the dot [38], the g-matrix of both dots are different, giving
rise to a different spin basis in each dot. In addition, the holes are localized in a
nanowire and experience direct Rashba SOC [73]. As the spin basis are different
for both dots, even if the Rashba contribution to the tunnelling is negligible, the
projection of the spin state of left dot to right will carry some spin flip flavour.
The Rashba SOC will rotate the spin as described in the previous section.

Fig. 1.16 shows the signature of the strong spin-photon coupling that we can
probe experimentally as a function of magnetic field. The dashed lines are the non-
interacting spin and photon energies, while the solid black lines are the coherent
interacting states with a clear avoided crossing at the resonance condition between
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the photon and the spin. This is the so-called vacuum Rabi splitting from which
we can read the spin-photon coupling strength gs/2π.
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Figure 1.16 – Strong spin-photon coupling evidenced by the vacuum Rabi split-
ting. The non-interacting spin (blue) and photon (khaki) energies are displayed
in dashed lines. In the strong coupling regime, an avoided crossing is observed
at the resonance condition between the spin and the photon, this is the so-called
vacuum Rabi splitting.

Hence, compared to previous circuit QED experiments of spin-photon interac-
tion with a single electron spin in a DQD [145, 95, 124, 20, 61], hole spins give
us the advantage of a simpler architecture with no micromagnet or ferromagnetic
reservoirs. Indeed, the intrinsic SOC of the valence band can be many times
stronger than for electron spins [22, 23]. We thus expect to probe a spin-photon
coupling with a hole spin by combining the electric-dipole interaction with the
charge qubit and the SOC which gives us the spin-charge hybridization.
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Takeaway messages:

• The microwave resonators are described by the transmission line model.

• The impedance and the resonance frequency of a superconducting trans-
mission line resonator depend on its capacitance and inductance per unit
length.

• Transport in a single QD is possible only when the electrochemical poten-
tial of the dot is in the bias window, otherwise the transport is forbidden
by Coulomb blockade.

• A single charge in a DQD forms a charge qubit featuring an antibonding
and bonding state with a qubit energy ℏωc =

√
ε2 + 4t2c , with ε the

detuning of the two dots and tc the tunnel rate.

• In a finite magnetic field, the spin degeneracy of the DQD charge states
is lifted up and the two lowest spin-polarized states defined a flopping
mode spin qubit.

• Light-matter interaction can be described by the Jaynes-Cummings
Hamiltonian.

• The strong coupling regime is attained if g ≫ κ, γ.

• Hole spin-photon is governed by an interplay between an anisotropic
Zeeman energy and a strong spin-orbit coupling.
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W
e will now focus on the experimental techniques involved in this the-
sis. First, we want to point out that the device fabrication is a co-
integration project, see Fig. 2.1. The quantum dots are hosted in
a nanowire silicon-MOS (metal-oxide-semiconductor) device fab-

ricated at CEA-LETI on 300mm wafers. The single photons are trapped in a
microwave superconducting resonator fabricated in a research cleanroom facility,
at the PTA (Advanced Technology Platfoms) of CEA. The goal is to obtain a final
device with a superconducting resonator on top of the quantum dots chip.

In this chapter, we pinpoint the different type of Si-MOS QDs and present
the fabrication process of the nanowire devices from LETI. Then we focus on the
challenges of the co-integration process in a circuit QED architecture. We conclude
the chapter with the measurement set-up.
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Si nanowire 
transistors

superconduc�ng 
resonators

LETI
P
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Figure 2.1 – Hybrid fabrication project between Si nanowire devices from LETI
and superconducting resonators from an academic clearoom, PTA.

2.1 Si-MOS quantum dots fabrication

In the great race of quantum computers, silicon turns out to be a natural host
platform for qubits with two obvious reasons. First, silicon is known for decades
in the microelectronics industries with very mature fabrication processes for mass
production. Second, silicon represents a remarkably clean magnetic environment
witnessed by spins in highly purified and isotopically enriched silicon material.

In this section, we introduce different type Si-MOS quantum dots seen in the
literature of spin qubits. After we give a brief description of the fabrication process
of the nanowire transistors used in this project. For an extensive description of
the device fabrication, readers may refer to the work of Barraud et al. [11].

2.1.1 Silicon spin qubits architecture

Spin qubits rely on the 3D confinement of electrons or holes. The most common
semiconductor quantum dots in silicon are based on a layered semiconductor het-
erostructure Si/SiGe, which provides the z-axis confinement of the dot, and electro-
static gates are patterned on top for the confinement in the xy-plane [159, 101, 58].
These heterostructure devices have hit many milestones of quantum computation
such as high-fidelity single qubit [155] and two-qubit gates [143, 150, 160]. How-
ever full-scale quantum computers require the integration of millions of qubits [46]
and to meet this end the industrial microelectronics fabrication techniques would
be a clear asset [139, 65]. It is then natural to develop industrial manufactur-
ing compatible silicon devices with notably the metal-oxide-semiconductor (MOS)
technology.

Fig. 2.2 summarizes the current existing structures for silicon-MOS quantum
dots. They are split into three different categories: planar quantum dots, fin-
FET (field-effect-transistor) and Si-MOS nanowire devices. In the planar device,
fabricated in a research facility, the 3-dimensional confinement of the charges is
provided by a active silicon layer with overlapping gate electrodes. The voltages
applied on the gates form electrostatic potential barriers which enable the charges
to tunnel in and out of the quantum dots. The fin-FET devices are fabricated in
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Planar Si-MOS based  
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Figure 2.2 – Comparison of different quantum dot structures in Si. The first
column shows the planar 2D quantum dots using two dimensional structures. The
example shows a planar Si-MOS quantum dot from [85]. The second column shows
a fin-FET based quantum dots with an example from [52]. The third column shows
a nanowire on silicon oxide base quantum dots. The example is a two-gate device
from [91]. The cross section schematic corresponds to the cut indicated by the
black dashed lines. The plunger (barrier) gates are colorized in brown (green).
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industrial-scale foundries while the nanowire devices also are from a MOS com-
patible cleanroom made on 300mm wafers. The active fins are directly etched
on a silicon subtract while in the nanowire device are fabricated on a silicon-on-
insulator wafer. In both geometry the gate electrodes are wrapping around the
active region with an oxide barrier in between. In the following we will only fo-
cus on the silicon-on-insulator nanowire devices which are key ingredients to the
circuit QED experiment that we want to perform.

2.1.2 Fabrication

Now we cover the fabrication process of the nanowire silicon-MOS devices
perfomed at CEA-LETI to form quantum dots as small as 40x40x40 nm3.

Figure 2.3 – Major steps of the Si-MOS transistors fabrication. (Adapted from
[35])

The fabrication of the Si-nanowire transistors starts with a 300mm silicon-on-
oxide (SOI) wafer. The thin (8-20 nm) Si layer on top of the 145 nm thick buried
oxide (BOX) is structured into narrow Si channels. The silicon nanowires are
patterned using deep ultra-violet (DUV) lithography and then transferred to the
silicon layer by plasma etching. To reach feature sizes below the optical resolution
size, trimming (i.e. the resist is overetched) is performed such that the nanowires
are 20-100 nm wide. Then, the gate stack is deposited on top of the nanowires,
consisting of 5 nm of thermal SiO2, 5 nm of TiN and 60 nm of heavily doped poly-
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Si. The gate stack is patterned using electron beam lithography (EBL) to achieve
a gate pitch below 100 nm. A dry etching is performed to transfer the pattern from
the resist mask to the gate stack. Then, a spacer layer made of 31 nm thick SiN is
patterned to isolate the gates from each others and to protect the channel between
the gates from the epitaxy process. After, on the source and drain contacts, a
layer of in-situ doped silicon is grown by epitaxy and the dopants are activated in
a oven at 1500 ◦C for 30 s. Finally, the surface of all the contacts is metallized by
depositing a layer of NiPt to form the silicide alloy NiPtSi to reduce the contact
resistance. The fabrication process is sketched in Fig. 2.3.
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Figure 2.4 – Topography of the wafer after silicidation of the transistors. (a)
Scanning microscope image of an one-gate transistor (highlighted by the yellow
box) surrounded by dummy structures. (b) Atomic force microscope (AFM) image
of a dummy structure. (c) Height of the dummy structure measured by AFM along
the red line shown in (b). The extracted topography is ∼ 100 nm.

For the co-integration, we want to deposit a thin layer (∼ 10 nm) of super-
conducting metal on top of the transistors, however at this stage of the fabrica-
tion, the wafer has a topography of ∼ 100 nm which makes it extremely challeng-
ing. Fig. 2.4 shows the topography of the wafer after the transistors definition.
Fig. 2.4.(a) show the scanning electron microscope (SEM) image of an one-gate
transistor (highlighted by the yellow box) with the dummies structures around.
The dummy structures are fake transistors to maintain a constant density on the
surface such that the different fabrication steps are homogeneous on the wafer
scale. Indeed real transistors are only few hundreds nanometres big separated
by a few micrometers from each others, the blank space in between transistors is
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covered with dummies to avoid fabrication issues with isolated areas. Fig. 2.4.(b)
and (c) show the atomic force microscope images of a dummy structure and its
height, we extract a topography of the wafer of ∼ 100 nm, which is impossible to
cover with a 10 nm thick film. At the early stage of this project, we have tried
to remove the dummy structures while protecting the transistors. This was very
challenging due to the diversity of material compositing the dummies and their
aspect ratio (100 nm high but more than 2 µm wide).

Figure 2.5 – Attempts of dummy structures removal.

The strategy to remove the dummy structures is as follows

1. Pattern sets of alignment crosses of the chip with EBL and metal evapora-
tion.

2. Find the correspondence between the coordinates of the transistors and the
crosses such that the next lithography steps would be aligned with the ex-
isting devices.

3. Contact transistors (gates, source and drain) by metal evaporation and lift-
off technique.

4. Protect the transistors with a 1 µm thick resist (ma-N 2410).

5. Remove the dummy structures with a combination of active dry etching
to thinner the dummy structures and buffered oxide etching to lift-off the
dummies by attacking the oxide layer below.

Fig. 2.5 shows different attempts of removing the dummy structures. The
success rate until recontacting the transistor is kind of high but the dummies
removing part was kind of unsuccessful. The etching process was too heavy and
the protection was not efficient enough. We never succeeded to remove completely
the dummies while keeping the transistors.

Removing the topography of the wafer is a very hot issue and after discussions
with the LETI team, we have obtained an extra step of planarization. The extra
fabrication steps are recapitulated in Fig. 2.6. First a contact etch stop layer
(CESL) made of 34 nm thick of SiN is grown everywhere, followed by the growth of
450 nm thick of SiO2 by plasma-enhanced chemical vapour deposition (PECVD).
Since the contacts of the source and drain are not at the same level than the
contacts of the gates, the CESL layer will enable a non-uniform etching to reach
the contacts. A first planarization is performed by CMP to thin down the SiO2
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Figure 2.6 – Fabrication process of the planarized transistors wafer with electrical
contacts in tungsten.

layer to 200 nm. Vias are patterned by DUV lithography then a first etch is
performed down to the CESL followed by a second etch step to remove the CESL
locally. A few nanometers of TiN is deposited by plasma vapour deposition (PVD)
before the filling of the vias with tungsten by chemical vapour deposition (CVD).
Finally the wafer is planarized by CMP again to remove any topography and is
ready to be processed for the superconducting resonators.

2.2 Thin NbN films

Now that the fabrication of the silicon MOS transistors is reviewed, we can
proceed with the second ingredient of the circuit QED experiment, the super-
conducting resonators. Our superconducting candidate is a thin film of niobium
nitride (NbN) due to the following reasons. First, NbN films have a high critical
temperature of 16K in the bulk material and ∼ 7K for 10 nm thick films, allowing
film characterizations at 4K in liquid helium. Second, NbN is also highly resilient
to magnetic fields, due to its high critical magnetic field, which is a great asset to
work with spin qubits that require the presence of a magnetic field. Last, thin films
of NbN show a high kinetic inductance which helps to create high characteristic
impedance resonators.

In addition, there is a history of NbN growth in our group for microwave
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photonics applications [122, 55]. However when I arrived in the laboratory, a
new sputtering machine was bought, then I started by some optimization work
on it, together with F. Gustavo, to find a new recipe suited for the circuit QED
experiment. This section presents, hence, the growth and optimization of thin
NbN films for the circuit QED experiments with spins.

2.2.1 Film growth parameters

The NbN films are made by sputtering in a Plassys MP600S confocal sputtering
system. The chamber is equipped with a pure niobium (Nb) target and NbN
is formed by introducing a small flow of nitrogen gas during the deposition in
addition of the inert argon gas. Indeed, as the partial pressure of N2 increases, the
outermost surface of the Nb target will transit from a purely metallic state to a
nitrite state [53, 10]. Here we describe some of the growth parameters optimization
of the NbN deposition.

As the NbN films depend on the quantity of nitrogen introduced in the plasma
chamber, we start with the exploration of the target voltage as a function of ni-
trogen flow, see Fig. 2.7. This curved is obtained with a target current of 1A
and an Ar flow of 70 sccm, which are parameters directly inherited from the pre-
vious sputter system. The evolution of the target voltage is an indicator of the
nitridation state of it [141].
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Figure 2.7 – Target voltage as a function of nitrogen flow. The voltage response
is similar for an increasing or decreasing nitrogen flow.

First, the target voltage increases very fast. At this stage, the nitrogen inside
the chamber is consumed by the Nb target in order to form the NbN compound.
Then at higher nitrogen flow, the target is saturated in the nitriding process [141]
and the voltage increases slower. Hence for pre-sputtering time (the target is
covered), the nitrogen flow is set to a high value achieve the formation of NbN,
then the target is exposed to the plasma and we reduce the flow of nitrogen.
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Current Pressure Ar flow rate N2 flow rate Tc

2.0A 10−2 mbar 18 sccm 5 sccm 9.5K
0.9A 10−2 mbar 18 sccm 5 sccm 9.8K
2.0A 10−2 mbar 60 sccm 15 sccm 10.6K
2.0A 10−2 mbar 70 sccm 15 sccm 11.2K
2.0A 10−2 mbar 35 sccm 42-45% 11.8K

Table 2.1 – Influence of sputtering parameters of bulk (50 nm) NbN on the critical
temperature.

The nitrogen flow is one parameter among many others that can be tuned to
change the properties of the NbN films. Table 2.1 summarizes different sputtering
recipes varying the target current, the argon flow or the nitrogen flow and the
obtained critical temperature, Tc of a bulk NbN (at least 50 nm thick). The
measurement Tc is detailed in the next section. Based on the critical temperatures,
we have chosen the last sputtering conditions presented with the higher Tc, with
a deposition rate of ∼ 0.9 nm s−1. As the final objective of the NbN film is to
create a microwave cavity that is galvanically connected to a gate electrode of a
transistor, we perform a soft 30 s Ar milling before sputtering to remove any oxide
on the wafer preventing from electrical contact. The detailed sputtering conditions
are given in Appendix B.

2.2.2 Film characterization

Now we focus on a 10 nm thick NbN film and its superconducting properties.
The deposition here is performed on 525 ± 25 µm thick p-type silicon wafers (1-
15Ω cm), covered by 400± 80 nm of thermally grown SiO2.

Kinetic inductance

The important characteristics of films are the critical superconducting tem-
perature and the kinetic inductance. Both information can be extracted using a
physical property measurement system (PPMS) by Quantum Design which mea-
sures the resistance of a given film as a function of the temperature by a four-probe
measurement technique. The sample is inserted in a helium dewar which covers
temperature from 2K to 400K with an out-of-plane magnetic field up to 9T.

To extract the resistivity of the film, we pattern a four-probe structure on
the NbN film as shown in Fig. 2.8.(a). A typical R(T ) measurement from room
temperature to the superconducting transition is shown in the inset of Fig. 2.8.(b)
and Fig. 2.8.(b) is a zoom in around the superconducting transition. The sheet
resistance increases while lowering the temperature from room temperature to
∼ 19K. From 19 to 5K the resistance decreases until zero resistance, marking
the superconducting transition. The rise of the sheet resistance before the super-
conducting transition is typical of weak localization and Coulomb interaction in
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a)
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Figure 2.8 – DC characterization of the NbN films. (a) Four-probe resistivity
measurement structure. (b) R(T) characteristics of a 10 nm thick NbN film, Tc =
7.40K and R□ = 1033Ω□−1.

strongly disordered superconductors [120].
The critical temperature Tc can be directly read on the R(T) curve as the

inflection point, see Fig. 2.8(b). The kinetic inductance can be estimated as

Lkin =
ℏR□

π∆0
, (2.1)

where R□ is the sheet resistance, ℏ is the reduced Planck constant and ∆0 is the
superconducting gap at zero temperature. From [6], we assume that the supercon-
ducting gap for NbN is given by ∆0 = 1.76kBTc where kB the Boltzmann constant.
Using a four-probe structure of known dimensions, as shown in Fig. 2.8.(a), the
resistance, in Ω of the film can be converted into the sheet resistance, in Ω/□:

R□(Ω/□) = R(Ω) · ℓ

w
, (2.2)

with ℓ = 4600 µm and w = 100 µm.
We extract the sheet resistance R□ = 1033± 1Ω□−1 as the maximal value of

the curve and the critical temperature Tc = 7.4± 0.1K, see Fig. 2.8.(b). For this
10 nm thick NbN film, we deduce a kinetic inductance value of

Lkin = 192± 3 pH□−1.

This film will be the one used in the fabrication of the resonators, see Chap. 3, and
the kinetic inductance contribution is reproducible from one growth to another.
Note that the kinetic inductance of a film depends on its thickness, therefore higher
value of Lkin could be attained with thinner films but Tc would be lower and films
below 10 nm thick tend to be less reproducible.

To confirm the kinetic inductance value extracted via Eq. (2.1), we have also
performed an independent RF measurement based on a two-tone spectroscopy [81]
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to map the dispersion relation of the film. The kinetic inductance extracted with
this second technique matches perfectly with the DC measurement. The complete
description of this experiment can be found in Appendix C.

Critical magnetic field

From the PPMS measurement, we can also extract the critical magnetic field
of the NbN films. The applied magnetic field is perpendicular to the NbN chip.
The Werthamer-Helfand-Hohenbert theory [151] predicts a linear behavior of the
upper critical magnetic field Bc2(T ) down to T = 0K as follows

Bc2(0) = 0.69Tc

(
dBc2(T )

dT

)
Tc

. (2.3)

0 2 4 6 8
Magnetic field (T)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
re

sis
ta

nc
e

9 K 
9.2 K 
9.4 K 
9.6 K 
9.8 K 
10.2 K 

9.0 9.5 10.0
Temperature (K)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

B c
2 (

T)

data
fit

a. b.

Figure 2.9 – Upper critical magnetic field Bc2 of a 10 nm thick NbN film. (a)
Resistance as a function of magnetic field at fixed temperatures below Tc . The
pink line indicates the resistance value at which Bc2 is determined for each tem-
perature. (b) Temperature dependence of the upper critical magnetic field Bc2.

The 10 nm NbN film is a different one from the kinetic inductance measure-
ment. Here, it has a critical temperature of 10.2K, which is higher than the one
used later on but we never achieve such a high Tc anymore. To measure the criti-
cal magnetic field, we apply an out-of-plane magnetic field up to 8T and we vary
the temperature below Tc from 9K to 10.2K. At each temperature, we sweep the
magnetic field from 0T to 8T. Fig. 2.9.(a) shows the resistance of the film as a
function of magnetic field at fixed temperature. From this curve, we extract the
upper critical magnetic field Bc2 at half of the normalized resistance. We then plot
Bc2 as a function of temperature, see Fig. 2.9.(b), to extract the linear dependence
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on T of Bc2. From the linear fit, we obtain(
dBc2(T )

dT

)
Tc

= 2.5TK−1, (2.4)

and the upper critical field at zero temperature is therefore

Bc2(0) = 17.4T, (2.5)

which is agreement with other measurements of Bc2 on NbN films [71, 142].
From Bc2 we can also extract the coherence length in the dirty limit by [135]

ξ(0) =

√
Φ0

2πBc2(0)
, (2.6)

with Φ0 = πℏ/e the magnetic flux quantum, e the elementary charge and ℏ the
reduced Planck constant. We then estimate the coherence length of our film to
be ξ(0) = 4.35 nm, which is consistent with the literature [149, 30, 72]. The short
coherence length and the high critical magnetic field of the thin NbN films are
clear assets to work in a magnetic field environment for the spin manipulations.

Substrate temperature

We investigate on one more sputtering parameter which is the substrate tem-
perature. In Table 2.2, we summarize several NbN depositions made at different
substrate temperatures in order to investigate its influence on the kinetic induc-
tance of the film. All films are 10 nm thick and the heating process of the substrate
always lasts for ≈ 16 h prior to deposition. The difference between films with the
same substrate temperature shows the variability on the sputtered films.

Table 2.2 – NbN film characterization for different sputtering temperatures.
Temperature (◦C) R□ (Ω□−1) Tc (K) Kinetic inductance (pH□−1)
275 273 10.5 36
275 339 9.6 49
180 480 7.7 86
180 550 7.4 103
22 670 5.9 162
22 705 5.6 174

Note that the kinetic inductance in Table 2.2 is an estimate from the sheet
resistances at room temperature. It is a lower bound of the real kinetic inductance
as the resistance increases from 300K to the superconducting transition due to
the disordered properties of NbN, see Fig. 2.8.(b) inset. The film with a kinetic
inductance estimated at 103 pH□−1 corresponds to the one studied in details with
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a real kinetic inductance of 192 pH□−1. A substrate temperature of 180 ◦C is a
compromise between the kinetic inductance and the critical temperature.

The material growth is a complex field of physics with a lot of parameters,
we can surely further improve the quality of our films but for the high-impedance
resonators we will stick to the 10 nm thick films with Lkin = 192± 3 pH□−1.

2.3 Co-integration of superconducting coplanar waveg-
uide resonators with quantum dots

We now proceed with the co-integration process of the quantum dots with mi-
crowave resonators. We start with a description of the resonators design procedure
such that the resonance frequency is in the bandwidth from 4GHz to 8GHz and
the characteristic impedance of the resonator is higher than 50Ω without putting
too much constrain on the fabrication side. Then we review the co-integration
fabrication process and its challenges.

2.3.1 Resonators design

Once the properties of the NbN films are known, we can proceed to the design of
the high-impedance resonators. The most important characteristics of a resonator
are its resonance frequency and its characteristic impedance, both are given by
the capacitance and inductance per unit length

f0 =
1

2ℓ

1√
LℓCℓ

, (2.7)

Z0 =

√
Lℓ

Cℓ
. (2.8)

Once the kinetic inductance of the film is known, we can use the Sonnet soft-
ware to estimate the capacitance and the inductance of the coplanar waveguide by
using the planar metal loss model with the resistivity set to zero (RDC and RRF),
the DC reactance to zero and the surface inductance to the kinetic inductance of
the NbN film.

The resonators are integrated on top of the MOS wafer. Not only does the
wafer have transistors buried below the silicon oxide but also dummies which are
fake transistors, as explained in Sec. 2.1. Therefore, microwave simulations of
such a wafer are very complex. Then a virtual substrate is created in Sonnet to
simulate the resonators as shown in Fig. 2.10.(a). The characteristic impedance
and the resonance frequency of a coplanar waveguide resonator can be estimated
by simulating a small section of the waveguide and Sonnet can compute the LRCG
matrix using the Output N-coupled line model. Fig. 2.10.(a) also shows the hanger
like geometry of the resonators, which means that one or several resonators are
capacitively coupled to a almost 50Ω feedline.
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Figure 2.10 – Resonators simulation on Sonnet. (a) Two-port simulation on Sonnet
with a 50Ω transmission line and a high-impedance resonator, and the substrate
composition to mimic the CMOS wafer. On the resonator design, the metal part is
colorized in red. The insert part shows the virtual substrate to mimic the transistor
wafer. (c) S21 response of the resonator simulated by Sonnet and its Lorentzian
fit to extract the Qc assuming that Qi is infinite. Here Qc = 2623.

Besides of the geometry, the internal and external quality factors are also a
key parameter in the resonators design. The internal quality factor Qint mostly
depends on the substrate and the cleanliness of fabrication process, whereas the
coupling quality factor Qext is given by geometry. Therefore Qext can be sim-
ulated, while Qint can only be accessed by a measurement once the sample is
fabricated. For the hanger geometry resonators, we extract Qext by simulating
the full resonator as shown in Fig. 2.10(a). As the intrinsic losses of the system
are set to zero in the simulation, the total quality factor equals to the coupling
quality factor. Then by simply fitting the S21 response with a Lorentzian model,
the quality factor can be estimated, see Fig. 2.10(b). Armed with the simulation
results, we can now turn to the fabrication of the resonators.

2.3.2 Co-integration fabrication flow

In this section, we give an overall description of the fabrication process while
a complete description can be found in Appendix B. The main challenge in the
co-integration of the resonators with the transistors is the alignment of the two
components. Indeed, the tungsten vias ensuring the electrical contact to the tran-
sistors are 90 nm2 big, thus the alignment has to be accurate up to a few tens of
nanometers. To achieve such a good accuracy over centimeters long distances, we
need a very good precision on the coordinates of the alignment crosses.

After the planarization of the MOS wafer as explained in Sec. 2.1.2, one more
DUV lithography step is implemented to define alignment crosses. Once the tran-
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Figure 2.11 – Images of a die from macroscopic to microscopic. (a) Photo of a
die on the 300mm wafer before being cleaved. (b) Optical image of the upper
right part of a die with the alignment crosses. The yellow region is the dummy
structures and the green region are the buried oxide (BOX). (c) SEM image of a
transistor with W vias surrounded by dummies. (d) SEM image of a set of chip
crosses made of platinum. (e) SEM image of a global cross made of platinum.

sistors are finished and buried under the silicon oxide layer, a photoresist (TARF
P9009) is spin coated on the wafer with a layer of anti-reflective coating (BARC
AR19) below. During the DUV lithography step, only the photoresist layer is ex-
posed and developed, while the anti-reflective coating remains all over the wafer.
That is the final step performed by the CEA-LETI quantum silicon team.

Fig. 2.11 shows images of a die from macroscopic to nanometric scales. We
start with a 300mm wafer full of identical dies, Fig. 2.11.(a) shows a photo of
several dies, each die is 13x17mm2. For the co-integration, we will proceed with
the fabrication die per die that we separate from the 300mm wafer by cleaving
with a diamond pen. Fig. 2.11.(b) shows an optical image of the upper right part
of a die with one big global alignment cross, highlighted by a green box, and one
column of chip marks composed of small crosses, marked by a red box. Fig. 2.11.(c)
is a zoom on one of the transistors using the scanning electron microscope (SEM).
The bright white dots are the tungsten vias connecting the transistor to the surface
of the die and the features around are the dummies. Fig. 2.11.(d) and (e) are the
SEM images of a set of chip marks and a global cross. The fabrication of the
crosses are detailed in the paragraph below.

As the first step of the post-processing part, the alignment crosses are defined
by metal evaporation and lift-off technique (see Fig. 2.12). Before any metal
evaporation, we need to first etch away the BARC layer below the cross patterns,
otherwise the lift-off step will fail. To do so, we use an ICP etcher, SI 500 324
from SENTECH, with an oxygen plasma to remove the 82 nm thick BARC layer.
During that step, we also etch part of the photoresist but since it is 1 µm thick
we can afford such a loss. After, we deposit by evaporation, in a MEB550 from
Plassys, 50 nm of platinum with 5 nm of chromium as an adhesion layer. Then the
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Figure 2.12 – Fabrication process of the alignment crosses. First the anti-reflective
layer is etched away by an oxygen plasma. Then 50 nm of Pt is evaporated on the
wafer and the crosses are defined by lift-off technique. A second oxygen plasma
removes the remaining anti-reflective layer.

extra metal part are lifted-off in ethly lactate which is a remover for the photoresist.
At this stage, there is still a BARC layer on the sample preventing from electrical
contacts with the devices. One last oxygen plasma is performed on the sample to
remove this layer and the chip is fully marked with alignment crosses and ready
to be post-processed. With an automatic detection of the alignment crosses, the
EBL can be accurate up to 20 nm using only three global marks and one set of chip
marks, which represents the top accuracy of the JBX-6300FS model from JEOL.

NbN spu�ering SF6/O2 plasma
Remove 

the resist
Electron beam 

lithography

Si SiO2 Pt NbN Resist

Figure 2.13 – Fabrication process of the superconducting NbN resonators. A 10 nm
thick NbN film is deposited by sputtering. A EBL is performed to pattern the
resonators, then the pattern is transferred to the NbN layer by dry etching.

Right after the last oxygen plasma step, the 10 nm thick NbN film is deposited
as indicated in Sec. 2.2. The resonators are then defined by EBL with a ZEP 502A
resist diluted in IPA with a [1:1] ratio. The pattern is transferred to the NbN layer,
using the ICP tool Plasmalab100 from Oxford Instruments, with a SF6/O2 plasma.
Eventually, the resist is removed by DUV exposure before being developed in a
MIBK:IPA solution. The different steps of the resonators fabrication are sketched
in Fig. 2.13.

After the nanofabrication of the resonators, we have to dice the chip such that
it fits in our sample holder which is 1 cm2 big. This is done using an automated
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diamond saw, DISCO DAD 321, with a protective resist layer (AZ1512) on the
chip. Once the chip is cut into the right size, we clean the chip and remove
the protective resist. Last, we perform an annealing step to remove any charges
accumulated unwillingly during the fabrication process. The annealing step is
done under a forming gas N2/H2(4%) atmosphere at 400 ◦C during 1 h with a
continuous circulation of the gas. Then the chip is ready to be glued on a PCB
with silver paint and bonded for measurements.

Fig. 2.14 shows SEM images of a finished resonator connected to a two-gate
silicon transistor with DC bias lines. Each of the DC lines are filtered by an LC
filter to prevent from microwave leakage as we will explain in Sec. 3.2.2.

2.4 Measurement set-up

Measurements have been performed in a Bluefors dilution refrigerator with a
base temperature of Tbase ≈8mK. The cryostat is divided into various temperature
stages as indicated in Fig. 2.15.(d). Besides, the fridge is equipped with a bottom-
loading system (see Fig. 2.15.(c)), which offers a fast sample exchange solution
leaving the dilution unit at 4K.

The sample is bonded to a printed circuit board (PCB) (see Fig. 2.15.(a)),
this is the so-called daughter board with two RF connectors used to measure the
microwave resonators in transmission. This daughter board is then mounted to a
mother board, as shown in Fig. 2.15.(b), with ten other RF connectors and 24 DC
lines. Signals from the mother board are routed to the daughter board through
an interposer with fuzz buttons. Once connected, the mother board is mounted
on the probe of the bottom loader which inserts the sample in the cryostat.

At room temperature, the top of the fridge is connected to DC electronics
for biasing and read-out of the quantum dots and RF electronics to probe the
resonators. The DQD gates are biased using digital analog converters (DACs)
(iTest BN110) and a matrix box which hosts an electrical switch for each DC
line. Inside the cryostat, 24 DC lines with RF and DC filters go to the sample
at base temperature. When the transistor can be directly biased on its source,
a current-to-voltage (IV) converter (Femto DLPCA200) is used to measure the
resulting current at the drain for transport measurements. When the source is
hard-grounded, to reduce the number of gates on the chip, a biasable home-built
IV converter is used to apply a voltage bias to the transistor such that we can
still measure in transport. The electrical transport measurements are usually
performed at room temperature to ensure that the alignment or the electrical
contact is good, and more importantly the transistors have not been damaged
during the fabrication or bonding steps.

The superconducting resonators are measured in transmission using a two-
port vector network analyzer (VNA) from Copper Mountain. The input signal is
sent to the sample with a discrete attenuation of 60 dB inside the cryostat. The
output signal from the resonator is filtered with a 4-8GHz bandpass filter and a
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Figure 2.14 – SEM image of a NbN resonator connected to a two-gate silicon
transistor. The main panel shows the full circuit QED design with the transmission
line, the high-impedance resonator, DC bias lines and alignment marks. The
contact geometry of the wiring from the end of the resonator to the tungsten vias
of the transistor is shown in the red boxed region. The blue boxed image shows
a top view of a two-gate transistor by SEM and its cross-section by transmission
electron microscopy. (Adapted from [70])
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Figure 2.15 – Photographs of measurement set-up. (a) Sample chip bonded to the
daughter PCB with RF and DC connections. (b) Daughter board connected to
the mother board in the bottom loader’s probe with DC (flex PCB) and RF (Cu
cables) lines. (c) Bottom-loading system with the sample inside the probe. (d)
Cryostat with the different temperature stages and the probe mounted.

two-junction isolator before reaching an HEMT (high electron mobility transis-
tor) low-noise amplifier mounted at 4K. The signal reaches a circulator (DiTom
D3C4080) before being further amplified (Amplitech apt3-04000800-0610-ME3) at
room temperature before being measured by the VNA. The bandpass filer, isolator,
circulator and attenuators protect the superconducting resonators from thermal
radiations. All RF lines are equipped with DC blocks at room temperature before
going in the cryostat to avoid ground loops. For two-tone spectroscopy, an Agilent
RF source (E8257D) is used in addition to the VNA, whose clocks are synchronised
together. In order to reach the single photon regime, room temperature attenua-
tors are usually added at the output of the VNA to reduce the input power at the
resonator. See Fig. 2.16 for a typical DQD measurement set-up with the sample
chip bonded on the daughter PCB.

In order to manipulate the spin degree of the charge carriers inside the quantum
dots, a superconducting 3D vector magnet is placed in the cryostat. It is thermally
and mechanically connected to the 4K plate such that the sample is positioned at
the center of the magnetic field. The magnets generate high magnetic fields up to
6T in the vertical z direction and up to 1T in a full sphere in any direction. The
magnetic directions as indicated in Fig. 2.15.(b).
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Figure 2.16 – Schematic of the measurement setup for a DQD device with the
sample chip bonded on the daughter PCB. The VNA provides microwave signals
for the resonator which can be combined with a microwave generator for two-tone
measurement. The output signal of the resonator is filtered and amplified.
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Takeaway messages:

• The quantum dots are hosted in a silicon MOS nanowire transistor fab-
ricated on 300mm wafers.

• The back-end-of-line fabrication of the silicon chip is interrupted in order
to replace the first metallic interconnect layer with a 10 nm thick NbN
film.

• The thin NbN film, deposited by sputtering, shows a high kinetic induc-
tance Lkin = 192± 3 pH□−1.

• The alignment of the resonators on the transistors is accurate up to
20 nm over a centimeters long distance.

• The samples are held at a temperature Tbase ≈ 8mK using a dilution
refrigerator equipped with a 3D vector magnet and bottom-loading sys-
tem.

• The quantum dots transport characterization are performed using low-
noise DACs and the resonator’s response is read by a VNA.
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B
efore coupling a photon to a charge or a spin, we first study the
resonators to ensure that the photon loss rate is low enough for
the coherent interaction with single spins. In order to generate a
large ZPF (VZPF ∝

√
Zc), we study high impedance superconducting

microwave resonators with a characteristic impedance up to 4 kΩ. Moreover for
hybrid circuit QED experiments with spins, it is essential that the resonators are
magnetic field resilient.

In this chapter, we therefore focus on the characterization of the supercon-
ducting resonators designed and fabricated following the process described in the
previous chapter. We first measure simple CPW resonators made on Si wafer with
a thin layer of thermally grown SiO2 to evaluate the quality factors at zero mag-
netic field and in the in-plane and out-of-plane magnetic fields. We then repeat
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the measurement for identical resonators fabricated on the Si-MOS wafer with
nanowire devices to assess the influence of a complex substrate structure on the
resonators’ figures of merit. Then we reiterate the measurement for resonators
with DC bias lines, which are necessary to control the quantum dots, to simulate
the circuit QED architecture and extract the quality factors.

3.1 NbN superconducting resonators characterizations
on Si substrates

In this section, we characterize the NbN CPW resonators fabricated on a p-
type silicon wafers (1-15Ω cm) with 400 ± 80 nm of thermally grown SiO2. Note
that the same wafers were used to characterize the NbN films. We extract by RF
measurement the quality factors and resonance frequencies of the resonators with
different characteristic impedances at zero and finite magnetic fields.

3.1.1 Basic characterization

From the 10 nm thick NbN layer characterized previously with a kinetic induc-
tance of 192 pH□−1, we have designed three sets of resonators with impedances
of 110Ω, 890Ω and 4.1 kΩ by just varying the central conductor width w from
50 µm to 200 nm while keeping the gap width to s = 2 µm, see Tab. 3.1. The
characteristic impedance is derived using the formulas given in Sec. 1.1.2.

Zc 110Ω 890Ω 4.1 kΩ

w (µm) 50 2 0.2
s (µm) 2 2 2

Table 3.1 – Characteristic impedance of the resonators with different geometries

Representative scanning electron microscopy (SEM) images of the resonators
of different characteristic impedances are shown in Fig. 3.1.(a). All the resonators
are resonating at a similar frequency, however they have very different lengths
meaning that the electric field mode volume is very small for the high-impedance
resonators. We designed arrays of resonators in a hanger type geometry coupled
to a 50Ω feedline (see Fig. 3.1.(b)), this allows parallel measurements of several
resonators in one experimental run. Note that the results shown in this section are
performed using an RF tight sample box (see Fig. 3.1(c)) such that the resonators
chip is isolated from any microwave radiation. Measurements have been carried
out in the dilution fridge described in Sec. 2.4 at Tbase ≈ 8mK.

A typical normalized transmission spectrum is shown in Fig. 3.2(a). The trans-
mission spectrum is normalized by setting the background signal to 0 dB and by
removing the electronic delay and phase shift of the measurement set-up. Once
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Figure 3.1 – Experimental implementation for the resonators characterization. (a)
Three combined SEM images of the NbN CPW resonators with different central
conductor widths w and a same gap width of s = 2 µm. Despite the length dif-
ference, all three resonators resonate around the same frequency. The orientation
of the in-plane and out-fo-plane fields is also indicated. (b) Photograph of a res-
onators chip with six resonators capacitively coupled to a 50Ω transmission line
called the feedline. (c) Image of a chip bonded inside an RF tight sample holder.

Figure 3.2 – Normalized transmission spectrum of a resonator. (a) Typical nor-
malized S̃21 response of a resonator in the many photons regime. (b) Parametric
plot (dot) and fit (line) of Im(1/S̃21) vs Re(1/S̃21) (dots) of the same data as in
(a).
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normalized and close to resonance, the S̃21 coefficient can be described by [94]

1

S̃21

= 1 +
Qi

Qc
eiϕ

1

1 + i2Qiδx
, (3.1)

where Qi, Qc are the internal and coupling quality factor respectively, ϕ is the
rotation in the 1/S̃21 complex plane due to an impedance mismatch between the
feedline and the resonators and δx = (f − f0)/f0 is the relative frequency to the
resonance frequency f0. The fit is performed in the 1/S̃21 complex plane to take
into account the resonance response in magnitude and in phase simultaneously. A
typical result of such a fit is shown in Fig. 3.2(b). From this fit, we extract the
resonance frequency and the quality factors Qi and Qc.

3.1.2 Power dependence

As we want to observe coherent interaction between a single photon and a hole
spin, we decrease the input power of the resonators to reach the single photon limit.
From a circuit model we derive the average photon number inside the resonator
as a function of the input power

⟨nph⟩ =
Qc

ω0

(
Qi

Qi +Qc

)2 Pin

ℏω0
, (3.2)

where Pin is the input power and ω0 = 2πf0. We then measure the quality factors
of the resonators as a function of the average photon number. The full derivation
of ⟨nph⟩ can be found in Appendix D.
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Figure 3.3 – Transmission amplitude of a 4.1 kΩ resonator around its resonance
frequency at different output powers of the VNA. There is a clear resonance fre-
quency shift towards lower frequencies when increasing the power applied to the
resonator. At high powers, the resonance also becomes asymmetric due to the
non-linear response of the NbN film.

58



3

Chapter 3. NbN superconducting resonators in the CPW geometry

Fig. 3.3 shows the resonance response of a high-impedance resonator at dif-
ferent VNA output powers from 10 dBm to −30 dBm. The resonance becomes
asymmetric at high powers and shifts towards lower frequencies, which can ex-
plained by the non linearities in the NbN films [1].
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Figure 3.4 – Power dependence of the resonators’ internal quality factors. (a) Qi as
a function of ⟨nph⟩ for the 4.1 kΩ resonators with different resonance frequencies.
(b) Qi as a function of ⟨nph⟩ for the 890Ω resonators. (c) Qi as a function of ⟨nph⟩
for the 110Ω resonators.

Thereafter we translate the output power of the VNA to the average number
of photons using Eq. (3.2). We then extract the internal quality factors of the
resonators as a function of photon number for each impedance, see Fig. 3.4.

Before going into detail we precise that the 110Ω resonators stayed in ambient
atmosphere for a few months during the COVID-19 pandemic shutdown between
its fabrication and the characterization. This may explain its different behaviour
from the two other sets of resonators, which were protected by a layer of photore-
sist.

For the 900Ω and 4.5 kΩ resonators, we observe a clear saturation of the in-
ternal quality factor at low power that may be explained by two-level system
dynamics [25]. While at high photon number, ⟨nph⟩ > 105, and for the same set of
resonators, self-Kerr non-linearities lead to a strong asymmetry of the measured
resonances rendering the analysis of the quality factors beyond the scope of our
study.

For the 110Ω resonators, we do not observe a saturation in the single photon
regime. At high power, Qi reaches a maximum value around ∼ 104 photons and
then decreases with a further increase in photon number. We do not have any
clear explanation of this behaviour at high power, we only suspect that the NbN
film suffered from staying in ambient atmosphere.

The internal quality factors remain above 104 for all the resonators in the single
photon limit at zero magnetic field. This is very encouraging for the future circuit
QED experiment even if the co-integration of the resonator on the silicon nanowire
chip will increase the microwave losses as we will discuss in Sec. 3.2.

Meanwhile, the external quality factor Qc is mostly geometry dependent, there-
fore it is constant as a function of photon number, see Fig. 3.5 for the 4.1 kΩ
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Figure 3.5 – Power dependence of the external quality factor for the 4.1 kΩ res-
onators. Qc is constant except at very high power when the resonance becomes
non linear.

resonators. Note that Qc is of the orders of 104, which is comparable with Qi in
the single photon regime and it corresponds to the good ratio between Qc and Qi.
Indeed, to maximize the readout signal, we do not want to be in the under-coupled
regime where Qc ≫ Qi but in the over-coupled regime with Qc < Qi [117].

3.1.3 Magnetic fields resilience

We now turn to the behaviour of the resonators in a static magnetic field. The
internal quality factor and the relative frequency shift as a function of the applied
magnetic field have been measured with an average of ≈ 100 photons and the
results can be seen in Fig. 3.6. For an out-of-plane magnetic field, see Fig. 3.6.(a)
and (b), the internal quality factor drops to 102 at 100mT with an abrupt jump
in resonance frequency around 0T for the 110Ω and 890Ω resonators. For the
narrowest resonators (4.1 kΩ) Qi stays well above 104 up to B⊥ = 300mT without
any jump or hysteresis in the resonance frequency. We note a dip in Qi around
∼ 150mT, which can be associated with a coupling of the resonator to magnetic
impurities. The quadratic shift of the resonance is explained by the supercon-
ducting depairing under magnetic field and can be fitted following the expression
[123] ∆f/f0 = −(π/48)[De2/(ℏkBTc)]B

2
⊥s

2 with D the electronic diffusion con-
stant. The extracted diffusion constant D ≈ 0.58 cm2/s is consistent with previous
measurements [42, 75] on NbN thin films.

For the in-plane magnetic field resilience, see Fig. 3.6.(c) and (d), we find
Qi > 104 for all resonators from 500mT to 6T. Finally, both out-of-plane and
in-plane magnetic field studies show that the highest impedance resonators have
also the highest magnetic field resilience. As the losses induced in a magnetic field
are mainly attributed to the creation of magnetic-flux vortices in the supercon-
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Figure 3.6 – Evolution of the resonators characteristics with a magnetic field. (a)
Qi as a function of B⊥. (b) Normalized shift of the resonance frequencies with B⊥
where the lower impedance resonators show abrupt jumps around zero field while
the highest impedance resonator shows no abrupt jumps and no hysteresis. (c)
Qi as a function of B∥ for different impedances. For the resonators at 110Ω and
4.1 kΩ, the measurement is performed from 0 to −6T and for practical reasons
it is plotted as positive values. At low magnetic field, the dip in Qi is due to
coupling to magnetic impurities. Inset: Qi as a function of B∥ around 200mT
for Zc = 4.1 kΩ resonators resonating at different frequencies (f1 = 3.8GHw,
f2 = 4.4GHz, f3 = 5.6GHz, f4 = 6.2GHz) all coupled to magnetic impurities of
g = 2. (d) Normalized shift of the resonance frequencies with B∥. Arrows in (b)
and (d) indicate the sweep direction of the magnetic field.
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ducting film, a smaller width of the central conductor minimizes vortices creation
and dynamics, thus suppressing the quality factor degradation. For the 4.1 kΩ
resonator for example, the central conductor width (200 nm) is shorter than the
London penetration depth of thin NbN films [72]. Therefore, vortices are induced
only in the ground plane[80], which explains its high Qi in magnetic fields. The
relative resonance shift in B∥ in Fig. 3.6.(d) shows that the 110Ω resonances jump
abruptly around 0T, which is a signature of instable magnetic-flux vortices in the
superconducting film, while the 890Ω and the 4.1 kΩ resonators show smooth shift
of the resonance frequency and no hysteretic behaviour.

Concerning the interaction between the resonator and magnetic impurities,
the inset in Fig. 3.6.(c) shows the internal quality factors of four 4.1 kΩ resonators
with different resonance frequencies. The observed dip in the internal quality
factor is shifting to a higher magnetic field as the resonator frequency is increased
as expected for the resonant condition gµBB = ℏω0 with g the Landé g-factor
of the magnetic impurities. From all resonators measurements, we extract g =
1.97± 0.29, which matches the g-factor of free electrons (g = 2).
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Figure 3.7 – Resonance of a 4.1 kΩ resonator in the single photon regime at finite
in-plane magnetic field. (a) Resonance characterized with −2T in-plane magnetic
field with Qi = 24969. The input power at the resonator is −140 dBm correspond-
ing to 0.25 photon on average. (b) Resonance characterized with −6T in-plane
magnetic field with Qi = 17590. The input power at the resonator is −140 dBm
corresponding to 0.22 photon on average.

Thus, even without complex microwave engineering to minimize vortices dy-
namics, narrowing down the central conductor width of a CPW design from 2 µm
to 200 nm already improves the magnetic resilience by several orders of magnitude
for both in-plane and out-of-plane magnetic field. In addition, we have verified
that the excellent behaviour under a magnetic field of B∥ = 6T with Qi > 104

is preserved in the single photon regime for the 4.1 kΩ resonators, see Fig. 3.7.
These results are very promising for the circuit QED experiments operating at
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finite magnetic fields.

3.2 Extra microwave challenges in the cQED geometry

The high quality factors high-impedance resonators are the first step towards
the hybrid Si QD-cavity system. However integrating the resonators on the Si
QD wafer will undeniably degrade the quality of the resonators as the substrate is
composed of several metallic layers buried under a SiO2 layer grown by PECVD,
which has a much higher surface roughness [5] and a larger loss tangent [109] than
the thermally grown SiO2. To incorporate the nanowire transistor in the circuitry,
extra bias lines have to be included on the chip as well as a DC tap in the resonator,
which may become a source of photon loss and degrade the quality factors. In this
section, we assess step by step the quality factors of the resonators in the circuit
QED architecture and try to mitigate the microwave losses.

3.2.1 Influence of the substrate

First of all, the substrate on which the resonators will be fabricated is much
more complex than the Si/SiO2 wafers used in Sec. 3.1. Fig. 3.8.(a) shows the
optical microscope image of a NbN resonator on a chip provided by LETI with
the transistors. The resonator follows the same design and fabrication steps as the
110Ω resonators of Sec. 3.1 with w = 50 µm and s = 2 µm. On the microscope
image, the transistors are too small to be seen but we can distinguish the dummy
structures which are everywhere accept the square bond pads regions, more details
about the transistors chip can be found in Sec. 2.1.

Fig. 3.8.(b) shows the internal quality factor of such a resonator with a res-
onance frequency of 4.5GHz as a function of the average photon number. The
geometry of this resonator is exactly the same than the one resonating at 4.3GHz
on the silicon wafer. So the resonance frequency does not shift considerably but it
surprisingly shifts towards higher frequencies. Indeed, we expect to the resonance
frequency to shift down due to additional capacitance brought by the metallic
compounds in the wafer.

In contrast with the data from Sec. 3.1, here the internal quality factor clearly
saturates at the single photon regime for Qi ≈ 1000. However even at high input
powers, the quality factor Qi never exceeds 8.103. Hence, the quality factors
decrease from 104 to 1000 either due to the several metallic layers in the wafer
interfering with the microwave behaviour of the resonator or due to the silicon
oxide layer grown by PCVD rather than a thermal growth. Indeed the microwave
dielectric loss is one order of magnitude higher for the deposited SiO2 than thermal
SiO2 [109, 93]. Nevertheless, Qi remains in the acceptable value range, with a
photon loss rate of κint/2π = 4.5MHz, to proceed with the cQED architecture.
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Figure 3.8 – Resonator characterization on a Si-MOS chip. (a) Colorized optical
microscope image of a 110Ω NbN CPW resonator fabricated on the CMOS wafer
with the transistors below. The geometry of the CPW is identical to the 110Ω
resonators presented in Sec. 3.1. (b) Internal quality factor of the resonator as a
function of the average number of photons. In the single photon regime, Qi ≈ 1000
and Qi < 8.103 at high powers while the same resonators on silicon wafers reach
Qi > 2.104.

Figure 3.9 – Hybrid Si QD-cavity system design in the cQED architecture with
three sets of resonator each connected to a quantum dot.
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3.2.2 Microwave leakage due to additional gate lines

When the resonators are connected to the quantum dots, many DC bias lines
come into play as each gate of the QD has to be voltage biased. A typical chip
design for the coupled system is shown in Fig. 3.9. The hanger geometry of the res-
onators enables the simultaneous fabrication of several hybrid circuit QED devices
per chip, thus usually three resonators are coupled to three different transistors.
The resonator is usually connected to one of the gate of the transistor and a DC
tap is placed at the middle of the resonator at the voltage node to bias the con-
cerned gate. Each of the DC lines are filtered by a lumped LC low-pass circuit that
we will describe in the next paragraph. At the early stages of the characterization,
we insert on the 1x1 cm2 chip different test structures such that four-probe DC
structure for the resistivity measurement of the NbN film or structures to test the
contact to the devices for instance.

On-chip LC filters

To minimize microwave leakages, we add an LC filter to each dc bias line. In
contrast to the resonator, the LC filter is made of a lumped element inductance
and capacitance. The design of the LC filters are very much inspired by the works
of [97] and [62]. The capacitance is made from a long interdigitated capacitor with
a capacitance to ground of 0.134 pF at 1.5GHz. The inductance is a thin nanowire
of 123 nH, which is 320 µm long and 500 nm wide. Fig. 3.10 shows the SEM image
of such a filter with its dimensions. Both components are patterned at the same
time than the superconducting resonator on the same NbN film.

20�m

500nm

��m

��m

Figure 3.10 – Colourized SEM image of a LC low-pass filter with a cut-off frequency
of 1.2GHz. The interdigitated capacitance is colourized in green and the nanowire
inductance is in blue.

The capacitance value has been calculated by Sonnet simulation. The cut-off
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frequency of this LC filter is then fcut−off = 1/2π
√
LC = 1.2GHz. The footprint

of each filter is 300x400 µm2, which is not negligible and it is difficult to place more
than five filters around the same transistor as shown in Fig. 3.9. To overcome the
size issue, in future designs we can consider a thin film capacitance on top of the
NbN layer as demonstrated in [62], which needs more fabrication developments.

Quarter-wave transformer

half-wave 
mode

quarter-wave 
mode

100�m

RFin

RFout

800nm

Figure 3.11 – Quarter-wave transformer at the resonator voltage node point in
addition of the LC filter.

In order to mitigate the microwave losses, we also add a quarter-wave trans-
former at the DC tap of the cavity before the interdigitated capacitance [27], see
Fig. 3.11, which forms a T-shape with the half-wavelength cavity. As the quarter-
wave mode is terminated, by the capacitor, in an open circuit ZL = ∞, then the
input impedance is given by [117]

Zin =
Z2
c

ZL
, (3.3)

with Zc the impedance of the coplanar waveguide, therefore Zin = 0. Hence, when
the microwave approaches the dc tap, at the voltage antinode, it will see a short
(λ/4 line) and a high-impedance line (λ/2 line) and will go to the latter one. The
quarter-wave transformer is then a second barrier to the microwave photons in
addition of the LC low pass filter.

Ground plane definition

The additional gate lines cut the ground planes around the resonators and
perturb their microwave behaviour, which can be prevented by add wirebonds
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Figure 3.12 – Microwave resonances dependence on the ground plane definition.
(a) A chip with few bonds connecting the ground plane around the resonators.
(b) The transmission response of the chip shown in (a) at 8mK with no apparent
resonance. (c) A twin chip of the one shown in (a) with more bonds around
the resonators. (d) The transmission response of the chip shown in (c) with two
resonances spotted in the red dotted region. The inset shows the transmission
response of the resonances.
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connecting the ground planes. Indeed, due to the large kinetic inductance of the
NbN film, the metallic planes near the resonators can behave as inductors if they
are not well connected to the ground. Asymmetries in microwave circuitries can
also lead to the excitation of parasitic slotline modes [116] which can be a source
of loss for the microwave photon. Fig. 3.12 shows the transmission spectrum of
two chip with the exact same design and fabrication of three resonators connected
to a transistor but with a different number of wirebonds around the ground plane.
In the case with a few wirebonds connecting the different ground planes, the
transmission spectrum shows zero resonance. With a larger number of wirebonds,
the resonances appear meaning that the photon loss has been reduced. To even
further improve the quality of the resonances, we can switch from wirebonds to
air-bridges [116, 2, 28], which would attenuate the slotline modes propagation two
orders of magnitude more effective than wirebonds [28]. However it would add
two more lithography steps, thus in this work we kept the wirebonding technique
for simplicity.

Using the wirebonding surgery, in the complete circuit QED geometry, the
quality factors of the resonators drop to a few hundreds with a photon loss rate of
κ/2 ∼ 10MHz. Even though a lot of photons have been lost from the bare CPW
resonators on silicon wafers with Qi ∼ 104 to the coupled resonator, the coupling
rate should still be higher than the photon rate so coherent interactions are still
possible.
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Takeaway messages:

• The characteristic impedance of a CPW resonator can be tuned by
changing the ratio of center conductor and gap widths.

• On silicon/silicon oxide substrate, the internal quality factors are above
104 in the single photon regime at zero magnetic field.

• Narrowing the central conductor width helps to increase the magnetic
resilience for both in-plane and out-of-plane magnetic fields.

• The high-impedance resonators feature Qi > 104 at finite in-plane mag-
netic field, in the single photon regime.

• The resonators quality factors are degraded by the substrate with the
transistors but remain above 103 in the single photon regime.

• The additional lines to voltage bias the quantum dots need to be low-pass
filtered to prevent from microwave leakage of the photons.

• Wirebonding surgery of the ground plane around the transmission lines
is primordial for clean microwave properties.

• In the single photon regime, from the bare CPW resonators to the cou-
pled resonators on the transistors wafer, Qi drops from 104 to a few
hundreds.
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N
ow that the preliminary study of superconducting resonators is done,
we can start the circuit QED experiment with a nanowire transistor
embedded in the NbN superconducting resonator. In what follows, the
measurements are carried out with a high-impedance superconducting

resonator galvanically connected to a 4-gate silicon nanowire transistor. The char-
acteristic impedance of the resonator is 2.5 kΩ given by w = 800 nm and s = 2 µm.
The dimensions of the transistor are summarized in Table 4.1. The two outer gates
(G1 and G4) of the transistor are shorted together in order to reduce the number
of lines on the chip and the resonator is connected to the gate G2. SEM images
of the hybrid device are shown in Fig. 4.1.

In this chapter, we first show the transport measurement of the transistor at
room temperature and at 8mK, and the resonator’s response when it is decoupled
from the transistor. Then we report the microwave cavity read-out of the quantum
dots formed in the nanowire channel. We conclude the chapter with the charge-
photon interaction of a single hole with a microwave photon.
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Table 4.1 – Device characteristics and dimensions
Contacts p-doping
Number of gates 4
Channel width 40 nm

Channel height 13 nm

Gate length 40 nm

Gate spacing 40 nm

Figure 4.1 – Hybrid device with four-gate nanowire transistor embedded in a high-
impedance NbN cavity. (a) False-colour SEM image of the high-impedance res-
onator (orange) with the DC fanout lines (green) with LC filters. The top left inset
gives the dimensions of the resonator. The bottom left inset shows the false-colour
SEM image of a four-gate nanowire transistor, the source and drain are in yellow
while the gates are in blue. The resonator is galvanically connected to the gate
electrode G2. (b) Artistic 3D representation of the four-gate nanowire transistor
with tungsten vias ensuring the electrical connection between the gate electrodes
and the cavity. The wavepacket in the via connected to G2 represents the link to
the microwave cavity, while a double quantum dot potential is formed below G1
and G2.
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4.1 Characterisation of the hybrid system

Before measuring the charge-photon interaction, we first perform the individual
characterisation of the transistor and the superconducting resonator. We briefly
report the hole transistor characteristics at room temperature and at 8mK. We
also characterise the photon loss of the cavity.

4.1.1 Nanowire transistor characterization

We start by the room temperature transport measurements of the transistor to
check that we have electrical contact to all the gates and a current passes through
the channel. The IV characteristics of the four-gate device is displayed in Fig. 4.2
with a bias voltage of VSD = 50mV and the gates, which are not swept, are set at
−2V to be fully open.
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Figure 4.2 – Transport measurement of all the gates at room temperature. The
bias voltage is set at 50mV and we sweep gate per gate while applying −2V to
the gates in series that are not swept. The gates G2 and G3 have exactly the same
IV characteristics while G1/G4 shows a slightly different one due to the fact that
two gates are swept simultaneously. The saturation of the current is due to the
resistance of the RC filters on the PCB.

From the IV curve of the transistor, we can extract a threshold voltage of
320mV for all the gates. This small spread of the threshold voltage indicates a
good sample uniformity. Then we measure a subthreshold slope of ≈ 150mV/dec.
The theoretical ideal subthreshold slope is ln(10)kBT/e = 60mV/dec at 300K
known as the thermionic limit [134] such that the transistor has a fast on/off
switch control on the current through the channel. Yet, we are not at the limit
of the perfect transistor, however all the gate electrodes are acting on the channel
and follow the same IV characteristics, so we can now cool it down to 7mK.

The sample is now at 8mK in the Bluefors dilution refrigerator with the mea-
surement set-up described in Sec. 2.4. We measure again the current through the
nanowire. At high bias voltage, VSD = 50mV, the IV characteristics of the gates
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Figure 4.3 – Transport measurement of the 4-gates transistor at 8mK. a) The
bias voltage is set at 50mV and we sweep gate per gate while applying −2V to
the gates that are not swept. b) The bias voltage is lowered to 1mV and the
Coulomb peaks appear. The gates G2 and G3 have a similar behaviour as at
room temperature while G1/G4 shows a different behaviour.

are similar to the one measured at 300K with a shift from −320mV to −720mV
in the threshold voltage. It gives an estimate of the voltage region corresponding
to the filling of the first hole below each gate. There are two jumps in current
for all the gates, which may come from the measurement apparatus. At low bias
voltage, VSD = 1mV, Coulomb peaks appear in the IV characteristics for the first
hole tunneling events. The IV behavior of G1/G4 differs from G2 and G3 probably
due to the fact that we sweep two gates simultaneously, and we hence probe two
QDs in series at the same time.

4.1.2 Superconducting resonator characterization

The superconducting transition of the NbN film is at ∼ 7K so we only char-
acterise the resonators at low temperatures, 8mK. We start with a broad band
transmission measurement from 4GHz to 8GHz as shown in Fig. 4.4 in the many
photons regime with Pin = −90 dBm. There are four resonances in the spectrum
at 4.8GHz, 5.4GHz, 5.9GHz and 7.7GHz. By design, there are three resonators
capacitively coupled to the transmission line, which are the three first resonances.
The resonance at 7.7GHz may be an undesired slot-mode on the chip or a har-
monic mode of the λ/4 resonator associated with the λ/2 resonator at 4.8GHz.
Unfortunately even if we probe three resonances, there is only one transistor that
is working at base temperature, which is associated with the 5.4GHz resonance.

We then lower the input power to Pin = −130 dBm in order to reach the single
photon limit and measure the transmission of the cavity of our interest, which is
displayed in Fig. 4.5. Here the gate voltages are set such that no charges move in
the DQD. From the resonance fit [51], we can extract the quality factors of the
cavity Qi = 529, Qc = 1550 and the resonance frequency fr = 5.428GHz. We
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Figure 4.4 – Transmission spectrum of the resonator from 4GHz to 8GHz probed
with Pin = −90 dBm. Four resonances are visible at 4.8GHz, 5.4GHz, 5.9GHz
and 7.7GHz.
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Figure 4.5 – Transmission spectrum of the resonator with less than one photon on
average. We extract fr = 5.428GHz, Qi = 529 and Qc = 1550.
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can then deduce the average number of photons in the cavity, using Eq. (3.2),
which is 0.1 photon on average. We could have applied a higher power to the
resonator for faster measurements, however 0.1 photon on average still works for
the experiment, and we only realize it during the writing of this manuscript. For
future experiments, the input power of the cavity can be increased such that the
signal to noise ratio can be increased.

The loaded quality factor of the cavity is given by

1

Q
=

1

Qi
+

1

Qc
, (4.1)

with Q = 394. We can then calculate the photon loss rates of the cavity

(κi/2π, κc/2π, κ/2π) = (10MHz, 4MHz, 14MHz).

The figures of merit of our cavity are similar to the previous work of circuit QED
with GaAs DQDs [132] but one order of magnitude larger than cavities used in the
previous reports of spin-photon coupling in Si [95, 124]. However, to achieve the
strong coupling regime, only one condition has to be fulfilled, namely g > κ, γ with
g (γ) the coupling (decoherence) for either the charge or spin degree of freedom
of the single hole. Thus, as long as the coupling rate is greater than 13MHz, the
strong coupling regime is within reach.

4.2 Charge-photon interaction

We have assessed the characteristics of the resonator and the transistor sepa-
rately in the previous section. Now we want to probe the charge tunnelling events
in the nanowire with the resonator and demonstrate that we can couple a sin-
gle hole with a single photonic mode. The measurements shown below are all
performed with the source and drain hard grounded on the matrix box.

4.2.1 Characterisation of a double quantum dot

The charge-photon coupling experiment is based on the electric-dipole interac-
tion between a single photon and a single hole delocalized in a DQD such that the
dipole moment is larger than the one of a single QD. In order to demonstrate the
charge-photon interaction, the cavity is driven with a microwave tone at a fixed
frequency f = fr and the transmitted signal is probed using the VNA as described
in Sec. 2.4.

The initial idea about this device is to create a DQD below the gates G2
and G3. Fig. 4.6 shows the cavity transmission amplitude as a function of the
plunger gate voltages G2 and G3, with the outer gates G1 and G4 at −1V. This
measurement is performed with an input power of Pin = −100 dBm which is not
in the single photon limit to avoid too long measurement times. Each time a hole
tunnelling event occurs, there is a shift of the resonance frequency of the cavity
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resulting in a increased transmission amplitude, which is featured in yellow on the
map. Such a map is called a stability diagram and is described in Sec. 1.3 with
the theoretical plots in Fig. 1.11.

As the gate voltages are decreased, the number of holes in the double quantum
dots is increased. The almost horizontal lines corresponds to a dot-lead transition
with a hole tunnelling from the reservoir to the dot below G2. On the other hand,
the vertical lines depict the dot-lead transition to the dot below G3. The 45 °
short lines are the interdot charge transitions with a hole moving in the double
quantum dot, and we only probed a few of them forming a very irregular pattern.
In addition, the resonator is hooked up to the gate electrode G2 and senses some
additional features, especially in the lower right quarter of the map, which are
very blurred and ill defined, these features are maybe due to some metallic dots
nearby. We are then not satisfied with this stability diagram.
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Figure 4.6 – Charge stability diagram as a function of Vg2 and Vg3 probed by the
microwave cavity with Vg1,g4 = −1V. The different regions delimited by the white
dashed lines are from distinct measurements. The red box highlights the interdot
charge transition under investigation in the following.

We then switch to the DQD below G1 and G2, hoping for a honeycomb like
stability diagram. Fig. 4.7 shows the transmitted signal as a function of voltages
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on G1G4 and G2 while Vg3 = 0mV. The background of the stability diagram is
more homogeneous and we observe a regular array of interdot charge transitions
in the few holes region. There are still lines on G2 which are not interacting with
anything, which are probably attributed to metallic dots in the device. Here we
observe very few dot-lead transition for two reasons: the dot below G2 is isolated
from its reservoir as Vg3 = 0mV and the cavity is less sensitive to the dot-lead
transition below G1 as it is connected to the gate G2.
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Figure 4.7 – Charge stability diagram as a function of Vg1 and Vg2 probed by the
microwave cavity. The different regions delimited by the white dashed lines are
from distinct measurements.

Even though the tunnelling event of the first hole is not probed or identified,
we can still work in the few holes region with an odd number of holes accumulated
in the DQD such that one hole oscillates between the two dots. The interdot
transition focused in the following in highlighted with a red box in Fig. 4.7 with
a with a low number of holes in the QD below G1 (∼ 4) and G2 (∼ 7). It is not
the first hole accumulated in the DQD, however this does not affect the dephasing
rates of the DQD [12] and it is not unusual to operate in the few charges regime.
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Figure 4.8 – Interdot charge transition with a single hole oscillating in the DQD.
The microwave signal is maximum when the hole is delocalized between the two
dots. ε defines the detuning axis along which the hole moves from the dot under
G2 to the dot under G1. At negative detuning, the hole is located below G2 and
at positive detuning, it is below G1.

4.2.2 Dispersive charge/photon strong coupling

Fig. 4.8 shows the zoom in on the odd number interdot charge transition iden-
tified in Fig. 4.7. The dark blue region corresponds to the bias voltages on G1 and
G2 such that a single hole moves from one dot to the other, leading to a resonance
shift of the cavity. We reduce the input power of the cavity to Pin = −130 dBm,
corresponding to 0.1 photons on average in the cavity, such that on average only
one photon interacts with the hole. We define the detuning axis such that zero
detuning between the two dots corresponds to the middle of the interdot charge
transition as shown in Fig. 4.8.

To quantify the charge-photon coupling strength, we probe the transmission
spectrum of the cavity as a function of the detuning energy of the DQD. We observe
a dispersive shift of the resonance frequency of the cavity at ε = 0 as shown in
Fig. 4.9.(a), which depends on the charge-photon coupling gc and the tunnelling
rate of the DQD tc. The down-shift of the resonance response is due to the electric-
dipole interaction with the DQD charge qubit with ℏωc =

√
ε2 + 4t2c > ℏωr as

illustrated in Fig. 4.9.(b).
As we do not know the tunnelling rate of our DQD and there is no gate

to tune it, we cannot achieve the resonance condition between the charge qubit
and the photon. To overcome this issue, we vary the base temperature of our
system. A single hole in a DQD is a charge qubit with a molecular bonding and
an antibonding states formed by the hybridization of the left and right states,
respectively under G1 and G2 as described in Sec. 1.3. The bonding state being
the ground state of the qubit, when the temperature increases, the antibonding
state gets thermally populated. The dispersive shift of the cavity is then reduced
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|S21|2 (dB)a. b.

Figure 4.9 – Charge-photon interaction. (a)Transmission through the feed-line as
a function of probe frequency and detuning ε. At large detuning the bare resonator
is probed, whereas near zero detuning the DQD charge qubit interacts dispersively
with the resonator leading to a frequency shift χc/2π. (b) Schematic energy dia-
gram of the charge qubit energy and the cavity energy as a function of the DQD
detuning for ωc > ωr. The coloured solid lines correspond to the non-interacting
case while the dashed lines sketch the dispersive repulsion experienced by the cav-
ity and the charge qubit in the presence of a finite charge-photon coupling.

and its variation as a function of temperature follows a Boltzmann distribution for
a two-level system. We can therefore extract the charge-photon coupling strength
and the tunnelling rate.

Indeed, from the Boltzmann distribution, the probability of the hole being in
the excited state is given by

pe =
exp(−2htc/kBT )

1 + exp(−2htc/kBT )
, (4.2)

and the probability of being in the ground state is

pg = 1− pe, (4.3)

with h the Planck constant and kB the Boltzmann constant.
Then the dispersive shift of the resonance frequency of the cavity as a function

of temperature and detuning can be written as

χ(T ) = g2cd
2
01

(
1

2tc − fr
+

1

2tc + fr

)
(pg − pe), (4.4)

with the bare resonance frequency fr = 5.428GHz and d201 = 2tc/
√

ε2 + 4t2c the
dipole moment associated with the transition from the ground to excited state.
Note that the counter rotating term g2c/(2tc + fr) is important as we approach
the strong-dispersive regime in this experiment. This term is known as the Bloch-
Siegert shift while g2c/(2tc − fr) is called the Lamb shift.
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Figure 4.10 – Temperature dependence of the resonance frequency dispersive shift.
Transmission as a function of probe frequency fp and ε for various temperatures.
At large |ε| the bare resonator is probed, whereas near ε = 0 the charge qubit
interacts dispersively with the resonator, which results in a frequency shift. This
shift reduces with increasing temperature due to the larger thermal occupation of
the excited state of the charge qubit.
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Fig. 4.10 shows the transmission amplitude of the cavity as a function of de-
tuning and probe frequency fp at zero magnetic field and at different tempera-
tures. From these measurements, we extract the dispersive shift χ at zero detun-
ing, the data are plotted in Fig. 4.11.(a). Fitting the temperature dependence of
χc/2π with Eq. (4.4) yields gc/2π = 513 ± 2MHz, tc/h = 9.57 ± 0.61GHz and
ωr/2π = 5.42835± 0.00006GHz. The model matches the data very well.
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Figure 4.11 – Charge-photon coupling strength and lever arm. (a)Temperature
dependence of the resonance frequency dispersive shift. The dispersive shift at
ε = 0 follows a Boltzmann distribution from which we extract gc = 513 ± 2MHz
and tc = 9.57 ± 0.61GHz (orange curve). The red and green curves highlight
the behaviour difference of the dispersive shift for a 200MHz change in tc. (b)
Resonance frequency at base temperature as a function of the detuning. Knowing
gc and tc from (a), we can extract the lever arm α.

From the detuning dependence of the resonance frequency we can extract the
lever-arm, α, of our device, which is the parameter relating the detuning to the
energy difference between the electrochemical potentials of the two dots. To do
so, we fit the resonance shift of the cavity as a function of the detuning as follows

χ(ε) = g2eff

(
1

fq(ε)− fr
+

1

fq(ε) + fr

)
, (4.5)

with

fq =

√
(2tc)2 +

(
α(ε− V0)

e

h

)2
, (4.6)

the charge qubit energy with V0 the offset in gate voltage and

geff = gc
2tc
fq

, (4.7)

the effective charge-photon coupling from the Jaynes-Cummings Hamiltonian with
geff = gc at zero detuning.

Fig. 4.11.(b) shows the resonance frequency of the cavity as a function of de-
tuning at 7mK with the fit from Eq. (4.5) to extract the alpha factor by fixing tc =
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9.6GHz and gc = 513MHz. We obtain a lever-arm of α = 0.607 ± 0.004 eVV−1,
which is consistent with previous measurement on similar Si transistors [3, 37].
Such a high value of α results from the tight electrostatic control by the Ω-shaped
gates [11] and the thin gate oxide (5 nm). Here α is the detuning lever-arm which
takes into account the action of G1 and G2 defined as α = (1/e)∂ε/∂εV where
εv = β1Vg1 + β2Vg2 with β1 = 0.68 and β2 = 0.73 is the detuning axis in gate
voltages as drawn in Fig. 4.8. However for the charge-photon coupling, the lever
arm involved is the one from G2 on the detuning, then αg2 = β2α = 0.438 eVV−1.

We can give an alternative estimate of gc from the lever arm and zero point
voltage fluctuation VZPF of the resonator. From the design of the bare resonator,
we evaluate its impedance Zc ≈ 2.5 kΩ, which results in VZPF = ωr

√
ℏZr/π ≈

10 µV, and in gc/2π = αg2eVzpf/(2h) ≈ 540MHz. This rough estimate agrees
pretty well with the measured value gc/2π = 513MHz.

As a comparison with previous charge-photon coupling rates in semiconductor
QD devices, our coupling is one or two order of magnitudes higher than electrons in
silicon (gc/2π = 23MHz) [96], GaAs (gc/2π = 119MHz) [132] or carbon nanotube
(gc/2π = 3.3MHz) [146] based DQDs. This can be explained by two reasons.
First, the voltage fluctuation of our cavity is increased due to its high characteristic
impedance. Indeed, by increasing the impedance of the cavity from 50Ω to 2.5 kΩ,
we improve the coupling by ∼ 6. Second, the lever arm of the nanowire transistor
α = 0.6 is higher than SiGe heterostructure devices (typically α = 0.12 [101]) or
any other planar QDs.

In addition, if we compare the coupling strength gc with the bare resonance
frequency of the cavity fr = 5.428GHz of our hybrid system,

gc/2π

fr
≈ 10%, (4.8)

which means that we are at the limit of the ultra-strong coupling between light
and matter [48]. It is comparable with the recent demonstration of ultra-strong
coupling for electrons hosted in GaAs QDs, where the coupling strength reaches
gc/2π ≈ 630MHz [126]. Finally, as gs ∝ gc, this strong charge-photon coupling
promises a strong spin-photon coupling, which we demonstrate in the next chapter.
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Takeaway messages:

• The hybrid circuit QED experiment is performed with a four-gate
nanowire transistor connected to a 2.5 kΩ microwave cavity.

• The resonance frequency of the cavity is fr = 5.428GHz.

• The photon losses of the cavity in the single photons regime are
(κi/2π, κc/2π, κ/2π) = (10MHz, 4MHz, 14MHz).

• The combined detuning lever-arm of G1 and G2 is α = 0.607 ±
0.004 eVV−1 and the detuning lever-arm of G2 is αg2 = 0.438 eVV−1.

• Ultra-strong charge-photon coupling with gc/2π = 513± 2MHz.

• The tunnel coupling of the charge qubit is tc/h = 9.57± 0.61GHz.
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W
e have successfully hybridized the charge dipole with a single pho-
ton in the cavity, we can turn on the magnetic field to lift the spin
degeneracy and proceed with the spin-photon interaction. Thanks
to the spin-orbit interaction in the valence band of silicon, the spin

hybridizes with the motion of the hole, combined with the charge-photon coupling,
the spin-photon coupling is expected. In order to preserve the quality factors of
the cavity, we only apply an in-plane magnetic field.

In this chapter, we first demonstrate the strong spin-photon coupling. Then
we study the anisotropic Zeeman response of the hole at different magnetic field
orientation. We also map the spin-photon coupling strength gs as a function
of magnetic field orientation and model its modulation with an interplay of the
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anisotropic Zeeman response and the spin-orbit coupling. We also report a siz-
able spin-photon interaction when the hole is fully confined in a single quantum
dot despite the reduction of its dipole moment. Finally we characterise the spin
decoherence of the hybrid system.

5.1 Strong single spin-photon coupling

In what follows, the detuning of the DQD is set at ε = 0mV, where the electric
dipole of the DQD is maximized. We apply an in-plane magnetic field B which
controls the Zeeman energy between the spin states given by EZ = µB|gB|. The
magnetic field orientation is given by the angle ϕ such that ϕ = 0 ° corresponds
to an external magnetic field aligned with the axis of the nanowire. We probe
in transmission the fingerprint of strong spin-photon coupling. A reminder of the
device schematic is shown in Fig. 5.1 as well as the transmission as a response of
the charge-photon interaction.

�c /2�

a. b.

Figure 5.1 – (a) Schematic 3-dimensional cross section through the nanowire tran-
sistor with a DQD located under the gates G1 and G2. The effect of SOC is
illustrated by a hole spin flipping during its tunneling between the two dots in the
presence of a spin-orbit field Bso (Blue arrow). The orange wave-packet on the
via connecting G2 pictures the incoming photon from the microwave cavity. The
external magnetic field B is applied in-plane with an angle ϕ to the nanowire axis.
(b) Transmission amplitude of the feed-line as a function of the probe frequency
fp and detuning between the two dots ε. The DQD charge qubit interacts disper-
sively with the resonator leading to a frequency shift χc/2π near ε = 0.

Due to the spin-orbit interaction present in the valence band of silicon, the spin-
photon hybridization can be naturally achieved in two steps. First, the electric
dipole produced by the single hole trapped in the DQD, around ε ∼ 0, is hybridized
with the single photon thanks to the electric-dipole interaction. Second, the spin-
orbit interaction hybridizes the charge and spin degrees of freedom. If the spin
coherently interacts with the microwave photon, then at the resonant magnetic
field Bres, with ĝµBBres = hfr, an avoided crossing should be detected, signature
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of the vacuum Rabi mode splitting described in Sec. 1.4. ĝ is the average g-factors
between the left and right dot.
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Figure 5.2 – The cavity transmission spectrum as a function of an in-plane mag-
netic fields for ϕ = 90 °. There is a clear avoided crossing at 203mT. There are
also other states interacting with the cavity around 20mT, 160mT and 230mT
which are not coherent interactions.

Fig. 5.2 shows the transmission spectrum of the feedline as a function of an
in-plane magnetic field perpendicular to the nanowire axis (ϕ = 90 °). We ob-
serve a very clear avoided crossing at 203mT. To further investigate the spin-
photon coupling we zoom in the resonance region, see Fig. 5.3 for the normalized
transmission spectrum as function of magnetic field around Bres = 203mT. The
normalization is done by subtracting the transmission spectrum out of the cavity
resonance. The two vacuum Rabi normal modes are separated by the vacuum
Rabi frequency 2gs/2π = 58MHz, giving an effective spin-photon coupling rate
of gs/2π = 29MHz. The half width at half maximum (HWHM) of the Rabi

peaks corresponds to the combined spin and photon linewidths
1

2
(γs + κ/2) =

2π × 6.8MHz. The vacuum Rabi mode splitting exceeds the combined linewidths
by a factor four at this magnetic field angle.
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Figure 5.3 – Normalized transmission spectrum of the cavity as a function of in-
plane magnetic field and the vacuum Rabi splitting at the position indicated by the
arrows. The vacuum Rabi mode splitting exceeds the combined spin and photon
linewidths by a factor four. The black dashed line is a fit with a superposition of
two Lorentzian functions.
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5.2 Anisotropic Zeeman response of the hole spin

Until now we have demonstrated the spin-photon strong coupling for a specific
magnetic field orientation (ϕ = 90 °), however from previous hole spin qubits
manipulations, we know that it has an anisotropic response with respect to the
magnetic field orientation [38, 114]. Here we probe the spin-photon interaction
with an in-plane magnetic field angle from 0 ° to 180 ° with magnetic spectroscopy.
From these measurements, we give an estimate of the g-factors of the dot below
G1 and G2 as a function of magnetic field angle ϕ.

5.2.1 Detuning-magnetic field maps

As a way to characterise the coupled hole-cavity system, it is very useful to
map the resonator response as a function of ε and B [14] for different magnetic
field angles ϕ. This magnetic spectroscopy measurement is performed with a
microwave probe at fp. For each magnetic field angle, at a given detuning value,
fp = fr − χc(ε)/2π which corresponds to the resonance frequency of the cavity
adjusted with the charge qubit interaction (see Fig. 5.1.(b)). If the cavity does not
interact then the transmitted amplitude corresponds to the dip of the resonance.
If the photon interacts with the single spin or some systems in the environment
then the resonance frequency shifts or splits for a coherent interaction and the
probed transmitted signal increases.

Fig. 5.4 summarizes a selection of detuning vs magnetic fields maps probed
with a microwave tone at fp from 0 ° to 180 ° with respect to the Si nanowire axis.
From these maps we can obtain different information as follows

• ϕ = 90 °: Around zero detuning the hole spin interacts with the photon
between 200mT and 220mT as highlighted by the increased transmission
signal, this is consistent with Fig. 5.3. When the detuning increases, the
resonant magnetic field shifts to smaller values as the hole moves towards dot
G1 or G2. The spin-photon interaction is asymmetric for positive or negative
detuning due to the different g-factors in each dot. At large detuning, there
is no interaction between the spin and the photon any more as the hole is
located in a single quantum dot or at least not visible with the resolution
of this map. For positive detuning, the interaction feature is doubled which
may be due to the spins 1/2 of the environment which interact with the
cavity (fr = 5.43GHz) or the hole spin around 193mT.

• ϕ = 0 °: Around zero detuning the hole spin interacts with the photon start-
ing with an magnetic field of 400mT and the interaction is never switched
off until 800mT. This predicts a very strong spin-photon interaction.

• ϕ = 11 °: Around zero detuning the hole spin does not strongly interact
with the microwave photon until 800mT, the resonance condition between
th spin and the photon probably occurs at higher magnetic fields. We only
probe the interaction for |ε| > 100 µV.
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Figure 5.4 – Cavity transmission as a function of B and ε for different magnetic
field angles. For a given detuning, the transmission response is probed at fr −
χc(ε)/2π, which takes into account the dispersive shift of the resonance frequency
due to the charge qubit.
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• ϕ = 123 °: The hole spin interacts with the photon at zero detuning from
200mT to 230mT and the increased transmitted amplitude follows a V-
shape as a function of detuning. However the photon also interacts with
other systems as highlighted by the vertical lines at 185mT and 215mT
which origin is unclear.

These detuning-magnetic field maps highlight the strong anisotropy of the hole
spin in magnetic fields. At zero detuning, the spin-photon interaction occurs from
200mT to above 800mT and the interaction range in magnetic field is also mag-
netic field angle dependent. Thanks to these maps, we can estimate the magnetic
field strength at which the vacuum Rabi splitting can be probed for each angle as
shown in Sec. 5.3.

5.2.2 In-plane g-factors of the dots
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Figure 5.5 – Measurement of the g-factor for the left and right dot using the
detuning-magnetic field map for ϕ = 67 °.

From detuning-magnetic field maps presented Fig. 5.4, we can map the effective
in-plane g-factor for the dots below G1 and G2 and quantify the anisotropy of the
hole in magnetic fields. The detuning axis is defined, see Fig. 4.8, such that
a positive detuning corresponds to the hole located below G1 while a negative
number corresponds to a hole located below G2. For all magnetic field angles, we
extract the resonance field condition at ε = ±200 µV, as ε > tc we can suppose
that the hole is localized either below G1 or G2. The value of the large detuning
is chosen such that we can read the resonance condition for all magnetic field
orientations as shown in Fig. 5.5. We then estimate the g-factor of each dot using
the resonant magnetic field condition ĝµBB = hfr with fr = 5.43GHz.

Fig. 5.6 shows the g-factors of the dots below G1 and G2 as a function of the in-
plane magnetic field angle ϕ. We pinpoint that the two dots are relatively similar
in terms of in-plane g-tensors. We observe an anisotropy of the Zeeman splitting
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Figure 5.6 – g-factors of the dots below G1 (blue) and G2 (orange) as a function of
the in-plane magnetic field angle ϕ extracted at ε = ±200 µV from the resonance
condition with the resonator.

with the g-factor ranging from 0.7 at ϕ = 25 ° to 2.2 at ϕ = 110 °. The hole g-
tensor anisotropy can be explained by the heavy-hole and light-hole mixing as the
g-tensor translates the relative weight of the heavy-hole and light-hole components
in the wave function [7, 114].

To preserve the quality factors of the resonator, we only apply in-plane mag-
netic fields. For a complete characterization of the g-tensor, readers may refer to
[114] where the experiment is carried out with the first hole accumulated under
the gate with a similar 4-gate transistor. In addition, we do not work in the single
hole regime, even though our in-plane g-factors are consistent with the figures of
the first hole in an 1D geometry.

5.3 Modulation of the spin-photon coupling strength

Due to the strong anisotropy of the hole spin in magnetic fields, we also expect
a strong dependence of the spin-photon coupling on the magnetic field orientation,
which is investigated in detail in this section. We have also measured a modulation
of gs of two orders of magnitude in detuning and probe a spin-photon coupling
when the hole is localized in a single QD.

5.3.1 Magnetic field angular dependence of gs

We now want to measure the vacuum Rabi mode splitting for all the magnetic
field angles using the detuning-magnetic field maps. Indeed, from these maps
we can estimate the resonant magnetic field and a spin sweet spot where the
coupled hole-cavity systems is least sensitive to detuning noise. We then select
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in these maps the detuning energy ε(ϕ) at which the spin transition frequency
ωs/2π satisfies the sweet spot condition ∂ωs/∂ε = 0 at resonance as indicated by
the horizontal white dashed line in Fig. 5.7 for ϕ = 101 °. In the following, all
measurements of the spin-photon coupling have been performed close these sweet
spots.
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Figure 5.7 – Spin sweet spot for the spin-photon coupling at ϕ = 101 °.

From the detuning-magnetic field maps shown in Fig. 5.4 we can estimate the
resonance condition given by ĝµBBres = hfr close to the spin sweet spot. We then
measure the transmission through the feed line as a function of magnetic field for
all angles to map the vacuum Rabi splitting and extract the spin-photon coupling
strength, see Fig. 5.8. We observe a very clear avoided crossing for ϕ from 33 ° to
180 °. For ϕ = 3 ° and ϕ = 28 °, the vacuum Rabi splitting pattern is not complete
due to the limit of the magnetic field in our set-up which is 1T.

From these measurements, we then fit the dressed states energies using Eq. (1.46)
and Eq. (1.47) to extract the spin-photon coupling strength gs. We plot in
Fig. 5.9.(a) the vacuum Rabi mode splittings for all measured angles. A large
modulation of gs/2π from 10MHz to 290MHz is observed when rotating the mag-
netic field by 180 ° in-plane, see Fig. 5.9.(b). At the same time, Bres is also greatly
modulated due to an interplay of the g-factor anisotropy and spin-orbit interaction
strength, see Fig. 5.9.(c). A higher coupling strength can be achieved between 0 °
to 33 ° but with a resonant condition higher than 1T which is the limit of our
in-plane magnetic field. The theoretical fit of gs and Bres is discussed later in
Sec. 5.3.2.

A clear vacuum Rabi mode splitting and hence a strong spin-photon coupling
has been observed for all field orientations. The quality of the strong coupling is
generally characterised by the ratio between the coupling strength and the deco-
herence rate 2gs/(γs + κ/2), see Fig. 5.10. It gives the number of vacuum Rabi
oscillations that are possible before the combined system decoheres and reaches
27 for ϕ = 0 °. For the same magnetic field orientation, we also achieve a coop-
erativity, C = 4g2s /(γsκ) [33], of 1600 demonstrating a very strong light-matter
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Figure 5.8 – Cavity transmission as a function of B and fp for different magnetic
field angles showing vacuum Rabi splittings.
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a. b.

c.

Figure 5.9 – Magnetic field angular dependence of the spin-photon interaction. (a)
Normalized transmission curves as a function of fp for various ϕ, all showing clear
vacuum Rabi mode splittings from 20MHz to 660MHz. The curves are shifted
from each others for reading clarity. The black dashed lines corresponds to a fit
with a superposition of two Lorentzian functions. (b) Spin-photon coupling as
a function of magnetic field angles with the theory fit. The grey shaded region
in (b) and (c) corresponds the magnetic field orientation where the spin-photon
resonance is achieved for magnetic fields larger than 1T, which are inaccessible in
our experiment. (c) Resonance field as a function of magnetic field angles with
the theory fit.
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Figure 5.10 – Spin-photon interface quantified with the ratio between the coupling
strength and the decoherente rate of the hybrid state.
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interaction. We can stress that the relatively large cavity decay rate κ/2π =
14MHz is the main factor that leads to small values of 2gs/(γs + κ/2) and C,
especially around 70 °, where gs and γs are minimal. The theory fit is given by a
noise estimation on the spin decoherence which is detailed in Sec. 5.4.2.

5.3.2 Spin-photon coupling model

To pinpoint the exact nature of the spin-photon coupling, we model our system
as a single hole spin in a DQD as described in Sec. 1.4 and derive an analytical
calculation of the spin-photon coupling gs.

For a given magnetic field orientation ϕ, we introduce the average Zeeman
energy of the two dots, ĒZ = 1

2(g
∗
L + g∗R)µBB, and the Zeeman energy difference,

∆EZ = (g∗L − g∗R)µBB. We assume ∆EZ ≪ ĒZ. We can then rewrite the total
Hamiltonian of the hybrid system in the eigenbasis at tsf = 0 as

H =



−1

2

(
E0 + ĒZ

)
0 0 −tsf

0
1

2

(
E0 − ĒZ

)
tsf 0

0 tsf −1

2

(
E0 − ĒZ

)
0

−tsf 0 0
1

2

(
E0 + ĒZ

)


, (5.1)

where E0 =
√
ε2 + 4t2sc is the spin-conserving band gap. H can be diagonalised

with the resulting eigenenergies{
−E+

2
,−E−

2
,
E−
2

,
E+

2

}
, (5.2)

with E+ =
√

(E0 + ĒZ)2 + 4t2sf , and E− = sign(E0 − ĒZ)
√

(E0 − ĒZ)2 + 4t2sf .
Depending on the sign of E0 − ĒZ, the lowest-lying excitation is either the

first one with energy −E−/2, or the second one with energy +E−/2. Hence the
spin-photon coupling can be written as

gs = gc
∣∣θ(E0 − ĒZ)d01 + θ(ĒZ − E0)d02

∣∣ ,
= gc |cosφ0|

∣∣∣∣θ(E0 − ĒZ) sin

(
φ+ − φ−

2

)
+ θ(ĒZ − E0) cos

(
φ+ − φ−

2

)∣∣∣∣ ,
(5.3)

where θ(x) is the Heavyside step function and d01 and d02 ar the dipolar matrix
elements between the ground state and the two first excited states which are de-
pendent of the left/right spin-charge mixing angle φ0 such that E0 cosφ0 = 2tsc
and E0 sinφ0 = ε. φ− and φ+ are defined such as E+ cosφ+ = E0 + ĒZ,
E+ sinφ+ = 2tsf , E− cosφ− = E0 − ĒZ, and E− sinφ− = 2tsf , which are con-
venient parameters for the calculation.
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Eq. (5.3) reproduces very well the results of Fig. 5.9.(b). Note that this ex-
pression neglects the Zeeman energy differences in the magnetic Hamiltonian of
the two QDs but it still takes into account the effect of the g-matrix differences
on tsf , which is relevant for our experiment as the principal g-factors of the dots
are close to each other, see Fig. 5.6.

We can derive a simpler expression of gs at zero detuning when ĒZ < 2tsc and
ĒZ ≪ 2tc. In this case, the spin-charge hybridization is relatively small and we
can introduce an effective spin-orbit field, Bso such that µBBso = tc sin ηnso where
2η = 2d/ℓso with d the interdot distance and the spin-orbit length ℓ introduced in
Sec. 1.4.2. Eq. (5.3) can then read as

gs = gc
µ2
B

2t2c
|(gB)× (gBso)| = gc

µ2
B

2t2c
|cof(g)(B×Bso)| , (5.4)

where cof(g) = det(gt)g−1 is the cofactor matrix of g. Here the g-matrix are taken
as equal in the left and right dot, which is verified at a given magnetic field angle
(gL(ϕ) = gR(ϕ) whatever ϕ). The spin-photon coupling is therefore zero when B
is parallel to Bso. Also note that gs ∝ B, as expected for a spin-like transition.

By experiment, we can access to the principal g-factors of the two dots and tc,
therefore the only unknown is Bso which consists of three fit parameters. With
this model, we are able to predict not only gs accurately, but also the resonance
field precisely, see Fig. 5.9.(b) and (c). gs is minimal around ϕ = 70 ° suggesting
that Bso is about 20 ° off the y-axis. Moreover, Bso must have a small out-of-plane
component as gs never vanishes for in-plane magnetic fields.

We can also derive the energy spectra of the spin states as a function of DQD
detuning for a given magnetic field orientation, as shown in Fig. 5.11. For ϕ ∼ 70 °,
the spin-charge mixing induced by the SOC is minimal whereas it is much stronger
around ϕ ∼ 0 °, in agreement with the evolution of gs.

5.3.3 Single quantum dot regime

For quantum state transfer protocols, it is important to turn qubit-cavity cou-
pling on for quantum state transfer, and off for qubit state preparation. In the
previous reports electrons spins in Si entangled with a photon, it is achieved by
electrically tuning tc and ε [95, 124]. In the following, we also explore the voltage
tuneability of gs at ϕ = 11.25 °. To do so, we use once again the detuning-magnetic
field maps shown in Fig. 5.4 and follow the resonance condition for different DQD
detunings.

Surprisingly, at very large detuning, ε/h > 100GHz, two dips are still visible
in the transmission signal through the cavity as a function of B, see Fig. 5.12.(a).
Their separation reveals a spin-photon coupling gs/2π ∼ 1MHz. In this case
γs < gs < κ, so that a clear vacuum Rabi mode splitting cannot be resolved (bad
cavity limit [102]). To further support the existence of a single QD spin-photon
interaction, we measure gs as a function of detuning, see Fig. 5.12.(b). We find
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Figure 5.11 – Energy diagrams of the four spin states for different magnetic field
angles. The black dashed lines depict the spin states in the absence of SOC,
where the spin-splitting energies are independent of the DQD detuning. The SOC
primarily couples the |−, ↑⟩ and |+, ↓⟩ states. This leads to spin-charge mixing
with spin-splitting energies dependent on the DQD detuning. Notice that the
SOC-induced mixing is much weaker for ϕ = 79 ° than for ϕ = 3 °, which explains
the different magnitude of the spin-photon couplings gs observed in Fig. 5.9. Even
at very large mixing at ϕ = 3 °, the probed spin transition is a well defined two
level system where the third level is separated from it by a few tens of GHz.
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Figure 5.12 – Spin-photon interaction in the single quantum dot limit for ϕ =
11.25 °. (a) Normalized transmission as a function of fp and B at ε = 0.5meV =
−116GHz with a line cut in frequency (indicated by arrows) on the right. The spin
transition is clearly visible and a double-dip structures at resonance of ∼ 2MHz
is observed. (b) gs as a function of ε. The large spin-photon coupling around
ε ∼ 0 is very well captured by the DQD flopping mode whereas it underestimates
gs by more than one order of magnitude at large ε, where the hole is confined
in a single dot (SQD) below either G1 (ε > 0) or G2 (ε < 0). By adding an ε
independent single dot coupling strength to gs in the numerical model, we can
very well reproduce the experimental data.

99



5

Chapter 5. Strong hole spin-photon coupling

that gs is modulated by more than two orders of magnitude when increasing |ε|,
but tends to saturate once the hole is fully localized in the right dot.

In the single dot regime, the electric-dipole interaction is greatly reduced as
the detuning dependence of the charge-photon coupling is geffc = 2gctc/

√
4t2c + ε2.

To characterize the value of this single dot coupling, we fit gs as a function of
detuning with

gs(ε) = g(DD)
s (ε) + pL(ε)g

(L)
s + pR(ε)g

(R)
s , (5.5)

where pL,R are the ground state probabilities of being in left or right dot, g(DD)
s

is the spin-photon coupling from the flopping mode DQD model, and g
(L,R)
s are

the asymptotic spin-photon couplings in the left and right dots. By taking into
account the single dot coupling strength, we accurately reproduce the experimental
values shown in Fig. 5.12.(b) with g

(R)
s /2π = 1.16MHz, and g

(L)
s /2π = 0.66MHz.

This is the first report of a single dot spin-photon interaction with MHz coupling
strengths as predicted by recent theoretical studies of circuit QED in a minimal
architecture [98, 21].

5.4 Spin decoherence

Due to the very large spin-charge mixing induced by the SOC, the spin decoher-
ence time may be reduced by the charge noise. In this section, we therefore assess
the spin decoherence rates by two-tone spectroscopy and by a noise estimation
model.

5.4.1 Two-tone spectroscopy

After the quantification of the spin-photon coupling, we are also interested
in the spin decoherence γs. From the Rabi normal mode fitting, we extract the
FWHM which corresponds to 2(γs + κ/2), and as we know that κ/2π = 14MHz
we can deduce the spin linewidth. However, for angles where the combined width
is fully dominated by κ, γs cannot be extracted like this. Therefore, two-tone
spectroscopy can be used to extract the linewidth of the spin transition.

To do so, we apply a second microwave tone in addition of the probe tone.
The power applied on both sources has to be low enough that the spin transition
is not power broaden. Fig. 5.13 shows the two-tone spectroscopy of the spin state
at ϕ = 101.25 ° as a function of the spectroscopy power and frequency fs. The
fixed tone is applied by the VNA with an output power of −40 dBm. We probe
the spin state above the resonance in a region where the detuning ∆2tone = fr−fq
is of the order of 10gs/2π. For ϕ = 101.25 °, gs/2π = 50MHz, so we are in this far
detuned region with fq = 5.87GHz. As a function of spectroscopy power, the spin
transition narrows down until −40 dBm and then the signal vanishes, probably due
to the very low signal-to-noise ratio. From the Lorentzian fit of the transmission
phase at −40 dBm, we extract the spin decoherence γs = 4MHz. We repeat the
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Figure 5.13 – Two tone spectroscopy of the spin transition as a function of applied
spectroscopy power for ϕ = 101.25 °. The phase response of the transmission is
probed by at fp = 5.401GHz. When the spectroscopy frequency is in resonance
with the spin qubit, the occupation of the qubit state changes due to the spin-
photon interaction, which leads to an modified cavity response. The line cut of
the spin transition in the region indicated by the arrows gives a spin decoherence
rate of gs/2π = 4MHz.
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same procedure for other angles from 33 ° to 101 ° where the photon loss dominates
the combined linewidth.
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Figure 5.14 – Angular dependence of the spin and photon decoherences.

Fig. 5.14 shows κ and γs as a function of ϕ from 0 ° to 180 °. κ is extracted
when the spin qubit is largely detuned from the resonator such that the resonance is
only dispersively shifted. γs is extracted from the avoided crossing (blue crosses)
or two-tone spectroscopy (orange crosses). There is a good agreement between
both techniques for the spin decoherence and the lifetime of the hybrid system is
limited by the photon decay at all magnetic field orientations.

5.4.2 Noise estimation

We also extract the spin decoherence by fitting the decoherence evolution de-
pending on the magnetic field orientation, shown in Fig. 5.10. We assume that
γs = γ0 + γε with γε the decoherence rate originating from fluctuations on the
detuning energy due to charge noise and γ0 accounts for any other decoherence
mechanism. γε can be written as [119, 77]

γε
2π

=
1

4π2h

√
1

2

(
∂ωs

∂ε

)2

σ2
ε +

1

4

(
∂2ωs

∂ε2

)2

σ4
ε . (5.6)

As we work at the detuning sweet spot ∂ωs/∂ϵ = 0, Eq. (5.6) becomes

γε
2π

=
1

8π2h

∣∣∣∣∂2ωs

∂ε2

∣∣∣∣σ2
ε . (5.7)

Only γ0 and σε in the spin decoherence rate are unknown, and we extract them
from fitting Fig. 5.10, with ∂2ωs/∂ϵ

2 calculated by single hole spin total Hamilto-
nian. We assume that γ0 is independent on ϕ, and κ/2 ≈ 2π× 9MHz taken as an
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average (see Fig. 5.14). We obtain that way σε = 6.4µeV and γ0/2π = 3.4MHz.
We note that γ0 agrees qualitatively with the data of Fig. 5.14.

Finally, we can use this fit to estimate the dephasing rate of the charge qubit at
the sweet spot ε = 0. Assuming γ0 only applies to the spin degree of freedom and
that detuning noise is again the main decoherence mechanism, we find γc/2π =
σ2
ε(∂

2ωc/∂ε
2)/(8π2h) = 8.2 MHz for 2tc/h = 19.2GHz. Note that ∂2ωc/∂ε

2 ∝
1/tc, so that a large tunneling gap reduces dephasing. This leads to low dephasing
with respect to previous charge-photon coupling experiments [132, 77], comparable
to noise-mitigated charge qubits [126].

To conclude this chapter, our spin-photon coupling strength can be as large
as 330MHz and it clearly outperforms previous reports with electron spins in
silicon with gs ranging from 10MHz to 40MHz [95, 124, 20, 61]. Furthermore,
the strong SOC enhanced by the 1D geometry [73, 98, 21], enables unprecedented
spin-charge mixing, characterised a ratio gs/gc up to 60%, while keeping a spin
decoherence rate lower than 20MHz. As the spin coherence is mostly limited
by spin-charge mixing at strong spin-photon interaction, it is of great interest
to reduce the charge qubit dephasing rate γc. Therefore, to improve even more
this spin-photon interface, future works should explore strategies to maximize the
ratio gc/γc as already demonstrated for GaAs/AlGaAs DQDs [126] and reduce the
photon loss rate to reach κ ≲ 1MHz as demonstrated in [97, 62].
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Takeaway messages:

• The vacuum Rabi mode splitting can be tuned from 20MHz to 660MHz
with the in-plane magnetic field orientation.

• Both dots show similar g-matrix anisotropies, with EZ ≃ 1.3µBB when
B is along x-axis, and EZ ≃ 2µBB when B is along y-axis.

• The spin-photon coupling is mediated by a interplay of SOC and the g-
tensor modulation in the valence band of silicon leading to gs ∝ gc|(gB)×
gBso)| with g the average g-matrix of the two dots.

• The spin-photon coupling can be electrically tuned from the DQD to the
single QD regime with a modulation of gs by two orders of magnitude.

• The spin-charge mixing reaches up to 60%.

• The spin decoherence rates do not exceed 20MHz even for a very strong
spin-charge mixing.

• The spin-photon interface is mostly limited by the photon decay rate
κ/2π = 14MHz.
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C
ircuit QED has proven to be a very powerful tool for superconducting
qubits [17]. In this work, we have extended the circuit QED to a
novel hybrid platform using hole spins localised in a Si-MOS device
coupled to microwave photons in a superconducting resonator.

In Chap. 3, we explore the ability of NbN superconducting resonators to oper-
ate in the single photon regime in a finite magnetic field. The superconducting res-
onators are made from thin films of NbN (thickness of 10 nm) with a high kinetic
inductance of 192 pH/□ such that we can design high-impedance resonators to
maximize the voltage fluctuations, hence the charge-photon coupling. We demon-
strate photon loss rates below 1MHz in the single photon regime and at finite
magnetic fields for resonators up to 4.1 kΩ on a silicon wafer with a thermal grown
oxide layer. We then integrate the resonators with the Si-MOS devices, which in-
creases the photon loss of the resonator to a few MHz, and present our strategies
to mitigate the microwave losses.

Chap. 4 presents the charge-photon coupling of a single hole in a double quan-
tum dot with a microwave photon. We achieve a coupling strength of 513MHz,
bordering the ultra strong coupling regime, enabled by the large voltage fluctua-
tion of a 2.5 kΩ resonator accompanied by a large gate lever arm offered by the
MOS nanowire devices.

In Chap. 5 we finally harness the spin-photon coupling mediated by the intrin-
sic SOC present in the valence band of silicon. The ultra strong charge-photon
coupling and the strong SOC results in a spin-photon coupling up to 330MHz,
exceeding previous demonstrations with electron spins in silicon by one order of
magnitude [95, 124, 20, 61]. We achieve a spin-charge mixing with gs /gc greater
than 60%, while keeping the spin decoherence rates similar to electron spins. The
cooperativity of our hybrid system reaches 1600 and compares favorably with early
reports on superconducting circuits [148]. In addition, we also probe a spin-photon
coupling in the single QD regime where the charge dipole moment extinguishes,
offering the possibility of circuit QED experiment with a reduced footprint.
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Even though the spin-photon interaction is remarkably strong, this interface
can still be further improved. For instance, the impedance of the resonator can be
increased even more by adjusting the CPW dimensions to achieve an even higher
charge-photon coupling. The quality factors of the cavity can also be improved
with air-bridges connecting the ground planes around. We could also switch from
the interdigitated fingers capacitors of the low pass filters to a plane capacitor with
a thin metallic film parallel to the NbN layers [62] such that more fanout lines
would fit on the chip with a good ground plane definition. A careful engineering
of the microwave cavity and the on-chip low-filters can reduce the photon loss to
around 1MHz [97, 62], then we can achieve cooperativities above 10 000 as for
superconducting circuits [127]. In addition, the integration of a quantum limited
amplifier would also be a great asset to the set-up to improve the signal-to-noise
ratio and fasten the measurements time.

As perspectives, the most natural future work based on this hybrid system is
the long-range spin-spin interaction and demonstration of two qubits gate oper-
ations [15] by placing a second device at the other end of the resonator. With
the figures of merit of the present device, we expect to achieve a two-qubit gate
with a fidelity up 90% [15]. Furthermore, there are many other experiments that
can be carried out with a single spin. So far, we are restricted to the transverse
spin-photon coupling, we could harness the longitudinal coupling [26] opening a
new scheme of circuit QED with spins. Or we could also explore an even num-
ber of charges transitions and work with a singlet-triplet spin qubit composed of
two spins 1/2 [84] instead of the flopping mode qubit [104]. The experimental
demonstration of a single-shot high fidelity dispersive spin readout by the cavity
[39] would also be a new breakthrough in the semiconductor qubits field, which
could be possible if the relaxation time of the flopping mode spin qubit studied
here is long enough (to be measured). With an improved microwave cavity, we
can also further explore circuit QED with a single dot [98, 21]. Therefore, this
hole spin-photon interface should enable to tap all the potentials of circuit QED
with hole spins in semiconductor quantum dots.
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Input-output theory

The Jaynes-Cummings model of the interaction only takes into account pho-
tons inside the cavity, however measuring the cavity means that it is an open
quantum system. A more sophisticated model would be the input-output formal-
ism which is the quantum version of the scattering theory[44], where the input
and output coefficients are replaced by creation and annihilation operators of the
bosonic modes.

The open system can be described by the following Hamiltonian

H = Hsys +Hbath +Hint, (A.1)

where Hsys describes the DQD and a single mode of the cavity, Hbath the field
outside the cavity with n bosonic modes and Hint the coupling between the inter-
nal and external field of the cavity. We note â (â†) and b̂ (b̂†) the bosonic creation
(annihilation) operators respectively to the cavity mode and the environment bath.

The system Hamiltonian is given by the Jaynes-Cummings Hamiltonian:

Hsys = ℏ∆a†a+ ℏ
Ω

2
σz + ℏg̃c(aσ+ + a†σ−), (A.2)

where ∆ = ω − ωp with ω the cavity resonance frequency and ωp the probe fre-
quency.

The bath Hamiltonian is given by

Hbath =
∑
q

ℏωqb
†
qbq, (A.3)

where q labels the quantum numbers of the independent harmonic oscillator bath
modes obeying

[bp, b
†
q] = δpq. (A.4)

107



A

Appendix A. Input-output theory

The interaction Hamiltonian, in the rotating wave approximation, is

Hint = iℏ

(∑
q

λq[b
†
qa− a†bq]

)
, (A.5)

The Heisenberg equation of motion for the bath variables is given by

ḃq =
i

ℏ
[H, bq] = −iωqbq + λqa, (A.6)

while the cavity mode is governed by the following equation of motion

ȧ =
i

ℏ
[Hsys, a]−

∑
q

λqbq. (A.7)

From Eq. (A.6), the bath variable can be written as the differential equation’s
solution

bq = e−iωq(t−t0)bq(t0) +

∫ t

t0

dτe−iωq(t−τ)λqa(τ) (A.8)

with t0 < t the initial time and bq(t0) the initial value.

Substituting Eq. (A.8) into Eq. (A.7):

ȧ =
i

ℏ
[Hsys, a]−

∑
q

λqe
−iωq(t−t0)bq(t0)−

∑
q

λq

∫ t

t0

dτe−iωq(t−τ)λqa(τ) (A.9)

To simplify the second sum, we define the loss rate κ as

κ(ω) = 2π
∑
q

λ2
qδ(ω − ωq). (A.10)

Thus, the second sum of Eq. (A.9) can be written as∑
q

λ2
q

∫ t

t0

dτe−iωq(t−τ)a(τ) =

∫ t

t0

dτ

∫ +∞

−∞

κ(ω)dω

2π
e−iω(t−τ)a(τ). (A.11)

Using the Markov approximation that κ(ω) = κ∑
q

λ2
q

∫ t

t0

dτe−iωq(t−τ)a(τ) =

∫ t

t0

dτ
κ

2π

∫ +∞

−∞
dωe−iω(t−τ)a(τ). (A.12)

Knowing that ∫ +∞

−∞
dωe−iω(t−τ) = 2πδ(t− τ), (A.13)

then, ∑
q

λ2
q

∫ t

t0

dτe−iωq(t−τ)a(τ) = κ

∫ t

t0

dτδ(t− τ)a(τ). (A.14)
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One can convince itself that for our particular case∫ t

t0

dτδ(t− τ)a(τ) =
1

2
a(t). (A.15)

Then,

ȧ =
i

ℏ
[Hsys, a]−

∑
q

λqe
−iωq(t−t0)bq(t0)−

κ

2
a. (A.16)

Still in the Markov approximation, we can simplify the equation by assuming that
the density of states can be written as a constant:

ρ =
∑
q

δ(ω − ωq), (A.17)

and the coupling is also a constant: λ =
√
λp

2. Then, the loss rate becomes:

κ = 2πλρ. (A.18)

Finally, we can then write the equation of motion on a as:

ȧ =
i

ℏ
[Hsys, a]−

κ

2
a−

√
κbin(t), (A.19)

with
bin(t) =

1√
2πρ

∑
q

e−iωq(t−t0)bq(t0). (A.20)

We can write a different solution for Eq. (A.6) with the final condition t1 > t
and rewrite the equation of motion of a as:

ȧ =
i

ℏ
[Hsys, a] +

κ

2
a−

√
κbout(t), (A.21)

with
bout(t) =

1√
2πρ

∑
q

e−iωq(t−t1)bq(t1). (A.22)

Thus we can deduce a simple relation between the input and output fields

bout(t) =
√
κa(t) + bin(t), (A.23)

which is very useful to fit the transmission spectrum of the microwave cavity.
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Appendix B
Fabrication Recipes

In this Appendix, we give the complete fabrication recipes used in this work.

B.1 Alignment crossees

• O2 plasma etching with 500W ICP and 20W RF power during 10 s at 20 ◦C
and P = 2Pa using the ICP from Sentech

• Evaporation of 5 nm Cr and 50 nm of Au or Pt at respectively 0.1 nm s−1

and 0.25 nm s−1 using a MEB550 from Plassys

• Lift-off:

— 10min ultrasonic bath of ethyl lactate

— 10min of ethyl lactate bath at 40 ◦C

— 10min ultrasonic bath of ethyl lactate again

— 5min ultrasonic bath of IPA

— rinse with IPA and then blow dry with N2

• O2 plasma etching to remove the BARC layer with 500W ICP and 20W RF
power during 12 s at 20 ◦C and P = 2Pa using ICP from Sentech

N.B.: Cracks may appear in the photoresist after cleaving or the initial ICP
etching probably due to mechanical or thermal constrains. A resist reflowing step
is then needed before depositing any metal at 210 ° on a hot plate for 2min to
5min depending on the size of the cracks.

B.2 Resonators fabrication

B.2.1 NbN depostion

• Substrate temperature : 180 ◦C kept for one night (∼ 16 h)
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• Chamber pressure : 0.1mbar

• Target current : 2A

• Ar flow : 35 sccm

• N2 flow : 40%

• Sputtering time : 11 s for 10nm

B.2.2 E-beam Lithography

Cleaning

• 5 min in acetone in a ultrasonic bath

• 5 min in a new acetone bath with ultrasounds

• 5 min in IPA in a ultrasonic bath

• Rinse with IPA and blow dry

Resist coating

• Resist: ZEP 520A diluted with IPA with a one-to-one ratio

• Spin coating parameters: 2000 turn/s with an acceleration of 4000 turns/s2

for 30 s

• Spin baking: 180 ° for 5min

E-beam lithography

• Acceleration voltage : 100 kV

• Aperture : 62.5 µm

• Current: 1 nA

• Exposure dose : 280-480 µC/cm2

Resist development

• 60 s in a MIBK:IPA [1:1] solution

• 20 s in a MIBK:IPA [89:11] solution

• blow dry with N2

B.2.3 Plasma etching

Chamber conditioning

The following steps are performed with a clean unpolished Si wafer in the
chamber.

112



B

Appendix B. Fabrication Recipes

O2 cleaning (10min)

• Pressure: 10mTorr

• Temperature: 20 ◦C

• ICP power: 1500W

• RF power: 100W

• O2 rate: 50 sccm

SF6 and O2 purge (2 s):

• Pressure: 5mTorr

• Temperature: 20 ◦C

• ICP power: 0W

• RF power: 0W

• O2 rate: 5 sccm

• SF6 rate: 10 sccm

SF6 and O2 etch (8min):

• Pressure: 5mTorr

• Temperature: 20 ◦C

• ICP power: 0W

• RF power: 50W

• O2 rate: 5 sccm

• SF6 rate: 10 sccm

Etching

SF6 and O2 purge (2min):

• Pressure: 5mTorr

• Temperature: 20 ◦C

• ICP power: 0W

• RF power: 0W

• O2 rate: 5 sccm

• SF6 rate: 10 sccm
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SF6 and O2 etch (125 s):

• Pressure: 5mTorr

• Temperature: 20 ◦C

• ICP power: 0W

• RF power: 50W

• O2 rate: 5 sccm

• SF6 rate: 10 sccm

N.B.: These parameters correspond to a etch rate of 18 nm/min on NbN and
we over-etch on purpose the 10 nm thick NbN layer.

Chamber Cleaning (10min)

• Pressure: 10mTorr

• Temperature: 20 ◦C

• ICP power: 1500W

• RF power: 100W

• O2 rate: 50 sccm

B.2.4 Resist removal

• 4min DUV exposure using the UV-Ocleaner from Jelight

• 60 s in MIBK:IPA[1:1]

• 20 s in MIBK:IPA[89:11]

• rinse with IPA and blow dry with nitrogen

B.2.5 Dicing

• Protective resist: AZ1512HS (1.2 µm thick)

— Acceleration: 4000 turns/s2

— Speed: 2000 turns/s

— Duration: 60 s

— Baking at 100 ° for 90 s

• Dicing using a diamond saw (DISCO DAD 321)

• Resist removal:

— 5 min in acetone in a ultrasonic bath

— 5 min in a new acetone bath with ultrasounds

— 5 min in IPA in a ultrasonic bath

— Rinse with IPA and blow dry
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B.2.6 Annealing

• Temperature: 400 ◦C

• Gas: N2/H2 (4%) with continuous gas circulation

• Duration: 1 h
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Appendix C
Kinetic inductance

extraction by two-tone
spectroscopy

In this Appendix, we will present a two-tone spectroscopy on a low-resonance
frequency resonator to extract the kinetic inductance of the NbN film. This
method relies on measuring the dispersion relation of a resonator whose resonance
frequency is set intentionally low, here f0 = 750MHz.This allows to probe a large
number of its harmonics. An optical microscope image of the resonator is shown
in Fig. 3.1.(b). The geometry of the resonator differs from the ones from Chap. 3
because its length is much longer with ℓ = 22mm and only a single resonator is
measured to avoid cross-talks between the harmonics with another resonator. The
dimension of the CPW is w = 50 µm and s = 2 µm. The central conductor is
coupled via gap-capacitors to the input and output transmission lines with a gap
width of 10 µm [57].

To map the dispersion relation, a VNA is set to measure the transmission at
a resonant frequency of the resonator fVNA within the 4-8GHz band of our mea-
surement setup. We then sweep a second tone at a frequency fMW and whenever
that second tone matches a harmonic of the resonator, at a frequency fn, the
measured resonance at fVNA is dispersively shifted by the cross-Kerr effect[133]
and the transmission readout by the VNA is modified. By identifying all fn, the
dispersion relation can be reconstructed. In Fig. 3.1.(b) we show the dispersion
relation for a probe frequency fVNA = 5.22GHz, the seventh harmonic of the res-
onator. Since the angular wavenumber of each resonance is given by kn = πn/ℓ
where ℓ is the length of the λ/2 resonator and n is the mode index, we can extract
the kinetic inductance as follows:
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Appendix C. Kinetic inductance extraction by two-tone RF
measurement
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Figure 3.1 – Two-tone measurement to extract the kinetic inductance of the NbN
film. (a) Optical microscope image of a resonator capacitively connected to the
RF ports with a resonance frequency of 570MHz. (b) Dispersion relation of the
resonator shown in (a) probed by two-tone spectroscopy. Only half of the data
points used to extract the phase velocity are plotted.

vph =
ωn

kn
=

1√
Cℓ(L

m
ℓ + Lkin

ℓ )
, (C.1)

where ωn = 2πfn is the angular resonance frequency, Cℓ is the capacitance per unit
length and Lm

ℓ , Lkin
ℓ are the geometric and the kinetic inductance per unit length

respectively. Lm
ℓ and Cℓ are purely geometrical quantities and can be estimated

using a microwave simulation software like Sonnet (Lm
ℓ = 2.13× 10−7Hm−1 and

Cℓ = 2.82 × 10−10 Fm−1) or conformal mapping calculations[131] (Lm
ℓ = 2.13 ×

10−7Hm−1 and Cℓ = 3.13× 10−10 Fm−1).
From this RF measurement and Sonnet simulations data we obtained a kinetic

inductance value Lkin
ℓ = 3.84×10−6Hm−1 corresponding to Lkin = 192±3 pH□−1,

which is in excellent agreement with the DC measurement extraction.
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Average number of photons in

a λ/2 resonator

In this appendix, we derive the internal average photon number of a resonator
driven by an external drive as stated in Eq. 4 of the main paper.

Figure 4.1 – Electrical circuit model of a parallel resonator, as a RLC circuit,
coupled to a feedline via a coupling capacitor Cc.

As shown in Ref [117] section 6.2, a low loss λ/2 resonator may be described
as a parallel RLC resonator at frequencies close to its resonance frequency. From
there we also assume a purely capacitive coupling between the resonator and its
feedline, an assumption justified by the electro-magnetic field distribution along
the resonator and the position of the resonator in respect to the feedline. The
resulting circuit model is shown in Fig. 4.1.

From Ref. [117], Eq. 6.14.b, the average electric energy stored in the capacitor
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C is
We =

1

4
C|VRLC|2. (D.1)

The aim of this section is to derive an expression of We as a function of the
resonator resonance frequency ωr, its internal quality factor Qi and its coupling
quality factor Qc, all of them being accessible through fitting of the resonance
spectrum.

D.1 Derivation of VRLC

From Ohm’s law we have

VRLC = ZRLCI. (D.2)

Using the Kirchhoff’s second law, we can calculate the applied current as

V = VCc + VRLC, (D.3)
V = I(ZCc + ZRLC), (D.4)

I =
V

ZCc + ZRLC
. (D.5)

From which the voltage reads

VRLC =
ZRLC

ZCc + ZRLC
V. (D.6)

From Ref. [117] Eq. 4.41, we know that:

V −
2 = S21V

+
1 , (D.7)

V = S21V
+
1 . (D.8)

By injecting Eq. D.8 to Eq. D.6, we obtain

VRLC =
ZRLC

ZCc + ZRLC
S21V

+
1 . (D.9)

Finally, the average energy can be written as

We =
1

4
C

∣∣∣∣ ZRLC

ZCc + ZRLC

∣∣∣∣2 |S21|2|V +
1 |2. (D.10)

The input power of the system is, from Ref. [117] Eq. 6.13,

Pin =
1

2

|V +
1 |2

Z0
. (D.11)

By using Eq. D.11 in Eq. D.10, we obtain

We =
Z0

2
C

∣∣∣∣ ZRLC

ZCc + ZRLC

∣∣∣∣2 |S21|2Pin. (D.12)
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D.2 Derivation of resonator impedance

The impedance of an open-circuited λ/2 resonator is given by Ref. [117] Eq. 6.33
and we will express it through its internal quality factor, see Ref. [117], Eq. 6.35,
as

ZRLC =
Zr

π
2

1
Qi

+ iπ∆ωr
ωr

, (D.13)

with Zr, the resonator characteristic impedance and ∆ωr = ω − ωr, the drive
frequency relative to the resonance frequency. We rewrite the previous equation
by separating the real and imaginary part

ZRLC = Zr
2Qi

π

1− i2Qi∆ωr/ωr

1 + 4Q2
i

(
∆ωr
ωr

)2 . (D.14)

D.3 The resonance shift

While the bare resonator resonates at a frequency ωr the resonator coupled
to a feedline does so at a frequency ω0, lower than ωr. In this section we derive
∆ω0/ω0 the drive frequency relative to the resonance of the resonator coupled to
the feedline. The total impedance is

Ztot = Zr
2Qi

π

1− i2Qi∆ωr/ωr

1 + 4Q2
i

(
∆ωr
ωr

)2 − i

ωCc
, (D.15)

Ztot = Zr

2Qi
π − i

(
4Q2

i
π

∆ωr
ωr

+ 1
ωZrCc

[
1 + 4Q2

i

(
∆ωr
ωr

)2])
1 + 4Q2

i

(
∆ωr
ωr

)2 . (D.16)

At resonance, the imaginary part of the impedance is equal to zero which leads to

4Q2
i

ω0ZrCc

(
∆ωr

ωr

)2

+
4Q2

i

π

∆ωr

ωr
+

1

ω0ZrCc
= 0. (D.17)

Assuming 1 that Q2
i /π

2 ≫ 1/ω2Z2
rC

2
c , the roots of the equation are(

∆ωr

ωr

)
±
=

ω0ZrCc

2Qi

(
−Qi

π
± Qi

π

)
. (D.18)

The only physical solution is the one lowering the resonance frequency which is
consistent with adding the coupling capacitor in series with the resonator. From
this we define the drive frequency relative to the resonance of the coupled resonator
as

∆ω0

ω0
=

∆ωr

ωr
+

ω0ZrCc

π
. (D.19)

1. By substituting Cc using Eq. D.26, this assumption is equivalent to Q2
i /Q

2
c ≫ π2Z0/Zr

which is often the case in cQED experiment with under-coupled resonators.
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D.4 Coupling quality factor

At resonance, the total impedance is, from Eq. D.16,

Ztot = Zr
2Qi

π

1

1 + 4Q2
i

(
∆ωr
ωr

)2 . (D.20)

To which we substitute Eq. D.19, leading to

Ztot = Zr
2Qi

π

π2

π2 + 4Q2
i ω

2Z2
rC

2
c

. (D.21)

Assuming π ≪ 4Q2
i ω

2Z2
rC

2
c :

Ztot ≈
π

2Qiω2ZrC2
c

, (D.22)

This assumption require a quality factor ≫ 103 for giga-hertz 50Ω resonators and
a lower quality factor for higher impedances. In practice, for superconducting
resonators used in typical cQED experiments this assumption is often verified.
From Ref. [117], Table 4.2, we write the transmission coefficient as

S21 =
2

2 + Z0
Ztot

(D.23)

S21 =
2π

2π + 2Qiω2ZrC2
cZ0

. (D.24)

At resonance, the transmission reaches a minimum

Sres
21 =

Qc

Qc +Qi
, (D.25)

which allows us to derive the coupling quality factor by identification as

Qc =
π

ω2ZrC2
cZ0

. (D.26)

D.5 Average number of photons in a λ/2 resonator

Substituting Eq. D.26 in Eq. D.19 and in Eq. D.14, we can write the resonator
impedance at resonance frequency as

ZRLC = Zr
2Qi

π

1

1− 2Qi

√
Zr

πZ0Qc

. (D.27)

Assuming 1 ≪ 2Qi

√
Zr

πZ0Qc
which is often true in cQED experiments where the

resonator is under-coupled with Qi ≫ Qc :

ZRLC ≈ −
√

ZrZ0Qc

π
. (D.28)
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Rearranging Eq. D.23 we obtain

1

ZCc + ZRLC
=

2

Z0

(
1

S21
− 1

)
. (D.29)

The capacitance of the λ/2 resonator is, see Ref. [117] Eq.6.34.b,

C =
π

2Zrωr
. (D.30)

Substituting Eq. D.25, Eq. D.28, Eq. D.29, Eq. D.30, and in Eq. D.12 we finally
obtain

We =
Qc

ω0

(
Qi

Qi +Qc

)2

Pin. (D.31)

From which we deduce the average internal photon number in the resonator as

⟨nphotons⟩ =
Qc

ω0

(
Qi

Qi +Qc

)2 Pin

ℏω0
, (D.32)

with P the input power in Watt, the quality factors Qc, Qi, the resonance frequency
ω0 and the reduced Planck constant ℏ.
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