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«  Indulge your passion for science…but let your science be human, and such as may have a 

direct reference to action and society. Be a philosopher; but amidst all your philosophy, be 

still a man. » - David Hume, An Enquiry Concerning Human Understanding 

 

 

 

 

 

 

 

« The important thing is not to stop questioning. Curiosity has its own reason for existing. 

One cannot help but be in awe when one contemplates the mysteries of eternity, of life, of 

the marvellous structure of reality. It is enough if one tries to comprehend only a little of this 

mystery every day. » - Albert Einstein 
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Résumé général 
 

Ce travail de thèse se construit dans un contexte mondial de développement durable. Nos 

modes de consommation évoluent actuellement vers des pratiques plus durables en 

particulier au regard d’une pollution grandissante et du changement climatique. Dans le cas 

des matériaux polymères, dits « plastiques » lors de leur usage commun, les enjeux 

concernent leur origine ainsi que leur fin de vie car ceux-ci sont majoritairement pétrosourcés 

et non-biodégradables ou compostables1. Ce dernier point est particulièrement important 

dans la mesure où le domaine d’application des matériaux plastiques est principalement celui 

de l’emballage et d’autres applications mono-usages2. En ce sens, les récentes 

réglementations européennes et françaises contraignent les matériaux plastiques mono-

usages à être soit compostables, biodégradables ou inscrits dans une filière de collecte et de 

recyclage3. De telles mesures incitent donc les industriels à envisager des alternatives plus 

vertueuses aux polymères traditionnels issus de la pétrochimie. Actuellement, la production 

de nouveaux polymères, biosourcés, dont certains qualifiés de « bioplastiques », est en plein 

essor. Un polymère tel le poly(acide lactique), ou poly(lactide), connu sous le nom de PLA, 

atteint ainsi un coût d’achat au kilo avoisinant 1,5€ à 2€4, le rendant ainsi viable d’un point de 

vue économique et lui permettant de concurrencer des polymères traditionnels comme le 

poly(téréphtalate d’éthylène) ou le poly(styrène) possédant certaines propriétés 

comparables5. 

Le PLA est obtenu par voie de bio-raffinage, à partir de ressources sucrières tels que le 

maïs, la canne à sucre ou la betterave permettant d’obtenir son monomère chiral par 

fermentation, l’acide lactique puis le dimère associé servant à la polymérisation, le lactide6 

(Figure R 1). Selon son degré de pureté optique, le PLA peut être amorphe ou semi-cristallin ; 

un PLA synthétisé à partir de plus de 93%mol de L-lactide (le plus abondant naturellement) ou 

de D-lactide sera semi-cristallin7. 
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Figure R 1: Étapes d'obtention du PLA à partir de ressources végétales 

Ce polymère biosourcé est compostable en milieu industriel et est approuvé pour le 

contact alimentaire, permettant son utilisation comme emballage pour des denrées 

alimentaires. Cependant, son utilisation à grande échelle est limitée par certaines de ses 

propriétés intrinsèques : un comportement mécanique fragile à température ambiante, une 

température de transition vitreuse comprise entre 55°C et 60°C couplée à une cinétique de 

cristallisation lente et des propriétés barrière aux gaz intermédiaires8 (Tableau R 1). Les deux 

derniers points soulevés induisent deux problèmes majeurs ; le premier étant une 

impossibilité d’utiliser le PLA comme matériau à des températures au-delà de 55°C car, du fait 

de la cinétique de cristallisation lente, des objets en PLA produits à des cadences industrielles 

n’auront pas le temps de cristalliser et ne présenteront que de très faibles taux de cristallinité. 

Le second problème soulevé concerne les propriétés barrière du PLA qui ne sont considérées 

ni barrière ni perméables et qui ne permettent donc pas une préservation optimale des 

aliments contenus dans des emballages en PLA9 (Figure R 2). 
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Tableau R 1: Propriétés thermomécaniques d'un PLA semi-cristallin 

 

 

Figure R 2: (a) Gamme de perméabilité requise pour différentes applications en emballage 
alimentaire et comparaison des taux de transmission de dioxygène et de vapeur d’eau de films de 25 

μm de polymères biodégradables. (b) Perméabilité au dioxygène et à la vapeur d’eau de différents 
polymères. (Copyright 2022, Adapted from Wu et al.9 with permission from Elsevier) 

Des objets en PLA avec de hauts taux de cristallinité, au-delà de 40%, vont présenter des 

domaines d’utilisation jusqu’à 110°C voire 120°C dans les meilleurs des cas. Conjointement, 

cette impossibilité d’obtenir des objets en PLA à hauts taux de cristallinité par les procédés de 

fabrication actuels joue un rôle sur les propriétés barrière du PLA. En effet, diverses études 

ont rapporté une amélioration des propriétés barrière lorsque que le taux de cristallinité du 

PLA est élevé, au-delà de 40%. Typiquement, la perméabilité au dioxygène peut être divisée 

par un facteur deux entre un matériau PLA amorphe et un matériau PLA à 40% de taux de 

cristallinité10. Ces problématiques sont centrales dans un contexte de matériaux pour 

l’emballage alimentaire, préoccupation principale de cette thèse. En effet, un matériau 

destiné à la préservation alimentaire se doit de respecter certaines propriétés mécanique, 

thermique et barrière (perméabilité gaz, arômes, contaminants extérieurs) pour optimiser la 

conservation alimentaire. L’amélioration de ces propriétés permet d’élargir le champ 
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d’application du PLA en emballage alimentaire. Par ailleurs, un matériau résistant à des 

températures supérieures à 100°C permet d’envisager des procédés de pasteurisation et de 

stérilisation.  

Ainsi, ce travail a pour objectif la synthèse de nouveaux additifs pour le PLA, en choisissant 

spécifiquement de travailler avec un grade de poly(L-Lactide) optiquement très pur, et ce pour 

deux objectifs. Le premier concerne la tenue thermique du PLA et, dans ce cas, de 

l’amélioration de sa cinétique de cristallisation par le biais d’agents nucléants de forme bis-

amide symétriques synthétisés à partir de ressources oléagineuses. Le second fait référence 

au renfort mécanique du PLA par l’utilisation d’additifs polymères issus de l’huile de ricin, le 

poly(ricinoléate de méthyle) (PRic) et ses dérivés. 

La première partie de ce travail est donc centrée sur la synthèse et l’utilisation d’agents 

nucléants pour le PLA avec pour objectif d’améliorer la cinétique de cristallisation de ce 

dernier. De la littérature, très riche sur ce sujet, deux agents nucléants issus d’acides gras ont 

été rapportés, le N,N’-éthylène-bis-stéaramide et le N,N’-12-hydroxy-éthylène-bis-

stéaramide. Utilisés à des taux de 1% massique, ceux-ci abaissent le temps caractéristique de 

cristallisation de plusieurs dizaines de minutes à 1,5min à 110°C11–13. Ces deux composés de 

type amide étant issus d’acides gras à 18 atomes de carbone, le choix s’est donc porté sur 

l’utilisation de cette famille d’acides gras pour synthétiser les agents nucléants de cette étude. 

Typiquement, les acides gras sélectionnés ont été l’acide stéarique, l’acide 

12-hydroxystéarique, l’acide oléique et l’acide ricinoléique. De même, uniquement des 

diamines linéaires aliphatiques ont été utilisées au cours des synthèses effectuées, l’intérêt 

de cette étude résidant dans l’étude de l’influence de la longueur de la chaine carbonée entre 

les fonctions amide (effet de la diamine) et de la présence de fonctions chimiques, ou non, sur 

l’acide gras considéré sur les propriétés de l’agent nucléant (Figure R 3). Selon le dérivé d’acide 

gras utilisé (acide carboxylique, ester méthylique ou chlorure d’acyle), trois voies de synthèses 

appropriées ont été développées pour synthétiser les bis-amides. 
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Figure R 3: Structure des bisamides synthétisés pour être utilisés comme agents nucléants 

Les agents nucléants obtenus à partir d’acide stéarique ont été ceux ayant les points de 

fusion les plus élevés. Suivent ceux provenant de l’acide 12-hydroxystéarique, de l’acide 

oléique et de l’acide ricinoléique, montrant ainsi un clair effet de la fonctionnalisation de la 

chaine grasse. De façon similaire, plus la diamine utilisée comprend une chaine longue 

(respectivement à 4, 6, 10 ou 12 unités méthylènes), plus le point de fusion obtenu s’abaisse, 

à l’exception de la combinaison acide 12-hydroxystéarique/diamine C12 pour cause 

d’espacement propice à la création de liaisons hydrogène supplémentaires. Ces 16 agents 

nucléants potentiels ont été mélangés à hauteur de 1% massique dans du PLA « pur » pour 

rapidement évaluer leur efficacité par analyse DSC. Au travers de cette analyse, les composés 

issus de l’acide stéarique et de l’acide 12-hydroxystéarique ont été ceux présentant la plus 

grande amélioration de la cinétique de cristallisation du PLA avec des taux de cristallinité 

atteignant 50% dans des conditions de refroidissement contrôlées (-10°C/min) depuis l’état 

fondu, contre 3% pour du PLA pur. 

À la suite de ces résultats prometteurs en conditions dynamiques, divers mélanges ont été 

effectués en utilisant une mini-extrudeuse bi-vis couplée à un système d’injection-moulage, 

permettant ainsi de fabriquer des éprouvettes rectangulaires en conditions isothermes pour 

des tests en analyse mécanique différentielle (DMA). Plusieurs paramètres ont été étudiés tels 

que le ratio massique agent nucléant/PLA, la température du moule d’injection à un temps 
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fixé et le temps de séjour dans ce moule à une température fixée. Des taux de cristallinité 

supérieurs à 50% ont été obtenus pour des temps de séjour de 25s, le plus court temps 

reproductible, à une température de 110°C pour un échantillon contenant 0,5% massique 

d’agent nucléant. De surcroît, le comportement observé en DMA évoluait en fonction du taux 

de cristallinité de l’échantillon. Un critère de tenue thermique a été établi comme suit : la 

température validant ce critère fut relevée lorsque la valeur du module de conservation 

atteignait 10% de celle à 25°C, à savoir au début du test. Pour le PLA non-additivé, la valeur 

relevée est de 67°C, dans le meilleur des cas, cette valeur a atteint 119°C en utilisant l’agent 

nucléant synthétisé à partir d’acide stéarique et de la putrescine (1,4-diaminobutane). Des 

essais de scale-up ont été menés grâce à une mini-injecteuse industrielle Babyplast. 

Malheureusement, le matériel disponible n’a pas permis de contrôler correctement la 

température du moule d’injection, menant à l’obtention d’échantillons hétérogènes en 

termes de taux de cristallinité. Les propriétés de perméabilité au dioxygène n’ont donc pas 

été mesurées. 

 

Figure R 4: Courbes DMA d'échantillons de PLA contenant des agents nucléants dérivés d'acide 
stéarique, rampe 3°C/min, 1Hz, 0,1% de déformation 

La seconde partie de ce travail s’est attachée à l’utilisation du poly(ricinoléate de méthyle), 

ou PRic, et de ses dérivés comme agents de renforts aux chocs du PLA et à l’évaluation des 

PLA   1wt  Stear C4
PLA   1wt  Stear C6
PLA   1wt  Stear C10
PLA   1wt  Stear C12
PLA non addi vé

   56 
   58 
   47 
   34 
   14 

a)
E et des bisamides dérivés d acide stéarique sur le PLA 

M
o
d
u
le
 d
e 
co
n
se
rv
a 

o
n
 E

  (
P
a)

Température T (°C)

90  perte

115 120°C

Chau e



              Résumé général 

propriétés barrière de ces matériaux. Grâce à de précédents travaux effectués au LCPO en 

collaboration avec l’ITERG, le poly(ricinoléate de méthyle) avait déjà montré son efficacité 

pour améliorer le comportement mécanique du PLA14,15. Ce polymère a l’avantage de 

comporter une insaturation sur sa chaine principale pour chaque motif de répétition. Ainsi, il 

est donc envisageable d’utiliser ce site réactif pour post-fonctionnaliser ce polymère et étudier 

l’évolution de ses propriétés ainsi que l’effet de ces modifications sur un mélange 

PLA/poly(ricinoléate de méthyle) modifié. En parallèle, deux grades de poly(ricinoléate de 

méthyle) ont été sélectionnés, un grade industriel synthétisé par l’ITERG à partir de monomère 

pur à 85% et utilisé lors des précédentes études menées au LCPO (PRic-100), et un grade 

synthétisé au LCPO à partir d’un monomère pur à plus de 99  (PRic-LCPO). Outre les 

impuretés présentes lors de la polymérisation, la différence entre ces deux grades se 

caractérise par une différence de masses molaires, un Mw = 5200g/mol, Đ=2,1 pour le PRic de 

l’ITERG et Mw  24000g/mol, Đ=4,1 pour le PRic synthétisé au LCPO. Cette différence de 

masses molaires est expliquée par une quantité supérieure de fonctions ester par rapport aux 

fonctions hydroxyle dans le cas du PRic de l’ITERG. Les esters méthyliques d’acides gras 

présents en plus du ricinoléate de méthyle, et ne comportant pas de fonction alcool 

permettant la polycondensation, vont agir comme des stoppeurs de chaines et donc limiter 

les masses obtenues ainsi que présenter des bouts de chaines différents. 

Deux réactions de post-fonctionnalisation ont été effectuées, une époxydation pour les 

deux grades de PRic en utilisant de l’acide 3-métachloroperbenzoïque (m-CPBA) et, dans le 

cas du PRic de l’ITERG, ces fonctions époxyde ont été converties en carbonates cycliques en 

utilisant un autoclave chargé avec une pression de 40 bars de CO2 avant chauffage. Des taux 

de fonctionnalisation de 25%, 50% et 85% ont été atteints en époxydes et en carbonates 

cycliques. Au cours de ces réactions, les masses molaires des additifs ont augmenté, 

notamment lors de l’étape d’époxydation. En effet, le polymère fonctionnalisé a été purifié 

par précipitation dans du méthanol froid pour éliminer le m-CPBA en excès ainsi que l’acide 

3-chlorobenzoïque produit. Lors de cette précipitation, les plus petites chaines restent 

solubilisées dans le méthanol et sont donc éliminées, conduisant à des masses molaires 

moyennes mesurées plus élevées. Conjointement à cette augmentation de masses molaires, 

la fonctionnalisation des PRic eut pour conséquence d’augmenter la valeur de la température 

de transition vitreuse avec le même constat, plus le taux de fonctionnalisation est élevé, plus 
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l’augmentation de la Tg est importante. Pour le PRic du LCPO, la Tg est passée de -72°C à -53°C 

pour un PRic fonctionnalisé à 85  et dans le cas du PRic de l’ITERG, l’augmentation a été de -

81°C à -52°C. L’ajout d’une fonction carbonate cyclique a eu un effet encore plus prononcé, 

l’évolution de Tg évoluant de -81°C à -30°C pour 85% de taux de fonctionnalisation. 

Les neuf additifs synthétisés ont été mélangés à du PLA à raison de 2%, 4% et 6% massiques 

pour chaque additif en utilisant une extrudeuse industrielle bi-vis. Les granulés obtenus ont 

été utilisés dans une mini-injecteuse industrielle Babyplast pour produire des mini barquettes 

par injection moulage, ces barquettes permettant de caractériser les matériaux en effectuant 

des tests de résistance à la compression verticale ainsi que des tests de perméabilité à l’O2. Le 

meilleur comportement mécanique fut observé en utilisant le PRic de l’ITERG non modifié ; à 

partir de seulement 2  de taux d’additivation, le comportement mesuré n’est plus fragile et 

permet une très haute déformation en compression, supérieure à 50%, alors que le PLA non 

additivé casse à environ 6% de déformation (Figure R 5 et Figure R 6). 

 
Figure R 5: Test de résistance à la compression verticale pour des échantillons de PLA et PLA additivés 

avec du PRic-100, -10mm/min 
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Figure R 6: Échantillon de PLA additivé avec du PRic-100 durant un test de résistance à la compression 
verticale 

L’époxydation de ce grade de PRic eut pour effet de diminuer l’amélioration de la 

résistance à la compression verticale. A 25% de taux de fonctionnalisation, il fallait au 

minimum 4  d’additif pour obtenir un PLA non-cassant. A 50% et 85%, ce comportement 

n’était observé plus qu’à 6  de taux d’additivation. Cela fut expliqué par le fait que les plus 

petites chaines de PRic, éliminées lors de l’étape de purification par précipitation, ne jouent 

plus le rôle de plastifiant/compatibilisant dans la matrice PLA et à l’interface entre le PRic et 

le PLA ; deuxièmement, la Tg des additifs époxydés ayant augmenté par rapport au PRic initial, 

les nodules formés ont une capacité moindre à absorber une déformation et donc plus 

d’additif est nécessaire. Dans le cas des additifs carbonatés, peu de conclusions purent être 

formulées du fait d’un biais causé par une forte diminution de la masse molaire des 

échantillons lors de leur élaboration. Ce phénomène entraina une réponse mécanique très 

mauvaise lors des essais effectués, non représentative de l’effet des additifs utilisés. Ceci fut 

le cas pour les PRics fonctionnalisés à 25% et 50% en carbonates cycliques. Dans le cas du PRic 

carbonaté à 85%, la masse molaire fut conservée. Les propriétés mécaniques mesurées ont 

été meilleures en termes de déformations à rupture, plus élevées que celle du PLA vierge, 

cependant bien inférieures à celles mesurées avec des PRics purs ou époxydés. Les 

déformations à ruptures atteignirent 15  et 17  dans le cas de 4  et 6  d’additivation, 

cependant, la réponse en force mesurée fut plus faible qu’avec les autres additifs permettant 

d’obtenir ces taux de déformation. 

En comparaison, le PRic synthétisé au LCPO ne présenta pas la même efficacité 

d’amélioration du comportement mécanique que le PRic de l’ITERG. Typiquement, 6  
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d’additif ont été nécessaires pour obtenir un matériau ne cassant pas tandis que pour le PRic 

de l’ITERG, uniquement 2  ont été nécessaires. Cependant, l’apport de fonctions époxydes 

eut un effet différent qu’avec le PRic de l’ITERG. Contrairement à ce dernier, l’ajout 

d’époxydes améliore le comportement mécanique, augmentant la déformation à rupture à 

partir de 50% de fonctionnalisation. Cependant, cette tendance ne put être confirmée car les 

échantillons contenant le PRic du LCPO époxydé à 85% présentèrent une forte diminution de 

leur masse molaire, résultant en un comportement mécanique non représentatif du matériau 

obtenu.  

En ce qui concerne la perméabilité à l’O2, l’ajout de PRic non modifié eut pour effet 

d’augmenter la perméabilité, quel que soit le grade utilisé. Cela peut s’expliquer par une 

augmentation du volume libre dans la matrice PLA par ajout d’un additif non miscible. La 

fonctionnalisation avec des époxydes du PRic du LCPO sembla limiter ce phénomène en 

stabilisant les valeurs de perméabilité autour de celle du PLA non-additivé, et ce malgré 6% 

d’additif. En revanche, cet effet fut moins prononcé dans le cas du PRic de l’ITERG époxydé. 

Les échantillons présentant les meilleures propriétés barrière ont été ceux contenant du PRic 

carbonaté à hauteur de 25% et 50%. En effet, les matériaux correspondants ont présenté une 

réduction graduelle de la perméabilité, allant jusqu’à 50 , avec des taux d’additivation 

croissants, indiquant un réel effet de la fonction carbonate (Figure R 7). Cependant, ce 

phénomène ne fut pas observé pour le PRic carbonaté à 85% où les perméabilités mesurées 

ont été proches de celle du PLA non-additivé. Des tests complémentaires restent donc à 

effectuer avec ces additifs, notamment reproduire les tests mécaniques et de perméabilité 

avec des formulations dont la masse molaire n’a pas été dégradée lors du procédé de 

fabrication. 
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Figure R 7: Perméabilités mesurées pour différents matériaux à base de PLA 

0
.0
0
E
 
0
0

1
.0
0
E
 0
3

2
.0
0
E
 0
3

3
.0
0
E
 0
3

4
.0
0
E
 0
3

5
.0
0
E
 0
3

6
.0
0
E
 0
3

Perméabilité (cm3.m.m  .j 1.atm 1)



Résumé général 

En définitive, ces travaux de thèse ont permis de synthétiser et d’étudier de nouveaux 

additifs pour le PLA issus de matières biosourcées. L’utilisation de ces additifs avait pour 

objectif de résoudre certaines limitations majeures du PLA pour envisager son utilisation à 

grande échelle. Des agents nucléants permettant d’obtenir des taux de cristallinité supérieurs 

à 50  ont été synthétisés mais malheureusement, l’appareillage de mise en forme disponible 

n’a pas permis de procéder à des essais de montée en échelle satisfaisants. Concernant les 

additifs dérivés du poly(ricinoléate de méthyle), ceux-ci ont démontré une capacité 

d’amélioration des propriétés mécaniques du PLA, les meilleurs résultats étant obtenus avec 

le grade industriel non-modifié, directement commercialisé par l’ITERG. Au regard des 

propriétés de perméabilité au dioxygène, les additifs carbonatés à 25% et 50% ont présenté 

la plus forte réduction. Malheureusement, ces matériaux ont été aussi ceux présentant les 

plus mauvaises propriétés mécaniques à cause d’un biais de fabrication. Ainsi, il n’est pas 

possible de conclure quant à leur réel effet sur les propriétés mécaniques du PLA. 

Les enjeux restants sur ce travail sont donc multiples. Les formulations contenant les 

agents nucléants devraient être testées sur une autre machine d’injection moulage, 

permettant un meilleur contrôle de la température au sein du moule, pour tenter de produire 

des objets en PLA ayant un taux de cristallinité élevé. La détermination de leur propriété 

barrière à l’O2 et mécanique permettrait de conclure plus finement quant à l’intérêt de 

l’utilisation de ces agents nucléants. De plus, les essais avec certains dérivés fonctionnalisés 

du poly(ricinoléate de méthyle) devraient eux aussi être répétés pour conclure quant à leur 

effet sur les propriétés mécaniques du PLA. Au regard des résultats obtenus, il serait 

souhaitable de combiner les différents types d’additifs utilisés dans ces travaux. Un agent 

nucléant utilisé avec un additif polymère de renforcement du comportement mécanique 

pourrait permettre d’obtenir un matériau en PLA avec une cinétique de cristallisation rapide 

et des propriétés mécaniques grandement améliorées. De plus, dans un contexte de 

développement durable, il pourrait être judicieux d’évaluer la biodégradabilité et la toxicité 

de ces nouveaux matériaux pour appréhender leur fin de vie potentielle dans 

l’environnement. Cette toxicité est aussi nécessaire pour conclure quant à l’alimentarité des 

additifs et des matériaux. 
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List of abbreviations 
 

12-HSA : 12-hydroxystearic acid 
ABS : acrylonitrile-butadiene-styrene copolymer 
Đ : dispersity 
DCM: dichloromethane 
DCP: dicumyl peroxide 
DMA: dynamic mechanical analysis 
DSC: differential scanning calorimetry 
E’: storage modulus 
E”: loss modulus 
EBHS: N,N’-ethylenebis(12-hydroxystearamide) 
EBS: N,N’-ethylenebisstearamide 
EVA: ethylene-co-vinyl acetate copolymer 
FTIR-ATR: Fourrier transformed infra-red-
attenuated total reflection 
FWHM: Full width at height maximum 
HDPE: high density polyethylene 
HDT: heat deflection temperature 
LDPE: low density polyethylene 
LLDPE: linear low density polyethylene 
LTI: lysine triisocyanate 
m-CPBA: 3-chloroperbenzoic acid 
MDI: 4,4’-methylenebis(phenylisocyanate) 
MeOH: methanol 
Me-Ric: methyl ricinoleate 
Mn: number average molar mass 
Mw: mass average molar mass 
NMR: nuclear magnetic resonance 
PA-11: polyamide 11 
PA-12: polyamide 12 
PBAT: poly(butylene adipate-co-terephtalate) 
PBS: poly(butylene succinate) 
PBSA: poly(butylene succinate-co-adipate) 
PCL: poly(ε-caprolactone) 
PDLA: poly(D-lactide) 
PDLLA: poly(D,L-lactide) 
PE: polyethylene 
PEA: poly(ester-amide) 
PEG: polyethylene glycol 
PEO: polyethylene oxide 
PET: poly(ethylene terephthalate) 
PHAs: poly(hydroxyalkanoate)s 
PHB: poly([R,S]-3-hydroxybutyrate) 
PI: polyisoprene 
PIB: polyisobutylene 
PLA: polylactide or poly(lactic acid) 

PLLA: poly(L-lactide) 
PM: polymenthide 
PMCL: poly(6-methyl-ε-caprolactone) 
POM: polarized optical microscopy 
PP: polypropylene 
PPDL: polypentadecalactone 
PRic: poly(methyl ricinoleate) 
PRic-EXX: XX% epoxidized poly(methyl ricinoleate) 
PRic-EXX-Carbo: XX% carbonated poly(methyl 
ricinoleate) 
PS: polystyrene 
PTMC: poly(trimethylene carbonate) 
PU: polyurethane 
Ric: ricinoleic acid 
ROP: ring opening polymerisation 
SBS: styrene- butadiene-styrene copolymer 
SEBS: styrene-ethylene-butadiene-styrene 
copolymer 
SEC: size exclusion chromatography 
SEM: scanning electronic microscopy 
Sn(Oct)2: stannous octoate 
Stear: stearic acid 
T: temperature 
t1/2: crystallisation half-time 
TBD: 1,5,7-Triazabicyclododecene 
Tc: crystallization temperature 
Tcc: cold-crystallization temperature 
Tg: glass transition temperature 
THF: tetrahydrofuran 
Ti(iOPr)4: titanium (IV) isopropoxide 
Tm: melting temperature 
TMC: trimethylene carbonate 
TPE: thermoplastic elastomer 
Tα: α-relaxation temperature 
Tβ: β-relaxation temperature 
V: volume fraction 
VLDPE: very low-density polyethylene 
WAXD (WAXS): wide-angle X-ray scattering 
ΔHc: crystallization enthalpy 
ΔHcc: cold-crystallization enthalpy 
ΔHm: melting enthalpy 
ΔHm,0: melting enthalpy of the completely 
crystalline state 
χc: crystallinity degree 
ω: weight fraction 

 
Unless mentioned otherwise, PLA will refer to PLLA in the experimental chapters of this work 
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General introduction 
 

Since their discovery, polymers have been used in a very wide range of different 

applications thanks to the multiple properties they can offer. The first use of synthetic 

polymers is known through the famous Bakelite materials, first synthesised in 1907 by Leo 

Baekeland, and stockings made from Nylon 6,6 developed by DuPont. One common feature 

of polymers is their light weight. Indeed, compared to many other materials, polymers have 

the particularity of being very light. For instance, the density of polyethylene (PE) is measured 

around 0.93 and the one of atatic polypropylene (PP) is around 0.87 and 0.90 for an isotactic 

PP1. In comparison, the density of glass is 2.5 meaning, for the same volume of material, glass 

materials will be 2.8 times heavier than the ones made from PE or PP. Also, thanks to their 

inherent properties, polymers offer mechanical properties that allow manufacturers to use 

much less material, leading to much lighter objects, in the case of packaging materials, which 

tend to be more convenient for the consumers. However, our plastic (a material consisting of 

a polymer to which additives or other substances may have been added, and which can 

function as a main structural component of final products, with the exception of natural 

polymers that have not been chemically modified2) production has skyrocketed during the 

past years of the 21st century. Growing from 2 million tons in 1950, 245 million metric tons of 

plastics have been globally produced in 20063. Reports for 2019, published in 2020, showed 

this number went up to approximately 370 million metric tons4, which represents a 3.2% 

increase per year on average over 13 years. Since most plastics are single use plastics such as 

packaging, which account for 40% of produced plastics4, there is, therefore, more and more 

waste to manage. Unfortunately, huge amounts of these materials are not properly collected 

and treated leading to increasing levels of pollution. It is hard to precisely estimate proper 

amounts of lost waste, for instance, an article from 2014 by Eriksen et al.5 estimated that 250 

thousand tons of plastic were afloat on the oceans. A report published in Science in 2015 

established that around 8 million metric tons of plastic ended up in the ocean annualy6 mainly 

originating from coastal areas where mismanaged plastic waste was estimated to 31.9 million 

metric tons.  An article in Nature published in 2017 however brought the amount of new 

annual plastic waste ending in the ocean down to about 5 million metric tons7. In any case, 

this constitutes a major issue since most plastics are made from non-biodegradable polymers 
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such as predominantly PE, PP, PVC and PET4 which are the most produced plastics per year 

(around 75%). Moreover, these polymers are often mixed with multiple additives in order to 

enhance their properties, spanning from thermal or mechanical properties to their resistance 

to wear and degradation8. These materials will therefore accumulate in the environment 

instead of disappearing. Degradation studies have shown these polymeric materials will 

break-up into small fragments, so-called microplastics6,9,10. These microplastics are a source 

of poisoning for marine fauna as they can be eaten or release toxic chemical compounds, 

which are used as additives, directly in the ocean water. To limit such a pollution, more 

sustainable alternatives have to be embraced, notably using more sustainable plastic 

materials. For instance, regarding the use of such materials, 46% of plastic waste is due to 

packaging, which itself represents 40% of the plastic demand every year11. 

Along this, most of the produced plastics are oil-based and their production accounts for 

10% of the global oil demand per year12. The growing demand for oil along with the scarcity 

of such resource constitutes another challenge with soaring prices and the contribution to 

global warming. Such concerns push researchers to look for more sustainable alternatives in 

regard to replacing fossil-based resources by renewable ones. In this context, renewable 

resources from the Biomass constitute a very promising solution in terms of renewable 

carbon. Contrary to fossil fuels, which take millions of years to regenerate, resources from the 

biomass can be regenerated within a few decades and are highly available. Therefore, 

biorefineries were developed in order to transform the biomass and use it as a low-cost 

feedstock for the chemical industries13–15. As such, novel building blocks could be accessed 

through direct extraction from the biomass such as starch, chitin, lignin, fatty derivatives, or 

could be obtained through chemical or bacterial transformation of the biomass such as lactic 

acid for instance. In the particular case of polymers, monomers could be obtained and used 

to develop novel bio-based polymers with interesting properties and with a high 

biodegradable potential. 
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Figure 1: Bio-based plastics' global production capacity in 2021, reproduced from European 
bioplastics16 

As such, poly(lactic acid) or poly(lactide) (PLA) is one of the most produced bio-based 

plastics with about 460 thousand tons produced in 202117 which represents about 19% of the 

total bio-based plastics’ market (Figure 1). Moreover, its production is expected to reach 760 

thousand tons by 2026 due to a surge in demand for such material, along with major 

manufacturers such as NatureWorks and Total Corbion announcing the opening of new 

production plants18. PLA is an industrially compostable material obtained from lactide (the 

cyclic dimer of lactic acid) which is itself obtained from the fermentation of starch. Since it is 

biocompatible and has been approved for food contact by the FDA, multiple applications are 

suitable for it such as bioresorbable materials, drug delivery systems or food packaging. 

Thanks to such high production volumes and improved processes, its price now nears $2/kg 

which makes it economically competitive compared to other commodity polymers such as 

poly(styrene) or poly(ethylene terephthalate)19, in particular regarding packaging 

applications. However, the inherent brittleness of PLA at room temperature along with its low 

heat deflection temperature and medium O2 barrier properties are very important drawbacks 

to its widespread use. Therefore, additives are required to improve the properties of PLA, 

many of them which are oil-based and non-biodegradable. As such, recent works have been 
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dedicated to the design of more environmentally friendly solutions but much more is required 

to be done. 

This thesis work was financially supported by the Nouvelle-Aquitaine Region, the ITERG 

and the CTCPA. The two later are recognised French technical centres which are respectively 

involved in the development and promotion of biorefineries and fatty resources in France, and 

the development of better food preservation means through novel techniques or packaging. 

This manuscript will therefore describe two strategies to render PLA suitable as a food 

packaging material using bio-based and potentially biodegradable additives.  

In the first chapter of this manuscript, the state-of-the-art reviewing the toughening of 

PLA, the enhancement of its heat deflection temperature, the improvement of its barrier 

properties regarding O2 and more recent works regarding its biodegradability will be 

discussed. First, the synthesis and production of PLA from lactic acid will be reported along 

with an extensive description of its properties to clearly identify the assets and weaknesses of 

such polymer. Then, the state-of-the-art on the rubber-toughening of PLA will be exposed, 

notably discussing the performances of the developed solutions up to this date and identifying 

low Tg polyesters as the most sustainable impact enhancers. Next, the strategies to enhance 

the heat deflection temperature of PLA will be described and will reveal the potential of bio-

based nucleating agents to promote the crystallisation kinetics of PLA and achieve high 

crystallinity ratios. Fourth will be about the strategies to limit the O2 permeability of PLA 

through additives, a higher crystallinity ratio or processing strategies. Finally, recent works on 

the biodegradation of PLA will be reported and most noticeably the products from Carbiolice 

which allow PLA to be suitable for home-composting. 

The second chapter will deal with the synthesis and use of novel symmetrical fatty 

bis-amide nucleating agents. In a first part, the synthesis of the compounds will be reported 

and the effect of the fatty chain along with the spacer between the amide functions on the 

thermal properties of these compounds will be discussed. Then, the study will focus on the 

efficiency of these bis-amides as nucleating agents for PLA. One particular compound 

synthesised from stearic acid and 1,4-diaminobutane will display the best performance and 

allow to achieve crystallinity ratios above 50% along with heat deflection temperature nearing 

120°C. 
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Since increasing the crystallinity degree of PLA also increases its brittleness, chapter 3 will 

be dealing with polymeric additives based on poly(methyl ricinoleate) which has been 

reported an efficient rubber to toughen PLA. Taking advantage of the alkene function on every 

repetition motive, chemistry will be performed to bring additional chemical functions such as 

epoxides or cyclic carbonates to study both the effect on the mechanical properties of PLA 

and on its O2 permeability. Two different grades of poly(methyl ricinoleate) will be used, one 

synthesised from a highly pure monomer and one obtained from an 85% pure monomer, and 

the differences in performance using these two polymers and their derivatives will be 

discussed. The best polymer regarding the enhancement of the mechanical properties is the 

poly(methyl ricinoleate) synthesised from the 85% pure monomer, without any chemical 

functionalisation. The effect of the epoxides and cyclic carbonates are more noticeable on the 

O2 barrier properties since they will limit the increase of permeability due to the addition of 

an immiscible polymer additive inside PLA. Therefore, the great potential of poly(methyl 

ricinoleate)-based additives makes them suitable for more sustainable PLA materials. 
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1. Poly(lactic acid), from a bio-based monomer to an economically 

viable polymer 

1.1. From a green synthesis to an industrially available polymer 

a. Lactic acid production and industrial stakes 

In 2021, about 2.42 million tons of bio-based polymers have been produced, which 

represents 0.7% of the 367 million tons of produced plastics in the world1,2. In these 2.42 

million tons, both traditional polyolefins such as poly(ethylene) along with novel polymers 

such as poly(lactide), poly(butylene-adipate-terephthalate), poly(hydroxyalkanoate)s, 

poly(butylene succinate), etc. are included. Among all these polymers, only about half of them 

are considered as compostable or biodegradable2. The polymer with the one of highest 

production tonnage is PLA with about 460,000 tons, and moreover, its price now nearing 

$2/kg which makes it economically competitive compared to other commodity polymers such 

as poly(styrene) or poly(ethylene terephthalate)3. 

PLA is a compostable linear aliphatic polyester obtained from lactic acid 

(2-hydroxypropanoic acid), a chiral monomer, which exists under a levogyre form, L(+)-Lactic 

acid, and a dextrogyre form D(-)-Lactic acid. Lactic acid is itself obtained through the bacterial 

fermentation of carbohydrates or through chemical synthesis using the traditional 

petrochemical industry4. The latter involves many routes such as the hydrolysis of lactonitrile 

by strong acids, lactonitrile itself obtained from acetaldehyde, base-catalysed degradation of 

sugars, oxidation of propylene glycol or hydrolysis of chloropropionic acid. This petrochemical 

path is disregarded since productions capacities remain low, productions costs are high and 

the chemical path is not stereoselective5. Indeed, the resulting lactic acid will be obtained 

under a racemic mixture of 50/50 L- and D- forms which is not of industrial interest. 

The preferred route to produce lactic acid is therefore the biotechnological one. Lactic acid 

bacteria are used for such process and, depending on the strain, can selectively yield either 

L-Lactic acid or D-Lactic acid6. Such bacteria can be classified into two groups: 

homofermentative and heterofermentative. The heterofermentative bacteria produce lactic 

acid along with carbon dioxide, acetic acid, glycerol and ethanol, whilst the homofermentative 

strains give high yields of lactic acid with very little by-products and are therefore more 

commonly used in the industry7. 
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The first generation sources for lactic acid production include sugar sources which span 

from corn, sugar cane, potato, tapioca seeds8. More recently, NatureWorks (Cargill Dow)9 and 

Total-Corbion10 are developing new industrial processes which allow the use of 

second-generation feedstocks i.e. lignocellulosic materials such as corn stover, wheat straw, 

wood chips or bagasse11 while also exploring third generation feedstock based on algae and 

seaweed technology12. Such third generation of feedstock is still however  under development 

and requires some optimisations to manage the production of lactic acid that could be sold at 

a reasonable price13. 

From all the first- or second-generation sources, starch is recuperated and then through 

hydrolysis is converted into glucose (90% yield), dextrose or sucrose. This carbohydrate is 

transformed into lactic acid through the bacterial fermentation process with approximately a 

85% yield4,8, giving between 300,000 - 400,000 tons of produced lactic acid per year in the 

United States, according to reports from 201614,15 (Fig. I. 1). The leading companies for lactic 

acid and PLA production are NatureWorks and Total-Corbion, which have recently announced 

the opening of new plants in Thailand, with an expected annual production of 75,000 metric 

tons of PLA in the case of Total-Corbion16,17.  

 

Fig. I. 1: Transformation process of first-generation feedstock to lactic acid 
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b. PLA synthesis and production 

Three different methods can be used to transform lactic acid into high molar mass PLA: 

direct polycondensation, direct polycondensation using a solvent which allows an azeotropic 

dehydration or ring-opening polymerisation using a lactide dimer intermediate18 (Fig. I. 2). 

Direct polycondensation seems to be the most obvious route thanks to the hydroxyl group 

and the carboxylic acid moity bore by PLA. However, the molar masses obtained using this 

process are too low to be of interest, due to the combination of the need to remove the water 

condensate to shift the equilibrium along with a low reactivity of the formed secondary 

hydroxyl group of the monomer. Therefore, there is a necessity to use chain coupling agents 

to increase the molar mass. Such agents increase drastically both the cost of production of 

PLA and the synthesis step therefore rendering this path not very interesting from an industrial 

point of view4,18,19. The same can be said when this strategy is employed to synthesise 

telechelic oligomers of PLA using a diol or a diacid to start the polymerisation. These oligomers 

can be used as prepolymers to achieve higher molar masses using chain extenders such as 

diisocyanates20 or bis(amino-ether)s21, respectively yielding lactic acid based poly(ester-

urethane) and poly(ester-amide) polymers. The synthesised final polymer must be further 

washed to eliminate unreacted chain coupling agents which complexifies the making process. 

 

Fig. I. 2: Pathways to synthesise high molar mass PLA 

The approach involving an azeotropic distillation during the polymerisation has been used 

by Mitsui Toatsu Chemicals, Inc.22. The idea behind this technology is to allow the azeotropic 
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distillation of the condensate to shift the transesterification equilibrium towards the 

formation of the polymer. The reaction time is about 30-40h at 130°C which consumes a lot 

of time and energy therefore making this process unsuitable to produce cheap PLA. Moreover, 

high loadings of catalyst are also required to successfully reach high molar mass PLA, such 

catalysts having been reported to enhance the degradation of PLA during processing23, favour 

hydrolysis or being toxic24. Phosphoric acid or pyrophosphoric acid are therefore required to 

deactivate the catalyst and then strong acids such as sulfuric acid can be used to precipitated 

and filter the catalyst25. All these extra steps complexify the synthesis of PLA and are not 

industrially suitable. 

The most common PLA synthesis route is through the ROP of a lactide intermediate. Such 

lactide is obtained through a two-step procedure: first, PLA oligomers are formed by the direct 

condensation of lactic acid monomer units, and then, the more stable cyclic dimer lactide is 

formed through “end-biting” and “back-biting” depolymerisation. Both steps are conducted 

under heating and reduced pressure to eliminate the water formed during the oligomerisation 

process26,27. However, lactic acid is a chiral monomer which leads to different enantiomers 

during the production of the lactide (Fig. I. 3). Such particularity involves multiple possibilities 

regarding the tacticity of the final polymer. Indeed, PLA can be atactic, syndiotactic or isotactic 

depending on the lactide quality used as the starting material. The optical purity of the final 

polymer has a direct effect on its thermal properties such as its melting point. PLA with less 

than 93% purity will remain amorphous and will not be able to crystallise. 

The key point before the polymerisation is the separation of the stereoisomers to make 

sure to obtain the most optically pure PLA. Thankfully, the L-or D-Lactide have a different 

melting point than meso-Lactide and the racemic mixture (50%mol of L-Lactide and 50%mol 

of D-Lactide), respectively 97°C, 53°C and 125°C, allowing them to be separated28. The 

common way used in the industry is a purification step by vacuum distillation which allows to 

recuperate water along with the separated lactide. Also, at the next step, the polymer reactor 

allows unreacted lactide to be recuperated and re-used for a new polymerisation, therefore 

limiting any waste regarding the monomer materials (Fig. I. 4). 

Regarding the purification matter, another advantage is the use of the biorefinery route 

to produce lactic acid. Historically, such route yields a highly optically pure monomer, the L-

Lactic acid although new bacterial strains allow to get highly pure D-Lactic acid as well14,15,29. 
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In the case of lactides derived from oil derivatives, a racemic mixture is obtained therefore 

requiring stereoselective catalysts to produce polymers with a controlled stereochemistry 

(Fig. I. 7). Therefore, most lactides produced will be either the (S,S)-Lactide or so-called L(+)-

lactide or the (R,R)-Lactide, the so-called D(-)-Lactide. The lactide is then used to conduct a 

ring opening polymerisation to yield PLA.  

 

Fig. I. 3: Enantiomeric and diastereoisomeric lactide structures obtained from lactic acid 

 

Fig. I. 4: NatureWorks LLC commercial process for producing high molar mass PLA, reproduced from 
Castro-Aguirre et al.7 with permission from Elsevier 
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Fig. I. 5: Coordination-insertion mechanism of lactide polymerization using metal-alkoxide catalysts. 
Reproduced from Thomas C.M.30 with permission from the Royal Society of Chemistry 

Metal catalysts such as tin(II) bis(2-ethylhexanoate), zinc(II) lactate or aluminium(III) 

isopropoxide are commonly used for the high scale industrial synthesis of PLA from lactides 

but are not stereoselective30 and work through a coordination-insertion mechanism31 (Fig. I. 

5). Tin(II) bis(2-ethylhexanoate) supported by aluminium oxide remains the most commonly 

used catalytic system as it presents the highest catalytic effect, is soluble in organic solvents 

and allows polymerisation up to 180°C32. Jointly, lauryl alcohol is used as the initiator of the 

polymerisation. However, this catalyst remains toxic to aquatic life and has a reprotoxic 

effect33. Extensive research is required to find alternatives such as organo-catalysts such as 

1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 7-

methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD), 4-(dimethylamino)pyridine (DMAP), 4-

pyrrolidinopyridine (PPY), thioureas etc which allow the polymerisation to take place at lower 

temperatures and display short reaction times(approximately 1min for TBD used at 

0.1mol%)29. Thanks to the high optical purity of the lactides, the ROP will give highly 

enantiopure isotactic PLA grades poly(L-Lactide) (PLLA) or poly(D-Lactide) (PDLA) (Fig. I. 6). For 

historical reasons, PLLA remains the most common type of synthesised PLA, although an 

interest in producing PDLA has been developed recently due to the potential of PLA 

stereocomplexes, a co-crystal made of PLLA and PDLA chains34,35.  
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To avoid the purification problems brought by the chirality of lactic acid and with the 

growing interest towards PLA stereocomplexes, extensive research has been conducted 

towards high stereo-selective catalysts. The main focus is to use racemic lactide as the starting 

material as it is impossible to separate the two enantiomers in such mixture and therefore its 

polymerisation with traditional ROP catalysts will lead to an atactic polymer. The review from 

Thomas and the book chapter from Osten et al. clearly highlight the different types of catalysts 

developed to obtain selectively the achievable structures of PLA30,36 (Fig. I. 7). Works on chiral 

aluminium-based Schiff base catalyst systems demonstrated the effect of the ligand towards 

the preference of the catalyst towards either L-Lactide or D-Lactide. As first exemplified by 

Spassky et al., these single-site catalysts37 work through two different mechanisms: either a 

chain-end control mechanism38 or a site control mechanism39. Namely, the chain-end control 

operates through the control of the next inserted monomer through the stereoconfiguration 

of the last repeating unit in the growing polymer chain, whereas the site control mechanism 

operates through the configuration of the ligands on the catalyst site.  

 

Fig. I. 6: Achievable stereocontrolled PLA grades from pure lactides 



              Chapter 1 

17 
 

 

Fig. I. 7: PLA stereochemistry obtained from a racemic lactide mixture with stereoselective metal 
catalysts 

For the rest of the study, the emphasis will be specifically put on isotactic PLLA due to its 

high availability and its potential regarding its thermal properties and mechanical properties. 

 

1.2. PLA properties 

a. Chemical structure and thermal transitions 

As previously mentioned, PLA is made from lactic acid, which is a chiral monomer, 

therefore implying tacticity issues for the obtained polymer. Depending on its tacticity, PLA 

will not display the same thermal properties. Atatic PLA is amorphous and only displays a glass 

transition temperature ranging from 55°C to 60°C which depends on the molar mass of PLA 

according to the Flory-Fox equation: 

𝑇𝑔 = 𝑇𝑔∞ −
𝐾

𝑀𝑛
 

Where Tg∞ is the Tg at infinite molecular weight, K a constant expressing the excess of free 

volume of the end groups for polymer chains and Mn the number average molar mass. Values 

of Tg∞ and K are reported as 57-58°C and 5.50x104 °C.mol.g-1 according to Jamshidi et al.40. 

PLAs which are at least 93% optically pure are semi-crystalline polymers with a Tg of 55°C 

and a melting point temperature ranging from 130°C to 180°C depending on both the molar 

mass and the optical purity41–44. A final transition reported for PLA is its β-transition at -45°C 
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upon which PLA is strictly brittle45. Regarding the melting behaviour of PLA, Tsuji and Ikada 

found that the equilibrium melting point of PLA would increase with the molar mass up to a 

maximum value of 215°C46 by using the Hoffman-Weeks extrapolation; although a more 

commonly reported and accepted value is 207°C reported by Kricheldorf et al.4. The melting 

enthalpy for a 100% crystalline PLA is 93.7J.g-1 as calculated by Fischer et al. and is the 

commonly accepted value47. The crystallinity ratio of PLA can be calculated using the DSC 

according to the following formula: 

𝜒𝑐 =
ΔH𝑚 −  ΔH𝐶𝐶

ΔH𝑚,0
 

With: 

- χc = the crystallinity of the PLLA sample 

- ΔHm = the measured melting enthalpy 

- ΔHcc = the measured cold crystallisation enthalpy 

- ΔHm,0 = the melting enthalpy of 100% crystalline PLA, 93.7 J/g 

 One particular feature of PLA is however its slow crystallisation kinetics. PLA crystallises 

between 90°C and 135°C following a dumb-bell shape behaviour, i.e. the fastest crystallisation 

rates are observed between 105°C and 125°C with a maximum between 110°C and 115°C41. 

The crystallisation half-time t1/2 has been reported over 35mins for a commercial PLA 

(NatureWorks 3001D) at 115°C48. Other studies also showed that a higher molar mass would 

also slow even more the crystallisation kinetics of PLA along with the amount of 

impurity41,42,44,47,49–52. This characteristic is a major drawback to the use of PLA as fast 

industrial processing conditions do not allow enough time for PLA materials to crystallise.  

 

b. Crystallographic properties and crystallisation behaviour 

Semi-crystalline PLA has been reported to crystallise under four different forms. The two 

most ones are the α and the α’ (also known as δ) phases. These two phases are the ones 

primarily formed by simply cooling PLA from the melt or during annealing and are quite similar 

in terms of crystalline structure, therefore justifying the α and the α’ denominations. These 

two crystalline forms are reported to have a helical structure with a 103 parameter which 

indicates ten repeat units in three turns and have both orthorhombic crystal cells53–56. The 
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difference however appears while looking at the cell parameters of these two phases. Reports 

for the α phase give a=10.86Å, b=6.16Å and c= 28.86Å whereas for the α’, a=10.80Å, b=6.20Å 

and c= 28.80Å. Since the ratio of the a and b parameters of the α phase is equal to √3, the 

helices of this phase verify a strictly packed hexagonal fashion whereas the α’ phase is slightly 

distorted56,57. These two phases also do not form at the same temperatures with PLA cooled 

from the melt. It is typically reported that the α’ phase forms at temperatures below 120°C 

whereas the α phase forms above 100°C58 (Fig. I. 8). The α’ form is reported to melt before 

the α phase upon heating and, moreover, to transform into the α form upon heating; such 

phenomenon can be observed by the presence of a small exotherm in the DSC57 or by a slight 

change of the XRD pattern of the sample59.  

 

Fig. I. 8: Formation of the crystalline phases of PLA when cooled from the melt 

The β form of PLA is less common than the α’ form and the α form. It is typically formed 

from α crystals in fibres that are being stretched or during the formation of thin films. The 

helix conformation is changed to 31 and the crystalline cell is now the one of a trigonal cell 

unit with the cell parameters a= b=10.66Å and c= 8.8Å and α=β=90° and γ=120°55,60,61. 

The γ phase of PLA is less common due to the very specific conditions at which it can be 

created. It is specifically obtained from epitaxial crystallisation in hexamethylbenzene at 

140°C62. Two antiparallel helices are packed in an orthorhombic unit cell with parameters as 

follow: a=9.95Å, b=6.25Å and c= 8.8Å. Unfortunately, the properties of this particular phase 

have not been studied. 

The last known crystalline phase of PLA is the stereocomplex form. It is obtained from the 

co-crystallisation of an equimolar mixture of PLLA and PDLA35. The stereocomplex is formed 

of left-handed and right-handed threefold helices. The parameters of the trigonal unit cell are 
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a=b=14.98Å and c= 8.7Å and α=β=90° and γ=120°. The most noticeable feature of these 

stereocomplexes is their high melting point around 220°C, which is about 50°C higher than 

what can be obtained with PLA homopolymers. This is of particular interest since it can offer 

a solution to the low thermal resistance of PLA materials. 

Regarding its crystalline morphology, PLA has been reported to crystallise under the form 

of non-banded 3D spherulites as observed by polarised optical microscopy (PLOM) by 

Vasanthakumari et al.63 (Fig. I. 9) although Kalb and Pennings reported the formation of 2D 

axialites at a low degree of supercooling52. The density of spherulites has also been observed 

to decrease with a decreasing Tc, whereas the spherulite growth follows the bell-shape trend 

described for the crystallisation half-time of PLA described earlier. By applying the Avrami 

equation, the n exponent value is reported between 2 and 3.2, depending on the 

crystallisation conditions44. Typically, the Avrami exponent can be separated into two terms: 

𝑛 = 𝑛𝑑 + 𝑛𝑛  

Where nd represents the dimensionality of the growing crystal (1, 2 or 3) which 

corresponds to 1D, 2D or 3D entities, and nn represents the time dependence of the nucleation 

(0 or 1), being either instantaneous (0) or sporadic (1). For polymers, the value of nd is 2 or 3 

corresponding to 2D lamellar aggregates or 3D radial lamellae. The case of nn is somehow less 

discrete since the nucleation dependence is rarely fully instantaneous or sporadic64. 

 

Fig. I. 9: PLOM micrograph during the isothermal crystallisation of PLLA after 8 mins at 140°C 
(Adapted with permission from Castillo et al. 65. Copyright 2010 American Chemical Society) 

c. Processability 

As mentioned above, PLA has a Tg around 55-60°C and a melting temperature that can go 

up to 180°C. When considering the processing of PLA to make objects, one should take into 
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account these two fundamental characteristics. In the case of fully amorphous PLA, processing 

above the Tg will be enough to manufacture objects. In the case of semi-crystalline grades of 

PLA, the processing temperature should be higher than the melting temperature. However, 

the processing time should not be too long nor the temperature too high since it was reported 

PLA was subject to degradation in the melt state66–68. Typically, PLA will undergo degradation 

at temperatures above 200°C resulting in the formation of acetaldehyde, carbon monoxide 

along with lactide and oligomers69–71. The common technique for continuously processing PLA 

is the extrusion. Depending on the PLA grade, the melt-flow index will play an important role 

on determining the processing temperature. High molar mass PLAs will have lower MFIs 

therefore requiring a higher processing temperature to lower their viscosity. Unfortunately 

though, PLA is also a moisture sensitive polymer and therefore needs to be dried before being 

processed with NatureWorks recommending PLA should bear less than 250ppm of moisture 

content prior to extrusion. Speranza et al. studied the thermal and hydrolytic degradation of 

PLA in the molten state using rheology. They found PLA undergoes a significant change of 

viscosity especially when it has not been dried but their work was not correlated to any change 

in molar mass66. Mysiukiewicz et al. investigated the processing parameters of different PLA 

grades and their impact on the PLA’s properties. They concluded high temperatures and high 

rotation speeds greatly reduced the molar mass of PLA. However, they also reported the lower 

viscosity PLA grades were the ones which displayed least a loss of molar mass72. Shojaeiarani 

et al. showed the effect of reprocessing PLA by extrusion and observed a 80% reduction in 

molar mass after 5 cycles along with a lower Tg and a lower viscosity73. This implies 

precautions should be taken when processing PLA otherwise the final properties of the 

material will be hampered.  

Multiple techniques of polymer processing can also be used to make all sorts of objects 

such as injection-moulding, stretch-blow moulding, film casting, thermoforming, foaming or 

fibre-spinning74. Many challenges remain in order to adapt the processing conditions to PLA. 

Indeed, all these processes are optimised for well-known and used polymers such as 

polyolefins or PET, which do not have the same melt strength, shrinking ability and viscosity 

as PLA. The injection-moulding technique can so far be successfully used to produce 

amorphous PLA objects at fast production rates, given the PLA piece can be cooled to 25°C-

30°C prior to ejection. PLA films have also been successfully produced although such 
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production is more complicated than for PET or PP since PLA shows lower melt strength. The 

obtention of such films allows the use of thermoforming, which can be achieved using 

materials and techniques used for PET, high impact polystyrene and oriented polystyrene, 

using a lower temperature range (80-110°C)75. More challenges still remain regarding stretch-

blow moulding and extrusion blown film as processing optimisations still remain to be used 

for the first and for the second, the impossibility to create a stable bubble with neat PLA and 

therefore requiring the use of additives76. 

 

d. Mechanical properties 

At room temperature, PLA is known to be a stiff and brittle polymer. Typical semi-

crystalline PLA displays a Young’s modulus around 3.5-4GPa, a tensile strength around 60 MPa 

and a typical strain at break of 4-7% at room temperature77,78. Such properties are highly 

dependent on the molar mass and the stereochemistry of PLA as, for instance, the tensile 

strength of PLA can vary from 15.5 to 80 and even 150MPa with molar masses going 

respectively from 50,000 to over 150,000 and 200,000, along with a modulus that increases 

by a factor two79. During a tensile test, PLA samples will break in the elastic zone and display 

no plastic behaviour. This is a similar behaviour than PS for instance which also displays such 

brittle behaviour at room temperature. However, it is clearly poorer than other commodity 

polymers such as PET, HDPE or PP that display high abilities to sustain a mechanical 

deformation or stress without breaking80–82 (Table I. 1).  

Table I. 1: Mechanical properties of PLA and other commodity polymers 

 

One final factor also to consider is the thermal resistance of PLA, expressed by its heat 

deflection temperature (HDT). This value gives an idea of the temperature at which, under a 
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certain load, the polymer material will start to deform. In the case of PLA, this is another 

drawback as it is measured close to its Tg, meaning that above 55°C, no thermal application 

of PLA can be considered. This HDT however highly depends on the degree of crystallisation 

of the polymer. Tabi et al. have shown the relationship between the HDT of PLA and its 

crystallinity ratio. Namely, the HDT of PLA can go from 55°C in the case of a 3% crystallinity 

ratio polymer to 80-100°C for crystallinity ratios of 40-45%83. They later discussed the 

importance of the crystalline phase, especially the two most common that are the α’ and the 

α phases. The results asserted the α phase plays a predominant role in enhancing the HDT as 

temperature of 151°C be obtained, whereas with the α’ phase, the HDT is never higher than 

100°C even at high crystallinity ratios (45%)84. All in all, PLA has similar properties than PS but 

then suffers from major disadvantages compared to other common polymers, which display 

significantly better mechanical properties. Fig. I. 10 summarises the different states of PLA 

according to temperature and displays the narrow range of temperature upon which PLA 

materials may be used. 

 

Fig. I. 10: Metastable states of high molar mass PLLA 

 

e. Gas permeation properties 

The permeation mechanism of a low molar mass solute inside a polymer follows a 

“solubilisation-diffusion” model85. Typically, the penetrant will penetrate the polymer matrix 

into an available hole due to free volume and then a gap will open towards another available 

hole thanks to transient chain motion and finally the gap will close86 (Fig. I. 11). 
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Fig. I. 11: Schematic representation of the mechanism of the of a penetrant transport in a polymeric 
material 

The permeability of such penetrant in a polymer can be expressed as follow: 

𝑃 = 𝐷 × 𝑆 

With P= the permeability coefficient of the penetrant through the matrix, D= the diffusion 

coefficient of the penetrant through the matrix and S= the solubility of the penetrant inside 

the matrix. This formula can further be developed using Fick’s first law, supposing a 

concentration gradient which is linear with the distance, Fick’s second law and Henry’s law 

regarding the concentration of a gas. By supposing a steady state, the resulting formula can 

be used to measure the permeation: 

𝑃 =
𝑄 × 𝐿

𝐴 × 𝑡 × ∆𝑝
 

Where Q is the amount of penetrant, L the thickness of the film/material, A the area of 

diffusion, t the time and Δp the pressure differential on the two sides of the material. 

Typical parameters influencing the permeability can be divided into two categories that 

are the intrinsic and extrinsic factors. Extrinsic factors include the temperature, the relative 

humidity, the nature of the permeant whereas intrinsic factors include the chemical 

composition, the stiffness of the polymer chains, the polarity and the crystallinity ratio87. 

Typical values of O2 permeability for PLA range around 30-80x10-3 cm3.m.m-2.day-1.atm-1 at 

temperatures ranging from 5°C to 58°C as reported by Sonchaeng et al. in their review88, 

although Drieskens et al. reported higher values ranging from 132-590x10-3 

cm3.m.m-2.day-1.atm-1 in their work regarding the effect of crystallinity89. Unfortunately, the 
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criteria to define a polymer as barrier or permeant varies depending on the targeted use. 

Polymer films with an oxygen permeability lower than 5x10-3cm3.m.m-2.day-1.atm-1 are 

considered as high barrier materials for food packaging90. Wang et al. further refined the 

classification of a barrier grade material regarding oxygen to try to discriminate the different 

polymers (Table I. 2). Typical polyolefins such as HDPE, oriented PP and PS display very poor 

oxygen barrier behaviours with permeability values above 2000x10-3cm3.m.m-2.day-1.atm-1 for 

HDPE and oPP and around 4500x10-3cm3.m.m-2.day-1.atm-1 for PS91. Other polymers such as 

oriented PET have permeability values 35x10-3cm3.m.m-2.day-1.atm-1 which makes it a more 

suitable candidate for barrier applications91. In this regard, PLA is therefore a better barrier 

polymer than one of its direct challengers which is PS, however, it remains not as efficient as 

oPET which is another material PLA can challenge. 

Table I. 2: Classification of polymers depending on their O2 barrier performance. Adapted from Wu et 
al.87 

 

In the case of PLA, the O2 permeability greatly depends on the crystallinity ratio, the 

crystalline phase and the crystalline morphology92–94. However, to understand the 

relationship between the crystallinity ratio of PLA and the observed permeability, it is 

necessary to develop the model of a semi-crystalline polymer. Traditionally, a semi-crystalline 

polymer is composed of crystalline domains called crystallites, in which the polymer chains 

are densely packed and organised, and an amorphous fraction which corresponds to the rest 

of the polymer chains. However, Nguyen et al. have discovered that, in the case of PLA and 

PET, a three-phase model was necessary95. The amorphous fraction of these polymers is 

actually composed of a mobile amorphous fraction and a restricted or rigid amorphous 

fraction (Fig. I. 12). Namely, the mobile amorphous fraction is the amorphous part of the 

polymer between crystallites whereas the rigid amorphous fraction is stuck within the 
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crystallites of these polymers, in this case, between the crystalline regions of the formed 

spherulites. 

 

Fig. I. 12: A possible schematic representation of the crystalline fraction (CF), the restricted 
amorphous fraction (RAF), and the mobile amorphous fraction (MAF), reproduced from Sonchaeng et 

al. 88 with the permission of Elsevier 

Further studies by Del Rio et al. and Fernandes Nassar et al. actually showed an evolution 

of the quantity of these two amorphous regions during crystallisation and, more importantly, 

the O2 permeability would actually be highly influenced by the amount of rigid amorphous 

fraction, which produces a lot of free volume holes96. The authors concluded the best way to 

enhance the barrier properties during the crystallisation of PLA was to find a crystallisation 

process which would limit the formation of the rigid amorphous fraction97. 

 

f. End of life 

PLA is often valued as being more environmentally friendly than other polymers such as 

PP, PE, PS or PET. It is also one of its major assets as, for instance, PLA is used for medical 

applications, in particular for bioresorbable materials. Indeed, PLA and especially PLLA is 

known to degrade in body fluids without being toxic to the living as such body can produce 

enzymes to deal with L-Lactic acid as it is a natural molecule produced from the muscles during 
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an effort98. Due to its polyester nature and structure, PLA’s main degradation mechanism is 

through hydrolysis99. Jung et al. showed PLA would degrade slowly in neutral pH conditions 

and its rate of degradation would improve in acidic conditions and even more in alkaline 

conditions100. More precisely, the effect of the acid-base catalysis was evaluated to be ten 

times faster when the pH value changed by just one unit101. The degradation mechanism was 

found to happen through the hydrolysis of random ester functions either on the chain-end or 

at the core of the PLA chain. More specifically, De Jong et al. showed the degradation of PLA 

in alkaline conditions happened through a progressive release of lactide102 (Fig. I. 13), whereas 

lactic acid is the directly formed product in acidic conditions99 (Fig. I. 14). 

 

Fig. I. 13: Degradation mechanism of PLA in alkaline conditions 
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Fig. I. 14: Degradation mechanism of PLA in acidic conditions 

Multiple factors can influence the degradation of PLA such as the pH, the temperature, 

the shape and thickness of the sample, the crystallinity ratio and the molar mass of PLA.25,103 

Typically, a higher molar mass PLA will degrade slower than lower grades as they have higher 

chain entanglement and therefore resist better to chain clevage104–106. Regarding the effect of 

the degree of crystallisation, highly crystalline PLA will degrade at a slower rate than the 

amorphous PLA since the amorphous fraction was found to be more prone to hydrolysis than 

the crystalline fraction107,108. Such phenomenon is due to the higher chain packing density in 

the crystalline regions that prevent water uptake. The effect of temperature was reported by 

multiple studies and show an enhanced degradation when the temperature reached 55°C109. 

This is explained thanks to the Tg of PLA that is of 55°C meaning that at temperatures near or 

above the Tg, the chain mobility will greatly increase, therefore allowing a higher water uptake 

along with a second effect on the reaction kinetics which are favoured by a higher 

temperature and result in a higher water activity towards the ester bonds. Once the molar 

mass of PLA is sufficiently low (below Mn=10,000 g.mol-1), microorganisms consume the small 

PLA chains and transforms them into carbon dioxide, water, and humus. Such microorganisms 

can be microbes, enzymes (Proteinase K, pronase)110 or fungi111. However, these results are 

observed in laboratories and PLA seems not to degrade this well when left in natural 

environments112. 
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According to the NF EN-13432 standard, PLA is a compostable polymer if degraded in 

industrial conditions in which conditions can reach up to 65°C with a relative humidity higher 

than 60%113,114. However, multiple studies have shown it does not easily degrade when left in 

other media such as sea water, home-compost or in the raw environment and may take years 

to fully degrade114–117. Indeed, in such media, essential conditions, which directly influence 

the degradation rate, such as the pH, the temperature, or the present microorganisms, change 

a lot. Plastics can find themselves in the Arctic ocean where the water temperature reaches 

values below 0°C118 and therefore show very little degradation. The same can be said about 

soils and landfills which can either display neutral, acidic or basic conditions119. In these cases, 

PLA will likely behave as regular polymers and display physical fragmentation into small plastic 

parts rather chemical degradation into lactic acid. Chamas et al. compared the degradation 

rate of various common plastics in the environment in their perspective paper115. They 

considered different media such as in landfill/soil/compost, in marine environment, in 

biological conditions or under sunlight. These categories represent the four main degradation 

conditions for polymer degradation experiments which are: on land without exposure to 

sunlight, in water (fresh water or marine) with exposure to sunlight, in a lab using enzymes or 

microbes, or exclusively under sunlight exposure and air (Fig. I. 15). Surprisingly, the 

degradation rate of PLA without fillers nor accelerating conditions was shown to be similar to 

traditional oil-based polymers such as PET, HDPE, LDPE, or PP in marine conditions. On land, 

the trend was better looking as PLA shows to degrade about twenty times faster, about 

21µm.year-1 compared to 1µm.year-1 for HDPE . This remains slow however and PLA should 

be properly collected and recycled rather than discarded. 
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Fig. I. 15: Specific surface degradation rates for various plastics, in μm.year–1. Vertical columns 
represent different environmental conditions (L, landfill/compost/soil; M, marine; B, biological; S, 

sunlight) and plastic types (represented by their resin identification codes). Plastics type 7, “others”, 
corresponds to various nominally biodegradable plastics. The range and average value for plastic 
types 1–6 are shown on the right as lines and squares, respectively, as well as for biodegradable 

“others”. Data points representing degradation rates that were unmeasurably slow are shown on the 
x-axis. Gray columns represent combinations for which no data were found. Reproduced from 

Chamas et al.115 under CC-BY license 

As previously mentioned, PLA suffers from a loss of mechanical properties during 

reprocessing due to a decrease of molar mass73 involving the need for fresh PLA to be used to 

make “directly recycled” PLA with suitable properties. Moreover, PLA objects are often 

produced with additives which would need to be compatible if mechanically recycled 

together, adding more to the complexity of the task. Fortunately, chemical recycling of PLA is 

already a mastered process which can be easily implemented. Regarding the life cycle analysis 

of such process, Piemonte et al. concluded it would cost less energy to regenerate PLA from 

chemical recycled lactic acid than freshly produced lactic acid from traditional sources120. 

Multiple pathways are suggested going from pyrolysis to regenerate the lactide (although such 

solution bears risk as high temperatures can trigger racemisation or epimerisation), hydrolysis 

or alcoholysis to regenerate lactic acid or alkyl lactates as reported in the review from 

McKeown and Jones121. 

Unfortunately, the recycling of PLA is not economically viable yet as the volumes of PLA 

materials are still too low to represent any interest. This has strong implications since the 

latest trend in some countries is to switch to plastics that are biodegradable or have an 



              Chapter 1 

31 
 

established recycling circle. In the case of PLA, neither of these criteria are satisfied therefore 

limiting the will of plastic manufacturers to use PLA unless more research and development is 

conducted to improve its biodegradability. 

 

2. PLA materials as food packaging: original drawbacks and 

requirements 

As mentioned in the general introduction, packaging is currently the biggest application 

market for polymers as about 40% of produced polymers are designed for such use. Such high 

use involves requirements depending on the targeted application of such materials. Here, the 

focus will be put on food packaging, one of the widest and most global applications. Food 

packaging has the specificity to satisfy seven main criteria as explained by Dole and his 

collaborators in their book. Food packaging materials should preserve the quality of the food, 

prevent any microbiological contamination, preserve the integrity of the packaging and its 

content; prevent chemical risks and contamination, be environmentally friendly, respect 

technical and economic specifications from both the manufacturer and the consumer and 

finally interact and transmit information to the consumer122. 

The following lines will confront the aforementioned PLA characteristics to some food 

packaging requirements and highlight the needs to be able to produce sustainable PLA 

packaging. The focus will be put on the mechanical, thermal, gas barrier and degradation 

properties which are the main deadlocks that prevent the use of PLA as a food packaging 

material. 

2.1. Mechanical properties 

The first and foremost requirement of a food packaging is to protect food’s integrity from 

outside damage. Therefore, food packaging should be behaving as a physical barrier for 

accidental contact and contamination. As such, the considered material has to show suitable 

mechanical resistance to offer that level of protection, either through tensile, impact or 

vertical compression testing123. Typical food packaging can sustain a certain level of 

deformation without breaking, which would compromise the integrity of the packed food. 

Also, since most food packaging containers are used below room temperature, the mechanical 

properties of the different materials should be considered at these temperatures124. In this 
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regard, neat PLA is unsuitable to be used as a packaging material due to its high brittleness at 

room temperature and below. Therefore, work on enhancing such mechanical properties is 

necessary to satisfy the relevant mechanical resistance criteria. 

 

2.2. Thermal properties 

As previously mentioned, PLA has a very bad thermal behaviour if processed too quickly. 

The heat deflection temperature of neat PLA objects produced in industrial conditions is 

reported around 55°C, therefore excluding common food preservation techniques such as 

pasteurisation or sterilisation. Since pasteurisation is typically conducted at temperatures 

ranging from 60°C to 100°C and sterilisation  at temperatures above 100°C125, the use of PLA 

as such is indeed excluded since such temperature would compromise the integrity of the 

packaging. Through previously mentioned strategies, it is of particular interest to enhance the 

heat deflection temperature of PLA as it is possible to reach values above 100°C as for PLA 

grades currently commercialised by Total Corbion126. This would therefore allow to use PLA 

for packing food, which requires such thermal treatment for its preservation and further go 

towards replacing traditionally used non-biodegradable commodity polymers. 

 

2.3. Gas barrier properties 

The gas barrier properties of packaging materials must satisfy different criteria depending 

on the targeted application. Indeed, different properties are required depending on the type 

of food which will be preserved (Fig. I. 16). Typically, the most studied gases are water vapour, 

O2 and CO2 as they play the most fundamental roles for food preservation127. For instance, the 

presence O2 will decrease the shell-life of products by ways of oxidation, modification of 

organoleptic properties, and the growth of aerobic microorganisms128. In the case of fresh 

food such as vegetables or fruit, both the O2 and CO2 exchanges must be considered. Through 

the respiration phenomenon, these products will naturally absorb O2 and release CO2 and 

therefore the packaging must allow a satisfactory respiration rate for the food to preserve 

longer by avoiding fermentation processes to take place. The same can be said about the 

water vapour permeation, which should be designed to maintain a specific moisture rate, for 



              Chapter 1 

33 
 

instance either by blocking any water from coming in or out in the case of delicatessen, or by 

allowing water to regularly come in to preserve fresh food123. 

 

Fig. I. 16: (a) Requirements of barrier properties for different food packaging applications and a 
comparison between oxygen/water transition rate of selected biodegradable polymers at 25 μm and 

food packaging barrier requirements. (b) The oxygen/moisture permeability of different polymers. 
(Copyright 2022, Adapted from Wu et al.87 with permission from Elsevier) 

 

2.4. End of life – Degradation and collection 

In April 2021, the French 3R decree (Reduction, Reuse, and Recycling) regarding plastic 

materials was published. The decree is part of a global strategy to reduce plastic waste by 

getting rid of single use plastics by 2040. Only plastics which are industrially collected and 

recycled or biodegradable in home-compost or other environmental compartments, will be 

allowed to be used129. This particularly regards food packaging since the used materials are 

single-use plastics. At this point, PLA does not satisfy these criteria since a proper collection 

and recycle circuit does not exist. As well, it is only certified as industrially compostable 

therefore not satisfying the end-of-life criteria. However, solutions regarding that matter are 

being developed. Citeo, the French organism in charge of managing and planning the future 

of packages, is currently studying how feasible and the impact of creating a new collection and 

recycling circuit specific to PLA130. 
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3. Improving the properties of PLA through additives 

3.1. Limiting the brittleness of PLA 

The brittleness of PLA is probably the main drawback to its global use. As described before, 

PLA is a very brittle material at room temperature resulting on low impact strength and low 

elongation at break and yields through crazing. In other words, PLA will break under low 

energy impacts as opposed to tough materials which absorb a large amount of energy before 

failure. However, at a threshold temperature depending on the sample’s geometry, the 

structure and morphology of the sample and the speed of testing, a polymer can undergo a 

brittle-ductile transition. Below such temperature, the polymer will break in a brittle manner, 

whereas it will break in a ductile fashion above (Fig. I. 17). The aim of the research focussing 

on the toughening of PLA is therefore to lower this transition temperature in order to have a 

ductile fracture behaviour of PLA samples at their service temperature. 

The brittleness of polymers can be evaluated through multiple mechanical testing 

techniques such as impact testing, tensile testing, or vertical compression resistance testing. 

Impact testing is a high-speed test opposite to the more conventional tensile test which uses 

moderate rates of loadings and yields the well-known uniaxial stress vs strain curves. Vertical 

compression testing is a more delicate test to interpret as also it imposes an uniaxial moderate 

rate of deformation but generates a geometry change of the sample which results in a non-

linear behaviour at high strain (Fig. I. 18). Consequently, although mechanical improvements 

can be measured by tensile testing and compression testing, the impact test is required to 

confirm the fracture behaviour of a material. The impact strength is not however a 

fundamental material property (compared to Young’s modulus for instance) since impact test 

values greatly depend on the type of test (notched/unnotched Charpy or Izod test) and the 

geometry of the sample. 
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Fig. I. 17: Evidence of a brittle-ductile transition depending on the temperature 

 

Fig. I. 18: Typical stress-strain curves of brittle and ductile materials for: a) tensile testing and b) 
compression testing 

Multiple solutions have been designed to improve the toughness of PLA through strategies 

previously developed for other brittle polymeric materials such as PS which has widespread 

uses. Such strategies that can be applied for PLA are the use of plasticisers, the addition of 

fillers, copolymerisation and/or melt-blending with flexible polymers131. 
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a. Plasticisers: lowering the Tg below service temperature 

A cheap and easy technique to work on the brittleness of PLA is to use plasticisers to lower 

its Tg. This is a commonly used technique, originally to facilitate the processing of many 

polymer materials, which also has the effect of making them more flexible when they would 

otherwise be too stiff and brittle and break too easily132 such as poly(vinyl chloride) when used 

for garden hoses133. In order to decrease the Tg, the plasticiser must be miscible in the polymer 

matrix. The idea relies upon the fact that the brittle-ductile transition temperature of PLA is 

around its Tg (50-60°C range), therefore, lowering the Tg of the polymer so that it will be lower 

than the temperature at which the material is used will cause the brittle material to behave 

then as a ductile material as the service temperature will then be in the ductile behaviour 

temperature range of the plasticised material. The efficiency of a plasticiser directly depends 

of the loading levels, its molar mass, and its miscibility with the polymer. Plasticisers can either 

be simple molecules, oligomers, or even low molar mass polymers if miscible. Their efficiency 

is directly evaluated through the depression of the Tg and the enhancement in mechanical 

properties, for instance the elongation at break. Low molecular weight plasticisers tend to 

have a higher efficiency but are however more subject to migration overtime, leading to a 

dramatic loss of mechanical properties. High molar mass plasticisers show a lower plasticising 

efficiency but are less subject to migration, leading to sustained mechanical properties 

overtime. 

Regarding PLA, many plasticisers have been tested78,82,134,135. Amongst the most popular 

are poly(ethylene oxide)136, low molar mass PLA137, triethyl citrate138 and other citrate 

esters139, glycerol, glycerol triacetate, glucose monoesters, partial fatty acid esters139 and 

bishydroxylmethyl malonate140. Poly(ethylene oxide) is probably one of the best enhancers as 

Nijenhuis et al. reported a very high elongation at break could be achieved, over 500% using 

a high molar mass PEG (Mw=4x106 g.mol-1) at a 20wt% loading141. This was explained by the 

fact that for this particular blend, the Tg was measured around room temperature, therefore 

bringing the brittle-ductile transition to such temperature. The tensile strength decreases by 

a factor three accounting for the softening of the polymer matrix (unfortunately, there is no 

value of modulus reported). Also, the measured degradation rate was the fastest at 20wt% 

loading at 37°C compared to the other blends. Martin and Avérous tried using oligomeric lactic 

acid (20wt%), which resulted in a Tg of 18°C, a crystallinity ratio of 24% (compared to 1% for 
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neat PLA), an elongation at break of 200% along with a drop of modulus by a 2.7 factor from 

2050 MPa to 744 MPa. Similarly, the use of citrate esters at high loadings resulted in an 

improved elongation at break (over 300%) but with a very high softening of the material which 

is not suitable82. Vegetable oils and their derivatives have also been considered as plasticisers 

for PLA such as epoxidized palm oil142, soybean oil143, sunflower oil144 or epoxidized oleic acid 

derivatives145. Although reduction of the Tg and improved elongation at break are reported 

around 200% with just 5wt% of plasticiser, the material loses too much in terms of stiffness 

and the impact strength is not as greatly improved as it would be expected134,145. 

Other strategies are therefore required to toughen PLA better rather than just improving 

its flexibility. Regarding the considered plasticisers, many also showed migration problems 

which would cause the material to become hard and stiff again. The following two parts are 

therefore dedicated to the so-called “rubber” toughening of PLA through two strategies, using 

block copolymers or directly melt-blending two homopolymers. The idea of these techniques 

is to disperse microscopic (or nanoscopic) particles of an immiscible low Tg polymer inside the 

hard polymer matrix. Here, the toughening mechanism is different, unlike plasticisers, the Tg 

of the hard polymer should remain the same due to the immiscibility of polymers or blocks 

between one another. The toughening effect is obtained through the deformation of these 

soft particles that will absorb the impact energy and limit the crack propagation146. 

 

b. Synthetic copolymers 

Developed in this part, the first strategy consists in the incorporation of low Tg polymeric 

motives directly linked to PLA chains through the use of block copolymers. The dispersion of 

the low Tg polymer blocks relies upon the well-known fact that immiscible block copolymers 

will self-assemble, the final morphology depending on the volume fraction of the blocks (Fig. 

I. 19). Such technique is highly efficient but however suffers from high costs which are not 

compatible with industrial applications requiring low production costs and lowering the price 

of PLA materials. 

Random copolymers have been considered using ring-opening copolymerisation to 

achieve high molar mass copolymers. Such copolymers have shown to improve the 

mechanical properties of PLA, as in the case of copolymerised lactide with ε-caprolactone147, 

trimethylene carbonate148, or ricinoleic acid149. Such candidates are actually promising thanks 
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to the low Tg of their homopolymers (-60°C for poly(caprolactone), -20°C for 

poly(trimethylene carbonate) and -80°C for poly(ricinoleic acid)) which would allow to expect 

a significant decrease of the Tg of PLA when randomly copolymerised with such monomers. 

The copolymerisation of lactic acid and ε-caprolactone (80/20 to 40/60) led to copolymers 

displaying elongation at break higher than 100% with, however a decrease in modulus and 

tensile strength was observed. The copolymerisation of lactic acid and 30wt% of trimethylene 

carbonate improved the toughness to 100 MJ.m-3 as compared to the 2.5 for neat PLA and 

brought the elongation at break to 375% compared to 6%, again, however, with a huge 

decrease in modulus (factor two) and tensile strength (30% decrease). Despite really 

promising results regarding the toughening of PLA, it was also reported for all of these 

solutions that, due to the randomness of the repeating units, the thermal properties of PLA 

would be lost, even using pure L-Lactic acid or L-Lactide as the monomer. Such characteristic 

is not suitable since the thermal resistance of PLA is one of its major drawbacks, therefore, 

another solution such as using block copolymers appears to be more suitable. 

 

Fig. I. 19: Block copolymer morphology depending on the volume fraction of one polymer between 
another with: A – Hard polymer block and B – Soft polymer block 

Block copolymers can be synthesised using a wide range of chemical paths, contrary to 

random copolymers for which the used monomers must be able to polymerise through ring-

opening polymerisation or direct polycondensation. The strategy of using block copolymers is 

already well-known with high impact resistance polystyrene which is either a triblock 

copolymer of styrene-butadiene-styrene, or the well-known acrylonitrile-butadiene-styrene 

terpolymer. In the literature, multiple block architectures for PLA have been reported that can 
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be traditional AB or ABA block copolymers or even multi-block copolymers involving bio-based 

or oil-based monomers. Here, only block copolymers that have been used as the sole material 

and not as compatibilizer are described150. 

The Hillmyer group reported many PLA-based copolymers to try to solve the brittleness of 

PLA. First, a PLA-b-poly(isoprene)-b-PLA was produced with different compositions which 

exhibited a broad range of morphologies such as the spherical, cylindrical, and lamellar 

morphology. The cylindrical phased-forming copolymer displayed the best elongation at break 

which was over 650 . Unfortunately, such performance came with low Young’s modulus and 

tensile strength, whatever the copolymer composition151. Then, Pitet and Hillmyer 

successfully synthesised a poly(D,L-Lactide)-b-poly(butadiene)-b-poly(D,L-Lactide) copolymer 

using the ring opening polymerisation of 1,5-cyclooctadiene to synthesise the hydroxyl-

terminated poly(butadiene) which was used as the macroinitiator for the PLA blocks. The 

volume fraction of PLA ranged from 0.24 to 0.89 allowing the authors to study multiple 

ordered-state morphologies and thermo-mechanical properties. The most noticeable feature 

comes with the 0.89 volume fraction of PLA sample which displayed a modulus of 1.3GPa, a 

yield strength of 38MPa, a tensile strength of 33MPa and an elongation at break of 42%152. 

The team synthesised a graft copolymer system, the poly(1,5-cyclooctadiene-co-5-

norbornene-2-methanol-graft-D,L-lactide) (PCNL) which displayed an elongation at break over 

200% with just 5wt% of rubber in the backbone153. Delgado and Hillmyer went a step forward 

by synthesising a poly(D,L-Lactide)-b-poly(butadiene)-b-poly(D,L-Lactide) hydroxy-terminated 

block copolymer upon which 2-ureido-4[1H]-pyrimidinone segments could be grafted (UPy) 

(Fig. I. 20). Noticeable mechanical improvements could be noticed for copolymers containing 

at least 90wt% of PLA to reach elongations at break around 13%. The addition of UPy motives 

increased the elongation at break to 20% for copolymers containing 97wt% of PLA with a 

modulus of 2.1GPa and an energy absorption value of 9.3MJ.m-3. The effect of the UPy group 

was further studied by changing their amount on the toughest copolymer. With only one UPy 

function, the elongation at break increased to 58 with a storage modulus still close to 2GPa 

and the absorbed energy went up to 14MJ.m-3 154. 
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Fig. I. 20: Synthesis of hydroxy-terminated block copolymers (LBL) and UPy-functionalised block 
copolymers (UPy-LBL), adapted from Delgado and Hillmyer154 with permission from The Royal Society 

of Chemistry 

The sequential ring-opening polymerisation of lactones was also a strategy used to 

synthesise telechelic triblock copolymers based on lactide. PLA blocks were grown on a 

telechelic macroinitiator synthesised from the ring-opening polymerisation of a lactone with 

a diol as initiator to obtain hydroxyl functionalised end chains (Fig. I. 21). Lactones such as 

glycolide, β-butyrolactone, ε-caprolactone, or trimethylene carbonate among many others 

have been used and are well presented in the review by Diaz and Mehrkhodavandi regarding 

the synthesis of copolymers using lactones155 and Becker et al. for the investigation of the 

mechanical properties of PLA bearing systems156. In a first example, trimethylene carbonate 

along with ε-caprolactone and glycolide were copolymerised with lactide at different molar 

ratios to obtain ABA triblocks with A remaining PLA157. 21mol% of TMC allowed the triblocks 

to have an elongation at break 50% but with a tensile yield strength down to 36MPa from 62 

MPa but also showed a decrease in the Tg to 33°C. As a further study, the effect of the 

stereochemistry of PLA was investigated by Zhang et al. on PLA-b-PTMC-b-PLA triblocks with 

however low PLA content in the structure (from 10mol% to 42mol%). Amorphous PLA blocks 

at 35mol% content gave an elongation at break of 130% with a very low modulus of 16MPa. 

Higher Young’s modulus and tensile strength were obtained when L-Lactide or D-Lactide were 

used to synthesise the PLA blocks due to the ability of such blocks to crystallise but with low 

elongation at break. Eventually, equimolar mixtures of PLLA-b-PTMC-b-PLLA and PDLA-b-
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PTMC-b-PDLA were studied and gave improved mechanical and thermal properties due to the 

formation of stereocomplexes158. Guerin et al. synthesised PLLA-b-PTMC diblocks, PLLA-b-

PTMC-b-PLLA triblocks and 3-arm star PTMC-b-PLLA using sequential copolymerisation 

techniques. Elongation at break values above 200% could easily be obtained using 20wt% of 

PTMC with a modulus still around 2GPa, with the best composition bearing 27wt% of PTMC 

and achieving a 320% elongation at break159. 

 

Fig. I. 21: Chemical pathway to synthesise PLA-b-XX-b-PLA triblock copolymers using sequential ring-
opening polymerisation 

The block copolymer system of PLA with poly(ε-caprolactone) is another intensively 

studied solution to enhance the mechanical properties of PLA. As mentioned previously, 

random copolymers of PLA-poly(ε-caprolactone) are amorphous while block copolymers 

displays dual melting behaviours corresponding to the two polymer phases160. Qian et al. 

synthesised ABA triblocks with compositions ranging from 89/11 to 28/72 mol/mol of L-

Lactide and ε-caprolactone. The elongation at break was brought over 400% with at least 

30mol% of ε-caprolactone, going up to nearly 800% for a 50/50 mixture with the tensile 

strength diminishing from 63MPa to 38MPa (40MPa at 30mol% of ε-caprolactone)161. Multi-

block copolymers have also been synthesised but the best performance that was achieved 

gave a remarkable elongation at break over 500% but a modulus of 165MPa which is very 

low160. More recently, the effect of the stereochemistry of the PLA blocks was also studied for 
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PLA-b-poly(ε-caprolactone)-b-PLA triblocks. PLLA-b-poly(ε-caprolactone)-b-PLLA and PDLA-b-

poly(ε-caprolactone)-b-PDLA triblocks were synthesised separately with different block 

lengths and then blended in a 1:1 PLLA/PDLA ratio. The separate triblocks showed remarkable 

elongation at break over 800% with a tensile strength of 36MPa and a high toughness of 

160MJ.m-3 for the sample bearing 11kDa of poly(ε-caprolactone)(21%) and 40kDa of PDLA 

(79%). The mixture of this triblock and its PLLA-based counterpart was also the one which gave 

the best mechanical properties with an elongation at break of 600%, a tensile modulus of 

36MPa. The thermal properties of the blends were also better than the triblocks alone due to 

the formation of stereocomplexes which improved the thermal resistance of the enantiomeric 

blends162. 

Regarding other available biodegradable building blocks, PLA has been polymerised using 

poly(hydroxyalkanoate)s especially poly(3-hydroxybutyrate) as the mid-block. The first PLA-b-

PHA system was reported by Haynes et al. by growing a PLLA block on a commercially available 

PHA polymer with a weight ratio of PLLA of 80%. Modifications were observed on the Tg, 

which decreased to -2°C163. Triblock copolymers made of PLLA-b-poly(3-hydroxybutyrate)-b-

PLLA were prepared using the ring-opening polymerisation of β-butyrolactone with the 

presence of 1,4-butanediol and then the use of the synthesised telechelic hydroxyl-terminated 

initiator to polymerise PLA. The mid-block initiator exhibited a Tg ranging from -6°C to 5°C 

allowing to hope for a toughening effect with PLLA. The modulus increased from 30MPa to 

160MPa with an increasing PLLA content whereas the elongation at break gradually decreased 

from 200% to 86%164. The stereochemistry effect of PLA was also studied on PLLA-b-poly(3-

hydroxybutyrate)-b-PDLA triblocks. Such triblocks exhibit a high melting point above 200°C 

which is characteristic of the stereocomplexes which are formed. However, the tensile testing 

revealed poor tensile strength and modulus (33MPa and 548MPa) with an elongation at break 

of just 11%, showing very limited interest for these systems165. 

One of the most extensively studied triblock system involving PLA is with poly(ethylene 

oxide) as it is both biocompatible and hydrophilic. Multiple examples range from diblock or 

triblock copolymers to multiple block copolymers166–168. Unfortunately, these will not be 

reported here as they were mainly used as compatibilizers for PLA/poly(ethylene oxide) 

blends or as additives in PLA150,169,170. 
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Plant oils and their derivatives are also being extensively researched as such bio-based 

resources offer many chemical opportunities. The main examples as copolymers come from 

castor oil derivatives. The Hillmyer group synthesised a block copolymer of PLA-b-

poly(ricinoleic acid) to improve the compatibility of PLA with castor oil blends with results 

which will be discussed further171. The example of a triblock used as a sole material comes 

from Lebarbé et al. who synthesised a PLLA-b-poly(ricinoleic acid)-b-PLLA copolymer starting 

from 1,3-propanediol affording a telechelic poly(ricinoleic acid) (PRic) upon which PLLA blocks 

were grown using ring-opening polymerisation of L-Lactide (Fig. I. 22).  

 

Fig. I. 22: Two-step procedure to PLLA-b-PRic-b-PLLA triblock copolymers, adapted from Lebarbé et 
al.172 with permission from The Royal Society of Chemistry 

The weight ratio between the PLLA blocks and the PRic blocks varied from 83/17 to 35/65 

by playing on the length of the PLLA blocks. Tensile tests were conducted and 17wt% of PRic 

allowed to reach 98  of elongation at break with only a 25  loss of Young’s modulus 

compared to neat PLLA and decreased yield stress and stress at break. 29wt% of PRic gave 

similar results with a higher modulus than the 17wt% copolymer. Moreover, annealing 

treatments showed high crystallinity ratios above 55% could still be obtained, demonstrating 

the advantage of block copolymers against plasticisers172,173. Other examples regarding plant 

oils will be developed in the blend part as many bio-based polymers are now directly 

incorporated in PLA to obtain a toughening effect. 
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c. Blending with soft low Tg polymers 

A final technique to greatly enhance the mechanical properties of a brittle polymer is to 

blend a “soft”, low Tg, immiscible homopolymer polymer into it. Such low Tg polymer should, 

nonetheless, have a good interfacial adhesion/compatibility with the hard polymer matrix. 

The soft domains will then be able to limit the crazing by absorbing the deformation or create 

interfaces that will require extra energy to break and therefore also limit crazing. This is the 

typical strategy used for high impact poly(styrene) which has poly(butadiene) incorporated 

inside its matrix. Many polymers have been tested, both non-biodegradable and 

biodegradable leading to a very extensive literature78,82,150,174–176. In this part, both will be 

distinguished although the emphasis will be put on polymers that will preserve the compost 

degradation properties of PLA. 

i. Non-biodegradable polymer blends 

Melt blending homopolymers is an economically viable and easy way to greatly improve 

the properties of PLA. This is also a way of keeping PLA production prices to a low as very 

cheap oil-based polymers can be incorporated through such a way. A very extensive literature 

exists regarding such polymer blends, however, since the scope of this project was to focus on 

bio-based and sustainable additives for PLA, only the most prominent examples will be 

reported here. Complete reports can be found in multiple reviews which cover the subject of 

the toughening of PLA78,82,131,150,174–177. 

Poly(ethylene oxide) (PEO) 

One of the most used polymers with PLA is high molar mass poly(ethylene oxide) which is 

not miscible with PLA opposite to its low molar mass counterpart which has already been 

described as a plasticiser for PLA178. Kim et al. mixed high molar mass poly(ethylene oxide) 

with PLLA (40/60 weight ratio) and obtained an elongation at break of 280% with a tensile 

modulus of 17 MPa. The addition of poly(vinyl acetate) as a compatibilizer further increased 

the performance to 410%179. Polymer blends prepared by Li et al. showed an increase of 

modulus and tensile strength along with a decrease of the elongation at break when the molar 

mass of poly(ethylene oxide) increased. The work enlightens a sweet spot between 5wt% and 

15wt% loadings with a 10,000g.mol-1 poly(ethylene oxide) where an elongation at break of 

300% could be achieved180. Finally, Eom et al. made blends containing 1, 3 and 5wt% of 

poly(ethylene oxide). The impact strength was increased from 9.9 kJ.m-2 to 11.6 kJ.m-2 and the 
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elongation at break from 13% to 24% with little variation of the tensile strength. Such results 

are encouraging but highlight the need for a compatibilizer to achieve a better 

performance178. 

Poly(ethylene) (PE) 

PE is one of the most produced polymers and is known for its flexibility. PLA/PE blends 

have been studied and have shown these two polymers are immiscible. The group of Hillmyer 

extensively studied such blends with the presence or not of block copolymers as 

compatibilizers. Significant increases in impact toughness were obtained with 19wt% low 

density PE and 5wt% PLLA-b-PE copolymers as compatibilizers with a value of 760 J.m-1 

compared to just 12 J.m-1 for neat PLLA (Fig. I. 23). The use of harder and stiffer high density 

PE, the improvement was limited to 64 J.m-1 which is much lower181–183.  

 

Fig. I. 23: Effect of PLLA-b-LDPE block copolymer on the interfacial compatibility of PLLA/PE blends. 
SEM images adapted from Anderson et al.181, copyright 2003 John Wiley & Sons, Inc 
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Natural rubber (NR) 

Natural rubber or cis-1,4-poly(isoprene) is an impact modifier obtained from renewable 

resources which displays high toughness, biocompatibility, and low cost. Neat PLA/NR had an 

elongation at break of 200% with 10wt% of NR with relatively high modulus and tensile 

strength (2.0 GPA and 40 MPa)184. The use of epoxidized NR as compatibilizer allowed to 

obtain a 16-time higher impact strength value than neat PLA. The effect of the compatibilizer 

could be seen by a reduction of the diameter of the particles by SEM (Fig. I. 24)185. Finally, a 

more recent worked used low amounts of NR-g-maleic anhydride as a compatibilizer which 

proved more efficient186. Other strategies involved using sulphur to trigger dynamic 

vulcanisation to partially crosslink PLA with NR which resulted in high impact strength 

(25kJ.m-2) and high strain at break (125%)187. Epoxidized hydrogenated NR was also 

considered and gave blends with an impact strength of 32.4 kJ.m-2 and an elongation at break 

of 348% while retaining high tensile strength above 40 MPa188. 

 

Fig. I. 24: SEM images of impact fractured surfaces of PLA/NR (a) and PLA/NR/Epoxidized NR (b) 
blends at magnifications of ×4000 and ×3000, respectively, with the chemical reaction of epoxidized 
rubber with PLA chains. Adapted, with permission, from Nematollahi et al.185, copyright 2019 John 

Wiley & Sons, Inc 
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Ethylene-co-vinyl acetate (EVA) 

EVA is a copolymer made of ethylene and vinyl acetate which is widely used in the plastic 

industry showing high flexibility and toughness. PLA is actually miscible with poly(vinyl 

acetate) and immiscible with poly(ethylene), therefore, the compatibility between PLA and 

EVA can be tuned by changing the ethylene/vinyl acetate ratio in the copolymer. The effect of 

the amount of vinyl acetate was studied by Ma et al. in PLA/EVA blends of 80/20 weight ratio. 

They found there needs to be content of vinyl acetate between 40% and 70% in the EVA 

copolymer to have a toughening effect of the blend. When the right conditions were met, the 

impact strength was brought from 3 kJ.m-2 to 50-60 kJ.m-2 and the strain at break from 4% to 

300-350% while the modulus was kept at 2.4-2.7 GPa189. PLA/EVA blends using various 

compatibilizers have also been reported and show improved ductility and impact strength135. 

Finally, Tábi investigated the effect of annealing on PLA/EVA blends and found that over 65 

kJ.m-2 notched Charpy impact strength can be achieved with only 15 wt% EVA. The dominant 

crystalline phase was the disordered α’ form as such results were obtained for an annealing 

temperature of 80°C190. 

Acrylic and styrene-based copolymers 

Worthy examples can be reported regarding the use of such copolymers as they constitute 

the traditionally used impact modifiers for brittle polymers such as poly(styrene). The most 

well-known systems are the styrene-butadiene-styrene (SBS) copolymer, or the acrylonitrile-

butadiene-styrene (ABS) terpolymer. SBS and hydrogenated SBS were first reported as good 

impact strength enhancers by improving it by a 2.5 factor191. Epoxidized SBS was also prepared 

at different epoxidation levels to enhance the compatibility between PLA and SBS and resulted 

in blends having an impact strength of 891 J.m-1 and an elongation at break of 254% and a 

modulus of 1.1 GPa (1.6 GPa for their neat PLA) (70/30 PLA/epoxidized SBS with 35.8% of 

epoxy groups)192. ABS was also considered as an impact modifier for PLA. Li and Shimizu 

prepared blends PLA/ABS blends with and without the use of a compatibilizer, the reactive 

styrene/acrylonitrile/glycidyl methacrylate copolymer (SAN-GMA) along with a catalyst. 70/30 

PLA/ABS blends showed an improved impact strength of 64 kJ.m-2  which could be further 

improved to 124 kJ.m-2 (twice as high as neat PLA) using 5wt% of SAN-GMA and 0.2phr of 

catalyst, the elongation at break being limited to 24% though (Fig. I. 25)193. Such system is so 
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promising that NatureWorks started commercializing a PLA blended with an ABS-based 

toughening agent: BlendexTM 338176. 

 

Fig. I. 25: Use of glycidyl methacrylate rubber functionalisation for the reactive compatibilization of 
PLA binary blends 

Core-shell impact enhancers using poly(methyl methacrylate) (PMMA) as the shell were 

developed based on the fact that PLA/PMMA blends are miscible194. Such polymers are low 

Tg rubbery core cross-linked with a hard shell which offers compatibility and good interfacial 

adhesion with PLA. Methyl methacrylate-ethyl acrylate core–shell copolymers (ACR) blends 

with PLA (80/20 weight ratio PLA/ACR) had an impact strength of 77.1 kJ.m-2, up from 2.8 kJ.m-

2 and an elongation at break of 94% but with a noticeable decrease of modulus and tensile 

strength195. Glycidyl methacrylate-functionalized (GACR) were prepared by Li et al. 75/25 

blends of PLA/GACR allowed to obtain an impact strength of 83.5 kJ.m-2with neat PLA but with 

a dramatic decrease of modulus and tensile strength196. A final system of methyl 

methacrylate–butadiene–styrene (MBS) blended with PLA was reported. 25wt% of MBS in 

PLA resulted in an impact strength of 97.2 kJ.m-2 vs 4.7 kJ.m-2 for neat PLA, with a strain at 

break of 300% but a tensile strength down from 70 MPa to 34 MPa along with a modulus down 

to 720 MPa from 1800 MPa197.  

The study above demonstrates the research efficiency to find strong toughening agents 

for PLA using well-known chemistry of olefinic, acrylic and styrenic polymers. The introduction 

of reactive functions allowed to create covalent bonds between PLA and the impact modifiers, 
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therefore improving the interfacial adhesion between the two phases and resulting in 

improved impact strength properties. The success of such technology has resulted in 

commercially available impact modifiers such as Elvaloy, BioMax® Strong and BiostrengthTM 

from the DuPont Company and Arkema. 

Despite the high efficiency of such impact modifiers, the degradation properties of PLA are 

hampered as such additives will not be able either to degrade in the environment or in  

regulated conditions such industrial compost plants. Thus, one of the main features of PLA is 

suppressed and such additives do not constitute a viable long-term solution. Therefore, the 

more recent scope of research has been focussing on more sustainable second-generation 

bio-based impact modifier additives that are compostable and/or biodegradable. 

ii. Compostable and biodegradable polymer blends 

Many polyesters are available to be blended with PLA to enhance its properties (Fig. I. 26). 

Such polyesters display flexibility, biodegradability, crystallinity, and many characteristics 

which are suitable to tailor the properties of PLA. 

 

Fig. I. 26: Structure of polyesters as potential toughening agents for PLA 

Poly(ε-caprolactone) (PCL) 

Although it originates from petrochemical derivatives, PCL is a promising candidate for 

blending with PLA as it displays excellent ductility and flexibility due to its low Tg (-60°C) and 
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its semi-crystalline nature (melting temperature range 55-70°C). Unfortunately, due to a very 

high immiscibility between PCL and PLA, non-compatibilized blends only showed marginal 

ductility improvements at very high loadings (>60wt% of PCL) which implied a significant loss 

of modulus and tensile strength, thus emphasising the need for the use of 

compatibilizers198,199. However, as Fortelny et al. underline in their review, opposite results 

have also been reported with PLA/PCL that showed improved ductility and flexibility. The 

authors of the review concluded that in the case of pure PLA/PCL blends, there is a very fine 

dependence of the critical particle size of PCL to induce enhanced toughness, the blend 

composition, and the crystallinity ratio of PLA in the considered samples. Such conclusions 

show the existence of a very narrow window of particle size (0.3-0.6µm) upon which 

toughened blends can be obtained, even more emphasising the need to use compatibilizers 

to obtain a fine particle phase structure more easily 200. To do so, three main strategies are 

available that are: the use of block or graft copolymers, reactive compatibilization or more 

recently, nanofillers. 

Dell’Erba et al. used PLLA-b-PCL-b-PLLA as compatibilizers for multiple PLA/PCL blend 

compositions which showed a decrease of the size of the PCL particles201. The effect of PCL-

b-PLLA diblock copolymers of various compositions was studied by Xiang et al. in 80/20 

PLA/PCL blends. The addition of 5wt% of copolymers greatly enhanced the elongation at break 

to over 150%, with rather stable tensile strength, but unfortunately, no impact testing was 

conducted202. Poly(ethylene oxide)-b-(poly(propylene oxide)-b-poly(ethylene oxide) were 

found to be even better compatibilizers in 70/30 PLA/PCL blends as a high increase in fracture  

energy was noticed when using 2wt% of them. Morphological studies showed a partial 

miscibility of the blend with the addition of such compatibilizer203,204. Unfortunately, this 

strategy only showed moderate enhancements in mechanical properties of PLA/PCL blends 

even for more recent studies200,205. 

Reactive compatibilization showed more promising results and was studied for blends 

ranging from 15-35wt% content of PCL in PLA. In a first example, Wang et al. used triphenyl 

phosphine (2 phr) to trigger a transesterification reaction between PLA and PCL chains during 

melt-blending of an 80/20 PLA/PCL blend. The elongation at break was brought up to over 

120% for the compatibilized blends vs 28% otherwise with a low tensile modulus of 147 

MPa206. Dicumyl peroxide was also used to generate reactive free radicals during melt-
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blending to generate random compatibilization through grafting and crosslinking. In the case 

of 70/30 weight ratio PLA/PCL blend, the compatibilized blend showed an elongation at break 

over 130% and a notched IZOD impact strength three times higher than neat PLA. AFM studies 

confirmed the decrease in size of the PCL domains with increasing dicumyl peroxide content 

and little effect of the processing method207,208. Isocyanate reactive agents have also been 

used for reactive compatibilization, in particular lysine triisocyanate. Isocyanate moieties can 

indeed react with hydroxyl groups borne by the chain-ends of PLA and PCL and generate in-

situ urethane groups as linkers between the polymer chains (Fig. I. 27). Takayama et al. used 

such compound to show improved mechanical performance and impact strength due to a 

better compatibility of the phases209,210. Harada et al. also tested lysine triisocyanate along 

with other commercially available multifunctional isocyanates and epoxides. They concluded 

lysine triisocyanate was the best compound for reactive compatibilization and achieved an 

elongation at break of 268% and an impact strength nearly nine times higher than the neat 

PLA/PCL blend (80/20) while maintaining good tensile strength (47.3 MPa)211. 

 

Fig. I. 27: Reactive compatibilization of PLA and PCL using lysine triisocyanate 

Later, the influence of the PLA matrix’s crystallinity ratio was studied. It was shown that 

higher crystallinity ratios in compatibilized blends would actually result in a higher impact 
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strength whereas such impact strength would decrease for non-compatibilized blends. This 

was explained by a change in the impact fracture process: for amorphous samples, the 

fracture process is dominated by crazing whereas it is dominated by shear yielding in the case 

of crystallised samples, therefore involving a higher volume of the PLA matrix and resulting in 

improved toughness212,213. Other strategies involving glycidyl methacrylate214 and maleic- 

anhydride-grafted PLA215 have been reported but display lower performances than those 

described. This study shows the possibility of achieving high performing PLA/PCL blends rather 

than using chemically modified PLA polymers. 

Poly(butylene adipate-co-terephthalate) (PBAT) 

Blends with poly(butylene adipate-co-terephthalate) (PBAT) are becoming more and more 

interesting due to the increasing production of this polymer. Indeed, reports for 2021 showed 

it actually overtook PLA in terms of production. It is a flexible and fully biodegradable 

copolyester, which displays a strain at break over 700%216. Unfortunately, its price remains 

high, and it still relies heavily on oil-based monomers. Jiang et al. produced blends containing 

5, 10, 15 and 20wt% of PBAT in PLA. The fracture mode of PLA became fully ductile from very 

small loadings and showed a phase separation. The tensile strength was only reduced from 62 

MPa to 47 MPa at the highest loading while allowing extensions above 200% with only 5wt% 

of PBAT. Yet, the impact strength was not really improved due to the phase separation of the 

blend216. 

To overcome this feature, compatibilizers were used to enhance the mechanical 

properties of the blend such as PLA-b-PBAT-b-PLA triblock copolymers, epoxide functionalised 

polymers, free-radical initiators, or tetrabutyl citrate176. The triblock strategy allowed the 

authors of the study to increase the elongation at break of their 70/30 weight ratio PLA/PBAT 

blend from 22% to 166% using 5wt% of triblock while retaining the tensile strength217. 

The use of glycidyl methacrylate allowed the reaction of the epoxide groups with the -OH 

and -COOH terminated polymer chains of PLA and PBAT during the extrusion process used for 

the blending; therefore creating very small amounts of covalent bonds between the two 

phases through the apparition of random terpolymers. This allowed a better interfacial 

compatibility between the two phases. The optimised mixing ratio with 5wt% of 

compatibilizer and 25wt% of PBAT allowed to enhance the impact strength value from 21 J.m-1 

to 77 J.m-1 with an increased modulus, although the elongation at break remained low at 6.5% 
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vs 4.5%218. In another study using only 10wt% of PBAT, 5wt% was also reported as the sweet 

spot for the compatibilizer’s loading, giving samples with an elongation at break of 190  and 

an impact strength which tripled compared to neat PLA219. A commercial additive, Joncryl® 

ADR 4368, was used by Al-Itry et al. in 80/20 PLA/PBAT blends with an optimal amount of 

compatibilizer of 0.5wt% which gave an elongation at break of 135% and a modulus of 1.1 GPa 

against 1.3 GPa67,220. 

Free radical initiators can be used to trigger random reactions to create cross-linked 

architectures which will form a strong cross-linked interface (Fig. I. 28). Coltelli et al. showed 

the effect of the peroxide content on 75/25 PLA/PBAT blends and reported an optimal amount 

of 0.2wt%221. In a 80/20 PLA/PBAT blend, 0.5wt% of dicumyl peroxide allowed to obtain 

materials showing better mechanical properties as in the previous example with an elongation 

at break of 250% with an increased impact strength of 110 J.m-1 compared to 60 J.m-1 for the 

original blend and a higher tensile strength222. 

 

Fig. I. 28: Effect of radical coupling reactions of PLA/PBAT blends 

A more recent study involves a transesterification process using tetrabutyl citrate in a 

70/30 PLA/PBAT blend. 0.5wt% of the citrate gave an elongation at break of 300% with a 

tensile strength of 45MPa and an impact strength up to 9 kJ.m-2 as opposed to 2.5 kJ.m-2 for 

neat PLA and 3.5 kJ.m-2  for the blend without citrate223. 

Finally, 1wt% of cellulose nanocrystals were used as interfacial fillers in 75/25 PLA/PBAT 

blends. Such fillers induced a morphology change in the blend from dispersed spheres to a co-
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continuous morphology resulting in highly improved impact strength (95 J.m-1 vs 21 J.m-1) with 

a stable modulus around 2.5 GPa and an elongation at break of 145%224. 

Through these examples, it is shown that compatibilizers are required to obtain a good 

combination of ductility, toughness, and strength. PLA/PBAT blends are commercialised by 

BASF under the tradename Ecovio® offering a wide range of properties depending on their 

exact composition176,225. Unfortunately, the price competitiveness of such high potential 

blends is still quite poor as their price is reported around $5/kg. 

Poly(butylene succinate) (PBS) 

PBS is now a bio-based and biodegradable semi-crystalline polymer originating from 

succinic acid with a Tg around -32°C and a melting point reported at 114°C. It also displays 

excellent flexibility and biodegradability which could be retained in PLA/PBS blends226. Park 

and Im studied various PLA/PBS blends which displayed a single Tg over every blend 

composition, accounting for a high compatibility of the amorphous phases. PBS was found to 

increase the crystallisation rate of PLA due to phase separation and was reported for 

crystallised blends with more than 40wt% of PBS227,228. On the other hand, Wang et al. 

reported immiscible PLLA/PBS blends for 20wt% of PBS. A high elongation at break of 250% 

was reported with a modulus of 2.9 GPa but with a low improvement of impact strength 

(3.7kJ.m-2 vs 2.5kJ.m-2 for neat PLLA). In the same paper, the addition of 0.1wt% of dicumyl 

peroxide improved the impact strength to 30 kJ.m-2 while retaining similar elongation at break 

and modulus229. Ji et al. reported similar enhancement using dicumyl peroxide230. Other 

studies did not report such mechanical improvement without using any compatibilizer231,232, 

therefore strategies to enhance the compatibility of the two polymers were developed. Lysine 

triisocyanate was used by Harada et al. for 90/10 PLA/PBS blends resulting in an elongation at 

break of 225% and an impact strength of 55-60 kJ.m-2 whereas the compatibilized 80/20 blend 

did not break during the impact strength test233. The use of epoxide-based compatibilizers was 

also reported and led to high mechanical enhancement226,234–236 which was not the case when 

a PLLA-b-PBS-b-PLLA triblock copolymer was synthesised and used as a compatibilizer237; the 

copolymer strategy being efficient when a three-arm star-block copolymer was synthesised236. 

More recently, a ternary blend of PLA/PBS/PBAT was reported by Wu et al. using a slight 

amount of peroxide. A blend composition of 40/60/20 PLA/PBS/PBAT with 0.3phr of peroxide 

was reported to achieve a 1000 J.m-1 impact strength with an elongation at break around 100% 
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and a modulus of 1.3 GPa but a tensile strength of 34 MPa238. These examples show the high 

potential of such polymer blend which is however disregarded due to the high cost of 

production of PBS. 

Poly(butylene succinate-co-adipate) (PBSA) 

Similar to PBS, PBSA is another flexible and biodegradable polyester with a reported 

elongation at break around 300%. Lee and Lee prepared PLA/PBSA blends resulting in poor 

mechanical properties due to the high incompatibility of the two polymers239. First reporting 

the same behaviour240, Ojijo et al. also studied the effect of using triphenyl phosphine as a 

reactive compatibilizer in blends containing from a 90/10 to a 50/50 weight ratio of PLA/PBSA. 

An elongation at break of 230% and an impact strength of 11.4 kJ.m-2 were obtained for the 

70/30 blend using 2wt% of triphenyl phosphine. For the 90/10 blend, the elongation at break 

was only 140% but the impact strength was higher and reached 16 kJ.m-2, nearly a three-time 

higher value than neat PLA. The tensile strength was also close to that of neat PLA241. The 

same team used a commercially available chain extender, Joncryl® ADR 4368 CS, bearing 

pendant epoxy groups. The use of 0.6wt% of such additive allowed a 60/40 weight ratio 

PLA/PBSA blend to display an impact strength of 38.4 kJ.m-2 and an elongation at break of 

179% with a modulus of 2.4 GPa242, showing the potential of this polymer but that more 

research is required to tune the properties of its blend with PLA. 

Biopolymers (poly(hydroxyalkanoate)s, starch, chitosan) 

Recently, a renewed interest has been devoted to the use of biopolymers to enhance the 

properties of PLA. Such polymers are typically poly(hydroxyalkanoate)s (PHA)s starch, 

chitosan or proteins.  

Poly(hydroxyalkanoate)s, or PHAs, are promising biodegradable, aliphatic, and bio-based 

polymers for the toughening of PLA. These polymers are so-called microbial polymers as they 

are produced by microorganisms. PHAs are actually copolymers containing minor amounts of 

other hydroxyalkanoate motives depending on the production process243,244. The mechanical 

properties of PHAs are closely correlated to their structure, which can bear from three to over 

fourteen carbon atoms. The most common PHAs are poly(3-hydroxybutyrate), poly(3-

hydroxyvalerate), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), poly(3-hydroxybutyrate-

co-3-hydroxyvalerate), and poly(3-hydroxyoctanoate) (Fig. I. 29). 
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Fig. I. 29: General structure of PHAs with a few common motives 

A commercial poly(3-hydroxybutyrate) copolymer with other PHAs (Nodax) as blended 

with PLA and 10wt% was sufficient to improve the ductility and impact strength by one order 

of magnitude245. Another PHA, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was blended 

with PLA which did not result in highly improved mechanical properties even at high loadings 

of PHA246. More recently, Burzic et al. tested two grades of commercially available PHAs 

(undisclosed composition) and managed to get an un-notched impact strength of 80 kJ.m-2 

from 19 kJ.m-2 for an 80/20 weight ratio of PLA/PHA although the resulting elongation at break 

only improved to 4%. The same paper also reported the effect of annealed samples which 

gave an improved impact strength up to 115 kJ.m-2 up from 55 kJ.m-2 for annealed neat PLA247.  

More recently, Arrieta et al. reported PLA/ poly(3-hydroxybutyrate) blends using 

acetyl-tri-n-butyl citrate as a plasticiser in a 63.75/21.25/15 weight ratio blend. The resulting 

fibre materials had a depressed Tg of 26°C with an elongation at break of 105% compared to 

the unplasticized blend which had an elongation at break of 55% and a Tg of 51°C248. Also, 

Bian et al. tested poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with and without dicumyl 

peroxide and/or triallyl isocyanurate to enhance the compatibility of the two polymers. Using 

0.2wt% of these two compounds in 70/30 bends, an elongation at break of 251% could be 

achieved with a modulus of 1.1 GPa (5% and 2.0 GPa for neat PLA). This is still close to the 

performance achieved by the neat blend, which showed an elongation at break of 186% and 

a modulus of 1.2 GPa, therefore underlying the good compatibility of this PHA with PLA249. 

These examples amongst many others show the great potential of PLA/PHA blends which 

properties can be tuned depending on the PHA grade used.  
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Jacobsen and Fritz were the first to blend PLA with starch to reduce the cost of PLA-based 

materials while enhancing its flexibility. They realised they could only use up to 10wt% of 

native starch due to the semicrystalline character of the additive250. Since then, many studies 

have focussed on using modified starch materials (thermoplastic starch) with plasticisers to 

obtain an effect on the properties of PLA251. Martin and Avérous used such thermoplastic 

starch with glycerol and showed the rigidity of the material was controlled by the amount of 

glycerol and emphasised the need for compatibilization due to the poor mechanical properties 

which were obtained137. Li and Huneault reported various results using sorbitol and glycerol, 

with or without chain extenders which resulted in improved ductility at the expense of tensile 

strength which dramatically decreased252,253. The ductility of PLA/thermoplastic starch blends 

was enhanced using PLA-graft-maleic anhydride or thermoplastic starch-graft-maleic 

anhydride with a plasticiser254–256. 

Chitosan or β-(1,4)-2-amino-2-deoxy-D-glucopyranose has the great advantage of being 

available, biocompatible, biodegradable, non-toxic and shows antimicrobial properties. It is 

the deacetylated derivative of chitin, the major component of crustaceans’ shells (shrimps, 

squids, crabs etc.). Typical use of chitosan with PLA is to enhance the flexibility of PLA. A work 

reporting blends of chitosan and PLA is from Suyatma et al. in which 10, 20 or 30wt% of PLA 

is incorporated into chitosan. The mechanical properties of the blends are better than neat 

PLA, however they still remain very unsatisfactory in terms of elongation at break. Fimbeau et 

al. prepared PLA/chitosan films using poly(ethylene oxide) as a plasticiser. Enhanced 

properties were obtained due to the use of the plasticiser as reported previously in this 

chapter257. Works by Bonilla et al. and Claro et al. on PLA films containing 10wt% of chitosan 

showed an improved strength and ductility compared to neat PLA films258,259. Such materials 

show potential not only due to their flexibility but also thanks to their high biodegradability. 

Other biodegradable polymers 

A commercial polyamide elastomer (PEBAX 2533) based on polyamide 12 (22wt%) and 

poly(tetramethylene oxide) (78wt%) was also used for blends with PLA. Partial miscibility was 

reported between PLLA and PEBAX due to the good interactions between PLLA and the soft 

polyether and the hydrogen bonding between the amide functions of PEBAX and the ester 

functions of PLLA. The blend could exhibit an elongation at break of 161% for only 5wt% of 

PEBAX along with a very small decrease of modulus from 1.5 GPa to 1.8 GPa260. Multiple long-
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chain polyamides were tested by Raj et al. where polyamide 12 proved to enhance the 

mechanical properties of PLA the best with an elongation at break over 150% at 30wt% 

loadings and an impact strength up to 27 kJ.m-2 from 18 kJ.m-2  for neat PLA. At 40wt%, 

polyamide 12 and polyamide 10-12 could increase the impact strength to 33-38 kJ.m-2 , both 

compositions retaining high tensile strength261. Zhang et al. produced ternary 

PLA/PEBA/ethylene-methyl acrylate-glycidyl methacrylate blends. A 70/10/20 weight ratio blend 

exhibited an impact strength of 550 J.m-1 with an elongation at break of 60% while showing a 

modulus of 1.9 GPa and a tensile strength of 45 MPa due to a very good interfacial adhesion of 

the components262. More recently, Xia et al. chemically modified PEBA with glycidyl 

methacrylate and then blended the PEBA grafted with glycidyl methacrylate with PLA. The use 

of 30wt% of this polymer resulted in an impact strength of 78.3 kJ.m-2 and an elongation at 

break of 310%263.  

Lebarbé et al. developed a series of bio-based polyesters and poly(ester-amides) to act as 

toughening agents for PLLA. The incorporation of 10wt% of the most promising compound 

allowed the blend to show highly improved elongation at break of 155% and a modulus of 

900MPa (vs 4% and 1500MPa for neat PLLA) (Fig. I. 30). Unfortunately, the impact strength 

only showed very little improvement compared to other reported values in the 

literature264,265. 
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Fig. I. 30: Tensile stress vs strain curves for PLLA blends with different poly(ester-amide) contents. 
Reproduced from Lebarbé et al.265 with permission from Elsevier, copyright 2015 

The same team later studied the influence of a bio-based polyester structure made from 

sebacic acid, 1,10-decanediol and a dimer fatty acid Pripol 1009® with a varying amount of 

alkyl dangling chains. The obtained additives had a constant Tg around -50°C but a melting 

point which would span from -5°C to 78°C. A good compromise could be found with the 

compound containing 70mol% of dangling chains which displayed at 10wt% an elongation at 

break of 360% and an impact strength of 6kJ.m-2 and at 20wt% an even higher impact strength 

of 10kJ.m-2 with a lower elongation at break of 250%. This was remarkable given the impact 

strength of PLLA was reported at 2.5 kJ.m-2, however, the modulus was divided by two and 

gave values around between 700 and 850MPa266. Finally, in collaboration with the ITERG, 

direct blends of PLLA with poly(methyl ricinoleate) were reported as having mechanical 

properties as 10wt% loadings allowed the blend to exhibit an elongation at break of 155% with 

a modulus of 1200MPa, and a tensile strength of 44MPa for a blend with a crystallinity ratio 

of 46% which demonstrates the high potential and efficiency of castor oil derivatives for the 

toughening of PLA267. 
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For the sake of mentioning them, PLA-based fibre composites have recently gained an 

interest due to their low price, high availability from annually renewable resources and 

biodegradability. Various examples include jute, kenaf, bamboo, straw, miscanthus etc. Such 

materials have been found to enhance the mechanical properties of PLA at room temperature 

in terms of impact strength, stiffness, elongation at break and in some cases to a very low 

extent, a slight effect on the crystallisation rate. Challenges remain regarding the optimal fibre 

length, the dispersion of the fibre and its wettability with the PLA resin and the processing 

conditions and techniques of such composites. The readers are referred to the available 

literature from Siakeng et al. and Sangeetha et al. regarding such materials for more 

information268,269. 

d. Global summary and perspectives 

The very extensive literature regarding the toughening of PLA offers multiple possibilities, 

especially regarding the use of bio-based and biodegradable modifiers269. The main remaining 

challenge is to preserve the compostable characteristic of PLA to get more sustainable 

materials while preserving a low cost of production. Hopefully, the examples reported above 

showed the possibility to use biodegradable polyesters which would be highly suitable 

materials. 

The ester linkage is prone to hydrolysis which leads to believe it can undergo natural 

degradation in a compost medium or in the environment. Also, most of the reported polyester 

materials are mostly obtained from renewable resources derived from the biomass, for 

instance, PBAT, PBS, PHAs or poly(methyl ricinoleate) and can be used at low loadings, 

especially in the case of the latter polymer. Other challenges remain regarding PLA which will 

be dealt with in the coming parts. 

 

3.2. Improving the heat deflection temperature of PLA 

The low heat deflection temperature of PLA is a well-known phenomenon which is still a 

major drawback for the use of PLA-based materials above 55°C. This is due to the fact that the 

Tg of PLA is between 55°C and 60°C and that, although optically pure PLA grades (PLLA or 

PDLA) are semi-crystalline polymers, their crystallisation kinetics are very slow leading to 

materials with very low crystallinity ratios when made at high production speeds. Indeed,  

multiple strategies have been developed to try to enhance this behaviour, either by trying to 
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modify the Tg of PLA, take advantage of its stereocomplexation, improve its crystallinity ratio, 

or even by adding solid fibres138,270. 

a. Enhancing the crystallisation kinetics (NAs, plasticisers…) 

A typical problem of PLA is its slow crystallisation kinetics. Since the industrial production 

of PLA pieces is about a few seconds long, PLA does not have the time to crystallise, even in 

favourable conditions (mould set between 100°C and 130°C)271. As described in the part 

dealing with the crystallisation of PLA, the crystallisation phenomenon of a polymer can be 

divided into two major components: the nucleation and the crystal growth. Both components 

are at play in defining the low crystallisation kinetics of PLA44 and the different kinetics 

enhancement strategies can play a role on a single or both components. The thermal 

annealing of the PLA objects can be a solution, however, it is still not compatible with fast 

production rates as this process requires several minutes to obtain a sufficiently high 

crystallinity ratio that would improve greatly the heat deflection temperature272. 

Nucleating agents 

A first common strategy to enhance the crystallisation kinetics is to use nucleating agents. 

Nucleating agents are small organic molecules or inorganic compounds that will highly 

promote the crystallisation phenomenon when mixed inside a polymer by increasing the 

nucleation density to very high levels. This concept is already well-known from their use with 

polyolefins such as high density polyethylene or isotactic polypropylene273–275. Tested 

nucleating agents for PLA are numerous135 and involve mineral and organic compounds such 

as minerals276, oxides277,278, hydrazide compounds279–281 or amides282–289 (Fig. I. 31). 
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Fig. I. 31: Commonly reported organic nucleating agents for PLA 

Kolstad was the first to report the use of 6wt% talc in PLLA which increased the nucleation 

density by 500 times, leading to a seven-fold reduction of t1/2 at 110°C to less than a minute290. 

Harris and Lee reported such performance using only 2wt% of talc at 115°C with a t1/2 down 

from 38.2 min for neat PLA to 0.6 min48. Li and Huneault showed that for 1wt% of talc, the 

optimum crystallisation temperature would drop to 100°C and decrease t1/2 to 90 seconds291. 

The influence of the size of talc particles was later discussed by Petchwattana et al., which 

concluded that the smaller particles of talc of 1µm were the most efficient. However, the 

highest HDT of 139°C was only achieved using 10wt% of talc (precise injection-moulding 

conditions not disclosed)292. Clay has also been considered as a mineral nucleating agent as it 

has been used to improve the thermal, mechanical, biodegradation and barrier properties of 

PLA293. A study found that 4wt% of nanoclay could increase the crystallisation rate from 36% 

for neat PLA to 49% after 1.5h at 110°C, which is not much294. A more profound study into the 

kinetics of PLA/clay systems concluded that the effect of clay is rather moderate on the 
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crystallisation kinetics of PLA and that talc makes a much better nucleating agent in 

comparison295. 

Organic nucleating agents can also be used. They are typically low molecular weight 

compounds that can crystallise at a higher temperature than the polymer therefore providing 

organic nucleation sites. Compared to inorganic fillers, they can be more finely dispersed 

inside the polymer matrix in the molten state. Various nitrogen bearing compounds have been 

considered as such. Nam et al. reported the use of N,N’-ethylenebis(12-hydroxystearamide) 

(EBHS) as a nucleating agent with PLA. Optical micrographs showed the evidence of trans-

crystallites which was proof of an epitaxial growth of PLA crystallites from the surface of EBHS. 

They also demonstrated the effect of the nucleating agent at crystallisation temperatures of 

110°C and 130°C. Moreover, a clear trend of faster crystallisation rates was measured at 110°C 

with just 1wt% of EBHS296. Xing et al. observed a similar effect using the same compound 

which resulted in a very high nucleation density (Fig. I. 32)288. A very similar compound that is 

N,N’-ethylenebis(stearamide) (EBS) was also tested as a nucleating agent. 2wt% of EBS 

brought the t1/2 down to 1.8 min from 38.2 min, which was however less efficient than talc48. 

The performances of EBS and EBHS were compared by Xing et al. They showed that EBHS was 

the better nucleating agent at 125°C and 1wt% in PLA, both through isothermal DSC 

measurements and by polarised optical micrographs although it has a lower melting point 

than EBS (142°C vs 146°C). Such difference was attributed to a better hydrogen bond 

interaction between PLA and EBHS due to the presence of the hydroxyl groups284. Saitou and 

Yamaguchi further studied these two agents and did not see a clear difference between the 

two in isothermal crystallisation kinetics at 100°C when the loading was lower than 0.7wt%287. 

These two bio-based nucleating agents show such promising performances that patents were 

filled regarding heat resistant PLA formulations297–299. 
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Fig. I. 32: Polarised Optical Microscopy micrographs of neat PLLA (a3-a5) and PLLA/N,N’-
ethylenebis(12-hydroxystearamide) (b3-b5) at selected temperatures for 90 mins. Adapted from Xing 

et al.288 with permission from Springer-Verlag Berlin Heidelberg, copyright 2015 

Other compounds include orotic acid which was melt-blended at a 0.3wt% loading. 

Isothermal crystallisation was performed at 120°C and t1/2 was reduced to 40 secs from over 

10 mins300 although another study reported a lower effect using 0.5wt%285. Hydrazide 

compounds are also reported as efficient nucleating agents. Qi et al. synthesised a series of 

aliphatic diacyl adipic dihydrazides with different alkyl moieties which were added into PLA at 

1wt% loadings. The t1/2 values were reduced to 2.8-5 mins depending on the alkyl moieties, 

the octyl substituent being the most efficient301. A commercially available dihydrazide 

compound N,N’-dibenzoyladipohydrazide (TMC-306) brought t1/2 down to 0.5 min from 8.1 

min at 120°C at a 0.5wt% loading. In the similar study, a homemade bisoxalamide molecule, 

N,N’-(ethane-1,2-diyl)bis(N-phenyloxalamide), gave a t1/2 of 0.6 min285. Similar linear 

oxalamide compounds were studied by Roy et al. and reported a t1/2 of 2.7 minutes compared 

to 17.7 minutes for neat PLA at 2wt% loading302 and similar derivatives are also reported in 
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patents303. Derivatives of 1,3,5-trialkyl-benzenetricarboxylamides (BTAs) are also reported. 

0.8wt% was found to be the optimal loading with the butyl substituents. A t1/2 of 0.8 mins was 

obtained during isothermal crystallisation at 120°C as compared to 18 min for neat PLA It was 

further decreased to 0.6 mins at 105°C showing the high efficiency of such components304. A 

similar compound, N,N’,N”-tricyclohexyl-1,3,5-benzene-tricarboxylamide (TMC-328) also 

showed similar efficiency with a heat deflection temperature above 140°C305. Among other 

very efficient compounds are precipitated barium sulfate306, uracyle (t1/2 1 min at 120°C vs 

16.8 min)307, zinc phenylphosphate (t1/2= 0.62 min at 115°C at 2wt% loading)308, and a 

potassium salt of dimethyl 5-sulfoisophthalate (Lak-301) which reduced the t1/2 to 0.28 in at 

120°C in PLA/miscanthus/Lak-301 blends (89/10/1)309. Due to the incredible number of 

papers, we refer the readers to other extensive reviews regarding nucleating agents such as 

the one from Tábi et al135. 

The extensive research conducted on nucleating agents for PLA has managed to discover 

very efficient compounds that greatly promote the crystallisation of PLA, through a very high 

nucleation efficiency. Very simple and cheap commercially available compounds are reported 

which opens the way for PLA with nucleating agents to obtain PLA materials with enhanced 

thermal properties. 

Plasticisers 

Jointly, another strategy to help PLA crystallise is the use of plasticisers. Thanks to such 

compounds, the chain mobility of PLA can be enhanced and therefore crystallise more easily. 

Another reported effect is directly linked to the nature of the plasticisers. Indeed, esters and 

especially citrates are reported to boost the crystal growth138,298,310. Most plasticisers have 

already been described in the part regarding the toughening of PLA. Their performance 

regarding the improvement of crystallisation kinetics is however worth mentioning in some 

cases. Low molar mass poly(ethylene oxide) (Mn=200 g.mol-1) was used by Chieng et al. who 

reported an increased crystallinity ratio for sheets obtained by hot pressing at 160°C for 10 

mins (above 55% for a poly(ethylene oxide) content from 1wt% to 5wt%)311. Muller et al. used 

poly(ethylene oxide)s with higher molar masss from Mn= 1000 g.mol-1 to 5000 g.mol-1 to avoid 

phase separation and also reported increased crystallinity ratios during dynamic DSC 

cooling312. More recently, triblock copolymers of PLA-b-poly(ethylene oxide)-b-PLA were also 

reported to induce a higher crystallinity ratio when blended with PLA313. Citrate ester were 
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also reported to influence the crystallisation degree of PLA. Acetyl triethyl citrate was reported 

by Li and Huneault as having a slight effect when combined with a nucleating agent such as 

talc291. Labrecque et al. showed high amounts of triethyl, tributyl citrate or acetyl triethyl 

citrate improved the crystallisation kinetics of PLA although this was most noticeable on the 

cold crystallisation of the mixture314. Similar observations were reported by Ljungberg et al140.  

Polymer blends 

Like the plasticisers, this part will cover the effect of polymers blended with PLA, most of 

which have already been discussed regarding their effect of the mechanical properties of PLA. 

Hao et al. studied the evolution of the Tg of miscible PLA/poly(methyl methacrylate) 

blends. Though the crystallinity ratio of the blends was not improved, the Tg did increase with 

increasing contents of PMMA reaching 74°C for 50/50 blends315. The poly(ester-amide) impact 

enhancers reported by Lebarbé et al. also showed they improved the crystallisation kinetics 

of PLA by bringing the t1/2 to 1.72 min from 6.12 min for neat PLLA at 110°C265. Similarly, their 

polyester containing 70% of dimer fatty acid showed a t1/2 down to 1.60 min and 1.17 min 

during isothermal crystallisation at 110°C at 10wt% and 20wt% loadings266. Diblock PLLA-b-

PCL copolymers were studied by Castillo et al. and reported to have faster crystallisation 

kinetics with a growing amount of PCL up to 10wt%65. Cock et al. reported the higher 

crystallisation degree of PLA/PCL blends due to the nucleating effect of PCL during the 

supercooling of the PLA matrix316. Poly(3-hydroxybutyrate) was also reported to enhance the 

crystallisation kinetics of PLA with a crystallinity ratio of 22% compared to 3% for neat PLA317. 

Guo et al. reported a heat deflection temperature of 133°C using 50wt% of 

poly(oxymethylene) in PLA318. Quero et al. studied the isothermal crystallisation of PLA/PBAT 

blends with and without the use of acetyl tributyl citrate. The combined effect of the 

plasticiser and PBAT slightly reduced the half-time crystallisation of the blend319. Shibata et al. 

studied the thermal behaviour of PLA/PBS and PLA/poly(butylene succinate-co-L-lactate) 

(PBSL) blends. They found both polymers would increase the crystallinity ratio of the blend for 

samples injection moulded at 40°C. Furthermore, isothermal crystallisation measurements 

allowed them to report t1/2 down to 3.1 min for PBSL at 10wt% loadings from 12.5 min for 

neat PLLA at 110°C. PBS only had a slight effect at 5wt% with a t1/2 reported at 9.6 min320. 

Biopolymers (starch, chitin, silk, cellulose) have also been considered for PLA. As previously 

described for the mechanical properties’ enhancement, starch or thermoplastic starch has 
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been tested. PLA blends with corn starch had a t1/2 of 1.5-3.2 min at 100°C compared to 14 

min for neat PLA but remained lower than the one induced by talc321. Chitin was reported by 

Rizvi et al. to enhance the crystallisation kinetics of PLA as 1wt% was sufficient to obtain a 

crystallinity degree above 40% by compression moulding at 180°C for 10 min322. Silk was also 

reported to act as a nucleating agent with just 1wt% in PLA. No effect could be measured by 

non-isothermal DSC studies; however, a difference clearly appeared by polarised optical 

microscopy during an isothermal, crystallisation at 120°C. A maximum crystallisation rate was 

found at 107°C with a t1/2 around 2 min compared to over 10 min for neat PLA323. Cellulose 

crystals are also a reported nucleating agent with lower efficiency than chitin or silk324,325, even 

when it was chemically modified through esterification326. 

Some notable examples combine the use of a plasticiser along with a nucleating agent or 

a polymer acting as such. Singh et al. reported the use of triethyl citrate at 20wt% with 1wt% 

of chitin nanocrystals which showed high crystallinity ability through the DSC and polarised 

optical microscopy138.  

b. Stereocomplexation 

Adding low molar mass PLA to high molar mass PLLA or PDLA has been suggested in the 

mechanical reinforcement part so that it would act as a plasticiser on PLA. Yin et al. used small 

amounts of a high melting point PLLA (187°C) blended, in such a way that it would not melt, 

inside a PLLA matrix (Tm=168°C). Using such technique, the authors managed to enhance 

greatly the crystallisation kinetics of the PLLA matrix bringing the t1/2 down to 24 sec from over 

15 min. This technique was more efficient than blending PDLA or talc at the same weight ratio 

(5wt%)327. Di Lorenzo and Androsch studied the effect of low molar mass highly pure PLLA in 

PLLA containing 4mol% of D-lactide on the crystallisation kinetics. They found such 

incorporation enhanced the crystallisation kinetics of the high molar mass PLLA as the low 

molar mass PLLA would crystallise first and therefore induce the crystallisation of the higher 

molar mass PLLA.328. 

Thanks to new efficient production means, PDLA has become a very affordable grade of 

PLA. Combined with the need to enhance the thermal behaviour of PLA-based materials, the 

path of stereocomplexes has been highly considered329. Stereocomplexes are formed from 

the equimolar mixture of PLLA and PDLA chains which co-crystalise in a new arrangement (Fig. 

I. 33). Also, since stereocomplexes form at a higher temperature than PLA homocrystals (220-
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240°C)35,330, they might act as nucleating agents on top of adding to the thermal stability of 

PLA. 

 

Fig. I. 33: Stereocomplex formation using PLLA and PDLA, reproduced from Tsuji331 with permission 
from Elsevier 

To support this hypothesis, the study from Brochu et al. reported a higher spherulite 

density along with a larger homocrystalline fraction. The authors concluded that PLLA crystals 

can grow through epitaxy on previously formed stereocomplexes’ lamellae332. Anderson and 

Hillmyer studied the effect of the molar mass of PDLA in 97/3 weight ratios PLLA/PDLA blends 

on the crystallisation kinetics of PLLA and the formation of stereocomplexes. They found that 

a PDLA with an Mn of 14,000 g.mol-1 was the most efficient and resulted in a t1/2 of less than 

1 min at 140°C (vs 17 min for neat PLLA) and close performance was achieved using only 1wt%. 

The presence of stereocomplexes was proven using the DSC and polarised optical 

microscopy333. Tsuji et al. further confirmed such observations by studying the amount of 

stereocomplexes formed. They noticed a difference in behaviour between the isothermal and 

non-isothermal crystallisation, the amount of PDLA was ten times higher to have an effect on 

the isothermal crystallisation kinetics, whereas only 1wt% was necessary for non-isothermal 

crystallisation334. These studies conclude with the fact that at one point, stereocomplexation 

is hindered by the homocrystallisation of PLLA and PDLA. Studies have also found that the 

stereocomplex formation was highly dependent on the processing method. Narita et al. mixed 
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10wt% of PDLA in 90wt% PLLA by extrusion and observed that the stereocomplexes will be 

the most efficient to enhance the crystallisation of PLLA only if melted in the temperature 

range of 228-238°C. This was attributed to the formation of very small size stereocomplexes 

resulting in a larger number amount of crystallites. Partially melted stereocomplexes at lower 

temperatures or stereocomplexes melted above 240°C did not display the same efficiency335. 

Such study was consistent with what had been observed previously by Yamane and Sasai who 

did not see any nucleation effect on PLLA when a 95wt% PLLA/5wt% PDLA blend was heated 

above 240°C336. More recently, Samsuri et al. used the formation of different size 

stereocomplex particles to prove their influence on the nucleation of PLLA337. 

Extensive research has been conducted since 2013 and has recently been published in a 

review by Chen et al. in which they report the thermal properties and behaviour of diverse 

PLA materials holding stereocomplexes329. Globally, the higher the stereocomplex fraction 

and degree of crystallinity, the higher the heat deflection temperature of the PLA material. 

Various strategies have been developed to trigger the formation of stereocomplexes and 

obtain PLA materials with enhanced thermal properties. PLLA/PDLA blends were prepared in 

a 50/50 weight ratio by Zhang et al. and injection-moulded in a mould set at 120°C. The 

reported Vicat softening temperature (another type of test to assess the thermal resistance 

of a material) was 164°C for unannealed samples containing homocrystals and 

stereocomplexes (29-34% crystallinity ratio of homopolymers and 5-6% crystallinity ratio of 

stereocomplexes) and further went up to 199°C after annealing at 210°C which produced only 

stereocomplexes (stereocomplexes’ crystallinity ratio of 55%), therefore demonstrating the 

better thermal behaviour of pure stereocomplexes in PLA materials338. Another work further 

demonstrated the potential for heat resistance of stereocomplexes by increasing the Vicat 

softening temperature from 61°C to 196°C by just increasing the crystallisation degree of 

stereocomplexes from 2% to 35%339. The highest Vicat softening temperature was reported 

at 212°C by Liu et al. by injection moulding at 210°C in a mould set at 190°C. The material 

developed contained a mixture of high optically pure content PLA stereocomplexes with 

20wt% of low optically pure ones with a reported stereocomplex crystallinity ratio of 40%. In 

comparison, the low optically pure stereocomplex PLA material had a softening temperature 

of 164°C340. 
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For the sake of mentioning them, block copolymers using PLLA or PDLA with a polymer 

which can have a toughening effect have also been developed. Such polymers include PEO, 

PMMA, PCL, PHB, or PBAT. The idea is to develop a polymeric system which can display both 

enhanced mechanical properties along with high heat resistance thanks to the formation of 

stereocomplexes. Moreover, in some of the works previously mentioned, the higher 

crystallinity ratio of PLA materials resulted in a higher toughening effect of the toughening 

agent. We refer the readers to the review from Li et al. which deals with such materials341. 

The strategy involving stereocomplexes is of particular interest as better 

thermomechanical properties can be achieved for PLA materials due to their faster rate of 

crystallisation and their nucleating effect on PLLA and PDLA. There are severe drawbacks 

however which are the high processing temperatures which are required due to the high 

melting point and the high temperature formation range of the stereocomplexes, which also 

implies the thermal degradation of the PLLA/PDLA chains. Finally, although the production is 

now increasing, the price of PDLA remains higher than PLLA and therefore renders this 

strategy less economically attractive. 

Various research has been conducted on improving the thermal behaviour of PLA. The 

different occurrences have reported efficient solutions which however imply the use of the 

correct processing conditions to obtain PLA materials with good thermal behaviour. As a 

simple solution, nucleating agents seems to be a simple and cheap way of achieving such goal. 

 

3.3. Tuning the O2 gas barrier properties 

As mentioned in the part dealing with the general properties of PLA, it was clear that in 

order to obtain suitable food packaging properties, the gas barrier properties of PLA will have 

to be modified, either through a reinforcement of the barrier behaviour towards O2 or water 

vapour or, on the contrary, greatly enhance the permeability of gases for fresh vegetables or 

fruit. 

a. Improving the crystallisation rate 

A first way of enhancing the gas barrier properties of PLA is to enhance its crystallinity 

ratio. Multiple studies have reported that the gas permeability of PLA will decrease when the 

crystallinity ratio increases89,94,97,342,343. For instance, Guinault et al. measured O2 and helium 
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permeabilities respectively reduced by two and three with crystallinity ratios above 40%94. 

Later, their team showed the impact of the crystalline phase on the O2 permeability. In the 

case of the presence of the α’ phase, no reduction of O2 permeability could be noticed and 

only the presence of the α phase would result in a reduction of the O2 permeability. This was 

however specific to O2 since the permeability of helium decreased with increasing ratios of 

crystallinity342. More interestingly, Fernandes Nassar et al. showed a link between the process 

used to make PLA crystallise and the O2 permeability97. In their work, the authors obtained 

crystalline PLA sheets either directly from the melt or from the glassy state through annealing. 

Each time, the crystallisation conditions were selected to specifically obtain either the α’ form 

or the α form of crystalline PLA. They concluded that the O2 permeability of PLA films 

crystallised from the melt would display better barrier behaviours, about 2.5 times less 

permeable to O2 when the crystallinity ratios were over 35%, whatever the selected 

crystallisation temperature (85°C, supposed to favour the α’ form or 130°C supposed to favour 

the α form). An outstanding feature was, however, the permeability obtained for a sample 

crystallised from the glassy state at 130°C for 20 mins which gave the lowest O2 permeability 

of 0.58x10-18 m3.m.m-2.s-1.Pa-1 compared to the original 2.30x10-18 m3.m.m-2.s-1.Pa-1 for neat 

PLA. The authors therefore concluded that to obtain the best O2 barrier properties, PLA should 

be pre-nucleated and quickly annealed for a short amount of time from the glassy state at 

130°C. 

Unfortunately, the authors could not clearly state the predominance of either the α’ or 

the α form in their samples. In fact, to fully understand the impact of the crystallisation degree 

on the barrier properties of PLA, it is necessary to decorrelate the effect of the increasing 

crystallinity ratio and the excess of free volume formed with the rigid amorphous part of the 

material. Sangroniz et al. compared the transport properties of PLLA and a mixture of 

PLLA/PDLA (50/50) producing stereocomplexes for which the rigid amorphous fraction (RAF) 

is very small. They proved that the RAF content increases with the crystallinity ratio in PLLA, 

therefore leading to the creation of free volume which overcame the effect of the increased 

crystallinity ratio of the barrier performance. This was not the case for stereocomplexes 

therefore leading to a lower O2 permeability344, such lower permeability at similar crystallinity 

ratios than PLA homopolymers being reported in other studies and the role of the 

stereocomplexes was also defined as increasing the tortuosity of the polymer material on top 
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of limiting the free volume329. In another study, Bai et al. changed the shape of the PLLA 

crystallites from spherulites to shish-kebab-like crystals using TMC-328 as a nucleating agent. 

The obtained PLA material has an O2 permeability 500 times lower than neat amorphous PLA 

(new value of 1.91x10-20 m3.m.m-2.s-1.Pa-1). Such low value was obtained thanks to the parallel-

aligned crystals with interlocked boundaries which greatly limited the diffusion of O2 inside 

the material (Fig. I. 34)345. 

 

Fig. I. 34: O2 permeability measurements on PLA samples with different crystalline morphologies. 
Reproduced from Bai et al.345 with permission from the American Chemical Society, Copyright 2014 

The O2 barrier properties of PLA do not only depend on its crystallinity ratio but are also 

highly dependent on the crystal morphology and the ratio between the crystalline, the rigid 

amorphous fraction and the mobile amorphous fraction of the material. Enhancing the 

crystallisation degree of PLA materials is however a very simple and efficient way of tuning 

their gas barrier properties. 

 

b. Specific additives 

The use of additives to tune the gas barrier properties of PLA has been widely studied. 

Depending on the nature of the additive, it is possible to predict the evolution of the 

permeability through the following equation: 
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ln(𝑃) =  𝜑1 ∗ 𝑙𝑛(𝑃1) + 𝜑2 ∗ ln (𝑃2) 

With P = the permeability of the penetrant through the blend, ϕ1 = the volume fraction of 

component 1, ϕ2 = the volume fraction of component 2, P1 = the permeability of the penetrant 

through component 1 and P2 = the permeability of the penetrant through component 2. In 

case of an immiscible blend, the Maxwell model can be used to predict the permeability 

through the following equation: 

ln(𝑃) =
𝑃𝑑 + 2 × 𝑃𝑐 − 2 × 𝜑𝑑 × (𝑃𝑑 − 𝑃𝑐)

𝑃𝑑 + 2 × 𝑃𝑐 − 𝜑𝑑 × (𝑃𝑑 − 𝑃𝑐)
 

With P = the permeability of the penetrant through the blend, ϕd = the volume fraction of 

the dispersed phase, Pc = the permeability of the penetrant through the continuous phase and 

Pd = the permeability of the penetrant through the dispersed phase346–348. The considered 

additives can either be fillers, or polymers87,88,349. Plasticisers are disregarded as they increase 

chain mobility inside a polymer matrix which results in increased permeability values as 

demonstrated with acetyl tributyl citrate by Courgneau et al. even with the addition of talc as 

a nucleating agent to increase the crystallinity ratio350. 

Fillers are a very efficient way of increasing the barrier behaviour of PLA. Fillers will 

intercalate between the polymer chains of PLA therefore reducing the free volume and also 

increasing the tortuosity of the path through the polymer for penetrants (Fig. I. 35). Among 

the most widely used fillers are montmorillonites (MMTs) which are hydrated alumina-silica 

layered clays. Guo et al. used multiple fillers such as MMT, organomodified MMT, halloysite 

nanotubes and organomodified halloysite nanotubes. The halloysite nanotubes did not have 

any effect on the O2 permeability, whereas the organomodified MMT divided by 2 the 

permeability of the samples351. In another work, Ortenzi et al. used silane-modified nanosilica 

and MMT. An 81% reduction in O2 permeability (2.35x10-19 m3.m.m-2.s-1.Pa-1) using epoxy-

silane modified nanosilica at 1wt% was achieved along with a very high crystallinity ratio of 

67%, also contributing to such performance352. In a recent study, halloysite nanotubes were 

shown to reduce the O2 permeability by a 1.5 factor at 3wt% loading, however with a rather 

wide standard deviation353. Graphene and graphene oxide have also been used as fillers for 

PLLA. Graphene sheets were incorporated with a compatibilization step involving melt-

condensation of lactic acid oligomers, resulting in a reduction of 45% of the O2 permeability354. 

Graphene oxide and graphene nanoplatelets were tested by Pinto et al. and 0.4wt% of them, 
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in separate mixtures, allowed the permeability to be reduced to 1.2x10-18m3.m.m-2.s-1.Pa-1 

from 3.8x10-18 m3.m.m-2.s-1.Pa-1 for neat PLLA355.  

 

Fig. I. 35: Simplified drawing of the “tortuous path” produced by the incorporation of nanocomposite 
fillers into a polymer matrix. (A) Neat polymer (diffusing gas molecules follow a pathway 

perpendicular to the film orientation); (B) non-interacting nanocomposite (impermeable platelets 
hinders direct diffusion); (C) interacting nanocomposite (the polymer strands are “immobilized” at 

the polymer–nanofiller interface and the overall free volume available is reduced. Reproduced from 
Marano et al.356 under a Creative Common CC-BY License  

Regarding polymers, Lagaron et al. defined chemical criteria to determine whether such 

chemical moiety in a repeating unit would favour or not the permeability of O2. The best 

results were obtained with -OH pendant groups such as the ones found with EVOH and 

amongst the worst groups were linear aliphatic polyolefins such as PE and even worse, 

repeating units containing alkyl dangling chains. Their discussion regarding the 

macromolecular architecture reported that polymers bearing dangling chains or branching 

along with atactic polymers would give lower barrier performances357. Moreover, the 

morphology of the blend is of prime importance, as a discontinuous morphology is expected 

to have a higher permeability than a co-continuous morphology86. 

Blends of PLA with poly(vinylacetate-co-vinyl alcohol) were prepared by Razavi et al. with 

various amounts of vinyl alcohol. The O2 permeability was divided by a factor 2 for a copolymer 

containing 15mol% of vinyl alcohol at a 5wt% loading in PLA compared to neat PLA358. PHAs 

have also been blended with PLA especially poly(3-hydroxybutyrate) and poly(3-

hydroxybutyrate-co-3-hydroxyvalerate). The incorporation of 15wt% of poly(3-

hydroxybutyrate) reduced the O2 transmission rate by 1.5 compared to neat PLA359. In another 
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study, 25wt% of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) led to a reduction by 2.5 of 

the oxygen permeability. Different additives were also tested with this blend but did not 

improve the performance further than the neat blend360. Polypropylene carbonate is one of 

the most efficient polymers blended with PLA to reduce the O2 permeability. In blends 

containing 40wt% of PLA, the O2 permeability was reduced by 63% without the use of a 

compatibilizer361. PBSA was blended with PLA and crotonic acid functionalised PLA for which 

N,N’-dicyclohexylcarbodiimide was used as a coupling reagent. The neat PLA/PBSA blend 

resulted with an increased O2 permeability while the blend with functionalised PLA led to a 

35% decrease362. Chitosan was reported as a biopolymer with interesting barrier properties. 

It was grafted on oligomeric(lactic acid) and blended with PLLA. 5wt% of such additive resulted 

in a O2 permeability reduction of 82% while keeping good mechanical properties363. Gum 

arabic was also tested through lactic acid-grafted-gum arabic taking advantage of the available 

-OH and -NH2 pendant groups. The oxygen permeability was reduced by a factor ten, whatever 

the loading of the additive (3, 5, or 10wt%). Such performance was attributed to the dispersion 

of the additive increasing the tortuosity of the O2 path and the reduction of the solubility of 

O2 due to a uniform dispersion364. The effect of cellulose microcrystals and nanocrystals was 

studied by Sanchez-Garcia et al. and Espino-Pérez et al. with a focus on the size of the cellulose 

derivatives. Cellulose microcrystals did not have any effect on the barrier properties365, 

whereas cellulose nanocrystals decreased the O2 permeability by a factor 10 in samples loaded 

at 5wt%366. Such results were not observed by Espino-Pérez et al. who did not notice a clear 

reduction of the O2 permeability367. 

Unfortunately, PLA blends with other polymers, which are reported to enhance its 

mechanical properties, return unsatisfactory O2 barrier behaviours. Moreover it is hard to 

apprehend the true impact of the different additives since the conditions (temperature, 

relative humidity) are not always stated and may have an impact on the measured values, 

especially regarding the hydrophilic additives. Other techniques are therefore required to 

trigger an enhancement of such properties. This was the case with PLA/PBS and PLA/PBAT 

blends for instance. Such blends have been reported as having interesting mechanical 

properties, however the O2 permeability properties were unsatisfactory. Works on such 

blends to trigger an in-situ fibrillation have demonstrated the possibility to reduce drastically 

the O2 permeability. For a 80/20 PLA/PBS blend, the permeability was reduced to 2.0x10-19 
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m3.m.m-2.s-1.Pa-1 which is three times lower than the permeability of neat PBS368. PLA/PBAT 

blends with a 50/50 PLA/PBAT weight ratio had an O2 permeability which was similar to the 

one of neat PLA although the O2 permeability of PBAT is originally five times higher369. Zhou 

et al. later reported an O2 permeability nine times lower than neat PLLA using the same 

strategy with PLA/PBAT blends of 85/15 weight ratio with enhanced mechanical properties370. 

 

c. Multi-layer films 

Multi-layer extrusion is a common technique to superpose multiple polymer layers in a 

sandwich-like fashion and obtain a film presenting the characteristics of all the polymeric 

materials used. Regarding the permeability, it can be calculated as such: 

1

𝑃
= ∑

𝜙𝑖

𝑃𝑖

𝑛

𝑖=1

  

Where P is the general permeance, φi is the volume fraction of polymer i and Pi the 

permeability of the polymer composing the layer i. A typical technique is to use an expensive 

high barrier polymer such as ethylene vinyl alcohol (EVOH) as a middle layer to obtain high 

barrier properties along with a polyolefin (PE, PP) which will have a low water vapour 

permeability due to its highly hydrophobic nature.  

Regarding PLA, only few polymers have been reported for multi-layer film production. 

Among these polymers are PBS, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), cellulose, and 

fish gelatine. For the PLA/PBS system, films of 225µm were prepared containing 2049 layers 

with layers of PBS about 45nm thick. The O2 permeability was only slightly affected with a 28% 

decrease, the most noticeable effect being on the CO2 permeability which was decreased by 

nearly a factor 2.5371. Boufarguine et al. produced multilayered PLA/poly(3-hydroxybutyrate-

co-3-hydroxyvalerate) films (Fig. I. 36) and measured the helium permeability. The amount of 

layers did not have a great influence since a 35% decrease of permeability was observed 

whatever the amount of layers372. 
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Fig. I. 36: Schematic of the multilayer co-extrusion process (top). Optical micrographs of multilayered 
films a) 3 layers, (b) 17 layers, (c)(d: zoom) 129 layers, (e)(f: zoom) 2049 layers (bottom). Reproduced 

from Boufarguine et al.372 with permission from John Wiley & Sons, copyright 2013 

Fish gelatine has been considered as an alternative to mammalian gelatine as it is highly 

available from the fish processing industry. Gelatine typically displays a highly hydrophobic 

behaviour and superior barrier characteristics. The triple layer film displayed an O2 

permeability of 5.8x10-19 m3.m.m-2.s-1.Pa-1 making it one of the lowest values reported for fully 

bio-based systems373. Nanocellulose was also used to produce three-layered films. The 

measured O2 permeability with nanocellulose crystals decreased to 1x10-19 m3.m.m-2.s-1.Pa-1, 

80 times lower than neat PLA in this study374. Li et al. prepared alternating multilayer PLA films 

with layers containing a nucleating agent, TMC-300 and layers containing the same nucleating 

agent along with graphene sheets. The 16-layer film exhibited particular morphology which 

resulted in a very low O2 permeability of 7x10-20 m3.m.m-2.s-1.Pa-1, one of the lowest 

permeability reported375. 

These last examples show the high performances that can be achieved with the multi-layer 

extrusion technique of PLA-based films. More importantly, some of the most efficient 

examples regarding the O2 barrier behaviour are based on renewable and biodegradable 

materials, some of which can be obtained easily in great quantities such as fish gelatine. 
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3.4. Improving the biodegradation of PLA materials 

As reported by Ghosh and Jones, PLA is only suitable for degradation in industrial 

composting conditions and anaerobic conditions, meaning it does not satisfy the standards 

regarding the biodegradation in home compost, marine, fresh water, and soil 

environments116. As previously mentioned, new regulations require single-use plastic 

materials to be much more sustainable than before, especially regarding their end-of-life129. 

Studies regarding the degradation of polymers have emphasised the effect of additives on 

the biodegradability of compostable or biodegradable polymers in other environmental 

compartments. Sedničková et al. concluded in their study that blends with high PLA contents 

are not suitable for home-composting and should be treated in industrial composting systems. 

Indeed, the most easily degradable parts of the blend will disappear first leaving a lot of PLA 

left to degrade, which takes a very long time in such conditions376. Factors influencing the 

degradation of PLA blends are typically the morphology and the hydrophilicity of the 

filler/additive377,378. Plasticisers such as poly(ethylene oxide) or citrates are reported to 

enhance the degradability of PLA in vivo379. Starch has been reported to enhance the 

biodegradability of PLA as films of PLA blended with starch were reported to disintegrate in 

21 days in compost380. This was explained by the fact that starch increases the water uptake 

of PLA and also disrupts the crystalline structure of PLA resulting in more of the amorphous 

phase381. Such behaviour was also reported regarding gelatine and ternary blends containing 

PLA/starch/gelatine were found to degrade faster that neat PLA382. PLA/PBS blends-based 

materials have been buried in soil to assess their degradability and the presence of PBS was 

found to slightly enhance the degradation of the material due to the phase separation. Only 

high content blends showed a very high degradation rate though383. The degradation of a 

PLA/poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) blend was also studied in seawater in 

the powder form. The higher the PLA content, the lower the biodegradation, yet, after 28 

days, a 60/40 weight ratio blend showed a biodegradation of 26%384. PLA/poly(3-

hydroxybutyrate) blends (75/25) were shown to degrade in home-composting conditions in 

less than a month. The plasticisers such as poly(ethylene oxide) and acetyl tributyl citrate 

further enhanced the degradation rate385. However, for PLA/PBAT blends, studies have shown 

no positive evolution on the biodegradation rate neither for neat blends386,387 nor 

compatibilized blends388. Gaps still need to be filled regarding the biodegradation 
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performance of novel PLA-based materials, especially regarding blends which are a promising 

way to obtain satisfactory mechanical properties. 

Research also focussed on microorganisms, which would be able to degrade PLA and the 

polymers used for blending. The interested readers are referred to the reviews published by 

Garrison et al., Qi et al., and Rosli et al. dealing with such subject111,377,381. One of the most 

efficient and recent developments is due to a French company called Carbiolice. Carbiolice has 

developed a master-batch to make PLA materials, such as objects or films, suitable for home-

compost. They also patented a process which allows the making of PLA and PLA/PBAT (85/15) 

materials such as films or thicker objects. The master batch contains enzymes that have the 

ability to depolymerise PLA such as Savinase®, Esperase®, or Everlase® supplied by 

Novozymes, the world leader in enzyme production. The master-batch is produced using a low 

Tg or low melting polymer such as PBAT, PBSA, PHAs or PCL for instance. Some polysaccharide 

(gum arabic) is also included to serve as feedstock for the enzymes. The resulting so-called 

master batch is then incorporated into PLA at loadings between 0.5wt% and 15wt% (5wt% 

disclosed in the examples) resulting in better mechanical, impact strength and melt-flow 

properties310,389–392. The master batch is commercialised under the tradename Evanesto® and 

60µm films made of PLA and Evanesto® have satisfied the French standard NF T51-800 

regarding home-compost ability of plastic materials393. 

Promising solutions exist to make PLA-based materials more sustainable in regard to their 

after-use environmental impact. There is indeed quite a potential for new solutions by taking 

advantage of strategies like the one developed by Carbiolice and apply it to other high 

potential materials and possibly even further enhance their degradability. This is fundamental 

in the case of PLA since research is conducted to enhance its thermal resistance, which will be 

achieved through high crystallinity ratios, which will hamper greatly the degradation rate of 

PLA-based materials. 

 

4. Summary and strategy presentation for the research project 

The current state-of-the-art shows a very rich literature regarding PLA, both due to the 

long-time lasting research along with more recent gain of interest towards economically viable 

sustainable materials. Nowadays, PLA remains the sole fully bio-based and industrially 
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compostable polymer which is sufficiently cheap to position itself as an economically viable 

alternative to oil-based, non-degradable commodity polymers.  

Multiple strategies have been developed to challenge the historical drawbacks to the use 

of PLA such as its brittleness, low heat deflection temperature and medium-low barrier 

properties. Easily implementable solutions are achievable using the common extrusion 

process for mixing. This way, PLA can be blended with additives such as impact enhancing 

polymers which will allow PLA to undergo a brittle-ductile transition and have a completely 

different mechanical behaviour at room temperature. Other types of additives also have an 

effect on the thermal behaviour of PLA with nucleating agents being a simple and easy solution 

to dramatically improve the crystallisation rate of PLA. Furthermore, some reported studies 

have emphasised a joint-effect regarding the use of toughening agents and highly crystallised 

PLA, as such materials with high crystallisation degrees would benefit from an even higher 

toughening effect using the same toughening agent. This was mainly due to an increased 

phase separation of the two components of the blend thanks to the crystallisation of the PLA 

phase. 

However, finely tuning the properties of PLA remains a challenge as some beneficial effects 

might be detrimental in some cases, for instance, the addition of a toughening agent inside a 

PLA matrix was reported to increase the gas permeability of the material. Studies remain to 

be made to assess the effect of the combination of a toughening agent and a nucleating agent 

on the barrier properties of PLA and assess whether the higher crystallinity ratio effect will be 

enough to counteract the addition of an immiscible phase. 

Lately, the stereocomplex solution is gaining momentum due to the decreasing production 

price of PDLA. PLA stereocomplexes have been reported to have a higher crystallisation rate 

than PLA homopolymers along with better barrier properties. Their use remains a challenge 

since it involves higher processing temperatures and a very fine control on the temperature 

conditions to obtain optimal nucleating conditions. More research is currently underway to 

promote the use of such high-potential material. Overall, some impact resistant and heat 

resistant materials are already commercially available proving the efficiency of some 

solutions177. 

In our project, we will focus on two simple solutions to tune the properties of the PLLA 

homopolymer, the most widely available. The first strategy consists in using novel amide-
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based nucleating agents to enhance the crystallinity ratio of PLA materials. Such nucleating 

agents would be derived from C18 fatty acids and a linear aliphatic diamine as such structure 

was reported in the literature to be highly efficient. Not only would this strategy enhance the 

heat deflection temperature of PLA, but it would also potentially enhance the barrier 

properties of such materials. In parallel, work will be conducted using a reported toughening 

agent that is poly(methyl ricinoleate). This fully bio-based polyester was highly efficient in 

modifying the mechanical behaviour of PLLA at low loadings and is therefore of high interest. 

Moreover, it has the advantage of bearing an alkene function, therefore opening the 

possibility for post-functionalisation which could enhance the toughening effect and open the 

way to new functionalities which could further be exploited (Fig. I. 37). 

 

Fig. I. 37: Potential chemical modifications for poly(methyl ricinoleate) 
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1. Introduction 

PLA is a well-known bio-based polyester which unfortunately carries major drawbacks to 

its industrial use. One of the limiting properties of PLA is its low heat deflection temperature 

(HDT) which is reported around 55°C1. Such low HDT is due to a Tg reported around 55°C-60°C 

and to the fact that, although PLA can be a semi-crystalline polymer, its crystallisation kinetics 

are too slow to get sufficiently high crystallinity ratios in fast-industrial production techniques 

such as the injection moulding process for instance1–3. This constitutes a major issue to the 

use of PLA since no thermal application can be considered as such. Indeed, unless efficient 

means of making PLA crystallise are developed, the fast production of crystalline PLA materials 

cannot be achieved. 

Another drawback linked to the low crystallinity ratios regards the gas barrier properties 

of PLA. As mentioned previously, PLA has got in between O2 gas barrier properties meaning it 

can neither be considered as a barrier polymer nor a permeant polymer4. However, reports 

from Drieskens et al., have shown the higher the crystallinity ratio, the better its barrier 

behaviour5. Typically, they put forward the fact that the O2 permeability of PLA could be at 

least divided by two when crystallinity ratios above 40% were achieved compared to fully 

amorphous PLA. 

Further studies by Cocca et al. later revealed that the crystalline form of PLA would also 

play an important role. Namely, PLA crystallised in the α form would exhibit better gas barrier 

properties (regarding the water vapour barrier properties) than the less packed α’ form6. 

Guinault et al. then conducted a study regarding the O2 and helium barrier properties of 

annealed PLA films while considering the morphology of PLA and its effects on the barrier 

properties. Their work showed the α’ crystalline form would have very little effect on reducing 

the O2 permeability, which would only decrease by nearly a factor 4 when the α crystalline 

form was present7. A further study by Fernandes Nassar et al. showed the barrier properties 

were also affected by the manufacturing process8. They compared the O2 permeability of PLA 

films either crystallised from the melt or after annealing from the glassy state and realised the 

films crystallised from the melt would display better barrier behaviours, about 2.5 times less 

permeable to O2 when the crystallinity ratios were over 35%, whatever the selected 

crystallisation temperature (85°C, supposed to favour the α’ form or 130°C supposed to favour 

the α form). An outstanding feature was, however, the permeability obtained for a sample 
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crystallised from the glassy state at 130°C for 20 mins which gave the lowest O2 permeability. 

The authors therefore concluded that to obtain the best O2 barrier properties, PLA should be 

pre-nucleated and quickly annealed for a short amount of time from the glassy state at 130°C. 

Unfortunately, the authors could not clearly state the predominance of either the α’ or the α 

form in their samples. 

In this part, we focused our strategy on the use of nucleating agents to enhance the 

crystallisation kinetics of PLA directly from the melt. As reported in Chapter 1, many 

compounds have been described as successful nucleating agents, more particularly fatty 

amide type compounds such as N,N’-ethylene bis(stearamide) (EBS) and N,N’-ethylene bis(12-

hydroxystearamide) (EBHS)9–13 which have been reported to bring the t1/2 of PLA from over 30 

minutes to less than 2 minutes at 1wt% loading. To our knowledge, we did not find further 

literature reporting the use of new C18 fatty amides as such. After further investigation, 

patents suggesting the efficiency of fatty amide nucleating agents with such structure were 

found. Takenaka et al. reported multiple formulations of PLA with a glycerol-based plasticiser 

and a nucleating agent along with a moulding process for sheets. The maximum crystallinity 

ratios obtained are lower than 35% using 0.5wt% of nucleating agent and 15wt% of plasticiser. 

Although fatty amides obtained from fatty acids with a pendant hydroxyl group are 

mentioned, only EBHS and N,N'-Hexamethylenebis-12-hydroxystearic acid amide are cited as 

potential examples. High loadings such as 3wt% regarding the amount of PLA are used in this 

invention14. Onishi et al. later reported multiple formulations of PLA with a glycerol fatty acid-

based plasticiser and a nucleating agent along with a moulding process to obtain PLA films 

with high transparency and heat resistance. This time, only 0.4wt% of nucleating agent is used 

with 5wt% of plasticiser and the process mentions performances achieved with the 

formulation directly cooled from the melt, with a moulding time of 5s.  The inventors did not 

however specifically focussed on most C18 fatty bis-amides, with exception to EBS, EBHS, N,N'-

Hexamethylenebis-12-hydroxystearic acid amide and N,N'-Xylylenebis-12-hydroxystearic acid 

amide15. 

Here, similar fatty bis-amide compounds were synthesised based on C18 fatty acids and a 

fully linear aliphatic diamine. The considered diamines have different chain lengths to change 

the distance between the two newly formed amide groups and to study the impact of such a 
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change. The synthesised bis-amide compounds were then mixed to a highly optically pure 

PLLA, referred to as PLA, to measure their effect on its crystallisation rate. 

 

2. Fatty bis-amides from fatty acids as nucleating agents 

2.1. Synthesis 

a. Selection of long chain precursors and amines 

Thanks to their versatility, a wide range of fatty acids or their derivatives are easily 

available to be tested. In the case of C18 fatty acids, 4 compounds were targeted for testing 

(Fig. II. 1).  

 

Fig. II. 1: Selected C18 fatty acids as precursors of bis-amides 

The aim here is to see whether the characteristics of the fatty acids influence the efficiency 

of the obtained nucleating agents. The particular interest of these four compounds is to be 

able to use C18 fatty acids which are either fully saturated (stearic acid), have got a hydroxyl 

group in the C12 position (12-hydroxystearic acid), have an unsaturation between the C9 and 

the C10 (oleic acid) or a combination of both an unsaturation and a hydroxyl group (ricinoleic 

acid). More especially, stearic acid and 12-hydroxystearic acid have already been reported in 

the literature under the form of EBS and EBHS as mentioned previously. 
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Along with this selection of fatty acids, a selection of 4 different diamines was used to 

make the reaction. Since compounds using ethylenediamine are already reported in the 

literature, the focus was put on using longer diamines which are respectively 1,4-

diaminobutane (C4), 1,6-diaminohexane (C6), 1,10-diaminodecane (C10) and 1,12-

diaminododecane (C12) (Fig. II. 2). 

 

Fig. II. 2: Selected diamines for bis-amide synthesis 

Here, the main objective is to evaluate the influence of the distance between the formed 

amide functions on the properties of the synthesised compounds, thanks to four different 

spacers. Also, these diamines were chosen to favour H-bonding intermolecular interactions. 

Indeed, in this configuration, an even number of carbon atoms will give amide groups which 

are oriented as shown in Fig. II. 3. As first reported by Hill and Walker16 then by Stempfle et 

al.17 in the case of polyamides, this configuration will lead to a maximum amount of H-bonding 

between the different amide groups bore by the different molecules. Therefore, rather high 

melting points are expected to be achieved with the synthesised bis-amides. 
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Fig. II. 3: Schematic orientation of the bis-amide compounds (C4-stearic bis-amide example) and the 
occurring H-bonding 

b. Synthetic procedures 

The classical route to synthesise amides from carboxylic acids involves transforming the 

carboxylic acid into a more reactive acyl chloride intermediate on which the amine can react. 

Such acyl chloride is typically formed using highly toxic compounds such as thionyl chloride, 

phosphorus trichloride or phosphorus pentachloride18.  Depending on the available fatty acid 

derivatives, three different procedures to synthesise our fatty bis-amides were therefore 

tested. Starting from an acyl chloride derivative, the Schotten-Baumann procedure was used 

(Fig. II. 4) which proved to be the most effective in this case.  

 
Fig. II. 4: Bis-amide synthesis according to the Schotten-Baumann procedure 

Namely, equal molar amounts of acyl chloride and amine groups were put in an immiscible 

two-solvent system. The organic phase, a dichloromethane phase to solubilise the reactants, 

and an aqueous solution of sodium hydroxide to neutralise the formed hydrochloric acid and 
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move the equilibrium towards the amide formation, were used in equal volumes. Upon 

addition of the diamine on the acyl chloride, a white solid was formed corresponding to the 

precipitation of the formed bis-amide which is hardly soluble using this solvent system. After 

2h, the solid was recovered and washed with dichloromethane, water and diethyl ether to 

remove any side products or unreacted reactants and dried. Yields from 34% to 66% were 

obtained.  

For carboxylic acids, the amine was directly reacted on them according to the following 

simplified reaction scheme (Fig. II. 5). Usually, this synthesis is conducted in bulk at high 

temperatures above 150°C19–22 and involves the use of vacuum to remove the water formed 

through the condensation of the amine groups with the carboxylic acid groups. 

 

Fig. II. 5: Synthesis of bis-amides from fatty acids and a diamine 

Equimolar amounts of carboxylic acid and amine groups were mixed together in a round 

bottom flask. The mixture was placed in an oil bath at 150°C with magnetic stirring. In the case 

of a hydroxyl substituted fatty acid reactant, the temperature was brought down to 140°C to 

avoid self-condensation and oligomerisation. 

The mechanism of this reaction has been explained by Lanigan and Sheppard23 (Fig. II. 6): 

upon mixing, the carboxylic acid and the primary amine form a carboxylate/ammonium salt 

due to the pKa of one another. 

 

Fig. II. 6: Dual equilibrium during the formation of amides from carboxylic acids and primary amines 

The formed ammonium salt is part of a dual equilibrium which can be shifted towards the 

amide formation by removing the water. In our case, this phenomenon was observed during 

the synthesis of our compounds when, upon heating, both reactants would mix in the liquid 

state and then form a solid as the temperature of the flask was still rising. Such solid would 

eventually melt when the temperature reached approximately 100°C. The evolution of the 

reaction could be followed using 1H NMR spectroscopy in deuterated chloroform (CDCl3) with 
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a few drops of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) to allow the solubilisation of the 

reaction mixture and formed product. Total reaction times could range from 6h to more than 

20h depending on the reactivity of the selected diamine. Indeed, the longer the carbon chain 

of an aliphatic diamine, the less reactive it is. In the case where the used diamine was too 

volatile, more was added during the reaction to compensate the loss. Upon completion, the 

reaction mixture was cooled to room temperature allowing it to crystallise, then recuperated 

and ground into a powder. This powder was then washed with ethanol and chloroform to 

eliminate side products and unreacted reactants and dried at 80°C under reduced pressure 

for 12h. Final yields from 55% to 93% were obtained. 

Finally, in some cases, the methyl ester derivative was used for the synthesis as according 

to the scheme shown in Fig. II. 7. This path turned out to be the less efficient one since methyl 

esters are less reactive to form amides than their carboxylic acid counterparts and require the 

use of a catalyst as reported in different publications24–28. In our case, we decided to inspire 

ourselves from the synthetic path reported by Lebarbé et al.27 for their poly(ester-amide) 

precursors. 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), a basic organic catalyst for aminolysis of 

esters as reported by Sabot et al.25 , was used at a 20% molar ratio vs the amount of methyl 

ester functions. One molar equivalent of diamine was mixed in bulk with two molar 

equivalents of methyl ester and the TBD as a catalyst in round-bottom flask with magnetic 

stirring at 120°C and using a condenser. The reaction time was around 3h upon which the 

reaction mixture was cooled to room temperature and washed with water and cold ethanol 

to remove the catalyst and side products and dried. Yields from 50 to 65% were obtained. 

 

Fig. II. 7: Aminolysis of a methyl ester to form a bis-amide compound 

The corresponding procedures for each fatty acid derivative and chosen diamines are 

reported in Table II. 1. 
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Table II. 1: Considered reaction procedures to synthesise bis-amide nucleating agents

 

For the rest of the discussion, the synthesised compounds will be named as such: CX-YYYY 

with X corresponding to the number of carbon atoms of the used diamine (i.e. 4, 6, 10 or 12) 

and YYYY corresponding to the name of the fatty acid derivative (i.e. Stear for stearic acid, 12-

HSA for 12-hydroxystearic acid , Oleic for oleic acid or Ric for ricinoleic acid). 

 

2.2.  Chemical structure and thermal properties 

As seen in Fig. II. 8 to Fig. II. 11, the signal shift of the methylene protons of the free amine 

could be observed and followed as well as signal shift of the methylene protons in alpha 

position of either the carboxylic acid, the methyl ester, or the acyl chloride. 

Moreover, thanks to the addition of HFIP, the proton linked to the nitrogen atom of the 

amide group could be quantified in these spectra. Unfortunately, the proton signals 

corresponding to the HFIP would sometimes hide or give a bad baseline for the proton signals 

of the methylene groups in alpha of the newly formed amide functions. The degree of purity 

of the synthesised compounds was thus determined mainly using 1H NMR, as shown in Fig. II. 

8 for stearic based bis-amides, Fig. II. 9 for 12-hydroxystearic based bis-amides, Fig. II. 10 for 

oleyl chloride based bis-amides & Fig. II. 11 for methyl ricinoleate based bis-amides, using a 

mixture of CDCl3 with a few drops of HFIP, necessary to the improve the solubility of the 

synthesised bis-amides Stear and 12-HSA . 

In every spectrum, a quadruplet appeared around 3.3ppm corresponding to proton He in 

Fig. II. 8, proton Hf in Fig. II. 9, proton Hg in Fig. II. 10 and proton Hh in Fig. II. 11. These protons 

show the formation of an amide bond and therefore that our reaction occurred and could be 

used to determine the degree of purity of the products along with the conversion. 

Unfortunately, in some of the spectra, these proton signals overlap with the proton signals of 

the HFIP and it is therefore impossible to analyse them. The -NH proton signal that appears 
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between 5.5 & 6ppm, depending on the sample, was used to evaluate the amount of amide 

groups formed. In most spectra, there was no residual proton signal around 2.7ppm 

corresponding to remaining free amine apart from the spectrum corresponding to the C4-Ric 

product in Fig. II. 11. In this spectrum, a signal corresponding to protons in alpha position of a 

primary amine was noticed; such signals would remain after washing. Using the SEC in THF, 

this signal was shown to correspond to the mono-amide intermediate of our desired product 

(evaluated at 14% by NMR and 10% by SEC). Such product would seem to have rather similar 

solubility properties to the bis-amide compound when both are mixed together, therefore 

making them nearly impossible to separate. The data determined by 1H NMR and the SEC are 

summarised in Table II. 2. 
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Fig. II. 8: 1H NMR spectra of stearic acid based bis-amides in CDCl3 with HFIP 



                                    Chapter 2 

111 
 

 
Fig. II. 9: 1H NMR spectra of 12-hydroxystearic based bis-amides in CDCl3 with HFIP 
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Fig. II. 10: 1H NMR spectra of oleyl chloride based bis-amides in CDCl3 
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Fig. II. 11: 1H NMR spectra of methyl ricinoleate based bis-amides in CDCl3 
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Unfortunately, due to the difficulty encountered to remove the TBD catalyst from the 

reaction mixture of the obtained products, high amounts of catalyst were still present and 

mixed with the ricinoleic derived bis-amides. This was the case with C6-Ric since it was found 

that this compound was highly soluble in the same solvents as TBD, including water to some 

extent, therefore leading to a very low yield and lower degree of purity (82%) of the final 

product.  

The melting point and the crystallisation point of the synthesised products were then 

measured by means of the DSC and shown on Fig. II. 12 and Fig. II. 13.  

 

 
Fig. II. 12: DSC traces of the synthesised nucleating agents - 2nd heating, 10°C/min - Melting points 

These thermal characteristics were respectively measured during the 2nd heating ramp at 

10°C/min and during the cooling ramp at -10°C/min. All characteristics of the synthesised bis-

amides are reported in Table II.2. 
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Fig. II. 13: DSC traces of the synthesised nucleating agents – cooling after 1st heating, -10°C/min - 

Crystallisation points 

The thermograms corresponding to the stearic acid-based show very well-defined melting 

endotherms and crystallisation exotherms. For the 12-hydroxystearic acid derivatives, the 

C10-12-HSA and to some little extent the C6-12-HSA bis-amides seem to display overlapping 

melting peaks. This was attributed to the polymorphism of crystalline fatty derivatives which 

was reported in different studies29–31.  In the case of the oleic acid-based compounds, small 

second endotherms and exotherms could also be seen. The NMR spectra do not show any 

residual free amine, therefore the origin of these peaks was attributed to the polymorphism 

of the compounds due to the configuration of the fatty chain31. In the case of the ricinoleic-

based bis-amides, broader melting peaks and crystallisation peaks were observed in the case 

of C4-Ric and C6-Ric, due to the lower purity and the presence of TBD or mono-amide. 
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Table II. 2: Degree of purity and thermal characteristics of the synthesised bis-amides 

 
a) 1H NMR, CDCl3, 400MHz, b) SEC in THF vs PS, 40°C, 1mL/min, c) DSC 2nd heating 20°C to 190°C, 10°C/min, d) 

DSC cooling 190°C to 20°C, -10°C/min 

Looking at the trend, the highest melting points are obtained for the stearic derived 

compounds, which corresponds to a fully aliphatic fatty C18 chain. The second most high 

melting points are obtained for the 12-hydroxystearic derived bis-amides then the oleic 

derivatives and finally the ricinoleic. It is possible to notice the effect of the fatty chain on the 

melting point of the bis-amides: a fully aliphatic and linear chain will provide the highest 

melting points whereas a substituted chain with a hydroxyl group and an unsaturation will 

lead to lower melting point values. This is in accordance with common knowledge relating to 

intermolecular interactions. The presence of an unsaturation will lead to less favourable 

packing of the molecules between themselves due to an effect on the chain configuration. 

This can also be true in the case of the presence of a hydroxyl group which might partially 

block the trans-trans configuration of the chains. Therefore, less energy will be required to 

break such assembly leading to lower melting points than in the case of the fully linear and 

aliphatic carbon chain. 
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Looking at the different amines used, namely the different chain spacers between the two 

amide groups, a trend for the stearic derivatives can be noticed showing that the longer the 

chain of the diamine, the lower the melting point. This was mainly attributed to the decreasing 

amide group content in the molecular chain, that is to say, a lower hydrogen-bond density due 

to the increase of the number of methylene groups with longer diamines. As also reported by 

Stempfle et al.17, van der Waals interactions between hydrocarbon segments only contribute 

to a minor role. This behaviour and melting point values have been also reported by Poopalam 

et al.31. As per a similar trend with non-fully aliphatic bis-amides, the DSC revealed nothing as 

such. In the case of the 12-hydroxystearic derivatives, the trend was verified for C4-12-HSA, 

C6-12-HSA and C10-12-HSA but the melting point of C12-12-HSA was higher than the one of 

C12-12-HSA. This can be explained by a more predominant effect of the hydrocarbon chains’ 

intermolecular interactions between each other on the crystallisation process rather than the 

H-bonding effect between the amide groups. For all oleic derivatives, the melting point was 

rather similar and around 110°C. Finally, in the case of the ricinoleic based bis-amides, the 

trend was completely opposite, the longer the diamine chain, the higher the melting point. 

However, this to be further examined and discussed. Indeed, highly pure compounds could 

due to difficulties during the purification step. Therefore, the low melting point and 

crystallisation point of C6-Ric could be explained by the presence of remaining TBD. For C4-

Ric, an effect might be measured through the presence of 10 to 14% of mono-amide, as 

revealed by NMR and SEC, with a lower melting point. 

 

3. Use with PLA to enhance its crystallisation kinetics 

3.1. DSC preliminary analysis 

Prior to mixing the synthesised nucleating agents with PLA using a mini extruder, some 

tests were run using the DSC by just mixing very small amounts of PLA with the synthesised 

bis-amide products. Prior to mixing, the PLA pellets were dried for at least 12h at 80°C under 

reduced pressure. To mix the nucleating agents with the PLA, a small aluminium container was 

used on a hot plate set at 200°C. About 1g of total mixture was produced, with a weight ratio 

of PLA/nucleating agents of 99/1. The two compounds were put in the hot container to melt 

at the open air at the same time, and, once all had melted, were mixed thanks to a metal 
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spatula for stirring. Once the mixture seemed rather homogeneous, the container was taken 

off the hot plate and dropped on the cold practice bench to rapidly cool. Small bits of the 

formed PLA blends were then cut to be used as DSC samples. The 1st heating ramp was used 

to erase the thermal history of the sample. Using the -10°C/min cooling ramp, a dynamic 

crystallisation enthalpy could be measured. The obtained values allowed us to calculate a 

crystallinity ratio upon cooling using the following formula: 

𝜒𝑐 =
ΔH𝑐

ω𝑃𝐿𝐿𝐴 ∗  ΔH𝑚,0
 

With:  

- χc = the crystallinity of the PLLA sample 

- ΔHc = the crystallisation enthalpy 

- ΔHm,0 = the equilibrium melting enthalpy of PLLA, 93.7 J/g 

- ωPLLA = the weight fraction of PLLA in the sample 

Upon the 2nd heating, the Tg and the Tm were measured and, using the cold crystallisation 

enthalpy and the melting enthalpy, another value of the crystallinity ratio could be calculated 

and compared to the one calculated upon cooling from the melt. This time, the formula used 

for the calculations was: 

𝜒𝑐 =
ΔH𝑚 −  ΔH𝐶𝐶

ω𝑃𝐿𝐿𝐴 ∗  ΔH𝑚,0
 

With: 

- χc = the crystallinity of the PLLA sample 

- ΔHm = the measured melting enthalpy 

- ΔHcc = the measured cold crystallisation enthalpy 

- ΔHm,0 = the equilibrium melting enthalpy of PLLA, 93.7 J/g 

- ωPLLA = the weight fraction of PLLA in the sample 

The DSC data corresponding to the different samples is reported in Table II. 3. 
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Table II. 3: DSC results of preliminary samples of PLA + 1wt% of synthesised fatty NA

 

 a) DSC cooling 190°C to 20°C, -10°C/min, b) DSC 2nd heating 20°C to 190°C, 10°C/min 
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The results reported allow us to pre-determine the best nucleating agents from the ones 

synthesised. Neat PLA has very slow crystallisation kinetics, only a crystallinity ratio below 10% 

in controlled cooling conditions. Crystallinity ratios over 50% could be obtained with bis-

amides based on stearic acid and 12-hydroxystearic acid in the same controlled cooling 

conditions. More precisely, such performance was achieved using the shorter diamines which 

are the C4-diamine and the C6-diamine. When the C10-diamine and the C12-diamine were 

used, there was also an enhancement in the crystallinity ratio, however, it was at least 20% 

lower than the ones previously described. Comparatively, the crystallinity ratios obtained 

using nucleating agents synthesised from either the oleic acid derivative or the ricinoleic acid 

derivative stayed below 25% therefore making these group of bis-amides the less efficient in 

these dynamic cooling conditions.  

Looking at these performances in regard of the respective melting points and 

crystallisation points of the bis-amides, a clear effect of the thermal transitions on the 

nucleation efficiency can be seen. The most efficient nucleating agents have melting points 

and crystallisation points which are all above 130°C, which corresponds to the upper limit of 

the temperature window in which PLA will be able to crystallise. Indeed, neat PLA is reported 

to only be able to crystallise between 80°C and 130°C2,32,33. Here, the best nucleating agents 

all crystallise before PLA starts crystallising or just as it would as observed by Nam et al. with 

EBHS9. This also explains why other nucleating agents from oleic acid derivatives or ricinoleic 

acid derivatives, all with crystallisation points in the low temperature range of crystallisation 

of PLA (Table II. 2), are not as efficient as the ones made from stearic acid and 12-

hydroxystearic acid. In effect, we suggest that fully crystallised nucleating agents have created 

multiple nuclei in the PLA matrix therefore greatly enhancing the crystallisation kinetics by 

partially getting rid of the energy barrier required for nucleation during the crystallisation 

process of PLA. Moreover, if our compounds’ dispersion in PLA is good, this would allow a very 

homogeneous nucleation and therefore limit the amount of time needed for crystalline 

growth since most of the PLA matrix would start crystallising at the same time. 

However, just a difference in melting points and crystallisation points might not be 

sufficient as an explanation. In the case of 12-HSA derived bis-amides, a higher crystallisation 

point for the C12-bis-amide than for the C6-bis-amide was reported, although the C6-bis-

amide remains the more efficient of the two. Intermolecular interactions could be at play here 
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since there is a 6-carbon atom difference in space between the amide functions of these two 

molecules. It therefore seems that closer amide functions would create more favourable 

interactions with the PLA matrix to promote the crystallisation phenomenon. This would also 

be in accordance with polarised optical microscopy reported by Nam et al.9 in which they 

noticed an epitaxial growth of oriented PLA crystals at the interface between the crystallised 

nucleating agent and the PLA melt. Far from this interface, the PLA would crystallise in its 

regular spherulite morphology. 

 

3.2. Blending to make DMA samples in isothermal conditions 

a. Melt-blending 

Thanks to the preliminary DSC analysis, the focus was put on evaluating the efficiency of 

two specific families of our bis-amides which are the bis-amides obtained from stearic acid 

and the ones obtained from 12-hydroxystearic acid. Indeed, the highest crystallisation 

enthalpies upon cooling from the melt were measured with these two groups of nucleating 

agents and accordingly, the highest crystallisation ratios. To go further in this study, our 

nucleating agents were blended in PLA using a twin-screw mini extruder with a recirculating 

canal to properly mix the compounds and to use the injection moulding technique to produce 

DMA samples. These DMA samples would be used to test different isothermal moulding 

conditions and evaluate the performance of our nucleating agents in such isothermal 

conditions. The extruder was heated to 190°C and the screw rotation speed set to 100RPM. 

About 7g of compound were loaded to fill up the extruder. To do so, PLA pellets were mixed 

in a small container with the nucleating agent which came as a powder. The mixture was 

added in the extruder in such a way to have a similar and regular amount of powder with the 

pellets. Upon total addition, 5 mins were counted to ensure a good homogenous mixing of the 

compound before transferring it to the injection moulding device. For isothermal moulding 

conditions, three different mould temperatures were tested first: 95°C, 100°C and 110°C for 

PLA samples with a 1wt% of nucleating agent and held the sample inside the mould for 75s. 

Afterwards, a moulding temperature of 110°C was chosen and the composition of our samples 

was changed, namely, the amount of nucleating agent used was diminished, and also the 

moulding time was reduced from 75s to 25s which is the fastest time that can be reproducibly 

obtained using our apparatus. The idea here was to gather finer information about the 
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performance of our nucleating agents, how low could we go in terms of composition and how 

fast the injection moulding process could be to have highly crystallised PLA samples in 

favourable temperature conditions. 

b. Preliminary study: mould temperature screening 

Once the rectangular injection-moulded samples were obtained (Fig. II. 14), they were 

analysed by means of the DSC and dynamic mechanical analysis (DMA). The DSC analysis was 

used to measure the crystallinity ratio of the samples whereas the DMA was used to evaluate 

the thermo-mechanical behaviour of the considered samples. Indeed, in the case of PLA, the 

DMA gives a very good picture that reflects the low HDT. As shown in Fig. II. 15, highly 

amorphous PLA will display a huge drop of storage modulus (E’) just after the temperature 

reaches 55-60°C.  

 

Fig. II. 14: DMA samples of an injection moulded a) neat PLA, b) PLA + 1wt% Stear-C4 at 110°C for 
75secs 
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Fig. II. 15: Storage modulus (full symbols) and tan δ (empty symbols) vs temperature (heating 
3°C/min) of neat PLA injection moulded at 63°C (quenched - triangles) and 110°C for 1min 15s (hot - 

squares) 

This is typical since the crystallisation kinetics of PLA are very slow, even though an 

optically pure grade of PLA that makes it semi-crystalline is used, PLA will not be able to 

crystallise during fast means of production such as injection moulding in a cold mould 

regarding the crystallisation temperature range of PLA. Therefore, as the temperature goes 

above the Tg of PLA, there will not be any crystalline segments holding the PLA chains, which 

are able to move between one another at such temperature. This leads to the observed fall of 

the storage modulus by more than a hundred-fold and the very high peak on tan δ. The 

increase later observed corresponds to the cold crystallisation of PLA starting around 80°C 

which can be verified using the DSC as shown in Fig. II. 16Fig. II. . The second sample 

represented in Fig. II. 15 is also PLA but injection-moulded at 110°C for 1min 15s which will be 

our reference time for preliminary testing of our nucleating agents. Here, the drop of modulus 

is not as strong as for the quenched amorphous sample thanks to a higher crystallinity ratio 

as shown in the data in Table II. 4.  
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The so-called heat deflection temperature (HDT) is however incorrect since it was not 

measured according to any standards. Here, the temperature at which the storage modulus 

value is equal to a tenth of its value at 25°C is reported. Surprisingly, the onset temperature 

for the decrease of E’ at the Tg is higher for the quenched PLA with the lower crystallinity ratio. 

We would have predicted the opposite since a higher onset temperature usually is proof of an 

increased thermal resistance, which is not the case here. We also did not expect to find the 

maximum of tan δ at the same temperature; like the storage modulus temperature onset, we 

would have assumed a higher temperature for the more crystallised sample. However, when 

looking at the HDT criterion, a small increase from 63°C to 67°C could be noticed, which is 

nonetheless too low to make a real difference in terms of heat resistance. All in all, it seems 

just a 10% crystallinity ratio is insufficient to make a real difference for PLA in terms of thermal 

resistance and properties.  

Fig. II. 16 gives us also an idea of the difference in thermal behaviour of the two samples. 

First of all, the cold crystallisation peaks differ since the one for the 110°C injection-moulded 

sample is narrower and starts at lower temperatures than the one for the 63°C injection-

moulded PLA. Moreover, there is also a small exotherm present just before the melt 

endotherm in the 110°C moulded sample. This is known to be a solid-state transition from the 

α’ form to the more stable α form of PLA prior to melting. This would suggest that our 

moulding will favour the creation of the α’ crystalline form of PLA. This has been confirmed 

further by means of XRD (see Fig. II. 20 and Fig. II. 21). 
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Fig. II. 16: DSC traces of PLA injection moulded at 63°C and 110°C for 1min 15s, 1st heating, 10°C/min 

Table II. 4: DMA and DSC data for neat PLA moulded at 63°C and 110°C  

 

a) DMA 25°C to 170°C 3°C/min – 1Hz – 0.1% strain, b) DSC 1st heating 20°C to 190°C, 10°C/min 

At first, to test the efficiency of our nucleating agents, the composition was set to 99 parts 

of PLA and 1 part of NA per weight. The moulding time was set to 1min 15s and only the mould 

temperature was changed. The samples were analysed through the DSC and the DMA, and 

the results are reported in Table II. 5.  
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Table II. 5: Thermal and thermo-mechanical analysis of injection moulded samples in different 
isothermal conditions 

 
a) DMA from 25°C to 170°C, 1Hz, 0.1% strain  b) DSC 1st heating 20°C to 190°C, 10°C/min 

The first observation that can be made is that the best moulding temperature is 110°C. 

Indeed, whatever the considered formulation, the highest crystallinity ratios were always 

measured when the sample had been made at 110°C. Along with the crystallinity ratio, the 

highest HDTs are obtained using the mould at that temperature for the different samples. 

More particularly, the best performance in terms of crystallisation rate were obtained with 

the shorter diamines, as expected from the DSC preliminary results. This is further confirmed 

by the values of HDT measured through the different samples. Samples with high crystallinity 

ratios gave high HDTs, which is consistent with the behaviour of a semi-crystalline polymer. 

The HDT is improved from 63°C for an amorphous PLA to 119°C in the best-case scenario 

(1wt% C4-Stear at 110°C), closely followed by the sample with 1wt% C6-Stear at 110°C, both 

samples respectively having crystallinity ratios of 57% and 58%. The trend with the other 

samples was expected: the lower the crystallinity ratio, the lower the HDT. 

The importance of the melting point and crystallisation temperature of our nucleating 

agents was also shown. Globally, for the same fatty acid precursor of a bis-amide, the lower 
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the crystallisation temperature, the less efficient it will be regarding the nucleation efficiency. 

This is particularly verified in the case of the 12-hydroxystearic acid derivatives where the C12-

12-HSA bis-amide exhibited a higher crystallisation point (136°C) than the C10-12-HSA bis-

amide (125°C) and consequently gave samples with higher crystallinity ratios. Regarding the 

performance achieved by neat PLA, the onset temperatures for the storage moduli were 

slightly higher when high crystallinity ratios were achieved, around 59°C-60°C. More 

importantly, the temperature corresponding to the maximum value of the tan δ curve shifted 

more significantly, now reaching values above 70°C compared to 65°C previously measured. 

Also, a slight shift of the Tg could be measured towards higher values in some cases but was 

not consistent with the measured crystallinity ratios. This was attributed to the bad thermal 

contact of the PLA sample in the DSC pan, which led to less pronounced thermal transitions 

during the first heating upon which the transitions were measured.  
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Fig. II. 17: Storage modulus vs temperature (3°C/min (heating rate) for injection-moulded samples at 

110°C for 1min 15s of PLA mixed with 1wt% of: a) stearic acid derived bis-amides, b) 
12-hydroxystearic derived bis-amides 

Two DMA plots in Fig. II. 17 illustrate the performance of the 8 nucleating agents on the 

storage modulus of the samples versus the temperature. It is interesting to notice the effect 

of the crystallinity ratios on the thermo-mechanical behaviour of the samples at temperatures 

higher than the Tg of PLA. Compared to the PLA reference also moulded at 110°C, the fall of 

modulus is indeed being reduced thanks the crystalline zones within our PLA samples. Another 

noticeable behaviour is the higher the crystallinity ratio, the less the drop of the storage 

modulus. In the case of samples reaching over 50% crystallinity ratios, there was no pit shaped 

fall of storage modulus, accounting for a much better thermal resistance behaviour. 

c. Optimisation: effect of time and loading 

To further discriminate our nucleating agents, the composition of the samples was 

changed, namely, to diminish the amount of nucleating agent used to see whether there 

would be an effect on the crystallisation performance. Here, the focus was narrowed to the 

most efficient nucleating agents which are the four ones made from the C4- and the C6-

diamines with either stearic acid or 12-hydroxystearic acid. Three new loadings, 0.1wt%, 0.5wt 
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and 0.8wt%, were tested, having already the data for a 1wt% loading. At the same time, a final 

optimisation was conducted by trying to reduce the moulding time. We tried to reduce as 

much as it was possible the amount of time the sample would be held in the mould at 110°C. 

Unfortunately, the fastest possible cycle was 25s since the samples had to be injected and 

removed by hand with no possibility of going any faster. The measured crystallinity ratios are 

displayed in Fig. II. 18. 

  

   

Fig. II. 18: Crystallinity  ratios in the DSC at 10°C/min (1st heating) for 4 moulding times at 110°C and 
4 sample compositions with a) C4-stearic bis-amides, b) C6-stearic bis-amides, c) C4-12-HSA bis-

amides, d) C6-12-HSA bis-amides 

For the C4-stearic bis-amide loaded samples, reducing the amount of nucleating agent had 

very little effect. Indeed, high crystallinity ratios near or above 50% were still obtained at 

loadings from 0.5wt% and over. This was also observed when the moulding time was reduced, 

namely, going down to 45s, the crystallisation rates were still nearing 50%. In the case of the 

shortest moulding time, 25s, there was a decrease in crystallinity ratio, this time averaging 

40-45% depending on the loading. It is interesting to note that three loadings achieved rather 

similar performances, meaning this particular nucleating agent was indeed very efficient. In 

the case of a very small loading, 0.1wt%, a significant difference could be noticed in the 
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crystallisation rate. Although it did increase with the moulding time, the crystallinity ratio still 

remained below 30% up to 60s. However, crystallinity ratios over 40% at 1min 15s of moulding 

time could be obtained, also showing that the C4-stearic bis-amide nucleating agent is indeed 

very efficient in promoting the crystallisation of PLA. Such performance was not achieved with 

the other considered nucleating agents. The second-best performing nucleating agent is the 

other stearic acid derived bis-amide molecule. Crystallinity ratios near and over 50% were 

achieved for loadings from 0.5wt% to 1wt% but at moulding time of 1min and over. In the case 

of a 45s moulding time, the crystallisation rate came down to 40% for these three loadings, 

again showing very little difference in behaviour between them. At the shortest moulding time 

however, the crystallinity ratio dropped to 20-25% for these three loadings, clearly indicating 

that such a short moulding time is insufficient using this nucleating agent. Considering the 

0.1wt% loading samples, the maximum crystallisation rate was 32% during the longest 

moulding time and quickly decreased with the decrease in moulding time, showing this 

loading is too low for this nucleating agent. 

Regarding the 12-HSA bis-amide samples, they achieved the lowest performances. At a 

1wt% loading and long moulding times, high crystallinity ratios were obtained, however, they 

decreased rather quickly below 40% once the moulding time was shortened along with the 

loadings. Apart from the 1wt% loading, the crystallinity ratios quickly fell below 20% in the 

case of the C6-12-HSA bis-amide compound. A similar trend can be noticed for the C4-12-HSA 

bis-amide. Therefore, these nucleating agents really need to be used at high loadings and 

remain at 110°C for longer than the stearic based nucleating agents which was there 

considered as the best nucleating agents. 
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Table II. 6: HDTs and crystallinity ratios for samples moulded at 110°C for a) 25s, b) 45s, c) 60s & d) 75s 

 

 

a) 

b) 
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a) DMA from 25°C to 170°C, 1Hz, 0.1% strain b) DSC 1st heating 20°C to 190°C,10°C/min 

d) 

c) 
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To further illustrate a direct consequence of a higher crystallinity ratio of PLA samples, 

DMA measurements were also made along with the DSC analysis and the results are reported 

in Table II. 6. Here, the interest is to see the evolution of the storage modulus curve and more 

importantly whether a big loss after the Tg of PLA could be noticed. This is reported through 

the HDT values, HDT values below 80°C account for a rather bad heat resistance of the sample. 

All these observations made previously are confirmed by the measured HDT criterion and 

whose values reported in Table II. 6. Here again, as previously observed, the higher the 

crystallinity ratio, the higher the HDT. HDTs near or above 100°C could be achieved with 

crystallinity ratios approaching or above 40-45%. 

In Fig. II. 19, an illustration of the performance of the C4-stearic bis-amide nucleating agent 

is shown, regarding both the loading of the PLA sample and the moulding time. First, the effect 

of different moulding times using a very low loading of nucleating agent, 0.1wt% is displayed. 

The longer the sample stayed in the mould, the higher the crystallinity (shown using the DSC) 

but also the better its thermal behaviour. Directly linked to the crystallinity ratio, different 

behaviours are observed, namely, how the fall of modulus becomes less and less appearing 

when the crystallinity ratio increases. In the best-case scenario, a rather smooth profile is 

obtained for the most crystalline sample. On the second plot, the effect of the amount of this 

particular nucleating agent in PLA is shown. The shortest moulding time (25s) was tested on 

purpose, hoping the achieved thermal performance would remain at its best. As previously 

shown using DSC analysis, there is indeed very little difference between the highest loadings. 

Although the crystallinity ratios are slightly different (39% to 47%), the thermal behaviours are 

actually rather similar when looking at the graph. Logic is respected since a very small 

difference can be noticed as the more crystallised samples have slightly higher storage 

modulus values around 90°C. However, such a difference is not significant compared to the 

behaviour obtained with neat PLA, which could not be injection-moulded in such conditions. 

The efficiency of the C4-Stear nucleating agent at very low loadings such as 0.1wt% is 

confirmed, since the HDT was significantly increased at moulding times of 1min15. Such 

performance could not be achieved with the other nucleating agents. Along this, at short 

moulding times, e.g. 25s, only the samples made with C4-Stearic bis-amide at more than 

0.5wt% loading exhibit high HDTs above 100°C along with crystallinity ratios above 40%. 

Samples with C6-Stearic bis-amide display the same behaviour from 45s of moulding time 
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onwards. In the case of 12-hydroxystearic based bis-amides, HDT values above 100°C could 

only be achieved at high loadings (1wt%) and at moulding times over 1min, accounting for the 

lesser performance of such nucleating agents. 

 

 
Fig. II. 19: Storage modulus vs temperature of PLA samples loaded with C4-stearic bis-amide. a) Effect 
of the moulding time on the thermal behaviour of the PLA samples, b) Effect of the nucleating agent  

loading 
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Regarding the aspect of the curves after the fall of modulus, two behaviours can be 

noticed, one regarding the 0.1wt% loaded samples and the other samples. The storage 

modulus for the 0.1wt% loaded samples increases strongly due to the cold crystallisation and 

then reaches a plateau which lasts until the melting point of PLLA near 170°C. In the case of 

the other samples, this plateau does not really exist, and the storage modulus continues to 

decrease until 160°C, then increases sharply and then starts to decrease again. This is due to 

the fact that the 0.1wt% loaded sample will form preferentially the α phase of PLLA during the 

cold crystallisation. In the case of the other samples, the α’ of PLLA has been preferentially 

formed. This phase has a lower melting point than the α phase, therefore explaining the 

decrease of storage modulus. The sharp increase at 160°C corresponds to the α’ to α transition 

which results in more material remaining crystallised. Eventually, the storage modulus starts 

to drop around 170°C as the melting point of the α phase is reached. 

d. Crystallographic structure 

The PLA samples with 1wt% of nucleating agent made from either stearic acid or 12-

hydroxystearic acid based nucleating agents and injection moulded at 110°C for 75s were put 

through a wide-angle X-ray scattering (WAXS) analysis to confirm the preferential PLA 

crystalline form obtained. As a reference, a neat PLA sample moulded in the same conditions 

(but with a very low crystallinity ratio) and a neat PLA sample which was kept at 110°C for 

10min were also analysed in the same way. 

The corresponding diffractograms are reported in Fig. II. 20 and Fig. II. 21. All PLA samples 

show reflections corresponding to the α’ phase (200/110) and (203) with no or very small (010) 

or (210) reflection corresponding to the α crystalline structure of PLA34–36. The latter was only 

noticed in the neat PLA sample held for 10 mins at 110°C and very slightly for PLA+1wt%-C4-

Stear. This is expected since PLA preferentially crystallises in the α’ form at 110°C when cooled 

from the melt, although it is reported that the α form may also be conjointly formed at this 

temperature6,35. This is also in accordance with the small exotherm observed on DSC 

thermograms before the melting endotherm (Fig. II. 16). Indeed, this exotherm is 

characteristic of an α’ to α transition upon heating and further emphasises the presence of 

the α’ crystalline form into our crystallised samples34,35,37. Moreover, using the Debye-Scherrer 

equation on the (200/110) peaks, it was possible to calculate the average size of the 

crystallites using the full width at half-maximum (Table II. 7). 
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𝜏 =
𝐾 × 𝜆

𝛽 × cos (𝜃)
 

With:  

- K = the Scherrer constant , 0.89 

- λ = X-ray source wavelength, 1.5418 Å 

- β = the full width at height maximum (rad) 

- θ = the Bragg peak angle (rad) 

Table II. 7: Crystallite size of crystallised PLA samples using the (200/110) peak in XRD 

 

The calculated crystallite size shows no great difference between the samples, which was 

not expected since the use of nucleating agents would have been thought to diminish the 

crystallite size.  
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Fig. II. 20: WAXD traces of injection moulded samples at 110°C: a) PLA 75sec, b) PLA 10mins, c) 
PLA+1wt%-C4-Stear, d) PLA+1wt%-C6-Stear, e) PLA+1wt%-C10-Stear & f) PLA+1wt%-C12-Stear 
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Fig. II. 21: WAXD traces of injection moulded samples at 110°C: a) PLA 75sec, b) PLA 10mins, c) 
PLA+1wt%-C4-12-HSA, d) PLA+1wt%-C6-12-HSA, e) PLA+1wt%-C10-12-HSA & f) PLA+1wt%-C12-12-HSA 
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4. Conclusion and perspectives 

In this part, we developed and used different nucleating agents derived from C18 fatty 

acids and linear aliphatic diamines. Using a thermal process, the corresponding bis-amide 

compounds were synthesised and through DSC analysis, discriminated the different 

compounds regarding their ability to enhance the crystallisation kinetics of PLA. 

The most efficient bis-amides are the ones obtained from stearic acid or 12-hydroxystearic 

acid using 1,4-diaminobutane or 1,6-diaminohexane which showed the highest melting and 

crystallisation points. In particular, the C4-Stear bis-amide exhibited the best performance 

when mixed with PLA. Using it, the highest crystallisation ratios over 50% were achieved along 

with the highest heat deflection temperature nearing 120°C (as previously defined per our 

standards). Considering these facts, it has been decided to use the four most efficient 

nucleating agents to produce PLA cups, through a mini-industrial injection moulding process, 

to measure macroscopic properties. Namely, the primary focus will be on the gas barrier 

properties of the obtained cups along with their resistance to vertical compression. 

The production part will be further developed in the upcoming chapters, however, for the 

sake of understanding, it will be briefly described here. To produce our PLA cups in the shape 

of a small cup, a master batch with the designated nucleating agent at a 6wt% loading in neat 

PLA was first made using a twin-screw extruder. This master batch was then diluted with neat 

PLA to obtain the three targeted compositions: 0.5wt%, 0.75% and 1wt%. The compounds 

were obtained under the form of small pellets. These pellets were dried and then put in a 

Babyplast mini-injection moulding machine equipped with a specifically designed mould to 

obtain our cups. The mould is divided into two parts: a mobile part cooled by a cold-water 

circulation and a still part which can be heated to a set temperature. Our idea was to find 

injection moulding conditions to produce PLA samples with high crystallinity ratios straight 

away. Unfortunately, it turned out that the temperature differential in the mould would make 

it impossible to achieve. The mobile part of the mould would always remain too cold to allow 

the compounds to crystallise. When the temperature of the still part was increased, we 

observed a discrepancy on the cups. Indeed, the bottom part of the sample exposed to the 

hotter part of the mould would crystallise whether on the other hand, the top part of the 

containers would remain amorphous as they would be exposed to the colder part of the 
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mould. Increasing the moulding time and the temperature only led to samples which would 

not be ejected or worse, would start melting again due to the high temperatures used.  

Unfortunately, to still be able to go on with our initial project, it has been decided to 

produce these cups using so-called “cold moulding conditions” i.e., to make amorphous cups, 

which will be thermally annealed later to obtain samples with different crystallinity ratios only 

due to the nucleating agent used. Again, while performing the thermal annealing, it was not 

possible to find conditions in the oven which would be both reproducible and discriminatory 

between the different samples. Thanks to the nucleating agents, the crystallisation happens 

in a very narrow temperature range and rather sharply, which meant the annealing time 

would depend on how long the oven would take to equilibrate once the samples had been 

loaded (which could not be anticipated) rather than imposing a defined annealing time from  

the start. Therefore, the temperature exposure of the samples could not be controlled and 

led to annealed samples which did suffer the same thermal treatment. 

As a general perspective, it would be interesting to test these formulations in an injection 

moulding machine in which it is possible to better control the mould temperature. This would 

allow to get suitable temperatures to trigger the crystallisation of the samples and evaluate 

the performance of these nucleating agents in industrial production processes. 
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5. Experimental & SI 

5.1. Materials 

PLA was purchased from Natureplast (Caen, FR) under the tradename PLI 005 (D-

lactide<0.5%, MFI=25-35g/10min at 190°C). 1,6-diaminohexane, 1,5,7-triazabicyclo[4,4,0]dec-

5-ene and stearic acid were purchased from Sigma-Aldrich. 12-hydroxstearic acid and 1,4-

diaminobutane were purchased from Alfa Aesar. 1,10-diaminodecane, 1,12-diaminododecane 

and oleyl chloride (70%) were purchased from TCI used without purification. Methyl 

ricinoleate was purchased from Nu-Chek-Prep (MN, USA) with a purity over 99% and were 

used without any further purification. 

5.2. Purification 

1,6-diaminohexane was recrystallised in cyclohexane prior to use for synthesis. An 

insoluble white solid could be found, in which case it was removed by filtration of the hot 

cyclohexane. The purified product was dried under slight reduced pressure for 12h. 

5.3. Synthesis of bis-amides from acyl chlorides – Schotten-Baumann procedure 

C4-Oleic: 146.5mg of 1,4-diaminobutane (1.66mmol) were put in 10mL of 

dichloromethane upon which 10mL of an aqueous solution of NaOH(aq) at 1mol/L were added 

under low stirring. 1.176g (3.35mmol) of oleyl chloride (85% pure) were slowly added using a 

syringe directly into the organic phase at room temperature and left for 2h. The obtained 

white powder was washed with dichloromethane, water and diethyl ether and left to dry 

under reduced pressure for 12h at 80°C. Yield=32%. 

C6-Oleic: 193.1mg of 1,6-diaminohexane (1.66mmol) were put in 10mL of 

dichloromethane upon which 10mL of an aqueous solution of NaOH(aq) at 1mol/L were added 

under low stirring. 1.176g (3.35mmol) of oleyl chloride (85% pure) were slowly added using a 

syringe directly into the organic phase at room temperature at left for 2h. The obtained white 

powder was washed with dichloromethane, water and diethyl ether and left to dry under 

reduced pressure for 12h at 80°C. Yield=37%. 

C10-Oleic: 286.3mg of 1,10-diaminodecane (1.66mmol) were put in 10mL of 

dichloromethane upon which 10mL of an aqueous solution of NaOH(aq) at 1mol/L were added 

under low stirring. 1.176g (3.35mmol) of oleyl chloride (85% pure) were slowly added using a 

syringe directly into the organic phase at room temperature at left for 2h. The obtained white 
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powder was washed with dichloromethane, water and diethyl ether and left to dry under 

reduced pressure for 12h at 80°C. Yield=67%. 

C12-Oleic: 332.9mg of 1,12-diaminododecane (1.66mmol) were put in 10mL of 

dichloromethane upon which 10mL of an aqueous solution of NaOH(aq) at 1mol/L were added 

under low stirring. 1.176g (3.35mmol) of oleyl chloride (85% pure) were slowly added using a 

syringe directly into the organic phase at room temperature at left for 2h. The obtained white 

powder was washed with dichloromethane, water and diethyl ether and left to dry under 

reduced pressure for 12h at 80°C. Yield=66%. 

5.4. Synthesis of bis-amides from carboxylic acids 

C4-Stearic: 7.901g of 1,4-diaminobutane (89.6mmol)  and 51g (179.3mmol) of stearic acid 

were put in a 500mL round bottom flask with magnetic stirring at 150°C for 24h. The obtained 

brown solid was ground into a powder and washed 5 times with 400mL of ethanol and left to 

dry under reduced pressure for 12h at 80°C to give a white slightly brown powder. Yield=92%. 

C6-Stearic: 5.106g of 1,6- diaminohexane (43.94mmol)  and 25g (87.88mmol) of stearic 

acid were put in a 250mL round bottom flask with magnetic stirring at 150°C for 24h. The 

obtained brown solid was ground into a powder and washed 3 times with 400mL of ethanol 

and left to dry under reduced pressure for 12h at 80°C. Yield=88%. 

C10-Stearic: 302.94mg of 1,10-diaminodecane (1.758mmol)  and 1g (3.515mmol) of 

stearic acid were put in a 25mL round bottom flask with magnetic stirring at 150°C for 6h 

under vacuum. The obtained brown solid was ground into a powder and washed 3 times with 

20mL of tetrahydrofuran and left to dry under reduced pressure for 12h at 80°C to give a white 

slightly brown powder. Yield=69%. 

C12-Stearic: 352.15mg of 1,12-diaminododecane (3.515mmol)  and 1g (1.758mmol) of 

stearic acid were put in a 500mL round bottom flask with magnetic stirring at 150°C for 6h 

under vacuum. The obtained brown solid was ground into a powder and washed 3 times with 

20mL of tetrahydrofuran and left to dry under reduced pressure for 12h at 80°C to give a white 

slightly brown powder. Yield=53%. 

C4-12-HSA: 2.567g of 1,4-diaminobutane (29.12mmol)  and 17.5g (58.24mmol) of 12-

hydroxystearic acid were put in a 100mL round bottom flask with magnetic stirring at 150°C 

for 24h. The obtained brown solid was ground into a powder and washed 5 times with 200mL 
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of ethanol and left to dry under reduced pressure for 12h at 80°C to give a white slightly brown 

powder. Yield=75%. 

C6-12-HSA: 3.38g of 1,6-diaminohexane (29.12mmol) and 17.5g (58.24mmol) of 12-

hydroxystearic acid were put in a 100mL round bottom flask with magnetic stirring at 150°C 

for 24h. The obtained brown solid was ground into a powder and washed 3 times with 200mL 

of ethanol and left to dry under reduced pressure for 12h at 80°C to give a white slightly brown 

powder. Yield=77%. 

C10-12-HSA: 286.7mg of 1,10-diaminodecane (1.664mmol)  and 1g (3.328mmol) of 12-

hydroxystearic acid were put in a 25mL round bottom flask with magnetic stirring at 150°C for 

24h under vacuum. The obtained brown solid was ground into a powder and washed 3 times 

with 20mL of ethanol and twice with 20mL of tetrahydrofuran and left to dry under reduced 

pressure for 12h at 80°C to give a white slightly brown powder. Yield=59%. 

C12-12-HSA: 333.4mg of 1,12-diaminododecane (1.664mmol)  and 1g (3.328mmol) of 12-

hydroxystearic acid were put in a 25mL round bottom flask with magnetic stirring at 150°C for 

31h under vacuum. The obtained brown solid was ground into a powder and washed 3 times 

with 20mL of ethanol and twice with 20mL of tetrahydrofuran and left to dry under reduced 

pressure for 12h at 80°C to give a white slightly brown powder. Yield=65%. 

 

5.5. Synthesis of bis-amides from methyl esters 

C4-Ricinoleic: 500 mg of methyl ricinoleate, 93.0mg of 1,4-diaminobutane and 44.6mg of 

TBD (1:0.5:0.2, molar ratios) were put in a Schlenk tube with a condenser and a magnetic 

stirrer at 120°C for 3h then under vacuum for 1h at 120°C. The white solid was recuperated 

and washed with 50mL of water and 15mL of cold ethanol. Yield=30%. 

C6-Ricinoleic: 1g of methyl ricinoleate, 185.9mg of 1,6-diaminohexane and 89.1mg of TBD 

(1:0.5:0.2, molar ratios) were put in a Schlenk tube with a condenser and a magnetic stirrer at 

120°C for 3h then under vacuum for 1h at 120°C. The solid was recuperated and washed with 

50mL of water and 15mL of cold ethanol. Yield=25%. 

C10-Ricinoleic: 1g of methyl ricinoleate, 275.3mg of 1,10-diaminodecane and 89.1mg of 

TBD (1:0.5:0.2, molar ratios) were put in a Schlenk tube with a condenser and a magnetic 
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stirrer at 120°C for 3h then under vacuum for 1h at 120°C. The solid was recuperated and 

washed with 15mL of cold ethanol. Yield=29%. 

C12-Ricinoleic: 1g of methyl ricinoleate, 320.6mg of 1,12-diaminododecane and 89.1 mg 

of TBD (1:0.5:0.2, molar ratios) were put in a Schlenk tube with a condenser and a magnetic 

stirrer at 120°C for 3h then under vacuum for 1h at 120°C. The solid was recuperated and 

washed with 15mL of cold ethanol. Yield=35%. 

 

5.6. Sample preparation PLA + nucleating agent for DSC 

PLA pellets were dried for at least 12h under reduced pressure at 80°C. For the DSC 

preliminary study, the pellets and the nucleating agent were put together in a small aluminium 

container on hot plate set at 200°C. Once the two compounds had melted, they were stirred 

together using a metal spatula until the mixture looked smooth. The aluminium container was 

then put on the cold practice bench to cool. The total mixing time did not exceed 3 mins in 

order to limit the degradation of the PLA. A small sample of about 6mg was then cut from the 

obtained compound to be used for DSC analysis. 

 

5.7. Sample preparation of PLA with nucleating agents for the DMA 

PLA pellets were dried for at least 12h under reduced pressure at 80°C. About 7g of total 

compound was introduced in the Thermoscientific Minilab II HAAKE Rheomex CTW5 twin 

screw mini compounder with a recirculating canal. The mixing speed was set to 100RPM in 

corotation mode and the mixing time of about 5 min at 183°C. The mixture was then 

transferred into a hot cylinder and injected  under 400bars into a mould warmed to the 

desired temperature using a Thermoscientific HAAKE MiniJet Pro apparatus. 
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Global Introduction 

In the previous chapter, the focus was put on one major drawback of PLA, which is its low 

crystallisation kinetics. The use of nucleating agents allowed this issue to be overcome and 

therefore gain a better thermal resistance for PLA materials.  

Here, another inherent problem of PLA, its brittleness at room temperature is addressed. 

Since the Tg of PLA is reported around 55°C, PLA is in its glassy state at room temperature, 

which is characterised by its high brittleness. In order to make PLA suitable for uses at room 

temperature, many different strategies have been imagined and reported such as the use of 

plasticisers, blending with a ductile polymer or copolymerisation1–6. One common toughening 

strategy is typically to mix a “soft”, low Tg polymer with the “hard” brittle polymer, in our case 

the PLA. Previous work from the LCPO and ITERG by Lebarbé et al. showed the high efficiency 

of a bio-based polymer toughening agent that is the poly(methyl ricinoleate) or PRic. Such 

polymer is a fatty polyester bearing an alkene function in the 9-10 position, in the cis 

configuration and a six-carbon atom dangling chain on the twelfth carbon atom. Such 

structure is responsible for PRic being a low Tg amorphous polymer, opposite to its 

hydrogenated counterpart the poly(12-hydroxystearate) which is semi-crystalline due to the 

absence of the alkene moiety7,8. Their first strategy was to synthesise novel PLLA-b-PRic-b-

PLLA copolymers, which showed highly improved mechanical properties. The tensile strain at 

break would improve from 5% to nearly 100% by including 13wt% of PRic in the block 

copolymer and would therefore give a ductile material5. They later discovered that directly 

mixing pure PRic with PLA through a melt-blending process would be sufficient at loadings 

such as 10wt%9. Here, not only would the samples display a tensile strain at break of nearly 

200%, the PRic would also act as a crystallisation booster with reported crystallinity ratios 

above 40% with a subsequent improvement of its thermal behaviour.  

In this chapter, the focus is put on the use of PRic as an additive for PLA with regard to 

macroscopic properties such as the mechanical and the gas barrier properties, more 

particularly the O2 barrier behaviour. PRic is a bio-based polymer obtained from the 

polycondensation of ricinoleic acid (i.e. 12-hydroxy-9-cis-octadecenoic acid) or methyl 

ricinoleate (i.e. methyl 12-hydroxy-9-cis-octadecenoate)7, derived from castor oil either 
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through its hydrolysis or methanolysis, respectively. A possible composition of the fatty 

derivatives found in castor oil is reported in Table III. 1. 

Table III. 1: Castor oil fatty acid composition 

 

 

Thankfully, the content of ricinoleic acid in castor oil is very high and rather constant10,11, 

therefore allowing the easy purification of ricinoleic acid as the starting material for 

polycondensation. The particularity of ricinoleic acid is to bear an alkene function on its main 

chain along with a dangling chain of five methylene groups and one terminal methyl group 

and a hydroxyl group (Fig III. 1). Such structure allows this monomer or its methyl ester 

derivative to polymerise through polycondensation, giving the PRic, a polyester with an alkene 

group and a dangling chain on every repeat unit giving a “comb-shaped” structure (Fig III. 2). 

 

Fig III. 1: Structure of ricinoleic acid  with its chemical features 
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Fig III. 2: Structure of poly(methyl ricinoleate) 

 

The strategy of this study has been to start from a neat PRic as an additive for PLA and 

then assess the mechanical and gas barrier properties of the obtained material. Then, taking 

advantage of the available alkene function, the PRic was chemically modified. Again, the 

mechanical and gas barrier properties were evaluated, hoping the new chemical functions 

such as epoxides and cyclic carbonates would have an effect on the gas barrier properties 

without affecting the toughening effect observed with the addition of neat PRic in PLA. 

This work has been done using two different grades of PRic and therefore the following 

chapter was divided into two parts. First, a homemade PRic from an over 99% pure methyl 

ricinoleate monomer which allowed attaining 5-digit molar masses, Mw around 20,000g/mol. 

Second, an industrially available PRic, synthesised, purified and supplied by the ITERG, based 

on methyl ricinoleate that was only 85% pure. The molar mass of this grade is subsequently 

lower, Mw around 5200g/mol, due to the presence of multiple other fatty acid methyl esters 

bearing no hydroxyl group and therefore acting as chain stoppers of the polycondensation (Fig 

III. 3 and Table III. 2). In the case of this particular grade, smaller chains are present which can 

have an effect on the interfacial compatibility as their lower molar mass can render them more 

soluble in PLA and therefore allow them to act as compatibilizers.  
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Fig III. 3: Possible fatty acids in castor oil: a) Palmitic acid, b) Stearic acid, c) Oleic acid, d) Linoleic acid, 
e) Linolenic acid and f) Arachidic acid 

Table III. 2: Composition of the refined castor oil used at ITERG for the synthesis of PRic 

 

Since the efficiency of the PRic from the ITERG is already known to greatly toughen PLA9, 

the study will not only compare the difference in mechanical performance of the PRic 

produced by the ITERG and the PRic produced in the lab, but also look at the O2 permeability 

properties of the obtained samples. 

Also, since PRic bears an alkene group on every repeat unit, the idea is to take advantage 

of that chemical function and, through alkene chemistry, bring new chemical moieties to the 
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PRic and assess the effect of these chemical moieties. As described by Mutlu and Meier, there 

are several possibilities available to modify PRic using alkene chemistry such as oxidation, 

hydrogenation, epoxidation, halogenation, sulfonation or metathesis12. Here, the first 

considered reaction is the epoxidation since it can allow multiple other reactions afterwards 

such as carbonatation, hydrogenation, hydration, amine addition etc. Once the epoxidized 

derivatives were obtained, many reactions were attempted to take advantage of the epoxide 

group’s chemistry. However, most of these tests were unsuccessful, the only reaction working 

without any trouble being the carbonatation reaction yielding cyclic carbonates. Again, the 

presence of cyclic carbonate groups might also have an effect of the O2 permeability of the 

material. Furthermore, as shown by Ren et al., this can open the path towards novel cross-

linked materials such as NIPUs though the reaction of a primary amine with the formed cyclic 

carbonate to yield a hydroxyurethane group14. 
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Part A: Synthesis of a well-controlled and defined PRic 

from a 99% pure monomer 

In this first part, a highly pure monomer was used to synthesise the PRic thereafter called 

PRic-LCPO. This was decided in order to aim for higher molar masses than the ones that are 

obtained with the commercial PRic from ITERG and therefore compare the effect of having a 

PRic with higher molar masses and also a higher degree of purity. 

 

1. PRIC-LCPO and its derivatives as additives for PLA 

1.1. Synthesis and characterisation 

a. Synthesis  

The synthesis of PRic was inspired from the one reported by Dworakowska et al.7 and 

Méheust et al.8 from works conducted at the LCPO. They chose the synthetic path using 

methyl ricinoleate (>99%, Nu-chek Prep.) as the starting monomer and titanium (IV) 

isopropoxide as the catalyst of the transesterification reaction (Fig III. 4). Through this path, 

methanol is produced and can be removed by the use of vacuum to shift the equilibrium 

towards the formation of the polymer. The reaction was monitored by means of 1H NMR and 

SEC to follow both the conversion of the methyl ester groups and the hydroxyl groups and the 

evolution of the molar mass of the synthesised polymer. Using 1wt% of catalyst, Mw values 

above 20,000 g/mol could be obtained in 8 hours at 180°C but with a dispersity of 3.1 due to 

the occurrence of side reactions.  
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Fig III. 4: Synthetic path to PRic from methyl ricinoleate 

 

In this case, the same procedure was used, with the exception that the quantity of catalyst 

was diminished down to 0.5wt%. This was due to the fact that during preliminary experiments, 

side reactions would occur too much, as mentioned previously, and an effort was made to try 

to limit them. The reaction time subsequently increased to reach the same target Mw around 

20,000 g/mol. No purification was conducted following the synthesis. 

b. Characterisation 

The synthesised polymer was analysed by means of the 1H NMR, the SEC in THF and the 

DSC. 1H NMR allowed the monitoring of the conversion of the methyl ester functions along 

with the hydroxyl groups using the Ha protons as the reference (-CH3, t, 0.8ppm). The 1H NMR 

spectra of the monomer and the synthesised PRic are given in Fig III. 5. Among the things that 

can be noticed, first, the signal for the protons Hh shift from 3.6 ppm to 4.9 ppm (denoted Hh’) 

as a result of the formation of an ester bond. The signal for the protons H i corresponding to 

the methyl ester protons, also diminishes thanks to the transesterification and the release of 

methanol. Finally, the signal for the protons denoted He and Hf overlap due to the formation 

of the new ester function. The alkene protons Hj and Hk also shift from respectively from 5.4 

ppm and 5.6 ppm to 5.3 and 5.5 ppm as result of the change of the electronic environment. 
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Fig III. 5: 1H NMR spectra of Me-Ric (blue, bottom) and PRic-LCPO (red, top) 

The integration values also allow to approximate a theoretical Mn using Carothers’ 

equation15 which goes as such: 

𝑀𝑛 = 𝑀0 ∗ 
1

1 − 𝑝
 

With M0 the molar mass of the repeat unit (280.4 g/mol) and p the conversion. 

Here, to evaluate p, three different integration values can be chosen from the peaks 

corresponding to the protons Hh, Hi or Hh’. The values of these integrals and the calculated Mn 

using Carothers’ equation are reported in Table III. 3. 

Table III. 3: Calculation of the theoretical Mn of PRic-LCPO using 1H NMR in CDCl3 

 

The calculation of the theoretical Mn through this method gives a relatively wide range of 

molar mass from 4,000 g/mol to 8,000 g/mol. The dispersity is also supposed to be strictly 

inferior to 2, as D=1+p. Also, it is necessary to take into account that the integration values of 
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Hh and Hi include the chain ends and the residual monomer, therefore, using the Hh’ 

integration value would be more accurate. The average molar mass (Mn and Mw) values 

obtained by the SEC in THF against a PS standard are reported in Table III. 4 along with the 

chromatogram in Fig III. 6. 

 

 
Fig III. 6: SEC chromatogram of PRic-LCPO, THF, PS standard 

 

Table III. 4: Calculated average molar masses of PRic-LCPO using the SEC, THF, PS standard 

 
 

First, the SEC chromatogram reveals very little residual monomer, which proves the 

efficiency of the polymerisation. However, the molar masses are higher than the ones 

expected using the 1H NMR. Indeed, first the Mn is up nearly 6,000 g/mol and more 

importantly, the Mw is up to 24,000 g/mol with a dispersity over 4. This clearly indicates the 

presence of side reactions as reported by Dworakowska et al.7 even when trying to diminish 

them using less catalyst. This could be due to the increased reaction time (15h vs 8h). Finally, 

the thermal properties of PRic-LCPO were assessed using the DSC. The thermal signature of 
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an amorphous polymer is observed with no melting endotherm or crystallisation exotherm, 

the Tg is measured at -72°C, which is in accordance with the literature7,8.  

 

1.2. Chemical modification: epoxidation of the alkene function 

a. Synthesis 

Taking advantage of the alkene function on every repeat unit of PRic, a post-

functionalisation was conducted to form a secondary epoxy group. The synthesis was first 

inspired from the procedure used by Bertho et al16 for their epoxidation procedure of 

cis-1,4-polybutadiene using meta-chloroperoxybenzoic acid (m-CPBA). Other procedures 

involving m-CPBA are reported for the epoxidation of unsaturated polyesters17, but the study 

by Ren et al. was of particular interest. In this study, the authors synthesised PRic with Mn 

values between 2,100 g/mol and 3,200 g/mol with low dispersity values between 1.5 and 1.8. 

They then used m-CPBA to epoxidize their PRic and then convert them into cyclic carbonates 

and then used a diamine to synthesise cross-linked polyhydroxyurethanes (PHUs)14. It was 

decided to use the same procedure corresponding to the reaction scheme in Fig III. 7. 

 
Fig III. 7: Synthetic path from PRic to epoxidized PRic using m-CPBA 

 

In this case, it was not possible to obtain an epoxidized PRic in which 100% of the alkene 

functions had been consumed for the reaction, the maximum amount being of 85%. 
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Therefore, different amounts of m-CPBA were used to synthesise PRics which had a 25%, 50% 

or 85% conversion of their alkene functions (see Table III. 5). The targeted conversion values 

were determined through a preliminary study using a previously synthesised PRic at the LCPO 

with similar molar masses. This preliminary study was also used to define the conditions in 

which the syntheses should be conducted. 

 

Table III. 5: Amounts of m-CPBA used to synthesise epoxidized PRics 

 
 

The syntheses were conducted at room temperature using THF as the solvent as all the 

reactants and products are soluble in it. To purify and recuperate the epoxidized PRics, the 

latter were precipitated in cold methanol, leaving the remaining m-CPBA and the formed 3-

chlorobenzoic acid in the solvent phase. The amount of remaining 3-chlorobenzoic acid was 

checked by 1H NMR and if needed, other precipitations were conducted to further purify the 

epoxidized PRics until the remaining by-products would account for less than 5mol%. Indeed, 

at such level, it was found that further purification though precipitation would be inefficient. 

Purification through washing, using chloroform as the organic phase and a saturated aqueous 

metabisulfite solution, was also tested but led to a very stable emulsion which lasted for days 

and therefore was inappropriate for this study. 

b. Characterisation 

First, the structure and purity of the synthesised PRics was checked using the 1H NMR and 

the Ha protons as the reference (-CH3, t, 0.8ppm) (spectra in Fig III. 8). The peaks corresponding 

the alkene protons of PRic-LCPO (5.3 and 5.5 ppm, Hj and Hk) show a lower intensity 

accounting for a disappearance of the corresponding protons. At the same time, new signals 

appeared at 2.9 and 3.0 ppm corresponding to the protons of the newly formed epoxides. As 

such, the signal at 4.9 ppm corresponding to proton Hh’ decreased and another signal 

appeared at 5.0 ppm corresponding to the same proton (denoted Hh”) but in the vicinity of an 
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epoxide instead of an alkene group. Also, the more m-CPBA was used, the more important the 

decrease of the existing peaks and the increase of the newly formed peaks. Also, a shift of the 

Hd and He protons was noticed towards lower chemical shifts (denoted Hd” and He”) due to the 

change from an alkene to an epoxide. The characteristics of the synthesised PRics are reported 

in Table III. 6. The first thing that can be observed is the difference through the NMR between 

the amount of consumed alkene function and the amount of formed epoxide. For PRic-LCPO-

E25 and PRic-LCPO-E50, about 10% of the converted alkenes do not appear as epoxides on the 

1H NMR spectra. In the case of PRic-LCPO-E85, this goes up to 15%. No signal on the NMR 

spectra seems to correspond to the formation hydroxyl groups through the opening of the 

epoxides, which could be expected since the used solvent is not dry and the synthesised 3-

chlorobenzoic acid could act as an acidic catalyst favouring the opening of the epoxide. 

Therefore, our hypothesis would be that some of the epoxides have self-reacted to form ether 

bonds between themselves, which would be confirmed through the SEC. 

Table III. 6: 1H NMR integration values of a) PRic-LCPO-E25, b) PRic-LCPO-E50 and c) PRic-LCPO-E85 

 

a) 
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b) 

c) 
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Fig III. 8: 1H NMR spectra of the three epoxidized PRic-LCPO 
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Subsequently, the molar mass of the synthesised PRics was determined using the SEC in 

THF. The chromatograms are shown in Fig III. 9 and the calculated mass in Table III. 7. 

 
Fig III. 9: SEC traces of PRic-LCPO and the synthesised PRic-LCPO-EXX, THF, PS standard 

 

Table III. 7: Molar masses of PRic-LCPO-EXX using the SEC in THF, PS standard 

 

Looking at both the chromatograms and the calculated values, no significant weight 

average molar mass (Mw) increase could be noticed. However, looking at the Mn, an increase 

could be noticed due to the fact that the oligomers were eliminated through the precipitation 

process as confirmed by the chromatograms in which the peaks corresponding to such 
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oligomers disappear in the epoxidized PRics (Fig III. 9). This trend increases with the amount 

of epoxy, therefore showing that the more epoxides borne by PRic, the more it is going to be 

soluble in methanol. Such increase in Mn narrows the dispersity of the polymers dropping 

from 4.1 to 2.3 in the best-case scenario. Also, correlating these observations with the 1H 

NMR, the increase of Mn is also a sign the smaller epoxidized have reacted upon themselves 

to form longer chains through ether bonds. 

Finally, the thermal properties of these polymers were assessed using the DSC. For this, 

two different cycles were used, the first one would not go above 120°C to measure the Tg of 

the additive as such. The second cycle would go up to 150°C and stay a that temperature for 

10 mins in order to cure the epoxidized PRics. Such curing would occur through the self-

reaction of the epoxides upon themselves to form a crosslinked polymer. The measured values 

are reported in Table III. 8. 

Table III. 8: Tg values of PRic-LCPO and its epoxidized forms before and after curing in the DSC, 
*obtained from preliminary study 

 

The measured Tgs show an increase of the Tg value with the amount of epoxides. Typically, 

the more epoxides borne by PRic, the higher the Tg. The change in Tg after the curing cycle 

also shows these epoxides can self-react through the formation of ether bonds. This shows by 

the increase of the Tg for PRic-LCPO-E25 and PRic-LCPO-E50. In the case of PRic-LCPO-E85, the 

reported value without curing was taken from the polymer synthesised during preliminary 

which holds the same characteristics. Indeed, for the PRic-LCPO-E85 which was used for this 

study, the DSC measure was performed more than 4 months after the synthesis of this product 

which was kept around 20°C. The measured values were identical (-40°C before and after 

curing) due to the fact that epoxides had already reacted at room temperature and therefore 

have partially cross-linked this additive. This was confirmed through 1H NMR in which the 
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epoxide proton signals have diminished as a proof they have reacted over time. This is of 

particular importance since it means the PRic-LCPO-E85 that was incorporated into PLA may 

not have had all of its original epoxide functions.  

 

2. Melt-blending with PLA: towards improved mechanical and gas 

barrier properties 

The aim of the study is to test the effect of the previously synthesised PRics when used as 

additives for PLA.  

From previous works9, it is known that neat PRic has a toughening effect on PLA. Here, the 

aim is to assess macroscopic properties of injection-moulded PLA cups such as the vertical 

compression resistance and the O2 gas barrier properties and correlate them with the 

microstructure of the PLA+PRic formulations. 

 

2.1. Melt-blending and injection moulding process 

In order to study the macroscopic properties of PLA+PRic formulations, mini-industrial 

processes were used to mimic real industrial conditions. To mix the PLA with the considered 

additives, the melt-blending method using a twin-screw extruder was chosen. The PLA pellets 

were dried before processing to eliminate  the moisture. First, a master batch was produced 

holding 6wt% of additive (for 94wt% of PLA) and was processed twice to ensure its 

homogeneity. Second, this master batch was diluted using neat PLA (processed once to obtain 

similar size pellets to the master batch) in order to obtain the targeted compositions for our 

different formulations. In the case of PRic-like additives, weight loadings were chosen at 2wt%, 

4wt% and 6wt% (for respectively, 98wt%, 96wt% and 94wt% of PLA). The formulations were 

obtained under the form of small pellets which were then put in a Babyplast mini-injection 

moulding machine with a specifically designed mould (Fig III. 10). The idea was to find optimal 

processing conditions to make cups in an automated mode, namely, in a continuous manner 

until the number of desired cups was reached or the machine ran out of pellets to feed on. 

This is also crucial since, during the production process, parts of the mould will warm up until 

they reach stationary conditions which are more representative and reproduceable. Neat PLA 
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was used as a reference for setting the injection moulding parameters and also to produce 

cups which would be used to measure thermal, mechanical and permeability reference 

properties. The total injection moulding cycle time was 23 seconds. The produced cups are 

small size cups of approximately 51mm of inside diameter, 25mm height and 1.23mm 

thickness designed to mimic potential food containers used in the food packaging industry 

(see Fig III. 11). 

 
Fig III. 10: Picture and comments on the mould used in the Babyplast machine 

 
Fig III. 11: Picture of an injection moulded neat PLA cup 

 

2.2. Structural characterisation 

To evaluate the influence of the extrusion process along with the injection moulding 

process, SEC analyses were made on samples taken from the injection moulded cups. The 

results are reported in Table III. 9. 
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Table III. 9: SEC results of PLA + PRic-LCPO and derivatives samples, THF, PS standard 

 

The SEC results are rather unexpected. Higher molar masses are measured for samples 

containing PRic-LCPO, PRic-LCPO-E25 or PRic-LCPO-E50 than the neat PLA sample. This 

indicates a stabilising effect from these additives on processed PLA since the process using the 

extrusion can greatly damage the polyester chains. On the contrary, PLA samples mixed with 

PRic-LCPO-E85 show a decrease in terms of molar mass, nearly twice as low that of neat PLA. 

This is a bias that can have an effect on further measured properties such as the thermal 

properties or the mechanical properties of the sample. 
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4 26000 52000 2.0
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2.3. Thermal characterisation 

First, a DSC analysis was conducted to check the crystallinity ratios of the injection 

moulded samples and see whether the injection moulding process had an effect depending 

on the used additive. The results are reported in Table III. 10.  

Table III. 10: DSC results of PLA + PRic-LCPO and derivatives , 1st heating, 10°C/min 

 

The addition of additives in PLA has a slight effect on the crystallinity ratios. Neat PLA 

samples had a crystallinity ratio of 2% in these processing conditions whereas, depending on 

the additive and its loading, slightly higher ratios were achieved from 6% to 14%, accounting 

for a little effect of the additives on the crystallisation kinetics of PLA. Most crystallinity ratio 

values for one additive span over 3-4% which is not a significant difference. In the case of PRIc-

LCPO-E85, there is more than double the difference between the lowest and the highest value. 

Also, for this particular set of additives, the Tg value is lower than for every other sample with 

relatively stable melting points. This might be due to a partial solubility of this particular 

additive in the PLA matrix which would shift the measured Tg towards lower values according 

to Fox’s equation18. Given the Tg values of the additives, the calculated Tgs through Fox’s 

equation correspond with the measured Tgs on the DSC. 

 

 ddi  e
 oading
  t  

  cc

   g 
      g 

      

   g 
 c  c     g           

 eat P  0 41.3 45.6 2.1  58 173

PRic   P 

2 38.8 50.6 5.7  58 172

4 35.9 50.0 5.6   58 172

6 32.7 47.1 5.4   58 173

PRic   P  
   

2 38.6 48.9 5.3  59 172

4 39.4 50.3 5.2  58 172

6 33.9 48.6 5.1   57 172

PRic   P  
   

2 40.7 50.6 4.7  58 172

4 35.8 49.0 5.7  58 172

6 34.2 47.8 5.5  58 172

PRic   P  
   

2 41.3 50.7    52 171

4 38.3 50.6    53 172
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2.4. Morphology through SEM 

Cryo-fractured samples prepared from the injection-moulded cups were put through the 

SEM to analyse the morphology of the mixtures. The observed surface is perpendicular to the 

injection flow. As a reference, a surface from a neat PLA sample was observed to show the 

absence of any nodule at the fractured surface (Fig III. 12). 

 

Fig III. 12: SEM picture neat PLA 

 

 PRic is not expected to be soluble in PLA as reported in the literature5,9 and therefore 

nodules of PRic and PRic-like additives are expected to be found in the PLA matrix. This was 

indeed observed in all the fractured samples (Fig III. 14) The mean average size of the nodules 

was measured using the ImageJ software (Table III. 11). Since the observed nodules had an 

elliptical shape, the reported values are the major axis, the minor axis along with the 

associated dispersity index. Such was calculated as such: 

𝑃𝐷𝐼 = (
𝜎

𝑎
)

2

 

With: 

- σ   the standard deviation (nm) 
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- a = the major or minor axis length (nm) 

 

Fig III. 13: Size measurement of a nodule inside PLA 

 

Table III. 11: Nodule size and dispersity for PLA with PRic-LCPO and its derivatives 

 

 

When PRic-LCPO is used as an additive, the size of the nodules remains relatively the same, 

even when higher loadings were considered. As PRic-LCPO was epoxidized at 25%, the size of 
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the nodules diminished with increasing amounts of additive. The reduction in size of the 

nodules is also correlated to a higher amount of nodules in the PLA matrix as can be seen in 

Fig III. 14. Therefore, the change in the nodules‘ size was attributed to a better mixing of these 

additives at the concerned loadings. It is interesting to notice high PDI values for samples 

containing PRic-LCPO-E50 and PRic-LCPO-E85 (above 0.5) showing a relatively high size 

distribution of the nodules in these cases. This could be observed in the MEB pictures (Fig III. 

14) of the associated samples. In the case of PRic-LCPO-E85, the density of nodules is much 

lower than with the other additives and the SEM images show big unresolved patches not 

corresponding to a nodule. These observations lead to suppose a better solubility of PRIc-

LCPO-E85 in PLA. More interestingly, it can be noted that the interfaces between the nodules 

and the PLA matrix do not show any defect. 
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Fig III. 14: SEM images of PLA+PRic-LCPO and its derivatives 

 

2.5. Vertical compression testing 

The mechanical properties of the PLA samples were assessed using the vertical 

compression resistance test. Due to the complexity of the shape of our cups, no section area 

could be calculated, therefore all measurements are reported as a force in Newtons vs the 

compressive strain. Neat PLA cups were used as a reference and gave the characteristics 

reported in Fig III. 15 and Table III. 12. 
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Fig III. 15: Force vs strain of a neat PLA sample, -10mm/min 

 

Table III. 12: Results of the mechanical testing of neat PLA using ten replicas 

 
 

PLA displays its typical brittle behaviour, the fracture occurs in the elastic domain, at a low 

strain (-6%) and no plastic deformation can be observed. The force at break, which 

corresponds to the maximum force in this case, is 2 kN with a slope at origin of 351 N (this 

slope is directly proportional to the compression modulus of the material through the use of 

the section area, which could not be calculated in this case).  

When the strain exceeded -25%, the sample was considered as not broken since such 

deformation under a compression corresponds to a non-linear behaviour of the material. The 

results for PRic-LCPO, PRic-LCPO-E25, PRic-LCPO-E50 and PRic-LCPO-E85 are reported in Fig 

III. 16 to Fig III. 19 and Table III. 13 to Table III. 16 with neat PLA as the reference. 
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Fig III. 16: Force vs strain of PLA+PRic-LCPO 

 

Table III. 13: Results of the mechanical testing of PLA+PRic-LCPO, using ten replicas
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Fig III. 17: Force vs strain of PLA+PRic-LCPO-E25 

 

Table III. 14: Results of the mechanical testing of PLA+PRic-LCPO-E25 using ten replicas
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Fig III. 18: Force vs strain PLA+PRic-LCPO-E50 

 

Table III. 15: Results of the mechanical testing of PLA+PRic-LCPO-E50 using ten replicas
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Fig III. 19: Force vs strain PLA+PRic-LCPO-E85 

Table III. 16: Results of the mechanical testing of PLA+PRic-LCPO-E85 using ten replicas 

 

The mechanical properties are promising. Compared with neat PLA, there is an 

improvement in terms of mechanical behaviour observed with all the additives excepting PRic-

LCPO-E85, which will be discussed later. The first noticeable feature is the improvement of the 

strain at break from -6% to at least -18% and over. At the highest loadings, 6wt%, no brittle 

fracture would be noticed, and the sample could be compressed to the very high strains 

without suddenly breaking as observed with all the other samples as illustrated in Fig III. 20. 

Individually, for PRic-LCPO and PRIC-LCPO-E25, the higher the loading, the higher the strain at 

break. This was not observed with PRic-LCPO-E50 since the samples at a loading of 4wt% 

display the lowest strain at break values for this additive (-21%). Another major difference 

with neat PLA is the apparition of a ductile plateau in all the samples. Such feature accounts 
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for a plastic deformation of the samples. This behaviour is not present with neat PLA as, due 

to their brittleness, neat PLA samples break in the elastic deformation zone and display no 

plastic behaviour. A trend can be noticed regarding the force value of these plateaux. The 

more additive in the PLA matrix, the lower the ductile plateau value will be. This is expected 

since it is a well-known phenomenon for polymers holding additives. More particularly, the 

values of the force plateau increase at similar loadings with the number of epoxides on the 

PRic chains. This is explained by the intrinsic properties of these additives: the more epoxides, 

the higher the Tg. In other words, the more epoxides are created on a PRic, the “harder” it 

becomes; therefore, the observed global behaviour of the materials translates into a lesser 

softening characterised by a smaller decrease of the ductile plateau value. Regarding the slope 

values, again, there is an expected behaviour as they decrease slightly with the increasing 

amount of additive. This is also typical as moduli tend to follow a similar trend for polymers 

loaded with additives. 

 

Fig III. 20: Picture of a cup during a compression test displaying a ductile behaviour and no brittle 
fracture 

The case of PLA samples loaded with PRic-LCPO-E85 is very particular. The mechanical 

properties are worse than the ones for neat PLA samples. Three main assumptions can be 

made: first, the strong decrease in molar mass of the PLA matrix observed by the SEC for this 

set of samples plays an effect as it leads to lower mechanical properties as reported in the 

literature19,20. Second, the high amount of epoxides on the additive could make it more soluble 

in PLA, as such solubility would be increased thanks to a PLA of a lower molar mass. Third, and 
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correlated to the latter, the SEM images of the samples showed less and smaller nodules and 

big patches with a stronger contrast which could be zones in which the PLA and the PRic-LCPO-

E85 are actually homogeneously mixed together and therefore display mechanical properties 

in between the ones of PRic-LCPO-E85 (which correspond to a viscous liquid) and the ones of 

PLA at room temperature. 

 

2.6. Oxygen barrier properties 

Finally, the O2 barrier properties of the samples were assessed. Two samples per 

formulation were analysed at the same time to check for any discrepancy. To do so, the 

injection moulded cups were sealed under a N2 atmosphere on a glass panel with a Presens 

O2 sensor to instantly measure the amount of O2 in sealed-off atmosphere inside the cup. The 

measures were conducted at 23°C and 50% RH and the results are reported in Fig III. 21 and 

Table III. 17. 
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Fig III. 21: O2 average permeability values (2 samples) of PLA samples with PRic-LCPO and its 

derivatives as additives - 23°C, 50 % RH 
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Table III. 17: O2 permeability results of PLA + PRic-LCPO and its derivatives 

 

 

The measured O2 permeability values are all close to the value measured with neat PLA. 

Here, a small increase can be noticed when PRic-LCPO is added to PLA, the increase becoming 

more important when more PRic-LCPO was added. This is due to the free volume created in 

the PLA matrix by adding an immiscible polymer inside it. Regarding the epoxidized PRic-LCPO 

samples, the O2 permeability values slightly diminish at 2wt% and 4wt% loadings and even 

further with an increasing amount of epoxides, however these values increase back at high 

loadings (6wt%). Regarding the reference value for neat PLA, these values are satisfactory 
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since the O2 permeability does not increase too much with the addition of PRic-LCPO and is 

even stabilised with the addition of epoxides. 

 

3. Discussion and conclusion 

The addition of PRic-LCPO and its epoxy derivatives did not have a clear effect on the 

crystallisation kinetics of PLA in these processing conditions. The studied samples were 

amorphous and the small difference in terms of crystallinity ratio could not lead to differences 

of  macroscopic properties. Regarding the mechanical properties, they were enhanced thanks 

to the addition of PRic-LCPO, PRic-LCPO-E25 and PRic-LCPO-E50. At the highest loadings, the 

brittle behaviour typical of PLA could no longer be observed, high strains at break were 

achieved without greatly compromising the modulus. Observations through the SEM showed 

the presence of nodules which prove the incompatibility of these additives with PLA. Such 

morphology explains the toughening effect observed during the vertical compression testing. 

In the case of PRic-LCPO-E85, lower molar masses were measured on the samples after 

processing. Moreover, the mechanical properties revealed to be less than those of neat PLA. 

The SEM images gave a good explanation: along with a lower molar mass, there were no or 

very few nodules that could be observed. Instead, darker patches along the surface suggested 

this additive was more miscible in PLA and therefore deeply modified its properties such as its 

Tg or its mechanical properties. The measured Tgs were indeed lower than of neat PLA or the 

other formulations which do not display a shift of the Tg towards lower values. In the end, the 

O2 permeability was measured and revealed only minor modifications depending on the 

additive. Neat PRic-LCPO increased the permeability thanks to an increase of free volume 

while the increase of epoxides on PRic seemed to slightly diminish the O2 permeability. All in 

all, the use of a highly pure grade of PRic did enhance the mechanical properties of PLA but 

not to the extent as reported in the literature. Also, there was no clear effect on the 

crystallisation kinetics. Regarding the O2 permeability properties, the reported values are 

quite close to the one for neat PLA and therefore do not constitute a real improvement in 

terms of a more barrier material or a more permeant material. 
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4. Experimental & SI 

4.1. Synthesis of PRic-LCPO 

Methyl ricinoleate (>99%, Nu-Chek Prep., USA) was put in a 1l reactor equipped with a 

mechanical stirrer and with an air inlet/outlet. First, the monomer was left for at least 12h at 

70°C under vacuum prior to starting the polymerisation. 0.5wt% of titanium isopropoxide 

were added upon return to room temperature under a nitrogen atmosphere thanks to a 5wt% 

solution in dichloromethane. The mixture was left to stir under nitrogen atmosphere at room 

temperature for 30 mins then heated to 70°C while slowly reducing the pressure inside the 

vessel. After 30 mins, the reactor was heated to 120°C for 1 hour, then 140°C for 1 hour and 

finally to 180°C for 15 hours.  

4.2. Synthesis and purification of PRic-LCPO-EXX 

PRic-LCPO was solubilised in THF (0.167g/ml) in a round-bottomed flask under a 

mechanical stirrer. Once the polymer was solubilised, the solution was cooled to 0°C using an 

ice-bath. A solution containing THF and m-CPBA (0.667g/ml) was prepared on the side. Once 

the polymer solution was cooled to 0°C, the THF solution containing m-CPBA was injected 

dropwise using a syringe and a needle with the polymer solution still kept in an ice-bath. After 

one hour, the ice-bath was removed to allow the reaction to proceed at room temperature 

for 20 hours. The epoxidized polymer was precipitated in cold methanol (-50°C) to eliminate 

the unreacted m-CPBA and eliminate the formed 3-chlorobenzoic acid. The volume of 

methanol used for precipitation was at least 10:1 compared to the THF solution containing 

the polymer. The process was repeated until the residual m-CPBA/3-chlorobenzoic acid was 

lower than 5mol%. The precipitated polymer was then collected and dried under vacuum at 

50°C for 12 hours. 

4.3. SEM analysis 

SEM samples were prepared by freeze-fracturing. The observed surfaces were taken on 

the side of the cups and perpendicularly to the injection flow. This was of outright importance 

since it was noticed that the observed morphology of surfaces taken on the same direction as 

the injection flow showed highly elongated ellipses. This proved that the injection moulding 

technique had a deep effect on the morphology of the samples. The SEM pictures were then 

analysed using the ImageJ software. Machine learning was used to recognise the nodules in 
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the PLA matrix and isolate them. A macro was then developed by Quentin Jaussaud to 

measure the size of these elliptical shaped nodules. The perimeter, major axis and minor axis 

were measured along with the polydispersity index instead of the standard deviation. 

4.4. Vertical compression testing 

Vertical compression testing was conducted in an INSTRON apparatus using parallel plates. 

Tests were conducted at a -10mm/min speed using 10 replicas for each compound. Due to the 

complexity of the object, no definite section could be calculated, therefore values are 

reported as a force (N) vs displacement (mm). The values for the slope at origin, yield force, 

force plateau, strain at break were reported. 

4.5. Oxygen permeability measurement 

Two cups were used per formulation for this test. These were sealed off in a glove box 

using pure N2 and a small container with a saturated solution of magnesium nitrate 

hexahydrate to compensate the global relative humidity to 53% RH at 23°C. The glass panels 

used to seal the cups were equipped with a Pst6 Presens sensor to measure the activity of O2 

inside the sealed atmosphere (Fig III. 22). The evolution of the amount of oxygen was 

monitored at least once a day until the increase followed a linear trend. The permeability was 

calculated using the following formula:  

𝑃𝑒𝑟𝑚 =
𝑆𝑙𝑜𝑝𝑒 × 𝑣𝑜𝑙𝑢𝑚𝑒 ×  𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

𝑎 ×  ∆𝑃
  

• Perm = the permeability in cm3 (O2).m.m-2.day.atm 

• Volume in cm3, 49.2 cm3 

• Thickness in m, 0.001225 m 

• a = area in m², 0.000556 m² 

• ΔP = O2 pressure differential in atm, 0.21 atm 
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Fig III. 22: Schematic representation of the system used to measure the O2 permeability of a sample 
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Part B: Use of the industrial PRic grade 

1. PRIC-100 and its derivatives as additives for PLA 

In this part, the industrially available PRic was used to conduct this study. This particular 

grade has already shown to have a very strong toughening effect on PLA as discussed in the 

introduction to this chapter9. Here, the idea will be to assess the performance of the PLA 

materials made with PRic from ITERG (thereafter named PRic-100) and thanks to the higher 

available quantities, do an extra step of chemistry by converting the epoxide moieties. First, 

the alkene functions were exploited to synthesise a PRic containing epoxy groups, then, going 

a step further, the formed epoxy groups were converted into cyclic carbonate groups thanks 

to a pressurised CO2 reaction vessel. 

 

1.1. Characterisation of PRic-100 

a. Structure 

As mentioned in the introduction, PRic-100 is synthesised from methyl ricinoleate with a 

lower purity than the one used for PRic-LCPO, therefore allowing other fatty derivatives to act 

as chain stoppers of the polycondensation. This can be noticed through the 1H NMR in which 

proton signals not corresponding to methyl ricinoleate or PRic can be noticed (Fig III. 23). 
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Fig III. 23: 1H NMR spectrum of PRic-100 
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Along with the peaks, which do clearly not correspond to PRic-100 such as around 2.7-2.8 

ppm and also between 4.0 and 4.4 ppm, some other proton signals overlap with proton signals 

corresponding to PRic-100. This can be seen through the integrals’ values which are higher 

than the number of corresponding PRic-100 protons in those cases. Also, using the -CH3 signal 

at 0.9ppm as a reference accounting for three protons, 0.0645 protons remain at 3.6 ppm 

accounting for the protons in alpha of the -OH group of the ricinoleic acid, whereas 0.3643 

protons corresponding to the methyl ester group remain. That is to say, considering these 

protons as chain end markers, there is twice the amount of ester groups than hydroxyl groups, 

showing that half of the polymer chains were terminated by a motive bearing no hydroxyl 

group. It can be easily understood since the starting material contains “regular” FAME.  

The SEC was used to assess the molar masses and their distribution. The SEC trace is 

reported in Fig III. 24 and the values are reported in Table III. 18. 

 
Fig III. 24: SEC trace of PRic-100, THF, PS standard 

Table III. 18: Molar masses of PRic-100 measured by SEC in THF (PS standard) 

 

The first observations to be made concern the clear lower molar masses compared to PRic-

LCPO. Here, the Mw does not exceed 6000 g/mol with a relatively controlled dispersity of 2.1, 
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which is still higher than the theoretical maximum dispersity expected for a polycondensation 

(maximum of 2 according to Carothers’ equation15). In comparison, an Mw over 20,000 g/mol 

and a dispersity of 4.1 for PRic-LCPO were obtained. Such lower mass is due to the presence 

of many oligomers which clearly appear on the SEC chromatogram. 

b. Thermal analysis 

PRic-100 was also analysed using the DSC. The thermal analysis revealed a Tg at -81°C and 

no endotherm or exotherm. This is lower than the measured Tg for PRic-LCPO which 

was -72°C. This is explained mainly by the difference in terms of molar masses with PRic-LCPO 

being between 3 to 4 four times higher than PRic-100 and also by the absence of small 

oligomers which could act as plasticisers in the case of PRic-100. 

 

1.2. Epoxidation of PRic-100 

a. Synthesis 

The epoxidation step of PRic-100 is similar to the one developed in Part A of this chapter. 

PRic-100 was solubilised in THF and m-CPBA was used to convert the alkene groups to epoxide 

groups. The synthesised product was precipitated in cold methanol to eliminate the residual 

m-CPBA and the formed 3-chlorobenzoic acid. Again, two or three precipitations were 

necessary to obtain less than 5mol% of residual side-products which can be either m-CPBA or 

3-chlorobenzoic acid. The synthesised polymers are denoted as such: PRic-100-EXX, XX 

corresponding to the targeted ratio of converted alkenes. 

b. Characterisation 

The epoxidized PRics were characterised by means of 1H NMR, the SEC in THF and the DSC. 

As for the epoxidation of PRic-LCPO, 1H NMR was used to measure the consumption of the 

alkene groups (protons Hi and Hj) and the appearance of the epoxide groups (protons Hi’ and 

Hj’) by following the evolution of the corresponding proton signals (Fig III. 25). Also, the 

evolution of the Hh protons into Hh’ protons gave a quantitative indication of the amount of 

consumed alkenes and formed epoxide (Table III. 19). Protons accounting for the apparition 

of epoxide groups have indeed appeared (2.8 and 2.9ppm), while a shift of Hh protons to Hh’ 

protons also happens from 4.9ppm to 5.1ppm. 
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Fig III. 25: Stacked 1H NMR spectra of the three epoxidized PRic-100 
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Table III. 19: 1H NMR proton integration to follow the alkene conversion in CDCl3, a) PRic-100-E25, b) 
PRic-100-E50, c) PRic-100-E85 

 

 

 

a) 

b) 

c) 
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Regarding the peak integrations measured by 1H NMR, the structure of the epoxidized 

PRic-100 was confirmed and showed little ring opening of the formed epoxides or any other 

side reactions. To further confirm the structure, SEC measurements were conducted. The 

according results are reported in Fig III. 26 and Table III. 20. 

 
Fig III. 26: SEC traces of PRic-100 and its epoxidized derivatives 

Table III. 20: SEC results for PRIc-100 and its epoxidized derivatives, THF, PS standard 

 

Here again, like the epoxidized PRic-LCPO compounds from Part A, the epoxidized PRic-

100 polymers show an increase in the molar masses along with a decrease of the dispersity. 

As it can be seen in Fig III. 26, the amount of low mass oligomers has diminished due to the 
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purification step. Indeed, oligomers are less prone to precipitate and will therefore remain in 

solubilised leading to polymers with an increased molar mass. 

The thermal characteristics of these polymers were finally determined using the DSC. Two 

different cycles were used, the first one would not go above 120°C to measure the Tg of the 

additive as such upon the second heating. The second cycle would go up to 150°C and stay a 

that temperature for 10 mins in order to cure the epoxidized PRics. The measured values are 

reported in Table III. 21. 

Table III. 21: Measured Tgs of PRic-100 and its epoxidized derivatives, 10°C/min 

 

The measured Tgs are all higher than neat PRic-100. The more epoxides, the higher the Tg 

value. Most noticeably, PRic-100-E85 displayed a Tg which was 30°C higher than PRic-100. 

Also, proving their ability to further react, the Tgs measured after curing were higher than 

before curing. This is due to the self-reaction of the epoxides upon themselves, therefore 

creating crosslinks between the polymer chains through the creation of ether bonds. Such 

network creation limits the mobility of the polymer chains and therefore results in a higher 

Tg.  

 

1.3. Carbonatation of epoxidized PRic-100 

a. Synthesis 

Due to the ability of the epoxides to react, the choice was made to conduct another 

synthetic step and convert the epoxides on the epoxidized PRic-100 polymers into cyclic 

carbonates as Ren et al. did in their work14. The synthesis was conducted following a reported 

route by Alves et al. which is also close to the one used by Ren et al.14,21 (Fig III. 27). An 

autoclave was used to conduct the synthesis. At room temperature, the polymer was loaded 

with 3wt% of tetrabutylammonium bromide as the catalyst and once sealed, 40 bars of CO2 
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were injected. The reactor would then be heated to 150°C for 24h. Upon heating to 150°C, the 

pressure inside the vessel increased to approximately 80 bars before stabilising at this value. 

No purification was conducted after the synthesis, therefore leaving the catalyst inside the 

synthesised product. 

 
Fig III. 27: Reaction scheme to obtain carbonated PRic-100 

 

b. Characterisation 

The carbonated PRics were first characterised by 1H NMR to follow the consumption of 

the epoxides and the formation of the cyclic carbonate groups (Fig III. 28). What can be first 

noticed is the total disappearance of the peaks at 2.8ppm and 2.9ppm which corresponded to 

the protons of the epoxide group (blue circle). This means that the epoxides have all been 

consumed during the reaction. Moreover, new peaks appeared in the range 4.2 to 4.7 ppm 

(green circle) which are reported to correspond to protons linked to a carbonate group14.   
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Fig III. 28: Stacked 1H NMR spectra of carbonated PRic-100 
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As a complement to the 1H NMR, FTIR spectra were acquired to confirm the apparition of 

carbonate groups (Fig III. 29, Fig III. 30 and Fig III. 31). For every targeted amount of carbonate 

groups, a characteristic peak of carbonate groups appeared around 1800-1810cm-1, therefore 

proving their synthesis. In the case our PRic-100-E85-Carbonate, two extra peaks, also 

accounting for carbonated groups, clearly appeared around 1040cm-1 and 1170cm-1. The 

transmission intensity of this peak would also increase with an increasing amount of 

carbonate groups, further proving the correct result of this synthesis. 

 
Fig III. 29: FTIR transmission spectra of PRic-100, PRic-100-E25 and PRic-100-E25-Carbonate 
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Fig III. 30: FTIR transmission spectra of PRic-100, PRic-100-E50 and PRic-100-E50-Carbonate 

 
Fig III. 31: FTIR transmission spectra of PRic-100, PRic-100-E85 and PRic-100-E85-Carbonate 
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The SEC was then used to check the evolution of the molar mass of the different polymers. 

The results and chromatograms are displayed in Fig III. 32 and Table III. 22. 

 
Fig III. 32: SEC traces of PRic-100 and its carbonated derivatives, THF, PS standard 

 

Table III. 22: SEC results for PRic-100 and its carbonated derivatives, THF, PS standard 

 
The SEC measurements show a further increase of the molar mass of the functionalised 

polymers. As observed before with the epoxidized PRic-100, this is due to the elimination of 

the low molar mass oligomers during the precipitation step. The slight change of molar mass 

compared to the epoxidized PRics can be attributed to the formation of the cyclic carbonate 

groups. Finally, the thermal properties of the carbonated PRic-100 were assessed using the 
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DSC. The Tgs were measured upon the second heating cycle, the values are reported in Table 

III. 23. 

Table III. 23: Tg values of the carbonated derivatives of PRic-100, 2nd heating ramp, 10°C/min 

 
Again, the Tg values further increase with the conversion of the epoxides into cyclic 

carbonates. The highest Tg is now up to -30°C for PRic-100-E85-Carbo which bears the highest 

amount of cyclic carbonate groups. This accounts for polymer chains, which are less mobile 

and therefore require more energy to be able to move between themselves. Such feature 

might act as lower toughening properties for PLA. 

 

2. Melt-blending with PLA: study of the mechanical and gas barrier 

properties 

As described in Part A, the synthesised additives were melt-blended with PLA using a twin-

screw extrusion device. A master batch holding 6wt% of additives was first made then diluted 

using neat PLA to obtain the other desired loadings (2wt% and 4wt%). After mixing and 

palletisation, small cups were injection-moulded using a Babyplast injection moulding 

machine and a specifically designed mould. The obtained cups were analysed and used to 

measure the mechanical and O2 gas barrier properties of the considered formulation. 

 

2.1. Structural characterisation 

First, the samples were analysed using the SEC in THF to see whether the processing had 

any effect on the chain structure of the polymers. The results of the SEC are given in Table III. 

25. 
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Table III. 24: Molar masses of PLA+PRic-100-EXX, SEC in THF, PS standard 

 

Table III. 25: Molar masses of PLA+PRic-100-EXX-Carbonate, SEC in THF, PS standard 

 

 ddi  e  oading   t   n  g  ol      g  ol  

 eat P  0 39000 81000 2.1

PRic    

2 39000 92000 2.4

4 41000 88000 2.1

6 35000 90000 2.6

PRic        

2 40000 93000 2.3

4 53000 97000 1.8

6 39000 93,000 2.4

PRic        

2 47000 92000 2.0

4 28000 86000 3.0

6 52000 92000 1.8

PRic        

2 33000 91000 2.8

4 49000 93000 1.9

6 37000 88000 2.4

 ddi  e  oading   t   n  g  ol     g  ol  

 eat P  0 39000 81000 2.1

PRic    

2 39000 92000 2.4

4 41000 88000 2.1

6 35000 90000 2.6

PRic         
 ar onate

2 14000 51000 3.5

4 19000 48000 2.5

6 16000 57000 3.6

PRic         
 ar onate

2 23000 61000 2.6

4 23000 53000 2.3

6 21000 57000 2.7

PRic         
 ar onate

2 43000 86000 2.0

4 29000 78000 2.7

6 37000 84000 2.2
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As observed with PRic-LCPO, the measured molar masses are stable and similar when PRic-

100 and its epoxidized derivatives were used as additives in PLA. This was also the case with 

PRic-100-E85-Carbonate. However, in the case of the two remaining carbonated additives, the 

Mn was divided by two and the Mw reduced by about 30%. This is concerning since it can 

induce a strong bias when properties of these samples will be assessed such as the thermal 

properties or the mechanical properties. 

 

2.2. Thermal characterisation 

The samples were put in the DSC to check their crystallinity ratio and see whether the 

injection moulding process had an effect of allowing the samples to partially crystallise. The 

results are reported in Table III. 26 for the PRic-100 bearing epoxides and in Table III. 27 for 

the PRic-100 bearing carbonate groups. 

Table III. 26: DSC results PLA+PRic-100 and its epoxide derivatives 

 
 

 ddi  e
 oading
  t  

  cc

   g 
      g 

      

   g 
 c  c     g           

 eat P  0 41.3 45.6 2.1  58 173

PRic    

2 38.0 50.4 6.0  57 172

4 35.7 47.5 5.1  58 172

6 34.4 50.8 5.6   57 171

PRic        

2 38.2 49.9 5.5  56 172

4 37.3 47.1 5.0  56 172

6 35.2 46.2 5.6  56 172

PRic        

2 37.7 50.2 5.2  57 172

4 36.4 49.1 5.0  57 172

6 35.0 48.6 5.5  56 172

PRic        

2 37.7 50.1 5.6  57 172

4 36.3 48.4 5.6  56 172

6 35.1 48.0 5.8  57 172
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Table III. 27: DSC results PLA+PRic-100 and its carbonated derivatives 

 
The DSC does not reveal any significant difference between the samples in terms of 

crystallinity ratios, meaning the measured mechanical properties or the gas barrier properties 

of the different sets of samples should not be influenced by a different crystalline state 

between one another. Also, the melting points of the samples were rather stable (171-173°C) 

showing a relatively good thermal stability after processing. One discrepancy that could be 

noticed was the slightly lower Tgs measured when PRic-100-E25-Carbonate and PRic-100-E50-

Carbonate were used. This could be due to a partial solubility of these additives inside the PLA 

matrix, therefore resulting in that Tg decrease according to Fox’s equation18 along with the 

lower molar mass measured in the SEC. 

 

2.3. Morphology through SEM 

Surfaces of the injection moulded samples were observed using the SEM. Here, the idea 

was to observe the morphology obtained with the different blends and therefore offer extra 

information regarding the later observed mechanical and gas barrier properties. The observed 

surfaces were obtained through freeze-fracturing the side of the cups in order to be 

perpendicular to the injection flow. As said before, reports from the literature mention 

 ddi  e
 oading
  t  

  cc

   g 
      g 

      

   g 
 c  c     g           

 eat P  0 41.3 45.6 2.1  58 173

PRic    

2 38.0 50.4 6.0  57 172

4 35.7 47.5 5.1  58 172

6 34.4 50.8 5.6   57 171

PRic         
 ar onate

2 39.5 50.7 2.9  55 172

4 39.5 49.3 2.0   53 171

6 41.0 50.1 3.7  54 172

PRic         
 ar onate

2 38.1 45.6 2.5  53 171

4 38.2 47.0 0.3   53 171

6 39.3 48.6 3.2  55 172

PRic         
 ar onate

2 39.3 47.5 3.9  58 173

4 37.0 49.1 5.0  57 172

6 36.7 49.5 5.1  57 171
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nodules dispersed in the PLA matrix due to the low solubility of PRic in PLA5,9, therefore, such 

nodules are expected to be observed using the considered additives.  

The immiscibility of PLA and PRic-100 is verified since nodules can be observed whatever 

the considered loading. The same can be observed for PRic-100-E25, -E50 and -E85 and their 

carbonated derivatives showing the chemical modification of PRic-100 with more polar groups 

did not fundamentally change the morphology of the blends (Fig III. 33 and Fig III. 34). 

 

Fig III. 33: SEM pictures of PLA+PRic-100 and its epoxidized derivatives 
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Table III. 28: Nodule size PLA+PRic-100 and its epoxidized derivatives 

 

When PRic-100 is used as an additive, the nodules’ size increases with the amount of 

additive, showing the immiscibly of PRic-100 with PLA. However, when PRic-100 was 

epoxidized at 25% and 50%, the size of the nodules diminished with an increasing amount of 

additive. In the case of the 85% epoxidized PRic-100, the size of the nodules first diminished 

from 2wt% to 4wt% and then increased at 6wt%.  However, this variation in size was mainly 

attributed to the change in the amount of nodules present in the different samples. As it can 

be seen in the SEM pictures (Fig III. 33), the distribution of nodules is not the same for every 

additive, therefore leading to smaller nodules but better dispersed in some cases and bigger 

nodules but less dispersed in other cases. Interestingly, the interface between the nodules 

and the PLA matrix did not display any defect. 
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Fig III. 34: SEM pictures of PLA+PRic-100 and its carbonated derivatives 
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Table III. 29: Nodule size PLA+PRic-100 and its carbonated derivatives 

 

Here, the nodules’ size increases with the amount of additive when PRic-100 was 

carbonated at 25% and follows the trend observed for neat PRic-100. However, when PRic-

100 was carbonated at 50% and 85%, the size of the nodules diminished with an increasing 

amount of additive, as observed previously for PRic-100-E25 and PRic-100-E50. This was also 

attributed to a better dispersion of the additive at high quantities. As previously observed, the 

interface between the nodule and the matrix did not show any defect. 

 

2.4. Vertical compression testing 

The mechanical properties of the materials were assessed using the vertical compression 

testing at 10mm/min. Due to the complexity of the injection moulded cups, no section could 

be calculated, therefore all the results will be given as force vs strain curves which were 

obtained using ten replicas for each set of samples. Beneath the curves (Fig III. 35 to Fig III. 41: 

Force vs strain curves PLA+PRic-100-E85-Carbonate), a table recapping the measured 

mechanical characteristics of the samples is given (Table III. 30 to Table III. 36). 
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a. PLA + PRic-100 

 
Fig III. 35: Force vs strain curve  of PLA+PRic-100 

Table III. 30: Mechanical results PLA+PRic-100 using ten replicas 

 

First, neat PRic-100 was tested as an additive for PLA. From Fig III. 35, it can be seen a clear 

improvement of mechanical behaviour. As summarised in Table III. 30, for every considered 

loading, there would not be any sudden and brittle fracture of the samples. The compression 

strain could go over -40% (not shown) without the sample breaking. Regarding the other data, 

the measured slope at origin decreases with the addition of PRic-100 which is expected. At 

2wt%, the force plateau is measured 2.21kN which is higher than the maximum that could be 

obtained with neat PLA (which breaks at a force of about 2kN). This plateau value would then 

decrease with an increasing amount of additive, which again is an expected behaviour. 

 a  le  lo e    
 orce 

Plateau     
 ield  oint    

 orce at  rea  
    

 trainat  rea  
   

P       13      0.1       0.1      0.1       0.1

P     t  PRic 
   

     10      0.1       0.1      

P     t  PRic 
   

     10      0.1       0.1      

P     t  PRic 
   

     8      0.1       
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Overall, the addition of PRic-100 in PLA even at low loadings, greatly improved its mechanical 

behaviour in terms of strain at break without decreasing the modulus too much. 

b. PLA + PRic-100-EXX 

 
Fig III. 36: Force vs strain curves of PLA+PRic-100-E25, 10mm/min 

Table III. 31: Mechanical results PLA+PRic-100-E25 using ten replicas 

 

In the case of PRic-100-E25 used an additive, it can be noticed that at low loadings (2wt%), 

the samples would actually break in a brittle manner and that higher loadings are required to 

stop observing this behaviour. However, the strain at break is over -20%, which is already a 

solid improvement compared to neat PLA. Interestingly, the slope value for that sample is 

actually higher than the one of neat PLA, meaning this set of samples is stiffer than neat PLA 

while showing a better resistance to deformation. Also, the force at break is up to 2.7kN, which 

is a 35% improvement compared to neat PLA. Here, the force plateaux are also higher than 

 a  le  lo e    
 orce Plateau 

    
 ield  oint 

   
 orce at 

 rea      
 trainat 
 rea     

P       13      0.1       0.1      0.1       0.1

P     t  PRic     
   

     19      0.1       0.1       0.8

P     t  PRic     
   

     8      0.1       

P     t  PRic     
   

     7      0.1       
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with neat PRic-100, and still decrease with an increasing amount of additive, with a maximum 

reached at 2.4kN and a minimum at 1.9kN. 

 
Fig III. 37: Force vs strain curves of PLA+PRic-100-E50 samples 

` 

Table III. 32: Mechanical results PLA+PRic-100-E50 using ten replicas 

 

Here, the mechanical improvement of PLA is even more reduced. Only samples loaded 

with 6wt% of PRic-100-E50 would not break in a brittle manner under the compression test. 

The strains at break were still however rather high (-20% and -19%) compared to neat PLA. 

Here though, the force at break values are smaller than using PRic-100-E25, 2.6kN and 2.2kN, 

showing a lesser efficiency of the additive for the mechanical reinforcement of PLA. However, 

the resistance to the applied force and the applied strain was still improved compared to the 

performance of neat PLA. 

 a  le  lo e    
 orce Plateau 

    
 ield  oint 

   
 orce at 

 rea      
 trainat 
 rea     

P       13      0.1       0.1      0.1       0.1

P     t  PRic     
   

     6      0.1       0.1        1.2

P     t  PRic     
   

     6      0.1       0.2        0.9

P     t  PRic     
   

     7      0.1       
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Fig III. 38: Force vs strain curves of PLA+PRic-100-E85 samples 

 

Table III. 33: Mechanical results PLA+PRic-100-E85 using ten replicas 

 

Here again, only the samples the most loaded with the additive showed the best 

mechanical behaviour regarding breaking. Both samples at 2wt% and 4wt% would break 

eventually, still at rather high strains (-22% and -20%). It is interesting to notice though, the 

better performance of the 2wt% loaded sample compared to the 4wt% loaded sample. Both 

the strain at break and the force at break were higher for the 2wt% sample than the 4wt% 

sample. Also, it can be noticed that among all samples, the highest force plateau values were 

obtained with this additive. This was attributed to the higher Tg for PRic-100-E85 compared 

to the other epoxidized PRic-100 additives, therefore leading to a “harder” additive which 

would less hamper the stiffness of the PLA material. 

 a  le  lo e    
 orce Plateau 

    
 ield  oint 

   
 orce at  rea  

    
 trainat 
 rea     

P       13      0.1       0.1      0.1       0.1

P     t  PRic     
   

     26      0.1       0.1        0.6

P     t  PRic     
   

     8      0.1       0.2        0.9

P     t  PRic     
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c. PLA + PRic-100-Carbonate 

 
Fig III. 39: Force vs strain curves PLA+PRic-100-E25-Carbonate 

Table III. 34: Mechanical results PLA+PRic-100-E25-Carbonate using ten replicas 

 

 a  le  lo e    
 orce Plateau 

    
 ield  oint 

   
 orce at 

 rea      
 trainat 
 rea     

P       13      0.1       0.1      0.1       0.1

P     t  PRic     
     ar onate

     11      0.1       0.1      0.1       0.1

P     t  PRic     
     ar onate

     12      0.1       0.1      0.1       0.1

P     t  PRic     
     ar onate

     7      0.1       0.1      0.1       0.1
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Fig III. 40: Force vs strain curves PLA+PRic-100-E50-Carbonate 

Table III. 35: Mechanical results PLA+PRic-100-E50-Carbonate using ten replicas 

 

The measured mechanical performance of PLA with PRic-100-E25-Carbonate and PRic-

100-E50-Carbonate was not expected. The samples showed a much lower mechanical 

resistance than neat PLA, all breaking at very low strains and at low forces. Visually, the 

samples broke in a brittle manner, with cracks appearing very early during the test. Such 

behaviour was mainly attributed to the huge decrease of molar mass that was measured 

through the SEC. It has been reported that PLA with a lower molar mass exhibits lower 

mechanical properties19,20 therefore explaining such poor performance. 
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P     t  PRic     
     ar onate
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     ar onate
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Fig III. 41: Force vs strain curves PLA+PRic-100-E85-Carbonate 

Table III. 36: Mechanical results PLA+PRic-100-E85-Carbonate using ten replicas 

 

Eventually, PRic-100-E85-Carbonate was tested as an additive. Contrary to the two latest 

considered additives, no catastrophic mechanical performance could be observed. There was 

an improvement in the mechanical properties of PLA with the use of PRic-100-E85-Carbonate. 

The strain at break was improved, reaching -17% in the best-case scenario. The force plateau 

was also improved for every loading, however, once the yielding point was reached, there was 

no recovery from the sample. The 2wt% loaded sample showed a very sudden and brittle 

fracture behaviour almost as the 4wt% loaded sample. In the case of the 6wt% loaded sample, 

the fracture was more gradual however still led to a final breakage around a -17% strain. It is 

interesting to notice the three sets of samples showed a rather similar yielding point in terms 
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     9      0.1       0.3      0.1        0.8



                                    Chapter 3 

215 
 

of strain, with the corresponding force following the trend already observed before: the more 

additive, the lower the force plateau. 

 

2.5. Oxygen barrier properties 

The results of O2 permeability are presented in Fig III. 42 and Table III. 37. As a reference, 

the values obtained for neat PLA cups in Part A were used here. The calculated PLA O2 

permeability was of 4.5x10-3 cm3.m.m-2.d-1.atm-1. First, the performance achieved by the 

samples containing neat PRic-100 was observed. The addition of PRic-100 increases slightly 

the O2 permeability, going up to 5.8x10-3 cm3.m.m-2.d-1.atm-1 in the case of a 6wt% loading. 

As well, the more additive, the higher the permeability. This is typically explained by the 

increase of free volume inside the PLA matrix due to the addition of an immiscible polymer22. 

In the case of the addition of PRic-100-E25, the low loading showed a slightly lower O2 

permeability however with a high standard deviation. The same trend as before seems to 

appear: the more additive, the higher the permeability, however, due to the high standard 

deviation, the measured values can be considered as similar and similar to the one of neat 

PLA. For PRic-100-E50 loaded samples, the same trend is present, and the permeability values 

are higher than the ones of neat PLA. The PRic-100-E85 loaded samples show a more 

interesting behaviour. The 2wt% sample shows a lower O2 permeability, the 4wt% the highest 

and the 6wt% is closer to the one of PLA. This shows a slight effect of the presence of the 

epoxide groups in favour of a more barrier behaviour regarding O2, especially at low loadings 

at which the effect due to the increase of the free volume is lower. Overall, this set of additives 

is promising since the permeability values do not increase too much (less than 30%) and are 

stabilised around the one of neat PLA with the addition of epoxides. 

Regarding the carbonated PRic-100 derivatives, the O2 permeability are more interesting. 

When PLA was mixed with PRic-100-E25-Carbonate or PRic-100-E50-Carbonate, there was a 

noticeable decrease in O2 permeability. More especially, the 6wt% PRic-100-E25-Carbonate 

sample displayed an O2 permeability more than twice as low as the original O2 permeability of 

PLA. Regarding the PRic-100-E50-Carbonate loaded samples, the same observations can be 

made; the sample containing the highest amount of additive displaying the lowest O2 

permeability. This pushes in favour of an effect of the cyclic carbonate groups on the O2 

permeability, showing that the presence of these chemical functions on the PRic backbone 
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tend to lower the diffusion of O2 in the matrix. However, in the case of PRic-100-E85-

Carbonate, the permeability values were up again, slightly lower than the one of neat PLA. 

This is not expected considering the results obtained with the two other carbonated PRic-100 

derivatives; indeed, more cyclic carbonate groups should have meant that the O2 permeability 

would have been even more hampered. These results have therefore to be discussed with 

regard to the other analysis. 
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Fig III. 42: O2 average permeability values (2 samples) of PLA samples with PRic-100 and its 

derivatives as additives - 23°C, 50% RH 
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Table III. 37: O2 permeability results of PLA + PRic-100 and its derivatives 

 

 a  les
  Per ea ilit 

      c         d   at    

P   ref      0.2

   t  PRic         0.1

   t  PRic         0.3

   t  PRic         0.2

   t  PRic             0.5

   t  PRic             0.3

   t  PRic             0.1

   t  PRic             0.1

   t  PRic             0.2

   t  PRic             0.1

   t  PRic             0.3

   t  PRic             0.4

   t  PRic             0.1

   t  PRic         car o      0.1

   t  PRic         car o      0.1

   t  PRic         car o      0.1

   t  PRic         car o      0.4

   t  PRic         car o      0.1

   t  PRic         car o      0.1

   t  PRic         car o      0.4

   t  PRic         car o      0.1

   t  PRic         car o      0.2
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3. Discussion and conclusions 

The use of PRic-100 and its epoxidized and carbonated derivatives has shown multiple 

results. First, the crystalline state of all the blends was similar whatever the considered 

additive, therefore eliminating of any bias on a particular property that could be due to a 

different crystallinity ratio. Second, for an unknown reason, the sets of samples made from 

PRic-100-E25-Carbonate and PRic-100-E50-Carbonate showed lower molar masses than their 

counterparts. This had serious consequences first from a mechanical point of view, since these 

samples showed very bad mechanical behaviours, having a lower mechanical resistance than 

neat PLA at room temperature. Moreover, as shown by the measured Tg values, such lower 

molar masses made the PLA matrix less stiff and therefore more prone to break. This probably 

also had consequences on the O2 permeability of the samples. Theses samples actually 

displayed the best O2 barrier properties, which can be explained by the fact that since the 

solubility of the additive was higher due to the lower mass of PLA, it was better mixed with 

PLA rather than being solely under the form of nodules, which are very localised. Therefore, 

the barrier effect of the additive was better displayed since it was better dispersed inside PLA 

and probably created more difficulty for O2 to pass through the material. This also explains 

why the samples made with the third carbonated additive did not show such a decrease in 

terms of O2 permeability. The observed SEM morphology confirms the presence of many more 

nodules therefore, i.e. a lower solubility and therefore an additive that is more localised in the 

PLA matrix and acts less as a barrier layer within PLA. 

Regarding the other samples which have similar molar masses, the best mechanical 

behaviour is obtained when neat PRic-100 is used. At loadings as low as 2wt%, the mechanical 

properties of PLA are totally changed, going from a brittle polymer with no plastic deformation 

to a material that can withstand very high strains without breaking, while retaining a high 

modulus at low strains. The incorporation of epoxide groups on the PRic backbone caused the 

additive to be less efficient for the mechanical reinforcement of PLA. Two hypotheses can be 

made to explain this. First, the purification process through the precipitation in methanol 

eliminated a part of the oligomers that are present in PRic-100. These low molar mass 

oligomers can have a plasticising effect as well as acting as compatibilizers at the interface of 

PLA and PRic-100. Therefore, their absence fragilizes the interface between PLA and the 

additive and the mechanical reinforcement is not as good. The second hypothesis concerns 
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the intrinsic properties of the epoxidized PRic-100. These additives showed a higher Tg which 

increased with the amount of epoxide groups. The additives having a higher Tg, their chain 

mobility is therefore not the same as neat PRic-100 and they are less prone to withstand a 

deformation or stop a fracture than neat PRic-100. The same considerations can be made 

regarding PRic-100-E85-Carbonate which displayed the highest Tg of all additives and showed 

only a very little improvement in terms of mechanical behaviour although the SEM 

morphology showed the presence of nodules dispersed in the PLA matrix with no defect at 

the interface. 

Finally, these additives only had a very little effect on the O2 permeability of PLA, which 

allowed to measure values close to the one of neat PLA. The main noticeable effect was 

attributed to the increase of free volume in the material due to the addition of an immiscible 

polymer. The presence of epoxide groups limited the O2 permeability increase, however, this 

effect was overcome by the effect brought by the increase of the free volume in the matrix. 
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4. Experimental & SI 

4.1. Synthesis and purification of PRic-100-EXX 

PRic-100 was solubilised in THF (0.167g/ml) in a round-bottomed flask under a mechanical 

stirrer. Once the polymer was solubilised, the solution was cooled to 0°C using an ice-bath. A 

solution containing THF and m-CPBA (0.667g/ml) was prepared on the side. Once the polymer 

solution was cooled to 0°C, the THF solution containing m-CPBA was injected dropwise using 

a syringe and a needle with the polymer solution still kept in an ice-bath. After one hour, the 

ice-bath was removed to allow the reaction to proceed at room temperature for 20 hours. The 

epoxidized polymer was precipitated in cold methanol (-50°C) to eliminate the unreacted 

m-CPBA and eliminate the formed 3-chlorobenzoic acid. The volume of methanol used for 

precipitation was at least 10:1 compared to the THF solution containing the polymer. The 

process was repeated until the residual m-CPBA/3-chlorobenzoic acid was lower than 5mol%. 

The precipitated polymer was then collected and dried under vacuum at 50°C for 12 hours. 

4.2. Synthesis of PRic-100-EXX-Carbonate 

PRic-100-EXX and 3wt% of tetrabutylammonium bromide as a catalyst were put in a 

pressurised vessel equipped with a mechanical stirrer. At room temperature, the airtight 

vessel was loaded with 40bars of CO2 and subsequently heated to 150°C. The stirring speed 

was set to 250RPM. Upon heating, the pressure inside the vessel increased to 80bars. Once 

the set temperature was reached, the reaction was left for 20h before cooling to room 

temperature. The obtained polymer had a sticky brownish aspect and was recuperated using 

diethyl ether and THF and subsequently dried under vacuum at 80°C. 

4.3. SEM analysis 

SEM samples were prepared by freeze-fracturing. The observed surfaces were taken on 

the side of the cups and perpendicularly to the injection flow. This was of outright importance 

since it was noticed that the observed morphology of surfaces taken on the same direction as 

the injection flow showed highly elongated ellipses. This proved that the injection moulding 

technique had a deep effect on the morphology of the samples. The SEM pictures were then 

analysed using the ImageJ software. Machine learning was used to recognise the nodules in 

the PLA matrix and isolate them. A macro was then developed by Quentin Jaussaud to 
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measure the size of these elliptical shaped nodules. The perimeter, major axis and minor axis 

were measured along with the polydispersity index instead of the standard deviation. 

4.4. Vertical compression testing 

Vertical compression testing was conducted in an INSTRON apparatus using parallel plates. 

Tests were conducted at a -10mm/min speed using 10 replicas for each compound. Due to the 

complexity of the object, no definite section could be calculated, therefore values are 

reported as a force (N) vs displacement (mm). The values for the slope at origin, yield force, 

force plateau, strain at break were reported. 

4.5. Oxygen permeability measurement 

Two cups were used per formulation for this test. These were sealed off in a glove box 

using pure N2 and a saturated solution of magnesium nitrate to compensate the global relative 

humidity to 53% RH at 23°C. The glass panels used to seal the cups were equipped with a Pst6 

Presens sensor to measure the activity of O2 inside the sealed atmosphere (Fig III. 43). The 

evolution of the amount of oxygen was monitored at least once a day until the increase 

followed a linear trend. The permeability was calculated using the following formula:  

𝑃𝑒𝑟𝑚 =
𝑆𝑙𝑜𝑝𝑒 × 𝑣𝑜𝑙𝑢𝑚𝑒 ×  𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

𝑎 ×  ∆𝑃
  

• Perm = the permeability in cm3 (O2).m.m-2.day.atm 

• Volume in cm3, 49.2 cm3 

• Thickness in m, 0.001225 m 

• a = area in m², 0.000556 m² 

• ΔP = O2 pressure differential in atm, 0.21 atm 

 

Fig III. 43: Schematic representation of the system used to measure the O2 permeability of a sample 
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Comparison between both PRic grades 

Table III. 38: Comparison of the performance between PRic-LCPO and PRic-100 
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The study in this chapter covered the use of polyricinoleate as a bio-based additive for 

PLA. The scope of this study focussed both on the chemical modification of PRic by taking 

advantage of the alkene functions on the backbone and the effect of the molar mass by 

synthesising a homemade PRic with a higher molar mass than the commercially available 

grade. A comparison between the two grades is given through Table III. 38. 

The PRic-LCPO showed higher Mn and Mw due to the purer grade of methyl ricinoleate 

used for the polymerisation with about a factor 4 difference. This gave a difference in the Tg 

of these two polymers, with one at -72°C and the other at -81°C. When the two were 

epoxidized, the Tg subsequently increased in both cases, although it remained lower in the 

case of PRic-100 derivatives than for the PRic-LCPO derivatives. The highest Tg increase was 

obtained with the carbonated PRic-100. 

Regarding the mechanical behaviour, PRic-100 has a better toughening effect with PLA 

than PRic-LCPO does and was the best additive overall regarding that matter. At a loading of 

2wt%, PRic-100 was already efficient enough to prevent a brittle fracture in the samples, thus 

allowing very high deformations to take place without decreasing the modulus value too 

much. When using PRic-LCPO, a loading of 6wt% was required to observe the same behaviour 

in terms of strain at break. However, at low loadings of PRic-LCPO, there was still a mechanical 

improvement since the sample would display a plastic behaviour, whereas neat PLA does not, 

and would break at strains around -20% with a relatively similar modulus. 

The addition of an epoxide group on both grades led to different behaviours. In the case 

of PRic-LCPO; 25% of epoxide groups seemed to lower the toughening effect at 2wt% and 

4wt% loadings, with lower strains at break, whereas at 50% of epoxide groups, the mechanical 

performance was improved at these loadings. A strain at break nearing -25% and measured 

forces being even higher than with neat PRic-LCPO were measured for the 2wt loaded sample. 

For either additive, the 6wt% loaded samples displayed no breaking and a higher measured 

force plateau. In the case of PRic-100, the epoxide derivatives were not as efficient as neat 

PRic-100 to enhance the mechanical properties of PLA. This was attributed to the elimination 

of the low mass oligomers during the precipitation and to the higher Tg of the epoxidized 

derivatives. Due to a change in molar mass of the samples during processing, the effect of the 

carbonatation of PRic-100 could not be well assessed since only the most carbonated additive 

gave samples with comparable molar masses. In this particular case, the mechanical 



                                    Chapter 3 

225 
 

properties would be better than neat PLA, however, they would remain much inferior 

compared to the ones obtained using the other additives. 

Regarding the O2 permeability, the addition of both PRic-LCPO or PRic-100 increased the 

measured values due to the increase of free volume in the sample. However, this increase is 

rather limited and does not exceed a 30% value compared to neat PLA, which is satisfactory. 

The epoxidized PRic-LCPO limited the effect of the free volume, therefore showing the effect 

of epoxide groups to limit the O2 permeability and achieving similar permeability values than 

neat PLA. This effect was more limited with PRic-100 as the permeability values still increased 

with an increasing amount of additive, therefore showing the advantage of the higher molar 

mass polymer regarding this matter. Interestingly, the 25% and 50% carbonated PRic-100 

additives showed the best O2 barrier properties with permeability values halved compared to 

neat PLA. This trend was not observed for the samples made from PRic-LCPO-E85 which also 

suffered an important decrease in molar mass, therefore pushing for a real effect of the cyclic 

carbonate groups on the O2 permeability. However, quite surprisingly, this effect was not seen 

with PRic-100-E85-Carbonate although the observed morphologies are similar through the 

SEM. This suggests that either there is an effect on the O2 permeability specifically due to the 

lower molar mass of the samples, or that there is a sweet spot in terms of amount of cyclic 

carbonate groups borne by PRic-100 which could be between 25% and 50%. Experiments need 

to be redone to first verify whether there is still a decrease of molar mass and, if not, whether 

the mechanical properties are not as poor as first measured and, more importantly, if the O2 

permeability values are verified. 

 

General conclusion and perspectives 

This study showed that PRic-100, as produced by the ITERG, is the best toughening agent 

for PLA, only requiring very little amounts to greatly enhance its mechanical properties in 

terms of elongation at break without decreasing the modulus. The addition of epoxides to PRic 

was expected to create covalent bonds at the interface between PLA and PRic to have a better 

interfacial compatibility and to further increase this toughening effect. The use of epoxidized 

PRic-LCPO improved the toughening effect whereas this effect was limited for epoxidized PRic-

100, mainly due to the loss of the low molar mass oligomers during the precipitation step, 
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which were acting as compatibilizers at the interface. More particularly, the dominant effect 

for PRic-100 was the increase of viscosity due to the increase of Tg. Unfortunately, due to a 

decrease in the molar mass of the PLA matrix, the study could not be conclusive regarding the 

mechanical reinforcement given by carbonated PRics. 

Regarding the O2 permeability values however, using PRic-100 only slightly increased the 

ability of O2 to pass through the material due to free volume (a maximum of 30% increase), 

which was satisfactory. Looking at the other additives, the addition of epoxides partially 

limited the effect of free volume for PRic-LCPO, but this effect was less in the case of PRic-100. 

For both of these epoxidized grades, the permeability was stabilised near the value of neat 

PLA which was a very promising result. The carbonated PRic-100 gave the most promising 

results for the O2 barrier properties, showing the biggest reduction of O2 permeability. These 

were unfortunately coupled with poor mechanical properties due to a decrease in molar mass 

of the PLA matrix. Unfortunately, none of these evolutions represented a significant 

modification of the O2 permeability of PLA either for a greater barrier behaviour or a greater 

permeable behaviour. 

As for immediate perspectives, the study should be completed by trying to reproduce the 

obtained results and especially by replicating the samples which displayed a loss of molar 

mass. Eliminating such bias is necessary before forming a conclusion on the true effect of the 

carbonated additives both from a mechanical and an O2 permeability point of view. Once this 

work is achieved, it would be of interest to explore the available chemical paths taking 

advantage of the epoxide or the cyclic carbonate groups. Thanks to these reactive moieties, 

further functionalisation or reactions can be reached. The epoxides can be opened to either 

self-react and crosslink the PRic chains, or they can also be hydrated to form a vicinal diol, or 

they can also react with amines to also crosslink PRic chains. Regarding the cyclic carbonates, 

they can be used to react with amines to yield hydroxyurethane groups which are of particular 

interest due to the hydrogen bond density they offer. It can therefore be imagined that novel 

materials based on PRic can be obtained through these media or PRic with novel properties 

that would be of further interest when used as additives for PLA. 
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Conclusion and perspectives 
 

This PhD work was dedicated to the synthesis and study of novel bio-based additives for 

PLA. A particular scope of this study was to consider food packaging as a specific application 

of these newly made materials. PLA is a bio-based and industrially compostable polymer which 

has been approved for food contact. Thanks to an ever-increasing production, its price now 

ranges between $1.5 and $2 per kilo1, which makes it economically viable to replace 

commodity polymers such as PE, PP or PET. Although it is a well-known polymer, PLA still 

suffers from major drawbacks such as its brittleness, its low heat deflection temperature and 

in between O2 gas barrier properties, which, as such, limit its use as food packaging2. The 

strategy of this project was to mix additives in PLA to deal with these issues. The state-of-the-

art regarding such matter is very rich thanks to years of intense research to promote PLA. 

Multiple strategies spanning from using plasticisers, oxides, fibres, polymers, organic or 

mineral nucleating agents have been contemplated to try to resolve these issues3.  

Bio-based compounds derived from fatty acids were considered to synthesise such 

additives. These fatty compounds are annually renewable as they are extracted from plant oils 

and are of particular interest since their structure allows them to be involved in multiple 

chemical reactions. Chapter 2 deals with two challenges: enhancing the heat deflection 

temperature of PLA and reducing its gas permeability. The considered approach was to work 

on the crystallisation kinetics of PLA by using nucleating agents. Thanks to an already very rich 

literature regarding the subject, the choice was made to focus on bis-amide derivatives. More 

specifically, symmetrical bis-amides made from C18 fatty acids, and an aliphatic diamine were 

synthesised. The effect of the chain spacer and of the fatty derivative on the thermal 

properties was studied. Compounds with melting points above 130°C were obtained and were 

then used as nucleating agents for PLA. DMA samples were prepared by injection-moulding 

to assess the isothermal crystallisation performance of the additives. This revealed that it was 

possible to obtain PLA samples with crystallinity ratios above 50% using 0.5wt% of nucleating 

agents and for a total holding time of 25s in the mould, which was the shortest reproducible 

time that could be considered at the lab scale. 
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Scale-up tests were run using a mini-industrial injection-moulding machine to try to 

replicate industrial injection-moulding conditions and assess the true potential of our 

nucleating agents. Extruding the PLA containing the nucleating agent was easier than with 

neat PLA since the obtained filament would crystallise and be simpler to recover and break 

into pellets. Unfortunately, during the injection-moulding process, the temperature of the 

mould could not be controlled well on the Babyplast machine which was used. This would not 

allow us to have the suitable temperature to make PLA crystallise. More experiments should 

be done using a different machine to assess the possibility to directly produce crystalline PLA 

objects at high speed. Would that processing step be successful, it will then be possible to 

measure the heat deflection temperature and the associated gas barrier and mechanical 

properties of the obtained material.  

Chapter 3 focusses on the toughening of PLA using polyricinoleate, a bio-based low Tg 

polyester, as a polymeric additive. This polymer had already been reported to be a successful 

toughening agent when blended with PLA at very low loadings such as 3wt%. Two grades of 

polyricinoleate were used and studied: an industrially available polymer synthesised by the 

ITERG from an 85% pure monomer and a homemade polymer obtained from a 99% pure 

monomer. These polymers were then post-functionalised with epoxides by taking advantage 

of the available alkene groups in the repeat unit. Due to a higher availability, the industrial 

grade of polyricinoleate was also functionalised with cyclic carbonate groups. The addition of 

epoxide and cyclic carbonate groups increased the value of the glass transition temperature 

for both polyricinoleate grades, the more functionalised, the higher the value. The effect with 

cyclic carbonates was higher than with the epoxides, leading to the highest Tg values. 

The aim was to evaluate the effect of the grade of polymer, which was used, along with 

the effect of the post-functionalisation on the mechanical properties of PLA and whether they 

would influence the gas barrier properties or not. When used as such, the industrial 

polyricinoleate was the best toughening agent for PLA and, surprisingly, higher loadings of 

homemade PRic were required to achieve the same mechanical performance. The epoxidation 

of the two grades of PRic led to different behaviours. The epoxidized industrial PRic was less 

efficient in enhancing the mechanical properties as the samples displayed a brittle breaking 

behaviour at low loadings which did not happen with the neat polymer. Also, the more 

epoxides, the less efficient the additive. In the case of the homemade PRic, the epoxidation 
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improved the toughening effect. Regarding the effect of the cyclic carbonate, the mechanical 

properties of the samples was not as good as with the epoxidized or neat PRic. Unfortunately, 

there was also a decrease of molar mass of the PLA matrix when two of the carbonated 

additives were used leading to very poor mechanical properties. However, the measured O2 

permeability values were halved with the presence 25% and 50% of cyclic carbonates, which 

leads to promising perspectives.  

The key takeaways from this chapter are that the best toughening agent for PLA is the less 

pure industrial grade of PRic, which is efficient at just a 2wt% loading. Regarding the gas barrier 

properties, the carbonated additives obtained from the industrial PRic were the most 

promising however, they displayed the worst mechanical behaviour. They should be tested 

again so that the molar mass of the PLA matrix would not be so affected as in our case. The 

homemade PRic and its derivatives, with higher molar masses, showed lower mechanical 

properties and also a different evolution when post-functionalised. 

From another perspective not discussed in this work, it is worth mentioning that the only 

drawback of the industrial PRic is its very low viscosity. When mixed with PLA, a twin-screw 

extruder had to be used since, in the case of a single-screw extruder, this PRic would lubricate 

the screw and therefore, the PLA pellets could not be fed into the extruder. The advantage of 

the epoxidation and the carbonation was that this industrial PRic became more viscous and 

could be blended more easily. More generally, this consideration is reinforced by the fact that 

unlike polyolefins, PLA has a low expansion coefficient when extruded, jointly with a low 

viscosity in the melted state, leading to difficulties to easily collect a filament after extruding. 

As a general perspective, this work showed the potential of bio-based additives to solve 

major long-existing drawbacks of PLA. Fatty acids can be used to synthesise efficient 

nucleating agents that will render PLA able to crystallise from the melt at low cooling times 

and also polymer additives to toughen PLA at room temperature. This opens new 

opportunities for the use of PLA which were not considered yet. The immediate upcoming 

work should be to test the combination of these two types of additives to both evaluate the 

crystallisation kinetics of the resulting mix and the mechanical properties. Finer studies will 

then be required to tune the additives’ loadings to optimise the properties of the final 

material. Moreover, more post-functionalisation can be conducted on the PRic derivatives to 

test new chemical architectures and their effect on PLA. Impact testing is also lacking from 
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this study and would represent a more significant test regarding the assessment of the 

mechanical properties of PLA materials. The toxicity of the additives should be assessed to see 

whether they are compatible with food packaging requirements. Once this has been 

conducted, scale-up tests using the most promising materials should be run. Also, it would be 

interesting to run a life-cycle assessment of such materials to determine their energy impact 

and compare it to other available and widely used materials. Eventually, the biodegradability 

of the materials should also be assessed. Currently, PLA is only compostable in industrial 

conditions and should be directed towards an ability to biodegrade in home-compost 

conditions. Therefore, the influence of the additives on the biodegradation of PLA should be 

studied. This is also emphasised by the latest regulations regarding plastics which drive 

industrials and consumers to use more sustainable materials and rethink their well-

established habits. 
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Materials and methods 
                    

1. Materials 

A commercially available grade of poly(lactic acid) (PLA) was acquired from NaturePlast, 

(Caen, France) (PLI 005, D-lactide<0.5%, MFI=25-35g/10min at 190°C) and dried in a vacuum 

oven at 80°C for at least 12 hours before use. 

Methyl ricinoleate was  purchased from Nu-Chek-Prep (MN, USA) with a purity over 99% 

and were used without any further purification. Methyl ricinoleate (85%) and PRic-100 were 

kindly supplied by ITERG (Pessac, France). 1,6-diaminohexane, 3-metachloroperbenzoic acid 

(m-CPBA, 77%)  and stearic acid were purchased from Sigma-Aldrich. 12-hydroxstearic acid 

and 1,4-diaminobutane were purchased from Alfa Aesar. 1,10-diaminodecane, 1,12-

diaminododecane and oleyl chloride (70%) were purchased from TCI used without 

purification.  

Titanium isopropoxide (Ti(OiPr)4, 99.99%, Acros Organics) and triazabicyclodecene (TBD, 

98%, Sigma-Aldrich) were used as catalysts as received. 

 

2. Experimental methods 

2.1. Dynamic Scanning Calorimetry (DSC) 

A TA instruments liquid nitrogen DSC (Q100, LN2) was used for all DSC measurements. 

Samples were put through the following procedure:  

- Dynamic measurements: 1st heating from 20°C to 190°C, isothermal at 190°C for 10 

mins, cooling at -10°C/min from 190°C to 20°C, 2nd heating at 10°C/min from 20°C to 

190°C. The crystallinity ratio of the sample was measured upon the 1st heating. Melt-

crystallisation points and melt-crystallisation enthalpies were measured during the 

cooling run. Glass transition temperatures, melting points, cold crystallisation points, 

melting enthalpies, and cold crystallisation enthalpies were measured during the 2nd 

heating run. 
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2.2. Nuclear Magnetic Resonance (NMR) 

The 1H and 1H-1H spectra (COrrelated SpectroscopY, COSY) were recorded on a Bruker 

Advance 400 spectrometer (400 MHz for 1H) by using CDCl3 as a solvent at room temperature. 

In the case of bisamide compounds, a mixture of CDCl3 with a few drops of 

hexafluoropropan-2-ol (HFIP) was used as a solvent instead. 1H NMR analyses were performed 

with 16 scans unless mentioned otherwise and COSY experiments were performed with 16x16 

scans.  

2.3. Fourier Transformed Infrared Spectroscopy-Attenuated Total Reflection 

(FTIR-ATR) 

Infrared spectra were obtained on a Bruker-Tensor 27 spectrometer using the attenuated 

total reflection (ATR) mode. The spectra were acquired using 16 scans at a resolution of 4 

wavenumbers. 

2.4. Dynamic Mechanical Analysis (DMA) 

DMA measurements were performed on a TA instruments Q850 DMA apparatus. Samples 

were run using the single cantilever oscillation mode with a heating ramp of 3°C/min from 

25°C to 170°C, 1Hz, 0.1% strain with liquid nitrogen control. The Tg of the samples was 

measured using the onset of the storage modulus (E’) curve and the Tα at the peak of the tan 

δ plot. 

2.5. Size exclusion Chromatography (SEC) 

Polymer molar masses were determined by Size Exclusion Chromatography (SEC) using 

tetrahydrofuran (THF) as the eluent. Measurements in THF were performed on an Ultimate 

3000 system from Thermoscientific equipped with a diode array UV detector. The system also 

includes a multi-angle light scattering detector (MALS) and a differential refractive index 

detector (dRI) from Wyatt technology. Polymers were separated on three G2000, G3000 and 

G4000 TOSOH HXL gel columns (300 x 7.8mm) (exclusion limits from 1000 Da to 400,000 Da) 

at a flowrate of 1mL/min. Columns were held at 40°C and low dispersity polystyrene (PS) was 

used as the standard to convert the elution times to molar mass. 
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2.6. Vertical compression test 

Vertical compression testing was conducted in an INSTRON apparatus using parallel plates. 

Tests were conducted at a -10mm/min speed using 10 replicas for each compound. Due to the 

complexity of the object, no definite section could be calculated, therefore values are 

reported as a force (N) vs displacement (mm). The values for the slope at origin, yield force, 

force plateau, strain at break were reported. 

 

2.7. Gas permeability measurements 

Gas permeation measurements were conducted using Presens O2 spot sensors at 23°C, 

50% RH. PSt6 sensors were used unless specified otherwise. The spot sensors were glued to a 

glass panel and then the injection moulded samples were glued above them under a dry N2 

atmosphere in an airtight manner. Small containers holding a saturated hydrated magnesium 

nitrate salt solution were placed in the samples to adjust the relative humidity from 0 RH to 

53% RH. The O2 value was read using a Fibax 4 trace oxygen metre using temperature 

compensation. Two replicas were used and the mean O2 permeability was calculated when 

the measured O2 concentration values followed a linear trend according to the following 

formula: 

𝑃𝑒𝑟𝑚 =
𝑆𝑙𝑜𝑝𝑒 × 𝑣𝑜𝑙𝑢𝑚𝑒 × 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

𝑎 ×  ∆𝑃
  

• Perm = the permeability in cm3 (O2).m.m-2.day.atm 

• Volume in cm3, 49.2 cm3 

• Thickness in m, 0.001225 m 

• a = area in m², 0.00556 m² 

• ΔP = O2 pressure differential in atm, 0.21 atm 

2.8. Scanning electron microscopy (SEM) 

SEM images were acquired using a Zeiss Gemini 300 microscope at the Bordeaux Imaging 

Centre (BIC). The acceleration tension was 1kV and the observation was conducted under high 

vacuum (4.8 10-5 Pa). Samples were cryo-fractured using liquid nitrogen so that the observed 

surface would be perpendicular to the injection flow and taken from the side of the injection 
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moulded objects. Observations were made at a x500, x1000, x1500, x3000, x5000 and x10000 

zoom using an in-lens detector and a secondary electron detector.  

2.9. X-Ray Diffraction 

X-Ray diffraction spectrograms were acquired using a RIGAKU HF-007 (8keV) machine at 

the CRPP (Centre de Recherche Paul Pascal). The X-Ray source was a copper lamp which 

produced an electromagnetic wave at λ=1.5418Å. Samples were observed in diffracted 

transmission mode at room temperature in air using a flat image detector. 

2.10. Polymer processing at the LCPO – DMA and tensile testing samples 

Prior to melt-blending, PLA pellets were dried at least 12h at 80°C in a vacuum oven. A 

Thermoscientific Minilab II HAAKE Rheomex CTW5 twin screw mini compounder with a 

recirculating canal was used. The temperature was set to 190°C with a rotation speed of 100 

RPM (corotation mode) and a mixing time of approximately 5 mins. About 7g of compound 

were loaded before being transferred to the injection moulding system.  The injection 

moulding device is a Thermoscientific HAAKE MiniJet Pro apparatus which was heated at 

183°C. A rectangular shaped mould was used to produce DMA specimens of approximately 

60x10x1mm. These moulds were heated to either 63°C (cold conditions) or 110°C (hot 

conditions) to get either amorphous or crystallised PLA samples. 

 

 

Fig VI.1: a) Opened twin screw compounder, b) Injection moulding apparatus, c) 
Mould for DMA samples 

a) 

c) 

b) 
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2.11. Polymer processing at the CTCPA  

 Melt-blending apparatus 

PLA pellets were dried in an oven at 100°C for 4 hours prior to mixing and stored in an 

oven at 80°C if not used immediately. The additives were used as such. A Scamex Rheoscam 

twin screw micro extruder was used to prepare the different compounds. Specially profiled 

twin corotating screws with a diameter of 18mm were used with a circular die at the end of 

the barrel. Three successive heating zones were programmed respectively at 210°C, 180°C and 

160°C. The obtained compound was directly cut into pellets using a Scamex pelletiser, both 

cut and drawing speeds were adjusted depending on the behaviour of the rod.  

 Melt-blending method 

To produce the different compounds, a masterbatch was first made with a 6wt% loading 

of additive, regardless of it being a polymer or a nucleating agent. Neat PLLA pellets were 

used. The masterbatch was extruded twice to ensure the homogeneity of the batch, the first 

tile at 13 RPM and the second time at 3 RPM. The processing time in the extruder was 

approximately 7 minutes. The obtained pellets were put in an oven at 100°C for 2 hours to 

make the pellets crystallise to help with the processing. Given the big difference in size 

between the near PLLA pellets and the obtained compound pellets, neat PLLA was extruded 

Fig VI.2: a) Scamex extruder, b) Scamex pelletiser, c) Twin 
corotating screws 

a) b) 

c) 
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to obtain pellets with a similar size. These small size PLLA pellets were then used to dilute the 

masterbatch to get the expected loading. Only one run at 3 RPM through the extruder was 

used this time, with a processing time of approximately 7 minutes. The obtained pellets were 

then put to crystallise in an oven at 100°C for 2 hours. 

 Injection moulding 

Mini containers were produced using a Babyplast 6/12V injection moulding machine 

equipped with specifically a specifically designed mould. Objects of approximately 51mm of 

inside diameter, 25mm height and 1.23mm thickness were produced. The processing 

parameters were as such: the first heating chamber and the plasticisation chamber were 

heated to 200°C, the injection nozzle was heated to 220°C and the mould was set to 185°C. 

The injection pressure was 50 bar for 2.5 seconds and cooling time was set to 15 seconds. The 

total time cycle for 1 object was 22.5 seconds. 

 

Fig VI.3: Babyplast 6/12V injection moulding machine 



 

 
 

 

 

  



 

 
 

Additifs biosourcés dérivés d’acides gras pour l’amélioration des 
propriétés thermomécaniques et barrière du PLA 

Résumé : Dans cette étude, plusieurs voies ont été considérées pour synthétiser des 

additifs biosourcés dans le but d’améliorer les propriétés mécaniques, thermiques et de 
perméabilité à l’O2 du PLA. Dans un premier temps, des agents nucléants de type bisamides 
symétriques ont été synthétisés à partir d’acides gras et de diamines linéaires aliphatiques. 
Les relation structure-propriétés de ces agents a été établie. Leur utilisation a permis 
d’obtenir des taux de cristallinité supérieurs à 50% dans des conditions de moulage 
isotherme ainsi qu’une température de fléchissement sous charge proche de 120°C. Dans 
un second temps, des additifs polymères de type poly(ricinoléate de méthyle) ont été 
considérés ainsi que leurs dérivés époxydés et carbonatés. Leur utilisation a permis de 
grandement améliorer les propriétés mécaniques du PLA, le meilleur additif étant le 
poly(ricinoléate de méthyle) non-modifié, fourni par l’ITERG. Les perméabilités à l’O2 ont été 
faiblement augmentées en présence de poly(ricinoléate de méthyle) non-modifié. Dans le 
cas des additifs époxydés et carbonatés, l’effet sur la perméabilité est bénéfique et permet 
d’obtenir des valeurs similaires à celles du PLA pur. 

Mots clés : Poly(L-lactide), agents nucléants, biosourcé, cristallisation, poly(ricinoléate de 

méthyle), emballages alimentaires, renfort aux chocs, perméabilité O2 
 
 
 

Bio-based additives from fatty acid derivatives for PLA: enhancing 
its thermomechanical and gas barrier properties 

Abstract : The aim of the PhD word is to promote the use of bio-based additives to 

enhance the mechanical, thermal and O2 barrier properties of PLA. Firstly, novel symmetrical 
fatty bis-amides were synthesised as nucleating agents using fatty acids and linear aliphatic 
diamines. Their structure-property relationship has been established. Their use allowed to 
get PLA samples with a crystallinity ratio over 50% and a subsequent heat deflection 
temperature nearing 120°C. Secondly, polymeric additives based on poly(methyl ricinoleate) 
and its epoxidized and carbonated derivatives were considered. Their use allowed to 
enhance greatly the mechanical properties of PLA; the best results being obtained for neat 
poly(methyl ricinoleate) directly synthesised by the ITERG. Regarding the barrier properties, 
only a limited increase was reported with the use of such additives. More interestingly, the 
epoxidized and carbonated additives further limited the increase of permeability to the point 
where a similar value as for neat PLA was obtained. 

Keywords : Poly(L-lactide), nucleating agents, bio-based, crystallisation, poly(methyl 

ricinoleate), food packaging, rubber-toughening,  
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