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Résumé (French Summary)

Ce manuscrit contient la description de mon travail de thèse portant sur les
algorithmes et les procédures de prétraitements des vecteurs caractéristiques pour la
classification d’images à partir de peu de données étiquetées. Il s’agit d’un problème
important pour la communauté de l’apprentissage automatique : depuis plusieurs
années, les algorithmes proposés pour la vision par ordinateur sont parvenus à
atteindre des niveaux de performance permettant d’envisager leur déploiement dans
de nombreux contextes applicatifs [KSH17 ; Ian+16 ; Sze+15 ; He+16]. Toutefois,
ce niveau de performance requiert typiquement d’énormes quantités de données
étiquetées, lesquelles ne sont pas forcément disponibles dans certaines applications.
Parvenir à maintenir un excellent niveau de performance tout en n’ayant accès
qu’à un très faible volume d’étiquettes et de données est donc un verrou central de
la discipline. Le document est organisé en six chapitres que nous résumons dans
les paragraphes suivants.

Le chapitre 1 est une introduction au contexte général de l’apprentissage automa-
tique pour la vision et de la problématique de l’apprentissage avec peu de données
étiquetées. Commençons par rappeler que l’apprentissage automatique est une
discipline de l’informatique s’intéressant à doter les machines de compétences par
des mécanismes d’apprentissage sur des données, par opposition à l’informatique
“classique” dans laquelle une solution explicite au problème posé doit d’abord être
conçue avant d’être programmée. Un problème canonique de la discipline est celui
de la classification, où l’objectif est d’inférer une fonction f , typiquement définie
sur un espace tensoriel le plus souvent muni d’une distribution de probabilités
et à valeur dans un espace fini, à partir d’un nombre fini d’exemples (x, f(x)).
Posé ainsi, le problème de classification est mal posé, et tout l’art des algorithmes
proposés par la communauté de l’apprentissage automatique consiste à trouver des
façons d’introduire des a priori sur la fonction f à trouver pour espérer y répondre.

Une autre façon de formaliser une telle fonction f est de remarquer qu’il s’agit
d’un partitionnement de l’espace d’entrée, chaque partie étant typiquement appelée
une “classe”. Une façon simple de trouver une fonction fV compatible avec les
exemples fournis consiste donc à partitionner l’espace en cellules de Voronoï [AK00]
définies à partir des x fournis. Chaque cellule prendra alors pour image celle du
x la définissant. Cette façon de faire peut mener à des résultats intéressants en
pratique, mais pose des soucis lorsque les données x sont tirées selon une distribution
potentiellement bruitée, amenant à une fragmentation de la partition et à une
fonction fV potentiellement éloignée de f .
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Il est commun de considérer comme modèle simplifié dans le cadre de l’apprentissage
automatique le fait que chaque partie de la fonction f correspond à une distribution
Gaussienne. Si ces Gaussiennes sont isotropes et de même écart-type, alors on
peut adapter la technique précédemment expliquée en moyennant les observations
x correspondant à une même partie avant de calculer les cellules de Voronoï
correspondantes, amenant à de meilleurs performances en pratique face à ce type
de distributions. L’algorithme correspondant s’appelle le classifieur du plus proche
centroide (CPPC).

Lorsque les données sont plus complexes, par exemple si les distributions considé-
rées pour chaque partie différent davantage que par leur simples moyennes, une
autre solution possible est d’utiliser une régression logistique [Cox58 ; Cra02], une
forme particulière de modèle linéaire généralisé cherchant à attribuer des proba-
bilités d’appartenir à chaque classe pour chaque exemple x fourni. Une routine
d’optimisation est alors mise en place pour trouver les paramètres qui collent
le mieux aux données. Celle-ci consiste le plus souvent en une adaptation de
l’algorithme de descente de gradient.

Ces modèles et algorithmes ont l’avantage de donner l’espoir de trouver de bons
résultats y compris lorsque les données fournies sont peu nombreuses, notamment
car les modèles sous-jacents dépendent typiquement de peu de paramètres. Mais
dans les problèmes pratiques en vision, les distributions des classes sont le plus
souvent très complexes et échappent totalement à ces modèles simplistes. C’est là
qu’intervient l’apprentissage profond.

L’apprentissage profond consiste à apprendre des représentations (nous les ap-
pellerons des “vecteurs caractéristiques”) permettant de transporter les données
initiales, donc dans notre cas des images, dans un nouvel espace où elles suivent
des distributions plus simples, adaptées aux modèles décrits précédemment. Ces
représentations peuvent donc ensuite être utilisées en combinaison avec une régres-
sion logistique par exemple. Dans sa réalisation la plus commune, l’objectif est de
rendre les vecteurs caractéristiques de chaque classe linéairement séparables.

Ces algorithmes mettent le plus souvent en place un assemblage, potentiellement
très complexe, d’opérateurs simples appelés des “couches”. Une couche consiste
typiquement en la composition d’une fonction non-linéaire appliquée sur des tenseurs
coordonnée par coordonnée avec une application tensorielle affine. La première
contient typiquement très peu de paramètres, alors que la seconde un très grand
nombre. En jouant sur l’assemblage des couches, et en trouvant les bons paramètres,
il est possible d’atteindre de très bonnes performances sur des tâches de classification
dans un grand nombre de domaines d’application. Dans le cadre de la vision par
ordinateur, on utilise très souvent des réseaux convolutifs (RC) [LB+95], lesquels
utilisent principalement des opérateurs de convolution pour les parties linéaires des
couches. Les RC, hormis quelques considérations d’effets de bord et des détails sur
la gestion de la résolution d’image, peuvent être invariants par translation, ce qui
est souvent une propriété souhaitable pour les tâches de classification d’image. Un
exemple d’architecture de RC très utilisé dans la littérature (et dans nos travaux)
est celui du ResNet [He+16 ; Ye+20], lequel est décrit en détails dans le chapitre 1.

Ces architectures RC (ou des équivalents pour d’autres domaines) ont permis
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d’atteindre des performances remarquables dans un grand nombre de problèmes
de l’apprentissage automatique. Toutefois, atteindre les meilleures performances
requiert souvent d’utiliser beaucoup de puissance de calcul, comme le montre
la figure 1. Et cette dépendance à une très forte quantité de calculs s’explique
par le fait que les modèles correspondants contiennent une quantité immense de
paramètres, laquelle peut se mesurer en milliards.

Figure 1: Évolution de la complexité de calcul requise pour les performances
SOTA en IA. Source: https://www.economist.com/technology-quarterly/2
020/06/11/the-cost-of-training-machines-is-becoming-a-problem.

Évidemment, il n’est pas possible d’espérer trouver de bonnes valeurs pour ces
milliards de paramètres avec seulement quelques données d’entraînement x. C’est
pourquoi le domaine de l’apprentissage avec peu de données étiquetées consiste à
trouver des façons d’utiliser d’autres jeux de données, potentiellement beaucoup
plus fournis, pour aider à trouver de bons paramètres dans l’architecture considérée,
même si le problème considéré par ces autres jeux de données est potentiellement
très différent de celui d’intérêt. On appelle ce procédé un “transfert d’apprentissage”.

Il convient de distinguer deux cas bien différents d’apprentissage avec peu d’exemples.

• Dans le cas inductif, l’objectif est d’apprendre avec très peu de couples
(x, f(x));

• Dans le cas transductif, l’objectif est d’apprendre avec très peu de couples
(x, f(x)) et de prédire sur {x′}, ces derniers étant disponibles dès le départ
et pouvant donc être exploités.

Le cas inductif correspond typiquement à des scénarios ou l’acquisition des données
est le réactif limitant. Le cas transductif est rencontré lorsque l’annotation de ces
données est le principal soucis, ce qui arrive dans des cas applicatifs où l’annotation

https://www.economist.com/technology-quarterly/2020/06/11/the-cost-of-training-machines-is-becoming-a-problem
https://www.economist.com/technology-quarterly/2020/06/11/the-cost-of-training-machines-is-becoming-a-problem
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est particulièrement coûteuse ou que les événements d’intérêts sont rares. Dans le
cadre de mes études, c’est bien le cas transductif auquel je me suis intéressé.

(a) Inductive settings (b) Transductive settings

Figure 2: Illustration du setting inductif et transductif.

Le chapitre 2 décrit avec de plus amples détails la façon dont l’état de l’art aborde
cette question de l’apprentissage automatique dans un contexte de classification
avec peu de données étiquetées (donc classification transductive).

Nous prenons le temps de décrire avec précision la façon dont les auteurs se
comparent par l’intermédiaire de bancs d’essais standardisés. Ces derniers consistent
le plus souvent à fixer trois jeux de données : un jeu de données générique pouvant
servir à préentraîner des RC ou d’autres modèles et contenant beaucoup de données
étiquetées, un jeu de données de validation, distinct par ses classes du jeu de
données générique, et permettant de tester la capacité des modèles préentraînés
à s’adapter à de nouvelles classes, et un jeu de données de test, à partir duquel
des milliers de problèmes artificiels d’apprentissage avec peu de données étiquetées
sont générés aléatoirement, pour obtenir une performance moyenne de la méthode
considérée.

(a) mini -ImageNet (b) CUB

Figure 3: Exemples d’images de benchmarks few-shot (mini -ImageNet et CUB).

Les bancs d’essais standardisés dans le domaine comprennent mini -ImageNet
[Rus+15], tiered -ImageNet [Ren+18], CUB [Wah+11], FC100 [ORLL18] et CIFAR-
FS [Ber+19]. Des exemples illustratifs sont présentés dans la figure 3, et une
illustration plus particulière d’un problème d’apprentissage avec peu d’exemples
est présenté dans la figure 4.

Si la littérature s’est d’abord concentrée sur des générations de problèmes d’apprenti-
ssage avec peu de données peu hétérogènes (toujours le même nombre de classes
et d’exemples étiquetés pour chaque classe) [Vin+16 ; SSZ17 ; Sun+18 ; SE18 ;
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(a) Example d’un ensemble de données
d’entraînement

(b) Example d’un ensemble de données à
tester

Figure 4: Exemple d’un scénario de la Classification Few-Shot.

Kim+19 ; GK19 ; Liu+19], plus récemment des contributions ont souligné le besoin
de considérer des scénarios plus diversifiés [Vei+21 ; Tri+20]. Une partie importante
de mes travaux de thèse ont été réalisés sur ces nouvelles façons de générer les
problèmes.

Dans la suite du chapitre, nous proposons une vision abstraite générale permettant
de décrire la plupart des méthodes proposées dans le domaine. Cette vision se
découpe en trois étapes :

1. Le préentrainement, à l’aide des jeux de données génériques et de validation,
d’un extracteur de vecteurs caractéristiques, le plus souvent un RC;

2. L’utilisation de routines de transformations des vecteurs caractéristiques,
ayant pour objectif de les rendre plus faciles à manipuler;

3. Le déploiement d’algorithmes d’apprentissage automatique sur les vecteurs
transformés. Ces algorithmes utilisent à la fois les données étiquetées et
les données sur lesquelles la prédiction doit être faite, on dit qu’ils sont
semi-supervisés.

Les contributions de ma thèse touchent à ces trois étapes, résumées dans la figure 5.

Pour la première étape, plusieurs solutions ont été proposées dans la littérature.
Certaines s’inspirent du principe du méta-apprentissage [Vin+16 ; SSZ17 ; FAL17 ;
RL17 ; Sun+18 ; Li+19], c’est-à-dire apprendre à apprendre avec peu de données. Si
ces techniques bénéficient d’une grande popularité, elles obtiennent typiquement de
moins bonnes performances sur les bancs d’essais standardisés. L’autre solution qui
nous intéresse davantage dans le cadre de mes travaux de thèse consiste à utiliser
différents types de régularisations pendant l’apprentissage du RC extracteur de
caractéristiques ayant pour principal objectif d’améliorer la performance quand il
est déployé sur de nouvelles classes. Ces techniques incluent de la régularisation
par interpolations linéaires (mixup [Zha+17]), des tâches prétextes (par exemple
des rotations artificielles des images d’entrées [GSK18a]), de la distillation [ZS20 ;
Yua+20 ; Tia+20 ; Riz+21], de l’auto-supervision [Man+20 ; MSN21 ; Rod+20 ;
Ma+21 ; Kho+20] et bien d’autres. . . Par abus de langage, on qualifie souvent cette
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Figure 5: Illustration du pipeline général de la Classification Few-Shot. Source: ht
tps://medium.com/sap-machine-learning-research/deep-few-shot-learn
ing-a1caa289f18.

seconde façon de faire d’apprentissage par transfert, bien que le terme pourrait
s’appliquer aussi à la première.

Pour la seconde étape, les auteurs ont proposé un nombre important d’opérations
de normalisation et de prétraitements des vecteurs caractéristiques [Wan+19b ;
Lic+20 ; Wan+19b], le plus souvent sans justification théorique, pour améliorer les
performances du système entier. On peut globalement décrire l’objectif de ces opéra-
tions comme cherchant à transformer les distributions des vecteurs caractéristiques,
le plus souvent difficiles à modéliser, en des distributions quasi-Gaussiennes.

Enfin, pour la troisième étape, deux types de méthodes émergent principalement :
1) les méthodes de régression logistique [Che+19a ; Man+20 ; Bou+20a] ; et 2) les
méthodes de partitionnement basée sur des métriques [Wan+19b ; Ren+18 ; Lic+20 ;
Bat+22 ; HLLJ19], comme l’algorithme de classification par le plus proche centroide
précédemment décrit, et illustré figure 6. Nous décrivons en détails plusieurs de
ces méthodes qui auront joué le rôle de compétiteurs à nos propres propositions
pendant le travail de ma thèse, notamment l’algorithme soft-KMEANS.

Figure 6: Illustration d’un classificateur CPPC.

Les trois chapitres suivants mettent en lumière plusieurs contributions importantes
de ma thèse, principalement liées aux étapes 2 et 3 précédemment introduites.

En ce qui concerne l’étape de prétraitement des vecteurs caractéristiques, deux
questions sont importantes. La première est de trouver des prétraitements amélio-
rant le rapport signal à bruit des représentations obtenues, c’est-à-dire contribuant
à rendre les distributions associées à différentes classes plus facilement séparables.

https://medium.com/sap-machine-learning-research/deep-few-shot-learning-a1caa289f18
https://medium.com/sap-machine-learning-research/deep-few-shot-learning-a1caa289f18
https://medium.com/sap-machine-learning-research/deep-few-shot-learning-a1caa289f18
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La seconde est de s’assurer que les distributions obtenues prennent des formes simi-
laires à des distributions Gaussiennes, car l’hypothèse de distributions Gaussiennes
est souvent le prérequis des algorithmes de classification en apprentissage avec peu
de données étiquetées.

Pour répondre à la première question, nous proposons dans ce manuscrit une
méthode basée sur le traitement de signaux sur graphes, présentée dans le cha-
pitre 3. Pour répondre à la deuxième question, nous proposons d’appliquer une
technique appelée transformation de puissance qui peut aider à augmenter de
manière significative les performances en remodelant les distributions des vecteurs
caractéristiques. Cette technique sera présentée en détail dans le chapitre 4.

En termes de contributions sur les algorithmes de classification semi-supervisée,
nous présentons dans le chapitre 4 une méthode de partitionnement s’inspirant de
la théorie sur le transport optimal [Vil09]. L’idée ici est d’utiliser des estimations
temporaires de prédiction sur les données non-étiquetées pour mieux estimer les
centres de nos parties. L’algorithme proposé a permis de tenir la première place
sur les bancs d’essais standardisés pendant de nombreux mois et est la contribution
de ma thèse qui a eu le plus fort impact en terme de citations [LSA21 ; CVK21 ;
Ort+21 ; ZK22]. La stratégie développée a été critiquée à juste titres par certains
auteurs [Vei+21] car elle exploite explicitement la notion d’équidistribution des
données non-étiquetées entre les classes considérées, laquelle était présente dans la
plupart des bancs d’essais de l’époque, bien qu’il s’agisse a priori d’une supposition
peu réaliste.

Dans le chapitre 5, nous proposons un autre algorithme de partitionnement
s’appuyant sur l’inférence bayésienne variationnelle [FR12 ; WBJ05 ; CB01 ; BN06]
et la réduction adaptative des dimensions pour aligner et estimer au mieux les
centres des parties. Contrairement à la contribution précédente, l’algorithme
proposé ne nécessite aucune information préalable sur l’ensemble des données non-
étiquetées, et atteint des performances de pointe dans le cas où les bancs d’essais
génèrent des problèmes plus diversifiés.

La contribution du chapitre chapitre 3 correspond à l’article:

Graph-based interpolation of feature vectors for accurate few-shot classi-
fication Hu, Y., Gripon, V. and Pateux, S., 2021, January. In 2020 25th International
Conference on Pattern Recognition (ICPR) (pp. 8164-8171). IEEE.2020

Dans ce chapitre, nous en profitons pour ajouter des discussions supplémentaires
sur la méthode proposée. L’idée ici est d’utiliser des outils tirés du traitement
de signaux sur graphes, lesquels ont suscité un intérêt croissant en raison de
leur capacité à capturer les relations entre les échantillons selon des métriques
de similarité. Dans le cadre de la classification d’images avec quelques exemples,
notamment dans des contextes transductifs, ces méthodes ont déjà été appliquées
avec succès dans plusieurs travaux tels que [Che+21a ; Kim+19 ; SE18]. Cependant,
ces travaux utilisent ces techniques directement dans l’étape d’extraction de vecteurs
caractéristiques, réduisant de fait la performance atteignable avec de simples RC
bien entraînés. Au contraire, dans notre approche, nous utilisons ces techniques
uniquement dans l’étape de prétraitement des vecteurs caractéristiques, permettant
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de mieux bénéficier des apports respectifs des RC et des outils du traitement
de signaux sur graphes. La méthode que nous proposons est considérée comme
l’une des premières à utiliser le graphe pour prétraiter les vecteurs caractéristiques
dans un contexte d’apprentissage avec peu d’exemples annotés et a apporté une
augmentation significative de la performance par rapport à l’état de l’art de l’époque.

Cependant, l’un des principaux inconvénients de la méthode proposée est qu’elle
nécessite de concevoir soigneusement un graphe pour obtenir les meilleurs gains
de précision. Dans l’article, la construction du graphe est accompagnée de trois
hyperparamètres dédiés, et leur réglage dans la pratique peut être difficile en
raison de l’absence d’un ensemble de validation sur la tâche considérée. Cet
inconvénient est atténué par le fait que nos expériences montrent que le réglage
des hyperparamètres n’est pas très sensible. Afin de contourner cette limitation,
une solution possible serait de trouver les meilleurs hyperparamètres en utilisant
des tâches similaires à celle considérée.

Dans le chapitre 4, nous présentons une combinaison de deux articles [HGP21b ;
HSS18] contribuant aux étapes de prétraitement des vecteurs caractéristiques et de
conception d’un algorithme de classification semi-supervisée. Nous présentons le
contexte général et l’article, puis nous discutons les contributions de notre méthode
proposée ainsi que les limites et les perspectives. Les articles discutés sont :

Leveraging the Feature Distribution in Transfer-Based Few-Shot Lear-
ning Hu, Y., Gripon, V. and Pateux, S., 2021, September. In International Conference
on Artificial Neural Networks (pp. 487-499). Springer, Cham.2021

Squeezing Backbone Feature Distributions to the Max for Efficient
Few-Shot Learning Hu, Y., Pateux, S. and Gripon, V., 2022. Algorithms, 15(5),
p.147.2022

Outre le prétraitement des vecteurs caractéristiques, un bon modèle de prédiction
exige également que l’algorithme de classification soit bien conçu. Les algorithmes
populaires incluent les méthodes de régression logistique [Dhi+20 ; Man+20] qui
apprennent les paramètres de frontière de décision avec une perte minimisée, et
les méthodes de partitionnement telles que Kmeans [HW79] qui effectuent des
prédictions via des centroides de classe typiquement estimés à partir d’hypothèses
de Gaussianité. Étant donné le contexte transductif de mes travaux, nous proposons
dans ces contributions deux choses : 1) utiliser la transformation de puissance
dans le cadre du prétraitement des vecteurs caractéristiques afin de les aligner
avec des hypothèses gaussiennes, et 2) la construction d’un algorithme s’appuyant
sur le transport optimal (OT) [Vil08] qui fonctionne dans un cadre d’espérance-
maximisation (EM). Avec l’aide de 1) et 2), notre méthode proposée “PT+MAP” a
obtenu des performances de pointe sur différents bancs d’essais.

Bien que l’algorithme de classification soit capable d’apporter des gains importants
avec l’aide du transport optimal, un inconvénient majeur de l’algorithme est son
exigence pour la distribution équilibrée des échantillons non étiquetés, hypothèse
peu réaliste en pratique. C’est pourquoi, afin de résoudre ce problème, dans notre
travail “Squeezing Backbone Feature Distributions to the Max for Efficient Few-
Shot Learning”, qui peut également être considéré comme une version étendue du
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travail précédent, nous proposons une version modifiée de l’algorithme qui tente
de prendre en compte une incertitude sur le nombre d’échantillons non-étiquetés
dans chaque classe considérée. Nous intégrons également une adaptation de la
régression logistique dans le cadre de l’EM, ajustant davantage les centroïdes de
classe sur la base des pseudo-étiquettes des échantillons non-étiquetés. À cette fin,
notre algorithme nouvellement modifié est capable d’obtenir des résultats encore
améliorés par rapport à PT+MAP.

Dans notre première tentative d’aborder le problème du déséquilibre, nous avons
proposé dans ce travail une version modifiée d’OT pour essayer de réduire l’effet
des a prioris en boostant uniquement les classes qui ont le moins de poids [Lic+20].
Cependant, sans connaître la proportion exacte d’échantillons non-étiquetés par
rapport aux classes, l’algorithme a tendance à égaliser ces échantillons non étiquetés
et entraîne donc toujours une baisse significative de la précision dans un cadre très
déséquilibré.

Dans le chapitre 5, nous continuons l’amélioration de la conception de l’algorithme
de classification semi-supervisée. L’article présenté est le suivant :

Adaptive Dimension Reduction and Variational Inference for Trans-
ductive Few-Shot Classification Hu, Y., Pateux, S. and Gripon, V., Arxiv
preprint.2022

Bien que des travaux antérieurs tentent d’aborder le problème des contraintes
préalables par rapport aux échantillons non étiquetés, la performance de ces der-
niers n’est toujours pas idéale face au cadre déséquilibré proposé dans [Vei+21],
ce qui suggère la limitation de l’OT sans estimation préalable. C’est pourquoi,
dans ce travail intitulé “Adaptive Dimension Reduction and Variational Inference
for Transductive Few-Shot Classification”, nous proposons une nouvelle méthode
s’appuyant sur l’inférence bayésienne variationnelle, ainsi qu’une réduction dimen-
sionnelle adaptative qui utilise l’analyse discriminante linéaire probabiliste pour
projeter itérativement les données dans des dimensions inférieures afin de prédire les
étiquettes. La méthode proposée, appelée “BAVARDAGE”, est capable d’atteindre
des performances de pointe dans le cadre non équilibré, et des résultats compétitifs
dans le cadre équilibré sans aucune connaissance préalable.

Cependant, les solutions proposées s’accompagnent d’un certain nombre d’hyper-
paramètres, dont certains sont difficiles à régler sans avoir accès à un ensemble
de tâches de validation pertinent. Ce problème récurrent de gagner quelques
pourcents de précision au prix de l’ajout d’hyperparamètres pourrait être au
cœur des discussions dans le domaine, car il est plus problématique qu’avec la
classification standard où les ensembles de validation permettent le réglage de ces
hyperparamètres. La tendance récente vers une évaluation plus diversifiée dans les
bancs d’essais standardisés, notamment avec l’essor de Metadataset [Tri+20], est
certainement un pas dans la bonne direction.

Enfin, dans le chapitre 6, nous exposons les conclusions de ce manuscrit, en
réaffirmant les contributions sur les étapes de prétraitement des vecteurs caracté-
ristiques et de conception de l’algorithme de classification. Nous discutons aussi de
ce que nous pensons être des directions importantes pour le futur de la discipline.
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Nous mentionnons ainsi l’évolution des pratiques sur les résolutions des images
considérées : habituellement à 84x84 pixels, elles ont évolué dernièrement vers des
formats plus grands, par exemple du 224x224, permettant de mieux capturer des
motifs précis et très localisés. De fait, la performance des systèmes d’apprentissage
avec peu d’images annotées s’améliore [Che+21b ; Luo+21], même si les tech-
niques restent identiques. La littérature s’intéresse de plus en plus à la question
du choix du jeu de données générique, mais aussi à la façon de le découper :
il est assez clair que certains jeux de données génériques sont adaptés pour un
transfert vers certaines tâches d’apprentissage avec peu de données annotées, mais
d’autres non. Trouver automatiquement quel jeu de données générique utiliser
est donc une question d’importance pour l’avenir de la discipline[SCA20 ; Laf+22 ;
Ben+22c]. L’utilisation de données supplémentaires [Xin+19 ; Sch+19 ; Zha+21 ;
Che+21b ; Bat+22], par exemple des données non-annotées traitées de façon auto-
supervisée [PH21 ; Isl+21] est aussi une direction importante pour la recherche à
venir, étant donné l’importance que prennent ces techniques dans des contextes
non contraints par la quantité de données disponibles. D’autres pistes, incluant
l’apprentissage actif [BI17 ; PZS20 ; Mül+22 ; Li+22], la désambiguisation lors de la
présence de plusieurs objets dans la scène [Ben+22a], ou encore la prise en compte
de la sémantique sont également mentionnées.
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Chapter 1

Introduction

In this chapter we firstly present the context of my thesis, starting by the develop-
ment of Machine Learning and Deep Learning over the past years. And we introduce
classification task along with some well-known methods ranging from basic logistic
regression to convolutional neural networks. Then we present the problematic of
this thesis that we seek to address, namely to perform image classification with
few labeled data. Finally we present our contributions during the three years of
my PhD.

1.1 Scientific context

1.1.1 Machine Learning and Deep Learning

Within the past decade, there have been a growing interest for machine learning and
deep learning in particular. This success can be explained in part by the resolution
of old open problems in many different domains [LBH15; BLH21], including
vision [KSH17; Ian+16; Sze+15; He+16], natural language processing [Vas+17;
Dev+18; Dev+18], games [Sil+16; Sil+17], audio [Gem+17] and even more recently
biology [Jum+21].

Contrary to classical computer science, machine learning does not require an
explicit solution to the considered problem, but can infer one instead, given enough
data/observations. With the growing availability of large data sources, notably
thanks to Internet, machine learning takes an increasingly important role within
automation in society.

There are in particular two settings where machine learning is the gold standard:
1) when there is no explicit solution available to the considered problem, and 2)
when it would be too costly to implement such a solution, or it would require too
much computational complexity.

A very common example of a problem that falls into category 1) is that of recognizing
complex objects (e.g. persons or animals) in images under diverse conditions (e.g.
exposition, orientation, image quality, etc). Indeed, the only system that is able
to solve this problem is the brain of animals, and its functioning is still not fully
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understood, even when it comes to only the visual parts of it. As a consequence,
machine learning is the only option available to reach human level performance on
such tasks.

As far as category 2) is concerned, a classical example is that of playing the game of
Go, which is known to be challenging even for modern hardware. In this case, there
exists explicit solutions based on tree search algorithms such as Minimax [VNM07;
Sto79] that would lead to an optimal way of playing the game, but those would
require way too much computational complexity to be reasonably implemented.
Here again, machine learning appears to be the only viable option.

However, a major drawback of machine learning approaches is that they typically
consist of inferring a function, let us denote it f , based on a finite number of
observations (x, f(x)). This problem is often referred to as “supervised learning”,
where supervised means that we have access to examples of expected outputs in
our considered task. When described this way, machine learning consists of an
extrapolation problem, and consequently is in general ill-posed. As a matter of fact,
it is often that the input space of the searched function f is infinite (or at least
unreasonably large). Without any other prior about f , there are thus infinitely
many possibilities that agree with the given examples. Finding which one is a good
extrapolation is then impossible, at least from a mathematical perspective.

To circumvent this problem, it is very common in machine learning to consider a
restrained family of functions in which our solution is to be found. As a consequence,
there can in some cases be only one extrapolation to the given examples or even
none, in which case, we typically look for the function that agrees the most with
the given examples. This situation can seem paradoxical, and is often referred to
as the bias/variance trade-off in the machine learning literature [BN06].

There are many such families of functions, and presenting all of them is out of
scope of the current document. Instead, we will focus on very specific such families
that are commonly used in modern machine learning and that are at the root of
the contributions in this manuscript.

In the scope of this document, we are interested in a specific sort of supervised
learning where outputs are categorical. They can only take a finite (and typically
small) number of different values, and each categorical value represents the class
label of the associated observation. For instance, for a model that differentiates
whether an image is of a cat or a dog, the output of f would be whether of the
value 0 or 1 where 0 represents the category dog and 1 for cat.

We call such a problem a classification problem, which appears in many practical
applications ranging from predicting the objects present in an input image, to diag-
nosis of certain diseases from medical data or even recognizing sounds. Therefore,
supervised learning in classification consists in learning f that maps the inputs to
the labels. In the next sections we present differents classes of supervised learning
methods for classification.
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Figure 7: Voronoi diagram on a 2D plane.

1.1.2 Metric-based methods

In metric-based methods, the key idea is to use the given examples as anchors
defining areas of influence to define the searched function f elsewhere in the input
space. The most celebrated such method is called “nearest neighbor classification”,
and it consists in partitioning the input space depending on the closest given
example, each part being mapped to the output of this specific example.

This has the effect of creating so-called Voronoi Cells [AK00], which have interesting
mathematical properties. Among others, Voronoi Cells can approximate any
function (under mild hypothesis) given enough examples. Typically, the Euclidean
distance is used if working with a metric space, but other metrics can be found in
the literature. Fig. 7 is an illustration of creating Voronoi Cells, in which each cell
is created based on the labeled data point in black.

A simple extension to nearest neighbor classification is nearest class mean classifica-
tion (NCM) in which the possibly multiple examples that belong to the same class
are first averaged before creating the Voronoi Cells, resulting in a single connected
part of space for each considered class. In problems where the inputs can be noisy,
this solution can lead to more robust partitions than nearest neighbor classification.

1.1.3 Logistic regression

Contrary to nearest neighbor classification that only predicts class labels, logistic
regression [Cox58; Cra02] can derive confidence level about its prediction. Namely,
it is characterized by outputting the probability of a data point belonging to each
class, and the probability is computed based on an active function apply on linear
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Figure 8: Illustration of logistic regression. Source: http://rasbt.github.io/
mlxtend/user_guide/classifier/LogisticRegression/.

regression [Wei05; SL12; MPV21]. The method requires a training process with
labeled examples to learn its parameters for class prediction.

Fig. 8 illustrates the logistic regression algorithm for binary classification. In detail,
we consider a vector w = [w0, w1, ..., wm] containing parameters to be trained, along
with input features x = [x0, x1, ..., xm] we compute the logit (or log odds ratios) to
be the dot product between these two vectors:

z = w0x0 + w1x1 + ...+ wmxm = wTx. (1)

Note that here w0 refers to the bias (also denoted as b in many works) and x0,
which always equals to 1, is an additional variable that introduces the bias.

We notice that Eq. 1 corresponds to a linear regression model where z is a continuous
value ranging from −∞ to +∞. However, when it comes to binomial classification
(with class 0 and 1), we need a boundary between the values that are classified as 0
or 1. Therefore, linear regression may not be feasible as there is no boundary to its
value. To address that challenge, logistic regression adds an activation function on
top of the logit to map it to 0 or 1, making the model a preferable choice compared
to linear regression. And the activation function (or logistic regression function) is
defined as follows:

ϕ(z) =
1

1 + e−z
. (2)

It is called a Sigmoid function [HM95; Nar97; Mar+08] and has been used in binary
classification to convert logits to probabilities. Fig. 9 illustrates the curve of the
Sigmoid function, we can observe that the function outputs values between 0 and
1 that can be interpreted as probabilities of class belongings. Depending on the
threshold (usually predefined to be 0.5), we can make label predictions for novel
observations and evaluate the performance.

The training process in Logistic regression aims at estimating the parameters w
that allow a good classification. To perform that, the algorithm trains w so that

http://rasbt.github.io/mlxtend/user_guide/classifier/LogisticRegression/
http://rasbt.github.io/mlxtend/user_guide/classifier/LogisticRegression/
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Figure 9: Illustration of the Sigmoid function.

the error would be minimized. The training process in logistic regression requires
1) observations {(x1, y1), ..., (xN , yN )} where yi indicates the class label of xi; 2) an
objective function that computes the loss between labels and predictions and 3) An
optimizer that minimizes the cost function. For 1), the training process involves all
the labeled data for loss calculation. As for the objective function (or loss function),
oftentimes we define it according to the task, in the case of binary classification we
use the binary Cross-Entropy loss function that can be defined as follows:

l = − 1

N

N∑

i=1

yi log(ϕ(zi))− (1− yi) log(1− ϕ(zi)), (3)

where zi = wTxi is the logit value for observation xi, along with ϕ(zi) the probability
for the corresponding class. We can see that a wrongly predicted sample (high
ϕ(zi) under yi = 0 or low ϕ(zi) under yi = 1) would result in a high value of loss.
Therefore, the objective of training is to minimize the loss function so that samples
are correctly labeled.

From Eq. 3 we notice that logistic regression fits into the Maximum Likelihood
Estimation (MLE) framework, in which the goal is to maximize the conditional
probability of observing the data given a specific probability distribution and its
parameters

∑N
i=1 logP (xi;w), assuming the independence of observations. There-

fore, supervised learning can be framed as a conditional probability problem of
predicting the probability of the output given the input

∑N
i=1 logP (yi|xi;w). In the

case of logistic regression for binary classification, we assume a Binomial probability
distribution for the observations, and the likelihood function corresponds to Eq. 3
in the negative form (maximizing the likelihood is equivalent to minimizing the
loss function).

The way we train a logistic regression model to its optimum is through an optimizer,
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the goal of which is to reduce loss using gradient descent that requires the gradient
of the cost function. Therefore in logistic regression, we minimize the loss by
searching in the direction that corresponds to the negative partial derivative of the
cost function with respect to the parameter w (Eq. 4):

Objective : min
w

l,

Partial derivative :
∂l

∂w
=

1

N

N∑

i=1

(ϕ(zi)− yi)xi.
(4)

During training, gradient descent will iterate along the negative gradient direction
of w until reaching convergence where the model parameters become stable. The
basic form of the training process in logistic regression is described in Eq. 5:

Iterate e epochs :

w← w − η
1

N

N∑

i=1

(ϕ(zi)− yi)xi,
(5)

where an epoch denotes a training iteration in which the model is learned through
a complete pass of the training data, and η is called the learning rate or the search
step that has to be carefully chosen in order for the model to converge.

There exists several optimizers to train a model such as SGD [Bot10], Adam [KB15]
and so on. Apart from their commonality on the use of gradient descent, they differ
mainly in terms of their strategies to find the minimal loss, for example the use of
weight decay and the choice of learning rate.

Weight decay is a well-known strategy to prevent the model from becoming overly
complex (also called overfitting), the idea is to penalize model complexity by e.g.
adding the square of all training parameters to the cost function so that some
parameters that may contribute to overfitting would be dialed down to much
smaller values or 0. There also exist other forms for the added term depending on
the metric, for instance in [MVDGB08] the authors propose to add the absolute
value of all training parameters. The type of methods is called “Lasso” and is also
well-known for its effectiveness in reducing overfitting.

As for the learning rate, there exists several techniques operated under a learning
rate schedule [Ben12]. For example in a basic scheduler the learning rate is constant
regardless of the training epochs, and a multi-step scheduler [Sen+13] decays the
learning rate with a certain multiplicative factor when a certain number of epochs
is reached. More recently, a cosine annealing scheduler [LH16] is applied where the
training starts off with a very large learning rate and then aggressively decreases it
to a value near 0, before again increasing the learning rate. This variation of the
learning rate happens according to the cosine annealing schedule.

In summary, logistic regression is a training-based method that attempts to find
parameters that minimize the prediction loss. The algorithm requires parameters to
train and predict probabilities instead of hard labels. However, due to the fact that
the output in Eq. 1 is the sum of input features and parameters, logistic regression
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Figure 10: Linearly separable samples (A) vs. non-linearly separable samples (B).

is thus considered a linear model that works only for data points that are linearly
separable for classification (illustrated in Fig. 10.A), whereas in metric-based
methods such as nearest neighbors classification there is no such requirement.

With all of that said, the training process in logistic regression and its corresponding
strategies are similar of those used in Deep Neural Networks. In fact, logistic
regression can be considered as a one-layer neural network that only learns the
parameters for the classifier. As for DNNs, we will introduce in detail in the next
sections.

1.1.4 From Multi-Layer Perceptron to Convolutional NNs

Rather than using a logistic regression directly on raw inputs, it might be beneficial
to apply it on a transformed version of the input, that typically aims at making
the problem linearly separable. Conventional methods such as Support-Vector
Machines (SVMs) [CV95] along with kernel-based techniques [HSS08] are applied to
tackle the non-linearity of the input. However, as the number of data grows larger
and more complex, SVMs become impractical due to the surge of computational
effort.

With the advent of Deep Neural Networks (DNNs), such networks have brought
significant increase of performance in a variety of domains thanks to their abilities
to interpret large-scale data. From Fig. 11 we observe that DNNs contain multiple
hidden layers of so-called neurons compared with logistic regression, which can be
seen as an one-layer model. With an activation function applied on each layer after
the linear outputs, this grants the opportunity to explore data through multiple
transformations.

When it comes to manipulating continuous signal such as an image or an audio clip, a
very popular method is to rely on Convolutional Neural Networks (CNNs [LB+95]).
The main interest of using CNNs is that they are equivariant to translations,
meaning that if we denote c their mathematical function, and T a translation, then
c◦T = T ◦c. This is especially interesting when dealing with vision problems where
intuitively a translation of the image is similar to a camera shot that would be
obtained by slightly moving the objective of the camera, in which case the objects
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Figure 11: A general model of a deep neural network.

in the scene should not be different, but just translated in the opposite direction.

For image inputs, such a network is made by assembling layers that are defined
using a 4d tensor K (here we ignore the bias tensor for simplicity). The tensor
K is applied to a 3d input, where the first dimension corresponds to “channels”.
Typically for raw images there is one channel for each primary color (red, green and
blue), and the two other dimensions correspond to the width and the height of the
considered image. The role of a CNN is to reduce the targeted images into simpler
forms that are easy to process while capturing critical information for predictions,
and it is generally composed of 1) Convolutional layers, 2) Pooling layers and 3)
Fully connected layers.

1.1.4.1 Convolutional layer

Usually a convolutional layer contains convolutional operations on the input using a
so-called kernel or filter. Namely, for an input xin of size cin×win×hin representing
the channels (or depth), width and height, the tensor K of size cout× cin×wk × hk

is defined to contain cout filters/kernels of size cin×wk×hk that are used to perform
element-wise matrix multiplication on the patch P of the input. Fig. 12 illustrates
the movement of a 3x3x3 kernel applied on a 3-dimensional input. We can see that
the kernel has the same depth as the input, and it moves from left to right, up
and down to perform convolutional operation on different parts of the input until
all parts are traversed. All the results are summed to have a squashed one-layer
feature output of size wout × hout, the values of which are detailed in the next
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Figure 12: Illustration of a kernel (in pink) and its movement throughout the
input. Source: https://towardsdatascience.com/a-comprehensive-guide-t
o-convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

paragraphs, and the overall output tensor xout will thus be of size cout×wout× hout.

As for the value of wout and hout, they depend on a few predefined parameters
during matrix multiplication: 1) a stride value s that determines the moving stride
of the kernel hovering the input; 2) a padding value p indicating the extended
dimensions added to the input in order to maintain/decrease the dimension of the
feature output. Note that usually we apply the same s and p on both width and
height, and we can thus compute the size of the feature output to be as follows:

wout =

⌊
win − wk + 2p

s

⌋
+ 1,

hout =

⌊
hin − hk + 2p

s

⌋
+ 1.

(6)

For CNNs applied on images, the convolutional operation has the advantage of
capturing the spatial dependencies in an image. And different kernels allow the
network to explore multiple aspects of the input that are critical for predictions.

On top of the affine transformation described above, a nonlinear function σ is
applied to the result. Most of the time, this function consists of a Rectified Linear
Unit (ReLU [Aga18]), that suppresses the negative values in its input, but in some
cases we use other nonlinear functions. An example that comes into play in our
contributions is a leaky-ReLU [MHN+13] that keeps a small fraction in the negative
part which allows the gradients to flow on during training. In addition, it is also
very common to add a batch-normalization layer between the affine transform and
the nonlinear transform. A batch-normalization [IS15] layer normalizes the output

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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Figure 13: Illustration of pooling process. Source: https://towardsdatascien
ce.com/a-comprehensive-guide-to-convolutional-neural-networks-the-
eli5-way-3bd2b1164a53.

of the previous layers for each mini-batch sent into the model, which has the benefit
of reducing the effect of data scales, making the training faster and bringing better
stability for optimizers.

1.1.4.2 Pooling layer

In addition to convolution layers, pooling layer is also an important element in
CNNs. A pooling layer mainly aims at reducing the spatial size of the feature
output so that the model requires less computational power during training, reduces
noise while maintaining its effectiveness. There are two common types of pooling:
1) max pooling that outputs the maximum value from the image patch covered by
the kernel, and 2) average pooling that returns the averaged value of the patch. In
Fig. 13 we illustrate these 2 pooling techniques with a 2x2 kernel and a stride of 2.

1.1.4.3 Classifier

At the end of a CNN we usually add a classifier that consists of a simple logistic
regression. Namely, it is composed of 1) a fully connected layer that aims at learning
the non-linearity of high-level features obtained by the outputs of convolutional
layers; and 2) A Softmax layer that computes the soft class assignment for each
input (i.e. probability of an input belonging to each class). This layer operates with
a Softmax function [Bri89] that is mainly applied in multi-class classification, it is
often added in the final layer in order to learn the probability of class belongings.

Having presented the main components of a CNN, its layers can be can be assembled
in many different ways such as composition, concatenation, and addition. A very
popular method to assemble layers is to use ResNet blocks. Fig. 14 [Ye+20] shows
an example of a ResNet block, we observe that it contains 3 convolutional layers,
each one consists of cout = C kernels of size 3x3 (stride value s = 1) and is followed
by a batch normalization and a leaky ReLU operation. The outcome of those
layers is then added with the input (processed with a 1x1 convolutional layer and
a batch normalization) to prevent vanishing gradients during training. Finally a

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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Figure 14: Illustration of a ResNet block.

2x2 max pooling with s = 2 can be applied to reduce feature dimensions for the
block output.

Note that there are numerous versions of ResNet [He+16; Ye+20] that differ in
terms of depth (i.e. the number of ResNet blocks), block structure and positioning
of operations. In our work we use two popular ResNet architectures: ResNet12 and
WideResNet28-10. Here we use a ResNet12 that consists of 4 blocks described in
Fig. 14 followed by a 5x5 average pooling in the end to obtain transformed features
of the input in a lower dimensional space (Fig. 15). As for WideResNet28-10 [ZK16]
we use the same network structure as [Man+20] throughout the course of this
thesis.

In the considered ResNet architecture, the global pooling operation at the end of
the architecture to get a shape that works with dense layers so that no flattening
is required. ResNet architectures are mainly used in the context of classification,
and are able to obtain competitive performance.

1.1.5 Size of architectures

In the past decade, there have been numerous breakthrough in the field of machine
learning. In vision, in 2015 for the first time a neural network [Sze+15] is able to
outperform humans in the task of predicting the nature of an object in an input
image. In 2016, for the first time a totally automated software is able to beat
the best Go players [Sil+16]. In 2020, DeepMind proposes alphafold to predict
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Figure 15: Example of a ResNet12, where C1-C4 indicate the value of cout after
each block, and the feature dimension of the output after average pooling is 512.

the 3D structure of proteins based on their DNA sequence [Jum+21]. All these
breakthroughs were obtained thanks to the use of deep neural networks (DNNs),
of which CNNs are a specific subcase.

It is a question of prime importance to understand why DNNs have the ability of
achieving such generalization abilities in so many different domains. Some authors
have argued about potential reasons for this [Mal16], but it is fair to say that there
is no consensus as of today about the fundamental reasons for this success.

In 2020, an interesting figure was released that (Fig. 16) depicts the evolution of
the required computational complexity to achieve state-of-the-art performance in
various domains of AI. This figure is reproduced thereafter. It is interesting to
note that for the major part of the second half of the 20th century, as well as the
first decade of the 21st century, the trend followed Moore’s law that described
the evolution of processors. It is not a surprise that achieving the state-of-the-art
performance requires utilizing most of the available computational resources at one
time.

Starting in the 2010s, the trend suddenly changed because of the use of GPUs
and TPUs to replace classical processors in the computations. It is clear that
these devices are allowing for several orders of magnitude of more computational
complexities compared to simple processors. DNNs are one of the few solutions
that are able to fully leverage the power of these new devices (e.g. parallel
computing [BNH19]), and as such it is expected that DNNs perform better than
other solutions that would not be compatible with such hardware.

DNNs tend to have a complexity that is growing with their number of parameters
and computing power, even though it is not a systematic truth. And as such,
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Figure 16: Evolution of the required computational complexity for SOTA perfor-
mance in AI. Source: https://www.economist.com/technology-quarterly/202
0/06/11/the-cost-of-training-machines-is-becoming-a-problem.

the most recent models that achieve state-of-the-art performance typically require
a huge number of parameters. This trend has been accelerated with the recent
introduction of transformers, which are very demanding architectures of DNNs. In
vision, models can be found that require hundreds of millions of parameters [He+16;
KSH17; BMRG17; HSS18], and in natural language processing, it is not rare to
see models with billions of parameters [Rad+19; Bro+20; Ros20]. For instance,
Fig. 17 shows the exponential growth growth of model parameters in the domain
of Natural Language Processing over the course of 3 years.

1.1.6 Need of data

When learning from scratch, an architecture that relies on millions of free parameters
cannot be efficiently trained when given a few training samples. As a matter of
fact, this would likely cause an underdetermination problem that would lead to
dramatic overfitting.

So together with the growing number of parameters in considered architectures, the
datasets used to train those are also growing in size [Rus+15; Rad+18; Rad+19;
Bro+20]. Yet, there are numerous applications for which there is no availability of
such massive datasets. In such cases, it is needed to find an alternative so that the
best performing, huge architectures, can be deployed efficiently.

Among the solutions, transfer learning [PY09; Dai+09; TS10; WKW16] is the
most commonly used methodology. The idea is to train architectures with a large
available dataset in a supervised manner, even if the dataset differs from the
actual task of interest, and then to use domain adaptation techniques to solve the

https://www.economist.com/technology-quarterly/2020/06/11/the-cost-of-training-machines-is-becoming-a-problem
https://www.economist.com/technology-quarterly/2020/06/11/the-cost-of-training-machines-is-becoming-a-problem
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Figure 17: Evolution of model size in NLP from 2017 to 2021. Source: https:
//hanlab.mit.edu/projects/efficientnlp_old/.

considered task. Another training technique of transfer learning consists in using
self-supervised learning [Ale+15; GSK18b; DGE15; ZIE16], where the idea is to
exploit large collections of data that are unlabelled, to train the architectures and
then to adapt these architectures to the considered task.

In our work, we mainly focus on transfer learning, and we make use of some
techniques introduced in the field of self-supervised learning (SSL).

1.2 Problematic addressed in this thesis
In this thesis, we deal with situations where there are no massive data available to
learn models. For models in the domain of Natural Language Processing (NLP) or
image recognition, they often require a large amount of data to learn. Therefore, the
thriftiness of data could present a big challenge. Here we present the corresponding
research area called Few-Shot Learning and discuss in more detail about its settings.

1.2.1 Few-Shot Learning

The few-shot learning literature is not novel, and the idea falls back to the
90s [Bro+93].

A very interesting seminal work about few-shot learning in the deep learning era is
the one presented in [STT12]. In this paper, the authors introduce the toy problem
of classification of Tufas, illustrated in Figure 18.

In this problem, we are given images of alien objects that were artificially generated
by designers. These objects do not exist. Three of them are highlighted and we
are said that they belong to the same category and the aim is to find the other
instances of that category.

Interestingly, it is a problem that is very easily solved by humans in that humans
learn through concepts such as the form of the Tufas. The fact that they all have

https://hanlab.mit.edu/projects/efficientnlp_old/
https://hanlab.mit.edu/projects/efficientnlp_old/


32 32

Figure 18: Classification of Tufas: Given only 3 Tufas examples that are boxed in
red, the goal is to find out the other Tufas. Source: Ruslan Salakhutdinov, Joshua
Tenenbaum, and Antonio Torralba. “One-shot learning with a hierarchical non-
parametric bayesian model”. In: Proceedings of ICML Workshop on Unsupervised
and Transfer Learning. JMLR Workshop and Conference Proceedings. 2012, pp.
195–206. URL: http://proceedings.mlr.press/v27/salakhutdinov12a/sal
akhutdinov12a.pdf. It was published (and can be reproduced) under the terms
of Creative Commons Attribution 2.0 licence.

similar roots and spiral-shaped stems separates them from the others. However, this
task would be much more difficult to solve when using machine learning solutions,
in particular if learning from scratch for the reasons mentioned before.

More generally, the problem of few-shot learning, or more precisely few-shot
classification, consists of inferring the class of unlabeled samples based on the
observations of only a few labeled samples and possibly a few unlabeled ones.

For all the reasons presented before, it is a very challenging problem, and it can be
applicable to many different practical use cases. We detail some of them in the
next section.

1.2.2 Inductive and transductive settings

It is natural to distinguish two types of few-shot tasks: 1) inductive settings and 2)
transductive settings.

In inductive settings, we are only given a few labeled samples for each considered
category to train our classifier. Then the purpose is to independently classify
previously unseen new samples.

This setting is likely to occur in situations where the acquisition of samples is costly,

http://proceedings.mlr.press/v27/salakhutdinov12a/salakhutdinov12a.pdf
http://proceedings.mlr.press/v27/salakhutdinov12a/salakhutdinov12a.pdf
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(a) Inductive settings (b) Transductive settings

Figure 19: Illustration of inductive and transductive few-shot settings.

for example with satellite imaging or some types of medical imaging.

Another possibility is that we are facing very rare events, for which only a few
samples are available.

In transductive settings, the problem becomes a semi-supervised learning problem,
where we have access not only to a few labeled samples for each category but also
to a batch of unlabeled samples on which the predictions are to be made.

Because of the presence of unlabeled samples on top of the labeled ones, there are
more possible solutions that are able to use the structure of the unlabeled data.

This setting is likely to occur in situations where the acquisition of data is not the
main issue, but the labeling of data can be costly. It is for example the case when
it is required to hire experts to label the data, or for exploratory projects.

Another possibility is when the samples of interest are rare and undetectable in
our dataset, and as such even labeling a large portion of it would likely only lead
to a small number of samples in some categories.

An illustration of the difference between inductive and transductive setting is shown
in Figure 19 where colors represent classes and colored points denote the labeled
samples in each class. We can see that compared with inductive settings where
only one unlabeled sample is allowed at a time for inference, transductive settings
allow the access to many unlabeled data, making the problem a semi-supervised
one.

To solve a few-shot problem, related literature has been focusing mainly on the
following three parts: 1) backbone training that learns a feature extractor using
a large available dataset [SSZ17; Che+19a; Man+20; Rod+20; Liu+21a]; 2) fea-
ture preprocessing that aligns the extracted features for further modeling [Lic+20;
Wan+19b] and 3) classifier design that builds a classifier in order for label predic-
tions [Ren+18; Che+19a; Lee+19; Lic+20]. They will be thoroughly discussed in
the next chapter.

1.2.3 Problematic

The few-shot literature has become a very trendy subject within the past few years,
with dozens of publications [SSZ17; Vin+16; FAL17; Wan+19b; Man+20; Rus+19;
Zha+20; Ye+20; Zik+20; Lic+20; Bou+20b; Kim+19; SE18].
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In our work, we have been primarily interested in focusing on transductive few-
shot problems. Because vision is often the field where datasets are the most
easily accessible, and because it is the one that is by far the most considered in
the literature, we also only focused on vision applications within this thesis, even
though we consider many of our contributions to be easy to adapt to other domains.

Our main purpose was to investigate the various steps in the pipeline to solve
transductive few-shot vision classification problems, and to try to come up with
the best performing solution overall.

As such, we focused a lot on obtaining the best performance on standardized
benchmarks in the field. Yet, we were also very concerned about justifying the
various steps used in our methods and making sure that the proposed solutions
would be usable in different contexts/settings. A notable achievement of this
thesis was that I was able to reach the first rank on many challenging few-shot
benchmarks, competing with dozens of other works.

1.2.4 Contributions

Thus, during the three years of my PhD, I contributed to the three steps mentioned
before: 1- learning of the feature extractor, 2- preprocessing of the features and 3-
design of the semi-supervised classifier.

Below, I summarize my main contributions and how they relate to each of these
steps:

Graph-based interpolation of feature vectors for accurate few-shot classi-
fication Hu, Y., Gripon, V. and Pateux, S., 2021, January. In 2020 25th International
Conference on Pattern Recognition (ICPR) (pp. 8164-8171). IEEE.2020

There has been growing interest in Graph Neural Networks (GNN) since their ability
to capture the relationships among features according to similarity metrics. In
few-shot image classification, especially in transductive settings, GNNs have already
been applied in several works such as [Che+21a; Kim+19; SE18]. However the
GNNs in these works are mainly used as feature extractors (also called backbones)
for a generic dataset to train, which could result in inferior performance compared
with a CNN feature extractor like ResNet12. Therefore, in our work “Graph-based
interpolation of feature vectors for accurate few-shot classification” we propose to
use graph as a preprocessing technique for features extracted from a pretrained
backbone. Our proposed method is considered among the first to use graph to
preprocess features and has brought significant increase in accuracy compared with
inductive baseline.

Improving Classification Accuracy with Graph Filtering Hamidouche, M.,
Lassance, C., Hu, Y., Drumetz, L., Pasdeloup, B. and Gripon, V., 2021, September.
In 2021 IEEE International Conference on Image Processing (ICIP) (pp. 334-338).
IEEE.2021

In previous work we show the effectiveness of graph applied on extracted features as
a preprocessing technique. However, the proposed graph covers the entire labeled
samples containing different classes, which might lead to sub-optimal results due to



35 35

the confusion it brings when diffusing features that do not belong to the same class.
To address that and explore more functionality of a graph, in this work “Improving
Classification Accuracy With Graph Filtering” the graph is applied on each class
with the corresponding labeled samples. In the paper we prove the low-pass effect
of a graph on class centroids, reducing intra-class noise while keeping the centroid
expectations unchanged. The proposed graph used as a filter further improves the
performance especially when there are more than 1 labeled samples per class.

Leveraging the Feature Distribution in Transfer-Based Few-Shot Learn-
ing Hu, Y., Gripon, V. and Pateux, S., 2021, September. In International Conference
on Artificial Neural Networks (pp. 487-499). Springer, Cham.2021

The above two works mainly focus on feature preprocessing and how the use of
graph can be beneficial for class predictions. Besides that, a good prediction model
also requires the classifier to be well designed. Popular classifiers include logistic
regression methods [Dhi+20; Man+20] that learns the boundary parameters to
a minimum loss, and clustering methods such as Kmeans [HW79] that performs
predictions via estimated class centroids based on Gaussian assumptions. Given the
transductive settings, in this work “Leveraging the Feature Distribution in Transfer-
Based Few-Shot Learning” we invest in 1) proposing to use Power Transform as part
of the feature preprocessing in order to align features with Gaussian assumptions,
and 2) building a classifier based on Optimal Transport (OT) [Vil08] that operates
under an Expectation-Maximization (EM) framework. With the help of 1) and
2), our proposed method “PT+MAP” obtained state-of-the-art performance on
various few-shot settings. The method has been reused and applied by other works
in numerous occasions.

Squeezing Backbone Feature Distributions to the Max for Efficient
Few-Shot Learning Hu, Y., Pateux, S. and Gripon, V., 2022. Algorithms, 15(5),
p.147.2022

Although the classifier in previous work is able to bring large gains with the help
of Optimal Transport, one major drawback of the algorithm is its requirement
for unlabeled samples’ distribution, which is not desirable considering that the
proportions of unlabeled samples to be predicted should be unknown in real world
scenarios. Therefore in order to address that, in our work “Squeezing Backbone
Feature Distributions to the Max for Efficient Few-Shot Learning”, which can also
been seen as an extended version of the previous work, we suggest a modified version
of algorithm that attempts to take into account the variation of class proportions
from one class to another. In addition we also integrate a logistic regression based
algorithm into the EM framework that further adjusts class centroids based on the
pseudo labels on unlabeled samples. To that end our newly modified algorithm is
able to obtain decent results compared with PT+MAP, moreover the added logistic
regression is able to boost further the prediction accuracy.

Adaptive Dimension Reduction and Variational Inference for Trans-
ductive Few-Shot Classification Hu, Y., Pateux, S. and Gripon, V., Arxiv
preprint.2022

Although previous work attempts to address the problem of prior constraints with
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respect to unlabeled samples, the performance of which is still not ideal in face
of the unbalanced setting proposed in [Vei+21], suggesting the limitation of OT
without prior estimation. Therefore, in this work ‘Adaptive Dimension Reduction
and Variational Inference for Transductive Few-Shot Classification’ we propose
a novel method based on Variational Bayesian inference, along with Adaptive
Dimension Reduction that uses Probabilistic Linear Discriminant Analysis to
iteratively project data into lower dimensions for label predictions. The proposed
method (called ‘BAVARDAGE’) is able to reach state-of-the-art performance on
the unbalanced setting, and competitive results on the balanced setting without
any prior knowledge as well.

EASY: Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-
Art Few-Shot Classification with Simple Ingredients Bendou, Y., Hu, Y.,
Lafargue, R., Lioi, G., Pasdeloup, B., Pateux, S. and Gripon, V., 2022. J. Imaging, 8(7),
p.179. 2022

Besides preprocessing and classifier design on the extracted features, another
important aspect of few-shot classification is the training of a deep neural network,
the goal of which is to learn a feature extractor (backbone), i.e. parameters
of all layers of the network except the last one, on a generic dataset so that
it is able to generalize well on the novel limited data. Therefore, in this work
‘EASY: Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot
Classification with Simple Ingredients’ we apply a self-supervised learning technique
that learns a backbone by co-training an auxiliary rotation classifier on labeled
data. Furthermore, we also propose 1) a multi-crop technique that can be viewed
as a pseudo attention model in order to find the zones of interest in an image; 2) an
ensemble method in which the extracted features are the concatenation of several
backbones pre-trained in the same manner. Our pre-trained backbones are proven
to be effective on a variety of benchmarks, the concatenated features are able to
reach state-of-the-art performance with a simple soft-kmeans classifier.

1.3 Outline of the manuscript
In chapter 2 we introduce the standard few-shot transductive setting for image
classification, as well as the general pipeline of tackling the problem. We also
present related works in the field and how they are positioned in the pipeline. In
chapter 3, 4 and 5 we present our main contributions that are related to the following
papers: [HGP21a; HGP21b; HPG22a] and [HPG22b], along with reflections and
discussions of the proposed methods. And finally chapter 6 draws conclusions and
discussions about our work.
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Chapter 2

Standard transductive few-shot
pipeline

In previous chapter we briefly discuss the topic of my thesis: few-shot classification,
as well as its inductive and transductive settings. In this chapter we detail the
standard transductive few-shot image classification settings, including the notations,
problem statement and benchmarks. Next, we present the pipeline to tackle the
problematic: 1) backbone training, 2) feature preprocessing and 3) classifier design.
For each step in the element we also present the corresponding related works along
with some well-known methods.

2.1 Notations and problem statement
In a typical scenario of Few-Shot image Classification (FSC), we are given 1) a
generic training set that contains a large number of labeled samples, enough to
learn a deep learning model, and 2) a test set (also called a few-shot task) that is
composed of only few labeled samples belonging to classes distinct from those of
the generic training set along with some unlabeled samples from the same classes
to perform classification.

Benchmarking in the few-shot domain [Vin+16; Ren+18; ORLL18] usually relies on
three class-distinct datasets: 1) a base class set that constitutes our generic training
set, 2) a novel class set containing many labeled samples from which few-shot tasks
are drawn randomly for evaluation purposes, and finally 3) a validation class set
that is usually used to tune hyper-parameters before evaluation. A few-shot task is
itself composed of 1) a support set in which we have labeled data belonging to K
novel classes (S samples per class), and 2) a query set that contains a total number
of Q unlabeled data (belonging to the same K novel classes) on which to measure
performance. Therefore a few-shot task contains N = KS + Q data samples in
total and the goal is to predict class labels of the query set given the support set
that has few labeled samples per class. Classically the experiment is conducted
on 1-shot 5-way (K = 5, S = 1) or 5-shot 5-way (K = 5, S = 5) scenarios, given
Q = 75. Considering that few-shot tasks are randomly drawn from the novel class
set, they can vary from one another, therefore here we evaluate the performance
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(a) Example of a training set (b) Example of a test set

Figure 20: Example of a scenario for Few-Shot Classification.

by computing the averaged accuracy over a large number of randomly generated
few-shot tasks (usually 10, 000), with a confidence interval of 95% also reported as
a criteria. Note that there are some recent works [Vei+21; ORLL18] that propose a
10-shot and a 20-shot setting, which could bring relative large increase in accuracy.
However, for settings that grant relatively large numbers of labeled samples, it is
not clear whether they still belong to the domain of few shot.

In Fig. 20 we illustrate the scenario of a FSC problem. We can notice that in the
test set of this example, there are 3 classes (K = 3) with 2 labeled samples (S = 2)
for each of them, constituting the support set. And there are 5 (Q = 5) unlabeled
samples in the query set on which we aim at performing classification.

Depending on how the query set is distributed over classes, the transductive
Few-Shot Classification can be further divided into two settings: balanced and
unbalanced settings.

2.1.1 Balanced setting

A balanced setting implies the exact same number of unlabeled samples per test
class, namely we select q = Q

K
samples in each of the K classes for label predictions.

This may seem obvious and is applied in most works that focus on few-shot
classification. However, in a real world scenario the distribution of unlabeled
samples among classes is ought to be random and unknown.

2.1.2 Unbalanced setting

Proposed by [Vei+21], an unbalanced setting provides a more realistic scenario
where we are not aware of how unlabeled samples are distributed among the K
test classes. In mathematical terms, this setting selects unlabeled data using a K-
dimensional probability simplex which contains K non-negative numbers that add
up to 1, and each dimension represents the proportion of the element with respect
to the rest. In [Vei+21], the authors propose to obtain the probability simplex by
using a symmetric Dirichlet distribution parameterized by α = α1, where 1 is the
all-one vector. Namely, denote π as a K-dimensional vector representing mixing
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Figure 21: Density probability function of Dirichlet distribution with different α
in 3-dimensional scenario. Source:https://en.wikipedia.org/wiki/Dirichle
t_distribution.

ratios between the classes, it is thus obtained as follows:

π = [π1, ..., πk, ..., πK ] ∼ Dir(α) = C(α)
K∏

k=1

πα−1
k =

Γ(
∑K

k=1 Kα)∏K
k=1 Γ(α)

K∏

k=1

πα−1
k . (7)

According to the density probability function of Dirichlet distribution presented in
Eq. 7 and Fig. 21, we observe that a larger αo indicates a more uniform distribution
for unlabeled samples, i.e. a more balanced scenario. On the contrary, smaller
αo would suggest a more unbalanced situation. In this manuscript we follow the
same setting as [Vei+21] and let αo = 2, given the fact that the total number of
unlabeled samples Q is fixed.

In this thesis we mainly focus on the standard transductive few-shot setting where
we conduct experiments using one benchmark at a time. We compute the prediction
accuracy on 1-shot 5-way and 5-shot 5-way scenarios, with Q = 75 in both balanced
and unbalanced settings.

https://en.wikipedia.org/wiki/Dirichlet_distribution
https://en.wikipedia.org/wiki/Dirichlet_distribution


40 40

2.2 Standard benchmarks
Standardized benchmarks for Few-Shot image Classification include mini -ImageNet
[Rus+15], tiered -ImageNet [Ren+18], caltech-ucsd birds-200-2011 (CUB) [Wah+11],
FC100 [ORLL18] and CIFAR-FS [Ber+19].

2.2.1 mini-ImageNet

mini -ImageNet1 is a subset of ILSVRC-12 [Rus+15]. It contains a total of 60,000
color images of size 84× 84 belonging to 100 classes (600 images per class), these
100 classes are divided into 64, 16, and 20 classes respectively for the constitution
of base, validation and novel class sets.

2.2.2 tiered-ImageNet

tiered -ImageNet2 is a larger subset of ILSVRC-12 with 608 classes (779,165 color
images of size 84 × 84 in total) grouped into 34 higher-level categories in the
ImageNet human-curated hierarchy. These categories are split into 20, 6, and 8
disjoint sets of base, validation, and novel categories, corresponding to a base set of
391 classes, 97-class validation set and 160-class novel set. As argued in [Ren+18],
this split nears the root of the ImageNet hierarchy resulting in a more challenging,
yet realistic regime where novel classes are less similar to base classes than with
mini -ImageNet.

2.2.3 CUB

CUB3 is a challenging dataset annotated with a total of 11,788 images belonging to
200 bird species. Compared with tiered -ImageNet that is more of a coarse-grained
dataset with super-categories, CUB is a fine-grained dataset with minor differences
between classes. The dataset follows a 100-50-50 base-validation-novel split (Image
size: 84× 84) for Few-Shot Classification.

2.2.4 FC100

FC1004 is a recent split dataset based on CIFAR-100 [KH+09] for the problem of
few shot. It contains 20 high-level categories split into 12, 4, 4 disjoint categories
for training, validation and test. And there are 60, 20, 20 low-level base, validation
and novel classes in the corresponding split containing 600 images of size 32 × 32
per class. Compared with the above 3 datasets, we notice that FC100 has smaller
image size, making it quite challenging.

1https://github.com/yaoyao-liu/mini-imagenet-tools
2https://github.com/yaoyao-liu/tiered-imagenet-tools
3http://www.vision.caltech.edu/datasets/cub_200_2011
4https://github.com/ElementAI/TADAM

https://github.com/yaoyao-liu/mini-imagenet-tools
https://github.com/yaoyao-liu/tiered-imagenet-tools
http://www.vision.caltech.edu/datasets/cub_200_2011
https://github.com/ElementAI/TADAM
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(a) mini -ImageNet (b) CUB

Figure 22: Image examples from few-shot benchmarks (mini -ImageNet and CUB).

2.2.5 CIFAR-FS

CIFAR-FS5 is another split from CIFAR-100 that shares the same number of class
splits in the base-validation-novel structure as mini -Imagenet. Each class contains
600 images of size 32x32. The split is arbitrary, resulting in better average accuracy
than FC100.

Although there are other datasets such as Meta-dataset, DCASE [MHV16], IB-
C [Bon+21] and Danish Fungi 2020 [Pic+22; Ben+22c] that are recently proposed
for few-shot classification, in our work we stick to the standard benchmarks that
are presented above.

2.3 Overview of the standard pipeline
Solving a FSC problem usually implies to follow a standard pipeline that we
describe thereafter:

A first step is to learn a backbone (also called a feature extractor) using the base
classes. We denote it fθ, where θ represents the parameters of a deep neural
network. This step contains a variety of training strategies ranging from episodic
training methods in the early works [FAL17; Lee+19; LSQ20] to traditional batch
training approaches [Che+19a; Man+20] used in Transfer Learning.

Using the pretrained backbone, a few-shot task takes the form of feature vectors
extracted from fθ. These feature vectors are usually preprocessed before being fed
to a classifier. Especially when a classifier requires that features belong to a certain
distribution to work well, a well-designed preprocessing method can significantly
help boost the performance. Works such as [Che+19a; Lic+20] propose techniques
including mean subtraction and graph filtering that boost accuracy.

The last step aims at designing a classifier to be applied onto the preprocessed
feature vectors. The literature on this step primarily involves 1): representative
models, e.g. clustering methods [Che+19a; Zik+20; YLX21; Lic+20; HGP21b]
that attempt to find good parameters for cluster estimations; and 2) discriminative
models, e.g. logistic regression methods [Che+19a; Bou+20a; Vei+21] that try

5https://github.com/bertinetto/r2d2

https://github.com/bertinetto/r2d2
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Figure 23: Illustration of the general pipeline for FSC. Images from: https:
//medium.com/sap-machine-learning-research/deep-few-shot-learning-
a1caa289f18.

to find good decision boundaries that minimize prediction error. In Fig. 23 we
summarize this general pipeline to tackle FSC.

In Table 1 we summarize the steps in the general pipeline along with their function-
alities and some corresponding works that we consider to be representative. Note
that there may be other works [Wan+20] that categorize differently the proposed
methods tackling FSC. Given the growing types of methods that are applied, our
proposed categorization attempts to include as many approaches as possible from
the earlier works to the most recent ones. In the next sections we will present in
more details some selected related works.

Table 1: General pipeline for Few-Shot Classification.

Pipeline Functionality Representative works

1. Backbone training Find good embeddings
MAML [FAL17]

ProtoNet [LSQ20]
Baseline++ [Che+19a]

2. Feature preprocessing Adjust distributions SimpleShot [Wan+19b]
TAFSSL [Lic+20]

3. Classifier design Classify features
Baseline++ [Che+19a]
Soft-kmeans [Ren+18]

TAFSSL [Lic+20]

2.4 Backbone training
In this section we present the early works on backbone training as well as its
evolution over the past years, including the current state-of-the-art methods.

2.4.1 Meta Learning paradigm

Early works on FSC follow the Meta Learning paradigm, the principle of which
is often referred as “learning to learn”. This idea is inspired from the fact that

https://medium.com/sap-machine-learning-research/deep-few-shot-learning-a1caa289f18
https://medium.com/sap-machine-learning-research/deep-few-shot-learning-a1caa289f18
https://medium.com/sap-machine-learning-research/deep-few-shot-learning-a1caa289f18
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humans learn new concepts and skills much efficiently. Small children who have
seen dogs and flowers only a few times can quickly tell them apart. People who
know how to ride a bike are likely to discover the way to ride a motorcycle fast
with little or even no demonstration. Therefore, Meta Learning involves algorithms
that learn how to learn through a suite of relevant tasks and is often applied in
data-scarce scenarios. In implementation, Meta Learning paradigm is often applied
and manifested as episodic training, where the base class set is regrouped into an
ensemble of few-shot tasks (also called episodes) before fed into a model, episodic
training seeks for a model to learn how to perform on new prediction tasks with
novel classes through a series of prediction tasks with base classes.

Generally speaking, there are 2 common Meta Learning approaches that are widely
used in the domain of few shot: Optimization based methods and Metric based
methods.

2.4.1.1 Optimization base methods

The goal of this type of methods is to learn an optimizer that initializes the model
parameters using the training data, so that the model is in a well-established
position where only a few more steps are required for the model to perform well for
the unseen few shot tasks. Therefore, optimization based methods usually define a
learner to learn from a series of prediction tasks, and a meta-learner whose role is to
update the learner’s parameters using the support set of an unseen task so that the
learner can quickly adapt to this new task. There exists several well-known methods
in this area, for instance the authors in MAML [FAL17] train on base class tasks
with a stochastic gradient decent optimizer, and in Meta-LSTM [RL17] the authors
propose to use a LSTM-based meta learner that is thus memory-augmented.

2.4.1.2 Metric based methods

This includes a set of popular methods that aims at finding good embedding for
the input data by learning a metric or distance function that measures distance in
a low-dimension space. For example the well-known Matching Network [Vin+16]
learns an attention kernel in which the attention weight between two data samples
is obtained as the cosine similarity; Relation Network [Sun+18] uses Mean Square
Error (MSE) as the loss function instead of cross-entropy due to the fact that
the proposed metric focuses more on relation scores between two samples, which
are computed by regression; and Prototype Network [SSZ17] proposes to define a
prototype feature vector, which can be interpreted as the class center representing
the cluster, for each class as the mean feature vector of labeled samples belonging to
that class, and the distribution over classes for a given test input is a softmax over
the inverse of distances between the test data embedding and prototype feature
vectors.

In order to develop metrics that are more robust and contain task-specific informa-
tion, more sophisticated methods are proposed such as [Li+19] where the authors
add a plug network to select task-relevant features inside embeddings so that the
model can tell the inter-class uniqueness and intra-class commonality for a specific
task. In [Lee+19] and [Ber+19], the authors create a class-weight generator by
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training the model with a linear classifier (e.g. SVM) in order for the model to
minimize generalization error across a distribution of tasks. In the same vein,
methods using Graph Neural Networks (GNN) [GMS05] [KZS15] are also proposed
in the backbone training process. For example, in [SE18; Kim+19; GK19; Liu+19],
the authors incorporate the idea of semi-supervised learning [CSZ09] as a mean to
benefit from the unlabeled query data samples when learning from a task, therefore
graph methods used in backbone training are more suitable for the transductive
setting.

2.4.2 Transfer Learning paradigm

Another possible solution to tackle Few-Shot Classification is Transfer Learning.
The idea here being to learn from historical data and make predictions given new
unseen data samples. Models that are trained based on transfer are more likely to
learn the patterns of historical data and map them onto the new input data. In
FSC, Contrary to the Meta Learning paradigm, Transfer Learning based methods
train backbones with base dataset in the form of mini-batch (i.e. batch of a fixed
number of data points), a regular form used in the training process for deep learning
models, then we apply few-shot tasks on a pretrained model to obtain predictions.
To distinguish the different data forms in FSC during backbone training, here we
denote batch training as the learning process with input data in mini-batches, as
opposed to episodic training in the Meta Learning paradigm. In this vein, there
exist a variety of techniques that are used to train a model in order for better
feature generalizations.

In early work [Che+19a], the authors propose a cosine classifier during training
that views column-wise weight parameters as class prototypes so that the model
learn better cluster representations for each class. In the meantime, other training
techniques such as Self-Supervised Learning (SSL), Distillation, Data augmentation
and a recently proposed Two-stage training, etc. start to gain popularity in FSC
and works often combine their proposed methods with one or several of these
techniques to reach upmost accuracy.

2.4.2.1 Self-Supervised Learning

The main objective of SSL is to leverage the underlying structure of the training data
and predict the hidden part of the input from the observable part. Oftentimes SSL
can help a model acquire more skills by learning multiple tasks without additional
input data, and it is applied regularly to learn large models in NLP [Dev+18;
Su+19; Wan+19a]. In FSC, works have been discussing about the equivariance
and invariance of the feature representations with the help of SSL methods.

Equivariant presentations indicate similar feature vectors for an image and its
transformations, since they are all derived from the same image content. For
instance the authors in [Man+20; MSN21; Rod+20] propose to co-train a rotation
classifier [GSK18a] by predicting the rotation degrees of artificially rotated images,
along with another technique called Exemplar [Dos+14] that aims at making the
embedding robust to more image transformations.
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(a) Baseline manifold (b) Equivariance (c) Invariance

Figure 24: Main goal of SSL methods for backbone training. Colors represent
different classes and shapes indicate different transformations.

While equivariance can improve the robustness of embedding with respect to its
transformations, it does not address class discrimination. For an image belonging
to a certain class, different transformations of the image do not change the fact they
all belong to the same class and should thus be distanced from images that belong
to other classes. Therefore, invariant representations address the issue of class
discrimination and attempt to render the classifier invariant to transformations. The
proposed methods applied in FSC are often associated with Contrastive Learning,
for example in [OHT21] the authors propose to add a contrastive loss function as an
auxiliary objective for training. In [Ma+21] the authors learn a model by adopting
Contrastive Learning in a supervised manner [Kho+20], meaning that the positive
and negative samples for an image are selected with their class labels known. Other
methods such as [Liu+21a; Luo+21; Riz+21] all incorporate the similar idea based
on sampling positive and negative samples to train backbones with contrastive loss.
In Fig. 24 we illustrate the baseline manifold as well as equivariant and invariant
manifolds that we attempt to achieve via SSL methods.

2.4.2.2 Distillation

Distillation is another popular technique used in the training process. Considering
that a one-hot class representation (observed target labels) for images from the
same class may not be the best way due to the nuances such as background or
other non-targeted objects among these images [ZS20; Yua+20], we need training
methods so that the real target labels (soft labels) of the input images can be
learned, therefore the use of distillation can give a better level of generalization
and robustness. The first work that adapts distillation into FSC is [Tia+20] in
which the authors firstly train a teacher model, followed by a student model with
the same network structure to learn the probability simplex (soft target labels)
from the teacher. In [Riz+21] the authors apply distillation to images along with
the corresponding transformed ones. Thanks to the simplicity of this method, a
fair amount of works [MSN21; Riz+21; LW21] apply distillation mixed with other
techniques to further boost the performance.

2.4.3 Data augmentation

This technique has been widely used and has become a standard procedure for
backbone training, including in the domain of few shot. Earlier works [ZZK19;
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Che+19b; Wan+18] seek to cut images into patches or deform them in order to
provide more samples. In [Man+20] the authors apply Manifold Mixup to artificially
create images with new labels. Some other works [Xin+19; Sch+19] incorporate
the semantic information of class labels for a better prototype alignment.

Recent works [Zha+20; Luo+21] propose a new setting in which the test data
are processed with images of original resolution instead of images tailored for the
benchmark. Namely, this tends to give better performance since image with larger
resolution contains more information for the process. And usually in FSC, data
augmentation methods are applied in combination of other techniques such as
self-supervised learning, distillation and so forth, and they can be effective in both
Meta Learning and Transfer Learning paradigms.

2.4.4 Others

There also exists many works that propose other methods for the backbone training
in the domain of FSC, for example in [Xu+21; Zha+19] the authors learn models
based on variational bayes [Sun+19; Vla+19; Wu+19a]. Authors in [DSM19]
apply and analyse ensemble methods in the context of few shot. In [Bat+20;
Bat+22] the authors propose a new “CNAPS” architecture that attemps to realise
domain adaptation between base data and few shot tasks. [Yue+20] proposes a
Structural CausalModel (SCM) for the causalities among the pretrained knowledge.
Some works [Dhi+20; SCA20; Ben+22c] also discuss the design of base dataset
as well as the backbone structures ranging from the original ResNet12 [He+16]
to WideResNet [ZK16], and finally to a modified ResNet12 [Ye+20; Tia+20] that
reaches competitive performance.

More recently, two-stage training becomes a newly proposed training strategy
that combines both batch training and episodic training. Namely a model is
firstly learned and initialized with a batch training, then an episodic training is
performed on top of the model, with the same training data reshaped into few-show
prediction tasks. This technique adds up the advantages of both training methods,
i.e. methods based on batch training tend to learn better patterns from historical
data while lacking experience for solving a specific task, Meta Learning based
methods on the contrary focus more on learning the task-solving experience as well
as the task-relevant parameters, less on the patterns of a seen dataset.

Recent literature proposes various methods based on this two-stage training process,
for instance in [Ye+20] the authors propose to episodically train an attention model
on top of a pretrained backbone. And authors in [Zha+20] propose to train episodes
using Optimal Transport on image patches in the second training stage. Along
with other works such as [Rod+20; WTH21; Rod+20], this training procedure can
also be integrated into other techniques presented above.

2.5 Feature preprocessing
Next comes the intermediate step of preprocessing features extracted from a
pretrained backbone (also called a feature extractor), aiming at better aligning
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features to fit into distribution assumptions (oftentimes Gaussian) for the classifier
design in the next section.

Since preprocessing methods have been studied in the early literature [Tuk77;
CVS15; SS97] that can be widely applied in different vision tasks and settings, the
techniques proposed in the field of FSC are similar. For instance in [Wan+19b] the
authors propose a mean-subtraction method that subtracts all feature vectors of a
few-shot task by the mean vector of the training set before applying L2 normaliza-
tion, aiming at better aligning features of this specific task. And in [Lic+20] the
authors apply the same procedure as [Wan+19b] except that they use the mean
vector of the entire few-shot task or two mean vectors (support set mean and query
set mean) for mean-subtraction.

Depending on how a backbone is pretrained, one can decide whether to use feature
preprocessing. Usually for methods that follow the Meta Learning paradigm, it is
not necessary to preprocess novel features thanks to the fact that feature alignment
has already been dealt with during episodic training. Therefore for these methods
we use raw feature vectors of a test set to evaluate the performance directly from
a pretrained backbone [SSZ17; Ye+20] or finetune these features with logistic
regression methods [Che+19a; Man+20]. However, for Transfer Learning based
methods, preprocessing methods are often beneficial to adjust raw features for
further usage. For a given backbone initialized with batch training, observations
tend to show that a mean-subtraction followed by a L2 normalization on raw
features give a very similar accuracy to if we apply an episodic training on these
features.

2.6 Classifier design
The last and yet crucial step for an FSC algorithm to work well is the choice of
its classifier. The goal is to design a classifier that predicts labels of the query
data in a way that minimizes errors. According to the literature on FSC, methods
related to this step can be mainly categorized into logistic regression methods and
clustering methods.

2.6.1 Logistic regression

Works in FSC or other research areas mainly apply logistic regression during what
is called finetuning (with unseen data after backbone training), the goal is to find
decision boundaries that minimize prediction errors with the help of available data.
And the errors are minimized by finding the global minimum of a convex cost
function via Gradient descent.

Earlier works such as [Che+19a; Man+20] both use a standard logistic regression
model on raw features, namely they add a sigmoid function on the weighted sum of
weight coefficients and features, followed by a cross-entropy loss function to quantify
errors. Also in [Che+19a] the authors apply a cosine classifier in which the weight
vectors are normalized and thus seen as class prototypes when multiplied with
features, the proposed classifier computes the loss based on the cosine similarity
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of samples and class centers. Given that logistic regression is itself supervised
which requires the labels of the input, a model can be easily overfitted in a few-
shot scenario with few labeled data. Therefore, transductive methods have been
proposed to make use of the query set. Generally the idea is to obtain pseudo
labels for the unlabeled data before proceeding them with logistic regression. For
instance in [LSA21], besides the cross-entropy loss on the support set, the authors
propose to add another loss based on the pseudo labels of the query set and select
query samples that have the least loss. In [Bou+20a] the authors propose a loss
based on the mutual information between query samples and their latent labels,
the loss consists of a term for conditional entropy that encourages the model to
predict confident scores, and another regularization term that encourages uniform
label distributions while preventing degenerate solutions. Following the same
method, [Vei+21] proposes to down-weight the marginal entropy term in order to
minimize the Kullback-Leibler divergence between predicted marginal distribution
and uniform distribution.

2.6.2 Clustering methods

Clustering is an unsupervised problem of categorizing each data point into a specific
group according to the similarity among samples in the group. Namely, clustering
methods assume samples that belong to the same class should have similar features
while samples belonging to different classes should not. Given the nature of this
type of methods, it comes in handy in transductive Few-Shot Classification in
which the query instances are available.

In practice, given a test set that contains both labeled and unlabeled samples, we
are in a semi-supervised scenario in making use of the support set. And there exist
several basic yet important methods that tackle the problem of few shot.

2.6.2.1 Nearest Class Mean (NCM)

One of the most basic methods is called NCM. For each class, a NCM classifier
firstly computes its prototype as the mean vector of samples belonging to that class,
then we assign an unlabeled sample to the nearest class according to the L2 distance.
Fig. 25 illustrates the NCM classifier. In a 2-way (orange and blue) scenario, each
class has 3 labeled samples (colored data points) along with unlabeled ones (data
points in black). The prototype is computed as the mean vector of labeled samples.

In FSC, [Wan+19b] is among the first works to propose the use of NCM. However,
there are limits related to this method. Firstly, due to few labeled samples in a test
set, the estimated prototypes might be heavily skewed and do not well represent the
class, as shown in Fig. 25 for instance. Moreover, this method is primarily applied
in disregard of the unlabeled samples (inductive setting) in few-shot literature.

2.6.2.2 Kmeans

Compared with NCM that is mainly a supervised method, Kmeans is an unsuper-
vised algorithm that makes use of the query set to level the prototype estimations
in an iterative manner. In FSC, Kmeans is usually based on class prototypes
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Figure 25: Illustration of a Nearest Class Mean classifier.

(a) Prototype initialization (b) Class allocation

(c) Prototype update

Figure 26: Illustration of Kmeans algorithm.

initialized with support set samples. Namely we compute the class presentations to
be the mean of labeled data, same as in NCM, then we allocate unlabeled examples
to their nearest prototypes, finally we update the prototypes according to the
class allocations on both support and query set of a few-shot task. The process
is repeated until the prototypes turn stable. Fig. 26 illustrates the algorithm in a
nutshell, we can see that the updated prototypes are better positioned to represent
the classes.

2.6.2.3 Mean shift

Different from Kmeans, Mean shift [Che95; Der05] algorithm does not require the
number of clusters as an input parameter, instead this method defines a range
parameter that represents the radius of a circled area of a prototype. For data
points within this area, we assume these samples belong to the prototype class and
thus compute and shift the prototype according to the density of data samples.
Note that this is also an iterative process until the prototypes are stabilized.

There are some commonalities between Kmeans and Mean shift algorithms, for
instance they both use hard class assignment, i.e. each unlabeled sample is assigned
to exactly one cluster. And they both make use of the metric based on L2 distance
for optimizations. However, these two methods only consider the prototypes of the
targeted clusters without taking their variances or covariances into account, which
may lead to sub-optimal solutions.
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Figure 27: Illustration of soft class assignment.

2.6.2.4 Soft-kmeans

Different from the above two methods, a Soft-kmeans algorithm uses probabilistic
modeling while estimating the variance of a cluster. Soft-kmeans operates under
an Expectation-Maximization (EM) framework which aims at maximizing the
likelihood to find the statistical parameters of a cluster. Therefore, the algorithm
alternates between two steps: 1) E-step that tries to find soft class allocations using
the current cluster parameters, and 2) M-step that aims at updating these cluster
parameters according to the latest class allocations.

Fig. 27 illustrates the concept of soft class assignment, we can see that instead of
a hard assignment that is either 1 or 0, the soft assignment gives the probability
of a data point belonging to any class. Therefore the updated prototype is the
weighted average of samples whose weights are the probabilities of them belonging
to the corresponding cluster. In a Gaussian Mixture Model (GMM), Soft-kmeans
also takes into account the cluster variances, and the distances between a sample
and the prototypes are presented as probabilities using a softmax function.

Note that Kmeans also operates under the EM framework, it is often called hard
EM due to its hard assignment nature. And given that all samples are given the
same weight for prototype update, kmeans favors spherical clusters while assuming
all clusters to have the shared variance of 1 in each feature dimension. Soft-kmeans
on the other hand frees up more restrictions for cluster estimations and allows
more parameters to be involved. In FSC, we usually design classifiers based on
Gaussian assumptions on clusters, and there exist works [Ren+18; Lic+20; Bat+22;
HLLJ19] that propose methods that are presented above along with some variants.

2.6.2.5 Optimal Transport

Recent state-of-the-art methods propose clustering methods based on Optimal
Transport [Vil09] (OT), the goal of OT applied in FSC is to allocate samples
to classes with a minimum cost. On this front we believe to be among the first
to incorporate OT under the EM framework for class assignment and parameter
update in transductive FSC and achieve significant gain in terms of accuracy, it
is the main contribution of my thesis and will be explained in detail. Later on
more and more approaches such as [LSA21; CVK21; Ort+21; ZK22] follow suit
and develop methods based on OT. However, one of the major concerns of OT
based methods is that they require prior knowledge about the distribution of the
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query set to work well, while in most real world scenarios we are not aware of how
the test data are selected. For instance in an unbalanced setting where unlabeled
samples are selected according to α of a Dirichlet distribution, these methods tend
to have a catastrophic drop in accuracy [Vei+21].

2.6.2.6 Dimension reduction

In order for a better cluster estimation on recognizing images with few examples in
the feature space, dimension reduction can be helpful to reduce noise that exist
in features, given the fact that in FSC the feature dimension is several times
larger than the total number of samples in a few-shot task. Dimension-reduced
feature vectors also make a model more stable with respect to its parameters.
In [Lic+20] the authors propose to use PCA under Gaussian assumptions and ICA
under non-Gaussian assumptions to reduce dimensions before applying clustering
methods. And there is still research that needs to be conducted at this front, given
that both PCA and ICA are unsupervised methods that do not consider the labels
of samples. In the next chapters we present our contributions as well as discussions
about our proposed methods.

2.7 Problems tackled in this manuscript
In the next chapters, we will discuss our main contributions in tackling transductive
few-shot classification.

Our contributions have been mainly focused on the feature preprocessing and
classifier design steps in the pipeline. Concerning the feature preprocessing step,
feature alignment is an important question. In this vein, there are two aspects that
can be studied: 1) the aim to group similar features while distancing dissimilar
ones; and 2) the aim to adjust features so that their distributions become more
desirable for the classifiers that follow.

To address 1), in this manuscript we propose a method based on graph neural net-
works, which is presented in Chapter 3. And for 2) we propose to apply a technique
called Power Transform that can help significantly increase the performance by
reshaping the feature distributions to be close to Gaussian. This will be presented
in Chapter 4 in detail.

In terms of classifier design, the essence is to find parameters that can best estimate
a cluster. Under the Gaussian assumption on the feature distributions, in Chapter 4
we present our other contributions that put forward a clustering method established
on Optimal Transport, further improved by applying a logistic regression algorithm
that makes use of the unlabeled data. Our proposed methods reach state-of-the-art
performance under class-balanced prior.

Moreover, in order to tackle the unbalanced few-shot setting that is more applicable
for real world scenarios. In Chapter 5 we propose another clustering algorithm that
is based on Variational Bayesian inference and adaptive dimension reduction to
best align and estimate clusters. The proposed algorithm requires no prior about
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the query set, it reaches state-of-the-art performance in the unbalanced setting and
competitive results in the balanced setting.

Therefore, in the next chapters we present in detail our contributions that focus on
feature preprocessing and classifier design for transductive few-shot classification.
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Chapter 3

Graph-based Interpolation of Feature
Vectors for Accurate Few-Shot
Classification

In the previous chapter we presented the standard few-shot settings in detail and
the pipeline used to tackle the problematic. In this chapter we present our work
contributing to the feature preprocessing step in the pipeline, the corresponding
paper [HGP21a] and additional discussions about the proposed method.

3.1 Context
Since the concept of meta learning was applied in deep learning, few-shot classifica-
tion has become a popular research area with well-known methods such as [FAL17;
SSZ17; Vin+16], all tackling the task in the inductive setting.

With more studies on the subject over the past years, the concept of transfer
learning has also proven to be effective for the task [Che+19a; Man+20], the idea is
to train a feature extractor/backbone using a generic dataset so that it generalizes
well for the limited unseen data. Compared with meta learning paradigm that
learns to learn a task, transfer learning focuses more on learning the knowledge
from an existing data and transferring them onto novel tasks.

In addition, a novel semi-supervised setting in few-shot classification (called trans-
ductive setting) has been introduced [Ren+18] as well, early works use graph neural
networks [SE18; Kim+19; Liu+18] during backbone training (especially episode
training) to assimilate samples belonging to the same class based on the adjacent
matrix on a few-shot task. Although models trained using graph neural networks
help increase the prediction accuracy, they lack task-specific information for the
test data, resulting in less superior performance compared with transfer learning
based methods.

While graph neural networks used as backbones do not show superior performance
compared with CNNs, they do have the advantage of grouping similar features
based on their similarities, since the construction of graph consists of building a
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similarity matrix for all feature vectors. Therefore, we suggest that the use of
graph could be beneficial on the feature level alone as well, namely in feature
preprocessing, without the involvement of training.

In terms of feature preprocessing, early work [Wan+19b] proposes mean-subtraction
with the mean vector of base dataset followed by a L2 normalization, work
in [Lic+20] subtracts the feature vectors of a few-shot task by the mean vec-
tor of all samples in order to reduce episode bias.

Inspired by graph neural networks, in this work we use a graph to perform feature
preprocessing. Namely, our proposed method is operated on the extracted features
from a pre-trained backbone, as is usually the case for other preprocessing methods.
The rationale is to filter out large frequencies over the graph that would likely
correspond to outliers. To this end, we adapt the methodology introduced in
Simplified Graph Convolutional [Wu+19b] (SGC) where features are smoothed
using a graph connecting samples. Contrary to this work, we have no access to
any explicit graph in our framework, and thus we build such a graph exploiting
the similarity between samples of the considered few-shot task, both support and
queries, in the feature space.

In this chapter, we address the problem of adaptation of extracted features in
improving the few-shot classification. As a result, we present our work [HGP21a]:

Graph-based interpolation of feature vectors for accurate few-shot classi-
fication Hu, Y., Gripon, V. and Pateux, S., 2021, January. In 2020 25th International
Conference on Pattern Recognition (ICPR) (pp. 8164-8171). IEEE.2020,

in which we introduce a graph-based methodology to preprocess feature vectors
in the context of transductive few-shot classification. The code can be found at
https://github.com/yhu01/transfer-sgc.

3.2 Paper on graph-based interpolation of features

https://github.com/yhu01/transfer-sgc
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Abstract—In few-shot classification, the aim is to learn models
able to discriminate classes using only a small number of labeled
examples. In this context, works have proposed to introduce
Graph Neural Networks (GNNs) aiming at exploiting the infor-
mation contained in other samples treated concurrently, what is
commonly referred to as the transductive setting in the literature.
These GNNs are trained all together with a backbone feature
extractor. In this paper, we propose a new method that relies on
graphs only to interpolate feature vectors instead, resulting in
a transductive learning setting with no additional parameters
to train. Our proposed method thus exploits two levels of
information: a) transfer features obtained on generic datasets,
b) transductive information obtained from other samples to be
classified. Using standard few-shot vision classification datasets,
we demonstrate its ability to bring significant gains compared to
other works.

I. INTRODUCTION

Deep learning is the state-of-the-art solution for many
problems in machine learning, specifically in the domain of
computer vision. Relying on a huge number of tunable param-
eters, these systems are able to absorb subtle dependencies
in the distribution of data in such a way that it can later
generalize to unseen inputs. Numerous experiments in the
field of vision suggest that there is a trade-off between the
size of the model (for example expressed as the number of
parameters [1]) and its performance on the considered task.
As such, reaching state-of-the-art performance often requires
to deploy complex architectures. On the other hand, using large
models in the case of data-thrifty settings would lead to a case
of an underdetermined system. This is why few-shot learning
is particularly challenging in the field.

In order to overcome this limitation of deep learning mod-
els, several works propose to use Graph Neural Networks
(GNNs) [2], [3], [4], [5]. GNNs are a natural way to exploit
information available in other samples to classify, a setting
often referred to as transductive in the literature. However,
most often introduced GNNs come with their own set of
parameters to be added to the already numerous parameters to
tune to solve the considered task. As a consequence, many of
these methods do not achieve top-tier results when compared
to state-of-the-art solutions.

In this work, we propose to incorporate a graph-based
method with no additional parameters, as a way to naturally

bring transductive information in solving the considered task.
The first step of the method consists in training a feature
extractor with abundant data, followed by an interpolation
strategy using well designed graphs. The graphs considered
in this paper use vertices to represent each sample of the
batch, and their edges are weighted depending on the similarity
of corresponding feature vectors. The graph is thus used to
interpolate features and thus share information between inputs.
Once the features have been interpolated, we simply use a
classical Logistic Regression (LR) to classify them. This work
comes with the following claims:
• We introduce a three-stage method for few-shot classifica-

tion of input images that combines state-of-the-art trans-
fer learning [6], a graph-based interpolation technique and
logistic regression.

• We empirically demonstrate that the proposed method
reaches competitive accuracy on standardized bench-
marks in the field of few-shot learning and largely sur-
passes the current works using GNNs.

• We analyze the importance of each step of the method
and discuss hyperparameters influence.

The paper is organized as follows. In Section II, we present
related works. In Section III we introduce our proposed
methodology. In Section IV, we show experimental results
on standard vision datasets and discuss hyperparameters in-
fluence. Finally, Section V is a conclusion. The source code
can be found at https://github.com/yhu01/transfer-sgc.

II. RELATED WORK

Optimization based methods: Recent work on few-shot
classification contains a variety of approaches, some of which
can be categorized as meta-learning [7] where the goal is
to train an optimizer that initializes the network parameters
using a first generic dataset, so that the model is able to
reach good performance with only a few more steps on actual
considered data. The well-known MAML method [8] trains
on different tasks with a basic stochastic gradient decent
optimizer [9] and Meta-LSTM [10] utilizes a LSTM-based
meta-learner that is thus memory-augmented. Meta-learning
can be thought of as a refined transfer method, where the few-
shot setting is taken into consideration directly when training
on the generic dataset. Although both MAML and Meta-LSTM
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Pretraining Graph-based feature interpolation Logistic regression

using lots of training data

1.train feature extractor
xi 7→ fϕ(xi) = vi

novel input feature vector

v1

v2

v3

v4

v5 v6

based on cos(v2,v3)

2.construct similarity graph
Vnew = (αI+E)κV

3.feature propagation

4.training with labeled inputs

train mapping Vlabeled
new to labels

predict Vunlabeled
new associated labels

5.prediction on other inputs

Fig. 1. Illustration of the proposed method. The proposed method is composed of three stages. During the pretraining stage, a classical backbone is trained
using large datasets (step 1.). This trained backbone is then used to extract features of a novel dataset, comprising few supervised inputs. During feature
interpolation, first is built a similarity graph depending on the cosine similarity between extracted features of both labeled and unlabeled available data (step
2.). Then this graph is used to diffuse (i.e. interpolate) features of similar (neighbor) samples (step 3.). The obtained representations are used to train a simple
logistic classifier (step 4.) using the supervised data. Finally, in step 5., the trained classifier is used to perform predictions on unlabeled data.

achieve good performance with quick adaptation, this type of
solution suffers from the domain shift problem [9] as well as
the sensitivity of hyperparameters.

Embedding based methods: Another popular approach
aims at finding compact embedding for the input data by learn-
ing a metric that measures the distance in a low-dimensional
way. Matching Nets [11] and Proto Nets [12] learn a nearest-
neighbor classifier by comparing the distance between the
query inputs and labeled inputs with a certain metric, while
Relation Nets [13] construct a new neural network that learns
the metric itself. If some of these methods are able to outper-
form MAML, they mainly suffer from over-fitting and a lack
of task specific information.

Therefore, ideas have been proposed to address these issues.
For example in [14], a plug network is added to find task-
relevant features inside embeddings so that the model can tell
the inter-class uniqueness and intra-class commonality for a
specific task. In [15] and [16], the authors create a class-
weight generator by training the model with a linear classifier
(e.g. SVM) in order for the model to minimize generalization
error across a distribution of tasks. More recently, the use of
graph methods [17] [18] starts to gain momentum in the few-
shot learning problems. For example, in [2], [3], [4], [5], the
authors incorporate the idea of semi-supervised learning [19]
as a mean to benefit from the unlabeled query input data when
solving a task, what is referred to as the transductive setting.
Many recent works propose neural networks able to handle
inputs supported on graphs [20]. For example, in GCN [21],
the authors introduce a graph convolution operator, that can
be used in cascade to generate deep learning architectures. In
GAT [22], the authors enrich GCN with additional learnable
attention kernels. In SGC [23], the authors propose to simplify
GCN by using only one-layer systems on powers of the
adjacency matrix of considered graphs. Interestingly, they
reach state-of-the-art accuracy with fewer parameters.

Hallucination based methods: Other methods propose to
augment the training sets by learning a generator that can
hallucinate novel class data using data-augmentation tech-

niques [9]. In [24], the authors extract labeled data into
different components and then combine them using learned
transformations, while in [25], the authors aim at construc-
tively deforming original samples with new samples drawn
from another dataset. However, these methods lack precision
as in the way the data is generated, which results in coarse
and low-quality synthesized data that can sometimes lead to
unsignificant gains in performance [26].

Transfer based methods: As in our work, transfer learning
is another possible solution to solve few-shot classification
problems. The main idea is to first train a feature extractor
using a generic dataset [27], [28], then process these features
directly when solving the new task. In [9] a distance-based
classifier is applied to train the backbone (i.e. the feature
extractor), and in [6], the authors aims at improving the
feature quality by adding self-supervised learning and data-
augmentation techniques during training. These methods have
been proven to perform generally well, yet the challenge
remains to fine-tune using the limited amount of labeled data.

In our work, we propose to align multiple ingredients that
have been introduced in this section. Namely, we use transfer
with graph-based interpolation. We mainly use transfer to
exploit information contained in massive generic datasets, and
we use a graph method to leverage the additional information
available in both labeled and unlabeled inputs. Following the
transductive setting, our proposed method can be considered
as similar to [5], [2], [3], [4], but contrary to their works,
we adopt a strategy in which the considered graph-based
method contains no additional parameters to be trained. Our
method can also be seen as a modification of Simplified Graph
Convolutions [23], where contrary to their work we infer a
graph structure from the latent representations of data.

III. METHODOLOGY

A. Problem statement

Consider the following problem. We are given two datasets,
termed Dbase and Dnovel with disjoint classes. The first one
(called “base”) contains a large number of labeled examples
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from Kb different classes. The second one (called “novel”)
contains a small number of labeled examples, along with
some unlabeled ones, all from Kn new classes. Our aim is
to accurately predict the class of the unlabeled inputs of the
novel dataset. There are a few important parameters to this
problem: the number of classes in the novel dataset Kn, the
number of training samples s for each corresponding class,
and the total number of unlabeled inputs Q.

Note that in previous works [5], authors consider that there
are exactly q = Q/Kn unlabeled inputs for each class. We
consider that this is non-practical, since in most applications
there is no reason to think that this holds. We shall see
in Section IV that this has strong implications in terms of
performance, especially when q is small. Indeed, in practice
the Q unlabeled examples are drawn uniformly at random in a
pool containing the same amount of unlabeled inputs for each
class. So, when Q is large, the central limit theorem tells us
that the number of drawn inputs from each class should be
similar, whereas it can be highly contrasted when Q is small,
leading to an imbalanced case.

B. Proposed solution

Our method is illustrated in Figure 1. We first train a
backbone deep neural network able to discriminate inputs from
the base dataset Dbase = {(x′1, `1), ..., (x′m, `m)}, where
x′i ∈ Rd and 1 ≤ `i ≤ Kb. The proposed methodology builds
upon using this pretrained architecture as a generic feature
extractor, what is referred to as transfer in the literature [27].
Usually, a common way to extract features is to process data
belonging to the novel dataset using the penultimate activation
layer. Here, we obtain the extractor fϕ : Rd → Rh, where
ϕ are the learnable parameters trained using only the base
dataset.

We then directly make use of the transferred representations
fϕ(Dnovel) = {fϕ(x),x ∈ Dnovel}. Based on these, we build
a k nearest neighbor graph using cosine similarity:

cos(fϕ(x), fϕ(y)) =
fϕ(x)

>fϕ(y)
‖fϕ(x)‖2‖fϕ(y)‖2

.

This graph contains as many vertices as the total number of
inputs in the novel dataset (both labeled and unlabeled ones).
Then, we train a model of simplified graph convolution model,
that is supervised only for labeled inputs.

The rationale behind this method is twofold: 1) the pre-
trained backbone should be able to find good discriminative
features since it is trained on a sufficiently large labeled dataset
2) the graph-based interpolation technique should be able to
benefit from both the supervised inputs and the unlabeled ones,
resulting in significant gains in accuracy when compared to
methods that would ignore the unlabeled data.

We show in the experiments that this method is also able
to outperform other methods that use the unlabeled data
especially when the number of labeled inputs is very limited.

The details of the proposed method are provided in the
following paragraphs, first the pre-training stage (i.e. training

the generic backbone), followed by the feature interpolation
and logistic regression stages.

Pre-training: We follow the methodology introduced in [6].
In more details the feature extractor fϕ and a distance-based
classifier DWb

(parametrized by Wb) [29] are trained on
Dbase, where we compute the cosine distance between an
input feature fϕ(x′i) and each weight vector in Wb in order
to reduce the intra-class variations [9]. The training process
consists of two sub-stages: the first sub-stage utilizes rotation-
based self-supervised learning technique [30] where each input
image is randomly rotated by a multiple of 90 degrees. We then
co-train a linear classifier to tell which rotation was applied.
Therefore, the total loss function of this sub-stage is given by:

LA = Lclass + Lrotation. (1)

The second sub-stage fine-tunes the model with Manifold
Mixup [31] technique for a few more epochs, where the
outputs of hidden layers in the neural network are linearly
combined to help the trained model generalize better. The total
loss in this sub-stage is given by:

LB = LManifoldMixup + 0.5(Lclass + Lrotation). (2)

With this training process, we are able to obtain robust input
representations that generalize well to novel classes.

Feature interpolation: We consider fixed the pretrained
parameters ϕ of fϕ. Before training a new classifier CWn

on
the transferred representations of the novel dataset, we propose
to interpolate features using a graph.

In details, we define a graph GT (V,E) [21] where vertices
matrix V ∈ R(sKn+Q)×h contains the stacked features of
labeled and unlabeled inputs [2]. To build the adjacency matrix
E ∈ R(sKn+Q)×(sKn+Q), we first compute:

S[i, j] =

{
cos(V[i, :],V[j, :]) ifi 6= j
0 otherwise

, (3)

where V[i, :] denotes the i-th row of V. Note that in all back-
bone architectures we use in the experiments, the penultimate
layers are obtained by applying a ReLU function, so that all
coefficients in V are nonnegative. As a result, coefficients in
S are nonnegative as well. Also, note that S is symmetric.

Then, we only keep the value S[i, j] if it is one of the k
largest values on the corresponding row or on the correspond-
ing column in S. So, as soon as k ≥ (sKn+Q−1), all values
are kept. Otherwise, S contains many 0s.

Finally, we apply normalization on the resulting matrix:

E = D−1/2SD−1/2, (4)

where D is the degree diagonal matrix defined as:

D[i, i] =
∑

j

S[i, j].

Therefore, the graph vertices represent all inputs (both labeled
and unlabeled) of the novel dataset. Its nonzero weights
are based on the cosine similarity between corresponding
transferred representations.
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We then apply feature propagation [23] to obtain new
features for each vertex. The formula is:

Vnew = (αI+E)κ︸ ︷︷ ︸
“diffusion matrix”

V, (5)

in which κ and α are both hyperparameters, and I is the
identity matrix. The role of κ is important: providing κ is
too small, the new feature of a vertex will only depend on its
direct neighbors in the graph. Using larger values of κ allows
to encompass for more indirect relationships. Using a too large
value of κ might drown out the information by averaging
over all inputs. Similarly, α allows to balance between the
neighbors representations and self-ones.

Logistic regression: Finally, a softmax classifier is trained
using only the labeled vertices. We denote by Vlabeled

new the
subset of Vnew corresponding to labeled vertices, then the
predicted results Ŷ can be written following this formula:

Ŷlabeled = softmax(Vlabeled
new Wn), (6)

where Vlabeled
new ∈ R(sKn)×h, Ŷ ∈ R(sKn)×Kn and Ŷ[i, j]

denotes the probability of vertex i being categorized as being
in the j-th class.

Prediction is performed using the same principle, but using
unlabeled inputs instead: denote by Vunlabeled

new the subset of
Vnew corresponding to unlabeled inputs, then we have the
decision:

Ŷunlabeled[i] = argmax
j

((Vunlabeled
new Wn)[i, j]). (7)

In Table I we summarize the main parameters and hyper-
parameters of the considered problem and proposed solution.
Let us point out that the proposed graph-based method does
not contain any parameter to train.

TABLE I
PARAMETERS AND HYPERPARAMETERS OF THE CONSIDERED PROBLEM

AND PROPOSED SOLUTION (# STANDS FOR “NUMBER”).

Novel dataset parameters
Kn # classes
s # supervised inputs per class
Q total # of unsupervised inputs
Proposed method hyperparameters

1 ≤ k < sKn +Q # nearest neighbors to keep
κ ∈ N∗ power of the diffusion matrix

0 ≤ α ≤ 1 strength of self-representations

IV. EXPERIMENTAL VALIDATION

A. Datasets

We perform our experiments on 3 standardized few-shot
classification datasets: miniImageNet [11], CUB [32] and
CIFAR-FS [16]. These datasets are split into two parts: a) Kb

classes are chosen to train the backbone, called base classes,
b) Kn classes are drawn uniformly in the remaining classes to
form the novel dataset, called novel classes. Among the Kn

drawn novel classes, s labeled inputs per class and a total of Q

unlabeled inputs are drawn uniformly at random. As in most
related works, unless mentioned otherwise all our experiments
are performed using Kn = 5 and Q/Kn = 15. We perform a
run of 10,000 random draws to obtain an accuracy score and
indicate confidence scores (95%) when relevant.

miniImageNet: It consists of a subset of ImageNet [33] that
contains 100 classes and 600 images of size 84×84 pixels per
class. According to the standard [10], we use 64 base classes
to train the backbone and 20 novel classes to draw the novel
datasets from. So, for each run, 5 classes are drawn uniformly
at random among these 20 classes.

CUB: The dataset contains 200 classes and has a total of
11,788 images of size 84×84 pixels. We split it into 100 base
classes to train the backbone and 50 novel classes to draw the
novel datasets from.

CIFAR-FS: This dataset has 100 classes, each class con-
tains 600 images of size 32 × 32 pixels. We use the same
numbers as for the miniImageNet dataset.

B. Backbone models and implementation details

We perform experiments using 2 different backbones as the
structure of feature extractor fϕ(x).

Wide residual networks (WRN) [34]: We follow the
settings in [6] by choosing a WRN with 28 convolutional
layers and a widening factor of 10. The output feature size
h is 640.

Residual networks (ResNet18) [35]: Our ResNet18 con-
tains a total of 18 convolutional layers grouped into 8 blocks.
Following the settings in [36], we remove the first two
down-sampling layers and change the kernel size of the first
convolutional layer to 3 × 3 pixels instead of 7 × 7 pixels.
Here, h = 512.

For the pre-training stage and miniImageNet, we train all
backbones for a total of 470 epochs from scratch using Adam
optimizer [37] and cross-entropy loss, including 400 epochs on
the first sub-stage and 70 epochs on the second sub-stage. For
the logistic regression, we train with the same optimizer and
loss function for 1000 epochs with learning rate being 1e− 3
and weight decay being 5e − 6, which typically requires of
the order of one second of computation on a modern GPU.
Note that we observed that convergence usually occurs much
quicker than 1000 epochs. In the In-Domain settings two
stages are trained on the same dataset with base classes and
novel classes respectively, while in the Cross-Domain settings
we use these splits from two different datasets (e.g. base
classes from miniImageNet and novel classes from CUB).

C. Comparison with state-of-the-art methods

As a first experiment, we compare the raw performance
of the proposed method with state-of-the-art solutions with
WRN and ResNet18 as backbones. The results are presented
in Table II. We fixed α, k and κ respectfully with s = 1 and
s = 5 for the proposed method, as it empirically gave the best
results. Note that the sensitivity of these hyperparameters is
discussed later in this section.
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We point out that the proposed method reaches state-of-the-
art performance in both case of 1-shot and 5-shot classification
for most of the time, whatever the choice of all considered
datasets. Note that the gain we observe is higher in the 1-shot
case than in the 5-shot case, this is expected as in the case
of 1-shot, the unlabeled samples bring proportionally more
information compared to the case of 5-shot. In the extreme
case of s-shot, with s large enough, we expect the unlabeled
samples to be almost useless.

We also perform experiments where the backbone has been
trained using the base classes of miniImageNet but the few-
shot task is performed using the novel classes of the CUB
dataset. According to the results, we can draw conclusions
very similar to the previous study, where the proposed method
performs well for this specific task.

D. Comparaison with other GNN methods

In this experiment we compare our performance on miniIm-
ageNet with others that use Graph Neural Network to address
the few-shot classification. As we can see in Table III, with a
three-stage training strategy, our proposed method has largely
surpassed the current GNN based methods that train an entire
model at once, given the transductive setting.

E. Importance of the parameter-free graph interpolation

In our work, we considered using a parameter-free graph
interpolation technique to diffuse features between inputs.
As mentioned in the related work section, there are many
alternatives, but they come with additional parameters. In the
next experiment, we compare the accuracy of the method when
using GCN [21] and GAT [22], instead of a simple interpola-
tion. Results are presented in Table IV. We note that the best
results are obtained using our designed graph interpolation,
which we believe to be due to the fact we use fewer parameters
in total. Graph interpolation also has the interest of being many
times faster to train. In our experiments, each run took about
0.65 seconds to train using graph interpolation versus 1.18
seconds for GCN and 22.42 seconds with GAT, which happens
to lead to the worst performance of our considered methods.

It is worth pointing out that a drawback of the proposed
method is that it requires to train a logistic regression model
each time a batch prediction is required. In other words, it can
be limiting in settings where predictions to make are streamed.
However, the time required to train the logistic regression
model remains very small in our experiments (less than one
second).

F. Influence of Parameters

We then inquire the importance of various parameters of the
task to the performance of the proposed method. We begin by
varying the number of supervised inputs s, and consider two
settings: one where we dispose of an average of Q/Kn = 5
unsupervised inputs for each class and one where we dispose
of Q/Kn = 100 of them. Results are depicted in Figure 2. As
we can see, the performance of the method is highly influenced
by the number of supervised inputs, as expected. Interestingly,

there is a significant gap in accuracy between Q/Kn = 5 and
Q/Kn = 100 for 1-shot setting, even if this gap diminishes
as the number of supervised inputs is increased.
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Fig. 2. Evolution of the accuracy of few-shot classification with miniImageNet
(backbone: WRN) as a function of the number of supervised inputs s, and
for various number of unsupervised queries q. We use α = 0.5, κ = 3 and
k = 10.

In the next experiment, we draw in Figure 3 the evolution of
the performance of the method as a function of the number of
unsupervised inputs Q, for 1-shot, 3-shot and 5-shot settings.
This curve confirms two observations: a) in the case of 5-shot
setting, the influence of the number of unsupervised inputs is
little, and the accuracy of the method quickly reaches its pick
and b) in the case of 1-shot setting, the number of unsupervised
inputs significantly influences accuracy up to a few dozens.
It is interesting to point out that about the same accuracy is
achieved for 5-shot using Q = 1 and 1-shot using Q = 100,
suggesting that 100 unsupervised inputs bring about the same
usable information as 4 labeled inputs per class.
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Fig. 3. Evolution of the accuracy of few-shot classification with miniImageNet
(backbone: WRN) as a function of the number of query inputs Q, and for
various number of unsupervised inputs s. We use α = 0.5, κ = 3 and
k = min(10, sKn +Q− 1).

In the next experiment we look at the influence of the
parameters κ and α which respectively control to which
power the diffusion matrix is taken and the importance of
self-representations. In Figure 4, we draw the obtained mean
accuracy as a function of κ, α and k. We use s = 1 and
Q/Kn = 15 in this experiment. There are multiple interesting
conclusions to draw from this figure.

1) This curve justifies the previously mentioned choice of
parameters, leading to the best performance.

2) We observe that when k is large and α is small, it
is better not to use powers of the diffusion matrix.
This is the only setting where this statement holds,
emphasizing the fact that if the graph is not sparse
and self-importance is low, powers of the diffusion
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TABLE II
1-SHOT AND 5-SHOT ACCURACY OF STATE-OF-THE-ART METHODS IN THE LITERATURE, COMPARED WITH THE PROPOSED SOLUTION. WE PRESENT

RESULTS USING WRN AND RESNET18 AS BACKBONES. FOR THE PROPOSED SOLUTION, WE USE THE HYPERPARAMETERS α = 0.5, k = 10 AND κ = 3
FOR s = 1; α = 0.75, k = 15 AND κ = 1 FOR s = 5.

miniImageNet
Method Backbone 1-shot 5-shot

MAML [8] ResNet18 49.61± 0.92% 65.72± 0.77%
Baseline++ [9] ResNet18 51.87± 0.77% 75.68± 0.63%
Matching Networks [11] ResNet18 52.91± 0.88% 68.88± 0.69%
ProtoNet [12] ResNet18 54.16± 0.82% 73.68± 0.65%
SimpleShot [36] ResNet18 63.10± 0.20% 79.92± 0.14%
S2M2 R [6] ResNet18 64.06± 0.18% 80.58± 0.12%
LaplacianShot [38] ResNet18 72.11± 0.19% 82.31± 0.14%
Transfer+Graph Interpolation (ours) ResNet18 72.40± 0.24% 82.89± 0.14%

ProtoNet [12] WRN 62.60± 0.20% 79.97± 0.14%
Matching Networks [11] WRN 64.03± 0.20% 76.32± 0.16%
S2M2 R [6] WRN 64.93± 0.18% 83.18± 0.11%
SimpleShot [36] WRN 65.87± 0.20% 82.09± 0.14%
SIB [39] WRN 70.00± 0.60% 79.20± 0.40%
BD-CSPN [40] WRN 70.31± 0.93% 81.89± 0.60%
LaplacianShot [38] WRN 74.86± 0.19% 84.13± 0.14%
Transfer+Graph Interpolation (ours) WRN 76.50± 0.23% 85.23± 0.13%

CUB
Method Backbone 1-shot 5-shot

S2M2 R [6] ResNet18 71.43± 0.28% 85.55± 0.52%
ProtoNet [12] ResNet18 72.99± 0.88% 86.64± 0.51%
Matching Networks [11] ResNet18 73.49± 0.89% 84.45± 0.58%
LaplacianShot [38] ResNet18 80.96% 88.68%
Transfer+Graph Interpolation (ours) ResNet18 86.05± 0.20% 90.87± 0.10%

S2M2 R [6] WRN 80.68± 0.81% 90.85± 0.44%
Transfer+Graph Interpolation (ours) WRN 88.35± 0.19% 92.14± 0.10%

miniImageNet−→CUB
Method Backbone 1-shot 5-shot

Baseline++ [9] ResNet18 40.44± 0.75% 56.64± 0.72%
SimpleShot [36] ResNet18 48.56% 65.63%
LaplacianShot [38] ResNet18 55.46% 66.33%
Transfer+Graph Interpolation (ours) ResNet18 51.67± 0.24% 69.83± 0.18%

Manifold Mixup [31] WRN 46.21± 0.77% 66.03± 0.71%
S2M2 R [6] WRN 48.24± 0.84% 70.44± 0.75%
Transfer+Graph Interpolation (ours) WRN 58.63± 0.25% 73.46± 0.17%

CIFAR-FS
Method Backbone 1-shot 5-shot

BD-CSPN [40] WRN 72.13± 1.01% 82.28± 0.69%
S2M2 R [6] WRN 74.81± 0.19% 87.47± 0.13%
SIB [39] WRN 80.00± 0.60% 85.30± 0.40%
Transfer+Graph Interpolation (ours) WRN 83.90± 0.22% 88.76± 0.15%

TABLE III
1-SHOT AND 5-SHOT PERFORMANCE (ON MINIIMAGENET) COMPARISON
WITH OTHER GNN BASED METHODS. IN OUR EXPERIMENT WE USE THE

SAME HYPERPARAMETERS AS TABLE II.

Method 1-shot 5-shot

GNN [2] 50.33± 0.36% 66.41± 0.63%
TPN [5] 55.51± 0.86% 69.86± 0.65%
wDAE-GNN [4] 61.07± 0.15% 76.75± 0.11%
Transfer+Graph Interpolation (ours) 76.50± 0.23% 85.23± 0.13%

matrix are likely to over-smooth the representations of
neighbors.

3) When k is small (here: k = 5 or k = 10), there is little

TABLE IV
1-SHOT AND 5-SHOT ACCURACY ON MINIIMAGENET, WHEN USING THE
WRN BACKBONE AND VARIOUS GRAPH NEURAL NETWORKS. WE USE
THE SAME HYPERPARAMETERS AS TABLE II AND APPLY THEM TO ALL

METHODS (WITH THE EXCEPTION OF κ FOR GCN AND GAT).

Method 1-shot 5-shot

Transfer+GAT 65.38± 0.89% 76.00± 0.67%
Transfer+GCN 75.88± 0.23% 84.51± 0.13%
Transfer+Graph Interpolation 76.47± 0.23% 85.23± 0.13%

*GAT is evaluated with 600 test runs.

sensitivity to both α and κ (for κ ≤ 3). This is an asset
as it makes it simpler to find good hyperparameters.
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4) The best results are achieved for smaller values of k,
suggesting that cosine similarity between distant rep-
resentations can be noisy and damaging to the perfor-
mance of the method.

5) Note that in this experiment s+Q/Kn = 16. So using
k = 15 would ideally select exactly 15 neighbors of the
same class for each input. Interestingly, this choice of
k does not lead to the best performance, showing the
graph structure is not perfectly aligned with classes.
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Fig. 4. Evolution of the accuracy of few-shot classification with miniImageNet
(backbone: WRN) as a function of κ, α and k.

It is often disregarded the impact of class imbalance in the
context of few-shot learning. As a matter of fact, since we
only consider very few labeled examples, it does not make
much sense to consider such a scenario. But in the context
of transductive setting, it is highly probable that unlabeled
inputs are imbalanced between classes. So we perform the
next experiment by varying the number of examples chosen
in two random classes from miniImageNet. We always make
sure that the total number of queries to classify remains the
same, that is 100. But we select q1 of them in class 1 and
100− q1 of them in class 2.

In Figure 5, we depict the evolution of the accuracy of
the proposed method, as a function of q1. As one can clearly
see from this figure, there is an important influence of class
imbalance towards the performance of the proposed method.
This is expected as the generated graphs will have imbalanced

communities as a consequence. This could be problematic to
some application domains where such imbalance is expected
to happen in considered datasets, as there is no direct way
of correcting it. Obviously, if one has insights about the
relative distribution between classes, simple data augmentation
or sampling could be used for mitigation.
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Fig. 5. Accuracy of 2-ways classification with unevenly distributed query data
for each class, where the total number of query inputs remains constant. When
q1 = 1, we obtain the most imbalanced case, whereas q1 = 50 corresponds
to a balanced case. We use α = 0.5, κ = 3 and k = 10.

However, this could be problematic to some application
domains where such imbalance is expected to happen in
considered datasets, as there is no direct way of correcting it.
Obviously, if one has insights about the relative distribution
between classes, simple data augmentation or sampling could
be used for balancing this negative effect.

Finally, in Figure 6, we draw a representation of a typical
graph obtained with the miniImageNet dataset, using Lapla-
cian embedding [41], [42]. On this figure, we colored vertices
depending on which class they belong to. Interestingly, this
figure shows that some classes are easily separated in the
graph, whereas others are much harder to discriminate. We
believe that the main reason why these graphs are not perfectly
segregating classes is because some dimensions obtained using
the backbone are specialized on features completely irrelevant
for the novel task.

Fig. 6. Visualisation of a graph obtained using miniImageNet. Colors repre-
sent various classes. Vertices are placed close if they share many connections.

V. CONCLUSION

In this paper we introduced a novel method to solve
the few-shot classification problem. It consists in combining
three steps: a pretrained transfer, a graph-based interpolation
technique and a logistic regression.

By performing experiments on standardized vision datasets,
we obtained state-of-the-art results, with the most important
gains in the case of 1-shot classification.
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Interestingly, the proposed method requires to tune few
hyperparameters, and these have a little impact on accuracy.
We thus believe that it is an applicable solution to many
practical problems.

There are still open questions to be addressed, such as the
case of imbalanced classes, or settings where prediction must
be performed on streaming data, one input at a time.
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(a) Before graph preprocessing (b) After graph preprocessing

Figure 28: Illustration of effects on preprocessing using graph on two clusters.

3.3 Discussions
Our proposed method is named “Transfer+Graph Interpolation”. It is able to
brought large increase in accuracy compared with selected baselines [Che+19a;
Wan+19b] and reached competitive performance among methods in the transductive
setting. This work has been cited and further extended by other works such
as [LSA21; LAP21] that study the use of graph in a similar way. In this section we
will address more details of our proposed method.

3.3.1 Rationale behind the use of graph

The rationale behind the use of graph neural networks can also be interpreted as
a way of filtering high frequencies in signals. In signal processing, filtering is an
operation that can be used to reduce the noise, with the reason being: if the signal
is believed to yield a low-spectrum Fourier transform, then removing the large
frequencies from it should remove mostly noise. In our paper, the graph we build
connects samples that are similar in latent space. By diffusing the corresponding
signals on this graph, we reduce the variation between samples that are connected,
and thus we remove high (graph-)frequencies. So the main idea of using graph
neural networks is to reduce the noise of each sample before classifying, which has
the effect of densifying the local distributions of data.

3.3.2 Improved filtering by graph

Following the same kind of idea, in [Ham+21] we proposed a method to reduce
intra-class variances by creating a graph per class. The proposed graph are used to
design filters that remove high frequencies of samples belonging to the same class
while keeping the expectation of the class prototype unchanged. Fig. 28 illustrates
the effect of graph preprocessing on the extracted features. We can observe that the
graph is able to reduce the cluster variance while keeping its prototype unchanged.

Compared with previously proposed Transfer+Graph Interpolation that applies
graph on all samples of different clusters, this method filter samples of the same
cluster, which reduces the confusion brought in by samples that do not belong to
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the expected class. As experiments in the paper show, the newly designed graph
gives slight improvement in the 5-shot setting.

3.3.3 Limitations

Using graphs to filter out noise is definitely not a novel idea, yet it demonstrated
consistent results in our experiments. A main drawback of the method is that it
requires to carefully design a graph to achieve the best accuracy gains. In the paper,
the construction of the graph comes with 3 dedicated hyperparameters, and their
tuning in practice may be difficult due to the absence of a validation set on the
considered few-shot task. This drawback is mitigated by the fact our experiments
show the tuning of hyperparameters is not very sensitive. In order to circumvent
this limitation, a possible solution would be to find the best hyperparameters using
proxy few-shot tasks, i.e. simulated few-shot tasks sampled from validation dataset.

Although the design of graph for processing features requires a lot of further
research, another place where we can seek improvement is the classifier design.
Given that in this paper we apply a logistic regression which is a discriminant
method that 1) only uses support set samples for parameter training, which could
potentially be improved by making use of samples in the query set as well; and 2)
works better in the case of abundant labeled samples. In our subsequent work we
look forward to propose an alternative approach based on clustering that attempts
to model classes in the form of cluster and then perform classification based on the
estimation of these clusters.



65 65

Chapter 4

Squeezing Backbone Feature
Distributions to the Max for Efficient
Few-Shot Learning

In this chapter we introduce a combination of two papers [HGP21b; HSS18]
contributing to the feature preprocessing and classifier design steps in the pipeline.
We present the general context and paper, then we discuss the contributions of our
proposed method as well as limitations and perspectives.

4.1 Context
In our previous work we mainly focus on a preprocessing method based on graphs,
followed by a logistic regression for classification. The preprocessing was mainly
thought of as a mean to remove noise in an attempt to benefit the final accuracy.

However, another aspect of feature preprocessing that is worth to address is how the
preprocessed features fit into the assumptions of a designed classifier. Given that
we often follow Gaussian assumptions in few-shot classification, a more adapted
preprocessing method could add extra benefit for the classifier. Unfortunately we
find little work that discusses this point throughout the course of our research, this
would be an interesting aspect for more further studies.

In addition, the design of the classifier is also a crucial part of the pipeline for
good performance. Especially for methods based on clustering, the goal is to
perform classification based on cluster estimations such as prototypes and covariance
matrix. On this aspect, previous works have proposed several classifiers. For
instance, in [Wan+19b] the authors use a Nearest Class Mean classifier that
computes prototypes by averaging the labeled samples belonging to the same
cluster. In [Ren+18; Bat+22] the authors apply a Soft-kmeans classifer that
estimates prototypes by computing the weighted average of cluster assignment
for all samples, where the class assignment for each sample is represented by
probabilities. Considering a shared isotropic covariance matrix for all clusters,
Soft-kmeans is able to reach competitive performance on transductive few-shot
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classification. Another approach proposed in [Lic+20] is based on Mean Shift
algorithm that estimates prototypes within a range of samples that are closed to
the current ones.

Given promising results of previous works based on clustering methods. We
seek further amelioration on the following two aspects: 1) feature distribution
alignment with the classifier, and 2) the design of the classifier. Namely, in this
work we introduce a two-step approach combining a preprocessing method aiming
at making the feature distribution more gaussian-like, and an optimized clustering
method using Optimal Transport (OT) meant to benefit from both support and
query samples, achieving the state-of-the-art accuracy on many transductive vision
few-shot classification benchmarks at the time it was published.

This work has been released in two successive papers: 1) [HGP21b]:

Leveraging the Feature Distribution in Transfer-Based Few-Shot Learn-
ing Hu, Y., Gripon, V. and Pateux, S., 2021, September. In International Conference
on Artificial Neural Networks (pp. 487-499). Springer, Cham.2021,

in which the code can be found at https://github.com/yhu01/PT-MAP; and
2) [HPG22a]:

Squeezing Backbone Feature Distributions to the Max for Efficient
Few-Shot Learning Hu, Y., Pateux, S. and Gripon, V., 2022. Algorithms, 15(5),
p.147.2022,

in which the code can be found at https://github.com/yhu01/BMS.

In the first paper, we focused on the case where the number of queries in each class
is known, and we propose an algorithm based on Optimal Transport in order for
an optimal cluster assignment on the targeted samples. Note that we integrate OT
into the Expectation Maximization framework so that the algorithm converges to
a stable estimation. In the second paper, we adapted the methodology so that it is
able to cope with settings where the distribution of query samples among classes
can be arbitrary. In both cases, the preprocessing method uses a combination of
Power Transform (PT) and sphering in order to reshape the feature distributions
to be close-to-gaussian. The reason why PT is useful is because features are
typically obtained after applying a rectified linear unit, which tends to produce
truncated distributions that are dense around 0+. Then sphering allows us to
focus on the angle rather than on the norm of obtained vectors. The proposed
clustering methods are based on Optimal Transport (OT) aiming at allocating
samples to classes with minimum cost while maximizing the posteriors. The first
paper introduces a method called “PT+MAP” that largely boosted the transductive
FSC performance in both 1 and 5 shot balanced settings. In [HPG22a] we proposed
a modified version of the OT algorithm (called “PEME+BMS”) that tries to limit
the effect of priors about the query set.

4.2 Paper on leveraging feature distributions for
maximum usage

https://github.com/yhu01/PT-MAP
https://github.com/yhu01/BMS
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Abstract: In many real-life problems, it is difficult to acquire or label large amounts of data, resulting
in so-called few-shot learning problems. However, few-shot classification is a challenging problem
due to the uncertainty caused by using few labeled samples. In the past few years, many methods
have been proposed with the common aim of transferring knowledge acquired on a previously
solved task, which is often achieved by using a pretrained feature extractor. As such, if the initial task
contains many labeled samples, it is possible to circumvent the limitations of few-shot learning. A
shortcoming of existing methods is that they often require priors about the data distribution, such as
the balance between considered classes. In this paper, we propose a novel transfer-based method
with a double aim: providing state-of-the-art performance, as reported on standardized datasets in
the field of few-shot learning, while not requiring such restrictive priors. Our methodology is able to
cope with both inductive cases, where prediction is performed on test samples independently from
each other, and transductive cases, where a joint (batch) prediction is performed.

Keywords: few-shot learning; inductive and transductive learning; transfer learning; optimal transport

1. Introduction

Thanks to their outstanding performance, deep learning methods have been widely
considered for vision tasks such as image classification and object detection. In order to
reach top performance, these systems are typically trained using very large labeled datasets
that are representative enough of the inputs to be processed afterward.

However, in many applications, it is costly to acquire or annotate data, resulting in the
impossibility of creating such large labeled datasets. Under this condition, it is challenging
to optimize deep learning architectures considering the fact they typically are made of way
more parameters than the dataset can efficiently tune. This is the reason why in the past
few years, few-shot learning (i.e., the problem of learning with few labeled examples) has
become a trending research subject in the field. In more detail, there are two settings that
authors often consider: (a) “inductive few-shot”, where only a few labeled samples are
available during training, and prediction is performed on each test input independently,
and (b) “transductive few-shot”, where prediction is performed on a batch of (non-labeled)
test inputs, allowing to take into account their joint distribution.

Few-shot learning is critical to many applications. To name a few, it has been con-
sidered for vision [1–3], audio [4–6], language [7–9], and medical imaging [10–12]. More
generally, few-shot learning can be used to provide proofs-of-concept while limiting the
costs of data labeling or to help in pseudo-annotation of datasets. This importance of the
problem of few-shot learning explains the abundant literature across the recent years.

Many works in the domain are built based on a “learning to learn” guidance, where
the pipeline is to train an optimizer [13–15] with different tasks of limited data so that the
model is able to learn generic experience for novel tasks. Namely, the model learns a set of
initialization parameters that are in an advantageous position for the model to adapt to a
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new (small) dataset. Recently, the trend evolved towards using well-thought-out feature
extractors, called backbones [1,2,16–19], that are trained one time on a large generic dataset
in order to produce easily classified feature vectors.

A main problem of the existing methods is that they typically require priors about
the data balance between considered classes to perform at their best [1,20]. These methods
could be patched to work efficiently under other regimes but would still require the knowl-
edge of data distribution between classes. In this work, we introduce a new methodology
with a double aim: 1—providing state-of-the-art performance, as reported using standard-
ized benchmarks in the field of few-shot learning, and 2—not requiring any priors about
data distribution among classes.

To achieve this goal, we introduce a novel methodology, summarized in Figure 1, that
combines feature preprocessing, self-distillation and an optimal transport-based framework.
The utility of these ingredients is demonstrated using ablation tests.
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Figure 1. Illustration of the proposed method. A feature extractor is trained using a generic dataset.
Obtained features on the few-shot dataset are then preprocessed using PEME (Power, Euclidian nor-
malization, Mean subtraction, Euclidean normalization) to better align with a Gaussian distribution.
They are then either directly fed to a classifier (inductive case), or processed through an optimal trans-
port inspired algorithm using self-distillation and Boosted Min-Size Sinkhorn (transductive case).

The outline of the paper is as follows. In Section 2, we introduce related work and
discuss the novelty of the proposed approach. In Section 3, we introduce the proposed
methodology. Section 4 contains several experiments and benchmark results, along with
corresponding discussions. Finally, Section 5 presents the conclusion.

2. Related Work

A large volume of works in few-shot classification is based on meta learning [15] meth-
ods, where the training data are transformed into few-shot learning episodes to better fit in
the context of a few examples. In this branch, optimization-based methods [13–15,21–23]
train a well-initialized optimizer so that it quickly adapts to unseen classes with a few
epochs of training. Other works [24,25] apply data augmentation techniques to artifi-
cially increase the size of the training data in order for the model to generalize better to
unseen data.

In the past few years, there has been a growing interest in transfer-based methods.
The main idea consists of training feature extractors able to efficiently segregate novel
classes it has never seen. For example, in [2,18], the authors train the backbone with a
distance-based classifier [26] that takes into account the inter-class distance. In [2], the
authors utilize self-supervised learning techniques [27] to co-train an extra rotation classifier
for the output features, improving the accuracy in few-shot settings. More recent works
adopt a two-stage training procedure [28–30] where the authors first batch-train a model,
then use episodic training to better adjust class prototypes. There are also methods that
train a model with a combination of different ingredients [31,32], e.g., distillation [33,34]
under a teacher-student framework to better find the nuances between samples. Aside
from approaches focused on training a more robust model, other approaches are built
on top of a pre-trained feature extractor (backbone). For instance, in [35], the authors
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implement a nearest class mean classifier to associate an input with a class whose centroid
is the closest in terms of the `2 distance. In [20], an iterative approach is used to adjust the
class prototypes. In [19], the authors build a graph neural network to gather the feature
information from similar samples. Generally, transfer-based techniques often reach the best
performance on standardized benchmarks.

Although many works involve feature extraction, few have explored the features in
terms of their distribution [2,36,37]. Often, assumptions are made that the features in a class
align to a certain distribution, even though these assumptions are seldom experimentally
discussed. In our work, we analyze the impact of the feature distributions and how they
can be transformed for better processing and accuracy. We also introduce a new algorithm
to improve the quality of the association between input features and corresponding classes
in typical few-shot settings.

Let us highlight the main contributions of this work. (1) We propose a novel pre-
processing method to be applied to raw extracted features in order to make them more
aligned with Gaussian assumptions. (2) We introduce a Wasserstein-based method to
better align the distribution of features with that of the considered classes and combine it
with self-distillation. (3) We show that the proposed method can bring a large increase in
accuracy with a variety of feature extractors and datasets, leading to state-of-the-art results
in the considered benchmarks. This work is an extended version of [1], with the main
difference that here we consider the broader case where we do not know the proportion of
samples belonging to each considered class in the case of a transductive few-shot, leading
to a new algorithm called the Boosted Min-size Sinkhorn. We also propose more efficient
preprocessing steps, leading to overall better performance in both inductive and transduc-
tive settings. Finally, we introduce the use of logistic regression with self-distillation in our
methodology instead of a simple nearest class mean classifier.

3. Materials and Methods

In this section, we introduce the problem statement. We also discuss the various steps
of the proposed method, including training the feature extractors, preprocessing the feature
representations, and classifying them. Note that we made the code of our method available
at https://github.com/yhu01/BMS (accessed on 1 February 2022).

3.1. Problem Statement

We consider a typical few-shot learning problem. Namely, we are given a base dataset
Dbase and a novel dataset Dnovel such that Dbase ∩Dnovel = ∅. Dbase contains a large number
of labeled examples from K different classes and can be used to train a generic feature
extractor. Dnovel , also referred to as a task or episode in other works, contains a small
number of labeled examples (support set S), along with some unlabeled ones (query set Q),
all from n new classes that are distinct from the K classes in Dbase. Our goal is to predict the
classes of unlabeled examples in the query set. The following parameters are of particular
importance to define such a few-shot problem: the number of classes in the novel dataset n
(called n-way), the number of labeled samples per class s (called s-shot) and the number of
unlabeled samples per class q. Therefore, the novel dataset contains a total of l + u samples,
where l = ns are labeled, and u = nq are unlabeled. In the case of an inductive few-shot,
the prediction is performed independently on each one of the query samples. In the case
of a transductive few-shot [20,38], the prediction is performed considering all unlabeled
samples together. Contrary to our previous work [1], we do not consider knowing the
proportion of samples in each class in the case of a transductive few-shot.

3.2. Feature Extraction

The first step is to train a neural network backbone model using only the base dataset.
In this work, we consider multiple backbones with various training procedures. Once
the considered backbone is trained, we obtain robust embeddings that should generalize
well to novel classes. We denote by fϕ the backbone function, obtained by extracting the
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output of the penultimate layer from the considered architecture, with ϕ being the trained
architecture parameters. Thus, considering an input vector x, fϕ(x) is a feature vector with
d dimensions that can be thought of as a simpler-to-manipulate representation of x. Note
that, importantly, in all backbone architectures used in the experiments of this work, the
penultimate layers are obtained by applying a ReLU function so that all feature components
coming out of fϕ are nonnegative.

3.3. Feature Preprocessing

As mentioned in Section 2, many works hypothesize, explicitly or not, that the features
from the same class are aligned with a specific distribution (often Gaussian-like). However,
this aspect is rarely experimentally verified. In fact, it is very likely that features obtained
using the backbone architecture are not Gaussian. Indeed, usually, the features are obtained
after applying a ReLU function [39] and exhibit a positive and yet skewed distribution
mostly concentrated around 0 (more details can be found in the next section).

Multiple works in the domain [20,35] discuss the different statistical methods (e.g.,
batch normalization) to better fit the features into a model. Although these methods may
have provable assets for some distributions, they could worsen the process if applied to
an unexpected input distribution. This is why we propose to preprocess the obtained raw
feature vectors so that they better align with typical distribution assumptions in the field.
Denote fϕ(x) = [ f 1

ϕ(x), . . . , f h
ϕ(x), . . . , f d

ϕ(x)] ∈ (R+)
d, x ∈ Dnovel as the obtained features

on Dnovel , and let f h
ϕ(x), 1 ≤ h ≤ d denote its value in the hth position. The preprocessing

methods applied in our proposed algorithms are as follows:
(E) Euclidean normalization. Also known as L2-normalization, which is widely used

in many related works [19,35,37], this step scales the features to the same area so that large
variance feature vectors do not predominate the others. Euclidean normalization can be
given by:

fϕ(x)←
fϕ(x)
‖ fϕ(x)‖2

(1)

(P) Power transform. The power transform method [1,40] simply consists of taking
the power of each feature vector coordinate. The formula is given by:

f h
ϕ(x)← ( f h

ϕ(x) + ε)β, β 6= 0 (2)

where ε = 1 × 10−6 is used to make sure that fϕ(x) + ε is strictly positive in every posi-
tion, and β is a hyper-parameter. The rationale of the preprocessing above is that power
transform, often used in combination with euclidean normalization, has the functionality
of reducing the skew of the distribution and mapping it to a close-to-Gaussian distribution,
adjusted by β. After experiments, we found that β = 0.5 gives the most consistent results
for our considered experiments, which corresponds to a square-root function that has a
wide range of usage on features [41]. We will analyze this ability and the effect of power
transform in more detail in Section 4. Note that power transform can only be applied if
considered feature vectors contain nonnegative entries, which will always be the case in
the remainder of this work.

(M) Mean subtraction. With mean subtraction, each sample is translated using m ∈
(R+)

d, the projection center. This is often used in combination with euclidean normalization
in order to reduce the task bias and better align the feature distributions [20]. The formula
is given by:

fϕ(x)← fϕ(x)−m (3)

The projection center is often computed as the mean values of feature vectors related
to the problem [20,35]. In this paper, we compute it either as the mean feature vector
of the base dataset (denoted as Mb) or the mean vector of the novel dataset (denoted as
Mn), depending on the few-shot settings. Of course, in both of these cases, the rationale
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is to consider a proxy to what would be the exact mean value of feature vectors on the
considered task.

In our proposed method, we deploy these preprocessing steps in the following order:
Power transform (P) on the raw features, followed by a Euclidean normalization (E). Then,
we perform mean subtraction (M) followed by another Euclidean normalization at the end.
The resulting abbreviation is PEME, in which M can be either Mb or Mn, as mentioned
above. In our experiments, we found that using Mb in the case of inductive few-shot
learning and Mn in the case of transductive few-shot learning consistently led to the most
competitive results. More details on why we used this methodology are available in the
experiment section.

When facing an inductive problem, a simple classifier such as a Nearest-Class-Mean
classifier (NCM) can be used directly after this preprocessing step. The resulting method-
ology is denoted PEMbE-NCM. However, in the case of transductive settings, we also
introduce an iterative procedure, denoted BMS for Boosted Min-size Sinkhorn, meant to
leverage the joint distribution of unlabeled samples. The resulting methodology is denoted
PEMnE-BMS. The details of the BMS procedure are presented thereafter.

3.4. Boosted Min-Size Sinkhorn

In the case of transductive few-shot, we introduce a method that consists of iteratively
refining estimates for the probability each unlabeled sample belongs to any of the consid-
ered classes. This method is largely based on the one we introduced in [1], except it does
not require priors about sample distributions in each of the considered classes. Denoting
i ∈ [1, . . . , l + u] as the sample index in Dnovel and j ∈ [1, . . . , n] as the class index, the goal
is to maximize the following log post-posterior function:

L(θ) = ∑
i

log P(l(xi) = j|xi; θ)

=∑
i

log
P(xi, l(xi) = j; θ)

P(xi; θ)

∝ ∑
i

log
P(xi|l(xi) = j; θ)

P(xi; θ)
,

(4)

Here, l(xi) denotes the class label for sample xi ∈ Q ∪ S, P(xi; θ) denotes the marginal
probability, and θ represents the model parameters to estimate. Assuming a Gaussian
distribution on the input features for each class, here we define θ = wj, ∀j where wj ∈ Rd

stand for the weight parameters for class j. We observe that Equation (4) can be related
to the cost function utilized in optimal transport [42], which is often considered to solve
classification problems, with constraints on the sample distribution over classes. To that
end, a well-known Sinkhorn [43] mapping method is proposed. The algorithm aims at
computing a class allocation matrix among novel class data for a minimum Wasserstein
distance. Namely, an allocation matrix P ∈ R(l+u)×n

+ is defined where P[i, j] denotes the
assigned portion for sample i to class j, and it is computed as follows:

P = Sinkhorn(C, p, q, λ)

= argmin
P̃∈U(p,q)

∑
ij

P̃[i, j]C[i, j] + λH(P̃), (5)

where U(p, q) ∈ R(l+u)×n
+ is a set of positive matrices for which the rows sum to p and the

columns sum to q, p denotes the distribution of the amount that each sample uses for class
allocation, and q denotes the distribution of the amount of samples allocated to each class.
Therefore, U(p, q) contains all the possible ways of allocation. In the same equation, C can
be viewed as a cost matrix that is of the same size as P, each element in C indicates the cost
of its corresponding position in P. We will define the particular formula of the cost function
for each position C[i, j], ∀i, j in details later on in the section. As for the second term on
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the right of (5), it stands for the entropy of P̃: H(P̃) = −∑ij P̃[i, j] log P̃[i, j], regularized
by a hyper-parameter λ. Increasing λ would force the entropy to become smaller, so
that the mapping is less diluted. This term also makes the objective function strictly
convex [43,44] and thus a practical and effective computation. From lemma 2 in [43], the
result of the Sinkhorn allocation has the typical form P = diag(u) · exp(−C/λ) · diag(v).
It is worth noting that here we assume a soft class allocation, meaning that each sample
can be “sliced” into different classes. We will present our proposed method in detail in the
following paragraphs.

Given all that is presented above, in this paper, we propose an Expectation–Maximization
(EM) [45] based method, which alternates between updating the allocation matrix P and
estimating the parameter θ of the designed model, in order to minimize Equation (5) and
maximize Equation (4). For a starter, we define a weight matrix W with n columns (i.e., one
per class) and d rows (i.e., one per dimension of feature vectors), and for column j in W, we
denote it as the weight parameters wj ∈ Rd for class j in correspondence with Equation (4).
It is initialized as follows:

wj = W[:, j] = cj/‖cj‖2, (6)

where
cj =

1
s ∑

x∈S,`(x)=j
fϕ(x). (7)

We can see that W contains the average of feature vectors in the support set for each
class, followed by a L2-normalization on each column so that ‖wj‖2 = 1, ∀j.

Then, we iterate multiple steps that we describe thereafter.

a Computing costs

As previously stated, the proposed algorithm is an EM-like one that iterately updates
model parameters for optimal estimates. Therefore, this step, along with Min-size Sinkhorn
presented in the next step, is considered as the E-step of our proposed method. The goal
is to find membership probabilities for the input samples; namely, we compute P that
minimizes Equation (5).

Here, we assume Gaussian distributions, and features in each class have the same vari-
ance and are independent from one another (covariance matrix Σ = Iσ2). We observe that,
ignoring the marginal probability, Equation (4) can be boiled down to negative L2 distances
between extracted samples fϕ(xi), ∀i and wj, ∀j, which is initialized in Equation (6) in our
proposed method. Therefore, based on the fact that wj and fϕ(xi) are both normalized to
be unit length vectors ( fϕ(xi) being preprocessed using PEME introduced in the previous
section), here we define the cost between sample i and class j to be the following equation:

C[i, j] ∝ ( fϕ(xi)−wj)
2

= 1−wT
j fϕ(xi),

(8)

which corresponds to the cosine distance.

b Min-size Sinkhorn

In [1], we proposed a Wasserstein distance-based method in which the Sinkhorn
algorithm is applied at each iteration so that the class prototypes are updated iteratively
in order to find their best estimates. Although the method showed promising results, it is
established on the condition that the distribution of the query set is known, e.g., a uniform
distribution among classes on the query set. This is not ideal, given the fact that any priors
about Q should be supposedly kept unknown when applying a method. The methodology
introduced in this paper can be seen as a generalization of that introduced in [1] that does
not require priors about Q.

In the classical settings, the Sinkhorn algorithm aims at finding the optimal matrix P,
given the cost matrix C and regulation parameter λ presented in Equation (4)). Typically, it
initiates P from a softmax operation over the rows in C, then it iterates between normalizing
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columns and rows of P, until the resulting matrix becomes close to doubly stochastic
according to p and q. However, in our case, we do not know the distribution of samples
over classes. To address this, we firstly introduce the parameter k, initialized so that k← s,
meant to track an estimate of the cardinal of the class containing the least number of samples
in the considered task. Then, we propose the following modification to be applied to the
matrix P once initialized: we normalize each row as in the classical case but only normalize
the columns of P for which the sum is less than the previously computed min-size k [20].
This ensures at least k elements are allocated for each class, but not exactly k samples as in
the balanced case.

The principle of this modified Sinkhorn solution is presented in Algorithm 1.

Algorithm 1 Min-size Sinkhorn

Inputs: C, p = 1l+u, q = k1n, λ
Initializations: P = So f tmax(−λC)
for iter = 1 to 50 do

P[i, :]← p[i] · P[i,:]
∑j P[i,j] , ∀i

P[:, j]← q[j] · P[:,j]
∑i P[i,j] if ∑i P[i, j] < q[j], ∀j

end for
return P

c Updating weights

This step is considered as the M-step of the proposed algorithm, in which we use a
variant of the logistic regression algorithm in order to find the model parameter θ in the
form of weight parameters wj for each class. Note that wj, if normalized, is equivalent to
the prototype for class j in this case. Given the fact that in Equation (4), we also take into
account the marginal probability, it can be further broken down as:

P(xi; θ) = ∑
j

P(xi|l(xi) = j; θ)P(l(xi) = j), (9)

We observe that Equation (4) corresponds to applying a softmax function on the
negative logits computed through an L2-distance function between samples and class
prototypes (normalized). This fits the formulation of a linear hypothesis between fϕ(xi)
and wj for logit calculations, hence the rationale for utilizing logistic regression in our
proposed method. Note that contrary to classical logistical regression, we implement here
a form of self-distillation. Indeed, we use soft labels contained in P instead of one-hot class
indicator targets, and these targets are refined iteratively.

The procedure of this step is as follows: now that we have a polished allocation matrix
P, we firstly initialize the weights wj as follows:

wj ← uj/‖uj‖2, (10)

where
uj ←∑

i
P[i, j] fϕ(xi)/ ∑

i
P[i, j]. (11)

We can see that elements in P are used as coefficients for feature vectors to linearly
adjust the class prototypes [1]. Similar to Equation (6), here wj is the normalized newly-
computed class prototype that is a vector of length 1.

Next, we further adjust weights by applying a logistic regression, and the optimization
is performed by minimizing the following loss:

1
l + u

·∑
i

∑
j
− log(

exp (S[i, j])
∑n

γ=1 exp (S[i, γ])
) · P[i, j], (12)
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where S ∈ R(l+u)×n contains the logits, and each element is computed as:

S[i, j] = κ ·
wT

j fϕ(xi)

‖wj‖2
. (13)

Note that κ is a scaling parameter, it can also be seen as a temperature parameter that
adjusts the confidence metric to be associated with each sample. It is learnt jointly with W.

The deployed logistic regression comes with hyperparameters on its own. In our
experiments, we use an SGD optimizer with a gradient step of 0.1 and 0.8 as the momentum
parameter, and we train over e epochs. Here, we point out that e ≥ 0 is considered an
influential hyperparameter in our proposed algorithm, e = 0 indicates a simple update
of W as the normalized adjusted class prototypes (Equation (10)) computed from P in
Equation (11), without further adjustment of logistic regression. In addition, note that
when e > 0, we project columns of W to the unit hypersphere at the end of each epoch.

d Estimating the class minimum size

We can now refine our estimate for the min-size k for the next iteration. To this end,
we firstly compute the predicted label of each sample as follows:

ˆ̀(xi) = arg max
j

(P[i, j]), (14)

which can be seen as the current (temporary) class prediction.
Then, we compute:

k = min
j
{k j}, (15)

where k j = #{i, ˆ̀(xi) = j}, #{·} representing the cardinal of a set.
Summary of the proposed method: all steps of the proposed method are summarized

in Algorithm 2. In our experiments, we also report the results obtained when using a
prior about Q as in [1]. In this case, k does not have to be estimated throughout the
iterations and can be replaced with the actual exact targets for the Sinkhorn. We denote
this prior-dependent version PEMnE-BMS* (with an added ∗).

Algorithm 2 Boosted Min-size Sinkhorn (BMS)

Parameters: λ, e
Inputs: Preprocessed fϕ(x), ∀x ∈ Dnovel = Q ∪ S
Initializations: W as normalized mean vectors over the support set for each class
(Equation (6)); Min-size k← s.
for iter = 1 to 20 do

Compute cost matrix C using W (Equation (8)). # E-step
Apply Min-size Sinkhorn to compute P (Algorithm 1). # E-step
Update weights W using P with logistic regression (Equations (10)–(13)). # M-step
Estimate class predictions ˆ̀ and min-size k using P (Equations (14) and (15)).

end for
return ˆ̀

3.5. Implementation Details

In order to stress the genericity of our proposed method with regards to the chosen
backbone architecture and training strategy, we perform experiments using WRN [46], ResNet18
and ResNet12 [47], along with some other pretrained backbones (e.g., DenseNet [35,48]). For
each dataset, we train the feature extractor with base classes and test the performance using
novel classes. Therefore, for each test run, n classes are drawn uniformly at random among
novel classes. Among these n classes, s labeled examples and q unlabeled examples per
class are uniformly drawn at random to form Dnovel . The WRN and ResNet are trained
following [2]. In the inductive setting, we use our proposed preprocessing steps PEMbE
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followed by a basic Nearest Class Mean (NCM) classifier. In the transductive setting, the
preprocessing steps are denoted as PEMnE in that we use the mean vector of a novel dataset
for mean subtraction, followed by BMS or BMS* depending on whether we have prior
knowledge onf the distribution of query set Q among classes. Note that we perform a
QR decomposition on preprocessed features in order to speed up the computation for the
classifier that follows. All our experiments are performed using n = 5, q = 15, s = 1 or 5.
In our experiments, we perform 10,000 random runs to obtain the mean accuracy score and
indicate confidence scores (95%) when relevant. For our proposed PEMnE-BMS, we train
e = 0 epoch in the case of 1-shot and e = 40 epochs in the case of 5-shot. As for PEMnE-
BMS*, we set e = 20 for 1-shot and e = 40 for 5-shot. As for the regularization parameter
λ in Equation (5), it is fixed to 8.5 for all settings. The impact of these hyperparameters is
detailed in the next sections.

4. Results and Discussions
4.1. Comparison with State-of-the-Art Methods

Performance on standardized benchmarks: in the first experiment, we conduct our
proposed method on different benchmarks and compare the performance with other state-
of-the-art solutions. The results are presented in Tables 1 and 2, and we observe that
our method reaches the state-of-the-art performance in both inductive and transductive
settings on all the few-shot classification benchmarks. Particularly, the proposed PEMnE-
BMS* brings important gains in both 1-shot and 5-shot settings, and the prior-independent
PEMnE-BMS also obtains competitive results on 5-shot. Note that for tieredImageNet
we implement our method based on a pre-trained DenseNet121 backbone following the
procedure described in [35]. From these experiments, we conclude that the proposed
method can bring an increase in accuracy with a variety of backbones and datasets, leading
to a state-of-the-art performance. In terms of execution time, we measured an average of
0.004 s per run. These results confirm the ability of the proposed methodology to reach state-
of-the-art performance using the standardized benchmarks of the field of few-shot learning.

Table 1. The 1-shot and 5-shot accuracy of state-of-the-art methods in the literature on miniImageNet
and tieredImageNet, compared with the proposed solution. Best results are in bold.

miniImageNet
Setting Method Backbone 1-Shot 5-Shot

Inductive

Matching Networks [49] WRN 64.03± 0.20% 76.32± 0.16%
SimpleShot [35] DenseNet121 64.29± 0.20% 81.50± 0.14%
S2M2_R [2] WRN 64.93± 0.18% 83.18± 0.11%
PT + NCM [1] WRN 65.35± 0.20% 83.87± 0.13%
DeepEMD[29] ResNet12 65.91± 0.82% 82.41± 0.56%
FEAT[28] ResNet12 66.78± 0.20% 82.05± 0.14%
PEMbE-NCM (ours) WRN 68.43± 0.20% 84.67± 0.13%

Transductive

BD-CSPN [50] WRN 70.31± 0.93% 81.89± 0.60%
LaplacianShot [51] DenseNet121 75.57± 0.19% 87.72± 0.13%
Transfer + SGC [19] WRN 76.47± 0.23% 85.23± 0.13%
TAFSSL [20] DenseNet121 77.06± 0.26% 84.99± 0.14%
TIM-GD [52] WRN 77.80% 87.40%
MCT [53] ResNet12 78.55± 0.86% 86.03± 0.42%
EPNet [54] WRN 79.22± 0.92% 88.05± 0.51%
PT + MAP [1] WRN 82.92± 0.26% 88.82± 0.13%
PEMnE-BMS (ours) WRN 82.07± 0.25% 89.51± 0.13%
PEMnE-BMS* (ours) WRN 83.35± 0.25% 89.53± 0.13%
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Table 1. Cont.

tieredImageNet
Setting Method Backbone 1-Shot 5-Shot

Inductive

ProtoNet [55] ConvNet4 53.31± 0.89% 72.69± 0.74%
LEO [56] WRN 66.33± 0.05% 81.44± 0.09%
SimpleShot [35] DenseNet121 71.32± 0.22% 86.66± 0.15%
PT + NCM [1] DenseNet121 69.96± 0.22% 86.45± 0.15%
FEAT[28] ResNet12 70.80± 0.23% 84.79± 0.16%
DeepEMD[29] ResNet12 71.16± 0.87% 86.03± 0.58%
RENet[30] ResNet12 71.61± 0.51% 85.28± 0.35%
PEMbE-NCM (ours) DenseNet121 71.86± 0.21% 87.09± 0.15%

Transductive

BD-CSPN [50] WRN 78.74± 0.95% 86.92± 0.63%
LaplacianShot [51] DenseNet121 80.30± 0.22% 87.93± 0.15%
MCT [53] ResNet12 82.32± 0.81% 87.36± 0.50%
TIM-GD [52] WRN 82.10% 89.80%
TAFSSL [20] DenseNet121 84.29± 0.25% 89.31± 0.15%
PT + MAP [1] DenseNet121 85.75± 0.26% 90.43± 0.14%
PEMnE-BMS (ours) DenseNet121 85.08± 0.25% 91.08± 0.14%
PEMnE-BMS* (ours) DenseNet121 86.07± 0.25% 91.09± 0.14%

Table 2. The 1-shot and 5-shot accuracy of state-of-the-art methods on CUB and CIFAR-FS. Best
results are in bold.

CUB
Setting Method Backbone 1-Shot 5-Shot

Inductive

Baseline++ [18] ResNet10 69.55± 0.89% 85.17± 0.50%
MAML [13] ResNet10 70.32± 0.99% 80.93± 0.71%
ProtoNet [55] ResNet18 72.99± 0.88% 86.64± 0.51%
Matching Networks [49] ResNet18 73.49± 0.89% 84.45± 0.58%
FEAT[28] ResNet12 73.27± 0.22% 85.77± 0.14%
DeepEMD[29] ResNet12 75.65± 0.83% 88.69± 0.50%
RENet[30] ResNet12 79.49± 0.44% 91.11± 0.24%
S2M2_R [2] WRN 80.68± 0.81% 90.85± 0.44%
PT + NCM [1] WRN 80.57± 0.20% 91.15± 0.10%
PEMbE-NCM (ours) WRN 80.82± 0.19% 91.46± 0.10%

Transductive

LaplacianShot [51] ResNet18 80.96% 88.68%
TIM-GD [52] ResNet18 82.20% 90.80%
BD-CSPN [50] WRN 87.45% 91.74%
Transfer + SGC [19] WRN 88.35± 0.19% 92.14± 0.10%
PT + MAP [1] WRN 91.55± 0.19% 93.99± 0.10%
LST + MAP [57] WRN 91.68± 0.19% 94.09± 0.10%
PEMnE-BMS (ours) WRN 91.01± 0.19% 94.60± 0.09%
PEMnE-BMS* (ours) WRN 91.91± 0.18% 94.62± 0.09%

CIFAR-FS
Setting Method Backbone 1-Shot 5-Shot

Inductive

ProtoNet [55] ConvNet64 55.50± 0.70% 72.00± 0.60%
MAML [13] ConvNet32 58.90± 1.90% 71.50± 1.00%
RENet[30] ResNet12 74.51± 0.46% 86.60± 0.32%
BD-CSPN [50] WRN 72.13± 1.01% 82.28± 0.69%
S2M2_R [2] WRN 74.81± 0.19% 87.47± 0.13%
PT + NCM [1] WRN 74.64± 0.21% 87.64± 0.15%
PEMbE-NCM (ours) WRN 74.84± 0.21% 87.73± 0.15%
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Table 2. Cont.

CIFAR-FS
Setting Method Backbone 1-Shot 5-Shot

Transductive

DSN-MR [58] ResNet12 78.00± 0.90% 87.30± 0.60%
Transfer + SGC [19] WRN 83.90± 0.22% 88.76± 0.15%
MCT [53] ResNet12 87.28± 0.70% 90.50± 0.43%
PT + MAP [1] WRN 87.69± 0.23% 90.68± 0.15%
LST + MAP [57] WRN 87.79± 0.23% 90.73± 0.15%
PEMnE-BMS (ours) WRN 86.93± 0.23% 91.18± 0.15%
PEMnE-BMS* (ours) WRN 87.83± 0.22% 91.20± 0.15%

Performance on cross-domain settings: in this experiment, we test our method in a
cross-domain setting, where the backbone is trained with the base classes in miniImageNet
but tested with the novel classes in the CUB dataset. As shown in Table 3, the proposed
method gives the best accuracy both in the case of 1-shot and 5-shot, for both inductive and
transductive settings. The ability of the proposed methodology to leverage feature vectors
trained on a different dataset points out that its efficacy is not restricted to constrained
settings where data distribution between the base and novel have to be identical.

Table 3. The 1-shot and 5-shot accuracy of state-of-the-art methods when performing cross-domain
classification (backbone: WRN). Best results are in bold.

Setting Method 1-Shot 5-Shot

Inductive

Baseline++ [18] 40.44± 0.75% 56.64± 0.72%
Manifold Mixup [59] 46.21± 0.77% 66.03± 0.71%
S2M2_R [2] 48.24± 0.84% 70.44± 0.75%
PT + NCM [1] 48.37± 0.19% 70.22± 0.17%
PEMbE-NCM (ours) 50.71± 0.19% 73.15± 0.16%

Transductive

LaplacianShot [51] 55.46% 66.33%
Transfer + SGC [19] 58.63± 0.25% 73.46± 0.17%
PT + MAP [1] 63.17± 0.31% 76.43± 0.19%
PEMnE-BMS (ours) 62.93± 0.28% 79.10± 0.18%
PEMnE-BMS* (ours) 63.90± 0.31% 79.15± 0.18%

4.2. Ablation Studies

Ablation study on the proposed method: in this section, we have a closer look at
the impact of our proposed methodology steps. The idea is to better understand the
contribution of each step to the final performance. Namely, we conduct an ablation study
on the prediction accuracy with or without (1) PEME, which is the proposed preprocessing
steps on extracted raw features, and (2) proposed Boosted Min-sized Sinkhorn algorithm
that integrates self-distillation for refined prototypes. Note that in the case of BMS*, the
algorithm is equivalent to MAP presented in [1] without the newly proposed self-distillation
method. In Table 4, we can see that both PEME and self-distillation play an important role
in improving the prediction performance. As such, this experiment supports the interest of
both steps to reach the best possible accuracy.
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Table 4. Ablation study on our proposed PEME and BMS* with self-distillation on miniImageNet
(backbone: WRN). Best results are in bold.

BMS* Accuracy
w/PEME w/Self-Distillation 1-Shot 5-Shot

75.60± 0.29% 84.13± 0.16%

X 82.92± 0.26% 88.82± 0.13%

X 80.19± 0.27% 87.40± 0.13%

X X 83.35± 0.25% 89.53± 0.13%

Generalization to backbone architectures. To further stress the interest of the ingre-
dients inn the proposed method reaching top performance, in Table 5 we investigate the
impact of our proposed method on different backbone architectures and benchmarks in
the transductive setting. For comparison purposes, we also replace our proposed BMS
algorithm with a standard K-Means algorithm where class prototypes are initialized with
the available labeled samples for each class. We can observe that: (1) the proposed method
consistently achieves the best results for any fixed backbone architecture, (2) the feature
extractor trained on WRN outperforms the others with our proposed method on different
benchmarks, (3) there are significant drops in accuracy with k-means, which stresses the
interest of BMS, and (4) the prior on Q (BMS vs. BMS*) is of major interest for 1-shot, boost-
ing the performance by an approximation of 1% on all tested feature extractors. Overall,
these experiments demonstrate the interest of the proposed methodology with respect to
existing alternatives.

Table 5. The 1-shot and 5-shot accuracy of the proposed method on different backbones and bench-
marks. Comparison with the k-means algorithm. Best results are in bold.

miniImageNet CUB CIFAR-FS
Method Backbone 1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

K-MEANS
ResNet12 72.73± 0.23% 84.05± 0.14% 87.35± 0.19% 92.31± 0.10% 78.39± 0.24% 85.73± 0.16%
ResNet18 73.08± 0.22% 84.67± 0.14% 87.16± 0.19% 91.97± 0.09% 79.95± 0.23% 86.74± 0.16%

WRN 76.67± 0.22% 86.73± 0.13% 88.28± 0.19% 92.37± 0.10% 83.69± 0.22% 89.19± 0.15%

BMS (ours)
ResNet12 77.62± 0.28% 86.95± 0.15% 90.14± 0.19% 94.30± 0.10% 81.65± 0.25% 88.38± 0.16%
ResNet18 79.30± 0.27% 87.94± 0.14% 90.50± 0.19% 94.29± 0.09% 84.16± 0.24% 89.39± 0.15%

WRN 82.07± 0.25% 89.51± 0.13% 91.01± 0.18% 94.60± 0.09% 86.93± 0.23% 91.18± 0.15%

BMS* (ours)
ResNet12 79.03± 0.28% 87.01± 0.15% 91.34± 0.19% 94.32± 0.09% 82.87± 0.27% 88.43± 0.16%
ResNet18 80.56± 0.27% 87.98± 0.14% 91.39± 0.19% 94.31± 0.09% 85.17± 0.25% 89.42± 0.16%

WRN 83.35± 0.25% 89.53± 0.13% 91.91± 0.18% 94.62± 0.09% 87.83± 0.22% 91.20± 0.15%

Preprocessing impact: in Table 6, we compare our proposed feature preprocessing
PEME with other preprocessing techniques such as batch normalization, which standard-
izes extracted feature values into [0, 1] for a considered task, along with other ones being
used in [35]. The experiment is conducted on miniImageNet (backbone: WRN). For all that
is put into comparison, we run either an NCM classifier or BMS after preprocessing, de-
pending on the settings. The obtained results clearly show the interest of PEME compared
with existing alternatives, and we also observe that the power transform helps increase the
accuracy on both inductive and transductive settings.
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Table 6. Comparison of 1-shot and 5-shot accuracy on miniImageNet (backbone: WRN) when using
various preprocessing steps on the extracted features. Best results are in bold.

Inductive (NCM) Transductive (BMS)
Preprocessing 1-Shot 5-Shot 1-Shot 5-Shot

None 55.30± 0.21% 78.34± 0.15% 77.62± 0.26% 87.96± 0.13%
Batch Norm [60] 66.81± 0.20% 83.57± 0.13% 73.74± 0.21% 88.07± 0.13%

L2N [35] 65.37± 0.20% 83.46± 0.13% 73.84± 0.21% 88.15± 0.13%
CL2N [35] 63.88± 0.20% 80.85± 0.14% 73.12± 0.28% 86.47± 0.15%

EMbE 68.05± 0.20% 83.76± 0.13% 80.28± 0.26% 88.36± 0.13%
PEMbE 68.43± 0.20% 84.67± 0.13% 82.01± 0.26% 89.50± 0.13%
EMnE \ \ 80.14± 0.27% 88.39± 0.13%

PEMnE \ \ 82.07± 0.25% 89.51± 0.13%

Effect of power transform: we firstly conduct a Gaussian hypothesis test on each of
the 640 coordinates of raw extracted features (backbone: WRN) for each of the 20 novel
classes (dataset: miniImageNet). Following D’Agostino and Pearson’s methodology [61,62]
and p = 1e− 3, only one of the 640× 20 = 12800 tests return positive, suggesting a very
low pass rate for raw features. However, after applying the power transform, we record
a pass rate that surpasses 50%, suggesting a considerably increased number of positive
results for Gaussian tests. This experiment shows the effect of power transform being able
to adjust feature distributions into more Gaussian-like ones.

To better show the effect of this proposed technique on feature distributions, we
depict in Figure 2 the distributions of an arbitrarily selected feature for three randomly
selected novel classes of miniImageNet when using WRN, before and after applying the
power transform. In addition, we also added to the figure the feature distributions after
applying batch normalization for comparison purposes. We observe quite clearly that
(1) raw features exhibit a positive distribution mostly concentrated around 0, a similar
behavior is also observed for batch norm, and (2) power transform is able to reshape the
feature distributions to close-to-Gaussian distributions. We observe similar behaviors with
other datasets as well. Moreover, in order to visualize the impact of this technique with
respect to the position of feature points, in Figure 3, we plot the feature vectors of three
randomly selected classes from Dnovel . Note that all feature vectors in this experiment are
reduced to 3-dimensional ones corresponding to their largest eigenvalues. From Figure 3,
we can observe that the power transform, often followed by an L2-normalization, can help
shape the class distributions to become more gathered and Gaussian-like [57].

Influence of the number of unlabeled samples: in order to better understand the
gain in accuracy due to having access to more unlabeled samples, we depict in Figure 4
the evolution of accuracy as a function of q, when the number of classes n = 5 is fixed.
Interestingly, the accuracy quickly reaches a close-to-asymptotical plateau, emphasizing
the ability of the method to quickly exploit available information in the task.
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Figure 2. Distributions of an arbitrarily chosen feature for 3 novel classes with different preprocessing
techniques: raw (left), batch norm (middle) and power transform (right).
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Figure 3. Plot of feature vectors (extracted from WRN) from 3 randomly selected classes (each with
its own color). (left) Naive features. (right) Preprocessed features using power transform.
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Figure 4. Accuracy of 5-way, 1-shot classification setting on miniImageNet, CUB and CIFAR-FS as a
function of q.

Influence of hyperparameters: in order to test how much impact the hyperparameters
could have on our proposed method in terms of prediction accuracy, here we select two
important hyperparameters that are used in BMS and observe their impact. Namely, the
number of training epochs e in logistic regression and the regulation parameter λ used for
computing the prediction matrix P. In Figure 5, we show the accuracy of our proposed
method as a function of e (top) and λ (bottom). Results are reported for BMS* in 1-shot
settings, and for BMS in 5-shot settings. From the figure, we can see a slight uptick of
accuracy as e or λ increase, followed by a downhill when they become larger, implying
an overfitting of the classifier. We chose our optimal parameters from these experiments.
We note that, interestingly, the performance of the method appears quite robust to a non-
optimal choice of these parameters.
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Figure 5. Cont.
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Figure 5. Accuracy of the proposed method on miniImageNet (backbone: WRN) as a function of
training epoch e (top) and regulation parameter λ (bottom).

Convergence analysis: in this section, we discuss the convergence of the proposed
method in Algorithm 2, namely the convergence of P as a function of the number of iteration
step noted nstep. We conduct this experiment in a 5-way, 1-shot setting on miniImageNet
(backbone: WRN). In Figure 6 (left), we depict ‖∆P‖2 as a function of nstep, with ‖∆P‖2
being defined as ‖P(t+ 1)−P(t)‖2, 1 ≤ t ≤ nstep, namely the Euclidean difference between
the current P and the one computed in the previous step. Furthermore, we remind the
reader that the goal of the proposed algorithm is to minimize the energy computed in
Equation (5). Therefore, in Figure 6 (right), we depict the energy (value of Equation (5))
as a function of nstep. We can see that both ‖∆P‖2 and energy tend to stabilize with more
iteration steps.
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Figure 6. Convergence of BMS (1-shot on miniImagenet). (left) ‖∆P‖2 as a function of nstep. (right) En-
ergy (1-shot on miniImagenet) as a function of nstep.

Proposed method on backbones pre-trained with external data: in this experiment, we
compare our proposed method BMS* with the work in [63] that pre-trains the backbone
with the help of external illumination data for augmentation, followed by PT + MAP in [1]
for class center estimation. Here, we use the same backbones as [63] and replace PT + MAP
with our proposed BMS* under the same conditions. Results are presented in Table 7. Note
that we also show the re-implemented results of [63], and our method reaches superior
performance on all tested benchmarks using external data in [63].

Table 7. The proposed method on backbones pre-trained with external data. Note that -re denotes
the re-implementation of an existing method. Best results are in bold.

Benchmark Method 1-Shot 5-Shot

miniImageNet
Illu-Aug [63] 82.99± 0.23% 89.14± 0.12%
Illu-Aug-re 83.53± 0.25% 89.38± 0.12%
PEMnE-BMS* (ours) 83.85± 0.25% 90.07± 0.12%

CUB
Illu-Aug [63] 94.73± 0.14% 96.28± 0.08%
Illu-Aug-re 94.63± 0.15% 96.06± 0.08%
PEMnE-BMS* (ours) 94.78± 0.15% 96.43± 0.07%

CIFAR-FS
Illu-Aug [63] 87.73± 0.22% 91.09± 0.15%
Illu-Aug-re 87.76± 0.23% 91.04± 0.15%
PEMnE-BMS* (ours) 87.83± 0.23% 91.49± 0.15%
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Proposed method on Few-Shot Open-Set Recognition: Few-Shot Open-Set Recogni-
tion (FSOR) as a new trending topic deals with the fact that there are open data mixed in
query set Q that do not belong to any of the supposed classes used for label predictions.
Therefore, this often requires a robust classifier that is able to correctly classify the non-open
data as well as rejecting the open ones. In Table 8, we apply our proposed PEME for
feature preprocessing, followed by an NCM classifier and compare the results with other
state-of-the-art alternatives. We observe that our proposed method is able to surpass the
others in terms of accuracy and AUROC.

Table 8. Accuracy and AUROC of the proposed method for Few-Shot Open-Set Recognition. Best
results are in bold.

miniImageNet tieredImageNet
1-Shot 5-Shot 1-Shot 5-Shot

Method Acc AUROC Acc AUROC Acc AUROC Acc AUROC

ProtoNet [55] 64.01% 51.81% 80.09% 60.39% 68.26% 60.73% 83.40% 64.96%
FEAT [28] 67.02% 57.01% 82.02% 63.18% 70.52% 63.54% 84.74% 70.74%
NN [64] 63.82% 56.96% 80.12% 63.43% 67.73% 62.70% 83.43% 69.77%

OpenMax [65] 63.69% 62.64% 80.56% 62.27% 68.28% 60.13% 83.48% 65.51%
PEELER [66] 65.86% 60.57% 80.61% 67.35% 69.51% 65.20% 84.10% 73.27%

SnaTCHer [67] 67.60% 70.17% 82.36% 77.42% 70.85% 74.95% 85.23% 82.03%
PEMbE-NCM (ours) 68.43% 72.10% 84.67% 80.04% 71.87% 75.44% 87.09% 83.85%

4.3. Proposed Method on Merged Features

In this section, we investigate the effect of our proposed method on merged features.
Namely, we perform a direct concatenation of raw feature vectors extracted from multiple
backbones at the beginning, followed by BMS. In Table 9, we chose the feature vectors
from three backbones (WRN, ResNet18 and ResNet12) and evaluated the performance
with different combinations. We observe that (1) a direct concatenation, depending on the
backbones, can bring about 1% gain in both 1-shot and 5-shot settings compared with the
results in Table 5 with feature vectors extracted from one single feature extractor. (2) BMS*
reached new state-of-the-art results on few-shot learning benchmarks with feature vectors
concatenated from WRN, ResNet18 and ResNet12, given that no external data are used.

Table 9. The 1-shot and 5-shot accuracy on miniImageNet, CUB and CIFAR-FS on our proposed
PEMnE-BMS with multi-backbones (backbone training procedure follows [2], ’+’ denotes a concate-
nation of backbone features).

miniImageNet CUB CIFAR-FS
Backbone 1-Shot 5-Shot 1-Shot 5-Shot 1-Shot 5-Shot

RN18 + RN12 80.32% 89.07% 92.31% 95.62% 85.44% 90.58%
WRN + RN12 82.63% 90.43% 92.69% 95.96% 87.11% 91.50%
WRN + RN18 83.05% 90.57% 92.66% 95.79% 87.53% 91.70%
WRN + RN18 + RN12 82.90% 90.64% 93.32% 96.31% 87.62% 91.84%
WRN + RN18 + RN12 * 84.37% 90.69% 94.26% 96.32% 88.44% 91.86%
6×WRN * 85.54% 91.53% \ \ \ \
*: BMS*.

To further study the impact of the number of backbones on prediction accuracy, in
Figure 7 we depict the performance of our proposed method as a function of the number of
backbones. Note that, here, we operate on feature vectors of 6 WRN backbones (dataset:
miniImageNet) concatenated one after another, which makes a total of 6 slots corresponding
to a 640× 6 = 3840 feature size. Each of them is trained the same way as in [2], and we
randomly select the multiples of 640 coordinates within the slots to denote the number
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of concatenated backbones used. The performance result is the average of 100 random
selections, and we test with both BMS and BMS* for 1-shot, and BMS* for 5-shot. From
Figure 7, we observe that, as the number of backbones increases, there is a relatively steady
growth in terms of accuracy in multiple settings of our proposed method, indicating the
interest of BMS in merged features.
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Figure 7. Accuracy of the proposed method in different settings as a function of the number of
backbones (dataset: miniImageNet).

5. Conclusions

In this paper, we introduced a new pipeline to solve the few-shot classification prob-
lem. It comes with the two following assets: first, it is able to reach state-of-the-art accuracy
on standardized benchmarks of the field, and second, it does not require any explicit priors
about data distribution between classes, as opposed to many previous works in the domain.
Using extensive experiments, we demonstrated that the proposed methodology can be
used in a variety of settings, including cross-domain, multiple backbones, open-set recog-
nition . . .. Using ablation tests, we showed the importance of the introduced steps in the
methodology. The proposed methodology comes with only a few extra hyperparameters,
on which our experiments suggest that a fine tuning is not necessarily required. Thus we
believe that the proposed method is applicable to many practical engineering problems.
In future work, we would like to better understand the fundamental reasons why the
proposed preprocessing is able to boost performance. We would also like to find automatic
ways to tune the hyperparameters.
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4.3 Discussions
Thanks to the relatively large improvement that “PT+MAP” has brought in
transductive few-shot classification, the performance of our proposed method stayed
state-of-the-art for a long time on Papers With Code 1 2. Our paper Leveraging
the Feature Distribution in Transfer-Based Few-Shot Learning has been
frequently cited and the proposed method has been reused, studied and extended
by other works such as [LSA21; CVK21; Ben+22c; ZK22; Hu+22; Wal+22], along
with many other methods that are also based on Optimal Transport. Moreover,
our other paper Squeezing Backbone Feature Distributions to the Max for
Efficient Few-Shot Learning further improves the prediction accuracy based on
a logistic regression algorithm that makes use of the pseudo labels on query set
samples. In this section we will address more details of our proposed method.

4.3.1 Importance of feature preprocessing

From the contributions presented above, we observe that feature preprocessing is
crucial for our proposed method to obtain maximum increase in accuracy. The
goal is to reshape the feature distributions to be close to Gaussian so that the
designed classifier yields its optimal effect. From Figure 2 in the paper, the initial
feature distribution coming out of ReLU does not look like Gaussian at all, but
rather a Log-normal distribution. The proposed Power Transform (PT) is able to
adjust the distributions into Gaussian-like, with more than half of the the reshaped
features passing the Gaussian hypothesis test. Furthurmore, work in [CVK21]
managed to obtain slight improvement by adding a hyperparameter on the feature
normalization in order for a finer adjustment.

4.3.2 Logistic regression classifier

Another interesting observation in our proposed method is that the logistic re-
gression applied in [HPG22a] brings larger gain in 5-shot setting than in 1 shot
compared with PT+MAP, raising the question of how can it influence the perfor-
mance as the number of labeled samples become larger, i.e. in the case of 10-shot
or 20-shot scenarios [Vei+21]. Note that here we apply logistic regression on all
samples, including unlabeled ones with their soft class assignments. We believe to
be the first to integrate such a process into an EM framework for better cluster
estimations. Moreover, according to the loss function provided in Eq. 12, we see
that it also corresponds to a self-distillation process that is presented in [ZS20],
with a scaling parameter that attempts to adjust the logits to be close to the soft
class assignments from OT. In other words, similar to the distillation process where
the student mimics the teacher in terms of logits, here in our method the logits are
computed using OT and served as the teacher for the logistic regression model to
learn as a student.

1https://paperswithcode.com/sota/few-shot-image-classification-on-mini-2
2https://paperswithcode.com/sota/few-shot-image-classification-on-mini-3
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4.3.3 Limitations on OT

Although methods based on OT obtain relatively large increase in accuracy, they
all require the prior knowledge about the distribution of query set over targeted
classes [Vei+21], namely the number of unlabeled samples per class. Therefore, in
a balanced setting where the query set distribution is uniform, OT based methods
have the major advantage on the class assignments. However, in an unbalanced
setting where we are given a fixed total number of samples to predict labels but
do not know the number of samples for a class, these methods do not perform
well [Vei+21].

4.3.4 Perspectives

In our first attempt to address the problem of imbalance, in this work we proposed
a modified version of OT to try to reduce the effect of priors by only normaliz-
ing columns that have less sums than the predicted minimum number [Lic+20].
However, without knowing the exact proportion of unlabeled samples over classes,
the algorithm tends to equalise those unlabeled samples and thus still results in
a significant decrease in accuracy in the unbalanced setting. Indeed, afterwards,
we believe that the method proposed in [HSS18] is not well suited to deal with
unbalanced cases. Therefore, in summary, given that in most real world scenarios
we do not know how a test set is allocated, OT based methods tend to be less
practical.

In the next paper we propose a variation Bayesian method that is more desirable for
the real world situations and obtain state-of-the-art performance in the unbalanced
setting.
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Chapter 5

Adaptive Dimension Reduction and
Variational Inference for
Transductive Few-Shot Classification

In previous chapter we present our contribution mainly tackling the classifier design
step of the pipeline. This chapter continues the improvement on the classifier design,
and we present our work that addresses the limitations of previous work. In this
chapter we present the context, the paper with our proposed method, discussions
with additional experiments, limitations and perspectives.

5.1 Context
As previously stated, methods based on OT require the prior knowledge about
the query data, without which the OT algorithms would tend towards a balanced
distribution and thus do not perform well in the unbalanced setting [Vei+21].
Therefore, we need algorithms that better estimate the targeted classes in a data-
thrifty and unbalanced situation where no prior is required.

Current methods for transductive FSC have been focusing more and more on cluster
estimations [YLX21; Bat+20; Bat+22], i.e. class means and class covariances under
Gaussian Mixture Models. Although algorithms operated under the EM framework
can bring gains in accuracy, this remains to be a challenging task given that there
are too few labeled data in a test set to estimate in a way that can accurately
describe a cluster, especially the randomness and uncertainty that have to be dealt
with due to data thrifty.

There exists other techniques that operate under EM framework, such as Varia-
tional Bayesian (VB) inference [HG08; FR12] that realises the clustering as well.
Compared with EM algorithm that estimates cluster parameters directly, VB
inference regards these parameters as hidden variables and thus introduces more
other parameters for estimations. The goal is to approximate the posterior of
the variables by a variational distribution. In the case of transductive few-shot
classification, there are two main difficulties to be considered when applying VB
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inference: 1) given the semi-supervised feature of the transductive few-shot setting,
adaptations need to be made on VB inference which is unsupervised in nature; 2)
limited data samples in the test set with high feature dimensions (typically 512 or
640) may contain too much noise for estimations and cause a VB model to collapse
or have coarse results.

With all of the problems presented above, and considering the fact that VB models
take into account the mixture parameters of clusters that follow the Dirichlet
distribution law, which corresponds to the unbalanced setting proposed in [Vei+21],
in our paper Adaptive Dimension Reduction and Variational Inference for
Transductive Few-Shot Classification [HPG22b] we propose a new clustering
method that is based on Variational Bayesian (VB) inference, which can be seen
as an extension of EM algorithm. Our proposed VB model 1) makes use of the
labeled data in the support set for prototype estimations; 2) takes into account the
uncertainty in estimation by viewing class prototypes as random variables, which
would inject more flexibility into the model; and 3) utilizes Probabilistic Linear
Discriminant Analysis (PLDA) to reduce feature dimension so that the proposed
model is less complex and more stable, while maximizing the inter/intra-class
distance ratio.

5.2 Paper on using Variational inference and Adap-
tive Dimension Reduction to reach SOTA per-
formance
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Abstract

Transductive Few-Shot learning has gained increased attention nowadays consid-
ering the cost of data annotations along with the increased accuracy provided by
unlabelled samples in the domain of few shot. Especially in Few-Shot Classifica-
tion (FSC), recent works explore the feature distributions aiming at maximizing
likelihoods or posteriors with respect to the unknown parameters. Following this
vein, and considering the parallel between FSC and clustering, we seek for better
taking into account the uncertainty in estimation due to lack of data, as well as bet-
ter statistical properties of the clusters associated with each class. Therefore in this
paper we propose a new clustering method based on Variational Bayesian inference,
further improved by Adaptive Dimension Reduction based on Probabilistic Linear
Discriminant Analysis. Our proposed method significantly improves accuracy in
the realistic unbalanced transductive setting on various Few-Shot benchmarks when
applied to features used in previous studies, with a gain of up to 6% in accuracy.
In addition, when applied to balanced setting, we obtain very competitive results
without making use of the class-balance artefact which is disputable for practical
use cases. We also provide the performance of our method on a high perform-
ing pretrained backbone, with the reported results further surpassing the current
state-of-the-art accuracy, suggesting the genericity of the proposed method.

1 Introduction

Few-shot learning, and in particular Few-Shot Classification, has become a subject of paramount
importance in the last years with a large number of methodologies and discussions. Where large
datasets continuously benefit from improved machine learning architectures, the ability to transfer
this performance to the low-data regime is still a challenge due to the high uncertainty posed using
few labels. In more details, there are two main types of FSC tasks. In inductive FSC [1, 36, 46, 33],
the situation comes to its extremes with only a few data samples available for each class, leading
sometimes to completely intractable settings, such as when facing a black dog on the one hand and
a white cat on the other hand. In transductive FSC, additional unlabelled samples are available for
prediction, leading to improved reliability and more elaborate solutions [24, 23, 2].

Inductive FSC is likely to occur when data acquisition is difficult or expensive, or when categories of
interest correspond to rare events. Transductive FSC is more likely encountered when data labeling
is expensive, for fast prototyping of solutions, or when the categories of interest are rare and hard
to detect. Since the latter correspond to situations where it is possible to exploit, at least partially,

Preprint. Under review.
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(a) Few-Shot task (b) Initialization (c) PLDA and VB inference

Figure 1: Summary of the proposed method. Here we illustrate a 3-way classification task in a
standard 2-simplex using soft-classification probabilities. Trajectories show the evolution across
iterations. For a given Few-Shot task which nearest-class-mean probabilities are depicted in (a),
a Soft-KMEANS clustering method is performed in (b) to initialize onk (see Alg. 1). Then in (c)
an iteratively refined Variational Bayesian (VB) model with Adaptive Dimension Reduction using
Probabilistic Linear Discriminant Analysis (PLDA) is applied to obtain the final class predictions.

the distribution of unlabelled samples, the trend evolved to using potentially varying parts of this
additional source of information. With most standardized benchmarks using very limited scope of
variability in the generated Few-Shot tasks, this even came to the point the best performing methods
are often relying on questionable information, such as equidistribution between the various classes
among the unlabelled samples, that is unlikely realistic in applications.

This limitation of benchmarking for transductive FSC has recently been discussed in [39]. In
this paper, the authors propose a new way of generating transductive FSC benchmarks where the
distribution of samples among classes can drastically change from a Few-Shot generated task to the
next one. Interestingly, they showed the impact of generating class imbalance on the performance on
various popular methods, resulting in some cases in drops in average accuracy of more than 10%.

A simple way to reach state-of-the-art performance in transductive FSC consists in extracting features
from the available samples using a pretrained backbone deep learning architecture, and then using
semi-supervised clustering routines to estimate samples distribution among classes. Due to the very
limited number of available samples, distribution-agnostic clustering algorithms are often preferred,
such as K-MEANS or its variants [29, 25, 32] or mean-shift [9] for instance.

In this paper, we are interested in showing it is possible to combine data reduction with statistical
inference through a Variational Bayesian (VB) [13] approach. Here, data reduction helps considerably
reduce the number of parameters to infer, while VB provides more flexibility than the usual K-Means
methods. Interestingly, the proposed approach can easily cope with standard equidistributed Few-
Shot tasks or the unbalanced ones proposed in [39], defining a new state-of-the-art for five popular
transductive Few-Shot vision classification benchmarks.

Our claims are the following:

• We introduce a novel semi-supervised clustering algorithm based on VB inference and
Probabilistic Linear Discriminant Analysis (PLDA),

• We demonstrate the general utility of our proposed method being able to improve accuracy
in a variety of deep learning models and settings,

• We show the ability of the proposed method to reach state-of-the-art transductive FSC
performance on multiple vision benchmarks (balanced and unbalanced).

2 Related work

There are two main frameworks in the field of FSC: 1) only one unlabelled sample is processed at
a time for class predictions, which is called inductive FSC, and 2) the entire unlabelled samples
are available for further estimations, which is called transductive FSC. Inductive methods focus on
training a feature extractor that generalizes well the embedding in a feature sub-space, they include
meta learning methods such as [12, 26, 2, 40, 30, 37] that train a model in an episodic manner, and
transfer learning methods [8, 28, 48, 5, 3, 33] that train a model with a set of mini-batches. Recent
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state-of-the-art works on inductive FSC [46, 47, 43, 19] combine the above two strategies and
propose a transfer based training used as model initialization, followed by an episodic training that
adapts the model to better fit the Few-Shot tasks.

Transductive methods are becoming more and more popular thanks to their better performance due
to the use of unlabelled data, as well as their utility in situations where data annotation is costly.
Early literature of this branch operates on a class-balanced setting where unlabelled instances are
evenly distributed among targeted classes. Graph-based methods [14, 7, 44, 21] make use of the
affinity among features and propose to group those that belong to the same class. More recent works
such as [16] propose methods based on Optimal Transport that realizes sample-class allocation with
a minimum cost. While effective, these methods often require class-balanced priors to work well,
which is not realistic due to the arbitrary unknown query set. In [39] the authors put forward a novel
unbalanced setting that composes a query set with unlabelled instances sampled following a Dirichlet
distribution, injecting more imbalance for predictions.

In this paper we propose a clustering method to solve transductive FSC, where the aim is to estimate
cluster parameters giving high predictions for unlabelled samples. Under Gaussian assumptions,
previous works [25, 32] have utilised algorithms such as Expectation Maximization [10] (EM), with
the goal of maximizing likelihoods or posteriors with respect to the parameters for a cluster, with
the hidden variables marginalized. However, this may not be the most suitable way due to the
scarcity of available data in a given Few-Shot task, which increases the level of uncertainty for cluster
estimations. Therefore, in this paper we propose a Variational Bayesian (VB) approach, in which
we regard some unknown parameters as hidden variables in order to inject more flexibility into the
model, and we try to approximate the posterior of the hidden variables by a variational distribution.

As models with too few labelled samples often give too much randomness for a cluster to be stably
reckoned, they often require the use of feature dimension reduction techniques to stabilize cluster
estimations. Previous literature such as [25] applies a PCA method that reduces dimension in a non-
supervised manner, and [6] proposes a modified LDA during backbone training that maximizes the
ratio of inter/intra-class distance. In this paper we propose to use Probabilistic Linear Discriminant
Analysis [17] (PLDA) that 1) is applied on extracted features, 2) fits data more desirably into
distribution assumptions, and 3) is semi-supervised in combination of a VB model. We integrate
PLDA into the VB model in order to refine the reduced space through iterations.

3 Methodology

In this section, we firstly present the standard setting in transductive FSC, including the latest
unbalanced setting proposed by [39] where unlabelled samples are non-uniformly distributed among
classes. Then we present our proposed method combining PLDA and VB inference.

3.1 Problem formulation

Following other works in the domain, our proposed method is operated on a feature space obtained
from a pre-trained backbone. Namely, we are given the extracted features of 1) a generic base class
dataset Dbase = {xbase

i }Nbase
i=1 ∈ Cbase that contains Nbase labelled samples where each sample

xbase
i is a column vector of length D, and Cbase is the set of base classes to which these samples

belong. These base classes have been used to train the backbone. And similarly, 2) a novel class
dataset Dnovel = {xnovel

n }Nn=1 containing N samples belonging to a set of K novel classes Cnovel
(Cbase ∩Cnovel = ∅). On this novel dataset, only a few elements are labelled, and the aim is to predict
the missing labels. Denote X the matrix obtained by aggregating elements in Dnovel row-wise.

When benchmarking transductive FSC methods, it is common to randomly generate Few-Shot tasks
by sampling Dnovel from a larger dataset. These tasks are generated by sampling K distinct classes,
L distinct labelled elements for each class (called support set) andQ total unlabelled elements without
repetition and distinct from the labelled ones (called query set). All these unlabelled elements belong
to one of the selected classes. We obtain a total of N = KL+Q elements in the task, and compute
the accuracy on the Q unlabelled ones. Depending on how unlabelled instances are distributed
among selected classes within a task, we further distinguish a balanced setting where the query set
is evenly distributed among the K classes, from an unbalanced setting where it can vary from class
to class. An automatic way to generate such unbalanced Few-Shot tasks has been proposed in [39]

3
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where the number of elements to draw from each class is determined using a Dirichlet distribution
parameterized by α∗

o1, where 1 is the all-one vector. To solve a transductive FSC task, our method is
composed of PLDA and VB inference, that we introduce in the next paragraphs.

3.2 Probabilistic Linear Discriminant Analysis (PLDA)

In our work, PLDA [17] is mainly used to reduce feature dimensions. For a Few-Shot task X, let Φw

be a positive definite matrix representing the estimated shared within-class covariance of a given class,
and Φb be a positive semi-definite matrix representing the estimated between-class covariance that
generates class variables. The goal of PLDA is to project data onto a subspace while maximizing the
signal-to-noise ratio for class labelling. In details, we obtain a projection matrix W that diagonalizes
both Φw and Φb and yield the following equations:

WTΦwW = I, WTΦbW = Ψ (1)

where I is an identity matrix and Ψ is a diagonal matrix. In this paper, we assume a similar distribution
between the pre-trained base classes and the transferred novel classes [45]. Therefore we propose
to estimate Φw to be the within-class scatter matrix of Dbase, denoted as Sbass

w . In practice we
implement PLDA by firstly transforming X using a rotation matrix R ∈ RD×D and a set of scaling
values s ∈ RD obtained from Sbase

w . Note that we clamp the scaling values to be no larger than an
upper-bound smax in order to prevent too large values, smax is a hyper-parameter. Then we project
the transformed data onto their estimated class centroids space, in accordance with the d largest
eigenvalues of Ψ, and obtain dimension-reduced data U = [u1, ...,un, ...,uN ]T ∈ RN×d where
un = WTxn and d = K − 1. More detailed implementation can be found in Appendix.

3.3 Variational Bayesian (VB) Inference

During VB inference, we operate on a reduced d-dimensional space obtained after applying PLDA.
Considering a Gaussian mixture model for a given task U ∈ RN×d in reduced space, let θ be
the unknown variables of the model. In VB we attempt to find a probability distribution q(θ) that
approximates the true posterior p(θ|U), i.e. maximizes the ELBO (see Appendix for more details).
In our case, we define θ = {Z,π,µ} where Z = {zn}Nn=1 is a set of latent variables used as class
indicators, each latent variable zn has an one-of-K representation, π is a K-dimensional vector
representing mixing ratios between the classes, and µ = {µk}Kk=1 where µk is the centroid for class
k. Note that 1) contrary to EM where π,µ are seen as parameters that can be estimated directly,
in VB they are deemed as hidden variables following certain distribution laws. 2) This is not a full
VB model due to the lack of precision matrix (i.e. the inverse of covariance matrix) as a variable
in θ. Although a VB model frees up more parameters for the unknown variables, it also increases
the instability in estimations so that the model becomes too sensible. Therefore, in this paper we
impose an assumption that all classes in U share the same precision matrix and it is fixed during VB
iterations. Namely we define Λk = Λ = TvbI for k = 1, ...,K, where Tvb is a hyper-parameter in
order to compensate the variation between base and estimated novel class distributions.

In order for a model to be in a variational bayesian setting, we define priors and likelihoods on the
unknown variables, with several initialization parameters attached:

priors : p(π) = Dir(π|αo), p(µ) =

K∏

k=1

N (µk|mo, (βoΛ)−1),

likelihoods : p(Z|π) =
N∏

n=1

Categorical(zn|π), p(U |Z,µ) =
N∏

n=1

K∏

k=1

N (un|µk,Λ
−1)znk

(2)

where π follows a K-dimensional symmetric Dirichlet distribution, with αo being the prior of
component weight for each class, which we set to 2.0 in accordance with [39], i.e. the same value
as the Dirichlet distribution parameter α∗

o that is used to generate Few-Shot tasks. The vector mo

is the prior about the class centroid variables, we let it to be 0. And βo stands for the prior about
the moving range of class centroid variables: the larger it is, the closer the centroids are to mo. We
empirically found that βo = 10.0 gives consistent good results across datasets and FSC problems.
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As previously stated, we approximate a variable distribution to the true posterior. To further simplify,
we follow the Mean-Field assumption [31, 18] and assume that the unknown variables are independent
from one another. Therefore we let q(θ) = q(Z,π,µ) = q(Z)q(π)q(µ) ≈ p(Z,π,µ/U) and
solve for each term. The explicit formulation for these marginals is provided in Eq. 3, 4 (see Appendix
for more details). The estimation of the various parameters is then classically performed through an
iterative EM framework as presented further.

Denote on = [on1, ..., onk, ..., onK ] as the soft class assignment for un (onk ≥ 0,
∑K

k=1 onk = 1),
and onk represents the portion of nth sample allocated to kth class.

M step: In this step we estimate q(π) and q(µ) in use of the class assignments onk:

p(π) = Dir(π|αo) =⇒ q∗(π) = Dir(π|α) with αk = αo +Nk,

p(µ) =
K∏

k=1

N (µk|mo, (βoΛ)−1) =⇒ q∗(µ) =
K∏

k=1

N (µk|mk, (βkΛ)−1)

with βk = βo +Nk, mk =
1

βk
(βomo +

N∑

n=1

onkun),

(3)

where α = [α1, ..., αk, ..., αK ] are the estimated component weights for classes, and Nk =∑N
n=1 onk is the sum of the soft assignments for all samples in class k. We also estimate the

moving range parameter βk and the centroid mk for each class centroid variable. We observe that the
posteriors take the same forms as the priors. Demonstration of these results is presented in Appendix.

E step: In this step we estimate q(Z) by updating onk, using the current values of all other
parameters computed in the M-step, i.e. αk, βk and mk.

p(Z|π) =
N∏

n=1

Categorical(zn|π) =⇒ q∗(Z) =
N∏

n=1

Categorical(zn|on) (4)

where each element onk can be computed as onk = ρnk∑K
j=1 ρnj

in which:

log ρnk = ψ(αk)− ψ(
K∑

j=1

αj) +
1

2
log |Λ| − d

2
log 2π − 1

2
[dβ−1

k + (un −mk)
TΛ(un −mk)],

(5)

with ψ(·) being the logarithmic derivative of the gamma function (also known as the digamma
function). We observe that q∗(Z) follows the same categorical distribution as the likelihood, and it is
parameterized by onk. More details can be found in Appendix.

Proposed algorithm The proposed method combines PLDA and VB inference which leads to an
Efficiency Guided Adaptive Dimension Reduction for VAriational BAyesian inference. We thus name
our proposed method “BAVARDAGE”, and the detailed description is presented in Algorithm 1.
Given a Few-Shot task X and a within-class scatter matrix Sbase

w , we initialize onk using EM
algorithm with an assumed covariance matrix, adjusted by a temperature hyper-parameter Tkm, for
all classes. Note that this is equivalent to Soft-KMEANS [20] algorithm. And for each iteration we
update parameters: in M step we update αk, βk and centroids mk, in E step we only update onk, and
we apply PLDA with the updated onk to reduce feature dimensions. Finally, predicted labels are
obtained by selecting the class that corresponds to the largest value in onk.

The illustration of our proposed method is presented in Figure 1. For a Few-Shot task that has three
classes (red, blue and green) with unlabelled samples depicted on the probability simplex, we firstly
initialize onk with Soft-KMEANS which directs some data points to their belonging classes while
further distancing some points from their targeted classes. Then we apply the proposed VB inference
integrated with PLDA, resulting in additional points moving towards their corresponding classes.
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Algorithm 1 BAVARDAGE

Inputs: X ∈ RN×D, Sbase
w ∈ RD×D

Hyper-parameters: Tkm, Tvb, smax

Priors for VB: αo = 2.0, βo = 10.0, mo = 0, Λ = Tvb · I
Initializations: onk = EM (X, Tkm)
for i = 1 to nstep do
U = PLDA (X, Sbase

w , smax, onk) # See more details in Appendix.
VB (M step):
αk = αo +

∑N
n=1 onk

βk = βo +
∑N

n=1 onk
mk = 1

βk
(βomo +

∑N
n=1 onkun)

VB (E step):
log ρnk = ψ(αk)−ψ(

∑K
j=1 αj)+

1
2 log |Λ|− d

2 log 2π− 1
2 [dβ

−1
k +(un−mk)

TΛ(un−mk)]

onk = ρnk∑K
j=1 ρnj

end for
return ℓ̂(xn) = argmaxk(onk)

4 Experiments

In this section we provide details on the standard transductive Few-Shot classification settings, and
we evaluate the performance of our proposed method.

Benchmarks We test our method on standard Few-Shot benchmarks: mini-Imagenet [35], tiered-
Imagenet [32] and caltech-ucsd birds-200-2011 (CUB) [41]. mini-Imagenet is a subset of ILSVRC-
12 [35] dataset, it contains a total of 60, 000 images of size 84× 84 belonging to 100 classes (600
images per class) and follows a 64-16-20 split for base, validation and novel classes. tiered-Imagenet
is a larger subset of ILSVRC-12 containing 608 classes with 779, 165 images of size 84 × 84 in
total, and we use the standard 351-97-160 split, and CUB is composed of 200 classes following a
100-50-50 split (Image size: 84× 84). In Appendix we also show the performance of our proposed
method on other well-known Few-Shot benchmarks such as FC100 [30] and CIFAR-FS [4].

Settings Following previous works [25, 34, 39], our proposed method is evaluated on 1-shot 5-way
(K = 5, L = 1), and 5-shot 5-way (K = 5, L = 5) scenarios. As for the query set, we set a total
number of Q = 75 unlabelled samples, from which we further define two settings: 1) a balanced
setting where unlabelled instances are evenly distributed among K classes, and 2) an unbalanced
setting where the query set is randomly distributed, following a Dirichlet distribution parameterized
by α∗

o. In our paper we follow the same setting as [39] and set α∗
o = 2.0, further experiments with

different values are conducted in the next sections. The performance of our proposed method is
evaluated by computing the averaged accuracy over 10, 000 Few-Shot tasks.

Implementation details In this paper we firstly compare our proposed algorithm with the other
state-of-the-art methods using the same pretrained backbones and benchmarks provided in [39].
Namely we extract the features using the same ResNet-18 (RN18) and WideResNet28_10 (WRN)
neural models, and present the performance on mini-Imagenet, tiered-Imagenet and CUB datasets. In
our proposed method, the raw features are preprocessed following [42]. As for the hyper-parameters,
we set Tkm = 10, Tvb = 50, smax = 2 for the balanced setting; Tkm = 50, Tvb = 50, smax = 1
for the unbalanced setting, and we use the same VB priors for all settings. To further show the
functionality of our proposed method on different backbones and other benchmarks, we tested
BAVARDAGE on a recent high performing feature extractor trained on a ResNet-12 (RN12) neural
model [28, 3], and we report the accuracy in Table 1 and in Appendix with various settings.
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4.1 Main results

The main results on the relevant settings are presented in Table 1. Note that we report the accuracy
of other methods following [39], and add the performance of our proposed method in comparison,
using the same pretrained RN18 and WRN feature extractors, and we also report the result of a RN12
backbone pretrained following [3]. We observe that our proposed algorithm reaches state-of-the-art
performance for nearly all referenced datasets in the unbalanced setting, surpassing previous methods
by a noticeable margin especially on 1-shot. In the balanced setting we also reach competitive
accuracy compared with [16] along with other works that make use of a perfectly balanced prior
on unlabelled samples, while our proposed method suggests no such prior. In addition, we provide
results on the other Few-Shot benchmarks with different settings in Appendix.

Table 1: Comparisons of the state-of-the-art methods on mini-Imagenet, tiered-Imagenet and CUB
datasets using the same pretrained backbones as [39], along with the accuracy of our proposed method
on a ResNet-12 backbone pretrained following [3].

mini-Imagenet unbalanced balanced
Method Backbone 1-shot 5-shot 1-shot 5-shot
MAML [12]

RN18/WRN [39]

47.6/− 64.5/− 51.4/− 69.5/−
Versa [15] 47.8/− 61.9/− 50.0/− 65.6/−
Entropy-min [11] 58.5/60.4 74.8/76.2 63.6/66.1 82.1/84.2
PT-MAP [16] 60.1/60.6 67.1/66.8 76.9/78.9 85.3/86.6
LaplacianShot [48] 65.4/70.0 81.6/83.2 70.1/72.9 82.1/83.8
BD-CSPN [26] 67.0/70.4 80.2/82.3 69.4/72.5 82.0/83.7
TIM [5] 67.3/69.8 79.8/81.6 71.8/74.6 83.9/85.9
α-TIM [39] 67.4/69.8 82.5/84.8 −/− −/−
BAVARDAGE (ours) 71.0/74.1 83.6/85.5 75.1/78.5 84.5/87.4

BAVARDAGE (ours) RN12 [3] 77.8 88.0 82.7 89.5

tiered-Imagenet unbalanced balanced
Method Backbone 1-shot 5-shot 1-shot 5-shot
Entropy-min [11]

RN18/WRN [39]

61.2/62.9 75.5/77.3 67.0/68.9 83.1/84.8
PT-MAP [16] 64.1/65.1 70.0/71.0 82.9/84.6 88.8/90.0
LaplacianShot [48] 72.3/73.5 85.7/86.8 77.1/78.8 86.2/87.3
BD-CSPN [26] 74.1/75.4 84.8/85.9 76.3/77.7 86.2/87.4
TIM [5] 74.1/75.8 84.1/85.4 78.6/80.3 87.7/88.9
α-TIM [39] 74.4/76.0 86.6/87.8 −/− −/−
BAVARDAGE (ours) 76.6/77.5 86.5/87.5 80.3/81.5 87.1/88.3

BAVARDAGE (ours) RN12 [3] 79.4 88.0 83.5 89.0

CUB unbalanced balanced
Method Backbone 1-shot 5-shot 1-shot 5-shot
PT-MAP [16]

RN18 [39]

65.1 71.3 85.5 91.3
Entropy-min [11] 67.5 82.9 72.8 88.9
LaplacianShot [48] 73.7 87.7 78.9 88.8
BD-CSPN [26] 74.5 87.1 77.9 88.9
TIM [5] 74.8 86.9 80.3 90.5
α-TIM [39] 75.7 89.8 − −
BAVARDAGE (ours) 82.0 90.7 85.6 91.4

BAVARDAGE (ours) RN12 [3] 83.1 90.8 87.4 92.0

4.2 Ablation studies

Analysis on the elements of BAVARDAGE In this experiment we dive into our proposed method
and conduct an ablation study on the impact of each element. Namely, we report the performance in
the following 3 scenarios: 1) only run Soft-KMEANS on the extracted features to obtain a baseline
accuracy; 2) run the VB model with onk initialized by Soft-KMEANS, without reducing the feature
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space; and 3) integrate PLDA into VB iterations. From Table 2 we observe only a slight increase of
accuracy compared with baseline when no dimensionality reduction is applied. This is due to the fact
that high feature dimensions increase uncertainty in the estimations, making the model sensitive to
parameters. With our implementation of PLDA iteratively applied in the VB model, we can see from
the table that the performance increases by a relatively large margin, suggesting the effectiveness of
our proposed adaptive dimension reduction method.

Table 2: Ablation study on the elements of our proposed method, with results tested on mini-Imagenet
(backbone: WRN) and CUB (backbone: RN18) in the unbalanced setting.

mini-Imagenet CUB
Soft-KMEANS VB PLDA 1-shot 5-shot 1-shot 5-shot

✓ 71.4 82.4 77.5 86.7

✓ ✓ 71.8 82.5 77.8 87.2

✓ ✓ ✓ 74.1 85.5 82.0 90.7

Visualization of features for different projections To further showcase the effect of proposed
PLDA, in Fig. 2 we visualize the extracted features of a 3-way Few-Shot task in the following 3
scenarios: (a) features in the original space, using T-SNE [38] for visualization purpose; (b) features
that are projected directly onto their centroids space, and finally (c) features projected using PLDA.
The ellipses drawn in (b) and (c) are the cluster estimations computed using the real labels of data
samples, and we can thus observe a larger separation of different clusters with PLDA projection for
the task in which the original features overlap heavily between clusters in blue and green.

(a) T-SNE (b) Centroids projection (c) PLDA

Figure 2: Visualization of extracted features of a Few-Shot task using different projection methods
(dataset: mini-Imagenet, backbone: WRN), we report a 86.7%, 90.0% and 95.0% prediction accuracy
corresponding to each projection.

Robustness against imbalance In Table 1 we show the accuracy of our proposed method using
VB priors introduced in Section 3.3, in which αo is set to be equal to the Dirichlet’s parameter α∗

o
for the level of imbalance in the query set. Therefore, in this experiment we test the robustness of
BAVARDAGE, namely in Fig. 3 we alter αo and report the accuracy on different imbalance levels
(varying α∗

o) in both 1-shot and 5-shot settings. Note that the proposed model becomes slightly more
sensitive to αo when the level of imbalance increases (smaller α∗

o), with an approximate 1% drop of
accuracy when increasing αo in the case of α∗

o = 1.
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Figure 3: 1-shot and 5-shot accuracy on different imbalance levels (varying α∗
o) as a function of VB

priors αo (dataset: mini-Imagenet, backbone: WRN).

Varying Few-Shot settings In this experiment we observe the performance of BAVARDAGE on
different Few-Shot settings, namely we vary the number of labelled samples per class L as well as the
total number of unlabelled samples Q in a task, for further comparison we also report the accuracy
using only Soft-KMEANS algorithm. In Fig. 4 we can observe constant higher accuracy of our
proposed method, and a slightly larger difference gap when Q increases.
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Figure 4: Accuracy as a funtion of L and Q in comparison with Soft-KMEANS (dataset: mini-
Imagenet, backbone: WRN).

5 Conclusion

In this paper we proposed a clustering method based on Variational Bayesian Inference and Probabilis-
tic Linear Discriminant Analysis for transductive Few-Shot Classification. BAVARDAGE has reached
state-of-the-art accuracy on nearly all Few-Shot benchmarks in the realistic unbalanced setting, as
well as competitive performance in the balanced setting without using a perfectly class-balanced
prior. As our proposed method assumes a shared isotropic covariance matrix for all clusters, the esti-
mations in VB models could be limited. Therefore the future work could study a better estimation of
covariance matrices associated with each cluster. An interesting asset of the proposed method is that
it performs most of its processing in a reduced (K − 1)-dimensional space, where K is the number
of classes, suggesting interests for visualization and suitability for more elaborate statistical machine
learning methods. As in [39], we encourage the community to rethink the works in transductive
settings to provide fairer grounds of comparison between the various proposed approaches.

6 Appendix

6.1 Implementation details on the proposed PLDA

In this section we present more details on our implementation of PLDA proposed in section 3.2 in
the paper. Given X ∈ RN×D, we estimate its within-class covariance matrix to be Sbase

w calculated
from Dbase. Denote Ibasec as the set of samples belonging to base class c where c ∈ 1, ..., |Cbase|,
therefore Φw is approximated as follows:

Φw ≈ Sbase
w =

∑
c

∑
i∈Ibase

c
(xbase

i −mbase
c )(xbase

i −mbase
c )T

Nbase
, (6)

where mbase
c = 1

|Ibase
c |

∑
i∈Ibase

c
xbase
i is the mean of c-th base class. Let λ = [λ1, ..., λi, ..., λD] ∈

RD be the eigenvalues of Sbase
w in descending order, and we set R = [r1, ..., ri, ..., rD] ∈ RD×D
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Algorithm 2 Proposed PLDA

Fonction PLDA (X, Sbase
w , smax, onk)

Sphere X using T (Eq. 7), obtain X′.
Estimate centroids m′

k using onk (Eq. 8).
Compute Ψ using m′

k (Eq. 9).
Project X′ onto the centroids space, obtain U.

Return U

to be the corresponding eigenvectors. In this paper we define a transformation matrix T = SR
where S is a diagonal matrix with diagonal values being the square root of multiplicative inverse of
λ, clamped to an upper bound smax. Namely, s = diag(S) where s = [s1, ...si, ...sD] ∈ RD is a
D-length vector containing the scaling value for each dimension, and we set si to be as follows:

si =

{
λ−0.5
i if λ−0.5

i ≤ smax

smax otherwise
. (7)

We can see from Eq. 7 that T is composed of a rotation matrix and scaling values on feature
dimensions that help morph the within-class distribution into an identity covariance matrix. This
corresponds to a data sphering/whitening process in which we decorrelate samples in each of the
dimensions. In our implementation we transform X by multiplying it with T. Therefore the sphered
data samples, denoted as X′ = [x′

1, ...x
′
n, ...x

′
N ]T ∈ RN×D, are obtained from x′

n = Txn.

Next, we project X′ onto a subspace that corresponds to the K − 1 largest eigenvalues of its between-
scatter matrix. Denote m′

k as the estimated centroid for class k, given soft class assignments onk
(1 ≤ n ≤ N, 1 ≤ k ≤ K), m′

k is computed as:

m′
k =

∑N
n=1 onkx

′
n

γ +Nk
, Nk =

N∑

n=1

onk , (8)

where γ is used as an offset indicating how close the centroids are to 0, in this paper we set it to
10.0, same as βo in the VB model in reduced space. Therefore, the between-class scatter matrix Ψ of
sphered samples can be calculated as:

Ψ =

K∑

k=1

(m′
k −m′)(m′

k −m′)T , (9)

where m′ = 1
K

∑K
k=1 m

′
k is the mean of estimated class centroids. Then we project X′ onto a

d-length subspace, where d = K − 1. In details, denote V = [v1, ...,vi, ...,vd] ∈ RD×d to be the
eigenvectors corresponding to the d largest eigenvalues of Ψ, the projected data U are obtained as
un = VTx′

n for each sample. Note that the formulation of Ψ in Eq. 9 allows at most K−1 non-zero
eigenvalues, therefore the resulting subspace projection using these eigenvectors is equivalent to a
projection onto the affine subspace containing the centroids m′

k. Furthermore, according to Eq. 1 in
the paper, we can further deduce the projection matrix W to be as follows:

un = WTxn = VTx′
n = VTTxn = VTSRxn,

=⇒ W = (VTSR)T = RTSV.
(10)

The entire process is described in Algorithm 2.

6.2 Implementation details on the proposed VB model

In this section we provide more detailed explanation of our proposed VB model. Given a posterior
p(θ|U), we approximate it with a function variational distribution q(θ) by minimizing the Kullback-
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Leibler divergence:
q∗(θ) = argmin

q
{DKL(q||p)}

= argmin
q
{log p(U)− L(q)}

= argmax
q
{L(q)}

(11)

where the evidence log p(U) is considered fixed, andL(q) =
∫
q(θ) log p(θ,U)

q(θ) dθ stands for Evidence
Lower BOund (ELBO) providing “evidence” that we have chosen the right model. We can see
that minimizing the Kullback-Leibler divergence is equivalent to maximizing the ELBO. Suppose
θ = {θ1, ..., θm, ..., θM}, we firstly factorize q(θ) =

∏M
m=1 q(θm) according to the Mean-Field

assumption, then we solve each term individually:

L(q) =
∫
q(θ) log

p(θ,U)

q(θ)
dθ

=

∫ ( M∏

m=1

q(θm)

)(
log p(θ,U)−

M∑

m=1

log q(θm)

)
dθ1dθ2...dθM

=
M∑

m=1

(∫
q(θm)

(∫
q(θ−m) log p(θ,U)dθ−m

)
dθm −

∫
q(θm) log q(θm)dθm

)
,

(12)

and the ELBO is maximized when:

log q∗(θm) = Eθ−m [log p(θ,U)] + const, (13)

where Eθ−m
[·] stands for the expectation with respect to all variables in θ except θm. In our method

we define θ = {Z,π,µ}, the detailed formula of some variables are presented as follows:

zn = [zn1, ..., znk, ..., znK ] ∈ {0, 1}K ,
K∑

k=1

znk = 1,

π = [π1, ..., πk, ..., πK ], πk ≥ 0,

K∑

k=1

πk = 1.

(14)

According to Bayes’ theorem, we rewrite the posterior to be:

p(θ|U) = p(Z,π,µ|U) =
p(Z,π,µ,U)

p(U)

=
p(U|Z,µ)p(Z|π)p(π)p(µ)

p(U)
,

(15)

in which:

p(U|Z,µ) =
N∏

n=1

K∏

k=1

N (un|µk,Λ
−1)znk ,

p(Z|π) =
N∏

n=1

Categorical(zn|π) =
N∏

n=1

K∏

k=1

πznk

k ,

p(π) = Dir(π|αo) =
Γ(
∑K

k=1Kαo)∏K
k=1 Γ(αo)

K∏

k=1

παo−1
k = C(αo)

K∏

k=1

παo−1
k ,

p(µ) =
K∏

k=1

N (µk|mo, (βoΛ)−1).

(16)

According to Eq. 13, q∗(π) can be computed as follows:
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log q∗(π) = EZ,µ[log p(Z,π,µ,U)] + const

= EZ [log p(Z|π)] + log p(π) + const

=
N∑

n=1

K∑

k=1

EZ [znk] log πk +
K∑

k=1

(αo − 1) log πk + const

=
K∑

k=1

N∑

n=1

onk log πk +
K∑

k=1

(αo − 1) log πk + const

=
K∑

k=1

(Nk + αo − 1) log πk + const,

=⇒ q∗(π) =
K∏

k=1

πNk+αo−1
k + const

=
K∏

k=1

παk−1
k + const

= Dir(π|α).

(17)

Similarly for q∗(µ) we can compute it as shown below:

log q∗(µ) = EZ,π[log p(Z,π,µ,U)] + const

= EZ [log p(U|Z,µ)] + log p(µ) + const

=
N∑

n=1

K∑

k=1

EZ [znk] logN (un|µk,Λ
−1) +

K∑

k=1

logN (µk|mo, (βoΛ
−1) + const

=
1

2

N∑

n=1

K∑

k=1

onk log |Λ| −
1

2

N∑

n=1

K∑

k=1

onk(un − µk)
TΛ(un − µk)

+
1

2

K∑

k=1

log |βoΛ| −
1

2

K∑

k=1

(µk −mo)
TβoΛ(µk −mo).

(18)

To compute βk, we gather the quadratic terms that contain µk in Eq. 18:

(quad) = −1

2

N∑

n=1

K∑

k=1

onkµ
T
kΛµk −

1

2

K∑

k=1

µT
k βoΛµk

= −1

2

K∑

k=1

µT
k (NkΛ+ βoΛ)µk

= −1

2

K∑

k=1

µT
k (βo +Nk)Λkµk,

=⇒ βk = βo +Nk.

(19)

As for mk, we gather the linear terms that contain µk in Eq. 18:
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(linear) =
1

2

N∑

n=1

K∑

k=1

onkµ
T
kΛun +

1

2

K∑

k=1

µT
k βoΛmo

=
1

2

K∑

k=1

µT
kΛ(βomo +

N∑

n=1

onkun)

=
1

2

K∑

k=1

µT
k βkΛmk,

=⇒mk =
1

βk
(βomo +

N∑

n=1

onkun).

(20)

Therefore q∗(µ) can be reformulated as:

q∗(µ) =
K∏

k=1

q∗(µk) =
K∏

k=1

N (µk|mk, (βkΛ)−1). (21)

We also provide a more detailed calculation of q∗(Z):

log q∗(Z) = Eπ,µ[log p(Z,π,µ,U)] + const

= Eπ[log p(Z|π)] + Eµ[log p(U|Z,µ)] + const

=

N∑

n=1

K∑

k=1

znk
(
Eπ[log πk] + Eµ[logN (un|µk,Λ

−1)]
)
+ const

=
N∑

n=1

K∑

k=1

znk log ρnk + const,

(22)

where
log ρnk = Eπ[log πk] + Eµ[logN (un|µk,Λ

−1)]

= Eπ[log πk] +
1

2
log |Λ| − d

2
log 2π − 1

2
Eµ[(un − µk)

TΛ(un − µk)].
(23)

Therefore q∗(Z) can be expressed as:

q∗(Z) =

N∏

n=1

K∏

k=1

oznk

nk =

N∏

n=1

Categorical(zn|on), onk =
ρnk∑K
j=1 ρnj

, (24)

we can see that the variable follows a categorical distribution, parameterized by onk, and onk =
EZ [znk]. As for Eq. 23, more details are shown as follows:

Eπ[log πk] = ψ(αk)− ψ(
K∑

j=1

αj),

Eµ[(un − µk)
TΛ(un − µk)] =

∫
(un − µk)

TΛ(un − µk)q
∗(µk)dµk

= (un −mk)
TΛk(un −mk) + Tr[Λ · (βkΛ)−1]

= dβ−1
k + (un −mk)

TΛ(un −mk),

(25)

ψ(·) is the logarithmic derivative of the gamma function, and the distribution for πk and µk follows
Eq. 17 and 21. Therefore:

log ρnk = ψ(αk)− ψ(
K∑

j=1

αj) +
1

2
log |Λ| − d

2
log 2π − 1

2
[dβ−1

k + (un −mk)
TΛ(un −mk)].

(26)
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From the above equations we observe a dependency between priors and posteriors, which can be
estimated iteratively depending on the class allocations. Therefore in this paper we propose to solve
it under a basic Expectation Maximization framework where we estimate onk in the E-step, while
updating αk, βk and mk in the M-step.

6.3 Hyperparameter tuning

In this section we detail about how the hyperparameters in our proposed method are obtained. Namely,
for a standard Few-Shot benchmark that has been split into base-validation-novel class set, we firstly
tune our model using validation set and choose the hyperparameters accordingly before applying to
the novel set. For example in Figure 5 we tune two temperature parameters Tkm, Tvb, the scaling
up-bound parameter smax and the VB prior βo that are used in our proposed BAVARDAGE. The
blue curves show the performance on validation set while the red curves show the accuracy on the
novel set (benchmark: mini-Imagenet). From the figure we see a similar behavior between two sets in
terms of performance, Tkm has little impact on the accuracy, same for Tvb when it is large. For smax

we observe an uptick when it is around 1, followed by a slowing decrease and finally stabilizing to the
same accuracy when it becomes larger. In this paper we tune hyperparameters for each benchmark
in the same way. For tiered-Imagenet we set Tkm, Tvb and smax to be 10, 100, 2 in the balanced
setting, 100, 100, 1 in the unbalanced setting; for CUB we set them to be 10, 4, 5 in both balanced
and unbalanced settings; and for FC100 and CIFAR-FS we set the hyperparameters to be the same as
mini-Imagenet. As for βo we set it to be 10 across datasets since it gives the best performance.
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Figure 5: Hyperparameter tuning of our proposed method. Here we tune 4 hyperparameters of
BAVARDAGE on mini-Imagenet (backbone: WRN) in the unbalanced setting.
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Table 3: Detailed results of BAVARDAGE with confidence interval of 95% on the Few-Shot bench-
marks, along with a baseline accuracy using Soft-KMEANS. We use RN18 and WRN pretrained
from [39], RN12 and RN12* pretrained from [3].

mini-Imagenet unbalanced balanced
Method Backbone 1-shot 5-shot 1-shot 5-shot

Soft-KMEANS

RN18 [39] 68.82± 0.27% 81.27± 0.17% 73.47± 0.26% 83.04± 0.15%
WRN [39] 71.35± 0.27% 82.41± 0.16% 75.70± 0.25% 84.42± 0.14%
RN12 [3] 75.65± 0.25% 86.35± 0.14% 80.81± 0.24% 87.92± 0.12%

RN12* [3] 77.51± 0.26% 87.78± 0.14% 82.14± 0.24% 89.08± 0.12%

BAVARDAGE

RN18 [39] 71.01± 0.31% 83.60± 0.17% 75.07± 0.28% 84.49± 0.14%
WRN [39] 74.10± 0.30% 85.52± 0.16% 78.51± 0.27% 87.41± 0.13%
RN12 [3] 77.85± 0.28% 88.02± 0.14% 82.67± 0.25% 89.50± 0.11%

RN12* [3] 79.76± 0.29% 89.85± 0.13% 84.80± 0.25% 91.65± 0.10%

tiered-Imagenet unbalanced balanced
Method Backbone 1-shot 5-shot 1-shot 5-shot

Soft-KMEANS

WRN [39] 73.92± 0.28% 85.02± 0.18% 78.59± 0.27% 85.76± 0.16%
RN18 [39] 73.79± 0.28% 84.65± 0.18% 78.34± 0.27% 85.52± 0.17%
RN12 [3] 78.15± 0.27% 87.65± 0.17% 83.11± 0.25% 88.80± 0.15%

RN12* [3] 79.62± 0.27% 88.61± 0.16% 84.08± 0.24% 89.56± 0.14%

BAVARDAGE

WRN [39] 77.45± 0.31% 87.48± 0.18% 81.47± 0.28% 88.27± 0.16%
RN18 [39] 76.55± 0.31% 86.46± 0.19% 80.32± 0.28% 87.14± 0.16%
RN12 [3] 79.38± 0.29% 88.04± 0.18% 83.52± 0.26% 89.03± 0.15%

RN12* [3] 81.17± 0.29% 89.63± 0.17% 85.20± 0.25% 90.41± 0.14%

CUB unbalanced balanced
Method Backbone 1-shot 5-shot 1-shot 5-shot

Soft-KMEANS
RN18 [39] 77.54± 0.26% 86.70± 0.14% 82.67± 0.24% 89.04± 0.11%
RN12 [3] 81.24± 0.25% 87.27± 0.14% 84.87± 0.22% 89.64± 0.11%

RN12* [3] 82.40± 0.24% 89.40± 0.13% 87.38± 0.20% 91.29± 0.10%

BAVARDAGE
RN18 [39] 82.00± 0.28% 90.67± 0.12% 85.64± 0.25% 91.42± 0.10%
RN12 [3] 83.12± 0.26% 90.81± 0.12% 87.41± 0.22% 92.03± 0.09%

RN12* [3] 86.96± 0.24% 92.84± 0.10% 90.42± 0.20% 93.50± 0.08%

FC100 unbalanced balanced
Method Backbone 1-shot 5-shot 1-shot 5-shot

Soft-KMEANS RN12 [3] 51.24± 0.27% 64.70± 0.22% 54.59± 0.26% 66.37± 0.20%
RN12* [3] 51.64± 0.27% 65.26± 0.22% 54.87± 0.26% 66.89± 0.20%

BAVARDAGE RN12 [3] 52.60± 0.32% 65.35± 0.25% 56.66± 0.28% 69.69± 0.21%
RN12* [3] 53.78± 0.30% 68.75± 0.24% 57.27± 0.29% 70.60± 0.21%

CIFAR-FS unbalanced balanced
Method Backbone 1-shot 5-shot 1-shot 5-shot

Soft-KMEANS RN12 [3] 80.72± 0.25% 88.31± 0.17% 85.47± 0.22% 89.36± 0.15%
RN12* [3] 81.75± 0.25% 88.92± 0.17% 86.07± 0.22% 89.85± 0.15%

BAVARDAGE RN12 [3] 82.68± 0.27% 88.97± 0.18% 86.20± 0.23% 89.58± 0.15%
RN12* [3] 83.82± 0.27% 89.84± 0.18% 87.35± 0.23% 90.63± 0.16%

6.4 Additional experiments on other Few-Shot benchmarks

In Section 4 in the paper we tested our proposed method on three standard Few-Shot benchmarks:
mini-Imagenet1, tiered-Imagenet2 and CUB3, following the same setting as presented in https:
//github.com/oveilleux/Realistic_Transductive_Few_Shot. In this section we further
conduct experiments on two other well-known Few-Shot datasets: 1) FC100 (https://github.
com/ElementAI/TADAM) is a recent split dataset based on CIFAR-100 [22] that contains 60 base
classes for training, 20 classes for validation and 20 novel classes for evaluation, each class is
composed of 600 images of size 32x32 pixels; 2) CIFAR-FS (https://github.com/bertinetto/
r2d2) is also sampled from CIFAR-100 and shares the same quantity of classes in the base-validation-

1https://github.com/yaoyao-liu/mini-imagenet-tools
2https://github.com/yaoyao-liu/tiered-imagenet-tools
3http://www.vision.caltech.edu/datasets/cub_200_2011
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novel splits as for mini-Imagenet. Each class contains 600 images of size 32x32 pixels. In Table 3
below we report the accuracy of our proposed method on all benchmarks, note that for FC100 and
CIFAR-FS we believe to be among the first to conduct experiments in the unbalanced setting.

In Table 3 we also show the results using WRN and RN18 pretrained from [39] and RN12 pretrained
from [3], same as Table 1 in the paper, with a confidence interval of 95% added next to the accuracy.
In addition, given that some works [27, 47] in the field utilize data augmentation techniques to
extract features based on images in original dimensions instead of reduced ones, here we apply our
BAVARDAGE following the same setting and report the accuracy on a pretrained RN12 feature
extractor [3] with data augmentation (denote RN12*). For comparison purpose we also provide a
baseline accuracy on each Few-Shot benchmark using Soft-KMEANS algorithm.

With BAVARDAGE, we observe a clear increase of accuracy for all datasets compared with Soft-
KMEANS in both balanced and unbalanced settings, suggesting the genericity of the proposed
method. As for the computational time, we evaluate an average of 1.72 seconds per accuracy (on
10,000 Few-Shot tasks) using a GeForce RTX 3090 GPU.
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5.3 Discussions
Our proposed method in this work is called “BAVARDAGE” , it reaches state-of-
the-art performance in the unbalanced setting, especially in the case of 1 shot,
BAVARDAGE is able to gain up to 6% accuracy compared with [Vei+21] under
the same conditions. Furthermore, our proposed method also obtains competitive
results in the balanced setting without a class-balanced prior, which is more
practical for real world scenarios. In this section we will address more details of
our proposed method.

5.3.1 Comparison with other dimension reduction techniques

In BAVARDAGE, we apply a PLDA to reduce feature dimension. Given the
fact that PLDA projects data while reshaping them to have identity matrix as
the covariance matrix, this corresponds to our assumption of a shared isotropic
covariance matrix for the test data, and gives the best results. In comparison
with other feature dimension techniques, here we provide the performance using 1)
Principle Component Analysis (PCA) and 2) Linear Discriminant Analysis (LDA),
with the same VB model as in the paper.

In detail, with PCA by applying it before the VB inference (since it is unsupervised),
and we obtain 67.10%/76.95% accuracy for 1/5 shots in the unbalanced setting
(dataset:mini -Imagenet, backbone: WRN from [Vei+21]). With LDA we apply it
by computing the projection matrix from Φ−1

w Φb instead of Eq. (1) in the paper,
and we obtain 70.87%/83.97% accuracy under the same setting, both inferior to the
performance of reported BAVARDAGE (74.1%/85.5%), suggesting the effectiveness
of PLDA.

5.3.2 Model complexity

Note that in our proposed method we do not apply a full VB model where the cluster
covariances are regarded as hidden variables as well, instead we suppose a shared
isotropic covariance matrix for all clusters, adjusted by a hyperparameter. This is
due to the two following reasons: 1) a shared isotropic covariance corresponds to
the assumption of PLDA that can been viewed as a whitening process; 2) injecting
too many hidden variables may render the VB model more complex, unstable
and sensitive to hyperparameters, especially in the case of few shot where there
is already a relative high level of uncertainty in cluster estimations to begin with.
Therefore, as we grant a VB model more flexibility on certain parameters, a balance
should be maintained so that the model remains solid and does not collapse.

To better prove the point, we test the performance using 1) Kmeans and 2) a full VB
model that are applied on the reduced dimensional data from PLDA (dataset:mini -
Imagenet, backbone: WRN from [Vei+21]), and we obtain 70.36%/83.68% accuracy
for 1/5 shots for 1), 48.56%/66.98% for 2), both inferior to the performance of
BAVARDAGE reported in the paper (74.1%/85.5%). Therefore from our exper-
iments, a partial VB model with a shared isotropic covariance matrix is shown
to give the best results, although there is still room for the future work to find a
workable solution for other forms of covariance matrix.
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From the above results, we can observe a balance between model complexity and
performance. A less complex model like Kmeans or a too complex one like full
VB inference both can result in sub-optimal accuracy, especially in the case of a
full VB model, we see a catastrophic decrease of accuracy. Therefore, we should
be cautious about the model complexity in order to prevent it from overfitting or
falsely estimating some of its parameters. In our considered VB model, we always
had in mind a compromise between the expressivity of the general framework and
the ability to correctly estimate the introduced parameters (Typically in our case
we could face the issue of estimating a D ×D covariance matrix with D = 512 or
640 on the basis of only few dozen observations). The obtained trade-off is likely
overspecialized to our specific benchmarks, as is illustrated with the diminished
gains in accuracy when the number of shots increases. Yet in the extreme case of
1-shot, where the uncertainty is maximum, the proposed combination of VB and
PLDA achieves the state-of-the-art performance, suggesting the balance between
complexity of the model and ability to estimate its parameters [BK10; Aka98;
KW13] is close to optimal.

5.3.3 Performance on cross domain

As we can see, the cluster estimations in our proposed method are dependent
on the base dataset, therefore resulting in different levels of accuracy increase on
different benchmarks. Although BAVARDAGE has shown promising results on
both coarse-grained (e.g. tiered -Imagenet and FC100) and fine-grained (e.g. CUB)
benchmarks, there remains questions about the performance on cross domain where
the base dataset has a complete different distribution with respect to the novel
dataset. Therefore here in Table 2 we test the performance of our proposed method
in the mini -to-CUB cross-domain setting where features of CUB are extracted
from a backbone trained with mini -Imagenet. Here in our case we thus perform
BAVARDAGE based on Φw being the within-class scatter matrix of mini -Imagenet
as well:

Table 2: Performance of the proposed BAVARDAGE on cross domain. Here
we use the base dataset of mini -Imagenet to test out the performance on the
novel dataset of CUB, accuracy is obtained with ResNet18 and WideResNet28_10
backbones from [Vei+21].

mini → CUB unbalanced balanced

Method Backbone 1-shot 5-shot 1-shot 5-shot

NCM RN18 [Vei+21] 46.27 66.18 46.28 66.09
BAVARDAGE (ours) 53.02 70.01 54.63 71.45

NCM WRN [Vei+21] 48.54 66.26 48.47 68.16
BAVARDAGE (ours) 56.60 74.02 58.13 75.41

in which we still observe relative large increase of accuracy. In our opinion, the
reason that the proposed method works in cross domain may be that a well
pretrained model, regardless of the base dataset, could be a decent representative
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for clusters consisting of novel scarce data. An interesting subject for the further
research could be to analyse the impact of base dataset on the performance [SCA20;
YLX21], and how to choose or design a base set that maximizes the boost in
accuracy when evaluating with test data.

5.3.4 Further improvement with graph preprocessing

In [HGP21a] we proposed to integrate graph into feature preprocessing on the test set
and obtain relatively large increase in accuracy compared with baseline inductive
methods that do not use unlabeled samples. However, as more transductive
approaches are put forth with sophisticated classifiers in use of the query set,
the effect of graph becomes more incremental and delicate. For methods based
on clustering under Gaussian assumption, the use of graph on the test set as
preprocessing could be beneficial if features are more gaussian-like in terms of
their distributions, which would facilitate the cluster estimations based on such
assumption.

Therefore, in this experiment we test the effect of graph preprocessing on top of
our proposed method BAVARDAGE, with the reason being: 1) BAVARDAGE
is our latest contribution in tackling transductive FSC in a realistic unbalanced
setting scenario, and 2) given that the proposed method projects the test set data
to supposedly have a shared identity covariance matrix for clusters, the actual
effect of graph only lies in the prototype (centroid) estimations for these clusters.
In other words, the potential utility of graph preprocessing is to help align features
for a better cluster prototype estimation. In terms of implementation, we use the
same graph as presented in [HGP21a] and add it on top of the normalized test data
as an extra process before projecting them onto the cluster centroids space. And
we show the results of our proposed algorithm BAVARDAGE in combination of
graph (denoted as “G+BAVARDAGE”) in Table 3. Note that here we compare its
performance with the original BAVARDAGE without graph preprocessing based on
the same pretrained ResNet12 model [Ben+22b] and the accuracies are computed
on multiple few-shot benchmarks in the unbalanced setting.

From Table 3 we can observe a slight increase of performance across the board
for both 1-shot and 5-shot scenarios, proving the utility of graph in ameliorating
the cluster estimations. In addition, the graph used in this experiment has 3
hyperparameters: 1) k that selects the k-est closest samples for each vertex according
to cosine similarities, 2) α that adjusts the effect of the vertexes themselves for
feature diffusion and 3) κ that determines the level of indirect influence among the
vertexes (more details can be found in [HGP21a]). Therefore, here we also test the
accuracy of our proposed G+BAVARDAGE as a function of these hyperparameters
on various benchmarks to observe the algorithm’s behaviors. Namely, in Fig. 29 and
Fig. 30 we show the accuracy on two few-shot datasets (mini -Imagenet and FC100)
as a function of k ranging from 2 to 50 and α ranging from 0 to 5, while keeping
the other hyperparameters in BAVARDAGE fixed. For simplicity we set κ to be
1 for all benchmarks since it generally gives the best results. And the following
observations could be drawn from the curves: 1) while the optimal hyperparameters
may differ on datasets, the algorithm is generally robust with a non-zero alpha and
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a k that is less than 30; 2) a too larger k would fuse information from unrelated
vertexes that deteriorate the performance; and 3) Depending on the datasets, a
zero α tends to change accuracy more drastically, suggesting the importance of self
vertex in stabilizing the graph. In summary, applying graph as a preprocessing
method on extract features slightly improves the performance on BAVARDAGE
in the unbalanced setting. However, despite its simplicity, a graph would add in
additional parameters to the algorithm and thus increase its sensitivity.

Table 3: Effect of graph preprocessing on the proposed BAVARDAGE.

mini-Imagenet unbalanced

Method Backbone 1-shot 5-shot

BAVARDAGE RN12 [Ben+22b] 77.85± 0.28% 88.02± 0.14%
G+BAVARDAGE 78.62± 0.29% 88.02± 0.13%

tiered-Imagenet unbalanced

Method Backbone 1-shot 5-shot

BAVARDAGE RN12 [Ben+22b] 79.38± 0.29% 88.04± 0.18%
G+BAVARDAGE 80.37± 0.29% 88.22± 0.17%

CUB unbalanced

Method Backbone 1-shot 5-shot

BAVARDAGE RN12 [Ben+22b] 83.12± 0.26% 90.81± 0.12%
G+BAVARDAGE 84.14± 0.24% 91.97± 0.10%

FC100 unbalanced

Method Backbone 1-shot 5-shot

BAVARDAGE RN12 [Ben+22b] 52.60± 0.32% 66.35± 0.25%
G+BAVARDAGE 53.49± 0.30% 66.53± 0.24%

CIFAR-FS unbalanced

Method Backbone 1-shot 5-shot

BAVARDAGE RN12 [Ben+22b] 82.68± 0.27% 88.97± 0.18%
G+BAVARDAGE 83.02± 0.27% 89.06± 0.18%
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Figure 29: 1-shot and 5-shot accuracy on mini -Imagenet as a function of graph
hyperparameters (setting: unbalanced).

5.3.5 Limitations and perspectives

Problematically, the proposed solutions comes with a certain number of hyperpa-
rameters, some of which are hard to tune without access to a set of validation proxy
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Figure 30: 1-shot and 5-shot accuracy on mini -Imagenet as a function of graph
hyperparameters (setting: unbalanced).

few-shot tasks. This recurrent problem of gaining a few percentage in accuracy
at the cost of adding hyperparameters could be at the heart of more discussions
in the field, as it is more problematic than with standard classification where
validation sets can overcome the tuning of these hyperparameters. The recent trend
towards more diverse evaluation of few-shot classification, notably with the rise of
Metadataset [Tri+20], is definitely a step towards the right direction.

In addition, a more well-thought-out covariance matrix could be studied. Since our
method only uses base data to mirror cluster covariance for the test data, future
work could take into consideration the task-specific information in the few-show
task and for example perform a mixture via shrinkage [Bat+20; Bat+22] in which
we suggest the estimated Φw for projection to be the weighted sum of 1) the
within-class covariance matrix Sbase

w computed from base data, and 2) same matrix
Stest

w computed from test data. The formula can be expressed as follows:

Φw = αSbase
w + (1− α)Stest

w , (8)

where α is a hyperparameter adjusting the weights between two matrix. As the
number of labeled samples increases, more weight should be allocated to Stest

w .
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Chapter 6

Conclusions and discussions

6.1 Conclusions
In this thesis we were interested in improving few-shot classification performance in
vision problems, a topic that has seen numerous developments in the past few years.
Especially, as presented in Chapter 2, we have been considering means to improve
the 3 steps of the general pipeline: 1) backbone training, 2) feature preprocessing
and 3) classifier design. In that context, we also focused on the use of simultaneous
available queries (i.e. transductive setting) which we could benefit from.

In the following subsections, we quickly recap the main contributions.

6.1.1 Feature preprocessing

In terms of feature preprocessing, in [HGP21a] we proposed to construct a graph
with similarity measures between the vertices, i.e. feature vectors that represent the
data samples. The graph helps filter out the high frequencies in signals and thus
aggregate data points that belong to the same class to be more gathered. Therefore,
using a Simplified Graph Convolutional (SGC) neural network on the extracted
features before applying a logistic regression classifier, we reached state-of-the-art
performance in several benchmarks at the time of publication. It is worth noting
that, at that time, the proposed method was among the first transductive methods
to obtain significant gains compared to inductive ones, with the prediction accuracy
boosted up to 12%. Moreover, the fact that we applied graphs on preprocessing as
an independent step, as opposed to integrating them into the backbone training
such as [Kim+19; SE18; Che+21a] shows more advantages on making use of features
information from a specific few-shot task. In Chapter 5 we showed that graphs can
improve the prediction accuracy when combined with clustering methods (Section 3).
And in [Ham+21] we further built a more sophisticated graph on a class-wise basis,
which gives a slight increase in accuracy for 5-shot compared with [HGP21b],
suggesting the capacity of well designed graphs for further improvement.

Another feature preprocessing method that we proposed to apply in addressing
transductive Few-Shot Classification is Power Transform (PT) [HGP21b; HPG22a].
Different from graph methods, PT is able to adjust the feature distributions for
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the benefit of the upcoming classifier. Namely, for a clustering method based
on a Gaussian Mixture Model, PT adjusts the feature distributions to be more
Gaussian-like so that the assumed Gaussian classifier exerts its optimal utility.
Using the same classifier, our proposed PT is shown to be utterly helpful and can
bring up to 2% accuracy compared with other preprocessing methods without PT.
Additionally, we also observed the benefit of using an ensemble of preprocessing
methods, which are generally applied but not often discussed in the literature.

6.1.2 Classifier design

In terms of classifier design, in [HGP21b] we proposed a clustering method under
the Expectation Maximization framework and integrated an algorithm based on
Optimal Transport for the balanced few-shot setting. Under Gaussian assumptions,
our applied Sinkhorn algorithm is able to allocate unlabeled samples into targeted
classes with the minimum cost based on the distance metric, and therefore we
obtained relatively reliable estimations of the class prototypes in the end. Our
proposed method PT+MAP reached 82.92% accuracy on 1-shot and 88.88% accu-
racy on 5-shot using mini -ImageNet, largely surpassing the other alternatives in
the same balanced setting at the time. The method has also been shown to bring
significant gains on several few-shot benchmarks regardless of pretrained backbones.
This proposed method was a long-time top performer method on the competition
site Papers With Code 1 2, it has further been taken by many other works that
continue to make slight improvement [LSA21; CVK21]. However, the method has
also led to some criticism, especially on the prior on the distribution of the query
set that PT+MAP requires [Vei+21].

Moreover, in order to alleviate the dependency on the class-balanced prior in
PT+MAP, in [HPG22a] we suggested a modified Sinkhorn algorithm that initializes
class distributions to be the minimum number of class affiliations. And we also
applied logistic regression on the entire test set, with soft prediction labels coming
out of Sinkhorn for the query set for a better prototype estimation. Note that we
are among the first to integrate a logistic regression algorithm that makes use of
the pseudo labels on the unlabeled samples, and our modified method has brought
further increase in accuracy compared with PT+MAP in the balanced setting.

Finally, in [HPG22b] we developed a method tackling the newly proposed unbal-
anced transductive setting. Namely, we proposed a partial Variational Bayesian
model that deems class mixtures and centroids as hidden variables, while adding
constrains on the cluster covariance matrix. In the meantime we deployed a Proba-
bilistic Linear Discriminant Analysis to iteratively project the test data into a lower
dimension space according to their estimated centroids. Our proposed combination
of PLDA and VB largely boosted the performance and reached top accuracy com-
pared to existing state-of-the-art alternatives in the unbalanced setting, especially
in the case of 1 shot. The use of base data in estimating the projection matrix of
PLDA helps increased accuracy up to 6%.

1https://paperswithcode.com/sota/few-shot-image-classification-on-mini-2
2https://paperswithcode.com/sota/few-shot-image-classification-on-mini-3
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6.1.3 Other contributions

Besides our contributions on feature processing and classifier design, in [Ben+22b]
we attempted to improve the prediction accuracy by learning a backbone that
generalizes well on the test set. Namely, in terms of backbone training we proposed
to use the following ingredients: 1) a rotation classifier that predicts the degree of
rotation for input images, and 2) manifold mixup technique that linearly combines
features in the hidden layers of a neural network. With these two elements integrated
into the training process, our pretrained ResNet12 were able to reach competitive
results with a simple NCM classifier. Moreover, we further used data augmentation
on each test set image by randomly cropping it into patches and compute the
averaged extracted features at the output. Also in this work we applied ensemble
methods so that the final feature vector for each sample is the concatenation of
3 backbones pretrained in the same manner. Using a basic Soft-kmeans as the
classifier, our proposed method obtained state-of-the-art performance on many
few-shot benchmarks (e.g. 71.75% on 1-shot and 87.15% on 5-shot using mini -
ImageNet).

6.2 Discussions
In this thesis, we have been focusing on improving the FSC performance under a
specific set of conditions presented in Chapter 2), i.e. input size 84× 84× 3 for the
backbone training, no extra data, base/novel split from the same benchmark, etc.
These conditions have been considered mainstream and are used by a large amount
of works in the field, mainly for comparison purposes. However, there have been
new conditions proposed over the course of my thesis [Bat+20; Che+21b; Bat+22].

With those associated evolutions in the domain of few-shot classification, more and
more questions have emerged that require detailed investigation. In the coming
subsections, we discuss some of them.

6.2.1 Evolutions of the FSC conditions

6.2.1.1 Resolution of the input images

In the standard setting for few-shot classification, the input data resolution is
originally fixed at 84×84 pixels for both training and testing. With more and more
methods seeking further improvement on the performance, some works emerged
that used input data with a much larger resolution to train the model or to
extract features from. For instance, in [Che+21b] the authors use 128 × 128
as input resolution for self-supervised training. And in [Luo+21] the authors
apply multi-crop on the input of 224 × 224 pixels to obtain multiple patches of
resolution 84 × 84 pixels for feature extraction. Although these methods have
indeed boosted the prediction accuracy by a relatively large margin, it raises an
important question about how much impact the input resolution can have for the
performance improvement. Due to the fact that some of these methods also use
additional data in combination with larger input images, it is difficult to disentangle
and study the effect of each of them on the overall accuracy.
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It is not surprising that higher resolution can help in some cases, especially when
objects to recognize can be discriminated thanks to small or detailed features.
With the advances of GPU capabilities, it is thus possible that current few-shot
learning pipelines would increase significantly in performance by considering higher
resolution inputs.

6.2.1.2 About the base dataset

In few-shot classification, it is crucial to learn a model that can generalize well
to the unseen tasks. This would require not only a good model but also a well
designed base dataset that can optimize the gain. However, as the majority of
works in the field has been focusing on models, there is a paucity of literature
targeting the impact of base dataset. [SCA20] is one of the first papers that
shines a light on this aspect, the authors run extended experiments on the class
prediction accuracy in relation with multiple factors on the base dataset such as
the number of base classes, the number of samples per class and the coarseness
of classes. In [Laf+22] the authors further illustrate the impact of base classes
on the performance, showing that some classes could be significantly harmful to
the performance on the given set of tasks (e.g. 1-shot problems with fixed ways).
Similarly, another recent work [Ben+22c] studies the granularity of base classes
and its impact on the few-shot performance, the authors suggest that the more
granular the base classes are, the less accurate the predictions become.

As analysis started to emerge, further research could focus more on the design of
base dataset so that a model is able to fully explore its characteristics.

6.2.1.3 Training with additional data

Besides the characteristics of the base dataset (e.g. class selection, number of
samples per class, etc) that would require further studies, some works also use
additional information to learn a model. For example in [Xin+19; Sch+19; Zha+21]
the authors incorporate the semantic information of the base data into the training
step, and the semantic features are learned using large text corpora. Although
using additional resources during training can be beneficial, there needs further
research about how to best integrate these information with base data.

Moreover, some works train their models with extended large data in addition
to the base data, resulting in a large increase of accuracy. Namely, in [Che+21b;
Bat+22] the authors firstly learn a model with ImageNet dataset that is much
larger than a standard few-shot benchmark such as mini -Imagenet, then the model
is finetuned with the base dataset of the benchmark. This raises the question
about the impact of external data on the performance in the context of few shot,
given that in other domains such as NLP, giant models (e.g. GPT3 [Bro+20]) are
observed to be well adapted for tasks with limited data.

6.2.1.4 Cross-domain few-shot classification

In the typical settings, experiments on few-shot classification are conducted with
the base, novel and validation classes drawn from the same initial dataset. However,
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this may not be ideal as these sets typically display similar distributions of data.
And yet in many real world applications, it is hard or even impossible to gather
large numbers of data for backbone training. For instance in domains such as
satellite imagery and cancerology where there are examples of rare categories, the
requisition of training data would be too costly or unrealistic.

This leads to a new few-shot setting called “cross domain” where there is a large
difference between base set and novel set. Early works such as [Che+19a; Wan+19b;
Man+20; HGP21a; Zik+20] propose to train models using the base class set of
a few-shot benchmark, and evaluate the performance using the novel class set
of another benchmark. Although these works report their results on the defined
cross-domain setting, we find only few works that study cross domain in a relatively
thorough manner [Guo+20; Oh+22]. Given the vast domain differences between
base classes and classes in the novel set, models often suffer from a large drop
of accuracy. In addition, it would be difficult to tune hyperparameters with a
validation set in cross-domain settings due to the same reason, making it more
challenging for a model to reach its optimal condition.

Although methods have been proposed for the cross-domain setting in the case
of few shot, this remains a challenging task due to the tremendously decreased
accuracy caused by domain shift (e.g. 63.90%/79.15% 1/5-shot accuracy [HSS18]
in mini -to-CUB cross-domain setting, compared with 91.91%/94.62% accuracy
with CUB all alone). While some early works only perform their proposed methods
in one particular mini -to-CUB situation, there needs to be experiments conducted
on a broarder range of scenarios with various test datasets in different domains
(e.g. [Guo+20]) to further evaluate the ability of a pretrained backbone for its
feature generalization.

More recently, a newly proposed Meta-dataset3 is used to conduct experiments in
works such as [Bai+20; DGZ20; Bat+20; Bat+22]. Similar to standard few-shot
benchmarks, Meta-dataset is also split into base, validation and novel class set. But
each split in Meta-dataset is a combination of several datasets with different image
sizes and class categories, which can further stress the proposed method capacity to
leverage different training sources for improving their generalization [Tri+20]. Meta-
dataset contains a collection of 10 datasets from different domains, representing a
diverse data distribution:

• ILSVRC-2012 [Rus+15] (the ImageNet dataset, consisting of natural images
with 1000 categories),

• Omniglot [LST15] (hand-written characters, 1623 classes),

• Aircraft [Maj+13] (dataset of aircraft images, 100 classes),

• CUB [Wah+11] (dataset of Birds, 200 classes),

• Describable Textures [Cim+14] (different kinds of texture images with 43
categories),

• Quick Draw [Jon+16] (black and white sketches of 345 different categories),
3https://github.com/google-research/meta-dataset

https://github.com/google-research/meta-dataset
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• Fungi [SC18] (a large dataset of mushrooms with 1500 categories),

• VGG Flower [NZ08] (dataset of flower images with 102 categories),

• Traffic Signs [Hou+13] (German traffic sign images with 43 classes),

• MSCOCO [Lin+14] (images collected from Flickr, 80 classes).

All datasets except Traffic Signs and MSCOCO have a base-validation-novel set
split (proportioned roughly into 70%, 15%, 15%). The Traffic Signs and MSCOCO
datasets are reserved for evaluation only [Tri+20].

Given that the base and novel classes in Meta-dataset consist of classes in several
datasets of various domains, the setting of this benchmark can be considered as
cross-domain. Additionally, not only the Meta-dataset opts in the addition of extra
data for backbone training, the evaluation used in this dataset includes various
shots and ways along with balanced and unbalanced settings. And it is gaining
momentum in few-shot classification [Tri+20; Req+19; Bai+20; DGZ20; LLB22;
Dum+21]. Considering that it operates under conditions that are close to the real
world scenarios, this is the right direction for future works to explore and address
the challenges related to this setting.

6.2.2 Solutions for further improvement

6.2.2.1 Self-Supervised Learning

Besides feature preprocessing and classifier design, another important step in the
few-shot classification pipeline is the backbone training. With the development of
research in related areas, there are techniques such as Self-Supervised Learning
(SSL) [GSK18b; Ale+15; DGE15; ZIE16; Car+18; XGF16] that are proposed to
improve the feature generalization. In few-shot literature, they are often used as
an auxiliary training task to regularize the input data. Together with Supervised
Learning (SL) on the training set, SSL techniques are observed to be effective in
increasing the prediction accuracy [Man+20; Riz+21].

However, SSL as un unsupervised technique was hardly used alone in few-shot
classification, and its impact on the cross domain is still yet to be explored. Few
works study on the setting where the labels of the training data are not accessible,
suggesting a complete unsupervised scenario for backbone training. In [CMLM21]
and [Liu+21b] the authors apply the same contrastive learning methods as [He+20;
Che+20] and obtain competitive accuracy compared to methods trained with
labeled data.

More recently, SSL methods are shown to be applied as an adaptation technique
to better estimate the domain of the test set. In [PH21; Isl+21] a novel setting has
been suggested in which we additionally possess a certain number of unlabeled novel
set data during training in order to address the challenge of domain differences.
This newly proposed setting allows further possibilities on the research concerning
cross domain and the effect of SSL. For instance, in [Oh+22] the authors suggest
the effectiveness of SSL compared with SL in the case when the domain similarity
is smaller or the few-shot difficulty is lower. In the same paper the authors also
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propose a two-stage training strategy that firstly pretrains the backbone with
labeled data in the training set, followed by finetuning the pretrained model with
auxiliary data from the novel set. According to the paper, the two-stage training
strategy stands out as the one that has the best results on the novel setting.

In summary, more studies need to be conducted on the use of SSL and its impact
on various scenarios such as 1) no label for the training data; 2) training data plus
additional unlabeled data from the target domain are available for training.

6.2.2.2 Domain adaptation

Since more and more studies in the field have been focusing on the cross domain
that is presented above, one of the most common approaches is to apply domain
adaptation.

There are a few works that use domain adaptation to address the domain difference
between the training and the test set. Usually methods are proposed to have an
adaptation layer attached to the feature extractor during training, so that the
additional part of the architecture could help learn more task-specific information on
the test set. For instance, in [Tse+20] the authors add a feature-wise transformation
layer to simulate feature distributions in various domains. And in [Bat+20] the
authors propose to add FiLM layers [Per+18] on top of a ResNet, the FiLM layers
produce scale and shift parameters for the extracted features to adapt on a task by
task basis, and these parameters are generated using the support set data.

As we observe, more research can be conducted for the purpose of 1) Analysing
and quantifying the domain differences differences between the base and the test
datasets; and 2) reducing these differences using domain adaptation methods.

6.2.3 Further future directions of research

6.2.3.1 Learning features of targeted class

In few-shot classification, the trained feature extractor has the ability of character-
ising distinct features of a class, which are further used for classification on the
new tasks. However, there exist scenarios where a backbone might extract the
wrong features. For example, for an input image that contains a photo of a cat,
or a painting of a vase, it would be difficult to know whether a trained backbone
extracts the features that discriminate a photo from a picture or those detecting
an animal.

The above example can be categorized into the problematic of ambiguity in clas-
sification, an input image could be ambiguous due to the fact that it contains
other non-targeted objects along with the targeted ones. In this scenario, we
often need prior knowledge or contexts so that the model extracts features of the
targeted class. However, it is difficult in few shot due to limited data. Especially
in the case of 1-shot classification, undesirably extracted features could have more
negative impact on the performance since there is only one labeled data and no
other reference on the targeted class.
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Therefore, methods are required so that the backbone produces features of the
targeted class. One possible solution would be to use multimodel [Ngi+11; VPJ17;
ASL16] and integrate semantic information as a prior into the training pro-
cess [Xin+19]. Other solutions include 1) disentanglement [Ben13; Loc+19] that
attempts to learn compact and independent factors of the data; 2) using attention-
based models to help select the right features [Bat+20; Ye+20; Zha+22] and so on.
However, more experiments need to be conducted for a full analysis about how to
construct the prior knowledge and when to use it.

6.2.3.2 Few-shot classification with multiple objects in an input

In the context of few shot, especially 1-shot classification, working with one example
is particularly challenging as there might be multiple objects in a scene, which can
make it ambiguous even for the best trained model [Mor+21].

Authors in [Ben+22a] firstly identify the problem of having multiple objects in an
image and propose a methodology to disambiguate them using data augmentation
and an optimization process. Namely, the authors model the distribution formed
by the features of different regions of a scene as a simplex. This modeling allows to
extract different feature representations that can be identified with different objects
in an image. Then, these representations are exploited to improve the performance
on classification tasks in the one-shot classification setting.

The obtained results are encouraging, and it opens the door for further improvement
when considering problems with multiple class-labeled data, as a similar approach
should better identify the common object between multiple examples of the same
class.

6.2.3.3 Classification on a single few-shot task

In the standard few-shot settings, a model is evaluated with hundreds and thousands
of few-shot tasks and the final accuracy is the averaged performance of all. However,
those methods often have various results depending on the tasks. Therefore, they
may produce optimal accuracy on average, but suboptimal performance for a
specific task. Moreover, in certain cases in the real world we only need the model
to perform well on one single particular task, we thus need methods that are able
to target specifically the given task, such as integrating it with base data during
training so that the model takes the task-specific information into account; or
autonomously optimizing the hyper-parameters for that task.

Note that with the necessity of task-specific information in this particular situation,
a well-adapted training paradigm is required to better extract such information.
This brings us back to the comparison between meta learning and transfer learning.
We believe that although methods using meta learning paradigm tend to show
inferior performance in standard few-shot settings compared to transfer learning,
their potential is yet to be explored when tackling a specific task.
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6.2.3.4 Active few-shot classification

In transductive few-shot classification, the error mainly comes from the following
two sources: 1) false clustering of unlabeled samples; 2) incorrect class prototypes.
The second type of error occurs when the selected labeled samples in the support set
turn out to be the outliers that are closer to the prototype of another class [BI17].
Therefore, solutions [BI17; PZS20; Mül+22; Li+22; Abd+22] have been proposed
using active learning which interacts with users in order to adjust the prototypes.
The goal is for the user to select samples based on their predicted labels and
consider them as labeled for the targeted class, so that there are additional labeled
samples to re-evaluate its prototype. With few-shot learning being applied more
and more in real world situations, active learning or methods that allow different
selections of samples can be a very interesting research subject in the field that
helps boost the performance in the context of little data.
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