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RÉSUMÉ

Introduction

L’analyse des données d’observation de la Terre joue un rôle majeur dans la façon
dont nous comprenons notre planète et son fonctionnement. En effet, la quantité tou-
jours croissante de données d’imagerie de télédétection au cours des dernières dé-
cennies a permis de nouveaux développements dans les domaines de l’écologie, de
l’urbanisme ou de la réponse aux catastrophes naturelles, et sera certainement cru-
ciale dans la lutte contre le changement climatique, en surveillant en permanence la
déforestation, l’élévation du niveau des mers et les émissions de gaz à effet de serre
dans l’atmosphère.

Les technologies de télédétection nous permettent de voir ce que nous ne sommes
pas en mesure d’observer de nos propres yeux. Elles permettent de recueillir des infor-
mations sur notre planète en exploitant le fait que lesmatériaux présents dans une scène
reflètent, absorbent et émettent des rayonnements électromagnétiques de manière dif-
férente selon leur composition moléculaire et leur forme [1].

L’histoire des satellites d’observation de la Terre a commencé en 1947 avec Spout-
nik 1.Depuis, les efforts se sontmultipliés et, à ce jour, plus de 150 satellites d’observation
de la Terre sont actuellement en orbite. Ces constellations de satellites ont fourni un
déluge de données d’observation de la Terre, avec des volumes de stockage dépassant
des dizaines de pétaoctets, acquérant plus de centaines de téraoctets de données par
jour. Les satellites Sentinel-2 fournissent à eux seuls plus de 20 To de données par
jour [2, 3]. L’interprétation et la compréhension de l’imagerie satellitaire nécessitent
une certaine expertise du domaine, combinant la connaissance de la physique des cap-
teurs et celle de l’application considérée. Cependant, l’exploitation de ces quantités gar-
gantuesques de données n’est pas humainement possible. L’analyse automatique des
images d’observation de la Terre semble être le seul moyen d’extraire les informations
contenues dans ces données.

Au cours de la dernière décennie, les techniques d’apprentissage profond - et la
croissance conséquente de la puissance de calcul - ont transformé les domaines de la
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Résumé en français

vision par ordinateur et du traitement des images. Plus récemment, l’apprentissage pro-
fond a démontré son potentiel pour résoudre les problèmes des sciences de la Terre et
du climat [2, 4, 5]. Ces techniques représentent des outils prometteurs pour construire
de nouveaux modèles orientés aux données pour l’observation de la Terre.

Malheureusement, la plupart des algorithmes d’apprentissage développés à ce jour
dépendent fortement de la disponibilité de bases de données massives d’images an-
notées. En général, les données étiquetées sont difficiles à obtenir, ce qui nécessite des
ressources, du temps et des connaissances spécialisées. De plus, il n’existe pas demoyen
efficace de fournir des étiquettes annotées par des humains pour l’immensité des don-
nées de télédetection disponibles. D’autre part, les données brutes -sans étiquettes- sont
abondantes, surtout en télédétection où les satellites génèrent des données en continu.
Pour cette raison, nous sommes convaincus que les méthodes semi-supervisées -qui
exploitent les données non étiquetées pour aider le processus d’apprentissage- seront
essentielles pour pousser plus loin les capacités de généralisation des modèles.

Par conséquent, l’objectif principal de cette thèse est d’avancer sur la voie de la car-
tographie automatique à grande échelle. A cette fin, nous travaillons sur l’analyse et le
développement de nouvelles méthodes semi-supervisées qui permettraient d’exploiter
l’abondance d’images de télédétection non étiquetées et de surpasser l’état de l’art
actuel basé sur des modèles entièrement supervisés.

Ce travail se situe alors à l’intersection de trois domaines : la télédétection pour
l’observation de la Terre, l’apprentissage automatique et la vision par ordinateur. Cette
thèse vise à développer des techniques d’apprentissage automatique (en particulier,
l’apprentissage profond) et de vision par ordinateur au service des applications de
télédétection, en utilisant des images d’observation de la Terre.

Objectifs

L’objectif général de ce travail est de progresser vers la compréhension des données
d’observation de la Terre à grande échelle par des méthodes semi-supervisées. En
effet, il n’est pas possible aujourd’hui d’obtenir des données étiquetées à grande échelle
et une solution envisageable pour améliorer les capacités de généralisation desmodèles
est d’exploiter l’abondance de données non étiquetées disponibles dans le domaine, en
intégrant toutes les connaissances qui leur sont intrinsèquement imprimées. À cette fin,
nous abordons le problème principalement sous deux angles :
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▶ Les données. La segmentation sémantique semi-supervisée est une tâche relative-
ment nouvelle. Par conséquent, avant ce travail et à notre connaissance, il n’existait
aucun jeu de données permettant de comparer équitablement les méthodes semi-
supervisées de segmentation sémantique dans le domaine.

▶ Les algorithmes. Comment intégrer des données non étiquetées dans les mod-
èles de segmentation sémantique et de classification de scènes ? Faut-il aborder le
problème d’un point de vue discriminatif ou génératif ?

Enfin, un point important et peut-être un concept clé à garder à l’esprit comme ob-
jectif de cette thèse est la généralisation. En effet, il n’est pas possible, à ce jour, d’obtenir
des données étiquetées à l’échelle mondiale. Comment généraliser à travers des lieux
géographiques lorsque les étiquettes ne sont disponibles qu’à partir d’un lieu spéci-
fique ? Même s’il n’y a pas de chapitre spécialement consacré à la généralisation, ce
concept est constamment mentionné tout au long de cet ouvrage.
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Figure 1 – Ce travail porte sur l’apprentissage semi-supervisé pour la compréhension
des données d’observation de la Terre. Le but est de tirer parti de quelques données éti-
quetées et de grandes quantités d’échantillons non étiquetés pour entraîner des mod-
èles pour la cartographie de l’utilisation des sols. Nous abordons le sujet sous deux
angles : les données, en fournissant des outils pour l’analyse des données et une nou-
velle base des données pour la segmentation sémantique semi-supervisée –MiniFrance
; et les algorithmes, en étudiant les méthodes discriminatives et génératives pour con-
struire des modèles avec de bonnes capacités de généralisation.
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Contributions

Chapitre 2
Le potentiel de l’apprentissage semi-supervisé pour
l’observation de la Terre

Ce chapitre présente une analyse des jeux de données d’observation de la Terre
existants d’un point de vue critique : modèlent-ils les applications de télédétection
réelles ? Qu’attendons-nous d’un bon jeu de données ? Dans les applications générales
d’OT, on aimerait entraîner unmodèle qui généralise correctement à différents endroits
géographiques. De plus, on a généralement accès à très peu de données étiquetées,
alors que de nombreuses données non étiquetées sont disponibles. Par conséquent, les
jeux de données doivent simuler ces situations pour être considérés comme un repère
d’évaluation approprié et fiable.

En outre, nous étudions les capacités d’apprentissage des approches supervisées
actuelles dans différents contextes : sur des jeux de données à petite échelle et dans
une configuration à grande échelle et à plusieurs endroits. Nos expériences montrent
que les réseaux de segmentation sémantique supervisés courants ont des problèmes de
généralisation dans un contexte à grande échelle. Il existe donc une opportunité pour de
nouveaux paradigmes d’apprentissage : apprentissage semi-supervisé, apprentissage
faiblement supervisé, apprentissage actif, etc. Dans ce travail, nous nous concentrons
sur les techniques d’apprentissage semi-supervisé, car la pléthore de données d’OT non
étiquetées disponibles devrait être exploitée pour développer des modèles robustes et
génériques.

Enfin, ce chapitre présente la suiteMiniFrance, un nouveau jeu de données à grande
échelle conçu pour la segmentation sémantique semi-supervisée dans l’observation de
la Terre. MiniFrance possède des propriétés sans précédent, la diversité des paysages
et des scènes reflète la complexité de la réalité. Par-dessus tout, il a été soigneusement
conçu pour l’apprentissage semi-supervisé, en incluant des données étiquetées et non
étiquetées dans sa partition d’entraînement et en recréant un cadre d’application réal-
iste, ce qui rendMiniFrance unique. En plus de cette base de données, nous présentons
une analyse complète des données en termes de similarité d’apparence et de représenta-
tivité,montrant queMiniFrance est bien adapté pour traiter le problème semi-supervisé.
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Chapitre 3
Les méthodes discriminatives pour l’apprentissage semi-supervisé

Ce chapitre est consacré à l’étude de l’apprentissage semi-supervisé dans une per-
spective discriminative. Dans ce contexte, nous étudions deux familles d’algorithmes :
les méthodes d’apprentissage multi-tâche et les approches basées sur la régularisation
de la cohérence.

Dans le cadre de l’apprentissage multi-tâche, nous présentons des réseaux de neu-
rones profondsmulti-tâche pour effectuer la segmentation sémantique semi-supervisée.
En particulier, nous proposons BerundaNet – une extension simple des architectures
classiques d’encodeur-décodeur – qui s’avère très efficace dans la tâche semi-supervisée.
Avec ces architectures, nous explorons les fonctions de perte auxiliaires non supervisées
à utiliser en parallèle avec la segmentation sémantique. En particulier, nous proposons
la perte k-means relaxée pour effectuer une segmentation d’image non supervisée.

Nos expériences sur trois jeux de données disponibles publiquement pour la seg-
mentation sémantique semi-supervisée ont montré que nous pouvons bénéficier de
données non étiquetées pendant le processus d’apprentissage pour améliorer les cartes
de segmentation sémantique. En effet, les approches semi-supervisées permettent de
générer des prédictions plus fines et plus homogènes. Nous avons également observé
qu’une architecture simple commeBerundaNet-late avec un backbone approprié comme
U-Net est suffisante pour améliorer les performances de segmentation.

Néanmoins, le problème de l’apprentissage semi-supervisé n’est pas encore résolu.
Nous avons vu que ces approchesmulti-tâches peuvent améliorer les résultats de la seg-
mentation sémantique,mais ce n’est pas toujours le cas. Dans une approchemulti-tâche
comme celles présentées dans ce chapitre, il faut faire attention au choix de l’architecture
et de la tâche auxiliaire à réaliser en parallèle. En outre, il existe d’autres façons de
résoudre le problème de la semi-supervision. Par exemple, on peut développer des
modèles génératifs pour apprendre la distribution intrinsèque des données à partir
d’exemples étiquetés et non étiquetés et utiliser cette information avec les étiquettes
pour améliorer la segmentation. Une autre possibilité consiste à utiliser des méthodes
de pseudo-étiquetage qui propagent les étiquettes des exemples annotés à travers les
exemples non annotés, sur la base d’un critère de confiance, afin d’élargir les données
d’apprentissage disponibles.

La deuxième partie du chapitre explore les méthodes basées sur le principe de régu-
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larisation de la cohérence. La régularisation de la cohérence est l’une des techniques les
plus largement appliquées dans les algorithmes actuels de classification semi-supervisée.
Elle applique l’idée qu’un modèle doit produire des prédictions similaires pour des ex-
emples sémantiquement similaires. Nous présentons un cadre théorique basé sur la
minimisation du risque vicinal pour justifier l’utilisation de la régularisation de co-
hérence. Ensuite, nous présentons FixMatch, la méthode de pointe actuelle pour la
classification semi-supervisée en vision par ordinateur. Enfin, nous avons réalisé des
expériences sur deux jeux de données d’observation de la Terre accessibles au public
pour la classification de scènes.

Nos expériences démontrent l’efficacité et la transférabilité de méthodes telles que
FixMatch au domaine de l’observation de la Terre. De plus, elles montrent que la régu-
larisationde la cohérence, avec le bon ensemble de transformations dedonnées, améliore
la robustesse des modèles par rapport aux changements de domaine, ce qui est une car-
actéristique souhaitable dans les applications d’obsertation de la Terre.

Chapitre 4
Les méthodes génératives pour l’apprentissage semi-supervisé

Ce chapitre étudie l’apprentissage semi-supervisé d’un point de vue génératif. À
cette fin, nous définisons d’abord ce que sont les modèles génératifs et expliquons
brièvement les grands principes des différents cadres génératifs profonds.

Malgré certains inconvénients, les modèles basés sur l’énergie présentent plusieurs
avantages par rapport aux autres modèles génératifs. Ils capturent toutes les informa-
tions sur les entrées uniquement à travers une valeur scalaire, l’énergie. L’estimation
de l’énergie par le biais d’un réseau de neurones permet de modéliser des distribu-
tions complexes, ce qui rend les EBM très intéressants pour plusieurs applications,
notamment la génération, la détection d’exemples hors-distribution, etc. De plus, leur
simplicité permet d’intégrer naturellement l’information de l’étiquette dans le modèle,
en estimant une fonction d’énergie jointe E(x, y), avec très peu de changements sur
l’architecture du réseau de neurones à utiliser, et aucun changement sur le processus
d’optimisation.

Dans ce contexte, nous considérons une méthode récente qui permet d’entraîner les
réseauxde neurones à effectuer conjointement la classification et la générationd’images.
Nous appliquons ce modèle aux données de télédétection. En réinterprétant les sorties
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d’un réseau de classification, le modèle conjoint basé sur l’énergie (JEM) exprime la
distribution jointe des paires image-étiquette comme un modèle basé sur l’énergie. En
pratique, il nous permet d’entraîner un classifieur robuste et d’estimer la distribution
sous-jacente des données, simultanément. De plus, ce modèle hybride est bien adapté
et s’étend naturellement à l’apprentissage semi-supervisé.

Cette application séminale de JEM aux données d’observation de la Terre a con-
duit à plusieurs conclusions importantes. Tout d’abord, dans les jeux de données à
petite échelle comme EuroSAT, nous observons que JEM est un classifieur puissant
dont les performances sont comparables à celles des méthodes de pointe. Plus intéres-
sant encore, dans le cadre semi-supervisé, lorsque très peu d’exemples étiquetés sont
disponibles, JEM est supérieur à un réseau supervisé standard, tant en termes de scores
de classification que de robustesse (c’est-à-dire, il est mieux calibré). Deuxièmement,
avec des jeux de données plus réalistes et à grande échelle comme So2Sat, JEM présente
des propriétés de généralisation exceptionnelles, avec de meilleures performances que
les classifieurs habituels dans les contextes supervisé et semi-supervisé. Cependant, les
travaux futurs pourraient se concentrer sur l’intégration dans JEM des mécanismes de
FixMatch spécialement conçus pour l’apprentissage semi-supervisé, à savoir les tech-
niques d’augmentation des données, le pseudo-étiquetage ou les stratégies de régular-
isation de la cohérence. Le défi consiste à augmenter les données de manière réaliste,
et l’estimation de la distribution fournie par JEM pourrait être un atout à cet égard.

Nous avons également démontré que JEM est capable d’estimer correctement la dis-
tribution des données, ce qui nous permet de générer des images fidèles et diverses.
L’estimation de la distribution des données permet au modèle de détecter les échantil-
lons hors distribution et donc de décider s’il peut être utilisé de manière fiable dans un
nouveau domaine. Cela donne à JEM la capacité de classer les zones non vues avec une
carte de confiance basée sur la log-vraisemblance estimée par le modèle.

Malgré les limites et les problèmes de convergence de l’entraînement des modèles
basés sur l’énergie, nous avons montré par nos expériences plusieurs applications in-
téressantes en télédétection pour ce type de modèle hybride discriminatif-génératif,
comme l’apprentissage semi-supervisé, la détection de la non-répartition ou la généra-
tion de nouvelles données synthétiques réalistes. C’est un point de départ pour ouvrir
la voie aux applications réelles de demain.

Enfin, nous présentons une extension théorique de cemodèle d’énergie à la segmen-
tation sémantique. Cependant, l’application pratique de cette extension n’en est qu’à ses
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débuts, elle est donc laissée ouverte comme perspective pour de travaux futurs.

Publications

Le travail présenté dans cemanuscrit a donné lieu à des publications dans des revues
à comité de lecture, comme nous le détaillons ci-dessous :

Journal articles

[J1] J. Castillo-Navarro, B. Le Saux, A. Boulch, and S. Lefèvre, « Energy-based mod-
els in Earth observation: from generation to semi-supervised learning », IEEE
Transactions on Geoscience and Remote Sensing, vol. 60, 2022.

[J2] J. Castillo-Navarro, B. Le Saux, A. Boulch, N. Audebert, and S. Lefèvre, « Semi-
supervised semantic segmentation in Earth observation: the MiniFrance suite,
dataset analysis and multi-task network study », Machine Learning, pp. 1–36,
2021 (cit. on pp. 60, 147).

Conference articles

[C1] J. Castillo-Navarro, N. Audebert, A. Boulch, B. Le Saux, and S. Lefèvre, «What
data are needed for semantic segmentation in Earth observation? », in 2019 Joint
Urban Remote Sensing Event (JURSE), IEEE, 2019.

[C2] J. Castillo-Navarro, B. Le Saux, A. Boulch, and S. Lefèvre, « Réseaux de neurones
semi-supervisés pour la segmentation sémantique en télédétection », in Colloque
GRETSI, 2019.

[C3] J. Castillo-Navarro, B. Le Saux, A. Boulch, and S. Lefèvre, « On auxiliary losses
for semi-supervised semantic segmentation », in European Conference onMachine
Learning and Principles and Practice of Knowledge Discovery Workshops (ECML-
PKDDW) - MACLEAN, 2020.

[C4] J. Castillo-Navarro, B. Le Saux, A. Boulch, and S. Lefèvre, « Classification and
generation of Earth observation images using a joint energy-based model », in
IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2021.
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els for Earth observation applications », in Proceedings of the International Con-
ference on Learning Representations - Energy Based Models Workshop - (ICLR-W),
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Others
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Figure 2 – Global imagery of the Earth, together with the European Corine Land Cover
map. Even using one of the largest label sources available, labeled images are only a
tiny fraction of all imagery available, furthermore taking into account the revisiting of
the satellites which image the same zone of the globe repeatedly. How can we leverage
the massive amounts of unlabeled data available? World Imagery by Esri. Corine land
cover from the Copernicus program.
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Introduction

Context

Earth Observation (EO) data analysis plays a major role in the way we understand
our planet and its dynamics. Indeed, the ever-growing amount of remote sensing im-
agery data in the last decades has opened the way to new developments in the fields of
ecology, urban planning, or natural disaster response [13], and will certainly be crucial
on the battle against climate change, by continuously monitoring deforestation, rising
sea levels and greenhouse gas emissions in the atmosphere.

Furthermore, observing the Earth from above is not only useful for our present and
future, but also to learn and understand our past. In 2020, all the world was astonished
by the news 3 when the most ancient Maya temple was discovered thanks to LiDAR 4

technology [14], as shown in Fig. 3.

Aerial image LiDAR

Figure 3 – An aerial image of the Aguada Fénix site shows how the monument hides
in the lands (left). Thanks to a 3D LiDAR-produced image, the monumental platform
was discovered (right). Photographs by Takeshi Inomata.

Remote sensing technologies allow us to see what we are not able to observe with
our own eyes. They capture information about our planet by leveraging the fact thatma-
terials in a scene reflect, absorb, and emit electromagnetic radiation in a different way
depending of theirmolecular composition and shape [1]. Thus, remote sensing systems
carry sensors that measure different sections of the electromagnetic spectrum: reflected
visible light or electromagnetic radiation that is invisible to the human eye, like ultra-

3. National Geographic’s article.
4. Light Detection and Ranging (LiDAR) is a remote sensing method that uses light in the form of a

pulsed laser to measure ranges (variable distances) to the Earth. This process generates precise, three-
dimensional information about the shape of the Earth and its surface characteristics.
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violet (UV), infrared (IR) or microwave radiation. The fact that satellites measure in
different spectral wavelengths is used for obtaining information about the objects, fea-
tures or properties under study. Different sensors give rise to different kinds of remote
sensing imagery, including multi-spectral, hyper-spectral, SAR, LiDAR, etc.

Even though the first images of Earth from space were taken in 1946 from a camera
attached to a rocket over NewMexico, it was the launching of Sputnik 1 –in 1957– that
marked the beginning of the satellite remote sensing era. Sputnik 1 transmitted radio
signals that were received on Earth. It was in 1959, that the Explorer 6 took the first
photos of our planet Earth from a satellite. Ever since, efforts have multiplied and as of
today, more than 150 Earth observation satellites are currently in orbit. They not only
provide spectacular views of our planet, but also significant scientific insights at a global
scale. For instance, Sentinel-2 satellites image the entire Earth in only 5 days.

These satellite constellations have provided a deluge of Earth observation data, with
storage volumes beyond dozens of petabytes 5, acquiring more than hundreds of ter-
abytes of data per day. For instance, Sentinel-2 satellites alone provide more than 20 TB
of data per day [2, 3]. Interpreting and understanding satellite imagery require a certain
domain expertise, combining knowledge of the physics of the sensors and knowledge
of the considered application. However, exploiting these gargantuan amounts of data
is not humanly possible. Automatic Earth observation image analysis seems to be the
way to extract the insightful information contained in those data.

In the last decade, deep learning techniques –and the consequential growth of com-
puting power– have transformed the fields of computer vision and image processing.
More recently, deep learning has shown increasing evidence of the potential to address
problems in Earth and climate sciences as well [2, 4, 5]. These techniques represent
promising tools to build new data-driven models for Earth observation.

Unfortunately, most of the learning algorithms developed to date heavily rely on
the availability of massive annotated image databases. In general, labeled data are hard
to obtain, necessitating resources, time and expert knowledge. Moreover, there is no
efficient way to deliver humanly annotated labels for the immensity of EO data avail-
able. On the other hand, raw data –without labels– are abundant, especially in remote
sensing where satellites generate data continuously, as illustrated by Fig. 2. Because of
this, we are convinced that semi-supervised methods –which leverage unlabeled data
to help on the learning process– will be essential to push further the generalization

5. 1 petabyte = 1015 bytes.
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capacities of the models.
Therefore, the main goal of this thesis is to advance in the road toward large-scale

automated cartography. To this end, we work on the analysis and development of new
semi-supervisedmethods that leverage the abundance of unlabeled remote sensing im-
agery andmake our best to go beyond current state-of-the-art fully supervised models.

This work is then at the crossroads of three domains: remote sensing for Earth ob-
servation, machine learning and computer vision. Remote sensing involves all the tech-
niques of observing and analyzing objects from a distance. When it comes to Earth
observation, remote sensing often refers to information collected through Earth obser-
vation satellites, but it may also include airborne or UAV 6 collected data. Among all the
possible applications of Earth observation, in this work we focus on land use and land
cover mapping of the Earth. Machine learning is the subfield of computer science that
studies algorithms that can learn and improve automatically through experience and by
the use of data. In particular, this study involves deep learning, a specific branch of ma-
chine learning that uses neural networks at its core. In particular, in this thesis we study
and develop classification and segmentation algorithms, since they are related to the
land use and land cover mapping problem. Finally, computer vision comprises all the
techniques developed for automatic interpretation of images. Similarly to the human
vision system, computer vision aims to extract useful information from images, adress-
ing tasks such as image classification, object detection, segmentation, just to name a few
examples. In this work we exploit these techniques for information extraction, analysis
and understanding of Earth observation images.

In this way, this thesis aims to develop deep learning and computer vision tech-
niques to serve remote sensing and Earth observation applications, using EO imagery.

6. Unmanned aerial vehicles, also known as drones.
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Objectives

The general objective of this work is to progress toward large-scale cartography
and Earth observation data understanding through semi-supervised methods. In-
deed, today it is not possible to obtain labeled data at a large-scale and a feasible solu-
tion to improve the generalization capacities of our models consists in leveraging the
abundance of unlabeled data in the field, integrating all the knowledge intrinsically
imprinted on them. To this end, we address the problem from mainly two angles:

▶ The data. Semi-supervised semantic segmentation is a relatively new task. There-
fore, before this work and to the best of our knowledge, there was no dataset that
allowed us to fairly compare semi-supervisedmethods for semantic segmentation
in the field.

▶ The algorithms.How to integrate unlabeled data into semantic segmentation and
scene classificationmodels? Shouldwe address the problem fromadiscriminative
or a generative perspective?

Finally, an important point and key concept to keep inmind as a goal for this thesis is
generalization. Indeed, it is not possible 7 to obtain labeled data at a global-scale. How
to generalize across geographic locations when labels are available only from a specific
location? Even if there is no chapter especially devoted to generalization, this concept
is constantly mentioned throughout this work. Fig. 4 summarizes our main goal, the
use-case and our approaches.

In consequence, this manuscript addresses the following research questions:

1. Are unlabeled data useful to perform semantic mapping? Is supervised learn-
ing with existing datasets sufficient to achieve large-scale mapping? How do we
measure the information contained in a dataset? In our experiments, we show the
limits and the potential of unlabeled data depending on the complexity of the
task. We also propose new tools to analyse multi-location datasets, as it is usually
the case in EO.

2. Canwe adapt discriminativemodels to perform semi-supervised learning?How
can we integrate unlabeled data into the training process of neural networks?
Do they improve their performance? We develop multi-task methods for semi-
supervised semantic segmentation and study techniques based on consistency

7. as of today.
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Figure 4 – Thiswork focuses on semi-supervised learning for Earth observation data un-
derstanding. Our goal is to leverage few labeled data and large amounts of unlabeled
samples to train models for land use and land cover mapping. We tackle the subject
from two angles: the data, providing tools for data analysis and a new benchmark for
semi-supervised semantic segmentation –MiniFrance; and the algorithms, investigat-
ing discriminative and generative methods to build models with good generalization
capacities.

regularization for semi-supervised scene classification. We show that integrating
unlabeled data improves the performance on these tasks and yields better gener-
alization on unseen geographic areas.

3. Shouldweuse generativemodels for semi-supervised learning?Howcanwe in-
tegrate label information into a traditionally unsupervised learningprocess? Is the
estimation of data distribution useful for classification purposes?We study gener-
ative models like energy-based models –in particular a joint energy-based model
(JEM)– in EO use-cases. We show that generative models are clearly a promising
direction, providing more interpretable models with good generalization capaci-
ties. However, they are still at an early stage, due to task learning complexity.
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Organization of this document

In order to establish the basis to fully understand the content and contributions of
this thesis work, Chapter 1 defines the main concepts that are recurrently mentioned in
this manuscript, summarizes the main tools that are used along this study, and gives
an overview of previous research directly related to this subject.

Our scientific contributions are presented in Chapters 2, 3 and 4. Chapter 2 performs
a critical analysis to current supervised learning in EO and brings out other possibili-
ties to achieve good generalization at a large-scale, such as semi-supervised learning.
In this regard, the MiniFrance suite is presented, the first dataset especially designed
to benchmark semi-supervised algorithms in the field. Moreover, tools for representa-
tiveness assessment of multi-location data are developed and applied to MiniFrance to
have a thorough understanding of this dataset.

Chapter 3 explores semi-supervised learning in Earth observation with discrimi-
native models. The first part of this chapter develops multi-task approaches for semi-
supervised semantic segmentation. Several experiments are performed to assess their
performances and capacities. The second part of this chapter is devoted to the study
of methods based on the consistency regularization principle. In particular, state-of-
the-art methods for semi-supervised classification in computer vision are evaluated on
remote sensing data, demonstrating their potential in the field.

The use of generative models for semi-supervised learning and various Earth ob-
servation applications is investigated in Chapter 4. In particular, this chapter presents
a thorough study of a recent energy-based framework, showing that this kind of mod-
els can be successfully applied to Earth observation data. Moreover, the conducted re-
search shows the capabilities of such versatile models for several applications of high
interest in Earth observation.

Finally, the Conclusion chapter closes this manuscript, summarizing the main con-
tributions and conclusions of this work. Moreover, it presents some perspectives on
future projects (either short or long term) to continue the research on semi-supervised
learning in the field of remote sensing.

27

Apprentissage semi-supervisé pour la compréhension des données d’observation de la Terre à large-échelle Javiera Castillo-Navarro 2022



Introduction

Publications

The work presented in this manuscript has given rise to publications in peer re-
viewed venues, as we detail below:
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[J1] J. Castillo-Navarro, B. Le Saux, A. Boulch, and S. Lefèvre, « Energy-based mod-
els in Earth observation: from generation to semi-supervised learning », IEEE
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Chapter summary

This work is at the intersection of different fields of research, like computer vision,
deep learning and Earth observation applications and is based onmany previousworks
developed by researchers over decades.

This chapter attempts to present the fundamental concepts and frameworks onwhich
this thesis relies. First, we define what semantic segmentation is and establish its con-
nection to cartography in remote sensing. Secondly, we present differentmachine learn-
ing paradigms according to the nature of available data or the kind of task to perform.
Finally, we outline the principles of deep learning and delve into neural networks for
image understanding; we present the essentials of deep semi-supervised learning and
conclude the chapter with a brief overview of deep learning for Earth observation ap-
plications.

1.1 Semantic segmentation

The human brain has a natural ability for pattern recognition. Indeed, humans are
able to quickly identify structures and shapes, organizing information into meaningful
parts. Our vision system has evolved in such a way that it is able to enhance contours,
distinguish features, get a visual perception and recognize objects [15].

Image Classification Object detection

Semantic segmentation Instance segmentation Panoptic segmentation

Figure 1.1 – Example of different vision tasks. Figure borrowed from [16].
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Computer scientists have tried tomimic these human abilitieswith computers. Thereby,
modern computer vision tasks have been defined, including image classification, object
detection and different kinds of image segmentation, as shown in Fig. 1.1. In particular,
image segmentation corresponds to the task of dividing an image into non-overlapping
meaningful entities, called segments. A segment is a set of pixels that share some char-
acteristics (texture, color, etc.). Image segmentation has been a well-studied problem in
computer vision and different approaches have been developed, like clustering-based
approaches, superpixel segmentation, etc.

Yet, the previous definition of segmentation is somehow ambiguous. We would ex-
pect that a segmentation algorithm decomposes an image into objects or meaningful
segments. However, can we define precisely what makes a “meaningful segment”? It
could be an item, like a bottle, a table or a rabbit; or it could be a color; or a texture, like
wood, rocks, etc. Fig. 1.2 illustrates how human perception of “meaningful segments”
can vary. Indeed, it shows an example where different human annotators have different
ways of interpreting the same scene.

Image Annotator 1 Annotator 2 Annotator 3 Annotator 4

Figure 1.2 – Image from Berkeley segmentation dataset [17] with hand labels produced
by four different human annotators. These images reveal the variety of human percep-
tion and reflect the ambiguity in the previous segmentation definition.

Semantic segmentation refines this definition. The idea of semantic segmentation
is to divide an image into semantically meaningful segments. In other words, it consists
in the process of assigning a class label to every pixel on an image. It is a relevant and
challenging task in computer vision because it implies understanding the context of
a scene or an image, and has been extensively studied because of its multiple, high-
potential applications in several domains, such as autonomous driving, computer aided

33

Apprentissage semi-supervisé pour la compréhension des données d’observation de la Terre à large-échelle Javiera Castillo-Navarro 2022



Chapter 1 – Related work

diagnosis, robot vision and understanding, etc.
The main goal of this thesis work is to progress toward large-scale cartography,

namely, land use and land cover mapping of remote sensing imagery. Land use and
land cover maps, both represent spatial information of different classes 1 of physical
coverage or use of the Earth’s surfaces. If we represent the surface of our planet as an
image, land use and land cover maps correspond exactly to the semantic segmentation
of the image, which explains our interest in this particular task.

Even if segmentation seems to be a very natural skill for humans [18], it is a very
challenging task in computer vision that has been extensively studied over the last
years [16, 18–21]. Several methods have been developed over the years to fulfill seman-
tic segmentation [18].However, themost successful algorithms today are based ondeep
neural networks. The breakthrough of Convolutional Neural Networks (CNN) and,
more specifically, Fully Convolutional Neural Networks (FCN) revolutionized the way
of obtaining dense predictions [22, 23]. These new architectures allow us to generate
segmentation maps for images of any size and most of the subsequent state-of-the-art
approaches adopted this paradigm.

Evaluation metrics

In order to measure the actual contribution and the validity of any learning algo-
rithm, we need to somehow evaluate its performance at its learning task.

Several evaluation metrics exist in the field of semantic segmentation and, depend-
ing on the context of the problem, one should give more importance to some metrics
over the others.

In what follows we present some of the most usual metrics that are currently em-
ployed to measure the performance of semantic segmentation algorithms.

For a classifier, let i be one class of interest. Let TP be the set of true positive examples
for class i (examples from class i that have been correctly classified), TN the set of true
negative examples for class i (examples from a class j ̸= i that have not been classified
as i), FP the set of false positive examples for class i (examples from a class j ̸= i that
have been wrongly classified as i) and FN the set of false negative examples for class i

(examples from class i that have been wrongly classified as class j ̸= i).
1. In the case of land cover, classes correspond to physical coverage of the Earth’s surface (forests,

grasslands, lakes, etc). Land use, on the other hand, refers to classes related to the arrangements or
activities that humans undertake on a certain land (recreation, agriculture, etc).
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We define the following performance evaluation metrics, with respect to class i:

Accuracy: It is the simplest metric. It computes the ratio between the amount of prop-
erly classified pixels and the total number of them.

Accuracy = TP + TN
TP + FP + TN + FN .

Accuracy measures the percentage of well classified data.

Intersection over Union (IoU): It is defined as the ratio between the intersection and
the union of the ground truth and the obtained predictions. This is

IoU = TP
TP + FP + FN .

Precision: This metric is defined as the ratio between the number of true positive ex-
amples and the total number of examples inferred to belong to the class.

Precision = TP
TP + FP .

Precision can be seen as an accuracy measure for the “positive” examples (ele-
ments that truly belong to class i).

Recall: It is the quotient between the number of true positive examples and the number
of examples that really belong to the class.

Recall = TP
TP + FN .

This metric can be thought as the ability of the classifier to correctly identify the
relevant cases: to obtain a high recall scorewemightmaximize the number of true
positive examples and, at the same time, minimize the number on false negative
examples.

F1 score: It is also known as the Sørensen-Dice coefficient. This metric is computed as
the harmonic mean of precision and recall:

F1 = 2 · precision × recall
precision + recall ,
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this formula can be rewritten as:

F1 = 2TP
2TP + FP + FN .

Whenwe are facing an imbalanced classification problem, i.e., a problemwhere one
class represents the majority of the dataset points, accuracy is not an adequate metric.
For example, let us consider a dataset composed of 95% of background and 5% of an
object, and a classifier that always predicts “background”. Then, the accuracy of the
classifier is 95 %, but a classifier always predicting the same class is not very useful.

In the context of the previous example, the F1 score or the IoU may be better met-
ric alternatives, since they are not biased in favor of a predominant class. Even if the
accuracy of the classifier on the example is 95 %, its F1 score is 0.

To summarize, there exist different evaluation metrics measuring the performance
of a classifier, and we can choose the ones that are more adequate to our task. Never-
theless, to keep scientific rigor, it is important to provide all the possible metrics for a
proposed method, avoiding redundancy.

1.2 Learning paradigms

Machine learning is a subfield of computer science, whose goal is to develop algo-
rithms that allow computers to “learn”.

In machine learning, instead of teaching a computer a massive list of rules to solve
the problem, we give it a model with which it can evaluate examples. Additionally,
we provide a small set of instructions to modify the model when it makes a mistake.
We expect that, over time, a well-suited model would be able to satisfactorily solve the
problem. Fig. 1.3 illustrates the fundamental difference between classical programming
and machine learning.

According to Tom Mitchell [24], a computer program is said to learn from experi-
ence Ewith respect to some class of tasks T and performance measure P, if its perfor-
mance at tasks in T, as measured by P, improves with experience E.

From the previous definition, the key ingredients that any machine learning algo-
rithm needs to work are: a well-defined task T, experience E to learn from (usually, a
collection of data samples) and a measure of performance P to adapt itself.

For example, if we want to develop a classification algorithm, the task T to perform
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Figure 1.3 – Classical programming vs. machine learning.

is assigning a class to a sample; the experience Ewould be the data, given as pairs (sam-
ple, label); and the performance measure P can be the misclassification rate. Similarly,
for an object clustering algorithm, the task is grouping objects according to similar char-
acteristics, the experience would be the set of objects and the performance measure, the
quality of groups.

Depending on the kind of task to develop or the nature of data available for the
algorithm to learn, machine learning techniques can be grouped into different fami-
lies. Traditionally, there exist two main types of tasks in machine learning: supervised
learning and unsupervised learning. From them, we can derive other definitions: semi-
supervised learning [25],weakly-supervised learning [26], self-supervised learning [27].

1.2.1 Supervised learning

Let X = {xi}n
i=1 be a set of n examples (data points), where xi ∈ X , ∀i ∈ {1, . . . , n}.

Let Y = {yi}n
i=1, with yi ∈ Y , ∀i ∈ {1, . . . , n} targets corresponding to samples in X.

Usually, it is assumed that pairs (xi, yi) are i.i.d samples following P (x, y), a probability
measure defined over X × Y .

The goal of supervised learning is to find a map x 7→ y, given the training set pre-
viously defined. The task is well defined, since this mapping can be evaluated through
its predictive performance on test samples. When labels y are continuous (Y = Rd) we
talk about a regression problem, for instance, predicting weather forecast. On the other
hand, when targets y take values on a finite set we refer to a classification problem, for
example predicting whether e-mails are spam or not.
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1.2.2 Unsupervised learning

In an unsupervised learning problem, one only has access to a set X = {xi}n
i=1 of n

samples, where xi ∈ X , ∀i ∈ {1, . . . , n}. xi samples are supposed to be i.i.d., following
a distribution P (x) defined over X . The main difference with respect to supervised
learning it that no target information is available. In this settings, the goal is to find
interesting properties or structure in data X. Usual unsupervised learning applications
are dimensionality reduction, clustering, quantile estimation. Estimating the density
which is likely to have generated X is also an unsupervised task.

Lately, a new kind of unsupervised algorithms have emerged with astounding re-
sults in representation learning: self-supervised learning. Self-supervised learningmeth-
ods build a supervised task from completely unlabeled data by producing labels from
the data themselves. Today, self-supervised learning and, especially, contrastive learn-
ing methods are a very active topic of research, with the state-of-the-art methods for
learning representations [28, 29].

1.2.3 Semi-supervised learning

Semi-supervised learning [25] refers to all the techniques that are halfway between
supervised and unsupervised learning. In these settings, available data can be divided
into two parts: (i) a labeled set where data samples and their corresponding targets are
provided Dℓ = {(xi, yi)}n

i=1, where (xi, yi) pairs satisfy the same hypothesis as in the
supervised setting (Section 1.2.1); and (ii) an unlabeled set for which only raw data
are available, Du = {ui}m

i=1, and we assume {ui}m
i=1 i.i.d, following P (x), with P (x) the

marginal distribution of P (x, y). Usually we also consider that n ≪ m.
The key idea behind semi-supervised learning is to learn a representation function

(that maps a data point to its target) from labeled data as in the supervised approach,
but using the available unlabeled data to leverage information about structure of these
data to help during the learning process. Fig. 1.4 illustrates this kind of situations. This
is a much realistic and compelling approach than supervised learning, since in real-
life applications annotated data is difficult to procure –even harder in the context of
semantic segmentation, since one needs pixel-wise labels– while raw data are plentiful.
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Data Decision boundary

Supervised
learning

(a) (b)

Semi-supervised
learning

(c) (d)

Figure 1.4 – Supervised vs. semi-supervised learning. Top: a supervised setting with
very few labeled data is shown in (a), then how can an algorithm decide which is the
best decision boundary?As illustrated by (b) 1, 2 or 3, seem all to be a reasonable choice.
Bottom: a semi-supervised setting is represented. In (c) one has access to the same
labeled data, but additional unlabeled data are available. Thanks to these new data,
one can leverage information about the data distribution to determine a better suited
decision boundary, like in (d).
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1.2.4 Discriminative vs. generative models

Traditionally, there are two kinds of algorithms for supervised learning: discrimina-
tive models and generative models.

Discriminative models estimate the conditional distribution p(y|x) of targets, given
inputs. In other words, they try to find a map f from the input space to the output
space such that for each (xi, yi) pair in the training data, f(xi) = yi. The main goal of
discriminative models is to find the decision boundaries between categories.

Generative algorithms instead try to model the joint density p(x, y) of inputs and
labels, the idea is to understand how data pairs {(xi, yi)}n

i=1 have been generated. Then
a predictive density p(y|x) can be derived by the means of the Bayes theorem:

p(y|x) = p(x, y)
p(x) . (1.1)

Generative models can also be used for unsupervised learning when they model the
distribution of data (without label information), p(x).

Figure 1.5 illustrates the conceptual differences between these two families of algo-
rithms.

Discriminative classifier Generative classifier

Figure 1.5 – Discriminative vs. generative classifier. A discriminative classifier predicts
a decision boundary between classes (left). A generative classifier estimates class dis-
tributions (right).
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1.3 Deep learning

Deep learning is a subfield ofmachine learning. One of themain issues of traditional
machine learning algorithms is that they require manual feature preprocessing steps
for inputs to be fed into the models; which made the performances of these algorithms
extremely dependent of the quality of human-generated features.

In contrast, deep learning techniques have been created to learn representations di-
rectly from raw inputs, avoiding the feature engineering stage. This is achieved by in-
troducing representations that are expressed in terms of simpler ones, by composing
layers and layers of functions and non-linear terms, usually called neural networks.

The term “neural” refers to the origins of deep learning, since its basic components –
artificial neurons– were inspired from neuroscience and brain functions. However, cur-
rent deep learning research is guided by many mathematical and engineering disci-
plines, and does not represent a model of the brain.

In what follows, we present a brief history of deep learning and the main neural
network architectures that contribute to the analysis of remote sensing imagery, and
that serve as basis to this work.

1.3.1 Brief history of deep neural networks

Today’s deep learning approaches and success have been slowly built on the the-
oretical and practical contributions of several researchers over the last seven decades,
from the first artificial neuron model, through backpropagation methods, to the com-
putational power and training data [30].

In 1943, McCulloch and Pitts [31] proposed a first artificial neuron to model brain
function. It was just a linear model that could recognize two different classes. It had no
learning mechanism and weights needed to be set by the user. In 1950, Rosenblatt [32]
presented the perceptron, the same neuronmodel with learning capabilities to perform
binary classification. This was the first model that could learn weights from samples.
These two contributions settled the basis of deep neural networks as we know them.

In 1960, Kelley [33] derived the first version of the backpropagation algorithm that
is widely used today to train modern neural networks. Two years later, Dreyfus [34]
developed a backpropagation algorithm based on the derivative chain rule. These two
works, even if not related to deep learning yet, were the first steps toward backpropa-
gation.

41

Apprentissage semi-supervisé pour la compréhension des données d’observation de la Terre à large-échelle Javiera Castillo-Navarro 2022



Chapter 1 – Related work

The “winter” of neural network research came in 1969,whenMinsky andPapert [35]
demonstrated that the perceptronwas not able to solve complicated functions like XOR.
Their work showed the limitations of linear models.

In 1970, Linnainmaa [36] published a general method for automatic differentiation,
that efficiently computed the derivative of a differentiable composite function that could
be represented as a graph, by recursively applying the chain rule to the building blocks
of the function. He also implemented it as computer code. However, backpropagation
was not used for neural network training till the next decade.

Between 1965 and 1971, Grigoryevich worked on deep neural networks, training
them using group method of data handling [37], because of these contributions he is
sometimes called the father of deep learning.

The Neocognitron [38] of Fukushima in 1980 can be considered as the first convolu-
tional neural network architecture, a mechanism able to recognize visual patterns such
as handwritten characters.

The 70’s and 80’s were the times where the link between backpropagation and neu-
ral networks was made. Indeed, Werbos proposed in his PhD thesis [39] the use of
this mechanism of differential programming for neural networks’ training. In the 80’s,
Rumelhart [40] showed the successful implementation of backpropagation for train-
ing neural networks, while LeCun et al. [41] proposed a multi-layer architecture with
a first convolutional layer, trained by backpropagation, to recognize handwritten dig-
its 2. These contributions led to the wide practical adoption of backpropagation to train
deep learning methods in the future, they opened the gates for training complex deep
architectures, which was the main issue in the early days of neural networks.

In terms of theoretical advances on learningwith deepneural networks, Cybenko [42]
in 1989 presented the proof for theUniversal approximation theorem, that establishes that
feed-forward neural networks with one hidden layer containing a finite number of
neurons can approximate any continuous function. It further adds credibility to Deep
Learning.

Other important contributions over this time, that we will not detail in this doc-
ument, but deserve being mentioned are: Hopfield networks (1982), Boltzmann ma-
chines (1985), restricted Boltzmann machines (1986), the first LSTM, deep belief net-
works, etc.

However, even if all these contributions settled the bases of deep learning as we

2. https://www.youtube.com/watch?v=FwFduRA_L6Q
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know it today, they were not enough to show the full potential of neural networks. The
community, at the time, lacked of the last two ingredients: computational capacities and
large training databases.

In 2005 and 2006, the first deep networks trained on GPUs appeared [43, 44]. From
2008, a research group from Stanford started advocating for the use of GPUs for train-
ing Deep Neural Networks to speed up the training time by many folds. This brought
practicality in the field of Deep Learning for training on huge volume of data efficiently.

Finding large labeled databases has always been an issue for the deep learning com-
munity. It was in 2009 that Fei-Fei Li et al. published the ImageNet dataset [45], with
the ambition to expand and improve the available data to train AI algorithms. Ima-
geNet was the first large-scale labeled image database, containing 3.2 million images
in total. At present, ImageNet counts more than 14 million hand-annotated images and
has greatly contributed to computer vision research. In 2010, the first ever ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) was organized. Researchers com-
pete to correctly classify and detect objects and scenes, every year ever since.

2012 defined a turning point in the history of deep learning, when Krizhevsky et
al. won the ImageNet classification challenge with AlexNet [46], a GPU implemented
convolutional neural network. AlexNet achieved a top-5 error of 15.3%, with more than
10% of margin over the closest competitor. This event triggered a new deep learning
boom globally.

The relevance of deep learning research nowadays has been confirmed in 2019,
when Yoshua Bengio, Geoffrey Hinton and Yann Lecun were distinguished with the
Turing award 2018 for their contributions in the field of deep learning and artificial
intelligence [47].

1.3.2 The multilayer perceptron

Artificial neurons are the cornerstones of deep learning, they are the basic unit of
deep neural networks.

The perceptron proposed by Rosenblatt in 1957 was biologically inspired by our
brain, and the structure of our neurons. Fig. 1.6 illustrates the similarities between an
artificial neuron and a biological neuron.

However, the perceptron conceived by Rosenblatt is not exactly the same as the one
presented in Fig. 1.6. Indeed, Rosenblatt’s perceptron was just a linear model, without
the activation function at the end. Deep composition of these non-linear functions is an
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Biological neuron Artificial neuron

Figure 1.6 – Comparison between a biological neuron and an artificial neuron. At the
beginning, artificial neural networks were inspired from the mechanisms of biological
neurons. Today, they aremathematicalmodels, functions approximatingmachines, that
do not intend to depict brain functions. Figure partially taken from ASU school of life
sciences.

essential element for the success of deep learning to learn representations.
An artificial neuron, aswe know it today, is defined by a set of parameters θ = {w, b}

and a non-linear activation function ϕ : R → R. Vector w ∈ Rd is usually known as the
weights and b ∈ R is known as the bias. The goal is to produce an output z ∈ R from an
input vector x ∈ Rd, by the means of the parameters θ, and the function ϕ as described
in equation

z = ϕ(w⊤x + b). (1.2)

The simplest neural network is the single layer perceptron (SLP) 3, which is an extension
of the artificial neuron previously defined. In a SLP, the input xpasses through a set ofm

neurons in a parallel way, to compute different activations (with different parameters)
for the same input. This can be expressed as:

z = ϕ(W⊤x + b), (1.3)

where W ∈ Rd×m is a matrix of weights and b ∈ Rm is a bias vector. The activation
function ϕ performs element-wise operations. Fig. 1.7 (left) shows a representation of
a single layer perceptron.

Multilayer perceptrons (MLP) consist in a composition of several SLP, that make
3. also known as fully connected layer.
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the multiple layers of these architectures:

y = f(x; θ) := f (k)(f (k−1)(· · · (f (1)(x; θ(1))) · · · ; θ(k−1)); θ(k)). (1.4)

MLP are also known as feedforward neural networks because information flows
through the function being evaluated on x, through the intermediate computations f (i)

used to define f , to finally yield the output y, with no feedback connections. They can
be associated with a directed acyclic graph describing how the functions are composed
together, as shown in Fig. 1.7.

Single layer perceptron Multilayer perceptron

Figure 1.7 – Left: Single layer perceptron (SLP) representation,withm artificial neurons
(as in Fig. 1.6). Right: Multilayer Perceptron (MLP) with k hidden layers, each hidden
layer i consists of mi artificial neurons.

The choice of the activation function ϕ has been extensively studied over time. In-
deed, it can have a direct impact on the convergence of the learning algorithm or its
performance. For instance, ReLU [48] was presented as a solution to the vanishing gra-
dient problem [49, 50], observed when training neural networks. Common activations
functions are: the sigmoid function, hyperbolic tangent, rectified linear unit (ReLU),
leaky rectified linear unit (LeakyReLU), to name a few. For a more detailed description
about activation functions, the reader can see [51].

The goal of neural networks is to approximate a function f ⋆, such that y = f ⋆(x)
maps an input x to an output y. To this end, we define a function f(x; θ) as in Equa-
tion (1.4) and optimize the set of parameters θ to obtain a good approximation f(·; θ) ≈
f ⋆(·).
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To optimize the set of parameters of a neural network, one needs to define an objec-
tive function tominimize (ormaximize). In the context of deep learning, we refer to this
objective as the loss function, represented by L. The loss function is usually a measure
of the approximation error of the neural network over a set of training data D. Training
a neural network means solving the following minimization problem:

θ̂ = arg min
θ

L(fθ, D). (1.5)

The choice of the loss function to use depends on the task that we intend to solve.
In the case of classification and segmentation problems, a standard choice is the cross-
entropy loss.

A consequence of the introduction of non-linearities into neural networks is that
the loss function to optimize is –usually– non-convex. Thus, there is no guarantee that
a global solution to the optimization problem in Equation (1.5) exists. Moreover, even
if global minima existed, it would be prohibitively costly to find them. For this reason,
neural networks are usually trained by using iterative, gradient-based estimators, com-
bining backpropagation with stochastic gradient descent algorithms.

1.3.3 Convolutional neural networks

Convolutional neural networks (CNNs) have been at the center of significant ad-
vances in deep learning, especially in computer vision. Even though CNNs have been
used in the 90’s to recognize handwritten characters [41, 52], it is since 2012 –with
AlexNet’s [46] victory in the ImageNet classification challenge– that CNNs have be-
come the undisputed method for deep image processing.

Feedforwardnetworks have been successful inmany applications, however –because
of their fully connected layers– they consider all elements of input x equally, disregard-
ing all spatial information that might be available (for instance, if x represents an im-
age). In view of the above, CNNs have been developed as specialized architectures for
processing data that have a known, grid-like topology. Image data, in particular, can be
thought of as a 2D grid of pixels.

CNNs are neural networks that use convolution 4 in place of generalmatrixmultipli-

4. Convolution is a mathematical operator. Let f and g be two functions, the convolutional product
f ∗ g is defined by: (f ∗ g)(t) :=

∫ +∞

−∞
f(τ)g(t − τ)dτ .
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cation in at least one of their layers. Usual CNN architectures have three components:
convolutional layers (including the non-linear activation function), pooling layers and
fully connected layers. Fig. 1.8 shows the standard architecture of a CNN.

Figure 1.8 – Standard CNN architecture. A CNN is usually composed of convolutional
blocks (sequence of convolutional layers, plus activation function, pooling layers and
fully connected layers at the end.

Convolution. Since we are interested in CNNs for image processing, in this section
we describe 2D convolutions (although they can be defined for any dimension).

Let I ∈ RW ×H×C represent an image of size W × H with C the number of channels,
and K ∈ R a convolutional kernel the basic 2D convolution 5 is defined as:

K ∗ I[m, n] =
C∑

c=1

p∑
i=−p

q∑
j=−q

I[m + i, n + j, c] · K[i, j, c]. (1.6)

To avoid border issues because pixel values are not defined outside an image, aswell
as to keep spatial dimensions of the images after convolutions, padding methods can be
applied.

A convolutional layer is the result of parallel convolutional kernels applied to the
same input image (in an analogous way to the MLP described above, Section 1.3.2),
combined with a bias term and activation function.

The convolution operation leverages three important ideas that can help improve a
machine learning system: sparse interactions, since the convolutional kernel is smaller

5. Strictly speaking, this is not a convolution. For practical reasons, we use the cross-correlation op-
erator instead.
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than the input; parameter sharing, since the same kernel is applied all over the in-
put; and equivariant representations with respect to translations. Moreover, convolu-
tion provides a means for working with inputs of variable size. For a complete guide to
existing convolution operators, we refer the reader to [53].

Pooling. A pooling function transforms feature maps (the output of a certain layer of
the network) by applying a summary statistic of nearby features. They provide an ap-
proach to reduce the size of representations (operation known as downsampling), which
reduces the memory costs. Pooling layers also provide invariance to small translations
of the inputs. Common pooling methods include max pooling or average pooling that re-
port the maximum and the average of a rectangular neighborhood, respectively.

1.3.4 Fully convolutional networks

Convolutional neural networks revolutionized the way we performed image classi-
fication and other tasks with structured outputs (like object detection). However, the
size reduction done by pooling layers and the fact that fully convolutional layers break
all the spatial information prevent CNNs to make dense, pixel-wise predictions, which
are the expected outputs for semantic segmentation.

To solve this issue, Long et al. [23] proposed the first fully convolutional network
(FCN). The key idea of this architecture is to replace the fully connected layers at the
end of a CNN, by convolutional layers. Making this simple modification enables the
preservation of spatial information. Then, feature maps are upsampled to the original
input size to obtain pixel-wise predictions. Fig. 1.9 illustrates this architecture.
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Figure 1.9 – Fully convolutional neural network. Figure from [23].

This work represented a turning point in image segmentation. It demonstrated that
neural networks can be trained end-to-end on variable-sized images to obtain dense
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predictions. Many improvements to this basic FCN architecture have been presented
in the literature over the years to get better semantic segmentation results, and current
state-of-the-art methods for this task still inherit from it [21].

Standard semantic segmentation networks are based on an encoder-decoder archi-
tecture, inspired from convolutional autoencoders [54]. The encoder part is usually
based on CNN architectures (without fully convolutional layers) and the decoder con-
sists in progressive upsampling steps that mirror the encoder operations. This enables
gradual recovery of spatial features during the decoding process.

Popular networks that follow this approach are SegNet [55] that consists of an en-
coder based on a VGG-16 architecture, followed by a symmetric decoder and a pixel-
wise classification layer. Its main novelty is the upsampling method: it uses pooling in-
dices computed in the max-pooling step of the corresponding encoder layer to perform
non-linear upsampling. This removes the need for learning to upsample [56]; mean-
while, U-Net [57] incorporates skip-connections to copy and concatenate the encoder’s
feature maps to the input of the corresponding decoder’s layer. Unlike SegNet, upsam-
pling is achieved via transposed convolutions.

Over the years, newarchitectures have beenproposed –based on this encoder-decoder
principle– with new characteristics that improve semantic segmentation results. Some
improvements include changing the encoder architecture for a more efficient CNN
(like ResNets [58]), using different kinds of convolution operators or pooling layers,
or adding post-processing steps to refine the outputs. Among the main contributions
we find Deeplab [59], LinkNet [60] and PSPNet [61].

Convolutional Encoder-Decoder
 

Pooling Indices

Input

Segmentation

Output

Conv + Batch Normalisation + ReLU
Pooling Upsampling Softmax

RGB Image

Figure 1.10 – SegNet. Figure from [55].
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Figure 1.11 – U-Net. Figure from [57].

1.3.5 Deep semi-supervised learning

Deep learning has shown remarkable performances on a wide range of supervised
tasks, when trained on large amounts of labeled data. However, collecting large, anno-
tated datasets requires considerable efforts, resources and time; which is infeasible in
many practical applications. On the other hand, nowadays we live the “big data era”,
and unlabeled samples are –in most cases– easily available. Therefore, interest in deep
semi-supervised learning techniques has been rising, trying to move forward and de-
velop less label-dependent deep learning approaches.

Figure 1.12 – Deep semi-supervised learning. Figure from [62].

Broadly speaking, semi-supervised methods in deep learning can be divided into
the following main categories 6:

6. Another class of methods considers that data are represented as the nodes of a graph where la-
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(i) Self-training 7. A supervised model is trained on labeled data. An iterative pro-
cess is then applied to an extended labeled training set, with self-generated labels.
More details in Chapter 3.

(ii) Consistency training.Models of this kindworkunder the assumption that slightly
modified versions of the same input should have semantically similar outputs.
More details in Chapter 3.

(iii) Generative models. These models leverage unlabeled samples to estimate the
data distribution p(x), in the hope to learn significant features to better estimate
p(y|x). More about generative approaches in Chapter 4.

In this context, several works have emerged. Inwhat followswemention some of the
main contributions, but it is not an extensive review of all existing methods. For a com-
plete overview of semi-supervised methods in deep learning, the reader can see [63].
The Π-model [64] was one of the first works to exploit consistency training, proposing
a consistency loss term between different stochastic outputs of a neural network fθ for
the same input. Mean teacher [65] refines the Π-model by setting the target predictions
as the exponential moving average of parameters from previous training steps. Instead
of relying on the stochasticity of fθ, virtual adversarial training [66] proposes to modify
directly the input x through a perturbation radv and apply a consistency regularization
term. Pseudo-labeling [67] produces “pseudo-labels” for unlabeled data using the pre-
diction function itself over the course of training. Pseudo-labels are retained according
to a certain rule (e.g. a threshold over the confidence of the prediction). Fig. 1.12 shows
how semi-supervised methods work on a toy example.

Generative models have also been developed to tackle the semi-supervised classifi-
cation, including semi-supervised VAEs [68] and semi-supervised GANs [69, 70].

Lately, holistic methods combining some of the precedent ideas have emerged, set-
ting new state-of-the-art results on semi-supervised classification:MixMatch [71], ReMix-
Match [72], FixMatch [73].

Semi-supervised methods for semantic segmentation in deep learning have been
developed in the last years, but mostly in the form of weakly supervision: from scrib-
bles [74, 75], bounding boxes [76, 77], and image-level annotations [77] to obtain dense,
pixel-wise predictions. Pseudo-labels have also beenused to address the semi-supervised
bel information is meant to be propagated from labeled nodes to unlabeled ones. These graph-based
methods will not be studied in this thesis.

7. also known as proxy-label methods or pseudo-labeling
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semantic segmentationproblem [78], propagating labels fromannotated samples through
non-annotated ones, according to a confidence criterion, to artificially enlarge available
training data.Otherworks include unlabeled data during training in a generative adver-
sarial network framework [79, 80]. The method in [81] proposes a multi-task method
(comparable to the approach we develop in Chapter 3), but the final goal is to achieve
domain adaptation.

More recently, consistency regularization-based approaches have been extended to
semantic segmentation [82–84].

Finally, a generative approach based onGANs to learn the joint distribution of image
and semantic map pairs, p(X, Y), has shown impressive results in semantic segmenta-
tion and out-of-domain generalization [85]. Nevertheless, as pointed out by its authors,
this approach is limited to simple data following a unimodal distribution and cannot
address complex images.

1.3.6 Deep learning in Earth observation

Previous sections have presented deep learning methods that transformed the way
the computer vision community tackles tasks such as image classification, object detec-
tion or semantic segmentation on natural, everyday images.

Even though remote sensing data share some similarities with natural images –they
are both structured data–, EO imagery uses different types of sensors and very spe-
cific points of view. Therefore, computer vision and deep learning techniques should
not be transposed recklessly to remote sensing data processing. Instead, we should con-
sciously take into account the particularities of these data and combine computer vision
and deep learningmethodswith the existing knowledge of the remote sensing commu-
nity, making the best of both worlds.

Indeed, remote sensing data come with new challenges for deep learning, since
satellite and aerial imagery comes in different forms, and contains very rich informa-
tion about the Earth’s surface. Thus, remote sensing image analysis raises new ques-
tions about how to exploit the abundant information available on this kind of data [86].
Among particular characteristics of remote sensing data we can mention:
Multimodality. One can possess different data sources for the same area, such as op-
tical sensors (multi or hyperspectral) and synthetic aperture radar (SAR).
Geolocalization. EO data are naturally located in the geographical space and this in-
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formation is available.
Time series. The temporal component of EOdata is increasingly relevant. Indeed, satel-
lites acquire data of the entire planet periodically. This collection of periodic images
defines time series that can (and should) be exploited 8.
Big data. Since satellites image the Earth in a short period, data volumes grow ex-
tremely fast and at a global scale.

In the last decade, many efforts have been made and the use of deep learning tech-
niques for the analysis, interpretation and processing of remote sensing data has grown
exponentially [86, 87]. Indeed, several EO tasks are today tackled using deep learning
techniques: change detection [88, 89], building detection [90], scene classification [91],
building height estimation [92], data fusion [93].

In the last years, deep learning in Earth observation has gone through three main,
overlapping phases [94]: (i) exploration, direct transfer of deep learning and com-
puter vision techniques to EO applications; (ii) benchmarking, train and compare deep
learning models on EO data, study generalization capacities and proposing large-scale
datasets in the domain to encourage further research; and (iii) EO-driven methodolog-
ical research, going beyond what we have achieved. Regarding this last point, Tuia et
al. [95] propose some guidelines for future research in the field.

Since semantic segmentation is at the heart of this work, we devote a small section
to give more insight on the progress of semantic segmentation techniques in Earth ob-
servation.

Deep semantic segmentation of EO data. Before the deep learning era, the remote
sensing community was already aware of the importance of texture information to ob-
tain good semantic segmentation maps. Therefore, filters based on convolutional op-
erators were used as preprocessing steps to extract features that would be fed to more
traditional classification methods, like random forests or support vector machines [94].

Therefore, moving forward to the use of convolutional neural networks and fully
convolutional networks for semantic segmentation was a reasonable transition. In 2015,
the first works using CNNs to achieve semantic segmentation appeared. Lagrange et
al. [96] applied CNNs over image patches (defined by sliding windows) and assigned
a label to the central pixel of each patch; and showed that this deep-learning-based

8. While the methods proposed in this thesis do not specifically address satellite image time series,
they could be extended to such data.
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approach was superior to other traditional machine learning methods. Fully convolu-
tional methods quickly replaced this patch-based approach, allowing us to accelerate
inference times and making better use of spatial information. Sherrah et al. [97] first
explored FCN to achieve dense semantic labeling on aerial data. From then on, seman-
tic segmentation has mostly been performed using encoder-decoder architectures [98–
102].

However, training deep neural networks for semantic segmentation in EO has only
been possible thanks to the great effort of the community to provide public datasets.
We will delve into these contributions in the next chapter (Chapter 2).

Semi-supervised learning in Earth observation. Semi-supervised learning methods
are especially appealing for the remote sensing community, since EO data are naturally
well-suited in this context. Indeed, labeled data are hard to obtain, while raw (unla-
beled) data are constantly gathered through satellite or aerial missions. Thus, semi-
supervised methods are a feasible solution to improve the classification performances
and the generalization capacities of our models.

In the last decades, several semi-supervised methods have been proposed for Earth
observation data applications. Before the deep learning outbreak, different approaches
have been explored, including graph-based methods to integrate unlabeled data into
the learning process [103, 104]; use unlabeled examples to achieve manifold alignment
of data coming from different modalities [105]; and factor analysis for hyperspectral
image classification [106]. More recently, deep semi-supervised learning techniques
have emerged, but most of them rely on self-training and pseudo-labeling [107]: com-
bining them with other techniques to build more robust models such as the use of an
ensemble of CNNs to assign pseudo-labels and prevent error propagation [108]; using
cross-modal data [109]; applying sample selection schemes to train transferable deep
models for land use classification [110, 111]; or using stacked auto-encoders and soft-
label propagation to tackle the building detection problem [112].

Other strategies that use semi-supervised learning in remote sensing applications
include: a center-baseddiscriminative adversarial learning framework for cross-domain
land cover classification of aerial images [113]; integrating CNNs and active learning
to better use unlabeled samples for hyperspectral image classification [114]; the use
of a semi-supervised shallow network, self-organizing map framework, to classify and
estimate physical parameters from multispectral and hyperspectral images [115]; and
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using multi-attention and an adaptive kernel for semi-supervised classification of mul-
tispectral images [116].

Fewer are the works that exploit generative models to leverage unlabeled samples
for training. GANs have been used to extract features from hyperspectral images for
semi-supervised classification [117], or jointly with gated attention and a discrimina-
tive network for scene classification of aerial images [118]. A modified GAN, with a
classifier as discriminator, has been developed to tackle the multispectral scene classi-
fication problem [119].

Throughout this manuscript, we study semi-supervised learning for large-scale EO
data understanding and semantic mapping. We tackle the problem from different per-
spectives: first, we analyze the data, study existing datasets in EO and supervised learn-
ing techniques and their limitations; secondly,we investigate discriminative approaches
based on multi-task learning and consistency training; and finally, we examine genera-
tive approaches for semi-supervised scene classification in EO.
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THE POTENTIAL OF SEMI-SUPERVISED

LEARNING IN EARTH OBSERVATION
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Chapter summary

The availability of large public vision datasets has been crucial for the considerable
progress in computer vision that we have witnessed in the last decade. Indeed, they not
only represent large amounts of training data, but also provide the means to compare
the performance of competing algorithms.

This chapter presents an analysis of existing Earth observation datasets (see Sec-
tion 2.1): are they representative of the real-life remote sensing use-cases? We study
what are the applications of interest for the remote sensing community and, therefore,
what are the desirable features of a trustworthy evaluation benchmark.

We also performa critical analysis of current supervised approaches (cf. Section 2.2).
More precisely, we investigate the learning capacities of supervised semantic segmen-
tation networks on different settings: on small-scale datasets, and at a large-scale multi-
location set-up.Weobserve that common supervised semantic segmentation techniques
have generalization issues in the large-scale setting, when labeled data are not varied
enough. Hence, new learning paradigms should be studied in the future, in order to
develop methods that are well-suited for real-life Earth observation applications.

In view of the above, in Section 2.3 we present theMiniFrance benchmark, a novel
large-scale dataset, especially designed for semi-supervised semantic segmentation.
MiniFrance has several unprecedented properties: it is large-scale, containing over 2000
very high resolution aerial images (at a sub-meter resolution); it is varied, covering 16
conurbations in France, with various climates, different landscapes, and urban as well
as countryside scenes; and it is challenging, considering land use classes with high-
level semantics. Nevertheless, the most distinctive quality of MiniFrance is being the
only dataset in the field especially designed for semi-supervised learning: it contains
labeled and unlabeled images in its training partition, which reproduces a life-like sce-
nario. Along with this dataset, in Section 2.4 we present tools for data representative-
ness analysis in terms of appearance similarity and a thorough study of MiniFrance
data, demonstrating that it is suitable for learning and allows us to measure the gener-
alization capacities of algorithms in a semi-supervised setting.
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2.1 Current Earth observation benchmarks

The tremendous progress of computer vision –where machine learning is applied
on images– in the last decades would not have been possible without the development
of large public datasets, such as ImageNet [45], COCO [120] or Cityscapes [121] for
learning on visual data. These datasets do not only supply a source of large amounts of
training data, but also provide the means to fairly compare learning algorithms. They
allow us to test their scalability and reliability. The availability of these public bench-
marks is the key to improve the performance of our models, to explore their strengths
and weaknesses and thus, push the research limits further.

In the same vein, the remote sensing community has also published several datasets
for different tasks in order to encourage the research in the field [122]. Indeed, the
classical IEEE GRSS Data Fusion Contest 1 (DFC) has been running every year from
2006 [123]. Moreover, several works in the last decade have shown that remote sensing
data analysis can truly benefit from the automatized treatment of images by using deep
learning approaches [2, 94]. Combining this kind of methods with domain knowledge
could greatly accelerate remote sensing image processing, allowing for real-time moni-
toring of the Earth and our environment. Table 2.1 describes some of themain initiatives
to develop Earth observation datasets for various tasks of interest 2.

As stated by Torralba et al. [143], although the availability of public datasets has
been responsible for much of the recent progress in computer vision, there are still
major issues that the research community needs to keep in mind. For instance, one of
the main problems of having static, unchanging benchmarks is the intrinsic gradual
overfitting, since algorithms become too adapted to the dataset over time. This leads
to another important matter: the lost of focus of the community on the real objective,
as much of the research works concentrate on gaining a few accuracy points over one
benchmark, makingmostly incremental contributions to the field. Themost fundamen-
tal question is, though, are our datasets measuring the right thing?, are they measuring
the expected performance of models in a real-world task? In the quest of making our
datasets a trustworthy representation of our world, we need them to integrate the rich-
ness and variabilities of real-life settings, avoiding biases. What we need is datasets that
are able to measure the generalization capacities of our algorithms, according to the

1. https://www.grss-ieee.org/technical-committees/image-analysis-and-data-fusion/
?tab=past-data-fusion-contests

2. However it is far from being an extensive list of all the existing remote sensing datasets.
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Table 2.1 – Earth Observation datasets summary. ⋆

Vision
Task Dataset EO task Location Zone

type
Surface
(km2)

Resolution
(cm/px)

Number
classes

Cl
as
sifi

ca
tio

n

EuroSAT
[124] LC, LU Europe Urb.,

Ctry 11,000 1,000 10

So2Sat
LCZ42 [125] LC, LU Worldwide Urb. ∼ 51,000 1,000 17

AID [126] LC, LU Worldwide Urb. - Variable 30
UCMerced

[127] LC, LU USA (various
regions) Urb. ∼ 12 30 21

BigEarthNet
[91]

Multi-label
LC, LU

Europe
(10 countries)

Urb.,
Ctry 850,000 1,000 ∼ 40

DENOTHOR
[128]

Crop
monitoring

Northern
Germany Ctry 1152 300 9

O
bj
ec
t

de
te
ct
io
n DOTA [129] OD Worlwide Urb. - Variable 15

xView [130] OD Worlwide Urb. 1415 30 60
xBD [131] CD, Build. 15 countries Urb. 45,362 30 -

Se
m
an
tic

Se
gm

en
ta
tio

n

Vaihingen
[132, 133] LC Vaihingen

(Germany) Urb. 1 9 6

Potsdam
[132, 133] LC Potsdam

(Germany) Urb. 3.5 5 6

Inria [134] Build. USA, Austria
(10 cities) Urb. 810 10 - 30 2

DeepGlobe
[135]

Road,
Build., LC Worlwide Urb.,

Ctry
2,220/ 984/

1,717
50/ 31/

50 2/ 2/ 7

Christchurch
[136, 137] LC, OD Christchurch

(New Zealand) Urban 5 10 4

HRSCD
[138] CD France

(2 areas)
Urb.,
Ctry 14,550 50 25

SEN12MS
[139] LC Worldwide Urb.,

Ctry ∼ 1.18 ×106 1000 33

MiniFrance
[J2] LC, LU France

(16 areas)
Urb.,
Ctry 53,000 50 12

V
Q
A RSVQAxBEN

[141]
RSVQA
[142]

Europe
(10 countries)

Urb.,
Ctry 850,000 1,000 25 ques-

tions/patch
⋆ Abbreviations: LC = Land Cover; LU = Land Use; Road = Road Extraction; Build. = Building Extraction; OD
= Object Detection; CD = Change Detection; Urb. = Urban; Ctry = Countryside; VQA = Visual Question
Answering; RSVQA = Remote Sensing VQA.
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situations we want to model.
To illustrate the above questions, imagine that there has been an earthquake in the

north of Chile. We would like to assess the damages very quickly by the means of an
automatic algorithm. Even though we do not have data from the affected zone at our
disposal, we have annotated data from a previous earthquake occurred inChristchurch,
New Zealand. Would we be able to train a deep learning model able to assess the dam-
ages in Chile, being trained on such a different geographical zone as this NewZealand’s
city?

Indeed, in real-life Earth observation applications, one typically has access to anno-
tated data from a specific geographic zone and/or from a specific sensor, and would
like to apply a model to new data that could come from a different sensor or different
geographic zone, with different climate, different season or different resolution.

One way to obtain models that generalize to unknown locations is to learn non-
location-specific features. This can be achieved by training on several, diverse sites. If
some of the Earth observation datasetsmentioned in Table 2.1 already take into account
multiple locations, most are limited to urban scenes only and/or they are devoted to a
single class (such as buildings or roads) or to land cover (and not land use) classes.
Land cover refers to the ground surface coverage: vegetation, urban infrastructure, wa-
ter, etc; while land use indicates the purpose the land serves: urban, industrial build-
ings, agriculture, etc. The second has more socio-economic impact, because it provides
further information about human activity in a given area, however extracting this in-
formation from images only remains a major challenge [144].

Furthermore, all the aforementionedEOdatasetswere designed for fully supervised
learning, which does not correspond to the real practical 3 case where huge amounts of
imagery are available, but only a few images comewith some labeled regions, from spe-
cific locations. Indeed, labeled data are usually limited –the labeling process requiring
too much effort, time and expert knowledge– however, there are large amounts of unla-
beled data available that are being generated continuously (e.g., Copernicus Sentinels
can provide data of the entire Earth every 6 days) and that could be exploited by our
learning algorithms. Therefore, we need datasets that mimic these conditions.

In the following section we perform experiments that demonstrate the requirement
of large-scale, multi-location datasets in Earth observation, that correctly represent the
challenges of real-life applications, togetherwith new learning techniques, able to lever-

3. that we want to tackle
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age unlabeled data during the training process to capture all the available information
and characteristics of data.

2.2 The necessity of new training paradigms and large-
scale EO datasets

As discussed in the Introduction, EO data analysis contributes greatly to better un-
derstand our planet and its dynamics. Nowadays, EO data are easily available, thanks
to initiatives like Copernicus or Landsat. However, data exploitation can still be a bottle-
neck, since it requires human interprets, for example to identify tree species and study
deforestation in a local ecosystem, or to find new buildings and measure growth of
urban areas.

Deep learning methods have shown to be useful to address Earth observation prob-
lems. Indeed, many state-of-the-art algorithms for object detection and image segmen-
tation or classification [93, 145] have been successfully applied to aerial and satellite
images. They allow us to produce quickly and without human intervention precise se-
mantic maps, in both urban and rural contexts. However, these learning algorithms
rely heavily on the availability of large annotated image databases. And even if collab-
orative cartographic resources, like OpenStreetMap, can be used as annotations [134],
these are restricted in terms of semantics (only roads, buildings, etc.) or geographic
locations (being biased toward urban zones).

Therefore, the question of quantifying the influence of existing datasets on themod-
elswe learn arises. In addition,we aim to definewhat is required tomake a gooddataset
for training EO data classification and segmentation algorithms that generalize well to
new locations and that make a good representation of real-world problems.

In this section we perform an experimental analysis of the amount of data neces-
sary to successfully achieve supervised learning. Moreover, we study the generaliza-
tion capacities of current supervised approaches with respect to data variability. These
experiments bring out a better understanding of the required data variability for a
dataset tomake a good representation of real-life challenges. They also reveal the weak-
nesses of standard supervised approaches in terms of generalization capacities, as they
do not generalize properly to new geographic locations [146], as we will see in Sec-
tion 2.2.2. In consequence, new learning strategies should be investigated; for instance,
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one could consider leveraging unlabeled data during training through semi-supervised
techniques.

2.2.1 Analysis of supervised learning on small-scale datasets

In this section, we aim to test the sensitivity of supervised learning to the amount
of labeled data available for training on a small-scale dataset.

To this end, we perform experiments over the ISPRS Vaihingen dataset, since it rep-
resents a classical setting for evaluating models in the remote sensing community. In-
deed, the ISPRS 2DSemantic Labeling datasets [133], PotsdamandVaihingen, are prob-
ably the most widely-used datasets for evaluation of semantic segmentation in EO ap-
plications. Both datasets were proposed by the ISPRS Working Group III/4 “3D Scene
Analysis” as a part of the 2D Semantic Labeling contest, providing –for the first time–
standard benchmarks for evaluating object extraction methods in Earth observation.

ISPRS Vaihingen consists of 33 infrared-red-green tiles with a spatial resolution of
9cm/px and an average size of 2000px × 1500px. Dense annotations are available on
16 tiles for 6 classes of interest: impervious surfaces, buildings, low vegetation, trees,
cars and clutter. The associated benchmark being now closed, we perform experiments
using 12 annotated tiles for training (train) and 4 tiles for evaluation (denoted by val).

The following experiments were designed to study the effect of the amount of la-
beled data available on the performance of supervised neural networks for seman-
tic segmentation. In particular, we perform these experiments using SegNet [55], an
encoder-decoder architecture that has already been successfully used on EO data in
previous works [147, 148]. We gradually reduce the amount of annotated images used
for training. In the case of Vaihingen, we reduce the available images from 12 tiles to
only one, while val remains unchanged. We repeat the experiment four times to get
more statistically significant curves. Results are presented in Fig. 2.1.

The outcomes of this experiment are somehow surprising.When reducing the num-
ber of training tiles from 12 to 1 (only 8% of original data!), we report a decrease of only
12% of overall accuracy (from 90% to 78%) and 21% of mIoU (from 77% to 56%), i.e.
much less than one would expect. Indeed, we supposed that reducing the number of
training tiles would seriously impact the performance of the network. One possible rea-
son is that all the images in the Vaihingen dataset are alike, thus, to generalize on them
is a relatively easy task. However, one can note that training with more data is never-
theless preferable in terms of reliability: the variance increases as the number of tiles
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Figure 2.1 – Influence of the training set size (number of tiles) on the network perfor-
mances, in terms of overall accuracy and mean Intersection over union (mIoU). The
curves show the mean and the standard deviation for each score and ⋆ shows raw re-
sults.

decreases.
To better understand the quantitative scores from Fig. 2.1 in terms of segmentation

quality, Fig. 2.2 shows the different predictions obtained for tile 30. We can observe
that the quality of the segmentation map decreases notably when less annotated tiles
are used during the training phase, with borders being less precise and shapes approxi-
mate. It is interesting to note that there is not a considerable difference between training
with 10 tiles and with 6 tiles, however there is a greater difference when training with 1
tile: borders are less regular and little objects (such as cars) are not well learned, which
explains why the mean IoU decreases faster on Fig. 2.1.

To assess the idea that the Vaihingen dataset has much redundancy, we observed
its statistical distribution. In Fig. 2.3(a) and (b), we compare the color histograms over
the 3 channels for train and val. Indeed, they are almost identical, which indicates that
learning on a single location might not be so challenging. Actually, this is even promis-
ing in terms of practical business applications, since mapping one single area can be
achieved after labeling only a few images. Nevertheless, it is not representative of the
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Image Ground-truth 10 tiles 6 tiles 1 tile
Figure 2.2 – Semantic maps obtained by reducing the available amount of labeled tiles
for training. Results on Vaihingen.

more general use-case where one needs to apply the model to a different location.
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Figure 2.3 – Per channel color histograms over the ISPRSVaihingendataset. Comparison
between train (left) and evaluation (right) sets.

2.2.2 Supervised learning at large-scale

The previous section stressed out a limitation of standard datasets for semanticmap-
ping in Earth observation. If some already take into accountmultiple locations, they are
devoted to a single class (such as buildings [134, 149]) or to land cover classes [150],
but do not offer generic land use classes at a large scale. Consequently, we investigate
the generalization capacities of current semantic segmentation methods on a more var-
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ied dataset, containing data fromdifferent locations and semantically complex land-use
classes. To this end, we gather data openly available from different locations –16 cities
and their surroundings– in France 4.

For coherency of comparisons, we use a fixed partition for evaluation, as defined in
Table 2.4: 8 cities are used for training and the remaining 8 ones for testing, keeping
diversity in terms of architecture and urban design in both subsets. All in all, this new
database contains 2121 images, each of them of size 10, 000 × 10, 000 pixels. Therefore,
it is 2719 times larger than Vaihingen in terms of surface coverage.

Similarly to Section 2.2.1, we first test the influence of the amount of training data
over the classification. However, due to computational times 5, we conduct more fo-
cused experiments. We train with the whole dataset, then only consider 10% of images
on the dataset (we make sure to pick 10% of images from each conurbation to conserve
the diversity of the dataset), and finally use only one city for training (the seaside town
of Caen, which represents a similar amount of data: 12.5% of the entire training set).
Test set remains the same.

Table 2.2 – Classification performances with respect to amount of data on large, multi-
location dataset.

Train set OA [%] mIoU [%]
100 % 52.40 15.79
10 % 50.14 15.25

Caen only (∼ 12.5%) 42.09 10.05

Hence, results are shown in Table 2.2. Performances are not reaching the same level
than on Vaihingen, which could be expected since the land use classes aremore abstract
and difficult than land cover ones and the algorithm is applied to a completely new
set of cities (never seen during training). However, considering our current issue, it is
worth noting that training with all data or with 10% data leads to similar scores, both in
accuracy and IoU. By picking our 10% sample images all over the dataset, we preserved
the diversity of the training set and did not degrade the results too much (even if more
data is better). On the contrary, training with a single location implies a 10% loss in

4. These data will hereinafter compose what we call The MiniFrance dataset. More details about this
dataset can be found in Section 2.3

5. Using a Titan X GPU, training over this large dataset takes 40 hours, while testing takes 25 hours
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accuracy and 5% less of mIoU. Clearly, in this case, the training set does offer enough
variety to encompass all the potential images of the test set.

In a second experiment, we apply the model trained on the whole dataset to each
city or conurbation of the test set. Results are shown in Table 2.3. It is interesting to
observe that the performance of the network varies significantly between some conur-
bations, revealing differences between cities and a lack of generalization capacity from
the model. Indeed, we observe in Fig. 2.4 that the statistical distribution of the pixel
colors differs from train to test. Thus, this large-scale database is a much more diverse
dataset than many others, and offers exciting challenges to overcome.
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Figure 2.4 – Per channel color histograms over MiniFrance data. Comparison between
train (left) and evaluation (right) sets.

Table 2.3 – Performance by conurbation in the multi-location dataset, training over en-
tire train set.

Score Marseille Rennes Angers Quimper Vannes Clermont Lille Cherbourg
OA [%] 46.13 51.56 44.85 50.82 49.51 46.51 61.35 67.54
mIoU [%] 12.77 15.05 13.15 13.93 12.66 11.40 16.93 15.82

To better understand these numbers, Fig. 2.5 presents semantic maps obtained dur-
ing testing. These examples show that the large-scale model performs globally well,
yielding reasonable prediction maps. First two rows show quite accurate predictions,
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both in a urban scene (first row) and a countryside area (second row). Indeed, the
model correctly identifies most classes present on the images. However, the predicted
map appears more fragmented than the ground-truth, which shows that the network
is sensitive to color variations of the image, and sometimes misses some abstract se-
mantic classes. Third row presents an example where ground-truth is missing for part
of the image and the model is still able to correctly classify it as water. Finally, last row
shows an example where the network endures some difficulties to distinguish between
the herbaceous vegetation associations and forests , which demonstrated the challenges
presented by these data.

From the experiments performed in Sections 2.2.1 and 2.2.2 we can formulate two
main observations:
— First, existing small-scale, mono-site Earth observation datasets, such as the clas-

sic ISPRS Vaihingen, are not adapted to measure the generalization capacities of
our models to new locations. They are not representative of the life-like scenario
where one has annotated data from a certain geographic location, but wants to
extend a model over another geographic region. Hence, there is a need for large-
scale, multi-location datasets, where train and evaluation sets come fromdifferent
locations, and where classes have high appearance variability.

— Second, as the experiments on the multi-location, large-scale setting have shown
(Section 2.2.2), current supervised semantic segmentation approaches are not
able to generalize correctly –nor homogeneously– to unseen locations. How can
we evolve to more robust and generic models?
In real-life Earth observation applications, usually one has access to a small por-
tion of annotated data (typically coming from one geographic location), while
there is a plethora of non annotated data at disposal. We believe that these un-
labeled data are essential to fill the gap of generalization. Therefore, we strongly
believe that semi-supervised models –which leverage unlabeled data to help on
the learning process– should be studied in more detail.

In consideration of all of the above,wepresent in the following section theMiniFrance
suite, the first dataset especially designed to evaluate and compare semi-supervised se-
mantic segmentation methods in Earth observation. Its composition is inspired from
the previous experiments. On the one hand,MiniFrance includes labeled and unlabeled
data for training, as in real-life applications. On the other hand, labeled data come from
only a few cities, which represents the more challenging setting for learning and gen-
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Image Ground-truth Prediction
Figure 2.5 – Semantic segmentation results on multi-location data. Legend of main
classes: Urban fabric ; Industrial, commercial, public, military, private and transport
units ; Arable land ; Pastures ; Herbaceous vegetation associations ; Forests ;
Water .
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eralize (see Table 2.2, Caen only results) and unlabeled data come from several cities
to add variety to the training set (Table 2.2, 10% of training data shows that variety is
key to seize the important features of images). Moreover, the test data are chosen to be
geographically independent from training data, simulating a real application scenario.

2.3 The MiniFrance suite

Considering the limitations of current EarthObservation (EO) datasets emphasized
and evinced in Sections 2.1 and 2.2, we propose a new large-scale benchmark suite for
semi-supervised semantic segmentation: MiniFrance. As in real life EO applications, it
comprises both labeled and unlabeled imagery for developing and training algorithms.
To our knowledge, this is the first dataset designed for benchmarking semi-supervised
learning in the field.Moreover, it consists of a variety of classes on several locationswith
different appearances: this opens the opportunity to push further the generalization
capacities of the models.

2.3.1 MiniFrance

It consists of data corresponding to 16 conurbations and their surroundings from
different regions in France (see Figure 2.6 and Table 2.4). It includes urban and country-
side scenes: residential areas, industrial and commercial zones but also fields, forests,
sea-shore or low mountains.

MiniFrance gathers data from two sources:
— Open data VHR aerial images from the French National Institute of Geographical

and Forest Information (IGN) BD ORTHO database 6.
They are provided as RGB tiles of size 10,000 px × 10,000 px at a resolution of
50 cm/px, namely 25 km2 per tile. Images included in this dataset were acquired
between 2012 and 2014.

— Labeled class-reference from theUrbanAtlas 2012 database.Original data are openly
available as vector images (i.e. containing polygon annotations) at the European
Copernicus programwebsite 7. Using the georeferenceddata available in the BDOR-
THO, we have made rasters of these images that geographically match the VHR

6. https://geoservices.ign.fr/documentation/diffusion/index.html
7. https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012/view
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2.3. The MiniFrance suite

Figure 2.6 – MiniFrance dataset overview. Areas colored according to Table 2.4.

Table 2.4 – List of cities in MiniFrance and split details.

Conurbation Tiles % pixels Color

Tr
ai
ni
ng

La
be
led Nice 170 8.01 %

Nantes, Saint-Nazaire 226 10.65 %

U
nl
ab
ele

d

Le Mans 107 5.04 %
Brest 88 4.14 %

Lorient 68 3.20 %
Caen 126 5.94 %

Dunkerque, Calais, Boulogne-sur-Mer 150 7.07 %
Saint-Brieuc 71 3.34 %

Te
st

Marseille, Martigues 162 7.63 %
Rennes 196 9.24 %
Angers 123 5.79 %
Quimper 79 3.72 %
Vannes 73 3.44 %

Clermont-Ferrand 150 7.07 %
Lille, Arras, Lens, Douai, Hénins 275 12.96 %

Cherbourg 57 2.68 %
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tiles from the BD ORTHO. We consider 14 land-use classes (see Table 2.5), cor-
responding to the second level of the semantic hierarchy defined by UrbanAt-
las [151]. For this reason, some of them might not be present in the regions con-
sidered for MiniFrance and they are colored in gray in Table 2.5.

Collecting data from different sources brings some burden that must be considered.
Land use maps from UrbanAtlas are obtained through a semi-automatic process and
thus they are not 100% accurate [152], besides polygon annotations might not match 50
cm/px resolution images precisely. Moreover, additional errors might come from the
fact that image and ground-truth may not correspond to the same year. Nonetheless,
MiniFrance has several peculiar, unprecedented properties that we detail now.
Large-scale. MiniFrance is a very large-scale dataset. It contains a total of 2,121 aerial
images of size 10,000px× 10,000px at 50cm/px resolution. In terms of ground coverage,
with 53,000 km2 it is 12 times larger than DeepGlobe and larger than xBD, among the
datasets of similar resolution.
Rich and varied. MiniFrance includes aerial images of 16 conurbations and their sur-
roundings fromdifferent regionswith various climates and landscapes (Mediterranean,
oceanic andmountainous) in France. Introducing various locations leads to various ap-
pearances for the same class (buildings look different, vegetation is not the same and
so on). Moreover, it combines urban centers, rural areas and large forest scenes. With
respect to remote sensing datasets like ISPRS Vaihingen and Potsdam, it offers much
more variety, as already observed in Section 2.2.
High semantic level of classes.MiniFrance considers 14 land-use classes,which ismore
than most of the datasets exposed in Section 2.1. However, these classes have higher se-
mantics: to identify an “urban area”, an algorithmmust be able to find several houses or
buildings together, same to classify a forest. It is much easier to only consider classes at
an object level (cars, buildings, trees, etc). Moreover, land-use classes are hard to learn,
even for humans: how to distinguish pastures from artificial non-agricultural vegetated
areas in Figure 2.7?
Underlying domain adaptation problem. Since train and test sets were split by city –
instead of excluding random tiles fromall the zones– algorithmsdeveloped onMiniFrance
must address the underlying problem of domain adaptation. The appearance of classes
might vary considerably from one city to another. Architecture is not the same, agricul-
ture may change, etc. In Figure 2.7 we observe that urban fabric does not look alike
between the three exposed images.
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Table 2.5 – Land use classes available in MiniFrance.

Class % pixels Color
Urban fabric 9.6 %

Industrial, commercial, public, military, private and
transport units

6.4 %

Mine, dump ans construction sites 0.7 %
Artificial non-agricultural vegetated areas 1.1 %

Arable land (annual crops) 29.5 %
Permanent crops 1.0 %

Pastures 29.0 %
Complex and mixed cultivation patterns 0.0 %
Orchards at the fringe of urban classes 0.0 %

Forests 15.9 %
Herbaceous vegetation associations 4.6 %

Open spaces with little or no vegetation 0.4 %
Wetlands 0.7 %
Water 1.0 %

Clouds, shadows or no data 0.1 %

Figure 2.7 – Some samples ofMiniFrance dataset on different localizations. Images (up)
and their associated ground-truth (down). From left to right: Nice, Rennes andVannes.
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Figure 2.8 – Representation of public EO datasets. Circle surface is proportional to real
surface coverage. MiniFrance covers an important surface, contains images from ur-
ban and countryside scenes, and is the only dataset designed for benchmarking semi-
supervised methods.

Designed for semi-supervised semantic segmentation. To our knowledge, this is the
first dataset specifically designed for semi-supervised learning strategies. Indeed, our
training split includes labeled (two cities) and unlabeled images (six ones) while al-
gorithms can be tested on the eight remaining cities. Such a proportion of unlabeled
examples fosters the development of new methods to leverage them. Moreover, these
methods are likely to be easily transferred to lifelike scenarios and to have better gener-
alization properties by design. Table 2.4 presents our training –labeled and unlabeled
images– and testing splits.

Fig. 2.8 shows a graphical comparison of MiniFrance with other well-known Earth
observation benchmarks at similar resolution.

Finally, the MiniFrance dataset is publicly available and can be downloaded from
IEEE Dataport 8.

8. https://ieee-dataport.org/open-access/minifrance
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2.3. The MiniFrance suite

2.3.2 TinyMiniFrance

With the purpose of prototyping new algorithms with fast processing and valida-
tion times, we also introduce tinyMiniFrance (tMF), a small, computationally tractable
version of the MiniFrance dataset.

Our tinyMiniFrance consists in a subsample of the original data: it contains 3,500 im-
ages of size 1,000px× 1,000px. Containing around 1.7% of the original data, it preserves
the variety and richness of MiniFrance.

Sampling is uniformover each region. To preserve the same balance between classes,
it is performed by randomly selecting sub-tiles from original tiles in the dataset and ver-
ifying that there is at least one sub-tile from each tile inMiniFrance. Figure 2.9 illustrates
the result of sampling over the region of Cherbourg. Moreover, we keep the original
proportion of images per region on the dataset (e.g. the region of Nice contains more
data than Brest, as in Table 2.4). Training –labeled and unlabeled– and testing splits
remain unchanged with respect to the original dataset.

Figure 2.9 – Subsample for tinyMiniFrance over Cherbourg region.

Table 2.6 shows the classes distribution over tinyMiniFrance. When compared with
Table 2.5, the original proportions of classes of MiniFrance are well preserved. Thus,
we can expect that algorithms developed on tinyMiniFrance will scale up similarly to
MiniFrance. For this reason and for computing capacities, all the following analysis
will be performed over tinyMiniFrance (Section 2.4). For the sake of simplicity, we will
mostly employ the term MiniFrance.
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Table 2.6 – Classes distribution on tinyMiniFrance.

Class % px Class % px Class % px

Urban 9.9 % Permanent 1.3 % Herbaceous 4.5 %
Industrial 6.5 % Pastures 27.3 % Open 0.1 %

Mine 0.7 % Complex 0.0 % Wetlands 0.7 %
Artificial 1.2 % Orchards 0.0 % Water 1.0 %
Arable 30.7 % Forest 16.0 % Clouds 0.1 %

2.4 Statistical analysis of the representativeness of
training and test datasets

This section introduces two concepts that are required to have adequate learning
conditions to achieve satisfying results and that explain our choice for labeled training
data, unlabeled training data and test data forMiniFrance: class representativeness and
appearance.

On the one hand, class representativeness refers to the fact that to properly learn a
certain class, any learning algorithm needs to see at least some examples of this class
during training. Otherwise, it will not be able to identify it successfully at inference
time. Hence, the labeled training split should contain examples of all possible classes
in the dataset.

On the other hand, in a standard supervised setting, appearance features in the
training set should have the same distribution as those on the test set to achieve good in-
ference results. However, in a semi-supervised learning setting, unlabeled training data
relax such a strong constraint. Indeed, by providing more information on the possible
visual features, they help learning a wider appearance of each class. This is appealing
since it favors generalization, but also brings more robustness against distribution shift
(i.e. it is more unlikely that the test set contains very new appearances w.r.t. the test
set).

According to this, we consider that a good training split should satisfy two condi-
tions:
(i) Labeled training data must contain a good representation of all classes in the

dataset, ideally with the same distribution than the testing data.
(ii) Training data (labeled and unlabeled) must cover all the range of appearances of

different visual features in the dataset.
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Figure 2.10 – 2D representation of images by t-SNE after ResNet34 encoding. Similar
projections are close, while different visual features are separated. In , mostly urban
scenes; in fields images and in mostly forest scenes.

In what follows we present a statistical analysis of the MiniFrance dataset to show
that our chosen split (in Table 2.4) satisfies these two requirements.

2.4.1 Appearance analysis

To study the appearance similarity between the training split and testing split of
multi-locations datasets –such as MiniFrance–, we rely mainly on three tools.

First, we use pre-trained Convolutional Neural Networks (CNNs) as image feature
extractors. Indeed, thanks to their shared-weight architecture and translation invari-
ance, CNNs are reliable encoding tools for images. Furthermore models pretrained on
ImageNet –a very large database for visual recognition– have seen a wide variety of
representations that allow them to output a vector encoding the image’s appearance.

Second, we make use of the t-SNE [153] algorithm to reduce the dimension of high-
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dimensional feature vectors and visualize them in a 2D space. t-SNE is a non-linear di-
mensionality reduction technique that allows visualization of high-dimensional data.
In brief, the algorithm starts by converting the Euclidean distances between high di-
mensional objects into conditional probabilities that represent similarities. Then, it de-
fines a Student t-distribution with one degree of freedom over the low-dimensional
points. Finally, it minimizes the Kullback-Leibler divergence between the high and low-
dimensional distributions with respect to the locations of the low-dimensional points.
At the end, if two high-dimensional objects are similar, then their representations at the
low-dimensional t-SNE visualization are close and vice-versa.

Third, we rely on the one-class SVM algorithm [154] to estimate the support of the
data distributions. In a nutshell, this algorithm uses a support vector machine to sepa-
rate all the data points from the origin (in a feature space), by maximizing the distance
from this hyperplane to the origin. As a result, one obtains a binary function that cap-
tures regions in the input space where the probability density of the data lives.

Thus, our algorithm for appearance coverage assessment between datasets is sum-
marized as follows:
Step 1. For each image in the dataset, we obtain an encoded feature vector through a
CNN (in particular, we use a VGG16 [155] and a ResNet34 [58]).
Step 2. Then, we apply a t-SNE to this set of high-dimensional feature vectors to obtain
a 2D representation of the dataset images which preserves the original similarity of
visual features.
Step 3. Each point in the 2D space can be traced back to the original tile and so to the
city it comes from. Then, we use a one-class SVM [154] to estimate the distribution of
the city images in the 2D space.
Step 4. Finally, we evaluate the appearance similarity and coverage between cities us-
ing two metrics:
(i) We use the intersection over union score (IoU, the standard metric for object de-

tection) between the surfaces defined by the distributions, or appearance maps,
to assess appearance similarity. Let S1 and S2 be two sets, the IoU score between
them is defined as IoU(S1, S2) = |S1∩S2|

|S1∪S2| . In our context, higher IoU scores relate to
resemblance between the appearance maps of cities.

(ii) We also introduce the Intersection over Test area score (IoT). Let S1 and S2 be two
sets, the IoT score between them is defined as IoT (S1, S2) = |S1∩S2|

|S2| . This score
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measures the area covered by the intersection of the two surfaces normalized over
the second area, which is the objective. We compute IoT considering S1 ∈ T and
S2 ∈ E, where T and E are the set of training cities and the set of testing cities,
respectively. Thereby IoTmeasures howwell the objective appearance map is cov-
ered by appearances of the training data.

Fig. 2.11 presents a visualization that summarizes the algorithm for appearance sim-
ilarity assessment.

Figure 2.11 – Generation of appearance maps for multi-location image datasets. First,
we encode images in a dataset as high-dimensional feature vectors by the means of
pre-trained CNNs. Then, the t-SNE algorithm is applied to reduce the dimension of
the feature vectors to a 2D-space. Given the assumption that CNNs encode for image
appearance, look-alike images should be close in the 2D representation space, while
images with different visual features should be apart. Finally, one-class SVM is applied
over data points coming from the same location to estimate the data distribution of each
specific location.

Furthermore, we apply this method to the MiniFrance data. The results presented
in this section used a ResNet34 encoding for MiniFrance images, even though VGG16
encoding yields similar outcomes (step 1). Fig. 2.10 shows the mapping resulting after
application of the t-SNE algorithm (step 2), it validates that similar images are close
while different appearances are put apart. Results of step 3 are shown in Fig. 2.12, that
shows the appearancemaps obtained for each city in the dataset. Finally, Fig. 2.13 shows
IoU and IoT scores as two heatmaps between cities in the training set and the ones in
the test set.

Results are consistent with reality, to name a few examples: Nice exhibits low sim-
ilarity scores with all cities, except Marseille, because those are the only cities from
Provence, on the Mediterranean coast. Quimper has its higher IoU score with Brest,
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Nice Nantes Le Mans Brest

Lorient Caen Calais Dunkerque Saint-Brieuc

Marseille Martigues Rennes Angers Quimper

Vannes Clermont-Ferrand Cherbourg Lille

Figure 2.12 – Distributions of cities in the 2D appearance space.
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Figure 2.13 – IoU and IoT (Intersection over Test) scores between the 2D distributions
of cities in the training split and the testing split, represented as heatmaps. Last column
represents the scores between a training city and the union of surfaces of the testing
split. Similarly, last row corresponds to the scores between the union of surfaces in the
training split and every city in the test. The dark last row of the IoT score indicates that
the train split covers well every city in the test partition.

which is coherent because of their geographic proximity; in terms of IoT Quimper is
well covered by Lorient and Saint-Brieuc, which are also geographically close (all these
cities are located in Brittany). High IoU score between Angers and Caen is justified by
the fact that both are agricultural localities, with similar landscapes.

To summarize, this section proposes a method to assess representativeness in terms
of appearance similarity between sites on multi-location datasets. In particular, we ap-
ply this tool to the MiniFrance data, which allows us to perform a comparison between
cities in the training split and the ones in the testing split. IoU scores show that, even if
there are similarities between cities, no locality in the training set is identical to another
one in the test set. However, IoT proves that testing cities are well covered by the ensem-
ble of training cities, which is confirmed by the last dark row of this score in Figure 2.13
(right).

2.4.2 Class representativeness analysis.

In this section, we present two tools to assess class representativeness: class distri-
bution histograms and class spatial distribution maps.
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An underlying assumption of ML is data distribution stationarity between learning
and inference time, that is a class cannot be learnt if no example of it has been seen at
training time. In otherwords, the labeled training partition has to contain all the existing
classes on the dataset. If possible, the distribution of the classes during training should
be similar to the one of test data.

To fulfill this condition, we study the classes distribution on amulti-location dataset
by the means of two tools:

Tool 1. Class histograms for each location on the dataset.

Tool 2. The 2D-representation space obtained from the appearance assessment algo-
rithm (see Section 2.4.1) allows us to perform an analysis of the distribution of classes
over the images in terms of appearance.

In particular, we apply these tools to the MiniFrance data.

We compute class histograms of each geographic area (tool 1) and present them
in Fig. 2.14. We observe that they vary significantly from one city to another. Besides,
among the 12 classes that we consider in this analysis –we do not consider complex and
mixed cultivation patterns, orchards at the fringe of urban classes nor clouds and shadows 9,
see Table 2.5–, no city contains all of them. The best coverage of classes is given by the
Nantes, Saint-Nazaire or Marseille, Martigues conurbations that exhibit 10 of the classes.
However, most of the regions contain only 7 or 8 categories in total.

Another problem is the heterogeneous proportions of classes in each region. The
most striking example is Cherbourg where 6 classes are represented and one of them
–pastures– covers 70% of the total pixels, while the other categories count for less than
10% each.

Therefore, defining a labeled training split that represents all the classes in a good
proportion is not straightforward.

9. clouds and shadows is not a land use class and thus it is not interesting in our case.
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Figure 2.14 – Histograms of class distributions by city. x axis represents the classes with
colors as in Table 2.5. y axis presents the percentage of each class by city.
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Urban fabric Industrial ... Mine, construction sites Artificial vegetated areas

Arable land Permanent crops Pastures Forests

Herbaceous vegetation Open spaces Wetlands Water

0%

20%

40%

60%

80%

100%

Figure 2.15 – Class distributions in the 2D appearance space. One subplot represents
one class. Each point is colored as the proportion occupied by a given class over the
corresponding image.

Along with the histograms, we make use of our precedent analysis to understand
the distribution of the classes in terms of image appearance (tool 2). Each subplot in Fig-
ure 2.15 presents a class in the dataset and contains all the images in the 2D appearance
representation space. Each point is colored according to the proportion occupied by the
class over the image. That is, the darker the point in the figure , the more pixels cor-
responding to the class are in the image. On the contrary, a light point indicates that
there are very few pixels representing the class. We observe that some classes (such as
pastures or arable land) are well-spread over the whole appearance space, with high pro-
portions in many tiles. This means that they are represented by diverse images and that
they are likely to have a lot of examples (as confirmed by the histograms of Fig. 2.14).
These classes should be easier to learn. Others –like urban fabric or industrial, commercial,
public, military, private and transport units– are widespread, but do not reach majority in
most of the images in which they are present. This means that these classes have a large
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variance in their appearance but not so many examples per appearance mode, which
could make them more difficult to learn. Moreover, other categories (like artificial non-
agricultural vegetated areas or herbaceous vegetation associations) are mostly concentrated
over one zone –that could correspond to only one geographic region–, that is, they are
present in images of specific appearances, which makes them even harder to learn. Fi-
nally, we see classes that are extremely rare (e.g. wetlands and open spaces with little or
no vegetation), they are present in a few images only, and thus they should be the more
difficult to learn.

Sections 2.4.1 and 2.4.2 have shown thatwe can combine class distribution andvisual
appearance mapping to get further insight on the data. These tools help us to define
a suitable partition of the MiniFrance dataset –labeled, unlabeled and test data– that
satisfies the class distribution and appearance conditions as wewill show in Section 2.5.

2.5 Defining the labeled, unlabeled and test splits
for MiniFrance

Using all the tools and information presented in Section 2.4, MiniFrance has been
carefully designed to satisfy the conditions of appearance and class representativeness,
that make it appropriate for semi-supervised learning. Indeed, the split proposed in
Table 2.4 allows us to represent all the classes with a proper distribution, as shown in
the histograms of Figure 2.16. Hence, all classes present in the test set have training
examples in the labeled split.
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Figure 2.16 – Class distributions aggregated by split as defined in Table 2.4.
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On the appearance side as shown in Figure 2.17, even if labeled cities do not cover
the whole appearance space of test images, the union of labeled and unlabeled does.
This should ensure that all appearances are seen in a semi-supervised setup. Moreover,
in terms of IoU scores of appearance shown in Figure 2.13, the labeled split comprises
one region with a high score (Nantes) and one with a low score (Nice) which should
help to learn different appearances of classes. In addition, in the unlabeled split most
of the cities have a high score with respect to the test set, so they should help to extract
the implicit information from images.

Labeled split Unlabeled split Test split

Figure 2.17 – Appearance representation aggregated by split as defined in Table 2.4.

Table 2.7 – IoU and IoT scores between training data –labeled and unlabeled– and test
data. Scores are presented in numerical form as well as color code for comparison with
Figure 2.13.

S1 - S2 IoU(S1, S2) IoT (S1, S2)

Labeled - Test 0.63 0.64
Unlabeled - Test 0.87 0.93

Table 2.7 presents the IoU and IoT scores between the surfaces in Figure 2.17 and
confirms the information above. Thus, even if the labeled training split contains all
classes of the test split, 64% of IoT means it is far from covering all the possible appear-
ances. However, with 93% of IoT score with the test area, the unlabeled training split
offers wider information about the visual features present in the MiniFrance dataset
that should be exploited to achieve good quality classification and generalization.

In brief, MiniFrance is a very challenging dataset for semantic segmentation that
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promotes new solutions in a semi-supervised manner as some appearances can only
be extracted from the unlabeled data. However, train and test adequacy was carefully
controlled to avoid domain shift and such disentangle semi-supervised learning from
domain adaptation and transfer learning.

2.6 Comparing MiniFrance to classic datasets

tinyMiniFrance
Vaihingen

Figure 2.18 – 2D representation of images by t-SNE, applied to tinyMiniFrance and Vai-
hingen together, after ResNet34 encoding. Points from tinyMiniFrance are colored ac-
cording to the proportion occupied by the class urban fabric.

Finally, in order to validate the fact that MiniFrance is more challenging in terms of
appearance and variability than more classic datasets, we apply our tool for appear-
ance coverage assessment previously presented (Section 2.4.1) to the union of both
datasets, tinyMiniFrance and Vaihingen. To get a fair comparison, images from the Vai-
hingen dataset were downsampled to the tinyMiniFrance resolution (from 9 cm/px to
50 cm/px) before being encoded by the CNN.

Due to the stochastic nature of the t-SNE algorithm, it is important to note that sub-
sequent runs can lead to different embeddings. However since tinyMiniFrance is much
larger than the 16 Vaihingen tiles, the projection is not noticeably perturbed up to rota-
tion and reflection. We chose the embedding which resulted in the same visualization
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as Section 2.4.
Results are shown in Figure 2.18. Red stars (⋆) represent Vaihingen tiles, while shad-

ing blue circles (•· · · •) are tinyMiniFrance tiles, colored according to the proportion
occupied by urban fabric (as in Figure 2.15, darker points contain a higher proportion of
urban pixels). We consider specifically the urban fabric class since it is the most related
to the Vaihingen urban dataset.

The previous visualization is insightful. On the one hand, we realize how small
the Vaihingen dataset is compared to tinyMiniFrance (and even more to the entire
MiniFrance), in terms of number of available tiles. On the other hand, the t-SNE algo-
rithmplacesVaihingen as a very small cluster next to the urban scenes of tinyMiniFrance,
which means that:

(i) Vaihingen is slightly different from tinyMiniFrance (maybe due to the IRRG en-
coding vs. RGB);

(ii) At the same time, Vaihingen remains visually close to the urban images from
tinyMiniFrance (confirming our choice to consider here the urban fabric class);
and

(iii) The wide surface covered by tinyMiniFrance on the 2D appearance projection
space w.r.t. Vaihingen shows that our dataset presents a much larger variety of
appearances in terms of urban scenes; furthermore, these urban scenes form only
a small part of the appearance space, thus proving the very wide diversity of
tinyMiniFrance, and to a larger extent of MiniFrance.

2.7 Data fusion contest 2022: MF-DFC22

Aswe previouslymentioned, every year since 2006 the IEEEGeoscience andRemote
Sensing Society (GRSS) has organized the Data Fusion Contest, aiming to promote the-
oretical advances and best practices in image analysis and data fusion for remote sens-
ing applications.

Co-organized by the Image and Data Fusion Technical Committee (IADF TC) of the
IEEEGRSS,ONERA,Université Bretagne Sud andESAϕ-lab, the 2022 IEEEGRSSData
Fusion Contest (DFC22) is about semi-supervised learning. It aims to foster research
in automatic land cover classification from only partially annotated training data, by
leveraging large amounts of unlabeled data.
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To this end, theDFC22 is based onMiniFrance (Section 2.3). Indeed, theMiniFrance-
DFC22 (MF-DFC22) dataset extends and modifies the MiniFrance dataset for train-
ing semi-supervised semantic segmentation models for land use/land cover mapping.
ThemultimodalMF-DFC22 contains aerial images, elevationmodel, and land use/land
covermaps corresponding to 19 conurbations and their surroundings from different re-
gions in France, gathering data from three sources:
— Open data VHR aerial images from the French National Institute of Geographical

and Forest Information (IGN) BD ORTHO database. They are provided as 8-bit
RGB tiles of size∼ 2, 000px × ∼ 2, 000px at a resolution of 50cm/px, namely 1 km2

per tile. Images included in this dataset were acquired between 2012 and 2014.
— OpendataDigital ElevationModel (DEM) tiles from the IGNRGEALTI database.

DEM data give a representation of the bare ground (bare earth) topographic sur-
face of the Earth. They are provided as 32-bit float rasters of size ∼ 1, 000px × ∼
1, 000px at a spatial resolution of 100cm/px, i.e. also 1 km2 per tile. The altitude
is given in meters, with sub-metric precision in most locations. This database is
regularly updated so images included in the dataset were acquired between 2019
and 2020.

— Labeled class-reference from the UrbanAtlas 2012 database. 14 land-use classes
are considered, corresponding to the second level of the semantic hierarchy de-
fined by UrbanAtlas. Original data are openly available as vector images at the
European Copernicus program website and were used to create raster maps that
geographically match the VHR tiles from BD ORTHO. They are provided as in-
teger rasters with index labels (0 to 15 –8 and 9 being UrbanAtlas classes which
do not appear in the regions considered–) of size ∼ 2, 000px × ∼ 2, 000px at a
resolution of 50cm/px, namely 1 km 2 per tile.

Slightly different from the original MiniFrance, the MF-DFC22 dataset is organized
as follows:
The training partition (labeled + unlabeled, same areas fromMiniFrance, as detailed
in Table 2.4), contains a total of 1915 tiles. The largest area corresponds toNantes/Saint-
Nazaire with 433 tiles, while the smallest area is Lorient with only 120 tiles. Data are
provided with georeference information.
The validation partition contains eight georeferenced areas corresponding to the test-
ing partition of MiniFrance (Table 2.4), with RGB images and DEM information. This

89

Apprentissage semi-supervisé pour la compréhension des données d’observation de la Terre à large-échelle Javiera Castillo-Navarro 2022



Chapter 2 – The potential of semi-supervised learning in Earth observation

partition contains 2066 tiles. Largest area is Lille/Arras/Lens/Douai/Henin including
407 tiles, smallest one is Cherbourg with 113 tiles.
The test partition consists of three areas without georeference information and con-
tains RGB images and DEM information only. This partition includes 1035 tiles.

With two possible tracks to participate –track 1 on semi-supervised land cover map-
ping and track 2 on brave new ideas–, theDFC22was officially launched on January 3rd,
2022. Winners will be announced onMarch 25th. TheMF-DFC22 data are openly avail-
able at DFC22 IEEE Dataport 10. Finally, classification results will be submitted to the
Codalab competition site 11 for evaluation. Complete information about the DFC22 can
be found in the DFC22 site announcement 12.

10. https://ieee-dataport.org/competitions/data-fusion-contest-2022-dfc2022
11. https://codalab.lisn.upsaclay.fr/competitions/880
12. https://www.grss-ieee.org/community/technical-committees/

2022-ieee-grss-data-fusion-contest/
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Image DEM Urban Atlas

Figure 2.19 – Some samples of MF-DFC22 dataset on different locations in the training
partition.
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2.8 Conclusions

This chapter has presented an analysis of existing Earth observation datasets from
a critical point of view: do they model real-life remote sensing applications? What do
we expect from a good dataset? In general EO applications, one would like to train a
model that generalize well across different geographic locations. Moreover, one typi-
cally has access to very few labeled data, while plenty of unlabeled data are available.
Therefore, good EO datasets should recreate these situations to be considerate as a suit-
able and trustworthy evaluation benchmark.

Furthermore, in Section 2.2 we have investigated the learning capacities of cur-
rent supervised approaches on different settings: on small-scale datasets, and at a
large-scale multi-location set-up. Our experiments revealed that common supervised
semantic segmentation networks have generalization issues in the large-scale set-
ting, if training data are not sufficiently varied. Therefore, there is an opportunity for
new learning paradigms to arise: semi-supervised learning, weakly-supervised learn-
ing, active learning, etc. In this work, we focus on semi-supervised learning techniques,
because the plethora of unlabeled EO data available should be exploited to develop ro-
bust and generic models.

Having spotted the limitations of classic datasets and the opportunities of new train-
ing paradigms, Section 2.3 has introduced the MiniFrance suite, a novel large-scale
dataset designed for semi-supervised semantic segmentation in Earth observation.
MiniFrance has unprecedented properties, the diversity of landscapes and scenes re-
flects the complexity of reality.Above all, itwas thoroughly designed for semi-supervised
learning, including labeled and unlabeled data in its training partition and recreating
a life-like application setting, which makes MiniFrance unique.

Moreover, Section 2.4 introduced two tools that enable the analysis of a multi-
location image dataset in terms of representativeness between train and test sites: an
appearance assessment tool (Section 2.4.1) and a class representativeness tool (Sec-
tion 2.4.2). Appearance assessment is based on pre-trained CNNs to encode image ap-
pearance, t-SNE to reduce the dimension of the encoded appearance, and one-class
SVM to estimate site distributions. Scores like IoU and IoT are then used to assess the
similarity between data from different locations. Class representativeness is evaluated
by comparing class distribution between different locations and by using the appear-
ance assessment tool to understand the class distributions in the appearance space.
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Section 2.5 presented a comprehensive analysis of the MiniFrance data in terms
of appearance similarity and class representativeness by the means of the previously
presented tools. This study has shown that MiniFrance is well-suited to address the
semi-supervised learning problem.

We have also used the appearance assessment tool to demonstrate that MiniFrance
is indeed more varied and complex than more classical single-location datasets such
as the ISPRS Vaihingen. Thus, we hope that MiniFrance will contribute to push the
research on the field to more challenging and realistic scenarios.

Finally, our work on MiniFrance is part of the IEEE GRSS Data Fusion Contest
2022. This year’s contest is about semi-supervised learning for land cover classification.
The MF-DFC22 dataset is based on MiniFrance, extending it to new modalities (DEM)
and adding three new areas for evaluation. Thereby, we have contributed to the orga-
nization of this competition that will gather researchers from all over the world to find
solutions to the semi-supervised problem.
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Chapter summary

This chapter explores semi-supervised learning from a discriminative perspective.
In other words, we study methods that learn directly a function f that maps inputs x

into their corresponding labels y (in a classification problem). Sincewe are interested in
semi-supervisedmethods, these algorithmsmust be able to leverage unlabeled data to –
somehow– refine themap function f . In this context,we investigate two groups ofmeth-
ods: multi-task learning strategies and consistency regularization-based approaches.

Multi-task learning was inspired by the human ability to use previous knowledge
on related tasks to “better” learn a new task. In this framework, models are designed to
learn several tasks simultaneously, keeping shared representations of the inputs among
tasks. Thus, domain information contained in the training signals of one of the tasks can
be seen as an inductive bias to other related tasks, which induces a regularization on
the model and yields better generalization capacities.

In Section 3.2 we present different neural network architectures adapted to the semi-
supervised multi-task semantic segmentation framework, as well as different auxiliary
tasks and loss functions to apply together with the pixel-wise classification task. We
perform experiments on three datasets suitable for semi-supervised learning that show
the benefits of the proposed multi-task approach. However, we also observe the issues
of multi-task learning: how to choose auxiliary tasks? how to choose the best-suited
loss function? should we prefer parallel streams or sequential learning? early or late
splitting?

The second part (Section 3.3) of the chapter is devoted to methods founded on the
consistency regularization principle. Consistency regularization exploits the idea that
semantically similar inputs should have similar predictions. This principle is widely ap-
plied in most of the current state-of-the-art semi-supervised classification approaches
in computer vision. In particular, we delve into FixMatch, one of the most powerful
semi-supervised classification methods to date, which is based on a bright combina-
tion of data augmentation, consistency regularization and pseudo-labeling. Our exper-
iments on two public Earth observation benchmarks for scene classification show the
high-performance of this model, even in extreme settings when very few labeled data
are available during training. Moreover, they show how consistency regularization en-
hances the generalization capacities of the model with respect to new geographic loca-
tions, which we stated in Chapter 2 as an important feature in EO applications.
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3.1 Introduction: discriminative models

Discriminative models comprise all the algorithms that model directly the posterior
distribution p(y|x). In other words, they learn directly a map function from inputs x

to the outputs y (class labels in the classification problem or y ∈ R in a regression
problem). The idea is to find the decision boundary between classes. On the other hand,
generative models (which we will explore in Chapter 4) estimate the joint probability
p(x, y) of inputs and outputs, and then, by using the Bayes rule, they can compute p(y|x)
to get the prediction y.

Traditionally, there is an implicit collective consensus that discriminative classifiers
are almost always preferred over generative ones. They usually yield superior perfor-
mance on classification tasks, partly because they have fewer variables to compute. Ng
et al. [156] have shown that, in general, generative models may converge faster, but dis-
criminative models usually catch up and eventually surpass their performances. An-
other advantage of discriminative models over generative ones is that –since they are
optimized for a specific task (estimate the posterior distribution)– prior knowledge can
be introduced into the model.

Moreover, Vapnik [157] states in his main principle of inference that:
«(...) [one should] try to solve the problem directly and never solve a more
general problem as an intermediate step. It is possible that the available in-
formation is sufficient for a direct solution but is insufficient for solving a
more general intermediate problem.»

In this regard, we can say that generativemodels try to solve a general problem, namely,
estimating the data distribution, as an intermediate step to determine p(y|x). Instead,
discriminative models directly estimate the decision boundary. Therefore, the latter
should be preferred if our only goal is to find y. In this chapterwe explore semi-supervised
learning through two different discriminative approaches: first, with amulti-task learn-
ing approach and second, with a consistency regularization method. We apply these
methods to Earth observation applications, in the form of semantic segmentation or
scene classification.

3.2 Semi-supervised learning cast as multi-task

Are we, humans, multi-task mechanisms? Multi-tasking is the ability of executing
several tasks at the same time. Even if sometimes we may think that we can simulta-
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neously perform two tasks (that require a certain degree of concentration), this is pure
illusion [158]. In reality, in any multi-task situation, when we have to execute two or
more cognitive operations, at least one of the operations is slowed down. This is because
our brain works in a similar way to a processor, switching tasks from one to another,
not able to jointly perform them.

In spite of our inability to truly multi-task, what we call multi-task learning –in the
context of machine learning– is inspired from human learning. Indeed, when we learn
a new task, we are able to apply all the knowledge we have acquired by learning other
tasks (i.e. our experience). Therefore, by combining our knowledge of several tasks,
we can improve our ability to learn the new task [159]. This is the key idea ofmulti-task
learning.

3.2.1 Multi-task learning

Multi-task learning (MTL) refers to machine learning algorithms that are designed
to solve several problems simultaneously, in other words, algorithms that havemultiple
outputs (see Fig. 3.1). The objective is to improve the generalization capability of the
model –on several tasks– by exploiting the common features and differences across
tasks. We can achieve this by learning all tasks jointly, keeping a shared representation
of the inputs. Thus, the information extracted to learn one task can be helpful to improve
the knowledge about other tasks.

Single task learning Multi-task learning

Figure 3.1 – Comparison between single task learning (left) and multi-task learning
(right), example with three tasks. In STL each tasks needs to train a different model
over the same inputs. In contrast, MTL needs just one model, sharing parameters, to
perform all the tasks simultaneously.

Caruana [159] explains that the domain information contained in the training sig-
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nals of one task can be seen as an inductive bias to other related tasks. Indeed, when
part of the model is shared across tasks, that part of the model is more constrained,
leading to an efficient and more generic feature extractor [30]. That is to say, MTL in-
duces a regularization in the learning algorithm that results in better generalization and
performance.

However, how all tasks do benefit from each other and how to make the best use
of it is still unclear. Several studies [159–161] propose that for multi-task learning to be
helpful, tasks must be related. The problem is then how to define related tasks, today’s
choices being mostly intuitive or empirical: one can predict simultaneously character-
istics of the road and the steering direction in a self-driving car [159]; or jointly predict
phoneme duration and frequency profile in text-to-speech applications [162]. At the
moment, there is no theory of relatedness to determine beforehand if a pair of tasks will
help or hurt each other.

On the other hand, other studies show that we can benefit from unrelated tasks. For
instance, using prior knowledge about unrelated tasks one can learn shared representa-
tions across tasks, and impose constraints on representations of unrelated tasks (such
as orthogonality) [163]. However, we still need to know which tasks are related and
which ones are unrelated.

Nevertheless, the general consensus is that MTL can improve the generalization ca-
pacities of the models, improve their performance or improve their convergence rate.
Recent works on the subject show the benefits frommulti-task learning at a large-scale,
going up to training twenty-six tasks simultaneously [164], and showing that multi-
task learning can reduce the need for labeled data [164, 165].

Based on all of the above, it is straightforward to imagine a multi-task learning
model where some tasks are supervised (label-dependent) and others are completely
unsupervised (no need for labels). Thismodelwould then be semi-supervised, because
we can integrate completely unlabeled data into the learning process and benefit from
the regularization induced by the auxiliary unsupervised tasks. A similar approach
was proposed by Ando et al. [166], where unlabeled data are first leveraged in a MTL
framework and then the model is fine-tuned on the primary supervised task.

Multi-task semi-supervised semantic segmentation

Inspired from this idea, the following sections explore semi-supervised multi-task
learning for semantic segmentation. In this context, supervised semantic segmentation
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is our primary task to solve and we study several unsupervised tasks to serve as auxil-
iary tasks, as well as neural network architectures adapted to this problem.

We aim to use unlabeled data to help generalization for semantic segmentation of
aerial images. The challenge is two-fold: designing network architectures able to deal
with both labeled and unlabeled images, and selecting unsupervised tasks to perform
along with the appropriate auxiliary loss function.

Let ϕs(·) be the function learned by a supervised segmentation network (for the sake
of simplicity, the corresponding network will also be referred as ϕs). Such a network
can be optimized through supervised learning using stochastic gradient descent and a
classification loss Ls (cross entropy loss is a standard choice). We denote x the input
image and y the target label, then:

(x, y) 7→ Ls(ϕs(x), y). (3.1)

Froma general point of view, using unlabeled data to help the previous optimization
can be seen as a second task optimized with a loss function Lu and a transfer function
through the network denoted by ϕu. Without labels, unsupervised losses usually rely
on comparing in some way the output to the input image:

x 7→ Lu(ϕu(x), x). (3.2)

In order to improve the genericity of ϕs, one has to relate ϕs and ϕu. This is gen-
erally done by partially sharing parameters between both networks. Finally, the semi-
supervised loss is a weighted sum of the losses for each individual task:

L(x) = Ls(ϕs(x), y) + λLu(ϕu(x), x). (3.3)

3.2.2 Multi-task semantic segmentation networks

We propose here two types of semi-supervised networks which process the multi-
task optimization –semantic segmentation as the supervised task, along with an unsu-
pervised task– either as parallel streams or as sequential objectives (Figure 3.2).
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(a)
BerundaNet-early

(b)
BerundaNet-late (c) W-Net

Figure 3.2 – Proposed multi-task neural network architectures for semi-supervised
learning. Shared layers are depicted in blue, supervised layers are in purple, and unsu-
pervised layers are shown in green.

BerundaNet (with early and late task splitting)

Standard encoder-decoder networks for semantic segmentation –such as SegNet [55]
or U-Net [57]– can easily be extended for multiple task learning by adding a new
head with a loss for the new, unsupervised task [92, 138]. With such an architecture
(thereafter named BerundaNet after the mythological two-headed bird), both tasks
have shared parameters until the data streams are split. We distinguish two variants
depending on the splitting layer. Early splitting networks have one encoder and two
decoders, one for each task (Fig. 3.2 (a)). On the contrary, with late-splitting task spe-
cialization occurs at the very end. It has an almost-all shared decoder with only a single
separate convolutional layer for each task (Fig. 3.2 (b)).

Eventually, all architectures optimize the global loss defined in Eq. (3.3). Ls can
be any supervised loss for semantic segmentation, and in the following we consider
the cross-entropy loss. Lu is an unsupervised loss. In the experiments we will consider
reconstruction losses (such as L1 or L2), unsupervised image segmentation losses and
self-supervised losses that will be presented in Section 3.2.3.

W-Net [167, 168]

Multiple task learning can also be processed sequentially, as in W-Net [167] which
combines two unsupervised objectives: segmentation and reconstruction. W-Net con-
sists of two stacked U-Net [57], hence its name. We adapt the original design to semi-
supervised learning by specializing the first U-Net block on the semantic segmentation
task and focusing the second one on the unsupervised objective (Fig. 3.2 (c)). With re-
spect to previous notations, in this case the network ϕs shares all parameters with ϕu. At
the end of the first U-Net block, a soft-max layer is included to achieve the supervised
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classification.
The loss function for our semi-supervisedW-Net architecture is thenmore precisely

decomposed as follows:

L(x) = Ls(ϕs(x), y) + λLu(ϕu(ϕs(x)), x), (3.4)

where x is the input image, y its corresponding ground truth, ϕs(·) represents the first
U-Net block and ϕu(·) represents the second U-Net block. As before, Ls can be any
supervised loss for semantic segmentation and Lu is an unsupervised loss.

This kind of architectures –BerundaNet and W-Net– allows us to deal with both la-
beled and unlabeled data during training. When a labeled example is processed the
gradient is backpropagated trough the whole network, whereas if an unlabeled exam-
ple is processed gradients are only backpropagated through the unsupervised part and
shared parameters of the network (green and blue blocks in Figure 3.2). However, the
main objective is still the semantic segmentation task. Thus, even if unsupervised parts
are helpful during the training process, evaluation can be performed without them,
which yields in standard-size inference networks.

3.2.3 Auxiliary tasks and losses

We now present some unsupervised losses Lu which can leverage the information
brought by images with no label. Two task objectives are usually considered, image
reconstruction and image segmentation, leading to the following general formulation:

Lu(·) = α(rec)L(rec)(·) + α(reg)L(reg)(·), (3.5)

where L(rec) is a reconstruction loss, L(reg) is a regularization loss and α(rec), α(reg) are
balance coefficients.

In the following, we adapt some existing losses to semi-supervised semantic seg-
mentation, and also propose a novel implementation of a relaxed K-means loss for unsu-
pervised image segmentation. Moreover, we include in our study some self-supervised
losses. Indeed,with the hugeprogress of self-supervision in representation learning [28,
29] they are an ineluctable topic of analysis for unsupervised learning.
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Image reconstruction losses

Image reconstruction losses can be simply defined using solely standard reconstruc-
tion losses such as the classical L1 and L2, as in equations (3.6) and (3.7). They enforce
the encoding power of internal representations built by the network ϕs by closing the
loop from it to the original input, the image itself. This kind of self-supervision is for
example used in [167].

L1(x) = 1
N

N∑
i=1

|xi − x̂i|, (3.6)

L2(x) = 1
N

N∑
i=1

(xi − x̂i)2 (3.7)

where xi denotes the ith pixel of the image, x̂i its reconstructed version and N the num-
ber of pixels in the image.

Image segmentation losses

Image segmentation aims to partition an image intomultiple segments, where pixels
in a segment share some properties, like color, intensity, or texture. This task can be
performed in an unsupervised manner –based on the input image only– and might be
a better complement to the supervised semantic segmentation task. We consider in this
work two different unsupervised losses to perform unsupervised image segmentation.

RelaxedK-means. Wepropose a new loss for unsupervised image segmentation,which
combines the old intuitions behind the k-means algorithmwith the expressive power of
neural network’s non-linear modeling. In a standard manner, it is cast as a color image
quantization problem, where the objective is to find an optimal, reduced set of K col-
ors for encoding the image. Formally, it minimizes the reconstruction loss L(rec)(x, xc)
where xc is the quantized image.

We still denote x the input image and xi its value at pixel i. k-means alternatively
optimizes centroids of color clusters ck (k ∈ {1, K}) and membership matrices ŷ(k) of x

to cluster k. It follows:
ck =

∑
i xiŷ

(k)
i∑

i ŷ
(k)
i

(3.8)
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and
xc =

K∑
k=1

ck · ŷ(k). (3.9)

In standard k-means, memberships ŷ
(k)
i ∈ {0, 1} are then determined such that ||xi −

ck||2 is minimum. Instead, we relax the hard constraint so that ŷ
(k)
i ∈ [0, 1] and estimate

memberships as the output ŷ = ϕ(x) of a network which minimizes L(rec)(x, xc). In our
experiments we will use:

L(rec)
km (x) = L1(x, xc). (3.10)

Eventually, to compensate for the relaxation we add a regularization term which
ensures memberships are peaked to a one-cluster-per-pixel distribution:

L(reg)
km (x) =

K∑
k=1

∑
i

ŷ
(k)
i · (1 − ŷ

(k)
i ). (3.11)

The whole unsupervised loss is then in the form of Eq. (3.5).

Mumford-ShahLoss. Recentworks onunsupervised image segmentation have brought
the power of level set methods based on minimization of the Mumford-Shah func-
tional [169] in CNNs [170].

The unsupervised segmentation loss is then expressed as:

LMS(x) =
K∑

k=1

∑
i

|xi − ck|2ŷ(k)
i + α(reg)

K∑
k=1

∑
i

|∇ŷ
(k)
i |, (3.12)

where we kept the same notations as before.
In Eq. (3.12), the first term corresponds to the reconstruction loss, while the regular-

ization term penalizes gradient variations in the resulting segmentation, thus leading
to more homogeneous regions.

Self-supervised losses

Recently, self-supervised methods have shown impressive results on learning data
representations. The main idea behind self-supervision is to build a supervised task
from completely unlabeled data by producing labels from the data themselves. Many
self-supervised tasks have been proposed lately, and we explore here two pretext tasks
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to perform alongwith semantic segmentation, that can be easily integrated to our semi-
supervised framework.

Inpainting. Similarly to the context autoencoder [171], we aim to solve the problem
of filling in a missing piece in the image. The loss function is then expressed in terms
of L2 distance as

Lca(x) = L2 (M ⊙ x, M ⊙ ϕu((1 − M) ⊙ x)) , (3.13)

where M is a binary mask (value of 1 for dropped pixels and 0 for input pixels) and ⊙
the element-wise product.

There is an intrinsic hyperparameter to the inpainting problem: c, the crop size to
mask from the image. In our experiments we try c ∈ {80, 160} and in Section 3.2.4
we report results for c = 80 since it led to the best results. In our settings, masks are
randomly chosen over the image.

Jigsawpuzzle. Solving jigsawpuzzles using neural networkswas first proposed by [172]
to learn visual representations. In brief, the task consists in cutting out the image into
9 patches, shuffle them and train the network to retrieve the original image.

In practice, we follow here a similar approach to [173], where a network is trained
to solve two tasks simultaneously (in our case, the jigsaw puzzle and the semantic seg-
mentation) and the input is an image with permuted patches. The problem is then for-
mulated as a classification task, using standard cross-entropy loss. We use the maximal
Hamming distance algorithm from [172] to define a set of P allowed patch permuta-
tions. In our experiments we compare results for P ∈ {30, 100}. Since P = 100 led to
the best results, we report them in Section 3.2.4.
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3.2.4 Experiments

In this section, we evaluate the multi-task semi-supervised semantic segmentation
framework presented above, with two main objectives: first, to confirm the value of
datasets as tinyMiniFrance and MiniFrance to the semi-supervised problem; and sec-
ond, to prove that leveraging unlabeled data into the learning process can yield better
generalization and improves the model’s performance.

To this end, we perform experiments on three semantic segmentation datasets suit-
able for the semi-supervised settings: tinyMiniFrance, MiniFrance (see Chapter 2) and
Christchurch (CASD) [136, 137]. Since tinyMiniFrance was especially designed for fast
development and validation times, we perform a thorough analysis of our multi-task
learning framework on this dataset, including a comparison of neural network architec-
tures and auxiliary losses. Experiments on MiniFrance built upon the results obtained
on the tiny version of the dataset, and are more succinct, due to long computing times.
Finally, Christchurch experiments extend the analysis made on tinyMiniFrance to self-
supervised losses and hyper-parameters tunning.

Experiments on tinyMiniFrance

The purpose of this section is to show that we can benefit from semi-supervised
learning –using unlabeled data during the learning process– to achieve better results
and generalization than vanilla supervised approaches.

To this end, we perform experiments to compare a semi-supervised setting with an
equivalent supervised approach, using different backbone architectures. First, we train
supervised networks (SegNet and U-Net) in a classical way, using the cross-entropy
loss, over the labeled training split of tinyMiniFrance. Secondly, we train a BerundaNet-
late architecture (with SegNet and U-Net backbone) over tinyMiniFrance –using both,
labeled and unlabeled data–, which is the equivalent semi-supervised strategy.We train
BerundaNet-late with a reconstruction task (L1 as auxiliary loss) and with an unsu-
pervised segmentation task (Lkm as auxiliary loss) and show that in both cases, semi-
supervised learning can improve the results obtained by the supervised network.

Results of these experiments are summarized in Table 3.1. The oracle corresponds
to the hypothetical case where annotations are available for all training cities (i.e, we
can access the ground-truth for all the images of the 8 regions in the training split)
during the training phase. The oracle results might be seen as an upper bound for semi-

106

Apprentissage semi-supervisé pour la compréhension des données d’observation de la Terre à large-échelle Javiera Castillo-Navarro 2022



3.2. Semi-supervised learning cast as multi-task

supervised learning strategies and they are brought out here just for comparison and
not as a result of this work.

Table 3.1 – Supervised vs. Semi-supervised experiments over tinyMiniFrance using
different backbone architectures. We refer to the hypothetical case where annotations
are available for all 8 training regions as oracle. Semi-supervised denotes results for
BerundaNet-late with the corresponding backbone.

Oracle Supervised Semi-supervised (BerundaNet-late)
Backbone Lce Lce Lce + λL1 Lce + λLkm

OA mIoU OA mIoU OA mIoU OA mIoU

SegNet 59.06 23.95 36.76 14.03 45.52 14.43 42.26 15.75
U-Net 57.71 25.25 46.30 18.18 47.90 18.70 46.92 18.26

Alongwith Table 3.1, Figure 3.3 shows segmentationmaps obtained during the test-
ing phase for the previous experiments with a SegNet backbone.We refer as undisclosed
to the entries that are not publicly available but that are shown here as a reference and
comparison to our results: ground-truth and oracle. At a global scale, we observe that
semi-supervised methods –whether with reconstruction or with segmentation auxil-
iary task– present more homogeneous and finer segmentation maps than their super-
vised counterpart. This is noticeable in particular in clear roads and less noisy regions.
Adding unlabeled data during the learning process helps to regularize and generalize
better, especially in the case of MiniFrance data, where labels are often approximate.
In some cases, semi-supervised methods can even beat the oracle predictions, as in the
last row example where the oracle mistook a pasture section for a water section.

Several remarks can be raised from these results:
— First, MiniFrance is challenging. The oracle shows that even if we could access all

images labels (of the 8 cities in the training split) during training, we would only
get 59% overall accuracy with a fully supervised approach (see Table 3.1, oracle
column). This is far below the accuracy that can be achieved with other datasets.

— The amount of labeled data influences a lot the performance of supervised set-
tings. Focusing on the results of the oracle and the supervised experiment (second
and third columns on Table 3.1), we see that for a SegNet architecture going from
8 to 2 training labeled cities implies a 22% loss in accuracy and 10% less of mIoU.
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Image Ground truth Oracle Supervised Semisup (L1) Semisup (Lkm)
Undisclosed Results

Figure 3.3 – Classification examples of different methods over tinyMiniFrance. Oracle
refers to the hypothetical case where all ground-truths are available for training regions
(8 annotated training cities). Supervised refers to the results of a network trained only
on the labeled training split of tinyMiniFrance, while semi-supervised corresponds to
the BerundaNet-late network trained over all available training data (labeled and un-
labeled). SegNet architecture is used as backbone.108
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And even if the U-Net seemsmore robust to the amount of labeled data, reducing
annotated data diminishes network performances notoriously. From a visual per-
spective, prediction quality is noticeably worse for the supervised approach with
respect to the oracle (third and forth columns in Figure 3.3).

— Semi-supervised strategies exhibit promising results. In both cases, whether we
use a SegNet or a U-Net backbone, the benefits of semi-supervised learning are
clear, regardless of the chosen auxiliary task there is a gain of accuracy and mIoU
with respect to the supervised method.

— Finally, fromavisual perspective, semi-supervisedmethods (fifth and sixth columns
in Figure 3.3) are superior to the supervised one (fourth column). Indeed, semi-
supervised segmentation maps are more homogeneous than the supervised ones
(see the second, fourth and sixth row examples). Besides, urban cartography is
better delineated in the semi-supervised semantic maps and seems more appro-
priated with respect to the original image.

Those are encouraging results for future works on semi-supervised learning for se-
mantic segmentation.

▶ Influence of the choice of architecture on semi-supervision

In the following, we compare the architectures presented in section 3.2.2 with re-
spect to both auxiliary tasks, reconstruction (using L1 loss) and unsupervised segmen-
tation (with Lkm loss). For the BerundaNet-early architecture a SegNet backbone is
used. Results of these experiments are reported in Table 3.2.

Table 3.2 – Neural networks for semi-supervised semantic segmentation comparison.

Auxiliary Loss Architecture Backbone OA (%) mIoU (%)

L1

BerundaNet-early SegNet 35.94 9.51
BerundaNet-late SegNet 45.52 14.43
BerundaNet-late U-Net 47.90 18.70
W-Net [167] U-Net 40.72 13.79

Lkm

BerundaNet-early SegNet 38.20 10.26
BerundaNet-late SegNet 42.26 15.75
BerundaNet-late U-Net 46.92 18.26
W-Net [167] U-Net 45.20 16.13
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Whatever the chosen auxiliary task, BerundaNet-late with U-Net backbone is the
architecture that achieves the best scores, followed byW-Net and BerundaNet-late with
SegNet backbone. BerundaNet-early is just slightly better than a supervised approach
with same backbone. This indicates that, in terms of network architecture, it might be
better to split the supervised and unsupervised tasks rather late, enabling more shared
parameters. Thus, the image statistics learned through optimization of the auxiliary
task are better harnessed for the main objective.

Figures 3.4 and 3.5 show some examples of semantic maps and unsupervised out-
puts at inference time for these methods, using reconstruction and unsupervised seg-
mentation as auxiliary task, respectively. From these examples,we confirm thatwhether
we choose reconstruction or segmentation as auxiliary unsupervised task, BerundaNet-
late (U-Net backbone) gets the finer and smoother results, especially in the second case.

Therefore, the choice of the architecture andbackbonematters for the semi-supervised
task. BerundaNet-late performs better than BerundaNet-early with same backbone.
Moreover, the U-Net backbone outperforms the SegNet backbone. Finally, the simple
architecture BerundaNet-late presented in this work places it first, before W-Net.

Thus, it seems the choice of architecture is at least as important as the loss design.
This choice does not only rely on the number of parameters (W-Net has about twice the
number of parameters of BerundaNet, since it relies on two U-Nets) but also how the
supervised and unsupervised information are mixed.

▶ Influence of the choice of auxiliary loss on semi-supervision

In this section, we analyze the effect on the semantic segmentation results of differ-
ent auxiliary losses presented in section 3.2.3. To this end, we train the same network
architecturewhile changing the loss.We choose BerundaNet-latewithU-Net backbone,
since it was the network with the best scores in the previous sections, regardless of the
auxiliary task.

Table 3.3 reports the results obtained through these experiments. Figure 3.6 ex-
hibits some examples of segmentation maps and unsupervised outputs obtained by
BerundaNet-late with reconstructions losses (L1 and L2) at inference time, while Fig-
ure 3.7 shows examples using unsupervised segmentation as auxiliary task.

For the reconstruction task, L1 loss outperforms the L2 approach, this is confirmed
by visual examples in Fig. 3.6wherewe perceive that results aremarginally better forL1

than for L2 in terms of smoothness, especially in urban areas like the third and fourth
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BN-e BN-l-S BN-l-U W-Net BN-e BN-l-S BN-l-U W-Net
Image GT Semantic Segmentation Reconstruction

Figure 3.4 – Results comparison for different neural network architectures with recon-
struction as auxiliary task (L1 auxiliary loss). BN-e stands for BerundaNet-early, BN-l-
S/BN-l-U for BerundaNet-late with SegNet/U-Net backbone, respectively.

BN-e BN-l-S BN-l-U W-Net BN-e BN-l-S BN-l-U W-Net
Image GT Semantic Segmentation Unsupervised Segmentation

Figure 3.5 – Results comparison for different neural networks with unsupervised seg-
mentation as auxiliary task (Lkm auxiliary loss). BN-e stands for BerundaNet-early, BN-
l-S/BN-l-U for BerundaNet-late with SegNet/U-Net backbone, respectively.
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row examples.
In the case of segmentation, Lkm and LMS are somehow equivalent. However, from

Figure 3.7 the Lkm loss seems to be superior to LMS in most cases, especially when it
comes to road detection.

Table 3.3 – Auxiliary unsupervised loss effect comparison using BerundaNet-late with
U-Net backbone.

Auxiliary Task Aux. Loss OA (%) mIoU (%)

Reconstruction L1 47.90 18.70
L2 44.55 16.27

Segmentation Lkm 46.92 18.26
LMS [170] 46.88 18.57

Experiments on MiniFrance

All the results and analysis exposed abovewere conducted using the tinyMiniFrance
dataset, due to computing capacity and processing time. In this section we present the
first semi-supervised results over the entire MiniFrance dataset.

To this end, we train a BerundaNet-late with U-Net backbone as it is the best re-
sult we got in a semi-supervised setting (see Table 3.1). We use our regularized k-
means loss (Lkm) as auxiliary unsupervised loss. We also train a U-Net network on
the labeled partition of MiniFrance in a classic supervised way for comparison with the
semi-supervised setting. Results are reported in Table 3.4 and some visual results of the
semi-supervised experiment are shown in Figure 3.8.

These results on MiniFrance are coherent with previous ones reported with tiny-
MiniFrance. They confirm our hypothesis that tinyMiniFrance is a good representation
of the entire MiniFrance dataset. Moreover, they confirm that including unlabeled data
during the learning process helps to improve the results on semantic segmentation.

It is worth to mention that training these models over the entire MiniFrance dataset
for 450 pseudo-epochs takes roughly 3 weeks. While inference time –processing all the
tiles on the testing partition– takes about 6 days (with a single GPU).
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Image GT L2 L1 L2 L1

Semantic Segmentation Reconstruction

Figure 3.6 – Segmentation maps and reconstruction outputs for BerundaNet-late (U-
Net backbone), using different unsupervised reconstruction losses for the auxiliary
task.
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Image GT Lkm LMS Lkm LMS

Semantic Segmentation Unsup. Segmentation

Figure 3.7 – Semantic segmentation maps and unsupervised segmentation outputs for
BerundaNet-late (U-Net backbone), using different unsupervised segmentation losses
for the auxiliary task.
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Table 3.4 – First semi-supervised results over MiniFrance.

Method Network Backbone Aux. Loss OA mIoU

Supervised U-Net U-Net - 44.28 20.77
Semi-Supervised BerundaNet-late U-Net Lkm 45.16 21.20

Experiments on Christchurch

Wealso performexperiments on theChristchurchAerial SemanticDataset (CASD) 1

to test the reliability of our framework.
CASD comprises aerial imagery at 10 cm/px resolution over Christchurch, New

Zealand. Dense semantic annotations were produced by ONERA/DTIS on 4 images,
considering 4 classes: buildings, cars, vegetation andbackground [136, 137]. Thedataset
also includes 20 aerial images without annotations, which makes it suitable for semi-
supervised learning algorithms.

For these experiments, we use a training partition containing labeled and unlabeled
data –2 annotated tiles and 20 non-annotated tiles–, and keep 2 annotated tiles for val-
idation. We train a BerundaNet-late architecture with U-Net backbone, because of its
simplicity and efficiency. The network is trained during 50 pseudo-epochs with 5000
labeled iterations and 5000 unlabeled iterations. Since the dataset allows it (training
only takes a few hours), we also evaluate different values of the hyperparameter λ (in
Equation (3.3)).

Results are reported in Table 3.5. Mean and variance are obtained over 4 runs of
each experiment. We note that semi-supervised methods outperform the supervised
setting.Moreover, best scores are obtainedwith unsupervised segmentation losses, and
especially our relaxed K-means loss which improves the mIoU score by +3.39% and
overall accuracy by +1.97%, with respect to the supervised setting.

Figure 3.9 shows two examples of segmentation maps obtained by the different
methods. In the first row example, the supervised approach is the only one that mis-
takes the river as a building; the supplementary information provided by unlabeled
images to the semi-supervised methods allows us to prevent this error. In the second

1. Available at https://doi.org/10.5281/zenodo.3566005
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Image GT Semantic
segmentation

Unsupervised
segmentation

Figure 3.8 – Semi-supervised results over MiniFrance. BerundaNet-late with U-Net
backbone and Lkm as auxiliary loss. 116
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Table 3.5 – Results comparison for supervised and semi-supervised methods over the
Christchurch Aerial Semantic Dataset.

Mode Aux.
Task

Aux.
Loss λ OA (%) mIoU (%)

Sup - - - 81.06 ±0.46 67.43 ±0.49

Semi-sup
Rec L1 0.5 82.28 ±0.55 68.78 ±1.27

L2 5 82.36 ±0.42 68.99 ±0.85

Seg Lkm 1 83.03 ±0.42 70.82 ±0.35
LMS 1 82.94 ±0.26 70.24 ±0.84

Self Lca 5 82.57 ±0.59 69.47 ±0.7
Ljs 0.5 82.88 ±0.95 70.17 ±1.12

row, the Lkm loss is the only one that correctly segments the central building, likely due
to its color clustering capacity.

In general, we observe from the experiments over CASD that including unlabeled
data during training helps to improve the segmentation maps with respect to the case
where we only use our limited labeled data.

Influence of the λ Hyperparameter. We also study the impact of the weighting pa-
rameter λ on the segmentation performance. Figure 3.10 illustrates the average behavior
of each loss with respect to the value of λ.

Three behavioral groups appear. Segmentation losses are robust to the choice of
λ and show, in general, better performances. L1 and Ljs work better for small λ and
require cautious hyperparameter tuning, as they are close to the fully-supervised case.
L2 and Lca losses show the same optimum for λ = 5, which comes likely from the fact
that inpainting uses L2 to estimate discrepancies.

In amulti-task setting, different tasksmight have verydifferent behaviors andorders
of magnitude. Tuning a weighting hyperparameter is not straightforward and further
work is needed to find a neat normalization. Someworks have even focused on adapting
the multi-task loss balancing during training [174].

This section has shown the benefits of integrating unlabeled data into the learning
process through amulti-task learning perspective. Our experiments show that, indeed,
semi-supervised learning is helpful to improve generalization. However, a multi-task
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Image Ground truth Supervised L1 L2

Lkm LMS Lca Ljs

Image Ground truth Supervised L1 L2

Lkm LMS Lca Ljs

Figure 3.9 – Two examples of inference over the CASD dataset. buildings, cars,
vegetation and background.
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Figure 3.10 – Impact of the λ parameter on the semantic segmentation performance.

approach has its drawbacks. It involves decisions about the architecture (parallel or se-
quential streams?), parameter sharing (early or late splitting?), auxiliary tasks to use,
hyper-parameters to tune, etc. In contrast, new emerging strategies leverage more deci-
sive mechanisms. Next section is dedicated to one of the most broadly used approach
in current computer vision algorithms: consistency regularization.

3.3 Semi-supervised learning through consistency
regularization

Dehaene [158] says: « our brain is much more flexible [than current machines]. It
quickly manages to prioritize information and, whenever possible, extract general, log-
ical, and explicit principles. »

In other words, the human brain is capable of creating abstract representations of
our world. Our abstraction capabilities give us the ability to interpolate, extrapolate
or even create/imagine new versions of objects that we know. For instance, we may
have never seen a real panda bear in our lives, we may have seen pictures or drawings
of pandas –only 2D representation of these giant animals–, however, the day we visit
the zoo and see a real panda, we will recognize it immediately. This is because of the
abstract representation we have created from the pictures and drawings, because we
are able to extrapolate them to the 3D world. Our brain is able to create an abstract
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representation of the panda, and thus different images (pictures, drawings or the live
bear) activate similar representation signals in our heads.

This is the idea behind consistency regularization. First introduced by Bachman et
al. [175], consistency regularization enforces the idea that realistic perturbations of data
points should not significantly change the output of the predictor. More precisely, if a

Figure 3.11 – Consistency regularization by comparing the outputs of two transforma-
tions of the same image.

model is fed with semantically similar inputs, the output of the model should also be
similar. Fig. 3.11 illustrates the consistency regularization principle. Usually, this regu-
larization is imposed as a loss term that can be written as:

Lconsistency = 1
N

N∑
i=1

ℓ(f(τ1(xi)), f(τ2(xi))), (3.14)

where {xi}N
i=1 are data samples, ℓ is a function that ensures proximity between its

inputs (usually a cross-entropy term or a L2 norm), and τ1, τ2 are randomperturbations
applied to the inputs (usually sampled from a fixed set of transformations T ).

Semi-supervised methods in deep learning developed to date exploit, in general,
two principles: the first one is consistency regularization, that we just defined [64–66,
176]; and the second one is pseudo-labeling [67]. Pseudo-labeling is an iterative process
where a model is initially trained on the labeled data, the pre-trained model is used
to make predictions on the unlabeled data, then one can select the unlabeled samples
where the model was confident of its prediction and consider them as pseudo-labeled
examples to expand the labeled training set; and repeat.

Current state-of-the-art semi-supervised methods for classification, such as Mix-
Match [71] or FixMatch [73], usually combine these ideas, achieving impressive results.
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However, they rely heavily on data augmentation, which works well on the image do-
main, but can be hard to adapt to other use-cases.

In this section we explore consistency regularization-based methods. First, we pro-
pose a theoretical context based on vicinal risk minimization to motivate and justify
the consistency loss; then we recall the principles of FixMatch, the current state-of-the-
art method for semi-supervised classification in computer vision; and finally, we study
whether this method is suitable for Earth observation applications on scene classifica-
tion.

3.3.1 Vicinal risk minimization

In a supervised learning problem, we want to find a function f ∈ F that maps
feature vectors into a corresponding target vector, f : x ∈ X 7→ y ∈ Y . Where (x, y) ∼ P .
Our goal is to find a predictor f such that its error with respect P is as small as possible.
To this end, we define ℓ : Y × Y 7→ R, a loss function that penalizes the differences
between the prediction f(x) and the real target y. Then, we minimize the expected risk:

R[f ] = EP [ℓ(f(X), Y )] =
∫

X ×Y
ℓ(f(x), y)dP (x, y). (3.15)

In practice, the joint distribution P is usually unknown. However, we have access to
a set of data D = {(xi, yi)}N

i=1, where (xi, yi) ∼ P, ∀i ∈ {1, . . . N}. Our goal is then to
find the predictor f such that its error with respect to these data is as small as possible.

Data D can be used to approximate the risk R by the means of the empirical distri-
bution:

dP̂δ(x, y) = 1
N

N∑
i=1

δxi
(x)δyi

(y), (3.16)

where δx is the Dirac mass function centered in x.
Using this empirical distribution defined by equation (3.16), we can estimate the

expected risk by the empirical risk:

R̂[f ] = 1
N

N∑
i=1

ℓ(f(xi), yi). (3.17)

Solving the learning problem through estimating f byminimizing the empirical risk
defined in the equation above, equation (3.17), is known as Empirical Risk Minimization
(ERM) [157].
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However, the dP̂δ estimate is just one way of estimating the distribution P and one
can consider improved estimates of the distribution. For instance, Chapelle et al. [177]
propose to replace δxi

in equation (3.16) by an estimate of the density in the vicinity of
xi, dPxi

(x). This gives an empirical distribution of the form:

dP̂vic(x, y) = 1
N

N∑
i=1

dPxi
(x)δyi

(y). (3.18)

Estimating f by minimizing the empirical risk defined by dP̂vic is known as Vicinal
RiskMinimization (VRM). VRM assumes that a sample point shares the same label with
other samples in its vicinity. This is exactly the idea behind –and that justifies– the use
of data augmentation in our learning algorithms.

Zhang et al. [178] propose to extend the vicinal riskminimization by approximating
the distribution P in a vicinity of the pair (xi, yi) (instead of xi alone), ν(xi,yi)(·, ·), which
defines an empirical distribution P̂ν as:

dP̂ν(x, y) = 1
N

N∑
i=1

ν(xi,yi)(x, y). (3.19)

Following this idea, we can express the vicinity ν(xi,yi) based on consistency regu-
larizarion as:

ν(xi,yi)((x1, y1), (x2, y2)) = dPxi
(x1)dPxi

(x2)δyi
(y1)δyi

(y2). (3.20)

Therefore, the vicinal risk induced by consistency regularization can be expressed
as:

R̂consistency[f ] = 1
N

N∑
i=1

∫
ℓ(f(x1), f(x2))dPxi

(x1)dPxi
(x2)δyi

(y1)δyi
(y2), (3.21)

which makes the expression of the risk based on consistency, in Equation (3.21),
interesting is the fact that it does not need labels y to be computed. Indeed, the loss term
ℓ(f(x1), f(x2)) does not depend on y, and the values of y1 and y2 depend exclusively
on the chosen sample (xi, yi). However, the value of yi is irrelevant for computing the
risk. This property is particularly appealing on applications where labels may not be
available, namely semi-supervised or unsupervised applications.

Therefore, the consistency regularization loss term in Equation (3.14) is directly con-
nected to a vicinal risk minimization problem, which allows us to understand its effec-
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tiveness and makes it an interesting term to explore in semi-supervised applications.

3.3.2 FixMatch

FixMatch [73] is a method recently proposed by the Google Brain team that sur-
passes –with quite simple ideas– the state-of-the-art approaches to semi-supervised
classification. The model is mainly based on the two principles that we mentioned
above: pseudo-labeling and consistency regularization.

Notation. Let Xℓ = {(xi, yi)}N
i=1 be a batch of N labeled samples, with xi the training

samples (typically images) and yi their corresponding labels. Let pi denote the one-hot
version of yi. Let Xu = {ui}µN

i=1 be a batch of µN unlabeled samples, with µ being an
hyper-parameter defining the relative size of Xu with respect to Xℓ. Let pm(y|x) be the
predicted class distribution given by the model for input x. H(p, q) denotes the cross-
entropy of distribution q relative to distribution p. Finally, strong augmentations are
noted A(·), while weak augmentations are noted α(·).

Pseudo-labeling[67]. Also known as self-training, pseudo-labeling is based on the
idea of using the model itself to generate artificial labels for unlabeled data. The labels
generated this way are known as pseudo-labels.

Usually, the model is first trained on the available labeled data. Then, it is used to
make predictions on the unlabeled data. Unlabeled samples satisfying certain proper-
ties (typically, high confidence predictions) are selected to expand the training dataset
and re-train the model over this new (pseudo-)labeled data. More precisely, pseudo-
labeling retains the hard labels predicted by the model (i.e. the argmax of the model’s
output) of the unlabeled data whose predictions are confident, this is, whose largest
class probability fall above a certain threshold. Let qi = pm(y|ui), the pseudo-labeling
loss function is usually defined as:

Lpseudo-label = 1
N

N∑
i=1

1{max(qi) ≥ ω}H(q̂i, qi), (3.22)

where q̂i = arg max{qi} and ω is a predefined threshold for the prediction confi-
dence.

Pseudo-labeling is closely related to entropy regularization [179],where themodel’s
predictions are encouraged to present low-entropy.
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Consistency regularization. FixMatch uses unlabeled data to compute a regulariza-
tion term based on the premise that the model should output similar predictions when
fed different transformed versions of the same sample. In the FixMatch framework, the
consistency regularization loss –whose general form can be found in equation (3.14)–
is written as:

Lconsistency =
N∑

i=1
∥pm(y|τ1(ui)) − pm(y|τ2(ui))∥2

2, (3.23)

where τ1, τ2 are random transformations applied to ui, sampled from a fixed set of
transformations T .

One of the main novelties of FixMatch –and probably the key to its success– is the
combination of strong and weak transformations to apply the consistency regulariza-
tion term.

Data augmentation. A key point of the success of FixMatch is the bright use of data
augmentation to perform consistency regularization. The method distinguishes two
kinds of data augmentation techniques:

▶ Weak augmentations. They include vertical and horizontal flips as well as vertical
and horizontal translations.

▶ Strong augmentations. The original work explores two families of strong augmenta-
tions: RandAugment [180] and CTAugment [71]. For simplicity, in this work we per-
form our experiments considering RandAugment as strong augmentation strategy.
Let T be a set of transformations (rotations, translations, brightness perturbations,
etc), RandAugment is controlled by two parameters N and M . When RandAugment
is applied to a data sample, it chooses N transformations among the set T to be ap-
plied sequentially. For each of theseN transformations, themagnitude of the severity
of the distortion is sampled on the range defined by M .

Loss function. As in many semi-supervised algorithms, the FixMatch loss function
consists in two loss terms: a supervised loss term Ls, which is applied to labeled data
only, and an unsupervised loss Lu which is applied to only images (no need for labels).
▶ The supervised loss term Ls is just a standard cross-entropy loss applied to weakly

augmented labeled samples:
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Ls = 1
N

N∑
i=1

H(yi, pm(y|α(xi))). (3.24)

▶ The unsupervised loss term is a combination of pseudo-labeling, consistency reg-
ularization and different types of data augmentation. For each unlabeled sample 2,
FixMatch generates a pseudo-label, using weakly-augmented versions of each im-
age. This is, it computes the predicted class distribution qi = pm(y|α(ui)) and uses q̂i

as a pseudo-label (if the confidence of the model is larger than a certain threshold
ω). Then, it enforces the similarity of themodel’s prediction of a strongly-augmented
version of the same image, through the cross-entropy loss:

Lu = 1
µN

µN∑
i=1

1{max(qi) ≥ ω} H(q̂i, pm(y|A(ui))). (3.25)

▶ The final loss is simply a weighted sum of both terms exposed above:

LFixMatch = Ls + λuLu, (3.26)

where λu is an hyper-parameter of the model.

Hyper-parameters. At first glance, FixMatch seems to be a very straightforward and
simple method. However, behind the simplicity and cleverness of the combination of
pseudo-labeling and consistency regularization, there are other elements that contribute
significantly to the success of the method: hyper-parameters choices and other training
strategies (optimizer, training schedule, etc). As the authors point out in their work,
some important factors of the training framework are weight decay regularization, the
optimizer choice (SGD with momentum) and the learning rate decay choice (cosine
weight decay). In our experiments we also observe that the use of batch normalization
layers is essential for the convergence of the method.

In this work, we follow the same hyper-parameters setting as in the original paper,
using an unofficial Pytorch implementation 3.

Fig. 3.12 illustrates the FixMatch training pipeline.

2. In practice, labeled samples are included in the set of unlabeled samples, without their labels.
3. https://github.com/LeeDoYup/FixMatch-pytorch
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Figure 3.12 – Fixmatch overview. In a nutshell, if a labeled sample x is given to themodel
it follows the pipeline on top, which is a standard supervised classification setting. If an
unlabeled sample u is processed, the bottom pipeline is applied: a weakly transformed
version of the input α(u) and a strongly transformed version A(u) both pass through
themodel. From the prediction of α(u) one gets a pseudo-label q̂ if the confidence of the
prediction is above a threshold ω, this pseudo-label is used to compute a consistency
loss term together with the prediction of A(u).
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3.3.3 Experiments

We perform experiments with this appealing framework on two publicly available
EO datasets for scene classification: EuroSAT [124] and So2Sat LCZ42 [125]. The goal
is to assess whether this kind of models can be applied to EO data as successfully as in
the vision domain.

The EuroSAT Dataset comprises patches from Sentinel-2 images over 34 countries
in Europe. Each patch is labeled with one of 10 land cover/land use classes (e.g. indus-
trial, residential, highway, pasture, forest, etc.). Classes are well-balanced, with 2,000 to
3,000 examples per class, 80% of which are used for training. We use the EuroSAT RGB
version.

The So2Sat LCZ42 Dataset is composed of Sentinel-1 and Sentinel-2 image patches
over 42 locations over the globe. Patches are labeled according to the Local Climate
Zones scheme (LCZ), with 17 categories. It is worth tomention that the training set and
testing set are geographically independent, containing images from different locations.
This makes this dataset particularly difficult, because models need to be sufficiently
robust to generalize well on the test data. For our experiments, we only make use of the
RGB Sentinel-2 bands (B04, B03, B02), as in EuroSAT.

Experimental settings. To assess the semi-supervised classification capacities of Fix-
Match on these datasets, we train this framework on a small subset of labeled examples
and the entire dataset as unlabeled data.

We vary the number of labeled samples per class on which the model is trained,
and compare our results with a fully supervised baseline, Wide-ResNet, which is the
backbone of the FixMatch algorithm. Wide-ResNet, as a supervised method, is trained
on labeled data only, while FixMatch is trained on the whole dataset, using labels when
available.

Results. Table 3.6 summarizes the obtained results. As we may observe, FixMatch
is undeniable superior to the supervised Wide-ResNet baseline in all settings of this
experiment, including the fully supervised setting where all labels of the training data
are considered and both models are then trained on the same amount of data.

As expected, we observe that the gap between Wide-ResNet and FixMatch scores
decreases as the number of labeled examples available for training increases. However,
even in the fully supervised case this gap cannot be neglected, since it represents 1.2%
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Dataset Labeled
samples/class % of labels Wide-ResNet FixMatch [73]

EuroSAT

2000 on avg. 100% 97.56 ±0.52 98.81 ±0.06

100 ∼ 5% 86.36 ±0.26 97.83 ±0.12
20 ∼ 1% 62.93 ±1.01 95.78 ±0.99
10 ∼ 0.5% 52.33 ±1.59 94.95 ±1.12
5 ∼ 0.25% 43.83 ±3.18 94.45 ±1.29
1 ∼ 0.05% 28.02 ±0.97 67.46 ±4.67

So2Sat
∼ 20000 100% 50.93 ±0.16 63.00 ±0.49

1000 ∼ 5% 44.17 ±0.40 61.68 ±0.53
200 ∼ 1% 35.45 ±0.17 60.41 ±0.66
100 ∼ 0.5% 30.90 ±0.35 56.51 ±0.68

Table 3.6 – Classification results using FixMatch (Accuracy [%] ↑). Comparison with
a purely supervised method (Wide-ResNet) on two scene classification benchmarks,
EuroSAT and So2Sat LCZ42. Best scores in bold.

of accuracy on EuroSAT and 12% on So2Sat.

In the case of the EuroSAT dataset, FixMatch is particularly robust, with a perfor-
mance over 94% of accuracy when trained with very few labels per class (5, 10 or 20
labeled samples per class). Its accuracy drops to 67% when it is given only one labeled
example per class, but still remains far superior to Wide-ResNet in the same labeled-
data regime.

On the So2Sat dataset, results are more modest, with results varying from 56% to
63% of accuracy. However, this was expected since training and test images are geo-
graphically independent, inducing a domain adaptation problem. The performance gap
is even more pronounced with respect to the supervised Wide-ResNet in the fully su-
pervised setting with a difference of 12% and FixMatch is still far superior when very
few labeled data are available, with a difference of 26 points of accuracy when trained
on only 100 labeled samples per class.

These results are encouraging and show the interest ofmethods of this kind for Earth
observation applications. Consistency regularization, with the adequate data transfor-
mations, allows us to add robustness to domain gaps into our models. This is a very
appealing and desirable property in EO, as we discussed in Chapter 2.
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3.4 Conclusions

This chapter was devoted to the study of semi-supervised learning from a dis-
criminative perspective. In this context, we have studied two families of algorithms:
multi-task learning methods and consistency regularization-based approaches.

In the multi-task setting, we have introduced deep multi-task neural networks to
perform semi-supervised semantic segmentation. In particular, we presented Berun-
daNet –a simple extension of classic encoder-decoder architectures– which proves to
be very effective in the semi-supervised task, and that works better than existing ar-
chitectures, like W-Net. Together with these architectures, we explored unsupervised
auxiliary losses to use alongside with semantic segmentation. Especially, we intro-
duced the relaxed k-means loss to perform unsupervised image segmentation.

Our experiments on three publicly available benchmarks for semi-supervised se-
mantic segmentation have shown that we can benefit from unlabeled data during the
learning process to improve semantic segmentation maps. Indeed, semi-supervised
approaches provide finer and more homogeneous predictions. We also observed that
a simple architecture like BerundaNet-late with a suitable backbone such as U-Net is
enough to enhance the segmentation performances.

Nevertheless, the problem of semi-supervised learning is not solved yet. We have
seen that these multi-task approaches can improve semantic segmentation results, but
it is not always the case. In a multi-task approach as the ones presented in this chapter,
onemust be careful on the choice of architecture and the auxiliary task to performalong.
Furthermore, there exist other possible ways to solve the semi-supervised problem. For
instance, one could develop generative models to learn the intrinsic distribution of data
from labeled and unlabeled examples and use this information together with labels to
improve the segmentation. Another possibility is the use of pseudo-label methods that
propagate labels from annotated examples through non-annotated ones, based on a
confidence criterion, to enlarge available training data.

The second part of the chapter explores methods based on the consistency regular-
ization principle. Consistency regularization is one of the most widely applied tech-
niques in current semi-supervised classification algorithms. It enforces the idea that a
model should output similar predictions for semantically similar examples. We have
proposed a theoretical framework based on vicinal risk minimization to justify the
use of consistency regularization. Then,we have experimentally assessed FixMatch, the
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current state-of-the-art method for semi-supervised classification in computer vision,
on two publicly available Earth observation datasets for scene classification.

Our experiments demonstrate the effectiveness and transferability ofmethods such
as FixMatch to the Earth observation domain. Moreover, they show that consistency
regularization, with the right set of data transformations, enhances the robustness of
the models with respect to domain shifts, which is a desirable feature in EO applica-
tions. The main contribution of the second part of this chapter is then the successful
application of these new kinds of models to EO data.
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Chapter summary

This chapter studies semi-supervised learning with generative models. Unlike dis-
criminative methods –that we described in Chapter 3– generative models aim to get a
deep understanding of the data, to capture their natural features, by learning the data
distribution p(x) and not only the posterior distribution p(y|x).

We first introduce in Section 4.1 the main existing deep generative frameworks, de-
scribing their fundamentals. In particular, we delve into energy-based models (EBMs)
(see Section 4.2) because their simplicity allows to integrate label information into the
generative model in a very natural way. Indeed, EBMs are generative models that cap-
ture all the information about inputs through a scalar energy function, which defines
a data distribution. Since there is no constraint on the function to estimate the energy,
EBMs possess a matchless flexibility with respect to other generative frameworks. Fur-
thermore, by the means of neural networks, we can model very complex energy func-
tions, with impressive results in several appealing applications.

Taking this into account, this chapter focuses on a recent framework for generative
modeling and explore its applicability to Earth observation images. The joint energy-
based model (JEM, see Section 4.2.1) learns an EBM to estimate the joint distribution
of the data and the categories, p(x, y), obtaining a neural network that is able to clas-
sify and synthesize images. Moreover, it extends naturally to a semi-supervised setting.
Indeed, since the loss function can be decomposed in two terms –one label-dependent
and a second one that only depends on samples alone (no label needed)– one can easily
integrate unlabeled samples into the training loop.

In Section 4.3, we perform experiments on various public Earth observation datasets
for scene classification, and we show that JEM performs on par with state-of-the-art
methods on scene classification and image generation. Furthermore, in semi-supervised
experiments, JEM outperforms standard classifiers when very few labeled data are
available for training. Finally, we show that models of this kind allow us to address
high-potential applications such as out-of-distribution analysis and land cover map-
ping with confidence estimation.

This chapter concludeswith a theoretical extension of JEM to semantic segmentation
in Section 4.5. However, since this extension is still at early stages, practical validation
is needed and left for future works.
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4.1 Introduction: generative models

We have previously explored semi-supervised methods from a discriminative per-
spective, learning models that estimate the conditional distribution p(y|x) (see Chap-
ter 3). Generative models follow a different –and, in a certain way, more general– ap-
proach. Their goal is to model the intrinsic properties of data, by estimating the distri-
bution p(x), from which data samples are drawn. In particular, generative classifiers
model the joint distribution of data and labels p(x, y), then by the means of the Bayes
rule (Eq. (4.1)), they compute p(y|x) to output a prediction y:

p(y|x) = p(x, y)
p(x) . (4.1)

As it was said in Chapter 3, in a classification problem –where the only goal is to find
a function f that maps inputs to labels, x 7→ y– it is usually preferred to use discrimi-
native classifiers because they have been designed to directly find decision boundaries
between classes, instead of solving a more complex problem as the assessment of the
data distribution p(x), or the joint distribution p(x, y) [157, 181, 182]. In the context
of semi-supervised learning, both unlabeled samples from p(x) and labeled samples
from p(x, y) are available and are used to estimate p(y|x). Hence, new questions natu-
rally arise: since we have abundant unlabeled data, could we use them to get a better
estimation of p(x)? At the same time, can this better estimation of p(x) help us to find a
better approximation of p(y|x)?

Indeed, the goal of a classification framework (either supervised or semi-supervised)
is to learn a model that yields similar representations for samples coming from the
same class. Therefore, knowing (or approximating) the distribution p(x) can provide
particularly useful information about how to group similar examples in a representa-
tion space [30]. Then, one can conceive frameworks where a generative model of p(x)
shares parameters with a discriminative model of p(y|x), similarly to a multi-task set-
ting, inducing prior information into the supervised classification task [183]. For in-
stance, Salakhutdinov and Hinton [184] have shown that methods of this kind, that
use unlabeled data for modeling p(x) (in particular, a deep belief network), can greatly
improve the estimation of p(y|x).
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Deep generative models

Deep generative models [185] comprise a family of techniques which aim to learn
the intrinsic data distribution by the means of neural networks. Their ultimate goal is
essentially to get a deeper understanding of data, by learning automatically the natural
features of a dataset, its categories or dimensions. They are also useful for many real-
life applications like super-resolution, image denoising, inpainting or neural network
pre-training.

Even if when we refer to generative models, one may automatically think of genera-
tive adversarial models (GANs), because of their undeniable success on image genera-
tion, current research on deep generative models includes a wide variety of approaches
which can be grouped in different categories. They may differ on the objective to opti-
mize, themotivations and the optimization process. In the followingwe briefly describe
the main ideas behind each group.

Generative Adversarial Networks (GANs) [186]. They have been a breaktrough on
image generation since their appearance back in 2016. GANs are composed of two net-
works, a discriminator and a generator. The discriminator D estimates the probability
that a sample x comes from the data distribution x ∼ pd(x). Meanwhile, the generator
G generates new data from a latent space, z ∼ pz(z), and tries to capture the data dis-
tribution pd by fooling the discriminator into thinking its generated samples are real.
Today, StyleGAN2 [187] is the state-of-the-art GANmodel, improving quality of gener-
ated images and training performance.Moreover, GANs have been used to tackle semi-
supervised classification: first introduced by Salimans et al. [188], the SGANmodified
the discriminator architecture to achieve classification and discrimination of generated
samples, with good results on semi-supervised classification.

Figure 4.1 – Generative adversarial network (GAN). Two networks –a generator (Gθ)
and a discriminator (Dϕ)– are simultaneously trainedwith an adversarial optimization.
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Variational Autoencoders (VAEs) [189]. Also well-known and widely used genera-
tive models, VAEs have two components in their architecture too: an encoder E, and
a decoder D. The goal of E is to encode the inputs into a latent space Z . The decoder,
similarly to the generator in a GAN, takes a vector z ∈ Z and outputs an image. The
difference from a traditional autoencoder comes from the fact that instead of mapping
directly input x into a single point z ∈ Z , the encoder E maps x onto a distribution
pz(z|x) from which we can sample z. Moreover, unlike GANs, whose latent space dis-
tributions are predefined, VAEs learn the latent space distributions during training.As
of 2020, NVAE [190] –a carefully designed hierarchical architecture– was the first suc-
cessful VAE model applied to natural images as large as 256 × 256 pixels. Variational
Autoencoders have also been used for semi-supervised classification. Indeed, back in
2014, Kingma et al. [68] described different models to achieve semi-supervised classi-
fication based on VAEs, exploiting the information contained in the data density using
generative models.

Figure 4.2 – Variational autoencoder (VAE). Two networks –an encoder (qϕ) and a de-
coder (pθ)– are simultaneously trained by using variational inference.

Diffusion Models [191]. Inspired bynon-equilibrium thermodynamics, diffusionmod-
els have surprisedwith their capacity to generate realistic images and, at the same time,
keep a tractable likelihood function. In a nutshell, they define a Markov chain of dif-
fusion steps to slowly add random noise to data as q(xt|xt−1) = N (xt;

√
1 − βtxt, βtI),

where βt is an hyperparameter and I is the identity matrix. Then a neural network is
trained to reverse the diffusion process and generate data samples from noise. Recently,
diffusionmodels have shown impressive performances, with results that beat GANs in
image generation [192]. Another remarkable application of these novel diffusion mod-
els is text-conditional image synthesis [193]. To our knowledge, diffusion models have
not been exploited to achieve semi-supervised classification yet.
Normalizing flows [194]. Normalizing flows aim to map simple distributions (den-
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Figure 4.3 – Diffusion models. They go from x in the input space to z in the latent space
by iteratively adding Gaussian noise to the previous step. This defines a Markov chain
q(xt|xt−1). Then, a neural network (pθ) is trained to reverse the diffusion process and
generate samples from noise.

sities that are easy to sample and evaluate) to complex ones (data distribution). To
this end, they make use of the change of variable formula. This formula describes how
to evaluate densities of a random variable that is a deterministic function of another
random variable. In a nutshell, they train a neural network composed of differentiable
and invertible layers to transform data x ∼ pd(x) into noise z ∼ pz(z), where pz(z) is a
simple distribution. Then, since this map is reversible, one can sample from pz(z) and
obtain x̂ in the input space. In 2018, Glow [195] overcame existing generative normal-
izing flows and showed that flows using invertible 1 × 1 convolutions can efficiently
synthesize realistic-looking, large images, with competitive results on standard bench-
marks. More recently, Pumarola et al. [196] proposed a conditioning scheme for nor-
malizing flows that enables compelling applications for multi-modal data modeling,
which includes imagemanipulation, style transfer andmulti-modalmapping. Normal-
izing flows have been applied to semi-supervised classification. For instance, Izmailov
et al. [197] proposed FlowGMM, which uses a latent Gaussian mixture model to tackle
semi-supervised learning with normalizing flows in a wide range of data domains.
Energy-based Models (EBMs) [198, 199]. Inspired by statistical physics, energy-based
models are probably the first deep generative models that have been explored, since
Boltzmann machines, restricted Boltzmann machines or deep belief networks. How-
ever, due to long sampling times, they were left behind for a while. This family of mod-
els captures dependencies between variables only through a scalar function, known as
the energy function. Therefore, they are easy to parameterize and canmodel a very wide
family of probability distributions. Current EBMs approaches exploit the expressive
power of neural networks to compute the energy function which have led to impres-
sive results in a wide range of applications, including image generation, simultaneous
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Figure 4.4 – Normalizing flows. A neural network fθ –only composed by invertible
layers– is trained to go from samples x in the input space, to latent variables z. The
generative process simply consists in applying the inverse function f−1

θ to latent vari-
ables z to obtain generated samples.

generation and classification, class-incremental classification, out-of-distribution de-
tection, etc [200, 201].

Figure 4.5 – Energy-based models (EBM). A neural network is used to estimate the
energy function Eθ. Samples are generated by the means of MCMC sampling methods.

From the previous descriptions, we observe that these families of generative mod-
els differ on the way they estimate data distribution. Some of them estimate directly
the likelihood function or a proxy of it, while others approximate the distribution in
an implicit way. This has a direct impact on the trade-off to make between execution
time, architecture to use and the objective function to optimize. Usually, learning the
distribution implicitly comes with the advantage of getting more realistic and sharper
generated images (like GANs), while the explicit expression of the likelihood function
allows for other applications, like out-of-distribution detection (EBMs).

In what follows, we delve into Energy-based models. Indeed, their characteristics
make them suitable for our EO applications: they are simple, since there is only one
network to be trained (the energy estimator); they can generate sharp samples and,
given infinite time, the procedure can generate true samples [200], they can learn dis-
tributions with multiple modes. Moreover, their simplicity –a simple neural network
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that outputs a single scalar value that represents an energy function– allows to easily
and naturally integrate label information into the generativemodel [201], by estimating
the joint distribution p(x, y) instead of p(x); then there is no need for intricate modules
for classification nor modifying the generative objective. This also leads to a natural ex-
tension of the model to semi-supervised learning, without introducing any changes to
the network architecture. Moreover, EBMs have not been used for EO applications yet,
so their potential in this field has still to be assessed.

4.2 Energy-based models

As introduced above, energy-based models capture dependencies between vari-
ables, x ∈ X , through a scalar function E : X → R, known as the energy function.
Learning an EBM consists in finding an energy function that associates low energy val-
ues to realistic configurations of x, and higher energy values to unrealistic ones. Then,
the energy can be considered as a measure of compatibility of different configurations
of variables.

EBMs can be interpreted as normalized probabilistic models using the Gibbs distri-
bution, which expresses the density p(x) as:

p(x) = exp(−E(x))
Z

, (4.2)

where Z =
∫

X e−E(x) is a normalization constant.
Training EBMs comes with the advantage that the energy function parameterizes

all the information about inputs. This alleviates the burden of computing or estimating
the normalization constantZ, which is often intractable. Therefore, EBMsprovidemuch
more flexibility in the design –and thus the expressiveness– of learning models.

In this regard, EBMs have recently benefited from the expressive power of deep neu-
ral networks to model complex energy functions, with impressive results in generation,
hybrid generation-classification and other applications [200, 201].

The standard way of training EBMs with deep learning today is by maximum like-
lihood estimation. Let pθ be the probability density of an EBM, whose energy function,
Eθ, is parameterized by a neural network of parameters θ. The density of the model,
pθ(x), can be fit to the distribution of data, pdata(x), by maximizing the expected log-
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likelihood function over all available samples.

LML(θ) :=Ex∼pdata [log pθ(x)] (4.3)
=Ex∼pdata [−Eθ(x)] − log Zθ.

A common way of optimizing this objective is by gradient descent. Thus, we need to
compute the gradient of the log-likelihood in Eq. (4.3).

∇θLML(θ) = ∇θEx∼pdata [−Eθ(x)] − ∇θ log Zθ. (4.4)

The gradient of log Zθ is computed as:

∇θ log Zθ = 1
Zθ

∇θ

∫
X

exp(−Eθ(x)) (4.5)

= −
∫

X

exp(−Eθ(x))
Zθ

∇θEθ(x)

= −
∫

X
∇θ [Eθ(x)] pθ(x)

= −Epθ(x̃)[∇θEθ(x̃)].

And thus, from Eq. (4.4) and Eq. (4.5), the gradient of the log-likelihood can finally
be expressed as:

∇θLML(θ) = Epθ(x̃)[∇θEθ(x̃)] − Epdata(x)[∇θEθ(x)]. (4.6)

And the maximum likelihood objective in Eq. (4.3) can be expressed as 1:

LML(θ) = Epθ(x̃)[Eθ(x̃)] − Epdata(x)[Eθ(x)]. (4.7)

To compute the gradient expressed in Eq. (4.6), one needs to be able to sample from
the model distribution pθ , which is not possible because of its complexity. Current ap-
proaches approximate pθ using MCMC methods, like Gibbs sampling [202], Hamilto-
nian Monte Carlo [203] or Langevin dynamics [204]. This allows us to approximately
optimize the log-likelihood objective and generate samples from the model. In partic-
ular, Langevin dynamics –and more precisely, Stochastic gradient Langevin dynamics

1. In practice, the log-likelihood loss is computed by this expression
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(SGLD)– has been widely used for training EBMs [200] as it uses gradient information
and initializes Markov chains from random noise for improved mixing, which allows
to perform more efficient sampling.

The main idea behind SGLD is to generate low-energy data points according to the
current model. It is very similar to stochastic gradient descent, since we start with ran-
domly sampled points, then we find the direction of minimum energy (by the means
of the gradient) and take a step towards that direction. By repeating this process, one
eventually reaches points of minimum energy. Noise is injected into this procedure to
ensure that we sample points that are around the modes of the distribution.

4.2.1 Joint energy-based models (JEM)

Figure 4.6 – JEM overview. In a nutshell, an input image x passes through a neural
network fθ. Then, the pipeline splits into two modules: (i) a classification module that
applies a softmax function to fθ(x) to obtain class scores and computes the classification
loss (cross-entropy), and (ii) a generation module that computes the energy Eθ from
Eq. (4.10) (LogSumExp), then runs a finite Stochastic Gradient Langevin Dynamics
(SGLD) chain (Eq. (4.12)), drawing samples from pθ(x) and uses them to compute
the log-likelihood loss. The sum of both loss terms (Eq. (4.11)) is then optimized by
backpropagation.

Joint energy-based models (JEM) [201] have been recently presented to extend a
standard classification neural network into an hybrid discriminative-generative model,
by simply re-interpreting the outputs of the classifier.
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Let fθ : RD → RK be a classification neural network, parameterized by θ, with K

the number of classes and D the input’s dimension. The fundamental idea of JEM is
to express the joint distribution of images (x) and labels (y) as a joint energy-based
model:

pθ(x, y) = exp(fθ(x)[y])
Zθ

, (4.8)

where the joint-energy function is parameterized by the neural network: Eθ(x, y) =
−fθ(x)[y]. fθ(x)[y] is the y-th entry of fθ(x) and Zθ the normalizing constant of the
model.

By marginalizing Eq. (4.8) above, we obtain the distribution pθ(x) expressed as:

pθ(x) =
K∑

y=1
pθ(x, y) =

∑K
y=1 exp(fθ(x)[y])

Zθ

. (4.9)

From Eq. (4.9), one may observe that the distribution pθ(x) is also an energy-based
model, with the energy given by:

Eθ(x) = − log
 K∑

y=1
exp(fθ(x)[y])

 . (4.10)

The JEM model is then trained to maximize the joint log-likelihood, log pθ(x, y), which
can be factorized as:

log pθ(x, y) = log pθ(x) + log pθ(y|x). (4.11)

As shown below, Eq. (4.11) is the key to obtain a joint discriminative-generative model.

Generation The first term in Eq. (4.11), log pθ(x), corresponds to the generative part
of the model. It is trained as an energy-based model by approximating the gradient
∇θLML(θ) (Eq. (4.6)) using a sampler based on Stochastic Gradient Langevin Dynamics
(SGLD) [200] and thus, generates samples following:

xi+1 = xi − α
2 ∇xEθ(xi) + ε, x0 ∼ p0(x), (4.12)

with ε ∼ N (0, α) and p0(x) usually a uniform distribution, and α a step-size following
a polynomial decaying.

This allows to generate samples as an iterative process, starting fromnoise, following
the energy gradient’s direction, as shown in Fig. 4.7.
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In practice, the loss to optimize is the maximum log-likelihood loss as expressed in
Eq. (4.7), with the energy function Eθ in Eq. (4.10).

x0 x5 x10 x25 xK

Figure 4.7 – Generative process by SGLD, following Equation (4.12).

Classification The second term is related to pθ(y|x), which matches the softmax out-
put of a usual classifier when it is written as pθ(y|x) = pθ(x, y) / pθ(x). Thus it can be
simply optimized using the cross-entropy loss, as a standard classification neural net-
work.

Figure 4.6 illustrates how JEM works in practice. An input image x passes through
a neural network fθ, which outputs fθ(x) ∈ RK . Then, the pipeline splits into two mod-
ules: (i) a classification module (Fig. 4.6 top) that applies a softmax function to fθ(x)
to obtain class scores and computes the classification loss (cross-entropy), and (ii) a
generationmodule (Fig. 4.6 bottom) that computes the energy Eθ from Eq. (4.10) (Log-
SumExp), then runs a finite SGLD chain (Eq. (4.12)), drawing samples from pθ(x) and
uses them to compute the log-likelihood loss. The sum of both loss terms (Eq. (4.11))
is then optimized by backpropagation.

4.2.2 Semi-supervised learning with JEM

Moreover, JEM, as described above, also allows to extend a conventional classifier
to semi-supervised learning in a very natural way [205].

Indeed, if labels are available, one can optimize the main objective log pθ(x, y) as in
Eq. (4.11), otherwise one may simply marginalize it out and optimize log pθ(x) only.
In practice, following the scheme in Fig. 4.6, this means that for labeled samples the
network is updated as described above (Section 4.2.1), but unlabeled samples only go
through the generation module (bottom section of Fig. 4.6) to update the network.

We have recalled here the main concepts of JEM, a recent energy-based model for
joint generation and classification of images. However, to the best of our knowledge,
the relevance of such energy-based models to deal with EO data has not been studied
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yet. We report in the next section some experiments we conducted with JEM to address
various applications of high interest in remote sensing.

4.3 Experiments

Since JEM is a multifaceted model, in this section we explore its capacities in var-
ious tasks, including: classification, generation, semi-supervised classification, out-of-
distribution detection and land cover mapping. In Table 4.1, we compare JEM to other
models that perform well on each task, however none of them is as versatile as JEM,
being limited to one or two tasks to perform simultaneously.

We perform experiments by training our models on several publicly available EO
datasets for scene classification 2: EuroSAT [124], So2Sat LCZ42 [125], Aerial Image
Dataset [126] and UCMerced [127].

The EuroSAT Dataset comprises patches from Sentinel-2 images over 34 countries
in Europe. Each patch is labeled with one of 10 land cover/land use classes (e.g. indus-
trial, residential, highway, pasture, forest, etc.). Classes are well-balanced, with 2,000 to
3,000 examples per class, 80% of which are kept for training. We use the EuroSAT RGB
version.

The So2Sat LCZ42 Dataset is composed of Sentinel-1 and Sentinel-2 image patches
over 42 locations over the globe. Patches are labeled according to the Local Climate
Zones scheme (LCZ), with 17 categories. It is worth tomention that the training set and
testing set are geographically independent, containing images from different locations.
This makes this dataset particularly difficult, because models need to be sufficiently
robust to generalize well on the test data. For our experiments, we only make use of the
RGB Sentinel-2 bands (B04, B03, B02), as in EuroSAT.

The Aerial Image Dataset (AID) consists of 10,000 optical aerial images from dif-
ferent countries around the world, labeled within 30 scene classes. Original RGB tiles
are of size 600px × 600px. Due to the computing time of JEM, we have resized them to
64px × 64px during training.

The UCMerced Dataset is a small-size dataset and has been widely used for the
evaluation of aerial scene classification. It contains 2,100 aerial ortho-images from dif-
ferent regions ofUSA. Each image is labeledwith one of the 21 land use classes. Original

2. While the two first have already been used in previous chapters, they are introduced again here for
the reader only interested in generative models.
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Model Classi-
fication

Gene-
ration

Semi-
supervision

OOD
detection

Wide-ResNet ✓ ✗ ✗ ✗

VAE ✗ ✓ ✗ ✗

GAN ✗ ✓ ✗ ✗

BerundaNet ✓ ✗ ✓ ✗

FixMatch ✓ ✗ ✓ ✗

JEM ✓ ✓ ✓ ✓

Table 4.1 – Models comparison. JEM is the only model able to perform all these tasks
simultaneously.

Classification Generation
Type Model Accuracy (↑) FID (↓) KID (↓)

Discriminative Wide-ResNet 97.56± 0.52 % ✗ ✗

Hybrid JEM 97.42± 0.19 % 122.1 0.06
Generative VAE ✗ 215.4 0.14

Table 4.2 – Classification and generation scores of models trained on EuroSAT. Com-
parison of JEM with respect to a purely supervised model (Wide-ResNet-28-10) and a
purely generative model (VAE). Note that JEM is the only model that can provide both
classification and generation scores. Best scores in bold.

256px × 256px tiles have been resized to 64px × 64px for JEM training.
For evaluating out-of-distribution detection and other tasks of interest, we use in

addition several public EO datasets: ISPRS Potsdam [133], OSCD dataset [206], DFC
2017 [150] and BigEarthNet [91].

Implementationdetails. Following [201],weperformour experiments using aWide-
ResNet-28-10 architecture [207], with no batch normalization. We train our networks
with the Adam optimizer [208], during 200 epochs, following the JEM training scheme.

Moreover, we adopt a hold-out evaluation method, defining a training and a test set
(80% and 20% of data, respectively, for all datasets, except So2Sat LCZ42 where train
and test partitions are already defined). Additionally, 10% of the training set was used
as validation partition during training. This is especially important when training on
very few labeled data to adopt an early stopping strategy and avoid overfitting.

Pytorch [209] is used for all implementations.
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Labeled
sam-

ples/class
% of
labels Wide-ResNet BerundaNet FixMatch JEM

2000 on avg. 100% 97.56 ±0.52 96.90 ±0.67 98.81 ±0.06 97.42 ±0.19

100 ∼ 5% 86.36 ±0.26 74.78 ±2.01 97.83 ±0.12 86.23 ±0.80
20 ∼ 1% 62.93 ±1.01 54.25 ±2.41 95.78 ±0.99 69.11 ±1.18
10 ∼ 0.5% 52.33 ±1.59 46.84 ±1.83 94.95 ±1.12 61.60 ±1.49
5 ∼ 0.25% 43.83 ±3.18 39.80 ±1.51 94.45 ±1.29 54.79 ±3.55
1 ∼ 0.05% 28.02 ±0.97 32.77 ±1.05 67.46 ±4.67 36.86 ±1.11

Table 4.3 – Classification results on EuroSAT (Accuracy [%] ↑). Comparison with
a purely supervised method (Wide-ResNet), a multi-task semi-supervised network
(BerundaNet) and a semi-supervisedmethod based on consistency regularization (Fix-
Match), trained on the same number of labeled samples. Grey cells indicate model
leveraging unlabeled data. Best scores in bold, second best underlined (when signif-
icant).

4.3.1 Joint classification and generation with JEM

In this section we show that this new training paradigm allows to get an hybrid
model, with competitive performances in both tasks, classification and generation.

Wide-ResNet is trained as a usual classifier (with cross-entropy loss), while JEM is
trained as described in Section 4.2.1. We compare the generative performance with a
standard VAE [210]. Results on the EuroSAT dataset are summarized in Table 4.2.

Given uncertaintymeasured by standard deviation, JEM results reach the same level
of performances as classification-only Wide-ResNet and previously reported classifica-
tion results on EuroSAT, namely ResNet-50 and GoogLeNet with 98.6% and 98.2% of
overall accuracy respectively [124]. The small difference observed might be explained
by the intrinsic regularization of themulti-task JEMmodel. Furthermore, [124] does not
specify a training and test partition, which might also explain the discrepancy with our
results. In terms of generation, we rely on the Fréchet Inception Distance (FID) [211]
and theKernel InceptionDistance (KID) [212] to evaluate the quality of generated sam-
ples. According to these metrics, JEM generated samples are superior to VAE samples.

Fig. 4.8 shows some class-conditional examples generated by the network after be-
ing trained on the EuroSAT dataset, with different settings. Each row represents a class
in the dataset. First two columns show real samples from the dataset, third and fourth
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Industrial

Residential

Annual
Crop

Permanent
Crop

River

Sea &
Lake

Herbaceous
Vegetation

Highway

Pastures

Forest

EuroSAT Supervised Semi-supervised
JEM samples

Figure 4.8 – Class-conditional samples generated by Joint Energy-based Model (JEM)
trained on the EuroSAT dataset. First two columns contain real EuroSAT samples. Third
and fourth columns present JEM-generated samples trained on all training samples.
Last two columns show samples generated following a semi-supervised learning strat-
egy, with 100 labeled samples per class.
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columns present JEM-generated samples trained on the whole EuroSAT dataset and
last two columns display JEM-generated samples with the model trained in a semi-
supervised manner with 100 labeled samples per class (and the rest of the dataset as
unlabeled data, more details in Section 4.3.2). From these examples, we observe that
JEM captures the data distribution properly, since generated samples are extremely sim-
ilar to real EuroSAT samples regardless of the fraction of annotated examples available
for training. Moreover, the model is capable to produce samples for every class in the
dataset, with a large variety of images per class.

However, some classes remain difficult to apprehend, e.g. forests or sea and lakes.
This might be due to the lack of texture on these images. Industrial buildings (first row
in Fig. 4.8) would require finer and more rectangular outlines to correctly match in-
dustrial buildings in the EuroSAT dataset. On the other hand, JEM is able to handle
impressively images of highways, rivers and different types of fields. Indeed, gener-
ated samples of these classes are remarkably similar to real images. This shows that the
model is able to learn the true distribution behind the dataset and leads to compelling
applications. Synthetic examples generated from the learned data distribution may be
used for simulation or even for training new models.

4.3.2 Semi-supervised classification with JEM

In this section we perform semi-supervised classification and show the potential of
JEM in extreme settings when very few labeled samples are available.

We train the JEM model with a small subset of labeled examples and the entire
dataset as unlabeled data, following the approach described in Section 4.2.2. We vary
the number of labeled samples per class on which the model is trained, and compare
our results with three baselines: the fully supervised Wide-ResNet, BerundaNet [J2]
(semi-supervised), and FixMatch [73] (semi-supervised). Wide-ResNet, as a super-
vised method, is trained on labeled data only, while BerundaNet, FixMatch and JEM
are trained similarly on the whole dataset, using labels when available. Table 4.3 sum-
marizes our results on the EuroSAT dataset.

First row in Table 4.3 presents completely supervised results on the entire training
set, as an upper bound for the semi-supervised strategies. We observe that all methods
are on par in terms of performance, FixMatch being slightly better.We observe from the
following rows that FixMatch, being especially designed to tackle the semi-supervised
classification problem, is superior to allmethods and performs remarkablywell, even in
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Dataset Labeled
samples/class % of labels Wide-ResNet JEM

So2Sat
∼ 20000 100% 50.93 ± 0.16 54.60 ±0.35

1000 ∼ 5% 44.17 ±0.40 48.59 ±0.58
200 ∼ 1% 35.45 ±0.17 42.43 ±0.47
100 ∼ 0.5% 30.90 ±0.35 38.71 ±0.64

AID

∼ 300 100% 78.71 ±0.08 74.11 ±0.24

20 ∼ 7% 41.07 ±1.87 50.23 ±0.69
13 ∼ 5% 34.46 ±0.59 44.49 ±0.65
3 ∼ 1% 17.38 ±0.32 25.68 ±0.65
1 ∼ 0.5% 9.98 ±0.36 16.21 ±0.58

UCMerced
80 100% 81.71 ±0.72 80.49 ±1.67

10 ∼ 12.5% 45.41 ±0.43 48.91 ±0.42
4 ∼ 5% 26.99 ±1.24 34.16 ±1.78
1 ∼ 1% 14.34 ±1.88 24.31 ±1.87

Table 4.4 – Classification results on different EO datasets (Accuracy [%] ↑). Grey cells
indicate model leveraging unlabeled data. Best scores in bold (when significant).

extreme situations when very few labeled data are available. In the case of BerundaNet
and JEM, there is a point where they perform considerably better thanWide-ResNet. In
the case of JEM, there is no significant difference with respect to the Wide-ResNet per-
formance in the 5% and 100% labeled samples per class regime, however the advantage
of JEM becomes tangible as soon as the model is trained with 1% of labeled samples or
less, with a performance gap varying from 6.2% to 10.7% of accuracy. Moreover, in the
semi-supervised setting, JEM is always superior to BerundaNet. This difference might
be explained by the way these methods leverage unlabeled samples during training.
Indeed, BerundaNet uses them to compute a regularization term through a secondary
task (here reconstruction), while JEM uses unlabeled samples to estimate their under-
lying distribution, which might contain valuable information for classification.

These results show that: first, the energy function can be learned from unlabeled
data as well as labeled data; and second, if the image distribution pθ(x) is well esti-
mated, it is easier then to estimate the conditional distribution pθ(y|x) from a small set
of annotated training samples.

Furthermore, even if FixMatch has undeniably better performances in the semi-
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supervised settings, it is worth to notice that it was especially designed to perform semi-
supervised classification, and cannot performother tasks likeOODdetection nor gener-
ation (see Table 4.1). On the contrary, JEM is a versatile model that can perform several
tasks simultaneously. Moreover, it could be optimized to achieve better results on semi-
supervised learning, for instance, by integrating FixMatch features such asmassive data
augmentation strategies and consistency regularization 3.

Additionally, we compare JEM andWide-ResNet on three well-known benchmarks
for scene classification, So2Sat LCZ42, AID and UCMerced. Results are summarized on
Table 4.4.

On AID and UCMerced, results confirm what we observed previously on EuroSAT:
in the supervised setting, when all labels are available for the training data, Wide-
ResNet is slightly superior to JEM, because of the intrinsic regularization of the lat-
ter. However, when few labels are available, JEM has considerably better classification
performance. On the other hand, results over So2Sat –a more realistic and large-scale
dataset– not only confirm the tendency observed on EuroSAT, but the superiority of the
JEMmodel overWide-ResNet is evenmore consistent, including the supervised setting.
This is explained by the existing domain gap between training data and testing data in
So2Sat, due to different geographic locations. Indeed –as we observed in our experi-
ments in Chapter 2– standard discriminative classifiers, like Wide-ResNet, are prone
to lack robustness to distribution shifts. However, learning the underlying distribution
of the data by a generative model such as JEM helps to overcome this issue and sets a
starting point to bridge the performance gap when dealing with domain shifts.

Model calibration
Beyond classification scores, an important and desirable feature of models is the

calibration. A model is said to be calibrated if its output confidence, usually measured
as maxy p(y|x)), coincides with its expected accuracy 4. Therefore, a calibrated model is
more informative, being able to provide the uncertainty associated to a prediction.

We thus evaluate and compare the calibration of the supervised (Wide-ResNet) and
semi-supervised models (FixMatch and JEM). In particular, we study the 100-labeled-
samples-per-class and the 10-labeled-samples-per-class settings. Figure 4.9 shows the
calibration curves for both experiments. A perfectly calibrated classifier should match

3. Which we will explore later, in Section 4.3.5.
4. In practice, the calibration is estimated on an evaluation set. Confidence of the model is computed

for each sample on this set, then samples are binned according to their confidence score. Finally, themean
accuracy is computed for each bin, which allows us to plot a calibration curve.
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Figure 4.9 – Calibration curves for supervised Wide-ResNet and semi-supervised JEM
and FixMatch trained on EuroSAT dataset. Left: trained on 100 labeled samples per
class. Right: trained on 10 labeled samples per class. ECE: Expected Calibration Error
(↓).

the straight line y = x. We can observe that, in both settings, JEM is the model with
best calibration, FixMatch being very underconfident andWide-ResNet being overcon-
fident.

We quantitatively verify this by computing a usual metric for calibration: the Ex-
pected Calibration Error [213] (ECE) score, for both settings. The obtained ECE scores
are 11.26%, 50.24% and 6.00% for Wide-ResNet, FixMatch and JEM, respectively, in the
case of 100-labeled-samples-per-class; and 43.73%, 49.24% and 10.22% in the extreme
setting of 10-labeled-samples-per-class. Since a perfect ECE is equal to zero, these scores
confirm that the semi-supervised JEM model is better calibrated, the difference being
flagrant in extreme conditions (very few labels). FixMatch exhibits very poor calibra-
tion properties. Therefore, unlabeled data regularization, by learning the data distribu-
tion, comes with the advantage of allowing for more informative predictions.

4.3.3 Out-of-distribution analysis

Out-of-distribution detection (OOD) [214] refers to the task of recognizing signifi-
cantly different or anomalous examples, with respect to the ones seen during training.
Asserting the capacity of a model to correctly classify a sample from a new domain is
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Figure 4.10 – JEM log-likelihood (unnormalized) histograms for EuroSAT dataset. Sta-
bility of the estimated energy function. Supervised vs. Semi-supervised with 100 la-
beled samples and 10 labeled samples per class comparison.We observe that the values
of the unnormalized log-likelihood are comparable, regardless the amount of labeled
data available during training.

8 6 4 2 0 2

1%
2%
3%
4%
5%
6%
7%
8%
9%

10%

N
or

m
al

iz
ed

 fr
eq

ue
nc

y euroSAT train
OSCD dataset

8 6 4 2 0 2

log p(x) (unnormalized)

euroSAT train
ISPRS Potsdam

8 6 4 2 0 2

euroSAT train
BigEarthNet

Figure 4.11 – Out-of-Distribution detection on different public EO datasets. Unnormal-
ized log-likelihood values computed through the supervised model.

a very important and desirable feature, especially in applications which involve real-
world decisions.

In this section,we assess the capacity of ourmodel to assess global out-of-distribution
analysis, i.e. if an entire dataset can be considered in-distribution with respect to the
learned distribution. In this regard, we compare the histograms of the unnormalized
log-likelihood (i.e. −E(x)) values of the EuroSAT training set with the obtained his-
tograms for different public datasets.

Supervised vs. semi-supervised energy function

Figure 4.10 presents the unnormalized log-likelihood histograms for the EuroSAT
dataset in the fully-supervised JEM setting (left) and two semi-supervised settings:
training with 100 labeled samples per class (center) and with 10 labeled samples per
class (right). In all cases, the histogram profiles of the training and test partition match
perfectly, which means that, as expected, there is no shift of the estimated distribution
from EuroSAT train to EuroSAT test.
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Moreover, we observe that the log-likelihood distribution estimated by the models
is very similar, showing that the energy is not linked to the labels, but to the data.

Comparing datasets

On the other hand, Figure 4.11 shows the unnormalized log-likelihood histograms
of 3 public EOdatasets:OSCDdataset [206], ISPRSPotsdam[133] andBigEarthNet [91],
obtained after training the model on the whole EuroSAT [124] training set.

We observe that for these datasets, the histogram profile does not exactly match
the one of the EuroSAT training data. Actually, values of the unnormalized log p(x)
can be extremely small, which can be interpreted as the samples from these datasets
are not likely to come from the distribution learnt from EuroSAT. We can confirm this
observation by computing the Kullback-Leibler (KL) divergence with respect to the
distribution of the EuroSAT train histogram. Indeed, while KL value for EuroSAT test
data is 0.27; the other datasets KL values are 28.2, 25.6 and 26.3 for Potsdam, OSCD
and BigEarthNet, respectively. In view of this, more information would be needed for
the model to correctly represent those datasets that differ on location, resolution or
appearance.

Finally, it is interesting to notice that the distribution that differs the most is ISPRS
Potsdam, the only dataset with a different resolution. This might imply that resolution
is an important factor for domain adaptation.

4.3.4 Application to land cover mapping

Land cover mapping is an interesting application of JEM on new unseen domains
as detailed in the following sections.

Patch-wise classification

We apply our EuroSAT-trained models –including Wide-ResNet, supervised and
semi-supervised JEM– to unseen OSCD tiles. To do so, the tiles are split into 64×64
patches which go through the already trained network to obtain the corresponding
class per patch, leading to a patch-wise classification map.

We observe in Figure 4.12 the results on two locations from OSCD: Beirut and Rio
de Janeiro. The maps produced by the classifier are, in general, globally correct and
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retrieve various densities of urban and green areas. As expected, the quality of pre-
dictions deteriorates as the number of labeled samples decreases. Indeed, supervised
Wide-ResNet and JEM predictions are both plausible land cover maps for these loca-
tions. The map of JEM semisup-100 is still trustworthy, while 10 labeled samples per
class seem not enough to train an accurate model.

Similarly, we apply the So2Sat LZC42-trained models to the unseen tile of Rome
from DFC2017. Since So2Sat LZC42 is composed of 32×32 images, the Rome tile is also
split in 32×32 patches to pass through the network. Figure 4.13 presents our patch-
wise classification maps. As before, the maps are reasonable, JEM being more accurate
than Wide-ResNet to recognize low plants, where Wide-ResNet overestimates heavy
industry.

Image Wide-ResNet
Supervised

JEM
Supervised

JEM
Semisup-100

JEM
Semisup-10

Figure 4.12 – Semantic maps on never-seen OSCD cities. Top: Beirut. Bottom: Rio de
Janeiro. Supervised indicates models trained on the entire EuroSAT dataset. Semisup-x
is JEM trained with a semi-supervised strategy with x labeled samples per class. No
semantic segmentation ground truth is provided with this dataset.

.
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Image GT Wide-ResNet
Supervised

JEM
Supervised

JEM
Semisup-1000

JEM
Semisup-200

Figure 4.13 – Semantic maps on never-seenDFC 2017 tile of Rome. Supervised indicates
models trained on the entire So2Sat dataset. Semisup-x is JEM trained with a semi-
supervised strategy with x labeled samples per class.

.

Figure 4.14 – Confidence maps obtained by JEM on never-seen OSCD and DFC2017
tiles. Confidence is measured as the unnormalized log p(x)), From left to right: Beirut,
Rio de Janeiro and Rome.
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4.3. Experiments

Confidence maps

Themajor advantage of JEM over a standard classifier such asWide-ResNet is its ca-
pacity to estimate the underlying data distribution through the energy function.We can
use the unnormalized log-likelihood value as a proxy for the confidence of the model’s
prediction. Indeed, if the model assigns a high value of log-likelihood to an image it
could be considered as in-distribution, and thus the model’s prediction should be perti-
nent. Conversely, if the model’s log-likelihood on a sample is low, we could consider it
as out-of-distribution and be more cautious with respect to its prediction.

Figure 4.14 shows the confidence maps obtained by the supervised JEM over the
OSCD tiles (trained onEuroSAT) andoverRome tile fromDFC2017 (trained on So2Sat).
We observe that the confidence of the model varies accross the patches. Indeed, on
OSCD, the model is more confident on scenes representing water or fields, while it is
considerably less confident in residential and industrial areas, which are more likely
to be different from training European cities from the EuroSAT dataset. In the case of
Rome, the model is less confident in general, and in particular on the compact zones
(according to the ground-truth in Fig. 4.13).

4.3.5 Can we combine FixMatch and JEM?

As mentioned in Section 4.3.2, JEM can still be optimized to achieve better results
on semi-supervised learning. One possible way to achieve this is by integrating Fix-
Match features into the model, such as data augmentation strategies and consistency
regularization.

Avery simple and yet effective procedure to combine FixMatch and JEM is described
in the following:

(i) Train a semi-supervised FixMatch model with very few labeled data;
(ii) Generate (pseudo-) labels for the rest of the training set with the model trained

on the previous step. Since FixMatch is very efficient, these pseudo-labels should
be quite accurate.

(iii) Finally, train JEM on this pseudo-labeled training set and apply it to the test set.

The results of this first experiment are shown in Table 4.5. Indeed, we observe that
the FixMatch&JEM procedure described above outperforms JEM alone. Therefore, we
have obtained a better semi-supervised classifier, and –at the same time– kept a robust
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Labeled
samples/class

% of
labels JEM FixMatch &

JEM
100 ∼ 5% 86.23 ±0.80 85.94 ±0.48
20 ∼ 1% 69.11 ±1.18 84.96 ±0.57
10 ∼ 0.5% 61.60 ±1.49 84.89 ±0.76
5 ∼ 0.25% 54.79 ±3.55 82.46 ±0.98
1 ∼ 0.05% 36.86 ±1.11 56.78 ±1.31

Table 4.5 – Classification results of a first combination of FixMatch & JEM on EuroSAT
(Accuracy [%] ↑). Comparison with JEM. Grey cells indicate model leveraging unla-
beled data. Best scores in bold (when significant).

generative model, able to synthesize new data, perform OOD detection, and other ap-
plications as we have shown all along this section (Section 4.3). While FixMatch alone
reaches higher classification accuracy (see Table 4.3), it does not offer these appealing
properties.

Future works on combining FixMatch and JEM should considerate training a model
end-to-end. For instance, one could design a combined pipeline, where JEM is inte-
grated into the FixMatch algorithm by using the weakly augmented inputs of FixMatch
to optimize the generative objective of JEM (in addition to the corresponding FixMatch
loss terms). Thus, the objective function to optimizewould be composed of three terms:
L = Lsup + Lconsistency + LML, where Lsup is the supervised classification loss, Lconsistency
is the consistency regularization from FixMatch, defined by Eq. (3.25), and LML is the
generative loss proper to JEM, from Eq. (4.7). One of the main challenges of this ap-
proach would be the joint optimization: finding the right hyper-parameters to achieve
the best of both worlds.

4.4 Limitations

Training Energy-basedModels by maximum likelihood can be very challenging. In-
deed, the gradient estimators used to estimate log-likelihood are considerably unsta-
ble and prone to diverging during training, this is why hyperparameters must be cho-
sen carefully. Moreover, MCMC-like iterative sampling increases training time linearly
with the image size. This may be prohibitive when dealing with large images, which
is likely the case in remote sensing applications. This is why we decided to resize AID
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4.5. Perspectives: semantic segmentation with JEM

and UCMerced images for our experiments in Section 4.3.2.
Despite these limitations, we strongly believe that the remote sensing community

might deeply benefit from the multiple applications of EBMs, that we tried to bring
forward in this work. We believe that there is still much progress to make to improve
and optimize EBMs’ training, just as the community has achieved great progress on
GANs’ training in only a few years.

4.5 Perspectives: semantic segmentation with JEM

As we have shown, JEM have several high-potential applications in remote sensing.
Therefore –and even if we have shown that it can be applied to large tiles by patch-
wise classification– it would be useful to extend this model to semantic segmentation.
In what follows, we present our preliminary work on this extension, mostly theoretical,
practical experiments being left for future work.

Themost explicit difference between semantic segmentation and scene classification
is the output’s dimension. While classification algorithms take as input an image and
output a label y ∈ {1, . . . , K} (with K the number of possible classes), a semantic seg-
mentation algorithm takes as input an image X ∈ RW ×H×3 and outputs a segmentation
map Y ∈ {1, . . . , K}W ×H , in other words, a class label for each pixel in the input image.

Let fθ : RW ×H×3 → RW ×H×K be the function learned by a segmentation network,
parameterized by θ. Let fθ(X)i be the value of the network’s output at pixel i, then
fθ(X)i ∈ RK and fθ(X)i[k] ∈ R corresponds to the k-th index of fθ(X) at pixel i. Let
N = W × H be the number of pixels in an image.

Usual semantic segmentation frameworks, similarly to standard classifiers, apply a
softmax function at the endof the neural network, obtainingper-pixel pseudo-probabilities
for each class given by:

pθ(Y i|X) = exp (fθ(X)i[Y i])∑K
k=1 exp(fθ(X)i[k])

. (4.13)

Inspired from JEM, our goal is then to define two energy-based models, one for
p(X, Y ) and another one for p(X), such that p(Y |X) matches the classical cross entropy
computation.

Assuming that pixel classes are independent, given a certain image –which is an
implicit assumption in semantic segmentation models trained with the usual cross-
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entropy loss– we can express the probability pθ(Y |X) as:

pθ(Y |X) =
N∏

i=1
pθ(Y i|X) = exp(∑i fθ(X)i[Y i]∏

i

∑
k exp(fθ(X)i[k]) . (4.14)

Taking this into account,wepropose an energy basedmodel for the joint distribution
pθ(X, Y ) expressed as:

pθ(X, Y ) =
∏

i exp(fθ(X)i[Y i])
Z(θ) = exp(∑i fθ(X)i[Y i])

Z(θ) . (4.15)

Then pθ(X) can be obtained by summing over all possible values of Y . However, this
represents a problem, since this is a sum over all possible segmentation maps, and –in
theory– there are KN possible segmentation maps for an image:

pθ(X) =
∑

Ỹ ∈{1,...,K}N

exp
(∑

i fθ(X)i[Ỹ i]
)

Z(θ) . (4.16)

We can then derive pθ(Y |X) from equations (4.15) and (4.16), which gives:

pθ(Y |X) = pθ(X, Y )
pθ(X) = exp(∑i fθ(X)i[Y i])∑

Ỹ ∈{1,...,K}N exp(∑i fθ(X)i[Ỹ i])
(4.17)

= exp(∑i fθ(X)i[Y i])∑
Ỹ ∈{1,...,K}N

∏
i exp(fθ(X)i[Ỹ i])

.

For this model to be an extension of JEM to semantic segmentation, we need to an-
swer the following question: Is the result in equation (4.17) equal to (4.14)?
Or, in other words, is ∏i

∑
k exp(fθ(X)i[k]) = ∑

Ỹ ∈{1,...,K}N

∏
i exp(fθ(X)i[Ỹ i])?

The answer, given our assumptions, is yes. Remembering that∑Y pθ(Y |X) = 1, and
since we assumed pixel-class independence, from equation (4.14) we have that:

∑
Y ∈{1,...,K}N

∏
i

pθ(Y i|X) =
∑

Ỹ ∈{1,...,K}N

∏
i exp(fθ(X)i[Ỹ i])∏

i

∑
k exp(fθ(X)i[k]) = 1. (4.18)

Therefore, we have extended the JEM approach to segmentation.
The joint energy function is then given by Eθ(X, Y ) = −∑

i fθ(X)i[Y i]. And the
energy function for the marginal distribution of X , fromwhich we will sample, is then:
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4.6. Conclusions

Eθ(X) = − log
(∏

i

∑
k

exp(fθ(X)i[k])
)

(4.19)

As in JEM for classification, we can optimize the joint log-likelihood by writing it
as: pθ(X, Y ) = pθ(X) + pθ(Y |X), where the second term is optimized as the usual cross-
entropy in segmentation and the first term can be optimized using the same sampler as
in JEM (SGLD, see Eq. (4.12)) and the energy given by Eq. (4.19).

Implementation of the SegJEM 5 model raises some issues. JEM for classification is
alreadydifficult to train, due to the instability of gradient approximations; togetherwith
the intricacy of finding the right hyper-parameters for optimization and convergence.
Semantic segmentation is a more complex task, therefore we can expect the optimiza-
tion process to be at least equally arduous. Moreover, as mentioned in Section 4.4 an
important limitation of current EBMs is training time –mostly due toMCMC sampling–
which scales linearly with image size. Scenes for segmentation are usually large and,
even if patch-based solutionsmight be applied, computational timewill be amajor con-
straint for this approach.

4.6 Conclusions

This chapter focused on the study of semi-supervised learning from a generative
point of view. To this end, we have first definedwhat generativemodels are and briefly
explained the main principles of different deep generative frameworks.

Despite some drawbacks, energy-based models have several advantages with re-
spect to other generative models. They capture all the information about inputs only
through a scalar value, the energy. Estimating the energy by the means of a neural
network, enables to model complex distributions and makes EBMs very attractive for
several applications, including generation, out-of-distribution detection, etc. Moreover,
their simplicity allows for natural integration of label information into themodel, by es-
timating a joint energy function E(x, y), with very little changes on the neural network
architecture to use, and no change on the optimization process.

In this context, we have considered a recent framework to train neural networks to
jointly perform classification and generation of images and applied it to remote sens-
ing data. By re-interpreting the outputs of a classification neural network, the Joint

5. JEM for segmentation
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Chapter 4 – Semi-supervised learning: generative approaches

Energy-based Model (JEM) expresses the joint distribution of image-label pairs as an
energy-based model. In practice, it allows us to train a robust classifier and estimate
the underlying distribution of data, simultaneously. Moreover, this hybrid model is
well suited and extends naturally to perform semi-supervised learning.

This seminal application of JEM to EO data led to several important conclusions.
First, in small-scale datasets like EuroSAT, we observe that JEM is a strong classifier
with performance on parwith state-of-the-artmethods.More interestingly, in the semi-
supervised setting when very few labeled examples are available, JEM is superior
to a standard supervised network, both in terms of classification scores and robust-
ness (i.e. better calibrated). Second, withmore realistic, large-scale datasets like So2Sat,
JEMexhibits outstanding generalization properties,with better performance than usual
classifiers in the supervised and semi-supervised settings. However, future work could
focus on the integration in JEM of FixMatch mechanisms especially designed for semi-
supervised learning, namely data augmentation techniques, pseudo-labeling or consis-
tency regularization strategies. The challenge lies in realistically augmenting the data,
and the distribution estimate given by JEM could be an asset here.

We have also demonstrated that JEM is able to correctly estimate the data distribu-
tion, allowing us to generate faithful and diverse images. Estimating the data distribu-
tion enables the model to detect out-of-distribution samples and thus to decide if it can
be reliably used in a new domain. This gives JEM the ability to classify unseen zones
with a confidence map based on the log-likelihood estimated by the model.

Despite the limitations and convergence issues of training energy-basedmodels, we
have shown through our experiments several appealing applications in remote sens-
ing for this kind of hybrid discriminative-generative model, such as semi-supervised
learning, out-of-distribution detection or the generation of realistic new data. It is a
starting point to pave the way to tomorrow’s real-life applications.

Finally, we have presented a theoretical extension of this joint energy-basedmodel
to semantic segmentation, SegJEM.However, the practical application of this extension
is still at very early stages, thus it is left open as perspectives for future works.

160

Apprentissage semi-supervisé pour la compréhension des données d’observation de la Terre à large-échelle Javiera Castillo-Navarro 2022



CONCLUSION AND PERSPECTIVES ON

FUTURE WORK

This work aims to make a contribution on the journey toward large-scale automated
cartography. This is a difficult task because the Earth’s surface is constantly changing
due to several factors: seasons, human activity, natural disasters, climate change, among
others. Even though today we have a plethora of data at our disposal –thanks to satel-
lites and airborne campaigns–, it is not humanly possible to process and analyze ef-
fectively these data and to extract useful information in real-time. Therefore, the use of
artificial intelligence emerges as a solution to achieve automatic analysis of EO imagery.

In recent years, deep learning techniques have been used and adapted by the re-
mote sensing community, and have shown to be useful in various Earth observation
applications. The main issue of these approaches is that to achieve their maximum po-
tential, they need to be trained on large collections of labeled data. Gathering massive
amounts of annotated data demands large efforts, time and resources, being infeasible
in most practical cases. On the contrary, unlabeled data are abundant and easily avail-
able. Therefore, the development of algorithms that rely less on labels is a necessary
step to leverage the insightful information contained on these unlabeled data.

Based on these considerations, this work has focused on the development of semi-
supervised learning techniques for semantic segmentation and scene classification, to-
ward large-scale cartography and EO data understanding. The idea is to fully exploit
the large amounts of unlabeled data that are continuously gathered in Earth observa-
tion, and to integrate them into the learning algorithms, with the aim of developing
robust and generic models.

Summary of contributions

Through our experiments and analysis, we have shown that there exist several ways
to integrate unlabeled data into deep learning models, and each method comes with
advantages and issues. However, the main take-home message is that we can leverage
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completely unlabeled data to train algorithms with better performances and general-
ization capacities.

To this end, we started by analyzing existing EO datasets (see Chapter 2): do they
represent real applications?what are thedesirable properties of a gooddataset, adapted
to our objectives? Our goal is to achieve cartography at a large-scale 6, therefore models
need to generalize well across geographic locations. Moreover, labeled data are usually
limited, while unlabeled data are easily accessible. Do existing datasets measure these
situations?

We studied the generalization capacities of standard supervised semantic seg-
mentation methods and we observed that they present generalization issues in large-
scale settings, when labeled data are not diverse enough. However, we are aware that
producing annotated data at a global-scale is impossible. Therefore, there is an oppor-
tunity for new learning paradigms to arise. In particular, this work focused on semi-
supervised learning to exploit the immensity of unlabeled data available.

We constructed the MiniFrance suite, a large-scale dataset especially designed for
semi-supervised semantic segmentation in Earth observation. Because of its unique
qualities and design, we hope it will encourage and push the research limits on semi-
supervised semantic segmentation in the field. In this context,MiniFrance is part of the
renowned IEEEGRSSData FusionContest 2022. This year’s theme is semi-supervised
learning, and theDFC-MF22dataset is an extendedversion ofMiniFrance to newmodal-
ities. Therefore, we have contributed to the organization of this important competition
that every year gathers researchers from all over the world.

We also presented tools for representativeness data analysis in the context ofmulti-
location datasets. They allow practitioners to assess their data prior to any experiment.
We illustrate the use of these tools on the MiniFrance data, defining a suitable partition
for semi-supervised learning.

Further, inChapter 3wedelved into the development of semi-supervised techniques
fromadiscriminative perspective, in particular,we studied twokinds ofmodels:multi-
task learning and consistency regularization-based approaches. Multi-task learning
is a straightforward 7 way to integrate unlabeled data into the training loop of stan-
dard supervised networks –obtaining a semi-supervised network–, by simply adding
an unsupervised, secondary task. Thereby, we introduced neural networks to tackle

6. even global, if possible.
7. and maybe the most straightforward.

162

Apprentissage semi-supervisé pour la compréhension des données d’observation de la Terre à large-échelle Javiera Castillo-Navarro 2022



semi-supervised semantic segmentation from a multi-task perspective –in particular,
BerundaNet–, training the network to simultaneously perform supervised segmenta-
tion and an unsupervised, auxiliary task. Our experiments on three public benchmarks,
including MiniFrance, –where we explored different unsupervised tasks and corre-
sponding loss functions– showed the benefits we can obtain by integrating unlabeled
data into the learning process. Still, the multi-task setting leaves some open questions:
how to choose the right auxiliary task? which is the best loss function to optimize? do
we always get better results by using extra unlabeled data? The answer to them is not
simple, and one has to settle for empirical results.

The second family of discriminative methods that we explored in Chapter 3 is based
on the principle of consistency training. These methods rely on the assumption that a
model should output similar predictions for semantically similar inputs. We presented
a theoretical framework for this kind of methods and study the transferability of Fix-
Match, the current state-of-the-art for semi-supervised classification in computer vi-
sion, to remote sensing data. From our experiments we observed the potential of this
method to tackle semi-supervised scene classification in remote sensing, even when
there exists a domain shift between training and test data.

Our study on semi-supervised learning continues in Chapter 4 by exploring the
semi-supervised problem from a generative perspective. As our analysis in Chapter 2
has shown, data distribution contains valuable information that is not directly exploited
by discriminativemodels (Chapter 3). Therefore, estimating the data distribution of EO
images through generative models is a suitable solution to integrate this unexploited
knowledge, especially when large amounts of (unlabeled) data are available. We inves-
tigate energy-based models for various Earth observation applications. EBMs have
several advantages over other generative models. In particular, they allow us to nat-
urally integrate label information into the model, without significant changes of the
learning process. We performed experiments with JEM –a recent framework for joint
classification and generation– on remote sensing data. This hybrid model can be natu-
rally extended to a semi-supervised setting. Our experiments on several public datasets
for scene classification demonstrate that JEM is transferable to the EO domain, and
that it is a strong classifier, with performance on par to state-of-the-art methods.More-
over, in semi-supervised settings it shows considerable improvements with respect
to a purely supervised method trained on the same number of labeled samples, with
good generalization capacities with respect to domain shifts.
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Furthermore, JEM is able to estimate the data distributionwhich allows themodel
to generate realistic and diverse new data. Additionally, thanks to the traceability of
the likelihood function, themodel is able to detect out-of-distribution samples and thus
to decide if it can be reliably used in a new, unseen domain.

Despite the issues regarding training of EBMs, we observed that these models have
numerous appealing applications for remote sensing data.We believe that there is still
much progress to make to improve and optimize EBMs’ training and they can lead to
build real-life applications.

Overall, in this manuscript we have explored semi-supervised learning techniques
to progress toward large-scale automated cartography and EO data understanding. We
have explored several aspects of semi-supervised semantic segmentation in Earth ob-
servation, proposing a new benchmark –MiniFrance– and different methods to achieve
semi-supervised classification and segmentation, including BerundaNet, FixMatch for
EO and JEM for EO. We have performed an analysis of these methods, highlighting
their advantages and also their limitations. However, the problem of semi-supervised
learning and its applications is still open and several perspectives for future work arise.

Perspectives for future work

Short-term projects

1. FixMatch extension for semantic segmentation. Our experiments in Section 3.3
showed that classification methods based on consistency regularization, like FixMatch,
can have impressive results in semi-supervised settings when very few labeled data
are available. A natural following step is try to extend these ideas to dense, pixel-wise
classification, and to land use/land cover maps. The challenge is then to find the right
data augmentations to apply to data, adapted to segmentation and to the EO domain.
Some works in this direction have appeared recently [83, 84].

2. Canwe integrate consistency regularization into a generative framework? Exper-
iments in Section 3.3 demonstrated the effectiveness of consistency regularization and
other common techniques for semi-supervised learning, e.g. pseudo-labeling, for semi-
supervised scene classification in EO data. Moreover, experiments in Chapter 4 showed
multiple applications of EBMs with high interest for the remote sensing community.
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Then, a natural question arises: can we combine these approaches and get the best
of both worlds? The idea is to integrate the elements that make the success of FixMatch
into the hybrid JEM framework to get a robust semi-supervised classifier and generative
model. The challenge lies in designing realistic data transformations that allow us to
train a robust classifier and, simultaneously, a good generative model.

3. JEM extension for semantic segmentation. In section 4.5 we proposed an exten-
sion of JEM to semantic segmentation and demonstrated its theoretical feasibility. How-
ever, the proposed model was not tested in practical applications. The challenge here is
mostly to solve practical issues related to training and convergence of the model.

Long-term projects

1. Noisy labels. A recurrent issue when dealing with large-scale data, and in partic-
ular in semantic segmentation, is how to treat noisy annotations. In general, gathering
pixel-wise annotations for large-scale data is extremely difficult (if not impossible), and
the use of semi-automatic processes, which are not 100% accurate (this is the case for
label information of MiniFrance, Section 2.3), is a common way to obtain labels. In this
work, we ignored the presence of these noisy labels, but it is an important topic of re-
search when working at a large, global scale [111].

2. Domain adaptation. Another interesting research topic that we mentioned dur-
ing this work, without tackling it directly, is domain adaptation [215]: trying to train
domain-agnosticmodels that generalize equally to any geographic location. Indeed, un-
supervised domain adaptation (UDA) methods can be considered as a special case of
semi-supervised learning: on both settings we have labeled and unlabeled data, but
UDA makes the additional assumption that both sets come from different domains
(source domain labeled data and target domain unlabeled data). The objective is then to
classify the target images, based on knowledge (labeled data) from the source domain.
Given the similarities between both problems, it would be interesting to develop meth-
ods that integrate semi-supervised techniques to achieve or improve domain adaptation
methods.

3.Open-setworld. Domain shifts are not the only issuewe can findwhen trying to ap-
ply models to new geographic locations. Indeed, classes may change between different
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areas on Earth: how would a model trained on European agricultural images classify
aerial images of the Atacama desert or the Uyuni salt flat? Open-set algorithms [216]
refer to the methods that try to solve this general problem, where test data may come
with additional classes that have not been seen during training. How to dealwith them?
How to detect them?Maybe semi-supervised learning can help to make more progress
in this direction, introducing data variability through unlabeled samples.

4. Integrate domain knowledge into our models. In this work, we investigated semi-
supervised learning in Earth observation applications. However, we focused on the im-
age perspective, feeding our models only with optical data. A next step would be to
adapt our methods to take into account all the information that is available in EO data.
For instance, can we integrate geographical position information into our models? Can
we incorporate the physics governing the Earth system into our models? In general, we
can leverage unlabeled data to take into account the recommendations of Reichstein et
al. [2].

Solving –or at least making progress on– these last four topics would transform the
analysis of EO data as we know it today. Indeed, we would be able to build big models
capable of integrating all new observations, regardless of their source. We could feed
these models with unlabeled data or with noisy labeled data, they would be able to de-
tect noise on annotations and self-correct them. Moreover, they would integrate physi-
cal constraints and specific domain knowledge, making them amore robust description
of reality. These kind of models could be applied everywhere, enabling real land use
classification at a global-scale, taking into account domain shifts and even new land use
classes. In that scenario, we would be able to detect anomalies and changes accurately
and in real-time, allowing for rapid response to extreme events.
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Mot clés : Apprentissage profond, semi-supervision, observation de la Terre, segmentation sémantique, car-
tographie

Résumé : L’observation de la Terre (OT) joue un rôle
important dans la compréhension de notre planète.
Aujourd’hui, les données sont facilement accessibles,
mais leur volume est tel qu’elles ne peuvent être trai-
tées par des humains. Ainsi, l’intelligence artificielle
émerge comme une solution pour le traitement auto-
matique des images d’OT. Cependant, la plupart des
données restent sous-exploitées par manque d’anno-
tation sémantique. Par conséquent, l’apprentissage
supervisé ne suffit plus pour exploiter pleinement l’in-
formation.

Cette thèse étudie des méthodes semi-
supervisées (SSL) pour la classification et la seg-
mentation, afin de parvenir à une compréhension
des données d’OT à grande échelle. D’abord, nous
étudions le potentiel des données non-annotées et
proposons des outils pour l’analyse de représentati-
vité pour des bases de données regroupant plusieurs
villes. Ensuite, nous explorons deux manières d’abor-

der le SSL : d’un point de vue discriminatif, nous
développons des réseaux de neurones multi-tâches
et des tâches auxiliaires pour traiter la segmenta-
tion sémantique semi-supervisée. Ensuite, nous étu-
dions des méthodes de régularisation par consis-
tance pour effectuer la classification des scènes OT.
En ce qui concerne les approches génératives, nous
montrons le potentiel d’un modèle conjoint d’éner-
gie (JEM) pour la classification semi-supervisée et
pour d’autres applications en OT. Nos expériences
montrent que les algorithmes de SSL obtiennent de
meilleures performances et offrent des capacités de
généralisation pour la cartographie de l’occupation et
l’utilisation des sols. Nos contributions portent éga-
lement sur l’élaboration de MiniFrance, le premier
jeu de données ouvert conçu pour évaluer et aider
à concevoir des méthodes SSL en télédétection. Mi-
niFrance fait en outre partie de l’IEEE GRSS Data
Fusion Contest 2022.

Title: Semi-supervised learning for large-scale Earth observation data understanding.

Keywords: Deep learning, semi-supervised learning, Earth observation, semantic segmentation, land use/land
cover mapping.

Abstract: Earth observation (EO) plays a major role
in the way we understand our planet and its dy-
namics. While plenty of data are available, they can-
not be processed by humans only, so artificial intel-
ligence has emerged as a solution to achieve auto-
matic analysis of EO imagery. Still, most data are
not exploited because they are unlabeled. Hence,
algorithms beyond supervised learning are needed
to get a complete insight. This thesis investigates
deep semi-supervised learning (SSL) for classifica-
tion and segmentation, in order to achieve EO data
understanding at a large-scale. First, we explore the
potential of unlabeled data, and propose tools for
analyzing data representativeness for multi-location
datasets. Then, we explore two ways of approach-
ing the SSL problem. By discriminative modelling,

first we develop multi-task networks and auxiliary
tasks to tackle semi-supervised semantic segmenta-
tion; second, we explore consistency regularization
methods (e.g. FixMatch) to perform scene classifi-
cation in EO data. Moving to generative modelling,
we show the potential of joint energy-based mod-
els for semi-supervised classification and many other
EO applications. Through extensive experiments, we
show that SSL allows us to train algorithms with better
performances and generalization capacities for land
use and land cover mapping. Finally, our contribu-
tions also include the release of MiniFrance, the first
dataset and open benchmark designed to assess and
help design SSL in remote sensing, and part of the
IEEE GRSS Data Fusion Contest 2022.
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