
HAL Id: tel-03908078
https://theses.hal.science/tel-03908078

Submitted on 20 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the similarities of trees : the interest of enumeration
and compression methods

Florian Ingels

To cite this version:
Florian Ingels. On the similarities of trees : the interest of enumeration and compression methods.
Discrete Mathematics [cs.DM]. Ecole normale supérieure de lyon - ENS LYON, 2022. English. �NNT :
2022ENSL0010�. �tel-03908078�

https://theses.hal.science/tel-03908078
https://hal.archives-ouvertes.fr

Numéro National de Thèse : 2022ENSL0010

THÈSE
en vue de l’obtention du grade de Docteur, délivré par

l’École Normale Supérieure de Lyon

École Doctorale n°512
École Doctorale en Informatique et Mathématiques

Discipline : Mathématiques

Soutenue publiquement le 19/09/2022, par :
Florian Ingels

On the similarities of trees : the interest
of enumeration and compression methods

Sur la similarité des arbres : l’intérêt des
méthodes d’énumération et de compression

Devant le jury composé de :

VALIENTE Gabriel Rapporteur
Professeur, Université de Catalogne, Espagne
VIALANEIX Nathalie Rapporteure
Directrice de Recherche, INRAe, Toulouse
SAGOT Marie-France Présidente
Directrice de Recherche, Inria, Université Lyon 1
STEHLÍK Matěj Examinateur
Professeur des Universités, Université Paris Cité
GODIN Christophe Directeur de thèse
Directeur de Recherche, Inria, ENS lyon
AZAÏS Romain Co-encadrant de thèse
Chargé de Recherche, Inria, ENS Lyon

À ma famille.

Hic Sunt Dracones

Abstract

Tree data appear naturally in many scientific domains. Their intrinsically non-Euclidean
nature and the combinatorial explosion phenomenon make their analysis delicate. In this
thesis, we focus on three approaches to compare trees, notably through the prism of a
lossless compression technique of trees into directed acyclic graphs.

First, concerning tree isomorphism, we consider an extension of the classical definition to
labeled trees, which requires that trees are identical up to label rewriting. This problem
is as hard as graph isomorphism, and we have developed an algorithm that drastically
reduces the size of the solution search space which is then explored with a backtracking
strategy.

When two trees are different, we may try to find common substructures. If this question has
already been addressed for subtrees, we are interested in a larger problem, namely finding
sets of subtrees appearing simultaneously. This leads us to consider forest enumeration,
for which we propose a reverse search algorithm that constructs an enumeration tree
whose branching factor is linear.

Finally, from a list of common substructures, one can build a convolution kernel allowing
to tackle classification problems. We consider the subtree kernel from the literature, and
build an algorithm that explicitly enumerates subtrees (unlike the original method). In
particular, our approach allows us to parameterize the kernel more finely, significantly
improving its classification abilities.

Keywords rooted trees; directed acyclic graphs; enumeration; tree isomorphism; reverse
search; convolution kernels

Résumé

Les arbres sont des données qui apparaissent naturellement dans de nombreux domaines
scientifiques. Leur nature intrinsèquement non euclidienne ainsi que le phénomène
d’explosion combinatoire rendent leur analyse délicate. On s’intéresse dans cette thèse à
trois approches permettant de comparer des arbres, sous le prisme notamment d’une
technique de compression sans perte des arbres par des graphes dirigés acycliques.

D’abord, concernant l’isomorphisme d’arbres, nous considérons une extension de la
définition classique aux arbres étiquetés, qui requiert que les arbres soient identiques à
réécriture des étiquettes près. Ce problème est aussi dur que l’isomorphisme de graphes,
et nous avons développé un algorithme qui réduit drastiquement la taille de l’espace de
recherche des solutions, qui est ensuite exploré avec une stratégie de retour sur trace.

Lorsque deux arbres sont différents, on peut chercher à en trouver des sous-structures
communes. Si cette question a déjà été traitée pour les sous-arbres, nous nous intéressons
à un problème plus large, celui de trouver des ensembles de sous-arbres apparaissant
simultanément. Cela nous amène à considérer l’énumération des forêts, pour laquelle nous
proposons un algorithme de type “reverse search” qui construit un arbre d’énumération
dont le facteur de branchement est linéaire.

Enfin, à partir d’une liste de sous-structures communes, on peut construire un noyau de
convolution qui permet d’aborder des problèmes de classification. Nous reprenons de
la littérature le noyau des sous-arbres, et construisons un algorithme qui les énumère
explicitement (contrairement à la méthode originale). Notre approche permet notamment
de paramétrer plus finement le noyau, améliorant significativement les capacités de
classification.

Mots-clés arbres enracinés; graphes dirigés acycliques; énumération; isomorphisme
d’arbres; recherche inverse; noyaux de convolution

Remerciements

À Romain Azaïs, pour à peu près tout, des débats enflammées sur les conséquences d’un
résultat à l’explication des règles du tennis;

À Christophe Godin, pour les discussions (scientifiques ou non), les conseils inestimables
et la confiance accordée;

À Gabriel Valiente et Nathalie Vialaneix, qui ont gentiment accepté de rapporter cette
thèse et pour leurs retours précieux;

À Marie-France Sagot et Matěj Stehlík, pour avoir tout aussi gentiment accepté de
participer à mon jury de thèse;

Aux membres de l’équipe Mosaic, du GN1 et du RDP, pour ces 3 années de pauses cafés,
de discussions passionnantes et de soirées au foyer;

À Cécile Mercadier, sans qui rien de tout ceci ne serait arrivé;

Aux amis, pour les soirées jeux, les bons repas et tout ce qui m’a permis de souffler entre
deux tentatives d’attraper une preuve qui ne voulait pas se laisser avoir;

Évidemment à mes parents et ma famille qui, sans toujours bien comprendre ce que je
faisais – le savais-je moi-même ? –, m’ont toujours permis de suivre la voie qui me plaisait
et m’ont soutenu sans faille;

Merci.

1: https://romi-project.eu

2: http://www.ens-lyon.fr/RDP/

Figure 1: Arabidopsis Thaliana, courtesy of
Sana Dieudonné.

Preamble

My thesis takes place in the framework of the RObotics for MIcro-
farms (ROMI) project1, dedicated to promote a sustainable, local, and
human-scale agriculture. ROMI is developing an affordable, multipur-
pose platform adapted to support organic and polyculture market-garden
farms. ROMI (and therefore my work) has been financed by European
Commission’s Horizon 2020.

Before addressing the details of my work, I would like to introduce the
different facets of the ROMI project, and contextualize my contribution
to the project. The following partners are involved in the project:

▶ Institute of Advanced Architecture of Catalonia (Iaac / FabLab
Barcelona / Noumena),

▶ Sony Computer Science Laboratories Paris,
▶ Inria,
▶ Centre national de la recherche scientifique (CNRS / ENS Lyon),
▶ Humboldt-Universität zu Berlin,
▶ Pépinières Chatelain & Chatelain Maraîchage,
▶ France Europe Innovation.

The ROMI project The general philosophy of the ROMI project is to
propose low-cost, open source technological solutions to help micro-
farms; this approach involves both hardware and software solutions.

This takes the form, for instance, of a mechanical weeding robot. Weeding
is often a tedious, time-consuming and without much added value task
– if one wants to avoid chemicals, one has to do it manually. The robot
is mounted on wheels and, through a camera and a machine learning
algorithm, is able to identify which areas are growing vegetables and
which are dirt. A mechanical arm then digs up the soil, avoiding the
vegetables, which prevents the proliferation of weeds.

Another solution envisaged by ROMI relies on the construction of a 3D
plant scanner, indoor at the moment but envisaged to be an outdoor
phenotyping station in the future. This 3D scanner was developed jointly
with Inria, CNRS and Sony CSL. Inria and CNRS actually interact together
within the RDP laboratory2, where I did my thesis; my work is hence
inscribed in the context of this scanner.

3D plant scanner Phyllotaxis describes the arrangement of leaves and
branchs of a plant, at a macroscopic level. In other words, it is the
description of the topology of the plant. Phenotyping is – in our context –
the action of measuring this phyllotaxis.

Biologists routinely study a plant named Arabidopsis Thaliana (see Figure
1), used as a model organism – i.e., a species widely studied with the
expectation that biological phenomena that can be explained on this
species can be generalized to other species [1]

[1]: Fields et al. (2005), ‘Whither model
organism research?’

. In such a plant, phyllotaxis
is studied by measuring the angle between two consecutive branches
(the divergence angle) and the distance between them along the main

https://romi-project.eu
http://www.ens-lyon.fr/RDP/

Figure 2: Phenotyping station, ©ROMI.

stem (the internode length). Measuring plant phyllotaxis has contributed
to significant discoveries in biology [2, 3][2]: Besnard et al. (2014), ‘Cytokinin

signalling inhibitory fields provide
robustness to phyllotaxis’
[3]: Guédon et al. (2013), ‘Pattern
identification and characterization
reveal permutations of organs as a
key genetically controlled property of
post-meristematic phyllotaxis’

even though phenotyping is
currently done by hand.

Being able to automate these measurements would be of great interest to
biologists. More generally, having a 3D reconstruction of a plant makes it
possible to imagine even more ambitious uses of the study of phyllotaxis,
since we would have the complete topology of the plant. One could, for
example, imagine a more systematic comparison of phyllotaxis between
wild type plants and their mutants; or between plants subjected to hydric
stress and others that have not, etc. The 3D scanner intends to meet this
ambition of making phenotyping easier, and thus more frequent in the
work of biologists. For farmers, one can imagine similar applications to
compare healthy or sick plants, etc.

The 3D reconstruction pipeline that has been developed in the ROMI
project is as follows. The scanner itself is a structure allowing to place
a plant (typically about fifteen centimeters high), and where a robotic
arm equipped with a camera will take images under different angles
– see Figure 2. These photos are then processed by an algorithm that
reconstructs a 3D point cloud reproducing the scanned plant.

The point cloud is then segmented, i.e. each point is given a label
indicating to which individual organ it is believed to belong; and a
skeleton is also calculated to represent the underlying structure. Finally,
skeleton and segmentation are used to determine internode lengths and
divergence angles, which provide the desired measure of phenotype.

The calculation from the point cloud of the skeleton [4]

[4]: Chaudhury et al. (2020), ‘Skeletoniza-
tion of plant point cloud data using
stochastic optimization framework’

and the segmen-
tation [5]

[5]: Mirande et al. (2020), ‘High-precision
3D segmentation of plants combining
spectral clustering and quotient graph
techniques: a multi-level approach’ have already been published. A diagram of the pipeline can be

found in Figure 3.

Real plant Point cloud + segmentation / skeleton

Internode
lengths / angles

Virtual plant

Scanner Processing Measures

Virtual
scanner

Machine learning
Segmentation assessment

Measures
assessment

Figure 3: Reconstruction pipeline for the ROMI Scanner. The plant and histogram icon are ©Delapouite, https://game-icons.net.

Since the phyllotaxis of a plant can be measured by hand, pipeline
effectiveness can be attested by comparing the manual measure and the
one returned at the end of pipeline. Ideally, the margin of error on the
latter measurements should be similar or better than the former. Another
complementary way to assess the efficiency of the 3D scanner relies on

https://game-icons.net

Figure 4: A virtual Arabidopsis Thaliana

obtained with the LPy software; courtesy
of Christophe Godin.

the introduction of virtual plants, which can provide numerous benefits
to improve the pipeline.

Virtual plants A virtual plant, in our context, is a 3D object obtained
by a generative model. In this case, the models are based on L-systems [6,
7]

[6]: Lindenmayer (1968), ‘Mathematical
models for cellular interactions in
development I. Filaments with one-sided
inputs’
[7]: Lindenmayer (1971), ‘Developmental
systems without cellular interactions,
their languages and grammars’, formal grammars widely used in virtual plant synthesis [8]

[8]: Prusinkiewicz et al. (2012), The

algorithmic beauty of plants

. We use
the LPy software [9]

[9]: Boudon et al. (2012), ‘L-Py: an
L-system simulation framework for
modeling plant architecture development
based on a dynamic language’

, dedicated to the construction of such L-systems,
and which also allows their 3D geometrical interpretation. To synthesize
a particular plant species, it is necessary to design a specific L-system
(which will give plants all the more faithful to reality as the model is
detailed); the same model allows to generate different virtual plants
thanks to a controllable stochasticity. For instance, Figure 4 represents a
virtual Arabidopsis obtained with the LPy software.

Application of virtual plants When we build a virtual plant, we know
exactly its topology and geometry. A number of applications of this
information can be found in the context of our reconstruction pipeline.

▶ First, we can artificially reproduce the conditions of the real scanner
(light, framing, etc.) and produce images, making it possible to
create artificial scans without the need to grow actual plants.
Moreover, since we know the topology and geometry of the virtual
plant, we can measure the true phyllotaxis, and thus estimate the
error committed at the output of the pipeline in an absolute way –
and not just in comparison with the error committed manually.

▶ We know, typically, that one of the prerequisites of machine learning
relies on annotated databases allowing to train algorithms. This
kind of data is difficult to find in plants – one can however mention
[10]

[10]: Dutagaci et al. (2020), ‘ROSE-X: an
annotated data set for evaluation of 3D
plant organ segmentation methods’

. Virtual plants provide a good substitute, since one can create
segmented point clouds by sampling the 3D mesh – and then
compare with the segmentation obtained by the pipeline [11] [11]: Chaudhury et al. (2021), ‘Transferring

PointNet++ Segmentation from Virtual to
Real Plants’

, or
use it with machine learning methods [12]

[12]: Chaudhury et al. (2020), ‘3D plant
phenotyping: All you need is labelled
point cloud data’

.

Such applications are also included in the diagram of Figure 3.

Tree comparison problems Whether to validate measurements or
segmentation, the core of the problem lies in the ability to compare two
topologies (the structure of the plants) each provided with a geometry.
This is true whether using virtual or real plants: the reconstructed
structure is compared with the original structure.

Mathematically, the plant structure is called a tree, and each node of such
a tree is provided with a piece of information (here, the geometry, the
type of organ, etc.). The formal problem behind all this is therefore that
of the comparison of tree data. That is precisely what my thesis is about.

Contents

Abstract / Résumé v

Remerciements vii

Preamble ix

Contents xiii

1 Introduction 1

1.1 Motivations for the study of trees . 2
1.2 Methods for comparing trees . 3
1.3 Object of the thesis . 5

2 Concerning trees 9

2.1 Formal definition . 9
2.2 Tree isomorphisms . 12
2.3 DAG compression of trees . 14
2.4 DAG compression of forests . 17

The Tree Ciphering Isomorphism Problem 21

3 Tree cipherings 23

3.1 Motivation . 23
3.2 Formal definition . 25
3.3 A new kind of DAG compression . 28

4 On the construction of tree cipherings 37

4.1 Addressing the problem . 37
4.2 Framework . 39
4.3 The algorithm . 44
4.4 Analysis of the algorithm . 49

Enumeration Trees: from Trees to Forests 57

5 From tree to forest enumeration 59

5.1 Enumeration problems . 59
5.2 Tree enumeration . 62
5.3 Forest enumeration . 64

6 Enumeration of forests 71

6.1 Exhaustive enumeration of FDAGs . 72
6.2 Growth of the tree . 77
6.3 Variations on the enumeration tree . 81
6.4 Enumeration of forests of subtrees . 85

The Subtree Kernel Revisited 91

7 The subtree kernel 93

7.1 Kernel methods . 93
7.2 Theoretical study . 96

8 A new framework for computing the subtree kernel 101

8.1 Framework . 101
8.2 Real data analysis . 105
8.3 Interest of the DAG approach . 115

9 Perspectives 119

9.1 Tree isomorphisms . 119
9.2 Search for frequent patterns . 124
9.3 Classification of trees . 127

Appendix 131

A Technical proofs 133

A.1 Proof of Proposition 2.7 . 133
A.2 Proofs of Section 3.2 . 134
A.3 Proof of Theorem 3.6 . 136
A.4 Proofs of Section 4.4 . 137
A.5 Proof of Proposition 7.3 . 144

B A bĳection between FDAGs and row-Fishburn matrices 147

B.1 Equivalence between FDAGs and reduced adjacency matrices 147
B.2 Reduced adjacency matrix to incremental adjacency matrix . 147
B.3 Incremental adjacency matrix to reduced adjacency matrix . 148

Bibliography 151

Index of frequent notations 157

List of Figures

1 Arabidopsis Thaliana. ix
2 ROMI Phenotyping scanner. x
3 Reconstruction pipeline for the ROMI Scanner. x
4 A virtual Arabidopsis. xi
1.1 A tree. 1
1.2 Three examples of data that can be modeled by trees. 2
1.3 Some classes of graphs with increasing structural complexity. 2
1.4 An example of a tree and its DAG compression. 6
1.5 The treex logo, drawn by yours truly. 7
2.1 A non-exhaustive bestiary of graphs. 9
2.2 A rooted tree. 10
2.3 Encoding of a tree with Knuth tuples. 11
2.4 Two isomorphic graphs. 12
2.5 Two trees, isomorphic as unordered trees, but not isomorphic as ordered trees. 12
2.6 Classes of equivalence of the nodes of a tree. 13
2.7 An unordered tree and its DAG compression. 15
2.8 DAG compression of a tree. 15
2.9 Tree reconstruction from DAG compression. 16
2.10 Step by step illustration of DAG recompression algorithm. 19
3.1 Pigpen cipher. 23
3.2 A silly ciphering problem. 24
3.3 The tree ciphering isomorphism problem. 24
3.4 Computation of the number of tree isomorphisms. 26
3.5 Binary relation on the alphabets induced by a tree isomorphism. 26
3.6 Intuition for DAG compression of labeled trees. 28
3.7 DAG compression with labels. 31
3.8 Example of tree for DAG compression with labels. 34
3.9 Iterations of CompressionWithLabels algorithm on an example. 34
4.1 A graph and its reduction as a labeled tree. 38
4.2 Illustration of the SplitChildren procedure. 41
4.3 Illustration of the deduction rules on collections. 43
4.4 Initialization of the algorithm. 45
4.5 After partitioning by depth. 45
4.6 After partitioning by equivalence class. 46
4.7 After partitioning by parents. 47
4.8 State of the system after converting all bags into collections. 47
4.9 End of the preprocessing phase. 48
4.10 𝑟(B,C) at differents steps of the preprocessing. 53
4.11 Proportion of mappings at the end of preprocessing. 54
4.12 Computation time (in seconds) spent in the preprocessing part and the backtracking part. 54
4.13 Time spent in backtracking as a function of the size of the search space. 55
4.14 Logratio log10(𝑡⊥/𝑡⊤)with regard to the size and proportion of labels of trees. 56
5.1 An illustration of the reverse search method on permutations. 61
5.2 Rightmost path and expansion rule for ordered trees. 63
5.3 Two different representations of the same unordered tree. 63
5.4 Left-heavy embedding of a tree. 63

5.5 DAG compression of irredundant forests. 65
5.6 Topological orderings of a DAG. 68
5.7 Canonical ordering of a FDAG. 69
6.1 Branching rule. 73
6.2 Elongation rule. 73
6.3 Widening rule. 74
6.4 FDAG enumeration tree. 77
6.5 Number of successors of random FDAGs. 79
6.6 Computation time for the successors of random FDAGs. 80
6.7 A self-nested tree and its DAG reduction. 83
6.8 Construction of a forest of subtrees from a FDAG. 86
6.9 Enumeration tree of the subFDAGs of an FDAG. 87
6.10 Quotient 𝑄(𝐷) according to the number of vertices of 𝐷. 89
7.1 Embedding data in a feature space in a machine learning context. 93
7.2 Computation of the subtree kernel on an example. 95
7.3 Two trees 𝑇0 and 𝑇1 that fulfill conditions (𝑖) and (𝑖𝑖). 96
7.4 Two trees 𝑇0 and 𝑇1 that fulfill conditions (𝑖), (𝑖𝑖) and (𝑖𝑖𝑖). 96
8.1 Discriminance weight functions. 105
8.2 Conversion of HTML code into a tree. 107
8.3 Description of a Wikipedia data set. 108
8.4 Classification results for the 50 Wikipedia databases. 109
8.5 Visualisation of one data set of unordered trees among the Wikipedida databases. 110
8.6 Estimation of the distribution of the discriminance weight function. 111
8.7 Description of INEX data sets. 111
8.8 Classification results for INEX as ordered and unordered trees. 112
8.9 Description of the videogame sellers data set. 113
8.10 Description of the VascuSynth data set and classification results. 113
8.11 Description of the Hicks et al. data set and classification results. 114
8.12 Description of the Faure et al. data set and classification results. 115
8.13 Description of the LOGML data set and classification results. 115
8.14 Relative improvement of the discriminance weight for all data sets. 116
8.15 Computation time for several repetitions of the subtree kernel. 117
9.1 Tree cipherings with structured labels space: an example. 122
9.2 All possible non-isomorphic (up to a cipher) labeled trees of size at most 3. 125
9.3 Example of non-uniqueness of labeled DAGs compressing a given labeled tree. 125
9.4 Interest of considering forests of subtrees instead of subtrees only in kernel-related problems. . . 129
A.1 Backtracking tree for mapping two sets of 𝑛 = 3 objects. 138
B.1 FDAGs as row-Fishburn matrices. 149

List of Algorithms

1 TreeIsomorphism . 14

2 RebuildTree . 16

3 TreeCompression . 17

4 DagRecompression . 18

5 RebuildTreeWithCipher . 31

6 CompressionWithLabels . 33

7 MapNodes . 41

8 SplitChildren . 41

9 SplitChildrenBis . 43

10 NextCandidates . 49

11 Backtracking . 49

12 ReverseSearch . 60

13 MinimalWords . 67

14 Antecedent . 75

15 Heirs . 87

16 FrequentHeirs . 88

17 Classifier . 97

List of Tables

1.1 Number 𝑎(𝑛) of trees with 𝑛 nodes for some values of 𝑛. 5
5.1 Filtering the topological orderings of a DAG. 68
6.1 Number of FDAGs accessible from 𝐷0 in 𝑘 steps in the enumeration tree. 78
8.1 Summary of the 8 data sets. 116
9.1 First values of the sequences 𝑎(𝑛) and 𝑏(𝑛) counting the number of non-isomorphic trees of size 𝑛,

respectively for tree isomorphism and tree isomorphism up to a cipher. 125
9.2 Comparison between the number 𝑔(𝑛) of unlabeled connected graphs with 𝑛 vertices with the

number 𝑎(𝑛) of trees with 𝑛 vertices for some values of 𝑛. 126
A.1 Strategy for deciding the first tuple to process between (𝑚, 𝛼) and (𝑛, 𝛽) to minimize 𝑓 140

Figure 1.1: A tree.

Introduction 1

1.1 Motivations for the study of

trees 2

Trees are ubiquitous 2

Trees in graph theory 2

1.2 Methods for comparing trees 3

Tree isomorphisms 3

Search for frequent patterns . 4

Classification of trees via a simi-

larity function 4

1.3 Object of the thesis 5

Enumeration problems 5

Lossless compression of trees 5

Outline of the thesis 6

A word on implementation . . 6

Trees are sanctuaries. Whoever knows
how to speak to them, whoever knows
how to listen to them, can learn the
truth.

Herman Hesse

Throughout my 3 years of PhD, when a friend would ask me what my
work was about, I would often tell them, “I study trees... but not the ones
that grow outside, mathematical trees.” To this cryptic answer, if the
moment allowed it, I gave more details, but too often I did not have the
time to continue and had to leave them with this enigma. As I begin this
thesis, here comes my opportunity to take the time to explain in detail
my work, and unveil the mystery.

The trees I study, although abstract, are just as rich and fertile as those
in real life – and contain as many secrets. Many natural questions arise
when trying to understand trees. Among them, the ones I am interested
in are related to the comparison of trees. How to know when trees are
similar? And if they are not, how different are they? What do they have
in common?

In the same way that biologists have many techniques to compare actual
trees, from their overall shape to their genome, we need dedicated
methods to compare mathematical trees. My PhD thesis investigates
exactly such comparison methods for trees.

In this introduction, the study of trees is motivated more specifically
in Section 1.1. Different methods for tree comparisons are presented in
Section 1.2, while Section 1.3 elaborates on the object of this thesis and its
outline.

Let us start, however, with a definition.

Definition 1.1 A connected graph is a set of vertices, connected by edges,

such that by walking along the edges, one can, from any vertex, reach any

other vertex.

Then, a (mathematical) tree is a connected graph that contains no cycle –

where a cycle is a walk along the edges that allows to return to the starting

point without retracing one’s steps; in other words, a loop.

An example of a tree is provided in Figure 1.1.

2 1 Introduction

(a) Blood vessels, ©The Franklin Institute (b) Actual trees, ©Mustang Joe, Flickr (c) Phylogenetic trees, ©Wikipedia Commons

Figure 1.2: Three examples of data that can be modeled by trees.

3: Actually, paths are a particular instance
of trees, and both are particular instances
of graphs.

(a) A path (b) A tree (c) A graph

Figure 1.3: Some classes of graphs with
increasing structural complexity.

1.1 Motivations for the study of trees

Trees are ubiquitous

As we have seen in the preamble, trees appear naturally when we consider
the structure of plants. Actually, trees are ubiquitous since they are found
in a wide variety of scientific fields, from RNA secondary structures in
biology [13]

[13]: Le et al. (1989), ‘Tree graphs of
RNA secondary structures and their
comparisons’

to XML files in computer science [14][14]: Costa et al. (2004), ‘A Tree-Based
Approach to Clustering XML Documents
by Structure’

through dendrimers in
chemistry and physics [15]

[15]: Martín-Delgado et al. (2002),
‘Density-matrix renormalization-group
study of excitons in dendrimers’

. Some examples of data that can be represented
by trees are shown in Figure 1.2.

Trees are also widely used as a data structure to collect and store informa-
tion in many algorithms; among which octrees [16]

[16]: Meagher (1982), ‘Geometric model-
ing using octree encoding’

in computer vision,
or even decision trees and random forests [17, 18]

[17]: Breiman et al. (2017), Classification

and regression trees

[18]: Breiman (2001), ‘Random forests’

in machine learning.

In general, trees can model any phenomenon or object whose hierarchical
structure does not contain cycles.

Trees in graph theory

In addition to arising naturally in many domains, trees are also of interest
as a class of graphs of intermediate structural complexity, between paths
(or linear graphs), and general graphs3, as illustrated in Figure 1.3. Indeed,
many fundamental questions about graphs, difficult to address in the
general case, can be solved in a much simpler or more efficient way on
trees (and even more easily on paths).

This is for instance the case of the graph isomorphism problem – about
which we will come back at length in the body of the document – or
the graph coloring problem, solved for trees, but NP-hard in the general
case [19]

[19]: Kubale (2004), Graph colorings

.

It is also sometimes useful to extract a tree – referred to as a spanning
tree – from a graph, for optimization purposes. For instance, it can be
necessary to ensure that an algorithm, which traverses the nodes of a
graph one after the other, can not loop infinitely when it encounters
a cycle. Algorithms as famous as Dĳkstra’s or A* make an extensive
use of spanning trees. We can also mention the Spanning Tree Protocol
for Ethernet networks [20][20]: Perlman (1985), ‘An algorithm for

distributed computation of a spanning
tree in an extended LAN’

. As an example, the tree of Figure 1.3b is a
spanning tree of the graph of Figure 1.3c.

1.2 Methods for comparing trees 3

4: We refer to nodes, in the context of trees,
instead of vertices – used for graphs.

5: In the sense that they must be compara-
ble: it is not allowed to have one ordered
and the other not, etc.

6: From ancient Greek, “same shape”.

Finally, there is not only one type of tree that can be considered in graph
theory. In this thesis, we are interested in rooted trees, i.e. trees where
there exists a special node4, the root, which has no parent – all other
nodes have a single parent. The tree of Figure 1.1 is rooted (the root being
on top). Among rooted trees, we distinguish ordered trees – that is, the
order of the children of a node is important – from unordered trees –
where the order is not important. Moreover, whether ordered or not, the
nodes of a rooted tree can also carry a label, which can be of any nature.
In the sequel, we will refer to rooted trees simply as “trees”.

1.2 Methods for comparing trees

While there are many problems to consider concerning trees, my work is
primarily concerned with the issue of comparing them. We assume that
we have at least two trees, of the same nature5, and we try to quantify
their similarity.

Tree isomorphisms

When comparing two objects, of any nature, the most elementary op-
eration is an equality test. It is only when they are not identical that it
becomes necessary to refine the way they are compared, to identify their
similarities and differences. In the context of trees, this equality test is
called a tree isomorphism6. A tree isomorphism is a bĳection on the
nodes that preserves the parent/child relationships.

In the case of unlabeled trees, ordered or not, one can determine if two
trees are isomorphic in linear time in the number of nodes. The same is
true for non-rooted trees. See for instance [21, 22] [21]: Bonamy (2010), ‘A small report on

graph and tree isomorphism’
[22]: Aho et al. (1974), ‘The design and
analysis of computer algorithms’

.

If the trees are labeled, we can adapt the definition of isomorphism in
two ways. When we map two nodes together via a bĳection, we associate,
at the same time, the labels of these nodes. The first definition requires
that if two nodes are mapped together, then their labels must be identical
– so the constructed association is the identity. This definition yields a
problem that is as easy to solve as for unlabeled trees.

For the second definition, we require that a given label in the first tree
is only associated to a single other label in the second tree – so that all
nodes sharing a label in a tree are associated to nodes that also share a
label in the other tree. In a way, the aim is to construct a bĳection on the
nodes that preserves a partition of the labels [23]

[23]: Champin et al. (2003), ‘Measuring
the similarity of labeled graphs’

. With this definition,
the problem becomes as difficult as the problem of graph isomorphism
[24] [24]: Booth et al. (1979), Problems polynomi-

ally equivalent to graph isomorphism

, which is not resolved in the general case, even if efficient algorithms
exist [25]

[25]: McKay et al. (2014), ‘Practical graph
isomorphism, II’

.

During my thesis, I addressed the problem of isomorphism on labeled
trees using the latter definition, and proposed an algorithm to tackle
it. This work has been presented and published at the IWOCA 2021
conference [26] [26]: Ingels et al. (2021), ‘Isomorphic Un-

ordered Labeled Trees up to Substitution
Ciphering’

.

4 1 Introduction

Search for frequent patterns

When two numbers are different, we can still compare them by observing
which one is smaller and which one is larger. In the case of trees, we
can not define so naturally a notion of “bigger” or “smaller”. Another
way to compare numbers can be to list their divisors, and look at the
ones they have in common. This approach, on the other hand, can be
applied to trees – but instead of divisors, we will look for substructures
in common.

This idea of “substructures” is broad and can cover many definitions.
Subtrees are such an example. A subtree of a tree is the tree formed by a
node and all its descendants in the starting tree. The simplest subtree is a
leaf, that is, a node without children. All trees have leaves, so they all
have this subtree in common – in the very same way that all numbers are
divisible by 1.

When we have a large number of trees to compare, we can also try to
identify the substructures that appear most frequently. This problem
has been tackled for unordered trees [27]

[27]: Asai et al. (2003), ‘Discovering
frequent substructures in large unordered
trees’

. The method used in [27] is
based on a famous enumeration technique, the reverse search method
[28][28]: Avis et al. (1996), ‘Reverse search for

enumeration’
, and was previously introduced to enumerate ordered [29]

[29]: Nakano (2002), ‘Efficient generation
of plane trees’

and then
unordered trees [30]

[30]: Nakano et al. (2003), ‘Efficient
generation of rooted trees’

.

I am interested in taking this problem – enumerating trees – to a higher
order, by enumerating forests – as collections of trees. Indeed, being
able to identify frequent subforests present in a dataset is promising:
they are richer substructures than subtrees, while containing subtrees
(since a tree is a singleton forest) – so one can expect to capture more
detailed information and differences not visible with the frequent subtrees
alone.

As for trees in [27, 30], one must be able to enumerate forests before
enumerating subforests. So, I developed an enumeration algorithm for
unordered forests, also based on the reverse search method. This work
has been presented at the WEPA 2020 conference [31]

[31]: Ingels et al. (2020), ‘A Reverse Search
Method for the Enumeration of Un-
ordered Forests using DAG Compression’

, and published in
Theoretical Computer Science in 2022 [32][32]: Ingels et al. (2022), ‘Enumeration of

Irredundant Forests’
.

Classification of trees via a similarity function

One way to organize and compare a large number of objects is to arrange
them in families; this is called a classification problem. In the case where
we already know the family of a certain number of objects, but not of all
of them, we talk about supervised classification: we train an algorithm
to recognize the members of the same family and to distinguish them
from the other ones, and then the algorithm predicts the family of the
objects for which we don’t have any information. This is a machine
learning approach, exactly the same way as when an algorithm is trained
to recognize pictures of dogs or cats.

A standard way to accomplish this is to construct a similarity function
– which measures how alike two objects are – so that objects from the
same family have a much higher similarity than objects from different
families. Kernels are a powerful way to construct a similarity function,
and can be used in conjunction with a support vector machine algorithm

1.3 Object of the thesis 5

𝑛 𝑎(𝑛)
1 1
10 719
20 12,826,228
30 354,426,847,597

Table 1.1: Number 𝑎(𝑛) of (unlabeled, un-
ordered, rooted) trees with 𝑛 nodes for
some values of 𝑛 – sequence A000081
in The On-Line Encyclopedia of Inte-

ger Sequences (2022), https://oeis.org/
A000081.

to solve such supervised classification problems. On this topic, we refer
the reader to [33] [33]: Cristianini et al. (2000), An introduc-

tion to support vector machines and other

kernel-based learning methods

.

In particular, for trees, so-called convolution kernels can be used [34,
35] [34]: Haussler (1999), Convolution kernels

on discrete structures

[35]: Collins et al. (2001), ‘Convolution
kernels for natural language’

, whose premise is that two trees are similar if they share many
substructures in common. As earlier, there are many possible definitions
of “substructures”, each leading to a new kernel; many examples can be
found in [36] [36]: Da San Martino (2009), ‘Kernel

methods for tree structured data’

.

I am particularly interested in the subtree kernel [37]
[37]: Vishwanathan et al. (2004), ‘Fast
kernels for string and tree matching’

, which evaluates the
similarity between two trees based on their common subtrees. Whereas
the original paper proposed a recursive computation algorithm, I pro-
posed an iterative algorithm that allows a greater finesse in the choice of
specific parameters. I have shown, in particular, that this finesse allows
to significantly improve the performance of the kernel – i.e. its ability to
discriminate families in the classification problem – on some datasets.

This work was presented at the 51st Journées de Statistiques conference
in 2019 [38] [38]: Ingels et al. (2019), ‘De l’importance

de la fonction de poids dans le noyau des
sous-arbres’

, and published in the Journal of Machine Learning Research
in 2020 [39]

[39]: Azaïs et al. (2020), ‘The weight
function in the subtree kernel is decisive’

.

1.3 Object of the thesis

Enumeration problems

The three problems previously introduced are all, since they concern
trees, eminently combinatorial problems. The difficulty lies, in fact, not
in the intrinsic complexity of the structures, but rather in the exponential
multiplication of possibilities as the size of the trees increases. As an
illustration, one can find in Table 1.1, how the number of (unlabeled,
unordered, rooted) trees increases as tree size increases, a result due to
Cayley – who also coined the term “tree” [40]

[40]: Cayley (1875), On the Analytical Forms

Called Trees: With Application to the Theory

of Chemical Combinations

.

The main criterion to take into account when designing algorithms to
solve the above-mentioned problems is their efficiency: we want to be able
to obtain an answer in a few seconds, minutes, maybe hours, but barely
more. For this reason, most algorithms try to get around the difficulty by
never making explicit the part where you have to explore and enumerate
all possibilities.

In my thesis, I tried to take the opposite side – whenever possible – and
to show that there is something to be gained by enumerating explicitly.
By virtue of the above, this ambition requires even more attention to
design effective algorithms. As such, parsimonious enumeration is of
utmost importance – in the sense that we can not afford to enumerate
superfluous objects; this includes both duplicates (a same object obtained
several times) and undesirables (objects not answering the problem).

Lossless compression of trees

Lossless compression methods are a way of condensing one object into
another, occupying a reduced size, so that no information is lost (as is
the case with RAR compression for files), and the original object can be
reconstructed identically.

https://oeis.org/A000081
https://oeis.org/A000081

6 1 Introduction

Figure 1.4: An example of a tree (left) and
its DAG compression (right).

Several compression methods exist for trees, among which top trees
compression [41]

[41]: Bille et al. (2015), ‘Tree compression
with top trees’

, but also Directed Acyclic Graph (DAG) compression
[42–45]

[42]: Sutherland (1964), ‘Sketchpad a
man-machine graphical communication
system’
[43]: Hart et al. (1991), ‘Efficient antialiased
rendering of 3-D linear fractals’
[44]: Buneman et al. (2003), ‘Path queries
on compressed XML’
[45]: Frick et al. (2003), ‘Query evaluation
on compressed trees’

, in which I am particularly interested.

The principle of DAG compression is to factorize the identical (thus
isomorphic) subtrees and to create a graph condensing all the structure
of the tree – an example is provided in Figure 1.4. Since no information
is lost, having a tree or its compressed form is strictly identical; and
since I am interested in how to compare trees, the question of directly
comparing compressed forms arises.

In fact, most of the time, the algorithms I built use the compressed form
of the trees, not the trees themselves. By proceeding in this way, it is
possible to decrease the difficulty arising from the combinatorial and
enumerative aspect mentioned above.

Outline of the thesis

Upcoming Chapter 2 of this thesis formally introduces the definitions of
trees, tree isomorphism and DAG compression already mentioned earlier
in this introduction. The rest of the thesis is divided into three parts,
independent of each other, and resume the three comparison methods
mentioned above.

The first part, The Tree Ciphering Isomorphism Problem, is concerned
with the isomorphism problem on labeled trees – where the definition
used, imposing that the bĳection of the nodes induces a bĳection on
the labels, induces the greatest difficulty. The problem is formalized in
Chapter 3, while an algorithm addressing it is proposed in Chapter 4.
The basis of this work is derived from [26][26]: Ingels et al. (2021), ‘Isomorphic Un-

ordered Labeled Trees up to Substitution
Ciphering’

, but is here expanded with
additional content.

In the context of the search for frequent patterns, the second part, Enu-
meration Trees: from Trees to Forests, focuses on what has already been
done for trees in Chapter 5, and introduces the problem of enumerating
forests. Chapter 6 proposes an algorithm addressing the latter, as well
as its theoretical analysis. An extension is also proposed to deal with
related issues, including the frequent subforests mining problem. This
part is mainly reproduced from [32][32]: Ingels et al. (2022), ‘Enumeration of

Irredundant Forests’
.

The third part, The Subtree Kernel Revisited, introduces supervised
classification problems on trees through the prism of the subtree kernel
in Chapter 7, for which a new computational framework is proposed in
Chapter 8, together with analyses on real databases. The contributions in
this part are derived from [39][39]: Azaïs et al. (2020), ‘The weight

function in the subtree kernel is decisive’
.

Finally, Chapter 9 summarizes the different contributions of my thesis
and opens a discussion on the research directions they induce.

A word on implementation

As mentioned, the nature of the problems addressed in this thesis makes
it necessary to develop efficient algorithms. Thus, beyond my traditional
tools as a mathematician – paper, pencil, board, chalk – I also devoted an
important part of my work to the implementation of many algorithms

1.3 Object of the thesis 7

Figure 1.5: The treex logo, drawn by
yours truly.

and data structures, in order to be able to put the fruit of my efforts to
the test.

Thus, all of the algorithms of my design that can be found in this thesis,
as well as a large number of algorithms from the literature that will be
presented, have been implemented with the goal of being as efficient
as possible in mind, this constraint also feeding my theoretical design
work.

All of this has been incorporated into the Python treex library, devel-
oped within my team, dedicated to rooted trees, and capable of handling
ordered or unordered, labeled or unlabeled trees, and offering a wide
variety of procedures – random generation, processing algorithms, visu-
alization, etc [46]

[46]: Azaïs et al. (2019), ‘Treex: a Python
package for manipulating rooted trees’

.

Excluding documentation and unit tests, my contribution represents
almost 2,000 lines of code. One can thus find a module dedicated to the
computation of labeled tree isomorphisms; another for the enumeration
of trees, forests and subforests; and also a module for the computation of
the subtree kernel.

(a) A path (in red) (b) A digraph

(c) A disconnected
graph

(d) A cycle (in red)

(e) A directed cycle
(in red)

(f) A multigraph

Figure 2.1: A non-exhaustive bestiary of
graphs.

Concerning trees 2

2.1 Formal definition 9

Graph vocabulary 9

Rooted trees 10

Encoding of trees 11

Random trees 12

2.2 Tree isomorphisms 12

Definitions 12

The Aho, Hopcroft & Ullman al-

gorithm 13

2.3 DAG compression of trees . 14

Overview 14

Formal definition 15

Construction 16

2.4 DAG compression of forests . 17

Definition 17

DAG recompression 17

Connection between a forest and

its compressed form 19

Trees are as close to immortality as the
rest of us ever come.

Karen Joy Fowler

This chapter introduces the most important concepts that will be used in
the rest of this thesis. The principal notations are also introduced here;
in this regard, see also the index of frequent notations at the end of the
document.

Section 2.1 introduces the necessary vocabulary of graph theory allowing
then to properly define rooted trees which are at the heart of our concerns
in this thesis. Considerations on encoding and random tree generation
are also discussed.

The notion of tree isomorphism is extensively detailed in Section 2.2,
both from a theoretical and algorithmic point of view. Finally, the DAG
compression for trees and forests is presented, respectively, in Section
2.3 and Section 2.4. These two concepts will be at the core of the various
problems discussed later.

2.1 Formal definition

Graph vocabulary

A graph is a pair 𝐺 = (𝑉, 𝐸) where 𝑉 is a finite set of elements called
vertices, and 𝐸 is a set of paired vertices, called edges. We exclude here
that an edge connects a vertex to itself: loops are forbidden. A path in a
graph is a finite sequence of edges such that the ending vertex of each
edge is the starting vertex of the next edge – as in Figure 2.1a.

Directed A graph is said to be directed if the edges have orientations,
i.e. if we distinguish the edge going from 𝑢 to 𝑣 from the one going from
𝑣 to 𝑢. In the case of a directed graph, we refer to arcs rather than edges.
A directed graph – or digraph – is presented in Figure 2.1b.

Connected A graph 𝐺 is said to be connected if, for any two vertices 𝑢
and 𝑣, 𝐺 contains a path that connects 𝑢 and 𝑣. In the case where 𝐺 is
directed, it is connected if and only if its undirected version – i.e. where
each directed arc is replaced by an undirected edge – is connected. In
other words, a connected graph is composed of a single fragment. A
disconnected graph is shown in Figure 2.1c.

10 2 Concerning trees

Figure 2.2: A rooted tree. The root is dis-
played in red, and the leaves in blue.

Acyclic A cycle is a path that connects a vertex with itself – see Figure
2.1d. A graph is said to be acyclic if it contains no cycles. A directed graph
that contains no directed cycles – where an example of directed cycle can
be found in Figure 2.1e – is called a Directed Acyclic Graph (DAG) .

Multigraph A multigraph is a graph in which it is permitted to have
several edges or arcs connecting the same two vertices. An example is
provided in Figure 2.1f.

In this thesis, all the graphs considered are connected, directed and
acyclic. Some of them are, in addition, multigraphs.

Rooted trees

Definition 2.1 A rooted tree 𝑇 is a connected graph with no cycle such

that there exist a unique vertex ℛ(𝑇), called the root, which has no parent,

and any vertex different from the root has exactly one parent.

The leaves ℒ(𝑇) are all the vertices without children. A tree is a directed
graph, the arcs being directed from the root to the leaves, from parent to
children. Since only rooted trees are considered in this thesis, they will
be referred to simply as trees in the sequel. A example is provided in
Figure 2.2.

Topological properties A number of quantities can be calculated on a
tree, among which height, depth and outdegree. The height of a node 𝑣
of a tree 𝑇 can be recursively defined as

ℋ(𝑣) =


0 if 𝑣 ∈ ℒ(𝑇),
1 + max

𝑢∈𝒞(𝑣)
ℋ(𝑢) otherwise; (2.1)

where 𝒞(𝑣) denotes the set of children of 𝑣. The height ℋ(𝑇) of the
tree 𝑇 is defined as the height of the root, i.e., ℋ(𝑇) = ℋ(ℛ(𝑇)). For
0 ≤ ℎ ≤ ℋ(𝑇), 𝑇ℎ denotes the set of nodes of 𝑇 with height ℎ. Note that
the mapping ℎ ↦→ 𝑇ℎ can be constructed in linear time, by a traversal of
the tree.

The depth of a node 𝑣 is recursively defined as

depth(𝑣) =
{

0 if 𝑣 = ℛ(𝑇),
1 + depth(𝒫(𝑣)) otherwise;

(2.2)

where 𝒫(𝑣) designates the parent of 𝑣. The depth of the tree 𝑇 is defined
as the maximum depth among all nodes. Notably,ℋ(𝑇) = depth(𝑇).

Finally, the outdegree of 𝑇 is the maximal branching factor that can be
found in 𝑇, that is deg(𝑇) = max𝑣∈𝑇 #𝒞(𝑣). The outdegree of a node 𝑣 is
thus simply defined as deg(𝑣) = #𝒞(𝑣).

2.1 Formal definition 11

(() (() ()) (() ()))

(() ())(() ())

() ()() ()

()

Figure 2.3: Encoding of a tree with Knuth
tuples.

Particular trees In this thesis, we are interested in specific classes of
trees. Thus, trees can be ordered or unordered, labeled or not.

Trees are said to be ordered if the order in which the children of a node
appear is significant. If not, trees are said to be unordered.

A labeled tree is a tree in which each node is given a label, whose nature
can be arbitrary, and we denote the label of a node 𝑣 by 𝑣. The set of
labels of a tree 𝑇 is denoted by𝒜(𝑇) and defined as𝒜(𝑇) = {𝑣 : 𝑣 ∈ 𝑇}.
𝒜(𝑇) is also called the alphabet of 𝑇.

In the rest of the thesis, it will be specified when the considered trees
are ordered or not, labeled or not. To simplify the notations, we shall
indifferently denote by 𝒯 the set of considered trees.

Forests The literature acknowledges two definitions for a forest [47] [47]: Bender et al. (2010), Lists, decisions

and graphs

.

▶ An undirected, disconnected, acyclic graph. Each connected com-
ponent is therefore an unrooted tree.

▶ A disjoint union of trees, where the trees can be of any nature.

The two definitions coincide when the trees considered are unrooted (and
therefore unordered). In this thesis, we adopt the second definition.

Definition 2.2 A forest 𝐹 is a finite set of trees, i.e. 𝐹 = {𝑇1 , . . . 𝑇𝑛} where

∀𝑖 , 𝑇𝑖 ∈ 𝒯 .

Encoding of trees

In addition to their representation as graphs, ordered trees can be encoded
in different forms, related to other fields of mathematics or computer
science. Typically, an ordered tree can be encoded as a sequence – such
as Prüfer sequences [48] [48]: Prüfer (1918), ‘Neuer beweis eines

satzes über permutationen’
. We are particularly interested here in Knuth

tuples, that can be found in [49]

[49]: Knuth (2013), Art of Computer

Programming, Volume 4, Fascicle 4, The: Gen-

erating All Trees–History of Combinatorial

Generation

.

We associate to each leaf in the tree the tuple “()”. Then, by increasing
height, each node receives the concatenated tuple “(𝑡1 · · · 𝑡𝑛)” where 𝑡𝑖
is the tuple associated to the 𝑖-th child of that node. The tuple associated
to the tree is the one of its root. An example is provided in Figure 2.3.

This technique associates a unique tuple with an ordered tree, and one
can reconstruct the original tree from the tuple. Therefore, the set of
ordered trees is in bĳection with the set of well parenthesized expressions.
Alternatively, by replacing “(” with 0 and “)” with 1, ordered trees can
be interpreted as sequences or strings. For instance, the tree of Figure 2.3
is encoded with the sequence 0010010110010111.

Interpreting 0 as+1 and 1 as−1, we can read this sequence as an excursion
(i.e. a walk that comes back to the origin) in Z, starting at 0. This walk
also draws the graph of a function, which is called the Harris path of the
tree [50, 51]

[50]: Aldous (1993), ‘The continuum
random tree III’
[51]: Azaïs et al. (2019), ‘Inference for
conditioned Galton-Watson trees from
their Harris path’

.

In the case of unordered trees, this tuple is not unique (except in patho-
logical cases). In the example of Figure 2.3, if we swap the nodes of depth
1 to place the leaf between its two siblings (or after them), we obtain a
different tuple for the tree.

12 2 Concerning trees

Figure 2.4: Two isomorphic graphs. An
isomorphism is provided via the color of
the vertices: two vertices with the same
color are in bĳection.

7: It is assumed that both trees are either
ordered or unordered.

Figure 2.5: Two trees, isomorphic as un-
ordered trees, but not isomorphic as or-
dered trees.

Note that this method is purely topological and ignores any labels. It
can be extended simply by writing the label of a node just after “(”, but
before the concatenation of children tuples.

Random trees

We refer to random graphs when we define a probability distribution on
the space of graphs, or alternatively when we describe a random process
allowing to generate graphs [52][52]: Bollobás (2001), Random Graphs . Naturally this also applies to trees, for
which there are many ways to generate random trees.

We can mention for example Galton-Watson trees [53][53]: Neveu (1986), ‘Arbres et processus
de Galton-Watson’

and conditionned
Galton-Watson trees, the latter being closely related to Harris paths
mentioned above [51][51]: Azaïs et al. (2019), ‘Inference for

conditioned Galton-Watson trees from
their Harris path’

; or RANRUT algorithm [54, 55]

[54]: Nĳenhuis et al. (2014), Combinatorial

algorithms: for computers and calculators

[55]: Alonso et al. (1994), ‘Random
Unlabelled Rooted Trees Revisited’

, which allows to
construct random trees of fixed size following a uniform distribution.

In this thesis, the occurrences of random trees are exclusively recursive

random trees [56]

[56]: Zhang (2015), ‘On the number of
leaves in a random recursive tree’

, constructed as follows: beginning with a single node
tree, we add nodes one by one, iteratively, by choosing uniformly at
random a node already built and adding a leaf to it.

2.2 Tree isomorphisms

Definitions

A graph isomorphism between two graphs 𝐺1 = (𝑉1 , 𝐸1) and 𝐺2 =

(𝑉2 , 𝐸2) is a bĳection 𝜙 : 𝑉1 → 𝑉2 such that (𝑢, 𝑣) ∈ 𝐸1 if and only if
(𝜙(𝑢), 𝜙(𝑣)) ∈ 𝐸2. When there is such a bĳection between two graphs, we
say that they are isomorphic, and we note 𝐺1 ≃ 𝐺2 – as in Figure 2.4. The
set of all isomorphisms between 𝐺1 and 𝐺2 is denoted by Isom(𝐺1 , 𝐺2).
Graph isomorphism is an equivalence relation on the set of graphs.
Determining whether two graphs are isomorphic is an algorithmically
complicated problem, on which we elaborate extensively in Chapter 3.

At this point, we shall restrict ourselves to trees. Let 𝑇1 and 𝑇2 be two
unlabeled trees. Depending on whether the trees are ordered or not7, a
different definition will be adopted, as follows.

Definition 2.3 A bĳection𝜙 : 𝑇1 → 𝑇2 is an unordered tree isomorphism
if and only if, for any 𝑢, 𝑣 ∈ 𝑇1, if 𝑢 is a child of 𝑣 in 𝑇1, then 𝜙(𝑢) is a child

of 𝜙(𝑣) in 𝑇2.

Definition 2.4 A bĳection 𝜙 : 𝑇1 → 𝑇2 is an ordered tree isomorphism
if and only if, for any 𝑢, 𝑣 ∈ 𝑇1, if 𝑢 is the 𝑘th

child of 𝑣 in 𝑇1, then 𝜙(𝑢) is
the 𝑘th

child of 𝜙(𝑣) in 𝑇2.

An illustration is provided in Figure 2.5. As for graph isomorphism, if a
tree isomorphism exists between two trees, ordered or not, they are called
isomorphic, which is denoted by 𝑇1 ≃ 𝑇2. Tree isomorphism is an equiva-
lence relation on the set of trees 𝒯 [57][57]: Valiente (2013), Algorithms on trees

and graphs

. The set of all tree isomorphisms
between 𝑇1 and 𝑇2 is, as well, denoted by Isom(𝑇1 , 𝑇2). Its cardinality is
investigated in upcoming On the number of tree isomorphisms (p. 25).

2.2 Tree isomorphisms 13

Figure 2.6: An (unordered) tree where
nodes with identical equivalence class
have been colored identically.

8: For example, if 𝑇1 and 𝑇2 do not have
the same number of nodes, outdegree or
height, they can not be isomorphic.

In the case where the trees are labeled, we can adapt the previous
definitions by imposing in addition that the labels of the mapped nodes
are identical, i.e., 𝑢 = 𝜙(𝑢). A less restrictive definition also exists [23] [23]: Champin et al. (2003), ‘Measuring

the similarity of labeled graphs’
,

which requires that the isomorphism preserves a partition of the labels.
Specifically, all nodes 𝑢 ∈ 𝑇1 that share a common label 𝑎 ∈ 𝒜(𝑇1) should
only be mapped to nodes 𝑣 ∈ 𝑇2 sharing a common label 𝑏 ∈ 𝒜(𝑇2)
– thus associating in a bĳective manner labels 𝑎 and 𝑏. Chapter 3 and
Chapter 4 explore this latter definition in detail.

Remark 2.1 The previously introduced ordered and unordered trees
can actually be defined more formally via the isomorphisms defined
above. The set of unordered trees is defined as the quotient set of
rooted trees by the equivalence relation induced by the unordered tree
isomorphisms. The same applies to ordered trees.

The concept of tree isomorphism allows us to introduce some additional
notions to complement the previous section.

Subtrees For any node 𝑣 of a tree 𝑇, the subtree 𝑇[𝑣] rooted in 𝑣 is the
tree composed of 𝑣 and all its descendants𝒟(𝑣).𝒮(𝑇)denotes the set of all
subtrees of 𝑇, up to isomorphism. Formally, 𝒮(𝑇) = {𝑇[𝑣] : 𝑣 ∈ 𝑇}/≃.

Classes of equivalence We denote by [𝑣] the class of equivalence of
a node 𝑣 ∈ 𝑇, i.e. the set of all nodes 𝑢 ∈ 𝑇 such that 𝑇[𝑣] ≃ 𝑇[𝑢]. An
example is provided in Figure 2.6.

The Aho, Hopcroft & Ullman algorithm

The question remains to determine, algorithmically, whether two trees
are isomorphic. The ordered case is easily solved, as per the following
theorem. As stated in [21] [21]: Bonamy (2010), ‘A small report on

graph and tree isomorphism’
, the key is to go through both trees simulta-

neously, by depth-first search, and number the nodes in the order of
traversal. This induces a natural bĳection between the nodes, which can
be easily checked as an isomorphism.

Theorem 2.1 Ordered tree isomorphism can be decided in linear time.

In the unordered case, the result can be obtained by the virtue of the Aho,
Hopcroft & Ullman (AHU) algorithm [22] [22]: Aho et al. (1974), ‘The design and

analysis of computer algorithms’
, where the following result is

proven.

Theorem 2.2 Unordered tree isomorphism can be decided in linear time.

In reality, as mentioned in [58] [58]: Campbell et al. (1991), ‘Tree isomor-
phism algorithms: Speed vs. clarity’

, this complexity is only achieved by
assuming that the trees can be encoded within a fixed number of bits.
Without this assumption, running AHU algorithm on trees of size 𝑛 is
rather 𝒪(𝑛 log(𝑛)) than 𝒪(𝑛).

We present with Algorithm 1 a slightly different version of the AHU
algorithm presented in [21, 22]. First, our version omits to check some
stopping cases taken into account in AHU8, for the sake of simplicity.

14 2 Concerning trees

Secondly, from a theoretical point of view, our version is slightly less
efficient – see upcoming Proposition 2.3. Nevertheless, our version has
the merit of being simpler to formalize, but above all it allows to treat
both ordered and unordered trees (where AHU only addresses the latter)
and can be easily adapted for labeled trees in the case where we impose
equality of labels9

9: It suffices to add the label 𝑣 as the first
element of the list 𝐶𝑣 constructed in Line 8
– but after the eventual sorting step.

.Algorithm 1: TreeIsomorphism
Input: 𝑇1 , 𝑇2 ,★ ∈ {ord., unord.}
Output: ⊤ if and only if 𝑇1 ≃ 𝑇2

1 ifℋ(𝑇1) ≠ ℋ(𝑇2) then

2 return ⊥
3 else

4 𝑖 ← 0
5 Let 𝑓 : ∅ ↦→ 0
6 for ℎ from 0 toℋ(𝑇1) do

7 for 𝑣 ∈ 𝑇ℎ1 ∪ 𝑇
ℎ

2 do

8 𝐶𝑣 ← [𝑁𝑢 : 𝑢 ∈ 𝒞(𝑣)]
9 if ★ = unord. then

10 Sort 𝐶𝑣
11 if 𝑓 (𝐶𝑣) is defined then

12 𝑁𝑣 ← 𝑓 (𝐶𝑣)
13 else

14 𝑖 ← 𝑖 + 1
15 Define 𝑓 (𝐶𝑣) = 𝑖

16 𝑁𝑣 ← 𝑖

17 return 𝑁ℛ(𝑇1) = 𝑁ℛ(𝑇2)

The overall idea of the algorithm is to assign to each node 𝑣, in a
bottom-up approach, a number 𝑁𝑣 representing its equivalence class [𝑣]
– starting with leaves receiving the number 0. The algorithm returns ⊤ if
and only if the roots are assigned the same number, i.e., if and only if
[ℛ(𝑇1)] = [ℛ(𝑇2)] – equivalent to 𝑇1 ≃ 𝑇2. We are particularly interested
in this feature of assigning to each node its equivalence class, and it will
be exploited in upcoming DAG compression, but also in Chapter 4.

Given two trees 𝑇1 and 𝑇2, assuming that #𝑇1 = #𝑇2 = 𝑛 and deg(𝑇1) =
deg(𝑇2) = 𝑑, we have the following result.

Proposition 2.3 Algorithm 1 has complexity:

▶ 𝒪(𝑛𝑑 log(𝑑)) for unordered trees;

▶ 𝒪(𝑛𝑑) for ordered trees.

Proof. Suppose that determining whether 𝑓 (𝐶𝑣) is defined can be made
in constant time (e.g. via hash tables [59][59]: Knuth (1973), ‘The art of computer

programming. Vol. 3, Sorting and
Searching’

). The double for loop allows to
visit all the nodes of𝑇1 and𝑇2. When visiting a node 𝑣, we scan its children
and sort them only in the unordered case, for a complexity of deg(𝑣)
or deg(𝑣) log(deg(𝑣)) – since merge sort has worst time complexity in
𝒪(𝑘 log(𝑘)) [60][60]: Skiena (2012), ‘Sorting and searching’ . Summing over all the nodes and bounding deg(𝑣) by 𝑑
yields the expected result. F

2.3 DAG compression of trees

Trees can present internal repetitions in their structures. Eliminating these
structural redundancies defines a reduction of the initial data that can
result in a DAG. In particular, beginning with [42]

[42]: Sutherland (1964), ‘Sketchpad a
man-machine graphical communication
system’

, DAG representations
of trees are also much used in computer graphics where the process of
condensing a tree into a graph is called object instancing [43]

[43]: Hart et al. (1991), ‘Efficient antialiased
rendering of 3-D linear fractals’

. One can
also use DAG reduction of trees to simplify queries on XML documents
[44, 45]

[45]: Frick et al. (2003), ‘Query evaluation
on compressed trees’
[44]: Buneman et al. (2003), ‘Path queries
on compressed XML’ .

Overview

Before discussing the formal construction of DAG compression, we
present here the general idea in the form of a vertex coloring procedure.

Let𝑇 be an unordered tree. Each node 𝑢 of𝑇 is assigned a color 𝑐(𝑢) such
that, for any pair of distinct nodes, 𝑐(𝑢) = 𝑐(𝑣) ⇐⇒ [𝑢] = [𝑣]. This is
equivalent to partitioning the nodes of 𝑇 according to their equivalence
class.

We then construct a directed graph 𝐷 whose number of vertices is
equal to the number of colors used, i.e. #𝐷 = #Im 𝑐, and whose arcs are

2.3 DAG compression of trees 15

2

Figure 2.7: An unordered tree (left) and
its DAG compression (right). Note that
since the order of the arcs does not matter
(𝑇 being unordered), the arc → has
only been drawn once, and its multiplicity
written aside.

10: In other words, 𝑠 associates to each
equivalence class a representative.

11: Indeed, since we are duplicating arcs
that already exist, we can not create a cycle.

Figure 2.8: From left to right: a tree 𝑇,
its quotient graph 𝑄(𝑇), the unordered
version of 𝑄̃(𝑇) and the ordered version
of 𝑄̃(𝑇). Nodes are colored according to
their class of equivalence.

constructed as follows. For any two nodes 𝑢, 𝑣 ∈ 𝑇, if 𝑢 ∈ 𝒞(𝑣), we add
an arc 𝑐(𝑣) → 𝑐(𝑢) in 𝐷. Note that this definition implies that multiple
arcs are possible in 𝐷, as if there exist 𝑢, 𝑢′ ∈ 𝒞(𝑣), so that [𝑢] = [𝑢′],
then the arcs 𝑐(𝑣) → 𝑐(𝑢) and 𝑐(𝑣) → 𝑐(𝑢′) are identical.

The resulting graph is a DAG, and we call it the DAG compression of𝑇. The
main advantage of this compression is that it is lossless, i.e. the original
tree can be reconstructed identically. If 𝑇 is ordered, the order in which
the arcs 𝑐(𝑣) → 𝑐(𝑢) are placed must respect the order of appearance of
𝑢 among the children of 𝑣. An illustration is provided in Figure 2.7.

Formal definition

We use here a formalism similar to the one that can be found in [61]

[61]: Godin et al. (2009), ‘Quantifying
the degree of self-nestedness of trees:
application to the structural analysis of
plants’

.

Let𝑇 be a unlabeled tree. Let𝑄(𝑇) = 𝑇/≃ be the quotient graph of𝑇 by≃.
Nodes of 𝑄(𝑇) are equivalence classes of nodes of 𝑇; an arc 𝑎 → 𝑏 exists
in 𝑄(𝑇) if and only if there exist 𝑢, 𝑣 ∈ 𝑇 such that [𝑢] = 𝑎, [𝑣] = 𝑏, and
𝑣 ∈ 𝒞(𝑢). Such a graph 𝑄(𝑇) is known to be a DAG [61, Proposition 1].

In fact, in a more general way, we have the following proposition.

Proposition 2.4 Let ∼ be an equivalence relation on 𝒯 so that 𝑇1 ∼ 𝑇2 =⇒
#𝑇1 = #𝑇2. Then, the quotient graph 𝑄(𝑇) = 𝑇/∼ is a DAG.

Proof. Assume there exist 𝑞1 , . . . , 𝑞𝑛 in 𝑄(𝑇) such that there is a cycle
𝑞1 → 𝑞2 → · · · → 𝑞𝑛 → 𝑞1. Since all trees represented by class 𝑞𝑖 share
the same number of nodes, let us call this number 𝑐𝑖 . Since an arc 𝑞𝑖 → 𝑞 𝑗
in𝑄(𝑇) implies that there exist 𝑢, 𝑣 ∈ 𝑇 with [𝑢] = 𝑞𝑖 , [𝑣] = 𝑞 𝑗 , 𝑣 ∈ 𝒞(𝑢),
then 𝑐 𝑗 < 𝑐𝑖 . Therefore, 𝑐1 < 𝑐2 < · · · < 𝑐𝑛 < 𝑐1, which is absurd. F

Let 𝑠 be a section of 𝑄(𝑇), i.e. an injective function 𝑠 : 𝑄(𝑇) → 𝑇 such
that for any 𝑞 ∈ 𝑄(𝑇), [𝑠(𝑞)] = 𝑞10. For 𝑞 ∈ 𝑄(𝑇), let us build the multiset
𝑆(𝑞) = {[𝑣] : 𝑣 ∈ 𝒞(𝑠(𝑞))}. For any 𝑏 ∈ 𝑆(𝑞), let 𝑛(𝑏, 𝑞) be the multiplicity
of 𝑏 in 𝑆(𝑞). This number is equal to the number of children with class 𝑏 of
a node with class 𝑞 in 𝑇. As one arc 𝑞 → 𝑏 already exists in𝑄(𝑇), we add
𝑛(𝑏, 𝑞) − 1 new arcs 𝑞 → 𝑏 to match the multiplicity. If 𝑇 is ordered, the
arcs leaving 𝑞 must respect the order of appearance of children of 𝑠(𝑞) in
𝑇. This whole operation creates a new DAG11 𝑄̃(𝑇), whose construction
is illustrated on Figure 2.8. Note that 𝑄̃(𝑇) is a multigraph.

The definition of parent and children of a node can be generalized to
𝑄̃(𝑇) and will be denoted the same as for trees, respectively 𝒫(·) and
𝒞(·). Note that since there can be multiple repetitions of an arc in 𝑄̃(𝑇),
the multiplicity is accounted for in 𝒫(·) and 𝒞(·). The notions of height
and outdegree also apply and will be denotedℋ(·) and deg(·) as well.
Similarly to trees, for a DAG 𝐷 we denote by 𝐷[𝑣] the subDAG rooted in
𝑣 composed of 𝑣 and all its descendants in 𝐷. Unlike trees, the notion of
depth as introduced in Equation 2.2 does not apply to DAGs. Take the
example of Figure 2.8: on the tree, there are nodes with depth of 1 or
2; on the DAG these nodes are compressed together and therefore their
depth is not well defined (it depends on the path one follows in the DAG
from the root).

16 2 Concerning trees

We call the graph 𝑄̃(𝑇) the DAG compression of 𝑇, and denote it by ℜ(𝑇).
The DAG compression of 𝑇 can be seen as 𝑇 deprived of its redundancies,
and actually is a lossless compression of 𝑇 since we have the following
theorem.

Theorem 2.5 𝑇 can be reconstructed from ℜ(𝑇) – up to tree isomorphism.

Algorithm 2: RebuildTree
Input: ℜ(𝑇), 𝑞 ∈ ℜ(𝑇)

1 Let 𝑡 be a single-node tree
2 for 𝑏 ∈ 𝒞(𝑞) do

3 𝑡𝑏 ← RebuildTree(ℜ(𝑇), 𝑏)
4 Add 𝑡𝑏 as last subtree of 𝑡

5 return 𝑡

This argument was made in [61, Proposition 4], where the proof was
actually omitted but an iterative reconstruction algorithm was proposed
instead. We alternatively propose with Algorithm 2 a recursive recon-
struction algorithm, for which we prove that it indeed reconstructs the
tree as claimed. In the sequel, ℜ−1 stands for the inverse operator of ℜ,
i.e. for any tree 𝑇, ℜ−1(ℜ(𝑇)) ≃ 𝑇 by the previous theorem.

Proof. Let 𝐷 = ℜ(𝑇). Using Algorithm 2, let 𝜏 = RebuildTree(𝐷,ℛ(𝐷))
– where ℛ(·) denotes the root. We aim to prove by induction that 𝜏 and 𝑇
are equal, up to a tree isomorphism. Trivially, if 𝑇 is a single node tree,
this property holds. Otherwise, let us denote 𝑟 the root of 𝑇 – therefore
[𝑟] = ℛ(𝐷) – and 𝜌 the root of 𝜏.

We partition 𝒞(𝑟) by equivalence class – each one corresponds to a
different node in 𝐷. All classes are addressed identically, so let 𝑏 be one
of them, and 𝐶𝑏 = {𝑢 ∈ 𝒞(𝑟) : [𝑢] = 𝑏}. By definition, #𝐶𝑏 = 𝑛(𝑏,ℛ(𝐷));
therefore, when reconstructing, we add as many subtrees to 𝜌.

By induction, each of these new subtrees has equivalence class 𝑏 and is
isomorphic to the elements of 𝐶𝑏 . Indeed, since the order of arcs in 𝐷 is
not preserved in the unordered case, the topologies of 𝑇 and 𝜏 are equal
up to permutation of children – e.g., subtrees and in Figure 2.9. In
the ordered case, as subtrees are inserted in last position of the children
of 𝜌, they respect the same order as the order of the arcs, and therefore
the order of children of 𝑟: the topologies are equal. F

Figure 2.9: From left to right: a tree 𝑇, its
unordered DAG compression ℜ(𝑇) and its
reconstruction 𝜏.

𝑇

𝐶𝑏

ℜ(𝑇)
#𝐶𝑏

𝑏

𝜏

#𝐶𝑏

Construction

Practical algorithms to compute ℜ(𝑇) exist in the literature, either for un-
ordered trees [61], with complexity 𝒪(#𝑇 deg(𝑇) log(deg(𝑇))), or ordered
trees [62]

[62]: Downey et al. (1980), ‘Variations on
the common subexpression problem’

, with complexity going from 𝒪(#𝑇2) to 𝒪(#𝑇).

We propose with Algorithm 3 an unifying algorithm for computing ℜ(𝑇),
whether should 𝑇 be ordered or not. The determination on the fly of
classes of equivalence of the nodes is adapted from AHU algorithm.

The key idea of the algorithm is to build a mapping 𝑓 that associates
to each node its class of equivalence, based on the distribution of the

2.4 DAG compression of forests 17

equivalence classes of its children; starting from the leaves to the root.
Assuming that (i) creating a new vertex is of complexity 𝒪(𝐶𝑣) and (ii)
determining whether 𝑓 (𝐶𝑣) is defined can be made in constant time (as
for Algorithm 1), the overall complexity of the algorithm is 𝒪(#𝑇 deg(𝑇))
for ordered trees and 𝒪(#𝑇 deg(𝑇) log(deg(𝑇))) for unordered trees –
thus comparable to existing literature.

Algorithm 3: TreeCompression
Input: 𝑇

Output: ℜ(𝑇)
1 Let 𝑄 be the empty graph
2 𝑖 ← 0
3 Let 𝑓 : ∅ ↦→ 0
4 for ℎ from 0 toℋ(𝑇) do

5 for 𝑣 ∈ 𝑇ℎ do

6 𝐶𝑣 ← [[𝑢] : 𝑢 ∈ 𝒞(𝑣)]
7 if 𝑇 is unordered then

8 Sort 𝐶𝑣
9 if 𝑓 (𝐶𝑣) is defined then

10 [𝑣] ← 𝑓 (𝐶𝑣)
11 else

12 𝑖 ← 𝑖 + 1
13 Define 𝑓 (𝐶𝑣) = 𝑖

14 [𝑣] ← 𝑖

15 Create a new vertex 𝑖 in
𝑄 with children 𝐶𝑣

16 return 𝑄

Remark 2.2 As for Algorithm 1, Algorithm 3 can take into account
labeled trees (imposing label equality); once more, add the label 𝑣 as
the first element of the list 𝐶𝑣 constructed in Line 6 – but after the
eventual sorting step.

2.4 DAG compression of forests

DAG compression can be extended naturally to forests, which is investi-
gated here. This section is mostly reproduced from [39]

[39]: Azaïs et al. (2020), ‘The weight
function in the subtree kernel is decisive’

.

Definition

Let 𝐹 = {𝑇1 , . . . , 𝑇𝑛} be a forest, as defined earlier. We construct a super-
tree 𝑇𝐹 , placing each 𝑇𝑖 as a child of an artificial root. It suffices then
to compute ℜ(𝑇𝐹) with Algorithm 3 – whose single root will also be
artificial.

Since the root of this DAG 𝐷 is artificial, we will use the notation ℛ(𝐷),
to designate the children of this root – and thus the nodes of 𝐷 that really
correspond to the roots of the trees of the initial forest.

DAG recompression

Since DAG compression is lossless, one can imagine storing tree data in
DAG form. In the case where the forest is stored as a DAG forest (i.e. each
tree is compressed and stored individually), it would be superfluous to
decompress all the trees to build the super tree 𝑇𝐹 and then recompress
it. Instead, we would rather build ℜ(𝑇𝐹) directly from this DAG forest.

Let 𝐹 = {𝑇1 , . . . , 𝑇𝑛} be the forest to be compressed, and let 𝐹𝐷 =

{𝐷1 , . . . , 𝐷𝑛} be the associated DAG forest, with ℜ(𝑇𝑖) = 𝐷𝑖 . We define
the degree of the forest as deg(𝐹) = max𝑖 deg(𝐷𝑖). Computing ℜ(𝑇𝐹)
from 𝐹𝐷 is in two steps: (i) a construct a super DAG Δ by placing each
𝐷𝑖 as a subDAG of an artificial root – with complexity 𝒪(deg(𝐹)∑𝑖 #𝐷𝑖),
and (ii) recompress Δ using Algorithm 4. An illustration step by step of
the algorithm is provided in Figure 2.10.

Proposition 2.6 Algorithm 4 correctly computes ℜ(𝑇𝐹).

Proof. Starting from the leaves, we examine all vertices of same height
in Δ. Those with same children12

12: The ordered or unordered nature of
considered trees is significant at this point
to determine whether the children are
identical or not.

are merged into a single vertex. The
algorithm stops when at some height ℎ, we can not find any vertices to be
merged. Vertices that are merged in the algorithm represent isomorphic

18 2 Concerning trees

Algorithm 4: DagRecompression
Input: Δ

Result: ℜ(𝑇𝐹)
1 Construct, within one traversal of Δ, the mapping ℎ ↦→ Δℎ where Δℎ

is the set of vertices of Δ at height ℎ
2 for ℎ from 0 toℋ(Δ) − 1 do

/* The only node of heightℋ(Δ) is the artificial root, which is therefore not
considered. */

3 Let 𝜎(ℎ) ←
{
𝑓 −1({𝑆}) : 𝑆 ∈ Im 𝑓 , # 𝑓 −1({𝑆}) ≥ 2

}
be the set of

vertices to be merged at height ℎ, where 𝑓 : 𝑣 ∈ Δℎ ↦→ 𝒞(𝑣)
/* It should be noticed that Im 𝑓 depends on whether we consider ordered or

unordered trees. Indeed, in the ordered case, Im 𝑓 is the set of all lists of
children; otherwise, Im 𝑓 is the set of all multisets of children. */

4 if 𝜎(ℎ) = ∅ then

5 Exit the for loop
6 else

7 for 𝑀 in 𝜎(ℎ) do

8 Choose one element 𝑣𝑀 in 𝑀 to remain in Δ

9 Denote by 𝛿𝑀 the other elements of 𝑀
10 for 𝑣 in Δ such thatℋ(𝑣) > ℎ do

11 for 𝑢 in 𝒞(𝑣) such that ∃𝑀 ∈ 𝜎(ℎ), 𝛿𝑀 ∋ 𝑢 do

12 Delete 𝑢 from 𝒞(𝑣)
13 Add 𝑣𝑀 in 𝒞(𝑢)

14 for 𝑀 ∈ 𝜎(ℎ) do

15 Delete 𝛿𝑀 from Δ

16 return Δ

subtrees, so it suffices to prove that the algorithm stops at the right time.
Let ℎ be the first height for which 𝜎(ℎ) = ∅.

Suppose by contradiction that some vertices were to be merged at some
height ℎ′ > ℎ. They represent isomorphic subtrees, so that their respective
children should also be merged together, and all of their descendants
by induction. As any vertex of height ℎ′′ + 1 admits at least one child of
height ℎ′′, 𝜎(ℎ)would not be empty, which is absurd. F

Proposition 2.7 Algorithm 4 has complexity:

▶ 𝒪(#Δdeg(𝐹)(log(deg(𝐹)) + ℋ(Δ))) for unordered trees;

▶ 𝒪(#Δdeg(𝐹)ℋ(Δ)) for ordered trees.

Proof. The proof lies in Appendix A.1. F

Remark 2.3 One might also want to treat online data, but without
recompressing the whole data set when adding a single entry in the
forest. Let ℜ(𝑇𝐹) be the already recompressed forest and 𝐷 a new DAG
to be introduced in the data (corresponding to a new tree 𝑇). It suffices
to place 𝐷 has the rightmost child of the artificial root of ℜ(𝑇𝐹) then
run Algorithm 4 to obtain ℜ(𝑇𝐹∪{𝑇}).

2.4 DAG compression of forests 19

𝑇1 𝑇2

(a)

1

2

=

2

2
=

3

2 =

4

2
≠

2

(b)

1

=

2

=

3

=

=

4

≠

(c)

Figure 2.10: An illustration step by step of Algorithm 4 with (a) two trees 𝑇1 and 𝑇2, seen either as (b) unordered or (c) ordered trees. One
can observe their DAG compression (left of the dashed line) and the execution of the algorithm (right of the dashed line). At each step 1, 2
and 3, we examine vertices at height (0,1,2) and merge those which have same children. At step 4, we can not find any vertex to merge and
we stop. Note that in (c) at step 3, we find two pairs of vertices to be merged: we are not restricted to one pair per height. Merged vertices are
colored in red. The artificial root is colored in black.

Connection between a forest and its compressed form

Origin Whenever a DAG 𝐷 compresses a forest 𝐹 = {𝑇1 , . . . , 𝑇𝑛}, it can
be useful to retrieve, for each vertex in 𝐷, in which trees they originally
appear – say, for instance, that you need to decompress only a single tree.
For any vertex 𝑣 ∈ 𝐷, the origin of 𝑣 is defined as

o(𝑣) = {𝑖 ∈ [[1, 𝑛]] : ℜ−1(𝐷[𝑣]) ∈ 𝒮(𝑇𝑖)}. (2.3)

In other words, o(𝑣) represents the set of trees in 𝐹 for which ℜ
−1(𝐷[𝑣])

is a subtree.

The calculation of o(·) all comes down to how the origins are attributed
to the roots. Since we control the order in which the trees are inserted
under the artificial root of 𝐷, if one wants to keep the original order, it is
then sufficient to place them so that the root of 𝑇𝑖 is the 𝑖-th child of the
root – and therefore this node receives origin {𝑖}.

Once the roots have received their origin, the origin of all other vertices
can be recursively calculated on the DAG as follows.

20 2 Concerning trees

Proposition 2.8 ∀𝑣 ∉ ℛ(𝐷), o(𝑣) =
⋃

𝑝∈𝒫(𝑣)
o(𝑝).

Proof. By assumption, the origins of the roots are correct. If 𝑖 ∈ o(𝑣),
then for all 𝑣′ ∈ 𝒟(𝑣), 𝑖 ∈ o(𝑣′) – as ℜ

−1(𝐷[𝑣′]) ∈ 𝒮(ℜ−1(𝐷[𝑣])). The
statement follows by induction. F

Presence By construction, the DAG compression𝐷 of a tree𝑇 eliminates
all repetitions of isomorphic subtrees. It can be useful to know how many
copies of each of these subtrees exist in 𝑇, without having to decompress
the tree.

We define the presence of a vertex 𝑣 ∈ 𝐷, denoted by 𝜋(𝑣), as 𝜋(𝑣) =
#{𝑢 ∈ 𝑇 : [𝑢] = 𝑣}. Presence can be recursively computed using the
following formula

𝜋(𝑣) =


1 if 𝑣 = ℛ(𝐷),∑
𝑝∈𝒫(𝑣)

𝑛(𝑝, 𝑣)𝜋(𝑝) otherwise; (2.4)

where 𝑛(𝑝, 𝑣) is the number of arcs between vertices 𝑝 and 𝑣.

In the case where 𝐷 compresses a forest 𝐹 = {𝑇1 , . . . , 𝑇𝑛}, we associate
to each vertex a presence vector 𝜋(𝑣), so that each component 𝜋𝑖(𝑣)
corresponds to the presence of 𝑣 in 𝑇𝑖 . The previous formula can be
adapted as

𝜋(𝑣) =

(
1𝑖∈o(𝑣)

)
𝑖∈[[1,𝑛[] if 𝑣 ∈ ℛ(𝐷),∑

𝑝∈𝒫(𝑣)
𝑛(𝑝, 𝑣)𝜋(𝑝) otherwise. (2.5)

Note that if a forest 𝐹 is reduced to a singleton, i.e. 𝐹 = {𝑇}, then we
retrieve Equation 2.4.

Proposition 2.9 Equation 2.4 and Equation 2.5 are correct.

Proof. It suffices to prove that Equation 2.5 is correct as per the observation.
Let 𝑣 ∈ 𝐷. If 𝑣 ∈ ℛ(𝐷), then 𝑣 represents the root of some tree𝑇𝑖 (possibly
several trees if there are repetitions in the forest), and therefore 𝜋𝑖(𝑣) = 1.

Otherwise, suppose by induction that 𝜋𝑖(𝑝) is correct for all 𝑝 ∈ 𝒫(𝑣)
and any 𝑖 ∈ [[1, 𝑛]]. Let us fix 𝑝 ∈ 𝒫(𝑣). 𝑣 appears 𝑛(𝑝, 𝑣) times as a
child of 𝑝, so if ℜ−1(𝐷[𝑝]) appears 𝜋𝑖(𝑝) times in 𝑇𝑖 , then the number
of occurrences of ℜ−1(𝐷[𝑣]) in 𝑇𝑖 as a child of ℜ−1(𝐷[𝑝]) is 𝑛(𝑝, 𝑣)𝜋𝑖(𝑝).
Summing over all 𝑝 ∈ 𝒫(𝑣) leads 𝜋𝑖(𝑣) to be correct as well. F

In the light of Proposition 2.8 and Proposition 2.9, the origin and presence
of any vertex can be computed in linear time in one exploration of the
DAG.

The Tree Ciphering Isomorphism

Problem

Figure 3.1: Pigpen cipher, ©Wikipedia
Commons. For instance, the letter V is
replaced by ∧, U by <, and so on.

Tree cipherings 3

3.1 Motivation 23

A tale of ciphers 23

Connection with the graph iso-

morphism problem 25

3.2 Formal definition 25

On the number of tree isomor-

phisms 25

Tree ciphering isomorphism 26

3.3 A new kind of DAG compres-

sion 28

Intuition 28

Definition 29

Construction 32

You know me, I think there ought to be
a big old tree right there. And let’s give
him a friend. Everybody needs a friend.

Bob Ross

This chapter focuses on the case of labeled trees, and in particular on
how to define an isomorphism that takes them into account, in a way
that is less trivial than simply imposing the equality of labels.

Section 3.1 motivates this question from the point of view of a cipher
problem, while making the link with graph isomorphism as defined in
Chapter 2.

A more formal description can be found in Section 3.2, which defines in
particular the tree ciphering isomorphism problem. The practical resolution
of this problem will be discussed in upcoming Chapter 4. On the other
hand, provided with this new isomorphism, we define in Section 3.3 a
new type of DAG compression, that takes into account the labels.

Part of this chapter is reproduced from [26] [26]: Ingels et al. (2021), ‘Isomorphic Un-
ordered Labeled Trees up to Substitution
Ciphering’

, but has been largely rewritten.
In particular Section 3.3 is new material.

3.1 Motivation

A tale of ciphers

Substitution ciphers Substitution ciphers are one of the oldest encryption
methods. It consists in replacing each letter of a sequence by a given sign
(possibly another letter). A simple substitution cipher imposes that the
mapping between the letters and their substituted signs is a bĳection.
Formally, given two alphabets𝒜 and ℬ, a simple substitution cipher is a
bĳection 𝑓 : 𝒜 → ℬ. Given a message 𝑤 = 𝑎1 · · · 𝑎𝑛 , with 𝑎𝑖 ∈ 𝒜, the
encrypted message is given by 𝑓 (𝑤) = 𝑓 (𝑎1) · · · 𝑓 (𝑎𝑛).

A famous example of a simple substitution cipher is Caesar’s code, where
𝒜 = ℬ, and where 𝑓 is a cyclic permutation – i.e., the letters are simply
shifted a few ranks in the alphabet. Another well-known example is the
pigpen cipher, which places the letters of the alphabet on a grid, and
replaces them by the local topology of the grid where they are placed –
see Figure 3.1.

Simple substitution ciphers are easily broken, e.g. by frequence analysis
[63]

[63]: Gardner (1984), Codes, ciphers and

secret writing. Typically, the letter E is the most frequent in English, followed by T,
etc [64] [64]: Mayzner et al. (1965), ‘Tables of

single-letter and digram frequency
counts for various word-length and
letter-position combinations.’

. The recurrence of letters in the encoded message can be analyzed
to make guesses. Using statistics, we can measure the adequation between
the observed frequency distribution with the expected one (when the
source language is known), e.g. via 𝜒2 tests [65]

[65]: Savarese et al. (1999), ‘The Caesar
Cipher’

.

24 3 Tree cipherings

Message 1

Message 2

𝐵 𝐶 𝐴 𝐴

𝛽 𝛾 𝛼 𝛼

Induced cipher

𝐴 𝐵 𝐶

𝛼 𝛽 𝛾

Message 1

Message 2

𝐵 𝐶 𝐶 𝐴

𝛽 𝛾 𝛼 𝛼

Induced cipher

𝐴 𝐵 𝐶

𝛼 𝛽 𝛾

Figure 3.2: Cipher induced by the order
of letters on two examples, one where the
two messages are equivalent (top), and one
where there are not (bottom). In the latter,
the message is not parsed in its entirety
since an inconsistency is detected before
completion.

In the sequel, we consider only simple substitution ciphers, shortened to
ciphers.

A silly ciphering problem Assume one has at one’s disposal two
messages of the same length, and one want to determine if there exists
a cipher that transforms one message onto the other. This question is
trivial, as the cipher is induced by the order of letters. Indeed, following
the reading order, one can build the cipher letter by letter, until either (i)
one gets to the end of the message, and answer Yes, or (ii) one maps two
letters that break the bĳection of the cipher, and the answer is No. This
process actually defines an equivalence relation on messages of the same
length, where two messages are equivalent if and only if the answer to
the previous question is Yes. See Figure 3.2 for an illustration.

Same one, but with trees We are actually interested in the declination
of this toy problem in the case where messages are carried, not as an
ordered sequence of letters, but as labels on nodes of trees. Rather than
requiring that the messages are of the same length, we impose that the
trees are isomorphic. Previously, the order of the letters provided the
mapping of the labels; here, this role is fulfilled by tree isomorphisms, that
are usually not unique. Actually, the number of isomorphisms between
two trees is given by a product of factorials (see upcoming Equation 3.1
and illustrative Figure 3.4) and thus usually extremely large.

The tree ciphering isomorphism problem can then be stated as follows: given
two isomorphic labeled trees, is there any tree isomorphism between
them that induces a cipher of the labels? This also defines an equivalence
relation on labeled trees, where two trees are equivalent if and only if
the answer to the previous question is Yes (see upcoming Theorem 3.1).
The problem is formally defined in the next section, while an example is
now provided in Figure 3.3.

Remark 3.1 The tree ciphering isomorphism problem is only really
interesting to solve for unordered trees, since the problem for ordered
trees is strictly equivalent to the one of messages treated before, as any
tree traversal converts the tree unambiguously into a sequence, and
vice-versa – as seen in Encoding of trees (p. 11).

𝐴

𝐵 𝐵

𝐴 𝐶

𝛼

𝛽 𝛽

𝛼 𝛾

𝑇1 𝑇2
𝐴

𝐵 𝐵

𝐴 𝐶

𝛼

𝛽 𝛽

𝛼 𝛾

𝑇1 𝑇2

Induced cipher
𝐴 𝐵 𝐶

𝛼 𝛽 𝛾

𝐴

𝐵 𝐵

𝐴 𝐶

𝛼

𝛽 𝛽

𝛼 𝛾

𝑇1 𝑇2

Induced cipher
𝐴 𝐵 𝐶

𝛼 𝛽 𝛾

Figure 3.3: Two topologically isomorphic unordered labeled trees 𝑇1 and 𝑇2 (left). There exist two tree isomorphisms between 𝑇1 and 𝑇2, one
inducing a cipher (middle) and the other one that does not (right). In the latter, the full tree isomorphism is not parsed as an inconsistency is
detected before. Overall, the two labeled trees 𝑇1 and 𝑇2 are equivalent since at least one tree isomorphism leads to a cipher.

3.2 Formal definition 25

Connection with the graph isomorphism problem

If the problem about sequences was trivial, and if determining whether
two trees are topologically isomorphic can be achieved within linear time
via AHU algorithm – see Section 2.2, determining if two unordered
labeled trees are isomorphic under the previous definition is, on the other
hand, a difficult problem. It is an instance of labeled graph isomorphism
[23, 66]

[66]: Zemlyachenko et al. (1985), ‘Graph
isomorphism problem’
[23]: Champin et al. (2003), ‘Measuring
the similarity of labeled graphs’that was introduced under the name marked tree isomorphism in

[24] [24]: Booth et al. (1979), Problems polynomi-

ally equivalent to graph isomorphism

, where it has been proved graph isomorphism complete, i.e. as hard as
graph isomorphism. The latter is still an open problem, where no proof
of NP-completeness nor polynomial algorithm is known [67] [67]: Schöning (1987), ‘Graph isomor-

phism is in the low hierarchy’
.

One classic family of algorithms trying to achieve graph isomorphism are
color refinement algorithms, also known as Weisfeiler-Leman algorithms
[68] [68]: Weisfeiler et al. (1968), ‘The reduction

of a graph to canonical form and the
algebra which appears therein’

. Both graphs are colored according to some rules, and the color
histograms are compared afterwards: if they diverge, the graphs are
not isomorphic. However, this test is incomplete in the sense that there
exist non-isomorphic graphs that are not distinguished by the coloring.
The distinguishability of those algorithms is constantly improved – see
[69] [69]: Grohe et al. (2021), ‘Deep Weisfeiler

Leman’
for recent results – but does not yet answer the problem for any

graph. Actually, AHU algorithm for topological tree isomorphism can be
interpreted as a color refinement algorithm.

Most methods from the literature – such as color refinement – do not
explicitly construct the isomorphism between the two graphs; rather, they
relabel a graph so that two isomorphic graphs have the same relabelling.
This option is preferred since it allows to process graph datasets, either
to eliminate isomorphic elements or to identify a graph in a database. For
more details on the practical resolution of graph isomorphism problems,
we refer the reader to [25] [25]: McKay et al. (2014), ‘Practical graph

isomorphism, II’
.

As discussed later in this chapter, in order to build a new type of DAG
compression, taking into account the labels, we need to know explicitly
the isomorphism between the two trees. For this reason, the method we
have developed to address the (unordered) tree ciphering isomorphism
problem, detailed in Chapter 4, departs from the literature and proposes
an explicit construction instead of a relabelling.

3.2 Formal definition

The tree ciphering isomorphism problem, as motivated in the previous
section, is formally introduced in this section. Nevertheless, we first
present results on the number of isomorphisms between two trees.

On the number of tree isomorphisms

Ordered trees Given two ordered trees 𝑇1 and 𝑇2, if 𝑇1 ≃ 𝑇2, then
Isom(𝑇1 , 𝑇2) = 1. Indeed, let 𝜙 and 𝜓 be two elements of Isom(𝑇1 , 𝑇2).
Denoting 𝑟1 (respectively 𝑟2) the root of 𝑇1 (respectively 𝑇2) and 𝑐1 , . . . , 𝑐𝑘
the children of 𝑟1 in this order (respectively 𝑠1 , . . . , 𝑠𝑘); we have 𝜙(𝑟1) =
𝑟2 = 𝜓(𝑟1) and 𝜙(𝑐𝑖) = 𝑠𝑖 = 𝜓(𝑐𝑖). By induction, this applies to all nodes
of 𝑇1 and 𝑇2 and therefore 𝜙 = 𝜓.

26 3 Tree cipherings

2

2

2 2

2 𝜋() = 1

𝜋() = 2

𝜋() = 5

Figure 3.4: An unordered tree 𝑇 (left)
and its DAG compression ℜ(𝑇) (right).
The method for computing 𝑛≃(𝑇) is high-
lighted in both cases: for 𝑇, nodes suscep-
tible to be swapped are boxed together; for
ℜ(𝑇), multiplicity of arcs and presence are
indicated. Eitherway, 𝑛≃(𝑇) = (2!)3 = 8.

Unordered trees In the unordered case, any tree isomorphism 𝜙 : 𝑇1 →
𝑇2 maps 𝑢 ∈ 𝑇1 onto 𝑣 = 𝜙(𝑢) ∈ 𝑇2 only if [𝑢] = [𝑣] and 𝜙(𝒫(𝑢)) = 𝒫(𝑣).
Thus, any tree isomorphic to 𝑇1 can be obtained by swapping nodes (i)
of same equivalence class and (ii) children of same node. Consequently,
the number of tree isomorphisms between 𝑇1 and 𝑇2 depends only on
the class of equivalence of 𝑇1 (equivalently 𝑇2), and will be denoted by
𝑛≃(𝑇1). For any unordered tree 𝑇, we have

𝑛≃(𝑇) =
∏
𝑢∈𝑇

∏
𝑞∈{[𝑣]:𝑣∈𝒞(𝑢)}

(#{𝑣 ∈ 𝒞(𝑢) : [𝑣] = 𝑞})!. (3.1)

Actually, since the formula of 𝑛≃(𝑇) implies classes of equivalence, it is
natural to propose an alternative definition, computed from the DAG
compression ℜ(𝑇) of 𝑇. We have

𝑛≃(𝑇) =
∏
𝑣∈ℜ(𝑇)

∏
𝑢∈𝒞≠(𝑣)

(𝑛(𝑣, 𝑢)!)𝜋(𝑣). (3.2)

where 𝑛(𝑣, 𝑢) is the number of arcs between vertices 𝑣 and 𝑢, 𝜋(·) is the
presence defined in Equation 2.4, and 𝒞≠(𝑣) is the set of distinct children
of 𝑣, i.e. without taking into account the multiplicity.

An example is provided in Figure 3.4.

Tree ciphering isomorphism

From now on, we assume that trees are labeled, ordered or unordered.
Recall that the label of node 𝑢 is denoted by 𝑢, and that we denote by
𝒜(𝑇) the set of labels – the alphabet – of a tree 𝑇.

Let 𝑇1 and 𝑇2 be two topologically isomorphic labeled trees and 𝜙 ∈
Isom(𝑇1 , 𝑇2). 𝜙 naturally induces a binary relation 𝑅𝜙 over sets 𝒜(𝑇1)
and𝒜(𝑇2), defined as

∀𝑥 ∈ 𝒜(𝑇1),∀𝑦 ∈ 𝒜(𝑇2),
𝑥 𝑅𝜙 𝑦 ⇐⇒ ∃𝑢 ∈ 𝑇1 , (𝑥 = 𝑢) ∧ (𝑦 = 𝜙(𝑢)). (3.3)

Figure 3.5 illustrates this induced binary relation on an example.

Figure 3.5: Two topologically isomorphic
unordered labeled trees (left) and the in-
duced binary relation (right). The tree iso-
morphism 𝜙 is displayed through node
colors.

𝐴

𝐵𝐶

𝐶 𝐵𝐴 𝐶

𝐷

𝑇1
𝛼

𝛾 𝛼

𝛾 𝛼 𝛾 𝛽

𝛾

𝑇2
𝐴

𝐵

𝐶

𝐷

𝛼

𝛽

𝛾

𝒜(𝑇1) 𝒜(𝑇2)

Such a relation 𝑅𝜙 is said to be a bĳection if and only if for any 𝑥 ∈ 𝒜(𝑇1),
there exists a unique 𝑦 ∈ 𝒜(𝑇2) so that 𝑥 𝑅𝜙 𝑦, and conversely if for any
𝑦 ∈ 𝒜(𝑇2), there exists a unique 𝑥 ∈ 𝒜(𝑇1) so that 𝑥 𝑅𝜙 𝑦. This is not the
case of the relation induced by the example in Figure 3.5, since 𝐶 and 𝐷
are both in relation to 𝛾, and also 𝐵 is in relation to both 𝛼 and 𝛽.

3.2 Formal definition 27

13: Following the analogy from A tale of
ciphers (p. 23).

Whenever 𝑅𝜙 is a bĳection, we define the function 𝑓𝜙 : 𝒜(𝑇1) → 𝒜(𝑇2)
by 𝑓𝜙(𝑥) = 𝑦 ⇐⇒ 𝑥 𝑅𝜙 𝑦. This bĳective function 𝑓𝜙 is called a cipher

13

and verifies

∀𝑢 ∈ 𝑇1 , 𝑓𝜙(𝑢) = 𝜙(𝑢). (3.4)

Definition 3.1 𝜙 ∈ Isom(𝑇1 , 𝑇2) is said to be a tree ciphering if and only if

𝑅𝜙 is a bĳection; in which case we denote 𝑇1
𝜙
−→ 𝑇2.

Let us denote by Cipher(𝑇1 , 𝑇2) the set of tree cipherings between 𝑇1 and
𝑇2. If Cipher(𝑇1 , 𝑇2) is not empty, then we write 𝑇1 ∼ 𝑇2 and say that 𝑇1
and 𝑇2 are isomorphic up to a cipher, since the following result applies.

Theorem 3.1 ∼ is an equivalence relation over the set of labeled trees.

Proof. The proof can be found in Appendix A.2. F

Remark 3.2 We just defined with ∼ a generalisation of tree isomor-
phisms. Indeed, it suffices to add the same arbitrary, artificial, label to
all nodes of considered trees, and then, it is equivalent for two trees
to be (classically) isomorphic or isomorphic up to cipher (the cipher
being the identity function in this case).

Remark 3.3 It is possible to be more restrictive on the choices of ciphers.
Let (𝐺, ◦) be a subgroup of the bĳections between 𝒜(𝑇1) and 𝒜(𝑇2).
Then, if we replace “𝑅𝜙 is a bĳection” in Definition 3.1 by “𝑅𝜙∈ 𝐺”,
the induced relation ∼𝐺 is also an equivalence relation.

For instance, with 𝐺 = {id}, 𝑇1 ∼𝐺 𝑇2 means 𝑇1 ≃ 𝑇2 together with the
equality of labels. This (very) restricted definition has already been
used to adapt DAG compression to labeled trees in Section 2.3.

The tree ciphering isomorphism problem is to determine, given two labeled
isomorphic trees, whether or not there exists a tree ciphering between
them. The purpose of Chapter 4 is precisely to build, algorithmically, a
ciphering when it exists. We already mentioned that the tree ciphering
isomorphism problem is trivial to solve on ordered trees. Indeed, since
there is only one tree isomorphism between two ordered trees, either it
is also a cipher, or not – there is no algorithmic problem to solve. On the
other hand, due to Equation 3.1, the number of isomorphisms between
two unordered trees can be exponentially large, which makes the task of
finding a cipher difficult, as investigated in Chapter 4.

The sequel of this chapter is dedicated to the construction of a DAG
compression based on this new equivalence relation. First, however, we
introduce two additional results.

Whenever 𝑇1 and 𝑇2 are isomorphic up to a cipher, then so are their
matching subtrees; more precisely, we have the following result.

28 3 Tree cipherings

Proposition 3.2 If 𝑇1 ∼ 𝑇2 and 𝜙 ∈ Cipher(𝑇1 , 𝑇2), then

∀𝑢 ∈ 𝑇1 , 𝑇1[𝑢] ∼ 𝑇2[𝜙(𝑢)].

Proof. The proof is deferred to Appendix A.2. F

In addition, if 𝑇1 and 𝑇2 are isomorphic up to a cipher, and if there also
exist two subtrees in 𝑇1 isomorphic up to a cipher, then so are their
counterparts in 𝑇2, as per the next proposition.

Proposition 3.3 Let 𝑇1 ∼ 𝑇2 and 𝜙 ∈ Cipher(𝑇1 , 𝑇2); if there exist 𝑢, 𝑣 ∈ 𝑇1
such that 𝑇1[𝑢] ∼ 𝑇1[𝑣], then 𝑇2[𝜙(𝑢)] ∼ 𝑇2[𝜙(𝑣)].

Proof. The proof is deferred to Appendix A.2. F

3.3 A new kind of DAG compression

As seen in Section 2.3, a tree can be represented more concisely by
eliminating its structural redundancies. This DAG compression is derived
from tree isomorphisms introduced in Section 2.2. We already mentioned
the possibility of extending DAG compression to labeled trees, only if
we impose label equality. Since we now have a notion of isomorphism
allowing to take into account labels in a less trivial way, we propose in
this section to build a new DAG compression, based on isomorphisms
up to a cipher.

Intuition

Before more formal considerations, we propose here to introduce the
concept of DAG compression with labels via a geometrical intuition.
Consider the tree of Figure 3.6, where the label on each node is the (𝑥, 𝑦)
coordinates of the node in the drawing.

Figure 3.6: A labeled tree 𝑇 (left), where
the labels are the (𝑥, 𝑦) coordinates of each
node; and the DAG compression ℜ∼(𝑇) of
𝑇 (right), taking into account the labels.
Nodes are colored according to their equiv-
alence class (with respect to ∼). Although
not shown on the DAG, note that each
node in the DAG carries a label, which
are here the coordinates of the node in 𝑇
chosen to represent its equivalence class.
Since the transformations between leaves
have not been made explicit, the arcs lead-
ing to them do not carry any information –
and are not complete with respect to the
DAG construction.

𝑥

𝑦

(0, 0)

𝑇

𝑆𝑥=0

𝑆𝑦=𝑥

ℜ∼(𝑇)

id

id𝑆𝑥=0

id𝑆𝑦=𝑥

3.3 A new kind of DAG compression 29

We can observe a number of symmetries in this tree: the red subtrees
are obtained by symmetry around the y-axis, and the blue subtrees by
symmetry around the axes 𝑦 = −𝑥 and 𝑦 = 𝑥. In the context of ciphers,
red subtrees are isomorphic, and blue ones too (so are leaves, trivially,
since 𝑢 ↦→ 𝑣 is always bĳective).

Remark 3.4 This example also gives us an illustration of Proposition
3.2 and Proposition 3.3, where 𝑇1 and 𝑇2 are the red subtrees:

▶ The dashed blue subtree at the bottom left is the symmetric along
the y-axis of the blue subtree at the bottom right, and they are
isomorphic.

▶ The two dashed blue subtrees on the left are isomorphic, and so
are their counterparts on the right.

Since the left red subtree is obtained by symmetry from the right red
subtree, if we keep only the geometry of the right tree and the axis of
symmetry, we can perfectly reconstruct the original tree. Recursively,
since the top left blue subtree is obtained by symmetry from the bottom
left blue subtree, retaining only the geometry of the second and the axis
of symmetry also allows the reconstruction of both. Same thing for the
leaves, even if the transformations are not explicit on the drawing.

As we do this, we are in fact building a DAG – also shown in Figure 3.6.
When we have several subtrees isomorphic up to a cipher (symmetries in
our example), we retain the labels of only one (it is the representative
of its equivalence class) and all the ciphers allowing to reconstruct the
other elements of its equivalence class. We place those ciphers on the
arcs leading to the vertex in the DAG compressing the chosen subtree,
and depending on which path we follow in the DAG, we reconstruct
different subtrees by composing the ciphers.

Remark 3.5 Note that one of the arcs always bears the identity cipher,
which allows to reconstruct the subtree chosen as representative of its
equivalence class.

For example, if we want to reconstruct the top left blue subtree of Figure
3.6, we start by following the arc bearing 𝑆𝑥=0 (which allows us to
reconstruct the left red subtree from the right one) and then the arc
bearing 𝑆𝑦=𝑥 (which allows us to reconstruct the top blue subtree from
the bottom one).

Definition

Let 𝑇 be a labeled tree, and 𝑣 ∈ 𝑇. We denote by [[𝑣]] the class of
equivalence of 𝑣 for the ∼ equivalence relation, i.e. the set of all nodes
𝑣 ∈ 𝑇 such that 𝑇[𝑢] ∼ 𝑇[𝑣]. As in Section 2.3, we define 𝑄(𝑇) = 𝑇/∼
the quotient graph of 𝑇 by ∼, which is a DAG in virtue of Proposition
2.4. As for ≃, we define a section 𝑠 as an injective function 𝑠 : 𝑄(𝑇) → 𝑇

so that [[𝑠(𝑞)]] = 𝑞. However, we want to find one that respects the tree
structure of 𝑇.

30 3 Tree cipherings

Lemma 3.4 There exists a section 𝑠 of 𝑄(𝑇) that verifies

∀𝑞 ∈ 𝑄(𝑇), ∃𝑏 ∈ 𝒫(𝑞) : 𝑠(𝑞) ∈ 𝒞(𝑠(𝑏)). (3.5)

Proof. Such a section can be constructed in a top-down approach. As the
root 𝑟 = ℛ(𝑇) is unique, 𝑠([[𝑟]]) = 𝑟. Then, for any child of [[𝑟]] in 𝑄(𝑇),
we know that there exists a corresponding child in 𝒞(𝑟). We can then
construct 𝑠 recursively by choosing among such candidates. F

To illustrates the previous proof, let us consider the example of Figure
3.7. Starting from the root, 𝑠() = 𝑢1. For 𝑠(), we can choose between 𝑢3
and 𝑢4 as they are both children of 𝑢1. Let’s say 𝑠() = 𝑢4. In this case, 𝑢5
and 𝑢6 can no longer be chosen as representative of class , for which
we can choose between 𝑢2, 𝑢7 and 𝑢8 – let’s say 𝑠() = 𝑢2.

In the sequel, 𝑠 is assumed to verify Equation 3.5.

Similarly as in Section 2.3, we build a new DAG 𝑄̃(𝑇) from𝑄(𝑇). First we
add to each vertex 𝑞 ∈ 𝑄(𝑇) the label 𝑠(𝑞). Then, we add arcs exactly as
for ≃. We consider the multiset 𝑆(𝑞) = {[[𝑣]] : 𝑣 ∈ 𝒞(𝑠(𝑞))}, and denote
𝑛(𝑏, 𝑞) the multiplicity of 𝑏 in 𝑆(𝑞). One arc 𝑞 → 𝑏 already exists in𝑄(𝑇),
so we add 𝑛(𝑏, 𝑞) − 1 news arcs 𝑞 → 𝑏 to match the multiplicity. If 𝑇 is
ordered, the arcs 𝑞 → 𝑏 must respect the order of apparition of children
of 𝑠(𝑞) in 𝑇.

Let 𝑢 ∈ 𝒞(𝑠(𝑞)), with [[𝑢]] = 𝑏. There exists 𝜙 ∈ Cipher(𝑇[𝑠(𝑏)], 𝑇[𝑢]),
by definition, so that 𝑇[𝑠(𝑏)]

𝜙
−→ 𝑇[𝑢]. For each such 𝑢 – there are as

many as 𝑛(𝑏, 𝑞) – we annotate the corresponding arc 𝑞 → 𝑏 with the
cipher 𝑓𝜙 – as defined in Equation 3.4. Note that we lose the dependency
on 𝜙 since it is implicit in the graph of 𝑓𝜙. Note also that – as claimed
in Remark 3.5 – for each vertex, there is always at least one entering arc

annotated with id, as 𝑇[𝑠(𝑏)] id−→ 𝑇[𝑠(𝑏)].

Remark 3.6 It is essential to note that the arcs annotated with the
identity do not bear the same identity. On the example of Figure 3.7,
one of the identities represents the tree ciphering of 𝑇[𝑢2] on itself,
and thus corresponds to 𝑢2 ↦→ 𝑢2; while the other identity represents
the tree ciphering of 𝑇[𝑢4] on itself, and thus corresponds to 𝑢4 ↦→ 𝑢4;
𝑢7 ↦→ 𝑢7 and 𝑢8 ↦→ 𝑢8. Nevertheless, for the sake of simplicity, we
note indifferently id in the sequel, regardless of the actual domain of
definition.

Following all these steps, we get a new graph 𝑄̃(𝑇)whose construction
is illustrated in Figure 3.7. We still call this graph the DAG compression

of 𝑇 but denote it ℜ∼(𝑇). Note that this DAG is not unique: when we
have different possible choices of representatives for a vertex, each choice
leads to a DAG whose arc and vertices will carry different information.
This is not a problem, however, since whatever choices are made, this
compression is lossless and the original tree can be reconstructed.

Theorem 3.5 𝑇 can be reconstructed from ℜ∼(𝑇) – up to a tree isomorphism.

3.3 A new kind of DAG compression 31

𝑢1

𝑢4𝑢3

𝑢7 𝑢8𝑢5 𝑢6

𝑢2

𝑇

𝜙

𝜓

𝜅

idid

𝑄(𝑇)

𝑢1

𝑢4

𝑢2

𝑄̃(𝑇)

id
𝑓

id

𝑔 ℎ

Figure 3.7: From left to right: a tree 𝑇, its
quotient graph 𝑄(𝑇) and the unordered
graph 𝑄̃(𝑇). Nodes are colored following
their class of equivalence (with arbitrary
labels, and with respect to ∼). The tree
cipherings between observed nodes are
displayed in red. We denote by 𝑓 = 𝑓𝜙 ,
𝑔 = 𝑓𝜓 and ℎ = 𝑓𝜅 the ciphers associated
to each tree ciphering.

14: All leaves are isomorphic since 𝑢 ↦→ 𝑣

is necessarily a bĳection.

Note that we are reconstructing the tree up to a tree isomorphism, not a
tree ciphering. In other words, the labels are reconstructed exactly (and not
up to a cipher). Since tree cipherings requires topological isomorphism,
we adapt Algorithm 2, adding new instructions to deal with labels, and
propose Algorithm 5. The difference with the previous algorithm is only
in the assignment of label values, therefore the topology is correctly
reconstructed (up to a tree isomorphism) by virtue of Theorem 2.5.

Algorithm 5: RebuildTreeWithCipher
Input: ℜ∼(𝑇), 𝑞 ∈ ℜ∼(𝑇), 𝑓

1 Let 𝑡 be a single-node tree with label 𝑓 (𝑞)
2 for 𝑏 ∈ 𝒞(𝑞) do

3 Let 𝑔 be the cipher on arc 𝑞 → 𝑏
4 Let 𝑡𝑏 = RebuildTreeWithCipher(ℜ∼(𝑇), 𝑏, 𝑓 ◦ 𝑔)

/* By construction of ℜ∼(𝑇), the image of 𝑔 is a subset of the domain of 𝑓 , so that
𝑓 ◦ 𝑔 is well defined. */

5 Add 𝑡𝑏 as last subtree of 𝑡
6 return 𝑡

Proof. Let 𝐷 = ℜ∼(𝑇) and 𝜏 = RebuildTreeWithCipher(𝐷,ℛ(𝐷), id).
Since the topologies of 𝑇 and 𝜏 are identical (up to a tree isomorphism),
it suffices to show that the labels of 𝑇 are correctly reproduced in 𝜏.

We proceed by induction on the subtrees chosen to represent their
equivalence class. The base case concerns leaves. One of the leaves
𝑙 ∈ ℒ(𝑇) has been chosen to represent the class of leaves14 in 𝐷. At
least one of the arcs leading to [[𝑙]] in the DAG bears the cipher id, by
construction (as the representative of a class is isomorphic to itself). The
parent of [[𝑙]] by this arc admits itself an entering arc bearing id, and so
on up to the root of 𝐷 – as stated in Remark 3.5. Therefore, during the
reconstruction, one of the paths passes only through arcs bearing id, and
thus one of the leaves of 𝜏 admits the label 𝑙. The base case is thus proven:
the subtree chosen to represent its class (here the leaves) is well labeled
in the reconstruction.

We denote by 𝑟 and 𝜌 the roots of 𝑇 and 𝜏, respectively. We partition 𝒞(𝑟)
by equivalence class. All classes are addressed identically, so let 𝑏 be one
of them, and𝐶𝑏 = {𝑢 ∈ 𝒞(𝑟) : [[𝑢]] = 𝑏}. By definition, #𝐶𝑏 = 𝑛(𝑏,ℛ(𝐷));
therefore, when reconstructing, we add as many subtrees to 𝜌. We know
that these subtrees 𝐶′

𝑏
are isomorphic (with respect to ≃) to those of 𝐶𝑏

32 3 Tree cipherings

as the algorithm preserves the topology; we now show that they are
correctly labeled.

One of the elements of 𝐶𝑏 , 𝑠(𝑏), has been chosen as the representative of
𝑏. Since the elements of 𝐶𝑏 are isomorphic up to a cipher, for any 𝑢 ∈ 𝐶𝑏 ,
there exists 𝜙 ∈ Cipher(𝑇[𝑠(𝑏)], 𝑇[𝑢]) so that 𝑇[𝑠(𝑏)]

𝜙
−→ 𝑇[𝑢] – whose

associated cipher 𝑓𝜙 was placed on one arc between ℛ(𝐷) and 𝑏 in the
DAG.

By induction, we know that the subtree of 𝐶′
𝑏

reconstructed from 𝑠(𝑏)
has been correctly labeled (following the arc bearing id). Therefore, the
counterpart of 𝑢 in 𝐶′

𝑏
, reconstructed by following the arc carrying

𝑓𝜙, is also correctly labelled since 𝑇[𝑠(𝑏)]
𝜙
−→ 𝑇[𝑢] – just traverse the

reconstructed subtree from 𝑠(𝑏), and apply 𝑓𝜙 on each label.

Since the roots are the only nodes in their equivalence class, it follows
that 𝑇 and 𝜏 are identically labeled. F

Construction

To be isomorphic up to a cipher, two trees must already be isomorphic.
In particular, two nodes with the same equivalence class with respect to
∼must already have the same equivalence class with respect to ≃. Thus,
to compute equivalence classes [[·]], one must also know the equivalence
classes [·]. We therefore propose to construct ℜ∼(𝑇) directly from ℜ(𝑇),
which precisely has already associated to each node 𝑣 of the tree 𝑇 its
equivalence class [𝑣]. Since the topology is already taken into account,
all that remains is to consider the labels, which is obtained by virtue of
Algorithm 6.

Principle The main idea of the algorithm is, in a top-down approach,
to visit each node 𝑞 of ℜ(𝑇) and to partition the nodes 𝑇(𝑞) = {𝑢 ∈
𝑇 : [𝑢] = 𝑞} according to their equivalence class with respect to ∼. We
construct a partition 𝔓, such that for 𝑃 ∈ 𝔓, all elements of 𝑃 have
the same equivalence class. One representative per class is arbitrarily
chosen, denoted by 𝑠(𝑃). Note that in line 8, when we check if the
current node 𝑢 ∈ 𝑇(𝑞) belongs to an already identified class, by testing
whether 𝑢 ∼ 𝑠(𝑃), we have not yet introduced the algorithm for doing
this verification. The purpose of Chapter 4 is to build this algorithm; we
assume for the moment its existence. Also, for nodes 𝑢 not chosen to
represent their class, we must remove𝒟(𝑢) from the sets 𝑇(𝑞′) in the rest
of the DAG. This ensures that the condition of Equation 3.5 is satisfied,
and thus that we can reconstruct 𝑇 by virtue of Theorem 3.5.

Then, in a second step, for each element 𝑃 of the partition – thus for each
identified equivalence class, we add a new node 𝑝 in the DAG, all of
which collectively replace the previous node 𝑞. Each new node 𝑝 receives
the label of 𝑠(𝑃). Then, for each node 𝑢 ∈ 𝑃, we know by hypothesis
that 𝑢 ∼ 𝑠(𝑃), and thus that there exists 𝜙 ∈ Cipher(𝑇[𝑢], 𝑇[𝑠(𝑃)]) – we
assume that the upcoming algorithm from Chapter 4 provides such a 𝜙.
Since we go through the vertices of ℜ(𝑇) from top to bottom, we have
already created the vertex corresponding to [[𝒫(𝑢)]] and we can therefore
create an arc from it to 𝑝, bearing the cipher 𝑓𝜙.

3.3 A new kind of DAG compression 33

Algorithm 6: CompressionWithLabels
Input: 𝐷 = ℜ(𝑇), 𝑇
Output: ℜ∼(𝑇)

1 Construct, within one traversal of 𝑇, the mapping 𝑞 ∈ 𝐷 ↦→ 𝑇(𝑞),
where 𝑇(𝑞) = {𝑢 ∈ 𝑇 : [𝑢] = 𝑞}

/* Remember that [·] stands for the equivalence class with respect to ≃. */
2 for ℎ fromℋ(𝐷) to 0 do

3 for 𝑞 ∈ 𝐷ℎ
do

4 𝔓← {∅}
/* We partition in 𝔓 the nodes of 𝑇(𝑞) by equivalence class. */

5 Let 𝑠 : ∅ ↦→ ∅
6 𝑁 ← ∅
7 for 𝑢 ∈ 𝑇(𝑞) do

8 if ∃𝑃 ∈ 𝔓 : 𝑢 ∼ 𝑠(𝑃) then

9 Add 𝑢 to 𝑃
10 𝑁 ← 𝑁 ∪ 𝒟(𝑢)

/* By virtue of Equation 3.5, we store𝒟(𝑢) to remove it later from
𝑇(𝑞′), with 𝑞′ ∈ 𝒟(𝑞). */

11 else

12 𝑃 ← {𝑢}
13 Define 𝑠(𝑃) = 𝑢
14 Add 𝑃 to 𝔓

15 for 𝑞′ ∈ 𝒟(𝑞) do

16 𝑇(𝑞′) ← 𝑇(𝑞′) \ 𝑁
17 for 𝑃 ∈ 𝔓 do

18 Create a new vertex 𝑝 in 𝐷 with no child
19 𝑝 ← 𝑠(𝑃)
20 Define [[𝑠(𝑃)]] = 𝑝
21 for 𝑢 ∈ 𝑃 do

22 There exists 𝜙 so that 𝑇[𝑠(𝑃)]
𝜙
−→ 𝑇[𝑢]

23 Add an arc from [[𝒫(𝑢)]] to 𝑝, bearing cipher 𝑓𝜙
/* In the ordered case, take into account the position of 𝑢 among

children of 𝒫(𝑢)when adding the new arc. */

24 Delete vertex 𝑞 from 𝐷

25 return 𝐷

Remark 3.7 Note that the pseudocode provided does not associate
to each node 𝑢 ∈ 𝑇1 its equivalence class [[𝑢]]. We only need it for the
representative 𝑠(𝑃) of each element 𝑃 of the partition 𝔓 to be able
to recover, later, the equivalence class of the parent of the remaining
nodes. This operation is related to Equation 3.5.

Remark 3.8 When we place the ciphers on the arcs (line 22), the
information we have to store is proportional to the number of different
labels observed on the considered subtree. In particular, one of the
ciphers is the identity.

In light of Remark 3.6, one can see the identity as an abstract function
that returns whatever argument is given to it, and that, when composed
with another function, returns that function. Such an approach reduces

34 3 Tree cipherings

15: Implied, restricted in its domain to the
numbers observed in 𝑇.
16: Idem.

the amount of information to be stored on the arcs.

Figure 3.8: An unordered labeled tree 𝑇
(left), and its (classical) DAG compression
ℜ(𝑇) (right). Nodes with same equivalence
class (with respect to≃) are colored accord-
ingly.

0
𝑢0

1

𝑢1
2
𝑢2

2

𝑢3
4
𝑢4

3
𝑢5

4

𝑢6
8
𝑢7

6
𝑢8

3

𝑢9

4

𝑢10

9

𝑢11

16

𝑢12

3

𝑢13

4

𝑢14

6

𝑢15

8

𝑢16

18

𝑢17

32

𝑢18

6

𝑢19

8

𝑢20

𝑇

𝑞0

𝑞1

𝑞2

𝑞3

ℜ(𝑇)

2

3

2

Example of execution We now illustrate the execution of the algorithm
on an example, namely the tree 𝑇 of Figure 3.8. Let us first note that

▶ 𝑇[𝑢1] ∼ 𝑇[𝑢2], where the cipher is the function15 𝑓 : 𝑥 ∈ R ↦→ 2𝑥;
▶ 𝑇[𝑢3] ∼ 𝑇[𝑢4], where the cipher is the function16 𝑔 : 𝑥 ∈ R ↦→ 𝑥2;
▶ 𝑇[𝑢3] ≁ 𝑇[𝑢5] since 3 would have two antecedents;
▶ 𝑇[𝑢9] ∼ 𝑇[𝑢10] and𝑇[𝑢9] ∼ 𝑇[𝑢14], with the same cipher ℎ : 3 ↦→ 4;
▶ 𝑇[𝑢9] ∼ 𝑇[𝑢13]with the cipher id : 3 ↦→ 3.

Remark 3.9 Note that the ciphers given above are not the only ones
possible. For instance, the following cipher works equally well for trees

𝑇[𝑢3] and 𝑇[𝑢4]: 𝑔′ =


2 ↦→ 4,
3 ↦→ 16,
4 ↦→ 9.

The algorithm starts by considering the vertex 𝑞0. Since 𝑇(𝑞0) = {𝑢0},
the partition contains only one element and we create a single vertex 𝑝0,
which has as label 0 and no children. There is nothing to remove from
the sets 𝑇(𝑞′). We obtain the graph described in Figure 3.9a.

Then, the vertex 𝑞1 is treated, with 𝑇(𝑞1) = {𝑢1 , 𝑢2}. Since 𝑇[𝑢1] ∼ 𝑇[𝑢2]
– with cipher 𝑓 , the partition 𝔓 contains a single element 𝑃. Arbitrarily,
𝑠(𝑃) = 𝑢1. A new vertex 𝑝1 is created, with label 1, and two arcs connecting
𝑝0 and 𝑝1 are created, bearing the ciphers id (for 𝑢1) and 𝑓 (for 𝑢2). The

0
𝑝0

𝑞1

𝑞2

𝑞3

3

2

(a) After treating 𝑞0

0
𝑝0

1 𝑝1

𝑞2

𝑞3

id 𝑓

2

(b) After treating 𝑞1

0
𝑝0

1 𝑝1

2𝑝2 3 𝑝′2

𝑞3

id 𝑓

id
𝑔 id

(c) After treating 𝑞2

0
𝑝0

1 𝑝1

2𝑝2 3 𝑝′2

3
𝑝3

id 𝑓

id
𝑔 id

id
ℎ id

ℎ

(d) After treating 𝑞3 – we obtain ℜ∼(𝑇)

Figure 3.9: State of the graph obtained from ℜ(𝑇) after each iteration of Algorithm 6 on the tree of Figure 3.8. Nodes are colored accordingly
to their equivalence class with respect to ∼ for labeled nodes, and to ≃ for unlabeled ones. The cipher on the arcs are defined as 𝑓 (𝑥) = 2𝑥,
𝑔(𝑥) = 𝑥2 and ℎ : 3 ↦→ 4.

3.3 A new kind of DAG compression 35

nodes 𝑢6 , 𝑢7 and 𝑢8 are removed from 𝑇(𝑞2), as well as nodes 𝑢15 to 𝑢20
from 𝑇(𝑞3). The resulting graph is shown in Figure 3.9b.

For vertex 𝑞2, with 𝑇(𝑞2) = {𝑢3 , 𝑢4 , 𝑢5}, the partition contains two
elements: 𝑃 = {𝑢3 , 𝑢4} and 𝑃′ = {𝑢5}. We set 𝑠(𝑃) = 𝑢3 and 𝑠(𝑃′) = 𝑢5,
and create two vertices 𝑝2 and 𝑝′2, with respective labels 2 and 3. Both
are linked to 𝑝1, with arcs bearing ciphers id (for 𝑢3) and 𝑔 (for 𝑢4) for
𝑝2, and id (for 𝑢5) for 𝑝′2. 𝑢11 and 𝑢12 are then removed from 𝑇(𝑞3), and
we get the graph of Figure 3.9c.

Finally, considering vertex 𝑞3, with 𝑇(𝑞3) = {𝑢9 , 𝑢10 , 𝑢13 , 𝑢14}, the parti-
tion is reduced to a single element 𝑃 containing all the nodes from 𝑇(𝑞3).
We set 𝑠(𝑃) = 𝑢9, and create vertex 𝑝3, linked to 𝑝2 and 𝑝′2, where two
arcs connect both vertex to 𝑝3, with ciphers id (for 𝑢9 and 𝑢13) and ℎ (for
𝑢10 and 𝑢14). The algorithm stops and returns Figure 3.9d.

Complexity We are now interested in analyzing the complexity of
Algorithm 6. We recall that Algorithm 3, to build ℜ(𝑇), has complex-
ity 𝒪(#𝑇 deg(𝑇)) for ordered trees and 𝒪(#𝑇 deg(𝑇) log(deg(𝑇))) for
unordered trees.

Moreover, we do not (yet) have at our disposal the algorithm to check
whether two trees are isomorphic up to a cipher. This algorithm will
be presented in Chapter 4. Since this algorithm is called in Algorithm 6
to test whether subtrees of 𝑇 are isomorphic, the complexity of each of
these calls can be bounded by the complexity of calling it on 𝑇 against
itself, which we note as 𝐶∼(𝑇).

Under the assumption that the bound above is valid, we have the following
theorem.

Theorem 3.6 Algorithm 6 has complexity 𝒪(#𝑇2𝐶∼(𝑇)).

Proof. The proof lies in Appendix A.3. F

Compared to the classical DAG compression algorithm, the additional
complexity can be explained by the phase where the subtrees are par-
titioned by equivalence class – the reader is referred to the proof for
complete details.

On the construction of tree

cipherings 4

4.1 Addressing the problem . . 37

4.2 Framework 39

Partial bĳections 39

Key idea of the algorihm . . 40

Bags 40

Collections 41

On the cardinality of the search

space 43

4.3 The algorithm 44

Preprocessing part 45

Backtracking part 48

4.4 Analysis of the algorithm . . 49

Theoretical analysis 50

Experimental protocol 52

The preprocessing breaks the car-

dinality of the search space . . 52

Computation time repartition be-

tween backtracking and preprocess-

ing 54

When trees are not isomorphic up

to a cipher 55

Between every two pines is a doorway
to a new world.

John Muir

As already stated in Chapter 3 (notably in Remark 3.1), the problem of
constructing a tree ciphering between two labeled trees is only a problem
when the two trees are unordered. It is therefore assumed in this chapter
that the trees considered are unordered. The goal of this chapter is to
build an algorithm that decides whether a tree ciphering exists between
two trees, and if so, builds it.

In Section 4.1, we discuss the difficulty of constructing a tree ciphering
– we notably recall that the tree ciphering isomorphism problem is as
difficult as graph isomorphism. We also present our srategy to address
the problem.

Before introducing a two-fold algorithm – preprocessing then backtrack-
ing – to solve the problem in Section 4.3, we first define in Section 4.2 a
number of tools and concepts used in our method. Finally, Section 4.4
analyses the effectiveness of the proposed algorithm – from a theoretical
point of view but also with numerical simulations.

Most of this chapter is reproduced from [26]

[26]: Ingels et al. (2021), ‘Isomorphic Un-
ordered Labeled Trees up to Substitution
Ciphering’

, but has been largely
rewritten. In particular, anything related to the backtracking part of the
algorithm is new material; the theoretical analysis is also more extensive
than in the original paper.

4.1 Addressing the problem

The tree ciphering isomorphism problem (on unordered trees), previously
introduced as “marked trees isomorpism” in [24] [24]: Booth et al. (1979), Problems polynomi-

ally equivalent to graph isomorphism

, has been proven to be
difficult as the following theorem stands.

Theorem 4.1 The tree ciphering isomorphism problem is graph isomorphism

complete.

The reduction from an instance of graph isomorphism to an instance of
tree ciphering isomorphism is actually linear in the size of the graph, as
per the upcoming proof, reproduced from [24, Section 6.4]. Although
not necessary for the understanding of this chapter, this linear reduction
is of interest and will be discussed in Chapter 9.

Proof. Given a directed graph 𝐺, number its vertices from 1 to 𝑛. Build a
tree 𝑇𝐺 of height 2 such that (i) the root has label 0 and exactly 𝑛 children;
(ii) the children of the root are labeled from 1 to 𝑛, each corresponding

38 4 On the construction of tree cipherings

to a vertex of 𝐺; and (iii) the node labeled 𝑖 ∈ {1, . . . , 𝑛} has a child
with label 𝑗 if there exists an arc 𝑖 → 𝑗 in 𝐺. Note that the graph can
be reconstructed from the labeled tree. For any two graphs 𝐺 and 𝐺′,
if there exists a tree ciphering between 𝑇𝐺 and 𝑇𝐺′ , then 𝐺 and 𝐺′ are
isomorphic, and reciprocally.

An example of reduction is presented in Figure 4.1. F

Figure 4.1: A graph (left) and its reduction
as a labeled tree (right). Colors have been
added for better readability.

1

2

3

4 5

0

1 2 3 4 5

2 3 3 2 3 5

We have seen with Equation 3.1 that the number of isomorphisms between
two trees is expressed as a product of factorials. Since we explore this set
to find a tree ciphering, it is not difficult to explain the theoretical difficulty
of the problem with the combinatorial explosion of the cardinality of the
search space.

Remark 4.1 In [24][24]: Booth et al. (1979), Problems polynomi-

ally equivalent to graph isomorphism

, the authorship of the term “marked trees” is
attributed, via inner reference [31], to D.G. Corneil, M. Klawe and
A. Proskurowski, in an article announced as in preparation, and entitled
“Marked trees and the graph isomorphism problem”. Unfortunately,
to the best of our knowledge, this paper was never published.

We also find the term “marked trees” in reference [10] of [70][70]: Babai (1979), ‘Monte-Carlo algo-
rithms in graph isomorphism testing’

, referring
to an oral communication of M. Klawe, entitled “Marked trees are
isomorphism complete”. Unfortunately, once again, we were unable to
find a written record of this communication.

To the best of our knowledge, the three authors previously mentioned
have co-authored only one article [71][71]: Klawe et al. (1982), ‘Isomorphism

testing in hookup classes’
which does not mention the term

marked trees. It would seem that besides the complexity result stated
above, no research has been published on the practical resolution of
the marked tree isomorphism problem, until our contribution.

As mentioned in Connection with the graph isomorphism problem
(p. 25), there are efficient practical algorithms for dealing with graph
isomorphism [25]

[25]: McKay et al. (2014), ‘Practical graph
isomorphism, II’ , although it is still unclear whether the problem is

theoretically solvable in polynomial time [67][67]: Schöning (1987), ‘Graph isomor-
phism is in the low hierarchy’

. These algorithms rely on
assigning its equivalence class to a given graph – which is convenient for
retrieving graphs from a database and processing graphs independently.
However, none of these algorithms explicitly constructs an isomorphism
between two graphs.

We saw in Section 3.3 that to adapt DAG compression to labeled trees,
we need to know explicitly the tree ciphering 𝜙 – or rather, the associ-
ated cipher 𝑓𝜙. Consequently, the algorithms of the literature for graph
isomorphism are not adapted to our need.

In the sequel of this chapter, we propose an algorithm that explicitly builds
a tree ciphering. The method we develop is closer to constrained matching
problems on bipartite graphs [72, 73][72]: Canzar et al. (2015), ‘On tree-

constrained matchings and generaliza-
tions’
[73]: Mastrolilli et al. (2012), ‘Constrained
matching problems in bipartite graphs’

than to the usual techniques of
graph isomorphism resolution.

4.2 Framework 39

17: Indeed, 𝜓 is a bĳection from 𝑆𝜓 to 𝐵
restricted to the image of 𝜓.

In details, since we are building two bĳections simultaneously – one on
trees and the other on labels – that must be compatible, the general idea
is to use the constraints of one to make deductions about the other, and
vice versa. For instance, whenever two nodes must be mapped together,
so are their labels, and therefore you can eliminate all potential tree
isomorphisms that would have mapped those labels differently.

The algorithm operates in two phases. First, preprocessing is designed
to find as many deductions as possible on the mappings, each of which
contributes to decreasing the size of the search space for a solution.
When no more deductions are possible, the preprocessing phase stops.
To complete (if feasible) the two bĳections, and to explore the remaining
space, we then launch a backtracking phase [74] [74]: Dechter et al. (1998), ‘Backtracking

algorithms for constraint satisfaction
problems; a survey’

. The idea is to choose a
potential mapping, perform the mapping and look recursively if we can
build a solution from this choice. If not, we backtrack to that choice and
make another one. If no choice leads to a solution, then we conclude that
the problem has no solution.

4.2 Framework

In this section, we introduce the tools and concepts that are necessary to
understand the algorithm presented in the next section.

Partial bĳections

The goal of the algorithm is to construct – if possible – two bĳections:
𝜙 ∈ Isom(𝑇1 , 𝑇2) for the nodes, and 𝑓 : 𝒜(𝑇1) → 𝒜(𝑇2) for the labels
(so that 𝑓 = 𝑓𝜙 with the notation of Section 3.2). They will be built
incrementally, starting as empty mappings ∅ ↦→ ∅. Therefore, we are
going to increase their domain of definition and their image, as well as
assessing at each update that they remain bĳective.

A partial bĳection 𝜓 from 𝐴 to 𝐵 is an injective function from a subset
𝑆𝜓 of 𝐴 to 𝐵17. Let 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵; suppose we want to determine if
the couple (𝑎, 𝑏) is compatible with 𝜓 – in the sense that it respects (or
does not contradict) the partial bĳection. First, if 𝑎 ∈ 𝑆𝜓, then 𝑏 must be
equal to 𝜓(𝑎). Otherwise, if 𝑎 ∉ 𝑆𝜓, then 𝑏 must not be in the image of
𝜓, i.e. ∀𝑠 ∈ 𝑆𝜓 ,𝜓(𝑠) ≠ 𝑏. If those conditions are respected, then (𝑎, 𝑏)
is compatible with 𝜓; furthermore, if 𝑎 ∉ 𝑆𝜓 , then we can extend 𝜓 on
𝑆𝜓 ∪ {𝑎} by defining 𝜓(𝑎) = 𝑏 so that 𝜓 remains a partial bĳection.

Formally, for any 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, with 𝜓 a partial bĳection from 𝐴 to 𝐵,
we define

ExtBij(𝜓, 𝑎, 𝑏) = (𝑎 ∈ 𝑆𝜓 =⇒ 𝜓(𝑎) = 𝑏) ∧ (𝑎 ∉ 𝑆𝜓 =⇒ ∀𝑠 ∈ 𝑆𝜓 ,𝜓(𝑠) ≠ 𝑏) (4.1)

so that ExtBij(𝑎, 𝑏,𝜓) returns ⊤ if and only if the couple (𝑎, 𝑏) is compat-
ible with the partial bĳection 𝜓. For the sake of brevity, we assume that
the procedure ExtBij also updates the partial bĳection in the case 𝑎 ∉ 𝑆𝜓
by defining 𝜓(𝑎) = 𝑏 – naturally only if the procedure returned ⊤.

In the sequel, ExtBij is used to update both partial bĳections 𝜙 (from
𝑇1 to 𝑇2) and 𝑓 (from𝒜(𝑇1) to𝒜(𝑇2)). However, if one uses a restricted

40 4 On the construction of tree cipherings

version of ciphers as presented in Remark 3.3, one must design a specific
version of ExtBij to update 𝑓 , accounting for the desired properties.

Key idea of the algorihm

The fundamental premise of the algorithm is based on the following
observation: whenever two nodes are mapped in a tree ciphering, they
must share the exact same topology (in the sense that the subtrees rooted
in these nodes must be topologically isomorphic), and their labels are
mapped together. Namely, let 𝜙 ∈ Cipher(𝑇1 , 𝑇2), 𝑢 ∈ 𝑇1 and 𝑣 ∈ 𝑇2.

Observation 4.1 If 𝜙(𝑢) = 𝑣, then

(i) depth(𝑢) = depth(𝑣);
(ii) [𝑢] = [𝑣];
(iii) 𝑓𝜙(𝑢) = 𝑣.

These are necessary conditions, but not sufficient. However, if we find
two nodes that are the only ones to share the same values on some or
all of those criteria, then these two nodes must necessarily be mapped
together. For instance, the roots are by definition the only nodes in each
tree to have a depth of zero and therefore must be mapped together,
without even considering the other criteria.

The core of the algorithm thus consists of partitioning, successively by
considering each criterion one after the other, the nodes of each tree;
and as soon as we find solitary nodes, we map them together. Moreover,
whenever nodes are mapped together, this has repercussions on the
whole partition, as per the following observation.

Observation 4.2 𝜙(𝑢) = 𝑣 also implies that

(iv) 𝜙(𝒫(𝑢)) = 𝒫(𝑣) and

(v) ∀𝑤 ∈ 𝒞(𝑢), 𝜙(𝑤) ∈ 𝒞(𝑣).

The general concept of the algorithm is as follows. At a given instant,
the nodes of the trees will be divided into three groups: those that
have already been mapped, those that are in bags, and those that are in
collections. Bags and collections are structures that will be defined in the
following subsections. The nodes present in a bag all have in common
some combination of the criteria defined above – and are therefore
candidates to be mapped together. Collections contain sets of nodes
sharing some criteria, but not yet distributed in bags.

We will define, for bags and collections, deduction rules allowing to
change the distribution of nodes in these structures, notably by mapping
them. For example, if a bag contains only two nodes, one from each tree,
then we can map them together (like the roots in the example above).

Bags

A bag 𝐵 is a couple (𝐵1 , 𝐵2) such that 𝐵1 ⊆ 𝑇1, 𝐵2 ⊆ 𝑇2, and #𝐵1 = #𝐵2
– this number being simply denoted by #𝐵. The initialization of bags

4.2 Framework 41

18: If the equivalence is not true, then we
can conclude that 𝑇1 ≁ 𝑇2.

𝑢 𝑣
𝜙

𝐵1 𝐵2

𝐵𝑢 𝐵𝑣𝐵1 \ 𝐵𝑢 𝐵2 \ 𝐵𝑣

Figure 4.2: Illustration of the SplitChil-
dren procedure. The bag formed of 𝐵1
and 𝐵2 (above) is split into two bags after
the mapping of 𝑢 and 𝑣, one composed
of the children of 𝑢 and 𝑣, and the other
with the remaining nodes (below). Note
that the latter bag is eligible for Deduc-
tion Rule 4.1. Recursively, the bags of their
descendants are also split.

will be introduced later in Section 4.3, so that a node can not belong
simultaneously in two different bags. We denote the set of all bags by B
and by 𝜎 : 𝑇1 ∪ 𝑇2 → B∪{∅} the function that associate each node to the
bag it belongs to – if any.

As stated earlier in Key idea of the algorihm (p. 40), whenever #𝐵 = 1, the
two corresponding nodes from 𝑇1 and 𝑇2 must be mapped together.

Deduction Rule 4.1 As long as there exist bags 𝐵 ∈ B with 𝐵 = ({𝑢}, {𝑣}),
call MapNodes(𝑢, 𝑣, 𝜙, 𝑓 , 𝜎) – then remove 𝐵 from B.

Algorithm 7: MapNodes
Input: 𝑢 ∈ 𝑇1 , 𝑣 ∈ 𝑇2 , 𝜙, 𝑓 , 𝜎

1 if ExtBij(𝑓 , 𝑢, 𝑣) and ExtBij(𝜙, 𝑢, 𝑣)
then

2 Remove 𝑢 from 𝜎(𝑢)
3 Remove 𝑣 from 𝜎(𝑣)
4 Set 𝜎(𝑢) = 𝜎(𝑣) = ∅
5 SplitChildren({𝑢}, {𝑣})
6 if 𝜙(𝒫(𝑢)) = 𝒫(𝑣) then

7 return ⊤
8 else

9 return MapNodes(𝒫(𝑢),
10 𝒫(𝑣), 𝜙, 𝑓 , 𝜎)

11 else

12 return ⊥The procedure MapNodes is presented in Algorithm 7. If MapNodes
returns ⊥, then we can conclude that 𝑇1 ≁ 𝑇2. For instance, this can
happen if we map two nodes whose topology is identical, but whose
labels contradict those already mapped. As stated in Observation 4.2,
once we have mapped 𝑢 and 𝑣, if their parents are not already mapped,
they must be; and also, the respective children of 𝑢 and 𝑣 should be
separated from other nodes – and recursively their children, and so on –
via the SplitChildren procedure, presented in Algorithm 8. Note that, in
line 4, an equivalent condition would be 𝐵𝑣 ≠ ∅18. Since the procedure
performs its recursion on the children, it eventually reaches the leaves
and stops. Note that if no changes are made to a bag (because there are
no children or nodes other than children – see line 4), no recursive call is
made on that bag. The procedure is illustrated in Figure 4.2.

Algorithm 8: SplitChildren
Input: 𝑆𝑢 , 𝑆𝑣

1 Let 𝐶𝑢 =
⋃
𝑤∈𝑆𝑢 𝒞(𝑤) and 𝐶𝑣 =

⋃
𝑤∈𝑆𝑣 𝒞(𝑤)

2 for 𝐵 ∈ B do

3 Let 𝐵𝑢 = 𝐵1 ∩ 𝐶𝑢 and 𝐵𝑣 = 𝐵2 ∩ 𝐶𝑣
4 if 𝐵𝑢 ≠ ∅ and 𝐵1 \ 𝐵𝑢 ≠ ∅ then

5 Add (𝐵𝑢 , 𝐵𝑣) to B and (𝐵1 \ 𝐵𝑢 , 𝐵2 \ 𝐵𝑣) to B
6 SplitChildren(𝐵𝑢 , 𝐵𝑣)
7 SplitChildren(𝐵1 \ 𝐵𝑢 , 𝐵2 \ 𝐵𝑣)
8 Delete 𝐵 from B

Note that since the bags are modified (either via the children or the
parents) after mapping two nodes, the number of bags meeting the
prerequisite of Deduction Rule 4.1 can vary after each call to MapNodes.
However, the process of deduction ends at some point since we can not
map more nodes than there exist in the trees.

Collections

While bags contain nodes that can be mapped together, collections contain
sets of nodes that are susceptible to be put together in a bag. The need
for such structures arises – as will be seen later – when labels begin to be
considered.

Formally, a collection 𝐶 is a couple (𝐶1 , 𝐶2)where 𝐶1 ⊆ 2𝑇1 and 𝐶2 ⊆ 2𝑇2

– denoting by 2𝑆 the powerset of 𝑆. We impose the following additional
constraints:

42 4 On the construction of tree cipherings

(i) ∀𝑃 ∈ 𝐶𝑖 , ∃𝑎 ∈ 𝒜(𝑇𝑖),∀𝑢 ∈ 𝑃𝑖 , 𝑢 = 𝑎 – i.e., all nodes from the same
set share a common label. This common label is denoted by 𝑃.

(ii) Denoting by 𝐶𝑖(𝑛) = {𝑃 ∈ 𝐶𝑖 : #𝑃 = 𝑛}, #𝐶1(𝑛) = #𝐶2(𝑛) for all
𝑛 ∈ N. This common cardinality is denoted by #𝐶(𝑛). Note that the
number of 𝑛’s for which #𝐶(𝑛) > 0 is finite.

The set of all collections is denoted by C. The union of the nodes contained
in the bags, in the collections and those already mapped must form a
partition of the nodes; in other words, a node can belong at most to
only one collection, and to only one set in it. Therefore, we redefine the
function 𝜎 : 𝑇1 ∪ 𝑇2 → B∪C∪{∅} that associates each node to the bag
or the collection it belongs to – if any.

The first deduction rule on collections concerns the labels themselves.
If we find labels in a collection 𝐶 that are already mapped in 𝑓 , then
we can isolate the corresponding sets from the rest of the collection.
More precisely, denoting by 𝐶𝑖[𝑎] = {𝑃 ∈ 𝐶𝑖 : 𝑃 = 𝑎}, we introduce the
following deduction rule.

Deduction Rule 4.2 As long as there exist collections 𝐶 ∈ C and labels

𝑎, 𝑏 verifying 𝑓 (𝑎) = 𝑏, such that 𝐶1[𝑎] ≠ ∅ and 𝐶1 \ 𝐶[𝑎] ≠ ∅, add the

two following collections (𝐶1[𝑎], 𝐶2[𝑏]) and (𝐶1 \ 𝐶1[𝑎], 𝐶2 \ 𝐶2[𝑏]) to C
– then remove 𝐶 from C.

Equivalently, we could verify 𝐶2[𝑏] ≠ ∅ and 𝐶2 \ 𝐶2[𝑏] ≠ ∅ – if this
equivalence is not true, then the distribution of labels does not allow the
construction of a cipher: we can conclude that 𝑇1 ≁ 𝑇2.

The second deduction rule is complementary to the previous one. If a
collection contains sets of same cardinality that all share a common label
in 𝑇1 and 𝑇2, then those labels must surely be mapped together.

Deduction Rule 4.3 As long as there exist collections 𝐶 ∈ C, integers

𝑛 ∈ N and labels 𝑎, 𝑏 not already mapped in 𝑓 , such that∀𝑃 ∈ 𝐶1(𝑛), 𝑃 = 𝑎

and ∀𝑄 ∈ 𝐶2(𝑛), 𝑄 = 𝑏, then call ExtBij(𝑓 , 𝑎, 𝑏). If it returns ⊥, conclude

that 𝑇1 ≁ 𝑇2.

The last deduction rule concerns the cardinalities: if #𝐶(𝑛) = 1, then
the two corresponding sets must form a bag, and their labels must be
mapped together – if not already the case.

Deduction Rule 4.4 As long as there exist collections 𝐶 ∈ C and integers

𝑛 ∈ N such that 𝐶1(𝑛) = {𝑃} and 𝐶2(𝑛) = {𝑄}; if ExtBij(𝑓 , 𝑃, 𝑄), add

a new bag (𝑃, 𝑄) to B and remove 𝑃 and 𝑄 from 𝐶 – otherwise stop and

conclude that 𝑇1 ≁ 𝑇2.

4.2 Framework 43

𝑓

𝑎

𝑏

𝑐

𝛼

𝛽

𝛾

𝐶1

𝐶2

𝑛 = 1 𝑛 = 2
𝐶

𝑐 𝑐 𝑏 𝑎 𝑎 𝑏 𝑏

𝛾 𝛾 𝛽 𝛼 𝛼 𝛽 𝛽

𝐶′1

𝐶′2

𝑛 = 1 𝑛 = 2
𝐶′

𝑐 𝑐 𝑎 𝑎

𝛾 𝛾 𝛼 𝛼

𝐶′′1

𝐶′′2

𝑛 = 1 𝑛 = 2
𝐶′′

𝑏 𝑏 𝑏

𝛽 𝛽 𝛽

Figure 4.3: Illustration of the deduction
rules on collections. Given a collection 𝐶
(above, left) and the current mapping of
the labels (above, right), via Deduction
Rule 4.2 we split 𝐶 into two collections
𝐶′ (below, left) and 𝐶′′ (below, right). Ap-
plying Deduction Rule 4.3 to 𝐶′, we map
𝑓 (𝑎) = 𝛼 and 𝑓 (𝑐) = 𝛾. Finally, Deduction
Rule 4.4 allow to create three bags with (i)
the sets in 𝐶′1(2) and 𝐶′2(2); (ii) the sets in
𝐶′′1 (1) and 𝐶′′2 (1) and (iii) the sets in 𝐶′′1 (2)
and 𝐶′′2 (2).

The three previous rules are illustrated in Figure 4.3. Since each deduction
rule modifies the collections or the label mapping, each time a deduction
is made, we have to look again if one of them applies.

As in Observation 4.2, once two nodes are mapped, this provides infor-
mation on the mapping of their parent and children. Here is how to take
into account this information when dealing with collections:

▶ For the parents, if they were found in a collection, they are mapped
together and the other elements of their respective sets are put in a
bag.

▶ For the children, the lines presented in Algorithm 9 must be
inserted at the end of Algorithm 8. We send in new collections
the elements whose intersection with 𝒞(𝑢) (respectively 𝒞(𝑣)) and
their complementary are not null. The union of all the elements
thus separated is used for the recursive calls, which terminate
correctly since, once again, we end up reaching the leaves.

Note that since the bags and collections are modified after this operation,
we must apply the Deduction Rules to check whether new deductions
can be made or not.

Algorithm 9: SplitChildrenBis
/* 𝐶𝑢 and 𝐶𝑣 are defined in

Algorithm 8. */
9 for 𝐶 ∈ C and 𝑛 ∈ N do

10 Let 𝐶′ and 𝐶′′ be empty
collections

11 Let 𝑆1 , 𝑆
′
1 be empty sets

12 for 𝑃 ∈ 𝐶1(𝑛) do

13 Let 𝑃𝑢 = 𝑃 ∩ 𝐶𝑢
14 if 𝑃𝑢 ≠ ∅ and 𝑃 \ 𝑃𝑢 ≠ ∅

then

15 Add 𝑃𝑢 to 𝐶′
16 Add 𝑃 \ 𝑃𝑢 to 𝐶′′
17 𝑆1 ← 𝑆1 ∪ 𝑃𝑢
18 𝑆′1 ← 𝑆′1 ∪ (𝑃 \ 𝑃𝑢)
19 Remove 𝑃 from 𝐶

20 Let 𝑆2 , 𝑆
′
2 be empty sets

21 for 𝑄 ∈ 𝐶2(𝑛) do

22 Let 𝑄𝑣 = 𝑄 ∩ 𝐶𝑣
23 if 𝑄𝑣 ≠ ∅ and 𝑄 \𝑄𝑣 ≠ ∅

then

24 Add 𝑄𝑣 to 𝐶′
25 Add 𝑄 \𝑄𝑣 to 𝐶′′
26 𝑆2 ← 𝑆2 ∪𝑄𝑣

27 𝑆′2 ← 𝑆′2 ∪ (𝑄 \𝑄𝑣)
28 Remove 𝑄 from 𝐶

29 Add 𝐶′ and 𝐶′′ to C
30 SplitChildren(𝑆1 , 𝑆2)
31 SplitChildren(𝑆′1 , 𝑆

′
2)

On the cardinality of the search space

The search space for a tree ciphering is that of tree isomorphisms, whose
size is given by Equation 3.1. Nevertheless, since the upcoming algorithm
does not explicitly parse tree isomorphisms, but rather bĳections between
𝑇1 and 𝑇2, in order to directly construct an isomorphism that is already a
cipher (if it is possible), we have to analyse the size of the search space
differently. In fact, the whole point of bags and collections is to break the
size of the bĳection space – which is (#𝑇1)! – by partitioning the nodes
increasingly finely.

First, a 𝐵 bag containing nodes in 𝑇1 and as many in 𝑇2 allows to create
exactly (#𝐵)! mappings between them (possibly, not all mappings lead to
a tree isomorphism). Then, given a collection 𝐶, since we can only put in
bags sets of the same size, for each integer 𝑛, there are (#𝐶(𝑛))! possible

44 4 On the construction of tree cipherings

ways to create bags, each of them yielding in turn 𝑛! possible mappings
of the nodes, for a total of (#𝐶(𝑛))! × (𝑛!)#𝐶(𝑛) mappings. Hence, given B
and C, the current size of the search space 𝑁(B,C) is given by

𝑁(B,C) =
∏
𝐵∈B
(#𝐵)!

∏
𝐶∈C

(∏
𝑛

(𝑛!)#𝐶(𝑛)(#𝐶(𝑛))!
)
. (4.2)

Therefore, subdividing bags and collections modifies the size of the
search space, as follows:

▶ When a bag of size 𝑛 is split in two due to the action of SplitChil-
dren, say with #𝑃𝑢 = 𝑝, then we go from 𝑛! possibilities to 𝑝!(𝑛−𝑝)!,
reducing the space by a factor of

(𝑛
𝑝

)
.

▶ When SplitChildren is applied to a collection, several sets can be
split and put together in the same collection. Suppose we split 𝑘
sets 𝑃 of size 𝑛 into sets 𝑃𝑢 of size 𝑝 (and sets 𝑃 \ 𝑃𝑢 of size 𝑛 − 𝑝),
where 𝑘 ≤ min(#𝐶(𝑛), deg(𝑢)); we go from (#𝐶(𝑛))! × (𝑛!)#𝐶(𝑛)
possibilities to (#𝐶(𝑛) − 𝑘)! × (𝑛!)#𝐶(𝑛)−𝑘 × 𝑘!(𝑝!)𝑘 × 𝑘!((𝑛 − 𝑝)!)𝑘 .

The space is therefore modified by a factor of
1
𝑘!

(
#𝐶(𝑛)
𝑘

) (
𝑛

𝑝

) 𝑘
.

Because of the denominator which, depending neither on 𝑝 nor on
𝑛, can be arbitrarily large, it is possible, in some pathological cases,
that this term is smaller than 1, and thus reflects an enlargement of
the search space.

▶ When recursively mapping the parents of two nodes, if they were
present in a bag 𝐵, we go from (#𝐵)! to (#𝐵 − 1)!, reducing the
space by a factor of #𝐵; if they were present in a collection 𝐶 and
sets of size 𝑛, then we go from (#𝐶(𝑛))!(𝑛!)#𝐶(𝑛) possibilities to
(#𝐶(𝑛) − 1)!(𝑛!)#𝐶(𝑛)−1 × (𝑛 − 1)!, reducing the space by a factor of
#𝐶(𝑛) × 𝑛.

▶ When applying Deduction Rule 4.2 and splitting a collection 𝐶

into two new collections 𝐶′ and 𝐶′′, for each integer 𝑛, say we
have #𝐶(𝑛) = 𝑝 + 𝑞, #𝐶′(𝑛) = 𝑝 and #𝐶′′(𝑛) = 𝑞; then we go from
(𝑝 + 𝑞)!(𝑛!)𝑝+𝑞 possibilities to 𝑝!(𝑛!)𝑝 × 𝑞!(𝑛!)𝑞 , reducing the space
by a factor of

(𝑝+𝑞
𝑞

)
.

▶ Finally, Deduction Rule 4.1, Deduction Rule 4.3 and Deduction Rule
4.4 do not modify the size of the search space.

As an example, the bag 𝐵 of Figure 4.2 represents 4! = 24 potentials
mappings, but only 3! × 1! = 6 after being split up; the collection 𝐶 of
Figure 4.3 accounts for 3! × (1!)3 × 2! × (2!)2 = 48 potentials mappings,
but only 8 after being split up.

4.3 The algorithm

The algorithm we propose to build a tree ciphering is split into two
distinct phases. First, we will try to determine as many mandatory
mappings as possible on the two bĳections we are building, the one on
the nodes and the one on the labels. Each mapping reduces the search
space; thus the objective of this preprocessing phase is to break, as much
as possible, the combinatorial complexity of the search space. Then, we
start a backtracking procedure to complete the bĳections – if possible.

4.3 The algorithm 45

Preprocessing part

Initialization Let 𝑇1 and 𝑇2 two labeled trees. To assess that 𝑇1 ≃ 𝑇2,
we call AHU algorithm – see The Aho, Hopcroft & Ullman algorithm
(p. 13) – which concludes in linear time, while assigning to the nodes of
𝑇1 and 𝑇2 their equivalence classes under ≃ – which we will need later
in the algorithm. Let 𝜙 : ∅ ↦→ ∅ and 𝑓 : ∅ ↦→ ∅. We initialize C = ∅ and
B = {𝐵} where 𝐵 = ({𝑢 ∈ 𝑇1}, {𝑣 ∈ 𝑇2}). At this stage, the search space
is exactly the bĳections between the nodes of 𝑇1 and 𝑇2, for a size of (#𝑇1)!.
This space is much larger than Isom(𝑇1 , 𝑇2), and we aim to reduce its
cardinality via successive partitioning in the sequel.

Throughout this section, the different steps will be illustrated on a running
example, presented in Figure 4.4.

𝐵

𝑢1

𝐶
𝑢2

𝐴
𝑢3

𝐴
𝑢4

𝐵
𝑢5

𝐴
𝑢6

𝐴

𝑢7

𝐵

𝑢8

𝐶

𝑢9

𝐶

𝑢10

𝐶

𝑢11

𝐷

𝑢12

𝐸

𝑢13

𝐶

𝑢14

𝐷

𝑢15

𝐸

𝑢16

𝑇1
𝛽
𝑣1

𝛾
𝑣2

𝛼
𝑣3

𝛼
𝑣4

𝛼
𝑣5

𝛽
𝑣6

𝛾

𝑣7

𝛾

𝑣8

𝛽

𝑣9

𝛼

𝑣10

𝛿

𝑣11

𝛾

𝑣12

𝜂

𝑣13

𝜂

𝑣14

𝛿

𝑣15

𝛾

𝑣16

𝑇2

Figure 4.4: Two topologically isomorphic labeled trees 𝑇1 (left) and 𝑇2 (right). The color on nodes indicates the class of equivalence under ≃.
The nodes have been numbered from 𝑢1 to 𝑢16 in 𝑇1 (resp. from 𝑣1 to 𝑣16 in 𝑇2) in breadth-first search order. The size of Isom(𝑇1 , 𝑇2) is
equal to 𝑁≃(𝑇1) = (2!)4(3!)2 = 576. The gray boxes indicate the only starting bag and its components; the size of the starting search space is
(#𝑇1)! = 16! ≈ 2.09 × 1013.

Depth Following point (𝑖) of Observation 4.1, we know that nodes
susceptible to be mapped together must share a common depth. Therefore,
we partition the only bag 𝐵 by depth, i.e., we define 𝑇𝑖(𝑑) = {𝑢 ∈
𝑇𝑖 : depth(𝑢) = 𝑑}, for 𝑑 ∈ {0, . . . , depth(𝑇𝑖)}, and add as many bags
(𝑇1(𝑑), 𝑇2(𝑑)) in B – and we remove 𝐵 from B.

After this operation, we apply Deduction Rule 4.1. Since the roots are the
only nodes with zero depth, the rule will at least apply to their bags and
they will be mapped together.

Figure 4.5 illustrates this step on the running example.

𝐵

𝑢1

𝐶
𝑢2

𝐴
𝑢3

𝐴
𝑢4

𝐵
𝑢5

𝐴
𝑢6

𝐴

𝑢7

𝐵

𝑢8

𝐶

𝑢9

𝐶

𝑢10

𝐶

𝑢11

𝐷

𝑢12

𝐸

𝑢13

𝐶

𝑢14

𝐷

𝑢15

𝐸

𝑢16

𝑇1
𝛽
𝑣1

𝛾
𝑣2

𝛼
𝑣3

𝛼
𝑣4

𝛼
𝑣5

𝛽
𝑣6

𝛾

𝑣7

𝛾

𝑣8

𝛽

𝑣9

𝛼

𝑣10

𝛿

𝑣11

𝛾

𝑣12

𝜂

𝑣13

𝜂

𝑣14

𝛿

𝑣15

𝛾

𝑣16

𝑇2

Figure 4.5: After partitioning by depth. Since 𝑢1 and 𝑣1 are the only nodes with depth zero, via Deduction Rule 4.1, we map 𝜙(𝑢1) = 𝑣1
and 𝑓 (𝐵) = 𝛽. The children of 𝑢1 and 𝑣1 should be set aside from the other nodes according to the SplitChildren procedure, but they are
already alone in their bag. The size of the current space is now 5! × 10! = 435, 456, 000.

46 4 On the construction of tree cipherings

Equivalence class We now refer to point (𝑖𝑖) of Observation 4.1, and
we subdivide the bags according the equivalence class of the nodes they
contain. Formally, for each bag 𝐵 = (𝐵1 , 𝐵2) in B, we define 𝐵𝑖(𝑐) = {𝑢 ∈
𝐵𝑖 : [𝑢] = 𝑐}. We add a new bag (𝐵1(𝑐), 𝐵2(𝑐)) to B for each such 𝑐, and
remove 𝐵 from B.

Once all bags have been partitioned, apply again Deduction Rule 4.1.

Figure 4.6 presents the result of this step on the running example.

𝐵

𝑢1

𝐶
𝑢2

𝐴
𝑢3

𝐴
𝑢4

𝐵
𝑢5

𝐴
𝑢6

𝐴

𝑢7

𝐵

𝑢8

𝐶

𝑢9

𝐶

𝑢10

𝐶

𝑢11

𝐷

𝑢12

𝐸

𝑢13

𝐶

𝑢14

𝐷

𝑢15

𝐸

𝑢16

𝑇1
𝛽
𝑣1

𝛾
𝑣2

𝛼
𝑣3

𝛼
𝑣4

𝛼
𝑣5

𝛽
𝑣6

𝛾

𝑣7

𝛾

𝑣8

𝛽

𝑣9

𝛼

𝑣10

𝛿

𝑣11

𝛾

𝑣12

𝜂

𝑣13

𝜂

𝑣14

𝛿

𝑣15

𝛾

𝑣16

𝑇2

Figure 4.6: After partitioning by equivalence class. Since 𝑢2 and 𝑣2 are the only nodes with class and depth 1, via Deduction Rule 4.1, we
map 𝜙(𝑢2) = 𝑣2 and 𝑓 (𝐶) = 𝛾. Also, since 𝑢2 and 𝑣2 have no children and their parents are mapped together, there is nothing more to do.
The size of the current space is now (2!)2 × 10! = 14, 515, 200.

Parents Before considering labels in the next step, we focus first on
Observation 4.2. To map two nodes together, their parents must also be
mappable with each other. In particular, this implies that such parents
belong to the same bag.

Formally, we inspect each bag 𝐵 = (𝐵1 , 𝐵2) in B by increasing depth (recall
that at this point, all nodes of the same bag share the same depth and
the same equivalence class). We partition the nodes of 𝐵 as follows: let
𝐵𝑖(𝑠) = {𝑢 ∈ 𝐵𝑖 : 𝜎(𝒫(𝑢)) = 𝑠} – where 𝜎 is the function that associate,
to a node, the bag it is contained in, if any. We then add a new bag
(𝐵1(𝑠), 𝐵2(𝑠)) to B for each such 𝑠, and remove 𝐵 from B. Visiting the
bags by increasing depth ensures that you have subdivided the bags
containing the parents before turning to the children.

Once all bags have been partitioned, apply again Deduction Rule 4.1.

This step is illustrated on the running example in Figure 4.7.

Labels We finally consider the last point (𝑖𝑖𝑖) of Observation 4.1. We are
interested in the labels on the nodes; this time, this criterion is not purely
topological and for this reason we have to use collections. Indeed, except
for the labels already mapped together in the previous deductions, we
do not know which labels must go together, and we can not arbitrarily
map them by creating bags.

Formally, for each 𝐵 = (𝐵1 , 𝐵2) in B, we define 𝐵𝑖(𝑎) = {𝑢 ∈ 𝐵𝑖 : 𝑢 = 𝑎}
and 𝒜(𝑇𝑖)|𝐵 = {𝑎 ∈ 𝒜(𝑇𝑖) : 𝐵𝑖(𝑎) ≠ ∅}. We add a new collection
𝐶 = ({𝐵1(𝑎) : 𝑎 ∈ 𝒜(𝑇1)|𝐵}, {𝐵2(𝑏) : 𝑏 ∈ 𝒜(𝑇2)|𝐵}) to C, and remove 𝐵
from B.

4.3 The algorithm 47

𝐵

𝑢1

𝐶
𝑢2

𝐴
𝑢3

𝐴
𝑢4

𝐵
𝑢5

𝐴
𝑢6

𝐴

𝑢7

𝐵

𝑢8

𝐶

𝑢9

𝐶

𝑢10

𝐶

𝑢11

𝐷

𝑢12

𝐸

𝑢13

𝐶

𝑢14

𝐷

𝑢15

𝐸

𝑢16

𝑇1
𝛽
𝑣1

𝛾
𝑣2

𝛼
𝑣3

𝛼
𝑣4

𝛼
𝑣5

𝛽
𝑣6

𝛾

𝑣7

𝛾

𝑣8

𝛽

𝑣9

𝛼

𝑣10

𝛿

𝑣11

𝛾

𝑣12

𝜂

𝑣13

𝜂

𝑣14

𝛿

𝑣15

𝛾

𝑣16

𝑇2

Figure 4.7: After partitioning by parents. The only modification happens when looking for nodes with depth 2; no further deduction is
made. The size of the current space is now (2!)2 × 4! × 6! = 69, 120.

Once this procedure has been applied to all bags – and therefore B = ∅ –
we apply Deduction Rule 4.2, Deduction Rule 4.3 and Deduction Rule 4.4
on C. In the case bags were to be created as a result of a deduction, apply
also Deduction Rule 4.1. We emphasize that all these rules are intertwined
and of the form “as long as. . . ”: each deduction made imposes to check
again all the rules; the process stops only when no more deductions are
made.

𝐴
𝑢3

𝐴
𝑢4

𝛼
𝑣3

𝛼
𝑣4

𝑛 = 2

𝐶1

𝐶2

𝐶

𝐴
𝑢7

𝐵
𝑢8

𝐶
𝑢9

𝐶
𝑢10

𝛽
𝑣9

𝛼
𝑣10

𝛾
𝑣7

𝛾
𝑣8

𝑛 = 1 𝑛 = 2

𝐶′1

𝐶′2

𝐶′ 𝑓
𝐴

𝐵

𝐶

𝐷

𝐸

𝛼

𝛽

𝛾

𝛿

𝜂

𝐶
𝑢11

𝐶
𝑢14

𝐷
𝑢12

𝐷
𝑢15

𝐸
𝑢13

𝐸
𝑢16

𝛿
𝑣11

𝛿
𝑣15

𝛾
𝑣12

𝛾
𝑣16

𝜂
𝑣13

𝜂
𝑣14

𝑛 = 2

𝐶′′1

𝐶′′2

𝐶′′

𝐵
𝑢5

𝐴
𝑢6

𝛼
𝑣5

𝛽
𝑣6

𝑛 = 2

𝐶′′′1

𝐶′′′2

𝐶′′′

Figure 4.8: State of the system after converting all bags into collections, before any deductions, as well as the current mapping of the labels 𝑓
(above, right). The size of the current space is now: 2! for 𝐶, 2! × 2! = 4 for 𝐶′, 3! × (2!)3 = 48 for 𝐶′′ and 2! for 𝐶′′′; all combined gives 768.

Figure 4.8 illustrates the state of the system after converting all bags
into collections, but before applying any Deduction Rules. Applying
Deduction Rule 4.2 provokes the following changes on the running
example:

▶ Collection 𝐶 is unchanged;
▶ Collection 𝐶′ is split into three collections: 𝐶(1) = ({{𝑢8}}, {{𝑣9}});
𝐶(2) = ({{𝑢9 , 𝑢10}}, {{𝑣7 , 𝑣8}}) and 𝐶(3) = ({{𝑢7}}, {{𝑣10}});

▶ Collection 𝐶′′ is split into two collections:
𝐶(4) = ({{𝑢11 , 𝑢14}}, {{𝑣12 , 𝑣16}}) and
𝐶(5) = ({{𝑢12 , 𝑢15}, {𝑢13 , 𝑢16}}, {{𝑣11 , 𝑣15}, {𝑣13 , 𝑣16}});

48 4 On the construction of tree cipherings

19: Where try 𝑋; catch 𝑌 executes 𝑋 , and
if an error is detected, executes 𝑌 instead.

▶ Collection 𝐶′′′ is split into two collections: 𝐶(6) = ({{𝑢5}}, {{𝑣6}})
and 𝐶(7) = ({{𝑢6}}, {{𝑣5}}).

𝐵

𝑢1

𝐶
𝑢2

𝐴
𝑢3

𝐴
𝑢4

𝐵
𝑢5

𝐴
𝑢6

𝐴

𝑢7

𝐵

𝑢8

𝐶

𝑢9

𝐶

𝑢10

𝐶

𝑢11

𝐷

𝑢12

𝐸

𝑢13

𝐶

𝑢14

𝐷

𝑢15

𝐸

𝑢16

𝑇1
𝛽
𝑣1

𝛾
𝑣2

𝛼
𝑣3

𝛼
𝑣4

𝛼
𝑣5

𝛽
𝑣6

𝛾

𝑣7

𝛾

𝑣8

𝛽

𝑣9

𝛼

𝑣10

𝛿

𝑣11

𝛾

𝑣12

𝜂

𝑣13

𝜂

𝑣14

𝛿

𝑣15

𝛾

𝑣16

𝑇2

𝐷
𝑢12

𝐸
𝑢13

𝜂
𝑣14

𝛿
𝑣15

𝑛 = 1

𝐶∗1

𝐶∗2

𝐶∗

𝐷
𝑢15

𝐸
𝑢16

𝛿
𝑣11

𝜂
𝑣13

𝑛 = 1

𝐶∗∗1

𝐶∗∗2

𝐶∗∗ 𝑓

𝐴 𝐵 𝐶 𝐷 𝐸

𝛼 𝛽 𝛾 𝛿 𝜂

Figure 4.9: The mapping on nodes and remaining bag (above), the remaining collections (below, left) and the mapping on labels (below,
right) at the end of the preprocessing phase. The collection 𝐶(5) has been split into two new collections 𝐶∗ and 𝐶∗∗, after the mapping of
(𝑢5 , 𝑣6), via the SplitChildren procedure. The size of the final space is: 2! for the last bag, and 2! for each collections, for a total combined of
8. Note that this number is way below 𝑁≃(𝑇1) = 576, indicating that the preprocessing phase succeeded in reducing the size of the search
space.

Deduction Rule 4.3 allows to map 𝑓 (𝐴) = 𝛼 (for instance, with collection
𝐶(7)), whereas Deduction Rule 4.4 create several bags, most of them with
one node per component, allowing new mappings (via Deduction Rule
4.1), as displayed in Figure 4.9.

Conclusion After all this steps, the preprocessing phase is finished,
and the backtracking starts.

Backtracking part

The pseudocode for the backtracking part is provided in Algorithm 11.
During the preprocessing phase, if an operation went wrong, we could
immediately conclude that 𝑇1 ≁ 𝑇2; here it indicates that an unfortunate
choice has been made and that another one must be made, if any remains.
The detection of these unsuccessful cases is done in the pseudocode
via the tags try and catch

19. A number of new procedures are also
introduced: SaveState, RestoreState and NextCandidates. The first two
are self-explanatory, while the last one is presented in Algorithm 10.

The main idea behind the latter is the following: in a 𝐵 bag with 𝑛 nodes,
we know that there are 𝑛! possible mappings; however, for backtracking,
the search tree only needs to branch on 𝑛 children. Indeed, the first node
𝑢 of 𝐵1 will have to be mapped to one of the nodes of 𝐵2, and so we

4.4 Analysis of the algorithm 49

consider all possible mappings between this node of 𝐵1 and those of 𝐵2.
The same idea also applies to collections.

Algorithm 10: NextCandi-
dates
Input: B,C

1 if B ≠ ∅ then

2 𝜆← B
3 Let 𝐵 = (𝐵1 , 𝐵2) ∈ B so that #𝐵 is

minimal

4 Let 𝑢 ∈ 𝐵1
5 𝐿← {(𝑢, 𝑣) : 𝑣 ∈ 𝐵2}
6 else if C ≠ ∅ then

7 𝜆← C
8 Let 𝐶 = (𝐶1 , 𝐶2) ∈ C and 𝑛 ∈ N

so that 𝑛 is maximal and
#𝐶(𝑛) > 0; in case of a tie,
choose so that #𝐶(𝑛) is minimal

9 Let 𝑃 ∈ 𝐶1(𝑛)
10 𝐿← {(𝑃, 𝑄) : 𝑄 ∈ 𝐶2(𝑛)}
11 else

12 𝜆← ∅
13 𝐿← ∅
14 return 𝜆, 𝐿

Algorithm 11: Backtracking
Input: B,C, 𝜙, 𝑓 , 𝜎

1 𝜆, 𝐿← NextCandidates(B,C)
2 𝑆← SaveState(B,C, 𝜙, 𝑓 , 𝜎)
3 if 𝜆 = B then

4 for (𝑢, 𝑣) ∈ 𝐿 do

5 try

6 assert MapNodes(𝑢, 𝑣, 𝜙, 𝑓 , 𝜎)
7 Apply Deduction Rule 4.1 to Deduction Rule 4.4
8 return Backtracking(B,C, 𝜙, 𝑓 , 𝜎)
9 catch

10 B,C, 𝜙, 𝑓 , 𝜎← RestoreState(𝑆)

11 return ⊥
12 else if 𝜆 = C then

13 for (𝑃, 𝑄) ∈ 𝐿 do

14 try

15 assert ExtBij(𝑓 , 𝑃, 𝑄)
16 Remove 𝑃 and 𝑄 from their collection in C
17 Create a bag (𝑃, 𝑄) in B
18 Apply Deduction Rule 4.1 to Deduction Rule 4.4
19 return Backtracking(B,C, 𝜙, 𝑓 , 𝜎)
20 catch

21 B,C, 𝜙, 𝑓 , 𝜎← RestoreState(𝑆)

22 return ⊥
23 else

24 return ⊤

If we resume the example of Figure 4.9, NextCandidates(B,C) would
return 𝜆 = B and 𝐿 = {(𝑢9 , 𝑣7), (𝑢9 , 𝑣8)}. After mapping 𝜙(𝑢9) = 𝑣7, we
would deduce𝜙(𝑢10) = 𝑣8, and start the recursion, this time on collections.
Note that all mapping choices between the remaining nodes and labels
are acceptable, so the procedure will not go wrong and backtrack on this
example.

4.4 Analysis of the algorithm

The interest of proceeding in two phases, compared to directly launching
a backtracking procedure, is to break the cardinality of the search space
to allow backtracking to be as fast as possible. From a theoretical point of
view, we consider the size of the backtracking search tree, and show that
our approach minimizes it. Then, on simulated data, we focus on (i) the
extent to which preprocessing does break the cardinality of the search
space, (ii) how the computing time is divided between preprocessing
and backtracking and (iii) how the algorithm behaves when the trees are
not isomorphic – versus when they are.

50 4 On the construction of tree cipherings

Theoretical analysis

In spite of an intricate back and forth structure between nodes, bags and
collections (notably through deductions rules), which makes it difficult
to evaluate the complexity of our algorithm, we have a few comments to
offer regarding this matter.

SplitChildren procedure Assuming 𝑇1 ≃ 𝑇2, and denoting by 𝑛 =

#𝑇1 = #𝑇2 and 𝑑 = deg(𝑇1) = deg(𝑇2), we have the following result.

Proposition 4.2 The SplitChildren procedure, detailed in Algorithm 8 and

Algorithm 9, has complexity 𝒪(𝑛𝑑).

Proof. Already, we can note that it is not necessary to scan all the bags
and collections at each call: if this allows to lighten the pseudocode, the
best way to do it, since we dispose of the function 𝜎 which associates to
each node the bag or collection in which it is stored, is to scan only the
bags and collections related to the sets 𝐶𝑢 and 𝐶𝑣 .

In particular, since the recursive calls are made on children, i.e. with
increasing depth, the same bag or collection is processed only once
throughout the calls – since the nodes have been partitioned by depth.

Splitting each bag or element of a collection into two is done in linear
time – assuming that checking whether a node is present in 𝐶𝑢 (or 𝐶𝑣)
or not is done in constant time (e.g. with a hash table). In addition, it
is necessary to pay twice the computation time of the children (one per
recursive call) – this number is bounded by 𝑑 per node.

We can then evaluate the total complexity of the algorithm (including
recursive calls), assuming that all bags and collections are visited, to be

in the order of

(∑
𝐵∈B

#𝐵 +
∑
𝐶∈C

∑
𝑘∈N

𝑘#𝐶(𝑘)
)
(2𝑑 + 1).

Since the bags and collections are composed of the nodes of 𝑇1 and 𝑇2,
the bracketed term can not be greater than 𝑛, concluding the proof. F

Preprocessing part Ignoring the possible recursive call to parents, the
expected complexity for MapNodes – Algorithm 7 – is roughly the same
of SplitChildren. Since we can not map more nodes than there are in the
trees, the number of calls to MapNodes during preprocessing is bounded
by the size of the trees, leading to a complexity for this part of 𝒪(𝑛2𝑑) –
ignoring deductions and partitions of the nodes.

Backtracking part The underlying structure behind the backtracking
step is a search tree – whose nodes we call states. In the best case, we
simply traverse it from the root to a leaf; in the worst case, we explore the
entirety of it. Ensuring that the tree has a minimal number of states is
therefore of utmost importance to guarantee that the algorithm finishes
rapidly, even in the worst case.

4.4 Analysis of the algorithm 51

20: Note that it is the multiplicative factor
before 𝑒 − 1 that can be reduced – see the
proof for complete details.

Theorem 4.3 To minimize the size of the backtracking tree,

▶ one must process the bags before the collections;

▶ if there are only bags left, the bag 𝐵 with the smallest cardinality #𝐵
must be processed first;

▶ if there are only collections left, the collection 𝐶(𝑛) with the largest 𝑛

must be processed first; in case of a tie, process first the one with the

smallest #𝐶(𝑛);

where “process” 𝐶(𝑛) means to choose 𝑃 ∈ 𝐶1(𝑛) and 𝑄 ∈ 𝐶2(𝑛) and put

them in a bag.

Proof. The proof can be found in Appendix A.4. F

Among all algorithms determining the order in which to process bags
and collections based on their cardinality, for backtracking, Algorithm
10 is optimal since it implements the strategy induced by the previous
theorem.

To give an order of magnitude, we also have the following result (valid
even without optimizing the processing order of the bags and collections),
that illustrates the interest of preprocessing in reducing the size of the
search space as much as possible.

Proposition 4.4 The size of the backtracking tree is bounded by 2(𝑒 −
1)𝑁(B,C), with 𝑁(B,C) as defined in Equation 4.2.

Proof. The proof can also be found in Appendix A.4. F

The leaves of the backtracking tree correspond to each of the possible
mappings from (B,C) at the end of preprocessing; thus there are 𝑁(B,C)
leaves. The previous result shows that the size of the tree is linear in the
quantity of items that we want to enumerate. The constant, here 2(𝑒 − 1),
expresses how parsimonious the approach is.

If we consider the enumeration tree of all permutations of [[1, 𝑛]], whose
number of leaves is 𝑛!, the size of this tree is bounded by (𝑒 − 1)𝑛! – see
[75]

[75]: Knuth (2005), The Art of Computer

Programming, Volume 4, Fascicle 2:

Generating All Tuples and Permutations (Art

of Computer Programming)

. If we take this constant, 𝑒 − 1, as a baseline of what we can expect to
obtain, our constant is only twice as large. Actually, Proposition 4.4 being
valid regardless of the order in which bags and collections are processed,
the actual constant after optimization is likely to be smaller20.

Note also that the complexity to explore each state depends on the state,
via the possible deductions and calls to SplitChildren made.

In the rest of this section, we investigate the experimental behavior of
our algorithm.

52 4 On the construction of tree cipherings

21: We actually use max(⌊𝑝𝑛⌋ , 1) in our
implementation to avoid pathological
cases.

22: Note that this change of a single label
to break the isomorphism is made to make
the task of detecting the non-isomorphism
as difficult as possible.

Experimental protocol

Given two labeled trees 𝑇1 and 𝑇2 assumed to be isomorphic up to
a cipher, we expect that the complexity of establishing that 𝑇1 ∼ 𝑇2
depends only on [[𝑇1]] = [[𝑇2]]. In particular, for a labeled tree 𝑇, the
ratio 𝑝 =

#𝒜(𝑇)
#𝑇 is especially interesting to consider. Indeed, if 𝑝 = 1/#𝑇

or 𝑝 = 1, any tree isomorphism is also a tree ciphering – in which
case the first isomorphism found is sufficient. If 𝑝 takes intermediate
values, the space of tree cipherings is strictly smaller than the one of tree
isomorphisms – and one can not use just any one of them.

Remark 4.2 Note that we can identify if trees 𝑇1 and 𝑇2 are in one
of these two special cases (𝑝 = 1 or 𝑝 = 1/#𝑇𝑖) by a linear traversal
of the nodes. Since the first isomorphism we find fits, we can easily
construct one in linear time. We start by associating to each node its
equivalence class – see The Aho, Hopcroft & Ullman algorithm (p. 13)
– before mapping the roots. Then, for each pair of mapped nodes, for
each equivalence class identified in their children, we map the 𝑛-th
child of this class in 𝑇1 with the 𝑛-th in 𝑇2, and so on recursively.

We shall see it later, but our algorithm obtains worse performances if
we use it on trees in one of these two cases. So it seems better in this
context to use this much simpler procedure instead.

With 𝑛 and 𝑝 fixed, we construct a tree𝑇1 with 𝑛 nodes and a proportion of
labels equal to 𝑝 as follows. We draw uniformly at random ⌊𝑝𝑛⌋ nodes21

and they receive the labels 1, . . . , ⌊𝑝𝑛⌋ in this order. The remaining nodes
are randomly assigned a label between 1 and ⌊𝑝𝑛⌋. For 𝑝 = 1/𝑛, all nodes
receive instead the same label, and for 𝑝 = 1, within a linear traversal
of the trees, the 𝑖-th node visited receives label 𝑖. 𝑇2 is then obtained as
a copy of 𝑇1, where we shuffled the children of each node. In this case,
𝑇1 ∼ 𝑇2.

To test the case 𝑇1 ≁ 𝑇2, we created a copy 𝑇′2 of 𝑇2, and for a randomly
chosen node 𝑢 in 𝑇′2 , we replaced its label 𝑢 by another one, according to
the following procedure. If each label appears only once in the tree – i.e.,
𝑝 = 1, then we select a node 𝑢 at random and give it a label randomly
drawn among 𝒜(𝑇2) \ {𝑢}. Otherwise, we draw a node 𝑢 at random
among all the nodes whose label is present at least twice in the tree, and
we give it a new label max(𝒜(𝑇2)) + 1. In both cases, 𝑇1 ≁ 𝑇′2

22 – notably
because, trivially, #𝒜(𝑇1) ≠ #𝒜(𝑇′2).

We generated 100 couples of trees (𝑇1 , 𝑇2) and (𝑇1 , 𝑇
′
2) for each pair (𝑛, 𝑝),

where 𝑛 ∈ {25𝑘 : 2 ≤ 𝑘 ≤ 10} and 𝑝 ∈ {1/𝑛} ∪ {𝑘/10 : 1 ≤ 𝑘 ≤ 10} – so
9,900 trees for each case, 𝑇1 ∼ 𝑇2 and 𝑇1 ≁ 𝑇2.

The preprocessing breaks the cardinality of the search

space

As stated in On the cardinality of the search space (p. 43), the size of
the current search space 𝑁(B,C) is given by Equation 4.2 and must
be related to the size of Isom(𝑇1 , 𝑇2), 𝑁≃(𝑇1), given by Equation 3.1. As
already mentioned, the initial search space is that of bĳections between
the nodes of 𝑇1 and 𝑇2, a far larger space than that of isomorphisms.

4.4 Analysis of the algorithm 53

The goal of the different partitioning steps, presented in Section 4.3, is to
break the cardinality of the space at each step, and reduce it enough so
that the final size is less than 𝑁≃(𝑇1). We can measure how far the current
space is from this goal by calculating the logratio 𝑟(B,C), defined as

𝑟(B,C) = log10
𝑁(B,C)
𝑁≃(𝑇1)

. (4.3)

The space is effectively reduced with respect to Isom(𝑇1 , 𝑇2) if and only
if 𝑟(B,C) is a negative number. Figure 4.10a shows the evolution of the
ratio after each partitioning step. These steps appear to be sufficient to
bring the ratio close to – or below 0. In more details, if we denote by
𝑟final(B,C) the ratio after the Labels step of preprocessing, Figure 4.10b
provide a closer look at the results. We see that excluding the cases 𝑝 = 1
and 𝑝 = 1/𝑛, the space is almost systematically reduced (except for a
few pathological cases when 𝑝 is close to 1), with a linear tendency that
seems to emerge for values of 𝑝 < 0.5 – meaning that the search space is
exponentially more reduced for larger trees.

Initialization Depth Equiv. class Parents Labels

0

100

200

300

400

500

Tree Size

50

75

100

125

150

175

200

225

250

(a) Evolution of 𝑟(B,C) after each step of the preprocessing

50 75 100 125 150 175 200 225 250

−20

−16

−12

−8

−4

0

4

8

0.2

0.4

0.6

0.8

1.0
p

(b) 𝑟final(B,C) at the end of preprocessing

Figure 4.10: 𝑟(B,C) at differents steps of the preprocessing, with regard to the size and proportion of labels of trees, with 𝑇1 ∼ 𝑇2.

When 𝑝 = 1/𝑛, the unique label is mapped as early as the roots, and thus
future deductions rely only on the topology of the tree. The collections
step does not bring any additional deduction – and we can see on Figure
4.10a that it is crucial to effectively reduce the search space. Similarly,
when 𝑝 = 1, except for mandatory mappings from the topology, the
collections step produces few deductions since all labels are different;
moreover those collections remain and contribute for much to the size of
the space.

In Figure 4.11, one can see the proportion of nodes and labels mapped
at the end of the preprocessing. We observe the same trends as before,
especially for the 𝑝 < 0.5 cases. Note that in a number of cases, the
proportion of mapped nodes reaches 1; in other words, preprocessing
alone was sufficient to find a tree ciphering – which explain some of the
low values of 𝑟final in Figure 4.10b.

54 4 On the construction of tree cipherings

50 75 100 125 150 175 200 225 250

0.32

0.40

0.48

0.56

0.64

0.72

0.80

0.88

0.96

0.2

0.4

0.6

0.8

1.0
p

(a) Proportion of mapped nodes

50 75 100 125 150 175 200 225 250

0.32

0.40

0.48

0.56

0.64

0.72

0.80

0.88

0.96

0.2

0.4

0.6

0.8

1.0
p

(b) Proportion of mapped labels

Figure 4.11: Proportion of mappings at the end of preprocessing, with regard to the size and proportion of labels of trees, with 𝑇1 ∼ 𝑇2.

Computation time repartition between backtracking and

preprocessing

The goal of preprocessing, by breaking as much as possible the cardinality
of the search space, is to give a chance to the backtracking to converge in
reasonable time. The results for 𝑇1 ∼ 𝑇2 are gathered in Figure 4.12.

50 75 100 125 150 175 200 225 250

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Preprocessing

Backtracking

(a) Comparison of 𝑡𝑝 and 𝑡𝑏

50 75 100 125 150 175 200 225 250

−2

−1

0

1

2

3

4

5

0.2

0.4

0.6

0.8

1.0
p

(b) Logratio log10(𝑡𝑏/𝑡𝑝)

Figure 4.12: Computation time spent in the preprocessing part 𝑡𝑝 and the backtracking part 𝑡𝑏 , in the case where 𝑇1 ∼ 𝑇2. In Figure 4.12a,
the outliers are not shown for the sake of readability. On the other hand, they are present on Figure 4.12b.

As can be seen on Figure 4.12a – where outliers are not showed, the time
𝑡𝑝 spent in preprocessing seems to grows linearly with tree size, with
little variability, while the time 𝑡𝑏 spent in backtracking seems much more
volatile. We did not find any significant influence of the 𝑝 parameter on
the time spent in preprocessing.

Nevertheless, a closer look – see Figure 4.12b – shows that backtracking
is systematically faster than preprocessing when 𝑝 takes intermediate
values, and slower for small or large values of 𝑝. Outliers, with backtrack-
ing times several orders of magnitude higher than preprocessing time,

4.4 Analysis of the algorithm 55

23: Note that we use here smaller trees
than before, with 𝑛 ∈ {10𝑘 : 2 ≤ 𝑘 ≤ 10},
due to computation time constraints – in
light of Figure 4.14b.

only occur for large values of 𝑝 (but stricly < 1). This phenomenon can
be explained as follows. Let us say that all the labels are different, except
for one that is present in two copies (this is one of the worst possible
cases). If this duplicate is not detected until too late in the backtracking,
it is easy to imagine that the algorithm will take much longer to complete
– since it will have to backtrack a long way to correct its mistake.

The cases 𝑝 < 0.5 that reach very low ratios can be explained in light of
Figure 4.11a, where we observe that almost all nodes are mapped at the
end of preprocessing. The time spent backtracking is then very short (or
even negligible, if there are no nodes left to map) – as seen on Figure
4.12a, where the bottom whisker of the boxplot touches 0.

The cases 𝑝 = 1 and 𝑝 = 1/𝑛 are surprising since these are cases where
any tree ciphering works, i.e. the algorithm is not expected to backtrack.
On the other hand, these are also the cases where the search space is
the largest when the backtracking part starts. This explanation seems
sufficient by virtue of Figure 4.13, which shows (at least in the 𝑝 = 1 and
𝑝 = 1/𝑛 cases) that the time spent backtracking is related to the size of
the space at the start of the backtracking, in the following manner:

log10(𝑡𝑏) ≈ 0.72 log10(𝑁(B,C))0.41 − 3.09;

where the values of the parameters have been estimated using least
squares method. It seems that 𝑡𝑏 tends, on average, to grow sublinearly
as a function of 𝑁(B,C) – to relate with Proposition 4.4.

0 5 10 15 20 25
−4

−3

−2

−1

0

1

2

3

4

0.2

0.4

0.6

0.8

1.0
p

Figure 4.13: log10(𝑡𝑏) as a function of
log10(𝑁(B,C)) – evaluated at the begin-
ning of backtracking. The trend is interpo-
lated by the green curve, whose equation
is given by 𝑦 = 0.72𝑥0.41 − 3.09.

When trees are not isomorphic up to a cipher

In the case where the considered trees 𝑇1 and 𝑇2 are not isomorphic, one
of the following two outcomes is expected:

▶ Either we detect during the preprocessing that 𝑇1 ≁ 𝑇2, in which
case we expect to obtain a faster answer than when 𝑇1 ∼ 𝑇2;

▶ either the answer is obtained during backtracking, in which case
we expect the backtracking tree to be explored more extensively
than in case 𝑇1 ∼ 𝑇2, and the answer will be slower to obtain.

56 4 On the construction of tree cipherings

24: Recall, however, that in 𝑇′2 , all the la-
bels are different, except for one which
is present in double. The proportion 𝑝

shown in the figure is that of 𝑇1 before
modification.

With couples (𝑇1 , 𝑇2) and (𝑇1 , 𝑇
′
2) constructed as in Experimental protocol

(p. 52)23, we compared the time 𝑡⊤ to decide 𝑇1 ∼ 𝑇2 with the time 𝑡⊥
to decide 𝑇1 ≁ 𝑇′2 . We actually plot, in Figure 4.14, log10

𝑡⊥
𝑡⊤

, so that 𝑡⊥ is
greater than 𝑡⊤ if and only if this number is positive.

20 30 40 50 60 70 80 90 100

−2

−1

0

1

0.2

0.4

0.6

0.8

1.0
p

(a) Decision 𝑇1 ≁ 𝑇2 is made during preprocessing

20 30 40 50 60 70 80 90 100

−1

0

1

2

3

4

5

6

0.5

0.6

0.7

0.8

0.9

1.0
p

(b) Decision 𝑇1 ≁ 𝑇2 is made during backtracking

Figure 4.14: Logratio log10(𝑡⊥/𝑡⊤)with regard to the size and proportion of labels of trees.

In Figure 4.14a, we see all the instances where we could determine𝑇1 ≁ 𝑇′2
during the preprocessing. In most cases, and seemingly independently
of the parameters 𝑠 and 𝑝, we were able to obtain an answer more
quickly than for deciding 𝑇1 ∼ 𝑇2. These instances represent 93% of all
the instances tested.

The remaining 7% of instances are shown in Figure 4.14b, where the
decision 𝑇1 ≁ 𝑇′2 was obtained during the second phase of the algorithm,
i.e. the backtracking. We notice in this case that the decision is generally
slower to obtain than 𝑇1 ∼ 𝑇2, and particularly when 𝑝 = 124, where the
decision can be several orders of magnitude slower.

Enumeration Trees: from Trees to

Forests

From tree to forest enumeration 5

5.1 Enumeration problems . . . 59

Reverse search technique . . 60

Frequent pattern mining . . . 61

5.2 Tree enumeration 62

Ordered trees 63

Unordered trees 63

5.3 Forest enumeration 64

Irredundant forests 65

A detour through formal lan-

guages 66

Canonical FDAGs 67

A single tree is a forest of one.

Don Rittner

In this chapter, we focus on enumeration problems related to trees. First,
we present in Section 5.1 a generic method to enumerate structured
objects, called reverse search. In particular, this method is an effective
tool to solve an important data mining problem, named frequent pattern
mining. The goal is to find shared denominators between data in the form
of common substructures that appear with a certain minimum frequency
among the items in a database.

In a second step, we look at the results of the literature. Section 5.2 presents
the existing enumeration algorithms for unlabeled trees, ordered or not.
In particular, the concept of canonical representation of an unordered
tree is introduced, consistent with the idea of parsimonious enumeration.
Indeed, we want to enumerate each tree only once; but since the order
of the children does not matter in unordered trees, we have to make
sure that we do not obtain the same tree in duplicate, where nodes have
been swapped. The strategy is therefore to impose a systematic order on
the children of a node, i.e. to order the unordered trees via a systematic
method, and then to enumerate only the canonically ordered trees.

Finally, in Section 5.3, we introduce the problem we are interested in;
the enumeration of irredundant forests, i.e. forests without repetition.
The trees in these forests are unordered, and so is the forest itself. The
purpose of this section is therefore to construct a canonical representation
of these forests, in a similar way as trees seen previously. We show in
Theorem 5.2 that irredundant forests are in bĳection with a certain class
of DAGs – for which we construct a canonical form. Their enumeration
will then be discussed in upcoming Chapter 6.

Parts of this chapter are reproduced from [32] [32]: Ingels et al. (2022), ‘Enumeration of
Irredundant Forests’

, notably Section 5.3.

5.1 Enumeration problems

Enumeration problems are recurrent in many fields, notably combinato-
rial optimization and data mining. They involve the exhaustive listing of
a subset of the elements of a search set (possibly all of them), e.g. graphs,
trees or vertices of a simplex. Given the possibly high combinatorial
nature of these elements, it is essential to adopt clever exploration strate-
gies as opposed to brute-force enumeration, typically to avoid areas of
the search set not belonging to the objective subset. Another extremely
important point is to perform parsimonious enumeration, in the sense
that each element of the objective subset is seen only once.

60 5 From tree to forest enumeration

One proven way of proceeding is to provide the search set with an
enumeration tree structure; starting from the root, the branches of the
tree are explored recursively, eliminating those that do not address the
problem, and visiting each element only once. Based on this principle,
we can notably mention the well-known “branch and bound” method in
combinatorial optimization [76]

[76]: Land et al. (2010), ‘An automatic
method for solving discrete programming
problems’ and the gSpan algorithm for frequent

subgraph mining in data mining [77][77]: Yan et al. (2002), ‘gspan: Graph-based
substructure pattern mining’

. Another of these methods is the
so-called reverse search technique, which requires that the search set
has a partial order structure, and which has solved a large number of
enumeration problems since its introduction [28][28]: Avis et al. (1996), ‘Reverse search for

enumeration’
until recently [78]

[78]: Yamazaki et al. (2020), ‘Enumeration
of nonisomorphic interval graphs and
nonisomorphic permutation graphs’

.

Reverse search technique

In this thesis, we restrict ourselves to reverse search methods. While
first introduced by Avis and Fukuda [28], the formalism adopted here is
derived from more recent work [79][79]: Nowozin (2009), ‘Learning with

structured data: applications to computer
vision.’

.

Let (S, ⊆) be a partially ordered set, with a unique least element ∅ ∈ S,
such that ∀𝑠 ∈ S, ∅ ⊆ 𝑠. Let 𝑔 : S → {⊤,⊥} be a property, satisfying
anti-monotonicity

∀𝑠, 𝑡 ∈ S : (𝑠 ⊆ 𝑡) ∧ 𝑔(𝑡) =⇒ 𝑔(𝑠). (5.1)

The enumeration problem for the property 𝑔 is the problem of listing all
elements of 𝐸S(𝑔) = {𝑠 ∈ S : 𝑔(𝑠) = ⊤}. An enumeration algorithm is an
algorithm that returns 𝐸S(𝑔).

The reverse search technique relies on inverting a reduction rule, defined
as follows.

Definition 5.1 𝑓 : S \ ∅ → S is a reduction rule if and only if

▶ ∀𝑠 ∈ S \ ∅, 𝑓 (𝑠) ⊆ 𝑠 and ∄𝑢 ∈ S \ {𝑠, 𝑓 (𝑠)}, (𝑓 (𝑠) ⊆ 𝑢) ∧ (𝑢 ⊆ 𝑠);
▶ ∀𝑠 ∈ S \ ∅, ∃𝑘 ∈ N∗ , 𝑓 𝑘(𝑠) = ∅.

In other words, 𝑓 (𝑠) reduces 𝑠 in a minimal way – by the first property –
and reaches the “smallest” element of S, ∅, in a finite number of steps.
Then, the expansion rule is defined as 𝑓 −1(𝑡) = {𝑠 ∈ S : 𝑓 (𝑠) = 𝑡}. 𝑓
defines an enumeration tree rooted in ∅, and repeated calls to 𝑓 −1 can
therefore enumerate all the elements of S.

The reverse search algorithm is shown in Algorithm 12. 𝐸S(𝑔) can be
obtained from the call of ReverseSearch((S, ⊆), 𝑓 −1 , 𝑔, ∅). As 𝑔 is anti-
monotone, if 𝑔(𝑠) = ⊥, then all elements 𝑠 ⊆ 𝑡 also have 𝑔(𝑡) = ⊥, and
thefore pruning the enumeration tree in 𝑠 does not miss any element of
𝐸S(𝑔).

Algorithm 12: ReverseSearch
Input: (S, ⊆), 𝑓 −1, 𝑔, 𝑠0 ∈ S – such

that 𝑔(𝑠0) = ⊤
1 output 𝑠0
2 for 𝑡 ∈ {𝑠 ∈ 𝑓 −1(𝑠0)|𝑔(𝑠) = ⊤} do

3 ReverseSearch((S, ⊆), 𝑓 −1 , 𝑔, 𝑡)

When successfully designed, a reverse search technique should yield
polynomial output delay [28, 80][80]: Johnson et al. (1988), ‘On generating

all maximal independent sets’
[28]: Avis et al. (1996), ‘Reverse search for
enumeration’

, i.e., the time between the output of one
element and the next is bounded by a polynomial function in the size of
the input.

Remark 5.1 It would have been possible to define directly the set S

5.1 Enumeration problems 61

123

213

231

321

312

132

(a)

123

213

231

321

312

132

(b)

Figure 5.1: An illustration of the reverse
search method on permutations. (a) de-
picts the relations between permutations
with 𝑛 = 3; (b) shows the enumeration
tree.

as the set of elements verifying the property 𝑔. Separating the two
induces that the reduction rule 𝑓 formally depends only on S, and
not on 𝑔. This allows, once 𝑓 is constructed once and for all, to filter
S according to various properties 𝑔 without much additional work –
provided they indeed verify Equation 5.1. In particular, this is useful in
the case where 𝑔 depends on a tunable parameter – as in the problem
introduced below.

Enumeration of permutations We now illustrate the reverse search
process on an example. Suppose we want to enumerate the permutations
of [[1, 𝑛]]. Note first that any permutation 𝜋 can be written as a 𝑛-digit
number25

25: If 𝑛 > 9, one must choose a suitable
base to represent the numbers.

; for example the number 321 is read as 𝜋(1) = 3, 𝜋(2) = 2 and
𝜋(3) = 1. We denote by 𝑁(𝜋) this number.

As permutations can be expressed as a composition of transpositions (i.e.
a swap of two elements), we can define the following order relation on
permutations: 𝜋 ⊂ 𝜋′ ⇐⇒ 𝑁(𝜋) < 𝑁(𝜋′), and 𝜋,𝜋′ only differ by a
transposition.

Partially ordered sets are traditionnally represented by Hasse diagrams
[81, 82]

[81]: Di Battista et al. (1988), ‘Algorithms
for plane representations of acyclic
digraphs’
[82]: Freese (2004), ‘Automated lattice
drawing’

, i.e. DAGs where an arc 𝑥 → 𝑦 reflects 𝑦 ⊂ 𝑥 – see Figure 5.1a for
𝑛 = 3.

Given a permutation 𝜋 = 𝑝1 · · · 𝑝𝑛 , we look for the first index 𝑖 such
that 𝑝𝑖 > 𝑝𝑖+1; we construct 𝑓 (𝜋) by swapping 𝑝𝑖 and 𝑝𝑖+1; this is our
reduction rule [83]

[83]: Yamanaka (2016), ‘Permutation
Enumeration’

. We briefly confirm that it meets the requirements of
Definition 5.1. Naturally, 𝑓 (𝜋) ⊂ 𝜋. Since two permutations are related if
they differ only by one transposition, we can not find a third permutation
𝜋′ such that 𝑓 (𝜋) ⊂ 𝜋′ ⊂ 𝜋. Then, since 𝑓 (𝜋) < 𝜋 by construction, a
finite number of swaps allows to reach the identity permutation – the
root of the enumeration. The enumeration tree obtained is presented, in
the case 𝑛 = 3, on Figure 5.1b.

The reduction rule still needs to be inversed to complete the reverse
search scheme. The main difficulty is to find the right pairs of indices to
swap (for example, we can not reconstruct 321 from 123). We refer the
reader to [83] for complete details.

It is important to note that the main issue with reverse search methods is
to find a reduction rule that is “properly” invertible – in other words, the
construction of the expansion rule is a key factor of the technique.

Frequent pattern mining

With the ever-increasing accumulation of data, especially structured
data, being able to extract information efficiently is a real challenge.
The frequent pattern mining problem consists in finding patterns (typically,
substructures for structured data) that appear with a certain minimum
frequency in the items of a database.

A typical example might be the design of new drugs, where molecules
are seen as graphs, with each vertex corresponding to an atom. The
expectation is that molecules with similar behavior to treat certain
diseases will be made up of similar chemical compounds. Therefore, it
becomes crucial to identify these common chemical compounds [84] [84]: Deshpande et al. (2005), ‘Mining

Chemical Compounds’
.

62 5 From tree to forest enumeration

26: Note that both the elements of 𝒳 and
the substructures investigated belong to
the same space S. Think of graphs and sub-
graphs, strings and substrings, etc. There
is a kind of recursivity in the considered
objects.

The gSpan algorithm, dedicated to frequent subgraph mining, is notably
applied to chemical data in the original paper [77][77]: Yan et al. (2002), ‘gspan: Graph-based

substructure pattern mining’
– and uses a reverse

search approach.

Formally, the frequent pattern mining problem can be formulated as
follows: from a dataset𝒳 = {𝑠1 , . . . , 𝑠𝑛}with 𝑠𝑖 ∈ S, and a fixed threshold
𝜎, find all elements26 𝑠 ∈ S that satisfy freq(𝑠,𝒳) ≥ 𝜎, where freq(𝑠,𝒳)
is a function that counts the frequency of appearance of 𝑠 in the dataset
𝑋. Typically,

freq(𝑠,𝒳) = 1
𝑛

𝑛∑
𝑖=1

1𝑠⊆𝑠𝑖 . (5.2)

Another option may be to consider the multiplicity of each substructure,
replacing 1𝑠⊆𝑠𝑖 by N𝑠(𝑠𝑖), where N𝑠(𝑡) counts how many times 𝑠 appears
in 𝑡.

One way to address frequent pattern mining is precisely based on a
reverse search approach. Indeed, if we already have a way to enumerate
the elements of S, it is sufficient to filter the enumeration according
to the following property 𝑔(𝑠,𝒳 , 𝜎) = (freq(𝑠,𝒳) ≥ 𝜎), which is anti-
monotone by virtue of the following lemma – the proof can be found in
[79][79]: Nowozin (2009), ‘Learning with

structured data: applications to computer
vision.’

.

Lemma 5.1 ∀𝑠, 𝑡 ∈ S, 𝑠 ⊆ 𝑡 =⇒ freq(𝑠,𝒳) ≥ freq(𝑡 ,𝒳).

We emphasize here that each possible definition of “𝑠 appears in 𝑋”
leads to a different data mining problem. The choice of this definition is
therefore of prime importance. In particular, this choice should induce a
way of calculating freq(𝑠,𝒳) that reflects the specificity of the reduction
rule 𝑓 , so that {𝑠 ∈ 𝑓 −1(𝑠0) : 𝑔(𝑠) = ⊤} can be constructed directly,
instead of first generating 𝑓 −1(𝑠0) and then filtering according to the
value of 𝑔. Indeed, if 𝑔 is too restrictive, and 𝑓 −1(𝑠0) too large, one
would have to enumerate objects that are not relevant to the enumeration
problem, which is not desirable.

We showed that the problem of frequent pattern mining can be solved
as soon as we dispose of a reverse search enumeration method of the
patterns of interest. We are now interested in specific cases; and we start
with trees.

5.2 Tree enumeration

This section has a twofold interest: first, it presents existing results in
the literature concerning the enumeration of unlabeled trees, ordered or
not. Then, through these examples, it introduces a number of practical
considerations about the design of reverse search algorithms, which will
be exploited to design our forest enumeration algorithm – see Section 5.3
and Chapter 6.

5.2 Tree enumeration 63

𝑇 𝑇1 𝑇2 𝑇3

Figure 5.2: A tree 𝑇 (left) and its 3 succes-
sors 𝑇1, 𝑇2 and 𝑇3 obtained via the expan-
sion rule for ordered trees. The rightmost
paths are showed in red; and the new
nodes in red as well.

Figure 5.3: Two different representations
of the same unordered tree. There are
as many as possible permutations of
(, ,), i.e. 6.

27: Not to be mistaken with the number
of isomorphisms which involves the per-
mutations of sibling nodes with the same
equivalence class; see On the number of
tree isomorphisms (p. 25).

𝑇
0

1

2
2

3

2

3 3

2

1

𝑇̂
0

1

2

3 3

2

3
2 2

1

Figure 5.4: A tree 𝑇 (left) and its
left-heavy embedding 𝑇̂ (right). Depths
are indicated besides each nodes. We
have 𝐿(𝑇) = (0, 1, 2, 2, 3, 2, 3, 3, 2, 1) and
𝐿(𝑇̂) = (0, 1, 2, 3, 3, 2, 3, 2, 2, 1).

28: With 𝑎1 · · · 𝑎𝑘 >lex. 𝑏1 · · · 𝑏𝑘 if and
only if either 𝑎1 > 𝑏1 or 𝑎1 = 𝑏1 and
𝑎2 · · · 𝑎𝑘 >lex. 𝑏2 · · · 𝑏𝑘 . See also A detour
through formal languages (p. 66).

Ordered trees

The enumeration of ordered trees has been proposed in [29]
[29]: Nakano (2002), ‘Efficient generation
of plane trees’, where they

are referred to as plane trees. The reverse search procedure they use is
defined as follows.

Given an ordered tree 𝑇 and a node 𝑣 ∈ 𝑇, they call rightmost child

the last element of 𝒞(𝑣). The rightmost path of 𝑇, denoted 𝑅𝑃(𝑇), is the
sequence starting with ℛ(𝑇), its rightmost child, their rightmost child,
and recursively until a leaf is reached. The reduction rule 𝑓 for ordered
trees is such that 𝑓 (𝑇) is the tree 𝑇 deprived from the leaf of 𝑅𝑃(𝑇).

The expansion rule 𝑓 −1(𝑇) constructs all trees such that, if the last element
from their rightmost path is removed, we get 𝑇. These trees are exactly
those obtained by adding a node as the rightmost child of each of the
nodes composing 𝑅𝑃(𝑇). An example is shown in Figure 5.2.

On the enumeration of ordered trees, let us also mention this recent work
[85] [85]: Parque et al. (2021), ‘An Efficient

Scheme for the Generation of Ordered
Trees in Constant Amortized Time’

, which does not use a reverse search approach.

Unordered trees

As can be seen in Figure 5.3, a single unordered tree can have several
representations. The additional difficulty that arises when going from
ordered to unordered is exactly this: how to avoid enumerating the same
tree under different representations? Considering that the number of
representations is expressed as a product of factorials (since permuta-
tions of sibling nodes with different equivalence class are involved27),
addressing this issue is critical.

This question has been answered in [30]

[30]: Nakano et al. (2003), ‘Efficient
generation of rooted trees’

, where the idea is to define the
so-called canonical form of an unordered tree – i.e. a systematic way of
representating trees – and then to enumerate only canonical trees. Note
that since the set we aim to enumerate is that of canonical trees, it is
imperative that the reduction rule (and thus, the expansion rule) operates
on canonical trees. In particular, special care must be taken to ensure that
a reduced (or expanded) tree is still canonical after operation. Below is
the method used in [30].

Given a tree𝑇, number its nodes 𝑣1 , . . . , 𝑣𝑛 by depth-first search. The depth

sequence of𝑇 is defined as the sequence𝐿(𝑇) = (depth(𝑣1), . . . , depth(𝑣𝑛)).
Given two trees 𝑇1 and 𝑇2, the depth sequence 𝐿(𝑇1) is said to be heavier

than 𝐿(𝑇2) if and only if 𝐿(𝑇1) >lex. 𝐿(𝑇2), where >lex. is the lexicographic
order28. The left-heavy embedding of 𝑇 is the tree 𝑇̂ such that 𝑇 ≃ 𝑇̂, and
𝐿(𝑇̂) is the heaviest depth sequence among all trees isomorphic to 𝑇. An
example is provided in Figure 5.4.

The canonical form of a tree𝑇 is defined in [30] as its left-heavy embedding
𝑇̂. Remember that the interest of this form is to fix the representation; only
the canonical trees are then enumerated. The reduction rule employed is
the same as the one previously used for ordered trees in [29]

[29]: Nakano (2002), ‘Efficient generation
of plane trees’

: remove the
leaf from the rightmost path of 𝑇̂. Removing this leaf implies that the
depth sequence of the new tree 𝑓 (𝑇̂) is the same as 𝑇̂, deprived of its last

element. Since 𝐿(𝑇̂) is maximal, so is 𝐿(𝑓 (𝑇̂)); therefore 𝑓̂ (𝑇̂) = 𝑓 (𝑇̂) and
the resulting tree is still canonical.

64 5 From tree to forest enumeration

On the other hand, and without going into details, the expansion rule
differs from that of ordered trees. If we add a node along the rightmost
path, not all choices generate a tree maximizing its depth sequence –
and thus some are not canonical. This issue is managed in [30], and
the final algorithm they propose yields polynomial delay [80][80]: Johnson et al. (1988), ‘On generating

all maximal independent sets’
. Precisely,

each element is enumerated in 𝒪(1) time, making the enumeration
very efficient. Finally, it should be noted that since these algorithms
explicitly build their enumeration tree, each element is only enumerated
incrementally, i.e. the algorithm does not output entire trees but only the
difference from the previous tree.

The algorithm for enumerating unordered trees is notably reused in [27][27]: Asai et al. (2003), ‘Discovering
frequent substructures in large unordered
trees’

to address the problem of frequent pattern mining on labeled unordered
trees – where tree isomorphisms require equality of the labels.

5.3 Forest enumeration

The enumeration of unordered trees was discussed in the previous
section. On the other hand, the DAG compression presented in Section
2.3 can be seen as a method for enumerating subtrees. Our ambition
here is to take these two problems of enumeration – trees and subtrees
– to a higher order, i.e. to enumerate sets of trees instead of singletons –
forests.

On the other hand, forests, as introduced in Definition 2.2, can have
repetitions – it is possible for one tree to be a subtree of another (this
includes being a copy of another tree). In a parsimonious enumeration
approach, this is problematic. This is also an issue in the context of
frequent pattern mining: if one looks at the frequency of appearance of a
given subtree (assumed to belong to a forest of subtrees), one does not
want to see this subtree appearing several times.

This is why we restrict our enumeration to irredundant forests, i.e. forests
that contains no repetition, in the sense that no tree is a subtree of another.
This condition is not restrictive since one can always introduce repetition
afterwards.

We are therefore interested in the problem of enumerating irredundant
forests of unordered trees, and then, given a tree or forest, to enumerate
all its “subforests” – as forests of subtrees. The latter has already been
discussed in the literature, but without consideration on isomorphism
[86][86]: Schwikowski et al. (2002), ‘On

enumerating all minimal solutions of
feedback problems’

. We emphasize that we aim to enumerate these various items – forests
and subforests – up to isomorphism.

Such an ambition immediately raises a number of obstacles. First of all,
the trees are indeed unordered, but so are the sets of trees. For the former
the literature has introduced the notion of the canonical form of a tree,
as seen previously. The enumeration therefore focuses only on these
canonical trees. Unfortunately, if it is possible to order a set of vertices,
there is no total order on the set of trees, to the best of our knowledge.
In addition, the condition of non-repetition filters the set of forests in a
non-trivial way, making, a priori, the enumeration problem trickier.

In the following, we formally introduce the problem and the measures
adopted to address these difficulties.

5.3 Forest enumeration 65

𝑇1 𝑇2 𝑇3

𝐹 = {𝑇1 , 𝑇2 , 𝑇3}

2 3

2

ℜ(𝐹)

Figure 5.5: An unordered irredundant for-
est 𝐹 (left) and its DAG compression (right).
Nodes are colored according to their class
of equivalence. The roots of the DAG (in-
dicated by red arrows) correspond exactly
to the roots of the trees in 𝐹. For the sake
of clarity, arcs of multiplicity greater than
one are drawn only once and their multi-
plicity is written next to the arc.

Irredundant forests

We start by defining irredundant forests.

Definition 5.2 A set {𝑇1 , . . . , 𝑇𝑛} of trees is an irredundant forest if and

only if

∀𝑖 ≠ 𝑗 , 𝑇𝑖 ∉ 𝒮(𝑇𝑗). (5.3)

In other words, no tree in the forest can be a subtree of another (a fortiori,
no two trees can be identical either). We denote by ℱ the set of all
irredundant forests.

Our goal is to provide a reverse search method that outputs ℱ . As
already stated, this goal raises two major difficulties: firstly, the twofold
unordered nature of forests (the set of trees and the trees themselves),
and secondly, the non-trivial condition of non-repetition. Concerning the
latter, we already know a method to eliminate repetitions in a tree or a
forest: DAG reduction. By resorting to this technique, we can handle the
former as well.

We saw in Section 2.4 that we could compress a forest into a DAG without
loss by placing all the trees of the forest under an artificial root. Actually,
for irredundant forests, we do not require this artificial root and instead
proceed as follows.

Let 𝐹 = {𝑇1 , . . . , 𝑇𝑛} be an irredundant forest. We construct its DAG
compression ℜ(𝐹) by using a simple adaptation of Algorithm 3: on Line 4,
replaceℋ(𝑇) by max𝑖ℋ(𝑇𝑖); and on Line 5, 𝑣 ∈ 𝑇ℎ by 𝑣 ∈ ∪𝑖𝑇ℎ𝑖 , with the
convention that 𝑇ℎ = ∅ if ℎ > ℋ(𝑇). DAG compression of irredundant
forests is illustrated on Figure 5.5.

If ever 𝐹 was not an irredundant forest, say if for example 𝑇1 ∈ 𝒮(𝑇2),
then ℜ(𝑇1) would be a subDAG of ℜ(𝑇2); and therefore the number of
roots in ℜ(𝐹)would be strictly less than #𝐹. Since such a situation can not
occur, there are exactly as many roots in ℜ(𝐹) as there are elements in 𝐹:
no information is lost. In other words, 𝐹 can be reconstructed from ℜ(𝐹)
and DAG compression is also lossless in this case. Since 𝐷 compresses
several trees, 𝐷 has several roots, and the notation ℛ(𝐷) therefore refers
to the set of roots of 𝐷.

In the sequel, DAGs compressing irredundant forests are called FDAGs,
to distinguish them from general directed acyclic graphs. Since DAG com-
pression is lossless, and since an irredundant forest can be reconstructed
from its DAG reduction, we have the following result.

Theorem 5.2 There is a bĳection between the set of FDAGs and the set of

irredundant forests.

Therefore, the problem of enumerating irredundant forests is equivalent
to the problem of enumerating FDAGs. This compression of irredundant
forests into FDAGs has the merit of transforming set of trees into unique
objects, which makes it possible, if able to design a canonical representa-
tion – like the trees in [27, 30]

[30]: Nakano et al. (2003), ‘Efficient
generation of rooted trees’
[27]: Asai et al. (2003), ‘Discovering
frequent substructures in large unordered
trees’

, to get rid of the twofold unordered nature
of forests, as claimed earlier. Indeed, any ordering of the vertices of the

66 5 From tree to forest enumeration

DAG induces an order on the roots of the DAG, and therefore on the
elements of the forest, as well on the vertices of the trees themselves.

The sequel of this chapter is dedicated to defining such canonical repre-
sentation. But before getting there, we need to introduce some results on
formal languages which will be necessary for the sequel of this chapter
and Chapter 6.

A detour through formal languages

Let A be a totally ordered finite set, called alphabet, whose elements are
called letters. A word is a finite sequence of letters of A. The length of
a word 𝑤 is equal to its number of letters and is denoted by #𝑤. There
is a unique word with no letter called the empty word and denoted by
𝜖. The set of all words is denoted by A∗. Words can be concatenated to
create a new word whose length is the sum of the lengths of the original
words; 𝜖 is the neutral element of this concatenation operation.

The lexicographic order over A∗, denoted by <lex. is defined as follows.
Let 𝑤1 = 𝑎0 · · · 𝑎𝑝 and 𝑤2 = 𝑏0 · · · 𝑏𝑞 be two words, with 𝑎𝑖 , 𝑏 𝑗 ∈ A. If
#𝑤1 = #𝑤2, then 𝑤1 <lex. 𝑤2 if and only if ∃𝑘 ∈ [[0, 𝑝]], 𝑎𝑖 = 𝑏𝑖 ∀𝑖 < 𝑘

and 𝑎𝑘 < 𝑏𝑘 . Otherwise, let 𝑚 = min(𝑝, 𝑞); 𝑤1 <lex. 𝑤2 if and only if
either (i) 𝑎0 · · · 𝑎𝑚 <lex. 𝑏0 · · · 𝑏𝑚 or (ii) 𝑎0 · · · 𝑎𝑚 =lex. 𝑏0 · · · 𝑏𝑚 and 𝑚 < 𝑞

– that is, 𝑝 < 𝑞. Note that, by convention, 𝜖 <lex. 𝑤 for any word 𝑤.

Let 𝑤 ∈ A∗. We define the suffix-cut operator 𝑆𝐶(𝑤), which removes the
last letter of 𝑤:

𝑆𝐶(𝑤) =
{
𝑤′ if 𝑤 = 𝑤′𝑎 with 𝑎 ∈ A and 𝑤′ ∈ A∗ ,

𝜖 otherwise.
(5.4)

A language is a set of words satisfying some construction rules. We
introduce hereafter two languages that will be useful in the sequel of this
chapter and the next.

Definition 5.3 The language of decreasing words is defined as

Λ =
{
𝑤 = 𝑎0 · · · 𝑎𝑚 ∈ A∗ : 𝑎𝑖 ≥lex. 𝑎𝑖+1 ∀𝑖 ∈ [[0, 𝑚 − 1]]

}
.

Definition 5.4 Let 𝑤 ∈ Λ. The language of decreasing words bounded by 𝑤

is defined as

Λ𝑤 = {𝑤 ∈ Λ : 𝑤 >lex. 𝑤} .

Any word 𝑤 ∈ Λ𝑤
is said to be minimal if and only if 𝑤 ∈ Λ𝑤

but

𝑆𝐶(𝑤) ∉ Λ𝑤
.

As an example, if A = {0, 1, 2, 3}, then 𝑤 = 211 ∈ Λ, whereas 121 ∉ Λ.
In addition, Λ𝑤 contains words such as 31, 22, 21110, etc. 22 is a minimal
word of Λ𝑤 as 22 >lex. 211 but 𝑆𝐶(22) = 2 <lex. 211.

Our focus is now on the construction of the minimal words of Λ𝑤 . Let
𝑤 = 𝑎0 · · · 𝑎𝑝 and 𝑤 = 𝑏0 · · · 𝑏𝑞 ∈ Λ𝑤 . Taking into account that 𝑤 >lex. 𝑤

and that they both are decreasing words, there are only two possibles
cases

5.3 Forest enumeration 67

▶ 𝑤 and𝑤 share a common prefix 𝑎0 · · · 𝑎𝑚 – i.e.𝑤 = 𝑎0 · · · 𝑎𝑚𝑏𝑚+1 · · · 𝑏𝑞 ,
and the word 𝑎0 · · · 𝑎𝑚𝑏𝑚+1 is minimal by applying successive
suffix-cut operations;

▶ 𝑤 and 𝑤 do not share a common prefix. Necessarily 𝑏0 >lex. 𝑎0,
and then the word 𝑏0 is minimal by applying several suffix-cut
operations.

From the above, we deduce a method for constructing all minimal words
of Λ𝑤 . First, we partition A into disjoint – potentially empty – subsets:

A0 = {𝑎 ∈ A : 𝑎 >lex. 𝑎0},
A𝑖 = {𝑎 ∈ A : 𝑎𝑖−1 ≥lex. 𝑎 >lex. 𝑎𝑖} 1 ≤ 𝑖 ≤ 𝑝,

A𝑝+1 = {𝑎 ∈ A : 𝑎𝑝 ≥lex. 𝑎}.

It then follows that – empty A𝑖 ’s not being considered,

▶ ∀𝑏 ∈ A0, the word 𝑏 is minimal,
▶ ∀𝑏 ∈ A𝑖 with 𝑖 ∈ {1, . . . , 𝑝}, the word 𝑎0 · · · 𝑎𝑖−1𝑏 is minimal,
▶ ∀𝑏 ∈ A𝑝+1, the word 𝑤𝑏 is minimal.

As we partitioned A, we have proved the following proposition.

Proposition 5.3 The number of minimal words of Λ𝑤
is exactly #A.

As a follow-up of the example some lines ago, with A = {0, 1, 2, 3} and
𝑤 = 211, we apply the proposed method to find the minimal elements
of Λ𝑤 . We partition A into: A0 = {3}, A1 = {2}, A2 = ∅, A3 = {0, 1}. The
four minimal words are therefore 3, 22, 2111 and 2110.

Although the previous result is completely general, if we require that A =

{0, . . . , 𝑛}, then the partition method described above can be rewritten
into Algorithm 13. While this is not included in the pseudocode provided,
note that the algorithm should return an empty list if 𝑎0 > 𝑛, as in this
case there would be no minimal word to look for.

Algorithm 13: MinimalWords
Input: 𝑤 = 𝑎0 · · · 𝑎𝑝 , A = {0, . . . , 𝑛}
Output: All minimal words of Λ𝑤

1 Set 𝐿 to the empty list
2 if 𝑎0 < 𝑛 then

3 for 𝑖 ∈ {𝑎0 + 1, . . . , 𝑛} do

4 Add the word 𝑖 to 𝐿

5 for 𝑘 ∈ {1, . . . , 𝑝} do

6 if 𝑎𝑘 < 𝑎𝑘−1 then

7 for 𝑖 ∈ {𝑎𝑘 + 1, . . . , 𝑎𝑘−1} do

8 Add the word
𝑎0 · · · 𝑎𝑘−1 𝑖 to 𝐿

9 for 𝑖 ∈ {0, . . . , 𝑎𝑝} do

10 Add the word 𝑎0 · · · 𝑎𝑝 𝑖 to 𝐿

11 return 𝐿

Canonical FDAGs

FDAGs are unordered objects, like the trees they compress, and therefore
their enumeration requires to reflect this nature. In practice, finding a
systematic way to order them makes it possible to design a simpler reduc-
tion rule, as done for unordered trees [30], ignoring the combinatorics
of permutations. The purpose of this subsection is to provide a unique
way to order FDAGs. We show that such an order exists in Theorem 5.4,
unambiguously characterizing FDAGs. The approach chosen is based on
the notion of topological ordering.

As we shall see, the topological orderings of a DAG are generally not
unique. We will constrain them with carefully chosen conditions, so that
there is only one topological order verifying said conditions: this one
will induce our canonical form.

68 5 From tree to forest enumeration

𝜓1() 3 2 1 0
𝜓2() 3 2 0 1
𝜓3() 2 3 0 1
𝜓4() 2 3 1 0
𝜓5() 1 3 0 2

Figure 5.6: The DAG on the top admits five
topological orderings, which are shown in
the table.

(5.6)
𝒞𝜓1
() 11 10 ✓

𝒞𝜓2
() 00 10 ✗

𝒞𝜓3
() 00 10 ✓

𝒞𝜓4
() 11 10 ✗

Table 5.1: Application of Equation 5.6 to
the remaining topological orderings of
Figure 5.6 that satisfy Equation 5.5. As
𝒞𝜓() = 𝒞𝜓(), we only need to con-
sider vertices and . As 𝜓𝑖() >
𝜓𝑖() ⇐⇒ 𝑖 ∈ {1, 2}, the only orderings
that are kept are 𝜓1 and 𝜓3.

Topological ordering Let 𝐷 be a directed graph, where multiple arcs
are allowed. A topological ordering on 𝐷 is an ordering of the vertices
of 𝐷 such that for every arc 𝑢 → 𝑣, 𝑢 comes after 𝑣 in the ordering.
Formally, 𝜓 : 𝐷 → [[0, #𝐷 − 1]] is a topological ordering if and only if
𝜓 is bĳective and 𝜓(𝑢) > 𝜓(𝑣) for all 𝑢, 𝑣 ∈ 𝐷 such that there exists at
least one arc 𝑢 → 𝑣 in 𝐷. A well known result establishes that 𝐷 is a
DAG if and only if it admits a topological ordering [87][87]: Kahn (1962), ‘Topological sorting of

large networks’
. Nonetheless,

when a topological ordering exists, it is in general not unique – see Figure
5.6, which will serve as a followed example throughout this section. A
reverse search enumeration of topological orderings of a given DAG can
actually be found in [28]

[28]: Avis et al. (1996), ‘Reverse search for
enumeration’

.

Constrained topological ordering We aim to reduce the number of
possible topological orderings of a DAG by constraining them. Let 𝐷 be
a DAG and 𝜓 a topological ordering. Taking advantage of the vertical
hierarchy of DAG, our first constraint is

∀(𝑢, 𝑣) ∈ 𝐷2 ,ℋ(𝑢) > ℋ(𝑣) =⇒ 𝜓(𝑢) > 𝜓(𝑣). (5.5)

Applying Equation 5.5 to the topological orderings presented in Figure
5.6, 𝜓5 must be removed, as 𝜓5() > 𝜓5() butℋ() > ℋ().

For any vertex 𝑣, and any 𝑢 ∈ 𝒞(𝑣), by definition,ℋ(𝑣) > ℋ(𝑢). There-
fore, there can be no arcs between vertices at same height. Any arbitrary
order on them leads to a different topological ordering. The next constraint
we propose relies on the lexicographic order;

∀(𝑢, 𝑣) ∈ 𝐷2 , (ℋ(𝑢) = ℋ(𝑣)) ∧ (𝒞𝜓(𝑢) >lex. 𝒞𝜓(𝑣)) =⇒ 𝜓(𝑢) > 𝜓(𝑣), (5.6)

where 𝒞𝜓(𝑣) is the sequence (𝜓(𝑤) : 𝑤 ∈ 𝒞(𝑣)) sorted by decreasing
order with respect to the lexicographic order. In other words, 𝒞𝜓(𝑣) is a
decreasing word – see Definition 5.3 – on the alphabet A = [[0, #𝐷 − 1]].
Table 5.1 illustrates the behavior of Equation 5.6 on the followed example
of Figure 5.6.

The combination of those two constraints imposes uniqueness in all cases
except when there exist 𝑢, 𝑣 ∈ 𝐷2 such that 𝒞𝜓(𝑢) = 𝒞𝜓(𝑣) and 𝑢 ≠ 𝑣. It
should be clear that if we impose the condition of upcoming Equation
5.7, such a pathological case can not occur.

∀(𝑢, 𝑣) ∈ 𝐷2 , 𝑢 ≠ 𝑣 =⇒ 𝒞(𝑢) ≠ 𝒞(𝑣). (5.7)

Upcoming Theorem 5.4 establishes that a DAG compresses an irredundant
forest if and only if the topological order constrained by Equation 5.5 and
Equation 5.6 is unique. In other words, an unambiguous characterization
of FDAGs is exhibited.

Theorem 5.4 The following statements are equivalent:

(i) 𝐷 fulfills Equation 5.7,

(ii) there exists a unique topological ordering 𝜓 of 𝐷 that satisfies both

Equation 5.5 and Equation 5.6,

5.3 Forest enumeration 69

(iii) there exists a unique irredundant forest 𝐹 ∈ ℱ – cf. Equation 5.3 –

such that 𝐷 = ℜ(𝐹),

where ℜ is the DAG reduction operation defined in Section 2.3.

Proof. (𝑖) ⇐⇒ (𝑖𝑖) follows from the above discussion. (𝑖𝑖𝑖) =⇒ (𝑖)
follows from the definition ofℜ. Indeed, if there were two distinct vertices
(𝑢, 𝑣) ∈ 𝐷2 with the same multiset of children, they would have been
compressed as a unique vertex in the reduction. We now prove that
(𝑖) =⇒ (𝑖𝑖𝑖).

In the first place, if 𝐷 fulfills Equation 5.7, then 𝐷 must admit a unique
leaf, denoted by ℒ(𝐷). Indeed, if there were two leaves 𝑙1 and 𝑙2, we
would haveℋ(𝑙1) = ℋ(𝑙2) = 0 but also 𝒞(𝑙1) = 𝒞(𝑙2) = ∅, which would
violate Equation 5.7. Let 𝑟1 , . . . , 𝑟𝑘 be the vertices in𝐷 that have no parent.
We define 𝐷1 , . . . , 𝐷𝑘 as the subDAG rooted respectively in 𝑟1 , . . . , 𝑟𝑘 .
Then, we define 𝑇𝑖 = ℜ

−1(𝐷𝑖) and 𝐹 = {𝑇1 , . . . , 𝑇𝑘}. The 𝑇𝑖 ’s are well
defined as all vertices in 𝐷 (consequently in 𝐷𝑖) have a different multiset
of children, and therefore compress distinct subtrees – i.e. 𝐹 fulfills
Equation 5.3, therefore 𝐹 ∈ ℱ . Moreover, 𝐷 = ℜ(𝐹). F

In Chapter 6, we shall only consider FDAGs. Consequently, from Theorem
5.4, they admit a unique topological ordering 𝜓 satisfying both Equation
5.5 and Equation 5.6, called canonical ordering. Thus, for any FDAG 𝐷, the
associated canonical ordering 𝜓 will be implicitly defined. The vertices
will be numbered accordingly to their ordering, i.e 𝐷 = (𝑣0 , . . . , 𝑣𝑛)with
𝜓(𝑣𝑖) = 𝑖. Finally, as a consequence of Equation 5.5 and Equation 5.6,
note that 𝐷 can be partitioned in subsets of vertices with same height,
each of them containing only consecutive numbered vertices. Figure 5.7
provides an example of a FDAG and its canonical ordering.

2 3

2 𝑣
𝜓(𝑣) 0 1 2 3 4 5
𝒞𝜓(𝑣) 0 00 000 1 211

Figure 5.7: A FDAG 𝐷 (left) and its canon-
ical ordering 𝜓 (right). Vertices that are at
the same height are enclosed in the table
between the dashed lines.

Enumeration of forests 6

6.1 Exhaustive enumeration of

FDAGs 72

Expansion rules 72

Analysis of the rules 74

Enumeration tree 76

6.2 Growth of the tree 77

Asymptotic growth 78

Branching factor 78

Polynomial delay 81

6.3 Variations on the enumeration

tree 81

Extension to forests with repeti-

tions 81

Enumeration of self-nested

trees 83

Constraining the enumeration84

6.4 Enumeration of forests of sub-

trees 85

Forests of subtrees 85

Frequent subFDAG mining prob-

lem 87

I’m always astonished by a forest. It
makes me realise that the fantasy of
nature is much larger than my own
fantasy. I still have things to learn.

Gunter Grass

This chapter is dedicated to the problem of enumerating unordered
irredundant forests, as defined in Definition 5.2. By virtue of Theorem
5.2, it is equivalent to enumerate FDAGs, i.e. DAGs compressing (without
loss) irredundant forests. Furthermore, it has been shown that FDAGs
can be ordered in a canonical way, through Theorem 5.4.

Consequently, the majority of this chapter is dedicated to the enumeration
of canonical FDAGs. In particular, we set up a reverse search procedure –
presented in Section 5.1. As we have already seen, two points must be
taken into consideration when building a reverse search method:

▶ the difficulty lies mainly in the expansion rule (i.e. the inverse of
the reduction rule);

▶ the rules (reduction and expansion) must respect the canonicity of
the enumerated items.

With regard to the first point, we intend in this chapter to build the
reverse search procedure in reverse. That is, we construct three expansion
rules in Section 6.1, which, given a canonical FDAG, construct a new
FDAG (also canonical, according to the second point). We then show that
any canonical FDAG has a unique antecedent by one of these three rules.
This allows us to construct the reduction rule (which associates a unique
antecedent to a FDAG), and to complete the reverse search scheme.

This defines an enumeration tree of canonical FDAGs, whose properties
are studied in Section 6.2. We show that as the depth increases, the number
of nodes in the enumeration tree at this depth grows exponentially.
However, a given FDAG in the tree has a number of successors linear
in the size of the FDAG; these successors can be computed in linear or
quadratic time (depending on the chosen implementation). The growth
of the tree is therefore, from this point of view, controlled. This allows
us to conclude by showing that our algorithm runs with a polynomial
delay, which is expected from a reverse search method.

The sequel of the chapter is devoted, first, to exploring three variants
of our algorithm in Section 6.3, allowing in particular (i) to enumerate
classical forests, with redundancy; (ii) self-nested trees, a particular
class of trees where all subtrees of the same height are isomorphic; and
finally (iii) to constrain enumeration by imposing a certain number of
criteria (degree, height, maximum number of nodes) on the enumerated
FDAGs.

72 6 Enumeration of forests

2 3

2

𝑣

𝜓(𝑣) 0 1 2 3 4 5
𝒞𝜓(𝑣) 0 00 000 1 211

Figure 5.7: A FDAG 𝐷 (top) and its canon-
ical ordering 𝜓 (bottom).

Finally, a particular instance of the frequent pattern mining problem –
the frequent subforest mining problem is considered in Section 6.4, where
the notion of subforest is defined first, and an enumeration algorithm
is provided afterwards (largely based on the previous algorithm for
enumerating FDAGs).

Most of this chapter makes a consistent use of previously introduced
concepts, in particular those presented in A detour through formal
languages (p. 66) and Canonical FDAGs (p. 67). The entire chapter is
reproduced from [32][32]: Ingels et al. (2022), ‘Enumeration of

Irredundant Forests’
, with the notable exception of Enumeration of

self-nested trees (p. 83), which is new material.

6.1 Exhaustive enumeration of FDAGs

Reverse search techniques imply finding reduction rules, and then invert
them. Equally, we will define instead three expansion rules, whose
inverse will be reduction rules. An expansion rule takes a FDAG and
creates a new FDAG, that is “expanded” in the sense of having either
more vertices or more arcs. We show then that these rules preserve the
canonicity of FDAGs, and that any FDAG admits a unique antecedent by
one of the three rules in Proposition 6.3. The mapping of a FDAG to its
unique antecedent is exactly our reduction rule, whose inverse are the
three expansion rules. From this, we can derive an enumeration tree of
canonical FDAGs, as claimed.

Expansion rules

We begin with a preliminary definition.

Definition 6.1 Let 𝐷 be a FDAG, with 𝐷 = (𝑣0 , . . . , 𝑣𝑛). We define the

two following alphabets

A= = {𝜓(𝑣) : 𝑣 ∈ 𝐷,ℋ(𝑣) = ℋ(𝑣𝑛)} = {𝑝 + 1, . . . , 𝑛},
A< = {𝜓(𝑣) : 𝑣 ∈ 𝐷,ℋ(𝑣) < ℋ(𝑣𝑛)} = {0, . . . , 𝑝},

where 𝑝 ∈ [[0, 𝑛 − 1]], 𝜓(·) is the canonical ordering of 𝐷, andℋ(·) is the

height as defined in Equation 2.1.

In other words, A= contains the indices of all vertices that have the same
height as the vertex with the highest index according to 𝜓, and A< the
indices of all vertices that have an inferior height. The FDAG presented
in Figure 5.7 – reproduced here – will serve as a guideline example all
along this subsection. Here, we have A= = {4, 5} and A< = {0, 1, 2, 3}.

The three expansion rules are now introduced. Let 𝐷 = (𝑣0 , . . . , 𝑣𝑛).
Each of these rules is associated with an explicit symbol, which may be
used, when necessary, to designate the rule afterward. It is worth noting
that all of these rules will operate according to the vertex of highest index,
i.e. 𝑣𝑛 .

6.1 Exhaustive enumeration of FDAGs 73

Branching rule This rule adds an arc between 𝑣𝑛 and a vertex
below. The end vertex of the new arc is chosen such that 𝒞𝜓(𝑣𝑛) remains
a decreasing word. In Figure 6.1, is applied on our guideline
example.

Definition 6.2 Let 𝒞𝜓(𝑣𝑛) = 𝑎0 · · · 𝑎𝑚 . Choose 𝑎𝑚+1 ∈ A< such

that 𝑎𝑚 ≥lex. 𝑎𝑚+1 and add an arc between 𝜓−1(𝑎𝑚+1) and 𝑣𝑛 .

2 3

3 𝑣 . . .
𝜓(𝑣) . . . 5
𝒞𝜓(𝑣) . . . 2111

(a)

2 3

2 𝑣 . . .
𝜓(𝑣) . . . 5
𝒞𝜓(𝑣) . . . 2110

(b)

Figure 6.1: Branching rule applied to the
FDAG of Figure 5.7. As 𝒞𝜓(𝑣5) = 211,
the only letters 𝑎 we can pick from A< =

{0, 1, 2, 3}, satisfying 𝑎 ≤lex. 1, are 0 and 1.
The only two possibles outcomes of
are the words (a) 2111 and (b) 2110.

Elongation rule This rule adds a new vertex 𝑣𝑛+1 so thatℋ(𝑣𝑛+1) =
ℋ(𝑣𝑛)+1. Consequently, the alphabets change and become A= = {𝑛+1}
and A< = {0, . . . , 𝑛}. Note that after using this rule, it is not possible to
ever add a new vertex at heightℋ(𝑣𝑛). See Figure 6.2 for an illustration
of this rule on the guideline example.

Definition 6.3 Add a new vertex 𝑣𝑛+1 such that 𝒞𝜓(𝑣𝑛+1) = 𝑎0 ∈ A=.

2 3

2

𝑣 . . .
𝜓(𝑣) . . . 5 6
𝒞𝜓(𝑣) . . . 211 4

(a)

2 3

2

𝑣 . . .
𝜓(𝑣) . . . 5 6
𝒞𝜓(𝑣) . . . 211 5

(b)

Figure 6.2: Elongation rule applied to
the FDAG of Figure 5.7. As A= = {4, 5},
there are only two choices leading to (a)
𝒞𝜓(𝑣6) = 4 and (b) 𝒞𝜓(𝑣6) = 5. The
alphabets become A< = {0, . . . , 5} and
A= = {6}.

Widening rule This rule adds a new vertex 𝑣𝑛+1 at heightℋ(𝑣𝑛).
The vertex is added with children that respects the canonicity of the DAG,
that is, such that 𝒞𝜓(𝑣𝑛+1) >lex. 𝒞𝜓(𝑣𝑛) – as in Equation 5.6. In other
terms, denoting Λ< the language of decreasing words on alphabet A<,
and with𝑤 = 𝒞𝜓(𝑣𝑛), 𝒞𝜓(𝑣𝑛+1)must be chosen in Λ𝑤

< – see Definition 5.4.
However, this set is infinite, so we restrict 𝒞𝜓(𝑣𝑛+1) to be chosen among
the minimal words of Λ𝑤

< . It follows from the definition of suffix-cut
operator 𝑆𝐶(·) that, by inverting the said operator, the other words in Λ𝑤

<

can be obtained by performing repeated operations. Finally, this
new vertex is added to A=.

Definition 6.4 Add a new vertex 𝑣𝑛+1 such that

𝒞𝜓(𝑣𝑛+1) ∈
{
𝑤 ∈ Λ𝑤

< : 𝑤 is a minimal word of Λ𝑤
<

}
with 𝑤 = 𝒞𝜓(𝑣𝑛).

From Proposition 5.3 we know that such minimal words exist. We prove
in the upcoming lemma that, as claimed,ℋ(𝑣𝑛+1) = ℋ(𝑣𝑛).

74 6 Enumeration of forests

Lemma 6.1 Any element of Λ𝑤
< defines a new vertex 𝑣𝑛+1 so thatℋ(𝑣𝑛+1) =

ℋ(𝑣𝑛).

Proof. From the definition ofℋ(·), it suffices to prove that 𝑣𝑛+1 admits at
least one child at height ℎ = ℋ(𝑣𝑛) − 1. Let us denote 𝑏0 and 𝑎0 the first
letter of, respectively, 𝒞𝜓(𝑣𝑛+1) and 𝒞𝜓(𝑣𝑛). Denoting 𝑣 = 𝜓−1(𝑏0) and
𝑢 = 𝜓−1(𝑎0), we already know thatℋ(𝑢) = ℎ – as 𝜓 respects Equation
5.6 and 𝒞𝜓(𝑣𝑛) is a decreasing word. Therefore, as by construction
𝒞𝜓(𝑣𝑛+1) >lex. 𝒞𝜓(𝑣𝑛), either (i) 𝑏0 = 𝑎0 and therefore 𝑣 = 𝑢, or (ii)
𝑏0 >lex. 𝑎0. In the latter, as 𝜓 respects both Equation 5.5 and Equation
5.6,ℋ(𝑣) ≥ ℋ(𝑢) = ℎ. But, as 𝑏0 ∈ A<,ℋ(𝑣) < ℋ(𝑣𝑛) = ℎ + 1. In both
cases,ℋ(𝑣) = ℎ. F

Figure 6.3 illustrates the use of the widening rule on the followed example.
It should be noted that the possible outcomes of are obtained by using
Algorithm 13, applied to 𝑤 = 𝒞𝜓(𝑣𝑛) and 𝑝 – with A< = {0, . . . , 𝑝}.

Figure 6.3: We apply to the FDAG of
Figure 5.7. Here, A< = {0, 1, 2, 3} and𝑤 =

211. As seen in A detour through formal
languages (p. 66), the minimal words of
Λ𝑤< are 3, 22, 2111 and 2110. Therefore,
there are 4 ways to add a new vertex 𝑣6
via the widening rule, that are such that (a)
𝒞𝜓(𝑣6) = 3, (b) 𝒞𝜓(𝑣6) = 22, (c) 𝒞𝜓(𝑣6) =
2111 or (d) 𝒞𝜓(𝑣6) = 2110. Finally, we
update A= to be equal to {4, 5, 6}.

2 3

2 𝑣 . . .
𝜓(𝑣) . . . 5 6
𝒞𝜓(𝑣) . . . 211 3

(a)

2 3

2 2 𝑣 . . .
𝜓(𝑣) . . . 5 6
𝒞𝜓(𝑣) . . . 211 22

(b)

2 3

2 3 𝑣 . . .
𝜓(𝑣) . . . 5 6
𝒞𝜓(𝑣) . . . 211 2111

(c)

2 3

2 2 𝑣 . . .
𝜓(𝑣) . . . 5 6
𝒞𝜓(𝑣) . . . 211 2110

(d)

Analysis of the rules

Since our goal is to enumerate canonical FDAGs, it is required that the
expansion rules indeed construct canonical FDAGs. This is achieved by
virtue of the following proposition.

Proposition 6.2 The expansion rules preserve the canonicity property.

Proof. Let𝐷 = (𝑣0 , . . . , 𝑣𝑛) be a canonical FDAG. The proposition follows
naturally from the definitions:

Let 𝑎 be the letter added to 𝑤 = 𝒞𝜓(𝑣𝑛). As 𝑤𝑎 >lex. 𝑤 >lex.
𝒞𝜓(𝑣𝑛−1), the ordering is unchanged.
The new vertex 𝑣𝑛+1 is such thatℋ(𝑣𝑛+1) > ℋ(𝑣𝑛), so Equation
5.5 is still met.
The new vertex 𝑣𝑛+1 is chosen so that ℋ(𝑣𝑛+1) = ℋ(𝑣𝑛) and
𝒞𝜓(𝑣𝑛+1) >lex. 𝒞𝜓(𝑣𝑛), so Equation 5.6 is also still met.

Therefore, any FDAG obtained from 𝐷 is still a canonical FDAG. F

6.1 Exhaustive enumeration of FDAGs 75

From now on, since it is assured that the canonicity is preserved, we shall
use the term FDAG for “canonical FDAG” for the sake of simplicity.

Furthermore, since our goal is to provide the FDAGs space with an
enumeration tree, which will be explored via the expansion rules, it is
important that these expansion rules are “bĳective” in the following
sense: for any FDAG 𝐷, there exists a unique FDAG 𝐷′ such that 𝐷 is
obtained from 𝐷′ via one of the three rules , or .

Such 𝐷′ can be constructed via Algorithm 14 as shown in upcoming
Proposition 6.3. Conditional expressions applied to 𝐷 are used to deter-
mine which modification should be applied to construct 𝐷′. The gray
symbol (in the algorithm) next to these modifications indicates which
expansion rule allows to retrieve 𝐷 from 𝐷′.

Algorithm 14: Antecedent
Input: 𝐷 = (𝑣0 , . . . , 𝑣𝑛); 𝑤 = 𝒞𝜓(𝑣𝑛); 𝑤′ = 𝒞𝜓(𝑣𝑛−1)

1 if 𝑣𝑛 is the only vertex of heightℋ(𝑣𝑛) then

2 if #𝑤 = 1 then

3 Delete vertex 𝑣𝑛
4 else

5 𝑤 ← 𝑆𝐶(𝑤)
6 else

7 if 𝑤 is a minimal word of Λ𝑤′
< then

8 Delete vertex 𝑣𝑛
9 else

10 𝑤 ← 𝑆𝐶(𝑤)
/* 𝑆𝐶(·) is the suffix-cut operator defined in Equation 5.4. */

Proposition 6.3 Algorithm 14 applied to any FDAG constructs the unique

antecedent of this FDAG.

Proof. Let 𝐷 = (𝑣0 , . . . , 𝑣𝑛) be a FDAG. Let 𝑤 = 𝒞𝜓(𝑣𝑛) and 𝑤′ =

𝒞𝜓(𝑣𝑛−1). Two cases can occur: either (i) 𝑣𝑛 is the only vertex at height
ℋ(𝑣𝑛), or (ii) it is not.

(i) It is clear in this case that 𝐷 can not be obtained from any FDAG
via the rule – otherwise 𝑣𝑛 would not be alone at its height.
Concerning and , let us look at the number of children of
𝑣𝑛 .

▶ If 𝑣𝑛 admits only one child, it must come from an step,
since would imply that #𝑤 ≥ 2. Therefore, in this case,
𝐷 can be retrieved among the outcomes of rule applied to
𝐷′ = (𝑣0 , . . . , 𝑣𝑛−1).

▶ Otherwise, when #𝑤 > 1, 𝐷 can not come from an step,
and must therefore come from . Denoting 𝑣′𝑛 the vertex
with list of children 𝑆𝐶(𝑤) – see Equation 5.4, 𝐷 is one of the
outcomes of 𝐷′ = (𝑣0 , . . . , 𝑣𝑛−1 , 𝑣

′
𝑛) via .

(ii) following the same logic as (i), 𝐷 can not be obtained via . We
discriminate between rules and when comparing 𝑤 and
𝑤′. If 𝑤 is a minimal word of Λ𝑤′

< , then 𝐷 can not be obtained from
– this would break the canonical order. Therefore, in this

76 6 Enumeration of forests

case, 𝐷 is an outcome of rule applied to 𝐷′ = (𝑣0 , . . . , 𝑣𝑛−1).
Otherwise, if 𝑤 is not a minimal word, then it can not be obtained
from , and must come from a step, applied to 𝐷′ =
(𝑣0 , . . . , 𝑣𝑛−1 , 𝑣

′
𝑛)where 𝒞𝜓(𝑣′𝑛) = 𝑆𝐶(𝑤).

Whatever the case among those evoked, they correspond exactly to the
conditional expressions of the Algorithm 14, which therefore constructs
the correct antecedent of 𝐷, which is unique by virtue of the previous
discussion. F

Enumeration tree

In this subsection, we construct the enumeration tree of FDAGs derived
from the expansion rules. As aimed, their inverse is indeed a reduction
rule.

Theorem 6.4 Algorithm 14 is a reduction rule, as in Definition 5.1.

Proof. Let us denote 𝑓 (𝐷) the output of Algorithm 14 applied to a FDAG
𝐷. We need to prove that: (i) 𝑓 (𝐷) is a “maximal ” subgraph of 𝐷 and (ii)
for any 𝐷 ≠ 𝐷0, there exists an integer 𝑘 such that 𝑓 𝑘(𝐷) = 𝐷0, where
𝐷0 is the FDAG with one vertex and no arcs.

▶ Since Algorithm 14 deletes either one vertex and its leaving arcs,
or just one arc, 𝑓 (𝐷) is indeed a subgraph of 𝐷. Moreover, by the
construction of the expansion rules (and thus the reduction rule),
there is no FDAG 𝐷′ (different from 𝑓 (𝐷) and 𝐷) such that 𝑓 (𝐷) is
a subgraph of 𝐷′ and 𝐷′ a subgraph of 𝐷.

▶ The sequence of general terms 𝑓 𝑘(𝐷) is made of discrete objects
whose size is strictly decreasing, therefore the sequence is finite
and reaches 𝐷0.

F

The associated expansion rule is exactly, in light of Proposition 6.3, the
union of the three expansion rules , and . Since𝐷0, the DAG
with one vertex and no arcs, is a FDAG, by virtue of what precedes and
with Algorithm 12 – here with 𝑔(·) = ⊤, we just defined an enumeration
tree covering the whole set of FDAGs, whose root is 𝐷0. A fraction of this
enumeration tree is shown in Figure 6.4, illustrating the path from the
root 𝐷0 to the FDAG of Figure 5.7. Unexplored branches are ignored, but
are still indicated by their respective root.

6.2 Growth of the tree 77

2

2

2 2

3

2 3

2 3 4

2 4

2 3

2 3

2 3

2 3

2 3

2

2 3

2 3

2

2 3

2 3 2 3

2 3

2 3
2 3

2

2 3 2 3

2 3

2

2 3

2

2 3

2

2 3

2

2 3 2 3
2 3

2

2 3

2 3

2 3

2

2 3

2

2 3

2

Figure 6.4: The path (in bold) in the FDAGs enumeration tree leading to the FDAG of Figure 5.7. The unexplored branches are only displayed
by their root, which are shown partially transparent. The order of insertion of the vertices of each FDAG is always the same, and follows the
color code (in the order of insertion): , , , , , and . With respect to the canonical ordering, they are numbered 0 to 6 in the
same order.

6.2 Growth of the tree

In this section, we analyse the enumeration tree defined in Section 6.1.
We exhibit a bĳection – Theorem 6.5 – between FDAGs and a class
of combinatorial objects from the literature, allowing us to obtain an
asymptotic expansion of the growth of the tree. Moreover, we show that
any FDAG has a linear number of children in that tree in Theorem 6.7,
and that the complexity to construct those children is quadratic – see

78 6 Enumeration of forests

𝑘 #𝐸𝑘
0 1
1 1
2 3
3 12
4 61
5 380
6 2,815
7 24,213
8 237,348

Table 6.1: Number of FDAGs accessible
from 𝐷0 in 𝑘 steps in the enumeration
tree. These numbers were obtained nu-
merically via our implementation with
Python library treex.

29: OEIS Foundation Inc. (2022), The On-
Line Encyclopedia of Integer Sequences,
http://oeis.org/A158691.

Proposition 6.8. Finally, Theorem 6.9 states that our algorithm runs with
polynomial delay [80][80]: Johnson et al. (1988), ‘On generating

all maximal independent sets’
.

Asymptotic growth

In this subsection, we show that FDAGs are in bĳection with a set of
particular matrices, whose combinatorial properties are known and give
us access to an asymptotic expansion of the enumeration tree growth.

Let us denote 𝐸𝑘 the set of all FDAGs that are accessible from 𝐷0 in
exactly 𝑘 steps in the enumeration tree – with 𝐸0 = {𝐷0}; then Table 6.1
depicts the values of #𝐸𝑘 for the first nine values of 𝑘.

Actually, the terms of Table 6.1 coincide with the first terms of OEIS
sequence A15869129, which counts the number of row-Fishburn matrices

that are upper-triangular matrices with at least one nonzero entry in
each row. The size of such a matrix is equal to the sum of its entries.

Theorem 6.5 There exists a bĳection Φ between the set of FDAGs and the set

of row-Fishburn matrices, such that if 𝐷 is a FDAG and 𝑀 = Φ(𝐷), then

𝐷 ∈ 𝐸𝑘 ⇐⇒ size(𝑀) = 𝑘.

Proof. The proof lies in Appendix B. F

This connection is to our advantage since Fishburn matrices (in general)
are combinatorial objects widely explored in the literature as they are in
bĳection with many others – see [88]

[88]: Hwang et al. (2019), ‘Asymptotics
and statistics on Fishburn matrices and
their generalizations’

for a review. Notably, the asymptotic
expansion of the number of row-Fishburn matrices has been conjectured
first by Jelínek [89][89]: Jelínek (2012), ‘Counting general and

self-dual interval orders’
and then proved by Bringmann et al. [90]

[90]: Bringmann et al. (2014), ‘Asymptotics
for the number of row-Fishburn matrices’

.

Proposition 6.6 (Jelínek, Bringmann et al.) As 𝑘 →∞,

#𝐸𝑘 = 𝑘!
(

12
𝜋2

) 𝑘 (
𝛽 + 𝒪

(
1
𝑘

))
with 𝛽 =

6
√

2
𝜋2 𝑒

𝜋2/24 = 1.29706861206

Branching factor

Given the overall structure of FDAGs, it is no surprise that the enumeration
tree grows extremely fast. However, despite this combinatorial explosion,
we show in this subsection that the branching factor, i.e., the outdegree
of the nodes in the enumeration tree, is controlled. Actually, we prove
that any FDAG has a linear number of successors30

30: “successor” in the sense of “children
in the enumeration tree”. We make the
distinction to avoid confusion with the
children denoted by 𝒞(·).

in the enumeration
tree.

Theorem 6.7 Any FDAG𝐷 has Θ(#𝐷) successors in the FDAG enumeration

tree.

http://oeis.org/A158691

6.2 Growth of the tree 79

Proof. Let 𝐷 = (𝑣0 , . . . , 𝑣𝑛) be a FDAG. We denote 𝒞𝜓(𝑣𝑛) = 𝑎0 · · · 𝑎𝑚 .
Depending on the rule chosen:

𝑎𝑚+1 belongs to A< = {0, . . . , 𝑝}, so the maximum number of
successors is at most 𝑝 + 1, and at least 1, depending on the
condition 𝑎𝑚 ≥lex. 𝑎𝑚+1.
The child of the new vertex is taken from A= = {𝑝 + 1, . . . , 𝑛} so
the number of successors is exactly 𝑛 − 𝑝.
Following Proposition 5.3, the number of successors is exactly
#A< = 𝑝 + 1.

Combining everything, the number of successors is at least 𝑛 + 2 and at
most 𝑛 + 𝑝 + 2 ≤ 2𝑛 + 1 (as 𝑝 ≤ 𝑛 − 1, with equality for FDAGs obtained
just after using rule). F

0 10 20 30 40 50 60 70
Number of vertices

0

50

100

150

N
u

m
b

er
of

su
cc

es
so

rs

Figure 6.5: Numbers of successors of 1,000
random FDAGs in the enumeration tree,
according to their number of vertices. Or-
ange lines have equations 𝑦 = 𝑛 + 1 and
𝑦 = 2𝑛 − 1.

In the previous proof, we have shown that the number of successors of a
FDAG with 𝑛 vertices is between 𝑛 + 1 and 2𝑛 − 1. Figure 6.5 illustrates
that these boundaries are tight, on 1 000 randomly generated FDAGs. A
random FDAG is constructed as follows.

Definition 6.5 (Random FDAG) Let 𝑘 ≥ 0. Starting from 𝐷0 – the root,

construct iteratively 𝐷𝑖 as a successor of 𝐷𝑖−1 in the enumeration tree, picked

uniformly at random. We stop after 𝑘 steps, and keep 𝐷𝑘 .

In Figure 6.5, we generated 10 random FDAGs for each 𝑘 ∈ {1, . . . , 100}.

It is indeed a suitable property that any FDAG admits a linear number of
successors; but it would be of little use if the time required to compute
those successors is too important. We demonstrate in the following
proposition that the complexity is manageable. There are two possible
strategies: (i) one can keep the enumeration tree in memory, and store
on each node only the increment allowing to construct a FDAG from its
predecessor; or (ii) one can explicitly build the successors by copying the
starting FDAG, so that the tree can be forgotten. Depending on whether
one wants to build the tree itself or only the FDAGs that compose it, one
will choose either strategy.

Proposition 6.8 Computing the successors of any FDAG 𝐷 has complexity:

(i) 𝒪(#𝐷 deg(𝐷)) if the construction is incremental from 𝐷;

80 6 Enumeration of forests

(ii) 𝒪
(
(#𝐷 deg(𝐷))2

)
if the construction involves copying 𝐷.

Proof. Let𝐷 = (𝑣0 , . . . , 𝑣𝑛) be a FDAG with 𝑛+ 1 vertices, with 𝒞𝜓(𝑣𝑛) =
𝑎0 · · · 𝑎𝑚 , A< = {0, . . . , 𝑝} and A= = {𝑝 + 1, . . . , 𝑛}. Although the alpha-
bets A< and A= can be retrieved in linear time, it is more efficient to
maintain the pair (𝑛, 𝑝) during enumeration; how to update these indices
has already been presented in Expansion rules (p. 72), when introducing
each rule.

The explicit construction of the successors in case (𝑖𝑖) requires to copy the
vertices of 𝐷 and their children, leading to a complexity in the order of∑𝑛
𝑖=0(1+deg(𝑣𝑖)), which can be roughly bounded by (𝑛 + 1)(deg(𝐷) + 1).

Depending on the expansion rule, the complexity for computing the new
vertex or new arc varies:

The last letter of 𝒞𝜓(𝑣𝑛) determines the number of successors –
but it is no more than 𝑝 + 1. In case (𝑖), although we could just
store the information of the new letter, it is better to copy 𝒞𝜓(𝑣𝑛)
and add the new letter and store the result. Indeed, this allows
to always have the knowledge of 𝒞𝜓(𝑣𝑛) in the enumeration tree.
The complexity for case (𝑖) is therefore bounded by deg(𝑣𝑛)(𝑝+1);
whereas it is 𝑝 + 1 in case (𝑖𝑖) since 𝒞𝜓(𝑣𝑛) is already copied.
Each successor is obtained by picking one element of A= = {𝑝 +
1, . . . , 𝑛}. The complexity is exactly (up to a constant) 𝑛 − 𝑝 in
both cases.
The successors are obtained by Algorithm 13, involving copying
subwords of 𝒞𝜓(𝑣𝑛) – the overall complexity is bounded by (𝑝 +
1)deg(𝑣𝑛).

The overall complexity is therefore of the order of 2(𝑝+1)deg(𝑣𝑛)+𝑛− 𝑝
in case (𝑖) and of (𝑛 + 1)(deg(𝐷) + 1) [(𝑝 + 1)(deg(𝑣𝑛) + 1) + 𝑛 − 𝑝] in
case (𝑖𝑖). Using rough bounds, with deg(𝑣𝑛) ≤ deg(𝐷) and 𝑝 ≤ 𝑛, we
end up with the stated complexity. F

Figure 6.6: Total computation time (in
blue) and amortized time (in red) for the
explicit construction of the successors of
the 1,000 random FDAGs of Figure 6.5, ac-
cording to their number of vertices. The
computations have been made on a Mac-
Book Pro (2014) with an Intel Core i7 2.8
GHz processor and 16 GB of RAM.

0 10 20 30 40 50 60 70 80
Number of vertices

0

10

20

30

C
om

p
u

ta
ti

on
ti

m
e

of
su

cc
es

so
rs

(s
)

0

2

4

6

8

10

A
m

or
ti

ze
d

ti
m

e
(1

0−
4

s)

Whereas Figure 6.5 shows the number of successors of 1,000 random
FDAGs, we measured the time needed to compute explicitly – i.e., implying
copy, which is case (𝑖𝑖) in the previous Proposition 6.8 – these successors.
The results are depicted in Figure 6.6, where we plotted (in blue) the
total time 𝑡𝐷 for computing all successors of a given FDAG 𝐷, and (in
red) what we call amortized time, i.e. 𝑡𝐷/(#𝐷 deg(𝐷))2. As expected from

6.3 Variations on the enumeration tree 81

Proposition 6.8, one can observe an asymptotic quadratic behaviour for
the total time (in blue); concerning amortized time (in red), despite some
variability, the upper bound seems to be constant.

Polynomial delay

Let 𝐸≤𝐾+1 =
⋃
𝑘≤𝐾+1 𝐸𝑘 be the set of all FDAGs reachable in at most 𝐾 + 1

steps from the root of the FDAG enumeration tree. In this subsection, we
show that the complexity for enumerating 𝐸≤𝐾+1 can be expressed as a
function of the cardinality of 𝐸≤𝐾 and has polynomial delay.

Theorem 6.9 Enumerating 𝐸≤𝐾+1 has complexity 𝒪(𝐾2#𝐸≤𝐾).

Proof. We adopt the configuration where we keep the enumeration tree
in memory and where each node contains the incremental information
to construct a FDAG from its predecessor.

We first observe the following: as 𝐷0, the root, has one vertex and no
arcs, and since the rules of expansion can only add one vertex and/or
increase the degree of the last vertex by one, for any 𝐷 ∈ 𝐸𝑘 , it follows
naturally that #𝐷 ≤ 𝑘 + 1 and deg(𝐷) ≤ 𝑘. It implies that the complexity
for generating the successors of a FDAG in 𝐸𝑘 is 𝒪(𝑘2), according to case
(𝑖) of Proposition 6.8.

Thus, enumerating all the elements of 𝐸𝑘+1 requires a complexity of
𝒪(𝑘2#𝐸𝑘). It follows that we have a complexity of 𝒪

(∑
𝑘≤𝐾 𝑘

2#𝐸𝑘
)

for
enumerating 𝐸≤𝐾+1. Since 𝑘 ≤ 𝐾 and

∑
𝑘≤𝐾 #𝐸𝐾 = #𝐸≤𝐾 , we end up with

the announced complexity. F

As such, our algorithm has a polynomial delay, which is desirable for
this kind of enumeration [80] [80]: Johnson et al. (1988), ‘On generating

all maximal independent sets’
.

6.3 Variations on the enumeration tree

In this section, three variants of the enumeration tree presented in Section
6.1 are introduced. First, we propose a way to enumerate forests in their
classical sense, i.e., where redundancies within the forest are accepted,
by adding an extra step following the previous enumeration. Then, a
very simple adaptation is proposed to restrict the enumeration to a very
specific class of trees, the self-nested trees. Finally, options to constrain the
enumeration tree – on maximum number of vertices, height or outdegree
– and making it finite are proposed.

Extension to forests with repetitions

The enumeration tree constructed in Section 6.1 only allows to enumerate,
in their compressed form, irredundant forests, where no tree can be a
subtree of (or equal to) another. In this subsection, we propose a method
to enumerate forests in the usual sense, without this non-redundancy
restriction.

82 6 Enumeration of forests

31: Note that this is different from the pres-
ence defined in Connection between a for-
est and its compressed form (p. 19), where
the presence counts how many nodes in
a tree or forest have a given equivalence
class.

Let 𝐹 be a forest in the classical sense, i.e., where some trees may be
identical to or subtrees of other trees. If we compute 𝐷 = ℜ(𝐹) – without
resorting to an artificial root, i.e. following the method described in
Irredundant forests (p. 65), all these redundancies will be lost: if a tree is
a subtree of another one, then it will be compressed with this subtree
as a same vertex in the DAG. This is why DAG compression of forests –
without artificial root – is lossless if and only if the forest is irredundant.

We can preserve the information lost by the compression if we keep, in
addition, a presence vector

31. Let us rewrite 𝐷 = (𝑣0 , . . . , 𝑣𝑛) according
to the canonical order. Each tree 𝑇 ∈ 𝐹 is associated with an index
𝑖 ∈ {0, . . . , 𝑛} such that 𝑇 = ℜ

−1(𝐷[𝑣𝑖]). The presence vector 𝜋𝐹 :
{0, . . . , 𝑛} → N is constructed such that 𝜋𝐹(𝑖) counts how many times
the tree ℜ

−1(𝐷[𝑣𝑖]) appears in 𝐹. Thus, the couple (𝐷,𝜋𝐹) completely
characterizes the forest 𝐹. To enumerate all (redundant) forests, it is
therefore sufficient to enumerate both all FDAGs (corresponding to
irredundant forests) and the presence vectors that may be associated
with them.

Let 𝐷 be an FDAG constructed in the FDAG enumeration tree. We define
𝜋𝐷 as the presence vector associated to the (irredundant) forest ℜ−1(𝐷).
This vector can be computed in a linear traversal of 𝐷, where the sources
of 𝐷 are assigned a value of 1 and the other vertices are assigned a value
of 0. Adding redundancies in a forest means incrementing the presence
vector, each +1 resulting in a new tree, whether it is equal to an existing
tree or a subtree of it.

Our strategy is to enumerate, from𝜋𝐷 , all presence vectors corresponding
to forests whose DAG reduction would be exactly 𝐷. To do so, we use
a reverse search structure, with the following expansion rule (𝐸). Let 𝑗
be the index of the last increment, initialized to 𝑗 = 0, and let 𝜋 be the
current presence vector.

Definition 6.6 (𝐸) Choose any index 𝑗′ ≥ 𝑗. Increase 𝜋(𝑗′) by one and set

𝑗 ← 𝑗′.

This rule allows to get any presence vector from 𝜋𝐷 in a unique way, i.e.,
each index must be increased to its desired final value before moving
to the next index. This defines an enumeration tree of presence vectors.
If we implement this tree in such a way that each node contains only
the new index 𝑗′, we obtain an algorithm that enumerates each presence
vector from its parent in constant time and space. The growth of this
(infinite) new enumeration tree is given by the following proposition.

Proposition 6.10 The number of redundant forests that can be constructed

in at most 𝑘 ≥ 1 steps from ℜ
−1(𝐷) – following expansion rule (𝐸) – is given

by

(𝑛+1+𝑘
𝑘

)
− 1.

Proof. We first notice that the expected number is exactly the same as the
number of presence vectors constructible in at most 𝑘 steps from 𝜋𝐷 . We
then notice that if the current node (in the presence vector enumeration
tree) has index 𝑗, then it has 𝑛 + 1 − 𝑗 successors by the expansion rule
(𝐸) of Definition 6.6. For instance, since the starting index is 0, for 𝑘 = 1,
we obtain the indices 0, . . . , 𝑛 in one copy each. We denote by 𝑛𝑝(𝑗) the

6.3 Variations on the enumeration tree 83

𝑇 ℜ(𝑇)

3
2

2

Figure 6.7: A self-nested tree 𝑇 (left) and
its DAG reduction ℜ(𝑇) (right). Nodes are
colored according to their class of equiva-
lence.

number of times the index 𝑗 appears in the nodes obtained in exactly 𝑝
steps from the origin. Thus, 𝑛1(𝑗) = 1 by the above. Each index 𝑗′ ≤ 𝑗

existing at step 𝑝 − 1 will induce a successor with index 𝑗 at step 𝑝, so
that 𝑛𝑝(𝑗) =

∑𝑗

𝑗′=0 𝑛𝑝−1(𝑗′).

We establish by induction on 𝑝 that 𝑛𝑝(𝑗) =
(𝑘−1+𝑗

𝑗

)
, using the so called

hockey-stick identity
∑𝑚
𝑟=0

(𝑛+𝑟
𝑟

)
=

(𝑛+1+𝑚
𝑚

)
[91] [91]: Jones (1994), ‘Generalized Hockey

Stick Identities and N-dimensional
Blockwalking’

. Since the number of
presence vectors that can be constructed in at most 𝑘 ≥ 1 steps from 𝜋𝐷
is given by

∑𝑘
𝑝=1

∑𝑛
𝑗=0 𝑛𝑝(𝑗), we obtain the expected result after applying

twice the hockey-stick identity. F

We can merge the enumeration tree of repetitions with the enumeration
tree of FDAGs, to form a single enumeration tree, which enumerates
forests in the classical sense (and in compressed form), as follows: the
nodes of the enumeration tree carry a couple (FDAG, presence vector),
and the available expansion rules are , , and (𝐸). However,
successors created with the last rule produce branches where it becomes
the only rule available. In other words, once one chooses repetition, one
can not modify any longer the topology of the FDAG – this is to ensure
that each forest can only be enumerated in a unique way.

Enumeration of self-nested trees

Self-nested trees are a class of trees introduced in [92] [92]: Greenlaw (1996), ‘Subtree isomor-
phism is in DLOG for nested trees’

that achieve
maximum redundancy in their subtrees. More precisely,

Definition 6.7 A tree 𝑇 is called self-nested if for any 𝑢, 𝑣 ∈ 𝑇,

ℋ(𝑢) = ℋ(𝑣) =⇒ 𝑇[𝑢] ≃ 𝑇[𝑣].

Self-nested trees are closely related with linear DAGs (i.e. DAGs contain-
ing at least one path going through all vertices), as per the following
proposition [61]

[61]: Godin et al. (2009), ‘Quantifying
the degree of self-nestedness of trees:
application to the structural analysis of
plants’

. See also Figure 6.7.

Proposition 6.11 (Godin, Ferraro) A tree 𝑇 is self-nested if and only if

ℜ(𝑇) is linear.

These trees have many algorithmic qualities, both from the point of view
of compression rates and the evaluation of recursive functions, or even
the calculation of editing distances, as shown in [93] [93]: Azaïs et al. (2019), ‘Approximation

of trees by self-nested trees’
. In particular, it

is shown that self-nested trees are particularly rare within the space of
unordered trees. It follows that the exhaustive exploration of the space of
self-nested trees is exponentially easier than for general trees – although
[93] does not provide an enumeration algorithm for it.

Thanks to the expansion rules introduced earlier, it becomes straightfor-
ward to propose an enumeration tree for self-nested trees: it is enough to
forbid the rule, and keep only and . Indeed, there can be
only one vertex at each height (obtained by), and thus the enumerated
FDAGs will be linear. Also note that since each enumerated FDAG has
only one root, it does compress a single tree and not a forest.

84 6 Enumeration of forests

Constraining the enumeration

In [30][30]: Nakano et al. (2003), ‘Efficient
generation of rooted trees’

, the authors propose an algorithm to enumerate all trees with
at most 𝑛 vertices. They simply check whether the current tree has 𝑛
vertices or not, and as their expansion rule adds one vertex at a time, they
decide to cut a branch in the enumeration tree once they have reached 𝑛
vertices. Similarly, adding a vertex to a tree can only increase its height
or outdegree, so we can proceed in the same way to enumerate all trees
with maximal height 𝐻 and maximal outdegree 𝑑. Indeed, the number
of trees satisfying those constraints is finite [93][93]: Azaïs et al. (2019), ‘Approximation

of trees by self-nested trees’
.

This property also holds with the approach presented in Section 6.1:
following one of the three expansion rules, we can only increase the height,
outdegree or number of vertices of the FDAG. So, it makes sense to define
similar constraints on the enumeration. However, for this constrained
enumeration to generate a finite number of FDAGs, constraints must be
chosen wisely, as shown in the following proposition.

Proposition 6.12 The enumeration tree of FDAGs is finite if at least one of

those set of constraints is chosen:

(i) maximum number of vertices 𝑛 and maximum outdegree 𝑑,

(ii) maximum height 𝐻 and maximum outdegree 𝑑.

Proof. As allows to add arcs indefinitely without changing the
numbers of vertices, constraining on the maximum outdegree is manda-
tory in both cases. As the two others rules add vertices, constraining by
the number of vertices leads to a finite enumeration tree – (i) is proved. To
conclude, we only need to prove that can not be repeated an infinite
number of times, i.e. there is only a finite number of new vertices that
can be added at a given height, up to the maximum outdegree. This is
achieved by virtue of the upcoming lemma.

Let 𝐻 > 2 and 𝑑 ≥ 1. Let 𝐷 be the FDAG constructed so that for each
0 ≤ ℎ ≤ 𝐻, 𝐷 has the maximum possible number 𝑛ℎ of vertices of height
ℎ and with maximum outdegree 𝑑. Initial values are 𝑛0 = 1 and 𝑛1 = 𝑑.

Lemma 6.13 ∀2 ≤ ℎ ≤ 𝐻,

𝑛ℎ =
𝑑∑
𝑘=1

(
𝑘 + 𝑛ℎ−1 − 1

𝑘

) (
𝑑 − 𝑘 + 𝑛0 + · · · + 𝑛ℎ−2

𝑑 − 𝑘

)
.

Let ℎ ≥ 2 be fixed. To lighten the notation, let 𝑛 = 𝑛ℎ−1 and 𝑚 =

𝑛0 + · · · + 𝑛ℎ−2. Let 𝑣 be a vertex to be added at height ℎ. For any vertex
𝑣𝑖 at height ℎ − 1, let 𝑥𝑖 be the multiplicity of 𝑣𝑖 in 𝒞(𝑣) – 0 if 𝑣𝑖 ∉ 𝒞(𝑣).
Similarly, for any vertex 𝑣ℎ withℋ(𝑣 𝑗) ≤ ℎ − 2, 𝑦 𝑗 is the multiplicity of
𝑣 𝑗 in 𝒞(𝑣) – possibly 0. By definition ofℋ(·) – see Equation 2.1, at least
one 𝑥𝑖 is non-zero. Therefore, there exist 𝑘 ∈ [[1, 𝑑]] such that:

𝑥1 + · · · + 𝑥𝑛 = 𝑘

𝑦1 + · · · + 𝑦𝑚 ≤ 𝑑 − 𝑘

6.4 Enumeration of forests of subtrees 85

By virtue of the stars and bars theorem [94] [94]: Feller (2008), An introduction to

probability theory and its applications, vol 2

, for a fixed 𝑘, there are
(𝑘+𝑛−1

𝑘

)
choices for variables 𝑥𝑖 , and

(𝑑−𝑘+𝑚
𝑑−𝑘

)
for variables 𝑦 𝑗 . Summing upon all

values for 𝑘 proves the claim. F

Remark 6.1 In the constrained enumeration proposed in [30] [30]: Nakano et al. (2003), ‘Efficient
generation of rooted trees’

, all the
trees with 𝑛 vertices are the leaves of the enumeration tree. To get
all trees with 𝑛 + 1 vertices, it suffices to add to the enumeration all
children of these leaves, i.e. trees obtained by adding a single vertex to
them. This property – moving from one parameter value to the next by
enumerating just one step further – does not hold anymore as soon as
our set of constraints involve the maximum outdegree 𝑑, both for trees
and FDAGs. For instance, from a FDAG of height 𝐻, one can obtain
FDAG of height 𝐻 + 1 by using once and repeating up to
𝑑 − 1 times.

6.4 Enumeration of forests of subtrees

Once the reverse search scheme has been set up to enumerate a certain
type of structure, it is natural to move to a finer scale by using the same
scheme to enumerate substructures. However, the notion of “substructure”
is not obvious to derive from the main structure, as several choices are
possible – e.g. for trees one can think of subtrees [37] [37]: Vishwanathan et al. (2004), ‘Fast

kernels for string and tree matching’
, subset trees [35]

[35]: Collins et al. (2001), ‘Convolution
kernels for natural language’

,
etc. From a practical point of view, the enumeration of substructures
permits to solve the frequent pattern mining problem.

Forests of subtrees

In this section we define forests of subtrees, which will be our substruc-
tures. Compressed as FDAGs, these objects will be called subFDAGs. We
then address the problem of enumerating all subFDAGs appearing in an
FDAG 𝐷 – similar as the one of enumerating all subtrees of a tree.

Definition Similarly to a forest being a tuple of trees, forests of subtrees

are tuple of subtrees, satisfying Equation 5.3. Formally:

Definition 6.8 Let 𝐹 and 𝑓 be two irredundant forests. 𝑓 is a forest of
subtrees of 𝐹 if and only if

∀𝑡 ∈ 𝑓 , ∃𝑇 ∈ 𝐹, 𝑡 ∈ 𝒮(𝑇).

Forests of subtrees can be directly constructed from FDAGs, as shown
by the upcoming proposition. Let 𝐷 be a FDAG, and 𝑉 be a subset of
vertices of 𝐷.

Proposition 6.14 If ∀𝑣 ∈ 𝑉 , 𝒞(𝑣) ⊆ 𝑉 , then 𝑉 defines a FDAG Δ, such

that ℜ
−1(Δ) is a forest of subtrees of ℜ

−1(𝐷).

86 6 Enumeration of forests

2 3

2

(a)

2

(b)

𝑡1 𝑡2

𝑓 = {𝑡1 , 𝑡2}

(c)

𝑇1 𝑇2 𝑇3

𝐹 = {𝑇1 , 𝑇2 , 𝑇3}

(d)

Figure 6.8: Construction of a forest of subtrees from a FDAG. (a) A FDAG 𝐷. The set 𝑉 is circled in red. (b) The FDAG Δ (c) The forest
𝑓 compressed by Δ. (d) The forest 𝐹 compressed by 𝐷. One can spot that 𝑡1 ∈ 𝒮(𝑇1), 𝑡2 ∈ 𝒮(𝑇2) so 𝑓 is a forest of subtrees of 𝐹, and Δ a
subFDAG of 𝐷.

32: Not to be confused with subDAG, in-
troduced in Section 2.3. A subDAG admits
a single root and therefore compresses a
single tree, whereas a subFDAG admits
several roots and compresses a forest.

Proof. We recall that the notation𝐷[𝑣] stands for the subDAG of𝐷 rooted
in 𝑣 composed of 𝑣 and all its descendants𝒟(𝑣). The notation ℜ

−1(𝐷[𝑣])
stands for the tree compressed by 𝐷[𝑣]. The proof is in two steps. (i)
Remove from 𝐷 the vertices that do not belong to 𝑉 ; as there are no arcs
that leave𝑉 by hypothesis, end up with a FDAG. Let us call Δ this FDAG.
(ii) Let 𝜌 be a root of Δ. By construction, 𝜌 is also a vertex in𝐷. Among all
roots of 𝐷, there exists a root 𝑟 such that 𝜌 ∈ 𝒟(𝑟). Therefore, 𝐷[𝜌] is a
subDAG of 𝐷[𝑟], and then 𝑡 = ℜ

−1(𝐷[𝜌]) is a subtree of 𝑇 = ℜ
−1(𝐷[𝑟]) –

with 𝑇 ∈ 𝐹 = ℜ
−1(𝐷). As Δ[𝜌] and 𝐷[𝜌] are isomorphic, 𝑡 ∈ 𝑓 = ℜ

−1(Δ).
Therefore we have proved that ∀𝑡 ∈ 𝑓 , ∃𝑇 ∈ 𝐹, 𝑡 ∈ 𝒮(𝑇). F

We say that the FDAG Δ is a subFDAG
32 of 𝐷. Figure 6.8 provides an

example of such a construction.

Enumeration of subFDAGs We now solve the following enumeration
problem: given a forest 𝐹, find all forests of subtrees of 𝐹. Equally, given a
FDAG𝐷, find all subFDAGs of𝐷. To address this, we make extensive use
of the reverse search technique, adapting the one presented in Section
6.1.

Since a subFDAG is also a FDAG, it admits successors in the enumeration
tree defined in Section 6.1. We are interested in those of these successors
that are also subFDAGs (if any). In fact, since a subFDAG can be defined
from a set of vertices, all one has to do is determine which new vertex can
be chosen to expand an existing subFDAG – corresponding to a or
step.The covering of all added new arcs is implicit in this construction
and corresponds to some steps of .

Let Δ be a subFDAG of 𝐷 and 𝑣 its last inserted vertex – it is also the
vertex with the largest ordering number inΔ. We denote by 𝑆(Δ) the set of
all vertices 𝑣′ ∈ 𝐷 that can be added to Δ to expand it to a new subFDAG.
Let us call 𝑆(Δ) the set of candidate vertices of Δ. More precisely:

Lemma 6.15 𝑆(Δ) is the set of vertices 𝑣′ ∈ 𝐷 that satisfies both:

(i) 𝒞(𝑣′) ⊆ Δ,

(ii) 𝜓(𝑣′) > 𝜓(𝑣),

where 𝜓(·) is the canonical ordering of 𝐷.

6.4 Enumeration of forests of subtrees 87

0
1, 2, 3

0, 1
2, 3, 4

0, 2
3

0, 2, 3
∅

0, 3
∅

0, 1, 2
3, 4, 5

0, 1, 3
4

0, 1, 3, 4
∅

0, 1, 4
∅

0, 1, 2, 3
4, 5

0, 1, 2, 4
5

0, 1, 2, 4, 5
∅

0, 1, 2, 5
∅

0, 1, 2, 3, 4
5

0, 1, 2, 3, 4, 5
∅

0, 1, 2, 3, 5
∅

Figure 6.9: Enumeration tree of the
subFDAGs of the FDAG of Figure 5.7, us-
ing both Algorithm 12 and Algorithm 15.
The indices of the vertices correspond to
the canonical ordering defined in Figure
5.7. In each vertex, the upper part corre-
sponds to the current subFDAGΔwhereas
the lower part stands for the set𝑆(Δ). Num-
bers in red indicate what changes for an
heir compared to its parent.

33: where ℒ(𝐷) designates the leaf of 𝐷,
i.e. the only vertex without children.

Proof. (i) This condition is necessary so that Δ′ = Δ ∪ {𝑣′} fulfill the
requirements for Proposition 6.14. (ii) This condition is necessary so that
Δ′ remains a FDAG. As 𝜓(𝑣′) > 𝜓(𝑣), eitherℋ(𝑣′) = ℋ(𝑣)+ 1 – then it is
a step – orℋ(𝑣′) = ℋ(𝑣) and 𝒞𝜓(𝑣′) >lex. 𝒞𝜓(𝑣) – for a step. F

Algorithm 15: Heirs
Input: 𝐷,

[
Δ, 𝑆(Δ)

]
1 Set 𝐿 to the empty list
2 for 𝑠 ∈ 𝑆(Δ) do

3 Let 𝑆′ be a copy of 𝑆(Δ)
4 𝑆′← 𝑆′ \ {𝑣′ ∈ 𝑆′ : 𝒞𝜓(𝑣′) ≤lex. 𝒞𝜓(𝑠)}
5 𝑆′← 𝑆′ ∪

{
𝑣′ ∈ 𝐷 : 𝑠 ∈ 𝒞(𝑣′) ⊆ Δ ∪ {𝑠}

}
6 Add

[
Δ ∪ {𝑠}, 𝑆′

]
to 𝐿

7 return 𝐿

When 𝑆(Δ) is not empty, picking 𝑠 ∈ 𝑆(Δ) ensure that Δ′ = Δ ∪ {𝑠} is a
subFDAG of 𝐷. With respect to the enumeration tree of Section 6.1, Δ is
an ancestor of Δ′ – but not necessarily its parent, since the steps of
are implicit. Δ′ is called an heir of Δ. We can in turn calculate 𝑆(Δ′), by
updating 𝑆(Δ): (i) remove from 𝑆(Δ) all vertices 𝑣′ such that𝜓(𝑠) > 𝜓(𝑣′);
(ii) in 𝐷, look only after the vertices 𝑣′ such that 𝑠 ∈ 𝒞(𝑣′) ⊆ Δ∪ {𝑠} and
add them to 𝑆(Δ′).

If Δ′ is an heir of Δ, then by removing the last inserted vertex of Δ′,
one can retrieve Δ. This defines a reduction rule 𝑓 , and therefore an
enumeration tree. Algorithm 15 is meant to construct the set 𝑓 −1(Δ).
Applying Algorithm 12 together with it, and starting from Δ = ℒ(𝐷)33

– in this case, 𝑆(Δ) is the set of parents of ℒ(𝐷) of height 1 – permits
to enumerate all subFDAGs of 𝐷. Figure 6.9 provides an example by
enumerating all subFDAGs of the FDAG of Figure 5.7.

Frequent subFDAG mining problem

We focus here on a particular instance of the frequent mining pattern
problem, as defined in Section 5.1. The problem we consider is the
following: given a dataset of trees𝒳 = {𝑇1 , . . . , 𝑇𝑛}, account for forests of

88 6 Enumeration of forests

subtrees that appear simultaneously in different𝑇𝑖 ’s. In other words, if we
denote ℱ 𝑖 the set of all forests of subtrees appearing in the forest formed
by {𝑇𝑖}, we are interested in the study of ∩𝑖∈𝐼𝜎 ℱ 𝑖 where 𝐼𝜎 ⊆ [[1, 𝑛]],
such that #𝐼𝜎 ≥ 𝜎 · 𝑛.

A first, naive strategy would be to first build the ℱ 𝑖 ’s, e.g. by using
Algorithm 15 on ℜ(𝑇𝑖), and then construct ∩𝑖∈𝐼𝜎 ℱ 𝑖 for all possible
choices of 𝐼𝜎. Obviously, this approach has its weaknesses: (i) many
subFDAGs will be enumerated for nothing or in several copies, and (ii) it
does not take into account that 𝒳 is itself a forest. Our aim is to propose
a variant of Algorithm 15 that, applied to ℜ(𝒳), would enumerate only
subFDAGs appearing in the ℜ(𝑇𝑖)’s with a large enough frequency.

Given a forest 𝐹 = {𝑇1 , . . . , 𝑇𝑛} and its DAG compression 𝐷 = ℜ(𝐹), we
have to retrieve, for each vertex in 𝐷, its origin in the dataset, that is,
which tree they come from. This issue has already been addressed in
Connection between a forest and its compressed form (p. 19), under the
name of origin. We recall that, the origin of a vertex 𝑣 ∈ 𝐷, denoted by
o(𝑣), represents the set of trees in 𝐹 for which ℜ

−1(𝐷[𝑣]) is a subtree.

Let Δ be a subFDAG of 𝐷. For Δ to compress a forest of subtrees of a tree
𝑇𝑖 , it is necessary that 𝑖 ∈ o(𝑣) for all 𝑣 ∈ Δ. Therefore, the set of trees for
which Δ compress a forest of subtrees – the origin of Δ, denoted by o(Δ) –
is equal to

o(Δ) =
⋂
𝑣∈Δ

o(𝑣).

If Δ′ = Δ∪{𝑠} is an heir of Δ – as defined earlier, then o(Δ′) = o(Δ)∩o(𝑠).
Algorithm 15 can therefore be refined so that Δ′ should be ignored if
o(Δ′) = ∅ – as Δ′ does not anymore compresses any forest of subtrees
actually present in the trees of 𝐹.

So far we neglected the threshold 𝜎. We only want to keep subFDAGs that
appear in at least 𝜎% of the data. If # o(Δ)/#𝐹 < 𝜎, then the successors of
Δ are not investigated. Indeed, as o(·) is a decreasing function, successors
of Δ can not exceed the threshold again.

We can finally introduce Algorithm 16 that solves the frequent subFDAG
mining problem for trees. With the notations of Section 5.1, this algo-
rithm builds the set {Δ′ ∈ 𝑓 −1(Δ) : freq(Δ′, 𝐹) ≥ 𝜎}, with freq(Δ′, 𝐹) =
o(Δ′)/#𝐹. The set is also built directly, without any posterior filtering,
which is suitable as discussed at the beginning of the present subsec-
tion.

Algorithm 16: FrequentHeirs
Input: 𝐷 = ℜ(𝐹),

[
Δ, 𝑆(Δ), o(Δ)

]
, 𝜎

1 Set 𝐿 to the empty list
2 for 𝑠 ∈ 𝑆(Δ) do

3 if o(Δ) ∩ o(𝑠) ≠ ∅ and #(o(Δ) ∩ o(𝑠)) ≥ 𝜎 · #𝐹 then

4 Let 𝑆′ be a copy of 𝑆(Δ)
5 𝑆′← 𝑆′ \ {𝑣′ ∈ 𝑆′ : 𝒞𝜓(𝑣′) ≤lex. 𝒞𝜓(𝑠)}
6 𝑆′← 𝑆′ ∪

{
𝑣′ ∈ 𝐷 : 𝑠 ∈ 𝒞(𝑣′) ⊆ 𝐷0 ∪ {𝑠}

}
7 Add

[
Δ ∪ {𝑠}, 𝑆′, o(Δ) ∩ o(𝑠)

]
to 𝐿

8 return 𝐿

6.4 Enumeration of forests of subtrees 89

We stated earlier that we wanted to avoid generating unnecessary or
multiple copies of subFDAGs, which is achieved with Algorithm 16. We
now empirically study what we have gained from this, by comparing the
use of Algorithm 16 on 𝐷 = ℜ(𝐹), with the use of Algorithm 15 on each
ℜ(𝑇𝑖). As in Branching factor (p. 78), we generated 1 000 random FDAGs
𝐷𝑘 , 10 repetitions for each 𝑘 ∈ {1, . . . , 100}, creating 𝐷𝑘 as in Definition
6.5. We assume 𝐷𝑘 = ℜ(𝑓) where 𝑓 = {ℜ−1(𝐷𝑘[𝑟]) : 𝑟 ∈ ℛ(𝐷𝑘)}. For
each 𝐷𝑘 , we have computed the quotient

𝑄(𝐷𝑘) =
#{subFDAGs of 𝐷𝑘 enumerated via Algorithm 16}∑

𝑟∈ℛ(𝐷𝑘)
#{ subFDAGs of 𝐷𝑘[𝑟] enumerated via Algorithm 15}

with parameter 𝜎 = 0 when using Algorithm 16. The results are provided
in Figure 6.10. Despite a rather marked variability, there is a general trend
of decreasing as the number of vertices increases. We obtain fairly low
quotients, around 20%, quite quickly. Given the combinatorial explosion
of the objects to be enumerated, such an advantage is of the greatest
interest.

0 10 20 30 40 50 60 70 80
Number of vertices

0.2

0.4

0.6

0.8

1.0

Q
u

ot
ie

nt
Q

Figure 6.10: Quotient 𝑄(𝐷) according to
the number of vertices of 𝐷. Here 1 000
random FDAGs are displayed.

The Subtree Kernel Revisited

The subtree kernel 7

7.1 Kernel methods 93

Kernel trick 94

Tree kernels 95

7.2 Theoretical study 96

Two trees as different as possi-

ble 96

A stochastic model of 2-classes

tree data 97

Theoretical guarantees on the sub-

tree kernel 97

Weight of leaves 99

When you’re outnumbered by trees
your perspective shifts.

Jessica Marie Baumgartner

In this chapter and the next one, we focus on the issue of statistical analysis
of tree data, which is difficult given their non-Euclidean nature.

In Section 7.1, we introduce kernel methods, a family of techniques
particularly useful for dealing with tree data. In particular, we introduce
the subtree kernel, on which our analysis focuses.

Section 7.2 is dedicated to the introduction of a stochastic tree model
that allows us to perform a performance analysis of said kernel, and in
particular to infer a desirable property on one of the kernel parameters –
named the weight.

Parts of this chapter are reproduced from [39] [39]: Azaïs et al. (2020), ‘The weight
function in the subtree kernel is decisive’

, in particular Section 7.2.

7.1 Kernel methods

Suppose we have data (of any nature) and we want to find relations
and structures in this data – e.g. clusters, correlations, etc. There is
no guarantee that these relationships, if they exist, are immediately
accessible. Sometimes it is better not to use the raw data, but rather to
transform them, via an user-specified feature map. They are sent to a (inner
product) feature space, in which it is expected that relations between the
data will appear more naturally. This approach is particularly relevant
for non-Euclidean data (such as trees), since by choosing an appropriate
feature space, one can use standard statistical methods to process them.
A very simple example is presented in Figure 7.1.

0 1 2

(𝑟 cos𝜃, 𝑟 sin𝜃) (𝜃, 𝑟)
𝜑

−180 −90 0 90 180

1

2

Figure 7.1: Suppose we want to build a
classifier to separate the red and blue data
(on the left). However, imagine the algo-
rithm we have only allows to build linear
classifiers: there is no hope to succeed. On
the other hand, via a well-chosen feature
map 𝜑, one can send the data into a space
in which they are linearly separable – see
the green line (on the right).

On the other hand, choosing the proper feature space and finding
out the mapping might be very difficult. Furthermore, the curse of

94 7 The subtree kernel

dimensionality takes place and the feature space may be extremely big,
therefore impossible to use. Fortunately, a wide range of prediction
algorithms do not need to access that feature space, but only the inner
product between elements of the feature space. Building a function, called
a kernel, that simulates an inner product in an implicit feature space,
frees us from constructing a mapping.

Kernel trick

Let us first define kernels. Let 𝒳 be the space of considered data.

Definition 7.1 A symmetric function 𝐾 : 𝒳 × 𝒳 → R is said to be a

(positive semi-definite) kernel on 𝒳 if, given 𝑛 ∈ N and 𝑐1 , . . . , 𝑐𝑛 ∈ R,

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑐𝑖𝑐 𝑗𝐾(𝑥𝑖 , 𝑥 𝑗) ≥ 0 (7.1)

for any 𝑥1 , . . . , 𝑥𝑛 ∈ 𝒳 .

Equivalently, 𝐾 is a kernel if, for any 𝑥1 , . . . , 𝑥𝑛 ∈ 𝒳 , the Gram matrix
[95][95]: Horn et al. (2012), Matrix analysis expressed as

[
𝐾(𝑥𝑖 , 𝑥 𝑗)

]
1≤𝑖 , 𝑗≤𝑛 is positive semi-definite.

The main interest of kernels comes from Mercer’s theorem [96][96]: Mercer (1909), ‘XVI. Functions
of positive and negative type, and
their connection the theory of integral
equations’

.

Theorem 7.1 (Mercer) If 𝐾 is a (positive semi-definite) kernel, then there

exists a (inner product) feature space 𝒴 and a mapping 𝜑 : 𝒳 → 𝒴 such

that, for any 𝑥, 𝑦 ∈ 𝒳 , 𝐾(𝑥, 𝑦) = ⟨𝜑(𝑥), 𝜑(𝑦)⟩𝒴 .

Proof. The proof can be found in [33]. F

This technique is known as the kernel trick. It is sufficient to construct a
function 𝐾 verifying Equation 7.1 on the data space (even non-Euclidean),
to be certain of the existence of a feature space, on which 𝐾 plays the
role of an inner product. From then on, all the statistical methods which
only use the inner product of the data become accessible, without even
needing to explicitly exhibit the feature space nor the mapping allowing
to access it.

Algorithms that can use kernels include Support Vector Machines (SVM),
Principal Components Analysis (PCA) and many others. We refer the
reader to the books [33, 97–99][33]: Cristianini et al. (2000), An introduc-

tion to support vector machines and other

kernel-based learning methods

[97]: Schölkopf et al. (2001), Learning

with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond

[98]: Shawe-Taylor et al. (2004), Kernel

methods for pattern analysis

[99]: Hastie et al. (2009), The elements of

statistical learning: data mining, inference,

and prediction

and the references therein for more
detailed explanations of theory and applications of kernels.

The construction of kernels is facilitated by virtue of the following
proposition, whose proof can also be found in [33].

Proposition 7.2 Let 𝐾1 , 𝐾2 be two kernels on 𝒳 and 𝑎 ∈ R+. Let also

(𝐾𝑛)𝑛∈N be a sequence of kernels on 𝒳 . Then, are also kernels on 𝒳 :

▶ 𝐾1 + 𝐾2, 𝑎𝐾1 and 𝐾1𝐾2,

▶ 𝐾 = lim
𝑛→∞

𝐾𝑛 .

7.1 Kernel methods 95

34: The definition naturally extends to la-
beled trees if we impose equality of labels
in the isomorphism.

𝑇1 𝑇2

Figure 7.2: Computation of the subtree
kernel on two trees 𝑇1 (left) and 𝑇2 (right).
Only subtrees present in both 𝑇1 and 𝑇2
have been colored according to their equiv-
alence class. With Equation 7.3, the value
of the kernel is 𝐾(𝑇1 , 𝑇2) = 𝑤•𝜅(5, 6) +
𝑤•𝜅(2, 2) + 𝑤•𝜅(1, 1). Adopting the defi-
nition of Equation 7.4, the kernel is then
expressed as 𝐾(𝑇1 , 𝑇2) = 30𝑤• + 4𝑤• +𝑤•.
Finally, with 𝑤𝑡 = 𝜆ℋ(𝑡), the kernel be-
comes 𝐾(𝑇1 , 𝑇2) = 30 + 4𝜆 + 𝜆2.

Let 𝑥, 𝑧 ∈ 𝒳 , 𝑓 : 𝒳 → ℛ, 𝜑 : 𝒳 → 𝒴, 𝐾3 a kernel on𝒴 and 𝐵 a positive

semi-definite symmetric matrix. Those are also kernels on 𝒳 :

▶ 𝐾(𝑥, 𝑧) = 𝑓 (𝑥) 𝑓 (𝑧),
▶ 𝐾(𝑥, 𝑧) = 𝐾3(𝜑(𝑥), 𝜑(𝑧)),
▶ 𝐾(𝑥, 𝑧) = 𝑥⊤𝐵𝑧 – with 𝒳 = R𝑑.

Tree kernels

To use kernel-based algorithms with tree data, one needs to design kernel
functions adapted to trees. Convolution kernels, introduced by Haussler
[34]

[34]: Haussler (1999), Convolution kernels

on discrete structures

, measure the similarity between two complex combinatorial objects
based on the similarity of their substructures. Based on this strategy,
many authors have developed convolution kernels for trees, among
them the subset tree kernel [35]

[35]: Collins et al. (2001), ‘Convolution
kernels for natural language’

, the subtree kernel [37]

[37]: Vishwanathan et al. (2004), ‘Fast
kernels for string and tree matching’

and the subpath
kernel [100] [100]: Kimura et al. (2011), ‘A subpath

kernel for rooted unordered trees’
.

A recent state-of-the-art on kernels for trees can be found in the thesis of
Da San Martino [36] [36]: Da San Martino (2009), ‘Kernel

methods for tree structured data’
, as well as original contributions on related topics.

Let us also mention [101]

[101]: Shin et al. (2010), ‘A Generalization of
Haussler’s Convolution Kernel—Mapping
Kernel and Its Application to Tree Kernels’

, which establishes a unifying formalism to
express most convolution kernels on trees.

In this chapter and the next, we focus on the subtree kernel as defined
by [37]. The subtree kernel is a convolution kernel on trees for which
the similarity between two trees is measured through the similarity of
their subtrees. A subtree kernel 𝐾 on trees (ordered or not, unlabeled34)
is defined as,

∀𝑇1 , 𝑇2 ∈ 𝒯 , 𝐾(𝑇1 , 𝑇2) =
∑
𝑡∈𝒯

𝑤𝑡𝜅 (N𝑡(𝑇1),N𝑡(𝑇2)) , (7.2)

where 𝑤𝑡 is a weight associated to the tree 𝑡, N𝑡(𝑇)35

35: 𝑁𝑡 (𝑇) is exactly equal, with the nota-
tions of Connection between a forest and
its compressed form (p. 19), to the presence
𝜋([𝑡]) of vertex [𝑡] in the DAG ℜ(𝑇). This
will be exploited in upcoming Chapter 8.

counts the number
of subtrees of 𝑇 that are isomorphic to 𝑡 and 𝜅 is a kernel function on N,
Z or R. Assuming 𝜅(0, 𝑛) = 𝜅(𝑛, 0) = 0, Equation 7.2 becomes

𝐾(𝑇1 , 𝑇2) =
∑

𝑡∈𝒮(𝑇1)∩𝒮(𝑇2)
𝑤𝑡𝜅 (N𝑡(𝑇1),N𝑡(𝑇2)) , (7.3)

making the sum finite. Indeed, all the subtrees 𝑡 ∈ 𝒯 \ (𝒮(𝑇1) ∩ 𝒮(𝑇2))
do not count in the sum Equation 7.2. Here, as for [37], we assume that
𝜅(𝑛, 𝑚) = 𝑛𝑚, then we get the subtree kernel as introduced in [37].

Definition 7.2 The subtree kernel between two trees 𝑇1 and 𝑇2 is defined as

𝐾(𝑇1 , 𝑇2) =
∑

𝑡∈𝒮(𝑇1)∩𝒮(𝑇2)
𝑤𝑡 N𝑡(𝑇1)N𝑡(𝑇2). (7.4)

An example of kernel computation is provided in Figure 7.2.

The weight function 𝑡 ↦→ 𝑤𝑡 is the only remaining parameter to be tuned.
In the literature, the weight is usually assumed to be a function of a
quantity measuring the “size” of 𝑡, in particular its heightℋ(𝑡). Then
𝑤𝑡 is taken as an exponential decay of this quantity, 𝑤𝑡 = 𝜆ℋ(𝑡) for some
𝜆 ∈ [0, 1] – as in [35–37, 100] and [102]

[102]: Aiolli et al. (2006), ‘Fast on-line
kernel learning for trees’

. This choice can be justified in
the following manner. If a subtree 𝑡 is counted in the kernel, then all its

96 7 The subtree kernel

Figure 7.3: Two trees 𝑇0 and 𝑇1 that fulfill
conditions (𝑖) and (𝑖𝑖).

Figure 7.4: Two trees 𝑇0 and 𝑇1 that fulfill
conditions (𝑖), (𝑖𝑖) and (𝑖𝑖𝑖).

subtrees are also counted. Then an exponential decay counterbalances the
growth of subtrees. On the other hand, as can be seen from the example
of Figure 7.2, the contribution of leaves is generally preponderant over
the contribution of other subtrees since 𝑤• = 𝜆0 = 1. One of the goals of
Section 7.2 is to show that it is better to impose 𝑤• = 0.

7.2 Theoretical study

In this section, we define a stochastic model of 2-classes tree data. From
this ideal data set, we prove the efficiency of the subtree kernel and derive
the sufficient size of the training data set to get a classifier with a given
prediction error. We also state on this simple model that the weight of
leaves should always be 0. We emphasize that this study is valid for both
ordered and unordered trees.

Two trees as different as possible

Our goal is to build a 2-classes data set of random trees. To this end, we
first define two typical trees 𝑇0 and 𝑇1 that are as different as possible in
terms of subtree kernel.

Let 𝑇0 and 𝑇1 be two trees that fulfill the following conditions:

(i) ∀𝑖 ∈ {0, 1}, ∀𝑢, 𝑣 ∈ 𝑇𝑖 \ ℒ(𝑇𝑖), if 𝑢 ≠ 𝑣 then 𝑇𝑖[𝑢] ; 𝑇𝑖[𝑣], i.e, two
subtrees of 𝑇𝑖 are not isomorphic (except leaves).

(ii) ∀𝑢 ∈ 𝑇0 \ ℒ(𝑇0), ∀𝑣 ∈ 𝑇1 \ ℒ(𝑇1), 𝑇0[𝑢] ; 𝑇1[𝑣], i.e., any subtree of
𝑇0 is not isomorphic to a subtree of 𝑇1 (except leaves).

These two assumptions ensure that the trees 𝑇0 and 𝑇1 are as different as
possible. Indeed, it is easy to see that

𝐾(𝑇0 , 𝑇1) = 𝑤•#ℒ(𝑇0)#ℒ(𝑇1),

which is the minimal value of the kernel and where 𝜔• is the weight of
leaves. We refer to Figure 7.3 for an example of trees that satisfy these
conditions.

Trees of class 𝑖 will be obtained as random editions of 𝑇𝑖 . In the sequel,
𝑇𝑖(𝑣 ↦→ 𝜏) denotes the tree 𝑇𝑖 in which the subtree rooted at 𝑣 has been
replaced by 𝜏. These random edits will tend to make trees of class 0 closer
to trees of class 1. To this end, we introduce the following additional
assumption. Let (𝜏ℎ) a sequence of trees such thatℋ(𝜏ℎ) = ℎ.

(iii) Let 𝑢 ∈ 𝑇0 and 𝑣 ∈ 𝑇1. We consider the edited trees 𝑇′0 = 𝑇0(𝑢 ↦→
𝜏ℋ(𝑢)) and 𝑇′1 = 𝑇1(𝑣 ↦→ 𝜏ℋ(𝑣)). Then, ∀𝑢′ ∈ 𝑇′0 \

(
𝜏ℋ(𝑢) ∪ ℒ(𝑇′0)

)
,

∀ 𝑣′ ∈ 𝑇′1 \
(
𝜏ℋ(𝑣) ∪ ℒ(𝑇′1)

)
, 𝑇′0 [𝑢′] ; 𝑇′1 [𝑣′].

In other words, if one replaces subtrees of 𝑇0 and 𝑇1 by subtrees of the
same height, then any subtree of 𝑇0 is not isomorphic to a subtree of
𝑇1 (except the new subtrees and leaves). This means that the similarity
between random edits of 𝑇0 and 𝑇1 will come only from the new subtrees
and not from collateral modifications. We refer to Figure 7.4 for an
example of trees that satisfy these conditions.

7.2 Theoretical study 97

A stochastic model of 2-classes tree data

From now on, we assume that, for any ℎ > 0, 𝜏ℎ is not a subtree of 𝑇0
or 𝑇1. For the sake of simplicity, 𝑇0 and 𝑇1 have the same height 𝐻. In
addition, if 𝑢 ∈ 𝑇𝑖 then 𝑇𝑢

𝑖
denotes 𝑇𝑖(𝑢 ↦→ 𝜏ℋ(𝑢)).

The stochastic model of 2-classes tree data that we consider is defined
from the binomial distribution 𝑃𝜌 = ℬ(𝐻, 𝜌/𝐻) on support {0, . . . , 𝐻}
with mean 𝑃𝜌 = 𝜌. The parameter 𝜌 ∈ [0, 𝐻] is fixed. In the data set, class
𝑖 is composed of random trees 𝑇𝑢

𝑖
, where the vertex 𝑢 has been picked

uniformly at random among vertices of height ℎ in 𝑇𝑖 , where ℎ follows
𝑃𝜌. Furthermore, the considered training data set is well-balanced in the
sense that it contains the same number of data of each class.

Intuitively, when 𝜌 increases, the trees are more degraded and thus two
trees of different class are closer. 𝜌 somehow measures the similarity
between the two classes. In other words, the larger 𝜌, the more difficult
is the supervised classification problem.

Remark 7.1 The structure of a markup document such as an HTML page
can be described by a tree (see Preliminaries (p. 106) and especially
Figure 8.2 for more details). In this context, the tree𝑇𝑖 , 𝑖 ∈ {0, 1}, can be
seen as a model of the structure of a webpage template. By assumption,
the two templates of interest are as different as possible. However, they
are completed in a similar manner, for example to present the same
content in two different layouts. Edition of the templates is modeled
by random edit operations. They tend to bring trees from different
templates closer.

Theoretical guarantees on the subtree kernel

[103] [103]: Balcan et al. (2008), ‘A theory of
learning with similarity functions’

have introduced a theory that describes the effectiveness of a given
kernel in terms of similarity-based properties. A similarity function over
𝒳 is a pairwise function 𝐾 : 𝒳2 → [−1, 1] [103, Definition 1]. It is said
(𝜖, 𝛾)-strongly good [103, Definition 4] if, with probability at most 1− 𝜖,

E𝑥′ ,𝑦[𝐾(𝑥, 𝑥′) − 𝐾(𝑥, 𝑦)] ≥ 𝛾,

where label(𝑥) = label(𝑥′) ≠ label(𝑦). From this definition, the authors
derive the following simple classifier: the class of a new data 𝑥 is predicted
by 1 if 𝑥 is more similar on average to points in class 1 than to points in
class 0, and 0 otherwise – see Algorithm 17. In addition, they prove [103,
Theorem 1] that a well-balanced training data set of size 32/𝛾2 log(2/𝛿)
is sufficient so that, with probability at least 1 − 𝛿, the above algorithm
applied to an (𝜖, 𝛾)-strongly good similarity function produces a classifier
with error at most 𝜖 + 𝛿.

Algorithm 17: Classifier
Input: 𝑥 ∈ 𝒳

1 Let 𝑆𝑖 be the set of known data of
class 𝑖.

2 if

1
#𝑆1

∑
𝑦∈𝑆1

𝐾(𝑥, 𝑦) ≥ 1
#𝑆0

∑
𝑦∈𝑆0

𝐾(𝑥, 𝑦)

then

3 return 1
4 else

5 return 0
We aim to prove comparable results for the subtree kernel – which is not
a similarity function. To this end, we focus for 𝑖 ∈ {0, 1} on

Δ𝑖𝑥 = E𝑢,𝑣[𝐾(𝑇𝑥𝑖 , 𝑇
𝑢
𝑖) − 𝐾(𝑇

𝑥
𝑖 , 𝑇

𝑣
1−𝑖)]. (7.5)

98 7 The subtree kernel

We emphasize that the two following results (Proposition 7.3 and Corol-
lary 7.4) assume that the weight of leaves𝜔• is 0. For the sake of readability,
we introduce the following notations, for any 0 ≤ ℎ ≤ 𝐻 and 𝑖 ∈ {0, 1},

𝐾𝑖 ,ℎ = max
{𝑢∈𝑇𝑖 :ℋ(𝑢)=ℎ}

𝐾(𝑇𝑖[𝑢], 𝑇𝑖[𝑢]),

𝐶𝑖 ,ℎ =
𝐾(𝑇𝑖 , 𝑇𝑖) − 𝐾𝑖 ,ℎ

#ℒ(𝑇𝑖)
,

𝐺𝜌(ℎ) = 1 −
𝐻∑

𝑘=ℎ+1
𝑃𝜌(𝑘).

The following results are expressed in terms of a parameter 0 ≤ ℎ < 𝐻.
The statement is then true with probability 𝐺𝜌(ℎ). This is equivalent to
state a result that is true with probability 1 − 𝜖, for any 𝜖 > 0 – except
that here, 𝜖 is not arbitrary but taken from a discrete range of values.

Proposition 7.3 If𝑤𝑇𝑖 > 0 thenΔ𝑖𝑥 = 0 if and only if 𝑥 = ℛ(𝑇𝑖). In addition,

if 𝜌 > 𝐻/2, for any 0 ≤ ℎ < 𝐻, with probability 𝐺𝜌(ℎ), one has

Δ𝑖𝑥 ≥ 𝑃𝜌(0)𝐶𝑖 ,ℎ . (7.6)

Proof. The proof lies in Appendix A.5. F

This result shows that the two classes can be well-separated by the
subtree kernel. The only data that can not be separated are the trees
completely edited. In addition, the lower-bound in Equation 7.6 is of
order 𝐻 exp(−𝜌) (up to a multiplicative constant).

Corollary 7.4 For any 0 ≤ ℎ ≤ 𝐻, a well-balanced training data set of size

2 max𝑖 𝐾(𝑇𝑖 , 𝑇𝑖)2
min𝑖 𝐶2

𝑖 ,ℎ

exp(2𝜌)
𝐻2 log

(
2
𝛿

)
is sufficient so that, with probability at least 1 − 𝛿, the aforementioned

classification Algorithm 17 produces a classifier with error at most 1 −
𝐺𝜌(ℎ) + 𝛿.

Proof. The proof is based on the demonstration of [103, Theorem 1].
However, in our setting, the kernel 𝐾 is bounded by max𝑖 𝐾(𝑇𝑖 , 𝑇𝑖) and
not by 1. Consequently, by Hoeffding bounds, the sufficient size of the
training data set if of order

2 log
(

2
𝛿

)
max𝑖 𝐾(𝑇𝑖 , 𝑇𝑖)2

𝛾2 , (7.7)

where 𝛾 can be read in Proposition 7.3, 𝛾 = 𝑃𝜌(0)𝐶𝑖 ,ℎ ≥ 𝑃𝜌(0)min𝑖 𝐶𝑖 ,ℎ .
The coefficient 2 lies because we consider here the total size of the data
set and not only the number of examples of each class. Together with
𝑃𝜌(0) ∼ 𝐻 exp(−𝜌), we obtain the expected result. F

7.2 Theoretical study 99

Weight of leaves

Here 𝐾+ is the subtree kernel obtained from the weights used in the
computation of 𝐾 together with a positive weight on leaves, 𝑤• > 0. We
aim to show that 𝐾+ separates the two classes less than 𝐾. Δ+,𝑖𝑥 denotes
the conditional expectation Equation 7.5 computed from 𝐾+.

Proposition 7.5 For any 𝑥 ∈ 𝑇𝑖 ,

Δ
+,𝑖
𝑥 = Δ𝑖𝑥 + 𝑤•#ℒ(𝑇𝑖[𝑥])𝐷𝑖 ,1−𝑖 ,

where 𝐷𝑖 ,1−𝑖 = E𝑢,𝑣[#ℒ(𝑇𝑢𝑖) − #ℒ(𝑇𝑣1−𝑖)].

Proof. We have the following decomposition, for any trees 𝑇1 and 𝑇2,

𝐾+(𝑇1 , 𝑇2) = 𝐾(𝑇1 , 𝑇2) + 𝑤•#ℒ(𝑇1)#ℒ(𝑇2),

in light of Equation 7.4. Thus, with Equation 7.5,

Δ
+,𝑖
𝑥 = E𝑢,𝑣

[
𝐾(𝑇𝑥𝑖 , 𝑇

𝑢
𝑖) + 𝑤•#ℒ(𝑇

𝑥
𝑖)#ℒ(𝑇

𝑢
𝑖) − 𝐾(𝑇

𝑥
𝑖 , 𝑇

𝑣
1−𝑖) − 𝑤•#ℒ(𝑇

𝑥
𝑖)#ℒ(𝑇

𝑣
1−𝑖)

]
= Δ𝑖𝑥 + E𝑢,𝑣

[
𝑤•#ℒ(𝑇𝑥𝑖)(#ℒ(𝑇

𝑢
𝑖) − #ℒ(𝑇𝑣𝑖))

]
,

which ends the proof. F

The sufficient number of data provided in Corollary 7.4 is obtained in
Equation 7.7 through the square ratio of max𝑖 𝐾(𝑇𝑖 , 𝑇𝑖) over min𝑖 Δ𝑖𝑥 . First,
it should be noticed that 𝐾+(𝑇𝑖 , 𝑇𝑖) > 𝐾(𝑇𝑖 , 𝑇𝑖). In addition, by virtue of
Proposition 7.5, either Δ

+,0
𝑥 ≤ Δ0

𝑥 or Δ
+,1
𝑥 ≤ Δ1

𝑥 (and the inequality is
strict if trees of classes 0 and 1 have not the same number of leaves on
average). Consequently,

min
𝑖

Δ
+,𝑖
𝑥 ≤ min

𝑖
Δ𝑖𝑥 ,

and thus the sufficient number of data mentioned above is minimum for
𝜔• = 0.

Remark 7.2 The results stated in this section establish that the subtree
kernel is more efficient when the weight of leaves is 0. It should be
placed in perspective with the exponential weighting scheme of the
literature [35–37, 100, 102] [102]: Aiolli et al. (2006), ‘Fast on-line

kernel learning for trees’
[35]: Collins et al. (2001), ‘Convolution
kernels for natural language’
[36]: Da San Martino (2009), ‘Kernel
methods for tree structured data’
[100]: Kimura et al. (2011), ‘A subpath
kernel for rooted unordered trees’
[37]: Vishwanathan et al. (2004), ‘Fast
kernels for string and tree matching’

for which the weight of leaves is maximal.
We conjecture that the accuracy of the subtree kernel should be in
general improved by imposing a null weight to any subtree present in
two different classes. This can not be established from the model for
which the only such subtrees are the leaves. Relying on this, one of the
objectives of the next chapter is to develop a learning method for the
weight function that improves in practice the classification results.

A new framework for computing

the subtree kernel 8

8.1 Framework 101

State of the art 101

Context 102

Kernel computation on DAGs103

Discriminance weight func-

tion 104

8.2 Real data analysis 105

Preliminaries 106

Prediction of the language of

a Wikipedia article from its topol-

ogy 108

Markup documents data sets 111

Biological data sets 113

LOGML 114

8.3 Interest of the DAG approach115

Learning the weight function115

Computation time 117

All forests have their own personality.

Charles de Lint

In the previous chapter, we introduced the subtree kernel and showed,
in the framework of a stochastic model, that it was preferable to set the
weight of the leaves to zero.

In this chapter, we briefly present the existing methods to compute the
subtree kernel before introducing our framework, in Section 8.1, which
computes the kernel from the DAG compression of the trees, and that
allows us to choose an arbitrary weight function. In particular, we propose
the discriminance weight function, which sets the leaf weights to zero
and learns from the data what weight to assign to each subtree, in a
supervised classification context.

We then apply our method to 8 different datasets in Section 8.2, for
which we show that the discriminance weight function can improve the
performance of the kernel. Finally, the chapter ends with a discussion of
the interests of our approach in Section 8.3.

The majority of the chapter is reproduced from [39] [39]: Azaïs et al. (2020), ‘The weight
function in the subtree kernel is decisive’

.

8.1 Framework

State of the art

We present here an overview of the existing methods to compute the
subtree kernel, whose general formula is recalled below.

𝐾(𝑇1 , 𝑇2) =
∑

𝑡∈𝒮(𝑇1)∩𝒮(𝑇2)
𝑤𝑡 N𝑡(𝑇1)N𝑡(𝑇2). (Equation 7.4)

Substrings The approach of [37] [37]: Vishwanathan et al. (2004), ‘Fast
kernels for string and tree matching’

is based on string representations of
(labeled or not) ordered trees, as seen in Encoding of trees (p. 11). Recall
that this allows a tree to be encoded as a sequence of brackets. In this
context, a substring with balanced brackets corresponds exactly to a
subtree. Since the authors of [37] introduce a string kernel operating on
substrings, they notice that by giving a zero weight to substrings with
unbalanced brackets, they retrieve exactly the subtree kernel.

Given two strings 𝑥 and 𝑦, 𝑦 is converted into a suffix tree (which
enumerates all the suffixes of a string). This tree allows to check which
substrings of 𝑥 also exist in 𝑦, which then enables the calculation of
the kernel. We refer the reader to [37] for complete details. The weights

102 8 A new framework for computing the subtree kernel

36: Where we impose equality of labels in
the isomorphisms.

allowed by the algorithm are typically exponential, constant, or binary (0
or 1).

Recursive computation Given a tree 𝑇, the subtree rooted in 𝑢 is
defined as 𝑢 and all its descendants. We construct a subset tree, rooted in
𝑢, in the following way: either we take all the children of 𝑢, or none of
them – and then recursively on the nodes kept. If we choose consistently
to take all the children of all the nodes encountered, we get the subtree
rooted in 𝑢.

The subset tree kernel, introduced in [35][35]: Collins et al. (2001), ‘Convolution
kernels for natural language’

, is defined exactly as the
subtree kernel, but where the subtrees are replaced by the subset tree
we just defined. In this paper, a recursive method for computing the
subset tree kernel is proposed. Noting that subtrees are a special case
of subset trees, it turns out that the proposed recursive formula can be
modified to compute, instead, the subtree kernel – see [36]. This recursive
formula imposes an exponential or constant weight. Here also, trees are
ordered.

Computing 𝐾(𝑇1 , 𝑇2) has complexity 𝒪(#𝑇1 + #𝑇2) for the first option, and
𝒪(#𝑇1#𝑇2) for the second one. Also, to the best of our knowledge, the
case of unordered trees has only been considered through the arbitrary
choice of a sibling order. Finally, labeled trees are treated by imposing
label equality.

Our proposition Our goal in this chapter is to propose a new way of
computing the kernel, based on the explicit enumeration of𝒮(𝑇1)∩𝒮(𝑇2).
In fact, we already know a tool that allows to enumerate the subtrees, i.e.
DAG compression; so we propose to compute the kernel directly from
the DAG compression of trees – the forest when treating a dataset.

It is not the first time that DAG compression is used in a kernel computa-
tion context since the authors of [36, 102]

[102]: Aiolli et al. (2006), ‘Fast on-line
kernel learning for trees’
[36]: Da San Martino (2009), ‘Kernel
methods for tree structured data’ extensively use DAG reduction

– with a focus on ordered trees. However, the method developed by [36,
102] is only adapted to exponential weights (see equations (3.12) and (6.2)
from [36]).

Our ambition is to propose a general framework capable of handling
ordered or unordered, labeled36 or unlabeled trees, and where the weight
function can be chosen arbitrarily. Finally, in [102, Section 4], the time-
complexities are studied only from a numerical point of view, while we
state theoretical results.

Context

We place ourselves in a context of supervised classification. We consider a
data set composed of two parts: the training data set 𝒳train = (𝑇1 , . . . , 𝑇𝑛)
where the class of each tree is assumed to be known, and the data set
𝒳pred = (𝑇𝑛+1 , . . . , 𝑇𝑁)whose classes we want to predict.

Our aim is to compute two Gram matrices 𝐺 =
[
𝐾(𝑇𝑖 , 𝑇𝑗)

]
𝑖 , 𝑗

, where:

▶ (𝑖 , 𝑗) ∈ 𝒳train × 𝒳train for the training matrix 𝐺train;
▶ (𝑖 , 𝑗) ∈ 𝒳pred × 𝒳train for the prediction matrix 𝐺pred.

8.1 Framework 103

SVM algorithms will use 𝐺train to learn their classifying rule, and 𝐺pred
to make predictions [33] [33]: Cristianini et al. (2000), An introduc-

tion to support vector machines and other

kernel-based learning methods

. Other algorithms, such as kernel PCA, would
also require to compute a Gram matrix before processing [97]

[97]: Schölkopf et al. (2001), Learning

with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond

.

Kernel computation on DAGs

Our goal here is to compute the subtree kernel 𝐾(𝑇𝑖 , 𝑇𝑗) between two
trees 𝑇𝑖 and 𝑇𝑗 from the DAG compression of 𝑇𝑖 and 𝑇𝑗 – as defined in
Section 2.3. In particular, we compress all the trees into a same DAG,
using the method developed in Section 2.4, by introducing an artificial
root. We denote by Δ = ℜ(𝒳train ∪ 𝒳pred) the DAG reduction of the data
set and, for any 1 ≤ 𝑖 ≤ 𝑁 , 𝐷𝑖 = ℜ(𝑇𝑖). Since the root ℛ(Δ) is artificial,
and to simplify the notations, in the following we will note 𝑣 ∈ Δ as an
abuse of language for 𝑣 ∈ Δ \ ℛ(Δ).

DAG computation of the subtree kernel requires to annotate the DAG
with different pieces of information. We use extensively the notions of
origin and presence, defined in Connection between a forest and its
compressed form (p. 19), whose definition we briefly recall here:

▶ The origin o(𝑣) of a vertex 𝑣 ∈ Δ is defined at the subset of [[1, 𝑁]]
so that 𝑖 ∈ o(𝑣) ⇐⇒ 𝑣 ∈ 𝐷𝑖 – in other words, ℜ−1(Δ[𝑣]) ∈
𝒮(ℜ−1(𝐷𝑖)).

▶ The presence vector 𝜋(𝑣) of a vertex 𝑣 ∈ Δ is defined, for each
𝑖 ∈ [[1, 𝑁]], as 𝜋𝑖(𝑣) = #{𝑢 ∈ 𝑇𝑖 : [𝑢] = 𝑣}. Equivalently, denoting
𝑡 = ℜ

−1(Δ[𝑣]), 𝜋𝑖(𝑣) = 𝑁𝑡(𝑇𝑖) – with the notation of Equation 7.2.

Both origin and presence can be computed in linear time in one explo-
ration of Δ – as stated in Connection between a forest and its compressed
form (p. 19).

DAG weighting The last thing that we lack to compute the kernel is
the weight function. Remember that it is defined for trees as a function
𝑤 : 𝒯 → R+. As we only need to know the weights of the subtrees
associated with vertices of Δ, we define the weight function for DAG as,
for any 𝑣 ∈ Δ, 𝜔𝑣 = 𝑤𝑡 , where 𝑡 = ℜ

−1(Δ[𝑣]).

Note that 𝜔𝑣 can be computed during the same exploration of Δ for
comparing o(·) and 𝜋(·), as soon as 𝜔𝑣 depends only on a topological
property of 𝑣 that can be computed recursively, such as ℋ(·) – see
Equation 2.1.

DAG computation of the subtree kernel We introduce the matching
subtrees functionℳ as

ℳ : {1, . . . , 𝑁}2 → 2Δ

(𝑖 , 𝑗) ↦→ {𝑣 ∈ Δ : {𝑖 , 𝑗} ⊆ o(𝑣)}

where 2Δ is the powerset of the vertices of Δ. Note thatℳ is symmetric.
This leads us to the following proposition.

104 8 A new framework for computing the subtree kernel

Proposition 8.1 For any 𝑇𝑖 , 𝑇𝑗 ∈ 𝒳train ∪ 𝒳pred, we have

𝐾(𝑇𝑖 , 𝑇𝑗) =
∑

𝑣∈ℳ(𝑖 , 𝑗)
𝜔𝑣 𝜋𝑖(𝑣)𝜋 𝑗(𝑣).

Proof. By construction, it suffices to show that ℜ(𝒮(𝑇𝑖)∩𝒮(𝑇𝑗)) =ℳ(𝑖 , 𝑗).
Let 𝑡 ∈ 𝒮(𝑇𝑖) ∩ 𝒮(𝑇𝑗). Then ℜ(𝑡) ∈ ℜ(𝑇𝑖) and ℜ(𝑡) ∈ ℜ(𝑇𝑗). Necessarily,
ℜ(𝑡) ∈ Δ and {𝑖 , 𝑗} ⊆ o(ℜ(𝑡)). So ℜ(𝑡) ∈ ℳ(𝑖 , 𝑗). Reciprocally, let
𝑣 ∈ ℳ(𝑖 , 𝑗). We denote 𝑡 = ℜ

−1(𝑣). As {𝑖 , 𝑗} ⊆ o(𝑣), then 𝑡 ∈ 𝒮(𝑇𝑖) ∩
𝒮(𝑇𝑗). F

Remark 8.1 ℳ can be created in 𝒪(𝑁2#Δ)within one exploration of
Δ and allows afterward computations of the subtree kernel 𝐾(𝑇𝑖 , 𝑇𝑗)
in 𝒪(#ℳ(𝑖 , 𝑗)) = 𝒪(min(#𝐷𝑖 , #𝐷𝑗)), which is more efficient than the
𝒪(#𝑇𝑖 + #𝑇𝑗) algorithm proposed by [37][37]: Vishwanathan et al. (2004), ‘Fast

kernels for string and tree matching’
(the complexity is announced

by [100]

[100]: Kimura et al. (2011), ‘A subpath
kernel for rooted unordered trees’

). However, since the whole process through Algorithm 3
or Algorithm 4 is costly, the global method that we propose here
is not faster than existing algorithms. Nonetheless, our algorithm is
particularly adapted to repeated computations from the same data,
e.g., for tuning parameters. Indeed, onceℳ and Δ have been created,
they can be stored and are ready to use. An illustration of this property
is provided from experimental data in Figure 8.15.

Discriminance weight function

For a given probability level and a given classification error, and under
the stochastic model of Section 7.2, we state in Weight of leaves (p. 99)
that the sufficient size of the training data set is minimum when the
weight of leaves is 0. In other words, counting the leaves, which are the
only subtrees that appear in both classes, does not provide any relevant
information to the classification problem associated with this model. As
mentioned in Remark 7.2, we conjecture that, in a more general model,
this result would be true for any subtree present in both classes. In this
section, we propose to rely on this idea by defining a new weight function,
learned from the data and called discriminance weight that assigns a
large weight to subtrees, that help to discriminate the classes, i.e., that
are present or absent in exactly one class, and a low weight otherwise.

The training data set is divided into two parts: 𝒳weight = (𝑇1 , . . . , 𝑇𝑚)
to learn the weight function, and 𝒳class = (𝑇𝑚+1 , . . . , 𝑇𝑛) to estimate the
Gram matrix. For the sake of readability, Δ denotes the DAG reduction
of the whole data set, including 𝒳weight, 𝒳class and 𝒳pred. In addition, we
assume that the data are divided into 𝐾 classes numbered from 1 to 𝐾.

For any vertex 𝑣 ∈ Δ, we define the vector 𝜌𝑣 of length 𝐾 as,

∀1 ≤ 𝑘 ≤ 𝐾, 𝜌𝑣(𝑘) =
1

#𝐶𝑘

∑
𝑇𝑖∈𝐶𝑘

1{𝑖∈o(𝑣)} ,

where (𝐶𝑘)1≤𝑘≤𝐾 forms a partition of 𝒳weight such that 𝑇𝑖 ∈ 𝐶𝑘 if and
only if 𝑇𝑖 is in class 𝑘. In other words, 𝜌𝑣(𝑘) is the proportion of data

8.2 Real data analysis 105

0

1

1𝜖

identity
smoothstep
smoothstep ◦ smoothstep

threshold

Figure 8.1: The discriminance weight is
defined by 𝜔𝑡 = 𝑓 (1 − 𝛿𝑡) where 𝑓 :
(−∞, 1] → [0, 1] is increasing with 𝑓 (0) =
0 and 𝑓 (1) = 1. This figure presents some
usual choices for 𝑓 .

in class 𝑘 that contain the subtree ℜ
−1(Δ[𝑣]). Therefore, 𝜌𝑣 belongs to

the 𝐾-dimensional hypercube. It should be noticed that 𝜌𝑣 is a vector of
zeros as soon as ℜ−1(Δ[𝑣]) is not a subtree of a tree of 𝒳weight.

For any 1 ≤ 𝑘 ≤ 𝐾, let 0𝑘 (1𝑘 , respectively) be the vector of zeros with
a unique 1 in position 𝑘 (vector of ones with a unique 0 in position
𝑘, respectively). If 𝜌𝑣 = 0𝑘 , the vertex 𝑣 corresponds to the subtree
ℜ
−1(Δ[𝑣]), which only appears in class 𝑘: 𝑣 is thus a good discriminator

of this class. Otherwise, if 𝜌𝑣 = 1𝑘 , the vertex 𝑣 appears in all the classes
except class 𝑘 and is still a good discriminator of the class. For any vertex
𝑣, 𝛿𝑣 measures the distance between 𝜌𝑣 and its nearest point of interest
0𝑘 or 1𝑘 ,

𝛿𝑣 =
𝐾

min
𝑘=1

min(|𝜌𝑣 − 0𝑘 |, |𝜌𝑣 − 1𝑘 |).

It should be noted that the maximum value of 𝛿𝑣 depends on the number
of classes and can be larger than 1. If 𝛿𝑣 is small, then 𝜌𝑣 is close to a
point of interest. Consequently, since 𝑣 tends to discriminate a class, its
weight should be large. In light of this remark, the discriminance weight
of a vertex 𝑣 is defined as 𝜔𝑣 = 𝑓 (1 − 𝛿𝑣), where 𝑓 : (−∞, 1] → [0, 1] is
increasing with 𝑓 (𝑥) = 0 for 𝑥 ≤ 0 and 𝑓 (1) = 1. Figure 8.1 illustrates
some usual choices for 𝑓 . In the sequel, we chose 𝜔𝑣 = 𝑓 ∗(1−𝛿𝑣)with the
smoothstep function 𝑓 ∗ : 𝑥 ↦→ 3𝑥2 − 2𝑥3. We borrowed the smoothstep
function from computer graphics [104] [104]: Ebert et al. (2003), Texturing &

modeling: a procedural approach

, where it is mostly used to have a
smooth transition in a threshold function.

Since leaves appear in all the trees of the training data set, 𝜌• is a vector
of ones and thus 𝛿• = 1, which implies 𝜔• = 0. This is consistent
with the result developed in Section 7.2 on the stochastic model. As
aforementioned, the discriminance weight is inspired from the theoretical
results established in Weight of leaves (p. 99) and the conjecture presented
in Remark 7.2. The relevance in practice of this weight function will be
investigated in the sequel of this chapter.

Remark 8.2 The discriminance weight is defined from the proportion
of data in each class that contain a given subtree, for all the subtrees
appearing in the data set. It is thus required to enumerate all these
subtrees. This is done, without redundancy, via the DAG reduction
Δ of the data set defined and investigated in Section 2.3. As the 𝑚
trees of the training data set dedicated to learning the discriminance
weight are partitioned into 𝐾 classes, computing one 𝜌𝑣 vector is of
complexity 𝒪(𝑚). Therefore, computing all of them is in 𝒪(#Δ𝑚). In
addition, computing all values of 𝛿𝑣 is in 𝒪(#Δ𝐾2), as there are 2𝐾
Euclidean distances to be computed for each vector of length 𝐾. All
gathered, computing the discriminance weight function has an overall
complexity of 𝒪(#Δ(𝑁 + 𝐾2)).

8.2 Real data analysis

This section is dedicated to the application of the methodology developed
before to eight real data sets with various characteristics in order to show
its strengths and weaknesses.

106 8 A new framework for computing the subtree kernel

As mentioned in Kernel computation on DAGs (p. 103), our approach
consists in computing the Gram matrices of the subtree kernel via DAG
reduction and with a new weight function called the discriminance (see
Section 36). In particular, we aim to compare the usual exponential weight
of the literature and the latter in terms of prediction capability. In all
the sequel, the Gram matrices are used as inputs to SVM algorithms
in order to tackle these classification problems. We emphasize that this
approach is not restricted to SVM but can be applied with other prediction
algorithms.

Preliminaries

In this subsection, we introduce (i) the protocol that we have followed
to investigate several data sets, together with a description of (ii) the
classification metrics that we use to assess the quality of our results,
(iii) an extension of DAG reduction to take into account discrete labels
on vertices of trees, and (iv) the standard method to convert a markup
document into a tree. It should be already noted that all the data sets
presented in the sequel are composed of trees (that can be ordered or
unordered, labeled or not) together with their class.

Protocol For each data set, we have followed the same presentation and
procedure. First, a description of the data is made notably via histograms
describing the size, outdegree, height and class distribution of trees. Given
the dispersion of some of these quantities, we have binned together the
values that do not fit inside the interval [𝑄1 − 1.5 · 𝐼𝑄𝑅;𝑄3 + 1.5 · 𝐼𝑄𝑅]
where 𝐼𝑄𝑅 = 𝑄3 −𝑄1 is the interquartile range. Therefore, the flattened-
large bins that appears in some histograms represents those outliers
bins. The objective of this part is to show the wide range of data sets
considered in this chapter.

Second, we evaluated the performance of the subtree kernel on a classifi-
cation task via two methods: (i) for exponential weights 𝑡 ↦→ 𝜆ℋ(𝑡) we
randomly split the data in thirds, two for training a SVM, and one for
prediction; (ii) for discriminance weight, we also randomly split the data
in thirds, one for training the discriminance weight, one for training a
SVM, and the last one for prediction. We repeated 50 times this random
split for discriminance, and for different values of 𝜆. The classification
results are assessed by some metrics defined in the upcoming paragraph,
and gathered in boxplots. The first application example, presented in
Prediction of the language of a Wikipedia article from its topology (p. 108),
is slightly different since (i) we have worked with 50 distinct databases,
and (ii) the results have been completed with a deeper analysis of the
discriminance weights, in relation to the usual weighting scheme of the
literature.

Classification metrics To quantify the quality of a prediction, we use
four standard metrics: accuracy, precision, recall and F-score. For a class
𝑘, one can have true positives 𝑇𝑃𝑘 , false positives 𝐹𝑃𝑘 , true negatives
𝑇𝑁𝑘 and false negatives 𝐹𝑁𝑘 . In a binary classification problem, those

8.2 Real data analysis 107

metrics are defined as,

Accuracy(𝑘) =
𝑇𝑃𝑘 + 𝑇𝑁𝑘

𝑇𝑃𝑘 + 𝐹𝑃𝑘 + 𝐹𝑁𝑘 + 𝑇𝑁𝑘
,

Precision(𝑘) =
𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑃𝑘
,

Recall(𝑘) =
𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑁𝑘
,

F-score(𝑘) =
2 Precision(𝑘) × Recall(𝑘)
Precision(𝑘) + Recall(𝑘) .

For a problem with 𝐾 > 2 classes, we adopt the macro-average approach,
that is,

Metric =
1
𝐾

𝐾∑
𝑘=1

Metric(𝑘).

We used the implementation available in the scikit-learn Python
library, namely via the functions accuracy_score and
precision_recall_fscore_support.

DAG reduction with labels In the sequel, some of the presented data
sets are composed of labeled trees. The isomorphism between them is
assumed to impose the equality of labels, as was done in [36, 102] [102]: Aiolli et al. (2006), ‘Fast on-line

kernel learning for trees’
[36]: Da San Martino (2009), ‘Kernel
methods for tree structured data’

, but
for ordered trees only.

From a markup document to a tree Some of the data sets come from
markup documents (XML or HTML files). From such a document, one
can extract a tree structure, identifying each couple of opening and
closing tags as a vertex, whose children are the inner tags. It should be
noticed that, during this transcription, semantic data is forgotten: the tree
only describes the topology of the document. Figure 8.2 illustrates the
conversion from HTML to tree on a small example. Such a tree is ordered
but can be considered as unordered. Finally, a tag can also be chosen as a
label for the corresponding vertex in the tree.

<html>
<body>

<h1>
Lorem ipsum dolor sit amet, consectetur adipiscing elit.

</h1>
<p>

Sed non risus.
</p>

Suspendisse lectus tortor, dignissim sit amet,
adipiscing nec, ultricies sed, dolor.

Cras elementum ultrices diam.

Maecenas ligula massa, varius a,
semper congue, euismod non, mi.

Proin porttitor, orci nec nonummy
molestie, enim est eleifend mi,
non fermentum diam nisl sit amet erat.

Duis semper. Duis arcu massa, scelerisque vitae,
consequat in, pretium a, enim.

<p>

Pellentesque congue. Ut in risus volutpat libero
pharetra tempor.

</p>
</body>

</html>

Figure 8.2: Underlying ordered tree struc-
ture (right) present in a HTML document
(left). Each level in the tree is colored in
the same way as the corresponding tags in
the document. Natural order from top to
bottom in the HTML document corresponds
to left-to-right order in the tree.

108 8 A new framework for computing the subtree kernel

37: https://www.mediawiki.org/wiki/

API:Random

Prediction of the language of a Wikipedia article from its

topology

Classification problem and results Wikipedia pages are encoded in
HTML and, as aforementioned, can therefore be converted into trees. In this
context, we are interested in the following question: does the (ordered or
unordered) topology of a Wikipedia article (as an HTML page) contain the
information of the language in which it has been written? This can be
formulated as a supervised classification problem: given a training data
set composed of the tree structures of Wikipedia articles labeled with
their language, is a prediction algorithm able to predict the language of
new data only from its topology? The interest of this question is discussed
in Remark 8.3.

In order to tackle this problem, we have built 50 databases of 480 trees
each, converted from Wikipedia articles as follows. Each of the databases
is composed of 4 data sets:

▶ a data set to predict 𝒳pred made of 120 trees;
▶ a small train data set 𝒳small

train made of 40 trees;
▶ a medium train data set 𝒳medium

train made of 120 trees;
▶ and a large train data set 𝒳large

train made of 200 trees.

For each data set, and each language, we picked Wikipedia articles at
random using the Wikipedia API37, and converted them into unlabeled
trees. It should be noted that the probability to have the same article in at
least two different languages is extremely low. For each database, we aim
at predicting the language of the trees in 𝒳pred using a SVM algorithm
based on the subtree kernel for ordered and unordered trees, and trained
with 𝒳size

train where size ∈ {small,medium, large}. Figure 8.3 provides the
description of one typical database. All trees seem to share common
characteristics, regardless of their class.

Figure 8.3: Description of a Wikipedia
data set (480 trees).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0.0

0.1

Size repartition

0 30 60 90 120 150 180 210 240 270
0.0

0.2
Outdegree repartition

10 15 20 25 30 35 40 45 50
0.0

0.5
Height repartition

0.0

0.2

Class repartition

Uniform

Classification results over the 50 databases are displayed in Figure 8.4.
Discriminance weighting achieves highly better results than exponential
weighting, with all metrics greater than 90% on average from only 200
training data. This points out that the language information exists in the
structure of Wikipedia pages, whether they are considered as ordered
or unordered trees, unlike what intuition as well as subtree kernel with
exponential weighting suggest. It should be added that the variance of

https://www.mediawiki.org/wiki/API:Random
https://www.mediawiki.org/wiki/API:Random

8.2 Real data analysis 109

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy Precision Recall F-score

Small Medium Large

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy Precision Recall F-score

Small Medium Large

Figure 8.4: Classification results for the 50 Wikipedia databases as ordered (left) and unordered (right) trees. 𝜆 values stands for exponential
decay weight of the form 𝑡 ↦→ 𝜆ℋ(𝑡). The colors of the boxplot indicate, for each size ∈ {small,medium, large}, the results obtained for the
classification of 𝒳pred from 𝒳size

train.

all metrics seem to decrease with the size of the training data set when
using discriminance.

These numerical results show the great interest of the discriminance
weight, in particular with respect to an exponential weight decay. Nev-
ertheless, it should be compelling in this context to understand the
classification rule learned by the algorithm. Indeed, this could lead to
explain how the information of the language is present in the topology
of the article.

Comprehensive learning and data visualization When a learning
algorithm is efficient for a given prediction problem, it is interesting
to understand which features are significant. In the subtree kernel, the
features are the subtrees appearing in all the trees of all the classes.
Looking at Equation 7.4, the contribution of any subtree 𝑡 to the subtree
kernel with discriminance weighting is the product of two terms: the
discriminance weight 𝑤𝑡 quantifies the ability of 𝑡 to discriminate a class,
while 𝜅(𝑁𝑡(𝑇1), 𝑁𝑡(𝑇2)) evaluates the similarity between 𝑇1 and 𝑇2 with
respect to 𝑡 through the kernel 𝜅. As explained in Section 36, if 𝑤𝑡 is
close to 1, 𝑡 is an important feature in the prediction problem.

As shown in Section 2.3, DAG reduction provides a tool to compress a
data set without loss. We recall that each vertex of the DAG represents
a subtree appearing in the data. Consequently, we propose to visualize
the important features on the DAG of the data set where the vertices are
drawn with a radius that is an increasing function of the discriminance
weight (i.e. the bigger the weight, the bigger the node). In addition, each
vertex of the DAG can be colored by the class that it helps to discriminate,
either positively (the vertex of the DAG corresponds to a subtree that is
present almost only in the trees of this class), or negatively. This provides
a visualization at a glance of the whole data set that highlights the
significant features for the underlying classification problem. We refer
the reader to Figure 8.5 for an application to one of our data sets. Thanks
to this tool, we have remarked that the subtree corresponding to the

110 8 A new framework for computing the subtree kernel

: absence

: presence

: absence

: presence

: absence

: presence

: absence

: presence

Figure 8.5: Visualisation of one data set 𝒳 = 𝒳medium
train ∪𝒳pred of unordered trees among the 30 Wikipedia databases. Each vertex 𝑣 ∈ ℜ(𝒳)

is scaled according to 𝑓 ∗(1 − 𝛿𝑣) so that the largest vertices are those that best discriminate the different classes. For each 𝑣, we find the class
𝑘 such that 𝜌𝑣 has minimal distance to either 0𝑘 or 1𝑘 . If it is 0𝑘 , we say that 𝑣 discriminates by its presence, and if it is 1𝑘 , 𝑣 discriminates
by its absence. We color 𝑣 following this distinction according to the legend, where the flags indicate the language.

License at the bottom of any article highly depends on the language, and
thus helps to predict the class.

Distribution of discriminance weights To provide a better understand-
ing of our results, we have analyzed in Figure 8.6 the distribution of
discriminance weights of one of our large training data sets. It shows that
the discriminance weight behaves on average as a shifted exponential.
Considering the great performance achieved by the discriminance weight,
this illustrates that exponential weighting presented in the literature is
indeed a good idea, when setting 𝑤• = 0 as shown in Weight of leaves
(p. 99) or suggested in [37][37]: Vishwanathan et al. (2004), ‘Fast

kernels for string and tree matching’
. However, a closer look at the distribution in

Figure 8.6 (left) reveals that important features in the kernel are actually
outliers: relevant information is both far from the average behavior and
scarce. To a certain extent and regarding these results, discriminance
weight is the second order of the exponential weight.

Remark 8.3 The classification problem considered in this subsection
may seem unrealistic as ignoring the text information is obviously
counterproductive in the prediction of the language of an article.
Nevertheless, this application example is of interest for two main
reasons. First, this prediction problem is difficult as shown by the bad
results obtained from the subtree kernel with exponential weights
(see Figure 8.4). As highlighted in Figure 8.5 and Figure 8.6 (left),
the subtrees that can discriminate the classes are very infrequent and
diverse (in terms of size and structure), so difficult to be identified.

8.2 Real data analysis 111

Figure 8.6: Estimation of the distribution of the discriminance weight function ℎ ↦→ {𝑤𝑣 : ℋ(𝑣) = ℎ, 𝑣 ∈ ℜ(𝒳)} from one large training
Wikipedia data set of unordered trees (left) and fit of its average behavior (in red) to an exponential function (in blue). All ordered and
unordered data sets show a similar behavior.

0 10 20 30 40 50 60 70 80 90
0.0

0.5

Size repartition

4 8 12 16 20 24 28 32
0.0

0.5

Outdegree repartition

1 2 3
0

1
Height repartition

0.0

0.1

Class repartition

Uniform

0 15 30 45 60 75 90 105
0.0

0.2

Size repartition

0 8 16 24 32 40 48 56
0.0

0.5
Outdegree repartition

2 3 4
0

1
Height repartition

0.0

0.1

Class repartition

Uniform

Figure 8.7: Description of INEX 2005 (9,630 trees, left) and INEX 2006 (12,107 trees, right) data sets.

On a different level, as Wikipedia has a very large corpus of pages,
it provides a practical tool to test our algorithms and investigate the
properties of our approach. Indeed, we can virtually create as many
different data sets as we want by randomly picking articles, ensuring
that we avoid overfitting.

Markup documents data sets

We present and analyse in this subsection three data sets obtained from
markup documents.

INEX 2005 and 2006 These data sets originate from the INEX compe-
tition [105] [105]: Denoyer et al. (2007), ‘Report on

the XML mining track at INEX 2005 and
INEX 2006: categorization and clustering
of XML documents’

. They are XML documents, that we have been considering as
ordered and unordered in our experiments. INEX 2005 is made of 9,630
documents arranged in 11 classes, whereas INEX 2006 has 18 classes for
12,107 documents. For INEX 2005, classes can be split into two groups of
trees with similar characteristics, as shown in Figure 8.7 (left). However,

112 8 A new framework for computing the subtree kernel

38: https://store.steampowered.com

and https://www.gog.com

inside each group, all trees are alike. In the case of INEX 2006, no special
group seems to emerge from topological characteristics of the data, as
pointed out in Figure 8.7 (right).

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy Precision Recall F-score

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy Precision Recall F-score

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy Precision Recall F-score

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy Precision Recall F-score

Figure 8.8: Classification results for INEX 2005 (top) and INEX 2006 (bottom) as ordered (left) and unordered (right) trees.

The classification results are depicted in Figure 8.8, for both data sets, and
with trees considered successively as ordered and unordered. For INEX
2005, both exponential decay and discriminance achieve similar good
performance. However, for INEX 2006, neither of them are able to achieve
significant results. Actually, discriminance performs slightly worse than
exponential decay. From these results we deduce that subtrees do not
seem to form the appropriate substructure to capture the information
needed to properly classify the data.

Videogame sellers We manually collected, for two major websites
selling videogames38, the URLs of the top 100 best-selling games, and
converted them into ordered labeled trees. Although webpages might
seem similar to some extent, the trees are actually very different, as
highlighted in Figure 8.9. We found that the subtree kernel retrieves this
information as, for both exponential decay and discriminance weights,
we achieved 100% of correct classifications in all our tests.

https://store.steampowered.com
https://www.gog.com

8.2 Real data analysis 113

400 800 1200 1600 2000 2400 2800 3200 3600 4000
0.00

0.25

Size repartition

15 30 45 60 75 90 105
0.0

0.5

Outdegree repartition

0 150 450 900
0.0

0.2

Height repartition

0.0

0.5
Class repartition

Uniform

Figure 8.9: Description of the videogame
sellers data set (200 trees).

Biological data sets

In this subsection, three data sets from the literature are analyzed, all
related to biological topics.

0 15 30 45 60 75 90 105 120
0.0

0.5
Size repartition

2
0

1
Outdegree repartition

3 6 9 12 15 18 21 24
0.00

0.25

Height repartition

0.0

0.2

Class repartition

Uniform

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy Precision Recall F-score

Figure 8.10: Description of the VascuSynth data set (120 trees, left) and classification results (right).

VascuSynth The VascuSynth data set from [106, 107] [106]: Hamarneh et al. (2010), ‘VascuSynth:
Simulating Vascular Trees for Generating
Volumetric Image data with Ground
Truth Segmentation and Tree Analysis’
[107]: Jassi et al. (2011), ‘VascuSynth:
Vascular Tree Synthesis Software’

is composed of
120 unordered trees that represent blood vasculatures with different
bifurcations numbers. In a tree, each vertex has a continuous label
describing the radius 𝑟 of the corresponding vessel. We have discretized
these continuous labels in three categories: small if 𝑟 < 0.02, medium if
0.02 ≤ 𝑟 < 0.04 and large if 𝑟 ≥ 0.04 (all values are in arbitrary unit). We
split up the trees into three classes, based on their bifurcation number.
Based on Figure 8.10 (left), we can distinguish between the three classes
by looking only at the size of trees. Contrary to the videogame sellers
data set that had the same property, the classification does not achieve
100% of good classification, as depicted in Figure 8.10 (right). On average,
discriminance performs better than the other weights, despite having a
larger variance. This is probably due to the small size of the data set, as
the discriminance is learned only with around 13 trees per class.

114 8 A new framework for computing the subtree kernel

0 60 120 180 240 300 360 420 480 540
0.0

0.5

Size repartition

0 1 2
0

1
Outdegree repartition

0 2 4 6 8
0.0

0.5

Height repartition

0.0

0.5

Class repartition

Uniform

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy Precision Recall F-score

Figure 8.11: Description of the Hicks et al. data set (345 trees, left) and classification results (right).

39: https://doi.org/10.1101/267450

40: https://bioemergences.

eu/bioemergences/

openworkflow-datasets.php

41: https://science.rpi.edu/

computer-science

Hicks et al. cell lineage trees Across cellular division, tracking the
lineage of a single cell naturally defines a tree. In a recent article, [108][108]: Hicks et al. (2019), ‘Maps of

variability in cell lineage trees’ have been investigating the variability inside cell lineage trees of three
different species. From the encoding of the data that they have provided
as supplementary material39, we have extracted ordered unlabeled trees
that are presented in Figure 8.11 (left). The data set contains, for two
classes, trees of outdegree 0 (i.e., isolated leaves) that can be considered
as noise. With respect to the exponential weight, the value of the kernel
between such trees will be identical, whether they belong to the same
class or to two different classes. They therefore contribute to reducing
the kernel’s ability to effectively discriminate between these two classes.
On the other hand, the discriminance weight will assign them a zero
value, “de-noising”, in a way, the data. This observation may explain why
discriminance weight achieves better results than exponential weight.

Faure et al. cell lineage trees [109]

[109]: Faure et al. (2015), ‘An algorithmic
workflow for the automated processing of
3D+ time microscopy images of develop-
ing organisms and the reconstruction of
their cell lineage’

have developed a method to construct
cell lineage trees from microscopy and provided their data online40. We
extracted 300 unordered and unlabeled trees, divided into three classes.
It seems from Figure 8.12 (left) that one class among the three can be
distinguished from the two others. Classification results can be found in
Figure 8.12 (right): the discriminance weight performs better than the
exponential weight, whatever the value of the parameter.

LOGML

The LOGML data set is made of user sessions on an academic website,
namely the Rensselaer Polytechnic Institute Computer Science Depart-
ment website41, that registered the navigation of users across the website.
23,111 unordered labeled trees are present, divided into two classes. The
trees are very alike, as shown in Figure 8.13 (left), and the classification re-
sults of Figure 8.13 (right) are very similar to INEX 2005, where all weight
functions behave similarly, without any advantage for the discriminance
weight in terms of prediction.

https://doi.org/10.1101/267450
https://bioemergences.eu/bioemergences/openworkflow-datasets.php
https://bioemergences.eu/bioemergences/openworkflow-datasets.php
https://bioemergences.eu/bioemergences/openworkflow-datasets.php
https://science.rpi.edu/computer-science
https://science.rpi.edu/computer-science

8.3 Interest of the DAG approach 115

32 40 48 56 64 72 80 88
0.0

0.5

Size repartition

1 2 3
0

1
Outdegree repartition

26 27 28 29 30
0

1
Height repartition

0.0

0.2

Class repartition

Uniform

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy Precision Recall F-score

Figure 8.12: Description of the Faure et al. data set (300 trees, left) and classification results (right).

0 40 80 120 160 200 240 280
0.0

0.2

Size repartition

0 15 30 45 60 75 90 105 120
0.00

0.25

Outdegree repartition

0 15 30 45 60 75 90 105
0.00

0.25

Height repartition

0.0

0.5

Class repartition

Uniform

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

λ
=

0.
3

λ
=

0.
5

λ
=

0.
7

D
isc

rim
in

an
ce

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy Precision Recall F-score

Figure 8.13: Description of the LOGML data set (23,111 trees, left) and classification results (right).

8.3 Interest of the DAG approach

Learning the weight function

In Section 7.2, we have shown on a 2-classes stochastic model that the
efficiency of the subtree kernel is improved by imposing that the weight
of leaves is null. As explained in Remark 7.2, we conjecture that the
weight of any subtree present in two different classes should be 0. The
main interest of the DAG approach developed in Kernel computation on
DAGs (p. 103) is that it allows to learn the weight function from the data,
as developed in Section 36 with the discriminance weight function. Our
method has been implemented and tested on eight real data sets with
very different characteristics that are summed up in Table 8.1.

As a conclusion of our experiments, we have analyzed the relative
improvement in prediction obtained with the discriminance weight
against the best exponential weight in order to show both the importance
of the weight function and the relevance of the method we developed
in this paper. More precisely, for each data set and each classification

116 8 A new framework for computing the subtree kernel

Table 8.1: Summary of the 8 data sets.

data set Wikipedia Videogames INEX
2005

INEX
2006 VascuSynth Hicks

et al.
Faure
et al. LOGML

ord. / unord. both ord. both both unord. ord. unord. unord.
labeled ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓

of trees 160 – 320 200 9,630 12,107 120 345 300 23,111
of classes 4 2 11 18 3 3 3 2

metric, we have calculated

𝑅𝐼 =
Metricdiscr −max(Metric𝜆)

max(Metric𝜆)
,

from the average values of the different metrics. The results are presented
in Figure 8.14. We have found that, except in one case, discriminance
behaves as good as exponential weight decay and even performs better
in most of the data sets. Furthermore, one can observe a kind of trend,
where the relative improvement decreases when the number of trees in
the training data set is increasing, which proves the great interest of the
discriminance to handle small data sets, provided that (i) the problem
is difficult enough that the exponential weights are not already high
performing, as it is the case in the Videogames sellers data set, and (ii) the
data set is not too small, as for VascuSynth. Indeed, as the discriminance
is learned independently from the SVM, one must have enough training
data to divide them efficiently. Nevertheless, it should be noted that, in
the framework of the DAG approach, results from the discriminance
weight can be obtained much faster due to the fact that the Gram matrices
are estimated from one half of the training data set, while learning the
discrimance is very fast as it can be done in one traversal of the DAG (see
the complexity presented in Remark 8.2). Finally, we have investigated
on a single example some properties of the discriminance, discovering
that it can be interpreted as a second-order exponential weight, as well
as a method for visualizing the important features in the data.

Figure 8.14: Relative improvement 𝑅𝐼 (in
percentage) of the discriminance against
the best value of 𝜆 for all data sets (sorted
by increasing number of trees in the train-
ing data set) and all metrics.

Vas
cu

sy
nt

h

W
ik

ip
ed

ia
- sm

al
l

V
id

eo
ga

m
e
se

lle
rs

W
ik

ip
ed

ia
- m

ed
iu

m

Fa
ur

e
et

al
.

W
ik

ip
ed

ia
- la

rg
e

H
ick

s
et

al
.

IN
EX

20
05

IN
EX

20
06

LO
G

M
L

−20

0

20

40

60

80

100

120

140

Accuracy

Precision

Recall

F-score

8.3 Interest of the DAG approach 117

Computation time

As shown in Figure 8.12 (right), the exponential decay classification results
for the Faure et al. data set are very dependent on the value chosen for the
parameter 𝜆. In this case, it can be interesting to tune this parameter and
estimate its best value with respect to a prediction score. This requires
to compute the Gram matrices from different weight functions. We
present in Figure 8.15 the computation time required to compute the
Gram matrices from a given number of values of the parameter. As
expected from the theoretical results, we observe a linear dependency:
the intercept corresponds to the computation time required to compute
and annotate the DAG reduction, while the slope is associated with the
time required to compute the Gram matrices, which is proportional to
the average of 𝒪(min(#𝑇𝑖 , #𝑇𝑗)) (see Remark 8.1). This can be compared to
the complexity of the algorithm developed in [37] [37]: Vishwanathan et al. (2004), ‘Fast

kernels for string and tree matching’
, which is the average of

𝒪(#𝑇𝑖 +#𝑇𝑗). Consequently, the corresponding computation times should
be proportional to at least twice the slope that we observe with the DAG
approach. This shows another interest of our method that is not related to
the discriminance weight function. It should be faster to compute several
repetitions of the subtree kernel from the DAG approach than from the
previous algorithm [37] provided that the number of repetitions is large
enough.

1 3 5 7 9 11 13 15 17 19
Number of kernel repetitions

0

50

100

150

200

250

300

350

C
om

p
u

ta
ti

on
ti

m
e

(s
)

Figure 8.15: Computation time required
to compute several repetitions of the ker-
nel on the Faure et al. data set. All those
calculations have been repeated 50 times
for each number of repetitions. The inter-
cept corresponds to the DAG compression
of the data set, which is independent on
the number of repetitions. The blue curve
is a linear fitting of all the measurement
points.

Perspectives 9

9.1 Tree isomorphisms 119

Refining the algorithm . . . 120

Application to graph isomor-

phism 121

Optimization on the cipher

space 122

9.2 Search for frequent patterns 124

Extension to labeled FDAGs 124

Toward the enumeration of

DAGs 126

9.3 Classification of trees 127

The forest kernel 127

Explicit enumeration with other

kernels 129

I took a walk in the woods and came out
taller than the trees.

Henry David Thoreau

In this chapter, we review what has been presented in this thesis, and
provide a number of perspectives for further research.

In Section 9.1, we consider isomorphisms of labeled trees, as treated in The
Tree Ciphering Isomorphism Problem. In particular, (i) we propose ways
to further refine the algorithm proposed in Chapter 4; (ii) we consider
whether the algorithm is suitable to address the graph isomorphism
problem; and finally (iii) we introduce an optimization problem where
the goal is to find a tree ciphering that optimizes a given criterion, rather
than simply the first one found.

In the context of the search for frequent patterns, Section 9.2 establishes
two perspectives based on the enumeration of DAGs compressing ir-
redundant forests as developed in Enumeration Trees: from Trees to
Forests: the extension to labeled DAGs, and the enumeration of (general)
DAGs.

In The Subtree Kernel Revisited, we focused on convolution kernels
and in particular on the subtree kernel. In Section 9.3, we introduce a
new kernel based on the enumeration of forests of subtrees presented in
Chapter 6; followed by a discussion of the extent to which the lessons
learned from the subtree kernel would be adaptable to other kernels.

9.1 Tree isomorphisms

In Chapter 3 and Chapter 4, we focused on isomorphisms of labeled
trees – where two trees are isomorphic up to a cipher if and only if they
are identical up to label rewriting.

In the same way that DAG compression is derived – in Section 2.3 –
from the usual tree isomorphism, we were able to define, from this new
definition, a DAG compression of labeled trees. This compression is
lossless, and we have provided Algorithm 3 which allows to build that
DAG from a tree.

The algorithm to build the DAG compression of an unlabeled tree is
based on AHU algorithm [22] [22]: Aho et al. (1974), ‘The design and

analysis of computer algorithms’
, that determines whether two trees are

isomorphic – which is linear. Our new labeled compression algorithm is
also based on an algorithm that determines whether two labeled trees
are isomorphic up to a cipher. However, the latter is not linear. Indeed,
determining whether two trees are isomorphic up to a cipher is as hard
as determining whether two graphs are isomorphic, a problem whose
complexity is assumed to be intermediate between P and NP [67] [67]: Schöning (1987), ‘Graph isomor-

phism is in the low hierarchy’
.

120 9 Perspectives

We have devoted Chapter 4 to the treatment of this problem, and proposed
an algorithm that constructs an isomorphism – when it exists – between
two labeled trees. Our algorithm operates in two phases: (i) the first
drastically breaks the cardinality of the search space, by determining a
number of mandatory mappings of the isomorphism; and (ii) the second
is a backtracking phase that completes the construction.

Refining the algorithm

We saw in Section 4.4 that the first phase, preprocessing, drastically
reduces the search space, which allows the subsequent backtracking to
be efficient. On the other hand, in some configurations, the latter can be
considerably slow to converge, so there is still room for improvement.
Two possibilities are presented here.

Bags on labels If two trees do not have the same number of nodes, nor
the same height or degree, it is immediate to determine that they are not
isomorphic. This criterion offers a simple way to decide without having
to deploy the full artillery of the AHU algorithm.

In the same way, one can detect that two trees are not isomorphic up
to a cipher simply if they do not have the same number of labels. To be
more precise, and inspired by coloring refinement algorithms such as
Weisfeiler-Leman [68, 110][68]: Weisfeiler et al. (1968), ‘The reduction

of a graph to canonical form and the
algebra which appears therein’
[110]: Grohe et al. (2017), ‘Color refinement
and its applications’

, we can compare the histograms of the number
of occurrences of the labels (sorted from the most frequent to the least
frequent) and if they differ, decide on non-isomorphism.

If the histograms are identical, not only is there a chance that the trees
are isomorphic, but labels with identical numbers of occurrences are
candidates to be mapped together. The notion of bags, used for the
nodes in our algorithm, naturally arises to treat the labels as well. A
deduction rule similar to Deduction Rule 4.1 can be used, which maps
labels together if they are alone in their bag.

This refinement is likely to improve the performance of the algorithm
when the number of labels is smaller than the number of nodes in the
trees. Unfortunately, the most problematic cases at the moment are not
in this category. To apply our algorithm to real data, nevertheless, it will
be desirable to implement this improvement.

Backtracking strategy So far, the strategy used in backtracking, in
light of Theorem 4.3, is to prioritize bags and collections according to
their number of elements, but without consideration for the elements
themselves.

Consider what could be gained by taking into account the elements of
the bags rather than just their cardinality.

A reward could be associated with each possible mapping, for example
in terms of the reduction of the search space that it produces. This reward
is difficult to estimate without actually doing the mapping and observing
all the deductions involved. On the other hand, we can set a “horizon”, a
limit level of recursion in the mappings and deductions which allows us
to estimate this reward.

9.1 Tree isomorphisms 121

For example, a horizon of 1 would look at whether the mapping of two
nodes also causes the mapping of their parents; and how the bags and
collections containing their children are split (without going into the
recursion of SplitChildren). Since the depth of nodes has an influence
on the amount of maximal successive parent mappings possible, and
on the maximal level of recursion of the SplitChildren procedure, this
could be an indicator of great interest.

The backtracking tree exploration problem might also be approached
with stochastic methods like Monte Carlo Tree Search – a method widely
used to explore decision trees (e.g. in the context of game theory) whose
large number of states makes exhaustive exploration impossible. The tree
is explored partially, via random sampling, in order to explore only the
most promising options. On that topic, see [111] [111]: Browne et al. (2012), ‘A survey of

Monte Carlo tree search methods’
.

Application to graph isomorphism

The problem of tree ciphering isomorphism is graph isomorphism com-
plete, by virtue of Theorem 4.1. Figure 4.1, reproduced below, illustrates
how to transform a graph into a labeled tree – note that this reduction is
linear in the size of the graph. Since we have constructed an algorithm to
determine tree isomorphism up to a cipher, one may wonder how well it
would solve the graph isomorphism problem. Recall that most algorithms
addressing the problem [25] [25]: McKay et al. (2014), ‘Practical graph

isomorphism, II’
do not directly construct isomorphisms

between graphs, but rather check if they belong to the same equivalence
class (by constructing a representative of each class).

1

2

3

4 5

0

1 2 3 4 5

2 3 3 2 3 5

Figure 4.1: A graph (left) and its reduction
as a labeled tree (right). Colors have been
added for better readability.

Given a graph 𝐺 = (𝑉, 𝐸), we can notice that the tree 𝑇𝐺 constructed by
the reduction has #𝑉 + #𝐸 + 1 nodes, is of height 2, and of degree #𝑉 . All
leaves have the same equivalence class (for ≃), and the equivalence class
of intermediate nodes is directly related to their degree: for any nodes
𝑢, 𝑣 with ℋ(𝑢) = ℋ(𝑣) = 1, we have [𝑢] = [𝑣] ⇐⇒ #𝐶(𝑢) = #𝐶(𝑣).
Therefore, we can only expect the preprocessing to

▶ map the vertices of the graph that are the only ones to have a given
degree;

▶ partition the other vertices of the graph according to their degree.

Actually, this classification of the graph vertices by degree corresponds
exactly to the state of the graph after the first color refinement pass of
the Weisfeiler-Leman algorithm [68, 110] [68]: Weisfeiler et al. (1968), ‘The reduction

of a graph to canonical form and the
algebra which appears therein’
[110]: Grohe et al. (2017), ‘Color refinement
and its applications’

.

Since we then proceed with a backtracking step, there is little hope that our
algorithm is competitive against the state of the art for graph isomorphism.
Recall, however, that competing algorithms do not explicitly construct
isomorphism, and so our algorithm paves the way in this direction.
Moreover, given the very particular shape of the trees obtained by the
reduction, one can imagine rethinking the algorithm while taking into

122 9 Perspectives

42: Note that determining ProjF(𝑓𝜙) is in
itself an optimization problem. See below.

account these specificities (the algorithm being currently much more
generic), or even following the same kind of strategy but operating
directly on the graph.

Optimization on the cipher space

Consider two isomorphic labeled trees 𝑇1 and 𝑇2, and assume that
#𝒜(𝑇𝑖) = #𝑇𝑖 – in other words, all labels are different. In this case,
any tree isomorphism between 𝑇1 and 𝑇2 is also a tree ciphering, i.e.,
Isom(𝑇1 , 𝑇2) = Cipher(𝑇1 , 𝑇2). So far, we have been interested in tree
isomorphisms that induce a bĳection on the label space. One may
want to impose additional conditions on the ciphers; especially in our
example where all isomorphisms are valid. For instance, one might
want to favor the red isomorphism in the example of Figure 9.1 for its
underlying linearity, as opposed to the “sawtooth” behaviour of the blue
isomorphism.

Figure 9.1: Two topologically isomorphic
unordered trees 𝑇1 and 𝑇2 and the only
two possible tree isomorphisms between
them (left and center); as well as the two
induced bĳections on labels (right), where
the dotted lines interpolates the points.

1

2 3

4 5

1

2 3

4 5

𝑇1 𝑇2

1

2 3

4 5

1

2 3

4 5

𝑇1 𝑇2

1

1

2

2

3

3

4

4

5

5

We developed in Chapter 4 an algorithm to build one tree ciphering;
we are interested here in finding the best one (even in the case where
#𝒜(𝑇𝑖) ≠ #𝑇𝑖). There are many ways to make sense of “best” so, in
order to fix things, we consider here just one particular problem among
others.

Let 𝑇1 and 𝑇2 be two labeled trees. Let us denote by G the space of
functions𝒜(𝑇1) → 𝒜(𝑇2). Suppose there exist 𝜙0 ∈ Cipher(𝑇1 , 𝑇2) and
𝑓0 ∈ G so that ∀𝑢 ∈ 𝑇1 , 𝜙0(𝑢) = 𝑓0(𝑢). Moreover, let F be a subspace of G;
suppose that 𝑓0 ∈ F – in the example of Figure 9.1, where𝒜(𝑇𝑖) ⊆ R, G is
the space of real functions. We could take F = {𝑥 ↦→ 𝑎𝑥 + 𝑏 : 𝑎, 𝑏 ∈ R} –
i.e. linear functions. We have 𝑓0 = id ∈ F.

If we know 𝜙0, then finding the function 𝑓0 is akin to a standard regression
problem. 𝑓𝜙0

provides a list of couples (𝑢, 𝜙0(𝑢)) on which the regression
can be performed; and since 𝑓0 ∈ F, we are sure to retrieve 𝑓0.

Now suppose that we ignore 𝜙0. For each 𝜙 ∈ Cipher(𝑇1 , 𝑇2), we have
an associated candidate 𝑓𝜙. Suppose that G is an inner product space,
and denote by ∥ · ∥ the (discrete) norm induced by the inner product.
Let us denote by ProjF(𝑓𝜙) the projection of 𝑓𝜙 on F42. Then, to 𝑓𝜙, we
can associate ∥ 𝑓𝜙 − ProjF(𝑓𝜙)∥. The goal is then to find 𝜙 that minimizes
this quantity – that is, find 𝑓𝜙 that is the most regular with respect to the
functions of F.

For the sake of example, suppose F = {𝑥 ↦→ 𝑎𝑥 + 𝑏 : 𝑎, 𝑏 ∈ R}. Let 𝑓 =
ProjF(𝑓𝜙). To calculate 𝑓 , we use the pairs

(
𝑢, 𝜙(𝑢)

)
provided by 𝑓𝜙. By

9.1 Tree isomorphisms 123

43: Summing over 𝑢 ∈ 𝑇1, instead of 𝛼 ∈
𝒜(𝑇1), amounts to weighting each element
𝒜(𝑇1) by its number of occurrences in
𝑇1. If #𝒜(𝑇1) = #𝑇1, the two sums are
equivalent.

Figure 3.6: A labeled tree, where the labels
are the (𝑥, 𝑦) coordinates of each node.
Some symmetries of the tree are high-
lighted.

least squares, finding 𝑓 is equivalent to minimizing
∑
𝑢∈𝑇1

(
𝑎𝑢 + 𝑏 − 𝜙(𝑢)

)2

with respect to 𝑎, 𝑏 ∈ R43. In the end, we obtain the following optimization
problem:

min
𝜙∈Cipher(𝑇1 ,𝑇2)

min
𝑎,𝑏∈R

∑
𝑢∈𝑇1

(
𝑎𝑢 + 𝑏 − 𝜙(𝑢)

)2
.

More generally, if we suppose that𝒜(𝑇2) is embedded in a metric space
whose metric is denoted by 𝑑, the problem is equivalently expressed as

min
𝜙∈Cipher(𝑇1 ,𝑇2)

min
𝑓 ∈F

∑
𝑢∈𝑇1

𝑑
(
𝑓 (𝑢), 𝜙(𝑢)

)
. (9.1)

Note that since they are of the same nature, the min operators can be
freely exchanged. Given a fixed 𝜙, finding an optimal 𝑓 ∈ F is is as easy
as solving a regression problem on F. On the other hand, with fixed 𝑓 ,
finding 𝜙 that minimizes the objective function is as difficult as exploring
the space Cipher(𝑇1 , 𝑇2). This prevents us from solving the problem by
component-wise optimization (i.e., fix 𝜙, minimize according to 𝑓 , fix 𝑓 ,
minimize according to 𝜙, etc), since we would need to investigate this
challenging space numerous times.

On the other hand, one can imagine a greedy strategy allowing to build a
pair (𝜙, 𝑓)whose least squares error will hopefully be not too far from the
actual minimum. Let us only perform preprocessing between 𝑇1 and 𝑇2 to
get a partial mapping of nodes and a preliminary list of label pairs. From
this partial list, we can estimate a first candidate 𝑓 ∈ F. The collections
resulting from the preprocessing are merged to create bags, and then we
can look, among the possible pairings of nodes in all bags, at the pair
closest to 𝑓 . We map these two nodes, and make deductions as for the
normal algorithm. We then re-estimate 𝑓 on the basis of the mapping
obtained, and we repeat until we run out of nodes.

Assuming that this greedy algorithm allows to build a fairly good solution
– which would remain to be investigated, we can go further and imagine
an approximate DAG compression. Let’s go back to the example in Figure
3.6 (only the tree is reproduced here). If the coordinates of the points
are noisy, it will no longer be possible to find the symmetries of the
figure using an exact cipher – any association of the labels becoming
acceptable.

On the other hand, considering the above optimization problem and
choosing F the space of rigid transformations of the plane, one will notice
that the left red subtree is approximately transformed into the right red
subtree, that the top left blue subtree is approximately transformed into
the bottom left blue subtree, and so on.

We can then recursively construct a DAG representing the symmetries
of the tree, at the cost of an approximation error. It is notable that the
DAG is constructed in the same way as in Section 3.3, by placing the
transformations on the arcs, each vertex having a label representing its
class (no longer of equivalence, but of approximation).

124 9 Perspectives

44: One may want to fix the alphabet be-
fore observing the FDAG 𝐷. It does not
affect the argument afterwards, but it will
obviously affect the combinatorics and the
number of labeled DAGs that can be con-
structed from 𝐷.

We can then reconstruct a tree from this DAG using Algorithm 5. Because
of the successive and recursive approximations, one can expect the labels
of this tree to be further from the original ones the deeper the nodes are
in the tree; but if the greedy algorithm is effective, one can hope that the
global error will not be too high either.

9.2 Search for frequent patterns

In Chapter 5 and Chapter 6, we developed a reverse search scheme
allowing, first of all, to enumerate irredundant forests in their compressed
DAG form. We have also shown that this enumeration can be adapted
to address several related problems: (i) the enumeration of forests in
their classical sense, (ii) the enumeration of “subforests” of a forest, and
(iii) the frequent “subforest” problem. These results generalize previous
results from the literature allowing to enumerate trees and to deal with
the problem of frequent pattern mining on trees.

Extension to labeled FDAGs

In our enumeration of irredundant forests, we considered only unlabeled
trees. One way to add labels could follow the strategy developed for
classical forests, in Extension to forests with repetitions (p. 81): we build an
unlabeled FDAG, stop the enumeration, and start a second enumeration
procedure to add labels.

This new enumeration will obviously depend on the underlying isomor-
phism (imposing label equality or up to a cipher); and it should also be
noted that it will require modifying the FDAG structure. Indeed, two
subtrees with the same topological structure have no particular reason
to be isomorphic when labels are added, and thus could generate two
vertices in a labeled DAG instead of one. For example, with equality of
labels, a leaf with label 𝐴 is not compressed together with a leaf with
label 𝐵.

Note that even if we modify the structure, we create topologically equiv-
alent vertices and therefore we can not accidentally create an FDAG
obtained by another path in the enumeration tree: the uniqueness of the
enumeration is preserved.

The number of distinct labels in a forest is limited by the total number
of nodes in the forest. Given a FDAG 𝐷, and a vertex 𝑣 ∈ 𝐷, we denote
by 𝑠(𝑣) the number of nodes in ℜ

−1(𝐷[𝑣]); i.e., with 𝑇𝑣 = ℜ
−1(𝐷[𝑣]),

𝑠(𝑣) = #𝑇𝑣 . We have

𝑠(𝑣) =
{

1 if 𝑣 ∈ ℒ(𝐷),
1 +∑

𝑢∈𝒞(𝑣) 𝑛(𝑣, 𝑢)𝑠(𝑢) otherwise;

where 𝑛(𝑣, 𝑢) is the multiplicity of arc 𝑣 → 𝑢 in 𝐷. Therefore, the
maximal number of distinct labels we can choose is given by 𝑠(𝐷) =∑
𝑟∈ℛ(𝐷) 𝑠(𝑟). Let𝒜 = {1, . . . , 𝑠(𝐷)} be the alphabet from which we will

draw labels44.

9.2 Search for frequent patterns 125

45: With the notable exception where an
alphabet would be imposed for the enu-
meration, and where the labels would not
be interchangeable.

𝑛 1 2 3 4 5 6
𝑎(𝑛) 1 1 2 4 9 20
𝑏(𝑛) 1 2 9 48 ? ?

Table 9.1: First values of the sequences
𝑎(𝑛) and 𝑏(𝑛) counting the number of
non-isomorphic trees of size 𝑛, respec-
tively for tree isomorphism and tree iso-
morphism up to a cipher. Recall that
𝑎(𝑛) is sequence A000081 in The On-Line

Encyclopedia of Integer Sequences (2022),
https://oeis.org/A000081.

Figure 9.2: All possible non-isomorphic
(up to a cipher) labeled trees of size at
most 3. The color of nodes is their label.

↦→id ↦→id

Figure 9.3: Example of non-uniqueness of
labeled DAGs compressing a given labeled
tree.

If we were to enumerate labeled FDAGs according to the definition of
isomorphism imposing equality of labels, we would end up enumerating
the same FDAG several times, up to a rewriting of the labels – for example,
one leaf with label A and another with label B. From the point of view
of parsimonious enumeration, it would therefore be more judicious45 to
adopt another approach, i.e. isomorphism up to a cipher.

This question is closely related to the number of non-isomorphic ways
one can label a tree of a given size. Then, we have to retranscribe these
labelings into a DAG, and in particular find the ciphers that go on the
arcs. Moreover, the DAG compression with labels is not unique in general
and we will have to find a systematic way to choose the compression (a
kind of canonical DAG compression). These arguments are developed
below.

Let 𝑎(𝑛) be the number of non-isomorphic (from the topology point
of view) trees of size 𝑛, and 𝑏(𝑛) the number of non-isomorphic (up
to a cipher) labeled trees of size 𝑛. Table 9.1 gives the first values of
𝑎(𝑛) and 𝑏(𝑛). The values for 𝑛 = 1, 2, 3 come from Figure 9.2, 𝑛 = 4
was obtained by manual counting (not reproduced here) and for 𝑛 ≥ 5
the work remains to be done – but with little hope of easily obtaining
further values manually. The On-Line Encyclopedia of Integer Sequences
references 20 sequences starting with 1, 2, 9, 48, none of which seem
trivially related to the problem, so this is a genuine open question.

Remark 9.1 Note that the difficulty of the problem is not so much in
the total number of possibilities as a function of 𝑛, but rather in the
way this number grows by going from 𝑛 to 𝑛 + 1. Indeed, the reverse
search method is only effective if the successors of an element in the
enumeration tree can be calculated in a reasonable time. More than
𝑏(𝑛), it is therefore 𝑏(𝑛 + 1) − 𝑏(𝑛) that is the quantity of interest; and
we can see that it seems to grow faster than 𝑎(𝑛 + 1) − 𝑎(𝑛).

Let us now relate non-isomorphic labeled trees to their labeled DAG. We
can already identify several difficulties to be taken into account in the
enumeration.

First, there is no uniqueness of the labeled DAG compressing a given tree,
since there might be several possible choices of representatives for each
DAG vertex, as shown in Figure 9.3. One way to deal with this would
be to find a “canonical” compression that provides a systematic way to
choose among the possible representatives of a vertex.

Second, you need to make sure that the ciphers on the arcs compose
correctly with each other. This typically requires choosing the labels
and ciphers on lower height vertices before the higher ones. A cipher
placed on an arc leading to a subtree with 𝑘 different colors has a domain
of cardinality at most 𝑘 – which represents, at most,

∑𝑘
𝑖=1

(𝑘
𝑖

)
different

ciphers, which must then be reported on the arcs, with the resulting
combinatorics.

Note that the enumeration of labeled trees (as DAGs or not) contains
the enumeration of labeled trees of height 2, and thus a fortiori, the
entirety of (unlabeled) graphs by the reduction of Theorem 4.1 – whose
combinatorics is illustrated in Table 9.2; see also [112] [112]: Harary (1955), ‘The number of linear,

directed, rooted, and connected graphs’
. This inclusion

https://oeis.org/A000081

126 9 Perspectives

of unlabeled graphs in the set of labeled trees highlights the gain in
difficulty of the problem.

Table 9.2: Comparison between the num-
ber 𝑔(𝑛) of unlabeled connected graphs
with 𝑛 vertices with the number 𝑎(𝑛)
of trees with 𝑛 vertices for some val-
ues of 𝑛. 𝑔(𝑛) is sequence A001349 and
𝑎(𝑛) is sequence A000081 in The On-Line

Encyclopedia of Integer Sequences (2022),
https://oeis.org/A001349 and https:
//oeis.org/A000081.

𝑛 𝑎(𝑛) 𝑔(𝑛)
1 1 1
5 9 21
10 719 11,716,571
15 87,811 31,397,381,142,761,241,960

As for the enumeration of FDAGs, one can imagine a frequent pattern
mining application to the enumeration of labeled FDAGs, but in view
of the additional difficulty, a very efficient algorithm will be required to
hopefully address the issue on a practical level.

Toward the enumeration of DAGs

Our enumeration of FDAGs opens the way to the enumeration of DAGs
in general, which to the best of our knowledge has never been addressed
in the literature. In detail, we recall that the key to our method relies
on the existence of a canonical ordering on the vertices of a FDAG,
allowing then to enumerate only such canonical FDAGs, as developed in
Canonical FDAGs (p. 67). Given any DAG𝐷, we introduced the following
constraints on an ordering 𝜓:

∀(𝑢, 𝑣) ∈ 𝐷2 ,ℋ(𝑢) > ℋ(𝑣) =⇒ 𝜓(𝑢) > 𝜓(𝑣); (Equation 5.5)

∀(𝑢, 𝑣) ∈ 𝐷2 , (ℋ(𝑢) = ℋ(𝑣)) ∧ (𝒞𝜓(𝑢) >lex. 𝒞𝜓(𝑣)) =⇒ 𝜓(𝑢) > 𝜓(𝑣). (Equation 5.6)

We proved in Theorem 5.4 that these constraints are sufficient to ensure
the uniqueness of an ordering if and only if 𝐷 is a FDAG; indeed, it
is not possible to find in such a DAG two vertices 𝑢 and 𝑣 such that
𝒞𝜓(𝑢) = 𝒞𝜓(𝑣) and 𝑢 ≠ 𝑣 – which is the only ambiguous case not covered
by the two previous constraints.

If one were to attempt to define a canonical ordering for any generic DAG,
based on the constraints introduced here, then one could introduce the
following additional constraint.

∀(𝑢, 𝑣) ∈ 𝐷2 , (ℋ(𝑢) = ℋ(𝑣)) ∧ (𝒞𝜓(𝑢) = 𝒞𝜓(𝑣)) ∧ (𝒫𝜓(𝑢) >lex. 𝒫𝜓(𝑣)) =⇒ 𝜓(𝑢) > 𝜓(𝑣); (9.2)

where 𝒫𝜓(𝑢) is the sequence (𝜓(𝑤) : 𝑤 ∈ 𝒫(𝑢)) sorted in decreasing
order with respect to the lexicographical order – similarly to 𝒞𝜓.

This new constraint would then allow to discriminate more vertices, but
would not allow to distinguish between vertices 𝑢, 𝑣 such that 𝒫𝜓(𝑢) =
𝒫𝜓(𝑣). One could also discriminate according to other computable
properties on the vertices, but we have exhausted the most obvious
ones. In fact, one can hardly expect any better by virtue of the following
argument.

https://oeis.org/A001349
https://oeis.org/A000081
https://oeis.org/A000081

9.3 Classification of trees 127

Let us assume that we can exhibit a canonical ordering on (general) DAGs,
computable in polynomial time. Therefore, given two DAGs 𝐷1 and 𝐷2,
canonically ordered, we can establish, in linear time, whether 𝐷1 ≃ 𝐷2
(i.e. 𝐷1 and 𝐷2 are isomorphic graphs) simply by checking that each
vertex in order has the same ordered list of children and parents. Yet,
DAG isomorphism is graph isomorphism complete [66] [66]: Zemlyachenko et al. (1985), ‘Graph

isomorphism problem’
.

Therefore, unless graph isomorphism is polynomial – for which we have
no proof [67] [67]: Schöning (1987), ‘Graph isomor-

phism is in the low hierarchy’
, we can not hope to find a canonical ordering on DAGs that

is computable in polynomial time, which implies that the discriminating
properties must be more sophisticated than those we considered in our
approach. We recall that all properties we used to discriminate vertices
(such as height) are computable at worst in linear time.

In order to enumerate DAGs by imposing a canonical ordering, one would
have to develop a completely different method from ours to find such
an ordering. Actually, since finding a canonical ordering is equivalent
to defining a representative of the equivalence class of a given DAG (for
the graph isomorphism equivalence relation), it would be appropriate
to consider methods from the literature that already have this kind of
approach [25] [25]: McKay et al. (2014), ‘Practical graph

isomorphism, II’
.

9.3 Classification of trees

In Chapter 7, we focused on the issue of statistical analysis of trees, and in
particular on convolution kernels, which are widely used in the literature.
We were especially interested in the subtree kernel, and we showed, in a
theoretical framework, that it is always preferable that the leaves of the
trees have a weight of zero in the computation of the kernel.

We then developed in Chapter 8 a new framework to compute the subtree
kernel, based on DAG compression of trees, which allowed us to introduce
the discriminance weight, learned from the data, that sets the weight of
leaves to zero. Generally speaking, it assigns a high weight to subtrees
allowing to better discriminate the classes (in a supervised classification
context) and a zero weight to the others. On several datasets, we showed
that this new weight significantly improves the performance of the kernel.
We emphasize here that the calculation of this discriminance weight was
made possible by the exhaustive enumeration of the subtrees.

The forest kernel

In Section 6.4, it was shown how to exploit the enumeration of irredundant
forests of Section 6.1 to address the frequent subforest problem. We can
reuse this result to define a new kernel on trees: the forest kernel. Recall
that ℱ denotes the set of irredundant forests; similarly to Equation 7.2,
we define this new kernel 𝐾 as

∀𝑇1 , 𝑇2 ∈ 𝒯 , 𝐾(𝑇1 , 𝑇2) =
∑
𝑓 ∈ℱ

𝑤 𝑓 𝜅
(
N 𝑓 (𝑇1),N 𝑓 (𝑇2)

)
, (9.3)

128 9 Perspectives

46: The definition of forest of subtrees is
given only for irredundant forests. Here,
we use 𝑇 as an abuse of language for the
forest {𝑇}, which is trivially irredundant.

where N 𝑓 (𝑇) counts how many times the forest 𝑓 is a forest of subtrees

of 𝑇 – as in Definition 6.846. We can relate N 𝑓 (𝑇) to N𝑡(𝑇) (where 𝑡 is a
tree) with N 𝑓 (𝑇) = min𝑡∈ 𝑓 N𝑡(𝑇). Besides, 𝑤 𝑓 is the weight associated
to 𝑓 and 𝜅 a kernel on N,Z or R. As for the subtree kernel, assuming
𝜅(0, ·) = 𝜅(·, 0) = 0 makes the sum finite and then

𝐾(𝑇1 , 𝑇2) =
∑

𝑓 ∈ℱ (𝑇1)∩ℱ (𝑇2)
𝑤 𝑓 𝜅

(
N 𝑓 (𝑇1),N 𝑓 (𝑇2)

)
, (9.4)

where ℱ (𝑇) stands for the set of forests of subtrees of 𝑇 – which we can
enumerate via Algorithm 15, from the DAG compression of 𝑇.

Since we introduced, in Section 6.4, the Algorithm 16, which directly
enumerates the most frequent forests of subtrees in a tree database,
we can compute this new kernel in a very similar way to the one we
developed in Kernel computation on DAGs (p. 103).

Given a database of trees {𝑇1 , . . . , 𝑇𝑛}, we compress them together into
a single DAG, set the frequency threshold 𝜎 to 0 (to enumerate all the
forests of subtrees) and run Algorithm 16. We can compute N𝑡(·) using
Equation 2.4, and so the value of N 𝑓 (·) follows.

Actually, one must imagine that the number of enumerated forests of
subtrees may be much too large to handle large databases. Since we have
not yet defined the weight, and following a logic close to the discriminance
weight introduced in Section 36, we can mitigate the previous problem.
Indeed, it is useless to enumerate the forests of subtrees whose weight
would be negligible.

In the context of supervised classification, we can in fact replace the
frequency function used in the enumeration by one that reflects the idea of
discriminance. We only want to enumerate forests of subtrees that occur
fairly frequently in certain classes (rather than just the trees themselves),
so that we can use them to further discriminate these classes.

Note that this will allow forests present in all classes (such as leaves),
but we must accept them to preserve the antimonotonicity of the fre-
quency function. It will then be necessary to filter them to have a real
discriminating weight.

What can we expect to gain from this new kernel compared to the subtree
kernel? First, the computation time is likely to be longer – since all the
forests of subtrees have to be enumerated in addition to the existing
procedure. Second, since subtrees are forests made of singletons, the
forest kernel is expected to retrieve at least the same information as the
subtree kernel. But more importantly, it is expected to capture much
richer information.

Consider the example in Figure 9.4: the subtree kernel – via the discrim-
inance weight – would be unable to distinguish the classes from each
other, since no subtree is sufficient to discriminate (by its presence or
absence) the classes. On the other hand, just by considering forests of two
trees, we are able to discriminate perfectly each class. The forest kernel
does not consider only the appearance (or absence) of one tree in a class,
but the simultaneous appearance (or absence) of several of them.

9.3 Classification of trees 129

Class 1 Class 2 Class 3 Class 4

Figure 9.4: Suppose we have four classes, such that typical trees in class 1 all have (,) subtrees; those in class 2 have (,) subtrees;
those in class 3 have (,) subtrees and those in class 4 have (,) subtrees. None of these four types of subtrees discriminates either
by its presence, or by its absence, any of the 4 classes. On the other hand, each of the pairs of subtrees (i.e. a two element forest) discriminates
by its presence the class where it appears.

Explicit enumeration with other kernels

Constructing a convolution kernel on the space of trees requires choosing
a family of substructures, and finding a way to enumerate them either
explicitly or implicitly – for example via a recursive kernel computation,
as in [34, 35] [34]: Haussler (1999), Convolution kernels

on discrete structures

[35]: Collins et al. (2001), ‘Convolution
kernels for natural language’

. There is a wide variety of possible choices of substructures,
an overview of which can be found in [36]

[36]: Da San Martino (2009), ‘Kernel
methods for tree structured data’

.

We have shown in Chapter 8 the interest of having an explicit enumeration,
especially in the choice of weights. But as soon as we try to consider
substructures finer than subtrees, the number of elements to enumerate
increases drastically. It is therefore essential to implement strategies to
reduce the number of elements enumerated, such as frequent pattern
mining.

Subset trees Along with the subtree kernel, the subset tree kernel [35] [35]: Collins et al. (2001), ‘Convolution
kernels for natural language’uses one of the most straightforward substructures to build. Recall that a

subset tree is a subgraph of the tree such that, for each node, either all
children are taken or none is taken. Let 𝑇 be a tree, and we denote by
𝜆(𝑣) the number of possible subset trees rooted in 𝑣. We have

𝜆(𝑣) =


1 if 𝑣 ∈ ℒ(𝑇);
1 +

∏
𝑢∈𝒞(𝑣)

𝜆(𝑢) otherwise. (9.5)

The number of subset trees of 𝑇 is then given by
∑
𝑣∈𝑇 𝜆(𝑣) – recall that

the number of subtrees of 𝑇 is ≤ #𝑇.

If we assume that 𝑇 is a full tree of degree 𝑑 and height 𝐻, we obtain the
recurrence 𝜆ℎ+1 = 1 + 𝜆𝑑

ℎ
with 𝜆0 = 1. It can be shown that the general

term of this kind of sequence is expressed as
[
𝑐𝑑

ℎ
]
, where [𝑥] denotes

the integer part of 𝑥, and 𝑐 > 1 is a constant [113] [113]: Aho et al. (1973), ‘Some doubly
exponential sequences’

. The total number of

subset trees of 𝑇 is then given by
ℎ∑
𝑖=0

𝑑ℎ−𝑖
[
𝑐𝑑

𝑖
]
. The number of nodes of

𝑇 is given by
𝑑ℎ+1 − 1
𝑑 − 1

and provides an upper bound on the number of
subtrees: we see that the increase of the number of substructures is of an
exponential order of magnitude.

130 9 Perspectives

Subgraph At the other end of the spectrum of substructures on trees,
the most general are (connected, induced) subgraphs. If we were able
to enumerate them efficiently, we could construct the most generic
convolution kernel on trees possible. Moreover, by constructing a weight
that filters out all subgraphs except those of a particular class, we could
recover the kernel associated with that class of substructures.

Naturally, such an universal kernel is very ambitious. To get an idea of
the difficulty, let us look at the number of possible subgraphs of a tree.

Let 𝑇 be a tree, and 𝑣 ∈ 𝑇. The subgraphs of 𝑇[𝑣] can be separated into
two groups:

▶ If the subgraph does not contain 𝑣, then it is completely contained in
one of the subtrees of 𝑣. Let 𝛼(𝑣) be the number of these subgraphs.

▶ If the subgraph contains 𝑣, then the rest of the subgraph is dis-
tributed over the subtrees of 𝑣 and contains their respective roots.
Let 𝛽(𝑣) be the number of these subgraphs.

The total number of subgraphs of 𝑇[𝑣] is given by 𝛼(𝑣) + 𝛽(𝑣), and thus
those of 𝑇 by 𝛼(ℛ(𝑇)) + 𝛽(ℛ(𝑇)). We have

𝛼(𝑣) =
∑
𝑢∈𝒞(𝑣)

(𝛼(𝑢) + 𝛽(𝑢)) ,

𝛽(𝑣) =
∏
𝑢∈𝒞(𝑣)

(1 + 𝛽(𝑢)),
(9.6)

with 𝛼(•) = 0 and 𝛽(•) = 1.

If we resume the example of a full tree 𝑇 of height ℎ and degree 𝑑, we
obtain

𝛼ℎ = 𝑑 (𝛼ℎ−1 + 𝛽ℎ−1) ,
𝛽ℎ = (1 + 𝛽ℎ−1)𝑑 ,

with 𝛼0 = 0 and 𝛽0 = 1. By induction on ℎ one can easily show that
𝛼ℎ =

∑ℎ
𝑖=0 𝑑

𝑖+1𝛽ℎ−𝑖 . With [113][113]: Aho et al. (1973), ‘Some doubly
exponential sequences’

again, 𝛽ℎ =

[
𝛾𝑑

ℎ
]
, where 𝛾 > 1 is a

constant.

Remark 9.2 Equation 9.5 and Equation 9.6 can be directly computed
on the DAG of 𝑇 since these numbers depend only on the equivalence
class of the node 𝑣 ∈ 𝑇. Doing the calculation on the DAG reduces
the number of recursive calls and allows to compute the quantity only
once for each equivalence class.

Since 𝛽ℎ −𝜆ℎ > 0, 𝛾 > 𝑐; and the two sequences have the same exponent
𝑑ℎ . In light of Remark 9.1, it is not the absolute number of objects to be
enumerated that is an issue, but rather the growth of this number as the
size of the objects increases. Therefore, what is important here is the ratio
𝛾/𝑐, which determines how much faster 𝛽ℎ grows compared to 𝜆ℎ .

Both constants should be computed to get an idea of how much simpler
the enumeration of subset trees is compared to subgraphs. Typically, if
𝛾 and 𝑐 are of the same order of magnitude, it may be worthwhile to
attempt the enumeration of subgraphs directly; whereas if 𝛾 ≫ 𝑐, it may
be more reasonable to address the enumeration of subset trees prior to
the enumeration of subgraphs.

Appendix

Technical proofs A

A.1 Proof of Proposition 2.7 . . . 133

A.2 Proofs of Section 3.2 134

Preliminary reminders . . . 134

Proof of Theorem 3.1 135

Proof of Proposition 3.2 . . . 135

Proof of Proposition 3.3 . . . 136

A.3 Proof of Theorem 3.6 136

A.4 Proofs of Section 4.4 137

Proof of Theorem 4.3 139

Remaining proofs 141

Proof of Proposition 4.4 . . . 143

A.5 Proof of Proposition 7.3 . . . 144

Time spent amongst trees is never
wasted time.

Katrina Mayer

A.1 Proof of Proposition 2.7

This proof is reproduced from [39]

[39]: Azaïs et al. (2020), ‘The weight
function in the subtree kernel is decisive’

.

We denote by𝐷ℎ the set of vertices at height ℎ in any DAG𝐷, and denote
by ★ ∈ {ordered, unordered} the type of trees considered.

From the forest (𝐷1 , . . . , 𝐷𝑁), we construct the DAG Δ such that (i) 𝐷𝑖

is a subDAG of Δ for all 𝑖, (ii)ℋ(Δ) = max𝑖ℋ(𝐷𝑖), (iii) all vertices in Δ

have degree max𝑖 deg(𝐷𝑖), and (iv) at each height except 0 and ℋ(𝐷),
#Δℎ = max𝑖 #𝐷ℎ

𝑖
. If Δ is placed 𝑁 times under an artificial root, and

then recompressed by the algorithm, indeed the output contains the
recompression of the original forest. Therefore, this case is the worst
possible for the algorithm, and we claim that it achieves the proposed
complexity.

Let 𝐷 be now a DAG with the following properties: #𝐷 = 𝑚,ℋ(𝐷) = 𝐻,
at each height ℎ ∉ {0, 𝐻}, #𝐷ℎ = 𝑛 (so that 𝑛(𝐻 − 2) + 2 = 𝑚), and all
vertices have degree 𝑑. Δ is the super-DAG obtained after placing 𝑁

copies of 𝐷 under an artificial root. We then have #Δ = 1 + 𝑁𝑚 so that
𝒪(#Δ) = 𝒪(𝑁𝑚) = 𝒪(𝑁𝐻𝑛) and deg(𝐹) = deg(𝐷) = 𝑑.

At the beginning of the algorithm, constructing the mapping ℎ ↦→ Δℎ in
one exploration of Δ has complexity 𝒪(#Δ). We will now examine the
complexity of the further steps, with respect to 𝑛, 𝑚, 𝑑, 𝐻 and 𝑁 . We
introduce the following lemma:

Lemma A.1 Constructing 𝜎(ℎ) has complexity:

▶ 𝒪
(∑

𝑣∈Δℎ #𝒞(𝑣) log #𝒞(𝑣)
)

for unordered trees;

▶ 𝒪
(∑

𝑣∈Δℎ #𝒞(𝑣)
)

for ordered trees.

Proof. When sorting lists of size 𝐿, merge sort is known to have𝒪(𝐿 log 𝐿)
complexity in the worst case [60] [60]: Skiena (2012), ‘Sorting and searching’. Accordingly, we introduce

𝑔★(𝑥) =
{
𝑥 if ★ = ordered;
𝑥(1 + log 𝑥) if ★ = unordered.

At height ℎ, we construct 𝜎(ℎ) = { 𝑓 −1(𝑆) : 𝑆 ∈ Im(𝑓), # 𝑓 −1(𝑆) ≥ 2}
where 𝑓 : 𝑣 ∈ Δℎ ↦→ 𝒞(𝑣). Finding the preimage of 𝑓 requires first to
construct 𝑓 , by copying the children of each vertex inΔℎ (in the unordered

134 A Technical proofs

case, we also need to sort them, so that we get rid of the order and can
properly compare them). Then we only need to explore once the image
and check whether an element has two or more antecedents. The global
cost is then 𝒪(∑𝑣∈Δℎ 𝑔

★(#𝒞(𝑣))). F

We reuse the notation 𝑔★ from the proof of Lemma A.1. With respect
to Δ, the complexity for constructing 𝜎(·) is 𝒪(𝑁𝑛𝑔★(𝑑)). Exploring
the elements of 𝜎(ℎ) for (i) choosing a vertex 𝑣𝑀 to remain, and (ii)
delete the other elements 𝛿𝑀 has complexity 𝒪(𝑁𝑛). In addition, at
height ℎ′ > ℎ, exploring the children to replace them or not costs
𝒪(∑𝑣∈Δℎ′ #𝒞(𝑣)) = 𝒪(𝑁𝑑𝑛).

The global complexity 𝐶(Δ) of the algorithm is then

𝐶(Δ) = 𝒪(#Δ) +
ℋ(Δ)∑
ℎ=0
𝒪(𝑁𝑛𝑔★(𝑑)) + 𝒪(𝑁𝑛) +

∑
ℎ′>ℎ

𝒪(𝑁𝑑𝑛).

Remark that
∑ℋ(𝐷)
ℎ=0 𝒪(𝑁𝑛) = 𝒪(𝑁𝑚) = 𝒪(#Δ), this leads to

𝐶(Δ) = 𝒪(#Δ𝑔★(deg(𝐹))) + 𝒪
(
𝑁𝑑𝑛

ℋ(𝐷)∑
ℎ=0

∑
ℎ′>ℎ

1

)
.

The right-hand inner sum is in 𝒪(𝐻2). As

𝒪(𝑁𝑑𝑛𝐻2) = 𝒪(#Δ𝐻𝑑) = 𝒪(#Δℋ(Δ)deg(𝐹)),

this leads to our statement.

A.2 Proofs of Section 3.2

The preliminary reminders and the first proof are reproduced from [26][26]: Ingels et al. (2021), ‘Isomorphic Un-
ordered Labeled Trees up to Substitution
Ciphering’

while the last two are new material.

Preliminary reminders

Let 𝑅 be a relation over sets 𝐸 and 𝐹. 𝑅 is a bĳection if and only if

▶ ∀𝑥 ∈ 𝐸, ∃!𝑦 ∈ 𝐹, 𝑥 𝑅 𝑦;
▶ ∀𝑦 ∈ 𝐸, ∃!𝑥 ∈ 𝐸, 𝑥 𝑅 𝑦.

The converse relation 𝑅−1 over sets 𝐹 and 𝐸 is defined as 𝑦 𝑅−1 𝑥 ⇐⇒
𝑥 𝑅 𝑦. If 𝑅 is a bĳection, then so is 𝑅−1.

Let also 𝑆 be a relation over sets 𝐹 and 𝐺.

The composition of 𝑅 and 𝑆, denoted by 𝑆 ◦ 𝑅, is a relation over 𝐸 and 𝐺,
and defined as 𝑥 (𝑆 ◦ 𝑅) 𝑧 ⇐⇒ ∃𝑦 ∈ 𝐹, (𝑥 𝑅 𝑦) ∧ (𝑦 𝑆 𝑧). If 𝑅 and 𝑆
are bĳections, then so is 𝑆 ◦ 𝑅.

𝑆 is said to be finer than 𝑅 if 𝑥 𝑆 𝑦 =⇒ 𝑥 𝑅 𝑦. If 𝑅 is a bĳection, then
so is 𝑆.

A.2 Proofs of Section 3.2 135

Proof of Theorem 3.1

Let 𝑇1 , 𝑇2 and 𝑇3 be trees such that 𝑇1
𝜙
−→ 𝑇2 and 𝑇2

𝜓
−→ 𝑇3. Therefore,

𝜙 ∈ Isom(𝑇1 , 𝑇2) and 𝜓 ∈ Isom(𝑇2 , 𝑇3); also, 𝑅𝜙 and 𝑅𝜓 are bĳections.

It should be clear that trivially, 𝑇1
id−→ 𝑇1. We aim to prove the following:

▶ 𝑇1
𝜓◦𝜙
−−−→ 𝑇3;

▶ 𝑇2
𝜙−1

−−→ 𝑇1.

First of all, it is trivial that 𝜓 ◦ 𝜙 ∈ Isom(𝑇1 , 𝑇3). The proof then follows
directly from the reminders above and the two following lemmas.

Lemma A.2 𝑅𝜓◦𝜙 = 𝑅𝜓 ◦ 𝑅𝜙 .

Proof. Let 𝑥 ∈ 𝒜(𝑇1) and 𝑧 ∈ 𝒜(𝑇3). It suffices to show

𝑥 𝑅𝜓◦𝜙 𝑧 ⇐⇒ ∃𝑦 ∈ 𝒜(𝑇2), (𝑥 𝑅𝜙 𝑦) ∧ (𝑦 𝑅𝜓 𝑧).

(=⇒) There exists 𝑢 ∈ 𝑇1 so that 𝑥 = 𝑢 and 𝑧 = (𝜓 ◦ 𝜙)(𝑢). Let 𝑣 = 𝜙(𝑢)
and 𝑦 = 𝑣; then 𝑢 𝑅𝜙 𝑣, so 𝑥 𝑅𝜙 𝑦; similarly 𝑣 𝑅𝜓 𝜓(𝑣) leads to 𝑦 𝑅𝜓 𝑧.

(⇐=) There exists 𝑢 ∈ 𝑇1 so that 𝑢 = 𝑥 and 𝑦 = 𝜙(𝑢). Let 𝑣 = 𝜙(𝑢). As
𝑦 𝑅𝜓 𝜓(𝑣), then 𝜓(𝑣) = 𝑧 and it follows that 𝑥 𝑅𝜓◦𝜙 𝑧. F

Lemma A.3 𝑅−1
𝜙 = 𝑅𝜙−1 .

Proof. Let 𝑥 ∈ 𝒜(𝑇1) and 𝑦 ∈ 𝒜(𝑇2). It suffices to show 𝑥 𝑅𝜙 𝑦 ⇐⇒
𝑦 𝑅𝜙−1 𝑥.

(=⇒) There exists 𝑢 ∈ 𝑇1 so that 𝑥 = 𝑢 and 𝑦 = 𝜙(𝑢). Let 𝑣 = 𝜙(𝑢).
Since 𝑢 = 𝜙−1(𝑣), 𝑦 𝑅𝜙−1 𝑥.

(⇐=) There exists 𝑣 ∈ 𝑇2 so that 𝑣 = 𝑦 and 𝑥 = 𝜙−1(𝑣). Let 𝑢 = 𝜙−1(𝑣).
Since 𝑣 = 𝜙(𝑢), 𝑥 𝑅𝜙 𝑦. F

Proof of Proposition 3.2

Let 𝑇1
𝜙
−→ 𝑇2 and 𝑢 ∈ 𝑇1. Let 𝜓 be the restriction of 𝜙 to the nodes of

𝑇1[𝑢]. We aim to prove that 𝑇1[𝑢]
𝜓
−→ 𝑇2[𝜙(𝑢)]. From the definition of tree

isomorphism, it is clear that 𝜓 ∈ Isom(𝑇1[𝑢], 𝑇2[𝜙(𝑢)]). To prove that 𝑅𝜓

is bĳective, it suffices to prove that 𝑅𝜓 is finer than 𝑅𝜙; this is achieved
by virtue of the following lemma.

136 A Technical proofs

Lemma A.4 𝑥 𝑅𝜓 𝑦 =⇒ 𝑥 𝑅𝜙 𝑦.

Proof. Let 𝑥 𝑅𝜓 𝑦. Then, there exists 𝑤 ∈ 𝑇1[𝑢], such that 𝑥 = 𝑤 and
𝑦 = 𝜓(𝑤). As 𝜓 = 𝜙 on 𝑇1[𝑢], this implies 𝑦 = 𝜙(𝑤) and therefore
𝑥 𝑅𝜙 𝑦. F

Proof of Proposition 3.3

Let 𝑇1
𝜙
−→ 𝑇2, and 𝑢, 𝑣 ∈ 𝑇1 such that 𝑇1[𝑢]

𝜓
−→ 𝑇1[𝑣]. Let 𝜙𝑢 (respectively,

𝜙𝑣) be the restriction of 𝜙 to the nodes of 𝑇1[𝑢] (respectively, 𝑇1[𝑣]). The
proof follows directly from the following commutative diagram:

𝑇1[𝑢] 𝑇1[𝑣]

𝑇2[𝜙(𝑢)] 𝑇2[𝜙(𝑣)]

𝜓

Assumption

Proposition 3.2𝜙𝑣

𝜙𝑣◦𝜓◦𝜙−1
𝑢

𝜙−1
𝑢Proposition 3.2

A.3 Proof of Theorem 3.6

Assume 0 ≤ ℎ ≤ ℋ(𝐷) and 𝑞 ∈ 𝐷ℎ are fixed, where 𝐷 = ℜ(𝑇).

▶ From lines 7 to 14, we test each node 𝑢 ∈ 𝑇(𝑞) against each
representative 𝑠(𝑃) for 𝑃 ∈ 𝔓. We assume constant operation costs
for lines 9, 12, 13 and 14. Since all nodes 𝑢 ∈ 𝑇(𝑞) have the same
equivalence class, for a fixed 𝑢, the cost of testing it against the
partition is of the order of #𝔓×𝐶∼(𝑞). Storing the nodes of𝒟(𝑢) in
𝑁 has complexity 𝒪(#𝒟(𝑢)) per 𝑢 ∈ 𝑇(𝑞) (except those chosen to
represent their part). Actually, the total number #𝑁 of descendants
can not exceed #𝑇. In addition, since #𝔓 is smaller than or equal to
the number of nodes 𝑢 already processed, the overall cost of this
step is 𝒪(#𝑇(𝑞)2𝐶∼(𝑞) + #𝑇).

▶ We then delete from 𝑇(𝑞′), for 𝑞′ ∈ 𝒟(𝑞), the elements stored
in 𝑁 . Since the elements of 𝑁 are the same for each vertex 𝑞′,
an efficient approach is to place the nodes of 𝑁 in a hash table
[59][59]: Knuth (1973), ‘The art of computer

programming. Vol. 3, Sorting and
Searching’

with complexity 𝒪(#𝑁) and test whether each 𝑣 ∈ 𝑇(𝑞′) is
also in 𝑁 with complexity 𝒪(1). The overall complexity for this
step is therefore of 𝒪

(
#𝑁 +∑

𝑞′∈𝒟(𝑞) #𝑇(𝑞′)
)
, assuming a perfect

hash function [114][114]: Lu et al. (2006), ‘Perfect hashing for
network applications’

. Since #𝑁 ≤ #𝑇 and
∑
𝑞′∈𝒟(𝑞) #𝑇(𝑞′) ≤ #𝑇 (with

equality when 𝑞 is the root), the complexity can be simplified to
𝒪(#𝑇).

▶ From lines 18 to 23, we create the new vertices in the DAG. Let us
suppose 𝑃 ∈ 𝔓 and 𝑢 ∈ 𝑃 fixed. We assume that 𝑓𝜙 was obtained,
and stored, when checking 𝑇[𝑢] ∼ 𝑇[𝑠(𝑃)]. Copying it on the new
arc costs #𝒜(𝑇[𝑠(𝑃)])) – that we bound by #𝒜(𝑇). Combining
all this and summing over 𝑃 ∈ 𝔓 and 𝑢 ∈ 𝑃, and also noticing
that

∑
𝑃∈𝔓

∑
𝑢∈𝑃 1 = #𝑇(𝑞), the overall complexity of this step is

therefore 𝒪
(
#𝑇(𝑞)#𝒜(𝑇)

)
.

A.4 Proofs of Section 4.4 137

47: OEIS Foundation Inc. (2022), The On-
Line Encyclopedia of Integer Sequences,
https://oeis.org/A038156

Summing over ℎ and 𝑞 ∈ 𝐷ℎ , the overall complexity of the algorithm is
of the order of

0∑
ℎ=ℋ(𝐷)

∑
𝑞∈𝐷ℎ

(
#𝑇(𝑞)2𝐶∼(𝑞) + #𝑇(𝑞)#𝐴(𝑇) + 2#𝑇

)
.

We break this sum into pieces. Note that
∑0
ℎ=ℋ(𝐷)

∑
𝑞∈𝐷ℎ #𝑇(𝑞) = #𝑇 and

that
∑0
ℎ=ℋ(𝐷)

∑
𝑞∈𝐷ℎ 1 = #𝐷.

▶ Assuming that 𝑇′ ∈ 𝒮(𝑇) =⇒ 𝐶∼([𝑇′]) = 𝒪(𝐶∼([𝑇])), and since∑
𝑛 𝑛

2 ≤ (∑𝑛 𝑛)2 for positive 𝑛’s,

0∑
ℎ=ℋ(𝐷)

∑
𝑞∈𝐷ℎ

#𝑇(𝑞)2𝐶∼(𝑞) = 𝒪(𝐶∼([𝑇])#𝑇2).

▶ In addition,

0∑
ℎ=ℋ(𝐷)

∑
𝑞∈𝐷ℎ

(#𝑇(𝑞)#𝒜(𝑇) + 2#𝑇) = (#𝒜(𝑇) + 2#𝐷)#𝑇.

Finally, since 𝒪(1) is negligible compared to 𝒪(𝐶∼([𝑇])), and since
#𝒜(𝑇) ≤ #𝑇 and #𝐷 ≤ #𝑇, the final complexity of Algorithm 6 is
𝒪(#𝑇2𝐶∼([𝑇])).

Remark A.1 If we reject the hypothesis of a perfect hash function, the
worst case complexity becomes 𝒪(𝑛) instead of 𝒪(1). The complexity
associated with the concerned step becomes 𝒪(#𝑇2), which is reflected
in the final complexity to yield 𝒪

(
#𝑇2(𝐶∼([𝑇]) + #𝑇)

)
.

Since 𝐶∼([𝑇])measures the complexity of attesting for the existence
of an isomorphism up to a ciphering between two trees, this implies
attesting to at least the existence of a topological isomorphism, and
thus this complexity is at least as high as for the AHU algorithm –
which is at least 𝒪(#𝑇), see The Aho, Hopcroft & Ullman algorithm (p.
13). Therefore, #𝑇 = 𝒪(𝐶∼([𝑇])) and the claimed complexity remains.

A.4 Proofs of Section 4.4

Whether it is bags or collections, backtracking explores the possible
associations between their elements (nodes or set of nodes), building
permutations.

Backtracking tree Given two sets of 𝑛 ≥ 2 objects, there are 𝑛! ways to
map them together, which correspond to the leaves of the backtracking
search tree. The size of the tree itself is directly related to the number of
operations 𝑎𝑛 required to create all those permutations of 𝑛 elements
[75]

[75]: Knuth (2005), The Art of Computer

Programming, Volume 4, Fascicle 2:

Generating All Tuples and Permutations (Art

of Computer Programming)

– see also OEIS sequence A03815647:

𝑎𝑛 = 𝑛!
𝑛−1∑
𝑖=1

1
𝑖!
. (A.1)

https://oeis.org/A038156

138 A Technical proofs

Figure A.1: Backtracking tree for mapping
two sets of 𝑛 = 3 objects. The mappings
made at each step are indicated on the
arrows. Note that the last mappings are
not shown, but would be decided, within
the context of bags and collections, respec-
tively by Deduction Rule 4.1 and Deduc-
tion Rule 4.4; and therefore they can be
excluded from the backtracking tree.

⋆ ⋆ ⋆
▲ ▲ ▲

⋆ ⋆
▲ ▲

⋆ ⋆
▲ ▲

⋆ ⋆
▲ ▲

⋆
▲

⋆
▲

⋆
▲

⋆
▲

⋆
▲

⋆
▲

⋆,▲ ⋆,▲ ⋆,▲

⋆,▲ ⋆,▲ ⋆,▲ ⋆,▲ ⋆,▲ ⋆,▲ 𝑎3 = 9 nodes

We illustrate the backtracking tree with 𝑛 = 3 in Figure A.1.

If you have to process several bags in a row, you have to duplicate the
backtracking tree of the second bag under each of the leaves of the first,
then the tree of the third under each of the leaves of the second, etc.
Simply with two bags, of cardinality 𝑝 and 𝑞, processed in this order, the
total size of the backtracking tree would be given by 1 + 𝑎𝑝 + 𝑝!𝑎𝑞 .

The question naturally arises of the order in which the bags should be
processed to obtain as small a tree as possible. Similar questions emerge
regarding the order in which to process collections, which to focus on
if there is a choice between bags and collections, etc. Note that in the
sequel, we ignore recursive mappings (from parents) or bag/collection
splits (from SplitChildren). In other words, this is a pessimistic scenario
where the entire search tree is fixed by the order of processing of bags
and collections, without any further modification.

A variadic function We introduce here an abstract variadic function
whose value corresponds to the size of the backtracking tree when
evaluated with the cardinalities of bags and collections – as specified in
the next paragraph.

Given a finite sequence of integer tuples (𝑛𝑖 , 𝛼𝑖), 𝑖 ∈ [[1, 𝑝]]with 𝑛𝑖 ≥ 2
and 𝛼𝑖 ≥ 1, we define the following variadic function

𝑓
(
(𝑛1 , 𝛼1), . . . , (𝑛𝑝 , 𝛼𝑝)

)
=

{
𝛼1𝑎𝑛1 if 𝑝 = 1;
𝛼1

[
𝑎𝑛1 + 𝑛1! 𝑓

(
(𝑛2 , 𝛼2), . . . , (𝑛𝑝 , 𝛼𝑝)

)]
otherwise.

(A.2)

The goal is twofold: connect the bags and collections to the tuples (𝑛𝑖 , 𝛼𝑖),
and study the behavior of 𝑓 – where our goal is to minimize 𝑓 with
regard to the order of the tuples, and therefore the order in which bags
and collections are processed.

Link between 𝑓 , bags and collections Concerning bags, we already
saw that if we have two bags of cardinality 𝑛 and 𝑚, treating them in
this order induces a tree of size 1 + 𝑎𝑛 + 𝑛!𝑎𝑚 . If we now have 𝑝 bags of
respective sizes 𝑛1 , . . . , 𝑛𝑝 , and that we process them successively in this
order, the resulting tree has 1 + 𝑓

(
(𝑛1 , 1), . . . , (𝑛𝑝 , 1)

)
nodes – i.e. a bag

of cardinality 𝑛 corresponds to the tuple (𝑛, 1).

Concerning collections, we can in fact imagine two strategies to deal with
them. Let 𝐶 be a collection and 𝑛 so that #𝐶(𝑛) > 0:

A.4 Proofs of Section 4.4 139

48: Indeed, we branch on #𝐶(𝑛) possibil-
ities (mapping the first set of 𝐶1(𝑛) with
each of the others from 𝐶2(𝑛)), and then
process the tree generated by a bag of
cardinality 𝑛.

▶ either we create the (#𝐶(𝑛))! possible bags by associating the sets
of 𝐶(𝑛), and then process these bags one after the other;

▶ or we create a bag, we process it entirely, then another bag on the
collection which now contains #𝐶(𝑛) − 1 sets, we process it entirely,
etc.

The first strategy amounts to processing a tuple (#𝐶(𝑛), 1) first, then
#𝐶(𝑛) times a tuple (𝑛, 1). The second strategy amounts to processing
the tuple (𝑛, #𝐶(𝑛)) first48, then the tuple (𝑛, #𝐶(𝑛) − 1), etc., up to the
tuple (𝑛, 1).

The second strategy is better to minimize 𝑓 , as per the following lemma.

Lemma A.5 For any 𝑛, 𝛼 ≥ 2,

𝑓
(
(𝑛, 𝛼), (𝑛, 𝛼 − 1), . . . , (𝑛, 1)

)
< 𝑓

(
(𝛼, 1), (𝑛, 1), . . . , (𝑛, 1)︸ ︷︷ ︸

𝛼

)

Proof. First, we compute each of the two terms involved.

▶ A proof by induction on 𝛼 without difficulty allows to show that

𝑓
(
(𝑛, 𝛼), (𝑛, 𝛼 − 1), . . . , (𝑛, 1)

)
= 𝑎𝑛

𝛼−1∑
𝑘=0

𝛼!
(𝛼 − 1 − 𝑘)! (𝑛!)𝑘 .

▶ Again, an easy calculation by induction on 𝛼 allows to show that

𝑓
(
(𝑛, 1), . . . , (𝑛, 1)︸ ︷︷ ︸

𝛼

)
= 𝑎𝑛

𝛼−1∑
𝑘=0
(𝑛!)𝑘 ; and thus the right-hand term

equals 𝑎𝛼 + 𝛼!𝑎𝑛
𝛼−1∑
𝑘=0
(𝑛!)𝑘 .

The conclusion is immediate when comparing term by term each of the
two sums. F

Therefore, 𝐶(𝑛) correspond to the tuples (𝑛, #𝐶(𝑛)), (𝑛, #𝐶(𝑛) − 1), up
to (𝑛, 1); the size of the backtracking tree generated by 𝐶(𝑛) is therefore
expressed by 1 + 𝑓

(
(𝑛, #𝐶(𝑛)), (𝑛, #𝐶(𝑛) − 1), . . . , (𝑛, 1)

)
.

Proof of Theorem 4.3

Given 𝑝 ≥ 2 tuples (𝑛𝑖 , 𝛼𝑖), and denoting the first two (𝑚, 𝛼) and (𝑛, 𝛽),
we are interested in the conditions on 𝑚, 𝑛, 𝛼, 𝛽 under which we would
have

Δ 𝑓 = 𝑓
(
(𝑚, 𝛼), (𝑛, 𝛽), . . . , (𝑛𝑝 , 𝛼𝑝)

)
− 𝑓

(
(𝑛, 𝛽), (𝑚, 𝛼), . . . , (𝑛𝑝 , 𝛼𝑝)

)
≤ 0.

If Δ 𝑓 ≤ 0, we process the tuples (𝑚, 𝛼) and (𝑛, 𝛽) in this order; on the
other hand, if Δ 𝑓 ≥ 0, we must swap them to minimize 𝑓 . In other words,
we want to define a strategy for when to swap the first two tuples.

Remark A.2 Note that, by virtue of the bubble sort principle [115] [115]: Astrachan (2003), ‘Bubble sort: an
archaeological algorithmic analysis’

, it is
enough to know when to swap the first two arguments to minimize
globally 𝑓 . Indeed, we can then recursively permute the subsequent

140 A Technical proofs

𝛽 = 1 𝛽 ≥ 2
𝛼 = 1 min(𝑛, 𝑚) 𝑚

𝛼 ≥ 2 𝑛 max(𝑛, 𝑚)★

Table A.1: Strategy for deciding the first
tuple to process between (𝑚, 𝛼) and (𝑛, 𝛽)
to minimize 𝑓 .★: If 𝑚 = 𝑛, take min(𝛼, 𝛽).

elements, and obtain a permutation that minimizes globally 𝑓 in 𝒪(𝑝2)
swaps at most. Bubble sort has a bad complexity – compared to merge
sort in𝒪(𝑝 log 𝑝) [60][60]: Skiena (2012), ‘Sorting and searching’ , but it is only used here as a theoretical argument.
The goal is to find a condition on the tuples to optimize 𝑓 .

After some elementary manipulations using the definition of 𝑓 in Equa-
tion A.2, Δ 𝑓 can be rewritten as

Δ 𝑓 = 𝛽𝑎𝑛(𝛼𝑚! − 1) − 𝛼𝑎𝑚(𝛽𝑛! − 1). (A.3)

In the following we assume 𝑚 ≥ 𝑛 and we examine the implications on
𝛼, 𝛽.

Case of a tie If 𝑚 = 𝑛, then the tuple with min(𝛼, 𝛽) must be placed
first to minimize 𝑓 , by virtue of the following lemma.

Lemma A.6 With 𝑚 = 𝑛 ≥ 2, and 𝛼, 𝛽 ≥ 1, we have

Δ 𝑓 = 𝑎𝑛(𝛼 − 𝛽) ≥ 0 ⇐⇒ 𝛼 ≥ 𝛽.

Case of 𝛽 ≥ 2 When 𝑚 > 𝑛, if 𝛽 ≥ 2, then the tuple (𝑚, 𝛼) must be
processed first to minimize 𝑓 , no matter the value of 𝛼.

Lemma A.7 With 𝑚 > 𝑛 ≥ 2, 𝛼 ≥ 1 and 𝛽 ≥ 2, we have Δ 𝑓 < 0.

Proof. The proof is deferred to Remaining proofs (p. 141). F

Case of 𝛽 = 1 If 𝑚 > 𝑛 and 𝛽 = 1, the tuple (𝑛, 1)must be processed
before (𝑚, 𝛼) to minimize 𝑓 .

Lemma A.8 With 𝑚 > 𝑛 ≥ 2, 𝛼 ≥ 1 and 𝛽 = 1, we have Δ 𝑓 > 0.

Proof. The proof is also deferred to Remaining proofs (p. 141). F

Summary The consequences of Lemma A.6, Lemma A.7 and Lemma
A.8 are summarized in Table A.1.

A strategy for dealing with bags and collections can be derived from
this.

▶ When you have bags and collections, since bags are represented
by tuples (𝑛, 1) and collections by tuples (𝑚, 𝛼)with 𝛼 ≥ 2, Table
A.1 shows that starting by treating bags minimizes the size of the
backtracking tree;

▶ if there are only bags left, i.e. 𝛼𝑖 = 1 for all 𝑖, Table A.1 shows
that processing the bags by increasing cardinality ensures that 𝑓 is
minimal;

A.4 Proofs of Section 4.4 141

▶ if there are only collections left, say 𝐶(𝑛) and 𝐶′(𝑚) – with #𝐶(𝑛) ≥
2 and #𝐶′(𝑚) ≥ 2, Table A.1 shows that the size of the tree is
minimized by starting with max(𝑛, 𝑚) – and min(#𝐶(𝑛), #𝐶′(𝑚))
if 𝑛 = 𝑚.

Remaining proofs

Preliminaries From Equation A.1, we define 𝑏𝑛 =

𝑛−1∑
𝑖=1

1
𝑖!

so that 𝑎𝑛 =

𝑛!𝑏𝑛 . 𝑏𝑛 converges to 𝑒 − 1 ≈ 1.718 so 𝑛! ≤ 𝑎𝑛 ≤ (𝑒 − 1)𝑛!. We denote by

𝑟𝑛 the remainder of the series (𝑏𝑛), i.e. 𝑟𝑛 =

∞∑
𝑖=𝑛

1
𝑖!

, so that 𝑒 − 1 = 𝑏𝑛 + 𝑟𝑛 .

Finally, given 𝑘 ≥ 0, we define 𝑠𝑛,𝑘 = 𝑏𝑛+𝑘 − 𝑏𝑛 =

𝑛+𝑘−1∑
𝑖=𝑛

1
𝑖!

.

From Equation A.3, with the notations we have just introduced, we
rewrite Δ 𝑓 as

Δ 𝑓 = 𝛼𝛽𝑏𝑛𝑛!𝑚!
[
1 − 1

𝛼𝑚!
− 𝑏𝑚
𝑏𝑛

(
1 − 1

𝛽𝑛!

)]
.

Since we suppose moreover that 𝑚 = 𝑛 + 𝑘, we rewrite 𝑚 = 𝑛 + 𝑘, with
𝑘 ≥ 0, and with 𝑏𝑛+𝑘 = 𝑏𝑛 + 𝑠𝑛,𝑘 , after simplifications,

Δ 𝑓 = −𝛼𝛽𝑏𝑛𝑛!(𝑛 + 𝑘)!
(

1
𝛼(𝑛 + 𝑘)! +

𝑠𝑛,𝑘(𝛽𝑛! − 1) − 𝑏𝑛
𝑏𝑛𝛽𝑛!

)
. (A.4)

Proof of Lemma A.7 With Equation A.4, Δ 𝑓 < 0 is equivalent to

1
𝛼(𝑛 + 𝑘)! +

𝑠𝑛,𝑘(𝛽𝑛! − 1) − 𝑏𝑛
𝑏𝑛𝛽𝑛!

> 0.

It suffices to show that the right-hand term is non-negative, i.e. that
𝑠𝑛,𝑘(𝛽𝑛! − 1) ≥ 𝑏𝑛 . If we show that this is true for 𝑘 = 1, since 𝑠𝑛,𝑘 is
increasing in 𝑘, the inequality will hold for any 𝑘 ≥ 1. Since 𝑠𝑛,1 = 1/𝑛!,
the case 𝑘 = 1 is equivalent to

𝛽 − 1
𝑛!
≥ 𝑏𝑛 ⇐⇒ 𝛽 ≥ 𝑏𝑛 +

1
𝑛!

= 𝑏𝑛+1

which holds since 𝛽 ≥ 2 ≥ 𝑒 − 1 ≥ 𝑏𝑛+1.

Proof of Lemma A.8 With Equation A.4, Δ 𝑓 > 0 is equivalent to

1
𝛼(𝑛 + 𝑘)! +

𝑠𝑛,𝑘(𝑛! − 1) − 𝑏𝑛
𝑏𝑛𝑛!

< 0;

which, in turn, after some elementary manipulations, can be rewritten
as

1
𝑠𝑛,𝑘

(
1 − 𝑛!

𝛼(𝑛 + 𝑘)!

)
>
𝑛! − 1
𝑏𝑛

. (A.5)

To show this result, we proceed by disjunction of cases on 𝑛.

142 A Technical proofs

Lemma A.9 Equation A.5 holds for 𝑛 = 2, and 𝑘, 𝛼 ≥ 1.

Proof. We rewrite Equation A.5 as

1
𝑠2,𝑘

(
1 − 2!

𝛼(2 + 𝑘)!

)
>

2! − 1
𝑏2

= 1.

If the inequality holds for 𝛼 = 1, it will hold for any value of 𝛼. Let 𝛼 = 1.
Multiplying each side of the inequality by 𝑠2,𝑘 , we obtain

𝑘+1∑
𝑖=2

1
𝑖!

< 1 − 2
(𝑘 + 2)! ⇐⇒

𝑘+2∑
𝑖=2

1
𝑖!

< 1 − 1
(𝑘 + 2)! .

The left-hand term on the right is increasing in 𝑘 and tends to 𝑒−2 ≈ 0.71;
whereas the right-hand term is also increasing and equals 1− 1

3! =
5
6 ≈ 0.83

when 𝑘 = 1. Therefore
𝑘+2∑
𝑖=2

1
𝑖!

< 𝑒 − 2 <
5
6
< 1 − 1

(𝑘 + 2)! . F

Since 𝛼 ≥ 1 and 𝑘 ≥ 1,

1
𝑠𝑛,𝑘

(
1 − 𝑛!

𝛼(𝑛 + 𝑘)!

)
>

1
𝑠𝑛,𝑘

(
1 − 1

𝑛 + 1

)
;

so Equation A.5 holds if the following holds:

1
𝑠𝑛,𝑘

𝑛

𝑛 + 1
>
𝑛! − 1
𝑏𝑛

.

Note that the left-hand term is a (strictly) decreasing function of 𝑘;
therefore the inequality holds if we can prove that it holds when 𝑘 →∞.
In light of lim

𝑘→∞
𝑠𝑛,𝑘 = 𝑟𝑛 , and with 𝑏𝑛 = (𝑒 − 1) − 𝑟𝑛 > 0, this amounts to

prove that

(𝑛! − 1)
(
1 + 1

𝑛

)
𝑟𝑛

𝑒 − 1 − 𝑟𝑛
< 1. (A.6)

We end the disjunction of cases with the following lemmas.

Lemma A.10 Equation A.6 holds for 𝑛 = 3.

Proof. With 𝑛 = 3, 𝑟3 = 𝑒 − 5/2 and

(3! − 1)
(
1 + 1

3

)
𝑟3

𝑒 − 1 − 𝑟3
≈ 0.97 < 1.

F

Lemma A.11 Equation A.6 holds for 𝑛 ≥ 4.

A.4 Proofs of Section 4.4 143

49: Indeed, 𝑟𝑛 is a decreasing function of
𝑛, and we can show that 𝑛!𝑟𝑛 is too, at the
expense of a tedious but direct calculation.

Proof. With 𝑛! − 1 < 𝑛!, we bound the left-hand term of Equation A.6 by(
1 + 1

𝑛

)
𝑛!𝑟𝑛

𝑒 − 1 − 𝑟𝑛

Note that each of the terms composing this product is a decreasing
function49 of 𝑛, so the product is decreasing as well. It turns out that
starting from𝑛 = 4, this term is smaller than 1 and so it is for𝑛 ≥ 4. Indeed,
we have 𝑟4 = 𝑒 − 8/3 and the product is evaluated as ≈ 0.92 < 1. F

Proof of Proposition 4.4

Using the definition of 𝑓 given by Equation A.2, we have the following.

Lemma A.12 𝑓
(
(𝑛1 , 𝛼1), . . . , (𝑛𝑝 , 𝛼𝑝)

)
≤ (𝑒 − 1)

𝑝∏
𝑖=1

𝛼𝑖𝑛𝑖 !
𝑝−1∑
𝑖=0

1
2𝑖

Proof. By induction on 𝑝. 𝑓 ((𝑛, 𝛼)) = 𝛼𝑎𝑛 ≤ (𝑒 − 1)𝛼𝑛!. Let 𝑝 ≥ 2 be
fixed. We have

𝑓
(
(𝑛1 , 𝛼1), . . . , (𝑛𝑝 , 𝛼𝑝)

)
= 𝛼1

[
𝑎𝑛1 + 𝑛1! 𝑓

(
(𝑛2 , 𝛼2), . . . , (𝑛𝑝 , 𝛼𝑝)

)]
≤ (𝑒 − 1)𝛼1𝑛1!

(
1 +

𝑝∏
𝑖=2

𝛼𝑖𝑛𝑖 !
𝑝−2∑
𝑖=0

1
2𝑖

)
= (𝑒 − 1)

𝑝∏
𝑖=1

𝛼𝑖𝑛𝑖 !

(
1∏𝑝

𝑖=2 𝛼𝑖𝑛𝑖 !
+

𝑝−2∑
𝑖=0

1
2𝑖

)
.

and since 𝛼𝑖 ≥ 1, 𝑛𝑖 ≥ 2, we have
∏𝑝

𝑖=2 𝛼𝑖𝑛𝑖 ! ≥ 2𝑝−1. F

Reconnecting with the bags and collections:

▶ A bag 𝐵 ∈ B contributes a tuple (#𝐵, 1) and thefore to #𝐵! in the
product;

▶ A collection 𝐶 ∈ C and an integer 𝑛 ∈ N so that #𝐶(𝑛) > 0
contributes the tuples (𝑛, #𝐶(𝑛)), (𝑛, #𝐶(𝑛) − 1), . . . , (𝑛, 1) so a
total combined of #𝐶(𝑛)!𝑛!#𝐶(𝑛).

We retrieve exactly 𝑁(B,C) as in Equation 4.2. Bounding the sum by 2
leads to 2(𝑒 − 1)𝑁(B,C).

Note that this result is true whether or not we optimize the order of
tuples to minimize 𝑓 . The bound is rather high since a lot of information
is lost by using 𝑛! ≥ 2.

By sorting the tuples, one can imagine the gain on the bound in light of
Lemma A.13 – showing what can be gained (or lost) if we optimize (or
not) the order of the tuples.

Lemma A.13 |Δ 𝑓 | ∼
𝑘→∞

(𝑒 − 1)𝛼 |1 − 𝛽𝑐𝑛 | (𝑛 + 𝑘)!, where 𝑐𝑛 ∈ (0, 1)
depends only on 𝑛 and Δ 𝑓 is defined in Equation A.3

144 A Technical proofs

Proof. We have

|Δ 𝑓 | = 𝛼𝛽𝑛!(𝑛 + 𝑘)!
����𝑏𝑛 (

1 − 1
𝛼(𝑛 + 𝑘)!

)
− 𝑏𝑛+𝑘

(
1 − 1

𝛽𝑛!

)����
∼

𝑘→∞
𝛼𝛽𝑛!(𝑛 + 𝑘)!

����𝑏𝑛 − (𝑒 − 1)
(
1 − 1

𝛽𝑛!

)���� .
Since 𝑏𝑛 = (𝑒 − 1) − 𝑟𝑛 , the term between | · | can be simplified to

𝑒 − 1
𝛽𝑛!
− 𝑟𝑛 =

𝑒 − 1
𝛽𝑛!
(1 − 𝛽𝑐𝑛) ,

where 𝑐𝑛 =
𝑛!𝑟𝑛
𝑒 − 1

∈ (0, 1). Indeed, since 𝑟1 = 𝑒1 and 𝑛!𝑟𝑛 is strictly
decreasing in 𝑛, 𝑛!𝑟𝑛 ∈ (0, 𝑒 − 1)

Finally, |Δ 𝑓 | ∼
𝑘→∞
(𝑒 − 1)𝛼 |1 − 𝛽𝑐𝑛 | (𝑛 + 𝑘)!. F

A.5 Proof of Proposition 7.3

This proof is reproduced from [39][39]: Azaïs et al. (2020), ‘The weight
function in the subtree kernel is decisive’

and is mainly based on the following
technical lemma, whose statement requires the following notation. If 𝑢 is
a vertex of a tree 𝑇, 𝔉(𝑢) denotes the family of 𝑢, i.e., the set composed
of the ascendants of 𝑢, 𝑢, and the descendants of 𝑢 in 𝑇. We recall that
𝒟(𝑢) stands for the latter.

Lemma A.14 Let 𝑢, 𝑣 ∈ 𝑇𝑖 , 𝑖 ∈ {1, 2}. One has

𝐾(𝑇𝑢𝑖 , 𝑇
𝑣
𝑖) = 𝐾(𝑇𝑖 , 𝑇𝑖) −

∑
𝑥∈ℬ𝑢,𝑣

𝜔𝑇𝑖 [𝑥] + 𝐾(𝜏ℋ(𝑢) , 𝜏ℋ(𝑣)),

where

ℬ𝑢,𝑣 =
{
𝒟(𝑢) ∪ {𝑢} if 𝑢 = 𝑣,

𝔉(𝑢) ∪ 𝔉(𝑣) otherwise.

(A.7)

Let 𝑢 ∈ 𝑇1 and 𝑣 ∈ 𝑇2. Then,

𝐾(𝑇𝑢1 , 𝑇𝑣2) = 𝐾(𝜏ℋ(𝑢) , 𝜏ℋ(𝑣)).

Proof. We begin with the case 𝑢 ≠ 𝑣. The result relies on the following
decomposition, which is valid under the assumptions made on 𝑇𝑖 and
the sequence (𝜏ℎ),

𝒮(𝑇𝑢𝑖)∩𝒮(𝑇
𝑣
𝑖) =

[
𝒮(𝑇𝑖)\{𝑇𝑖[𝑧] : 𝑧 ∈ 𝔉(𝑢)∪𝔉(𝑣)}

]
∪

[
𝒮(𝜏ℋ(𝑢))∩𝒮(𝜏ℋ(𝑣))

]
.

Together with Equation 7.4,

𝐾(𝑇𝑢𝑖 , 𝑇
𝑣
𝑖) =

∑
𝜃∈𝒮(𝑇𝑖)\{𝑇𝑖 [𝑧] : 𝑧∈𝔉(𝑢)∪𝔉(𝑣)}

𝑤𝜃 N𝜃(𝑇𝑢𝑖)N𝜃(𝑇𝑣𝑖)

+
∑

𝜃∈𝒮(𝜏ℋ(𝑢))∩𝒮(𝜏ℋ(𝑣))
𝑤𝜃 N𝜃(𝑇𝑢𝑖)N𝜃(𝑇𝑣𝑖).

A.5 Proof of Proposition 7.3 145

If 𝜃 ∈ 𝒮(𝜏ℋ(𝑢))∩𝒮(𝜏ℋ(𝑣)), then N𝜃(𝑇𝑧𝑖) = N𝜃(𝜏ℋ(𝑧)), 𝑧 ∈ {𝑢, 𝑣}, because,
for any ℎ > 0, 𝜏ℎ is not a subtree of 𝑇0 or 𝑇1 by assumption. Thus,

∑
𝜃∈𝒮(𝜏ℋ(𝑢))∩𝒮(𝜏ℋ(𝑣))

𝑤𝜃 N𝜃(𝑇𝑢𝑖)N𝜃(𝑇𝑣𝑖) =
∑

𝜃∈𝒮(𝜏ℋ(𝑢))∩𝒮(𝜏ℋ(𝑣))
𝑤𝜃 N𝜃(𝜏ℋ(𝑢))N𝜃(𝜏ℋ(𝑣))

= 𝐾(𝜏ℋ(𝑢) , 𝜏ℋ(𝑣)), (A.8)

in light of Equation 7.4 again. Furthermore, if 𝜃 ∈ 𝒮(𝑇𝑖) \ {𝑇𝑖[𝑧] : 𝑧 ∈
𝔉(𝑢) ∪ 𝔉(𝑣)}, then N𝜃(𝑇𝑧𝑖) = N𝜃(𝑇𝑖), 𝑧 ∈ {𝑢, 𝑣}, and

∑
𝜃∈𝒮(𝑇𝑖)\{𝑇𝑖 [𝑧] : 𝑧∈𝔉(𝑢)∪𝔉(𝑣)}

𝑤𝜃 N𝜃(𝑇𝑢𝑖)N𝜃(𝑇𝑣𝑖) =
∑

𝜃∈𝒮(𝑇𝑖)\{𝑇𝑖 [𝑧] : 𝑧∈𝔉(𝑢)∪𝔉(𝑣)}
𝑤𝜃 N𝜃(𝑇𝑖)N𝜃(𝑇𝑖)

=
∑

𝜃∈𝒮(𝑇𝑖)
𝑤𝜃 N𝜃(𝑇𝑖)N𝜃(𝑇𝑖)

−
∑

𝜃∈{𝑇𝑖 [𝑢] : 𝑢∈𝔉(𝑣)∪𝔉(𝑤)}
𝑤𝜃 N𝜃(𝑇𝑖)N𝜃(𝑇𝑖)

= 𝐾(𝑇𝑖 , 𝑇𝑖) −
∑

𝜃∈{𝑇𝑖 [𝑧] : 𝑧∈𝔉(𝑢)∪𝔉(𝑣)}
𝑤𝜃 , (A.9)

since N𝜃(𝑇𝑖) = 1 because of the first assumption on 𝑇𝑖 . Equation A.8 and
Equation A.9 state the first result. When 𝑢 = 𝑣, the decomposition is
slightly different,

𝒮(𝑇𝑢𝑖) =
[
𝒮(𝑇𝑖) \ {𝑇𝑖[𝑧] : 𝑧 ∈ {𝑢} ∪ 𝒟(𝑢)}

]
∪ 𝒮(𝜏ℋ(𝑢)),

but the rest of the proof is similar. Finally, the formula for 𝐾(𝑇𝑢1 , 𝑇𝑣2) is a
direct consequence of the third assumption on 𝑇1, 𝑇2 and the sequence
(𝜏ℎ). F

By virtue of the previous lemma, one can derive the following result on
the quantity Δ𝑖𝑥 defined by Equation 7.5.

Lemma A.15 Let 𝑥 ∈ 𝑇𝑖 , 𝑖 ∈ {1, 2}. One has

Δ𝑖𝑥 = 𝐾(𝑇𝑖 , 𝑇𝑖) − E𝑢

[∑
𝑧∈ℬ𝑥,𝑢

𝑤𝑇𝑖 [𝑧]

]
.

Proof. In light of Lemma A.14, one has

Δ𝑖𝑥 = 𝐾(𝑇𝑖 , 𝑇𝑖)−E𝑢

[∑
𝑧∈ℬ𝑥,𝑢

𝑤𝑇𝑖 [𝑧]

]
+E𝑢

[
𝐾(𝜏ℋ(𝑥) , 𝜏ℋ(𝑢))

]
−E𝑣

[
𝐾(𝜏ℋ(𝑥) , 𝜏ℋ(𝑣))

]
.

By assumption on the stochastic model of random trees,ℋ(𝑢) andℋ(𝑣)
have the same distribution; thus E𝑢[𝐾(𝜏ℋ(𝑥) , 𝜏ℋ(𝑢))] = E𝑣[𝐾(𝜏ℋ(𝑥) , 𝜏ℋ(𝑣))],
which states the expected result. F

The next decomposition is useful to prove the result of interest. If 𝑐 𝑖
ℎ

denotes the number of subtrees of height ℎ appearing in 𝑇𝑖 , ℎ ≥ 0, then

146 A Technical proofs

the probability of picking a particular vertex 𝑢 is 𝑃𝜌(ℋ(𝑢))/𝑐 𝑖ℋ(𝑢) and
thus

E𝑢

[∑
𝑧∈ℬ𝑥,𝑢

𝑤𝑇𝑖 [𝑧]

]
=
𝑃𝜌(ℋ(𝑥))
𝑐 𝑖ℋ(𝑥)

∑
𝑧∈{𝑥}∪𝒟(𝑥)

𝑤𝑇𝑖 [𝑧]+
∑

𝑢∈𝑇𝑖\{𝑥}

𝑃𝜌(ℋ(𝑢))
𝑐 𝑖ℋ(𝑢)

∑
𝑧∈ℬ𝑥,𝑢

𝑤𝑇𝑖 [𝑧].

In addition, for 𝑢 ∈ 𝑇𝑖 \ {𝑥},∑
𝑧∈{𝑥}∪𝒟(𝑥)

𝜔𝑇𝑖 [𝑧] = 𝐾(𝑇𝑖[𝑥], 𝑇𝑖[𝑥]),∑
𝑧∈ℬ𝑥,𝑢

𝜔𝑇𝑖 [𝑧] = 𝐾(𝑇𝑖 , 𝑇𝑖) −
∑

𝑧∉𝔉(𝑥)∪𝔉(𝑢)
𝜔𝑇𝑖 [𝑧].

(A.10)

(A.11)

Equation A.10 and Equation A.11 together with Lemma A.15 show that

Δ𝑖𝑥 =
𝑃𝜌(ℋ(𝑥))
𝑐 𝑖ℋ(𝑥)

(𝐾(𝑇𝑖 , 𝑇𝑖) − 𝐾(𝑇𝑖[𝑥], 𝑇𝑖[𝑥]) +
∑

𝑢∈𝑇𝑖\{𝑥}

𝑃𝜌(ℋ(𝑢))
𝑐 𝑖ℋ(𝑢)

∑
𝑧∉𝔉(𝑥)∪𝔉(𝑢)

𝜔𝑇𝑖 [𝑧].

The left-hand term (and the right-hand term when 𝑤𝑇𝑖 > 0) is null if and
only if 𝑥 = ℛ(𝑇𝑖), which shows the first result. In addition,

Δ𝑖𝑥 ≥
𝑃𝜌(ℋ(𝑥))
𝑐 𝑖ℋ(𝑥)

(𝐾(𝑇𝑖 , 𝑇𝑖) − 𝐾(𝑇𝑖[𝑥], 𝑇𝑖[𝑥]) ,

which states the expected Equation 7.6 with 𝑃𝜌(0) ≤ 𝑃𝜌(ℋ(𝑥)) (true if
𝜌 > 𝐻/2) and 𝑐 𝑖ℋ(𝑥) ≤ #ℒ(𝑇𝑖). The conclusion comes from the fact that
the probability of drawing a vertex 𝑥 of height greater than ℎ is 𝐺𝜌(ℎ).

A bĳection between FDAGs and

row-Fishburn matrices B

B.1 Equivalence between FDAGs and

reduced adjacency matrices . . 147

B.2 Reduced adjacency matrix to in-

cremental adjacency matrix . . 147

B.3 Incremental adjacency matrix to

reduced adjacency matrix 148

It must be October, the trees are falling
away and showing their true colors.

Charmaine J Forde

This (short) chapter is dedicated to the proof of Theorem 6.5, reproduced
from [32]

[32]: Ingels et al. (2022), ‘Enumeration of
Irredundant Forests’

, which is in two steps. First, we recall the natural bĳection
between FDAGs and their adjacency matrices; the latter are then put into
bĳection with the row-Fishburn matrices.

B.1 Equivalence between FDAGs and reduced

adjacency matrices

Let 𝐷 = (𝑣0 , . . . , 𝑣𝑛) be a FDAG constructed in 𝑘 steps from 𝐷0 in the
enumeration tree defined in Section 6.1. The adjacency matrix of 𝐷 is
defined as 𝐴 = (𝐴𝑖 , 𝑗)𝑖 , 𝑗∈[[𝑛,0]]2 where, if𝑚 is the multiplicity of 𝑣 𝑗 in 𝒞(𝑣𝑖),
then 𝐴𝑖 , 𝑗 = 𝑚 – possibly 0 if 𝑣 𝑗 ∉ 𝒞(𝑣𝑖). By construction of 𝐷, as 𝑣𝑛 is
the last inserted vertex, it has no parents, so 𝐴𝑛,· is a column of zeros;
and as 𝑣0 is a leaf, it has no children, so 𝐴·,0 is a row of zeros. We define
the reduced adjacency matrix 𝑀 as the matrix 𝐴 deprived of this column
and this row. Therefore, 𝑀 = (𝐴𝑖 , 𝑗)𝑖∈[[𝑛,1]], 𝑗∈[[𝑛−1,0]]. Naturally, one can
reconstruct the adjacency matrix (and thus 𝐷) from the reduced matrix
by adding a row and a column of zeros.

As a vertex can not be a parent to any vertex introduced after it, we have
𝐴𝑖 , 𝑗 = 0 for all 𝑖 ≤ 𝑗 – so that𝑀 is an upper-triangular matrix. In addition,
as all vertices except 𝑣0 have at least one child, there is at least one non-
zero entry in each row of 𝑀. Therefore, 𝑀 is a row-Fishburn matrix.
However, we have no guarantee that this matrix verifies size(𝑀) = 𝑘.

B.2 Reduced adjacency matrix to incremental

adjacency matrix

Let𝐷 = (𝑣0 , . . . , 𝑣𝑛) be a FDAG, and 𝑀 its reduced adjacency matrix. Let
𝑀𝑖 be the row of 𝑀 corresponding to 𝒞𝜓(𝑣𝑖). The incremental adjacency
matrix 𝑀̂ is defined as: {

𝑀̂1 = 𝑀1

𝑀̂𝑖+1 = 𝑀𝑖+1 ⊖ 𝑀𝑖

where the ⊖ operation is defined as follows: given two rows 𝑎0 · · · 𝑎𝑛 and
𝑏0 · · · 𝑏𝑛 , then denoting 𝑗 = min{𝑖 : 𝑎𝑖 ≠ 𝑏𝑖}, and 𝑐 = 𝑎 𝑗 − 𝑏 𝑗 ,

148 B A bĳection between FDAGs and row-Fishburn matrices

𝑎0 · · · 𝑎 𝑗−1 𝑎 𝑗 𝑎 𝑗+1 · · · 𝑎𝑛
⊖ 𝑏0 · · · 𝑏 𝑗−1 𝑏 𝑗 𝑏 𝑗+1 · · · 𝑏𝑛
= 0 · · · 0 𝑐 𝑎 𝑗+1 · · · 𝑎𝑛

.

We claim that this new matrix 𝑀̂ is a row-Fishburn matrix of size 𝑘, if
𝐷 ∈ 𝐸𝑘 . Actually, since 𝑀 was already a row-Fishburn matrix, we just
have to check that the size is correct. Let us consider 𝑣𝑖 and 𝑣𝑖+1. The
vertex 𝑣𝑖+1 has been constructed from 𝑣𝑖 by using either or , and
potentially several after that – let us say 𝑝 ≥ 0 times. Therefore, if
the claim is correct, the sum over 𝑀̂𝑖+1 should be exactly 𝑝 + 1. Consider
the operation by which 𝑣𝑖+1 was added in the first place:

𝒞𝜓(𝑣𝑖+1) is reduced to a single element 𝑎, such that 𝑎 >lex. 𝒞𝜓(𝑣𝑖).
Therefore, the index 𝑗 of the first non-zero coefficient of 𝑀𝑖+1 is
ahead of the one of 𝑀𝑖 so that the coefficient 𝑐 of ⊖ is equal
to the 𝑗-th coefficient of 𝑀𝑖+1 minus zero. Since the rule
adds children to respect decreasing words, the 𝑝 extra coefficients
are added to the right of the 𝑗-th coefficient (including it) and
therefore they are kept unchanged by the ⊖ operation. Eventually,
the sum over 𝑀𝑖+1 is 𝑝 + 1 and so is the sum over 𝑀̂𝑖+1.
𝒞𝜓(𝑣𝑖+1) is built from 𝒞𝜓(𝑣𝑖) with Algorithm 13, and therefore
they (i) share a common prefix, possibly empty and (ii) then differ
by a single letter. The index of that letter in 𝑀𝑖+1 corresponds to
the index 𝑗 defined in ⊖. Therefore, the coefficient 𝑐 is – before
any – equal to one. The argument of letters being
added to the right of 𝑗 still holds and therefore the sum over 𝑀̂𝑖+1
is also 𝑝 + 1.

To conclude the proof, we have to exhibit the inverse function of the
mapping we just defined. This will prove that this mapping is indeed a
bĳection, and then the theorem holds.

B.3 Incremental adjacency matrix to reduced

adjacency matrix

Let 𝑀 and 𝑀̂ be constructed as before. From 𝑀̂, we can define a matrix
𝑀′ as: {

𝑀′1 = 𝑀̂1

𝑀′𝑖+1 = 𝑀′𝑖 ⊕ 𝑀̂𝑖+1

where the ⊕ operation is defined as follows: given two words 𝑎0 · · · 𝑎𝑛
and 𝑏0 · · · 𝑏𝑛 , then denoting 𝑗 = min{𝑖 : 𝑏𝑖 ≠ 0}, and 𝑐 = 𝑎 𝑗 + 𝑏 𝑗 ,

𝑎0 · · · 𝑎 𝑗−1 𝑎 𝑗 𝑎 𝑗+1 · · · 𝑎𝑛
⊕ 𝑏0 · · · 𝑏 𝑗−1 𝑏 𝑗 𝑏 𝑗+1 · · · 𝑏𝑛
= 𝑎0 · · · 𝑎 𝑗−1 𝑐 𝑏 𝑗+1 · · · 𝑏𝑛

.

By construction, ⊕ is the inverse operation of ⊖, so that we have the
following lemma:

B.3 Incremental adjacency matrix to reduced adjacency matrix 149

Lemma B.1 The following properties hold:

▶ 𝑀𝑖 ⊕ (𝑀𝑖+1 ⊖ 𝑀𝑖) = 𝑀𝑖+1
▶ (𝑀𝑖 ⊕ 𝑀̂𝑖+1) ⊖ 𝑀𝑖 = 𝑀̂𝑖+1

Thefore, 𝑀 = 𝑀′.

The FDAG of Figure 5.7 is reproduced below to illustrates the stages of
the proof. This FDAG is constructed in 7 steps, that are (in this order):
, , , , , and . The matrices 𝐴, 𝑀 and 𝑀̂ are
given in Figure B.1. One can see that 𝑀̂ is of size 7, as expected.

2 3

2

𝑣
𝜓(𝑣) 0 1 2 3 4 5
𝒞𝜓(𝑣) 0 00 000 1 211

𝐴 𝑣5 𝑣4 𝑣3 𝑣2 𝑣1 𝑣0©­­­­­«
ª®®®®®¬

𝑣5 . 0 0 1 2 0
𝑣4 . . 0 0 1 0
𝑣3 . . . 0 0 3
𝑣2 0 2
𝑣1 1
𝑣0

𝑀 𝑣4 𝑣3 𝑣2 𝑣1 𝑣0©­­­­«
ª®®®®¬

𝑣5 0 0 1 2 0
𝑣4 . 0 0 1 0
𝑣3 . . 0 0 3
𝑣2 . . . 0 2
𝑣1 1

𝑀̂ 𝑣4 𝑣3 𝑣2 𝑣1 𝑣0©­­­­«
ª®®®®¬

𝑣5 0 0 1 2 0
𝑣4 . 0 0 1 0
𝑣3 . . 0 0 1
𝑣2 . . . 0 1
𝑣1 1

Figure B.1: The FDAG of Figure 5.7 re-
produced (top left), its adjacency matrix
𝐴 (top right), its reduced adjacency ma-
trix 𝑀 (bottom left) and its incremental
adjacency matrix 𝑀̂ (bottom right). Dots
represent zeros corresponding to 𝐴𝑖 , 𝑗 ele-
ments with 𝑖 ≤ 𝑗.

Remark B.1 It should be noted that (general) Fishburn matrices, with
at least one non-zero entry on each row and column, are in bĳection
with FDAGs compressing forests made of a unique tree. Indeed, via
the bĳection above, as such FDAG has a unique root, it must be the
last inserted vertex, and therefore, each column admits at least one
non-zero entry (otherwise it would be another root).

Remark B.2 It is possible to enumerate row-Fishburn matrices by
using the previous bĳection and the FDAGs enumeration tree together.
Nevertheless, things are a little simpler in this case and the equivalent
of the operations and can be merged, giving two rules for
matrix expansion:

(R1) Increase one coefficient to the (inclusive) right of the rightmost
nonzero coefficient of the top row by 1.

(R2) Increase the dimension of the matrix by 1 (to the left and top), all
new coefficients set to zero. Set one coefficient of the top row to 1.

Bibliography

Here are the references in citation order.

[1] Stanley Fields and Mark Johnston. ‘Whither model organism research?’ In: Science 307.5717 (2005),
pp. 1885–1886 (cited on page ix).

[2] Fabrice Besnard et al. ‘Cytokinin signalling inhibitory fields provide robustness to phyllotaxis’. In:
Nature 505.7483 (2014), pp. 417–421 (cited on page x).

[3] Yann Guédon et al. ‘Pattern identification and characterization reveal permutations of organs as a key
genetically controlled property of post-meristematic phyllotaxis’. In: Journal of theoretical biology 338
(2013), pp. 94–110 (cited on page x).

[4] Ayan Chaudhury and Christophe Godin. ‘Skeletonization of plant point cloud data using stochastic
optimization framework’. In: Frontiers in Plant Science 11 (2020), p. 773 (cited on page x).

[5] Katia Mirande, Franck Hétroy-wheeler, and Christophe Godin. ‘High-precision 3D segmentation of
plants combining spectral clustering and quotient graph techniques: a multi-level approach’. In: 9th

International Conference on Functional-Structural Plant Models. En ligne, France, 2020 (cited on page x).

[6] Aristid Lindenmayer. ‘Mathematical models for cellular interactions in development I. Filaments with
one-sided inputs’. In: Journal of theoretical biology 18.3 (1968), pp. 280–299 (cited on page xi).

[7] Aristid Lindenmayer. ‘Developmental systems without cellular interactions, their languages and
grammars’. In: Journal of Theoretical Biology 30.3 (1971), pp. 455–484 (cited on page xi).

[8] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The algorithmic beauty of plants. Springer Science
& Business Media, 2012 (cited on page xi).

[9] Frédéric Boudon et al. ‘L-Py: an L-system simulation framework for modeling plant architecture
development based on a dynamic language’. In: Frontiers in plant science 3 (2012), p. 76 (cited on
page xi).

[10] Helin Dutagaci et al. ‘ROSE-X: an annotated data set for evaluation of 3D plant organ segmentation
methods’. In: Plant methods 16.1 (2020), pp. 1–14 (cited on page xi).

[11] Ayan Chaudhury et al. ‘Transferring PointNet++ Segmentation from Virtual to Real Plants’. In:
CVPPA-ICCV. 2021 (cited on page xi).

[12] Ayan Chaudhury, Frédéric Boudon, and Christophe Godin. ‘3D plant phenotyping: All you need is
labelled point cloud data’. In: European Conference on Computer Vision. Springer. 2020, pp. 244–260
(cited on page xi).

[13] Shu-Yun Le, Ruth Nussinov, and Jacob V. Maizel. ‘Tree graphs of RNA secondary structures and
their comparisons’. In: Computers and Biomedical Research 22.5 (1989), pp. 461–473. doi: https :
//doi.org/10.1016/0010-4809(89)90039-6 (cited on page 2).

[14] Gianni Costa et al. ‘A Tree-Based Approach to Clustering XML Documents by Structure’. In: Knowledge

Discovery in Databases: PKDD 2004. Ed. by Jean-François Boulicaut et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 137–148 (cited on page 2).

[15] M. A. Martín-Delgado, J. Rodriguez-Laguna, and G. Sierra. ‘Density-matrix renormalization-group
study of excitons in dendrimers’. In: Phys. Rev. B 65 (15 2002), p. 155116. doi: 10.1103/PhysRevB.65.
155116 (cited on page 2).

[16] Donald Meagher. ‘Geometric modeling using octree encoding’. In: Computer graphics and image

processing 19.2 (1982), pp. 129–147 (cited on page 2).

[17] Leo Breiman et al. Classification and regression trees. Routledge, 2017 (cited on page 2).

[18] Leo Breiman. ‘Random forests’. In: Machine learning 45.1 (2001), pp. 5–32 (cited on page 2).

https://doi.org/https://doi.org/10.1016/0010-4809(89)90039-6
https://doi.org/https://doi.org/10.1016/0010-4809(89)90039-6
https://doi.org/10.1103/PhysRevB.65.155116
https://doi.org/10.1103/PhysRevB.65.155116

[19] Marek Kubale. Graph colorings. Vol. 352. American Mathematical Soc., 2004 (cited on page 2).

[20] Radia Perlman. ‘An algorithm for distributed computation of a spanning tree in an extended LAN’.
In: ACM SIGCOMM Computer Communication Review 15.4 (1985), pp. 44–53 (cited on page 2).

[21] Marthe Bonamy. ‘A small report on graph and tree isomorphism’. In: Lecture note (2010) (cited on
pages 3, 13).

[22] Alfred V Aho, John E Hopcroft, and Jeffrey D Ullman. ‘The design and analysis of computer algorithms’.
In: Reading (1974) (cited on pages 3, 13, 119).

[23] Pierre-Antoine Champin and Christine Solnon. ‘Measuring the similarity of labeled graphs’. In:
International Conference on Case-Based Reasoning. Springer. 2003, pp. 80–95 (cited on pages 3, 13, 25).

[24] Kellog S Booth and Charles J Colbourn. Problems polynomially equivalent to graph isomorphism. Computer
Science Department, Univ., 1979 (cited on pages 3, 25, 37, 38).

[25] Brendan D McKay and Adolfo Piperno. ‘Practical graph isomorphism, II’. In: Journal of symbolic

computation 60 (2014), pp. 94–112 (cited on pages 3, 25, 38, 121, 127).

[26] Florian Ingels and Romain Azaïs. ‘Isomorphic Unordered Labeled Trees up to Substitution Ciphering’.
In: Combinatorial Algorithms. Ed. by Paola Flocchini and Lucia Moura. Cham: Springer International
Publishing, 2021, pp. 385–399 (cited on pages 3, 6, 23, 37, 134).

[27] Tatsuya Asai et al. ‘Discovering frequent substructures in large unordered trees’. In: International

Conference on Discovery Science. Springer. 2003, pp. 47–61 (cited on pages 4, 64, 65).

[28] David Avis and Komei Fukuda. ‘Reverse search for enumeration’. In: Discrete applied mathematics 65.1-3
(1996), pp. 21–46 (cited on pages 4, 60, 68).

[29] Shin-ichi Nakano. ‘Efficient generation of plane trees’. In: Information Processing Letters 84.3 (2002),
pp. 167–172 (cited on pages 4, 63).

[30] Shin-ichi Nakano and Takeaki Uno. ‘Efficient generation of rooted trees’. In: National Institute for

Informatics (Japan), Tech. Rep. NII-2003-005E 8 (2003) (cited on pages 4, 63–65, 67, 84, 85).

[31] Florian Ingels and Romain Azaïs. ‘A Reverse Search Method for the Enumeration of Unordered Forests
using DAG Compression’. In: Fourth International Workshop on Enumeration Problems and Applications.
2020 (cited on page 4).

[32] Florian Ingels and Romain Azaïs. ‘Enumeration of Irredundant Forests’. In: Theoretical Computer Science

(2022). doi: https://doi.org/10.1016/j.tcs.2022.04.033 (cited on pages 4, 6, 59, 72, 147).

[33] Nello Cristianini, John Shawe-Taylor, et al. An introduction to support vector machines and other kernel-based

learning methods. Cambridge university press, 2000 (cited on pages 5, 94, 103).

[34] David Haussler. Convolution kernels on discrete structures. Tech. rep. Technical report, Department of
Computer Science, University of California . . ., 1999 (cited on pages 5, 95, 129).

[35] Michael Collins and Nigel Duffy. ‘Convolution kernels for natural language’. In: Advances in neural

information processing systems 14 (2001) (cited on pages 5, 85, 95, 99, 102, 129).

[36] Giovanni Da San Martino. ‘Kernel methods for tree structured data’. In: (2009) (cited on pages 5, 95,
99, 102, 107, 129).

[37] SVN Vishwanathan, Alexander Johannes Smola, et al. ‘Fast kernels for string and tree matching’. In:
Kernel methods in computational biology 15 (2004), pp. 113–130 (cited on pages 5, 85, 95, 99, 101, 104, 110,
117).

[38] Florian Ingels and Romain Azaïs. ‘De l’importance de la fonction de poids dans le noyau des
sous-arbres’. In: JdS 2019-51èmes Journées de Statistique. 2019, pp. 1–6 (cited on page 5).

[39] Romain Azaïs and Florian Ingels. ‘The weight function in the subtree kernel is decisive’. In: Journal of

Machine Learning Research 21 (2020), pp. 1–36 (cited on pages 5, 6, 17, 93, 101, 133, 144).

[40] Arthur Cayley. On the Analytical Forms Called Trees: With Application to the Theory of Chemical Combinations.
se, 1875 (cited on page 5).

https://doi.org/https://doi.org/10.1016/j.tcs.2022.04.033

[41] Philip Bille et al. ‘Tree compression with top trees’. In: Information and Computation 243 (2015), pp. 166–
177 (cited on page 6).

[42] Ivan E Sutherland. ‘Sketchpad a man-machine graphical communication system’. In: Simulation 2.5
(1964), R–3 (cited on pages 6, 14).

[43] John C Hart and Thomas A DeFanti. ‘Efficient antialiased rendering of 3-D linear fractals’. In:
Proceedings of the 18th annual conference on Computer graphics and interactive techniques. 1991, pp. 91–100
(cited on pages 6, 14).

[44] Peter Buneman, Martin Grohe, and Christoph Koch. ‘Path queries on compressed XML’. In: Proceedings

2003 VLDB Conference. Elsevier. 2003, pp. 141–152 (cited on pages 6, 14).

[45] Markus Frick, Martin Grohe, and Christoph Koch. ‘Query evaluation on compressed trees’. In: 18th

Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings. IEEE. 2003, pp. 188–197 (cited
on pages 6, 14).

[46] Romain Azaïs et al. ‘Treex: a Python package for manipulating rooted trees’. In: Journal of Open Source

Software 4.38 (2019), p. 1351 (cited on page 7).

[47] Edward A Bender and S Gill Williamson. Lists, decisions and graphs. S. Gill Williamson, 2010 (cited on
page 11).

[48] Heinz Prüfer. ‘Neuer beweis eines satzes über permutationen’. In: Arch. Math. Phys 27.1918 (1918),
pp. 742–744 (cited on page 11).

[49] Donald E Knuth. Art of Computer Programming, Volume 4, Fascicle 4, The: Generating All Trees–History of

Combinatorial Generation. Addison-Wesley Professional, 2013 (cited on page 11).

[50] David Aldous. ‘The continuum random tree III’. In: The Annals of Probability (1993), pp. 248–289 (cited
on page 11).

[51] Romain Azaïs, Alexandre Genadot, and Benoit Henry. ‘Inference for conditioned Galton-Watson trees
from their Harris path’. In: ALEA 16 (2019), pp. 561–604 (cited on pages 11, 12).

[52] Béla Bollobás. Random Graphs. 2nd ed. Cambridge Studies in Advanced Mathematics. Cambridge
University Press, 2001 (cited on page 12).

[53] Jacques Neveu. ‘Arbres et processus de Galton-Watson’. In: Annales de l’IHP Probabilités et statistiques.
Vol. 22. 2. 1986, pp. 199–207 (cited on page 12).

[54] Albert Nĳenhuis and Herbert S Wilf. Combinatorial algorithms: for computers and calculators. Elsevier,
2014 (cited on page 12).

[55] L Alonso, R Schott, and INRIA-Lorraine CRIN. ‘Random Unlabelled Rooted Trees Revisited’. In: Proc.

ICCI. Vol. 94. Citeseer. 1994, pp. 1352–1367 (cited on page 12).

[56] Yazhe Zhang. ‘On the number of leaves in a random recursive tree’. In: Brazilian Journal of Probability

and Statistics 29.4 (2015), pp. 897–908 (cited on page 12).

[57] Gabriel Valiente. Algorithms on trees and graphs. Springer Science & Business Media, 2013 (cited on
page 12).

[58] Douglas M Campbell and David Radford. ‘Tree isomorphism algorithms: Speed vs. clarity’. In:
Mathematics Magazine 64.4 (1991), pp. 252–261 (cited on page 13).

[59] Donald E Knuth. ‘The art of computer programming. Vol. 3, Sorting and Searching’. In: (1973) (cited
on pages 14, 136).

[60] Steven S Skiena. ‘Sorting and searching’. In: The Algorithm Design Manual. Springer, 2012, pp. 103–144
(cited on pages 14, 133, 140).

[61] Christophe Godin and Pascal Ferraro. ‘Quantifying the degree of self-nestedness of trees: application to
the structural analysis of plants’. In: IEEE/ACM Transactions on Computational Biology and Bioinformatics

7.4 (2009), pp. 688–703 (cited on pages 15, 16, 83).

[62] Peter J Downey, Ravi Sethi, and Robert Endre Tarjan. ‘Variations on the common subexpression
problem’. In: Journal of the ACM (JACM) 27.4 (1980), pp. 758–771 (cited on page 16).

[63] Martin Gardner. Codes, ciphers and secret writing. Courier Corporation, 1984 (cited on page 23).

[64] Mark S Mayzner and Margaret Elizabeth Tresselt. ‘Tables of single-letter and digram frequency counts
for various word-length and letter-position combinations.’ In: Psychonomic monograph supplements

(1965) (cited on page 23).

[65] Chris Savarese and Brian Hart. ‘The Caesar Cipher’. In: Historical Cryptography Web Site (1999) (cited
on page 23).

[66] Viktor N Zemlyachenko, Nickolay M Korneenko, and Regina I Tyshkevich. ‘Graph isomorphism
problem’. In: Journal of Soviet Mathematics 29.4 (1985), pp. 1426–1481 (cited on pages 25, 127).

[67] Uwe Schöning. ‘Graph isomorphism is in the low hierarchy’. In: Annual Symposium on Theoretical

Aspects of Computer Science. Springer. 1987, pp. 114–124 (cited on pages 25, 38, 119, 127).

[68] Boris Weisfeiler and Andrei Leman. ‘The reduction of a graph to canonical form and the algebra
which appears therein’. In: NTI, Series 2.9 (1968), pp. 12–16 (cited on pages 25, 120, 121).

[69] Martin Grohe, Pascal Schweitzer, and Daniel Wiebking. ‘Deep Weisfeiler Leman’. In: Proceedings of

the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM. 2021, pp. 2600–2614 (cited on
page 25).

[70] László Babai. ‘Monte-Carlo algorithms in graph isomorphism testing’. In: Université tde Montréal

Technical Report, DMS 79-10 (1979) (cited on page 38).

[71] Maria M Klawe, Derek G Corneil, and Andrzej Proskurowski. ‘Isomorphism testing in hookup classes’.
In: SIAM Journal on Algebraic Discrete Methods 3.2 (1982), pp. 260–274 (cited on page 38).

[72] Stefan Canzar et al. ‘On tree-constrained matchings and generalizations’. In: Algorithmica 71.1 (2015),
pp. 98–119 (cited on page 38).

[73] Monaldo Mastrolilli and Georgios Stamoulis. ‘Constrained matching problems in bipartite graphs’. In:
International Symposium on Combinatorial Optimization. Springer. 2012, pp. 344–355 (cited on page 38).

[74] Rina Dechter and Daniel Frost. ‘Backtracking algorithms for constraint satisfaction problems; a survey’.
In: Constraints, International Journal, to appear (1998) (cited on page 39).

[75] Donald E Knuth. The Art of Computer Programming, Volume 4, Fascicle 2: Generating All Tuples and

Permutations (Art of Computer Programming). Addison-Wesley Professional, 2005 (cited on pages 51,
137).

[76] Ailsa H Land and Alison G Doig. ‘An automatic method for solving discrete programming problems’.
In: 50 Years of Integer Programming 1958-2008. Springer, 2010, pp. 105–132 (cited on page 60).

[77] Xifeng Yan and Jiawei Han. ‘gspan: Graph-based substructure pattern mining’. In: 2002 IEEE

International Conference on Data Mining, 2002. Proceedings. IEEE. 2002, pp. 721–724 (cited on pages 60,
62).

[78] Kazuaki Yamazaki et al. ‘Enumeration of nonisomorphic interval graphs and nonisomorphic permu-
tation graphs’. In: Theoretical Computer Science 806 (2020), pp. 310–322 (cited on page 60).

[79] Sebastian Nowozin. ‘Learning with structured data: applications to computer vision.’ PhD thesis.
Berlin Institute of Technology, 2009 (cited on pages 60, 62).

[80] David S Johnson, Mihalis Yannakakis, and Christos H Papadimitriou. ‘On generating all maximal
independent sets’. In: Information Processing Letters 27.3 (1988), pp. 119–123 (cited on pages 60, 64, 78,
81).

[81] Giuseppe Di Battista and Roberto Tamassia. ‘Algorithms for plane representations of acyclic digraphs’.
In: Theoretical Computer Science 61.2-3 (1988), pp. 175–198 (cited on page 61).

[82] Ralph Freese. ‘Automated lattice drawing’. In: International Conference on Formal Concept Analysis.
Springer. 2004, pp. 112–127 (cited on page 61).

[83] Katsuhisa Yamanaka. ‘Permutation Enumeration’. In: Encyclopedia of Algorithms. Ed. by Ming-Yang Kao.
New York, NY: Springer New York, 2016, pp. 1559–1564. doi: 10.1007/978-1-4939-2864-4_735
(cited on page 61).

https://doi.org/10.1007/978-1-4939-2864-4_735

[84] Mukund Deshpande, Michihiro Kuramochi, and George Karypis. ‘Mining Chemical Compounds’. In:
Data Mining in Bioinformatics. Ed. by Xindong Wu et al. London: Springer London, 2005, pp. 189–215.
doi: 10.1007/1-84628-059-1_9 (cited on page 61).

[85] Victor Parque and Tomoyuki Miyashita. ‘An Efficient Scheme for the Generation of Ordered Trees in
Constant Amortized Time’. In: 2021 15th International Conference on Ubiquitous Information Management

and Communication (IMCOM). IEEE. 2021, pp. 1–8 (cited on page 63).

[86] Benno Schwikowski and Ewald Speckenmeyer. ‘On enumerating all minimal solutions of feedback
problems’. In: Discrete Applied Mathematics 117.1-3 (2002), pp. 253–265 (cited on page 64).

[87] Arthur B Kahn. ‘Topological sorting of large networks’. In: Communications of the ACM 5.11 (1962),
pp. 558–562 (cited on page 68).

[88] Hsien-Kuei Hwang and Emma Yu Jin. ‘Asymptotics and statistics on Fishburn matrices and their
generalizations’. In: arXiv preprint arXiv:1911.06690 (2019) (cited on page 78).

[89] Vít Jelínek. ‘Counting general and self-dual interval orders’. In: Journal of Combinatorial Theory, Series A

119.3 (2012), pp. 599–614 (cited on page 78).

[90] Kathrin Bringmann, Yingkun Li, and Robert C Rhoades. ‘Asymptotics for the number of row-Fishburn
matrices’. In: European Journal of Combinatorics 41 (2014), pp. 183–196 (cited on page 78).

[91] Charles H Jones. ‘Generalized Hockey Stick Identities and N-dimensional Blockwalking’. In: (1994)
(cited on page 83).

[92] Raymond Greenlaw. ‘Subtree isomorphism is in DLOG for nested trees’. In: International Journal of

Foundations of Computer Science 7.02 (1996), pp. 161–167 (cited on page 83).

[93] Romain Azaïs, Jean-Baptiste Durand, and Christophe Godin. ‘Approximation of trees by self-nested
trees’. In: ALENEX 2019 - Algorithm Engineering and Experiments. San Diego, United States, Jan. 2019,
pp. 1–24. doi: 10.10860 (cited on pages 83, 84).

[94] Willliam Feller. An introduction to probability theory and its applications, vol 2. John Wiley & Sons, 2008
(cited on page 85).

[95] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012 (cited on
page 94).

[96] James Mercer. ‘XVI. Functions of positive and negative type, and their connection the theory of
integral equations’. In: Philosophical transactions of the royal society of London. Series A, containing papers

of a mathematical or physical character 209.441-458 (1909), pp. 415–446 (cited on page 94).

[97] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Machines, Reg-

ularization, Optimization, and Beyond. Cambridge, MA, USA: MIT Press, 2001 (cited on pages 94,
103).

[98] John Shawe-Taylor, Nello Cristianini, et al. Kernel methods for pattern analysis. Cambridge university
press, 2004 (cited on page 94).

[99] Trevor Hastie et al. The elements of statistical learning: data mining, inference, and prediction. Vol. 2.
Springer, 2009 (cited on page 94).

[100] Daisuke Kimura et al. ‘A subpath kernel for rooted unordered trees’. In: Pacific-Asia Conference on

Knowledge Discovery and Data Mining. Springer. 2011, pp. 62–74 (cited on pages 95, 99, 104).

[101] Kilho Shin and Tetsuji Kuboyama. ‘A Generalization of Haussler’s Convolution Kernel—Mapping
Kernel and Its Application to Tree Kernels’. In: Journal of Computer Science and Technology 25.5 (2010),
pp. 1040–1054 (cited on page 95).

[102] Fabio Aiolli et al. ‘Fast on-line kernel learning for trees’. In: Sixth International Conference on Data

Mining (ICDM’06). IEEE. 2006, pp. 787–791 (cited on pages 95, 99, 102, 107).

[103] Maria-Florina Balcan, Avrim Blum, and Nathan Srebro. ‘A theory of learning with similarity functions’.
In: Machine Learning 72.1-2 (2008), pp. 89–112. doi: 10.1007/s10994-008-5059-5 (cited on pages 97,
98).

https://doi.org/10.1007/1-84628-059-1_9
https://doi.org/10.10860
https://doi.org/10.1007/s10994-008-5059-5

[104] David S. Ebert and F. Kenton Musgrave. Texturing & modeling: a procedural approach. Morgan Kaufmann,
2003 (cited on page 105).

[105] Ludovic Denoyer and Patrick Gallinari. ‘Report on the XML mining track at INEX 2005 and INEX
2006: categorization and clustering of XML documents’. In: SIGIR Forum. Vol. 41. 2007, pp. 79–90
(cited on page 111).

[106] Ghassan Hamarneh and Preet Jassi. ‘VascuSynth: Simulating Vascular Trees for Generating Volumetric
Image data with Ground Truth Segmentation and Tree Analysis’. In: Computerized Medical Imaging and

Graphics 34.8 (2010), pp. 605–616. doi: 10.1016/j.compmedimag.2010.06.002 (cited on page 113).

[107] Preet Jassi and Ghassan Hamarneh. ‘VascuSynth: Vascular Tree Synthesis Software’. In: Insight Journal

January-June (2011), pp. 1–12. doi: 10380/3260 (cited on page 113).

[108] Damien G Hicks et al. ‘Maps of variability in cell lineage trees’. In: PLoS computational biology 15.2
(2019), e1006745 (cited on page 114).

[109] E Faure et al. ‘An algorithmic workflow for the automated processing of 3D+ time microscopy images
of developing organisms and the reconstruction of their cell lineage’. In: Nat. Commun (2015) (cited on
page 114).

[110] Martin Grohe et al. ‘Color refinement and its applications’. In: (2017) (cited on pages 120, 121).

[111] Cameron B Browne et al. ‘A survey of Monte Carlo tree search methods’. In: IEEE Transactions on

Computational Intelligence and AI in games 4.1 (2012), pp. 1–43 (cited on page 121).

[112] Frank Harary. ‘The number of linear, directed, rooted, and connected graphs’. In: Transactions of the

American Mathematical Society 78.2 (1955), pp. 445–463 (cited on page 125).

[113] Alfred V Aho and Neil JA Sloane. ‘Some doubly exponential sequences’. In: Fibonacci Quart 11.4 (1973),
pp. 429–437 (cited on pages 129, 130).

[114] Yi Lu, Balaji Prabhakar, and Flavio Bonomi. ‘Perfect hashing for network applications’. In: 2006 IEEE

International Symposium on Information Theory. IEEE. 2006, pp. 2774–2778 (cited on page 136).

[115] Owen Astrachan. ‘Bubble sort: an archaeological algorithmic analysis’. In: ACM Sigcse Bulletin 35.1
(2003), pp. 1–5 (cited on page 139).

https://doi.org/10.1016/j.compmedimag.2010.06.002
https://doi.org/10380/3260

Index of frequent notations

Miscellaneous

#𝐺 Number of vertices of graph 𝐺

#𝑆 Number of elements of set 𝑆

𝒪(𝑓 (𝑛)) Algorithm worst case time complexity is
bounded by 𝑓 (𝑛), up to a multiplicative
constant – where 𝑛 is the size of the input

⊥,⊤ Respectively, logical FALSE and logical
TRUE

id Identity function

𝜙 Isomorphism between two graphs

{𝑥 : 𝑃(𝑥)} Set of elements 𝑥 that satisfy property
𝑃(𝑥)

1𝑃(𝑥) 1 if 𝑃(𝑥) = ⊤, 0 otherwise

Isom(𝐺1 , 𝐺2) Set of all isomorphisms between
graphs 𝐺1 and 𝐺2

∧,∨ Respectively, logical AND and logical OR

𝐸/𝑅 Quotient set of set 𝐸 by the equivalence
relation 𝑅

𝐺1 ≃ 𝐺2 𝐺1 and 𝐺2 are isomorphic

Nodes (trees & DAGs)

[𝑣] Class of equivalence of node 𝑣 for the tree
isomorphism equivalence relation

𝒞(𝑣) Children of node 𝑣

depth(𝑣) Depth of node 𝑣

𝒟(𝑣) Descendants of node 𝑣 – i.e., children of 𝑣,
their children, and so on

o(𝑣) Origin of node 𝑣 (in a DAG 𝐷 compressing
a forest); the set of trees in the forest in
which ℜ

−1(𝐷[𝑣]) appears as a subtree

deg(𝑣) Degree of node 𝑣

𝑣 Label of node 𝑣

𝒫(𝑣) Parent(s) of node 𝑣

𝜋𝑖(𝑣) Number of times the subtree ℜ−1(𝐷[𝑣]) ap-
pears in the tree 𝑇𝑖 , where 𝐷 is the DAG
compression of the forest containing 𝑇𝑖

ℋ(𝑣) Height of node 𝑣

𝑇[𝑣] Subtree of 𝑇 rooted in node 𝑣 ∈ 𝑇

Trees

𝒜(𝑇) Set of labels of tree 𝑇 – also called alphabet

ℒ(𝑇) Leaves of tree 𝑇

ℜ(𝑇) DAG compression of tree 𝑇, ℜ−1 stands for
the inverse operator

𝒮(𝑇) Set of subtrees of tree 𝑇

ℛ(𝑇),ℛ(𝐷) Root of tree 𝑇; set of roots of DAG 𝐷

𝒯 Set of trees

𝑇ℎ Set of nodes of 𝑇 with height ℎ

	Abstract / Résumé
	Remerciements
	Preamble
	Contents
	Introduction
	Motivations for the study of trees
	Methods for comparing trees
	Object of the thesis

	Concerning trees
	Formal definition
	Tree isomorphisms
	DAG compression of trees
	DAG compression of forests

	The Tree Ciphering Isomorphism Problem
	Tree cipherings
	Motivation
	Formal definition
	A new kind of DAG compression

	On the construction of tree cipherings
	Addressing the problem
	Framework
	The algorithm
	Analysis of the algorithm

	Enumeration Trees: from Trees to Forests
	From tree to forest enumeration
	Enumeration problems
	Tree enumeration
	Forest enumeration

	Enumeration of forests
	Exhaustive enumeration of FDAGs
	Growth of the tree
	Variations on the enumeration tree
	Enumeration of forests of subtrees

	The Subtree Kernel Revisited
	The subtree kernel
	Kernel methods
	Theoretical study

	A new framework for computing the subtree kernel
	Framework
	Real data analysis
	Interest of the DAG approach

	Perspectives
	Tree isomorphisms
	Search for frequent patterns
	Classification of trees

	Appendix
	Technical proofs
	Proof of [prop:dagrecompressioncomplexity]Proposition 2.7
	Proofs of [sec:cipheringdef]Section 3.2
	Proof of [thm:compressioncipher]Theorem 3.6
	Proofs of [sec:analysisalgorithm]Section 4.4
	Proof of [prop:ker:sep]Proposition 7.3

	A bijection between FDAGs and row-Fishburn matrices
	Equivalence between FDAGs and reduced adjacency matrices
	Reduced adjacency matrix to incremental adjacency matrix
	Incremental adjacency matrix to reduced adjacency matrix

	Bibliography
	Index of frequent notations

