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géométrie complexe. Je tiens d’abord à leur exprimer ma profonde gratitude. Pendant
les trois plus une années, ils ont répondu à mes nombreuses questions et donné de nom-
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profondément impressionné par la façon dont Andreas organise sa vie quotidienne de
manière ordonnée.

Je voudrais ensuite remercier mes rapporteurs de thèse Enrica Floris et Mihai Păun.
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Abstract

Abstract. The subject of this thesis is to study the classification problem for singular

spaces under two di↵erent assumptions on the positivity of the anti-canonical class of

the spaces and their singularities in these two di↵erent setups . We will apply quite

di↵erent methods for these two assumptions.

In the first part, we study the classification problem for polarized varieties. For the

positivity of the anti-canonical classes, we assume that the varieties have high nefvalue,

or in other words, their anti-canonical classes are quite positive. We give a complete

list of isomorphism classes for normal polarized varieties with high nefvalue. This

generalizes classical work on the smooth case by Fujita, Beltrametti and Sommese.

As a consequence we obtain that polarized varieties with slc singularities and high

nefvalue, are birationally equivalent to projective bundles over nodal curves.

In the second part, we consider a specific class of singular spaces, namely the

orbifolds. An orbifold has quotient singularities. Hence we have milder singularities

in this context compared to those considered in first part. We also assume that these

orbifolds are compact Kähler with nef anti-canonical classes in the orbifold sense. We

will study the topology of these orbifolds by characterizing their orbifold fundamental

groups. In this part, we will fully exploit the orbifold assumption by applying results

from di↵erential geometry and metric geometry on orbifolds. We will show that a

compact Kähler orbifold with nef anti-canonical class has virtually nilpotent orbifold

fundamental group.

Keywords: polarized varieties, nefvalue, slc singularities, birational geometry,

orbifolds, Margulis lemma, fundamental groups
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6 ABSTRACT

Résumé. Le sujet de cette thèse est d’étudier le problème de classification des espaces

singuliers sous deux hypothèses di↵érentes sur la positivité de la classe anti-canonique

des espaces et de leurs singularités dans ces deux conditions di↵érentes. Nous appli-

querons des méthodes assez di↵érentes dans ces deux contextes.

Dans la première partie, nous étudions un problème de classification des variétés

polarisées. Pour la positivité des classes anti-canoniques, nous supposons que les

variétés ont une nefvalue élevée, ou en d’autres termes, leurs classes anti-canoniques

sont assez positives. Nous donnons une liste complète des classes d’isomorphisme

des variétés polarisées normales avec une nefvalue élevée. Cela généralise le travail

classique sur le cas lisse de Fujita, Beltramitti et Sommese. En conséquence, nous

obtenons que les variétés polarisées avec des singularités slc et une nefvalue élevée sont

birationnellement équivalentes à des fibrés projectifs sur des courbes nodales.

Dans la deuxième partie, nous considérons une classe spécifique d’espaces sin-

guliers, à savoir les orbifoldes. Une orbifolde a des singularités quotients. Par consé-

quence, nous avons des singularités mieux contrôlées dans ce contexte par rapport à

celles considérées dans la première partie. Nous supposons également que ces orbifoldes

sont kähleriennes compactes avec des classes anti-canoniques nef au sens des orbifoldes.

Nous étudierons la topologie de ces orbifoldes à travers leurs groupes fondamentaux

orbifoldes. Dans cette partie, nous exploiterons pleinement l’hypothèse orbifolde en

appliquant des résultats de géométrie di↵érentielle et de la géométrie métrique sur

orbifolds. Nous montrerons qu’une orbifolde kählerienne compacte dont la classe anti-

canonique est nef a un groupe fondamental orbifolde virtuellement nilpotent.

Mots-clés: variétés polarisées, nefvalue, singularités slc, géométrie birationelle,

orbifoldes, lemme de Margulis, groupes fundamentaux
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Partie 2: Groupes fondamentaux des orbifoldes kählériennes à fibr‘es

anticanoniques nef 11

Summary 15
Part 1: Classification of slc varieties with high nef value 15
Part 2: Fundamental group of Kähler orbifolds with nef anti-canonical bundle 17

Part 1. Classification of slc varieties with high nef value 21

Chapter 1. Introduction 23

Chapter 2. Preliminaries 29
2.1. Conventions 29
2.2. Singularities of Pairs, MMP 31
2.3. Minimal model program for pairs 32
2.4. Some results on modifications 37
2.5. Slc singularities 38
2.6. Miscellaneous constructions 41

Chapter 3. Polarized varieties with high nef value 43
3.1. Canonical polarized varieties 43
3.2. Normal polarized varieties 52
3.3. Semi-log canonical polarized varieties 64

Part 2. Fundamental group of Kähler orbifolds with nef anti-canonical

bundle 67

Chapter 4. Introduction 69

Chapter 5. Preliminaries 73
5.1. Conventions 73
5.2. Metric spaces 74
5.3. Di↵erential geometry 75
5.4. Kähler geometry 76

7



8 CONTENTS

5.5. Classical Orbifolds 77
5.6. Complex Orbifolds 82
5.7. Orbi-bundles 84

Chapter 6. Riemannian orbifolds 91
6.1. Di↵erential calculus on orbifold 91
6.2. Metric structures on orbifolds 92
6.3. Volume comparisons 96

Chapter 7. Orbifold coverings and generalized Magulis lemma 99
7.1. Metric geometery of orbifold coverings 99
7.2. Dirichlet domains and generalized Margulis lemma 100

Chapter 8. Main theorem 103

Chapter 9. Projective case 111

Appendice 115

Appendix A. Groupoids 117
1.1. Orbifold Groupoids 117
1.2. G-bundles 120

Bibliography 123



Résumé étendu

Partie 1: Classification des variété à singularités slc de valeur nef élevées

Quand on étudie une variété polarisée (X,L) avecX ayant singularité klt, il se trouve
que le morphisme de valeur nef de (X,L) est utile. Supposons que KX n’est pas nef
et posons ⌧(L) := inf{t 2 Q : KX + tL est nef}. Par le théorème sur l’absense de
point base de Kawamata, on a que KX + ⌧(L)L est sans point base. Pour un entier
m su�sammment divisible, on sait que le système linéaire |m(KX + ⌧(L)L| définit un
morphisme �|m(KX+⌧(L)L| : X ! PC de X vers un espace projectif dont la factorisation
de Stein � : X ! Y ne dépend pas de m. On a L = �⇤(OY (1)). On peut comprendre
(X,L) en etudiant les propriétés des fibres générales de �.

Par exemple, Andreatta a prouvé le résultat suivant dans [And95].

Theorem 0.1 ([And95, Theorem 2.1.]). Soit X une variété projective à singularités
klt et soit L un fibré en droites sur X. Soit � : X ! Z un morphisme surjectif à fibres
connexes entre variétés normales. Supposons que L est �-ample et KX + ⌧L ⇠Q,� 0
pour certain ⌧ 2 Q+. Soient F1 = ��1(z) une fibre non-triviale, F ⇢ F1 une des ces
composants irréductibles, et F 0 la normalisation de F . On note par L0 l’image réciproque
de L sur F 0. Soient b⌧c la partie entière de ⌧ et ⌧ 0 := d⌧e = �b�⌧c. Alors, on a alors:

(I,1) dim(F ) � ⌧ � 1;
(I,2) si dim(F ) < ⌧ , alors F ⇠= P⌧ 0�1 et L|F = OP⌧ 0�1(1);
(I,3) si dim(F ) < ⌧ + 1, alors �(F 0, L0) = 0.

Si de plus on a dim(F ) > dim(X)� dim(Z), alors:

(II,1) dim(F ) � ⌧ ;
(II,2) si dim(F ) = ⌧ , alors F ⇠= P⌧ et L|F = OP⌧ (1);
(II,3) si dim(F ) < ⌧ + 1, alors �(F 0, L0) = 0,

Si toutes les composantes de la fibre F1 satisfont dim(F ) < ⌧(L), dans cas (I.2) ou
dim(F )  ⌧(L) dans cas (II.3), alors F1 est en fait irréductible.

On voit de ce théorème que ⌧(L) > dim(X) � 1 est une condition très restrictive
sur (X,L). En fait, quand X a singularités terminales, la classification pour (X,L) est
complète pour L des valeur nef supérieure à n� 1.

Proposition 0.2 ([BS11, Proposition 7.2.2.]). Soit (X,L) une variété polarisée. Sup-
posons X à singularités terminales. Soit � : X ! Z le morphisme valeur nef. Alors on
est dans l’un des cas suivants:

(1) ⌧ = n+ 1 et (X,L) ⇠= (Pn,OPn(1));
(2) ⌧ = n et (X,L) ⇠= (Q,OQ(1)) où Q ⇢ Pn+1 est une hyperquadrique dans Pn+1

si KX + nL⌘numOX ;

9



10 RÉSUMÉ ÉTENDU

(3) ⌧ = n et Z est une courbe lisse et (X,L) ⇠= (P(E),OP(E)(1)) où E est un fibré
vectoriel sur Z et � : X ! Z est le morphisme structurel;

(4) ⌧ < n et KX + nL est nef et big.

Proposition 0.3 ([BS11, Proposition 7.2.4.]). Soit (X,L) une variété polarisée. Sup-
posons X à singularités terminales Q-factorielles et n = dim(X) � 2. Supposons que
KX +nL est ample et ⌧ > n�1. Alors nous avons ⌧ = n� 1

2 et (X,L) = Cn(P2,OP2(2))
est un cône généralisé sur (P2,OP2(2)).

Dans la partie 1, nous explorerons d’abord le problème de classification pour les
variétés polarisées normales (X,L) avec nefvalue élévée en autorisant des singularités
plus ”sauvages” que terminales pour X. Nous donnerons la classification suivante.

Theorem 0.4 (=Theorem 3.14). Soit (X,L) une variété polarisée de dimension n.
Supposons que KX est Q-Cartier et KX + (n � 1)L /2 Pse↵(X). Alors (X,L) est l’une
des paires suivantes:

(1) (Pn,OPn(1));
(2.i) (P(V),OP(V)(1)), où V est un fibré vectoriel ample de rang n sur une courbe

lisse C;
(2.ii) Cn(P1,OP1(a)), un cône généralisé avec a � 3;
(3) (Q,OPn+1(1)), où Q ⇢ Qn+1 est une hyperquadrique;
(4) (P2,OP2(2));
(5) un cône généralisé Cn(P2,OP2(2)) sur (P2,OP2(2)).

La stratégie de cette classification consiste tout d’abord à établir une classification
pour (X 0, L0) quasi-polarisée avec X 0 à singularités canoniques et KX0 + (dim(X 0) �
1)L0) /2 Pse↵(X 0). Ceci occupe la Section 3.1. Le point clé est d’utiliser le programme
de modèles minimaux (MMP) pour réduire le problème à la classification de (X 00, L00)
avec ⌧(L00) > dim(X 00)� 1. Nous pouvons ensuite appliquer une modification canonique
µ : Xcan ! X et réduire le problème à la classification de la variété quasi-polarisée
(Xcan, µ⇤(L)).

Avec la méthode similaire, nous étalibrons aussi un résultat de la classification pour
une paire log canonique (X,�) avec (KX +�) + (dim(X)� 1)L /2 Pse↵(X).

Proposition 0.5 (=Corollary 3.19). Soit (X,�) une paire log canonique avec � 6= 0
un diviseur réduit. Supposons que L est un fibré en droites ample sur X et (KX +�) +
(n� 1)L /2 Pse↵(X), où n = dim(X). Alors nous avons l’un des cas suivants:

(1) (X,L) ⇠= (Pn,OPn(1)), � ⌘num H est un diviseur irréductible où H est un
hyperplan de Pn;

(2.i) il existe un (Pn�1,OPn�1(1))-fibré (P(E),OP(E)(1)) sur une courbe lisse C, et
un morphisme birationelle µ : P(E)! X tel que µ⇤(L) ⇠= OP(E)(1) et � =

P
Fi

est une somme finie où Fi
⇠= Pn�1 sont les images de fibres générales distinctes

de ⇡ par µ;
(2.ii) (X,L) = (P(OP1(a) � OP1(1)),OP(OP1 (a)�OP1 (1))

(1)) avec 1 < a et � = D est

irréductible, où D est l’unique section de P(OP1(a) � OP1(1)) ! P1 tel que
D ⌘num OP(OP1 (a)�OP1 (1))

(1))� af , où f est une fibre générale;
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(3.i) (X,L) ⇠= (Q,OPn+1(1)), où Q ⇢ Pn+1 est une hyperquadrique de rang 3, le

diviseur � est un hyperplan dans Q et [�] =
1

2
[H \Q] où H est un hyperplan

dans Pn+1;
(3.ii) (X,L) ⇠= (Q,OPn+1(1)), où Q ⇢ Pn+1 est une hyperquadrique de rang 4. Si

nous écrivons Q = Proj

✓
C[x0, . . . , xn+1]

(x0x1 � x2x3)

◆
, alors � = D est irréductible et D

est le cône de sommet Pn�3 sur P1 ⇥ pt ou pt⇥ P1. En particulier, D ⇠= Pn�1;

Finalement, nous a↵ranchissons de la condition de normalité sur les variétés. Pour
une variété non-normale, nous pouvons toujours considérer sa normalisation ⌫ : X̄ ! X.
Quand X a des singularitiés slc, nous avons que (X̄, D̄) est log canonique où D̄ est le
diviseur conducteur. Nous donnons la classification suivante.

Theorem 0.6 (=Proposition 3.20). Soient X une variété non-normale projective de
dimension n à singularitiés slc et L un fibré en droites ample sur X. Supposons que
KX +(n�1)L /2 Pse↵(X). Soient ⇡ : X̄ ! X la normalisation de X et D ⇢ X, D̄ ⇢ X̄
les conducteurs. Alors nous avons:

Il existe une courbe nodale C 0, un fibré vectoriel E0 de rang n, des fibres distinctes
F1, F2, . . . , Fm de P(E0) et un morphisme birationelle µ : P(E0) ! X tel que µ⇤(L) =
OP(E0)(1) et D =

P
1im

µ(Fi).

Partie 2: Groupes fondamentaux des orbifoldes kählériennes à fibr‘es

anticanoniques nef

Etant donné une variété compacte kählérienne X, le fameux théorème de Calabi-Yau
nous dit que nous pouvons trouver une forme de Kähler ! sur X tel que la première
classe de Chern c1(X) = c1(�KX) est représentée par 1

2⇡Ricci!. Donc la positivité du
fibré anti-canonique de X se traduit en certaines positivitiés de la courbure de Ricci de !.
Lors de l’étude dugroupe fondamental de X avec certaines conditions de positivitiés sur
�KX , nous pouvons nous appuyer sur des résultats sur de géométrie di↵erentielle pour
les variétés riemanniennes avec certaines conditions de positivitiés sur leurs courbures
de Ricci.

Nous donnons une version reformulée d’un théorème de Kobayashi.

Theorem 0.7 ([Kob61, Theorem A]). Une variété compacte de Fano est simplement
connexe.

Avec l’aide du théorème de Calabi-Yau, le théorème de Kobayashi peut être prouvé
en appliquant le théorème de Myers (cf. [GHL04, 3.85]).

Quand �KX est nef, nous pouvons, avec l’aide du théorème de Aubin-Yau (cf.
Theorem 5.15), montrer que pour chaque ✏ > 0, il existe une forme de Kähler !✏ tel que

Ricci!✏ � �✏!✏.

En multipliant !✏ par un scalaire 0 < � ⌧ 1 et posant !0
✏ := �!✏, nous avons

Ricci!0
✏
� �(dim(X) � 1)!0

✏. Dans [CC96], Cheeger et Colding ont prouvé un résultat
profond
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Lemme 0.8 (Lemme de Margulis, version géométrique, [CC96, Theorem 8.7.]). Soit
n > 0 un entier naturel. Il existe un constante universel C = C(n) dépendant seulement
de n tel que:

Pour chaque variété compacte M de dimension n et Ricg � �(n � 1)g, on a que le
morphisme induit par l’inclusion

⇡1(Bg(p, r), p)! ⇡1(M,p)

a une image virtuellement nilpotente pour tout r < C(n).

En utilisant le thèorème de Aubin-Yau pour construire une metrique spécifique !
sur X, tel que

(1) Ricci! � �(2 dimC(X)� 1)! et
(2) il existe r0 < C(2 dimC(X)) tel que B!(p, r0) = X.

et appliquant le lemme au-desus directement, Mihai Păun a prouvé le résultat suivant

Theorem 0.9 ([Pău97, Theorem 1]). Soit (X,!) une variété compacte kählérienne
dont le fibré anti-canonique �KX est nef. Alors son groupe fondamental ⇡1(X) est
virtuellement nilpotent.

Dans la partie 2, le but principal est de généraliser le résultat de Păun au cadre
orbifoldes. Supposons que nous avons une version pour orbifolde du résultat de Cheeger
et Colding. Nous pouvons ensuite adapter la preuve de Păun facilement, comme la
géométrie di↵erentielle des orbifoldes est bien établie. Équipons l’espace sous-jacent X =
|X | d’une orbifolde riemannienne (X , g) avec une distance natuelle d (cf. Section 6.2), et
appliquons une version algébrique du lemme de Margulis dans [BGT12]. Nous prouvons
d’abord un lemme de Margulis orbifolde.

Lemme 0.10 (=Lemma 7.12). Soit n � 1 un entier. Il existe ↵ = ↵(n) > 0 tel que
ce qui suit est vrai. Si X est une orbifolde riemannienne complète avec sa courbure de
Ricci minoré par Ric � �(n� 1) et � un sous groupe de Isom(|X |) agisant proprement
discontinuement sur |X |. Alors pour tout x 2 |X |, le ”presque-stabiliseur”

�↵(x) := h{� 2 � | d(� · x, x) < ↵}i
est virtuellement nilpotent.

Nous pouvons donc imiter la démonstration de Păun pour montrer que:

Theorem 0.11 (=Theorem 4.10=Theorem 8.13). Soit (X ,!) une orbifolde e↵ective
kählérienne à l’espace sous-jacent X = |X | compact. Si le orbi-fibré anti-canonique K�1

X
est nef, alors ⇡orb1 (X ) est virtuellement nilpotent.

Pour une variété compacte kählérienneX, on peut considérer son morphisme d’Albanese
AlbX : X ! A(X) (voir Definition 2.33). Posons Y := AlbX(X) ⇢ A(X) l’image de
X dans A(X) et r : Ỹ ! Y un modèle lisse de Y . Frédéric Campana a montré com-
ment on peut décrire la suite centrale de ⇡1(X) par la suite centrale de ⇡1(Ỹ ) dans
[Cam95, Théorème 2.2]. En particulier, nous observons que pour une variété compacte
kählerienne X dont le groupe fondamental group ⇡1(X) est virtuellement nilpotent, si
AlbX est surjectif à fibres connexes, nous avons que ⇡1(X) est virtuellement abélien.

Pour une orbifolde compacte X , nous pouvons considerer sa representation en log
paire (X,�X), où �X est un Q-diviseur à coe�cients standard. Pour toute paire
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(X,�X) à singularités klt, nous pouvons définir un groupe fondamental ⇡1(X,�X), et
quand la paire represente une orbifolde X , il existe un isomorphe canonique ⇡1(X,�X) ⇠=
⇡orb1 (X ) (cf. Proposition 5.50). QuandX est lisse, nous avons une surjection ⇡1(X,�X) ⇣
⇡1(X). Donc si ⇡orb1 (X ) est virtuellement nilpotent et X est lisse tel que AlbX est sur-
jectif à fibres connexes, nous peut montrer que ⇡orb1 (X ) est virtuallement abélien. Pour
une orbifolde générale (X,�X) avec X non nécessairement lisse, nous considérons une
résolution r : Y ! X. Suivant cette idée, nous prouvons le résultat suivant.

Theorem 0.12 (=Theorem 4.11=Theorem 9.1). Soit (X,�) une orbifolde projective
avec �(KX +�) nef. Le groupe fondamental ⇡1(X,�) est virtuellement abélien.





Summary

Part 1: Classification of slc varieties with high nef value

When studying a polarized variety (X,L) with X having klt singularities, a useful
tool is its nefvalue morphism. Suppose that KX is not nef and set

⌧(L) := inf{t 2 Q : KX + tL is nef }.

Then by Kawamata basepoint-free theorem, we have that KX+⌧(L)L has no base-point.
For m > 0 divisible enough, we know that the linear system |m(KX + ⌧(L)L| defines
a morphism �|m(KX+⌧(L)L| : X ! PC from X to some projective spaces, whose Stein
factorization � : X ! Y dose not depend on m. We have that L = �⇤(OY (1)). We can
study (X,L) by studying the properties of general fibers of �.

For example, Andreatta proved the following result in [And95].

Theorem 0.13 ([And95, Theorem 2.1.]). Let X be a projective variety with klt singu-
larities and let L be a line bundle on X. Let � : X ! Z be a surjective morphism between
normal varieties with connected fiber. Suppose that L is �-ample and KX + ⌧L ⇠Q,� 0
for some ⌧ 2 Q+. Let F1 = ��1(z) be a non-trivial fiber, F ⇢ F1 be one of its irreducible
components, F 0 be the normalization of F and let L0 be the pullback of L on F 0. Let b⌧c
be the integral part of ⌧ and ⌧ 0 = d⌧e = �b�⌧c. Then we have the following

(I,1) dim(F ) � ⌧ � 1;
(I,2) If dim(F ) < ⌧ , then F ⇠= P⌧ 0�1 and L|F = OP⌧ 0�1(1);
(I,3) If dim(F ) < ⌧ + 1, then �(F 0, L0) = 0,

If moreover dim(F ) > dim(X)� dim(Z), then

(II,1) dim(F ) � ⌧ ;
(II,2) If dim(F ) = ⌧ , then F ⇠= P⌧ and L|F = OP⌧ (1);
(II,3) If dim(F ) < ⌧ + 1, then �(F 0, L0) = 0,

If all components of the fiber F satisfy dim(F ) < ⌧(L), in case (I.2) or dim(F )  ⌧(L)
in case (II.3), then F is actually irreducible.

We see from the theorem that ⌧(L) > dim(X)�1 will be a very restrictive condition.
In fact, when X has terminal singularities, the classification for (X,L) is complete when
the nefvalue of L is larger than n� 1.

Proposition 0.14 ([BS11, Proposition 7.2.2.]). Let (X,L) be a polarized variety. Sup-
pose that X has terminal singularities. Let � : X ! Z be the nefvalue morphism. Then
we have one of the following

(1) ⌧ = n+ 1 and (X,L) ⇠= (Pn,OPn(1));

15
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(2) ⌧ = n and (X,L) ⇠= (Q,OQ(1)) where Q ⇢ Pn+1 is a hyperquadric in Pn+1 if
KX + nL⌘numOX ;

(3) ⌧ = n and Z is a smooth curve and (X,L) ⇠= (P(E),OP(E)(1)) where E is a
vector bundle over Z and � : X ! Z is the structure morphism;

(4) ⌧ < n and KX + nL is nef and big.

Proposition 0.15 ([BS11, Proposition 7.2.4.]). Let (X,L) be a polarized variety. Sup-
pose that X has Q-factorial terminal singularities and n = dim(X) � 2. Suppose that
KX +nL is ample and ⌧ > n� 1. Then we have ⌧ = n� 1

2 and (X,L) = Cn(P2,OP2(2))
is a generalized cone over (P2,OP2(2)).

In Part 1, we will first explore the classification problem for a normal polarized
variety (X,L) with high nefvalue by allowing wilder singularities than terminal for X.
We will give the following classification.

Theorem 0.16 (=Theorem 3.14). Let (X,L) be a polarized variety of dimension n.
Suppose that KX is Q-Cartier and KX + (n � 1)L /2 Pse↵(X). Then (X,L) is one of
the following:

(1) (Pn,OPn(1));
(2.i) (P(V),OP(V)(1)), where E is a rank n ample vector bundle over a smooth curve

C;
(2.ii) Cn(P1,OP1(a)) be a generalized cone with a � 3;
(3) (Q,OPn+1(1)), where Q ⇢ Qn+1 is a hyperquadric;
(4) (P2,OP2(2));
(5) a generalized cone Cn(P2,OP2(2)) over (P2,OP2(2)).

The strategy of this classification is first to establish a classification for quasi-
polarized (X 0, L0) with X 0 having canonical singularities and KX0 + (dim(X 0)� 1)L0) /2
Pse↵(X 0). This is done in Section 3.1. The key point is to run an MMP to reduce
the problem to classifying (X 00, L00) with ⌧(L00) > dim(X 00) � 1. We may then apply a
canonical modification µ : Xcan ! X and reduce the problem to the classification for
quasi-polarized (Xcan, µ⇤(L)).

With similar method, we will also establish a classification result for a log canonical
pair (X,�) with (KX +�) + (dim(X)� 1)L /2 Pse↵(X).

Proposition 0.17 (=Corollary 3.19). Let (X,�) be a log canonical pair, with � 6= 0 a
reduced divisor. Suppose that L is an ample line bundle on X and (KX+�)+(n�1)L /2
Pse↵(X), where n = dim(X). Then we have one of the following:

(1) (X,L) ⇠= (Pn,OPn(1)), � ⌘num H is a prime divisor where H is a hyperplane
of Pn;

(2.i) There is a (Pn�1,OPn�1(1))-bundle (P(E),OP(E)(1)) over a smooth curve C,
and a birational morphism µ : P(E) ! X such that µ⇤(L) ⇠= OP(E)(1) and
� =

P
Fi is a finite sum where Fi

⇠= Pn�1 are images of distinct general fibers
of ⇡ by µ;

(2.ii) (X,L) = (P(OP1(a) � OP1(1)),OP(OP1 (a)�OP1 (1))
(1)) with 1 < a and � = D is

irreducible, where D is the unique section of P(OP1(a)�OP1(1))! P1 such that
D ⌘num OP(OP1 (a)�OP1 (1))

(1))� af , where f is a general fiber;
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(3.i) (X,L) ⇠= (Q,OPn+1(1)), where Q ⇢ Pn+1 is a rk(Q) = 3 hyperquadric, the

boundary divisor � is a hyperplane in Q and [�] =
1

2
[H \ Q] where H is a

hyperplane in Pn+1;
(3.ii) (X,L) ⇠= (Q,OPn+1(1)), where Q ⇢ Pn+1 is a rk(Q) = 4 hyperquadric. If we

write Q = Proj

✓
C[x0, . . . , xn+1]

(x0x1 � x2x3)

◆
, then � = D is prime and D is the cone

with vertex Pn�3 over P1 ⇥ pt or pt⇥ P1. In particular, D ⇠= Pn�1;

Finally, we may drop the normality condition. For a non-normal variety, we can
always consider its normalization ⌫ : X̄ ! X. When X has slc singularities, we have
that (X̄, D̄) is log canonical where D̄ is the conductor divisor. We give the following
classification.

Theorem 0.18 (=Proposition 3.20). Let X be a non-normal slc projective variety of
dimension n and L an ample line bundle over X. Suppose that KX+(n�1)L /2 Pse↵(X).
Let ⇡ : X̄ ! X be the normalization of X and D ⇢ X, D̄ ⇢ X̄ the conductors. Then
we have:

There is a nodal curve C 0,a rank n-vector bundle E0, distinct fibers F1, F2, . . . , Fm

of P(E0) and a birational morphism µ : P(E0) ! X such that µ⇤(L) = OP(E0)(1) and
D =

P
1im

µ(Fi).

Part 2: Fundamental group of Kähler orbifolds with nef anti-canonical

bundle

Given a compact Kähler manifold X, the celebrated Calabi-Yau theorem tells us
that we can find a Kähler form ! on X such that the first Chern class c1(X) = c1(�KX)
can be represented by 1

2⇡Ricci!. Hence the positivity of the anti-canonical bundle of
X can be translated to some positivity of the Ricci curvature of X. When studying
the fundamental group of X with certain positivity conditions on �KX , we may tap
the results on di↵erential geometry for Riemannian manifolds with certain positivity
conditions on its Ricci curvature.

We give a reformulated version of Kobayashi’s theorem

Theorem 0.19 ([Kob61, Theorem A]). A compact Fano manifold is simply con-
nected.

With Calabi-Yau theorem, this theorem could be proved by using Myers’ theorem
(cf. [GHL04, 3.85]).

When �KX is nef, we can, with the help of the Aubin-Yau theorem (cf. Theo-
rem 5.15), show that for each ✏ > 0, there exists a Kähler form !✏ such that

Ricci!✏ � �✏!✏.
By multiplying !✏ with a scalar 0 < �⌧ 1 and setting !0

✏ := �!✏, we will have that
Ricci!0

✏
� �(dim(X)� 1)!0

✏. In [CC96], Cheeger and Colding proved a deep result:

Lemma 0.20. (Geometric Margulis lemma, [CC96, Theorem 8.7.]) Let n > 0 be a
natural number. There exists a universal constant C = C(n) only depending on n such
that the following holds:
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For any compact manifold M of dimension n and Ricg � �(n � 1)g, one has that
the morphism induced by the inclusion

⇡1(Bg(p, r), p)! ⇡1(M,p)

has virtually nilpotent image for any r < C(n).

By using Aubin-Yaun theorem to construct a specific metric ! on X, such that

(1) Ricci! � �(2 dimC(X)� 1)! and
(2) there exists r0 < C(2 dimC(X)) such that B!(p, r0) = X.

and applying the above lemma directly, Mihai Păun proved the following result:

Theorem 0.21 ([Pău97, Theorem 1]). Let (X,!) be a compact Kähler manifold
whose anti-canonical bundle �KX nef. Then its fundamental group ⇡1(X) is virtually
nilpotent.

In Part 2, the main goal is to generalize Păun’s result to Kähler orbifolds with nef
anti-canonical orbi-bundle. Suppose that we have an orbifold version of Cheeger and
Colding’s result. We may then adapt Păun’s proof easily, as the di↵erential geometry of
orbifolds is well-established. Equip the underline spaceX = |X | of a Riemannian orbifold
(X , g) with a natural metric d (cf. Section 6.2), and apply an algebraic Margulis lemma
in [BGT12]. We first prove an orbifold Margulis lemma.

Lemma 0.22 (=Lemma 7.12). Let n � 1 be an integer. There exists ↵ = ↵(n) > 0
such that the following holds true:

Suppose that X is a complete Riemannian orbifold of dimension n with its Ricci
curvature bounded by Ric � �(n � 1) and � a subgroup of Isom(|X |) acting properly
discontinuously by isometries on |X |. Then for every x 2 |X |, the ”almost stabliser”

�↵(x) := h{� 2 � : d(� · x, x) < ↵}i
is virtually nilpotent.

We may then mimic Păun’s proof to show

Theorem 0.23 (=Theorem 4.10=Theorem 8.13). Let (X ,!) be a compact Kähler
orbifold. If the anti-canonical bundle K�1

X is nef, then ⇡orb1 (X ) is virtually nilpotent.

For a Kähler manifold X, we can also consider its Albanese morphism AlbX : X !
A(X) (see Definition 2.33). Set Y := AlbX(X) ⇢ A(X) the image of X in A(X) and
r : Ỹ ! Y a smooth model of Y . Frédéric Campana shows how one can describe
the central series of ⇡1(X) by the central series of ⇡1(Ỹ ) in [Cam95, Théorème 2.2].
In particular, one observes that for a compact Kähler manifold X whose fundamental
group ⇡1(X) is virtually nilpotent, if AlbX is surjective, we have that ⇡1(X) is virtually
Abelian.

For a complex orbifold X , we may consider its log pair representation (X,�X), where
�X is a Q-divisor with standard coe�cients. For any klt pair (X,�X), we can define a
fundamental group ⇡1(X,�X), and when the pair represents an orbifold X , there is a
canonical isomorphism ⇡1(X,�X) ⇠= ⇡orb1 (X ) (cf. Proposition 5.50). When X is smooth,
we have a surjection ⇡1(X,�X) ⇣ ⇡1(X). Hence if ⇡orb1 (X ) has virtually nilpotent and
X is smooth such that AlbX is surjective, we can show ⇡orb1 (X ) is virtually Abelian. For
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general (X,�X), we consider its resolution r : Y ! X. Following this idea, we prove
the following result.

Theorem 0.24 (=Theorem 4.11=Theorem 9.1). Let (X,�) be a projective orbifold
pair with �(KX +�) nef. The orbifold fundamental group ⇡1(X,�) is virtually Abelian.





Part 1

Classification of slc varieties with high

nef value





CHAPTER 1

Introduction

In [KO73], Kobayashi and Ochiai proved the following classifying result concerning
smooth projective varieties.

Theorem 1.1 ([KO73, Theorem 1.1.]). Let X be a smooth projective variety of
dimension n with an ample line bundle L such that

(1) Ln = 1;
(2) h0(X,L) � n+ 1.

Then (X,L) is isomorphic to (Pn,OPn(1)).

The result has later been generalized to singular varieties:

Theorem 1.2 (Generalized Kobayashi-Ochiai Theorem, cf.[BS11, Theorem 3.1.6]).
Let X be an n-dimensional connected normal projective scheme and L an ample line
bundle on X. Then we are in one of the following situations:

• (X,L) ⇠= (Pn,OPn(1)) if and only if KX + (n+ 1)L⌘numOX ;
• (X,L) ⇠= (Q,OQ(1)) where Q ⇢ Pn+1 is a hyperquadric in Pn+1 if and only if
KX + nL⌘numOX .

A projective varietyX together with an ample line bundle L onX is called a polarized
variety and is denoted by (X,L). To study polarized varieties, Fujita introduces the �-
genus �(X,L) := n+Ln�h0(X,L) of polarized varieties, which encodes the dimension
of the variety X and Ln, and develops classification theories for polarized varieties with
small �-genus under certain assumptions on the singularities of X and positivity on L.
For Fujita’s work, we refer to [Fuj90, Chapter 1].

When X has terminal singularities, set ⌧(L) := inf{t 2 R : KX + tL is nef} which is
called the nefvalue of X. If KX is not nef, Kawamata’s rationality theorem shows that
⌧(L) is a rational number. Let a > 0 be an integer such that a(KX + ⌧(L)L) is a Cartier
divisor. Then Kawamata-Shokurov’s base point free theorem shows that for N 3 b� 0,
the divisor ba(KX + ⌧(L)L has no base point. It is then a classical results in birational
geometry that the ring

R(X, a(KX + ⌧(L)L)) :=
M

m�0

(H0(X,ma(KX + ⌧(L)L))

is normal and finitely generated over C. We call the normal variety

Z := Proj(R(X, a(KX + ⌧(L)L))

an adjoint model for (X,L). There exists a canonical morphism given by sections of
a(KX + ⌧(L)L)

� : X ! Z

23
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called the nefvalue morphism. It is thus natural to study (X,L) via �.
It turns out with the help of nefvalue morphism, the classification for (X,L) is

complete when the nefvalue of L is larger than n� 1.

Proposition 1.3 ([BS11, Proposition 7.2.2.]). Let (X,L) be a polarized variety. Suppose
that X has terminal singularities. Let � : X ! Z be the nefvalue morphism and ⌧ the
nefvalue of L. Then we have one of the following

(1) ⌧ = n+ 1 and (X,L) ⇠= (Pn,OPn(1));
(2) ⌧ = n and (X,L) ⇠= (Q,OQ(1)) where Q ⇢ Pn+1 is a hyperquadric in Pn+1 if

KX + nL⌘numOX ;
(3) ⌧ = n and Z is a smooth curve and (X,L) ⇠= (P(E),OP(E)(1)) where E is a

vector bundle over Z and � : X ! Z is the structure morphism;
(4) ⌧ < n and KX + nL is nef and big.

Proposition 1.4 ([BS11, Proposition 7.2.4.]). Let (X,L) be a polarized variety. Suppose
that X has Q-factorial terminal singularties and n = dim(X) � 2. Suppose that KX+nL
is ample and ⌧ > n� 1. Then we have that ⌧ = n� 1

2 and that (X,L) = Cn(P2,OP2(2))
is a generalized cone over (P2,OP2(2)).

The study of polarized varieties has a natural counterpart in the study in the Q-Fano
foliations. For a foliation F ⇢ TX of rank r on a projective variety X of dimension n,
we define the canonical class KF of the foliation F to be the divisor class satisfying
OX(�KF ) ⇠= det(F), where det(F) is defined to be (^rF)??. When �KF is Q-Cartier
and ample, we call F a Q-Fano foliation and define its index iF to be the largest
positive rational number such that �KF ⇠Q iFH for an ample Cartier divisor H on
X. In [AD14], Araujo and Druel established a Kobayashi-Ochiai type theorem ([AD14,
Theorem 1.2]), which gives an upper bound of the index of a Q-Fano foliation F and
gives a description when the upper bound is reached.

When a foliation F is algebraically integrable, one can define naturally general log
leaves of F (cf. [AD14, Definition 3.11]). A general log leaf (F̃ , �̃) comprises a normal-
ization of the closure of a general leaf F of F and an e↵ective Weil Q-divisor �̃. Let
e : F̃ ! F be the normalization map. Then �̃ is given by K

F̃
+�⌘num e⇤KF . It turns

out that understanding the log general leaves helps to study of algebraically integrable
foliations. This motivates us to consider classification problem for (X,�), where X is a
variety and � a Weil Q-divisor.

When an algebraically integrable foliation F is Q-Fano, we have the equality �(K
F̃
+

�)⌘num iF (e⇤H). Hence one may very well try to establish a pair version of Theorem 1.2.
In fact, Fujino and Miyamoto proved the following

Theorem 1.5 ([FM21, Theorem 1], see also [AD14, Theorem 1.1]). Let (X,�) be a
projective klt pair such that �(KX +�) is ample. Assume that �(KX +�)⌘num rH for
some Cartier divisor H on X with r > n = dim(X). Then X is isomorphic to Pn with
OX(H) = OPn(1).

The result of Fujino and Miyamoto assumes mild singularites on the pair (X,�) and
a divisibility condition of the log canonical bundle KX+�. However, with a foliation F ,
its log general leaf (F̃ , �̃) is a priori just normal. On the other hand, for the classification
theorems Proposition 1.3 and Proposition 1.4, we do not need divisibility. However we
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do need �KX to be very positive. Thus one may try to weaken the conditions and
consider the classification problems

(1) Classify the triple (X,�, L) where (X,�) is log canonical, L is ample and
KX + (dim(X)� 1)L /2 Pse↵(X);

(2) Classify the pair (X,L) where X is a projective variety with singularities wilder
than normal, L is ample and KX + (dim(X)� 1)L /2 Pse↵(X).

We call a projective variety X together with a nef and big line bundle L a quasi-
polarized variety. For a quasi-polarized variety (X,L) where X is canonical and Q-
factorial, we may run a MMP which contracts all L-trivial extremal rays and get a
polarized variety (X 0, L0) (see Lemma 3.5). By using Andreatta’s result Theorem 3.7
which describes the general fibers of extremal contractions, we can reduce the problem
of classifying (X 0, L0) with high nefvalue to the problem of classifying polarized variety
with �-genus zero. We generalize Proposition 1.3 and Proposition 1.4 as follows.

Theorem 1.6 (=Theorem 3.13). Let X be a variety with canonical Q-factorial sin-
gularities and L a nef and big line bundle on X. Suppose that KX+(n�1)L /2 Pse↵(X).
Then we have one of the following cases:

(1) (X,L) ⇠bir (Pn,OPn(1));
(2) (X,L) is birational equivalent to a (Pn�1,OPn�1(1))-bundle over a smooth curve

C;
(3) (X,L) ⇠bir (Q,OPn+1(1)), where Q ⇢ Qn+1 is a hyperquadric;
(4) (X,L) ⇠bir (P2,O2

P(2));
(5) (X,L) ⇠bir Cn(P2,O2

P(2)), where Cn(P2,O2
P(2)) is a generalised cone over

(P2,O2
P(2))

The drawback of letting L be nef and big, is that after running MMP, we don’t have
isomorphism and even have indeterminacies.

For a normal variety X, we have modifications µ : X 0 ! X for X such that X 0 has
mild singularities andKX0 is µ-ample. A good reference for these modifications is [Kol13,
Chapter 1]. For a polarized variety (X,L), with X normal, we may take a canonical
modifications µ : X 0 ! X for X and consider the quasi-polarized variety (X 0, L0). We
have the following result.

Theorem 1.7 (=Theorem 3.14). Let (X,L) be a polarized normal variety of dimen-
sion n. Suppose that KX is Q-Cartier and KX + (n � 1)L /2 Pse↵(X). Then we have
one of the following cases:

(1) (X,L) ⇠= (Pn,OPn(1));
(2.i) (X,L) ⇠= (P(V),OP(V)(1)), where E is a rank n ample vector bundle over a

smooth curve C;
(2.ii) (X,L) ⇠= Cn(P1,OP1(a)) be a generalized cone with a � 3;
(3) (X,L) ⇠= (Q,OPn+1(1)), where Q ⇢ Qn+1 is a hyperquadric;
(4) (X,L) ⇠= (P2,OP2(2));
(5) (X,L) ⇠= Cn(P2,OP2(2)), where Cn(P2,OP2(2)) is a generalised cone over (P2,OP2(2)).

In Theorem 1.7, we note that even if in the proof we have taken a modification, in
the resulting list we have isomorphism. The reason is that L is ample and birational
equivalences between normal polarized varieties are always isomorphisms.
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For a log canonical pair (X,�) with (KX +�) + (dim(X)� 1)L /2 Pse↵(X), a first
observation is that as � is e↵ective, we will have KX + (dim(X) � 1)L /2 Pse↵(X).
Hence we will have a list for (X,L) similar to Theorem 1.7. However in this list the
Picard number ⇢(X) of X is at most 2. Hence for � to be an irreducible divisor or more
generally reduced divisor, we don’t have to many choice. We may thus give a list for
(X,�, L).

Proposition 1.8 (=Corollary 3.19). Let (X,�) be a log canonical pair, with � 6= 0 a
reduced divisor. Suppose that L is an ample line bundle on X and (KX+�)+(n�1)L /2
Pse↵(X), where n = dim(X). Then (X,�, L) is one of the following:

(1) (X,L) ⇠= (Pn,OPn(1)), � ⌘num H is a prime divisor where H is a hyperplane
of Pn;

(2.i) There is a (Pn�1,OPn�1(1))-bundle (P(E),OP(E)(1)) over a smooth curve C,
and a birational morphism µ : P(E) ! X such that µ⇤(L) ⇠= OP(E)(1) and
� =

P
Fi is a finite sum where Fi

⇠= µ(Pn�1) are images of distinct general
fibers of ⇡ by µ;

(2.ii) (X,L) = (P(OP1(a) � OP1(1)),OP(OP1 (a)�OP1 (1))
(1)) with a > 1 and � = D is

irreducible, where D is the unique section of P(OP1(a)�OP1(1))! P1 such that
D ⌘num OP(OP1 (a)�OP1 (1))

(1))� af , where f is a general fiber;

(3.i) (X,L) ⇠= (Q,OPn+1(1)), where Q ⇢ Pn+1 is a rk(Q) = 3 hyperquadric, the

boundary divisor � is a hyperplane in Q and [�] =
1

2
[H \ Q] where H is a

hyperplane in Pn+1;
(3.ii) (X,L) ⇠= (Q,OPn+1(1)), where Q ⇢ Pn+1 is a rk(Q) = 4 hyperquadirc. If we

write Q = Proj

✓
C[x0, . . . , xn+1]

(x0x1 � x2x3)

◆
, then � = D is prime and D is the cone

with vertex Pn�3 over P1 ⇥ pt or pt⇥ P1. In particular, D ⇠= Pn�1;

When the polarized variety (X,L) is not normal, a natural way to study it is consider
the normalization ⌫ : X̄ ! X of X and study the polarized variety (X̄, ⌫⇤(L)). However,
when considering normalization, there is a natural ideal of OX measuring how far X is
from being normal, the conductor condX := HomOX (⌫⇤(OX̄

),OX). When X has demi-
normal singularities, the subschemes D ⇢ X defined by condX and D̄ ⇢ X̄ defined
by ⌫⇤(ID̄) = condX are both generically reduced purely codimension 1 subschemes. In
particular, the algebraic cycles [D] and [D0] are reduced Weil divisors. When X is slc,
we also have that (X̄, D̄) is log canonical. Hence for polarized variety (X,L) with X slc,
we may use Proposition 1.8 to study (X̄, ⌫⇤(L)). We give the following classification.

Theorem 1.9 (=Proposition 3.20). Let X be a non-normal slc projective variety of
dimension n and L an ample line bundle over X. Suppose that KX+(n�1)L /2 Pse↵(X).
Let ⇡ : X̄ ! X be the normalization of X and D ⇢ X, D̄ ⇢ X̄ the conductors. Then
we have:

There is a nodal curve C 0,a rank n-vector bundle E0, distinct fibers F1, F2, . . . , Fm

of P(E0) and a birational morphism µ : P(E0) ! X such that µ⇤(L) = OP(E0)(1) and
D =

P
1im

µ(Fi)
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We see that Theorem 1.9 shortens the list in Proposition 1.8 rather than increasing it.
In fact, there is a degree 2 morphism D̄⌫ ! D⌫ , where D̄⌫ and D⌫ are the normalizations
of D̄ and D respectively. Hence we need (L0|

D̄⌫ )n�1 divisible by 2, which gives more
restriction on (X̄, D̄) than the assumption in Proposition 1.8.

Remark 1.10. After running MMP to reduce Theorem 1.6 to the problem of classifying
(X 0, L0) with X 0 canonical and L0 ample (see Lemma 3.5), the results is already known
for even when X 0 is klt (cf. [And13, Proposition 3.5.]). My personal contribution in the
classification is to use modifications to get Theorem 1.7 and Theorem 1.9.

Plan of Part 1. We organize Part 1 as following. In Chapter 2, we give the
necessary materials for the results. In particular we give a review for the singularities
involved and recall the relevant results in the minimal model program. In Chapter 3,
we will give several classifications for polarized varieties (X,L). In Section 3.1, we prove
Theorem 1.7 by running MMP (Lemma 3.5) to reduce the proof to proving Lemma 3.8
and Lemma 3.10. In Section 3.2, we prove Theorem 1.7 thanks to canonical modifications
Theorem 2.25 and use similar methods to prove Proposition 1.8. In Section 3.3, for a
polarized slc variety (X,L), we use Proposition 1.8 on the triple (X̄, D̄, L0), where (X̄, D̄)
is the normalization of X and the conductor divisor on X̄ and L0 is the pullback of L,
to get Theorem 1.9.





CHAPTER 2

Preliminaries

2.1. Conventions

We work over C. The definitions and conventions that we adapt follow [Kol13][KM98].

2.1.1. Divisors.

• A scheme is supposed to be separated and of finite type over C. A variety is a
reduced and irreducible scheme over C. A point x in a scheme X is an element
x in the underlying topological space of X. A scheme is said to be normal if
OX,x is a normal local domain for all point x 2 X.

• We denote by Weil(X) the group of Weil-divisors of a scheme X and Cl(X) its
quotient modulo principal divisors [Sta22, Tag 0BE2]. We define

Weil(X)Q := Weil(X)⌦Z Q
to be the group of Q-Weil-divisors.

• Let X be a scheme and F a coherent OX -module. Let MX be the sheaf of
germes of meromorphic functions over X. We say that F is torsion-free if the
natural map

F ! F ⌦MX

is injective.
The reflexive hull of F is its double dual HomOX (HomOX (F ,OX),OX)

and we have a natural morphism

jF : F !HomOX (HomOX (F ,OX),OX)

by sending local section a of F to the local section (� 7! �(a)). We say that F
is torsionless if jF is an injection. Clearly torsionlessness implies torsion free
and we have the inverse when OX,x is integral for all x 2 X.

We call F a reflexive module or a reflexive sheaf if jF is an isomorphism.
When F is reflexive, if there exists an open subset U ⇢ X such that F|U is
locally free of rank r, we define the rank of F to be rk(F) = r. For any reflexive
sheaf F , we set

F [m] := HomOX (HomOX (F⌦m,OX),OX).

• For a scheme X, its rank one reflexive sheaves form an group under the group
operation

F1⌦̂F2 := HomOX (HomOX (F1 ⌦ F2,OX),OX).

When X is normal, we may associate for D 2Weil(X) a rank one reflexive sheaf
OX(D), which induces a group isomorphism between Cl(X) and the group of
rank one reflexive sheaves (cf. [Sta22, Tag 0EBM]).
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• We denote by Div(X) = �(X,M⇤
X
/O⇤

X
) the group of Cartier divisors of X and

define Div(X)Q := Div(X)⌦Z Q.
• Let X be a scheme. We have a natural morphism cyc : Div(X)!Weil(X) (cf.
[Gro67, IV.21.6.7.]). The morphism extends naturally to cycQ : Div(X)Q !
Weil(X)Q. We say that a Q-Weil-divisor D of X is Q-Cartier if it is in the
image of cycQ.

WhenX is normal, the morphism cyc is injective. LetD be a Q-Weil-divisor
of X. We have that the followings are equivalent
(1) D is Q-Cartier;
(2) There exists an integerm such thatmD 2Weil(X) and the rank 1 reflexive

sheaf OX(mD) is invertible.
• Let X be a scheme. For two Q-Cartier divisors D1 and D2, we say that D1

and D2 are Q-linearly equivalent, if D1 � D2 is a Q-combination of principal
divisors and we denote it by D1 ⇠Q D2; we say that D1 and D2 are numerically
equivalent if for any irreducible curve C ⇢ X, we have that D1 ·C = D2 ·C and
we denote this by D1⌘numD2.

• Let f : X 99K Y be a rational map between schemes. Let Z ⇢ X be a
subscheme of X. If f is defined on an open dense subset Z0 ⇢ Z, we define the
strict transform of Z by f to be the closure of f(Z0) in Y . If g : Y ! X is
a birational morphism, and D 2 Weil(X) be a prime divisor of X, we denote
by g�1

⇤ (D) the strict transform of D by g�1, which is a prime divisor on Y .
We may thus define a Q-linear map g�1

⇤ : Weil(X)Q !Weil(Y )Q by mappinng
� =

P
diDi to g�1

⇤ (�) :=
P

dig�1
⇤ (Di), here g�1

⇤ (Di) = 0 if Di is contained in
the closure of g(exc(g)).

2.1.2. Projectivisation. Let X be a scheme and S = �n�0Sn a quasi-coherent
N-graded OX -algebra. We recall that the relative Proj of S (cf. [Gro60, II.3.1]), the X-
scheme Y = Proj(S)! X is defined by gluing over each a�ne open Spec(A) = U ⇢ X
the U -scheme YU := Proj(�(U,S))! U = Spec(A)).

For a quasi-coherent OX -module E , we denote by

P(E) := Proj(�n�0Sym
n(E))

its projectivisation.
The projectivisation P(E) has the following characterization:

Proposition 2.1 ([Gro60, Propostion II.4.2.3]). Let X be a scheme and E a quasi-
coherent OX-module. For any X-scheme f : Y ! X, there is a bijective between X-
morphisms HomX(Y,P(E)) and the rank 1 quotient of f⇤(E), that is the set {f⇤(E) ⇣ L :
where L is a line bundle on Y }/ ⇠, where the equivalence is given by ↵ : f⇤(E) ⇣ L1

being equivalent to � : f⇤(E) ⇣ L2 if there exists a isomorphism � : L1 ! L2 such that
� � ↵ = �.

2.1.3. Positivity notions. Let X be a proper scheme over C and L a line bundle
on X. We follow the notions introduced in [Laz04a].

• We say that L is ample if there exists positive integers m,n and a closed em-
bedding X ,! Pn such that L ⇠= OPn(1)|X .

• We say that L is nef if for any curve C ⇢ X, we have that L · C � 0.
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• We say that a Cartier divisor D 2 Div(X) is ample (resp. nef) if OX(D) is
ample (resp. nef).

• For a Q-divisor D 2 Div(X)Q, we say that D is ample if D can be written as
D =

P
i
riDi with ri > 0 and Di 2 Div(X) ample divisors.

• For a Q-divisor D 2 Div(X)Q, we say that D is nef if D can be written as
D =

P
i
riDi with ri � 0 and Di 2 Div(X) nef divisors.

• Being ample (resp. nef) is an numerical property, i.e., if D1, D2 2 Div(X)Q
and D1⌘numD2 then D1 is ample (resp. nef) i↵ D2 is ample (resp. nef)

• When X is an irreducible projective variety and D 2 Div(X)Q is a Q-divisor,
we say that D is big if D⌘numA+ E where A is ample and E is e↵ective (cf.
[Laz04a, Corollary 2.2.7.]). A line bundle L on X is big if there exists a big
divisor D such that L ⇠= OX(D).

2.2. Singularities of Pairs, MMP

The general reference for this section is [KM98, Chapter 2, Chapter 3][Kol13, Chap-
ter 2].

Definition 2.2 (Pairs).
(0) Let D =

P
i
miDi be a Q-divisor on a scheme X, where Di are prime divisors.

We call D a subboundary if mi  1 for all i; we call D a boundary if 0  mi  1.
For a real number r, we denote by brc its integral part and set dre := �b�rc.
We set bDc :=

P
i
bmicDi and dDe :=

P
i
dmieDi. We say that D is reduced if

mi 2 {0, 1}. We say that D has standard coe�cients if mi = 1 � 1
ni

for some
ni 2 N>0 for all i.

(1) A log pair is a scheme X together with a boundary divisor �. We denote the
log pair by (X,�).

(2) A pair is a variety X together with a subboundary divisor � such that KX +�
is Q-Cartier. We denote the pair by (X,�).

Definition 2.3 (Simple normal crossing). LetX be a scheme andD =
P

i
miDi,mi 6= 0,

a Q-divisor. We say that (X,D) has simple normal crossing (snc), if X and Di’s are
smooth and Di intersects transversely. For a normal scheme Y with a Q-divisor �, there
is a maximal open U ⇢ Y such that (U,�|U ) is snc. We set non-snc(Y,�) := Y \ U .

Definition 2.4 (Log resolution). Let X be a variety and D be a Weil-divisor on X. A
log resolution of (X,D) is a proper birational morphism r : X 0 ! X such that

• X 0 is smooth;
• The exceptional locus exc(r) has pure codimension 1;
• (X 0, r�1

⇤ (D) + exc(r)) has simple normal crossing.

The existence of log resolutions is first proved by Hironaka in [Hir64a] [Hir64b].
In [Sza94], Szabó showed a strengthened version that we can even take r to be an
isomorphism over the snc locus of (X,D).

Definition 2.5 (Canonical classes). Let X be a normal variety. We denote by i :
Xreg ! X the inclusion morphism. The push-foward i⇤(det(!Xreg)) is a rank one reflexive
sheaf which corresponds to a divisor class KX . We call KX the canonical class and
!X = OX(KX) the canonical sheaf.
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When X is not normal, under some assumptions it is still possible to define the
canonical class KX of X. We refer the readers to [Kol13, Definition 1.6.]

Definition 2.6. Let (X,�) be a pair with X normal. Write � =
P

j2J djDj with Dj

prime divisors and dj 2 Q. For a birational morphism f : Y ! X from a normal variety
Y to X, we have that

KY + f�1
⇤ (�) ⇠Q f⇤(KX +�) +

P
i2I a(Ei, X,�)Ei,

where the sum is taken over exceptional divisors of f . The expression above is unique.
We set a(Fj , X,�) := �dj , where Fj = f�1

⇤ (Dj) is the strict transforms of Dj .
For k 2 I [ J , we call a(Gk, X,�) the discrepancy of Gk with respect to (X,�),

where Gk = Fk if k 2 J and Gk = Ek if k 2 I. The discrepancy a(Gk, X,�) only
depends on Gk but not on f .

Definition 2.7. Let X be a normal variety. A divisor over X is a triple (E, Y, f) where
E 2 Weil(Y ), Y is a normal variety and f : Y ! X is a birational morphism. It turns
out that the discrepancy a(E,X,�) defined in Definition 2.6 is determined by its local
ring OY,E in K(Y ) = K(X) but not by the choice of f and Y (cf. [KM98, Remark 2.23]).
We often omit Y and f . We call the closure of f(E) the center of E and denote it by
centX(E).

Definition 2.8. Let (X,�) be a pair. We define singularities that we will use in the
thesis.

• We say that (X,�) has canonical singularities, if X is normal and for every
exceptional divisor E over X, we have that a(E,X,�) � 0;

• We say that (X,�) has Kawamata log terminal singularities (klt singularities
for short), if X is normal and for all E over X, we have that a(E,X,�) > �1;

• We say that (X,�) has log canonical singularities (lc singularities for short),
if X is normal and for all E over X, we have that a(E,X,�) � �1;

• We say that (X,�) has divisorial log terminal singularities (dlt singularties for
short), if X is normal and for all E with centX(E) ⇢ non-snc(X,�), we have
that a(E,X,�) > �1

2.3. Minimal model program for pairs

The classical references are [KM98] and [Kol13]. We also refer the readers to [Fuj11]
for results in the log canonical setup.

2.3.1. Cones. We first recall relevant cones that will appear in the thesis.

Definition 2.9 (Cones 1). Let X be a projective variety.

• The Neron-Severi group N1(X) of X is defined to be the quotient N1(X) :=
Div(X)/⌘num. We denote by N1(X)Q := N1(X)⌦ZQ and N1(X)R := N1(X)⌦Z
R the group of Q-divisors and the group of R-divisors respectively. Note that
we have the inclusion N1(X)Q ⇢ N1(X)R.

• The Neron-Severi groups N1(X) is a free Abelian group of finite rank (cf.
[Laz04a, Proposition 1.1.16.]). We define the Picard number ⇢(X) of X to
be ⇢(X) := Rank(N1(X)). The finite dimensional vector space N1(X)R thus
has a well-defined Euclidean topology.
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• The ample cone Amp(X) ⇢ N1(X)R is defined to be the convex cone generated
by ample Q-divisors.

• The nef cone Nef(X) ⇢ N1(X)R is defined to be the convex cone generated by
nef Q-divisors. We have that Amp(X) = Nef(X) and Int(Nef(X)) = Amp(X)
(cf. [Laz04a, Theorem 1.4.23]).

• The big cone Big(X) ⇢ N1(X)R is defined to be the convex cone generated by
big Q-divisors.

• The pseudo-e↵ective cone Pse↵(X) ⇢ N1(X)R is defined to be the convex cone
generated by the divisor classes that can be represented by e↵ective Q-divisors.
We have that Big(X) = Pse↵(X) and Int(Pse↵(X)) = big(X) (cf. [Laz04a,
Theorem 2.2.26])

Dually, we may define cones in the 1-cycles.

Definition 2.10 (Cones 2). Let X be quasi-projective variety.
(1) We define the numerical equivalence classes of 1-cycles to be

N1(X) := Z1(X)⌦Z R/ ⌘
where Z1(X) is group of 1-cycles of X and the equivalent relation is given by
C1 ⌘ C2 i↵ for any line bundle L over X we have that L ·C1 = L ·C2. It comes
from the definition that we have a perfect pairing

N1(X)R ⇥N1(X)! R, (�, �) 7! � · �
We define the Mori cone NE(X) of X to be the closure of the cone in N1(X)
generated by cycles represented by positive combinations of irreducible curves.

(2) Let C be a cone in a finite dimensional real vector space V . A face F of C is
a sub-cone of C. When F has dimension 1, we call it a ray. A face F ⇢ C is
called extremal if F satisfies the following property:

For any x, y 2 C, we have that x+ y 2 F implies x 2 F and y 2 F .
For a linear function l 2 V _, we denote l < 0 the sub-cone {x 2 C : l(x) <

0}. We say that F ⇢ C is l-negatve if F ⇢ (l < 0).
(3) Let f : X ! S be a projective morphism between two varieties. We define the

relative cone to be NE(X/S) := ker(f⇤ : NE(X) ! NE(S)). The relative cone
NE(X/S) ⇢ NE(X) is an closed extremal face (cf. [Deb01, Lemma 6.7.]). We
define the relative Picard number ⇢(X/S) to be the dimension of NE(X/S). We
also denote NE(X/S) by NE(f)

With the language of cones, we can give a characterization for nef and ample divisors.

Proposition 2.11 (cf. [Laz04a, Proposition 1.4.28., Theorem 1.4.29.]). Let X be a
proper variety.

(1) The Mori cone NE(X) is dual to the nef cone Nef(X), i.e., we have that

NE(X) = {� 2 N1(X) : � · � � 0 for all � 2 Nef(X)}
(2) If X is projective, then for D 2 N1(X)R, we have that D 2 Amp(X) i↵ for any

� 2 NE(X) \ 0 the product D · � is positive.

It is also possible to describe the dual cone in N1(X) of the pseudo-e↵ective cone
Pse↵(X).
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Definition 2.12 ([Laz04b, Definition 11.4.6.]). Let X be a projective variety of dimen-
sion n. A class � 2 N1(X) is movable if there exists a birational morphism µ : X 0 ! X
from a projective variety X 0 to X, together with n� 1 ample classes a1, a2, . . . , an�1 2
Amp(X 0) such that

� = µ⇤(a1 · a2 · . . . · an�1).

The movable cone Mov(X) ⇢ N1(X) is the closed cone generated by all the movable
classes.

As X is projective, the movable cone is also the closed cone generated by the classes
of a flat family of curves Ct in X such that

S
t
Ct = X ([BDPP13, Theorem 1.5.(ii)]).

We have the following theorem.

Theorem 2.13 (BDPP theorem, [BDPP13, Theorem 2.2., Theorem 2.4.]). Let X be
a projective variety. Then the cones

Mov(X) and Pse↵(X)

are dual.

We finally give some remarks on pseudo-e↵ectiveness to end this subsection. When
X a is normal projective variety, it is possible to define pseudo-e↵ectiveness for reflexive
sheaves on X:

Definition 2.14 ([HP19, Definition 2.1.]). Let X be a normal projective variety and E
a reflexive sheaf on X. We say that E is pseudo-e↵ective if there exists an ample divisor
H on X satisfying the following:

For any c > 0 there exists integers j > 0 and i > jc such that

H0(X,S[i](E)⌦OX(jH)) 6= 0

where S[i](E) is the double dual of Symi(E).

The following lemma implies that the above definition for line bundles coincides with
the usual definition by pseudo-e↵ective cones.

Lemma 2.15 ([HP19, Lemma 2.3.]). Let X be a normal projective variety and E a
reflexive sheaf on X. Let ⌧ 2 N1(P(E))R be the class of the tautological bundle OP(E)(1).
We have that ⌧ 2 Pse↵(P(E)) i↵ E is pseudo-e↵ective in the sense of Definition 2.14.

LetX be a normal projective variety and L be a line bundle. The structure morphism
⇡ : P(L) ! X is an isomorphism and OP(L)(1) ⇠= ⇡⇤(L). Hence by above lemma
L 2 Pse↵(X) i↵ L is pseudo-e↵ective in sense of Definition 2.14. If D 2 Weil(X) is
Q-Cartier, suppose that mD is a Cartier divisor for m 2 N. Then D 2 Pse↵(X) is
equivalent to mD 2 Pse↵(X). On the other hand we have that OX(mD) = OX(D)[m].
It’s easy to see that OX(D)[m] is pseudo-e↵ective in sense of Definition 2.14 i↵ OX(D)
is pseudo-e↵ective in sense of Definition 2.14. Hence we get the following:

Let D 2 Weil(X) be Q-Cartier on a normal projective variety. We have that D 2
Pse↵(X) if and only if OX(D) is pseudo-e↵ective.
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2.3.2. Minimal model program for pairs. We begin by a lemma which says
that morphism between projective varieties is determined by its relative cone.

Lemma 2.16 ([Deb01, Proposition 1.14]). Let X,Y, Y 0 be three projective varieties, and
morphisms

⇡ : X ! Y and ⇡0 : X ! Y 0.

Suppose that OY ' ⇡⇤(OX) and NE(X/Y ) ⇢ NE(X/Y 0). Then there exists a unique
morphism f : Y ! Y 0 such that f � ⇡ = ⇡0.

Lemma 2.16 also shows that it is helpful to understand the structure of the relative
cone when studying morphisms between projective varieties. We now state the cone
theorem, which gives a description of the structure of the relative cone.

Theorem 2.17 (Cone Theorem, [Fuj11, Theorem 1.1.]). Let (X,�) be a pair as in
Definition 2.2. Suppose that (X,�) has log canonical singularites. Let ⇡ : X ! S be a
projective morphism onto a variety S. Then

NE(X/S) = NE(X/S)KX+��0 +
X

Rj

with the following properties:

(1) Rj is a (KX +�)-negative extremal ray;
(2) For any ⇡-ample Q-divisor A, there are only finite many Rj’s included in (KX+

�+A) < 0. In particular, the Rj’s are discrete in the half space (KX +�) < 0
and the sum of Rj is indexed over a countable set;

(3) Let F ⇢ NE(X/S) be an extremal face such that F \ NE(X/S)KX+��0 = 0.
There exists a contraction morphism contF : X ! Y over S.
(i) Let C ⇢ X be a curve such that ⇡(C) is a point. We have that [C] 2 F if

and only if contF (C) is a point;
(ii) OY

⇠= (contF )⇤(OX);
(iii) Let L be a line bundle on X such that L ·C = 0 for any curve C with [C] 2

F . Then there exists a line bundle LY on Y such that L = cont⇤
F
(LY ).

(4) Every (KX + �)-negative extremal ray Rj is spanned by a rational curve Cj

with 0 < �(KX +�) · Cj  2 dim(X).

We remark that (3) in Theorem 2.17 is also known as the contraction theorem.
We will also use the Kawamata’s rationality theorem.

Theorem 2.18 (Rationality theorem, [KM98, Theorem 3.5., Complement 3.6.]). Let
(X,�) be a propre klt pair with � e↵ective. Suppose that KX +� is not nef. Let H be
a nef and big line Cartier divisor on X. Then the following number

r(H) := sup{t 2 R : H + t(KX +�) is nef}
is a non-negative rational number. Further more, there exists a (KX + �)-negative
extremal ray R such that (H + r(H)(KX +�)) ·R = 0.

We give a little more details about the contraction map.

Lemma 2.19 ([KM98, Propostion 2.5]). Let � : X ! Y be a morphism between projec-
tive varieties. Suppose that X is normal and Q-factorial. Suppose that NE(X/Y ) is a
1-dimensional cone. Then one of the following holds:
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(1) (fiber type contraction) dim(X) > dim(Y ) and � is said to be a fiber type
contraction;

(2) (divisorial contraction) � is birational and the exceptional locus exc(�) is is an
irreducible divisor E and � is said to be a divisorial contraction;

(3) (small contraction) � is birational and codimX(exc(�)) � 2 and � is said to be
a small contraction.

Let (X,�) be a pair and let � : X ! X 0 be a birational morphism. Set �0 = �⇤(�).
We now consider (X 0,�0). If � is divisorial and it contracts a KX +�-negative extremal
ray, then by [KM98, Corollary 3.43, Corallary 3.44], we have that (X 0,�0) is canonical
(resp. klt resp. dlt resp. lc) if (X,�) is canonical (resp. klt resp. dlt resp. lc).

When codimX(exc(�)) � 2 and KX +� is not relatively numerically trivial over X 0,
we know that K 0

X
+�0 is not Q-Cartier. 1 The study of (X 0,�0) becomes complicated

as we can no longer use Theorem 2.17. One way to circumvent this inconvenience is to
introduce a new birational operation.

Definition 2.20 ([KM98, Definition 3.33]). Let X be a normal variety and D be a
Q-divisor such that KX +D is Q-Cartier. A flipping contraction is a proper birational
morphism f : X ! Y to a normal scheme such that �(KX + D) is f -ample and
codimX(exc(f)) � 2.

A (KX +D)-flip is a normal variety X+ together with a proper birational morphism
f+ : X+ ! Y such that:

(1) Set � := (f+)�1 � f , and set D+ = �⇤(D). Then we have that KX+ + D+ is
Q-Cartier;

(2) KX+ +D+ is f+-ample;
(3) The exceptional locus exc(f+) has codimension at least 2.

By abuse of language, we also call the birational map � : X 99K X+ the (KX +D)-
flip. We know ([KM98, Corollary 3.43, Corallary 3.44]) that (X+, D+) is canonical (resp.
klt resp. dlt resp. lc) if (X,D) is canonical (resp. klt resp. dlt resp. lc).

We now give a sketch of the inductive procedure known as ”running the minimal
model program”. Let (X,�) be a klt pair such that X is Q-factorial. Suppose that
KX +� is not nef. By Theorem 2.17, we may write

NE(X) = NE(X)(KX+�)�0 +
X

R�0[Ci].

By (4) of Theorem 2.17, we may consider the contraction morphism for an extremal ray
R = R�0[C]. Hence we get contR : X ! Y .

(1) If � is fiber type, the MMP terminates with a Mori fiber space;
(2) If � is divisorial, set (X1,�1) = (Y,�⇤(�));
(3) If � is small and the (KX+�)-flipX 99K X+ exists, set (X1,�1) = (X+, (X 99K

X+)⇤(�))

If we are in the case (2) or case (3), we may then consider the klt pair (X1,�1) to
produce (X2,�2) and so on. Thus we get a sequence of birational maps:

1
Suppose contrarily that K0

X +�
0
is Q-Cartier. Take an integer m � 0 such that m(KX +�) = D

and m(K0
X + �

0
) = D0

where D,D0
are Cartier divisors. We know that KX + � and K0

X + � are

identified by � over X \ exc(�). Hence we have that �⇤
(D0

)|X\exc(�) = D|X\exc(�). As X is normal and

codimX(exc(�)) � 2, we have that D = �⇤
(D0

) which is relatively numerically trivial, a contradiction.
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(X,�) = (X0,�0) 99K (X1,�1) 99K · · · 99K (Xn,�n).

[KMM87, Figure 2] gives a clear description of this process. When Xi 99K Xi+1 is a
divisorial contraction, the relative Picard number ⇢(Xi/Xi+1) equals 1. Hence in the
above program, we have at most ⇢(X) divisorial contraction. The existence of flips is
established in [BCHM10, Corollary 1.4.1]. Hence the problem of termination of MMP
is thus the problem of termination of flips. The termination of flips in dimension 3 is
proved by Kawamata in [Kaw92]. The termination of flips in dimension � 4 is still open.

We end this subsection with two theorems from [BCHM10] that give su�cient con-
dition for a minimal program to end.

Theorem 2.21 ([BCHM10, Theorem 1.2.]). Let (X,�) be a klt pair. Let ⇡ : X ! U
be a projective morphism between quasi-projective varieties.

Assume that either � is ⇡-big and KX +� is ⇡-pseudo-e↵ective or KX +� is ⇡-big.
Then

(1) KX +� has a log terminal model over U ,
(2) if KX +� is ⇡-big, then KX +� has a log canonical model over U , and
(3) the OU -algebra

R(⇡,KX +�) = �m2N⇡⇤OX(bm(KX +�)c)
is finitely generated.

Theorem 2.22 ([BCHM10, Corollary 1.3.3.]). Let (X,�) be a klt pair and suppose X
is Q-Cartier. Let ⇡ : X ! U be a projective morphism between normal quasi-projective
varieties. Suppose that KX +� is not ⇡-pseudo-e↵ective.

Then we may run f : X 99K Y a (KX +�)-MMP over U and end with a Mori fiber
space g : Y !W over U .

2.4. Some results on modifications

Let (X,�) be a pair with X normal. We can find a birational morphism g : X 0 ! X
such that (X 0, g�1

⇤ (�)) has mild singularities and KX0 + g�1
⇤ (�) has some positivities.

We list here the results that we need in the thesis. The reference for this section is
[Kol13, Chapter 1.4.].

Lemma 2.23 (Small Q-factorial modification, cf. [Kol13, Corollary 1.37]). Let (X,�)
be dlt and � a boundary. Then there is a proper birational morphism g : Xqf ! X such
that:

(1) Xqf is Q-factorial,
(2) g is small.

Theorem 2.24 (Terminal modification, cf. [Kol13, Theorem 1.33]). Let X be a
normal, quasi-projective variety and � a boundary on X such that b�c = 0. Then there
is a non-unique, projective, birational morphism gmin : Xmin ! X such that

(1) (Xmin, (gmin)�1
⇤ �) is terminal and

(2) KXmin + (gmin)�1
⇤ �) is gmin-nef.

Theorem 2.25 ([Kol13] Theorem 1.31). Let X be a normal variety and � a boundary
on X. There exists a unique, projective, birational morphism f : X 0 ! X such that
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(1) (X 0, f�1
⇤ (�)) is canonical and

(2) KX0 + f�1
⇤ (�) is f -ample

2.5. Slc singularities

In this section we consider non-normal schemes. We strictly follow [Kol13, Chap-
ter 5].

Definition 2.26 (Serre’s conditions, cf. [Gro65, Définition IV.5.7.2]). Let X be a
scheme. We say that X has property (S2), if for all x 2 X, a not necessarily closed
point, one of the following holds

(1) We have that dim(OX,x) = 0;
(2) We have that dim(OX,x) = 1 and that there exists a 2 mx \ 0 such that a is not

a zero divisor;
(3) We have that dim(OX,x) � 2 and that there exists a1, a2 2 mx \ 0 such that a1

is not a zero divisor in OX,x and a2 is not a zero divisor in OX,x/(a1).

In general, let k � 0 be an integer. We say that a coherent OX -module F has propery
(Sk) if for all x 2 X, we have that depthOX,x

(Fx) � min{k, dim supp(Fx)}.

By Serre’s criterion for normality (cf. [Gro65, IV.5.8.6]), all normal schemes are
(S2).

Definition 2.27. Let X be a scheme.

(1) We say that X has a node at a not necessarily closed point x 2 X, if OX,x
⇠=

R/(f), where (R,m) is a regular local ring of dimension 2, f 2 m2 and f is not
a square in m2/m3;

(2) A scheme X is called demi-normal if X has the property (S2) and all codimen-
sion 1 points x of X are regular points or nodes.

The simplest examples for demi-normal schemes are the nodal curves.

Definition 2.28 (conductor). Let X be a reduced scheme and ⇡ : X̄ ! X its normal-
ization. The conductor ideal

condX := HomOX (⇡⇤OX̄
,OX)

is the largest ideal sheaf of OX such that it is also an ideal sheaf of ⇡⇤OX̄
. As ⇡ is finite,

we have a unique ideal sheaf cond
X̄

of X̄ that corresponds to condX .
We define the conductor schemes to be

D := Spec(OX/ condX) and D̄ := Spec(O
X̄
/ cond

X̄
)

They fit into the Cartesian square

D̄

✏✏

// X̄

✏✏
D // X

For any x 2 X, we have that the stalk ⇡⇤(OX̄
)x is canonically isomorphic to the

integral closure of OX,x in its total rings of fractional (cf. [Sta22, Tag 0C3B]). When
OX,x is a normal ring, we have that OX,x = ⇡⇤(OX̄

)x and x /2 D. Hence D is the locus
of X where OX,x is not integrally closed in MX,x and X̄ \ D̄ ⇠= X \ D. When X is

https://stacks.math.columbia.edu/tag/0C3B
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(S2),the condutor ideal condX is (S2) by [Sta22, Tag 0EBC]. Let ⇠ be a generic point of
D. We have that OX,⇠ is not a normal ring. Hence by Serre’s criterion for normality,
there exits a ⌘ 2 X which is a generalization of ⇠ such that dim(OX,⌘) = 1 and OX,⌘ is
not regular. Thus ⌘ 2 D and ⌘ = ⇠. We have that D is of pure codimension 1. As ⇡ is
finite, the subscheme D̄ is also of pure codimension 1. By [Kol13, Corollary 2.61.], the
subschemes D and D̄ have (S1) property or equivalently they have no embedded points.
When X is demi-normal, both D and D̄ are reduced.

For a demi-normal scheme X, its Weil-divisors that do not contain any components
of the conductor divisor D behave like the Weil-divisors on a normal scheme. We give
some elaborations.

Definition 2.29. Let X be a demi-normal scheme and ⇡ : X̄ ! X its normalization.
We denote by D and D̄ the conductor divisors on X and X̄ respectively.

• We denote by Weil⇤(X) ⇢Weil(X) the subgroup of Weil-divisors whose support
does not contain any irreducible component of the conductor D. Its easy to see
that Weil⇤(X) is the image of the canonical map i⇤ : Weil(X \D) ,!Weil(X),
where i : X \D ! X is the open inclusion.

• We denote by Weil⇤(X̄) ⇢Weil(X̄) the subgroup of Weil-divisors whose support
does not contain any irreducible component of the conductor D̄. Similarly we
have that Weil⇤(X̄) is the image of the canonical map j⇤ : Weil(X̄ \ D̄) ,!
Weil(X̄), where j : X̄ \ D̄ ! X̄ is the open inclusion.

• A divisorial sheaf on X is a rank one reflexive sheaf that is locally free at the
generic points of D. The isomorphic classes of divisorial sheaves form a group
with multiplication given by ⌦̂.

Lemma 2.30. Let X be a demi-normal scheme and F a reflexive module on X. We
denote by D the conductor of F . Suppose that F is locally free at the generic points of
D. Then there exists an open subset X0 ⇢ X such that

(1) The restriction F|X0 is locally free;
(2) Every irreducible components of X \X0 has codimension at least 2;
(3) Denote by j : X0 ! X the inclusion. The canonical map F ! j⇤j⇤(F) is an

isomorphism.

Proof. Let X0 ⇢ X be the maximal open subset satisfying Lemma 2.30-(1). For a
point x 2 X such that dimOX,x  1, we have that either OX,x is a Dedekind domain,
hence Fx is a free OX,x-module or x is a node and Fx is free at x by hypothesis. Hence
for all x 2 X \X0, we have that dimOX,x � 2. Hence we have Lemma 2.30-(2). As X
has the property (S2), we have that depth(OX,x) � 2 for all x 2 X \X0. This implies
that the stalk Fx = HomOX,x(HomOX,x(Fx,OX,x),OX) has depth at least 2 for all
x 2 X \X0. [Sta22, Tag 0E9I] implies Lemma 2.30-(3). ⇤

Let B be a Weil-divisor on a demi-normal scheme X. Suppose that B contains
no components of the conductor divisor D of X. Then there exists an open subset
X0 ⇢ X such that the codimension of X \X0 is at least 2 and B|X0 is Cartier. Thus
we may associate B a reflexive OX(B) := i⇤(OX0(B|X0)), where i : X0 ! X is the
inclusion. The map B 7! OX(B) induces an isomorphism from Weil⇤(X) modulo linear
equivalences to the group of isomorphic classes of divisorial sheaves on X.

https://stacks.math.columbia.edu/tag/0EBC
https://stacks.math.columbia.edu/tag/0E9I
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Let X be demi-normal, and ⇡ : X̄ ! X be its normalization. Let B be a Weil-divisor
on X. Write B = B1+B2 where B1 is the divisorial part. We have that set-theoretically
⇡�1(B) = ⇡�1(B1) [ ⇡�1(B2). As supp(B2) ⇢ D, we have that ⇡�1(B2) ⇢ D̄. On the
other hand, as X̄ \ D̄ ⇠= X \D, we have that ⇡�1(B1) = (⇡|

X̄\D̄)
⇤(B1|X̄\D̄). Hence we

define the divisor j⇤(⇡|X̄\D̄)
⇤(B1|X̄\D̄) to be the divisorial part of the subscheme ⇡�1(B),

where j : X̄ \ D̄ ! X̄ is the inclusion. We denote the divisorial part of ⇡�1(B) by B̄.
As ⇡ : X̄ \ D̄ ! X \D is an isomorphism. It’s easy from the construction to see that
B 7! B̄ is a bijection from Weil⇤(X) to Weil⇤(X̄).

We now combine the above discussion together. We have the following proposition
concerning the dualizing sheaves of X and X̄. For a divisor B 2Weil⇤ and the dualizing
sheaf !X , we will use the following notation

![m]
X

(B) := ![m]
X
⌦̂OX(B),

where m is an integer. If m = 1, we simplify the notation ![1]
X
(B) to !X(B). We use

similar notations for all divisors B0 on X̄ and !
X̄
.

Proposition 2.31 ([Rei94, Proposition 2.3]). Let X be a reduced scheme, and ⇡ : X̄ !
X its normalization. Let !X and !

X̄
be the dualizing sheaves of X and X̄ respectively.

We have that

⇡⇤(!X̄
) = HomOX (⇡⇤(OX̄

),!X)

If X is (S2) and !X is invertible then

⇡⇤(!X̄
) = condX ·!X and ⇡⇤(!X) = HomOX̄

(cond
X̄
,!

X̄
) = !

X̄
(D̄).

We note that the second equality is equivalent to the first. In fact, by definition
we have that ⇡⇤(condX̄) = condX . Then by the projection formula, we have that
⇡⇤(condX̄ ·⇡⇤!X) = condX ·!X = ⇡⇤!X̄

. This implies cond
X̄
·(⇡⇤!X) = !

X̄
. Tensor-

ing both sides with cond�1
X̄

and taking reflexive hulls, we get the second equality.
The dualizing sheaf !C is locally free for a nodal curve C. For a general demi-normal

scheme X, each nodal point x 2 X is also a double nc point. Hence by the adjunction
formula, the dualizing sheaf !X is locally free at x. Thus there exists an open X0 ⇢ X
with codimX(X \X0) � 2 and !X |X0 is locally free. Apply the above proposition to X0

and ⇡�1(X0) then push forward. We get that

⇡⇤(!X̄
) = !X(�D) and (⇡⇤!X)?? = !

X̄
(D̄).

For any B 2Weil⇤(X), we have that

(1) (⇡⇤![m]
X

(B))?? ' ![m]
X̄

(mD̄ + B̄)

If � is a Q-Cartier Q-divisor such that m� 2Weil⇤, we have that

(2) (⇡⇤![m]
X

(m�))?? ' ![m]
X̄

(mD̄ +m�̄)

which will also be written as

(3) ⇡⇤(KX +�) ⇠Q K
X̄
+ D̄ + �̄

We are now ready to define slc singularities.
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Definition 2.32 ([Kol13, Definition-Lemma 5.10]). Let (X,�) be a pair as in Def-
inition 2.2. Let ⇡ : X̄ ! X be its normalization, the conductors D̄ and D as in
Definition 2.28. The pair (X,�) is called semi-log canonical or slc if (X̄, D̄ + �̄) is log
canonical.

2.6. Miscellaneous constructions

2.6.1. Generalized cones. We follow the construction in [BS11, 1.1.8.] Let V be
a projective scheme of dimension n and L a very ample line bundle over V . Fix N � n
an integer. Set E := �N�nOV and p : P(E � L) ! V . We denote the projectivisation
P(E �L) by X. Note that E �L is globally generated and we have for the tautological
bundle ⇠ := OP(E�L)(1) of P(E � L) a surjective morphism p⇤(E � L) ! ⇠. Hence we
have a surjective morphism

H0(V,E � L)⌦C OX ⇣ ⇠.

By Proposition 2.1, the above morphism corresponds to a unique morphism

�|⇠| : X ! P(H0(V,E � L)).

We take the Stein factorization of �:

X //

 |⇠|
✏✏

P(H0(V,E � L))

CN (V, L)

66

and call CN (V, L) the generalized cone of dimension N on (V, L). As ⇠ is big, the scheme
CN (V, L) has dimension N . Set ⇠L := OP(H0(V,E�L))(1)|CN (V,L), then ⇠L is ample.

2.6.2. Albanese morphism. We give a sketch on how to construct Albanese mor-
phism for a singular complex variety X. We first recall the Albanese morphism for
smooth compact varieties.

Definition 2.33 ([Uen75, Definition 9.6.]). Let V be a compact complex manifold. The
Albanese torus of V is a complex torus A(V ) together with a morphism AlbV : V ! A(V )
such that the universal property is satisfied:

For a morphism g : V ! T from V to a complex torus T , there exists a unique Lie
group morphism h : A(V ) ! T and a unique element a 2 T such that for all x 2 V we
have

g(x) = h(AlbV (x)) + a.

The universal property characterizes (A(V ),AlbV ) up to isomorphisms.

Theorem 2.34 ([Uen75, Theorem 9.7.]). For any smooth compact complex variety
V , its Albanese torus (A(V ),AlbV ) exists.

When X is smooth and projective or more generally compact Kähler, we may con-
struct (A(X),AlbX) by

A(X) = H0(X,⌦X)?/H1(X,Z)
AlbX : x 7�! (↵ 2 H0(X,⌦X) 7!

R
x

x0
↵)



42 2. PRELIMINARIES

where x0 2 X is a point that we fix and the integral is defined over any path that
connects x0 to x.

Now, suppose that X is a normal projective variety, not necessarily smooth. Let
r : Y ! X be a projective resolution of singularities of X. We consider the following
diagram

Y
AlbY //

r

✏✏

A(Y )

X

<<
.

If the rational map AlbY �r�1 has no points of indeterminacy, we can show (AlbY �r�1, A(Y ))
is independent of the choice of the resolution r. We have the following

Theorem 2.35 ([Rei83, Proposition 2.3.]). Let X be a normal projective variety and
r : Y ! X be a projective resolution of singularities of X. If R1f⇤(OY ) = 0, then the
rational map AlbY �r�1 has no points of indeterminacy.



CHAPTER 3

Polarized varieties with high nef value

3.1. Canonical polarized varieties

In this section, we assume that X is a projective normal variety with canonical
singularities.

First we recall the definition of polarized and quasi-polarized varieties.

Definition 3.1. Let (X,L) be a pair consisting of a projective variety X and a line
bundle L over X. we call it

(1) A quasi-polarized variety if L is nef and big;
(2) A polarized variety if L is ample.

Definition 3.2. Let X be a normal projective variety such that KX is Q-cartier and
KX is not nef. For a big and nef line bundle L on X, we define

r(L) =: sup{t 2 R : tKX + L is nef}.

And set ⌧(L) =
1

r(L)
with the convenction ⌧(L) = +1 when r(L) = 0. We call this

number ⌧(L) the nefvalue of L.

By Theorem 2.18, we know that r is a rational number and that there exists a
KX -negative extremal ray R such that (rKX + L) ·R = 0.

Lemma 3.3. Let X be a normal projective variety with canonical singularities and L a
big and nef line bundle on X. Suppose that ⌧(L) is finite. If KX +(n� 1)L /2 Pse↵(X),
we have that ⌧(L) > n� 1.

Proof. We know that Pse↵(X 0) = Big(X) is a closed cone. Hence there exists an
ample Q-divisor A, such that KX +(n�1)L+A is not pseudo-e↵ective. If ⌧(L)  n�1,
we have that

KX + (n� 1)L+A = (KX + ⌧(L)L) + (n� 1� ⌧(L))L+A.

That is, KX + (n � 1)L + A is a sum of a nef and an ample divisor, which is ample, a
contradiction. ⇤
Definition 3.4. Let (X1, L1), (X2, L2) be two pairs consisting of a normal variety Xi

and a line bundle Li on Xi.

(1) We say that(X1, L1) is isomorphic to (X2, L2), if there exists an isomorphism � :
X1 ! X2 such that �⇤(L2) is isomorphic to L1. We denote this by (X1, L1) ⇠=
(X2, L2).

(2) We say that (X1, L1) and (X2, L2) are birationally equivalent, if there exists
a variety X and two birational morphism �i : X ! Xi such that �⇤1(L1) is
isomorphic to �⇤2(L2). We denote this by (X1, L1) ⇠bir (X2, L2).

43
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Lemma 3.5. Let X be a variety with canonical Q-factorial singularities and L a big
and nef line bundle on X. Suppose that KX + (n � 1)L /2 Pse↵(X). Then (X,L) is
birationally equivalent to (X 0, L0), where X 0 is a normal projective variety with canonical
Q-factorial singularities, KX0 + (n� 1)L0 /2 Pse↵(X 0) and

(1) Either ⌧(L0) is finite;
(2) or there is a Mori fiber space structure � : X 0 ! W and a rational number

⌧ > (n� 1) such that L0 is �-ample and KX0 + ⌧L0 ⇠Q,� 0.

Proof. By Theorem 2.17, we know that

NE(X) = NE(X)KX�0 +
X

R�0[Cj ]

where Cj are KX -negative rational curves and the sum is over countably many j.

(1) For every KX -negative extremal ray R = R�0[C], we have that L · C > 0.
By Theorem 2.18, there exists a KX -negative extremal C0 such that r(L) =

� L · C0

KX · C0
> 0. Hence r = 0 only if there exists an L-trivial KX -negative

extremal ray.
(2) There exists a KX -negative extremal ray R such that L · R = 0. By Theo-

rem 2.17-(3), we consider the contraction with respect to R, contR : X ! Z.
Note that there exists a line bundle LZ on Z such that L ⇠= cont⇤

R
(LZ).

Hence a basic idea is to run a MMP to contract every L-trivial extremal rays to get a
(X 0, L0) satisfying case (1). However we may encounter the problem with termination.
We now show how to circumvent this problem.

By Theorem 2.24 and Lemma 2.23, we can find a modification f : Y ! X such that
Y has Q-factorial terminal singularities. Set LY = f⇤L. We have that LY is nef and
big and KY + (n� 1)LY /2 Pse↵(Y ). By [And13, Lemma 4.1.], we can find an e↵ective
Q-divisor � on Y such that

� ⇠Q (n� 1)LY and (Y,�) is klt.

Now consider the pair (Y,�). We have that KY +� /2 Pse↵(Y ). By Theorem 2.22, we
can run a (KY +�)-MMP to get

(Y,�) = (Y0,�0) 99K (Y1,�1) 99K · · · 99K (Ys,�s),

with Ys a Mori fiber space. Suppose that the map �i : Yi 99K Yi+1 is associated with
a (KYi + �i)-negative extremal ray Ri. By [And13, Proposition 4.2.], for every i =
0, 1, . . . , s, we have that

(1) Yi is Q-factorial terminal;
(2) �i ·Ri = 0;
(3) There exists nef and big line bundles Li on Yi and �i ⇠Q (n� 1)Li.

It is then obvious KYi + (n� 1)Li /2 Pse↵(Yi).
We then set (X 0, L0) := (Ys, Ls).

(1) If (Ys,�s) has no KYs-negative extremal ray R such that Ls · R = 0, take
C0 a KX0-negative extremal curve such that (r(L0)KX0 + L0) · C0 = 0. Then

r(L0) = � L0 · C0

KX0 · C0
> 0. Hence the nefvalue of L0, ⌧(L0) =

1

r(L0)
is finite.
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(2) Otherwise, we consider the Mori fiber space �s : Ys !W obtained in the above
(KY +�)-MMP. Let Rs := NE(�s) be the extremal ray of �s. We claim that
Ls ·Rs > 0. Suppose in contrary that Ls ·Rs = 0. Then by Theorem 2.17-(3),
there exists LW such that �⇤s(LW ) = Ls. As dim(W ) < dim(Ys), we have that
Ln
s = �⇤s(L

n

W
) = 0 contradicting Ls to be nef and big. As Rs is a (KYs +�s)-

negative extremal ray, we have that (KYs +(n�1)Ls) ·Rs < 0. Hence the ⌧ > 0
such that KYs + ⌧Ls ⇠Q,� 0 satisfies that ⌧ > (n� 1).

⇤
Before we move on to further classification, we first introduce the definition of �-

genus.

Definition 3.6. Let (X,L) be a quasi-polarised variety of dimension n. We define its
�-genus to be

�(X,L) := n+ Ln � h0(X,L)

We will use the relative Kobayashi-Ochiai criterion by Andreatta.

Theorem 3.7 ([And95, Theorem 2.1.]). Let X be a projective variety with klt singu-
larities and let L be a line bundle on X. Let � : X ! Z be a surjective morphism with
connected fibers between normal varieties. Suppose that L is �-ample and KX+⌧L ⇠Q,� 0
for some ⌧ 2 Q+. Let F1 = ��1(z) be a non-trivial fiber, F ⇢ F1 be one of its irreducible
components, F 0 be the normalization of F and let L0 be the pullback of L on F . Let b⌧c
be the integral part of ⌧ and ⌧ 0 = d⌧e = �b�⌧c.

(I,1) dim(F ) � ⌧ � 1;
(I,2) If dim(F ) < ⌧ , then F ⇠= P⌧ 0�1 and L|F = OP⌧ 0�1(1);
(I,3) If dim(F ) < ⌧ + 1, then �(F 0, L0) = 0,

If moreover dim(F ) > dim(X)� dim(Z), then

(II,1) dim(F ) � ⌧ ;
(II,2) If dim(F ) = ⌧ , then F ⇠= P⌧ and L|F = OP⌧ (1);
(II,3) If dim(F ) < ⌧ + 1, then �(F 0, L0) = 0,

If all components of the fiber satisfy dim(F ) < ⌧ , in case (I.2) or dim(F )  ⌧ in case
(II.3), then the fiber is actually irreducible.

Lemma 3.8. Let (X,L) be a quasi-polarised variety of dimension n. Suppose that X
has canonical Q-factorial singularities and KX + (n � 1)L /2 Pse↵(X). Suppose that
there exists a KX-negative extremal ray R = R�0[C0] such that L ·C0 > 0. Then (X,L)
is the one of the following

(1) (X,L) ⇠= (Pn,OPn(1)), and ⌧ = n+ 1;
(2) (X,L) is isomorphic to a (Pn�1,OPn�1(1))-bundle over a smooth curve C and

⌧ = n;
(3) �(X,L) = 0, KX + ⌧L ⇠Q OX and n� 1 < ⌧  n.

Proof. Let � : X ! Z be the Mori contraction of the extremal ray R. Set t > 0 to
be the rational number such that (KX + tL) ·C0 = 0. Let F be a general fiber of �, then
(KX+(n�1)L)|F /2 Pse↵(F ). As NE(F ) = R�0[C0], we have that (KX+(n�1)L)·C0 <
0. Thus t > (n� 1).
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Let m be a divisible enough integer such that mKX is a Cartier divisor and mt is
an integer. The line bundle mKX +mtL is �-numerically trivial. By Theorem 2.17-(3),
we know that KX + tL ⇠Q,� 0. As NE(X/Z) = R, we have that L is �-ample. Thus we
are in the situation of Theorem 3.7.

We first show that � is not birational. Suppose by contradiction that � : X ! Z is
birational. Let F be a component of a non trivial fiber F1 = ��1(z). By Theorem 3.7
(II,1), we have that dim(F ) � t > n� 1. Thus �(X) is a singleton, a contradiction.

By Theorem 3.7, we know that dim(F ) � t� 1 > n� 2. Thus either dim(F ) = n or
dim(F ) = n� 1.

(1) If dim(F ) = n, we have that F = X and Z = {z}. Then KX + tL ⇠Q OX

and ⌧ = t. If t > n, Theorem 3.7 (I.2) implies that (X,L) = (Pn,OPn(1)) and
⌧ = n+1. If n� 1 < t  n, we have that dim(F ) = n < t+1. By Theorem 3.7
(I.3), we know that �(X,L) = 0.

(2) dim(F ) = n� 1. Let F 0 ⇢ F1 be another component of F1. Then Theorem 3.7
implies dim(F 0) � n�1. On the other hand we could not have that dim(F 0) = n,
for this would imply that F = F 0 = X which has dimension n, a contradiction.
Hence by Theorem 3.7 agian, we know that F1 is irreducible and F = F1. As
� is not birational, by semi-continuity of dimensions of fibers (cf. for example
[Sta22, Tag 02FZ]) , for any point z0, ��1(z0) has positive dimension. By
Theorem 3.7 and repeating the argument for F and F1, we know that ��1(z0)
is irreducible with dimension n � 1. Then Theorem 3.7 (I,2) implies that for
every fiber ��1(z0), we have that (��1(z0), L��1(z0)) ⇠= (Pn�1,OPn�1(1)). Thus
we know that (X,L) is isomorphic to a (Pn�1,OPn�1(1))-bundle over a smooth
curve C and ⌧ = n.

⇤
Thus we are left in the case (3) of Lemma 3.8. In this case, we have:

Lemma 3.9. Let (X,L) be a quasi-polarized variety of dimension n with �(X,L) = 0.
Suppose that X has canonical Q-factorial singularities, and that the nefvalue ⌧ = ⌧(L)
of L satisfies n � 1 < ⌧(L)  n. If KX + ⌧L ⇠Q OX , then there exists a birational
morphism µ : X ! Y such that

(1) Y has canonical singularities, µ⇤(KY ) = KX ;
(2) There exists an ample line bundle A on Y such that µ⇤(A) = L;
(3) �(Y,A) = 0 and KY + ⌧A ⌘num OY .

Proof. The divisor L � KX ⇠Q 2⌧L is nef and big. Hence we may apply the
basepoint-free theorem for L ([KM98, Theorem 3.3.]), to get that for a su�cient large
integer b, |bL| has no basepoints. Now consider the graded algebra

R(X,L) =:
M

n�0

H0(X,nL).

We have a canonical rational map µ : X ! Proj(R(X,L)) =: Y . As Bs(|bL|) = ;,
we know that µ has no indeterminacy and R(X,L) is finite generated (cf. [Deb01,
Proposition 7.6.]). Hence the ring R(X, bL) is integral and normal. As L is big, the
morphism µ is birational and L := µ⇤(OY (1))(cf. [Deb01, Lemma 7.10.]). By setting
A := OY (1), we get (2).

https://stacks.math.columbia.edu/tag/02FZ
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We now take a divisible enough m such that mKX is Cartier, the number m⌧ is
an integer and mKX + m⌧L ⇠Z 0. Denote the exceptional locus of µ by E and ⌫ :
Y \ µ(E)! X \ E the inverse of µ. We have that

OY (mKY )|Y \µ(E) ⇠ ⌫⇤(OX |X\E) ⇠ ⌫⇤(�m⌧L|X\E) ⇠ �m⌧A|Y \µ(E)

The rank one reflexive sheaf OY (mKY ) and the line bundle �m⌧A agree outside a subset
whose codimension is at least 2. Hence OY (mKY ) is a line bundle and KY is Q-Cartier.
We thus have the equalities KY = �⌧A and µ⇤(KY ) = KX . Hence µ is crepant and Y
has canonical singularities. We get (1). By projection formula, we have that KY + ⌧A =
µ⇤(KX + ⌧L) = OY and �(Y,A) = n+An � h0(Y,A) = n+ Ln � h0(X,L) = 0. ⇤

Hence it rest for us to classify the polarized variety (X,L) with L ample, n � 1 <
⌧(L)  n, �(X,L) = 0 and KX + ⌧(L)L ⇠= OX . We have the following:

Lemma 3.10. Let (X,L) be a polarized variety with L ample, n � 1 < ⌧(L)  n,
�(X,L) = 0 and KX + ⌧(L)L ⌘num OX . Suppose that X has canonical singularities.
Then one of the following occurs:

(1) (X,L) ⇠= (Q,OPn+1(1)), where Q ⇢ Qn+1 is a hyperquadric;
(2) (X,L) is a Pn�1-bundle over P1 and the restriction of L to each fiber is OPn�1(1);
(3) (X,L) ⇠= (P2,OP2(2));
(4) (X,L) ⇠= Cn(P2,OP2(2)) is a generalised cone over (P2,OP2(2))

Proof. If ⌧(L) = n, the divisor KX + nL is numerically trivial. Then Theorem 1.2
implies that (X,L) ⇠= (Q,OPn+1(1)), where Q ⇢ Pn+1 is a hyperquadric. Hence we are
in case (1).

From now on we may assume that ⌧(L) < n. As L is ample, we have that KX +
nL⌘num(n� ⌧(L))L is ample.

By Fujita’s classification theorem for polarized varieties with�-genus zero (cf. [Fuj90,
Theorem 5.10 and Theorem 5.15] [BS11, Proposition 3.1.2.]), besides the four cases given
above in Lemma 3.10, there are two more possibilities for (X,L):

(i) Either (X,L) ⇠= (Pn,OPn(1)),
(ii) or (X,L) is a generalized cone over (V, LV ), where V ⇢ X is a smooth subman-

ifold, L|V = LV is very ample and �(V, LV ) = 0.

Case (i) is impossible, since ⌧(OPn(1)) = n + 1. Hence we need to investigate case (ii).
Set r := n�dim(V ), we have by definition of the generalized cone the following diagram

P(O�r

V
) = V ⇥ Pr�1 pr2 //
� _

i

✏✏

Pr�1
� _

✏✏
P(LV ) //

⇠=
((

P(O�r

V
� LV )

⇡

✏✏

 |⇠| // Cn(V, LV ) = X

V

where ⇠ = OP(O�r
V �LV )(1) is the tautological bundle. The identification of V ⇠= P(LV ) is

given by the quotient morphism O�r

V
� LV ⇣ LV .
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We claim that outside P(O�r

V
) the morphism  |⇠| induces an isomorphism onto its

image. Take z 2 Cn(V, L) such that  �1
|⇠| (z) has positive dimension. In particular, there

exists a curve C1 such that  |⇠|(C1) = {z}. Since O�r

V
� LV is globally generated,

the morphism  |⇠| restricted to each fiber of ⇡ is an embedding. Hence ⇡ maps C1

bijectively to its image C. By generic smoothness, there is an open subset U ⇢ C such
that ⇡ : C0 := ⇡�1(U) ! U is an isomorphism. We may regard C0 as a section of ⇡
defined over U . That is

P((O�r

V
� LV )|U ) //

✏✏

P(O�r

V
� LV )

✏✏
U

�

EE

// V

The section � is defined by a quotient ⇢ = (⇢1, ⇢2) : (O�r

V
� LV )|U ⇣ M , with M

a line bundle on U . The morphism ⇢ has a decomposition into ⇢1 : O�r

V
! M and

⇢2 : LV ! M . As  |⇠| � �(U) = {z}, we know that M ⇠= �⇤(⇠|P((O�r
V �LV )|U )) is

trivial. As h0(HomOU (LV |U ,OU )) = h0(U,L_
V
|U ) = 0, we have that ⇢2 = 0. Hence the

quotient is given by ⇢1 : O�n�1
U

! OU . We know that C0 = U ⇢ P(O�r

V
) and hence

C = C0 ⇢ P(O�r

V
).

As V = P(LV ) is smooth, we have the short exact sequence

0! TP(LV ) ! TP(O�r
V �LV )|P(LV ) ! NP(LV )/P(O�r

V �LV ) ! 0.

We have thus

(4) !_
P(O�r

V �LV )
|P(LV ) = !_

P(LV ) ⌦ ^
rNP(LV )/P(O�r

V �LV ).

The canonical bundle formula gives us

!P(O�r
V �LV ) = ⇡⇤(!V ⌦ LV )⌦ ⇠⌦�(r+1).

With ⇠|V = LV , we know that !P(O�r
V �LV )|V = !V ⌦ L⌦�r

V
. Thus Equation (4) gives

^rNP(LV )/P(O�r
V �LV ) = L⌦r

V
.

As P(LV ) is disjoint from the singular locus Pr�1 ⇢ X, we also have the exact sequence

0! TP(LV ) ! TX |P(LV ) ! NP(LV )/X ! 0.

Hence
!_
X |P(LV ) = !_

P(LV ) ⌦ ^
rNP(LV )/X .

Note that NP(LV )/X = NP(LV )/P(O�r
V �LV ). Hence !X |V = !V ⌦ L⌦�r. Then we have

that

!X ⌦ L⌦n|V = !V ⌦ L⌦(n�r).

Hence the divisor KV + dim(V)LV is ample.
If dim(V) � 2, apply [Fuj90, Theorem 5.10] again for (V, LV ). We know that (V, LV )

is one of the following:

• (Pdim(V ),OPdim(V )(1)); or
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• (Q,OQ(1)), where Q ⇢ Pdim(V )+1 is a hyperquadric; or
• (P(E),OP(E)(1)) where E is an ample vector bundle of rank dim(V ) over P1; or
• (P2,OP2(2))

Suppose first that dim(V ) = 2. If (V, L) is (P1,OP1(1)) or (Q,OP3(1)), the divisor
KV +2LV will not be ample. If (V, L) is a P1-bundle over P1, then KV +2LV is trivial on
each fiber, contradicting to the fact thatKV +2LV is ample. Hence (V, L) ⇠= (P2,OP2(2)).

If dim(V ) = 1, we have that (V, LV ) ⇠= (P1,OP1(a)) with a � 3. By the following
Lemma 3.11 we know that for n � 2, a generalized cone Cn(P1,OP1(a)) has singularities
worse than canonical.

Hence when (X,L) is a generalized cone, we have that (X,L) ⇠= Cn(P2,OP2(2)). ⇤
Lemma 3.11. Let (X,L) = Cn(P1,OP1(a)) be a generalized cone with a � 3 and n � 2.
Then

(1) X has klt singularies and X is not canonical;
(2) the nefvalue of L is n� a�2

a
;

(3) KX + (n� 1)L is not pseudo-e↵ective.

Proof. Consider the following commutative diagram

D = P1 ⇥ Pn�2 pr2 //
� _

i

✏✏

Pn�2
� _

✏✏

T = P(O�n�1 �O(a))
 |⇠| //

⇡

✏✏

Cn(P1,O(a))

P1

,

where ⇠ is the tautological bundle OT (1). The inclusion i : D ! T is given by the
quotient O�n�1 � O(a) ! O�n�1. The map  |⇠||D : D !  |⇠|(D) onto its image Pn�2

is identified to pr2. We have that ⇠|D ⇠= pr⇤2(OPn�2(1)) and ⇡ � i = pr1.
By the canonical bundle formula, we have that

KT = ⇡⇤(OP1(a� 2))� n⇠,(5)

KD = pr⇤1(OP1(�2))� (n� 1)⇠|D.(6)

We can thus compute

OT (D)|D = KD �KT |D(7)

= pr⇤1(OP1(�a)) + pr⇤2(OPn�2(1)).(8)

Consider P1 ⇥ {pt} ⇢ D, which is mapped isomorphically to P1 by ⇡. We have that

OT (D) · (P1 ⇥ {pt}) = �a < 0,

KT · (P1 ⇥ {pt}) = a� 2 > 0.

We have that

(9) KT =  ⇤
|⇠|(KCn(P1,OP1 (a))

) + bD.
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Intersect both sides with P1 ⇥ {pt}. We find that 0 > b = �a�2
a

> �1, hence
Cn(P1,OP1(a)) has klt singularities and does not have canonical singularities. As Pn�2 ⇢
Cn(P1,O(a)) has inverse imageD by  |⇠|, we see that  |⇠| : (T,D)! (Cn(P1,O(a)),Pn�2)
is a log resolution of (Cn(P1,O(a)),Pn�2).

We now compute the nefvalue ⌧ = ⌧(L) of L. As L is very ample, we know that
KX + ⌧L is nef but not ample. By Equation (9), we have that

KT � bD + ⌧⇠ =  ⇤
|⇠|(KX + ⌧L).

Thus the restriction (KT � bD + ⌧⇠)|D is nef on D. By Equation (5), Equation (6) and
Equation (8), we have that

(KT � bD + ⌧⇠)|D = (⌧ � (n+ b))pr⇤2(OPn�2(1)).

Hence ⌧ � n + b. Let C ⇢ T be a curve. We will consider its intersection with
KT � bD + ⌧⇠ = ⇡⇤(OP1(a� 2)) + (⌧ � n)⇠ � bD. We have 3 situations:

(1) The curve C is contained in D. Then (KT � bD + ⌧⇠) · C = (⌧ � (n +
b))pr⇤2(OPn�2(1)) · C � 0.

(2) The generic point of C is not in D and C is contracted by ⇡. Then C is a curve
in a fiber F of ⇡. We have that F = Pn�1 and ⇠|F = OPn�1(1). If C \D = ;,
then D ·C = 0 and (KT � bD+ ⌧⇠) ·C = (⌧ � n)(⇠ ·C); if C \D 6= ;, we have
that D|F = Pn�2 = ⇠|F and (KT � bD + ⌧⇠) · C = (⌧ � n� b)(⇠ · C).

(3) The generic point of C is not in D and ⇡ : C ! P1 is a finite morphism. We
identify P1 with P(OP1(a)) ⇢ T . The finite morphism is thus given by

C //

✏✏

P(OP1(a))

zz
T

As ⇠|P(OP1 (a))
= OP1(a), we have that

(⇡⇤(OP1(a� 2)) + (⌧ � n)⇠ � bD) · C = deg(C/P1)(a� 2 + (⌧ � n)a) = 0.

We claim that ⌧ = n+b. By case (2), we know that ⌧ � n+b andKT�bD+(n+b)⇠ =
�⇤|⇠|(KX + (n + b)L) is nef. On the other hand, any curve C ⇢ X is dominated by a

curve C 0 ⇢ T . Hence ⌧(L) = n+ b.
Finally we show that KX + (n� 1)L /2 Pse↵(X). In fact, suppose by contradiction

thatKX+(n�1)L is pseudo-e↵ective. Then so isKT�bD+(n�1)⇠ = �⇤|⇠|(KX+(n�1)L).
We restrict the line bundle to {pt} ⇥ Pn�2 ⇢ D. The divisor �(1 + b)pr⇤2(OPn�2(1)) is
pseudo-e↵ective. As �1 < b < 0, we know that (1+ b)pr⇤2(OPn�2(1)) 2 Pse↵(Pn�2)\{0},
a contradiction. ⇤

Lemma 3.12. Let (X,L) = Cn(P1,OP1(a)) be a generalized cone with a  2 and n � 2.
Then KX + (n� 1)L 2 Pse↵(X).

Proof. We use the same notation as in Lemma 3.11. Using the same computation
as in Lemma 3.11, we have that

(10) KT =  ⇤
|⇠|(KCn(P1,OP1 (a))

) + bD.
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Intersect with P1 ⇥ {pt}. We find that b = �a�2
a
� 0. Hence (X,L) has canonical

singularity.
Suppose by contradiction that KX + (n� 1)L is not pseudo-e↵ective. As ⇢(X) = 1,

Lemma 3.8 implies that �(X,L) = 0 and KX + ⌧L ⇠Q OX and n� 1 < ⌧(L)  n. The
computation in Lemma 3.10 shows that KP1 +OP1(a) = OP1(a� 2) is ample. This is a
contradiction. ⇤

Combining all the precedent results, we have the following:

Theorem 3.13 (=Theorem 1.6). Let X be a variety with canonical Q-factorial sin-
gularities and L a big and nef line bundle on X. Suppose that KX+(n�1)L /2 Pse↵(X).
Then we have one of the following cases:

(1) (X,L) ⇠bir (Pn,OPn(1));
(2) (X,L) is birational equivalent to a (Pn�1,OPn�1(1))-bundle over a smooth curve

C;
(3) (X,L) ⇠bir (Q,OPn+1(1)), where Q ⇢ Qn+1 is a hyperquadric;
(4) (X,L) ⇠bir (P2,OP2(2));
(5) (X,L) ⇠bir Cn(P2,OP2(2)), where Cn(P2,OP2(2)) is a generalised cone over

(P2,OP2(2))

Proof. By Lemma 3.5, there exists a birational equivalence (X,L) ⇠bir (X 0, L0),
where X 0 is a normal projective variety with canonical Q-factorial singularity, KX0 +
(n� 1)L0 /2 Pse↵(X 0) and

(0-i) Either ⌧(L0) is finite;
(0-ii) or there is a Mori fiber space structure � : X 0 ! W and a rational number

⌧ > (n� 1) such that L0 is �-ample and KX0 + ⌧L0 ⇠Q,� 0.

In the first case, we have that r(L0) = 1
⌧(L0) > 0. Hence by Kawamata rationality theorem

there exists an K 0
X
-negative extremal ray R0 = R�0[C0] such that (r(L0)KX0 +L0) ·C0 =

0. Hence L0 · C0 > 0. In the second case, take R0 = R�0[C0] to be the extremal ray
associated to �. Then L0 · C0 > 0.

Applying Lemma 3.8 on (X 0, L0), we get that (X 0, L0) is the one of the following

(1) (X 0, L0) ⇠= (Pn,OPn(1)), and ⌧ = n+ 1;
(2-i) (X 0, L0) is isomorphic to a (Pn�1,OPn�1(1))-bundle over a smooth curve C and

⌧ = n;
(⇤) �(X 0, L0) = 0, KX0 + ⌧L0 ⌘num OX and n� 1 < ⌧  n.

If we are in case (⇤), apply Lemma 3.9. We have a birational morphism µ : X 0 ! X 00

such that

(a) X 00 has canonical singularities, µ⇤(KX00) = KX00 ;
(b) There exists an ample line bundle L00 on X 00 such that µ⇤(L00) = L0;
(c) �(X 00, L00) = 0 and KX00 + ⌧L00 ⌘num OX00 .

In particular (X 0, L0) ⇠bir (X 00, L00). Now apply Lemma 3.10 to (X 00, L00). We have
that (X 00, L00) is isomorphic to the following pair:

(3) (X 00, L00) ⇠= (Q,OPn+1(1)), where Q ⇢ Qn+1 is a hyperquadric;
(2-ii) (X 00, L00) is a Pn�1-bundle over P1 and L restricted to each fiber is OPn�1(1);
(4) (X 00, L00) ⇠= (P2,OP2(2));



52 3. POLARIZED VARIETIES WITH HIGH NEF VALUE

(5) (X 00, L00) ⇠= Cn(P2,OP2(2)) is a generalised cone over (P2,OP2(2))

Thus we get the list stated in Theorem 3.13 ⇤

3.2. Normal polarized varieties

With the help of canonical modification Theorem 2.25, we can give a classification
theorem for normal polarized varieties with Q-Gorenstein singularities.

Theorem 3.14 (=Theorem 1.7). Let (X,L) be a polarized normal variety of dimen-
sion n. Suppose that KX is Q-Cartier and KX + (n � 1)L /2 Pse↵(X). Then we have
one of the following cases :

(1) (X,L) ⇠= (Pn,OPn(1));
(2.i) (X,L) ⇠= (P(V),OP(V)(1)), where V is a rank n ample vector bundle over a

smooth curve C;
(2.ii) (X,L) ⇠= Cn(P1,OP1(a)) with a � 3, where Cn(P1,OP1(a)) is a generalized

cone;
(3) (X,L) ⇠= (Q,OPn+1(1)), where Q ⇢ Pn+1 is a hyperquadric;
(4) (X,L) ⇠= (P2,OP2(2));
(5) (X,L) ⇠= Cn(P2,OP2(2)), a generalised cone over (P2,OP2(2)).

Proof. Apply Theorem 2.25 to the pair (X, 0). We get the canonical modification
f : X 0 ! X with KX0 being f -ample. We take a further step, applying Lemma 2.23
to get a small Q-factorial modification g : Y ! X 0 of X 0. We denote the composition
g � f by µ. As g is small, we have that KY = g⇤(KX0) is µ-nef. Note that µ|µ�1(Xreg) :

µ�1(Xreg) ! Xreg is an isomorphism. For the canonical sheaves !Y = OY (KY ) and
!X = OX(KX), we know that µ⇤(!Y )|Xreg

⇠= !X |Xreg . Note that µ⇤(!Y ) is torsion-free,
so we have an injection µ⇤(KY ) ⇢ KX . By the projection formula we have an injection

OX(µ⇤(KY + (n� 1)µ⇤L)) ⇢ OX(KX + (n� 1)L).

As KX + (n � 1)L is not pseudo-e↵ective, we know that neither is KY + (n � 1)µ⇤(L).
We set µ⇤(L) := M . As M is nef and big, we know that M 2 Pse↵(Y ). Note that KY

is not pseudo-e↵ective, hence it is not nef.
Let R = R�0[C] be a KY -negative extremal ray, with C ⇢ Y a rational curve. Then

KY · C < 0. As KY is µ-nef, we know that C is not contracted by µ. Hence µ(C) ⇢ X
has dimension 1. Since L is ample, we have that M · C = deg(C/µ(C))L · µ(C) > 0.
Thus for any KY -negative extremal ray R, we have that M ·R > 0. Lemma 3.5 implies
that r(M) > 0 and ⌧(M) > n� 1. By Lemma 3.8 applied to (Y,M), we have one of the
following cases:

(i) (Y,M) ⇠= (Pn,OPn(1)), and ⌧ = n+ 1, or
(ii) (Y,M) is isomorphic to a (Pn�1,OPn�1(1))-bundle over a smooth curve C and

⌧ = n, or
(iii) �(Y,M) = 0, KY + ⌧M ⇠Q OY and n� 1 < ⌧  n.

In case (i), we have a birational morphism µ : Pn ! X with µ⇤(L) = OPn(1). We
have that NE(Pn/X) = 0 since both L and OPn(1) are ample. By Lemma 2.16, the
morphism µ is an isomorphism. We have case (1) in Theorem 3.14.
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In case (ii), we have a birational morphism µ : P(V)! X, such that KP(V) is µ-nef.
We denote by ⇠ the pull-back OP(V)(1) = µ⇤(L). We know that ⇠ is nef and big.

We first note that ⇠ is ample if and only if µ is an isomorphism. In fact, if µ is an
isomorphism, then ⇠ is ample. Conversely, if ⇠ is ample, we have that NE(P(V)/X) = 0
and by Lemma 2.16 µ is an isomorphism. In this case, we have that

KP(V) + (n� 1)⇠ = ⇡⇤(KC + detV)� ⇠

is not pseudo-e↵ective. In fact, the general fiber f is from a covering family and we have
that KP(V) + (n � 1)⇠|f = Of (�1). Theorem 2.13 implies that KP(V) + (n � 1)⇠ is not
pseudo-e↵ective. Thus we get (2,i).

Now suppose that ⇠ is not ample. Then µ is not an ismorphism. We have the
following diagram:

(P(V), ⇠)
⇡

✏✏

µ // (X,L)

C

.

We know that ⇢(P(V)) = 2. As µ 6= ⇡, we have that

NE(P(V)) = NE(⇡) + NE(µ).

We denote a general fiber of ⇡ by f . By [Ful11, Page 450], we know that NE(P(V))
has as extremal rays R�0⇠n�2f and R�0(⇠n�1 + ⌫(n�1)⇠n�2f) for some ⌫(n�1) 2 Q.
Note that P1 = ⇠n�2f is contracted by ⇡. Hence NE(⇡) = R�0⇠n�2f . We have that
KP(V) = ⇡⇤(KC+det(V))�n⇠. HenceKP(V)·⇠n�2f = �n. Thus ⇡ is the Mori contraction

associated to the extremal ray R�0⇠n�2f . As NE(µ) is an extremal ray, we know that µ
is an extremal contraction and Lemma 2.19 implies that µ is either small or divisorial.

If µ is small, we have thatKP(V) = µ⇤(KX). As ⇢(X) = 1, we have thatKX ⌘num mL
for some m 2 Q. Hence KP(V) ⌘num m⇠. We have that

m = m⇠ · ⇠n�2f = KP(V) · ⇠n�2f = �n.

Thus we get that KX+nL⌘numOX . By Theorem 1.2, we have that (X,L) ⇠= (Q,OQ(1))
where Q ⇢ Pn+1 is a hyperquadric. Hence we are in case (3) of Theorem 3.14.

If µ is divisorial, we denote the exceptional divisor by E = exc(µ). Note that
µ⇤(L) = ⇠ = OV(1) is nef, hence V is nef. We have a unique exact sequence of locally
free sheaves:

0! A! V ! Q! 0

with A is an ample vector bundle and Q is numerically flat. If l ⇢ P(V) is a curve such
that ⇠ · l = 0, then l is containted in P(Q). Thus we have that E ⇢ P(Q). In particular,
rk(Q) = n� 1 and E = P(Q). We denote the bundle morphism by ⇡0 : P(Q)! C. Now
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we compute E|E .
E|E = (KP(Q) �KP(V))|E

= ⇡0⇤(KC + detQ)� (n� 1)⇠|E � (⇡⇤(KC + detV)� n⇠)|E
= ⇡0⇤(detQ� detV) + ⇠|E
= ⇡0⇤(�A) + ⇠|E .

Take a rational curve l that is in the fiber of ⇡0. We have that E · l = E|E · l = 1.
Now write KP(V) = µ⇤(KX) + �E. As ⇢(X) = 1, there exists some m 2 Q such that
KX ⌘num mL. As KX+(n�1)L ⌘num (m+n�1)L /2 Pse↵(X), we have that m+n < 1.
Intersect with l and get

�n = KP(V) · l = (µ⇤(KX) + �E) · l = (m⇠ + �E) · l = m+ �.

Hence � = �m � n > �1 and X has klt singularities. A ⇡0-fiber is isomorphic to
Pn�2 and is mapped isomorphically onto its image by µ. Hence each non-trivial µ-
fiber has dimension 1. As X has klt singularities, a fortiori (X, 0) is dlt. Applying
[HM07, Corollary 1.5-(1)] to the birational morphism µ, each µ-fiber is rationally chain
connected. Hence a non trivial fiber has P1 as its normalization. We have thus a finite
map ⇡0|P1 : P1 ! C. Thus C = P1 and V = OP1(a)�O�(n�1)

P1 .

Consider the morphism  : P(OP1(a) � O�(n�1)
P1 ) ! Cn(P1,OP1(a)). We know

that  does not contract the extremal ray NE(⇡). Hence NE( ) = NE(µ) and by
Lemma 2.16 we have X = Cn(P1,OP1(a)). As L and the restriction of OP(H0(P1,OP1 (a)))

to Cn(P1,OP1(a)) agree outside a subscheme of codimension at least 2, we have that
(X,L) = Cn(P1,OP1(a)). As KX + (n � 1)L /2 Pse↵(X), Lemma 3.12 implies a � 3.
Now Lemma 3.11 shows that for all a � 3, we have that KX + (n� 1)L /2 Pse↵(X) and
X is klt. Thus we get (2,ii)

If we are in case (iii), apply Lemma 3.9 to (Y,M). We have a crepant resolution
⌫ : Y ! Ycan with an ample divisor A on Ycan such that ⌫⇤(A) = M , the �-genus
satisfies �(Ycan, A) = 0 and KYcan + ⌧A ⌘num OYcan . By Lemma 3.10, the polarized
variety (Ycan, A) is isomorphic to one of the following:

(a) (Q,OPn+1(1)), where Q ⇢ Qn+1 is a hyperquadric;
(b) a Pn�1-bundle over P1 and L restricted to each fiber is OPn�1(1);
(c) (P2,OP2(2));
(d) a generalised cone Cn(P2,OP2(2)) over (P2,OP2(2)).

Case (b) is a special case of (ii) treated above. In case (a),(c) and (d), we have the
following diagram

(Y,M)
µ //

⌫

✏✏

(X,L)

(Ycan, A)

h

99

where h is a birational map a priori not necessarily defined on all Ycan. We now show
that h is indeed an isomorphism and h⇤(L) = A. Let C ⇢ Y be a curve. We have that

⌫⇤(A) · C = M · C = µ⇤(L) · C.
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As A and L are both ample, we have that NE(µ) = NE(⌫). Lemma 2.16 implies that h
is an isomorphism. As h⇤(L) agrees with A outside a subscheme of codimension at least
2, we have that h⇤(L) = A. Hence we get case (3), (4), (5) in Theorem 3.14. ⇤

Using similar methods, we can classify log pairs (X,D) with D a prime Weil divisor.
First let us recall:

Definition 3.15. Let n > 0 be a integer. A hyperquadric Q in the projective space
Pn = Proj(C[x0, x1, . . . , xn]) is a subscheme whose ideal sheaf has the form OPn(�D)
where D = div(s) for some s 2 H0(Pn,OPn(2)). As H0(Pn,OPn(2)) is canonically
isomorphic to (C[x0, x1, . . . , xn])2, we can write s =

P
0in,0jn

aijxixj with aij 2 C.
We define rk(Q) the rank of the hyperquadric Q to be the rank of the matrix A + At,
where Aij = aij . If s0 is another section of H0(Pn,OPn(2)) such that OPn(�div(s0)) =
OPn(�D), then there exists a unique r 2 C \ 0 such that rs = s0. Hence the rank of Q
is well defined.

We have the following classification.

Theorem 3.16. Let (X,D) be a log canonical pair, D ⇢ X a prime divisor, dim(X) =
n. Suppose that L is an ample line bundle on X and (KX +D) + (n� 1)L /2 Pse↵(X).
Then (X,D,L) is one of the following:

(1) (X,L) ⇠= (Pn,OPn(1)) and D is a hyperplane in Pn;
(2.i) There is a (Pn�1,OPn�1(1))-bundle (P(E),OP(E)(1)) over a smooth curve C,

and a birational morphism µ : P(E) ! X such that µ⇤(L) ⇠= OP(E)(1) and
D ⇠= µ(Pn�1) is the image of a general fiber of ⇡ by µ and Pn�1 ! D has
degree 1;

(2.ii) (X,L) = (P(OP1(a) � OP1(1)),OP(OP1 (a)�OP1 (1))
(1)) with a > 1 and D is the

unique section of P(OP1(a)�OP1(1))! P1 such that

D ⌘num OP(OP1 (a)�OP1 (1))
(1))� af,

where f is a general fiber;
(3.i) (X,L) ⇠= (Q,OPn+1(1)), where Q ⇢ Pn+1 is a rk(Q) = 3 hyperquadric and

D ⇠= Pn�1 is a hyperplane in Q with D⌘num
1
2OQ(1);

(3.ii) (X,L) ⇠= (Q,OPn+1(1)), where Q ⇢ Pn+1 is a rk(Q) = 4 hyperquadric. If we

write Q = Proj

✓
C[x0, . . . , xn+1]

(x0x1 � x2x3)

◆
, then D is the cone with vertex Pn�3 over

P1 ⇥ pt or pt⇥ P1. In particular, D ⇠= Pn�1.

Proof. As in the proof of Theorem 3.14, we apply Theorem 2.25 then Lemma 2.23
to the normal variety X. We get a birational morphism µ : Y ! X such that Y has
Q-factorial canonical singuarities, the canonical class KY is µ-nef and µ is isomorphic
over the regular locus of X. We set D0 = µ�1

⇤ (D). If we denote by !Y = OY (KY ) and
by !X = OX(KX) the canonical sheaves, we know that

µ⇤(!Y ⌦OY (D
0))|Xreg

⇠= (!X ⌦OX(D))|Xreg

Note µ⇤(!Y ⌦ OY (D0)) is torsion-free, so we have an injection µ⇤(!Y ⌦ OY (D0)) ⇢
!X ⌦OX(D). Tensoring with µ⇤(L⌦n�1), we have an injection
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µ⇤(!Y ⌦OY (D0)⌦ µ⇤(L⌦n�1)) ⇢ !X ⌦OX(D)⌦ L⌦n�1.

As (KX +D)+(n�1)L is not pseudo-e↵ective, neither is (KY +D0)+(n�1)µ⇤(L). We
set µ⇤(L) =: M . As D0 is e↵ective, the divisor KY + (n� 1)M is not pseudo-e↵ective.

We note that as KY is µ-nef and M = µ⇤(L), for any KY -negative extremal ray R,
we have that M ·R > 0. Hence we may argue as in Theorem 3.14 by applying Lemma 3.8.
We thus get:

(a) Either (Y,M) ⇠= (Pn,OPn(1)) and ⌧ = n+ 1, or
(b) (Y,M) is isomorphic to a (Pn�1,OPn�1(1))-bundle over a smooth curve C and

⌧ = n, or
(c) �(Y,M) = 0, KY + ⌧M ⇠Q OY and n� 1 < ⌧  n.

In case (a), µ is an isomorphism. We know that D ⇠ OPn(a) for some a � 1. We have
that KX + (n � 1)L +D = OPn(a � 2). Hence the only possible choice is a = 1 and D
is a hyperplane and we are in case (1) of Theorem 3.16.

In case (b), we have a diagram

(P(V), ⇠)
⇡

✏✏

µ // (X,L)

C

where ⇠ = OP(V)(1) and KP(V) is µ-nef. As ⌧(⇠) = n, we know that KP(V) + n⇠ =
⇡⇤(KC + det(V)) is nef.

First we assume that µ is an isomorphism. In this case V is ample. Let F = Pn�1

be a general fiber of ⇡. Suppose that D|F = OF (d) with d � 0. We have the following
equality

(KP(V) +D + (n� 1)⇠)|F = (⇡⇤(KC + det(V)) +D � ⇠)|F = OF (d� 1).

If d = 0, then D is one of the general fiber. In fact, if for a general fiber F , we have
that D \ F 6= ; and D * F , there exists a curve l ⇢ F \ D such that l \ D 6= ;. We
have that D · l > 0, a contradiction. Let l be a rational curve in F . We have that
(KP(V)+D+(n� 1)⇠) · l = �1. Since F is a member of a covering family, Theorem 2.13
implies that KP(V) + (n � 1)⇠ + F is not pseudo-e↵ective. We thus are in case (2) of
Theorem 3.16.

If d > 0, by Lemma 3.17, we have that n = dim(P(V)) = 2. We first show that
C = P1. The non pseudo-e↵ective divisor in question KX +D + (n� 1)L thus becomes
KP(V)+D+⇠. We have that (KP(V)+D+⇠)|F = OF (d�1) which is nef. As KP(V)+D+⇠
is not nef, there exists an extremal ray R0 which is not generated by the fiber of ⇡, such
that (KP(V) +D + ⇠) · R0 < 0. In particular, we have that R0 is (KP(V) +D)-negative.
By Theorem 2.17-(4) we know that R0 = R�0[l] for a rational curve l. Note that l maps
finitely onto C. Hence C ⇠= P1.

Lemma 3.18 implies that (X,D,L) is either in cases (2.i), (2.ii) of Theorem 3.16 or
(X,L) is a hyperquadric of rank 4, which will be dealt in the following case (c1).

Assume, from now on, that µ is not an isomorphism. We know that

NE(P(V)) = NE(µ) + NE(⇡),
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and ⇡ contracts the extremal ray R�0⇠n�2f . The birational morphism µ is either small
or divisorial.

If µ is small, by construction, we have that KP(V) + D0 = µ⇤(KX + D). Let F
be a general fiber of ⇡. We have that D0|F = OF (d) for some d � 0. As KX + D
is Q-Cartier and ⇢(X) = 1, we have that KX + D⌘nummL for some m 2 Q. Hence
KP(V) +D0⌘num µ⇤mL. Intersect with ⇠n�2f . We get that �n + d = m. Hence KX +
D+(n� 1)L ⌘num (d� 1)L. Thus we have that d = 0 and D0 ⇠ F . As D0 = µ�1

⇤ (D) by
definition, we get that D0 ! D has degree 1. We are thus in case (2.i) of Theorem 3.16.

If µ is divisorial, we denote the exceptional divisor by E = exc(µ). [KM98, Propo-
sition 3.36.] implies that X is Q-factorial. In particular KX is Q-Cartier. We have a
unique exact sequence of locally free sheaves:

0! A! V ! Q! 0

with A is an ample vector bundle and Q is numerically flat. And we know that E = P(Q)
and E · ⇠n�2f = 1. Let F be a general fiber of ⇡. There exists a d � 0 such that
D0|F = OF (d) . As KX +D is Q-Cartier and ⇢(X) = 1, there exists an m 2 Q such that
KX +D ⌘num mL. Then KX +D + (n � 1)L ⌘num (m + n � 1)L /2 Pse↵(X). Hence
m+ n < 1. We now have that

KP(V) +D0 = µ⇤(KX +D) + �E.

Intersect both sides with ⇠n�2f . We get that �n + d = m + �. Since �(m + n) > �1,
we have that � � �1 + d. Now we claim that d = 0. Suppose that by contrary d � 1.
Recall that (KP(V) + D0 + (n � 1)⇠)|F = OF (d � 1). As KP(V) + D0 + (n � 1)⇠ is not
nef, we know that NE(µ) is an (KP(V) +D0)-negative extremal ray. By Theorem 2.17-

(iii), there is a rational curve l whose class [l] is in NE(µ). As l maps finitely onto C,
we know that C ⇠= P1. Hence (X,L) = Cn(P1,OP1(a)). We have by assumption that
KX + (n� 1)L /2 Pse↵(X). Hence Lemma 3.12 implies that a � 3. Lemma 3.11 implies

that KX ⌘num (�n +
a� 2

a
)L. Suppose that D ⌘num m2L for some m2 2 Q+. For

P1 ⇢ F mapped isomorphic to its image, we have that m2 = m2⇠ · P1 = µ⇤(D) · P1 =

D ·µ(P1) 2 N. Hence m2 � 1 and KX +D+(n�1)L = (
a� 2

a
+(m2�1))L 2 Pse↵(X),

a contradiction. This proves the claim. As D0 = µ�1
⇤ (D) by definition, we get that

D0 ! D has degree 1. Thus D ⇠= µ(Pn�1) is the image of a general fiber of ⇡ and we are
in case (2.i) of Theorem 3.16.

If we are in case (c), apply Lemma 3.9 to (Y,M). We have a crepant resolution
⌫ : Y ! Ycan with an ample divisor A on Ycan such that ⌫⇤(A) = M , �(Ycan, A) = 0 and
KYcan + ⌧A⌘num 0. By Lemma 3.10, we have one of the following:

(c1) (Ycan, A) ⇠= (Q,OPn+1(1)), where Q ⇢ Qn+1 is a hyperquadric;
(c2) (Ycan, A) is a Pn�1-bundle over P1 and the restriction of A to each fiber is

OPn�1(1);
(c3) (Ycan, A) ⇠= (P2,OP2(2));
(c4) (Ycan, A) ⇠= Cn(P2,OP2(2)) is a generalised cone over (P2,OP2(2)).

We have the following diagram
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(Y,M)
µ //

⌫

✏✏

(X,L)

(Ycan, A)

h

99

where h is an isomorphism and µ⇤(L) = M = ⌫⇤(A), with (Ycan, A) being one of the
above four pairs.

In case (c1), after an automorphism of Pn+1 = Proj(C[x0, ...xn+1]), the hyperquadric
Q is given by the homogeneous ideal Ir = (

P
0ir

x2
i
) ⇢ C[x0, ...xn+1] for some r � 2.

By [Har77, Exercise II.6.5], the class group Cl(Q) of Q is the following:

• When r = 2, the divisor 1
2 [OQ(1)] is an integral divisor and Cl(Q) = Z· 12 [OQ(1)].

Hence D is numerically equivalent to a hyperplane Pn�1 in Q and KX + (n �
1)L + D = �1

2OQ(1) is not pseudo-e↵ective. We are thus in case (3.i) of
Theorem 3.16.

• When r = 3, there is an isomorphism Cl(Q) ⇠= Z � Z. Note that here we can
write

Q = Proj

✓
C[x0, . . . , xn+1]

(x0x1 � x2x3)

◆
,

which is a cone of vertex Pn�3 = {x1 = x2 = x3 = 0} ⇢ Pn+1 with base P1 ⇥
P1 ⇢ P3 = {x4 = · · · = xn+1 = 0} ⇢ Pn+1 (cf. [Har77, Exercise I.5.12.(d)]). If
we consider the inclusions P3 ⇢ P4 ⇢ · · · ⇢ Pn ⇢ Pn+1, then Q is also obtained
by taking projective cone in the sense of [Har77, Exercise I.2.10] of P1⇥P1 ⇢ P3

successively. By [Har77, Exercise II.6.3.(a)], we know that Cl(P1⇥P1) ⇠= Cl(Q).
For a hyperplan H ⇢ Pn+1, H \Q has type (1, 1). The cone over P1 ⇥ pt has
type (1, 0) and the cone over pt⇥ P1 has type (0, 1). Thus D has type (1, 0) or
type (0, 1). We are thus in case (3.ii) of Theorem 3.16.

• When r � 4, Cl(Q) = Z · [OQ(1)]. Hence D = d[OQ(1)], and KX + (n� 1)L+
D ⌘num OQ(d� 1) is pseudo-e↵ective. Thus this situation is excluded.

Case (c2) is already treated in case (b) and we are in case (2.i) of Theorem 3.16.
In case (c3), the divisor D is linearly equivalent to OP2(1). The divisor KX + (n �

1)L+D is numerically trivial and hence is pseudo-e↵ective, a contradiction. Hence case
(c3) does not happen.

In case (c4), we proceed as in Lemma 3.11. We consider the following diagram

E = P2 ⇥ Pn�3 pr2 //
� _

i

✏✏

Pn�3
� _

✏✏

T = P(O�n�2 �O(2))
 |⇠| //

⇡

✏✏

Cn(P2,O(2)) = X

P2

.

Since T is a projective bundle, by [Ful98, Theorem 3.3.(b)] we have that

Cl(T ) = Z[⇡⇤(OP2(1))]� Z[⇠].
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On the other hand, since E = exc( |⇠|) is contracted, the morphism ( |⇠|)⇤ : Cl(T ) !
Cl(X) is surjective and rk(Cl(X)) = 1. We have that  ⇤

|⇠|(L) = ⇠. Thus ( |⇠|)⇤([⇠]) =

[L] 6= 0. To determine Cl(X), one just need to know the image ( |⇠|)⇤⇡
⇤([OP2(1)]). Let

H be a Weil divisor on T such that OT (H) = ⇡⇤(OP2(1)). For example, we can take H
to be ⇡�1(l) where l ⇢ P2 is a linear subspace. Then it’s easy to see that H 6= E. Set
G := ( |⇠|)⇤H. As L is ample, we know that [L] 6= 0 in Cl(X) ⌦ Q. Take m 2 Q such
that [G] = m[L] in Cl(X)⌦Q. We have that

(11)  ⇤
|⇠|(G) ⇠Q ( |⇠|)

�1
⇤ (G) + aE,

with ( |⇠|)
�1
⇤ (G) = H. By the canonical bundle formula, we have

KT = ⇡⇤(OP2(�1))� (n� 1)⇠ and

KE = pr⇤1(OP2(�2))� (n� 2)⇠|E .
Hence we have

OE(E) = pr⇤1(OP2(�2))⌦ pr⇤2(OPn�3(1)).

Let C1 = P1 ⇥ {pt} ⇢ E. Then E · C1 = �2. We intersect both sides of Equation (11)
with C1. As ( |⇠|)⇤(C1) = 0, by the projection formual ( |⇠|)

⇤(G) ·C1 = 0. By applying
the projection formula to the morphism ⇡|H : H ! P2, we get that H · C1 = 1. Hence
a = 1

2 . Thus we have

(12) m[⇠] = ⇡⇤[OP2(1)] +
1

2
E.

Let F = Pn�2 be a fibre of ⇡ such that F \ E 6= ;. Then E \ F = Pn�3 ⇢ Pn�2 = F .
Take C2 = P1 ⇢ F and intersect both side of Equation (12) with C2. We have that
⇠ · C2 = 1 and ⇡⇤[OP2(1)] · C2 = 0 and E · C2 = 1. Thus we get that m = 1

2 . Hence
we know the Cl(X) ⌦ Q = Q · 1

2 [L]. Suppose [( |⇠|)
�1
⇤ (D)] = m1⇡⇤[(OP2(1))] + m2[⇠]

with m1, m2 natural numbers. We have D = ( |⇠|)⇤( |⇠|)
�1
⇤ D ⇠Q (

m1

2
+m2)L. Being a

generalized cone, X is Q-factorial. For Q-Cartier divisor KX we have

KX = ( |⇠|)⇤(KT ) = ( |⇠|)⇤(⇡
⇤(O(�1))� (n� 1)⇠) = �(n� 1

2
)[L].

Now KX + D + (n � 1)L ⌘num (
m1 � 1

2
+ m2)L is pseudo-e↵ective. We thus exclude

case (c4).
⇤

Lemma 3.17. Let (X,D) = (P(V), D) be a log canonical pair, where ⇡ : P(V) ! C is
a projective bundle over a smooth curve C and V is an ample vector bunlde of rank n.
If for a general fiber F , we have that D|F = OF (d) for some d > 0. Then dim(X) =
dim(P(V) = 2.

Proof. We have that

(KP(V) +D + (n� 1)⇠)|F = (⇡⇤(KC + det(V)) +D � ⇠)|F = OF (d� 1).

We take a thrifty dlt modification for (P(V), D) as in [Kol13, Corollary 1.36.], i.e., a
proper birational morphism f : P(V)dlt ! P(V) with a boundary divisor �dlt such that:
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(1) (P(V)dlt,�dlt) has dlt singularities;
(2) f⇤(KP(V) +D) ⇠Q KP(V)dlt +�dlt;

(3) KP(V)dlt +�dlt is f -nef;

(4) P(V)dlt is Q-factorial.

Thus we have that

P(V)dlt f // P(V) ⇡ // C .

We set g = ⇡ � f and ⇠0 = f⇤⇠. Then we have that

f⇤(KP(V) +D + (n� 1)⇠) ⌘num KP(V)dlt +�dlt + (n� 1)⇠0.

As f is surjective, we have that f⇤ preserves numerical equivalence. By the projection
formula we have that

f⇤(KP(V)dlt +�dlt +(n� 1)⇠0) ⌘num f⇤f⇤(KP(V) +D+(n� 1)⇠) = KP(V) +D+(n� 1)⇠.

Hence KP(V)dlt +�dlt+(n� 1)⇠0 cannot be pseudo-e↵ective. So there exists an extremal

ray R of NE(P(V)dlt) such that

(KP(V)dlt +�dlt + (n� 1)⇠0) ·R < 0.

For 0 < ✏⌧ 1, we have that

(13) (KP(V)dlt + (1� ✏)�dlt + (n� 1)⇠0) ·R < 0.

We note that ⇠0 · R = f⇤(L) · R > 0, for otherwise any curve l such that [l] 2 R is
contracted by f , which means (KP(V)dlt +�dlt) · R � 0, a contradiction. Hence R is in

fact a (KP(V)dlt +�dlt)-negative extremal ray.

By Theorem 2.17-(3) we get the contraction morphism contR : P(V)dlt ! Y which
contracts the ray R. Let S ⇢ P(V)dlt be a fiber of contR. If dim(S) � 2, there exists
a curve l ⇢ S that is contracted to a point by g. As KP(V)dlt + �dlt is f -nef, the

KP(V)dlt + �dlt-negative curve l can not be contracted to a point by f . Hence l maps
finitely onto a curve l0 ⇢ F . Now we have that

(KP(V)dlt +�dlt + (n� 1)⇠0) · l = (f⇤(KP(V) +D + (n� 1)⇠)) · l
= deg(l/l0)(KP(V) +D + (n� 1)⇠) · l
= deg(l/l0)OF (d� 1) · l0

� 0,

a contradiction. Hence any fiber of contR has dimension at most 1. Let E ⇢ exc(contR)
be an irreducible component of the exceptional locus of contR. We thus have that

dim(E)� dim(contR(E))  1.

We know that for 0 < ✏⌧ 1, the pair (P(V)dlt, (1� ✏)�dlt) has klt singularities (cf.
[KM98, Proposition 2.41.]). For su�cietly small ✏, the divisor �(KP(V)dlt + (1� ✏)�dlt)
is still contR-ample. The estimate of the length of extremal ray [Deb01, Theorem 7.46.]
for klt pairs shows that the rational curves l 2 R cover E and there exists a rational
curve l✏ 2 R such that
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0 < �(KP(V)dlt + (1� ✏)�dlt) · l✏  2.

For any curve l whose class [l] is in R, we have that ⇠0 · l � 1. Combining these two
inequalities with Equation (13), we have that

0 > (KP(V)dlt + (1� ✏)�dlt + (n� 1)⇠0) · l✏ � �2 + (n� 1).

Hence n = 2. ⇤
Lemma 3.18. Let V be a rank 2 ample vector bundle over P1. Set (X,L) := (P(V),OP(V)(1)).
Suppose that D is a prime Weil divisor on X and KX +D + L is not pseudo-e↵ective.
Then we have one of the following:

(1) Either D ⇠= P1 is a fiber of the stucture map ⇡ : P(V)! P1; or
(2) (X,L) = (P(OP1(a) � OP1(1)),OP(OP1 (a)�OP1 (1))

(1)) with a > 1 and D is the

unique section of P(OP1(a)�OP1(1))! P1 such that

D ⌘num OP(OP1 (a)�OP1 (1))
(1))� af ,

where f is a general fiber; or
(3) V = OP(1)�OP(1).

Proof. As V is ample, we know that V ⇠= OP1(a) � OP1(b) with a, b > 0. We
may suppose that a � b > 0. Set e = a � b � 0. Set W = V ⌦ OP1(�a). We have
that Xe := P(W) ⇠= P(V). We denote by p : P(W) ! P1 the projection. By [Har77,
Lemma II.7.9], we know that (X,L) ⇠= (Xe,OXe(1) ⌦ p⇤(OP1(a))). From now on, we
follow the convention in [Har77, Notation V.2.8.1]. We denote the general fiber of p by
f 0. Note that W satisfies the assumption in [Har77, Propostion 2.8.]. Hence by [Har77,
Propostion 2.8.] there exists a section C0 of p such that OXe(1) ⇠= OXe(C0). [Har77,
Propostion 2.9.] implies C2

0 = �e. Hence if a 6= b, we have that C0 is unique. We know
that L ⌘num C0+af 0 and [Har77, Lemma 2.10.] implies that KXe ⇠ �2C0+(�2� e)f 0.
Assume that D ⇠ xC0 + d0f 0, with x, d0 being integers. We have that

KX + L+D⌘num(x� 1)C0 + (d0 + b� 2)f 0.

As D is a prime divisor, [Har77, Corollary V.2.18-(b)] implies one of the following:

i x = 0, d0 = 1, and KX + L+D ⌘num �C0 + (b� 1)f 0 /2 Pse↵(X);
ii x = 1, d0 = 0 and KX + L+D ⌘num (b� 2)f 0, which is not pseudo-e↵ective i↵

b = 1;
iii x > 0, d0 > xe. Note d0 + b � 2 � 0. so we have that KX + L + D, being a

positive combination of e↵ective divisors, is pseudo-e↵ective;
iv e > 0, x > 0, and d0 = xe. Again d0 + b� 2 � 0. So we have that KX + L+D,

being a positive combination of e↵ective divisors, is pseudo-e↵ective.

In case (i), the divisor D is a fiber of p, which maps isomorphically to a fiber of
⇡ under the canonical isomorphism P(W) ⇠= P(V). Hence we are again in case (1) of
Lemma 3.18.

In case (ii), if a > b = 1, as D is irreducible, [Har77, Proposition V.2.20-(a)] implies
that D = C0. Hence D is the unique section of ⇡ : P(OP1(a)�OP1(1)) ! P1 such that
D ⌘num ⇠ � ⇡⇤(OP1(a)). Hence we are in case (2) of Lemma 3.18. If a = b = 1, then
(X,L) ⇠= (P1 ⇥ P1, (1, 1)) which is a rank 4 hyperquadric in P3. Thus we are in case (3)
of Lemma 3.18. ⇤
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The proof of Theorem 3.16 can be adapted to the case where the boundary � is not
irreducible.

Corollary 3.19 (=Proposition 1.8). Let (X,�) be a log canonical pair, with � 6= 0 a
reduced divisor. Suppose that L is an ample line bundle on X and (KX+�)+(n�1)L /2
Pse↵(X), where n = dim(X). Then we have one of the following:

(1) (X,L) ⇠= (Pn,OPn(1)), � ⌘num H is a prime divisor where H is a hyperplane
of Pn;

(2.i) There is a (Pn�1,OPn�1(1))-bundle (P(E),OP(E)(1)) over a smooth curve C,
and a birational morphism µ : P(E) ! X such that µ⇤(L) ⇠= OP(E)(1) and
� =

P
Fi is a finite sum where Fi

⇠= µ(Pn�1) are images of distinct general
fibers of ⇡ by µ and for each i, the morphism Pn�1 ! Fi has degree 1;

(2.ii) (X,L) = (P(OP1(a) � OP1(1)),OP(OP1 (a)�OP1 (1))
(1)) with a > 1 and � = D is

irreducible, where D is the unique section of P(OP1(a)�OP1(1))! P1 such that
D ⌘num OP(OP1 (a)�OP1 (1))

(1))� af , where f is a general fiber;

(3.i) (X,L) ⇠= (Q,OPn+1(1)), where Q ⇢ Pn+1 is a rk(Q) = 3 hyperquadric, the

boundary divisor � is a hyperplane in Q and [�] =
1

2
[H \ Q] where H is a

hyperplane in Pn+1;
(3.ii) (X,L) ⇠= (Q,OPn+1(1)), where Q ⇢ Pn+1 is a rk(Q) = 4 hyperquadirc. If we

write Q = Proj

✓
C[x0, . . . , xn+1]

(x0x1 � x2x3)

◆
, then � = D is prime and D is the cone

with vertex Pn�3 over P1 ⇥ pt or pt⇥ P1. In particular, D ⇠= Pn�1;

Proof. Let D be a component of �.
First we suppose that X is Q-factorial. The pair (X,D) satisfies the assumptions of

Theorem 3.16. Hence we have a classification for (X,D,L). If we are in case (2.i) of
Theorem 3.16 for (X,D), for a general fiber F , we cannot have another D0 such that
D0|F = OF (d) with d � 1. Hence all the components will be fibers. We are thus in case
(2.i) of Corollary 3.19. If we are in case (2.ii) of Theorem 3.16 for (X,D), the divisor
D is the unique section such that D⌘numOP(OP1 (a)�OP1 (1))

(1))� af . Thus we have that
� = D is irreducible. And we are in case (2.ii) of Corollary 3.19. If we are in case (1)
or (3) of Theorem 3.16 for (X,D), we cannot add another prime divisor. Hence � = D
and we are in case (1) or (3) of Corollary 3.19.

In general, the proof is identical to Theorem 3.16 by adjusting our argument for
(X,D) to (X,�). We apply Theorem 2.25 and Lemma 2.23 to the normal variety X. We
get a birational morphism µ : Y ! X such that Y has Q-factorial canonical singularities,
KY is µ-nef and µ is isomorphic over regular points of X. We set �0 = µ�1

⇤ (�). Then
�0 is reduced. Let !Y = OY (KY ) and !X = OX(KX) be the canonical sheaves. We
have an injection

µ⇤(!Y ⌦OY (�0)⌦ µ⇤(L⌦n�1)) ⇢ !X ⌦OX(�)⌦ L⌦n�1.

As (KX +�)+(n�1)L is not pseudo-e↵ective, neither is (KY +�0)+(n�1)µ⇤(L). We
set µ⇤(L) =: M . As �0 is e↵ective, the divisor KY + (n� 1)M is not pseudo-e↵ective.

By applying Lemma 3.8, we get:

(a) (Y,M) ⇠= (Pn,OPn(1)), and ⌧ = n+ 1;
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(b) (Y,M) is isomorphic to a (Pn�1,OPn�1(1))-bundle over a smooth curve C and
⌧ = n;

(c) �(Y,M) = 0, KY + ⌧M ⇠Q OY and n� 1 < ⌧(M)  n.

If we are in case (a), we know that µ is an isomorphism. The divisor � is given by
OPn(a) for some a � 1. We have that KX + (n � 1)L + D = OPn(a � 2). Hence the
only possible choice is a = 1 and � = D is a hyperplane. We are thus in case (1) of
Corollary 3.19.

If we are in case (b), we have a diagram

(P(V), ⇠)
⇡

✏✏

µ // (X,L)

C

where ⇠ = OP(V)(1) and KP(V) is µ-nef.

• If µ is an isomorphism, then X is Q-factorial, and we are in case (2.i) or case
(2.ii) of Corollary 3.19;

• If µ is small, the variety X cannot be Q-factorial. We have that KP(V) +�0 =
µ⇤(KX +�). Let F be a general fiber of ⇡. The we have that �0|F = OF (d)
for some integer d � 0. As KX +� is Q-Cartier and ⇢(X) = 1, there exists a
rational number m such that KX+� ⌘num mL. Hence KP(V)+�0 ⌘num mµ⇤L.
Intersect with ⇠n�2f and we get that �n+ d = m. The divisor KX +�+ (n�
1)L ⌘num (d� 1)L is not pseudo-e↵ective. Hence d = 0. If we write �0 =

P
D0

i

with D0
i
distinct prime divisors. We have that D0

i
|F = OF (0). Thus the Di’s

are distinct general fibers. We get that Di = µ(D0i0) and we are in case (2.i) of
Corollary 3.19.

• If µ is divisorial, then X is again Q-factorial (cf. [KM98, Corollary 3.18]) and
we are in case (2.i) of Corollary 3.19.

If we are in case (c), apply Lemma 3.9 to (Y,M). We have a crepant resolution
⌫ : Y ! Ycan with an ample divisor A on Ycan such that ⌫⇤(A) = M , the �-genus
�(Ycan, A) = 0 and KYcan + ⌧A ⌘num OYcan . By Lemma 3.10, we have one of the
following cases:

(c1) (Ycan, A) ⇠= (Q,OPn+1(1)), where Q ⇢ Qn+1 is a hyperquadric;
(c2) (Ycan, A) is a Pn�1-bundle over P1 and the restriction of L to each fiber is

OPn�1(1);
(c3) (Ycan, A) ⇠= (P2,O2

P(2));
(c4) (Ycan, A) ⇠= Cn(P2,O2

P(2)) is a generalised cone over (P2,O2
P(2)).

We have the following diagram

(Y,M)
µ //

⌫

✏✏

(X,L)

(Ycan, A)

h

99
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such that h is an isomorphism and µ⇤(L) = M = ⌫⇤(A) with (Ycan, A) being one of the
above four pairs. The case (c2) is treated in case (b). If we are in (c1), (c3), (c4), we have
that X is Q-factorial and (X,�, L) is classified in the beginning of the proof. Hence we
get the list as in Corollary 3.19. ⇤

3.3. Semi-log canonical polarized varieties

Let X be a demi-normal variety. Let ⇡ : X̄ ! X be its normalization. We have that
the conductor divisors D̄ ⇢ X̄ and D ⇢ X are reduced. The pair (X̄, D̄) is log canonical
when X is semi-log canonical (Definition 2.32). Suppose now that we have an ample
line bundle L on X. We may consider using the classification results Corollary 3.19 for
(X̄, D̄,⇡⇤(L)) to get a classification for (X,L)

We now state the following:

Proposition 3.20 (=Theorem 1.9). Let X be a non-normal slc projective variety of
dimension n and L an ample line bundle over X. Suppose that KX+(n�1)L /2 Pse↵(X).
Let ⇡ : X̄ ! X be the normalization of X and D ⇢ X, D̄ ⇢ X̄ the conductors. Then
we have:

There is a nodal curve C 0, a rank n-vector bundle E0, distinct fibers F1, F2, . . . , Fm

of P(E0) and a birational morphism µ : P(E0)! X such that

• µ⇤(L) = OP(E0)(1) and
• D =

P
1im

µ(Fi)

Proof. We know by definition that (X̄, D̄) is log canonical. Note that the absolute
normalization ⇡ : X̄ ! X is finite (cf. [Sta22, Tag 0BXR]). Hence ⇡⇤(L) is ample. We
have by Equation (3) that

⇡⇤(KX + (n� 1)L) = K
X̄
+ D̄ + (n� 1)⇡⇤(L).

Let C ⇢ X be a movable curve in X such that (KX + (n � 1)L) · C < 0. Let C 0 ⇢ X̄
be a movable curve that dominates C. Then by the projection formula (K

X̄
+ D̄+ (n�

1)⇡⇤(L)) · C 0 = deg(C 0/C)(KX + (n � 1)) · C < 0. Hence by Theorem 2.13, the divisor
K

X̄
+ D̄ + (n� 1)⇡⇤(L) is not pseudo-e↵ective.
Note that D and D̄ are reduced, and if we denote by D̄⌫ , D⌫ respectively their

normalizations, then ⇡ induces a degree 2 map ⌫ : D̄⌫ ! D⌫ and there is a Galois
involution ⌧ : D̄⌫ ! D̄⌫ which is generically fixed point free (cf. [Kol13, 5.2]). Thus we
have the following diagram

D̄⌫
⌧ 77

⌫

✏✏

// D̄

✏✏

// X̄

⇡

✏✏
D⌫ // D // X

.

Since ⌫ : D̄⌫ ! D⌫ has degree 2, we have by the projection formula that

⇡⇤(L)|n�1
D̄⌫ = deg(⌫) · (L|n�1

D⌫ ) 2 2Z.

We now apply Corollary 3.19 to (X̄, D̄,⇡⇤(L)). We have one of the following:

(1) (X̄,⇡⇤L) ⇠= (Pn,OPn(1)), D̄ = H is a prime divisor where H is a hyperplane of
Pn;

https://stacks.math.columbia.edu/tag/0BXR
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(2.i) There is a (Pn�1,OPn�1(1))-bundle (P(E),OP(E)(1)) over a smooth curve C,
and a birational morphism µ : P(E) ! X̄ such that µ⇤(⇡⇤L) ⇠= OP(E)(1) and
D̄ =

P
Fi is a finite sum where Fi

⇠= µ(Pn�1) are images of distinct general
fibers by µ and deg(Pn�1/Fi) = 1 ;

(2.ii) (X̄,⇡⇤L) = (P(OP1(a) �OP1(1)),OP(OP1 (a)�OP1 (1))
(1)) with a > 1 and D̄ = C,

where C is the unique section of P(OP1(a) � OP1(1)) ! P1 such that C ⌘num

OP(OP1 (a)�OP1 (1))
(1))� af , where f is a general fiber;

(3.i) (X̄,⇡⇤L) ⇠= (Q,OPn+1(1)), where Q ⇢ Pn+1 is a rk(Q) = 3 hyperquadric, the

divisor D̄ is a hyperplane in Q and [D̄] =
1

2
[H \Q] where H is a hyperplane in

Pn+1;
(3.ii) (X̄,⇡⇤L) ⇠= (Q,OPn+1(1)), where Q ⇢ Pn+1 is a rk(Q) = 4 hyperquadirc. If

we write Q = Proj

✓
C[x0, . . . , xn+1]

(x0x1 � x2x3)

◆
, then D̄ is prime and D̄ is the cone with

vertex Pn�3 over P1 ⇥ pt or pt⇥ P1. In particular, D̄ ⇠= Pn�1;

In case (1), we have that D̄⌫ = D̄ ⇠= Pn�1 is smooth and ⇡⇤(L)|
D̄⌫ = OPn�1(1). As

⇡⇤(L)|n�1
D̄⌫ = 1 is odd. We exclude case (1).

In case (2.i), we have that D̄ =
P

1ik
Fi for k a natural number and the mor-

phism µ :
`

1ik
Pn�1 ! D̄ factors through D̄⌫ ! D̄ [Sta22, Tag 035Q]-(4). Hence

⇡⇤(L)|n�1
D̄⌫ = k and k is even. As deg(Pn�1/Fi) = 1, we have that

⇡⇤(L)|n�1
Fi

= deg(Pn�1/Fi)(OP(E)(1)|Pn�1)n�1 = 1.

Thus each irreducible component of D has pre-image consisting of two of the Fi’s. We
have thus the diagram

P(E)
µ //

p

✏✏

X̄
⇡ // X

C

.

Set k = 2m. We write D =
P

1im
Di. We denote the two components of D̄ that

are mapped onto Di by Fi,1 and Fi2 . Let xi,1 (resp. xi,2) be the point of C such that
µ(p�1(xi,1)) = Fi,1 (resp. µ(p�1(xi,2)) = Fi,2). As C is smooth, we may glue xi,1 and
xi,2. We thus get a nodal curve C 0 together with a quotient morphism q : C ! C 0 such
that there exists a rank n vector bundle E0 on C 0 satisfying q⇤(E0) = E. The morphism
⇡ � µ thus factors through P(E), i.e. we have the following commutative diagram:

P(E)
µ //

✏✏

X̄

⇡

✏✏
P(E0)

µ
0
// X

.

The morphism µ0 is birational. If we denote xi = p(xi,1) and Fi the fiber of xi in P(E0),
we have that Di = µ0(Fi). Thus we have the result of Proposition 3.20.

In case (2.ii), we have that ⇡⇤(L) · C = a� e = 1. Hence we exclude this case.

https://stacks.math.columbia.edu/tag/035Q
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In case (3.i), D̄ is irreducible and ⇡⇤(L)|n�1
D̄n = 1. Hence we also exclude this case.

In case (3.ii), D̄ ⇠= Pn�1 and ⇡⇤(L)|
D̄
= OPn�1(1) which is not divisible by 2. Hence

we exclude this case, too. ⇤



Part 2

Fundamental group of Kähler orbifolds

with nef anti-canonical bundle





CHAPTER 4

Introduction

When studying compact Kähler manifolds, we want to understand their topology.
In particular, we expect to know what is the fundamental group of a compact Kähler
manifold under some geometric assumptions. For a compact Kähler manifold X whose
anti-canonical bundle has certain positivity, it turns out that the fundamental group
⇡1(X) of X is quite small.

In [Kob61], Kobayashi proved the following

Theorem 4.1 ([Kob61, Theorem A]). A compact Kähler manifold X with positive
definitive Ricci tensor is simply connected.

Kobayashi’s proof is straightforward. First apply Myer’s theorem (cf. [GHL04, 3.85])
to get that the universal covering ⇡ : X̃ ! X is a k-fold covering with k 2 N. Then note,
by Kodaira’s vanishing theorem, that the Eular characteristics �(OX) = �(O

X̃
) = 1.

As ⇡ is a k-fold covering, we have that �(X̃) = k�(X). Hence k = 1 and X is simply
connected.

By Aubin-Yau’s theorem (Theorem 5.15), we know that for a compact Kähler man-
ifold X, its first Chern class c1(X) = c1(�KX) can be represented by 1

2⇡Ricci! for some
Kähler form ! on X. Hence we may reformulate Theorem 4.1 as

Theorem 4.2. A compact Fano manifold is simply connected.

When a compact Kähler manifold X has first Chern class c1(X) = 0, we have the
following Beauville-Bogomolov decomposition theorem.

Theorem 4.3 ([Bea83, Théorème 1]). Let X be a compact Kähler manifold with
c1(X) = 0. We have the following

• Let X̃ ! X be the universal cover of X. Then we can write X̃ as a product

X̃ ' Ck ⇥
Q

i
Yi ⇥

Q
j
Sj

where Yi’s are irreducible Calabi-Yau manifolds and Sj’s are irreducible hy-
perkähler manifolds. The product is unique up to re-ordering.

• There exists a finite cover X 0 ! X such that X 0 can be written as a product

X 0 ' T ⇥
Q

i
Yi ⇥

Q
j
Sj

where T is a complex torus.

We write separately the direct result of the previous theorem.

Corollary 4.4. Let X be a compact Kähler manifold with zero first Chern class. Then
the fundamental group ⇡1(X) of X is virtually Abelian.

69
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From the point of view of cones of line bundles, we know that the closure of ample
cone Amp(X) is the nef cone Nef(X). Hence we expect some restrictions on ⇡1(X) when
�KX is nef. In [Pău97], Mihai Păun proved the following result

Theorem 4.5 ([Pău97, Theorem 1]). Let (X,!) be a compact Kähler manifold whose
anti-canonical bundle �KX nef. Then its fundamental group ⇡1(X) is virtually nilpotent.

A key material in the proof of Theorem 4.5 is the following geometric Margulis lemma
by Cheeger-Colding.

Lemma 4.6 ([CC96, Theorem 8.7.]). Let n > 0 be a natural number. There exists a
universal constant C = C(n) depending only on n such that the following holds:

For any compact manifold M of dimension n and Ricg � �(n� 1)g, the morphism
induced by the inclusion

⇡1(Bg(p, r), p)! ⇡1(M,p)

has virtually nilpotent image for any r < C(n).

Păun proved Theorem 4.5 by using Aubin-Yau theorem to construct a specific metric
! on X, such that

(1) Ricci! � �(2 dimC(X)� 1)! and
(2) there exists a positive r0 < C(2 dimC(X)) such that B!(p, r0) = X.

Then he applied Lemma 4.6 directly.
The proof of Theorem 4.2, Theorem 4.3 and Theorem 4.5 use tools from di↵erential

geometry. On the other hand, when given a Kähler manifold X, we naturally consider its
Albanese morphism AlbX : X ! A(X) (see Definition 2.33). Set Y := AlbX(X) ⇢ A(X)
the image of X in A(X) and r : Ỹ ! Y a smooth model of Y . Frédéric Campana shows
how one could describe the central series of ⇡1(X) by the central series of ⇡1(Ỹ ) in
[Cam95, Théorème 2.2]. In particular, one observes that for a compact Kähler manifold
X whose fundamental group ⇡1(X) has polynomial growth, if AlbX is surjective, we
have that ⇡1(X) is virtually Abelian.

When a Kähler manifold X is projective, it had been shown that AlbX is surjective
(cf. [Zha96, Theorem 1]) at the time when Păun proved Theorem 4.5. Later, it was
proven by Junyan Cao that AlbX : X ! A(X) is a fiberation provided X projective and
�KX nef ([Cao19, Theorem 1.2]). The Kähler case is due to Păun:

Proposition 4.7 ([Pău17, Theorem 1.7]). Let X be a compact Kähler manifold whose
anti-canonical bundle �KX is nef. Then the Albanese morphism

AlbX : X ! A(X)

is surjective.

Combined with Theorem 4.5, we have:

Theorem 4.8 (cf. [Pău97, Theorem 2]). Let X be a compact Kähler manifold
whose anti-canonical bundle �KX is nef. Then the fundamental group ⇡1(X) is vir-
tually Abelian.

The heavy use of tools in di↵erential geometry in the proofs of the various results
considering fundamental groups indicates that we may consider the problems of funda-
mental groups of Kähler spaces with singularities where the tools in di↵erential geometry
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can still be applied. A very good candidate is the similar problem for Kähler orbifolds,
i.e., Kähler spaces with quotient singularities.

An orbifold is a geometric object whose local model is Cn/G where G is a finite
subgroup of Aut(Cn). As a natural generalization of manifolds, since its introduction by
Satake in 1956 ([Sat56]), many results in di↵erential geometry of manifolds have been
generalized to orbifold case by adapting existing proofs for manifold case.

Theorem 4.2 and Corollary 4.4 has been generalized in the following form.

Theorem 4.9 ([CC14, Theorem 4.2.]). Let X = (X,�) be a compact Kähler orbifold
(see Definition 5.37) with non-negative first Chern class c1(X ). Then ⇡orb1 (X ) is virtually
Abelian. More precisely,

• If c1(X ) > 0, then ⇡orb1 (X ) is finite;
• If c1(X ) = 0, then ⇡orb1 (X ) is virtually Abelian of even rank bounded by 2 dim(X).

We mention that there are even more general results for wilder singularities. A re-
cent work by S.Matsumura and J.Wang gives a decomposition theorem ([MW21, Corol-
lary 1.2]) for projective klt pair (X,�) with �(KX + �) nef which can be viewed as
a generalization of Theorem 4.3. L.Braun have a deep results showing that for a klt
pair (X,�) with �(KX + �) nef and big, if � has standard coe�cients, then its fun-
damental group ⇡1(X,�) is finite ([Bra21, Theorem 2]), which is the best result of the
generalizations of Theorem 4.2 by far.

In this part of the thesis, we will adapt Păun’s arguments in [Pău97] to orbifold case
and generalize his results Theorem 4.5 and Theorem 4.8 to Kähler orbifolds. We prove
the following

Theorem 4.10 (=Theorem 8.13, Main Theorem). Let (X ,!) be a compact Kähler
orbifold. If the anti-canonical bundle K�1

X is nef, then ⇡orb1 (X ) is virtually nilpotent.

Theorem 4.11 (=Theorem 9.1). Let (X,�) be a projective orbifold pair with �(KX+
�) nef. The orbifold fundamental group ⇡1(X,�) is virtually Abelian.

Plan of Part 2. This part is organized as the following. In Chapter 5, we give the
necessary materials. In Chapter 6, we examine the metric space structure and Bishop-
Gromov theorem (Theorem 6.22) on Riemannian orbifold. In Chapter 7, we use a result
in [BGT12] to show a version of orbifold Margulis lemma (Lemma 7.12). In Chapter 8,
we adapt Păun’s argument by using Lemma 7.12 to show Theorem 4.10. In Chapter 9,
we use the pair model for orbifolds to apply the Albanese morphism argument as in the
smooth case to obtain Theorem 4.11.





CHAPTER 5

Preliminaries

5.1. Conventions

In Part 2, we deal with complex spaces instead of schemes over C. We use the
standard notions as in [GR84]. The conventions that we summarize here are parallel to
Section 2.1.

• A complex model space is a ringed space (V (I),OD/I), where D ⇢ Cn is an
open connected subset and I ⇢ OD is an ideal sheaf of finite type.

• A complex space is a locally ringed space (X,OX) over C such that for each
point x 2 X, there exists an open subset Ux 3 x and (Ux,OUx) is isomorphic as
locally ringed space over C to a complex model space. A complex manifold of
dimension n 2 N is a complex space which is locally isomorphic to the complex
model space Cn at every point.

• A morphism between two complex space X and Y is a morphism between X
and Y considered as locally ringed space over C.

• We say X is reduced (resp. normal) is for all x 2 X the local ring OX,x is
reduced (resp. normal). For a reduced complex space X, there is a canoni-
cal monomorphism OX ,! CX , where CX is the sheaf of germs of continuous
functions valued in C over X.

• Let X and Y be two reduced complex spaces. Then f induces a morphism
f ] : CY ! f⇤CX by CY 3 s 7! s � f 2 CX , which gives a morphism (f, f ]) :
(X, CX) ! (Y, CY ) between locally ringed space over C. We f is holomorphic
if f ](OY ) ⇢ im(f⇤OX ! f⇤CX). In this case (f, f ]) : (X,OX) ! (Y,OY ) is a
morphism between complex spaces.

• Let X be a reduced complex space. A prime divisor D of X is an irreducible
analytic subspace of codimension 1. A Weil-divisor is a formal linear combina-
tion

F =
X

aiDi

where ai 2 Z and Di is a prime divisor and the sum is required to be locally
finite. We denote by Weil(X) the group of Weil-divisors of a reduced complex
space X.

• Let X be a reduced complex space. We denote by Div(X) = �(X,M⇤
X
/O⇤

X
)

the group of Cartier divisors of X and set Div(X)Q := Div(X)⌦Z Q.
• Let X be a normal complex space. We say a Q-divisor D of X is Q-Cartier, if
there exists an integer m such that mD 2Weil(X) and OX(mD) is invertible.
For two Q-Cartier divisors D1 and D2, we say that D1 and D2 are Q-linearly
equivalent, if D1 �D2 is a Q-combination of principal divisors and we denote

73
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it by D1 ⇠Q D2; we say that D1 and D2 are numerically equivalent if for any
irreducible curve C ⇢ X, we have that D1 · C = D2 · C and we denote this by
D1⌘numD2.

• We will use Serre’s ”GAGA principle” [Ser56] and its refinements [Gro03, Ex-
posé XII] in the thesis.

5.2. Metric spaces

In this subsection, we recall basic notions in metric geometry. We follow [BH99,
Chapter I.1, Chapter I.3]

Definition 5.1. Let (X, d) be a metric space.

• A path is a continous map from a compact interval [a, b] ⇢ R to X;
• Let c : [a, b]! X be a path, the length l(c) of c is defined as

l(c) := sup{
X

1in

d(c(ti�1), c(ti))},

where the supremum is taken over all partitions a = t0  t1  · · ·  tn�1 
tn = b for [a, b]. When l(c) <1, we say that c is rectifiable;

• A geodesic is a map c : I ! X where I ⇢ R is an interval, such that for any t,
t0 2 I, we have that d(c(t), c(t0)) = |t� t0|;

• We say (X, d) is a geodesic space or geodesically convex, if for any x, y 2 X, we
could find a geodesic c joining x and y;

• A local geodesic is a map c : I ! X where I ⇢ R is an interval, such that for any
t, there exists ✏ > 0 such that for all |t0� t|, we have that d(c(t), c(t0)) = |t� t0|

For any metric space (X, d), we may associate a new metric di called the inner
metric.

Definition 5.2. Let (X, d) be a metric space. For any x, y 2 X, we define di(x, y) by

di(x, y) = inf l(c)

where the infimum is taken over all rectifiable path c : [a, b]! X such that c(a) = x and
c(b) = y. We set di(x, y) to be 1 if no such path exists. We call di : X ⇥X ! [0,1]
the inner metric of d.

We have the basic results:

Proposition 5.3 ([BH99, Proposition 3.2.]). Let (X, d) be a metric space. Let di be the
inner metric of d. Then

(1) (X, di) is a metric space, and di � d;
(2) For any rectifiable path c in (X, d), we have that c is also a path in (X, di) and

its length with respect to di equals to its length with respect to d;
(3) We may consider the inner metric (di)i of di. Then (di)i = di.

Definition 5.4. Let (X, d) be a metric space. We call (X, d) a length space, if we have
d = di.

We end this section by recall the Hopf-Rinow theorem.



5.3. DIFFERENTIAL GEOMETRY 75

Theorem 5.5 ([BH99, Proposition 3.7.]). Let (X, d) be a length space. If X is
complete and locally compact, then

(1) every closed bounded subset of X is compact, and
(2) X is a geodesic space.

In practice, to show that any two points of a compact metric space (X, d) can be
joined by a geodesic, we can try to prove that (X, d) is a length space.

5.3. Di↵erential geometry

In this subsection, we also consider real manifold. For basic notions on Riemannian
geometry, the general references are [GHL04][Pet16][Sak96].

Definition 5.6. Let (M, g) be a (real) Riemannian manifold and r its Levi-Civita
connection.

(1) The curvature tensor R of (M, g) is a (3, 1)-tensor given by

R(X,Y )Z = rXrY Z �rYrXZ �r[X,Y ]Z,

whereX,Y, Z are local vector fields. We may also use R to denote the associated
(4, 0)-tensor i.e.

R(X,Y, Z,W ) = g(R(X,Y )Z,W )

(2) We define the Ricci curvature by contracting R:

Ricg(v, w) = tr(x 7! R(x, v)w)

For any piece-wise C1 curve � : I = [a, b] ! M , there is a length associated to g.
We denote it by

lg(c) :=

Z
b

a

p
g(c0(t), c0(t))dt.

With this length function lg, for any connected Riemannian manifold (M, g), we define
a metric dg by

dg(x, y) := inf lg(�),

where the infimum is taken over all piece-wise C1 curves that join x and y. For a piece-
wise C1 curve � : I = [a, b] ! M , regarding it as a path as in Definition 5.1, we may
define its length ldg(c) as in Definition 5.1. We see easily that ldg(c)  lg(c).

Definition 5.7. Let (M, g) be a Riemmanian manifold. A geodesic with respect to g is
a smooth curve c : [a, b]!M such that

c⇤(r) d
dt
ċ(t) = 0,

for all t 2 (a, b).

The definition is a little confusing with Definition 5.1. However we have:

Proposition 5.8 ([GHL04, 2.91, 2.92]). Let (M, g) be a connected Riemannian manifold
and dg the associated metric. Then

(1) The topology induced by dg coincides with the topology of M ;
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(2) Let m0 2 M . There exists a neighborhood U of m0 and ✏ > 0 such that for
any p, q 2 U , there exists a unique geodesic with respect to g, whose image is
contained in U , joining p and q and Lg(c) = dg(p, q) < ✏.

The first consequence is the following:

Lemma 5.9. Let (M, g) be a Riemannian manifold and dg the associated metric. The
metric space (M,dg) is a length space.

Proof. Let di be the inner metric of dg. Then di(x, y) = inf ldg(c) where c is a
rectifiable path that joins x and y. By Proposition 5.8, we know that these path are
exactly continuous curves in M . Then di(x, y)  ldg(c)  lg(c) for any piece-wise C1-
curve that joins x and y. Hence di(x, y)  inf lg(c) = dg(x, y). ⇤

Suppose that c is a geodesic with respect to g. Then

d

dt
g(ċ(t), ċ(t)) = 2g(c⇤(r) d

dt
ċ(t), ċ(t)) = 0

shows that we can always reparametrize c such that lg(c|[t1,t2]) = |t1 � t2|. Then a
compactness argument with Proposition 5.8 shows that c is a local geodesic in (M,dg).
Hence we can always say ”Let c be a local geodesic in the Riemannian manifold (M, g)”
without ambiguity.

Definition 5.10 ([GHL04, 2.84-2.88]). Let (M, g) be a Riemannian manifold. Let
p 2 M and v 2 TpM . There exists a unique local geodesic cv : I ! M such that
c(0) = p and ċ(0) = v. There exists an open 0 2 U ⇢ TpM such that for any w 2 U
there exists ✏ > 0 such that cw is defined on (0� ✏, 1+ ✏). We define the exponential map
expp : U ! M by w 7! cw(1). The exponential map is smooth and is a di↵eomorphism
around 0 2 TpM .

5.4. Kähler geometry

We recall some elements of Kähler geometry. The reference for this section is
[Dem12][Huy05][Voi02].

Definition 5.11. Let X be a complex manifold. A Kähler form is a closed real (1, 1)-
form !. A Kähler manifold (X,!) is a complex manifold together with a Kähler form.

Remark 5.12. We will sometimes call a complex manifold X Kähler if it admits a
Kähler form. This abuse of language is a common practice among complex geometrists.

For a Kähler manifold (X,!), we can get the associated Riemannian metric g by
g(x, y) = !(x, Jy), where J : TX ! TX is the almost complex structure of X and
x, y 2 TX are real tangent vectors. Let r be the Levi-Civita connection of g. We have
that rJ = 0. Conversely, given a Hermitian manifold (X, g), the associated (1, 1)-form
!(x, y) := g(Jx, y) is Kähler if rJ = 0 (cf. [Huy05, Proposition 4.8.A]).

Definition 5.13. Let (X,!) be a Kähler manifold and g its associated Riemannian
metric. We define the Ricci form to be

Ricci!(x, y) := Ricg(Jx, y).



5.5. CLASSICAL ORBIFOLDS 77

Locally, taking a holomorphic coordinate (z1, z2, . . . , zn), we can write

! = gij̄dz
i ^ dz̄j ,

g = gij̄dz
i ⌦ dz̄j .

Here we use the Einstein convention.

Lemma 5.14 (cf. [Szé14, Lemma 1.22]). Let (X,!) be a Kähler manifold. Let (z1, z2, . . . , zn)
be a holomorphic coordinate and write Ricg = Rij̄dz

i ⌦ dz̄j. Then we have that

Rij̄ = �@i@j̄ log det(gpq̄).

In particular, we get that

Ricci! = �
p
�1@@ log det(gpq̄).

We finally state the celebrated Aubin-Yau theorem. We will use its orbifold version
in the thesis. The statement here is for cultural reasons.

Theorem 5.15 ([Aub78, Théorème 3][Yau78, Theorem 1]). Let (X,!) be a compact
Kähler manifold. For any smooth function f on X and real number � � 0. The equation

(MA) logM(�) = ��+ f

where M(�) =
(! +

p
�1@@̄�)n
!n

is the Monge-Ampère operator, has a unique admissible

solution if � > 0 and has a unique admissible solution up to a constant if � = 0.

We remark that the case � > 0 is proven by T. Aubin and � = 0 is proven by S.-T.
Yau. The latter has a much harder C0-estimates.

5.5. Classical Orbifolds

In this section, we only deal with e↵ective orbifolds. The general reference are
the original papers and lecture notes by Satake [Sat56][Sat57] and Thurston [Thu79,
Chapter 13].

Definition 5.16 (cf. [Sat56, 2.Definition]). Let X be a topological space. Fix n � 0.

(1) An n-dimensional real orbifold chart on X is a triple consisting of an open subset
Ũ ⇢ Rn, a finite subgroup G of Aut(Ũ) and a homeomorphism � : Ũ/G ! U ,
where U is an open subset of X.

(2) Suppose that U ⇢ V are two open subsets of X. A chart embedding � :
(Ũ , G,�)! (Ṽ , H, ) is a smooth embedding � : Ũ ! Ṽ such that  � � = �

(3) An orbifold atlas on X is a family U = {(Ũ , G,�)} of orbifold charts such that
(a) {U = �(Ũ)} covers X; and
(b) for any x 2 X covered by U and V , there exists a third orbifold chart

(W̃ ,K, µ) with x 2 W and two chart embedding (W̃ ,K, µ) ! (Ũ , G,�)
and (W̃ ,K, µ)! (Ṽ , H, ).

(4) An atlas V is said to refine U if every chart of V embeds into some chart of U .
Two atlas are said to be equivalent if they have a common refinement.

(5) One could proceed with open subsets in Cn to form analytic charts and atlases.
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Note that we don’t need that the fixed points of the group G has codimension at
least 2, as imposed by Satake. We refer to [MP97, Appendix] for details.

Definition 5.17 ([ALR07, Definition 1.2.]). A real (resp. complex) e↵ective orbifold X
of dimension n is a collection of the following data:

(i) A topological space X which is Hausdor↵ and second countable;
(ii) An equivalence class [U ] of real (resp. complex) n-dimensional orbifold atlas.

We often use |X | to denote the underlying topological space.

Definition 5.18. Let X be an orbifold and x 2 |X | a point. Let (Ũ , G,�) be a chart
around x and x̃ a pre-image of x by �. We define the local group at x by

Gx := {g 2 G : g · x̃ = x̃}.
Note that Gx is only defined up to conjugacy.

Definition 5.19. For an e↵ective orbifold X = (X,U) , we define its singular locus by

Xsing := {x 2 X : Gx 6= 1}.
We set Xreg := X�Xsing. It is an open subset of X and the orbifold structure restricted
to Xreg makes Xreg a manifold.

Remark 5.20. It’s possible to define ine↵ective orbifolds via atlas, however we have to
require more compatibility conditions (i.e. descent). See [PST16, Definition 4.10].

Definition 5.21. Let X = (X, [U ]) be an orbifold. We say that X is compact or X is a
compact orbifold, if X is compact.

The following notion is due to T. Satake.

Definition 5.22 ([Sat56, 4][ALR07, Definition 1.3.]). A smooth (resp. holomorphic)
map f between to orbifolds X = (X,U) and Y = (Y,V) is a continuous map f : X ! Y
on the underlying spaces, such that the following local lifting property is satisfied:
For any x 2 X if we denote y = f(x), there exists a chart (Ũ , G,�) for x and a chart
(Ṽ , H, ) for y and a smooth (resp. holomorphic) map f̃ : Ũ ! Ṽ such that the following
diagram commutes

Ũ
f̃ //

✏✏

Ṽ

✏✏
U

f // V

.

We call f̃ a local lifting of f .

We will see later that for a complex orbifold X we can associate an (analytic) klt pair
(X,�). However the corresponding morphism are in general not smooth in the sense
of smooth morphism between complex spaces. Regretfully, the name and definition are
widely used.

Example 5.23 (Frame Bundle). Let X = (X,U) be a real orbifold of dimension n. By
a partition of unity argument, we can construct for each atlas (Ũi, Gi) a Riemmanian
metric gi such that if � : (Ũi, Gi) ! (Ũj , Gj) is an chart embedding. then �⇤(gj) = gi.
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We fix such a family {gi} (cf. Definition 6.1). In particular, on each chart (Ũi, Gi, Ui),
we have a metric gi,x̃ on Tx̃Ũi.

Fix a chart (Ũi0 , Gi0 , Ui0). In this paragraph we only deal with this chart. Hence we
drop the index for the simplicity of notation. For each x̃ 2 Ũ , we define the frame Fx̃ to
be

Fx̃ := {p 2 HomR(Rn, Tx̃Ũ) : p is an isometry between Rn and (Tx̃Ũ , gx̃) }.
Here the metric on Rn is the standard one. The frame bundle over Ũ is defined to be

Fr(Ũ) :=
`

x̃2Ũ Fx̃,

together with the natural projection p : Fr(Ũ) ! Ũ . It’s not hard to see that p can be
locally trivialized as V ⇥O(n,R). Hence p : Fr(Ũ)! Ũ is a fiber bundle. The compact
Lie group O(n,R) acts from right on Fr(Ũ) by (p.A)(v) := p(Av), where p 2 Fx̃ and
v 2 Rn. Hence p : Fr(Ũ)! Ũ is a right O(n,R)-bundle. The group G acts from left on
Fr(Ũ) by ↵.(x̃, p) := (↵ · x̃, Tx̃↵ �p). Note that the actions of G and O(n,Rn) commutes:

↵.((x̃, p).A) = (↵.(x̃, p)).A.

As G acts faithfully on Ũ , it acts freely on Fr(Ũ). The quotient G\Fr(Ũ) is a manifold
sitting in the following diagram

Fr(Ũ)

✏✏

p // Ũ

✏✏

G\Fr(Ũ) // G\Ũ = U

.

The O(n,R)-action on Fr(Ũ) induces an O(n,R)-action on G\Fr(Ũ). Let [x̃, p] be a
class in G\Fr(Ũ). We have that [x̃, p]A = [x̃, p.A]. Let x be the image of x̃ under
the map Ũ ! U . Then the isotropy group of O(n,R) at [x̃, p] is Gx. We have that
G\Fr(Ũ)/O(n,R) is isomorphic to U .

Let (Ũi1 , Gi1 , Ui1) be a second chart. We denote it by (Ṽ , H, V ). Suppose that
we have an chart embedding � : Ṽ ! Ũ . The embedding � induces a unique group
monomorphism �⇤ : H ! G such that � is �⇤-equivariant. From the above construction,
we see that � induces a O(n,R)-bundle morphism Fr(�) : Fr(Ṽ ) ! Fr(Ũ) which is
�⇤-equivariant. Thus we get a commutative diagram:

Fr(Ũ)
p //

✏✏

Ũ

✏✏

Fr(Ṽ )

Fr(�) ??
p //

✏✏

Ṽ

�
??

G\Fr(Ũ) // U

G\Fr(Ṽ ) //

??

V

??

.

By gluing up all the Gi\FrŨi ! Ui, we get a manifold together with a smooth map
p : Fr(X )! X , called the frame bundle of X .

5.5.1. Covering maps of orbifolds. In this section we recall Thurston’s definition
covering map of and its basic properties. The references here are [Thu79, Chapter 13]
[Cho04] and [Cho12, Chapter 4].
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Definition 5.24 ([Thu79, Definition 13.2.2.]). A smooth map p : X ! Y between two
orbifolds X and Y is called an orbifold covering map, if for any y 2 Y , there exists an
orbifold chart (Ṽ , G, ) such that each component Ui of p�1(V ) has (Ṽ , Gi,�i) as a chart
for some subgroup Gi of G and p is lifted with respect to this chart as identity, i.e., we
have the following commutative diagram

(Ṽ , Gi)
id //

✏✏

(Ṽ , G)

✏✏
Ui

p // V

.

We call such a neighborhood V an elementary neighborhood with respect to p at y.

Proposition 5.25 ([Cho04, Proposition 6]). Let p : X ! Y be a covering map and
p 2 Y . Let (Ṽ , G) be a chart at y. If Ṽ is simply connected then V = Ṽ /G is an
elementary neighborhood with respect to y.

The above proposition gives the following corollary:

Corollary 5.26. Let p : X ! Y be a covering map and p 2 Y . The elementary
neighborhoods at y with respect to p form a basis of the topology of Y at y.

Definition 5.27. Let X be a connected orbifold, x 2 Xreg. We call a covering map
p : (X̃ , x̃) ! (X , x) a universal covering if |X̃ | is connected and for any covering q :
(Y, y)! (X , x) there exists a unique smooth map f : (X̃ , x̃)! (Ỹ , y) such that p = q�f .

The following theorem is due to Thurston.

Theorem 5.28 ([Thu79, Proposition 13.2.4.], cf. also [Cho04, Proposition 8]). For
any orbifold X , its universal cover exists and is unique up to an isomorphism.

Definition 5.29 ([Thu79, Proposition 13.2.5.]). Let p : X̃ ! X be the universal covering
of X . The orbifold fundamental group ⇡orb1 (X ) is defined to be Aut(p).

The following proposition is an analogue for the Galois correspondence in the theory
of covering spaces for topological spaces.

Proposition 5.30 ([Cho04, Corollary 2]). Let X be an orbifold and p : X̃ ! X be the
universal covering of X .

(1) The orbifold fundamental group ⇡orb1 (X ) acts by automorphisms on X̃ . For any
x 2 Xreg, set Fx := p�1(x) ⇢ X̃reg. Then ⇡orb1 (X ) acts freely and transitively
on Fx.

(2) There is a one-one correspondence between the isomorphism classes of orbifold
coverings of X and the conjugacy classes of subgroups of ⇡orb1 (X ).

We conclude this section by the following lemma.

Lemma 5.31. Let p : Y ! X be an orbifold covering map between two n-dimensional
real orbifolds. Then there exists an O(n,R)-equivariant covering map Fr(p) : Fr(Y) !
Fr(X ), such that the following diagram commutes:
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Fr(Y)
Fr(p)

//

✏✏

Fr(X )

✏✏
Y p // X

.

Proof. Let (Ũ , G, U) be an elementary neighborhood with respect to p. Let V be
a component of p�1(U). Then we have a subgroup H ⇢ G and a chart (Ũ ,H, V ) of Y
such that

(Ũ ,H)
id //

✏✏

(Ũ , G)

✏✏
V

p // U

.

It is then immediate that the O(n,R)-equivariant mapH\Fr(Ũ)! G\Fr(Ũ) is a covering
map between manifolds and it fits in the commutative diagram

H\Fr(Ũ)
Fr(p)

//

✏✏

G\Fr(Ũ)

✏✏
V

p // U

.

Thus we only need to show that the local constructions glue together. Let U 0 ⇢ U be
an elementary neighborhood with respect to p contained in U and V 0 ⇢ V a component
of p�1(U 0) contained in V . Suppose that the charts for V 0 and U 0 are (Ũ 0, H 0, V 0)
and (Ũ 0, H 0, U 0). If we have charts embeddings ⇢ : (Ũ 0, H 0, V 0) ! (Ũ ,H, V ) and � :
(Ũ 0, H 0, U 0)! (Ũ , G, U). Then we have the following commutative diagram

G0\Fr(Ũ 0) //

✏✏

G\Fr(Ũ)

✏✏

H 0\Fr(Ũ 0)

77

//

✏✏

H\Fr(Ũ)
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U 0 //U

V 0 //

66

V

77

.

The maps in the upper square do not depend on the choices of embeddings. Now we cover
X by elementary neighborhoods. Then Y is covered by components of the inverse images
of these elementary neighborhoods by p. Let V1, V2 be components of p�1(U1), p�1(U2)
respectively. As elementary neighborhoods form a base of topology, there exists an
elementary neighborhood U3 and a component V3 of U3 such that V3 embeds into V1

and V2, and U3 embeds into U1 and U2. We may thus glue Fr(V1) ! Fr(U1) and
Fr(V2)! Fr(U2) over Fr(V3)! Fr(U3) which ends the proof. ⇤
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5.6. Complex Orbifolds

A good reference on this section is [GK07] and [DM93, Chapter 14].
We begin by recalling Cartan’s quotient theorem.

Definition 5.32 (Holomorphic quotient, cf. [BM19, Definition 3.8.11]). Let M be a
reduced complex space. A holomorphic map ⇡ : M ! N from M to a reduced complex
space N is a holomorphic quotient map if

(1) The morphism ⇡ regarded as a map between topological spaces is a topological
quotient;

(2) For any holomophic map f : M ! N1 which is constant on the fiber of ⇡, the
natural map N ! N1 is holomorphic.

Theorem 5.33 (Cartan’s quotient theorem, cf. [Car54, Théorème 1]). Let X be
a complex manifold. Let G ⇢ Aut(X) be a finite automorphism group of X. Then
there exists a normal complex space structure on the topological quotient X/G such that
⇡ : X ! X/G is a holomorphic quotient.

By the universal property of holomorphic quotient, we know that the complex space
X/G is defined up to a unique isomorphism.

Let X = (X,U) be a complex orbifold of dimension n and (Ũ , G,�) an orbifold chart
of X . By Theorem 5.33, we have a unique normal complex space structure on U such
that � : Ũ ! U is a holomorphic quotient. Note that here U and � is fixed, if we
choose the complex space structure on U to be that OU ⇢ CU , then it is unique rather
than unique up to a unique isomorphism. Let � : (Ṽ , H, ) ! (Ũ , G,�) be a chart
embedding. By Theorem 5.33 again, we know that the inclusion V ,! U makes V an
open sub complex space of U . We can thus equip a unique normal complex structure on
X. The complex dimension of X is n.

Definition 5.34 (cf.[GK07, Section 2]). Let ⇡ : X ! Y be a surjective finite mor-
phism between normal complex spaces. The ramification divisor R(⇡) of ⇡ is defined as
following:

(1) If X and Y are both smooth, let (z1, z2, . . . , zn) and (w1, w2, . . . , wn) be local
coordinates of X and Y respectively. Then R(⇡) is locally given by the equation

det(
@⇡i
@wj

) = 0,

where ⇡i = zi � ⇡.
(2) For general X and Y , set X 0 := ⇡�1(Yreg) \ Xreg and Y 0 := ⇡(X 0). We have

that X 0 is open and codimX(X 0) � 2. Set ⇡0 := ⇡|X0 : X 0 ! Y 0. We define
R(⇡) to be the closure of R(⇡0) in X.

Definition 5.35 (cf.[GK07, Section 2]). Let ⇡ : X ! Y be a surjective finite morphism
between normal complex spaces. We may write its ramification divisor as

R = R(⇡) =
X

rjRj ,

where rj 2 N and Rj ’s are prime divisors. Set Rred :=
P

Ri.
Set Y 00 := Y 0 \ (⇡⇤(R)sing [ ⇡(Rsing)) and X 00 := ⇡�1(Y 00). We have that the com-

plements of X 00 and Y 00 both have codimension � 2. For any x 2 X 00, either x is in



5.6. COMPLEX ORBIFOLDS 83

exactly one component Rj of R and we define the ramification order of ⇡ at x to be
ord⇡(x) := rj + 1; either x /2 Rred and we define the ramification order of ⇡ at x to be
ord⇡(x) = 1.

For a prime divisor D on X, the ramification orders of ⇡ are defined for general
points of D and they are equal, we call this number the ramification order of ⇡ along D
and denote it by ord⇡(D).

Definition 5.36 (Branching divisor for a Galois analytic covering). We call a surjective
finite morphism ⇡ : X ! Y a Galois analytic covering if Gal(⇡) := {f 2 Aut(X)|f �⇡ =
⇡} acts transitively on any fiber ⇡�1(y). Let R(⇡) =

P
rtRt be the ramification divisor.

Suppose that Bi is an irreducible component of ⇡⇤R(⇡). Suppose that Rj and Rk are
two irreducible component of R(⇡) such that ⇡⇤(Rj) = ⇡⇤(Rk) = Bi. Then there exists
an element f 2 Gal(⇡) such that f⇤(Rj) = Rk. One sees easily rj = rk. We may thus
assign a multiplicity

mult⇡(Bi) := 1� 1

rj + 1
= 1� 1

ord⇡(x)

for Bi, where x is a general point in the fiber of ⇡. We define the branching divisor to
be

B :=
X

mult⇡(Bl)Bl,

which is an e↵ective Q-divisor.

For a Galois analytical covering ⇡ : Y ! X, we have the equation of Q-Weil divisors
classes

(14) KY = ⇡⇤(KX +B).

Let X be a complex orbifold with X its underlying normal complex space. Let
� : (Ũ , G,�) ! (Ṽ , H, ) be a chart embedding. We first note that � and  are Galois
analytic coverings. Hence we may define B(�) on U and B( ) on V . It’s also easy to see
that �⇤(R( )) = R(�). Hence by the rule of assigning multiplicities in Definition 5.36,
we have that

B(�)|U = B( ).

Gluing all the (U,B(�)) together, we get a log pair (X,�X). Conversely, we may use
the log pair to encode its orbifold structure.

Definition 5.37 (cf.[CC14, Definition 3.1]). A log pair (X,�) is an orbifold pair if �
is a Q-Weil divisor of the form

� =
X

(1� 1

mi

)Di,

where mi � 2 are integers and (X,�) satisfies the locally uniformizable condition:
there exists finite morphisms �j : Uj ! X such that

(1) �j(Uj) ⇢ X is open and
S
�j(Uj) = X;

(2) �j : Uj ! �j(Uj) is a Galois analytical cover and it’s branching divisor B(�j) =
�|�j(Uj)
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The orbifold pair (X,�) uniquely determines a complex orbifold structure on the
topological space X. From now on, when dealing with complex orbifold, we will use
Definition 5.17 and Definition 5.37 interchangeably.

Let (X,�) be a complex orbifold. We know that X has quotient singularities (that
is X is locally given by U/G for a complex manifold U and a finite group G acting on
U). We have the following

Theorem 5.38 ([KM98, Proposition 5.15]). Let X be a reduced complex space with
quotient singularities only. Then X has rational singularities and X is Q-factorial.

We say that X has rational singularities if for any resolution r : Y ! X , one has
OX = r⇤(OY ) and Rir⇤(OY ) = 0 for any i > 0. Hence by Theorem 2.35, we have an
Albanese morphism AlbX : X ! A(X) defined on all X.

For a log pair (X,�) with standard coe�cients, there is a natural definition of its
fundamental group.

Definition 5.39. Let (X,�) be a klt pair with � =
P

(1 � 1
mi

)Di where mi � 2 are
integers. We define its fundamental group ⇡1(X,�) to be

⇡1(Xreg \ |�|)/N,

where N is the normal group generated by �
mj

j
, with �j a small loop around the com-

ponent Dj with multiplicity 1� 1
mj

of �.

For a complex orbifold X = (X,�), we thus associate, a priori, two fundamental
groups to it. We will show in the next section these two groups are canonically isomor-
phic.

5.7. Orbi-bundles

5.7.1. Orbi-bundles. We will use groupoid theory for orbifolds introduced by Mo-
erdijk and Pronk [MP97] to study the orbi-bundles. We put the basic definitions and
the properties of groupoids in Appendix A. The reader can find in [MP97] [Moe02] and
[ALR07, Chapters 1 and 2] all the technical results.

Recall we defined smooth morphism in Definition 5.22. Though with the name
smooth, we note that smooth map does not behaves well. For example, we don’t know
whether a smooth morphism f : X ! Y induces pullback morphism of di↵erential forms.
And the author does not know if for x 2 |X|, the smooth map f induces a morphism
of local groups Gx ! Gf(x). To overcome this problem, we use the notion of strong
morphism introduced by Moerdijk and Pronk [MP97].

The other motivation to consider orbifolds as groupoids is to describe the universal
covering orbifolds more concretely. Recall that we have defined the orbifold fundamental
groups as Galois groups of deck transformations. It is not immediate that we have
an orbifold Van-Kampen theorem. On the other hand, the quite mild singularities on
orbifolds makes it tempting to realize orbifold fundamental groups by certain ”homotopy
class of loops” as in the case for fundamental groups of topological space. By considering
an orbifold as a groupoid G ,we can use the G-paths and G-homotopies to describe
its orbifold fundamental group. We refer the reader to [BH99, Chapter G] [Cho12,
Chapter 4.7.].
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[MP97] deals with orbifolds by identifying them with certain groupoids and define
the maps between orbifolds to be the ones induced by morphisms between groupoids.

Here is Moerdijk and Pronk’s definition (cf. [MP97, Theorem 4.1.] [ALR07, Defini-
tion 1.48.]) of orbifolds.

Definition 5.40.

(1) An orbifold structure on a paracompact Hausdor↵ space X consists of an orb-
ifold groupoid G and a homeomorphism f : |G|! X. We say that two orbifold
structures f : |G| ! X and g : |H| ! X are equivalent, if there exists an
equivalence of groupoids � : G ! H such that f = g � |�|.

(2) An orbifold X is a space X together with a class of equivalent orbifold structure.
An element f : |G|! X is called a presentation of the orbifold X .

Let (X,G, f : |G| ! X) be an orbifold in the sense of Definition 5.40. Take x 2
X and x̃ 2 G0 one of its pre-image. By Proposition A.8, we have an orbifold chart
(Ux̃, Gx̃) ! f(Ux̃/Gx̃) around x. It’s easy to see that we can get an atlas consisting of
all these charts. Hence we get an orbifold (X,U) in the sense of Definition 5.17. We
call U the orbifold atlas associated to G. If G is Morita equivalent to H, then their
associated atlases are equivalent. In [MP97], Moerdijk and Pronk proved that for any
orbifold (X, Ũ) in the sense of Definition 5.17, we can get a unique (up to equivalence)
groupoid representation of X.

Theorem 5.41 ([MP97, Theorem 4.1.]). Let X = (X,U) be an orbifolds in the sense
of Definition 5.17. There exists up to a Morita equivalence, a unique e↵ective orbifold
groupoid G and a homeomorphism |G| ! X, such that the associated atlas V of G is
equivalent to U .

Thus we may interchange freely both definitions of orbifolds: in terms of atlas or in
terms of groupoid. We now give the defintion of strong maps.

Definition 5.42. Let X ,Y be two orbifolds. A strong map (f, [[F ]]) from X to Y
consists of a continuous map f : |X | ! |Y| and a R-class [F ] of arrows in the category
HS (Definition A.11), satisfying the following conditions:

(1) There are representations G,H of X and Y respectively;
(2) F : X ! Y is a groupoid morphism;
(3) There is a commutative diagram

|G|

✏✏

|F |
// |H|

✏✏
|X | f // |Y|

.

Let X , Y be two orbifolds. From the definition above, we see that the set of strong
maps from X to Y is canonically bijective to HomHS(GX ,GY), for any representations
|GX |! X of X and |GY |! Y of Y.

The first component of a strong map is clearly smooth. From the above definition,
we see that (f, [[F ]]) induces morphisms between local groups. For simplicity, we will
drop the brackets and denote strong maps by (f, F ). We note that an orbifold covering
maps always comes from a strong map.
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Lemma 5.43. Let p : Y ! X be an orbifold covering. There exists a morphism be-
tween groupoids F : GY ! GX representing p, where GY and GX are orbifold groupoids
representing Y and X .

Proof. [MP97, Theorem 4.1.] implies that we have representations GY of Y and GX
of X such that GY is Morita equivalent to O(n,R)nFr(Y) and GX is Morita equivalent to
O(n,R)nFr(X ). Lemma 5.31 implies that we have a Lie groupoid morphism Fr(p) which
induces p on the orbit space. As HomHS(GY ,GX ) is isomorphic to HomHS(O(n,R) n
Fr(Y), O(n,R)n Fr(X )), the class [[Fr(p)]] induces p. ⇤

We finish our comment on strong maps by citing the pathology from [Ler10].

Example 5.44 ([Ler10, Lemma 3.41.]). Let S1 ⇢ C2 be the unit circle considered as
an orbifold groupoid {S1 ◆ S1}. Set U1 := S1 \ +1 and U2 := S1 \ �1. Consider the
quotient groupoid Z/2Zn⇤, where ⇤ is a singleton. There are exactly two distinct strong
maps (fj , Fj), j = 1, 2 from {S1 ◆ S1} to Z/2Z n ⇤. However (f1, F1)|Ui = (f2, F2)|Ui

for i = 1, 2.

We now give our definition of orbi-vector bundles on orbifolds.

Definition 5.45. Let X be an orbifold. A real (resp. complex) vector bundle of rank r
is a strong map p : V ! X together with the following

(1) A representation f : G ! |X | of X ;
(2) A real (resp, complex) left-G-vector bundle E (Definition A.12) on G0;
(3) A homeomorphism g : G n E ! |V|, such that g gives a representation of the

orbifold V and G n E ! G represents p

As in the manifold case, we need another definition for holomorphic orbi-vector
bundles. Our definition of holomorphic bundle is given in Definition 8.4. There is also
other issues on how to define sections, see Remark 8.5. A clean definition is to consider a
complex orbifolds X as a stack fibered in the category of complex manifolds CompMan,
then define a holomorphic vector bundle as a representable map V ! X covered by
V ⇥Ui X ⇠= Cn ⇥ Ui for some cover {Ui ! A} of the atlas A of X . We refer the reader
to [Par20].

Let V ! X be an orbi-vector bundle represented by E = G n E ! G. For a x 2 G0,
we take a neighborhood Ux of x such that GxnUx

⇠= G|Ux as in Proposition A.8. We may
take Ux su�ciently small such that there is a trivialization E|Ux

⇠= Ux ⇥ Fr. Then there
is an isomorphism E|Ux

⇠= Gx n (Ux ⇥ Fr). The actions of Gx fits into a commutative
diagram

Gx ⇥ (Ux ⇥ Fr)

✏✏

// Ux ⇥ Fr

✏✏
Gx ⇥ Ux

// Ux

.

Hence (Ux ⇥ Fr)/Gx and Ux/Gx are orbifold charts of V and X respectively. Note that
for any y 2 Ux/Gx, its fiber |V|y is isomorphic to Fr/G0, where G0 is a subgroup of Gx.

Definition 5.46. Let ⇡ : E ! G0 be a left-G-vector bundle. A G-section of E over U ⇢
G0 is a section s : U ! E of ⇡ such that for any g 2 G1, we have that g · s(x) = s(g · x).
Note that s induces a morphism G|U ! (G n E)|U .
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If the orbi-vector bundle p : V ! X is represented by G n E ! G, we say that
� : U/G ! V is a section of p if � corresponds to a G-section s of E.

Example 5.47. If E and F are left-G-bundles for the topological groupoid G, E ⌦ F ,
^pE, Symn(E), Hom(E,F ) and E_ have natural left-G-bundle structures, and we denote
their associated groupoids by E ⌦ F , ^pE , Symn(E), Hom(E ,F) and E_ respectively.

Example 5.48. Let X be a real orbifold of dimension n and U be its atlas. For each
chart (Ũi, Gi,�i), we associate a Gi-space (T Ũi, Gi), where gi acts on T Ũi by its tangent
associated to its action on Ũi. We identify [vi] 2 T Ũi/Gi and [vj ] 2 T Ũj/Gj if there are
orbifold chart embeddings ⇢i : Ṽ ! Ũi and ⇢j : Ṽ ! Ũj such that T⇢i(vi) = T⇢j(vj).
The topological space {

F
i
Ũi/Gi}/([vi] ⇠ [vj ]) has an orbifold atlas, whose charts are

(T Ũi, Gi). We denote this orbifold by TX . By construction there is a natural projection
TX ! X . If |G|! |X | is a representation of X , then TG := GnTG0 is a representation
of TX and the projection TX ! X is represented by TG ! G.

Hence when considering tangent bundles and cotangent bundles of X , we don’t
distinguish the representation groupoids G used to construct the representation TG of
TX .

We thus define tensors and forms to be the orbi-sections of their corresponding
bundles (cf. Definition 6.9). From the construction of tangent bundle TX of X , we see
that giving a p-form ! over O ⇢ X an open subset of X = |X | is equivalent to find a
cover of O by orbifold charts (Ui, Gi) and Gi-invariant p-forms !i on Ui such that for any
chart embedding � : Ui ! Uj , we have �⇤(!j) = !i. We can say the same for p-tensors.

With this description of forms, we now give the following

Lemma 5.49. Let p : X ! Y be an orbifold covering map. Then p induces a morphism
between local groups and pullbacks for tensors and forms.

Proof. Let ! be a di↵erential form on Y. As elementary neighborhoods with respect
to p form a base of topology, we can consider ! as a family of invariant forms over a
covering by elementary neighborhoods.

Let (Ṽ , H)! V be an elementary neighborhood of Y. For a component U ⇢ p�1(V ),
we have a chart (Ṽ , G) ! U where G is a subgroup of H and f is lifted by id

Ṽ
. If

! is represented by the Hy-invariant form !
Ṽ

on Ṽ , we set the invariant form over

(Ṽ , G)! U to be !
Ṽ ,U

. If [Ṽ 0/H 0] = V 0 ⇢ V is another elementary neighborhood, after

shrinking V 0, we may assume that there exists an chart embedding (Ṽ 0, H 0) ! (Ṽ , H).
Let U 0 ⇢ p�1(V 0) be the component that is contained in U , and (Ṽ 0, G0) ! U 0 be a
chart. For any x 2 U 0, there exists a chart (W̃ ,Gx) ! W such that (W̃ ,Gx) embeds
into both (Ṽ 0, G0) and (Ṽ , G). We may suppose that W̃ ⇢ Ṽ 0 and x̃ 2 W̃ maps to x
such that Gx = {g 2 G0 : gx̃ = x̃}. Set Hx := {h 2 G0 : hx̃ = x̃}. Then Gx = Hx \G0.
Shrink W̃ if necessary. We may assume that W̃ is Hx invariant and simply connected.
Let O be the image of W̃ in V 0. Then O is open and (W̃ ,Hx) ! O is an elementary
chart of Y with respect to p. Now (W̃ ,Hx) embeds into (Ṽ 0, H 0) by construction. From
the construction, we have that

!
Ṽ 0,U 0 |W̃ = !

Ṽ 0 |W̃ = !
Ṽ
|
W̃

= !
Ṽ ,U

|
W̃
.
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This means that if we associate ! to the family {!
Ṽ ,U

}, the family will satisfy the
compatibility condition hence define a form on Y. We denote this form by p⇤(!).

From the construction above, we also see that if ! is represented by !̃ on an ele-
mentary chart (Ṽ , H), then on each component Ui = [Ṽ /Gi], the pullback p⇤(!) is also
represented by !̃. ⇤

5.7.2. Comparison of fundamental groups. For any category C, we can asso-
ciate functorially a topological space BC, its classifying space. When F : C ! C 0 is an
equivalence, the continuous map BF : BC ! BC 0 is an homotopy equivalence [Seg68,
Proposition 2.1.]. If G and H are two Morita equivalent groupoids, then BG and BH
have the same homotopy type. Thus for an orbifold X , we may define its orbifold ho-
motopy group ⇡orbn (X ) to be ⇡n(BG), where G is any groupoid representation of X . We
refer the reader to [ALR07, Section 1.4] for more details. Combining [ALR07, Proposi-
tion 2.17] and [BH99, Corollary III.G.3.19], we know that ⇡1(BG) is isomorphic to the
group ⇡1(X,G) of G-homotopy classes of G-loops defined in [BH99, Definition III.G.3.6.].
[Cho12, Theorem 4.7.4.] implies that ⇡1(X,G) is isomorphic to the fundamental group
defined as deck transformation in Definition 5.29.

If in addition X = (X,�) is a complex orbifold, we have another fundamental
group ⇡1(X,�) as in Definition 5.39. It is well-known among experts that ⇡1(X,�) is
isomorphic to the above three groups. As we can not find a reference, we give a proof
communicated to us by P.Eyssidieux [Eys].

Proposition 5.50. Let X = (X,�) be a complex orbifold. There exists a canonical
isomorphism

⇡orb1 (X ) ⇠= ⇡1(X,�)

Proof. We consider the frame bundle Fr(X ) ! X . Suppose that G is an orb-
ifold groupoid representing X . Then [MP97, Theorem 4.1.] implies that U(n,C) n
Fr(X ) is Morita equivalent to G. We have thus ⇡orb1 (X ) = ⇡1([Fr(X )/U(n,C)]), where
[Fr(X )/U(n,C)] is considered as a topological stack. By [Noo14, Example 5.6.], we have
the following exact sequences

(15) ⇡1(U(n,C))! ⇡1(Fr(X ))! ⇡orb1 (X )! 1

Let U ⇢ X be the snc locus of (X,�). We have that X \ U has codimension at least 2.
As p : Fr(X )! X is equidimensional, we have that Fr(X ) \ p�1(U) has codimension at
least 2, too. Note that as a complex variety Fr(X ) is smooth. Hence we have

⇡1(Fr(X )) = ⇡1(p�1(U)).

Set O to be the open sub-orbifold (U,�|U ). We have the following commutative diagram

⇡1(U(n,C))

✏✏

// ⇡1(p�1(U))

✏✏

// ⇡orb1 (O)

✏✏

// 1

✏✏
⇡1(U(n,C)) // ⇡1(Fr(X )) // ⇡orb1 (X ) // 1

.
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By four lemma, we see that ⇡orb1 (O) = ⇡orb1 (X ). As U \ |�|U | = Xreg \ |�|, we see from
definition that

⇡1(U,�|U ) = ⇡1(X,�).

Hence we just need to show that ⇡1(U,�|U ) = ⇡orb1 (O). As (U,�|U ) has as chart

(z1, ..., zi, zi+1, ..., zn) 7! (zm1
1 , ..., zmi

i
, zi+1, ..., zn)

when O is covered by such a single chart, we have that ⇡1(U,�|U ) = ⇡orb1 (O). The
general case is by applying Van-Kampen theorem. ⇤

5.7.3. Integration and the de Rham cohomology. We recall the integration
of orbi-forms and the subsequent de Rham cohomology of orbifolds.

Definition 5.51. Let X be a real orbifold of dimension n. we say that X is orientable if
there exists a non-vanishing n-form ↵ on X . We say that a chart (Ũ , G,�) is compatible
with this orientation if �⇤(↵) = � ·volRn , where � is a positive function. For ! an n-form
supported in U , we define its integration by

Z

X
! :=

1

|G|

Z

Ũ

�⇤!.

For general case, we can cover X by charts (Ũi, Gi,�i), take a partition of unity ⇢i with
respects to {Ui}, and define Z

X
! :=

X

i

Z

X
⇢i!.

We give a quick argument that the integration is well-defined. Suppose first that
! is supported in U , and (Ũi, Gi,�i) are charts that are embedded via �i to the chart
(Ũ , G,�) (cf. [MP97, page 5 Remark (6)]). Then Gi is a subgroup of G and all the
distinct embedding of (Ũi, Gi,�i) into (Ũ , G,�) will be g · �i, where g · Gi forms the
cosets. Thus

Z

X
! =

1

|G|

Z

Ũ

�⇤!

=
1

|G|
X

i

Z

Ũ

(⇢i � �)�⇤!

=
X

i

X

g

1

G

Z

g�(Ũi)
(⇢i � �)�⇤!

=
X

i

1

Gi

Z

Ũi

(⇢i � �i)�⇤i!

where in the forth equation g runs through the representatives of cosets G/Gi.
For the general case, suppose that {Ũi}, {Ṽj} are two coverings of supp(!) by orbifold

charts. We take a third covering {W̃k} which refines both {Ũi} and {Ṽj}, i.e. each W̃k

embeds into some Ũi(k) and Ṽj(k). Then it reduces the argument to a single chart and
its refinement. Integration is thus well-defined.
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Let Ap(X ) be the global orbi-p-forms on X . We see that the exterior di↵erential d
maps Ap to Ap�1. Hence, it makes sense to consider the de Rham cohomology of X .
We recall some basic results.

Proposition 5.52. Let X be a real n-orbifold and X = |X | be its underlying topological
space. We have a canonical isomorphism Hp(X,R) ⇠= Hp

dR(X ).

Proof. We give a direct proof. Consider the sheaf C1
X on X, given by V 7!

Mor(V,R). Note that X has a partition of unity by smooth function with respect to
any open cover. Thus the sheaf Ap is fine and acyclic (cf. [Voi02, Definition 4.35 and
Proposition 4.36]). On the other hand, the complex A• is a resolution of RX . Hence we
have the canonical isomorphism Hp(X,R) ⇠= Hp

dR(X ). ⇤
In [Sat56, section 7], Satake showed that there is a canonical morphism

Hsing
p (X ,R)! Ȟp(U ,R),

where the latter is the Čech homology group. If we define Ȟp(X,R) = lim � Ȟp(U ,R),
then we have

Proposition 5.53 (cf. [Sat56, Theorem 2]). Let X be a real n-orbifold with X = |X |
its underlying space. We have a canonical isomorphism Hsing

p (X ,R)! Ȟp(X,R)

As Ȟp(U ,R) is dual to Ȟp(U ,R), there is an isomorphism Hn�p

dR (X ) ⇠= Hsing
p (X,R).

Moreover, we have the Poincaré duality for orbifolds:

Proposition 5.54. Let X be a compact real n-orbifold, the natural map
⇢

Hp

dR(X )⇥Hn�p

dR (X ) �! R
(!, ✓) 7!

R
X ! ^ ✓

is a perfect paring.



CHAPTER 6

Riemannian orbifolds

From this chapter onward, we only deal with e↵ective orbifolds..

6.1. Di↵erential calculus on orbifold

Definition 6.1. A Riemmanian orbifold is a pair (X , g) where X is an orbifold and g
is an orbi-section of (T 2X )_ satisfying the following equivalent conditions:

(i) If X is represented by G, and g corresponds to � : G0 ! (T 2G0)_ then � is a
Riemannian metric on G0;

(ii) There exists a family of charts {(Ũi, Gi)} covering X, with Gi-invariant metrics
g̃i representing g over [Ũi/G].

Most operators on Riemannian manifolds can be generalized to Riemannian orbifolds.
We begin to treat some basic results on covariant derivatives on orbifolds.

Let X be an orbifold and {G, f : |G| ! |X |} being a groupoid representation of X .
We know from Example 5.48 that T pX ⌦T q(TX_) is represented by T pG⌦T q(TG_). A
(p, q)-tensor over an open subset U of |X | is thus a collection of Gi-invariant (p, q)-tensor
over Ũi such that {Ui = Ũi/Gi} cover U . For T = X1 ⌦X2 ⌦ · · ·⌦Xp ⌦ S, we have

g · T = g⇤(X1)⌦ g⇤(X2)⌦ · · ·⌦ g⇤(Xp)⌦ (g�1)⇤(S).

As all the calculation can be performed locally, in the following we consider a local
model (U,H, g) where U ⇢ Rn is an open subset, with H a finite subgroup of Aut(U),
and g a Riemannian metric on U which is H-invariant. For any h 2 H, we note that the
action of h on x 2 U by Lh(x) or h · x. Also for any smooth function f , we define the
H-action on f by h · f = f � Lh�1 . A easy consequence for this adaption is that for any
(p, q)-tensor T , we have that h · (fT ) = (h · f)(h · T ).

Let T be a (0, p)-tensor over U , and Xi vector field over U , where 1  i  p. We
have that

h⇤(T )(X1, X2, . . . , Xp)(x) = T (hx)(TxLhX1(x), . . . , TxLhXp(x))

= T (hx)(h⇤X(xh), . . . , h⇤X(xh))

= T (h⇤X1, . . . , h⇤Xp)(hx).

Thus T being H-invariant is characterized by

T (X1, X2, . . . , Xp) = T (h⇤(X1), . . . , h⇤(Xp)) � Lh

for any h 2 H and any vector fields X1, ...Xp.
The metric g being H-invariant, we infer that Lh is an isometry for any h 2 H and

we have h⇤(rXY ) = r(h⇤X)(h⇤Y ) where r is the Levi-Civita connection of the metric
g.

91
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The following easy lemma is an example that di↵erential operators on Riemmanian
manifolds have natural generalizations to Riemannian orbifolds.

Lemma 6.2. Let T be a (0, p)-tensor which is H-invariant. Then the (0, p+ 1)-tensor
rT is H-invariant.

Proof. Let X0, . . . , Xp be p+1 vector fields. The lemma follows from the following
computation:

((rT )(h⇤(X0), h⇤(X1), . . . , h⇤(Xp))) � Lh

= ((rh⇤(X0)T )(h⇤(X1), . . . , h⇤(Xp))) � Lh

=
⇣
(h⇤(X0) · T (h⇤(X1), . . . , h⇤(Xp)

�
X

i

T (h⇤(X1), . . . ,rh⇤(X0)h⇤(Xi), . . . , h⇤(Xp))
⌘
� Lh

=
⇣
(X0 · (T (h⇤(X1), . . . , h⇤(Xp)) � Lh)) � Lh�1

�
X

i

T (h⇤(X1), . . . , h⇤(rX0Xi), . . . , h⇤(Xp))
⌘
� Lh

= X0 · T (X1, . . . , Xp)�
X

i

T (X1, . . . ,rX0Xi, . . . , Xp)

= (rT )(X0, X1, . . . , Xp).

⇤
As di↵erential commutes with pull-back, we see that if ! is an invariant p-form, so

is d!. In particular, if f is H-invariant smooth function, the df is an invariant 1-form
and rf = (df)] is an invariant vector field.

Let W,V be two orbi-vector fileds over X . Take (Ũ , G) a chart for X such that
W,V are represented by G-invariant fields W̃ , Ṽ respectively. Then h⇤(rW̃

Ṽ ) = r
W̃
Ṽ

for any h 2 G. If � : (Ũ 0, G0) ! (Ũ , G) is an chart embedding, and W̃ 0, Ṽ 0 are the
representations of W,V on Ũ 0, then r

W̃ 0 Ṽ 0 = �⇤(r
W̃
Ṽ ) as � is an isometry. Thus all

the local representations glue back to an orbi-vector field. We may thus define:

Definition 6.3. Let W,V be two orbi-vector fields over (X , g), represented by W̃i, Ṽi

on a covering {(Ũi, Gi)} respectively. Let ri be the Levi-Civita connection on Ũi, then
there is a unique vector filed rWV on X corresponding to the family riW̃i

Ṽi. We define
the association r : W,V 7! rWV as the Levi-Civita connection on (X , g).

If R̃i is the curvature tensor of (Ũi, g̃i), we may glue them to an orbi-tensor R. We call
this tensor the curvature of X . Similarly, we can glue all the R̃ici to get an orbi-tensor
Ricg on X .

6.2. Metric structures on orbifolds

Let � : (Ũ ,H) ! U be a chart on X , with g̃ representing g locally. Let p̃ 2 Ũ be
a pre-image of the point p 2 U . If c̃ : [0, ✏) ! Ũ is a local geodesic emanating from p̃,
as H acts by isometry on Ũ , we know that g · c̃ = Lg � c̃ is a local geodesic emanating
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from g · p̃. If V 2 Tp̃Ũ = c̃0(0), then TLg(V ) = g · V = (Lg � c̃)0(0) 2 Tgp̃Ũ . In the
orbi-fibre TpX = Rn/Gp, the vectors V and g · V represent same orbi-vector. Hence we
set c[V ] := �� c̃, and it the geodesic emanating from p determined by the orbi-vector [V ].
It is obvious that the definition does not depend on the choice of orbi-chart.

From the construction, we also note that for v 2 TpX , the geodesic cv : I ! X is
smooth.

Definition 6.4. Let (X , g) be a Riemannian orbifold and p 2 X = |X | be a point. Set
O := {v 2 TpX : cv is defined on [0, 1]}. We define the exponential map expp : O ! X
to be exp(v) = cv(1).

As a topological map, the exponential map expp is continous. Note that [0] 2 O

and expp [0] = p. If (Ũp, Gp) is a fundamental chart at p, then expp has a local lifting

expp̃ : ⌦̃ ! Ũp, where ⌦̃ ⇢ Tp̃Ũ is an Gp-invariant open subset containing 0, and expp̃
is the classical Riemannian exponential map. We know that expp restricts to some

W = [W̃/Gp] gives an open embedding.
We also note that if p 2 Xreg is a regular point, then the geodesics are identical to

the Riemannian ones around p. Hence so is the exponential map expp.

Remark 6.5. With the Levi-Citiva connection defined on (X , g), one may consider
define a covariant connection along a smooth curve c : I ! X . However, even when c is
lifted as c̃ : I ! Ũ , we don’t know if all the lifts are of the form g · c̃. Another hurdle for
mere smooth curves is that the definition of orbi-vector fields along them. One of the
possible definition is to restrict the curves to be strong curve, i.e. c : I ! X is strong.
In this situation, we could pull the orbi-vector bundle TX together with r back on I
via c. If the strong curve c has image in Xreg, the definition coincides with the classical
one.

We follow the treatment of [Bor93] for the metric aspects of Riemannian orbifolds.
Let (X , g) be a Riemannian orbifold and (Ũ , G) a chart for X . Suppose that g is

represented over Ũ by g̃. Then (Ũ , dg̃) is a well-defined metric space. If � : Ṽ ! Ũ is an
orbifold embedding, then � is an isometry (of metric spaces). If for a continuous curve
c : I ! X, we have local lifts on charts that cover c(I), we can then define the length of
c by adding the lengths of its local liftings. We now precise the definition.

First, we have

Theorem 6.6 ([Bre72, Chapter 2, Lemma 6.1]). Let X be a left G-space, with G a
compact Lie group. Let f : I ! X/G be any path. Then there exists a lifting f 0 : I ! X
covering f , i.e., we have p � f 0 = f .

Now go back to the Riemannian orbifold (X , g). By a compactness argument, for a
path c : [0, 1]! X = |X |, there exists a partition 0 = t0 < t1 < ... < tk = 1, and orbifold
charts (Ũi, Gi), 1  i  k such that c|[ti�1,ti] has image in Ui and lifting c̃i in Ũi.

As the liftings are not unique, we give the following definition

Definition 6.7. Let (X , g) be a Riemannian orbifold with underlying space X = |X |.
Let c : [0, 1]! X be a path. Let P be the set of the local liftings that glue back to c, i.e.
an element of P is a triple (A,B,C) where A is a partition 0 = t0 < t1 < ... < tk = 1,
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B is a family of chart (Ũi, Gi), 1  i  k and C is a family of curves c̃i : [ti�1, ti] ! Ũi

such that c̃i cover c|[ti�1,ti]. We define the length of c to be

Lg(c) = infP
P

Li(c̃i).

If c1 : [0, 1] ! X, c2 : [0, 1] ! X are two curves such that c1(1) = c2(0), then
we may consider the curve c1 ⇤ c2 : [0, 1] ! X defined by t 2 [0, 12 ] 7! c1(2t) and
t 2 [12 , 1] 7! c2(2t � 1). It’s obvious that Lg(c1 ⇤ c2) = Lg(c1) + Lg(c2). Hence the
definition is coherent with the intuition of the length of a curve.

Lemma 6.8. Let (X , g) be a Riemannian orbifold and (Ũ , G) a chart for X . Let c :
[0, 1]! Ũ/G and x̃ be a pre-image of x = c(0). If there exists a partition 0 = t0 < t1 <
... < tk = 1, orbifold charts (Ũi, Gi), 1  i  k such that c|[ti�1,ti] has image in Ui and

lifting c̃i in Ũi, then there is a lifting c̃ : I ! Ũ such that L(c̃) =
P

Li(c̃i).

Proof. Suppose that we have constructed c̃ : [0, ti]! Ũ that lift c|[0,ti] whose length
equals to

P
ji

Li(c̃i). We now extend c̃ on [ti, ti+1]. The projections of c̃(ti) and c̃is(ti)

on X are both c(ti). Hence by the definition of orbifolds, there exists a chart (Ṽ , ỹ)
at c(ti) and two chart embeddings � : Ṽ ! Ũ and ⇢ : Ṽ ! Ũi such that �(ỹ) = c̃(ti)
and ⇢(ỹ) = c̃i(ti). If ⇢(Ṽ ) contains c̃i([ti, ti + ✏]), we may then extend c̃ on [ti, ti + ✏]
via � � (⇢)�1 � c̃i. Note that ⇢ and � are isometries. Hence L(c̃|[ti,ti+✏]) = Li(c̃|[ti,ti+✏]).
A compactness argument shows that we can construct c̃ on [ti, ti+1] with L(c̃|[ti,ti+1]) =
Li(c̃i). ⇤

Hence for a curve c : I ! Ũ/G, we may define its length by only considering its
liftings on Ũ .

Definition 6.9. Let (X , g) be a Riemannian orbifold and Lg the length function on
paths. Let x, y be two points of X. We define the distance dg(x, y) of x and y by

dg(x, y) = inf Lg(�)

where the infimum is taken over all the curves that join x and y, with the convention
inf; =1.

We see easily that dg : X ⇥ X ! R�0, (x, y) 7! dg(x, y) is a distance on X and
d(x, y) =1 i↵ x and y are in di↵erent components of X.

Let (Ũx, Gx) be a fundamental chart at x 2 X. As Ũx is a Riemannian manifold,
Proposition 5.8-(2) implies that there is a � > 0 such that for any ỹ, z̃ 2 B�(x̃) there
is a unique geodesic c̃ with endpoints ỹ and z̃, such that L(c̃) = d̃(ỹ, z̃). By taking the
projection Ũ ! U and combine Lemma 6.8, we have

Lemma 6.10. Let (X , g) be a Riemannian orbifold with underlying space X = |X | and
dg the distance on X. The metric topology induced by dg is the same as the original
topology on X. For any x 2 X, there exists � > 0 such that for any y, z 2 B�(x) ⇢ X,
there exists a unique geodesic c with endpoints y and z and Lg(c) = dg(y, z).

A direct consequence of Lemma 6.10 is:

Corollary 6.11. Let (X , g) be a Riemannian orbifold and c : I ! X be a geodesic.
Then with respect to the metric dg, the path c is locally minimizing, i.e. for any t 2 I
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there exists ✏ > 0 such that 8t1, t2 2 (t� ✏, t+ ✏) we have that

Ld(c|[t1,t2]) = dg(c(t1), c(t2)).

Proposition 6.12. Let (X , g) be a Riemannian orbifold. For a local geodesic c : [0, 1]!
X, we have that Lg(c) = Ld(c).

Proof. Suppose that c : [0, 1] ! X be a local geodesic. By compactness, using
Corollary 6.11 and Lemma 6.10, we have an ✏ > 0 such that for s, t 2 [0, 1], |s� t| < ✏,

dg(c(s), c(t)) = Ld(c|[s,t])  Lg(c|[s,t]) = dg(c(s), c(t)).

Hence
Lg(c) =

X
Lg(c|[ti,ti+1]) =

X
Ld(c|[ti,ti+1]) = Ld(c).

⇤
Proposition 6.13 (cf. [Bor93, Page 6]). Let (X , g) be a Riemannian orbifold with
underline space X = |X |. With the metric dg in Definition 6.9, the metric space (X, dg)
is a length space.

Proof. Let di denote the inner metric associated with dg. We only need to show
dg � di. Suppose that dg(x, y) < 1. Let ✏ > 0 be a positive number. By definition,
there exists a curve � : [0, 1]! X such that �(0) = x, �(1) = y and Lg(�)  dg(x, y)+ ✏.
By Lemma 6.10, there exists a � > 0 such that:

for any t, t0 2 [0, 1], if |t� t0| < �, there exits a minimizing geodesic c with endpoints
�(t), �(t0) whose length Lg(c) is dg(�(t), �(t0)).

Let 0 = t0 < t1 < ... < tn = 1 be a partition of [0, 1] with ti+1 � ti < � and ci the
corresponding geodesic. Set c := ⇤ici. We have that

dg(x, y) + ✏ � Lg(�) =
X

Lg(�|[ti,ti+1]) �
X

dg([ti, ti+1]) =
X

Lg(ci)

�
X

Ld(ci) = Ld(c) � di(x, y).

⇤

As any geodesic is locally minimizing, combining this fact with Corollary 6.11, we
have:

Lemma 6.14. Let (X , g) be a Riemannian orbifold. If (X, dg) is complete, then any
two point can be joined by a minimizing geodesic.

Remark 6.15. In the case of a Riemannian manifold (M, g), one associates a metric dg
on M by defining dg(x, y) = inf Lg(c), where c is a piece-wise smooth curve and Lg(c) =R
|c0(t)|dt. For the metric dg, we can associate another length Ld as in Definition 5.1.

One sees easily Lg � Ld and it is a classical result that Lg = Ld. The author does not
know if this still holds in the orbifold setting.

For a complete orbifold (X , g), its geodesics have a good property:

Theorem 6.16 ([Bor93, Proposition 15]). Let (X , g) be a Riemannian orbifold with
underline space X = |X |. Let � : I = [0, 1]! X be a minimizing geodesic. Set p := �(0)
and q := �(1). Then we have one of the following mutually exclusive conditions:
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(1) �(I) ⇢ Xsing

(2) �(I) \Xsing ⇢ {p, q}.

Hence for p, q 2 Xreg, the minimizing geodesic � joining p and q lies completely in
Xreg. In this situation � is also the minimizing geodesic in the Riemannian manifold
Xreg.

Corollary 6.17. Let (X , g) be a Riemannian orbifold. If (X, dg) is complete, then
(Xreg, g) is a convex Riemannian manifold.

Let (M, g) be a convex Riemannian manifold, p 2 M . Let u 2 UpM be a unit
tangent vector and �u be the geodesic emanating from p with �0u(0) = u. We define

t(u) := sup{t > 0 : �u is defined on [0, t] and �u|[0,t] is minimal and t 2 [0,1]}.
We may define the cut locus in the convex situation by

Definition 6.18. Let M be a convex Riemannian manifold and p 2M . We define

C̃p := {t(u)u : u 2 UpM such that t(u) <1} and Cp := expp(C̃p)

to be the tangent cut locus and cut locus of p respectively. We also set

Ĩp := {tu : u 2 UpM, 0 < t < t(u)} and Ip := expp(Ĩp).

Then we have similar results as in the complete case:

Lemma 6.19. Let M be a convex Riemannian manifold and p 2 M . We use the
notations C̃P , CP , Ĩp and Ip as in Definition 6.18. Then we have the following

(1) Ip is a connected open neighborhood of 0 2 TpM .
(2) Ip \ Cp = ;, M = Ip [ Cp, and Īp = M .
(3) expp : Ĩp ! Ip is a di↵eomorphism.
(4) Cp has measure 0.

Proof. See [Sak96, Proposition III.4.1 and Lemma III.4.4]. Note that though all
the statements in loc. cit. are for complete manifold M , the proofs only use the fact
that M is convex. ⇤

6.3. Volume comparisons

We first recall the classical Bishop-Gromov comparison theorem:

Theorem 6.20. Let k be a real number. Let (Mn, g) be a convex Riemannian man-
ifold with Ricg � (n� 1)k. Let v(n, k, r) be the volume of a ball of radius r in the model
space with constant curvature k. The volume ratio

r 7! volg(B(p, r))

v(n, k, r)

is a non-increasing function whose limit is 1 as r ! 0.

Proof. See [Pet16, Lemma 7.1.4]. Note that though all the statement in loc. cit. is
for complete manifold M , the proof only uses the fact expp : Ĩp ! Ip is a di↵eomorphism
and that Cp has measure zero. ⇤
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Before we state the orbifold version Bishop-Gromov theorem, we first need to define
the measure on X for a Riemannian orbifold (X , g).

Let (X , g) be a Riemannian orbifold. Let (Ũ , g̃) be a chart. After taking an orien-
tation of Ũ , we have a unique volume form volg̃. Hence volg̃ is defined up to a sign. If
O ⇢ X is an open subset covered by {Ui = Ũi/Gi}, we can take a partition of unity ⇢i
subordinate to {Ui} and define

volg(O) :=
X

i

|
Z

X
⇢i volg̃i |.

The integral on orbifold is defined in Definition 5.51. It’s easy to see that volg(O) is
well-defined.

Lemma 6.21 (cf. [Bor93, Lemma 18]). Let (X , g) be a Riemmanian orbifold and volg
be its canonical measure on X. Then Xsing has measure zero.

Proof. Note that Xsing is a closed subset of X. Hence it is measurable. As X is
second countable, we may cover Xsing by countable many local charts. Hence it su�ces
to show for (Ũ , G) the non-free point set has measure zero. As G is finite, it is trivial. ⇤

Now we state the orbifold Bishop-Gromov theorem.

Theorem 6.22 (cf. [Bor93, Proposition 20]). Let k be a real number. Let (X , g) be
a Riemannian orbifold with Ricg � (n � 1)k. Let v(n, k, r) be the volume of a ball of
radius r in the model space with constant curvature k. The volume ratio

r 7! volg(B(p, r))

v(n, k, r)

is a non-increasing function whose limit is |Gp| as r ! 0.

Proof. For the reader’s convenience, we reproduce the proof here.
First suppose that p 2 Xreg is a regular point. We have that volg(B(p, r)) =

volg(B(p, r) \ Xreg). Set B0(p, r) = B(p, r) \ Xreg and denote by vol0g the volume on
Xreg. We have that

volg(B(p, r))

v(n, k, r)
=

vol0g(B
0(p, r))

v(n, k, r)
.

By Theorem 6.20, we get the sought result.
If p 2 Xsing is a singular point, let us pick (pi)i�1 2 Xreg a sequence that converges

to p. Then volg(B(p, r)) = lim
i!1

volg(B(pi, r)). For any r0 > r, by the results for regular

points, we have that

volg(B(pi, r))

volg(B(pi, r0)
� v(n, k, r)

v(n, k, r0)
.

After taking the limit as i!1, we have that

volg(B(p, r))

volg(B(p, r0))
� v(n, k, r)

v(n, k, r0)
.
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For r small enough, we have the inclusion B(p, r) ⇢ Ũp/Gp, with (Ũp, Gp) a funda-
mental chart at p. If we denote by B̃(p̃, r) the ball of radius r in Ũp centered at p̃, we
then have:

volg̃ B̃(p̃, r) = |Gp| · volg(B(p, r)).

The limit |Gp| as r ! 0 follows from Theorem 6.20. ⇤



CHAPTER 7

Orbifold coverings and generalized Magulis lemma

7.1. Metric geometery of orbifold coverings

Let p : Y ! X be an orbifold covering map. Suppose that we have a Riemannian
metric g on X . By Lemma 5.49, we have a pull-back Riemannian metric p⇤(g) on Y.
We denote by dY the metric induced by p⇤(g) on Y = |Y|. Then the map p induces a
morphism of metric spaces (Y, dY )! (X, dX) such that dY (a, b) � dX(p(a), p(b)).

For a Galois covering p : Y ! X , the distances dX and dY are nicely related:

Proposition 7.1 ([Lan20, Lemma 2.8]). Let p : Y ! X be a Galois covering map and
Gal(p) be its Galois group. Then X = Y/Gal(p) and dX is the quotient metric of dY by
Gal(p).

For our purpose, we state the following lemma.

Lemma 7.2. Let (X , g) be a Riemannian orbifold and p : Y ! X an orbifold covering of
X . We equip Y with the Riemannian metric p⇤(g). If (X, dX) is complete, then (Y, dY )
is complete.

Proof. Let {yn} be a Cauchy sequence in (Y, dY ). We may assume that {yn} lies
in a compact subset K of a component V of the pre-image p�1(U) of an elementary
neighborhood U = [Ũ/G]. Hence there exists H 6 G such that V = [Ũ/H]. Let
U 3 xn = p(yn) be the image of yn under p. Then xn 2 p(K). As p does not increase
distances, the sequence {xn} is a Cauchy sequence and has a limit lim

n!1
xn = x 2 p(K) ⇢

U . Take x̃ 2 Ũ be a lifting of x. Then there exist x̃n lifting xn such that x̃n ! x̃. Note
that for each n there exists gn 2 G such that gnx̃n lifts yn. As G is finite, there exists
a g 2 G that appears infinitely many times in {gn}. Hence there is a sub-sequence
g · x̃ni ! g · x̃. If y is the image of g · x̃ in V , we will have yn ! y. ⇤

By Theorem 6.6, we see that for any covering p : X 0 ! X and path c : [0, 1] ! X
with c(0) = x 2 X and x0 2 p�1(x), there exists a lifting c0 : [0, 1] ! X 0 starts from x0.
However, this will not be unique. Consider (R2,Z/2Z) with the action (x, y)! (�x, y).
The path t 7! (t, 0) has liftings t 7! (t, 0) and t ! (�t, 0) in R2. If id

Ũ
: (Ũ , Gx0) !

(Ũ , Gx) is a local lifting of p and c is a geodesic, then it has at least [Gx : Gx0 ] lifting.
We finish this section by an easy observation.

Lemma 7.3. Let (X , g) be a Riemannian orbifold. Let ⇡ : X 0 ! X be an orbifold
covering with Galois group Gal(p). If we endow X 0 with the pullback metric ⇡⇤(g), then
Gal(p) acts on |X 0| by isometries.

Proof. Let x01, x
0
2 be two points of |X 0|. Suppose that c : [0, 1] ! |X 0| is a path

such that c(0) = x01 and c(1) = x02. Let � be an element of Gal(p). We have that
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L⇡⇤(g)(�c) = L⇡⇤(g)(c). Hence

d(x01, x
0
2) = inf

c:[0,1]!|X 0|, c connects x
0
1 and x

0
2

L⇡⇤(g)(c)

= inf
c:[0,1]!|X 0|, c connects x

0
1 and x

0
2

L⇡⇤(g)(�c)

= d(�x01, �x
0
2).

⇤

7.2. Dirichlet domains and generalized Margulis lemma

Let (X , g) be an Riemannian orbifold. Let ⇡ : X 0 ! X be the universal covering of
(X , g) and � be its Galois group. We endow X 0 with the pullback metric p⇤(g). Then
(X 0, d0) is a complete length space. Lemma 7.3 shows that � acts by isometries on X 0.

Suppose now that diam(X)  1. Let x0 2 ⇡�1(Xreg) be a regular point. We now
show some basic properties of the Dirichlet domain of � based at x0:

F := {p 2 X 0 : d0(x0, p)  d0(� · x0, p) for all � 2 �}.

Lemma 7.4. diam(F )  2.

Proof. Let p be a point in F . As X 0 is complete, there is a minimizing geodesic
c0 : [0, 1] ! X 0 joining x0 and p such that Ld(c0) = d0(x0, p). In particular, c0 is a local
geodesic. We consider c := ⇡ � c0, which joins ⇡(x0) and ⇡(p). If c is not a minimizing
geodesic, then there is a c1 which is a minimizing geodesic that joins ⇡(x0) and ⇡(p).
We have that dg(⇡(x0),⇡(p)) < Ld(c) = Lg(c). As c1 is a geodesic, it has a lifting c01
starting at x0. As ⇡ � c01 = c1 6= c = ⇡ � c0, we have that c01 6= c0. Take � 2 � such that
� · p = c01(1). Then

d0(x0, �p)  Ld(c
0
1) = Ld(c1) < Ld(c) = d0(x0, p).

Thus c is also a segment and L(c0) = L(c)  1. Thus diam(F )  2. ⇤
We consider the subset of � defined by

S := {� 2 � : d(� · x0, x0)  4}.
One sees easily that S is symmetric and contains 1. We have

Lemma 7.5. S generates �.

Proof. We have that [� · F = X 0. We take a segment c : [0, 1]! X 0 that joins x0
and �0 ·x0. As c(I) is compact, the set c(I) is contained in a ball Br(x0) that meets only
finitely many translates � · F of F . Hence c passes through finitely many � · F . We list
these elements by 1 = �1, . . . , �k = �0, ordered by the time when c enters �i · F . Note
that they are not necessarily di↵erent. Then �i · F \ �i+1 · F 6= ; and we thus have that
d0(�ix0, �i+1x0)  4. Finally we remark that

�0 = �k =
k�1Y

i=1

(�i+1 · ��1
i

) 2 Sk�1.

⇤
Lemma 7.6. Let r > 0 be an integer. B(x0, r) ⇢ Sr · F ⇢ B(x0, 3r + 2).
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Proof. If p 2 Sr · F , one can write p = �1...�r · q with q 2 F and �i 2 S. It yields

d0(x0, p)  d0(�1 · · · �r · x0, x0) + d0(�1 · · · �r · x0, �1 · · · �r · q)  2 + 4r.

If p 2 B(x0, r), as
S
� · F = X 0, there exists �0 2 � such that ��1

0 · p 2 F . Then
d0(x0, � · x0)  d0(x0, p) + d0(�0 · x0, p)  r + 1. Hence �0 2 Sr. ⇤

For any � 6= 1, � · F \ F ⇢ @F and we have @F =
S
� 6=1(� · F \ F ).

Lemma 7.7. Let µ be the canonical measure associated with p⇤(g). Then µ(@F ) = 0.

Proof. Let p 2 @F be a point. If ⇡(p) 2 Xreg, then p 2 X 0
reg. Suppose that

p 2 F \� ·F for some � 6= 1. Then d0(x0, p) = d(� ·x0, p). The proof of Lemma 7.5 shows
that we can then find two distinct segments on X joining ⇡(x0) and p. By Theorem 6.16,
these two segments are minimizing geodesics in the convex manifold Xreg. Hence ⇡(p)
lies in the cut locus C⇡(x0) of x0 in Xreg. Thus we have that ⇡(@F ) ⇢ C⇡(x0)[Xsing. Now
cover ⇡(@F ) by elementary neighborhoods with respect to ⇡. By second countability, we
may find countably many neighborhoods (Ũi, Gi,�i). Note that ��1

i
(C⇡(x0) [Xsing) has

measure 0 in Ũi and @F is covered by countably many Ũi/Hij . Hence µ(@F ) = 0. ⇤

With Theorem 6.22 and Proposition 7.1 , the Margulis lemma for fundamental groups
of compact manifolds with Ricci curvature bounded below by [BGT12] holds for the
orbifold case:

Proposition 7.8 (cf. [BGT12, Corollary 11.13]). Given n 2 N, there is ✏ = ✏(n) > 0
such that:

for any n-dimensional compact Riemmanian orbifold (X , g) with underlying space
|X|, if Ricg � �✏ and diam(X)  1, then ⇡orb1 (X ) is virtually nilpotent.

Proof. Let ⇡, x0, F, be defined as above. With Lemma 7.6 and Lemma 7.7, we have
that

|Sr|
|S| 

µ(B(x0, 4r + 2))

µ(B(x0, 1))
.

By Theorem 6.22, we have

µ(B(x0, r))

µ(B(x0, 1))
 v(n,�✏, r)

v(n,�✏, 1) .

Let !n be the volume of (n � 1)-dimensional unit sphere in Euclidean space Rn.

Then v(n,�✏, r) = !n

R
r

0 (
sinh(

p
✏t)p

✏
)n�1dt. The latter tends to !nrn/n when ✏ tends to 0.

Thus for any R0 � 1, there exists ✏0 = ✏0(d,R0) such that

|Sr|
|S|  2(4r + 2)n

for all r  R0, provided that 0 < ✏ < ✏0. The existence of ✏ = ✏(d) follows from [BGT12,
Corollary 11.5]. ⇤

For the main theorem, we introduce the following notion.
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Definition 7.9. Let (X, d) be a metric space. We say that X to have bounded packing
with packing constant K if there exists K > 0 such that every ball of radius 4 in X can
be covered by at most K balls of radius 1.

Lemma 7.10. Let (X , g) be a complete Riemannian orbifold with Ricg > �(n � 1).
Then (X, dg) has bounded packing with packing constant K = K(n).

Proof. Let p be a point in X. For the ball B(p, 5) and a ball B(q, 12) ⇢ B(p, 5), by
Theorem 6.22 we have that

volg(B(p, 5))

volg(B(q, 12)
 volg(B(q, 10))

volg(B(q, 12)
 v(n,�1, 10)

v(n,�1, 12)
= K(n).

Let {B(qi,
1
2)} be a family of disjoint balls that is contained B(p, 5) such that for any

q 6= qi, if B(q, 12) ⇢ B(p, 5), then B(q, 12) intersects with one of the B(qi,
1
2). We know

that the family has most K(n) balls. Note that the balls B(qi, 1) cover B(p, 4). Hence
we have the packing constant K = K(n). ⇤

Let (X , g) be a complete Riemannian orbifold and p : X̃ ! X its universal covering.
For any point x 2 X = |X |, its (topological) fiber p�1(x) ⇢ X̃ = |X̃ | is a discrete space.
Let us pick x̃ 2 p�1(x). We have that

min{d̃(x̃, x̃0)} > 0,

where the minimum is taken for all x̃0 2 p�1(x) \ {x̃}. We thus see that ⇡orb1 (X ) acts on
X̃ discretely, i.e., for any x̃ 2 X̃, for any bounded set ⌃ ⇢ X̃, the set

{� 2 ⇡orb1 (X ) : � · x̃ 2 ⌃}
is finite.

Finally we recall the generalized Margulis lemma established in [BGT12]

Theorem 7.11 ([BGT12, Corollary 11.17]). Let K � 1 be a parameter. There exists
✏(K) > 0, such that the following is true:

Suppose that X is a metric space with packing constant K and � is a subgroup of
isometries of X that acts discretely. Then for every x 2 X the ”almost stabiliser”

�✏(x) := h{� 2 � : d(� · x, x) < ✏}i
is virtually nilpotent.

With Lemma 7.10, applying Theorem 7.11 to complete Riemannian orbifolds, we get
the following lemma.

Lemma 7.12 (cf. [BGT12, Corollary 11.19]). Let n � 1 be an integer. There exists
↵ = ↵(n) > 0 such that the following holds true:

Let X be a complete Riemannian orbifold with its Ricci curvature bounded by Ric �
�(n�1) and � be a subgroup of Isom(|X |) acting properly discontinuously by isometries
on |X |. Then for every x 2 |X |, the ”almost stabliser”

�↵(x) := h{� 2 � : d(� · x, x) < ↵}i
is virtually nilpotent.



CHAPTER 8

Main theorem

In this section and onwards, we only deal with complex orbifolds.

Definition 8.1. Let X be an orbifold and p : E ! X be a complex orbi-vector bundle
over X , represented by the left G-space E such that p is represented by G nE ! G (cf.
Definition 5.45). An Hermitian metric on E is a map h : |E| ⇥|X | |E| ! C such that h

lifts to a map h̃ : E ⇥G0 E ! C and h̃ is Hermitian and G-invariant.

One can always get a Hermitian metric on an orbi-vector bundle by partition of
unity:

Proposition 8.2 (cf. [Par20, Lemma 5.1]). Let X be an orbifold and E be a complex
orbi-vector bundle on X . Then there exists an Hermitian metric on E.

For a complex orbifold groupoid G = {G1 ◆ G0}, we know that the structure maps
between Gi are holomorphic (actually they are étale). In particular, for any arrow
g : x ! y in G1, the induced local di↵eomorphism Ux ! Uy is biholomorphic. Its
tangent groupoid is TG = G1 n TG0. We see that the almost complex structure J ,
di↵erential operators d, @ and @̄ are G1-invariant. Thus for a complex orbifold X , we
have the decomposition TCX = T 1,0X � T 0,1X . We define the anti-canonical bundle of
X to be K�1

X = det(T 1,0X ).

Definition 8.3. Let X be a complex orbifold. A Kähler form on X is a closed real
(1, 1)-form ! 2 �(X, (T 2X )_ \ (T (1,1)X )_) such that !(�, J�) defines a Riemannian
metric on X .

We give a definition of holomorphic orbi-vector bundles that suits our later discus-
sion.

Definition 8.4. Let X be a complex orbifold, E ! X a complex orbi-vector bundle over
X . A holomorphic orbi-vector bundle structure over E is a representation G n E ! G
of E ! X together with a holomorphic vector bundle structure on E ! G0. We call E
together with the holomorphic structure a holomorphic orbi-vector bundle.

With the above definition, we can see that (TX , J) and KX carry natural holomor-
phic structure. It is thus considered as holomorphic orbi-vector bundle in the rest of the
article.

Remark 8.5. The definition is not optimal. Suppose that � : H! G is an equivalence,
then one will have a nature holomorphic vector bundle �⇤0(E)! H0. One should consider
�⇤(G n E) = H n �⇤0(E) gives same holomorphic structure on E ! X . Hence the right
definition will be the
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{representation + holomorphic structure on the representation} mod ”equivalence”.

Due to the inability of the author, we can not give a satisfying equivalence relation.
However, the given definition su�ces for our purpose.

Let E ! X be a holomorphic orbi-vector bundle represented by G n E ! G, where
G = [G1 ◆ G0] is a groupoid representation of X . The holomorphic structure on E
induces a natural complex structure on E, Hence G nE is a complex orbifold groupoid.
For x 2 G0, by Proposition A.8 we can take a neighbourhood Ux ⇢ G0 of x such that
G|Ux

⇠= Gx n Ux. Shrink Ux if necessary. We may assume E is trivialized by by a
holomorphic frame over Ux, i.e., E|Ux

⇠= Cr ⇥ Ux . Then (G n E)|Ux
⇠= Gx n (Cr ⇥ Ux)

as complex orbifold groupoid. In particular, Gx ⇥ (Cr ⇥Ux)! Cr ⇥Ux is holomorphic.
For an element g 2 Gx, the action of g is (v, y) 7! (g(y) ·v, y), where g(y) 2 GL(r,C).

Thus y 7! g(y) is holomorphic and g 2 Gx transfers holomorphic section of E on Ux to
a holomorphic section. With the same argument, one could show g : x ! y transfers a
local holomorphic section around x to a local holomorphic section around y. We then
define the holomorphic section of E to be a G-invariant holomorphic section in E.

Let s be a G-invariant holomorphic section of E, and g : x ! y be an arrow in G1.
Suppose that s is defined around x and y, such that s =

P
�iei around x and s =

P
 jfj

around y, where {ei} and {fj} are holomorphic frames. We have that g · ei =
P

j
Ajifj

for some holomorphic functions Aji around y and Aji is invertible. Now around x, we
have that @̄E(s) =

P
i
@̄�i ⌦ ei . Around y, we have that

g · @̄E(s) =
X

i

(g�1)⇤@̄�i ⌦ g · ei =
X

i,j

(g�1)⇤@̄�iAji ⌦ fj

=
X

j

@̄ j ⌦ fj = @̄E(s).

Thus the Dolbeault operator @̄E passes to an orbifold Dolbeaut operator @̄E on E .
Let L! X be a holomorphic orbi-line bundle and h an Hermitian mectric on L. Let

GnL! G be a representation of L and h̃ be the G-invariant metric on L. For an arrow
g : x! y, we consider two trivializations by holomorphic sections e and f around x and
y respectively. Suppose that g · e(w) = �(g�1w)f(w). We have the local matrices for h̃
to be h1 = h̃(e, e) and h2 = h̃(f, f). From the equality h(g · e, g · e) = h(e, e), we see that

h2(w)�(g
�1w)�(g�1w) = h1(g

�1w).

Hence

@@̄(log � h2) = @@̄(log �h1 � Lg�1) = (g�1)⇤@@̄(log �h1) = g · @@̄(log �h1),

which means that the Chern curvature ⇥
h̃
= �

p
�1
2⇡ @@̄h̃ is G-invariant, hence corresponds

to an orbifold section of the complex vector bundle L.
We are now ready to give the definition of nefness.

Definition 8.6. Let X be a compact Kähler orbifold and L ! X a holomorphic line
bundle on X . We fix a Kähler form ! on X . We say that L is nef, if for any ✏ > 0, there
exists a Hermitian metric h✏ on L such that its Chern curvature ⇥h✏ satisfies

⇥h✏ � �✏!.
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Remark 8.7. Suppose that L! X is represented by GnL! G. If G0 is compact, it is
obvious that L is then a nef line bundle on G0. However, in general G0 is not compact,
and it makes no sense to say L is nef or not.

Let X be a compact Kähler orbifold whose anti-canonical bundle K�1
X is nef. We fix

a Kähler metric ! on X . We repeat the technique used by in [DPS93] to construct a
sequence of Kähler metrics {!✏} in the same cohomology class of ! such that the Ricci
form Ricci!✏ � �✏!✏.

For any ✏ > 0, since K�1
X is nef, we have a Hermitian metric h✏ on KX�1 , such that

u✏ = ⇥h✏ � �✏!. It is thus su�cient to search !✏ such that

(16) Ricci!✏ = �✏!✏ + ✏! + u✏.

The @@̄-lemma still holds in the orbifold setting:

Lemma 8.8 ( [Bai56, Theorem H, Theorem K]). Let (X ,!) be a Kähler orbifold such
that X = |X | is compact. If ↵ is a d-exact (p, q)-form, then ↵ is @@̄-exact.

Hence we may write u✏ = Ricci! +
p
�1@@̄f✏. And to search !✏ is the same as search

a potential �✏ such that !✏ = ! +
p
�1@@̄�✏. Equation (16) on !✏ is thus equivalent to

(17)
(! +

p
�1@@̄�✏)n
!n

= exp(✏�✏ � f✏)

By the following theorem, Equation (17) has a unique solution.

Theorem 8.9 (Aubin-Yau Theorem, cf. [Fau19, Theorem 1.1 and Section 6]). Let
(X ,!) be a compact Kähler orbifold. For any smooth function f on X and � > 0. The
equation

(MA) logM(�) = ��+ f,

where M(�) :=
(! +

p
�1@@̄�)n
!n

is the Monge-Ampère operator, has a unique admissible

solution.

Thus we have

Lemma 8.10. Let X be a compact Kähler orbifold with �KX nef. Fix a Kähler metric
! on X . For ✏ > 0, there exists a Kähler metric !✏ cohomologous to !, and the Ricci
form of !✏ satisfying

Ricci!✏ � �✏!✏.

To prove our main results, we first note that ⇡orb1 (X ) is finitely generated. In fact
we have

Lemma 8.11 ( [MP99, Corollary 1.2.5.]). Let X be an orbifold and U be an atlas of X .
There exists an atlas V for X such that

(1) V refines U ;
(2) For every chart (Ṽ , H, ) in V, both Ṽ and V =  (Ṽ ) ⇢ |X | are contractible;
(3) The intersection of finitely many chart is empty or again a chart in V.
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Let X be a compact orbifold. We may take a finite atlas V by Lemma 8.11. Note
that each open sub-orbifold [Ṽ /H] has fundamental group

⇡orb1 ([Ṽ /H]) ⇠= H.

By orbifold Van-Kampen theorem (cf. [BH99, Exercise III.G.3.10]), we know that
⇡orb1 (X ) is finitely generated.

We note that the following lemma, which is proved in manifold case in [DPS93],
holds true in the orbifold case with exactly the same proof.

Lemma 8.12 (cf. [DPS93, Lemma 1.3.]). Let ⇡ : X̃ ! X be the universal covering of
X . Let U be a connected compact subset of X̃ = |X̃ |. Then for any � > 0, there exists

a closed subset U✏,� ⇢ U such that vol!(U \ U✏,�) < � and diam!✏(U✏,�) < C1�
� 1

2 , where
C1 is a constant independent of ✏ and �.

Proof. Suppose first that there exists a chart (Ṽ ⇢ Cn, G, V ) of X̃ , a G-invariant
compact subset K such that K/G = U and a G-invariant open subset W ⇢ Ṽ such that
its closure W ⇢ Ṽ is compact and K ⇢ W . We further suppose that V is a component
of ⇡�1(Ṽ /G0), where (Ṽ , G0) is an elementary neighborhood of X with respect to ⇡ and
G is a subset of G0.

Let !̃✏ be the G-invariant form on Ṽ . On Ṽ , we have two metrics: the Euclidean
one !euc of Cn and the Riemannian one g̃✏ corresponding to !̃✏. As W is compact, we
have a constant C0 = C0(W ) such that

1

C0
!̃  !euc  C0!̃

Here, we consider these real (1, 1)-forms as positive currents. If � is a positive (1, 1)-form,
we have that

1

C0
!̃ ^ !̃n�2

euc ^ �  !n�1
euc ^ �  C0!̃ ^ !̃n�2

euc ^ �

Iterating (n� 1) times, we have that

1

Cn�1
0

!̃n�1  !n�1
euc  Cn�1

0 !̃n�1

As ! and !✏ are in the same cohomology class, we have that
Z

X
!✏ ^ !n�1 =

Z

X
! ^ !n�1

Hence we have that
Z

W

!̃✏ ^ !n�1
euc  Cn�1

0 |G0|
Z

X
!✏ ^ !n�1 = Cn�1

0 |G0|
Z

X
! ^ !n�1 =: C1

For any x1, x2 2 K⇥K, we consider the path cx1,x2 : [0, 1]! Ṽ , t 7! (1� t)x1+ tx2.
As W is convex and contains K, the path cx1,x2 is contained in W . We denote by
< �,� > and < �,� >✏ the Riemannian metric on TW = W ⇥ Cn induced by !euc

and !̃✏ respectively. We also use | • | to denote the norm induced by < �,� >.
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By Cauchy-Schwartz inequality, we have that
Z

K⇥K

l2g̃✏(cx1,x2)dx1dx2 =

Z

K⇥K

(

Z 1

0
(g̃✏(ċx1,x2(t), ċx1,x2(t)))

1
2dt)2dx1dx2

 |x2 � x1|
Z 1

0
dt

Z

K⇥K

< v(t, x1, x2), v(t, x1, x2) >✏ dx1dx2(*)

where v(t, x1, x2) := ((1 � t)x1 + tx2,
x2�x1
|x2�x1|) 2 W ⇥ Cn = TW and dx1, dx2 are the

volumes with respect to !euc.
Now

Z 1
2

0
dt

Z

K⇥K

< v(t, x1, x2), v(t, x1, x2) >✏ (
1

2
)2ndx1dx2


Z 1

2

0
dt

Z

K⇥K

< v(t, x1, x2), v(t, x1, x2) >✏ (1� t)2ndx1dx2


Z 1

2

0
dt

Z

W⇥K

< ux2(y), ux2(y) >✏ dydx2

where ux2 : y 7! (y,
x2 � y

|x2 � y|) is a vector field on W . Note that |ux2(y)| = 1 for all

y 2W .
Let zi : Cn ! C be the i-th projection. We have that

!euc =
X

1in

p
�1
2

dzi ^ dz̄i

!̃✏ =
X

1i,jn

p
�1
2

hijdzi ^ dz̄j

!̃✏ ^ !n�1
euc = (n� 1)!Tr(H)(

p
�1
2

)n
^

1in

dzi ^ dz̄i

where H = (hij) is a strictly positive Hermitian matrix. If we consider the C-linear
extension of the tensor g̃✏ in (T ⇤

CW )⌦2, we have that

g̃✏ =
X

1i,jn

hij
2
(dzi ⌦ dz̄j + dz̄j ⌦ dzi)

Thus the matrix of g̃✏ with respect to the basis (@/@z1, . . . , @/@zn, @/@z1, . . . , @/@zn) is

✓
0 H
Ht 0

◆
.

Hence the maximal eigenvalue of g̃✏ is at most the maximal eigenvalue of H, which is less
than Tr(H). Thus for any vector u such that |u| = 1, we have that < u, u >✏ Tr(H).
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We have that
Z 1

2

0
dt

Z

K⇥K

< v(t, x1, x2), v(t, x1, x2) >✏ dx1dx2

 22n
Z 1

2

0
dt

Z

W⇥K

< ux2(y), ux2(y) >✏ dydx2

 22
Z 1

2

0
dt

Z

W⇥K

1

(n� 1)!
!̃✏ ^ !n�1

euc dx2

 22n�1 vol(K)C1

Similarly, we have that
Z 1

1
2

dt

Z

K⇥K

< v(t, x1, x2), v(t, x1, x2) >✏ dx1dx2  22n�1 vol(K)C1

Combined with Equation (*), we have that
Z

K⇥K

l2g̃✏(cx1,x2)dx1dx2  22n diam(K) vol(K)C1

 C2

where diam(�) is the diameter with respect to !euc and C2 is a constant independent of
✏.

We set

S := {(x1, x2) 2 K ⇥K | lg̃✏(cx1,x2) > (C2/�)
1
2 }

The above estimate implies that vol(S) < �. Set S(x1) := {x2 2 K : (x1, x2) 2 S}. Now
we consider the set

Q := {x1 2 K | vol(S(x1)) �
1

2
vol(K)}

Then by Fubini, we have that vol(Q)  2� vol(K). For x1, x2 2 K \ Q, we have that
vol(S(xi)) <

1
2 vol(K). Thus we have that

(K \ S(x1)) \ (K \ S(x2)) 6= ;.

If y is an element of the above set, then (x1, y) /2 S and (x2, y) /2 S. Hence we have that

lg̃✏(cx1,x2)  lg̃✏(cx1,y) + lg̃✏(cy,x2)  2(C2/�)
1
2

By continuity, for any x1, x2 2 K \Q, we have that lg̃✏(cx1,x2)  2(C2/�)
1
2 .

Let U✏,� be the image of K \Q in V . Then as K is G-variant, we have that

vol!(K \ (
[

↵2G
↵ ·K \Q))  vol!(K \K \Q)  C3 vol(Q) <

2C3�

vol(K)

where C3 = Cn

0 .
Hence we have that

vol!(U \ U✏,�) <
2C3�

|G| vol(K)
.
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If a1, a2 are two points in U✏,�, we may take x1 2 K \Q and x2 2 K \Q to be one of
the inverse images in Ṽ of a1 and a2 respectively. We have thus that

d!✏(a1, a2)  lg̃✏(cx1,x2)  2(C1/�)
1
2 .

This implies that diam!✏(U✏,�)  4(C1/�)
1
2 . By scaling �, we have the result for U =

K/G.
For a general U ⇢ X̃, there exists a finite open covering U ⇢

S
1iN

Ui such that

• for each i, the open set Ui is connected;
• for each i, there exists a chart (Ṽi, Hi, Vi) of X̃ and an Hi-invariant convex open
Wi ⇢ Ṽi satisfying that Wi/Hi contains Ui and Wi is compact.

As U is connected, after removing all the Uj that do not intersect U , we can arrange Ui

such that Ui \Ui+1 6= ;. Now the hypothesis in the first paragraph applies to Ui. Hence
for � > 0, we get subsets Ui,✏,� such that

(1) for each i, we have that

vol!(U i \ Ui,✏,�) < min

⇢
�

N
, min
1jN�1

{1
2
vol!(Uj \ Uj+1)}

�
;

(2) for each i, we have that diam!✏(Ui,✏,�) < C 0
i
��

1
2 , where C 0

i
is independent of ✏

and �.

Condition (1) implies that Ui,✏,� \ Ui+1,✏,� 6= ;. Set
C1 := N2 · max

1iN

{C 0
i}.

Thus diam!✏(
S

1iN
Ui,✏,�)  C1�

� 1
2 and

vol!

0

@
[

1iN

Ui \
[

1iN

Ui,✏,�

1

A 
X

1iN

vol!(Ui \ Ui,✏,�) < �.

Set U✏,� := U \ ([1iNUi,✏,�). We have that

vol!(U \ U✏,�)  vol!

0

@
[

1iN

Ui \
[

1iN

Ui,✏,�

1

A < �.

This finishes the proof. ⇤
Theorem 8.13 (=Theorem 4.10). Let (X ,!) be a compact Kähler orbifold. If the

anti-canonical bundle K�1
X is nef, then ⇡orb1 (X ) is virtually nilpotent.

Proof. We can reproduce the argument by [DPS93] and [Pău97] in the manifold
case. Let !✏ be the sequence of Kähler metrics as in Lemma 8.10, and X̃ ! X be
the universal covering of X . We fix a finite system of generators {�i} of ⇡orb1 (X ). Let
↵ = ↵(2n) be the constant in Lemma 7.12. It su�ces to show that there exists !0 such
that all the generators �i are contained in the almost stabliser �↵ with respect to the
distance d!0 in Lemma 7.12.

Recall that the fundamental domain of Gal(X̃ ! X ) is defined to be

F := {p 2 X 0 | d!̃(x0, p)  d!̃(� · x0, p) for all � 2 ⇡orb1 (X )}.
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We see easily that F is path connected. Thus we can take a connected compact subset
U ⇢ X̃ which contains F . As {�i} is finite, we may take U large enough, such that U \
�jU 6= ; for all j. We choose a su�ciently small � > 0 such that � <

1

4
vol!(U\�jU) and

� <
1

2
vol! F . By Lemma 8.12, there exists a subset U✏,� ⇢ U , such that diam!✏(U✏,�) <

C1�
1
2 := C. By the choice of �, we know that U✏,� \ �jU✏,� 6= ;. Fix a x̃0 2 U✏,�. We

know that d!✏(x̃0, �j x̃0) < C. We set !̃✏ :=
✏

2n� 1
!✏. Then Ricci!̃✏ � �(2n� 1)!̃✏ and

d!̃✏(x̃0, �j x̃0) <
✏

2n� 1
C. For ✏ su�cient small, we see that

✏

2n� 1
C < ↵. ⇤



CHAPTER 9

Projective case

We will consider complex orbifolds as klt pairs described in Section 5.6.
Let X = (X, [G1 ◆ G0]) be a complex orbifold of dimension n and (X = |X |,�)

its associated orbifold pair. For any x 2 G0 by Proposition A.8, there exists open
neighborhood x 3 Ux ⇢ Gx, such that ⇡x : Ux ! Ux/Gx ⇢ |X | gives an orbifold chart.
Theorem 5.33 implies that the topological quotient Ux/Gx has a unique normal complex
space structure such that ⇡x : Ux ! Ux/Gx is a Galois analycial covering. Hence
Ux/Gx ⇢ X is an open sub-variety and ⇡x : Ux ! Ux/Gx is a local uniformization
as in Definition 5.37. The map ⇡ : G0 ! X is holomorphic. As G0 is Kähler, [Var89,
Proposition 3.3.1] impliesX is a complex Kähler space. We consider the canonical bundle
KX . From Definition 8.4, we know that it is represented by det(⌦G0). We denote by
KG0 its canonical class. Then by Equation (14), we have that

(18) KG0 |Ux = ⇡⇤x(KX +�).

If Ux/Gx ⇢ Uy/Gy, we have an element g 2 G1 which induces an embedding ⇢g : Ux !
Uy and we have the following commutative diagram:

Ux

⇢g //

⇡x

✏✏

Uy

⇡y

✏✏
Ux/Gx

// Uy/Gy

.

Thus the local equations Equation (18) glue together to

KG0 = ⇡⇤(KX +�)

We may thus regard KX + � as the canonical class of (X,�). As (X,�) has klt
singularities, let a(X) be the index of (X,�), i.e., the minimal natural number such
that a(X)(KX +�) is a Cartier divisor. Let OX(a(X)(KX +�)) be the associated line
bundle on X. Then we have that

OG0(KG0)
⌦a(X) = ⇡⇤OX(a(X)(KX +�)).

Let h be an Hermitian metric on KX . The Hermitian metric h⌦a(X) on K⌦a(X)
X induces

an Hermitian metric on OX(a(X)(KX + �)), since h is G1-invariant. On the other
hand, the pullback of an Hermitian metric on OX(a(X)(KX +�)) by ⇡ will induce an

Hermitian metric on K⌦a(X)
X . In particular, if X is compact, the orbi-bundle K�1

X being
nef is equivalent to �(KX +�) being nef.

We have the following result.

111
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Theorem 9.1 (=Theorem 4.11). Let X be a compact Kähler orbifold with �KX
nef. Let (X,�) be the associated orbifold pair of X . If X is projective, then ⇡orb1 (X ) is
virtually Abelian.

Proof. By Theorem 8.13, there exists a nilpotent subgroup � < ⇡orb(X ) such that
its index [⇡orb(X ) : �] is finite. Let X̃ be the finite cover of X such that ⇡orb1 (X̃ ) = �,
as indicated in Proposition 5.30. For any ✏ > 0 and the Hermitian metric h✏ such that
⇥h✏ � �✏!, we may take the induced metric on �KX̃ . In particular, the orbi-bundle
�KX̃ is nef.

To simplify the notation, we may assume that ⇡orb1 (X ) is nilpotent. Let (X,�) be
the associated orbifold pair. Then its anti-canonical bundle �(KX +�) is nef. [Zha05,
Corollary 2] implies that the Albanese map

↵X : X 99K Alb(X)

is dominant. Recall that the Albanese map of X is defined by the Albanese morphism
of its smooth model. Let r : Y ! (X,�) be a log resolution, we have the following
commutative

Y
r //

↵Y

✏✏

X

↵Xww
Alb(Y ) =: Alb(X)

.

Recall that X has rational singularities (Theorem 5.38). Theorem 2.35 implies that ↵X

is defined on all X. Hence ↵X is surjective. We have that

KY + r�1
⇤ (�) = r⇤(KX +�) +

X
ajEj ,

where Ej ⇢ exc(r) are the irreducible exceptional divisors. We have also that

(19) Y \ (r�1
⇤ (�) [ exc(r)) = Xreg \ |�|.

If lj is a loop in Y around Ej , the composition r � lj will be a loop in X. If lj is
small enough, the loop r � lj will be contained in an open subset U of X such that
(U,�|U ) = [Ũ/G] with Ũ simply connected. Then ⇡1(U,�|U ) = G and we can find a
divisible enough nj such that (r � lj)nj is the unit in ⇡1(X,�). We set

�Y := r�1
⇤ (�) +

X
(1� 1

nj

)Ej .

By Equation (19), the choice of nj and Definition 5.39, we have that

⇡1(Y,�Y ) = ⇡1(X,�).

As r : Y ! X is a log resolution, the support |�Y | of �Y is snc. Assume that r�1
⇤ (Di),

1  i  i0 and Ej , 1  j  j0 are all the components of �Y passing through a point
y 2 Y . There is a holomorphic chart (U,�) centered at y, such that �⇤(�Y |U ) is the
branching divisor of the following map

(z1, ..., zi0 , zi0+1, ..., zi0+j0 , ..., zn) 7! (zm1
1 , ..., z

mi0
i0

, zn1
i0+1, ..., z

nj

i0+j0
, zi0+j0+1, ..., zn)
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Hence (Y,�Y ) is an orbifold pair.
[Cam01, lemme 1.9.9] implies that for the orbifold pair (Y,�Y ), there exists a short

exact sequence
1! K ! ⇡1(Y,�Y )! ⇡1(Y )! 1

with the group K generated by torsion elements.
As ⇡1(Y,�Y ) = ⇡1(X,�) is nilpotent, the quotient ⇡1(Y ) is also nilpotent. By

[Hir38], for any nilpotent group N of finite type, the torsion element of N forms a finite
normal subgroup Ntor E N and the nilpotent limit of N is N/Ntor. By the above exact
sequence, we have that

⇡1(Y,�Y )/⇡1(Y,�Y )tor = ⇡1(Y )/⇡1(Y )tor.

As ↵Y is surjective, [Cam95, Théorème 2.2] implies that

⇡1(Y )/⇡1(Y )tor = ⇡1(Alb(X)).

By [Cla07, Lemme A.0.1], we know that ⇡1(Y,�Y ) is then virtually Abelian. As
⇡1(Y,�Y ) has finite index in ⇡orb1 (X ), we know that ⇡orb1 (X ) is also virtually Abelian. ⇤
Remark 9.2. As one can see from the proof of Theorem 9.1, the hypothesis X is
projective is used only to show that the Albanese morphism is surjective. One may
reformulate Theorem 9.1 as following:

If the covering (X 0,�0) corresponds to the nilpotent subgroup of ⇡1(X,�) has sur-
jective Albanese morphism, then ⇡1(X,�) is virtually Abelian.
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APPENDIX A

Groupoids

We recall here some basic facts in Lie groupoids. For the general results on cat-
egories, we refer the reader to [ML98]. For the Lie groupoids, we refer the reader to
[Mac05][MM03]. In this chapter, all groupoids are small.

1.1. Orbifold Groupoids

Definition A.1. A topological groupoid G consists of a topological space G0 of objects
and a topological space G1 of arrows, together with five continuous structure maps listed
below:

1. The source map s : G1 ! G0, which assigns to each arrow g 2 G1 its source
s(g).

2. The target map t : G1 ! G0, which assigns to each arrow g 2 G1 its target t(g).
For any two objects x, y 2 G0, one writes g : x ! y to indicate that g 2 G1 is
an arrow with s(g) = x and t(g) = y.

3. The composition map m : G1 s⇥t G1 ! G1. If h : y ! z, g : x ! y, then
hg = m(h, g) : x ! z. We have m to be associative, that is m(m(h, g), f) =
m(h,m(g, f)) for any three composable h, g, f .

4. The identity map u : G0 ! G1 which is a two-sided unit for the composition.
5. The inverse map i : G1 ! G1. If g : x ! y 2 G1, then g�1 = i(g) : y ! x is

the two sided inverse to g, i.e., we have g � i(g) = u(y) and i(g) � g = u(x).

One can also consider the topological groupoid as a groupoid (i.e. a category whose
morphisms are all isomorphisms) equipped with two topological structure on the sets of
objects and morphisms such that the structural maps are continuous. We then define
the

Definition A.2. A Lie groupoid is a topological groupoid G where G0 and G1 are
smooth manifolds and all the structure maps s, t,m, u and i are smooth. Furthermore,
s and t are required to be submersions (hence G1 s⇥t G1 is a manifold).

With the topological/smooth structures on G0 and G1, one can define the morphisms
between groupoids to be functors with required continuity/smoothness on the sets of
objects and morphisms. Similarly, a groupoid natural transformation will require the
continuity on the functions assign each objects in source groupoid to the morphisms in
the target groupoid.

Example A.3. Let M be a topological space K a topological group acting on M . One
defines a topological groupoidKnM , by setting (KnM)0 = M and (KnM)1 = K⇥M ,
with (g, x) : x! gx. This groupoid is called the action groupoid or translation groupoid

117
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associated to the group action. Note that if M is a manifold and K a Lie group, then
K nM becomes a Lie groupoid.

Definition A.4. Let G be a Lie groupoid. For a point x 2 G0, we define the isotropy
group Gx of G to be s�1(x) \ t�1(x). And we define the orbit space |G| of G to be the
quotient of G0 by the equivalence relation x ⇠ y i↵ 9 g : x! y.

Lemma A.5 ([Mac05, Corollary 1.4.11]). Let G be a Lie groupoid. Set Gy
x := s�1(x) \

t�1(y). Then Gy
x is a smooth manifold, and the morphism m : Gz

y⇥Gy
x ! Gz

x is smooth.
In particular, Gx is a Lie group.

Now we define types of groupoids.

Definition A.6. Let G be a Lie groupoid.

(a) G is proper, if (s, t) : G1 ! G0 ⇥G0 is proper.
(b) G is called a foliation groupoid if each isotropy group Gx is discrete.
(c) G is étale, if s and t are local di↵eomorphisms. In this case, one defines the

dimension of G to be dim(G) := dim(G0) = dim(G1).

For a G is proper étale, we have that Gy
x is finite. Let G1 3 g : x ! y be an

arrow of G1. As s and t are di↵eomorphisms around g, x and y, we get (via t � s�1)
a local di↵eomorphism �g : Ux ! Uy. After shrinking Ux and Uy, we get a morphism
�yx : Gy

x ! Di↵(Ux, Uy). One can prove that �(hg) = �(h) � �(g). In particular,
� : Gx !Di↵(Ux) is a group morphism.

Definition A.7. We define an orbifold groupoid to be a proper étale Lie groupoid. An
orbifold groupoid G is e↵ective if 8x 2 G0, � : Gx ! Di↵(Ux) is injective.

It turns out that the local structure of an orbifold groupoid G around x 2 G0 is
completely determined by the local group Gx. More precisely, we have the following

Proposition A.8 (cf. [ALR07, Proposition 1.44]). Let G be an orbifold groupoid and x
an element in G0. For any neighborhood G0 � U of x, there exists an open neighborhood
Nx ⇢ U , such that the restriction of G over Nx is isomorphic, as Lie groupoid, to the
translation groupoid GxnNx and the quotient space Nx/Gx is an embedded open subsets
of |G| via the natural morphism G|Nx ,! G.

Definition A.9. A morphism � : H! G between Lie groupoids is called an equivalence
between Lie groupoids if both conditions below are satisfied:

(i) the map
t⇡1 : G1 s ⇥� H0 ! G0

defined on the fibered product of manifolds is a surjective submersion;
(ii) The commutative diagram

H1
�1 //

(s,t)
✏✏

G1

(s,t)
✏✏

H0 ⇥H0
�⇥� // G0 ⇥G0

is Cartesian.
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Note that a homomorphism � : H! G induces a continuous map |H|! |G|. When
� is an equivalence, the induced map on orbit spaces is an homeomorphism.

There this a more subtle equivalent relation between groupoids called Morita equiv-
alence.

Definition A.10. Two Lie groupoids G and G0 are said to be Morita equivalent, if there
exists a third groupoid H and two equivalences

G  H! G0.

We denote the Morita equivalence by G ⇠Morita G0.

It’s not hard to see that Morita equivalance is an equivalence relation. In fact suppose
that G  H ! G0 and G0  H0 ! G00 are two Morita equivalences. We get a Morita
equivalence by considering the following diagram

(G ⇥H G0)⇥G0 (G0 ⇥H0 G00)

✏✏

// G0 ⇥H0 G00

✏✏

// G00

✏✏
G ⇥H G0

✏✏

// G0 //

✏✏

H0

G // H

where the product G ⇥H G0 etc. are 2-fiber products of groupoids. As Lie groupoid
equivalences are stable under 2-fiber products. We have a Morita equivalence between
G and G00.

Definition A.11. We recall several categories related to groupoids.

(1) We denote by LieGrpd the (strict) 2-category of small Lie groupoids.
(2) We denote by Gp the 1-category defined as follows:

(a) Gp has objects Ob(Gp) = Ob(LieGrpd)
(b) ForG1, G2 two groupoids, their morphism is HomGp(G1, G2) = {1-arrow of

HomLieGrpd(G1, G2)}/ ⇠, where f, g 2 HomLieGrpd(G1, G2) are equivalent
if there exists a 2-morphism ↵ : f ) g.

(3) Let W := {[e] is an arrow in Gp: e is an equivalence of Lie groupoid (Defini-
tion A.9) } be the subset of arrows of Gp. The Hilsum-Skandalis cateogry HS
is the localization Gp(W�1) of Gp by W .

We note that HS is in fact defined as a category with Lie groupoids as objects and
isomorphic bi-bundles as morphisms. However [Ler10, Proposition 3.39.] shows that
Gp(W�1) and HS are equivalent. Let G,H be two groupoids. Let G  K ! H be a
Morita equivalence. Then its obvious that HomHS(G,L) is bijective to HomHS(H,L).
We may thus define a pre-relation R0 on the arrows of HS. Let G and H be Morita
equivalent. We say that two 1-arrows f 2 HomHS(G,L) and g 2 HomHS(H,L) are
fR0g if f is mapped to g in the bijection HomHS(G,L) ⇠= HomHS(H,L) induced by the
Morita equivalence. We denote by R the relation generated by R0.
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1.2. G-bundles

Let G = [G1 ◆ G0] be a groupoid. The concept of G-space is a natural generalization
of G-bundles. We refer the reader to [ALR07, Chapter 2] for more details. We only define
vector bundles.

Definition A.12. Let G be a topological groupoid, G1 its arrows and G0 its objects. A
left-G-vector bundle is a triple (E,⇡, µ), where ⇡ : E ! G0 is a vector bundle over G0

and µ : G1 s ⇥⇡ E ! E is a continuous map, satisfying the following

(1) µ(g0g, e) = µ(g0, µ(g, e));
(2) µ(1, e) = e;
(3) µ(g,�) : Es(g) ! Et(g) is a linear isomorphism.

Let E be a left-G-vector bundle over G. We associate with E a groupoid G n E in
the following way:

Set E to be the objects and G1 s⇥⇡E to be the arrows. The source map is (g, e) 7! e
and target map is (g, e) 7! µ(g, e). If e 2 Ex, the identity arrow of e is (1x, e). The inverse
arrow of (g, x) is (g�1, gx). The map ⇡ : E ! G0 extends to a morphism G nE ! G by
taking the objects map ⇡ and the arrows map (g, x) 7! g. We also denote G n E by E

Example A.13 (Pullback of vector bundles). Let H,G be two groupoids and � : H! G
a morphism between groupoid. Let E be a left-G-vector bundle over G. Consider the
pullback vector bundle �⇤0(E) ! H0. It has a natural left-H-vector bundle structure
⌫ : H1 s⇥�⇤0(E)! �⇤0(E), by defining ⌫(h, (x, e)) = µ(�1(h), e). Its associated groupoid
Hn �⇤0(E) fits in the following commutative diagram

Hn �⇤0(E) //

✏✏

E

✏✏
H // G

.

Thus it makes sense to call Hn �⇤0(E) the pullback of E and denote it by �⇤(E).

Example A.14 (Pushforward by equivalence). Suppose that � : H ! G is an equiva-
lence between two orbifold groupoids. Then � as a functor is an equivalence. Applying
Proposition A.8 to both H and G, we have that �0 is a local di↵eomorphism. Let E be
a left-H-vector bundle. We will now construct a left-G-bundle called the pushforward of
E.

Let x 2 G0 be a point in G0. The morphism �0 is an equivalence implies that there
exists a y1 2 H0 and an arrow G1 3 g1 : x ! x1 such that x1 = �0(y1). Let  1 be
the local inverse of �0 at y1 and x1. We thus get a vector bundle g⇤1 

⇤
1(E) around x.

We denote the vector bundle by Fx,g1,y1 . If there is another y2 2 H0 and another arrow
G1 3 g2 : x ! x2 such that x2 = �0(y2), denoting by  2 the local inverse of �0 at y2
and x2, we will get another vector bundle Fx,g2,y2 := g⇤2 

⇤
2(E). As � is an equivalence,

we have a unique h 2 H1 such that �1(h) = g1g
�1
2 . There is a canonical isomorphism

Fx,g1,y1 ! Fx,g2,y2 induced by h.
In fact, let Hy1 , Hy2 ⇢ H0 be two neighbourhoods of y1 and y2 respectively such that

h : y2 ! y1 induces a di↵eomorphism Hy2
⇠= Hy1 . As E is a left-H-bundle, we have the

following commutative diagram
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E|Hy2

✏✏

h // E|Hy1

✏✏
Hy2

h // Hy1

And hence a canonical isomorphism h : E|Hy2
⇠= h⇤(E|Hy1

) induced by h. Now we have
canonical isomorphisms:

g⇤2 
⇤
2(E|Hy2

) ⇠= g⇤2 
⇤
2h

⇤(E|Hy1
) ⇠= g⇤2(g1g

�1
2 )⇤ ⇤

1(E|Hy1
) ⇠= g⇤1 

⇤
1(E|Hy1

).

Thus we get an open covering {Ux,g,y} of G0 and a family of vector bundles Fx,g,y

over Ux,g,y. We can verify that they satisfy the cocycle condition and hence glue up to
a vector bundle on G0. From the construction, this vector bundle is actually a left-G-
vector bundle. We call it the pushfoward of E and denote it by �⇤(E). We have the
relation �⇤�⇤(E) = E .

If either H or G fails to be orbifold groupoid, the �0 fails in general to be local
di↵eomorphism. This happens, for example when we consider the Morita equivalence
e : G  K ! H. Even G and H are orbifold groupoids, K needs not to be an orbifold
groupoid. Hence the above explicit construction can not be used on Morita equivalence.
However, we have

Proposition A.15 (cf. [MP97, page 11 Remark (4)]). Let e : G  K ! H be a
Morita equivalence between two topological groupoids. Then e induces an equivalence
e⇤ : Sh(H)! Sh(G) between two topoi.
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Math., Inst. Hautes Étud. Sci., 4:1–228, 1960. 30
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Titre :  Deux résultats sur la classification des variétés singulières à classe canonique semi-
négative  

Mots clés :  variétés polarisées, singularités slc, géométrie birationelle, orbifoldes, lemme de 
Margulis, groupes fundamentaux 

Résumé :  Le sujet de cette thèse est d'étudier 
le problème de classification des espaces 
singuliers sous deux hypothèses différentes sur 
la positivité de la classe anti-canonique des 
espaces et de leurs singularités dans ces deux 
conditions différentes. Nous appliquerons des 
méthodes assez différentes dans ces deux 
contextes. 
Dans la première partie, nous étudions un 

problème de classification des variétés 
polarisées. Pour la positivité des classes anti-
canoniques, nous supposons que les variétés 
ont une nefvalue élevée, ou en d'autres termes, 
leurs classes anti-canoniques sont assez 
positives. Nous donnons une liste complète des 
classes d'isomorphisme des variétés polarisées 
normales avec une nefvalue élevée Cela 
généralise le travail classique sur le cas lisse de 
Fujita, Beltramitti et Sommese. En 
conséquence, nous obtenons que les variétés 
polarisées avec des singularités slc et une 
nefvalue élevée sont birationnellement 
équivalentes à des fibrés projectifs sur des 
courbes nodales. 

Dans la deuxième partie, nous considérons 
une classe spécifique d'espaces singuliers, à 
savoir les orbifoldes. Une orbifolde a des 
singularités quotients. Par conséquence, nous 
avons des singularités mieux contrôlées dans 
ce contexte par rapport à celles considérées 
dans la première partie. Nous supposons 
également que ces orbifoldes sont 
kähleriennes compactes avec des classes anti-
canoniques nef au sens des orbifoldes. Nous 
étudierons la topologie de ces orbifoldes à 
travers leurs groupes fondamentaux orbifoldes. 
Dans cette partie, nous exploiterons 
pleinement l'hypothèse orbifolde en appliquant 
des résultats de géométrie différentielle et de la 
géométrie métrique sur orbifolds. Nous 
montrerons qu'une orbifolde kählerienne 
compacte dont la classe anti-canonique est nef 
a un groupe fondamental orbifolde 
virtuellement nilpotent 

 

Title :  Two results on the classification of singular spaces with semi-negative canonical class 

Keywords :  polarized varieties, slc 
singularities, birational geometry, orbifolds, 
Margulis lemma, fundamental groups  
Abstract :  The subject of this thesis is to study 
the classification problem for singular spaces 
under two different assumptions on the positivity 
of the anti-canonical class of the spaces and 
their singularities in these two different setups . 
We will apply quite different methods for these 
two assumptions. 
 
In the first part, we study the classification 
problem for polarized varieties. For the positivity 
of the anti-canonical classes, we assume that 
the varieties have high nefvalue, or in other 
words, their anti-canonical classes are quite 
positive. We give a complete list of isomorphism 
classes for normal polarized varieties with high 
nefvalue. This generalizes classical work on the 
smooth case by Fujita, Beltrametti and 
Sommese. As a consequence we obtain that  
polarized varieties with slc singularities and high 
nefvalue,  are birationally equivalent to 
projective bundles over nodal curves. 
 

In the second part, we consider a specific class 
of singular spaces, namely the orbifolds. An 
orbifold has quotient singularities. Hence we 
have milder singularities in this context 
compared to those considered in first part. We 
also assume that these orbifolds are compact 
Kähler with nef anti-canonical classes in the 
orbifold sense. We will study the topology of 
these orbifolds by characterizing their orbifold 
fundamental groups. In this part, we will fully 
exploit the orbifold assumption by applying 
results from differential geometry and metric 
geometry on orbifolds. We will show that a 
compact Kähler orbifold with nef anti-canonical 
class has virtually nilpotent orbifold 
fundamental group. 
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